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Resumo 
 
Recentemente, estudos à fundo das funções e estrutura de genomas revelou que RNAs não 

codificadores desempenham um papel essencial no controle e regulação de processos biológicos e 

celulares através da regulação da expressão gênica. Estes mecanismos também começaram a ser 

elucidados em doenças humanas, destacando a importância da caracterização dos papéis 

desempenhados pelos RNAs não-codificadores em doenças, como o câncer. Neste trabalho, nós 

construímos um atlas de expressão gênica do transcriptoma humano contendo mais de 100.000 

genes fazendo uso de dois recursos públicos: o transcriptoma associado à CAGE do projeto 

FANTOM (do inglês FANTOM-CAT) e o recount2, denominado FC-R2. O FANTOM-CAT é 

uma meta-montagem completa do transcriptoma humano contendo ambos genes codificadores e 

não-codificadores, incluindo promotores, enhancers e RNAs não codificadores longos. Recount2 

é a maior coleção disponível de dados de RNA-seq humano processados e quantificados utilizando 

um pipeline unificado contendo mais de 4,4 trilhões de bases e mais de 70.000 amostras humanas 

derivadas do SRA e dos projetos TCGA e GTEx. Utilizando dados do GTEx derivados do FC-R2, 

nós validamos nossa abordagem ao reproduzir diversas descobertas importantes descritas 

recentemente pelo projeto FANTOM e do Pan-cancer atlas do TCGA. Em dois estudos de caso, 

nós também demonstramos a utilidade e capacidade do FC-R2 em recuperar novos RNAs não-

codificadores longos potencialmente envolvidos em fenótipos de importância clínica. Concluindo, 

nós disponibilizamos o atlas FC-R2 como uma ferramenta publica para permitir que outros 

pesquisadores sejam capazes de identificar novos RNAs não-codificadores em fenótipos de 

interesse. 

 

 

 

 

 

 

 

 

 



Abstract 
 
In recent years, in depth exploration of genomes structure and function has revealed a central role 

for non-coding RNAs (ncRNAs) in orchestrating key biological and cellular processes through the 

fine tuning of gene expression regulation. Most importantly, the understanding of the role for 

ncRNAs has also started to emerge in human disease pathogenesis. This further speaks to the 

importance of an in-depth characterization of ncRNA involvement in diseases, including cancer. 

In this work, we have built a comprehensive atlas of gene expression, named FC-R2, across the 

human transcriptome containing over 100,000 genes by leveraging two publicly available 

resources: the FANTOM CAGE Associated Transcriptome (FANTOM-CAT), and recount2. The 

FANTOM-CAT is a comprehensive meta-assembly of the human transcriptome encompassing 

coding and non-coding genes, including promoters, enhancers, and lncRNAs. recount2 is the 

largest, available collection of human RNA-seq data processed and quantified using a unified 

pipeline, containing over 4.4 trillion reads from over 70,000 human samples from the SRA, GTEx 

and TCGA projects. Using FC-R2 gene expression summaries across human tissue samples from 

the GTEx project, we validated our approach by reproducing key findings recently described by 

the FANTOM consortium and the TCGA Pan-Cancer atlas. We also demonstrated the power and 

usability of the FC-R2 by performing two case studies in prostate cancer highlighting potential 

“novel” lncRNAs players involved in the clinically relevant prostate cancer phenotype. Finally, 

we make the FC-R2 atlas available as a public tool to empower other researchers to study important 

biological and clinical phenotypes and identify new candidate ncRNAs for further investigation. 
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 1 

Bibliographic revision 2 
 3 
The human genome 4 
 5 
The human genome project (HGP) was a publicly funded project initiated in 1990 with the goal of 6 

determining the entire euchromatic regions of the human genome within 15 years. The sequencing 7 

of the human genome was an incredibly challenging task at the time since sequencing technologies 8 

were limited and expensive. The HGP opted for a hierarchical shotgun approach to sequence the 9 

human genome: in this approach the genome is first broken into large chunks and ligated into 10 

bacterial artificial chromosomes (BACs), were each BAC is later sequenced using the shotgun 11 

method and then assembled. The larger chunks are used to assembly the chromosomes and aid the 12 

assembly of smaller pieces1. In 1998, Celera Genomic owned by the researcher Craig Venter 13 

announced a competing effort of assembling the human genome with a different approach. The 14 

whole genome shotgun sequencing with paired-end sequencing approach used by Celera 15 

Genomics advanced at a quicker pace since it relied on data already released by the earlier project. 16 

In 2001 the first drafts of the human genome were published by both groups, following improved 17 

drafts in 2003 and 20051–3. 18 

The projects revealed that only a small fraction of the human genome was 'functional' 19 

defined by the central dogma of molecular biology of proteins being the core of biological 20 

processes. The project estimated that around 20,000-25,00 protein coding genes were presented in 21 

the genome2. As technologies advances the actual number of protein coding genes is still in 22 

debate4. As of the latest version of GENCODE, a database run by the European Bioinformatic 23 

Institute, 19,940 are included as protein coding genes. 24 

 25 
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 26 

Trancriptomics studies and RNA sequencing 27 
 28 
A transcriptome represents the entire repertory of RNA molecules of one cell, tissue or organism 29 

and it is extremely dynamic. The identification of the set of transcripts in a sample is crucial to 30 

perform a comprehensive transcriptomic study. Transcriptomic studies first started with the idea 31 

of making DNA copies of mRNAs in vitro to amplifying a library of bacterial plasmids in 19795. 32 

In 1983 Putney et al.6 published the first study originated from this idea were a cDNA (herein 33 

referred as RNA to make it clearer) library of rabbit muscle was sequenced. The term Expressed 34 

Sequence Tags (ESTs) was later coined by Adams et al. in 19917. Despite being the state of the art 35 

at the time, ESTs throughput were low, laborious, and limited by the sequencing technology of the 36 

time - the Sanger sequencing. Concomitantly with the advent of the expressed sequence tag (EST) 37 

technique, in 1995 the first study using DNA microarray (herein referred just as microarrays) to 38 

study gene expression was published by Schena et al.8. Microarrays provided a straightforward 39 

method to query expression of known genes with increased throughput at the time. The technique 40 

became increasingly popular, and the technology quickly evolved to become the state-of-the-art 41 

for gene expression studies during the 90's and the first decade of the 21th century, enabling 42 

relatively high-throughput expression screening.  43 
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  44 

With the advent of the Next Generation Sequencing (NGS) transcriptomics studies took 45 

off with the massive parallel sequencing of RNAs, in a technique latter coined as RNA-sequencing 46 

(RNA-seq). The RNA-seq consists of transcripts sequencing by NGS, which presented an 47 

enormous increase in throughput compared to the original ESTs technique. This increased 48 

throughput allowed for the detection of lowly expressed transcripts and the screening of the entire 49 

RNA repertoire. Even though modern microarrays already provided high-throughput screening of 50 

RNAs, the RNA-seq presented significantly advantages over it such as independence of a reference 51 

sequence and base pair resolution, allowing for the discovery of new genes and isoforms which 52 

turned the RNA-seq into the state-of-the-art approach for transcriptomics studies until the date9,10 53 

(Table 1). 54 

Briefly, the RNA-seq consists of three steps: 1) RNA extraction; 2) library preparation and 55 

sequencing and 3) expression quantification. The first step is crucial as the quality and the nature 56 

of the data yielded depend on choices made in this step. Since rRNA is the most abundant class of 57 

RNA in a cell, an enrichment for other types of RNA is performed to avoid rRNAs dominating the 58 

sequencer capacity. This is usually done by either poly-A capture which effectively enriches the 59 

Table 1 - Advantages of the RNA-sequencing technique over existing transcriptomics 
methods. Original table from Wang et al. (2009)9 
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sample for mRNAs or rRNA depletion by targeted degradation. The latter has the advantage of 60 

maintaining RNAs without poly-A tails which encompass several classes of ncRNAs. The 61 

enrichment can also be done with a specific aim in mind, such as the study of small RNAs were 62 

the sample is separated by size before the next step11. 63 

Following the RNA extract, libraries must be built before being sequenced. There are many 64 

variations of RNA-seq that relies on specific protocols in this step. With that aside, some choices 65 

always need to be made such as choosing between a single- or paired-ended and stranded or 66 

unstranded library. Paired-end libraries offers significant advantages over single-ended ones. Since 67 

both ends of the RNA fragment are sequenced in a paired manner, it improves the odds of correctly 68 

mapping the transcript to the reference genome as both pairs must map together in a given region 69 

and it can provide insightful information about the transcript architecture. Similarly, stranded 70 

libraries provide information about the strand of origin of the fragment sequenced. This is 71 

especially useful when handling complex genomes with gene dense regions where overlaps of 72 

genes across strands is often observed. Once the libraries are built, they are sequenced to a desired 73 

depth. The sequencing depth amounts to the number of fragments sequenced, therefore it is directly 74 

correlated with the sensitivity to detect low expressed transcripts. The final result of a sequencing 75 

process is generally a FASTQ file containing the fragments (also known as reads) sequences11. 76 

Finally, the last step is mapping the reads to a reference genome. Mapping reads to a 77 

reference genome, also known as alignment step, is performed by an alignment software of which 78 

dozens are available (e.g. HISAT2, STAR, RailRNA)12–14. Although recent efforts have been made 79 

to improve the speed and resources used in this step, it is still a relatively resource intensive step. 80 

Once reads are accurately mapped, they can be counted on basis of the overlapping genomic 81 

feature. Some software’s allow this step to be bypassed by directly quantifying gene counts without 82 
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the alignment step15,16, known as alignment-free quantification. The final object for an expression 83 

study is an expression matrix, containing expression estimates for each feature, that is used in 84 

downstream analysis11. 85 

 86 

Non-coding RNAs 87 
 88 
For a long time, non-coding regions in the genome were seen as "junk DNA" which played no role 89 

in the biology of organisms17. As genomics studies evolved, it became increasingly clear that 90 

coding genes could not explain the complexity of more complex organisms since the number of 91 

coding genes in the lower branches of evolutive tree were not much different from the organisms 92 

at the top of the tree. Researchers started to notice that the 'junk' DNA could not be junk after all, 93 

and that the amount of non-coding regions tracks together with the evolutionary tree18–20 (Figure 94 

1). 95 

For a long time since Francis Crick coined the central dogma of molecular biology in 1958 96 

were, he stated that the genetic information flowed from DNA to RNA to proteins, RNA molecules 97 

were believed to be mostly intermediates components between a gene and its protein product. This 98 

notion heavily biased the discovery of new genes towards protein coding genes. It was only in the 99 

last two decades that the non-coding RNAs (ncRNAs) came to light revealing a best a complex 100 

variety of regulatory RNA molecules which had been neglected until then18,21. In its third iteration, 101 

the FANTOM consortium started to develop a new technique, named Cap Analysis of Gene 102 

Expression (CAGE)22 which was designed to accurately map promoter regions and their usage. 103 

Remarkably, CAGE analysis not only identified promoters and quantified their activity and the 104 

expression of known RNAs, but also revealed that there were many more RNAs in the mammalian 105 
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transcriptome than previously thought. They showed for the first time, that over 63% of the 106 

genome produced some kind of transcript, many being non-coding23. 107 

ncRNAs are functional RNA molecules that doesn't rely on the translation process to exert 108 

its function. In the last decade, several systematic screening revealed a surprising number of novel 109 

ncRNAs capable of acting in a variety of cellular functions such as post-transcriptional regulation 110 

of gene expression and guiding RNA and DNA modifications19,21,24–26. The term ncRNA is rather 111 

vague since they are present in a huge variety of sizes from 21nt long referred as microRNAs 112 

(miRNAs) to huge non-coding genes such as the 32,103nt long X-inactive specific transcript 113 

(XIST) gene27. To differentiate short from large ncRNAs, a ncRNA larger than 200nt is often 114 

referred as long non-coding RNAs (lncRNAs). While shorter ncRNAs usually presents a strict 115 

function and way of acting, lncRNAs are far more diverse in their acting mechanisms and function. 116 

These characteristics has put them into spotlight in the recent year, with novel genes, role and 117 

mechanisms being uncovered at a quick pace28–31. 118 
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So far, they have been implicated in a variety of roles (e.g. regulation of allelic expression, 120 

control of pluripotency, lineage specification, epigenetic control)28 and diseases (e.g. cancer, 121 

obesity, diabetes)31,32. Although many lncRNAs have been confidentially associated with several 122 

phenotypes, elucidating all the mechanisms by which they act are still a work in progress. 123 

Nevertheless, some mechanisms have already been studied among which are transcription factor 124 

localization, increase in mRNA stability, disruption of translation, transcription coactivation, and 125 

others33. A comprehensive review can be found in Kung et al.33. 126 

 127 

Annotations 128 
 129 
Assembling the genome was only the first step in understanding the complexity of our genome. 130 

The next challenge would be making sense of all uncovered sequences revealed by the HGP. This 131 

process of uncovering genes and their function is referred as annotation, which is the process of 132 

annotating regions of a genome with discovered genes. The process of annotating a complex 133 

genome is very laborious and needs  constant work as novel genes or new roles for known genes 134 

are uncovered every year. 135 

To tackle this issue, several consortiums were launched to annotate the human genome. 136 

Two of the biggest consortiums devoted to annotating the human genome are the GENCODE and 137 

the FANTOM (Functional Annotation of the Mammalian Genome). Both consortiums have the 138 

same goal, but the approaches used in each are different. 139 

The GENCODE project was launched in 2003 to carry out a project whose objective was 140 

to identify all functional elements in the human genome sequence. The GENCODE leverage 141 

computational and experimental methods to identify new genes and their isoforms with manual 142 

curation of regions requiring expert investigation34. In its latest version to date GENCODE 29 143 
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contains annotations for 58,721 genes with 19,940 and 38,781 coding and non-coding (including 144 

pseudogenes) genes, respectively. 145 

The FANTOM consortium was established in 1995 to assign functional annotations to the 146 

mouse genome. Overtime the project expanded to encompass the human genome as well. The 147 

objective of the consortium is to obtain a systemic overview of the transcriptional regulatory 148 

network of the human organism23. Over its iterations the FANTOM consortium aimed to increase 149 

our understanding of the regulatory landscape of the human transcriptome using CAGE-seq. 150 

CAGE-seq technique measures expression from the 5' end of capped molecules and provides very 151 

accurate mapping of the transcription start site (TSS) and enables the identification of promoters 152 

and other lncRNAs as it is very sensitive due to sequencing only the 5' end of the transcript35. In 153 

2017, the FANTOM consortium released the FANTOM Cage Associated Transcriptome 154 

(FANTOM-CAT) which integrated accurate mappings of TSS by CAGE-seq, RNA-seq and 155 

epigenomic data from the Readmap DNase I hypersensitive sites (DHS), which revealed over 156 

19,000 (in its most stringent set) novel lncRNAs not included in GENCODE annotations. In its 157 

most permissive set FANTOM-CAT harbors 124,245 genes29 (Figure 2). 158 
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 159 

 160 

Figure 2 - Overview of the FANTOM-CAT meta-assembly.The FANTOM-CAT meta-
assembly encompasses annotation from a variety of sources that were refined through CAGE-seq 
data derived from the FANTOM5 project. Epigenomics data from DNase I hypersensitivity arrays 
were also used to define the chromatin state of the genes and assign functional lncRNAs 
categories. Original figure from Hon et al. (2017) 29. 
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Expression databases 161 
 162 
The modernization of NGS platforms over the decades had led to decreased costs and a huge 163 

increase of data throughput. This enabled larger studies which, by consequence, generated 164 

substantial amounts of data that quickly put biological data under the big data spectrum. 165 

To couple with the huge amount of data generated every day, databases play a crucial role 166 

in making these data safely stored and accessible to other scientists ensuring that science is still 167 

reproducible at this scale. Although thousands of databases are available through efforts of 168 

research groups from all around the world, most of them are devoted to specific subjects. In a more 169 

general scope, the largest databases available are the National Center for Biotechnology 170 

Information (NCBI) Sequence Read Archive (SRA)36 and Gene Expression Omnibus (GEO)37. 171 

The first, SRA, stores raw sequencing data and alignment information from high-throughput 172 

sequencing platforms of all sources (genomic or transcriptomic) and make it available to the 173 

research community to enhance reproducibility and promote new discoveries by comparing data 174 

sets. The second, GEO, harbors only expression (transcriptomic) data and encompass both 175 

microarrays and NGS data. GEO however, unlike SRA, allows researchers to not only obtain raw 176 

data, but also processed data deposited by its submitter. Processing of biological data is usually 177 

very resource intensive and giving the opportunity to skip this process ensure that researchers 178 

without access to high-end machines can still use the data, or at least avoid double efforts. 179 

However, one huge drawback of providing processed data is that expression data can be 180 

processed in several ways that may better adjust to the particular aims of the original study and 181 

even in cases where the aim is the same there are still a plethora of pipelines that can be used to 182 

achieve the same goal and not all of them yield the same results, as parameters are often adjusted 183 

on a need basis. Obtaining and comparing processed data from distinct groups can be prove 184 
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difficult, not only due batch effects but also by the different methods used to process the data. In 185 

an attempt to tackle this issue, Collado-Torres et al. made an effort to make all Illumina-based 186 

human RNA-seq data from the SRA processed through a standardized pipeline which makes 187 

comparing data from different studies less prone to the variability introduced during the processing 188 

step. The database recount2 harbor processed expression data from over 70,000 RNA-seq samples 189 

from 2,041 studies making it the largest collection of processed expression data to date38. 190 

 191 

Precision medicine 192 
 193 
As technologies advances, the cost and time to generate massive amounts of biological data starts 194 

to decline. Over the last decades we have been observing an increasingly amount of biomedical 195 

data made available in databases. These data have helped researchers to gain valuable insights in 196 

the molecular mechanisms that drives several diseases, which could be leveraged to improve and 197 

guide current methods of treatments39,40. These insights have led researchers to uncover a layer of 198 

heterogeneity within diseases that until then were treated in the same manner. 199 

Translating insights from genomics to medicine, gathering information at an individual 200 

level, enabled more precise calls on treatment of several diseases41. The use of genomics-driven 201 

medical decision is often referred as precision medicine were the treatment is not guided by the 202 

disease per se, but by unique features of the molecular profile nested within a disease at an 203 

individual or at least subgroup level41 (Table 2). 204 
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 205 
Original table from Asheley (2016) 206 

In oncology for example, the classification of solid tumors was traditionally focused in 207 

their tissue of origin. However, since the success of a more directed and personalized treatment 208 

based on the molecular subtype, oncology has moved towards a molecular classification of tumors. 209 

Taking lung cancer as an example, non-small cell lung adenocarcinoma expressing epidermal 210 

growth factor receptor (EGFR) is currently treated with a different chemotherapy from that of non-211 

Table 2 - Examples of precision medicine 41. 
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EGFR-driven adenocarcinomas42. In the precision medicine era since patients with different 212 

biomarkers present different risks of developing a disease and, therefore, have different prognoses 213 

and response to treatments, these biomarkers are expected to be treated as a standard phenotypic 214 

feature (e.g. symptoms, histology and medical history), leading to a revised definition of a disease 215 

to include a new subtype40 (Figure 3). 216 

 217 

  218 

The precision by which new subtypes can be assigned to a disease, rests heavily on the 219 

success of the research framework, as outlined in the American Institute of Medicine’s report43. 220 

Naturally, biomarkers are the foundation of improving diagnostic precision. Biomarkers can be 221 

Figure 3 - A precision medicine research strategy.Omics studies can be integrated in a 
knowledge network that can be used to define new molecular classifications for diseases. This 
improved classification and stratification can be used to refine mechanistic processes of a disease 
and improve the way patients are diagnosticated and treated. Original figure from Vargas & Harris 
(2016)40. 
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associated with a specific disease, or they can present a different mechanism of action related to a 222 

disease. They can be used to infer risk, diagnosis, prognosis and therapeutic response as a single 223 

feature or as group, which is often the case of complex diseases such as cancer were a single 224 

biomarkers is not enough to capture the heterogeneity of tumors40.  225 

When biomarkers are paired with a companion therapeutic agent, they are termed 226 

companion diagnostics44. Naturally, as any other subject implicated in human health, the 227 

development and use of companion diagnostics have been recently regulated. In this regard, the 228 

US Food and Drug Administration is the leader in the regulation of precision medicine because it 229 

was the first to set regulatory guidelines for this field45. The European Medicines Agency and 230 

Japan’s Pharmaceutical and Medical Device Agency have also their own guide to companion 231 

diagnostics and there are ongoing efforts to harmonize and improve the regulatory pathways within 232 

and between countries40. 233 

The ultimate goal of precision medicine and its regulation is to move molecular findings 234 

through validation and then to patients in need of an improved diagnostic precision. Although the 235 

Holy Grail of precision medicine would be a large national cohort study, such data is still not 236 

available to date. Currently, the precision medicine research approach makes use of existing 237 

cohorts with a relatively small number of individuals (usually hundreds for a single disease) such 238 

as the The Cancer Genome Atlas (TCGA). Nevertheless, these cohorts harbor large amounts of 239 

data from a variety of sources (e.g. DNA, RNA, protein, histology) that can be analyzed in order 240 

to obtain predictors of disease risk, prognosis and treatment response that can be further validated 241 

and used in the clinics40. 242 

 243 

 244 
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Differential gene expression analysis 245 
 246 
RNA-seq and expression microarrays provide scientists with a comprehensive overview of the 247 

transcriptional landscape of sample. The experimental design for these experiments follows the 248 

same set of 'rules' from traditional benchwork experiments where performing replicates is crucial 249 

for giving statistical confidence that the results observed are not purely by chance. While obtaining 250 

the transcriptional landscape of a given phenotype can lead to insights by itself, pairing it with 251 

another contrasting phenotype of interest (e.g. control, a subtype of the phenotype) enable 252 

scientists to background noise by focusing only in the transcriptional set that are specific to the 253 

phenotypes of interest. This is usually done with what is called differential gene expression 254 

analysis (DGE). DGE analysis is a powerful tool that allow researchers to screen dozens of 255 

thousands genomic features of a sample and compare it with another one of interest, ultimately 256 

yielding a list of features that are differentially activated or repressed in the conditions analyzed. 257 

This list often provides insightful information of key genes or pathways that leads to the phenotype 258 

in question. Performing a DGE analysis however is not straightforward, dozens of tools have been 259 

developed to perform this task and each one of them takes a different approach in doing so. 260 

Methods can vary according platforms (e.g. microarrays, RNA-seq, etc.) in this section only RNA-261 

seq approaches will be discussed since it is currently the state-of-the-art for classic transcriptomics 262 

studies (Figure 4). 263 
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 264 

Figure 4 - A typical RNA‐seq workflow.(1) Experimental design definition of qualitative and 
quantitative goals. Differential gene expression among different conditions is exemplified; (2) Sample 
selection, RNA extraction and elimination of contaminants such as genomic DNA; (3) Assessment of RNA 
integrity; (4-6) RNA enrichment. (4) mRNA enrichment using magnetic or cellulose beads coated with 
oligo(dT) molecules or oligo(dT) priming; (5) mRNA enrichment through rRNA depletion with conserved 
probes or Selective Depletion of abundant RNA (SDRNA); (6) Small RNA size-selection through 
electrophoresis or based on solid phase extraction; (7-9) cDNA single/double strand synthesis. (7) cDNA 
synthesis followed by fragmentation; (8) mRNA fragmentation followed by cDNA synthesis; (9) cDNA 
synthesis for small RNA without fragmentation; (10) Adapters ligation; (11) Library quantification and (12) 
Library sequencing and data analysis. Original figure from Pereira et al. (2017)11 
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The RNA-seq approach ultimately yields counts of sequenced molecules for each gene 265 

which is a discrete type of data. Since sequencing can be performed at different depths for each 266 

sample, the first step in analyzing RNA-seq data is to normalize it. Several approaches to 267 

normalization have been proposed46–48, each with their own advantages and disadvantages with 268 

the choice being a somewhat an arbitrary since most of them perform well in most conditions. 269 

There are a few distributions that can model this type of data. Most tools designed to model counts 270 

data relies on what is called a negative binomial (NB) distribution. While a Poisson distribution is 271 

often used to model counts type of data, NB distributions has several properties that better fit the 272 

modelling of gene expression than the Poisson distribution. The Poisson distribution has a limiting 273 

factor in which it assumes that the data modelled had a single mean/variance which will tend to 274 

underestimate the variance since usually expression data is derived from different subjects which 275 

will introduce their own variability for each gene tested. Because of this property, Poisson based 276 

model tends to rely on many samples to yield precise mean/variance estimates, which is not 277 

currently feasible due to cost/time factors. In a scenario where n → ∞, the variability introduced 278 

by each individual would shrink, leading to similar results of a NB model. The NB distribution 279 

allows for different parameters that can better estimate the real variance of a gene. 280 

One drawback of NB distribution methods developed for RNA-seq counts (or any probabilistic 281 

distribution for what matters) is that they rely on approximations of various kinds. They treat the 282 

estimated dispersions as if they are known parameters, without allowing for the uncertainty of 283 

estimation. While some methods account for this uncertainty in later steps, they still rely on other 284 

kind of approximation49. 285 

One popular approach to deal with this issues is implemented in the limma model were it 286 

seeks to robustly estimate the mean-variance relationship at the observation level of the counts in 287 
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a non-parametrically way from the data and incorporating it as weights to effectively eliminate it 288 

allowing it to be analyzed as log-normal distributions49. 289 

Finally, once counts are modeled, they can be tested for differences across the phenotypes 290 

in several ways (e.g. quasi-likelihood, generalized linear models (GLMs), linear models) yielding 291 

the final list of differentially expressed (DE) genes to analyze. 292 

 293 
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Objectives 311 
 312 

• Leverage publicly available RNA-Seq data to create a comprehensive gene expression atlas 313 

comprising thousands of novel lncRNAs recently uncovered by the FNATOM consortium, 314 

allowing researchers to easily study these lncRNAs. 315 

• Validate the resource by reproducing recent key findings about lncRNAs (i.e. expression 316 

patterns, prognostic potential, etc.) 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 
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Methods 335 
 336 

Data and preprocessing 337 
 338 

 339 

To create the FC-R2 expression atlas we obtained an updated version of FANTOM-CAT 340 

permissive catalog from the FANTOM consortium containing data from the ongoing FANTOM6 341 

Figure 5 - Representation of the disjoining and exon disambiguation processes.(A) 
Representation of a genome segment and its annotation containing 3 genes with gene A having 
two isoforms, and genes B and C with one isoform each. Each box can be interpreted as one 
nucleotide with boxes colored blue or orange to represent exons on opposite strands. (B) 
Representation of disjoined exon ranges from example A. Each feature is reduced to a set of non-
overlapping genomic ranges, then genomic ranges mapping back to two or more genes are 
removed (crossed boxes). After removal of ambiguous ranges, the remaining ranges are 
summarized at gene level. Grey boxes represent segments with ambiguous strand. 
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project and therefore still not publicly available. This catalog was initially comprised of 124,245 342 

genes defined by Cap Analysis of Gene Expression (CAGE) peaks published by Hon et al29.  343 

Given the unstranded nature of recount2 framework we opted to remove overlapping gene 344 

regions from the quantification process to avoid multiple measures from these ambiguous regions. 345 

In order to remove ambiguity we imported into an R session the coordinates for each gene/exon 346 

from a BED file and processed with the GenomicRanges package50 by disjoining the exon 347 

coordinates. To avoid losing strand information from the annotations we processed it in a two-step 348 

approach by first disjoining overlapping segments on the same strand and latter across strands 349 

(Figure 5). Genomic ranges (disjoint exons segments) that were assigned to more than one gene 350 

were removed from the expression atlas. 351 

We submitted these ranges to the Recount2 framework38,51 obtaining expression 352 

information for coding mRNAs, enhancers and promoters (divergent and intergenic) for 9,662 353 

samples from the Genotype-Tissue Expression (GTEx) project, 11,350 samples from TCGA 354 

consortium and over 50,000 human samples from SRA. 355 

 356 

Correlation with other studies 357 
 358 
In order to verify if our pre-processing step had any major impact on the expression quantification, 359 

we compared our counts estimates to the published GTEx counts from recount2 which was based 360 

on GENCODE annotations. The version 2 of the gene counts for the GTEx samples was 361 

downloaded from the recount website (https://jhubiostatistics.shinyapps.io/recount/). Next, we 362 

compared distribution of tissue specific genes across tissues and computed the Pearson correlation 363 

for each protein coding gene in common across the original recount2 gene counts estimates and 364 

our version.   365 
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 366 

Expression specificity of tissue facets 367 
 368 
We used our FC-R2 GTEx data to evaluate the expression specificity of lncRNAs categories. First, 369 

we normalized the expression levels accounting for the library depth and gene length, with the 370 

gene length being the sum of non-overlapping disjoint ranges belonging to a gene. Next, we 371 

grouped GTEx samples by tissue type, totalizing 54 tissues groups and evaluated the expression 372 

level and specificity of each gene. The expression level for each gene was represented by the 373 

maximum transcripts per million (TPM) of all samples within a tissue type. The expression 374 

specificity was calculated as the empirical entropy of the median expression values of each tissue 375 

type. We then computed the 99.99 percent confidence intervals for the expression of each lncRNA 376 

category by tissue type based on TPM values. During this analysis only genes with a TPM greater 377 

than 0.01 were considered expressed and set to 0 otherwise. 378 

 379 

Global enhancer activation 380 
 381 
In order to compare enhancer activation in tumor vs normal tissues we selected all tumor types 382 

available from TCGA with at least 10 tumor/normal paired samples. For each of the samples, we 383 

measured its global enhancer expression by summing the TPM values of all enhancers in our atlas 384 

stratified by tissue type. We then proceed to compute the global enhancer activation for matched 385 

tumor and normal samples with the activation score being computed as the ratio of mean global 386 

enhancer expression between tumor and normal samples minus 1 given a cancer type. 387 

 388 

𝐴#$%&'
𝐴(&'%)*

− 1;	𝐴/0 	← 	2𝜇/0 389 

 390 
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Where i is the sample type (tumor or normal) and j is a given cancer type. Significance for 391 

differential global enhancer activation was computed using a paired t-test. 392 

  393 

Prognostic enhancers analysis 394 
 395 
A univariate Cox proportional regression was performed using each of 17,404 enhancer lncRNAs 396 

(e-lncRNA) as predictors on each of the 13 TCGA cancer types with available survival follow-up. 397 

Enhancers with FDR equal or less than 0.05, after multiple hypothesis correction with Benjamini-398 

Hochberg52 method within cancer type were selected as significant prognostic factors. 399 

In order to compare our results, we obtained supplementary data from Chen et al.53 containing all 400 

enhancers position used in the study and prognostic potential were also obtained from the original 401 

publication. A liftover from hg19 enhancer positions evaluated by Chen et al.to hg38 genome 402 

assembly was performed to match FC-R2 coordinates. 403 

 404 

Identification of differentially expressed genes 405 
 406 
Differential gene expression analysis was performed in FC-R2 TCGA gene expression summaries 407 

across 13 cancer types with at least 10 normal samples. The original dataset for each cancer type 408 

was split by RNA class (coding mRNA, intergenic-lncRNA promoter (i-lncRNA), divergent-409 

lncRNA (d-lncRNA) promoter and e-lncRNA) and treated independently to avoid compromising 410 

the model with artifactually low variance from lowly expressed lncRNAs categories. We applied 411 

a generalized linear model approach coupled with empirical Bayes standard errors54 to estimate 412 

differential expression between tumor and normal samples within each tumor type and RNA class. 413 

The model was also adjusted for the three most variable coefficients for data heterogeneity as 414 

estimated by surrogate variable analysis (SVA)55. P-values were corrected for multiple testing 415 
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using the Benjamini-Hochberg method52 and genes with an adjusted p-value equal or less than 416 

0.01 were considered as differentially expressed. 417 

 418 

Results 419 
 420 
Building the FC-R2 resource 421 
 422 
We built the FC-R2 expression atlas by extracting expression levels from recount2 coverage tracks 423 

that were contained within unambiguous exon coordinates for the permissive set of FC-R2 424 

transcripts, as shown in Figure 5 (see Methods). Due to lack of genomic strand 425 

specificity/information in recount2, we removed ambiguous exonic segments from overlapping 426 

genes to more precisely measure expression levels of the individual transcripts (which we assessed 427 

in detail below). After removing these ambiguous genomic ranges, we ended up with 1,066,515 428 

exonic segments mapping back to 109,873 genes in FC-R2. The resulting resource in total includes 429 

expression information for 109,873 genes including 22,110 previously annotated coding and 430 

presumably 87,693 non-coding genes, such as enhancers, promoters, and others lncRNAs. 431 

Specifically, it encompasses expression data for 109,873 genes across 2,041 studies with over 432 

70,000 RNA-seq samples. 433 
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 435 

Validating the FC-R2 resource 436 
 437 
We first performed quality assessment of the expression data in FC-R2 compared to previous 438 

efforts. We computed the correlation of the overall expression levels between the FC-R2 atlas and 439 

gene counts quantifications from GENCODE-based recount2. 440 

In particular, we observed a high correlation between gene expression values based on 441 

these two related gene models, with a median correlation of 0.986 (p-value £ 0.0001) for the 32,922 442 

genes in common. This result supports the notion that our pre-processing steps to disambiguate 443 

overlapping exons between strands did not significantly alter the gene expression quantification. 444 

Next, we analyzed the GTEx consortium dataset, which accounts for 9,662 samples from 551 445 

individuals and 54 tissues types, to confirm tissue specificity for a selection of coding genes. We 446 

picked genes with known tissue-specific expression patterns, such as Keratin 1 (KRT1) Figure 6, 447 

Estrogen Receptor 1 (ESR1), and Neuronal Differentiation 1 (NEUROD1). These genes (as well 448 

as other tissue markers, data not shown) were confirmed to mostly expressed in skin, uterus and 449 

brain tissue samples, respectively, as expected (see Figure 6). Overall, all these genes presented 450 

very similar expression distribution across GTEx tissue samples when compared to the 451 

GENCODE-based recount2 gene expression levels. 452 

 453 
Tissue-specific expression of lncRNAs 454 
 455 

We used GTEx data to assess expression and specificity profiles across samples from each of the 456 

54 tissues, stratified into four categories: coding mRNA, intergenic-lncRNA (i-lncRNA), 457 

divergent-lncRNA (d-lncRNA), and enhancers-lncRNA (e-lncRNA). 458 



 38 

To this end, we were able to reproduce key findings from a recent FANTOM5 study where coding 459 

and long non-coding RNAs expression levels and specificity profiles among cell lines were 460 

evaluated29. Overall, the FC-R2 data showed similar profiles as Hon et. al, but with more 461 

variability likely due to the cellular complexity of tissue versus cell line data. Overall, coding 462 

mRNAs (log median expression = 6.6) were shown to be, more expressed than lncRNAs (log 463 

median expression = 4.14, 3.83 and 3.14, for i-lncRNA, d-lncRNA and e-lncRNAs respectively), 464 

although no clear difference in expression was observed among lncRNAs. For specificity levels, 465 

however, differences were observed among lncRNAS. Enhancers and intergenic promoters 466 

expression were notably more tissue-specific (median = 0.41 and 0.3) than divergent promoters 467 

and coding mRNAs (median = 0.13 and 0.09) (Figure 7A). With specificity being calculated based 468 

on the entropy of the median expression of each 54 tissues, normalized by log2 of the number of 469 

tissues: 470 

 471 

𝑆 = 	𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙. 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(
𝑥EF, 𝑥EH, 𝑥EI, … , 𝑥E(	

𝑙𝑜𝑔H𝑛
) 472 

 473 

When analyzing the percentage of genes expressed by category we can observe that coding 474 

mRNAs are ubiquitously expressed across all tissues types (mean = 88.42%), while lncRNA 475 

expression was more coordinated and specific, with enhancers showing the lowest percentage of 476 

expression by tissue (mean = 41.98%) (Figure 7B). These results are on par with common 477 

knowledge about lncRNAs expression, such as enhancer transcription being more tissue specific56. 478 
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Differentially expressed lncRNAs in cancer across the TCGA 480 
 481 
We performed differential gene expression analysis comparing tumor versus normal samples 482 

across 13 tumor types separately using re-quantified data from the TCGA consortium. Our results 483 

yielded a list table of DE genes that contained both overall and cancer-specific expression 484 

signatures that have previously been reported by several studies over the years. Overall, we 485 

identified 476 coding mRNAs and 48 lncRNAs genes differentially expressed across all the 13 486 

tumor types analyzed at False Discovery Rate (FDR) £ 0.01 (Table 3). 487 

Downregulated d-lncRNAs, were mostly those associated with immune cells (e.g. natural 488 

killer cells, -ß T cell, and mature ß-cells). Three genes, RP11-276H19, RPL34-AS1, and RAP2C-489 

AS1 were reported to be implicated in cancer. The first allowed for epithelial-mesenchymal 490 

transition, the second is related with increase in tumor size, and the latter was reported upregulated 491 

in urothelial cancer developed in patients after renal transplantation57–59. Among d-lncRNAs that 492 

were upregulated, SNHG1 was implicated in cellular proliferation, migration, invasion of cancers 493 

and particularly described as upregulated in gastric cancer60.  494 

Similarly, the gene RP11-572O17 was best implicated and associated with urinary bladder 495 

neoplasms. The remaining 13 genes were associated with a wide-variety of tissues or cells, 496 

including embryonic stem cell, pituitary gland, myeloid progenitor cells, lymphoid cells, among 497 

others. Among these, AC068831 was recently reported as upregulated in myocardial infarction 498 

compared to unstable angina using patients whole blood samples mRNA after the event61. 499 

In downregulated e-lncRNAs, although there was no cancer related information in this 500 

category, some genes were associated with other human diseases e.g. RP5-965F6 was reported to 501 

be upregulated in late-onset Alzheimer disease62. 502 
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The one gene found to be ubiquitously downregulated in i-lncRNAs, LINC00478, has been 504 

reported in a wide variety of neoplasms from leukemia, breast, vulvar, prostate and bladder 505 

cancer63–67. In vulvar squamous cell carcinoma, there is a statistical relationship between 506 

LINC00478 and MIR31HG expression and tumor differentiation64. Additionally, LINC00478 was 507 

found to be significantly downregulated in patients with Estrogen Receptor positive (ER+) breast 508 

tumors. The loss was associated with tumor progression, recurrence, and metastasis65. In contrast, 509 

an upregulated i-lncRNA, SNHG17, was associated with long term survival and its overexpression 510 

was correlated with tumor size, TNM (Tumor, Node, Metastasis) stage, lymph node metastasis in 511 

colorectal patients 68,69. i-lncRNA AC004463 was found upregulated in liver cancer and metastatic 512 

prostate cancer70. 513 

For the downregulated mRNA’s, most of the genes that appeared on the list were associated 514 

with metabolism/oxidative stress. Among common categories that genes were associated with 515 

were transcriptional activator/repressors, and cell migration/adhesion. There were very few genes 516 

associated with DNA damage repair, and apoptosis. Conversely, in the upregulated mRNA’s, most 517 

of the genes had functions that dealt with the cell cycle and replication, as well DNA 518 

damage/repair, chromosome/chromatid segregation and spindle checkpoints. 519 

When looking at specific signatures such as in prostate cancer for example, several coding 520 

genes such as ERG, FOXA1, RNASEL, ARVCF and SLC43A1 already reported71,72 to be involved 521 

in prostate cancer  progression and mortality were significantly DE (FDR £ 0.01) and ranked (by 522 

absolute FC) high in our table of DE genes. 523 
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Most notably, our approach was also able to identify several classes of non-coding RNAs 525 

involved in prostate cancer such as divergent and intergenic lncRNAs, as well as host genes of 526 

miRNAs. 527 

Among differentially expressed non-coding genes were: PCA3, the first clinically 528 

approved lncRNA marker for prostate cancer and highly expressed in high grade prostate cancer 529 

tumors 73,74;PCAT1, a prostate-specific lncRNA reported to be involved in disease progression in 530 

high grade prostate cancer75; MALAT1, a lncRNA previously associated with several types of 531 

cancers and linked to poor prognosis in prostate cancer76; ANRIL, an anti-sense lncRNA that blocks 532 

activity of tumor suppressor genes and has shown elevated levels of expression in prostate 533 

cancer77,78, among several others lncRNAs already reported to be DE in prostate cancer. 534 

We have also been able to detect DE for small ncRNAs such as mir-375, with signal likely 535 

coming from the host gene, reported as biomarker for castration-resistant prostate cancer79. In 536 

addition to observing known coding and non-coding genes, our resource also highlighted several 537 

non-coding genes restricted only to FANTOM-CAT annotations that were not been associated 538 

with tumorigenesis before. This includes potential oncogenes such as novel enhancers found 539 

differentially expressed across almost all tumor types (Figure 8) showing the potential of the 540 

resource in prospective analysis. 541 

 542 

Enhancer expression levels associated with increased cancer survival 543 
 544 
Since TCGA analysis highlighted several potential lncRNAs markers across tumor types, specially 545 

enhancers due its high specificity, we evaluated the prognostic potential of enhancers. 546 

In a recent work Chen and collaborators surveyed enhancers expression in nearly 9000 547 

patients53. By using enhancer coordinates from Anderson et al.80 they were able to detect enhancers 548 
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with prognostic potential across TCGA samples. Out of 65,433 enhancers analyzed in the 549 

mentioned study, 4,803 were found to have prognostic potential. We compared these findings with 550 

our resource. However, since FC-R2 is based on the meta-assembly by Hon et al.29, some 551 

differences were observed, as we could not map some of the enhancers detected by Anderson et 552 

al. (2014) to Hon et al. (2017) enhancers since some enhancers were later classified as another 553 

RNA class or removed in the latest atlas.    554 

When comparing normal with primary tumor tissues from the same patients, we could 555 

observe that most cancer types showed global enhancer activation (paired t-test, p-value £ 0.05, 556 

with at least 10 matched tumor-normal pairs). The results we obtained were 100% on par with 557 

enhancer activation patterns reported by Chen et al.53 for cancer types with significant p-value 558 

(Figure 9). 559 
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Moreover, using Cox proportional models for survival analysis, we evaluated the predictive 562 

power of e-lncRNAs among patient samples available within TCGA cohorts (Supplementary 563 

Table 1). Out of the 13 TCGA types analyzed, 11 showed significant predictive enhancers 564 

expression levels ranging from 3 in head and neck neoplasms to 3,850 in kidney cancers (average: 565 

561). A total of 5,382 e-lncRNAs were identified with predictive potential (FDR £ 0.05), and no 566 

single e-lncRNA presented predictive power across all cancer types. When paired evaluations were 567 

performed, enhancers from kidney neoplasms showed important overlapping with neoplasms 568 

arisen from different tissues, the most striking from the uterus (n = 261) and the stomach (n = 141). 569 

Four of the five enhancers differentially expressed across all tumor types (Figure 8) were identified 570 

among the predictive enhancers. The majority were identified among kidney tumors: 571 

CATG00000107122, CATG00000054627, CATG00000039286; one in stomach tumors: 572 

ENSG00000255958; and, one in uterine tumors: CATG00000039286. Despite differences across 573 

annotations, we could detect 3054 enhancers out of 4803 evidenced by Chen et al. with prognostic 574 

potential. This includes "enhancer 22"/ENSG00000272666 (chr22:50980817 - 50981280), which 575 

was highlighted as a promising marker of poor survival prognosis for some tumors in the 576 

mentioned study. We identified this e-lncRNA and obtained a similar survival curve on kidney 577 

cancer depicting poor prognosis for patients in the higher expression group (Figure 10). 578 

 579 

 580 
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Discussion 581 
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The role of lncRNAs in human diseases, such as cancer, has been increasingly appreciated 583 

over the past few years. Recently, several classes of lncRNAs have been demonstrated to play 584 

crucial roles in cell regulation and homeostasis28. Enhancers are a major category of regulatory 585 

elements in cell regulation, which are also critical players in oncogenic process81. Despite its 586 

importance, large-scale studies of enhancers are rare, in part due to the technical difficulty of 587 

applying high-throughput techniques such as Chromatin Immunopreciptation (ChIP)-seq and Hi-588 

C over large cohorts to study enhancer activity. Chen et al.53 have recently presented the detection 589 

and characterization of many expressed enhancers in a genome-wide analysis using RNA-seq data 590 

from the TCGA. As pointed in the study, despite relatively low depth of RNA-seq data from large 591 

cohorts such as TCGA, which might increase variation, the expression data provides a valuable 592 

dimension of information that is complementary to other technologies and can help in the study of 593 

these elements. 594 

By integrating recent findings from the FANTOM consortium and providing a resource by 595 

the means of recount2, using a standardized pipeline, we enable the possibility of an analysis 596 

integrating multiple datasets from thousands of studies. The FANTOM consortium recently 597 

refined transcription start sites (TSS) for annotated genes and unveiled thousands of new lncRNAs 598 

supported by CAGE-seq data29. Our resource also provides complementary expression evidence 599 

from thousands of samples for several transcripts discovered by the FANTOM consortium. These 600 

characteristics makes the recount2/FANTOM-CAT a unique resource to study, particularly when 601 

focusing on lncRNAs. By providing a comprehensive atlas of expression for several lncRNAs, 602 

such as enhancers and promoters it enables scientists to investigate the role of uncharacterized 603 

lncRNAs, and associate these to phenotypes of interest such as human diseases. 604 
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We first applied GLMs to detect differential expressed genes across tumor and normal 605 

samples to test if our resource was able to capture the current landscape of genes that are already 606 

known to be involved in those tumor types. The analysis across 13 cancer types (summary in table 607 

3) yielded a comprehensive list of mRNAs, promoters, enhancers and other ncRNAs significantly 608 

differentially expressed. In these lists we were able to confirm several biomarkers and genes that 609 

were already reported to be shared across cancer types and genes whose expression is restrict to 610 

specific tissue of origin. Interestingly, we also observed many lncRNAs whose function is 611 

unknown or that have never been reported to be involved in the development of several cancer 612 

types shedding a light on potential new oncogenes and tumor suppressors. 613 

Strikingly, we observed how much information would not be capture if one would not rely 614 

on FANTOM-CAT annotations. We found that several genes differentially expressed across tumor 615 

types were exclusive tied to the FANTOM-CAT annotations. Across all models we applied, a total 616 

of 28,207 differentially expressed genes were contained only in FANTOM-CAT, suggesting that 617 

by relying solely on other resources such as GENCODE v25 quantifications, one would have 618 

missed on average 1,087 up-regulated and 982 down-regulated genes for each of the phenotypes 619 

analyzed in this study (Table 3), with most of them being lncRNAs. 620 

In addition to GLMs, we also applied univariate cox proportional-hazard models looking 621 

particularly for enhancers showing predictive survival potential. We have been able to uncover 622 

several enhancers that when stratified by expression levels (split by the median) led to better or 623 

worse clinical outcomes. The potential of enhancers as prognostic features has been recently 624 

explored by Chen et al.53 which led to the detection of promising enhancers with high prognostic 625 

potential. Using our data, we have been able to recover a high number of predictive enhancers that 626 

were described in the mentioned study, including key ones such as “enhancer 22”. Additionally, 627 
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since our resource is based on more recent data, we have been able to uncover additional prognostic 628 

enhancers or curating the ones that were no longer classified as enhancers. Moreover, we also 629 

computed the proportion of global enhancer activation between tumor and normal samples and 630 

compared it to the profiles reported in the same study. Although the levels of enhancer activation 631 

were different, which was expected given the different approaches in the resources used, the 632 

direction and significance in each statistically significant cancer type were 100% on par (Figure 633 

9). 634 

By confirming findings reported by other studies, we are providing extra evidence that 635 

these genes, despite not yet fully understood, might have a biological function and can potentially 636 

be leverage as prognostic biomarkers. Also, we demonstrate how our resource can be of use in 637 

providing quick and reliable expression information for several lncRNAs classes, such as 638 

enhancers and promoters which is not readily available in any database to date. This resource is 639 

opening the doors for further research on the mechanisms implicated in the development and 640 

behavior of cancer and other diseases. The results establish our gene expression atlas as a reliable 641 

resource to perform large scale transcriptomics studies and with over 70,000 samples ready to 642 

analyze it provides a suitable environment for the study of the role ncRNAs play in cancer 643 

development, as well in other diseases which in turn can reveal important cues to understand their 644 

biological function. All code used in these analysis are available in: 645 

https://eddieimada.github.io/fcr2/ and data can be downloaded from: 646 

https://jhubiostatistics.shinyapps.io/recount/ or through the Bioconductor package recount. 647 

 648 

 649 

 650 



 52 

 651 

 652 

Case studies 653 
Case study 1: Transcriptional landscape of PTEN loss in PCa 654 
 655 
Background 656 
 657 
Prostate cancer (PCa) is the second most prevalent form of cancer in men (after skin cancer), with 658 

an estimated worldwide number of 1,600,000 cases and 366,000 deaths annually82. PCa in younger 659 

men (age < 40) is rare, but the chance of developing PCa rises rapidly after age 50. It is estimated 660 

that 6 in 10 cases of PCa are found in men older than 6583. Despite recent progress in treatment 661 

and detection, PCa remains a significant medical problem. Due to its complexity, overtreatment of 662 

inherently benign tumor and inadequate therapy choice for metastatic PCa is often observed. PCa 663 

follows a multistep process of development. It initiates as prostatic intraepithelial neoplasia 664 

followed by localized PCa and prostate adenocarcinoma (PRAD) with local invasion which 665 

ultimately culminates in metastatic PCa. 666 
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Being such complex disease, PCa evaluation is guided by the Gleason grading system. 667 

Originally defined by Donald Gleason84, the score is based on the cell morphology assessed by a 668 

pathologist. It is composed of 2 scores, the primary and secondary grade, where the former is based 669 

Figure 11 – Gleason Scoring System. The Gleason scoring system is based on cell morphology. 
Higher scores are linked to worst prognosis and vice-versa. 
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on the dominant cell morphology and the latter based on the non-dominant. Each grade ranges 670 

from 1 to 5, with the final Gleason score being the sum of both grades and therefore ranges from 671 

2 to 10 with higher numbers indicating greater risks and mortality. 672 

Although Gleason score is still widely used, the scoring system has several problematic 673 

aspects. Although the score starts at 2, the score of the majority of PCa cases starts at 6. While this 674 

is not a problem with people familiar with the grading system and the disease biology (e.g. 675 

pathologists, researchers, and medical staff), patients who are not familiar with the subject may 676 

interpret the 6 out 10 score as a more aggressive cancer, causing greater anxiety. Another major 677 

problem is that the classification system fails to distinguish between 3+4 and 4+3 scores, with the 678 

latter having a worse prognosis. Therefore, in 2014 a 5-point Gleason grade was proposed, 679 

validated and latter accepted by the World Health organization the new method to be used in 680 

conjunction with the 2005 Gleason system85,86. 681 

Genomic alterations are very common in cancer diseases. In primary PCa the most 682 

common genomic alterations involve androgen regulated promoters and the ETS family of 683 

transcription factors (e.g. ERG and ETV genes)87. TMPRSS2 to ERG fusion (TMPRSS2-ERG) is 684 

the most prevalent form of alteration with a prevalence of around 50% in localized PCa88. Similar 685 

alterations involving TMPRSS2 fusion are often found between ETV1, ETV4 and ETV5. TMPRSS2 686 

expression is regulated by androgenic hormones which are often increased in PC tumors, leading 687 

to the overexpression of fused genes. Overexpression of ETS family genes is associated with PTEN 688 

inactivation by deletion. PTEN is a key tumor suppressor gene, often deleted in PCa, which control 689 

many aspects of cellular proliferation by regulating the PI3K-Akt-mTOR pathway89,90. 690 

An increase in MYC transcription factor copy number is often present in PC tumors even 691 

at early stages of development91. MYC promotes expression of many proliferative genes by binding 692 
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at enhancer regions and histone acetylation via recruitment of histone acetyltransferases and it is 693 

a key gene in cell cycle regulation. Overexpression of MYC is directly associated with increased 694 

cellular proliferation. 695 

Another commonly mutated gene is SPOP, which encodes an E3 ubiquitin ligase 696 

component, and the mutated protein causes stabilization of oncogenic substrates such as MAPK8 697 

(JNK), NCOA3, and DEK92,93. Recently, a SPOP mutant GEMM pointed SPOP as a driver of 698 

prostate tumorigenesis through activation of both PI3K/mTOR and Androgen Receptor (AR) 699 

signaling, and effective uncoupling of the normal negative feedback between these two 700 

pathways93. Some studies have shown that SPOP mutants displays loss of the chromatin 701 

remodeling factor CHD192,93, but these observations are in contrast to recent work demonstrating 702 

that CHD1 represents an essential effector of PTEN deficiency in prostate cancer94. 703 

Epigenetic control plays a vital role in cellular homeostasis therefore it is not surprising to 704 

find that genes controlling epigenetic process (e.g., methylation, histone modification and 705 

nucleosome remodeling) are often found deregulated in many cancer types95, including PCa. 706 

DNA methylation leads to suppressed gene expression when occurring in its promoter 707 

region. DNA can be methylated by canonical DNA methyltransferase (DNMT) which is often 708 

causing methylation of cytosines in CpG islands. The methylated cytosine can then be converted 709 

into 5-hydroxymethylcytosine (5hmC) by proteins of the TET family (i.e. TET1, TET2 and TET3). 710 

While DNA methylation is normal in cellular homeostasis and it is required to ensure proper 711 

regulation of gene expression, aberrant DNA methylation. Hypermethylation of promoter regions 712 

and global hypomethylation – can lead to genome instability and tumor development through 713 

silencing of tumor suppressor genes96. 714 
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DNMT1 has been shown to have a dual role in PCa, acting as a tumor suppressor in early 715 

stage and as oncogene in late stage97. Expression of DNMT has been shown to be regulated by 716 

TGF-beta in PCa, with their expression levels associated with aggressiveness and recurrence94. 717 

Both TET1 and TET2 genes were shown to be tumor suppressors in PCa capable of regulating cell 718 

proliferation, migration, and invasion94,98. Many mutated epigenetic regulators and chromatin 719 

remodelers have been identified by genomic profiling in up to 20% of primary PCa. Among these 720 

regulators are the ASXL1, KMT2C, KMT2D, KMTD2A, KDM6A, SETDB2 and SETDB1 and 721 

among chromatin remodelers are ARID1A, ARID4A, ARID2, SMARCA1 and some members of the 722 

SWI/SNF nucleosome remodeling complex. These mutations are significantly enriched in PCa 723 

were ETS fusions or driver mutations such as IDH1, SPOP, CUL3 or FOXA1 are present. These 724 

mutations are also associated with higher Gleason score in primary tumors99. Interestingly, the 725 

long non-coding SChLAP1 has been shown to antagonize the function of the SWI/SNF complex 726 

which contributes to its oncogenic funsction100.  Some members of the Polycomb group protein 727 

complexes, which suppresses transcriptional programs by methylation also contribute to PCa 728 

development. EZH2, a methyltransferase of Polycomb-repressive complex 2 (PRC2), is often 729 

overexpressed in cancers and has been demonstrated to promote PCa progression100.  730 

In this section, we present two case studies using the FC-R2 atlas to show how this resource 731 

can be used to uncover novel lncRNAs associated with diverse phenotypes. 732 

 733 

Methods 734 
 735 

Data collection 736 
 737 
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All expression data used in this work were gathered from public domain databases. In this work 738 

we made use of three cohorts: FC-R2 TCGA, Natural History (NH) and Health Professionals 739 

Follow-up Study (HPFS). Information about each cohort is summarize on Table 4. 740 

Information about PTEN status by immunohistochemistry for the HPFS cohort was readily 741 

available and therefore obtained from public domain. For NH cohort samples IHC staining for 742 

PTEN was performed in partnership with Dr. Tamara Lotan. Last, for TCGA we evaluated a 743 

classification approach using expectation maximization (EM) algorithm and Copy-Number- 744 

Variation (CNV) called by the GISTIC algorithm to define PTEN status. 745 

Cohort PTEN(-) PTEN(+) N 
TCGA 95 321 416 
HPFS 91 299 390 
Natural History 56 151 207 
Total 242 771 1103 
 746 

FC-R2 TCGA status call 747 
 748 
Since PTEN status was not available for the TCGA cohort we evaluated a classification approach 749 

using the EM algorithm to call PTEN status based on its expression level. We applied this method 750 

on all cohorts with available Imunohistochemistry (IHC) data for PTEN (HPFS and NH). For this 751 

analysis IHC status was used as a gold-standard. Sensitivity and Specificity values were used to 752 

assess the approach performance. Alternatively, we defined PTEN status by copy-number-753 

variation called by the GISTIC algorithm. To reduce data heterogeneity, we kept only samples 754 

with a GISTIC score of -2 (PTEN-null) or 0 (PTEN-normal). 755 

 756 

Table 4 - Cohorts summary.  



 58 

Differential expression analysis 757 
 758 
Differential expression analysis was performed in each cohort by applying a GLM approach 759 

coupled with empirical Bayes moderation of standard errors54. Surrogate variables were detected 760 

and estimated with SVA package and inputted in the model. Adjusted p-values controlling for 761 

multiple hypothesis testing was performed using Benjamini-Hochberg method52 and genes with 762 

FDR £ 0.1 were reported. 763 

 764 

Meta-analysis of microarray-based cohorts 765 
 766 
We applied a meta-analysis approach using a Bayesian hierarchical multi-level model for cross-767 

study detection of differential gene expression implemented in the Bioconductor package XDE101 768 

on microarray-based cohorts in order to obtain a PTEN-null signature from PTEN IHC validated 769 

samples. The model was fitted using the ∆NO model with empirical starting values and 1000 770 

bootstraps was performed. All remaining parameters were set to default values. 771 

 772 

Gene set enrichment analysis (GSEA) 773 
 774 
The lists of differentially expressed genes were tested for enrichment with Gene Set Enrichment 775 

Analysis (GSEA). GSEA was performed using fast geneset enrichment analysis implemented in 776 

the fgsea102 package from Bioconductor with 10000 permutations. A collection of genesets were 777 

obtained from the Broad Institute MSigDB database103. Genesets with less than 15 and more than 778 

500 genes were removed from the analysis. The lists of differentially expressed genes were ranked 779 

by t-statistics and were used as input together with the genesets. The analysis was performed in 780 

two ranked lists: 1- TCGA differential expression analysis ranked by t-statistics and 2- Meta-781 

analysis weighted size effect computed as: 782 
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 783 

(𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑆𝑖𝑧𝑒	𝐸𝑓𝑓𝑒𝑐𝑡 784 

 785 

Results 786 
 787 

GLMs models fail to capture homogeneous signal across cohorts  788 
 789 
We have analyzed all available gene expression datasets to identify genes and pathways 790 

differentially expressed upon PTEN and ERG loss, as well stratified contrasts e.g. PTEN loss in 791 

different ERG loss background. To this end, we applied a generalized linear model (GLM) 792 

approach coupled with empirical Bayes moderation of standard errors and adjusted p-values 793 

controlling for multiple hypothesis testing using Benjamini-Hochberg method and reported genes 794 

with FDR £ 0.01. This approach resulted in differential gene expression lists for each cohort, which 795 

revealed important insights about our datasets.  796 

First, we ranked genes by t-statistics and computed the correspondence-at-the-top. Overall, 797 

this analysis revealed that models used for ERG status presented a good agreement across all 798 

cohorts (Figure 12). However, PTEN status models showed subpar agreement despite still being 799 

higher than expected by chance. Finally, agreement for PTEN-ERG interaction models showed no 800 

agreement across the analyzed cohorts. By looking at the number of significantly differentially 801 
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expressed genes (FDR < 10%), we could observe that apart from the TCGA cohort, no signal for 802 
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the interaction term models were detected in the remaining cohorts (Figure 12). 803 



 62 

 804 

Figure 13 - PTEN signature from meta-analysis. PTEN signature obtained by multi-level model for 
cross-study detection of differential gene expression based on IHC calls on Natural History and HPFS 
cohorts. Figure shows the posterior probability of concordant differential expression across tested cohorts 
(left); and the effect size of each cohort.  
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 805 

Meta-analysis increases statistical power leading to higher rank agreement 806 
 807 
In order to tackle the issue, describe in the previous section, we switched to a meta-analysis 808 

approach using multi-level model for cross-study detection of differential gene expression. Fitting 809 

a Bayesian hierarchical model for analysis of differential expression across multiple studies 810 

allowed us to aggregate information from microarray-based cohorts with IHC calls (our gold 811 

standard), leading to a high statistical power to calculate the effect size and the posterior 812 

probabilities of concordant/discordant DGE. We relied on this approach to generate a set of 813 

signatures for both PTEN and ERG status (interaction models are not possible in this framework). 814 

This approach yielded signatures with high concordance across two independent cohorts and 815 

allowed us to obtain a reliable ranking leading to results with a much higher agreement with the 816 

TCGA cohort for PTEN status (Figure 14) a result we could not obtain with the previous approach.  817 
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GSEA analysis reveals pathways leading to aggressive phenotype 819 
 820 
GSEA analysis were performed to obtain an overview of general processes and pathways affected 821 

by PTEN loss. This analysis revealed several pathways enriched in concordance across both 822 

cohorts (Table 5). Most interestingly, genesets associated with cellular proliferation (MYC1-823 

targets, PI3K/AKT/mTOR pathway, mTORC1) and cellular mobility (CDC42-Rac and Actin-Y 824 

pathways) were found positively enriched across two independent cohorts. These processes are on 825 

par with the phenotype described in the literature which reports a more aggressive phenotype in 826 

PCa upon PTEN loss104. 827 

Table 5 - Geneset enrichment analysis. 828 

 829 

Discussion 830 
 831 
PTEN is the most frequently mutated tumor suppressor (TS) gene in PRAD and other human 832 

cancer. With an estimated prevalence of up to 50%, PTEN loss is recognized as one of the major 833 

driving events in PRAD89. PTEN antagonizes PI3K-AKT/PKB and is a key modulator of the AKT-834 

mTOR signaling pathways which are important in regulating the cell cycle. Therefore, PTEN loss 835 
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is consistently associated with more aggressive disease features and poor outcomes. Saal and 836 

collaborators previously generated a transcriptomic signature of PTEN loss in breast cancer105. 837 

While this signature was correlated with worse patient outcome in breast and others independent 838 

cancer datasets, including PRAD, the signature unsurprisingly, fails to capture key characteristics 839 

of PCa such as ERG-rearrangement105,106. Moreover, despite the effects of PTEN loss being 840 

extensively associated with a more aggressive phenotype and many genes already being associated 841 

to it, a genomic signature, derived specifically from PRAD, reflecting the landscape of PTEN loss 842 

in PRAD has not been described to date. 843 

During our first approach using GLMs models to detect differentially expressed genes upon 844 

PTEN loss and ERG rearrangement we discovered that this approach was problematic in assessing 845 

DE across microarray-based cohorts (i.e. HPFS and NH) as pointed by Figure 12 these cohorts 846 

presented variable results across different contrasts, more specifically in the PTEN-null vs PTEN-847 

normal. These results raised two possible hypothesis: 1) the technology used to measure expression 848 

levels of the genes yields different results (TCGA cohort is based on Illumina sequencing, while 849 

NH and HPFS/HPS are microarray-based); or 2) a larger sample size is necessary to reliably detect 850 

signal for some of the models used in this approach. Based on CAT-plots shown in Figure 12, we 851 

could expect that if the first hypothesis was right, we would observe low agreement across all 852 

models used in this analysis. We rejected the former hypothesis due to ERG model presenting high 853 

concordance levels. Thus, the latter hypothesis is more likely to account for the divergence in the 854 

results.  855 

To test this hypothesis and tackle this issue we applied a meta-analysis approach using a 856 

Bayesian hierarchical multi-level model across microarray-based cohorts which allowed us to 857 

increase the statistical power of the analysis by combining both cohorts in a single analysis. This 858 
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approach yielded results in a much higher agreement with the TCGA cohort for PTEN status 859 

(Figure 14), a result we could not obtain with the previous approach, thus confirming our 860 

hypothesis. The meta-analysis approach yielded a high number of highly concordant differently 861 

expressed genes (n=1745 with posterior probability higher than 70%) involved in a variety of 862 

processes known to be affected upon PTEN loss (e.g. cell cycle, proliferation, immune system). 863 

Similar results for differentially expressed genes were found in the TCGA cohort analyzed with 864 

GLM models (n=3940 with FDR £ 0.01).   865 

GSEA analysis for PTEN rank showed several functional gene sets enriched in common 866 

with both approaches. For example, for PTEN loss functional gene sets related to cell cycle 867 

progression (i.e. MYC targets, MTORC1 signaling, PI3K/AKT/MTOR signaling) and cellular 868 

motility (i.e. CDC42-Rac and Actin-Y pathways) were found positively enriched upon PTEN loss 869 

in both approaches (Table 5). MYC1 is a transcription factor belonging to the Myc family which 870 

increases the expression of several other genes, most of which are involved in cell proliferation. 871 

PI3K/AKT/mTOR is a signaling pathway important in cell cycle regulation which is often over-872 

reactive in the absence of PTEN which leads to reduced cell apoptosis and increased cell 873 

proliferation. mTORC1 signaling pathway is responsible for the control of protein synthesis. 874 

Together, increased activation of these pathways leads to an increased cell proliferation which are 875 

often observed in cancer. In addition, CDC42 and RAC1 genes are proteins that regulate several 876 

cellular processes, among which is cell migration. CDC42 gene activates PAK genes (PAK1, 877 

PAK2, PAK3) which primary role is to initiate actin reorganization and regulate cell adhesion, 878 

migration, and invasion. These pathways are positively enriched upon PTEN loss, meaning that 879 

PTEN-null tumors present increased invasiveness due to increased mobility and proliferation. This 880 

invasive profile has been extensively reported across literature90,104. 881 
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Collectively, the findings obtained at the gene level and those obtained at the gene set level 882 

confirmed that there is substantial agreement between our XDE meta-analysis and the analysis 883 

performed on TCGA (Figure 14). Hence, we can expect that results from TCGA cohort based on 884 

CNV calls are on par with other cohorts based on IHC calls. This confirmation is important because 885 

TCGA cohort harbor crucial information that is not available in other cohorts, such as expression 886 

levels for lncRNAs and SNPs associated with traits. 887 

By leveraging our FC-R2 resource we have been able to detect a variety of lncRNAs that 888 

have already been described in PCa development and progression such as PCA3, PCGEM1 and 889 

KRTAP5-AS1. PCA3 is a lncRNA prostate-specific which is overexpressed in PCa tissue. PCA3 890 

acts by a variety of mechanisms such as downregulation of the oncogene PRUNE2 and 891 

upregulation of PRKD3 gene by acting as a miRNA sponge for mir-1261leading to increase 892 

proliferation and migration107,108. Conversely, knockdown of PCA3 can lead to partial reversion of 893 

epithelial-mesenchymal transition (EMT)109 which can lead to increased cell invasion, motility and 894 

survival110. Similarly, lncRNA PCGEM1 expression is increased and highly specific in PCa it 895 

promotes cell growth and it has been associated with high-risk PCa patients111,112. On the other 896 

hand, KRTAP5-AS1 expression has not been directly associated with PCa. However, it has recently 897 

shown that KRTAP5-AS1 can act as a miRNA sponge for miRNAs, such as mir-596, targeting the 898 

oncogene CLDN4 which enhances the invasion capacity of cancer cells and promote EMT110,113, 899 

thereby overexpression of KRTAP5-AS1 can lead increased levels of CLDN4114. Mir-596 has also 900 

been shown to be overexpressed in response to androgen signaling and associated with 901 

antiandrogen therapy resistance115. In our analysis we observed that both PCA3 and PCGEM1 902 

were downregulated upon loss which tracks together with the increased invasive profile observed 903 
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in PTEN-null tumors. Similarly, KRATAP5-AS1 was found upregulated in PTEN-null tumors 904 

reinforcing a potential role for EMT leading to more aggressive phenotype. 905 

We also observed several lncRNAs exclusively annotated in the FANTOM-CAT 906 

associated with PTEN-loss. Since these genes are novel genes without elucidated function, we 907 

analyzed potential roles for these genes by looking at other genes in same loci. Among the most 908 

downregulated FANTOM-CAT exclusive genes were CATG00000038715, CATG00000079217 909 

and CATG00000000330. CATG00000038715 is in proximity of cytochrome P450 enzymes, more 910 

specifically CYP4F2 and CYP4F11. Both enzymes are involved in the process of inactivating and 911 

degrading leukotriene B4 (LTB4). LTB4 is a key gene in inflammatory response which are 912 

produced in leukocytes in response to inflammatory mediators and is able to induce the adhesion 913 

and activation of leukocytes on the endothelium116. As recently demonstrated by Wculek & 914 

Malanchi117, leukotrienes can provide a selective proliferative advantage to cancer cells with 915 

intrinsically higher tumorigenicity, therefore downregulation of the intergenic promoter 916 

CATG00000038715 together with CYP4F2 and CYP4F11 can lead to increased leukotrienes levels 917 

upon PTEN loss resulting in the selection of PCa cells with higher tumorigenicity. 918 

CATG00000079217 is closely located with the coding gene FBXL7 which has been shown to 919 

regulate Survivin stability which overexpression is known to lead to poor prognosis in several 920 

cancers118. FBXL7 is also known to regulate mitotic arrest and mediate Class I MHC antigen 921 

processing and presentation119. CATG00000000330 is located in the same loci of PTEN which has 922 

already been extensively document as a key oncogene in PCa120. 923 

Among upregulated lncRNA FANTOM-CAT genes, CATG00000117664 was among the 924 

most upregulated lncRNA. Located in close proximity with the androgen regulated gene GPR158 925 
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which is reported to stimulate cell proliferation in prostate cancer cell lines, and it is linked to 926 

neuroendocrine differentiation121. 927 

Altogether, we have shown that these novel lncRNAs harmoniously track together with 928 

several coding mRNAs and lncRNAs already reported to be involved in PCa development and 929 

progression. This analysis reveals a plethora of lncRNAs, known or novel, that have never been 930 

associated with PCa and therefore empower further studies on the mechanisms leading to the 931 

development of PCa as well its more aggressive subtypes and aids in the future development of 932 

potential biomarkers and drug targets. 933 

 934 

Case Study 2: Landscape of CDK12-mutant primary tumors in PCa 935 
 936 
Methods 937 
 938 
Subtype annotation 939 
 940 
We obtained Mutation Annotation Files (MAF) for primary solid tumors in PCa from Genomic 941 

Data Commons (GDC) using TCGAbiolink package122 and CNV level 4 data from firehose portal 942 

using RTCGAtoolbox package123. The MAF files were parsed to assign each sample to subtypes 943 

based on their mutation/loss status for common cancer drivers (i.e. PTEN, ERG, SPOP and 944 

CDK12) in PCa, only non-silent mutations were considered during subtype assignment. CNV data 945 

from firehose containing discrete indicators of gene copy number status, ranging from -2 (deep 946 

deletion) to 2 (amplification) were also used to assign subtypes. Samples with loss of driver gene 947 

were considered mutated and therefore assigned to its respective subtype. Finally, with exception 948 

of PTEN + ERG concomitant occurrence which were considered a subtype, only samples with 949 

exclusive mutation/loss for a driver were assigned to its subtype. Samples containing co-occurring 950 
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mutations where removed and samples without any of the mentioned drivers mutated/lost were 951 

considered “wild” primary tumor. 952 

 953 

Identification of recurrent lncRNAs CNV in PRAD  954 
 955 
Recurrent CNV in each subtype were identified using CNV SNP6 level 3 data for PCa primary 956 

solid tumor samples in the legacy database, this data contains pre-processed segmented data from 957 

Affymetrix Genome-Wide Human SNP Array 6.0 from GDC. Briefly, segment mean values 958 

(𝑙𝑜𝑔2𝐶𝑜𝑝𝑦	𝑁𝑢𝑚𝑏𝑒𝑟 2] ) representing the extent of copy number changes were used to identify 959 

regions of amplifications/deletions. Segmented regions with segment mean £ -0.3 were considered 960 

deletions, where segments with segment mean ³ 0.3 were considered amplifications, this data was 961 

used to generate a matrix including all needed information about the observed aberrant regions. 962 

This matrix was used as input to GAIA124, a conservative permutation test allowing the estimation 963 

of the probability distribution of the contemporary mutations expected for non-driver markers. 964 

Genomic regions identified as significantly altered in copy number (corrected p-value £ 0.0001) 965 

were then annotated using FANTOM-CAT annotations from the FANTOM consortium to report 966 

amplified and deleted genes potentially related with CDK12 mutation. 967 

 968 

Transcriptomic analysis 969 
 970 
Expression data were obtained from FC-R2 gene expression atlas for PCa primary tumor samples. 971 

Next, we pre-processed the data by filtering genes with low expression and normalized it with 972 

TMM method. Using generalized linear models approach coupled with empirical Bayes 973 

moderation of standard errors54 and voom precision weigths49, we performed differential 974 
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expression analysis of each subtype in contrast with wild samples. Genes with FDR £ 0.01 and 975 

logFC ³ 1 were considered differentially expressed. 976 

 977 

Gene set enrichment analysis 978 
 979 
The lists of differentially expressed genes were tested for enrichment with GSEA. GSEA was 980 

performed using fast geneset enrichment analysis implemented in the fgsea102 package from 981 

Bioconductor with 100000 permutations. We performed the enrichment test on the hallmarks 982 

collection from Broad Institute MSigDB database103. Gene sets with less than 15 and more than 983 

500 genes were removed from the analysis. The lists of differentially expressed genes were ranked 984 

by t-statistics and were used as input together with the gene sets. Gene sets with FDR £ 0.05 were 985 

considered significant. 986 

 987 

Differential methylation analysis 988 
 989 
To detect differentially methylated regions (DMRs) we obtained level 3 methylation data 990 

presented in the form of beta-values that uses a scale ranging from 0.0 (probes completely 991 

unmethylated) up to 1.0 (probes completely methylated) from GDC using TCGAbiolinks. Next, 992 

we tested for differential methylation between the groups using Wilcoxon test and adjusting by the 993 

Benjamin-Hochberg method. A minimum mean difference of 0.2 and adjusted p-value of less than 994 

0.01 was required to be considered significant. Significant DMRs were annotated by assigning 995 

then to the closest transcription start site (TSS) using FANTOM-CAT annotations. 996 

 997 

Results 998 
 999 
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Annotation 1000 
 1001 
Samples in TCGA-PRAD cohort were assigned to subtypes based on their mutation status for the 1002 

selected driver genes. After parsing the MAF files and the CNV data we were able to assign 471 1003 

out of 505 samples to a unique subtype. Considering only uniquely mutated samples, CDK12 1004 

mutation/loss (herein referred just as mutation) showed a relatively low prevalence (2.4%) with 12 1005 

samples while the remaining driver genes showed prevalence between 9% (SPOP, 46 samples) to 1006 

15% (PTEN and PTEN+ERG, 73 samples each). Most of the samples showed no mutation in the 1007 

selected driver genes, with 212 samples considered WILD primary tumors. 1008 

 1009 

CDK12 subtype shows large aberrations  1010 
 1011 
Recurrent amplifications and deletions were identified for all defined subtypes (Table 6).  The 1012 

number of deleted regions ranged from 3 (CDK12) to 78 (WILD) and from 0 (SPOP) to 123 1013 

(WILD) amplified regions. The amount of significant aberrations was directly related to the sample 1014 

size, with CDK12 having the least number of samples (12) we opted to adopt a relaxed adjusted 1015 

p-value of 0.01 for this subtype. Interestingly, the power of the analysis did not directly translate 1016 

to the number of genes affected by the aberrations. Although having fewer significant aberrations, 1017 

CDK12 showed significantly larger aberrations (Figure 15) and the greatest average number of 1018 

amplified (61) and deleted (484) genes per aberration among the subtypes. ETS subtype followed 1019 

CDK12 subtype in aberration size and average number of deleted genes (156). Overall PTEN, 1020 

PTEN+ERG and SPOP subtypes showed similar numbers of aberrations and gene affected. 1021 

 1022 

 1023 

 1024 
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Table 6 - Summary of recurrent aberrations.  1025 

Gene CDK12     ETS     PTEN PTEN+ERG SPOP     WILD 
Deleted 
regions 3 14 49 33 35 78 

Amplified 
Regions 1 0 2 2 0 123 

Number of 
deleted genes 1451 2184 4467 4029 4149 6074 

Number of 
amplified 

genes 
61 0 26 29 0 1988 

Chromosomes 
with deletion 8 

12, 21, 
17, 8, 3, 

16 

10, 17, 13, 
12, 16, 6, 8, 

3, 22, 15 

10, 17, 13, 12, 
16, 21, 8, 19, 

5, 11, 3, 1 

13, 2, 
6, 8, 

5 

13, 16, 17, 2, 
6, 8, 3, 12, 

19, 18 
Chromosomes 

with 
amplification 

23  14, 4 1  8, 11 

 1026 

Figure 15 – Aberration sizes distributions. Boxplots shows size distributions of the recurrent 
aberrations found. Despite all subtypes presenting a few large aberration, CDK12 aberrations are 
significantly larger.   
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 1027 

 1028 

CDK12 mutation mostly up-regulate genes 1029 
 1030 
In order to profile changes in genes expression for each subtype we obtained expression matrix 1031 

from the FC-R2 atlas for PRAD samples. This matrix initially contained expression levels for 1032 

109,873 genes, which were reduce to 42,024 after filtering for lowly expressed genes (counts < 5). 1033 

After filtering, counts were adjusted for RNA composition with TMM normalization and standard 1034 

DE analysis were carried with limma/voom using the WILD subtype as control. We were able to 1035 

detect DE genes across all subtypes, ranging from 183 to 5003 up-regulated genes and 22 to 4884 1036 

down-regulated genes (Table 7). Interestingly, when observing the ratio of up- and down-regulated 1037 

genes for each subtype, CDK12 was the only subtype which presented a ratio larger than 1. In fact, 1038 

CDK12 subtype showed only few genes down- regulated (22) in contrast with up-regulated genes 1039 

(183) with a ratio of up-/down-regulated genes of 8.3, while the ratios for the other subtypes 1040 

remained below 2 (Table 7). 1041 

Table 7 - Summary of DGE analysis. 1042 

Gene Up-Regulated 
Genes 

Down-Regulated 
Genes 

CAT genes 
Up-regulated 

CAT genes 
Dn-regulated 

Up/Down 
Ratio 

CDK12 183 22 77 13 8.3 
ETS 1221 768 188 358 1.5 
SPOP 2279 1180 332 734 1.93 
PTEN 2521 2260 131 1218 1.12 
PTEN+ERG 5003 4884 484 2439 1.02 

 1043 
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 1045 
 1046 
CDK12 mutation presents increased xenobiotic metabolism 1047 
 1048 
Enrichment analysis of hallmarks of cancer gene sets presented only a few gene sets enriched 1049 

(Figure 17). Nevertheless, it showed that CDK12-mutated samples present increased activity of 1050 

cell cycle and DNA metabolism. Interestingly, CDK12 was the only subtype to present increased 1051 

xenobiotic metabolism among all other subtypes. Among decreased activity, the only gene set 1052 

enriched was IL6-JAK-STAT3 signaling pathway. 1053 

 1054 

 1055 
Methylation levels in CDK12 is unchanged 1056 
 1057 
We also investigate methylation profiles of each subtype. During our analysis we did not found 1058 

DMRs in CDK12 subtype when compared to WILD subtype, while other subtypes showed several 1059 

Figure 17 – Gene sets enriched upon CDK12 mutation. CDK12 mutated samples shows 
increased activity of cell cycle and DNA metabolism genes, as well increased xenobiotic 
metabolism which might suggest the susceptibility of this subtypes to certain drugs.  
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DMRs in contrast with WILD subtype. We hypothesize that either CDK12 mutation does not 1060 

impact methylation levels in PRAD, or that we did not reach enough statistical power due to low 1061 

number of samples for this subtype. In order to assess which hypothesis is true, we repeated the 1062 

analysis for the PTEN subtype randomly sampling the same number of samples (12) available for 1063 

the CDK12 subtype. Since we were able to detect DMRs in PTEN subtype with reduced number 1064 

of samples, we therefore conclude that CDK12 mutation does not impact methylation levels at a 1065 

significant level (Figure 19). Also, by computing mean methylation levels of the probes, we 1066 

observed that there is no global methylation changes across subtypes (Figure 18) despite subtypes 1067 

presenting DMRs, this suggests that PRAD presents a fine control of methylated regions. 1068 



 79 

 1069 

 1070 

Figure 18 – Global methylation levels across subtypes. Boxplots shows mean methylation level 
for each subtype. As shown, there are no global shift in methylation levels for any subtype 
suggesting that methylation is controlled at a fine level. 
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 1071 

 1072 
Discussion 1073 
 1074 
The advent of immune checkpoint blockade therapies that use programmed death 1 (PD-1) or 1075 

programmed death ligand 1 (PD-L1) inhibitors for the treatment of multiple cancer types represent 1076 

Figure 19 – Differential methylation in mutants. On top: CDK12 subtype shows no significant 
methylated regions when compared to WILD subtype. On bottom: PTEN subtype shows 
hypomethylated and hypermethylated regions. 
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a major step in the care of patients with cancer. Recently, it was discovered that certain genetic 1077 

subtypes of cancers may be remarkably sensitive to PD-1 inhibitor therapies. This discovery is a 1078 

clear example of precision oncology, where the tumor genomic status can be used to guide 1079 

interventions125. 1080 

Following the development of immune checkpoint blockade therapies, it was discovered that 1081 

cancers with mutations in genes belonging to the homologous recombination DNA damage repair 1082 

pathway, especially cancers of the breast and ovary, have greater chance to respond well to 1083 

treatment with poly-adenosine diphosphate ribose polymerase (PARP) inhibitors or platinum 1084 

chemotherapies125. 1085 

Wu and collaborators126 have recently characterized a new subtype of metastatic castration-1086 

resistant prostate cancer (mCRPC) whose main characteristic is the biallelic inactivation of the 1087 

tumor suppressor CDK12. This gene is thought to maintain DNA repair through the regulation of 1088 

DNA damage-response genes (BRCA1, FANCD2, and ATR), and it had been suggested that the 1089 

enzyme was associated with PARP inhibitor sensitivity when it was genetically inactivated127. 1090 

Here we present the genomic, transcriptomic and epigenetic landscape of CDK12-mutant primary 1091 

tumors in PRAD. 1092 

Copy number variations have a critical role in cancer development and progression. A 1093 

chromosomal segment can be deleted or amplified as a result of genomic rearrangements, such as 1094 

deletions, duplications, insertions and translocations. Using public data, we analyzed genomic data 1095 

to discover recurrent aberration in the genome of the CDK12 subtype. Most interestingly, our 1096 

results showed that despite having the least amount recurrent aberrations, CDK12 subtype 1097 

presented the highest number of amplified genes among which where cell cycle and DNA 1098 

replication related genes (e.g. CTPS2, TXLNG, RBBP7, CA5B, GRPR, etc.). As reported by Wu 1099 
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and collaborators126, one of the main characteristics of mCRPC CDK12 subtype is recurrent gains 1100 

at loci involved in cell cycle and DNA replication. It is also noteworthy, that these genes were 1101 

mainly located on chromosome X and it was the only subtype to present aberration in this 1102 

chromosome (1103 

1104 

Supplementary Figure 1). Apart from chromosome X, CDK12 subtype exhibited large deletions 1105 

across chromosome 8, contrasting with results from Wu and collaborators were gain of 8q arm 1106 

was observed in mCRPC126. 1107 

Interestingly, the recurrent gains often observed CDK12 subtype were also observed at 1108 

transcriptomic level. With a ratio of up- and down-regulated genes of 8.3, CDK12 subtype was by 1109 

far the highest ratio (Table 7). In fact, it was the only subtype to present more than twice up-1110 

regulated genes than down-regulated ones. It is also noteworthy that CDK12 subtype presented 1111 

few down-regulated genes, indicating that CDK12 profile at transcriptomic level might reflect 1112 

events at genomic level, such as duplications in chromosome. Curiously, none of DE genes were 1113 

present in recurrently amplified regions detected by GAIA at FDR of 1x10-4. However, if a relaxed 1114 

FDR of 0.1 is adopted we start observing DE genes in aberration regions, suggesting that the small 1115 
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number of samples in CDK12 subtype might be limiting the detection of recurrent aberrant regions. 1116 

Furthermore, we observed that several lncRNAs recently annotated in the FANTOM-CAT meta-1117 

assembly were among the top differentially expressed genes in the CDK12 subtype (Figure 16 – 1118 

Differentially expressed genes across subtypes in contrast with wild subtype. Supplementary Table 1119 

2), as well in others subtypes analyzed (Figure 16). 1120 

In our enrichment analysis we observed enriched gene sets that are on par with the literature. In 1121 

hallmarks of cancer collection, we observed for gene sets significantly enriched: E2F targets, G2-1122 

M DNA damage checkpoint, IL6-JAK-STAT3 signaling and xenobiotic metabolism. E2F are a 1123 

group of genes that encode a group of transcription factor in higher eukaryotes. All of them are 1124 

involved in the cell cycle regulation and DNA synthesis in mammalian cells. Similarly, G2-M 1125 

DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms. Both 1126 

gensets were found positively enriched in CDK12 vs WILD subtype contrast. Wu and 1127 

collaborators recently characterized the CDK12 subtype in mCRPC. Their findings showed that 1128 

mCRPC CDK12 subtype exhibit focal tandem duplication (FTD) in regions containing cell cycle 1129 

and DNA repair related genes and that these FTDs induces expression in a dosage-dependent and 1130 

independent manner126. Strikingly, CDK12 subtype was the only subtype to present enrichment of 1131 

genes involved xenobiotioc metabolism. This might explain a key clinical characteristic of CDK12 1132 

subtype which are susceptible to treatment with PARP inhibitors or platinum chemotherapies. 1133 

Moreover, IL6-JAK-STAT3 signaling pathway was the only negatively enriched geneset in 1134 

CDK12 subtype. This pathway communicates information from chemical signals outside of a cell 1135 

to the cell nucleus and is involved in processes such as immunity, cell division, cell death and 1136 

tumor formation. Also, this pathway can regulate other pathways such as PI3K/AKT/mTOR 1137 

pathway. PI3K/AKT/mTOR pathway and MYC activation is often found in most types of cancer, 1138 
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including PRAD. These pathways however, were not found enriched in CDK12 and SPOP 1139 

subtypes, which are the only subtypes presenting negative enrichment of IL6-JAK-STAT3 1140 

signaling pathway, but are highly enriched in PTEN, ETS and PTEN + ETS subtypes which might 1141 

indicate that increased proliferation of these subtypes are independent of this pathway.  1142 

At methylation level, we did not observe global methylation changes in the subtypes in contrast 1143 

with the WILD subtype (Figure 18), suggesting that methylation levels in PCa are regulated at 1144 

finer level. Interestingly, we did not observe significant methylation differences in CDK12 1145 

subtype, while all remaining subtypes present DMRs. This might suggest that genomic alterations 1146 

are the main driver of CDK12 phenotype. 1147 

Finally, in this case study we have shown the complete landscape of CDK12 mutant subtype and 1148 

all genomics events and transcriptional processes that are impacted in this subtype. We have shown 1149 

results that are on par with the literature as well novel insights that can help further characterize 1150 

this subtype. Given the concordance of our results from known genes, we can believe that the 1151 

remaining genes whose function is yet unknown, are important players in this subtype. At both 1152 

genomic and transcriptomic level, we showed that several lncRNAs uniquely annotated in 1153 

FANTOM-CAT are shown to be differentially expressed and susceptible to genomic alterations. 1154 

Given the susceptibility of CDK12 subtype to current treatments it is of paramount importance to 1155 

fully characterize what makes this treatment susceptible in the first place. By uncovering players 1156 

that so far have been overlook, we hope these results can advance our understanding of this 1157 

subtype. 1158 

 1159 

Conclusion 1160 
 1161 
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In this work we present the FC-R2 expression atlas encompassing thousands of lncRNAs recently 1162 

uncovered by the FANTOM consortium. We demonstrate that data from FC-R2 can robustly 1163 

replicate several recent findings about lncRNA expression in humans, while uncovering hundreds 1164 

of potential lncRNAs players in a variety of scenarios that would otherwise not be capture by other 1165 

resources. Moreover, we presented two distinct case studies showing how our resource can be used 1166 

to uncover lncRNAs that might play important roles in several phenotypes.  1167 

Finally, all results and data from the FANTOM-CAT/recount2 atlas are available as a public tool. 1168 

With uniformly processed expression data for over 70,000 samples and 109,873 genes ready to 1169 

analyze, we want to encourage researchers to dive deeper into the study of ncRNAs, their 1170 

interaction with coding and non-coding genes and the influences on the phenotypes in normal and 1171 

altered tissues. While uncovering the exact mechanisms and roles of these lncRNAs are beyond 1172 

the scope of this work, the ongoing FANTOM 6 project is aiming in characterize these genes. We 1173 

hope this new tool can help paving the way to develop new hypothesis that can be followed to 1174 

unwind the biological role of the RNAs as a whole. 1175 
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ATTACHMENTS 1494 

1495 
Supplementary Figure 1 - GAIA plot for CDK12 subtype. Figure shows regions subject to 1496 
aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 of 1497 
significance threshold. 1498 
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 1499 

Supplementary Figure 2 - GAIA plot for ETS subtype. Figure shows regions subject to 1500 
aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 of 1501 
significance threshold. 1502 

 1503 
Supplementary Figure 3 - GAIA plot for PTEN subtype. Figure shows regions subject to 1504 
aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 of 1505 
significance threshold. 1506 

 1507 
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 1508 
Supplementary Figure 4 - GAIA plot for SPOP subtype. Figure shows regions subject to 1509 
aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 of 1510 
significance threshold. 1511 

 1512 
Supplementary Figure 5 - GAIA plot for PTEN+ERG subtype. Figure shows regions subject 1513 
to aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 1514 
of significance threshold. 1515 
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 1516 
Supplementary Figure 6 - GAIA plot for WILD subtype. Figure shows regions subject to 1517 
aberrations. Blue lines represent loss events while red lines gains. Orange line represents log10 of 1518 
significance threshold. 1519 
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Supplementary Table 1. Survival analysis using Cox proportional regression showing the 1534 
number of enhancers with prognostic power. 1535 

 1536 
 1537 
 1538 
 1539 
 1540 
 1541 
 1542 
 1543 
 1544 
 1545 
 1546 
Supplementary Table 2. List of differentially expressed genes in CDK12 vs WILD subtypes. 1547 

Gene ID Gene Name logFC t adj. p-value 
ENSG00000145321 GC 4.05 6.10 6.74E-06 
CATG00000055314 CATG00000055314.1 3.04 8.84 6.74E-13 
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CATG00000001242 CATG00000001242.1 2.46 6.22 3.95E-06 
ENSG00000233215 AP000472.2 2.38 4.16 8.32E-03 
ENSG00000132744 ACY3 2.37 4.36 4.74E-03 
CATG00000096426 CATG00000096426.1 2.30 6.80 2.43E-07 
ENSG00000121351 IAPP 2.21 4.28 5.90E-03 
ENSG00000241388 HNF1A-AS1 2.15 4.25 6.54E-03 
ENSG00000185332 TMEM105 2.12 4.36 4.74E-03 
ENSG00000255050 RP11-661A12.9 2.11 5.58 6.34E-05 
CATG00000002737 CATG00000002737.1 2.08 5.47 1.01E-04 
ENSG00000255236 CTD-2655K5.1 2.05 6.43 1.74E-06 
ENSG00000260954 LA16c-425C2.1 2.02 7.95 1.70E-10 
CATG00000004618 CATG00000004618.1 2.02 5.98 1.17E-05 
CATG00000094347 CATG00000094347.1 2.00 6.77 2.50E-07 
ENSG00000262877 RP11-1055B8.4 1.99 5.21 2.66E-04 
ENSG00000144485 HES6 1.99 4.87 9.10E-04 
ENSG00000176593 CTD-2368P22.1 1.96 6.38 2.07E-06 
CATG00000094793 CATG00000094793.1 1.95 4.18 7.82E-03 
ENSG00000131142 CCL25 1.92 4.86 9.34E-04 
CATG00000071594 CATG00000071594.1 1.91 4.97 6.40E-04 
CATG00000110168 CATG00000110168.1 1.90 5.17 2.87E-04 
CATG00000061772 CATG00000061772.1 1.88 5.80 2.66E-05 
ENSG00000216621 RP11-244K5.6 1.85 5.75 3.18E-05 
CATG00000028402 CATG00000028402.1 1.84 4.91 7.99E-04 
ENSG00000181656 GPR88 1.83 4.14 8.76E-03 
ENSG00000225431 AP001626.1 1.80 6.83 2.43E-07 
ENSG00000016490 CLCA1 1.79 5.27 2.21E-04 
CATG00000083355 CATG00000083355.1 1.78 4.65 1.80E-03 
ENSG00000172568 FNDC9 1.74 4.94 7.11E-04 
ENSG00000111981 ULBP1 1.71 4.82 1.07E-03 
ENSG00000162761 LMX1A 1.70 4.73 1.39E-03 
ENSG00000237194 SNAI1P1 1.69 4.23 6.88E-03 
CATG00000038061 CATG00000038061.1 1.67 5.57 6.54E-05 
ENSG00000205143 ARID3C 1.64 5.20 2.66E-04 
CATG00000102439 CATG00000102439.1 1.62 5.44 1.10E-04 
ENSG00000254338 RP11-909N17.3 1.60 4.39 4.37E-03 
ENSG00000175329 ISX 1.59 4.61 2.05E-03 
ENSG00000255346 NOX5 1.59 4.34 5.06E-03 
ENSG00000118156 ZNF541 1.58 5.59 6.22E-05 
CATG00000005468 CATG00000005468.1 1.58 4.56 2.39E-03 
ENSG00000269915 AP006621.9 1.57 4.61 2.05E-03 
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CATG00000073078 CATG00000073078.1 1.54 4.31 5.44E-03 
CATG00000106348 CATG00000106348.1 1.53 5.15 3.05E-04 
CATG00000026950 CATG00000026950.1 1.53 5.20 2.66E-04 
CATG00000038150 CATG00000038150.1 1.52 4.76 1.24E-03 
CATG00000041483 CATG00000041483.1 1.52 6.16 5.26E-06 
ENSG00000223503 RP11-29H23.6 1.51 5.16 2.93E-04 
ENSG00000145536 ADAMTS16 1.51 4.18 7.80E-03 
CATG00000063540 CATG00000063540.1 1.50 4.78 1.21E-03 
CATG00000049673 CATG00000049673.1 1.48 8.27 2.52E-11 
CATG00000001331 CATG00000001331.1 1.47 4.43 3.87E-03 
ENSG00000221944 TIGD1 1.46 4.60 2.12E-03 
CATG00000083638 CATG00000083638.1 1.46 4.77 1.21E-03 
CATG00000042831 CATG00000042831.1 1.45 4.56 2.38E-03 
CATG00000064652 CATG00000064652.1 1.45 5.63 5.36E-05 
CATG00000083353 CATG00000083353.1 1.45 4.65 1.80E-03 
ENSG00000270487 RP11-230C9.3 1.44 5.91 1.62E-05 
ENSG00000113249 HAVCR1 1.43 4.46 3.57E-03 
CATG00000013670 CATG00000013670.1 1.42 6.33 2.53E-06 
CATG00000113639 CATG00000113639.1 1.41 4.83 1.04E-03 
CATG00000079832 CATG00000079832.1 1.40 4.21 7.14E-03 
CATG00000099987 CATG00000099987.1 1.40 4.32 5.26E-03 
CATG00000098414 CATG00000098414.1 1.40 4.33 5.18E-03 
CATG00000039185 CATG00000039185.1 1.39 4.68 1.59E-03 
CATG00000104566 CATG00000104566.1 1.39 4.23 6.87E-03 
ENSG00000254982 HMGB1P24 1.38 4.61 2.05E-03 
CATG00000038892 CATG00000038892.1 1.38 5.30 1.92E-04 
CATG00000010722 CATG00000010722.1 1.37 4.48 3.32E-03 
CATG00000049360 CATG00000049360.1 1.37 5.41 1.19E-04 
CATG00000040000 CATG00000040000.1 1.36 4.39 4.37E-03 
CATG00000078852 CATG00000078852.1 1.36 5.06 4.30E-04 
CATG00000018127 CATG00000018127.1 1.35 4.17 8.01E-03 
ENSG00000212864 RNF208 1.35 4.37 4.63E-03 
CATG00000005873 CATG00000005873.1 1.35 4.77 1.23E-03 
CATG00000036922 CATG00000036922.1 1.34 5.34 1.63E-04 
CATG00000116159 CATG00000116159.1 1.34 5.17 2.87E-04 
ENSG00000174527 MYO1H 1.34 4.32 5.26E-03 
ENSG00000254463 RP11-484D2.3 1.33 4.37 4.63E-03 
CATG00000005872 CATG00000005872.1 1.33 4.57 2.35E-03 
CATG00000022162 CATG00000022162.1 1.32 4.10 9.70E-03 
ENSG00000007001 UPP2 1.32 4.61 2.05E-03 
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CATG00000036880 CATG00000036880.1 1.31 4.50 3.05E-03 
CATG00000001295 CATG00000001295.1 1.30 4.71 1.44E-03 
ENSG00000235296 AC137723.5 1.30 4.42 3.95E-03 
CATG00000113638 CATG00000113638.1 1.30 4.23 6.88E-03 
CATG00000038960 CATG00000038960.1 1.30 4.26 6.26E-03 
ENSG00000226174 TEX22 1.29 5.13 3.29E-04 
CATG00000046244 CATG00000046244.1 1.29 4.44 3.75E-03 
ENSG00000204839 MROH6 1.27 4.76 1.24E-03 
CATG00000045991 CATG00000045991.1 1.27 4.39 4.37E-03 
ENSG00000110375 UPK2 1.26 4.80 1.11E-03 
CATG00000096385 CATG00000096385.1 1.26 4.11 9.64E-03 
ENSG00000204248 COL11A2 1.26 4.12 9.35E-03 
ENSG00000253731 PCDHGA6 1.26 4.15 8.45E-03 
ENSG00000059915 PSD 1.25 5.46 1.02E-04 
ENSG00000180998 GPR137C 1.25 5.50 9.20E-05 
ENSG00000239247 RN7SL589P 1.24 4.24 6.74E-03 
ENSG00000172382 PRSS27 1.24 5.06 4.30E-04 
CATG00000105296 CATG00000105296.1 1.24 4.48 3.30E-03 
CATG00000099573 CATG00000099573.1 1.23 4.36 4.74E-03 
CATG00000055615 CATG00000055615.1 1.23 5.22 2.66E-04 
CATG00000094807 CATG00000094807.1 1.22 4.27 5.98E-03 
ENSG00000260493 RP11-219B4.7 1.22 4.27 6.02E-03 
ENSG00000258982 RP11-638I2.4 1.22 6.30 2.66E-06 
ENSG00000224647 AC026954.6 1.22 4.13 8.84E-03 
CATG00000066066 CATG00000066066.1 1.21 4.20 7.37E-03 
CATG00000109082 CATG00000109082.1 1.21 5.22 2.66E-04 
ENSG00000252821 RNU6-388P 1.20 5.69 4.37E-05 
ENSG00000271993 RP11-285J16.1 1.20 4.71 1.44E-03 
ENSG00000205704 LINC00634 1.20 4.14 8.69E-03 
CATG00000036982 CATG00000036982.1 1.19 5.45 1.05E-04 
ENSG00000154035 C17orf103 1.19 4.98 6.10E-04 
CATG00000095984 CATG00000095984.1 1.19 4.77 1.22E-03 
ENSG00000232082 RPS6KA2-IT1 1.18 4.11 9.38E-03 
CATG00000034566 CATG00000034566.1 1.16 4.13 8.98E-03 
CATG00000109148 CATG00000109148.1 1.15 4.39 4.40E-03 
CATG00000107360 CATG00000107360.1 1.15 4.85 9.65E-04 
ENSG00000238098 ABCA17P 1.14 4.85 9.60E-04 
ENSG00000239911 PRKAG2-AS1 1.13 4.36 4.74E-03 
ENSG00000230841 RP5-915N17.3 1.13 4.28 5.90E-03 
CATG00000052130 CATG00000052130.1 1.12 5.26 2.23E-04 
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ENSG00000229869 RP11-363N22.2 1.11 4.76 1.24E-03 
CATG00000028303 CATG00000028303.1 1.10 4.82 1.04E-03 
CATG00000076772 CATG00000076772.1 1.09 4.19 7.71E-03 
ENSG00000176268 CYCSP34 1.09 4.19 7.71E-03 
CATG00000004547 CATG00000004547.1 1.08 4.30 5.50E-03 
CATG00000096427 CATG00000096427.1 1.07 4.31 5.44E-03 
ENSG00000224939 LINC00184 1.07 4.70 1.45E-03 
CATG00000058452 CATG00000058452.1 1.07 4.87 9.21E-04 
ENSG00000230002 ALMS1-IT1 1.06 4.33 5.18E-03 
ENSG00000233654 AC093388.3 1.05 5.10 3.68E-04 
CATG00000103257 CATG00000103257.1 1.05 5.09 3.92E-04 
ENSG00000101850 GPR143 1.04 6.01 1.08E-05 
CATG00000018529 CATG00000018529.1 1.01 5.18 2.80E-04 
CATG00000067650 CATG00000067650.1 1.01 4.21 7.30E-03 
CATG00000043927 CATG00000043927.1 1.01 4.25 6.54E-03 
ENSG00000245322 RP11-15B17.1 1.01 4.33 5.18E-03 
ENSG00000230797 YY2 0.99 5.87 1.85E-05 
CATG00000058711 CATG00000058711.1 0.98 4.62 2.04E-03 
CATG00000059716 CATG00000059716.1 0.97 4.96 6.68E-04 
ENSG00000168350 DEGS2 0.95 4.34 5.06E-03 
CATG00000018128 CATG00000018128.1 0.95 4.29 5.70E-03 
CATG00000108312 CATG00000108312.1 0.93 4.41 4.09E-03 
CATG00000039249 CATG00000039249.1 0.93 4.25 6.51E-03 
ENSG00000271966 RP11-7F18.2 0.92 4.16 8.32E-03 
ENSG00000152926 ZNF117 0.92 5.87 1.85E-05 
ENSG00000251136 RP11-37B2.1 0.92 4.33 5.18E-03 
ENSG00000226900 RP11-432J24.5 0.92 4.17 8.22E-03 
ENSG00000011021 CLCN6 0.89 4.94 7.10E-04 
CATG00000050335 CATG00000050335.1 0.88 4.23 6.88E-03 
ENSG00000227394 AC007386.3 0.88 5.41 1.19E-04 
ENSG00000229689 AC009237.8 0.86 4.32 5.23E-03 
ENSG00000261662 RP5-1042I8.7 0.84 5.40 1.25E-04 
CATG00000039106 CATG00000039106.1 0.84 4.25 6.54E-03 
ENSG00000146263 MMS22L 0.84 4.47 3.36E-03 
ENSG00000163666 HESX1 0.83 4.21 7.14E-03 
CATG00000014111 CATG00000014111.1 0.81 4.36 4.74E-03 
ENSG00000160229 ZNF66 0.80 4.50 3.07E-03 
ENSG00000174483 BBS1 0.77 5.21 2.66E-04 
ENSG00000178665 ZNF713 0.76 4.16 8.33E-03 
CATG00000041526 CATG00000041526.1 0.74 4.32 5.27E-03 
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ENSG00000172977 KAT5 0.72 5.65 4.83E-05 
ENSG00000040275 SPDL1 0.71 4.89 8.67E-04 
CATG00000047951 CATG00000047951.1 0.71 4.31 5.44E-03 
ENSG00000159259 CHAF1B 0.71 4.72 1.44E-03 
ENSG00000204947 ZNF425 0.69 4.78 1.21E-03 
ENSG00000173715 C11orf80 0.68 4.86 9.34E-04 
ENSG00000238058 RP11-432J22.2 0.68 4.79 1.17E-03 
ENSG00000186312 CA5BP1 0.66 5.67 4.68E-05 
ENSG00000116017 ARID3A 0.65 4.12 9.35E-03 
ENSG00000119772 DNMT3A 0.60 4.95 6.72E-04 
ENSG00000176809 LRRC37A3 0.59 4.73 1.39E-03 
ENSG00000172613 RAD9A 0.58 4.12 9.35E-03 
ENSG00000242338 BMS1P4 0.57 4.40 4.37E-03 
ENSG00000132740 IGHMBP2 0.52 4.43 3.87E-03 
ENSG00000188690 UROS 0.50 4.71 1.44E-03 
CATG00000084188 CATG00000084188.1 0.49 4.20 7.37E-03 
CATG00000096591 CATG00000096591.1 0.46 4.57 2.36E-03 
ENSG00000125450 NUP85 0.46 4.58 2.27E-03 
ENSG00000120784 ZFP30 0.45 4.54 2.59E-03 
ENSG00000047230 CTPS2 0.42 4.40 4.28E-03 
ENSG00000173120 KDM2A 0.39 4.19 7.64E-03 
ENSG00000163312 HELQ -0.38 -4.19 7.63E-03 
ENSG00000108264 TADA2A -0.40 -4.80 1.11E-03 
ENSG00000158793 NIT1 -0.42 -4.16 8.33E-03 
ENSG00000166262 FAM227B -0.59 -4.37 4.63E-03 
ENSG00000120860 CCDC53 -0.60 -4.14 8.76E-03 
ENSG00000221817 RP11-137L10.6 -0.73 -4.91 8.00E-04 
CATG00000039122 CATG00000039122.1 -0.82 -4.29 5.70E-03 
ENSG00000185267 CDNF -0.86 -4.43 3.87E-03 
ENSG00000224424 PRKAR2A-AS1 -0.88 -4.28 5.90E-03 
ENSG00000186976 EFCAB6 -0.95 -5.34 1.60E-04 
ENSG00000064199 SPA17 -0.95 -4.16 8.32E-03 
ENSG00000071082 RPL31 -1.17 -4.57 2.37E-03 
ENSG00000272983 RP11-508N22.12 -1.18 -5.03 5.00E-04 
ENSG00000186567 CEACAM19 -1.23 -4.46 3.58E-03 
ENSG00000242220 TCP10L -1.25 -5.17 2.87E-04 
CATG00000000073 CATG00000000073.1 -1.27 -4.15 8.36E-03 
ENSG00000169085 C8orf46 -1.38 -4.71 1.44E-03 
ENSG00000144410 CPO -1.38 -4.72 1.44E-03 
ENSG00000235271 RP1-90L6.3 -1.44 -4.18 7.80E-03 
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CATG00000109304 CATG00000109304.1 -1.47 -4.22 6.91E-03 
CATG00000106558 CATG00000106558.1 -1.73 -4.68 1.57E-03 
CATG00000111190 CATG00000111190.1 -1.75 -4.48 3.32E-03 
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