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Abstract

Nesta dissertação estudamos a evolução da cooperação em populações finitas com taxas
de mutação dependentes da frequência. Existem dois tipos de indivíduos: cooperadores e
desertores. Os indivíduos interagem aleatoriamente, recebendo um ganho especificado pelo
jogo do Dilema do Prisioneiro. O processo de Markov do nascimento-morte estudado aqui
é um exemplo de um passeio aleatório com taxas de salto dependentes do sítio. Consider-
amos um Processo de Moran e três cenários diferentes de taxa de mutação/exploração
dependentes da frequência: Agentes Mutagênicos, Exploração Conformista e Exploração
Inovativa. Esta taxa de mutação/exploração denota quanto um indivíduo está aberto para
mudar e experimentar novas ações diferentes ou inovadoras e explorar novas estratégias
aleatoriamente. Na evolução biológica, a mutação ocorre tão raramente, mas, na evolução
cultural, a exploração é um passo importante, pois os indivíduos experimentam novos
comportamentos com muito mais frequência. A probabilidade de fixação de um único co-
operador aparece proeminentemente nesta dissertação e sua forma é estudada na dinâmica
de seleção usando a probabilidade de fixação de mutantes neutros como um ponto de
referência para o estudo de seleção no Processo de Moran e nos três diferentes cenários de
taxa de mutação/exploração dependentes da frequência.

Palavras-chave: Processo Estocástico, Dinâmica Evolutiva, Dilema do Prisioneiro, Prob-
abilidade de Fixação, Coevolução Gene-Cultura.





Abstract

In this dissertation we study the evolution of cooperation in finite populations with
frequency-dependent mutation rates. There are two types of individuals: cooperators and
defectors. Individuals interact randomly, receiving a payo� specified by the Prisoner’s
Dilemma game. The birth-death Markov process studied here is an instance of a random
walk with site dependent hopping rates. We consider a Moran Process and three di�erent
frequency dependent mutation/exploration rate scenarios: Mutagens, The Conformist
Exploration, and The Innovative Exploration. This mutation/exploration rate denotes
how much an individual is open to change and trying out new di�erent actions or innovate
and explore new strategies at random. In biological evolution, mutation occurs so rarely,
but in cultural evolution, exploration is an important step since individuals try out new
behaviors much more frequently. The fixation probability of a single cooperator features
prominently in this dissertation and its shape is studied in selection dynamics using the
fixation probability of neutral mutants as a benchmark for the study of selection in the
Moran Process and in the three di�erent frequency dependent mutation/exploration rate
scenarios.

Keywords: Stochastic Process, Evolutionary Dynamics, Prisoner’s Dilemma, Fixation
Probability , Gene-Culture Coevolution.
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1 Introduction

Evolutionary Game Theory has generated an enormous amount of interest lately
[1–3]. Among the features of the Evolutionary Game Theory is that it models the animal
world, it describes the science of behavior and the dynamics of the population. It is
considered a dynamical version of classical game theory. It describes, mathematically, the
complex phenomena: interacting agents, spatial patterns, noise, non-linearity, etc.

Most of this dissertation studies evolution under the so-called Moran Process,
or variations thereof. In the Moran process, change in the composition of a finite fixed-
sized population is described while two types of individuals compete. The situation of a
population with N individuals is completely described by the number i = 1, . . . , N of one
of the two types of individuals, so the number of the other type is N ≠ i. Time is discrete:
at each time step one individual is randomly selected for reproduction (by producing a
copy of itself) and one individual is randomly selected to be removed from the population.
In both cases the same individual can be selected.

In finite populations evolutionary dynamics manifests an equilibrium between
Darwinian selection and neutral drift. For a considered term population structures were
assumed to leave this equilibrium una�ected on the condition that residents and the
mutants have fixed fitness values. This outcome in fact holds for a definite (large) class of
population structures. Although other structures can incline the equilibrium to the extend
that either selection is removed and drift rules or drift is removed and only selection is
significant.

Regardless of the fact that in nature, fitness is generally a�ected by interactions
with other individuals of the population. This is of particular interest for the evolution
of cooperation. The crucial element of this evolutionary conundrum is seized by social
dilemmas: cooperators a�ord a benefit to the group at some cost to themselves, whereas
defectors achieve to exploit the group by obtaining the benefits without enduring the costs
of cooperation. Hence, defectors outcompete cooperators and cooperation is annihilated
due to selection. However, other processes may be in place and cooperators may have an
opportunity to outcompete defectors. One example is that of punishing behavior, whereby
cooperators punish defectors at a cost to themselves. If there are enough cooperators,
cooperation may flourish and remain stable [4].

In this dissertation, we analyze the evolution of cooperation in the simplest scenario,
where only cooperators and defectors are present in a finite well-mixed population (random
interactions). We explore the e�ect of di�erent functional forms of the mutation rates on
the evolution of cooperation. First, we provide a brief introduction to the core ideas of
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evolution, followed by a comprehensive introduction to the Evolutionary Game Theory.
This first introductory part was largely based on Martin Nowak’s book, “Evolutionary
Dynamics: Exploring the Equations of Life” [1]. Then, we present some key definitions
from the theory of Markov Chains needed to define the stochastic process, the Moran
process, which we use to analyze the evolution of cooperation in finite populations. In the
last chapter we present the results of our explorations.
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2 What Evolution is

Evolution needs populations of reproducing individuals. Evolutionary game dy-
namics acts on populations - neither genes, nor cells, nor individuals evolve. Selection
manifests the reality that the genes or behavioral patterns of individuals with a higher
fitness have a higher chance to be passed to succeeding generations by the means of
biological reproduction or cultural imitation. The evolutionary process is established by:

Replication: In finite populations the transmissions of traits by the means of reproduction
or imitation is generally a process involving probability. The achievement of a trait
is proportional to the fitness of its carriers but a high fitness does not a�ord any
assurance for success. With a little probability even the fittest individual of the
population may not get an opportunity to pass its trait to the next generation.

Selection: Individuals with a fitness that surpasses the mean fitness in the population
have a higher tendency to pass their genetic or cultural traits to progeny in succeeding
generations and these traits are likely to grow in abundance. Analogously, traits
that lower the fitness of an individual have little opportunities to be passed to the
following generation, reduce in abundance and ultimately vanish.

Mutation: Mutations and genetic recombination in addition to impulsive alterations
and mistaken imitations of behavioral patterns produce fitness di�erences among
individuals of the population. These di�erences are amplified when selection acts on
them over time.

2.1 Reproduction

Individuals reproduce and lead to progeny. Let us represent this process by imagining
a single bacterial cell which divides by fission, so when this bacterium grows in an
environment where nutrients are rich, it divides every twenty minutes. We call that time a
time of one generation, upon completion of twenty minutes bacteria divide and we have
two progenies, at the end of forty minutes the two progenies will themselves be ready for
division, and at the end of time equal to two generations we are going to end up with
four bacteria and this process will continue in the future provided the resources that are
available to the bacterium are not constrained at any way.

Mathematically this process can be modeled by a di�erence equation (time is
measured in discrete steps). Assuming that the size Nn of a cell population at time n

totally defines its size at time n + 1, therefore the cell population is modeled by the
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following di�erence equation

Nn+1 = 2Nn. (2.1)

After n generations there will be 2n cells and N0 is the initial condition (number of
cells at time 0)

Nn = N0 2n
. (2.2)

We also have another way to capture the dynamics of growth in bacteria. In order
to do that we will use the tool of di�erential equations and say that if N(t) denotes the
number of bacteria at time t, then we can assume that the rate of change of N(t), which
is the number of bacteria at any time, is directly proportional to the size of the number
of bacteria at that time and r is the rate of growth (reproductive rate). In our case the
bacterium divides every twenty minutes so the rate of growth is one division every twenty
minutes, that is, the rate of growth has units time inverse which is one by twenty minutes
inverse. This is a di�erential equation formulation of modeling bacterial growth:

Ṅ = rN. (2.3)

And now we can simply integrate the di�erential equation 2.3 to obtain an analytical
expression for getting an approximation of number of bacteria at time t when knowing
that we are starting with a particular number of bacteria N0 at t equal zero. Then the
solution of the di�erential equation 2.3 is

N(t) = N0 e

rt
. (2.4)

This solution reduces to that of the di�erence equation in discrete time 2.2 if we
settle r = ln2 or e

r = 2 and quantify the model at unit intervals of time t = n. By
this settling, the linear discrete-time equation Nn+1 = 2Nn and the linear di�erential
equation Ṅ = rN , are directly related.

At this point a question emerges: what are the mechanisms of growth that we have
not captured in these two formulations?

(i) There is no death in either of these two models.

(ii) We have unconstrained growth in our models. In real environments constraints are
very likely to set in very fast and competition for resources would mean that resource
availability becomes a constraint and bacterial growth slows down. So there is no
concept of resource limitation in either of these two formulations and both of them
allow for unconstrained growth.
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Death has to be incorporated into a realistic model of growth. Assuming that d

represents the death rate, we obtain the di�erential equation

Ṅ = rate of growth ≠ death rate = r N ≠ d N, (2.5)

integrating the last equation we find

N(t) = N0 e

(r≠d) t
. (2.6)

We can have three scenarios associated with growth when we incorporate death
into account.
a) r > d

In this case the exponent of equation 2.6 is positive meaning that this function grows
exponentially and so the number of bacteria.
b) r < d

This is exactly the opposite,because the exponent associated with this function is negative
and the solution is going to be of decaying nature and thus the bacterial number approaches
extinction.
c) r = d

This is the case when the growth rate is matched by the death rate which means that the
number of bacteria stays constant.

We are going to add to our unconstrained equation 2.3 another factor which
represents the carrying capacity K and on incorporation our equation is given by

Ṅ = rN

3
1 ≠ N

K

4
. (2.7)

Equation 2.7 is known as the logistic equation. The factor K represents the
maximum number of individuals that can survive in a particular environment where
growth stops. The behavior of 2.7 is easy to analyze. The rate of change Ṅ is zero for
N = 0 and N = K. In these two cases, the density does not change. N(t) increases for
0 < N < K, and N(t) decreases for N > K. Equation 2.7 faithfully captures the resource
limitation that is taking place as bacterial numbers are increasing in time. The logistic
model 2.7 makes several assumptions about the population:

– The reaction to an alteration in population density is spontaneous.

– The inherent rate of increase is lowered by a fixed quantity for every individual
adjoined to those previously present.

– Crowding has an e�ect on all individuals and life phases of a population equitably.

– The environment is fixed; stochastic and genetic results are insignificant.
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The solution of 2.7 is given by

N(t) = K N(0) e

rt

K + N(0) (ert ≠ 1) . (2.8)

2.2 Selection

Suppose we have di�erent n species and they evolve. Their evolutionary success
depends on its fitness and fitness basically means how many o�spring they are expected
to have. In this case, the simple case, fitness is constant fi and if we look at the relative
frequency of any particular species, the one with the highest fitness will dominate.

Let Ni be the number of individuals using a strategy, then the total population
size is

N =
nÿ

i=1
Ni, (2.9)

the proportion of individuals (frequency) using a strategy is

xj = Nj

N

, (2.10)

the rate of change of the number of individuals using a strategy Ṅj is given by the growth
equation 2.3 and the fitness is related to the reproductive rate

Ṅj = fj Nj. (2.11)

Rewriting equation 2.10

Nj = Nxj (2.12)

Considering equation 2.9 and having in mind that Ṅ is the rate of change of total
population we di�erentiate each side of equation 2.12 with respect to time

Ṅj = N ẋj + xj Ṅ (2.13)

Rearranging equation 2.13 and performing the required mathematical operations

N ẋj = Ṅj ≠ xj Ṅ (2.14)

N ẋj = Ṅj ≠ xj

nÿ

i=1
Ṅi (2.15)

N ẋj = fj Nj ≠ xj

nÿ

i=1
fi Ni (2.16)

N ẋj = fj N xj ≠ xj

nÿ

i=1
fi N xi (2.17)
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canceling N from both sides, selection can be modeled by an ordinary di�erential equation
of the form

ẋj = fj xj ≠ xj „(t) = xj (fj ≠ „(t)) (2.18)

„(t) =
nÿ

i=1
fi xi (2.19)

We get a selection dynamics equation 2.18 for j = 1, 2, . . . , n and equation 2.19 is
the average fitness of the population.The rate of reproduction of j species for the relative
frequencies is determined by the di�erence between the fitness and the average fitness of
the population. The solution of equation 2.18 is

xj(t) = xj(0) e

fjt

nÿ

i=1
xi(0) e

fit

; j = 1, 2, . . . , n (2.20)

The adoption of normalized variables qn
i=1 xi = 1 defines the unit simplex:

S

(1)
n = {0 Æ xi Æ 1 ’ i = 1, 2, . . . , n · qn

i=1 xi = 1}, as the physically available domain
that achieves the conservation relation.

2.3 Mutation

The interaction of replication, mutation, and selection is the main point of Darwinian
evolution, which could not be properly engage before knowledge on structures and functions
of the molecules implicated in the process became accessible. Notably, the accessibility
of mutants requires insight on the mechanism of mutation and the inner structure of a
mutation space. Mutation can occur during reproduction and can also occur in the absence
of reproduction.

Consider two types model, A and B. Assuming that u1 represents the probability
that the reproduction of A leads to B and u2 the mutation rate from B to A, we get the
mutation dynamics equations:

ẋA = xA(fA ≠ „) ≠ xAfAu1 + xB fB u2

(2.21)
ẋB = xB (fB ≠ „) ≠ xB fB u2 + xAfAu1

Assume that A and B have the same fitness (fA = fB = 1) we rewrite equations
2.21 in the following way

ẋA = xA (1 ≠ u1) + xB u2 ≠ „ xA

(2.22)
ẋB = xA u1 + xB (1 ≠ u2) ≠ „ xB
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so the average fitness is constant „ = 1 and therefore xA + xB = 1, then

ẋA = ≠xA u1 + xB u2

(2.23)
ẋB = xA u1 ≠ xB u2

Now we want to understand the steady state of the system by making ẋA = 0 and
ẋB = 0, the frequencies of A and B converge to the stable equilibrium respectively

x

ú
A

= u2
u1 + u2

(2.24)
x

ú
B

= u1
u1 + u2

2.4 The Quasispecies Equation

For di�erent n species we can model mutation as well. We denote by xi the
relative abundance (frequency) of phenotype i and have qn

i=1 xi = 1. The fitness of
phenotype i is represented by fi, a non-negative real number relating to the rate at
which the phenotype i reproduces. The average fitness of the population is represented
by „(t) = qn

i=1 fi xi(t). During the reproduction of an individual, mistakes can occur.
The probability of replication of a variant i results in variant j is given by Qij and this
mutation matrix obey qn

k=1 Qjk = 1.

A common equation used to model reproduction of viruses is the quasispecies
equation [5]:

ẋi =
nÿ

j=1
Qij fj xj ≠ xi „(t) i = 1, . . . , n (2.25)

It describes the mutation and selection of an infinitely large population on a constant
fitness landscape and the dynamics is completely determined by the mutation-selection
matrix W = [fj Qji].

In the quasispecies model, mutation is due to the replication process (this is the
situation that is suitable for viruses) and correct replication and mutations are pictured
as distinct response channels of the same replication step. The number of mutations is
proportional to the number of replication occurrences or descents.

In order to fulfill the terms for the suitability of the Perron-Frobenius theorem, the
mutation-selection matrix W has to be a primitive matrix (a primitive matrix is a square
nonnegative matrix some power which is positive). The theorem guarantees that (i) the
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largest eigenvalue is real, positive, and non-degenerate; and (ii) the largest eigenvector
has only rigorously positive components.

The quasispecies model considers replication and mutation as parallel response
channels of one response step, and properly, the mutation-selection matrix is a product of
the mutation and the fitness matrix.

The mutation matrix Q of the quasispecies model is a stochastic matrix, qn
k=1 Qjk =

1, because a replication has to be either correct or prone to error.
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3 Evolutionary Games

Evolutionary game theory has been of great use for the analysis of phenomena in
a wide spectrum from the dynamics of bacterial populations to the evolution of social
behavior [3]. Individuals are chosen as players that engage with each other in games.
Over time, games are symbolical compendia of interactions, players who choose a certain
strategy either achieve better than the mean population and enlarge in frequency, or
achieve worse than the mean population and reduce in frequency. Following the variation
in their frequencies over time, evolutionary game theory can give perception into the
ultimate outcome of the strategies in a game, for example whether they govern, cohabit or
go inactive from the population.

From the perspective of the dynamics the fitness is frequency dependent. Fitness
of a type i, denoted fi(x̨), quantifies the achievement of replication of that type. This
quantity relies on the state of the entire population.

The evolution of the frequencies of strategies in a population is depicted by the
replicator dynamics. In some situations, a di�erential equation can model the underlying
dynamics on the simplex Sn.

Assume that the population is divided into n phenotypes (strategies) with frequen-
cies x1 to xn. The fitness fi of phenotype i will be a function of the conformation of the
population, i. e. of the state x̨ = (x1, . . . , xn). We assume that the state x(t) evolves in
Sn as a di�erentiable function of t, if the population is very big, and if the generations
combine regularly into each other,. The rate of increase ẋi/xi of phenotype i is a meter of
its evolutionary success, we can denote this success as the di�erence between the fitness
fi(x̨) = qn

j=1 aij xj of phenotype i (aij are the entries of the payo� matrix A = [aij] ) and
the average fitness „(x̨) = qn

i=1 xi fi(x̨) of the population. Therefore we get
ẋi

xi
= fitness of i ≠ average fitness, (3.1)

which produces the replicator equation

ẋi = xi ( fi(x̨) ≠ „(x̨) ) i = 1, . . . , n. (3.2)

Equation 3.2 is defined on the simplex Sn which is given by qn
i=1 xi = 1. The

simplex is invariant under 3.2: if x̨ œ Sn then x̨ (t) œ Sn for all t œ R.

3.1 Two Player Games

Conventionally, evolutionary game theory depicts evolution in phenotype space.
The distinct phenotypic characteristics are called strategies. The replicator equation is at
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the essence of evolutionary game dynamics.

The frequencies of the di�erent types in the population are allowed by the replicator
equation to define the fitness landscape instead of establishing the fitness of each type
to be constant (constant fitness is a special case of the replicator dynamics). Consider,
in an infinitely large population, two types A and B with the frequencies x and 1 ≠ x

correspondingly. A payo� matrix expresses the interaction between the two types

Q

ca

A B

A a b

B c d

R

db (3.3)

In this payo� matrix it is observed that when an A individual interacts with another
A individual it gets a and when interacting with a B individual it gets b. We can find the
average of both strategies from this payo� matrix, fA(x) = a xA + b xB = a x + b (1 ≠ x)
and fB (x) = c xA + d xB = c x + d (1 ≠ x). These average payo�s can be interpreted as
fitnesses of the two strategies. According to classical selection ideas the frequency of any
type increases over time if its fitness is greater than the average fitness of the population
and vice versa.

Consider the replicator equation when there are only two types, in the population,
A and B with the following dynamics equations

ẋA = xA [fA(x̨) ≠ „(x̨)]
(3.4)

ẋB = xB [fB (x̨) ≠ „(x̨)]

Where x̨ = (xA , xB ) defines the composition of the population with xA the frequency
of A and xB the frequency of B. The average fitness is given by „(x̨) = xAfA(x̨) + xB fB (x̨).
Since xB = 1 ≠ xA , it is enough to consider xA , which we denote by x thus xB = 1 ≠ x,
and hence

ẋ = x (1 ≠ x) [fA(x) ≠ fB (x)]. (3.5)

Analyzing for steady state equation 3.5, the equilibria are reached when x = 0,
x = 1, and all values x œ (0, 1) leading to fA(x) = fB (x). The equilibrium x = 0 leads
to stability if fA(0) < fB (0) and the equilibrium x = 1 is stable if fA(1) > fB (1). An
interior equilibrium, x

ú, is considered stable if the derivatives of the fitnesses fA and fB

fulfill f

Õ
A
(xú) < f

Õ
B

(xú). Inside the interval [0, 1] there can be various stable and unstable
equilibria. Figure 1 shows a graphical description.

These approaches can be properly expressed in the form of a di�erential equation
which follows the variation in x over time. Substituting the linear fitness functions into
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Figure 1 – Frequency-Dependent Selection (Figure from Nowak, 2006: Figure 4.2)

 

equation 3.5 gives

ẋ = x (1 ≠ x) [ (a ≠ b ≠ c + d) x + b ≠ d ]. (3.6)

Hence, through the fitness of the strategies the evolutionary game is introduced in
the dynamics. Analyzing for steady state there are three possible solutions to this equation,
strategy A goes extinct, x = 0 (we a�rm that B dominates A if a Æ c and b Æ d,
where in any case one inequality must be strict), or the whole population consists of A

players, x = 1 (we a�rm that A dominates B if a Ø c and b Ø d, where in any case one
inequality must be strict), and lastly when the two strategies have equal fitness, fA = fB

which is when

x

ú = d ≠ b

a ≠ b ≠ c + d

. (3.7)

We state that A and B are bistable if a > c and b < d. In the interval [0, 1] an
unstable equilibrium exists given by equation 3.7. The system will approach all-B if the
initial condition, x(0), is such that x(0) < x

ú. Conversely, the system will approach all-A
if x(0) > x

ú.

We state that A and B stably coexist if a < c and b > d. A population of A and
B individuals will approach the interior, stable equilibrium given by equation 3.7.

We state that A and B are neutral if a = c and b = d. The composition of the
population will not be changed by selection. For selection dynamics any combination of A

and B is an equilibrium.

See Figure 2 for a summary of the possible dynamics.
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Figure 2 – Frequency-Dependent Selection Dynamics (Figure from Nowak, 2006: Figure
4.4)

 

3.2 The Nash Equilibrium

In modeling trouble situations among rational individuals, (if an individual holds
consistent beliefs, is logically omniscient, knows the payo� matrix, and always chooses an
action that maximizes the payo� that expects on the basis of beliefs, then the individual
is considered rational), noncooperative game theory has become a pattern tool . Such a
model details the group of strategies of every individual or player and the payo� to every
player for any the strategy portrait, the register of strategies adopted by the players. The
notion of Nash equilibrium (NE) is the key element in prognosticating the result of a
game. Given the strategies played by the other players, in a Nash equilibrium each player’s
strategy maximizes his avail . In many scenarios it seems that the Nash equilibrium is not
unique. The essential theoretical significance of Nash equilibrium rests on the certitude
that if a game has a uniquely rational solution, then it is going to be a Nash equilibrium.

A Nash equilibrium is an aftermath in which the players’ strategies are best replies
to themselves. A Nash equilibrium possesses strategic stability, because none player could
obtain a better payo� by adopting di�erently, given the coplayer’s preference, and the
players, therefore, have no reason to regret their own preferences when the result is exposed.

Consider the case of two players. Suppose that the game is defined by the payo�
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matrix between two strategies, A and B,

Q

ca

A B

A a b

B c d

R

db (3.8)

There are four di�erent combination of strategies that the two players can adopt: (A, A),
(B, B), (A, B), (B, A), where the first entry stands for the strategy adopted by the first
player and the second entry the strategy adopted by the second player. Depending on the
parameters, there can be four di�erent Nash equilibria:

(i) (A, A) is a unique Nash equilibrium if a Ø c and b > d.

(ii) (B, B) is a unique Nash equilibrium if d Ø b and c > a.

(iii) (A, A) and (B, B) are both Nash equilibria if a Ø c and d > b.

(iv) (A, B) and (B, A) are both Nash equilibria if c Ø a and b > d.

For example, if a Ø c and b > d, it means that no matter what the opponent does, it is
always better to adopt A. Therefore, both adopt A and the outcome (A, A) is a unique
Nash equilibrium. The stronger concept of strict Nash equilibrium can be defined by the
same condition, except that “Ø” must be replaced by “>”.

Observe that there is a distinction between the classical Game Theory and Evo-
lutionary Game Theory. The classical Game Theory studies the Nash equilibria of the
single encounters, where rational players are implicated in a game and each of them has
to choose among di�erent strategies in an e�ort to maximize a payo�, which rests on
the strategies of all players. The composition of ideas from classical game theory and
evolutionary theory resulted in Evolutionary game theory. More exactly, the Evolutionary
Game Theory analyzes the evolution of the a�uence of strategies in a population where
strategies that provide higher payo� extend at higher rates and the payo� of a player relies
on the strategies of the rest of the players and, therefore, on the rate of occurrence of each
strategy inside the whole population.

3.3 Evolutionarily Stable Strategies

A strategy is evolutionarily stable if, at any time all members of the population
implement it, under natural selection no discrepant behavior could overrun the population
. The game between A and B is given by the general payo� matrix 3.3, and the fitnesses
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are given respectively by

fA = a xA + b xB

(3.9)
fB = c xA + d xB

Assume a population in which the most of the players (fraction 1≠Á) plays strategy
A and a few, Á plays mutant strategy B. A is an Evolutionarily Stable Strategy (ESS) if
and only if it achieves strictly better than the mutant strategy B in opposition to the
composed population. For such population the fitness of A is greater than the fitness of B,

a (1 ≠ Á) + b Á > c (1 ≠ Á) + d Á (3.10)

This can be rewritten as

(1 ≠ Á)(a ≠ c) + Á (b ≠ d) > 0 (3.11)

Thus, we have two conditions for evolutionarily stability

(i) NE condition:
a > c.

(ii) Stability condition:
if a = c, then b > d.

Condition (i) assumes that A is a NE which is not satisfactory for non-invasibility:
there might be another option best reply B. On this case, condition (ii) says that A

performs better against B than B itself. Then we can a�rm that:

— Strict NE are ESS (symmetric games).

— All ESS are NE (but not necessarily strict NE).

— A game with two pure strategies always has an ESS.

3.4 Examples

There are four types of Nash equilibria in a symmetric two-person game. Cooperative
interactions can have di�erent payo� structures, yielding di�erent rational solutions [6].
Players either cooperate (C) or defect (D) and receive payo�s that are known as Temptation



3.4. Examples 27

(T ), Reward (R), Punishment (P ), and Sucker (S). The general form of the payo� matrix
is

Q

ca

C D

C R S

D T P

R

db (3.12)

3.4.1 Prisoner’s Dilemma
In the Prisoner’s Dilemma game [1,3,7], without realizing the other player’s choice,

two players simultaneously adopt to cooperate (C) or to defect (D). If they both adopt
to cooperate they divide up the highest total payo� and get R points each, although
there is an inclination to defect due to the fact that defection scores T > R contrary to
a cooperating opponent who in that case obtains the lowest score S. If both adopt to
defect they divide up the lowest total payo� and get P points each. If T > R > P > S

and 2R > T + S (see payo� matrix 3.12), a dilemma arises, since, in an isolated game,
rational players adopt to defect and then divide up the lowest total payo�. Thus, adopting
the same strategy of the opponent, the unique Nash equilibrium is (D, D).

3.4.2 Snow-Drift Game
The scenario of the Snow-Drift game involves two drivers who are trapped on

either side of a snowdrift [1]. Each has two options: to get out and start shoveling snow
(C) or to stay in the comfortable warmth of the car (D). If both stay in the car, they
drop the benefit of coming back home. If the other driver resolves to start shoveling, it is
more beneficial to remain in the car. If both resolve to start shoveling, the labor costs are
reduced and both come back home earlier. This results in the following payo�s: R = b ≠ c

2 ,
S = b ≠ c, T = b, and P = 0. The payo� matrix is

Q

ca

C D

C b ≠ c
2 b ≠ c

D b 0

R

db (3.13)

For b > c, the Nash equilibrium is to adopt the opposite strategy, that is both
(C, D) and (D, C) are Nash equilibria. If b < c, then this game approaches the Prisoner’s
Dilemma game.

3.4.3 Stag-Hunt
In the Stag-Hunt game is described a scenario in which two individuals go out on

a hunt [3], there are two strategies: to hunt a stag (C) or to hunt a hare (D). The two
players must combine actions to hunt the stag, which provides a more beneficial payo� in
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terms of calories. Although, if one of the players resolves to give up the combination of
actions and decided to hunt a hare, which is e�ortless to catch, the defector will obtain
a poorer, certain reward, and the other player will obtain nothing. If we put in terms of
the payo� matrix 3.12 the payo� distribution R > T > P > S defines a Stag-Hunt game.
The Nash equilibrium is to adopt the same strategy of the opponent, that is, both (C, C)
and (D, D) are Nash equilibria.

3.4.4 Harmony Game
Referring to payo� matrix 3.12, Harmony game could be described according to the

payo� matrix distribution R > S > P and R > T > P [2, 3, 8]. This game has a unique
strict Nash equilibrium both players cooperating (C, C). This game is rarely mentioned
in the traditional game theory analysis because it does not constitute any conflictive social
dilemma.
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4 Markov Chains

The outcomes of an experiment are represented by a random variable whether
these outcomes are numerical or real numbers can be assigned to them.

A random variable X is a rule (or function) that assigns a real number to every
outcome of a random experiment, while a random process is a rule (or function) that
assigns a time function to every outcome of a random experiment. A random variable
assumes discrete or continuous values [9].

Consider the discrete points in time {tk} for k = 1, 2, . . . , and let Xtk
be the

random variable that represents the state of the system at tk. The indexed collection of
random variables {Xtk

} forms a stochastic process. We assume that the Xtk
take values

in some countable set S, called the state space. The elements of S are called states. The
states at time tk characterize the (exhaustive and mutually exclusive) outcomes of the
system at that time.

Definition 1. The sample description space S of a random phenomenon is the space of
descriptions of all possible outcomes of the phenomenon.

Definition 2. An event is a set of sample descriptions. An event E is said to occur if and
only if the observed outcome of the random phenomenon has a sample description in E.

We specify a probability function P (·) on the family F of random events; more
precisely, one defines for each event E in F a number, denoted by P (E) and called the
probability of E (the probability that E will occur). P (E) represents the probability that
(or relative frequency with which) an observed outcome of the random phenomenon is a
member of E.

4.1 Markov Chains: Discrete Parameters

4.1.1 Markov Process
A Markov process is a stochastic scheme for which the development of a future state

relies on the immediately previous state and only on it and not on the past history [9, 10].
Thus if t0 < t1 < . . . < tn (n = 0, 1, 2, . . .) characterizes points in time, the collection
of random variables {Xtn} is a Markov process for all x0, . . . , xn œ S if it has the next
Markovian property (memoryless property)

P{Xtn = xn | Xtn≠1 = xn≠1, . . . , Xt0 = x0} = P{Xtn = Xn | Xtn≠1 = xn≠1} (4.1)

For all values of Xt0 , Xt1 , . . . , Xtn .
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4.1.2 Markov Chains
A Markov process whose state space is discrete is called a Markov chain . Therefore,

a Markov chain is a sequence of integer random variables for which the Markov property
holds [9]. We deal with a discrete-parameter Markov chain {Xn , n Ø 0} with a discrete
state space S = {0, 1, 2, . . .}, where this collection may be finite or infinite. If Xn = i, then
the Markov chain is said to be in state i at time n (or the nth step). A discrete-parameter
Markov chain {Xn , n Ø 0} is represented for every n by

P{Xn+1 = j | X0 = i0, X1 = i1, . . . , Xn = i} = P{Xn+1 = j | Xn = i} (4.2)

The conditional probabilities P{Xn+1 = j | Xn = i} are called one-step transition proba-
bilities.

If, for every i and j, P{Xn+1 = j | Xn = i} = P{X1 = j | X0 = i}, for all n Ø 0,
then the Markov chain is said to have stationary one-step transition probabilities. Hence,
the presence of stationary transition probabilities means that the transition probabilities
do not change over time.

Definition 3. A discrete-parameter Markov Chain {Xn , n Ø 0} on a state space S is
said to be homogeneous if, for all n Ø 0, k Ø 0 and, for all i, j œ S, we get

P{Xn+k = j | Xk = i} = P{Xn = j | X0 = i} (4.3)

Example. Consider a game where a coin is tossed repeatedly and the score of the
player is collected by adding two points when a head turns up and adding one point for a
tail.

The state space of the process is created by all possible collected scores that can
occur over the progress of the game (S = N). For any given state we notice that the
distribution of possible values of the state is dependent only on the previous state, that is,
the state distribution is characterized by:

P{Xn = j + 1 | Xn≠1 = j} = 1
2

P{Xn = j + 2 | Xn≠1 = j} = 1
2

and so the process is a Markov process. The state space is discrete and therefore the
process is a Markov chain.

Besides, the distribution of possible values of a state does not depend upon the
time the observation is made, so the process is a homogeneous, discrete time, Markov
chain.



4.1. Markov Chains: Discrete Parameters 31

4.1.3 Transition Probability Matrix
Let {Xn , n Ø 0} be a homogeneous Markov chain with a discrete infinite state

space S = {0, 1, 2, . . .}. Then

pij = P{Xn+1 = j | Xn = i} i Ø 0, j Ø 0 (4.4)

is the one-step transition probability of going from state i at n to state j at n + 1 in spite
of the value of n. The transition probabilities of {Xn , n Ø 0} may be more conveniently
arranged in a matrix form as follows:

P = [ pij ] =

S

WWWWWWU

p00 p01 p02 . . .

p10 p11 p12 . . .

p20 p21 p22 . . .

... ... ...

T

XXXXXXV
(4.5)

where the elements must satisfy the conditions

pij Ø 0
Œÿ

j=0
pij = 1 i = 0, 1, 2, . . . (4.6)

For the case where the state space S is finite and equal to {1, 2, . . . , m}, P is m◊m

dimensional; i.e.,

P = [ pij ] =

S

WWWWWWU

p11 p12 . . . p1m

p21 p22 . . . p2m

... ... . . . ...
pm1 pm2 . . . pmm

T

XXXXXXV
(4.7)

where

pij Ø 0
mÿ

j=1
pij = 1 i = 1, 2, . . . , m (4.8)

A square matrix whose elements satisfy equations 4.6 or 4.8 is called a Markov matrix or
stochastic matrix because all the transitions probabilities pij are fixed and independent
of time.

4.1.4 Classification of States
State j is said to be accessible from state i if there exists a number n Ø 0 such

that p

(n)
ij > 0, and we denote i æ j. Two states i and j communicate if they are accessible

from one another, and we denote i ¡ j. A Markov chain is said to be irreducible if all
states communicate with each other.

In a Markov chain, a set C of states is said to be closed if it is improbable to
move out from any state of C to any state outside C by one-step transitions, that is
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pij = 0 if i œ C and j /œ C. In this case p

(n)
ij = 0 evidently holds for every n. A

peculiar example of a closed set is a single state j with transition probability pjj = 1,
then j is called an absorbing state.

A Markov chain is irreducible if the set of all states forms a closed set and no other
set is . If we consider only the states of a closed set C, then we have a sub-Markov chain
defined on C, and this can be studied independently of the other states.

The period d(j) of a state j is defined by:

d(j) = gcd{n Ø 1 : p

(n)
jj > 0} (4.9)

where gcd stands for greatest common divisor. If d(j) > 1, then state j is called periodic
with period d(j). All states of a closed set have the same period. Therefore we can refer to
the period of the closed set C. If d(j) = 1, then we say that the state j and the closed set
C are aperiodic (non-periodic).

We denote the probability of the process being in a state i at step n as

fi

(n)
i = P{Xn = i} (4.10)

The initial probability distribution is given by

fi

(0)
i = P{X0 = i} (4.11)

We have that P

(1) = P = [ pij ] is the one-step transition matrix and P

(n) =
P

n = [p(n)
ij ] denotes the n-step transition matrix with p

(n)
ij = P{Xn = j | X0 = i}.

The transient probability distribution at time n > 0 is defined by

fi

(n)
j =

ÿ

iœS

fi

(0)
i p

(n)
ij or fi

(n) = fi

(0)
P

n (4.12)

A distribution fi is stationary if

(i) fij Ø 0 ’j œ S and
ÿ

jœS

fij = 1.

(ii) fij =
ÿ

iœS

fii pij, fi = fi P

Let {Xn, n Ø 0} be a regular homogeneous finite-state Markov chain with transition
matrix P . Suppose fi

ú is a limiting distribution, if fi

(0) is an initial probability distribution,

fi

ú = lim
næŒ

fi

(n) = lim
næŒ

fi

(0)
P

n = fi

(0) lim
næŒ

P

n = fi

(0)
P

ú (4.13)

the limit can depend on fi

(0) and does not need to exist.
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Let f

(n)
ij = P{Xn = j, Xk ”= j, k = 1, . . . , n ≠ 1 | X0 = i}, with f

(0)
ij = 0, for

n Ø 1 be the n-step hitting probability. The hitting probability is defined as

fij =
Œÿ

n=1
f

(n)
ij , (4.14)

and a state i is called transient (or non recurrent) if fii < 1 and recurrent if fii = 1.

Denoting expectation

mij =
Œÿ

n=1
n f

(n)
ij , (4.15)

a recurrent state i is called positive recurrent or recurrent non-null if mii < Œ and
recurrent null if mii = Œ.

Definition 4. A discrete time Markov chain is ergodic if all its states are irreducible,
aperiodic and recurrent non-null (positive recurrent).

The fundamental theorem of Markov chains is stated [10]:

Fundamental Theorem of Markov Chains. In an ergodic Markov chain, the limiting
distribution exists, does not depend on fi

(0), and equals the unique stationary distribution.
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5 Evolutionary Games in Finite Populations

5.1 Finite Populations

We study a stochastic process for evolutionary game theory in finite populations, a
Moran process which is a Markov birth-death process in four steps: for two strategies, i

individuals of strategy A and N ≠ i of strategy B.

(i) An individual A could be selected for reproduction and death with probability (i/N)2.
The number of A stays the same.

(ii) An individual B could be selected for reproduction and death with probability
[(N ≠ i)/N ]2. The number of B stays the same.

(iii) An individual A could be selected for reproduction and a B individual for death
with probability i(N ≠ i)/N

2. For this case: i æ i + 1 and N ≠ i æ N ≠ i ≠ 1.

(iv) An individual B could be selected for reproduction and an A individual for death
with probability i(N ≠ i)/N

2. For this case: i æ i ≠ 1 and N ≠ i æ N ≠ i + 1.

For a stochastic process, the variable i can only change by at most one (Figure 3 ).

We are interested in knowing what is the probability Pi of ending up in a state
with all A (i = N) starting from i individuals A. For i = 1, P1 is the fixation probability
of A. Denote

• Transition from i æ i + 1, (p i , i+1) by the birth rate –i.

• Transition from i æ i ≠ 1, (p i , i≠1) by the death rate —i.

• The probability of staying in i by p i , i = 1 ≠ –i ≠ —i.

P0 = 0
Pi = —i P i≠1 + (1 ≠ –i ≠ —i) Pi + –i P i+1, i = 1, . . . , N ≠ 1 (5.1)

PN = 1

Introducing the variables yi = Pi ≠ Pi≠1 (i = 1, . . . , N ≠ 1) we note that
q

N
i=1 yi = 1 and y i+1 = “i yi, where “i = —i / –i, then we recover a classical result
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Figure 3 – The Moran Process (Figure from Nowak, 2006: Figure 6.2)

 

on Markov chains:

Pi =
1 +

i≠1ÿ

j=1

jŸ

k=1
“

k

1 +
N≠1ÿ

j=1

jŸ

k=1
“

k

. (5.2)

The fixation probability of A is

flA = P1 = 1

1 +
N≠1ÿ

j=1

jŸ

k=1
“

k

. (5.3)

Since i = 0 and i = N are absorbing boundary states and always absorption
(all-A or all-B), the fixation probability of B is

flB = 1 ≠ PN≠1 =

N≠1Ÿ

k=1
“

k

1 +
N≠1ÿ

j=1

jŸ

k=1
“

k

. (5.4)
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5.2 Random Drift with Constant Selection

Now consider the fixation in the neutral and constant fitness cases. The fixation
probabilities 5.3 and 5.4, can be related with corresponding probabilities for constant
selection and random drift.

If –i = —i = “i = 1, then this is the neutral case where there is no selection but
only random drift: flA = flB = 1/N . This implies the probability that an individual will
produce a lineage which will take over the whole population is 1/N .

Consider the case where A and B have constant but distinct fitnesses, fA = r for
A and fB = 1 for B,

–i = r i (N ≠ i)
N [N + (r ≠ 1) i]

(5.5)

—i = i (N ≠ i)
N [N + (r ≠ 1) i]

therefore

flA = 1 ≠ r

≠1

1 ≠ r

≠N
, flB = 1 ≠ r

1 ≠ r

N
(5.6)

We enunciate that strategy A is advantageous (selection favors the fixation of
strategy A) if its fixation probability is higher than that of a neutral mutant, i. e., if
flA > 1/N .

• If r > 1, flA > N

≠1 for N ∫ 1: selection favors the fixation of A.

• If r < 1, flB > N

≠1 for N ∫ 1: selection favors the fixation of B.

• If r = 1, we go back to neutral drift.

5.3 Evolutionary Games in Finite Populations

Consider a population where the interplay between two individuals is represented
by a two-person game with two accessible strategies [11]: strategy A and strategy B. Now
suppose there are i individuals of strategy A and N ≠ i individuals of strategy B

playing the game according to the 2 ◊ 2 payo� matrix:

Q

ca

A B

A a b

B c d

R

db (5.7)

For each individual, there are N ≠ 1 other individuals. Therefore,
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• the probability that a given individual A interacts with another A individual is
(i ≠ 1)/(N ≠ 1);

• the probability that a given individual A interacts with a B individual is
(N ≠ i)/(N ≠ 1);

• the probability that a given individual B interacts with another B individual is
(N ≠ i ≠ 1)/(N ≠ 1);

• the probability that a given individual B interacts with an A individual is
i/(N ≠ 1).

The boundary states i = 0 and i = N are absorbing. The expected payo� for A

and B, respectively, are:

Fi = a (i ≠ 1) + b (N ≠ i)
N ≠ 1

(5.8)

Gi = c i + d (N ≠ i ≠ 1)
N ≠ 1

Expected payo�s 5.8 are usually interpreted as fitnesses. Introducing a parameter
w (selection intensity) accounting for background random drift contribution to fitness fi

for A and gi for B

fi = 1 ≠ w + w Fi

(5.9)
gi = 1 ≠ w + w Gi

Since parameter w measures the intensity of selection, it follows that, depending
on the values this parameter may adopt, we have:

• w = 0, no selection, only random drift.

• w = 1, only selection.

• w π 1, weak selection.

Consider a Moran process with A and B individuals, and frequency dependent
hopping rates:

–i = i fi

i fi + (N ≠ i) gi

N ≠ i

N

(5.10)

—i = (N ≠ i) gi

i fi + (N ≠ i) gi

i

N
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Hence, noting that “i = —i/–i = gi/fi, the fixation probability of A and B are
respectively

flA = P1 =
S

U1 +
N≠1ÿ

j=1

jŸ

k=1

g

k

f

k

T

V
≠1

(5.11)

flB = flA

N≠1Ÿ

k=1

g

k

f

k

In the weak selection limit (w æ 0): from equations 5.9

“i = —i

–i
= gi

fi
= 1 ≠ w (1 ≠ Gi)

1 ≠ w (1 ≠ Fi)
(5.12)

therefore the fixation probability, flA , is given by

flA = P1 =
S

U1 +
N≠1ÿ

j=1

jŸ

i=1

1 ≠ w (1 ≠ Gi)
1 ≠ w (1 ≠ Fi)

T

V
≠1

(5.13)

Expression 5.12 can be approximated, up to first order; by

—i

–i
= 1 ≠ w (Fi ≠ Gi) (5.14)

Now consider equations 5.8 and define the following expression

Di = Fi ≠ Gi = 1
N ≠ 1 [p + q i] (5.15)

with p = ≠a + b N ≠ d N + d and q = a ≠ b ≠ c + d . Therefore up to first order in w,
the fixation probability, flA , in total agreement with equation 5.13, is given by

flA =
C

1 +
N≠1ÿ

k=1

kŸ

i=1
(1 ≠ w Di)

D≠1

(5.16)

Now we will focus on the development of the following expression
N≠1ÿ

k=1

kŸ

i=1
(1 ≠ w Di) (5.17)

For small w, expression 5.17 can be developed as follows
N≠1ÿ

k=1

kŸ

i=1
(1 ≠ w Di) =

N≠1ÿ

k=1
1 ≠ w

N≠1ÿ

k=1

kÿ

i=1
Di (5.18)

In a similar way, from expression 5.15
N≠1ÿ

k=1

kÿ

i=1
Di = 1

N ≠ 1

N≠1ÿ

k=1

kÿ

i=1
(p + q i) (5.19)
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Since
kÿ

i=1
(p + q i) =

3
p + q

2

4
k + q

2 k

2 (5.20)

it follows that
N≠1ÿ

k=1

53
p + q

2

4
k + q

2 k

2
6

= N

6 (N ≠ 1) [3 p + (N + 1) q] (5.21)

Substituting the values for p and q previously assigned, the expression inside the
square bracket can be simplified in equation 5.21, then

3 p + (N + 1) q = N(a + 2b ≠ c ≠ 2d) ≠ (2a + b + c ≠ 4d) (5.22)

Since
N≠1ÿ

k=1

kÿ

i=1
Di = N

6 [N(a + 2b ≠ c ≠ 2d) ≠ (2a + b + c ≠ 4d)] (5.23)

therefore, it should be noticed that equation 5.18 becomes

N≠1ÿ

k=1

kŸ

i=1
(1 ≠ w Di) = N ≠ 1 ≠ w

N

6 [N(a + 2b ≠ c ≠ 2d) ≠ (2a + b + c ≠ 4d)](5.24)

Up to first order in w, returning to equation 5.16, we can write this equation in
the form

flA ¥ 1
N

;
1 ≠ w

6 [(a + 2b ≠ c ≠ 2d) N ≠ (2a + b + c ≠ 4d)]
<≠1

(5.25)

Selection favors fixation of A only if flA > 1/N , that is, only if

a (N ≠ 2) + b (2N ≠ 1) > c (N + 1) + d (2N ≠ 4) (5.26)

It must be borne in mind that for di�erent population size, a simple condition
determines whether or not selection favors the fixation of a strategy (see Figure 4).

It should be noticed that for large population size N , flA > 1/N if a+2 b > c+2 d.
How this condition can be interpreted ? To illustrate, consider a game with a > c and
b < d . We have the following interpretations:

• Rational game: all-A and all-B are strict Nash Equilibrium (NE) and Evolutionarily
Stable Strategy (ESS).

• Replicator Dynamics: all-A, all-B are asymptotically stable states and x

ú =
d ≠ b

a ≠ c + d ≠ b

is an unstable interior rest point (NE, but not ESS).
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Figure 4 – Fixation Probability for the Weak Selection Limit (Figure from Nowak, 2006:
Figure 7.3)

 

• In a large finite population of size N , stochastic Moran process for weak selection:
the condition a ≠ c > 2(d ≠ b) favors fixation of A leading to x

ú
< 1/3.

It must be emphasized that if the unstable rest point x

ú takes place at frequency
less than 1/3, in a large yet finite population and for w π 1, selection favors the fixation
of A. Hence the probability that a single A takes over the entire population of N ≠ 1
individuals B is greater than 1/N . Then if x

ú
< 1/3, it means that the attraction basin

of all-B is less than 1/3 as well.

The previous result for the weak selection limit and two strategies system 5.25
hints that the concept of evolutionary stability should be modified to account for finite
size fluctuations. This leads to the concept of evolutionarily stable strategy ESSN : A finite
population of B is evolutionary stable in opposition to a second strategy A if

(i) The fitness of B is greater than that of A, i.e. gi > fi, ’i. This means that selection
opposes A invading B.

(ii) flA < 1/N , hinting that selection opposes A replacing B.
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These results lead to the criteria for evolutionary stability of B in a population of
size N (Table 1):

Table 1 – Criteria for Evolutionary Stability of B

Deterministic (N æ Œ) Stochastic (N finite)

d > b (d ≠ b) N > 2 d ≠ (b + c)

if b = d, then c > a c (N + 1) + 2 d (N ≠ 2) > a (N ≠ 2) + b (2 N ≠ 1)

Conditions for evolutionary stability depend on the population size (Table 2):

Table 2 – Conditions for Evolutionary Stability of B

B is Evolutionarily Stable Strategy (ESSN) if N = 2 N ∫ 1 (finite)

Condition (1) c > b d > b

Condition (2) c > b x

ú = d≠b
a≠c+d≠b >

1
3

It should be noticed that for small N , the traditional ESS conditions are neither
necessary nor su�cient to assure evolutionary stability while for large N , the traditional
ESS conditions are necessary but not su�cient to assure evolutionary stability.
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6 Fixation Probability with Frequency Depen-

dent Mutation/Exploration Rates

In evolutionary game theory both selection and mutation are essential to evolution
[12]. Mutations possess the prospective to produce di�erent genotypes and phenotypes
while selection has an e�ect on those diverse phenotypes, This evolutionary process is
emulated by the Moran process with mutations. Mutation is the final root of all the genetic
diversity on which selection may act.

Mutations involve a high cost, however; nearly all are deleterious, diminishing the
fitness of the organisms in which they take place. Therefore mutation is considered the
origin of good and ill for a population.

On a population the total e�ect of mutation is actively dependent on the population
size. Since in each generation an extensive population possesses a lot of new mutations
, the probability is high that it will obtain new favorable mutations. This extensive
population also possesses e�ective selection in opposition to the bad mutations that take
place; deleterious mutations in an extensive population are maintained at a low frequency
within an equilibrium between the forces of selection and those of mutation. However, a
population with comparatively fewer individuals will have inferior mean fitness, not just
because fewer favorable mutations emerge, but also because deleterious mutations are so
prone to get at high frequencies by means of random genetic drift.

Now consider a system in which players emulate absolutely more outstanding
strategies but occasionally explore randomly the accessible strategies. The main body
of investigation has concentrated on how strategies propagate via genetic replication or
cultural imitation, but very few consideration has received the random exploration of the
obtainable set of strategies. In genetic terms, the latter correlates with mutations in the
DNA, although in cultural evolution, it explains individuals testing with new performances.
Habitually genetic mutations take place with very small expectations, but in behavioral
tests exploration of available strategies at random is common. This phenomenon is termed
“exploration dynamics” to di�erentiate it with the conventional center of attention to
imitation.

Referring to the payo� matrix for the Prisoner’s Dilemma 3.12, we consider a
simplified Prisoner’s Dilemma game (Donation Game) in which cooperators pay a cost
c > 0 to generate a benefit b > c to the other player [1, 3]. Defectors do not help and
therefore incur no costs. Then this results in the following payo�s: R = b ≠ c; S =
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≠c; T = b; P = 0. The payo� matrix for this simplified game is

Q

ca

C D

C b ≠ c ≠c

D b 0

R

db (6.1)

The expected payo� from the Prisoner’s Dilemma interaction for C and D are
respectively

Fi = (i ≠ 1) b ≠ (N ≠ 1) c

N ≠ 1
(6.2)

Gi = b i

N ≠ 1

Let the benefit b = 1 in equation 6.2

Fi = (i ≠ 1) ≠ (N ≠ 1) c

N ≠ 1
(6.3)

Gi = i

N ≠ 1

The fact of fixing the benefit does not involve loss of information on the properties
of the payo� matrix for the donation game.

In a population of size N with i cooperators and N ≠ i defectors , the fitness of
cooperators fi and defectors gi are given by

fi = 1 ≠ w + w Fi = 1 ≠ w + w

N ≠ 1 [(i ≠ 1) ≠ (N ≠ 1) c]

(6.4)
gi = 1 ≠ w + w Gi = 1 ≠ w + w

N ≠ 1 i

Considering the simple case of competition between two strategies C and D. We
introduce frequency dependent mutation rates by modifying the discrete-time transition
probabilities of equation 5.10. Denote by u1 the mutation rate from C to D: type C

mutates into type D. Conversely, denote by u2 the mutation rate from D to C: type D

mutates into type C.

For frequency dependent mutation rates in the Moran-Markov chain process, the
transition probabilities of the Markov chain can then be expressed as follows

p i , i+1 = i fi (1 ≠ u1)
i fi + (N ≠ i) gi

N ≠ i

N

+ (N ≠ i) gi u2
i fi + (N ≠ i) gi

N ≠ i

N

p i , i≠1 = (N ≠ i) gi (1 ≠ u2)
i fi + (N ≠ i) gi

i

N

+ i fi u1
i fi + (N ≠ i) gi

i

N

(6.5)

p i , i = 1 ≠ p i , i+1 ≠ p i , i≠1
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Rearranging equations 6.5 we obtain

p i , i+1 = 1
i fi + (N ≠ i) gi

N ≠ i

N

[i fi (1 ≠ u1) + (N ≠ i) gi u2]

p i , i≠1 = 1
i fi + (N ≠ i) gi

i

N

[i fi u1 + (N ≠ i) gi (1 ≠ u2)] (6.6)

p i , i = 1 ≠ p i , i+1 ≠ p i , i≠1

Making use of the fact that “i = p i , i≠1/p i , i+1, we obtain

“i = i

N ≠ i

i fi u1 + (N ≠ i) gi (1 ≠ u2)
i fi (1 ≠ u1) + (N ≠ i) gi u2

(6.7)

Now combining equations 6.4, 6.6 and 6.7, we can determine the fixation probability
flC of a single cooperator (the probability to eventually go from state 1 to state N is the
fixation probability of a single cooperator, denoted by flC ).

flC =
C

1 +
N≠1ÿ

k=1

kŸ

i=1
“i

D≠1

(6.8)

The most important question from an evolutionary perspective is the fixation
probability of cooperation, flC , which is the probability that a single cooperator out of
N ≠ 1 defectors turns the entire population into cooperators, i. e. the probability of
concurrence to complete cooperation.

The fixation probability of neutral mutants, 1/N , can be used as a benchmark for
studying selection in finite populations.

Frequency dependent mutation rates are frequently rational from a biological
perspective, there are many motives to analyze randomly cooperator configurations [12].
An evolutionary process, usually transitions, transits eventually over states with many
cooperators, even when initiating from a state with a single cooperator. From a mathe-
matical point of view, it should be asked how selection acts on the fixation probability
of cooperators from each possible transient state that might emerge in an evolutionary
trajectory. Moreover, many mutant states could emerge in the migration process or with
the appearance of environmental mutagenic agents, which, even when rare, might result in
several cooperators entering the population at once.

Traditionally there are two possible interpretations for evolutionary processes. In
cultural evolution, the selection process represents a situation in which successful strategies
are expanded by imitation. Mutations are frequently taken as errors in the process of
imitating others, or planned exploration undertaken by individuals. Mutations are typically
supposed to be uniform, such that any strategy can mutate to any other with identical
probability. Non-uniform mutations emerge when these probabilities are no longer the
same, and from a given population not all states are accessible , or some states are easier
to reach than others. It should be noticed that the outcome of evolution can completely
be changed by such asymmetries .
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6.1 The Moran Process

Evolutionary game dynamics is responsible for the study of evolution of phenotypes.
It regularly explores the natural event of a population of strategies playing a game, liable
to selection and mutation. In this configuration the Moran process is one of the most
studied formalisms which assumes a constant finite population size [1]: At every time
step one strategy is selected for birth in proportion to its performance in the present
population . A replication of this strategy is added to the population after removing a
random strategy, selected for death, from the population. In the long run the outcome of
selection and mutation can be estimated by inspecting the population mean composition.

Note that as a birth-death process, the Moran process, can be contemplated as a
finite Markov chain, a random process picturing a system undertaking transitions among
a finite number of possible states. It should be observed that in a Markov chain, the
occurrence of a future state depends on the immediately preceding state an only on it.

Since there are no mutations, two absorbing states, state 0 and state N , exist in
this Markov chain. A state is calling absorbing, if the system can not leave this state once
reaches it.

In accordance with the above description the Moran process can be modeled
assuming that the probabilities of mutation are given by

u1 = 0
(6.9)

u2 = 0

which clearly point out the absence of mutation processes.

6.2 Frequency Dependent Mutation/Exploration Rates

In this section we implement frequency dependent mutation/exploration models in
the evolutionary game theoretic framework.

The Moran process can also be interpreted as a social process. Instead of biological
reproduction, the birth and death process represents the spread of strategies due to, for
example, imitation of successful strategies [13]. In this cultural context, the mutation can
be interpreted as random exploration [12]. Instead of imitating, the individuals want to
explore randomly the available strategies.

In the following, a description is given of the models to be studied, which are
characterized by the existence of frequency dependent mutation/exploration rates.
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Mutagens These mutagenic agents can be defined as chemical compounds or types
of radiation ( x-rays, “-rays, —-rays, –-rays, cosmic rays or UV) that generate
irreparable or inheritable alterations (mutations) in the cellular genetic information,
deoxyribonucleic acid (DNA) [14,15]. Mutagenic injuries continue when they avoid
exposure by defensive cellular DNA restoration mechanisms, when mistakes occur in
the restoration process, or when restoration mechanisms are a�ected by widespread
injury. These alterations become fixed in the genetic material and are inherited by all
daughter cells in the posterior cellular reproduction. In such a way, mutagenesis gets
to be a cumulative process, which extends throughout the lifetime of an organism.

Therefore, a mutagen is a natural or human-made agent that can alter the structure
or sequence of the genetic material and induce mutation.

In spite of the fact that several dietary and environmental factors have been cate-
gorized as mutagens, cells are frequently subjected to a blast of spontaneous DNA
injury. In essence, through food and water notable exposure to mutagenic composites
can take place, and also through environmental and occupational causes [16]. Most
natural components of food are mutagenic and are generated by plants as protec-
tion agents. Clearly, during food manufacturing or filtering from packing materials,
supplemental food-related mutagens can be existent as remainders of composites
utilized to carry out such processes. During food cooking and preparation mutagenic
composites can also emerge . The activity of mutagens can be modulated by many
compounds contained also in foods. Mutagens present in food can be cataloged into
three groups: naturally arising compounds, those formed by cooking or processing,
and supplements and toxins, including pesticides.

Since food and drinking water are major sources of human exposure to mutagens,
the water can be defined as the first archaic mutagen of evolution, the adopter of
nucleic acids.

We propose a model which represents the characteristics of a mutagenic agent.
Suppose that mutagens are produced as a consequence of the behavior of defectors –
individuals who do not care spending resources in protecting environment. Suppose
also that the mutation is deleterious in the sense that it disables the cooperative
phenotype, and hence there is only mutation of cooperators changing into defectors.
Based on the previous description mutagens can be modeled assuming that the
mutation/exploration rates are given by

u1 = u0
N ≠ i

N

, u0 = 10≠1

(6.10)
u2 = 0
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Keep in mind that i is the number of cooperators and N ≠ i is the number of
defectors in a population of size N .

Conformist Exploration Di�erent from other animal species, among human societies
most of the variation is cultural. Since genetically identical people living in identi-
cal ambients expose surprisingly distinct patrons of behavior, they keep di�erent,
culturally obtained convictions and virtues. It is worth noting that this cultural trans-
mission is based in complex, inferred psychological procedures that have probably
been shaped by natural selection.

Conformist exploration can be cataloged as a gene-culture coevolutionary theory,
which, is a branch of theoretical population genetics and apart from modeling the
di�erential transmission of genes from one generation to the next, includes cultural
traits in the analysis.

The two transmission structures cannot be considered separately, both inasmuch
as what an individual assimilates may depend on its genotype, and also due to the
selection acting on the genetic structure which may be created or altered by the
propagation of a cultural trait.

The nature of these evolved psychological procedures must be clearly understood
because these procedures decide which beliefs and values propagate and remain in
human societies. Boyd and Richerson [17] exposed that a propensity to obtain the
typical behavior presented in a society was adaptable in an elementary pattern of
evolution in an environment that varies spatially, due to such a propensity which
expands the probability of obtaining adaptable beliefs and values.

It is assumed that the Social learning skills of our species, according to the evolution-
ary approaches of culture, are genetically evolved cognitive adaptations to survive in
environments in which acquiring information individually is costly. On this basis,
a remarkable amount of theoretical research has explored the terms under which
natural selection will favor di�erent learning strategies [17,18]. The basic assumption
of the proposed model is that it provides predictions about when individuals, both
human and non-human, must trust their individual or asocial experience and when
they must implement one or more social learning strategies, such as conformist trans-
mission (a propensity to copy excessively the majority or plurality) [19]. Conformist
transmission implies that individuals possess a propensity to preferentially adopt
the cultural traits that are most frequent in the population [20].

According to the previous description the conformist exploration can be modeled
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assuming that the mutation/exploration rates are given in the following way

u1 = u0
N ≠ i

N

, u0 = 10≠1

(6.11)

u2 = u0
i

N

Note that i is the number of cooperators and N ≠ i is the number of defectors in a
population of size N .

Innovative Exploration An innovation is defined as “an idea, practice, or object that
is perceived as new by an individual or other unit of adoption” ( Rogers [21]) .

Everett Rogers’s theory of innovation di�usion [21] is presented as a fundamental
understanding of adoption theories used in a broad domain of comprehension the
prediction of change that begins with his work in 1962 The Di�usion of Innovations
as the most influential and debatable production in this area. Di�usion consists of
three main stages: adoption (the resolution to commit to a project or innovation);
implementation (actually accomplishing the program); and institutionalization
(integration and sustainability of the long-term program, through policies and
practices).

The Di�usion of Innovations model recognizes five categories of participants that are
characterized by their respective rates of adoption of innovative ideas or programs [21]:
innovators (2.5 %), early adopters (13.5 %), early majority (34 %), late majority (34
%), and laggards (16 %).

Di�usion of Innovations theory also considers how some perceived characteristics
of an innovation can a�ect the ease with which it will be adopted [22]. Those
characteristics are:

Relative Advantage: The degree to which innovation is considered better than
previously available ideas or programs.

Compatibility: The degree to which innovation is coherent with the values, expe-
riences, and needs of potential adopters.

Complexity: How di�cult it is to understand innovation or how complex it is to
use it.

Trialability: The degree to which innovation can be experimented in a limited way
without a large investment.

Observability: The degree to which the e�ects of an innovation are perceptible to
others.
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Here we consider a population that is composed only of innovators – those who are
eager to adopt novelties. For the modeling of the innovative exploration we assume
that the mutation/exploration rates are given by

u1 =

Y
____]

____[

u0
i

N

if 0 Æ i Æ N ≠ 1 u0 = 10≠1

0 if i = N

(6.12)

u2 =

Y
____]

____[

u0
N ≠ i

N

if 1 Æ i Æ N u0 = 10≠1

0 if i = 0

Note that i is the number of cooperators and N ≠ i is the number of defectors in a
population of size N .

Cultural innovations are not exactly mutations, since it is often a directed innovation
(innovation with a purpose) and not a random error [23].

6.3 Results and Discussion

We can replace the transitions rates p i, i+1 in equations 6.6 with the birth rate bi

and p i, i≠1 with the death rate di, so that we have

bi = p i , i+1 = 1
i fi + (N ≠ i) gi

N ≠ i

N

[i fi (1 ≠ u1) + (N ≠ i) gi u2]

(6.13)

di = p i , i≠1 = 1
i fi + (N ≠ i) gi

i

N

[i fi u1 + (N ≠ i) gi (1 ≠ u2)]

The rates b0 and dN determine the type of boundary. If b0 = dN = 0 then the
states 0 and N are absorbing, otherwise they are reflecting.

We find the boundaries b0 and dN for equations 6.13 obtaining the following results

b0 = u2 (i = 0)
(6.14)

dN = u1 (i = N)

It should be evident that in equations 6.9 for the Moran Process we have absorbing
boundaries.

Now we focus our attention on the models with frequency dependent muta-
tion/exploration rates. Equations 6.10 similarly determine that for mutagens we have also
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absorbing boundaries. Equations 6.11 state that for the conformist exploration we obtain
absorbing boundaries. For the innovative exploration, equations 6.12 determine that we
have absorbing boundaries.

Fixation, which is frequently a result of the annihilation of one or more types
of individuals inside a population, is a main aspect of biological systems, especially in
the area of population genetics from which the term originated. Many systems exhibit
fixation (or extinction), such as the perishing of a disease, the di�usion of an opinion, or
the spread of mutated cells through a tissue. We have obtained a greater understanding of
fixation because of the analytical characterization of the evolutionary dynamics observed
in stochastic processes,

A key decisive factor of the dynamics is given by the probability of fixation of
a single cooperator: if a mutation leads to a new strategy, what are the chances of this
individual taking over the entire population?

Having in mind the foregoing question, we have introduced frequency dependent
mutation/exploration rates in the birth-death transition probabilities, and after having
done this, shapes of the fixation probability of a single cooperator, flC , were obtained as a
function of three di�erent parameters: the cost (c), the selection intensity (w), and the
population size (N). Analysis of these shapes must be performed for the Moran process and
for the three di�erent frequency dependent mutation/exploration rate scenarios: Mutagens,
Conformist Exploration, and Innovative Exploration. We use the fixation probability
of neutral drift, 1/N , as a benchmark for studying the fixation probability driven by
mutant/exploration rates.

The fixation probability for an individual C player in a population of D players
is represented by equation 6.8.

Replacement of D by C is favored by selection when flC > 1/N , that is, when the
fixation probability of a single cooperator is greater than the fixation probability of neutral
drift which is being used as a benchmark for studying selection in finite populations.

Figure 5 illustrates the fixation probability shapes as a function of the cost, c , for
the simplified Prisoner’s Dilemma game (Donation Game). It should be noted that the
fixation probability decreases as the cost increases for the Moran process and for the three
mutant/exploration rate scenarios.

Using as a benchmark the fixation probability of neutral mutants (random drift)
we can see from figure 5 that selection favors cooperation in the innovative exploration
dynamics (greater than neutral), but approximately between the values 0.5 and 0.6 for the
cost, selection begins to oppose it (less than neutral). While for a zero cost the conformist
exploration and the Moran process behave as random drift, selection opposes mutagens .
For increasing values of the cost, selection opposes the Moran process and the three types
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Figure 5 – Fixation Probability as a Function of the Cost (Population Size N = 100,
Selection Intensity w = 0.1)

of mutation/exploration rates.

A graphic representation of the fixation probability as a function of the selection
intensity, w, appears in figure 6, which shows in analogy to the previous case that the
fixation probability decreases as the selection intensity gets stronger for the Moran process
and for the three mutation/exploration rate scenarios.
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Figure 6 – Fixation Probability as a Function of the Selection Intensity (Population Size
N = 100, Cost c = 0.5)

 

Selection favors the innovative exploration (greater than neutral), but around the
value 0.1 for the intensity, we can see that selection begins to oppose it (less than neutral).
It is seen that selection opposes mutagens. For a zero intensity (cooperators and defectors
have the same fitness), the conformist exploration and the Moran process perform a
random drift like behavior, and as the selection intensity gets stronger, selection opposes
the four behaviors.

Figure 7 illustrates the possible shapes of the fixation probability as a function of the
population size. Similarly as the previous cases, the fixation probability decreases with the
growth of the population size for the Moran process and for the three mutation/exploration
rate scenarios.

It should be noted that close to zero population, the Moran process and the
three mutation/exploration rate scenarios perform a random drift like behavior, then
selection favors the innovative exploration (greater than neutral) up to the value of 100
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Figure 7 – Fixation Probability as a Function of the Population Size (Selection Intensity
w = 0.1, Cost c = 0.5)

 

approximately for the population size. It may be noted that selection opposes the Moran
process and the three mutation/exploration rate scenarios (less than neutral) as the
population grows.
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7 Conclusions

We can now see that our attention must be directed to reading, interpreting, and
analyzing the results.

We have studied in particular a stochastic evolutionary 2X2 game known as the
simplified Prisoner’s Dilemma , focusing our attention on the expression for the fixation
probability in the presence of frequency dependent mutation/exploration rates.

The main direction of this dissertation is in the analysis and interpretation of the
fixation probability of a single cooperator driven by mutation/exploration rates and how
these rates influence in obtaining the several fixation probability shapes as functions of
three di�erent parameters (the cost, the selection intensity, and the population size), which
are studied in selection dynamics.

In this dissertation we have applied the properties of Markov chains to the concepts
of evolutionary game theory (more precisely the Moran process which is a birth-death
Markov chain) with the highest objective of performing an analysis of the fixation proba-
bility shapes driven by di�erent frequency dependent mutation/exploration rates, in such
a way that we can decide whether selection favors or opposes them using as a benchmark
the neutral drift fixation probability.

In addition to the Moran process, we have made use of three di�erent models to
introduce the frequency dependent mutation/exploration rates in the transition probabil-
ities of the Markov chain: The Innovative Exploration, Mutagens, and The Conformist
Exploration.

We have considered a system with mutations occurring during the dynamics. This
process removes the possibility of fixation and extinction. The combination of mutation
and selection can lead to non-trivial stationary states. Since we have introduced mutation
by modifying the discrete-time transition probabilities of equations 5.10, the equations
resulting from the modification are equations 6.13.

Note that the transition probabilities b0 and dN are represented by equations 6.14
and they are non-zero. Despite the fact that we have introduced frequency dependent
mutations during reproduction events, the states 0 and N are absorbing for each frequency
dependent mutation/exploration rate model.

We have obtained the fixation probability as a function of three di�erent parameters:
the cost c, the selection intensity w, and the population size N . Note further that these
fixation probability shapes driven by frequency dependent mutation/exploration rates,
decrease as any of the parameters increases for the three di�erent models and for the
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Moran process.

Figures 5, 6, and 7 illustrate the fact that selection favors, partially, the innovative
exploration (greater than neutral), but it is observed that selection opposes the Moran
process and the three mutation /exploration rate models as any of the parameters increases
(less than neutral).

It must be emphasized that we have used the fixation probability of neutral mutants,
1/N , as a benchmark for studying selection dynamics in finite populations.

When we state that selection favors one of the studied models (the Moran process
and the three di�erent mutation/exploration rate scenarios), we actually mean that selection
favors fixation of strategy C (cooperator) and this occurs if the fixation probability of a
single cooperator is greater than neutral. If selection opposes one of the models ( selection
opposes fixation of strategy C ), then the fixation probability of a single cooperator is less
than neutral.
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