
A FRAMEWORK FOR GAMIFICATION OF

PROJECT-BASED SOFTWARE ENGINEERING

EDUCATION

MAURÍCIO RONNY DE ALMEIDA SOUZA

A FRAMEWORK FOR GAMIFICATION OF

PROJECT-BASED SOFTWARE ENGINEERING

EDUCATION

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Eduardo Figueiredo

Belo Horizonte

Setembro de 2019

MAURÍCIO RONNY DE ALMEIDA SOUZA

A FRAMEWORK FOR GAMIFICATION OF

PROJECT-BASED SOFTWARE ENGINEERING

EDUCATION

Thesis presented to the Graduate Program
in Ciência da Computação of the Univer-
sidade Federal de Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Doctor in Ciência da Computação.

Advisor: Eduardo Figueiredo

Belo Horizonte

September 2019

© 2019, Maurício Ronny de Almeida Souza.

 Todos os direitos reservados

 Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Souza, Maurício Ronny de Almeida.

S729f A Framework for gamification of project-based
 software engineering education / Maurício Ronny de
 Almeida Souza. — Belo Horizonte, 2019.
 xxvi, 176 f. il.; 29 cm.

 Tese (doutorado) - Universidade Federal de Minas
 Gerais – Departamento de Ciência da Computação.

 Orientador: Eduardo Magno Lages Figueiredo

 1. Computação – Teses. 2. Engenharia de software -
 ensino e aprendizagem.3. Teoria dos jogos.
 4.Aprendizagem por atividades. I. Orientador. II. Título.

CDU 519.6*32(043)

To Mara and Rosa (in memorian), with love.

ix

Acknowledgments

Many friends, relatives, and researchers took part in the execution of this research and
the fulfilment of the requirements of the phd program. However, my mother (Mara),
my grandmother (Rosa), and my eternal friend Ariane, who were always supporting
me, could not be physically present to see my accomplishment. I would like to thank
them for their continuous watch over my steps.

I would not be able to even start this journey if I did not have the support of
my beloved wife, Renata. As a final gift, Renata provided me with the most beautiful
flower I’ve ever seen: Liana. Since Liana’s birth, my life definitely changed for better,
with many blessings everyday.

I would also like to devote a special acknowledgment to my advisor, Eduardo
Figueiredo. Eduardo supported me not only as an advisor, but also as friend. In the
troubled times, he could always provide a comforting word, and gave me all the freedom
I needed to execute the research I wanted to.

Special thanks to my family, including the friends that are brothers and sisters:
Mauricia, Olivar, William, Victor, Julieta, Sebastião, Pato, Ponei, Luizinho, Yoshio,
Portela, Carol, Nath, Marcel, Marina, Madalena, João, Daniel, Adriele, and Patricia.

I would like to thank all the friends from Lab-Soft, who fought the battles shoulder
by shoulder with me at UFMG: J-John, Katt, Fischão, Cleitão, João, Igor, Markos,
Allan, Adriano, Daenerys, and Lucas. Their friendship made the phd-student life a
lot easier with all the laughs and stories. The new friends I made in Lavras, who
supported me in my new life, also have to be mentioned: Du, Mayron (the terrible),
Jadson, Paulo Afonso, Valéria, Victor, Paula, Heitor, Luiza, Lala, Gui, the people from
MaUFLA, Otacílio, Cida, Chris, Bruno, Marlon, and Vinicius.

xi

“No. Not even in the face of Armageddon. Never compromise.”
(Alan Moore, Watchmen)

xiii

Resumo

Balancear teoria e prática é um desafio recorrente no ensino de engenharia de software.
No entanto, as diretrizes curriculares da ACM / IEEE e da Sociedade Brasileira de
Computação (SBC) enfatizam a necessidade de proporcionar aos alunos experiências
práticas suficientes para o desenvolvimento das competências esperadas para os profis-
sionais de engenharia de software. As abordagens baseadas em projetos e jogos têm sido
amplamente utilizadas para atender a essa necessidade. Portanto, o objetivo desta tese
é a proposta de um framework conceitual para apoiar a adoção conjunta de Aprendiza-
gem Baseada em Projetos (PBL) e gamificação para introduzir a prática na educação
engenharia de software. Seguindo o paradigma de design science, realizamos uma série
de estudos empíricos e de literatura para entender o uso desses métodos educacionais
para apoiar o ensino de engenharia de software. Com base nas lições aprendidas desses
estudos, propomos e avaliamos o GaPSEE, um framework para apoiar professores no
planejamento e execução de tarefas práticas usando os princípios de PBL e gamificação.
O GaPSEE foi avaliado em cinco estudos de caso, executados em três universidades
federais no Brasil. O resultado de entrevistas com 4 professores e as respostas de
uma pesquisa com 76 alunos são indicativos de uma percepção positiva sobre o uso do
GaPSEE para introduzir a prática no ensino de engenharia de software. Os principais
benefícios observados com a aplicação do GaPSEE estão relacionados ao aumento da
participação e interação dos alunos com os professores, maior engajamento e motivação
dos alunos, contextualização significativa da prática e um roteiro de atividades para
orientar e acompanhar o progresso dos alunos.

Palavras-chave: Educação em engenharia de software, aprendizagem baseada em
projetos, gamificação.

xv

Abstract

Balancing theory and practice is a recurring challenge in software engineering (SE) edu-
cation. However, the curriculum guidelines of the ACM/IEEE and Brazilian Computer
Society (SBC) emphasize the need of providing students with sufficient practical expe-
riences, for the development of the competences expected for SE professional. Project
and game based approaches have been largely used to address this necessity. There-
fore, the goal of this thesis is the proposal of a framework to support the joint adoption
of Project-Based Learning (PBL) and gamification to introduce practice in SE educa-
tion. Following the design science paradigm, we conducted a series of literature and
empirical studies for understanding the use of these educational methods to support
software engineering education. Based on the lessons learned from these studies, we
propose and evaluate GaPSEE, a framework to support lecturers in the planning and
execution of practical assignments using principles of PBL and gamification. GaPSEE
was evaluated in five case studies from three federal universities in Brazil. The result
from interviews with 4 lecturers and responses of a survey with 76 students are indica-
tive of positive perception about the use of GaPSEE to introduce practice in software
engineering education. The main benefits noticed from the application of GaPSEE
are related to increased students participation and interaction with lecturers, increased
engagement and motivation of students, meaningful contextualization of practice, and
having a roadmap of activities to guide and track the progress of students.

Keywords: Software engineering education, project-based learning, gamification.

xvii

List of Figures

1.1 Study design . 7

2.1 Timeline of primary studies [Souza et al., 2018]. 23

3.1 Examples of four badges in the SE course. 35
3.2 Badges exhibited in the Hall of Fame for the top 3 students of all time. . . 36
3.3 Results for the survey background questions BQ1 to BQ3. 40
3.4 Results for the survey background question BQ4. 40
3.5 Survey results on the students perception on the use of badges. 41
3.6 Survey results on the students perception of the “Hall of Fame”. 42

4.1 Action Research cycle, adapted from Davison et al. [2004]. 51
4.2 Academic period of the participants (Q2). 63
4.3 First Contact with software engineering in academia (Q4). 64
4.4 Professional experience with software development or software engineering

(Q5). 64
4.5 Evaluation of the use of software projects as practical assignment in software

engineering education (Q6). 65
4.6 Evaluation of the use of traditional lectures and punctual assignments in

software engineering education (Q7). 66
4.7 Contribution of the project in learning specific software engineering topics

(Q8) for the PBL sample. 67
4.8 Contribution of the project in learning specific software engineering topics

(Q8) for the Non-PBL sample. 67
4.9 Comparison of the results for Q8. 68
4.10 Positive aspects stated in the responses of Q9. 69
4.11 Negative aspects stated in the responses of Q10. 71

5.1 GaPSEE project layout . 86

xix

5.2 Expected actions for each component of GaPSEE 92
5.3 GaPSEE process . 93
5.4 First level of the assignment in PLT case. 104
5.5 Leaderboad in the PLT case. 106

6.1 Study design. 113
6.2 A level from the SQM case study . 118
6.3 The leaderboard from SQM case study . 118
6.4 Higher education program attended by the participants (N=76). 120
6.5 Participants’ (a) age,(b) gender, (c) professional experience (in years), and

(d) frequency of playing games (N=76). 121
6.6 Importance of practice for software engineering education and adequacy of

the assignment for the courses. 122
6.7 Results of the Survey for the Aesthetics of the gamification approach. . . . 123
6.8 Participants’ perception on aesthetic aspects of the gamification approach. 123
6.9 Participants’ perception on development of specific skills. 124
6.10 Participants’ perception on development of general skills. 125
6.11 Distribution of occurrences of positive and negative codes for the case studies.128
6.12 Ratio of Codes per Participants for positive and negative aspects (# occur-

rence of positive or negative codes) / (size of the sample). 129

xx

List of Tables

2.1 SE education Knowledge Areas [IEEE/ACM, 2015] 12
2.2 SWECOM Skill Areas and Skills . 13
2.3 Game elements used in SE education context[Souza et al., 2018] 28
2.4 Game elements to support software engineering practice and education . . 30

3.1 Hall of Fame with the top ten students of all time in the SE Course 36
3.2 Questionnaire . 38
3.3 Interview script . 39

4.1 Learning goals of the assignment . 54
4.2 Overview of the installments of the SE course 55
4.3 Questionnaire Structure . 62
4.4 Population sampling . 63
4.5 Positive aspects identified in the responses of the PBL and Non-PBL sam-

ples for Q9. 73
4.6 Categorization of the positive aspects identified in the responses of the PBL

and Non-PBL samples for Q9 . 73
4.7 Negative aspects identified in the responses of the PBL and Non-PBL sam-

ples for Q10. 74
4.8 Categorization of the negative aspects identified in the responses of the PBL

and Non-PBL samples for Q10 . 75

5.1 GaPSEE Guidelines . 88
5.2 Learning goals of the assignment in PLT case. 98
5.3 Iterations of the PLT case . 101
5.4 Tasks of the second iteration of the PLT case 101
5.5 GaPSEE suggestion of game elements to achieve gamification goals. 103

6.1 Background of the participants . 115

xxi

6.2 Use of practical assignments, PBL, and Gamification in previous iterations
of each course . 115

6.3 Organization of the case studies . 117
6.4 Population sample for the survey study. 120
6.5 Positive codes and categories mapped from the responses of the participants.126
6.6 Negative codes and categories mapped from the responses of the participants.127
6.7 Occurrences of positive and negative codes for each category. 129
6.8 Script for interviewing lecturers . 131
6.9 Codes and categories related to positive aspects mapped from the interviews.137
6.10 Categories of codes mapped from the interviews. 138

xxii

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Problem and motivation . 3
1.2 Goals . 5
1.3 Method . 6
1.4 Contribution and relevance . 7
1.5 Thesis project outline . 9

2 Literature Review 11
2.1 Software engineering education . 11

2.1.1 Practice in software engineering education 14
2.2 Project-Based Learning (PBL) . 15

2.2.1 Characteristics of PBL . 16
2.2.2 Challenges and issues related to the use of PBL is software engi-

neering education . 18
2.3 Gamification . 21

2.3.1 Game elements . 23
2.3.2 Gamification in software engineering education 24
2.3.3 Cases of use of gamification in software engineering education . 27
2.3.4 Game elements used in the gamification of software engineering 28

xxiii

2.4 Discussion of literature gaps . 29
2.5 Final remarks . 31

3 Empirical Study on the Use of Gamification in Software Engineering
Education 33
3.1 Course setup . 34
3.2 Study settings . 36

3.2.1 Study goals and research questions 37
3.2.2 Study design and research methods 37
3.2.3 Planning of the study phase I - Survey 37
3.2.4 Planning of the study phase II - Interviews 38

3.3 Results . 39
3.3.1 Study phase I – Survey results 39
3.3.2 Study phase II – Interviews results 43

3.4 Discussion . 45
3.4.1 RQ1 – Badges in a software engineering course 45
3.4.2 RQ2 – Leaderboards in a software engineering course 45

3.5 Threats to validity . 46
3.6 Final remarks . 47

4 Empirical Study on the Use of PBL in Software Engineering Edu-
cation 49
4.1 Study settings . 49

4.1.1 Study goals and research questions 50
4.1.2 Research method . 50
4.1.3 Study design . 51

4.2 Course setup . 52
4.2.1 PBL in the software engineering course 52
4.2.2 Learning goals . 54

4.3 Observation from the Action Research cycles 55
4.3.1 Type of project and realism . 55
4.3.2 Guidance, freedom of choice, and evaluation 57
4.3.3 Teamwork and scalability . 60

4.4 Questionnaire analysis . 61
4.4.1 Population sample . 62
4.4.2 Participants background . 63
4.4.3 Evaluation of the learning method 64

xxiv

4.4.4 Evaluation of the project contribution to learning software engi-
neering topics . 66

4.4.5 Positive and negative aspects of the PBL course 68
4.4.6 Comparison of positive and negative aspects between PBL and

Non-PBL courses . 72
4.5 Discussion . 76

4.5.1 RQ1 – The challenges of using PBL in an introductory software
engineering course . 76

4.5.2 RQ2 – Students’ perception on the use of PBL in an introductory
software engineering course . 78

4.6 Threats to validity . 79
4.7 Final remarks . 80

5 A Framework for the Gamification of Project Based Software En-
gineering Education 83
5.1 Goal and scope . 84
5.2 Target audience . 85
5.3 Components . 85
5.4 Structure and roles in GaPSEE practical assignments 85
5.5 GaPSEE Guidelines . 87
5.6 GaPSEE Process . 91

5.6.1 Setup phase . 92
5.6.2 Execution phase . 94
5.6.3 Evaluation phase . 95
5.6.4 Refinement phase . 96

5.7 Suggestions for implementation . 96
5.7.1 Planning the assignment . 97
5.7.2 Planning the project . 99
5.7.3 Planning gamification . 102
5.7.4 Executing the assignment . 105

5.8 Final remarks . 108

6 Evaluation of the Proposed Framework 111
6.1 Study settings . 112

6.1.1 Study goal and research questions 112
6.1.2 Study design and research methods 112

6.2 Case Studies . 113

xxv

6.2.1 Selection of case studies . 114
6.2.2 Preparation and execution of the case studies 116

6.3 Survey with students . 119
6.3.1 Population Sample . 119
6.3.2 Results . 120

6.4 Interviews with lecturers . 131
6.4.1 Previous installments of the courses 132
6.4.2 Changes in students’ attitudes 133
6.4.3 Changes in the management and preparation of the assignment 135
6.4.4 Relevance and positive aspects of GaPSEE approach 136
6.4.5 Negative aspects of GaPSEE approach and improvements for

replications of the case studies 138
6.4.6 Perspective on the use and recommendation of GaPSEE 140

6.5 Discussion . 141
6.6 Threats to validity . 144
6.7 Final Remarks . 145

7 Conclusion 147
7.1 Summary . 147
7.2 Contribution . 149
7.3 Future Work . 150

Bibliography 151

Appendix A Primary Studies used in the Systematic Mapping 163

Appendix B Questionnaire for the Evaluation of the Framework 169

xxvi

Chapter 1

Introduction

Software engineering is the application of a systematic, disciplined, quantifiable ap-
proach to the development, operation and maintenance of software [IEEE/ACM, 2015].
The challenges of educating new software engineers are more than just program-
ming, they include attention to details, such as quality, schedule, and economic goals
[IEEE/ACM, 2015]. For instance, an important challenge in software engineering edu-
cation arises from the dual nature of the software engineering discipline: it has roots in
Computer Science and has emerged as an engineering discipline. Hence, it affects both
theory and practice [IEEE/ACM, 2015]. This characteristic has a direct impact on the
amount of material instructors must cover in software engineering classrooms. In addi-
tion, software professionals are required not only to understand technical challenges but
also to be up-to-date with nontechnical issues, including management, communication,
and teamwork.

In software engineering higher education, besides learning theory and acquiring
technical skills, students need to develop the ability to apply, evolve, and practice
those skills throughout their lifetime [Gary, 2015]. Additionally, soft skills, such as
leadership, teamwork, decision-making, negotiation, and self-reflection, are important
abilities for software engineering practice, since software development also involves sev-
eral human and social aspects [Marques et al., 2014]. Nevertheless, the development of
these crosscutting capabilities is usually less supported in Computer Science programs
[Marques et al., 2014].

There is no consensus on how to teach software engineering, since each institution
adopts its own methods based on the experience of its professors [Marques et al., 2014].
Traditional approaches (expository lectures, exams, and complimentary assignments)
are still largely used by lecturers [Sancho-Thomas et al., 2009; Bessa et al., 2012;
Marques et al., 2014; Fioravanti et al., 2018] . A possible cause is the difficulty in

1

2 Chapter 1. Introduction

changing the instructional process used by lecturers, and that it is a common pattern
in computer science and engineering courses [Marques et al., 2014]. However, it may
lead to demotivating students [Barnes et al., 2008; Prikladnicki et al., 2009; Bessa et al.,
2012]. In addition, teacher-centered educational methods may not support the practical
development of competences [Barnes et al., 2008; Sancho-Thomas et al., 2009] and may
have limited learning efficiency [Prikladnicki et al., 2009]. Therefore, student-centered
approaches may be more suited for allowing the development of competences as the
students learn-by-doing, with a higher motivation from the learner, a more active role
in learning process, and better learning in the application level [Prikladnicki et al.,
2009; Fioravanti et al., 2018; Kuhrmann and Münch, 2018].

Curricular guidelines, such as the ACM/IEEE Curriculum Guidelines for soft-
ware engineering programs (SE 2014 [IEEE/ACM, 2015]), recommend including team-
based projects in the curriculum of the software engineering and computer science
undergraduate programs. The necessity of providing real world experience of software
development to students is a recurring theme in SE 2014, and several of its guidelines
address this matter [IEEE/ACM, 2015]. For instance, Curriculum Guideline 5 sug-
gests that “students also need practical material to be taught early so they can gain
maturity by participating in real-world development experiences (...)” [IEEE/ACM,
2015]. Curriculum Guideline 10 also discusses the multiple dimensions of the problem-
solving aspect of software engineering, and suggests that “problem solving is better
learning through practice and taught by example” [IEEE/ACM, 2015]. Furthermore,
Curriculum Guideline 17 suggests the need of using interesting, concrete and convincing
examples to motivate students. Finally, Curriculum Guideline 14 objectively declares
“the curriculum should have a significant real-world basis” [IEEE/ACM, 2015].

Several learning approaches have been proposed and applied to introduce practi-
cal aspects in software engineering education [Marques et al., 2014], including: game-
based learning [Peixoto et al., 2014], case studies [Razali and Chitsaz, 2010], simulation
[Blake, 2003], inverted classrooms [Herold et al., 2012], maintenance projects [Andrews
and Lutfiyya, 2000], service learning [Chao and Randles, 2009], and open source de-
velopment [Ellis et al., 2007]. The applied nature of software engineering has also
motivated the adoption of game-related approaches for software engineering education
[von Wangenheim and Shull, 2009; Souza et al., 2018].

1.1. Problem and motivation 3

1.1 Problem and motivation

A recurring challenge in software engineering education is engaging students to expe-
rience the professional practices of software engineering in such a way that they can
understand which practices and techniques are useful in various different situations
[IEEE/ACM, 2015]. However, it is difficult to achieve the appropriate balance between
theory and practice. This leads to a gap between the skills of recent graduates and
the expectations of the software industry with the level of preparation of the recently
graduated professionals [Radermacher et al., 2014], specially regarding the lack of nec-
essary competences to start performing their activities efficiently [von Wangenheim and
da Silva, 2009; Moreno et al., 2012; Meira, 2015]. Therefore, there is a gap between
learn by studying (in academia) and learn by doing (at work) [Moreno et al., 2012].

Software engineering courses in Computer Science or Information Systems de-
partments usually provide limited opportunities for understanding the details related
to practices, such as project management, quality assurance, and clients requirements
understanding [Peixoto et al., 2011]. Software processes, for instance, play a key role in
software engineering education, both as a focal and as a crosscutting topic to reinforce
students’ understanding of software engineering practice [IEEE/ACM, 2015]. However,
students practice of software process in academia is limited to the practical assignments
they are exposed during academic life (e.g., project-based activities, capstone projects,
and practical exercises). In addition, the nature of these assignments and projects
proposed in the classroom is limited in scope and time. Therefore, incorporating real-
world elements into the curriculum is a crucial challenge to enable effective learning of
software engineering skills and concepts [IEEE/ACM, 2015].

The curriculum guidelines of the ACM/IEEE [IEEE/ACM, 2015] emphasize that
the professional competences emerge through the theoretical study of knowledge units
and the practical application of their concepts. As a consequence, it is necessary to
move beyond the expository classroom format, since it does not favor effective student
learning [IEEE/ACM, 2015]. These guidelines also suggest the importance of intro-
ducing real world problems, related to software engineering, in the learning process,
and the inclusion of knowledge units that allow the development of the competences
expected for professionals in the area.

Similarly, the National Curricular Guidelines for Computer Science Bachelor Pro-
grams (DCN16) [MEC, 2016] and the Formation References for Undergraduate Com-
puter Courses (RR-CC17) [Zorzo et al., 2017] suggest a shift from curricular structure
based on learning topics to a structured focused in the development of competences.
DCN16 [MEC, 2016] recommends the use of student-centered educational methods,

4 Chapter 1. Introduction

supported by lecturers in a role of facilitator. RR-CC17 [Zorzo et al., 2017], states that
“the pedagogical project should adopt teaching and learning methods that promote the
explicit relation between contents covered and competences expected for graduates”.

From the instructor perspective, however, developing professional competencies
in students using practical assignments is challenging, because it requires that: (i) in-
structors understand and plan the expected outcomes in terms of skills the students are
supposed to develop; (ii) instructors specify processes, activities, policies or procedures
that allow and induce students to develop specific skills; (iii) students are properly
trained or mentored for executing the specified process, activities or procedures in or-
der to develop the expected skills; (iv) instructors evaluate the outputs of students
activities for assessing the development of skills. Additionally, it is important that
students are well motivated to perform these activities.

One strategy largely used to overcome these challenges is the introduction of
software projects in software engineering education (e.g., capstone and project-based
courses) [Delgado et al., 2017; Marques et al., 2018]. In this context, Project-Based
Learning (PBL) is one of the main successful student-centered educational approach
broadly used in computing science, information systems and engineering courses [Del-
gado et al., 2017; Marques et al., 2018; Macias, 2012; Jazayeri, 2015; Shuto et al., 2016;
Warin et al., 2016; Yamada et al., 2014]. However, there is a shortage of comprehen-
sive methodological frameworks and tools for PBL[Warin et al., 2016; Macias, 2012].
As a consequence, it may aggravate other problems related to PBL adoption, such as:
the effort required to run PBL courses [Harms and Hastings, 2016; Hanakawa, 2015;
Nguyen et al., 2013; Marques et al., 2018; Rupakheti et al., 2017; Daun et al., 2016;
Gary, 2015; Mäkiö et al., 2017]; scalability [Harms and Hastings, 2016; Gary, 2015];
and the difficulty to track students progress through the project [Fukuyasu et al., 2013;
Harms and Hastings, 2016].

Gamification, on the other hand, has been used in software engineering education
as a strategy to engage and motivate students in performing specific behaviours, such
as the more frequent use of specific tools, acquiring the habit of applying specific
techniques, or being more participative in the classroom [Singer and Schneider, 2012].
Gamification has also been used as a strategy to induce learners to use specific software
engineering abilities or practices, by promoting competition or systematically rewarding
learners as they perform expected actions or show expected behaviors [Laskowski, 2015].
Therefore, it is a relevant strategy to support students in developing an appreciation
for continued learning and in acquiring habits for professional software development
[Singer and Schneider, 2012; Laskowski, 2015; Souza et al., 2018]. Similar to PBL, a
problem related to gamification is the difficulty to adapt it to each context, as there are

1.2. Goals 5

few studies providing general guidelines to use this technique for software engineering
education.

Therefore, the motivation for using specific methods and approaches in learning
process is influenced by several criteria, such as the flexibility and ease of using the
approaches, their suitability for being used by most instructors, and the effort, restric-
tions and skills involved in the use of these approaches [Marques et al., 2014]. For
instance, in a survey with 89 lecturers about the adoption of games and game elements
in software engineering education [Rodrigues et al., 2018], the most recurring cause of
not using these approaches were related to: the lack of knowledge (21.3%); not knowing
appropriate games for software engineering education (15.7%); lack of time (13.5%);
not believing in the method (6.7%); lack of interest in the method (5.6%); lack of
materials to support the adoption of this method (4.5%); and lack of resources (2.2%).
Even considering that the use of games in software engineering education is not new
[Souza et al., 2018], the lack of approachable models for introducing alternative learn-
ing methods is still a barrier. Thus, providing educators with appropriate resources to
support the adoption of alternative learning methods may contribute to addressing the
previously mentioned problems.

As a consequence, the motivation of this thesis lies on: (i) the necessity of intro-
ducing practice in software engineering education and the related challenges; (ii) the
gap between what and how software engineering is taught in university and the com-
petences needed from professionals entering the industry; (iii) the necessity of moving
beyond expository lectures; and (iv) the need of approachable materials and resources
to support educators in the introduction of alternative student-centered educational
methods.

1.2 Goals

The goal of the thesis is to propose a conceptual framework to support the joint adop-
tion of gamification and Project-Based Learning for practical software engineering ed-
ucation. This framework is intended to provide guidelines on how to setup educational
software development projects, using gamification to guide and motivate students on
performing specific software engineering practices. To achieve this goal, the following
specifics goals are defined:

• SG1 Investigate how gamification can be used to support software engineering
education.

• SG2 Investigate how PBL can be used to support software engineering education.

6 Chapter 1. Introduction

• SG3 Investigate the benefits and drawbacks of the joint use of gamification and
PBL to support software engineering education.

The goal of this research is not only defining a novel educational method for
software engineering education, but also to integrate existing approaches (PBL and
gamification) in an unified approach.

The scope of this thesis is limited to the investigation of PBL and gamification in
the context of software engineering education. Although we acknowledge the existence
and relevance of other methods and techniques for this context, it is out of the scope
of this thesis the comparison of the approach proposed in this thesis project to other
approaches.

1.3 Method

This thesis adopts the design science paradigm. In the design-science paradigm, knowl-
edge and understanding of a problem domain and its solution are achieved in the build-
ing and application of new and innovative artifacts [Hevner and Chatterjee, 2010].
Therefore, the design of the proposed framework (the target artifact) is based on a
series of investigations and the gradual construction of knowledge.

The study design of this thesis is based in a multi-method approach that combines
two or more quantitative or qualitative methods [Hesse-Biber, 2010]. In this thesis, we
adopt secondary literature studies, Action-Research, and other empirical approaches.
In this approach, data triangulation is used to consolidate results from different meth-
ods, in order to answer research questions, and collect data from different sources to
increase the confidence on the results [Easterbrook et al., 2008].

Figure 1.1 presents the study design adopted for this thesis. The research was
organized in a process with four steps: “Literature studies” (step 1), “Empirical studies”
(step 2), “Design of the Framework” (step 3), and “Evaluation of the Framework”
(step 4). The first step consists in a series of studies on the literature on PBL and
gamification, in order to understand the principles and characteristics of each method,
and their application in software engineering education (Chapter 2). The second step
consists of studies to understand the practical implications of using gamification and
PBL (individually and in conjunction) in software engineering education (Chapters 3
and 4). The third step is the design of the proposed framework (Chapter 5), based on
the lessons learned from previous steps. Finally, the fourth step is the evaluation (and
subsequent refinement) of the proposed framework (Chapter 6).

1.4. Contribution and relevance 7

Step 1.
Literature

studies

Lessons
Learned

Framework

Step 2.
Empirical
studies

Step 3.
Design of the
Framework

Step 4.
Evaluation of

the Framework

Figure 1.1. Study design

Steps 1 and 2 contribute directly to the specific goals SG1 (Investigate how gam-
ification can be used to support software engineering education) and SG2 (Investigate
how PBL can be used to support software engineering education.). Steps 2 and 4 con-
tributes to the specific goal SG3 (Investigate the benefits and drawbacks of the joint use
of gamification and PBL to support software engineering education.).

1.4 Contribution and relevance

The main expected contribution of this thesis is the documentation of a framework for
gamification of project-based software engineering education. This product is expected
to provide educators with a reusable method and guidelines to support the introduc-
tion of educational software engineering projects as practical assignments in software
engineering related courses, grounded in lessons learned from theory and practice on
the use of gamification and PBL.

The relevance of this study relies not only on the growing demand for development
of professional competences for undergraduate software engineering students, but also
on the recurring challenge of balancing theory and practice in software engineering
education. An expected contribution of this research is providing additional options
for the introduction of practice in software engineering education, using gamification
and PBL. Additionally, a recurrent problem stated in the literature on gamification in
education is the shortage of empirical evidences of the use of this technique. Therefore,
the relevance and contribution of this thesis also resides in providing empirical data

8 Chapter 1. Introduction

regarding the use of PBL and gamification.

To the date of production of this document, the following publications were
byproducts of this thesis, and contain parts of the thesis results.

• Maurício R. A. Souza, Lucas Veado, Renata Moreira, Heitor Costa, Eduardo
Figueiredo. Games for Learning: Bridging Game-related Education Methods to
Software Enginering Knowledge Areas. In 39th International Conference on Soft-
ware Engineering (ICSE), Software Engineering Education and Training (SEET)
track. Buenos Aires, Argentina, 2017. [Souza et al., 2017b]

• Maurício R. A. Souza, Kattiana Constantino, Lucas Veado, Eduardo Figueiredo.
Gamification in Software Engineering Education: An Empirical Study. In
30th International Conference on Software Engineering Education and Training
(CSEE&T). Savannah, GA, USA, 2017. [Souza et al., 2017a]

• Maurício R A Souza, Renata Moreira, Eduardo Figueiredo. A Framework for the
Gamification of Practical Assignments in SE Education (Poster). In 30th Interna-
tional Conference on Software Engineering Education and Training (CSEE&T),
Poster Sessions. Savannah, GA, USA, 2017.

• Mauricio R. de A. Souza, Lucas Veado, Renata Teles Moreira, Eduardo
Figueiredo, Heitor Costa. A Systematic Mapping Study on Game-related Meth-
ods for Software Engineering Education. In Information and Software Technology
(IST), 2018. [Souza et al., 2018]

• Pedro Rodrigues, Maurício R A Souza, Eduardo Figueiredo. Games and Gami-
fication in Software Engineering Education: A Survey with Educators. in 2018
IEEE Frontiers in Education Conference (FIE). San Jose, CA, USA, 2018. [Ro-
drigues et al., 2018]

• Maurício R A Souza, Renata Moreira, Eduardo Figueiredo. Playing the project:
Incorporating gamification into PBL approaches for software engineering edu-
cation. In 27o Workshop sobre Educação em Computação (WEI), Belém, PA,
Brazil, 2019. [Souza et al., 2019a]

• Maurício Souza, Renata Moreira, Eduardo Figueiredo. Students Perception
on the use of Project-Based Learning in Software Engineering Education. In:
XXXIII SBES - Education Track. Salvador, Brazil, 2019. [Souza et al., 2019b]

1.5. Thesis project outline 9

1.5 Thesis project outline

In addition to this introductory chapter, this thesis is organized as follows. Chapter 2
describes literature studies about PBL and gamification, and the relevant background
and related work. Chapters 3 and 4 present empirical studies about the use of
gamification and PBL in software engineering education. Chapter 5 presents the
framework proposed in this thesis project. Chapter 6 describes the evaluation of the
framework. Further details on each chapter is discussed as follows.

Chapter 2 presents results of systematic and non-systematic reviews of the literature
in order to establish the theoretical foundation for the themes addressed in this
research, namely: software engineering education, Project-Based Learning, and
gamification. This chapter also discusses related work, and summarizes a set of lessons
learned from the literature regarding the use of PBL and gamification in the context
for software engineering education. The results of this chapter contribute to the
specific goals SG1 and SG2 of this thesis.

Chapter 3 describes an empirical study on the adoption of gamification in software
engineering education. The goal is to understand the perception of students on the
use of two game elements (badges and leaderboards) in an introductory software
engineering course. The results of this study contribute to the specific goal SG1 of
this thesis.

Chapter 4 presents an Action-Research study describing the adoption of PBL in an
introductory software engineering course and reports the lessons learned from this
study. To evaluate the approach, the perceptions of 32 students were collected (using
questionnaires) and compared to 17 students who also participated in similar practical
assignments in a traditional course. The results of this study contribute to the specific
goals SG2 and SG3 of this thesis.

Chapter 5 presents GaPSEE, a framework for the gamification of project based
software engineering education. The framework is composed of two elements: a set of
guidelines and a process for the definition of practical assignments in the context of
software engineering education, using principles of both PBL and gamification.

Chapter 6 presents the results of five case studies executed in three educational
institutions for the evaluation of GaPSEE. The evaluation involves four software engi-

10 Chapter 1. Introduction

neering lecturers using GaPSEE in five different courses, with a total of 113 students.
In addition to the observation of the researcher, the lecturers were interviewed and
the students answered questionnaires. The results of these studies contribute to the
specific goal SG3 of this thesis.

Chapter 7 presents the conclusion of this thesis, summarizing the results in relation
to the specific goals. We discuss the contributions and implications of this research.
We also propose future works as consequence of this study.

Chapter 2

Literature Review

This chapter describes literature review studies that aim at defining relevant theoretical
foundation for the understanding of this research. Section 2.1 presents the theoretical
foundation on software engineering education. Section 2.2 describes the concepts of
Project-Based Learning and its challenges in software engineering education. Section
2.3 describes the theoretical foundation on gamification and game elements (based on
the results of previous publications [Souza et al., 2017a, 2018]). Finally, Section 2.4
presents related work.

2.1 Software engineering education

The “Curriculum Guidelines for Undergraduate Degree Programs in Software Engi-
neering” (or “SE 2014”) [IEEE/ACM, 2015] provides guidance to academic institutions
and accreditation agencies about what should constitute an undergraduate course on
software engineering. This document defines a body of knowledge suggesting what ev-
ery software engineering graduate must know. In this thesis, this document is used as
the main reference regarding knowledge areas and learning topics of software engineer-
ing. According to this document, graduates in software engineering programs should
be able to demonstrate the following qualities: “Professional Knowledge”, “Technical
Knowledge”, “Teamwork”, “Design Solutions in Context”, “Perform Trade-Offs”, “End-
User Awareness”, and “Continuing Professional Development”.

However, the software engineering courses do not seem to succeed in helping
students to acquire this sort of skills [Wilhelm et al., 2002; Sancho-Thomas et al., 2009].
Most of them are mainly focused on teaching technical contents [Sancho-Thomas et al.,
2009]. One reason is the amount of content that instructors have to cover. For instance,
SE 2014 is organized in ten “knowledge areas”, representing particular sub-disciplines of

11

12 Chapter 2. Literature Review

software engineering that are generally recognized as a significant part of the software
engineering knowledge that a graduate should know [IEEE/ACM, 2015].

Table 2.1 provides the acronym, name and a brief description of the seven knowl-
edge areas considered in this thesis, namely Software Modeling and Analysis (MAA),
Requirements Analysis and Specification (REQ), Software Design (DES), Software Ver-
ification and Validation (VAV), Software Process (PRO), Software Quality (QUA), and
Professional Practice (PRF). For instance, Software Process is concerned with software
engineering practices used to develop and maintain software components and systems
at the individual, team, and organizational levels.

Table 2.1. SE education Knowledge Areas [IEEE/ACM, 2015]

Acronym Name Description
MAA Software Modeling and

Analysis
Modeling and analysis can be considered core concepts in any en-
gineering discipline because they are essential to documenting and
evaluating design decisions and alternatives.

REQ Requirements Analysis
and Specification

The construction of requirements includes elicitation and analysis
of stakeholders’ needs and the creation of an appropriate descrip-
tion of desired system behavior and qualities, along with relevant
constraints and assumptions.

DES Software Design Software design is concerned with issues, techniques, strategies, rep-
resentations, and patterns used to determine how to implement a
component or a system.

VAV Software Verification
and Validation

Software verification and validation uses a variety of techniques to
ensure that a software component or system satisfies its require-
ments and meets stakeholder expectations.

PRO Software Process Software process is concerned with providing appropriate and effec-
tive structures for the software engineering practices used to develop
and maintain software components and systems at the individual,
team, and organizational levels.

QUA Software Quality Software quality is a crosscutting concern, identified as a separate
entity to recognize its importance and provide a context for achiev-
ing and ensuring quality in all aspects of software engineering prac-
tice and process.

PRF Professional Practice Professional practice is concerned with the knowledge, skills, and
attitudes that software engineers must possess to practice software
engineering professionally, responsibly, and ethically.

Although we acknowledge the relevance of the knowledge areas “Computing Es-
sentials”, “Mathematical and Engineering Fundamentals” and “Security”, we did not
consider them in this thesis because they are not specific to the context of software
engineering education. These knowledge areas cover basic/introductory topics for com-
puting/IT and engineering courses that may be studied in more details in other do-
mains of computer science or information systems degrees. For example, Computing
Essentials cover a range of topics from algorithms, data structures, and complexity

2.1. Software engineering education 13

(commonly associated to CS1/CS2 courses) to computer organization and operational
system basics.

Meira [2015] warns that the undergraduate curriculum is currently fragmented
in topics, rather than unified around problems and projects. Therefore, another per-
spective that can be used to drive software engineering education is toward the ex-
pected competences for software engineering professionals. The Software Engineering
Competency Model, SWECOM [Ardis et al., 2014], describes competences for software
engineers who participate in developing and modifying software-intensive systems. The
model is organized in skill areas, skills, and work activities. SWECOM defines that
skill differs from knowledge [Ardis et al., 2014]: knowledge is what one knows, while
skill is what one can do.

In this model, skills are divided into “Cognitive Skills”, “Behavioral Attributes and
Skills”, and “Technical Skills”. However, the “Technical Skills” are the primary focus
of SWECOM. Therefore, in this thesis, SWECOM is adopted as a reference model for
the identification of relevant skills to be addressed in software engineering education.

SWECOM describes five “software engineering life cycle skill areas”. These skill
areas include skills needed to accomplish various work activities within a phase of
software development or sustainment. Table 2.2 summarizes the life cycle skill areas and
their respective skills. SWECOM also describes eight “software engineering crosscutting
skill areas”. These are applied across all life cycle skill areas. Examples of crosscutting
skill areas include “Software Measurement” and “Software Configuration Management”
[Ardis et al., 2014].

Table 2.2. SWECOM Skill Areas and Skills
Life Cycle Skill Areas Skills

Software Requirements Skills

Software Requirements Elicitation
Software Requirements Analysis
Software Requirements Specification
Software Requirements Verification and Validation
Software Requirements Process and Product Management

Software Design Skills

Software Design Fundamentals
Software Design Strategies and Methods
Software Architectural Design
Software Design Quality Analysis and Evaluation

Software Construction Skills

Software Construction Planning
Managing Software Construction
Detailed Design and Coding
Debugging and Testing
Integrating and Collaborating

Software Testing Skills

Software Test Planning
Software Testing Infrastructure
Software Testing Techniques
Software Testing Measurement and Defect Tracking

Software Sustainment Skills
Software Transition
Software Support
Software Maintenance

14 Chapter 2. Literature Review

2.1.1 Practice in software engineering education

In software engineering education, besides learning theory and acquiring technical skills,
students need to develop the ability to apply, evolve, and practice those skills through-
out their academic life (Gary, 2015). Additionally, soft skills, such as leadership, team-
work, decision-making, negotiation, and self-reflection, are important abilities for soft-
ware engineering practice, since software development also involves several human and
social aspects [Marques et al., 2014]. Nevertheless, the development of these cross-
cutting capabilities is usually less supported in Computer Science programs [Marques
et al., 2014].

Traditional approaches (e.g., expository lectures, exams, and complimentary as-
signments) are still largely used by lecturers (Marques et al., 2014; Bessa et al., 2012;
Sancho-Thomas et al., 2009). The teaching of basic concepts and theoretical foun-
dations with no link to their practical applications or no examples in the students’
contexts is usual in computing courses [Fioravanti et al., 2018]. However, these teacher-
centered educational methods may not support the practical development of compe-
tences (Barnes et al., 2008; Sancho-Thomas et al., 2009) and may have limited learn-
ing efficiency (Prikladnicki et al., 2009). Therefore, student-centered approaches have
shown to be more suited for allowing the development of competences, in learn-by-
doing, with a higher motivation from the learner, a more active role in the learning
process, and better learning in the application level (Prikladnicki et al., 2009).

The software engineering education community has been striving for the proposal
and adoption of alternative learning methods, that support the development of skills,
rather than just focusing on theory on technical knowledge. For instance, Marques
et al. [2014] performed a systematic mapping study to identify practical approaches
for teaching software engineering. The authors identified 173 primary studies describ-
ing practical approaches for software engineering education. These approaches include:
game learning, case studies, simulation, inverted classrooms, maintenance projects, ser-
vice learning, and open source development. The authors conclude that there is a clear
concern for teaching software engineering involving practical experiences. Bridging
the gap between theory and practice is still a major challenge in software engineering
education.

SE 2014 IEEE/ACM [2015] recommends including team-based projects into the
software engineering and computer science curriculum. The needs of providing real
world experience of software development to students are a recurring theme in SE 2014,
and several of its guidelines address this matter IEEE/ACM [2015]. For instance, Cur-
riculum Guideline 5 suggests that “students also need practical material to be taught

2.2. Project-Based Learning (PBL) 15

early so they can gain maturity by participating in real-world development experiences
(...)” IEEE/ACM [2015]. Curriculum Guideline 10 also discusses the multiple dimen-
sions of the problem-solving aspect of software engineering, and suggests that “problem
solving is better learning through practice and taught by example” IEEE/ACM [2015].
Furthermore, Curriculum Guideline 17 suggests the need of using interesting, concrete
and convincing examples to motivate students. Finally, Curriculum Guideline 14 objec-
tively declares “the curriculum should have a significant real-world basis” IEEE/ACM
[2015]. In this context, the introduction of software projects in software engineering
education (eg.: capstone and project-based courses) have been largely used to address
these issues [Delgado et al., 2017; Marques et al., 2018].

2.2 Project-Based Learning (PBL)

Project-Based Learning (PBL) is one of the main successful student-centered educa-
tional methods broadly used in computing science, information systems and engineering
courses [Marques et al., 2018; Macias, 2012; Jazayeri, 2015; Delgado et al., 2017; Shuto
et al., 2016; Warin et al., 2016; Yamada et al., 2014]. PBL aims to better prepare
students for real-life by getting them to come up with their own solutions through
proactive and collaborative means, in a contextualist, collaborative and constructivist
learning environment [Thevathayan, 2018]. According to Thevathayan [2018], con-
structivism is a learning theory in which students actively construct their own mental
models from sensory data inputs and existing beliefs, rather than act as passive re-
ceivers of knowledge. Fioravanti et al. [2018] characterize PBL as an active learning
approach. According to the authors, the goal of active learning is to “provide oppor-
tunities for learners to critically think about content through a range of activities that
help preparing learners for the challenges of professional situations” [Fioravanti et al.,
2018].

In PBL, students are engaged in the investigation of realistic problems, and they
learn by working on an open-ended project, discovering problems and finding solutions
as they go along [Blumenfeld et al., 1991; Jazayeri, 2015]. In this instructional model,
students confront real-world issues and problems that they find meaningful, determine
how to address them, and act collaboratively to create solutions [Bender, 2012]. The
instructor has a less central role, acting as a guide, and students take more responsibility
for their own learning, which results in higher student involvement [Martin et al., 2014;
Jazayeri, 2015].

Among the main benefits accredited to PBL, the literature suggests: it facili-

16 Chapter 2. Literature Review

tates authentic learning [Thevathayan, 2018]; provides durable benefits, regarding en-
gagement, integration of methods and techniques learned in different courses, and the
development of teamwork [Gary, 2015; Warin et al., 2016]; and ensures that students
continuously apply and evaluate sustained interaction experiences [Jazayeri, 2015].

PBL presents many opportunities and challenges when used earlier in the degree
program. Students exposed to standard industry processes and tools, such as agile and
version control, earlier in the program are more likely to be industry-ready by the time
they graduate [Thevathayan, 2018]. However, newcomers may become overwhelmed
when asked to make complex design decisions prematurely.

2.2.1 Characteristics of PBL

Many software engineering courses use projects as assignments to give students a chance
to experience practical problems. However, Jazayeri [2015] states that this is not
enough to implement PBL, as these projects are not typically open-ended, and students
are expected to follow a very specific path to the solution. Therefore, students are not
in charge of learning in these scenarios. In PBL, projects drive the learning process,
and learners should face meaningful problems, where they can investigate, apply and
reflect on knowledge and skills useful to solve it. The educator moves from the role
of knowledge provider, to the role of facilitator, providing meaningful feedback on
students’ actions, helping students to reflect, and providing sufficient guidance for
students to achieve learning outcomes.

Blumenfeld et al. [1991] describe five characteristics that define PBL projects:
(1) the project should be driven by a question or problem without a predetermined
solution; (2) the project should result in a series of artifacts that culminate in a tangible
final product that addresses the driving question/problem; (3) the project should be
realistic, grounded in real world problems; (4) the project should allow students to
work collaboratively with peers and instructors to construct knowledge; and (5) the
project should allow students to have an active voice - i.e., room to decide over how to
achieve their goals and negotiate some aspects of the project.

Similarly, Thevathayan [2018] proposes that the main features of PBL are: learn-
ing is driven by open-ended ill-structured problems; students are expected to work
collaboratively in teams; teacher is expected to play the facilitator role. According to
the author, the project component promotes teamwork through discussion of design
options, division of tasks, writing of shared reports and team presentations. Addition-
ally, teamwork also allows students to learn firsthand the need to plan and manage the
project within cost and time constraints.

2.2. Project-Based Learning (PBL) 17

Fioravanti et al. [2018] suggest that PBL focuses on real-world problems and
challenges and relies on problem solving, decision making and investigative skills. For
Bender [2012], PBL projects are focused on authentic problems or issues from the real
world and require extensive collaborative work. There are five key elements in PBL
[Bender, 2012]:

• Anchor: This is the basis for posing a question;

• Artifacts: Items created within the course of a project that represent possible
solutions to the problem or aspects of the solution to the problem;

• Authentic achievement: Represents the emphasis that the learning stemming
from these projects should stem from real-world scenarios;

• Driving question: The primary question that provides the overall task or stated
goal for the PBL project; and

• Student voice and choice: Students should have voice in project selection and
statement of the essential question.

Delgado et al. [2017] organize a list of lessons learned from the evolution of a soft-
ware engineering course over six semesters. Their recommendations include [Delgado
et al., 2017]:

• Team size: teams should have at least 4 members to generate the dynamics and
issues that are common on collaborative software endeavors. However, big groups
may face coordination problems;

• Project selection: students should be free to select their own projects, rather than
imposing one or restricting their selection to a list. It increases students’ commit-
ment and excitement levels, and creates a stronger sense of ownership. However,
it may be more difficult to ensure that the projects are of similar complexity;

• Project execution: Projects should have identical timelines and iteration sched-
ules. This practice improves monitoring and grading, and keeps students better
informed about the progress of the other projects, which promotes a sense of
competence throughout the iterations, and encourages the sharing of technical
knowledge among teams;

• Tools and technologies: The use of common project management tools across all
teams allow for better monitoring and grading. In respect to technologies for the

18 Chapter 2. Literature Review

project development, instructors should define a set of mandatory and optional
technologies. The first should be covered in classroom to give students basic
conditions for developing their projects;

• Grading: The project should have the highest weight in the final course grade,
and part of that grade should evaluate the individual contributions of each stu-
dent. Defining a mechanism to provide individual grades is essential to maintain
fairness;

• Stakeholders: When it is not possible to have an industry client, the role of the
product owner should be performed by someone external to the team, ideally
a TA (Teaching Assistant) or the course instructor. The product owner should
meet the team periodically and help them to plan the iteration tasks and solve
organizational problems;

• Supporting students: The technical topics included in the syllabus should support
the development of the project directly and be covered early in the semester.

2.2.2 Challenges and issues related to the use of PBL is

software engineering education

The literature suggests that there are some challenges related to the use of PBL in
software engineering education. We grouped these challenges in five categories: “PBL
as an educational method”; “setup of PBL courses”; “selection of meaningful projects”;
“tracking students progress and learning outcomes”; and “teamwork and different types
of learning”. These challenges are further discussed in the following paragraphs.

PBL as an educational method suggests a paradigm change in the roles of
lecturers and students. For the lecturers, the main challenge is related to the new
teachers’ role, where they have to change from knowledge transmitter to facilitator,
losing control on the student work [Martin et al., 2014]. Regarding the learner role,
Martin et al. [2014] point that “in some academic contexts, students are not used to
dealing with this kind of problems, therefore they feel lost and end up rejecting the
methodology”.

Additionally, Yamada et al. [2014] discuss the issues related to the assessment
of the educational effectiveness of this learning method. Yamada et al. [2014] break
down this issue as four problems: obscurity of educational effectiveness, quantitative
measurement of the education process, difficulty in quantifying personal characteristics,
and difficulty in determining the learning process.

2.2. Project-Based Learning (PBL) 19

Regarding the setup of PBL courses, Martin et al. [2014] argue that teach-
ers find difficulties in designing activities that fulfill the main characteristics of this
methodology. This is aggravated by the lack of comprehensive frameworks to support
educators in setting up courses using this learning method. Warin et al. [2016] compare
the situation of Project-based Learning and Problem Based Learning: for the first, they
found no papers in the literature proposing complete methods; for the later, there are
well-established generic methods that are broadly applicable. Warin et al. [2016] and
Macias [2012] also point the need of tools to support this learning method.

Moreover, preparing and running a PBL course consume time, resources, and
effort, both for educators and learners [Harms and Hastings, 2016; Hanakawa, 2015;
Nguyen et al., 2013; Marques et al., 2018; Rupakheti et al., 2017; Daun et al., 2016;
Gary, 2015; Mäkiö et al., 2017]. For instructors, PBL requires considerable effort to:
(i) supervise, guide and mentor students over a significant period of time [Gary, 2015;
Daun et al., 2016]; (ii) setup appropriate projects [Rupakheti et al., 2017]; (iii) make
preparations for the course, in terms of lecture material, academic examples, or project
milestones [Daun et al., 2016]; and (iv) setup of processes, development environments,
physical space, and state of the art tools. For students, PBL ensures sustained, long-
term participation, what is contrary to burst nature of students [Gary, 2015]. However,
they may not be able to devote the necessary time and effort because they may have
other subjects to study at the university [Hanakawa, 2015].

All those issues impact on scalability. Scaling PBL is difficult both in terms
of student head count and integration across the degree program [Gary, 2015]. For
instance, Harms and Hastings [2016] claim that there is a limit to the number of
student-led projects that an instructor can manage, and in their experience, using
student-led projects with a class of more than 30 students is hard to manage.

The selection of meaningful projects is a crucial step in the setup of PBL
courses, projects play a central role in the learning process. Therefore the first challenge
is the selection of projects that provide good balance in size, complexity and realism.
Harms and Hastings [2016] state that “projects need to not be too shallow and yet not
be too idealistic either”.

Prioritizing realism, by means of selection of real projects from external stake-
holders may lead to specific challenges. Educators must face the problems of the
difficulty in establishing partnerships with the industry [Daun et al., 2016]. Addition-
ally, the participation of external people as real customers may be problematic, as
their availability and expectations are not controlled. On the other hand, the option
of having the educator acting as stakeholder is also challenging [Daun et al., 2016]. It
requires a high sensitivity and experience to foresee student challenges, maintain the

20 Chapter 2. Literature Review

acted role throughout the semester, carefully guide the knowledge discovery process in
such a way that the students achieve teaching goals and perform satisfactorily. Ad-
ditionally, it requires appropriate background industry experience. Finally, students
have to clearly separate instructions from the lecturer role from statements given by
the role of stakeholder.

The choice of projects may impact in the coverage of expected learning outcomes
[Nguyen et al., 2013]. Additionally, criteria such as relevancy of the application domain
must balance student excitement and relevancy for industry, however, this is a hard
choice, as relevancy in this context may be volatile trends [Delgado et al., 2017].

Tracking students progress and learning outcomes is also challenging.
First, PBL deals with ill-structured problems as central activities [Martin et al., 2014].
In ill-structured problems, one or more of the problem elements are unknown or not
known with any degree of confidence. The goals are vague or unclear. There are
multiple solutions and solution paths (or even no consensual solution). They present
uncertainly about which concepts, rules and principles are necessary. And learners
are required to express personal opinion, beliefs or judgments [Martin et al., 2014].
As a result, students may feel lost, and require the right amount of guidance towards
learning outcomes. Instructors are required to spend considerable effort in tracking
students progress and providing meaningful feedback for students to ensure learning.

Tracking the progress of students projects is not easy, as instructors are required
to scrutinize the report by students or participate in projects in order to understand
progress of the projects [Fukuyasu et al., 2013]. Consequently, the definition of a strat-
egy to evaluate students is also difficult, as it may require considering qualitative and
quantitative data on their performance. If not clearly defined, students may become
confused and concerned regarding their assessment. As students direct their activities
based on the given assessment criteria, the assessment design plays a key role in what
students will focus on [Fagerholm and Vihavainen, 2013].

Ensuring the alignment between the project and learning outcomes requires deal-
ing with complex theoretical relationships in a sound fashion [Daun et al., 2016]. In
software engineering, for instance, software process is a crosscutting knowledge, and
each of the phases of software development life cycle, is closely related to the other,
however each one has a multitude of learning topics. It is difficult to impart the im-
portance of each topic and the impact they have on each other. Additionally, students
may become absorbed by a single facet of the project, such as programming [Hanakawa,
2015; Winterfeldt and Hahne, 2014].

Regarding Teamwork and different types of learning, some authors [Yamada
et al., 2014; Sunaga et al., 2016, 2017] suggest that instructors should plan carefully

2.3. Gamification 21

about team composition. Teams composed by members with the right complementary
skills may improve the learning experience, while others compositions may compromise
it. In contrast, students working in teams may be affected by their lack of teamwork
experience. Chen et al. [2014] state that “if not equipped with the necessary teamwork
skills, these students are like blind explorers trying to find the proper direction in which
to take their project”. The authors support that the lack of team experience impedes
learning and makes it difficult to obtain quality results.

Kizaki et al. [2014] mention other problems related to teamwork: shortage of
communication between members and difference of a member’s technical capabilities.
The later, may also impact in the problem of a heterogeneous effort distribution among
team members [Kizaki et al., 2014; Nguyen et al., 2013], what may lead to knowledge
not being equally distributed [Nguyen et al., 2013]. As a consequence, it becomes even
harder to individually assess students progression toward learning outcomes, due “to
the ingenuity some students show in hiding behind others’ work” [Gary, 2015].

Finally, students are impacted differently by the teaching approach, as they may
have different learning styles [Zhi, 2016]. Therefore, a challenge using PBL is to ad-
dress different learning styles of students, which may require mixing different learning
environments, resources, modes and/or contents.

2.3 Gamification

This section describes the results of literature review studies conducted to understand
the research on the use of games and related methods in software engineering education,
and to further analyze the role of gamification in this specific context. Therefore, this
section relies on the results of a systematic review study [Souza et al., 2017a, 2018], and
a subsequent study with the specific focus on gamification used to support software
engineering activities, both in the educational and professional environments.

Gamification is a relatively new term that has been used to denote the use of
game elements and game-design techniques in non-gaming contexts [Deterding et al.,
2011]. The goal of gamification is to use the philosophy, elements, and mechanisms of
game design in non-game environments to induce certain behavior in people, as well
as to improve their motivation and engagement in a particular task [Pedreira et al.,
2015].

In the context of education, gamification is one category of game-related methods
used to support software engineering education. In the context of this study, the term
“game-related methods” refers to any approach that uses games or game elements

22 Chapter 2. Literature Review

for supporting teaching and learning processes in the scope of software engineering
education. In our systematic mapping study [Souza et al., 2017a, 2018], we mapped
three categories of game-related methods for software engineering education: (i) Game-
Based Learning (GBL); (ii) Game Development Based Learning (GDBL); and (iii)
gamification.

The term “Game Based Learning” (GBL) has been used to refer to any approach
using games for learning purposes. This thesis adopts the definition of GBL used by
von Wangenheim and Shull [2009]: the use of game applications for defining learning
outcomes. Games are any contest (play) among adversaries (players) operating under
constraints (rules) for a goal (winning, victory, or pay-off) [von Wangenheim and Shull,
2009]. Hence, GBL approaches apply games with the purpose of learning specific skills
and concepts, usually named as “serious games” (games with purposes), edutainment, or
educational games. In this thesis, we did not limit our concept to digital games or to the
use of games designed specifically for learning purposes (serious games), we considered
any game used in educational context. Problems and Programmers [Baker et al., 2005],
SimSE [Navarro and van der Hoek, 2009] and “The Incredible Manager” [Dantas et al.,
2004] are examples of GBL approaches for software engineering education.

The key difference between gamification and GBL is that the former deals with
creating a game like experience, by incorporating elements of games, in real life contexts
or applications, while the latter is the use of full-fledged games for educational purposes.

Wu and Wang [2012] define Game Development Based Learning (GDBL) as an
approach where students are required to modify or develop a game as a part of a course
using a game development framework to learn skills within computer science and soft-
ware engineering. In the context of software engineering education, game development
brings the fun factor to courses and provides pedagogical aspects of problem-based
learning, cooperative learning, blended learning, and experiential learning [Krusche
et al., 2016]. When developing a game, students have hands-on experience on software
process, design, and other skills related to software engineering.

GDBL differs from gamification because the first uses the practice of game de-
velopment as a practical instrument to expose students to specific practices, while
gamification uses elements and philosophy of games to create game like experiences.

Different from GBL and GDBL approaches, by definition, gamification is a
technique that requires a non-game context (e.g., the classroom activities, capstone
projects, or the use of a tool) in which game elements are introduced. Therefore, in
the context of software engineering education, it is not a “stand-alone” educational
tool. Gamification is usually used as a device to motivate students in conforming to
desired behaviors, such as the more frequent use of specific tools, acquiring the habit

2.3. Gamification 23

of applying specific techniques, or to increased participation in the classroom.
Figure 2.1 presents a histogram with the frequency of primary studies discussing

the use of game-related methods in software engineering education, from 1970 to 2016.
While the use of game-related methods to support software engineering education is
not a novelty, gamification is a recent trend.

Figure 2.1. Timeline of primary studies [Souza et al., 2018].

2.3.1 Game elements

Game elements are characteristics of games that can be found in most (but not all)
games [Deterding et al., 2011]. They are a key part for any gamification strategy and
are present in all gamification strategy. Game elements are also described as a set
of components that compose a game [Bedwell et al., 2012]. In some studies, game
elements are also called game attributes [Bedwell et al., 2012]. However, there is no
standard taxonomy for the terminology and description of game elements. For instance,
emblem [Garcia et al., 2017] and badge [Hamari, 2017] are two names for the same game
element, which are visual rewards given to the user and identify user achievements in
the game.

Dicheva et al. [2015] state that there is not a commonly agreed classification of
game design elements. The analysis of the primary studies in our systematic mapping
study also supported this claim, as we observed a lack of standard definitions of game
elements [Souza et al., 2017a, 2018]. Deterding et al. [2011] identify game elements

24 Chapter 2. Literature Review

in varying levels of abstraction and proposed a classification scheme based on 5 levels
(from concrete to abstract): (i) “Game interface design patterns”; (ii) “Game design
patterns and mechanics”; (iii) “Game design principles and heuristics”; (iv) “Game mod-
els”; and (v) “Game design methods”. Zichermann and Cunningham [2011] categorize
game elements into mechanics, dynamics, and aesthetics. Dicheva et al. [2015] propose
a classification of game elements in gamified educational contexts organized in two
levels: (i) “Game Mechanics” and (ii) “Design Principles”. The former is a combina-
tion of the first two levels of Deterding’s classification and refers to the more concrete
representation of game elements, such as leaderboards, badges, point, and levels. The
latter is a combination of the third and fourth levels of Deterding’s classification and
it is concerned with abstract elements used in games, such as Competition and Status.
Bedwell et al. [2012] present a taxonomy to define game elements for educational pur-
poses. Werbach and Hunter [2012] propose a pyramid that organizes game elements in
three categories: dynamics, mechanics, and components. Dynamics contain the main
concepts of a game. Examples of elements in this group are: Constraints, Emotions,
Narrative, Progression, and Relationships. Mechanics contain the basic process that
directs users to engage with content and continue to drive the action forward. Exam-
ples of mechanics are: Challenges, Feedback, Competition, and Cooperation. Compo-
nents are more concrete elements that are used to implement the former, and are tools
that can be employed to motivate user in the environment of interest. Examples are
Achievements, Avatars, Badges, Combat, Leaderboards, and Levels.

Several frameworks have been proposed to support the selection of game elements
to define a gamification strategy. Examples are: “Six Steps to Gamification” or 6D
Werbach and Hunter [2012], 5H2W [Klock et al., 2016], Octalysis [Chou, 2015], and
game design frameworks such as MDA [Hunicke et al., 2004].

2.3.2 Gamification in software engineering education

The research on gamification to support software engineering is recent. Results of
Pedreira et al. [2015] showed that software requirements, software development and
software testing are the areas which attracted the greatest interest in the field of gam-
ification. The authors suggest that the existing research on gamification applied to
software engineering is very preliminary or even immature, with a majority of publi-
cations in workshops or conferences, and few of them offer empirical evidence on the
impact of their proposals on user engagement and performance. The authors point
out the necessity of further research providing empirical results about the effect of
gamification. Examples of studies showcasing the adoption of gamification in profes-

2.3. Gamification 25

sional activities include gamification of the software development life cycle [Dubois and
Tamburrelli, 2013] and software process improvement initiatives [Herranz et al., 2014].

Dal Sasso et al. [2017] and Garcia et al. [2017] propose frameworks for the gamifi-
cation of software engineering activities. The work of Dal Sasso et al. [2017] provides a
set of basic building blocks to apply gamification techniques, supported by a conceptual
framework. Garcia et al. [2017] propose a complete framework for the introduction of
gamification in software engineering environments. This framework is composed of an
ontology, a methodology guiding the process, and a support gamification engine.

In the context of software engineering education, gamification approaches are
usually applied to create innovative learning experiences, more focused on engaging
and motivating learners to perform desired behaviors [Souza et al., 2017a, 2018]. We
observed two different strategies for the use of gamification in software engineering
education: (i) gamification of the classroom experience and (ii) gamification of specific
software engineering activities. Gamification of the classroom experience refers to the
use of game elements to engage and motivate students in performing learning activities
[Uskov and Sekar, 2014; Laskowski, 2015]. For instance, Laskowski [2015] describes
the experiment of implementing gamification techniques into software engineering and
service-oriented architecture courses using Points, Leaderboards and Badges to pro-
mote competition and, consequently, to motivate students in the class activities. The
strategy is focused on the gamification of the classroom activities, and not specific
software engineering related activities.

Gamification of specific software engineering activities, on the other hand, applies
game elements to motivate learners in practicing specific skills or performing specific
practices [Akpolat and Slany, 2014; Singer and Schneider, 2012; Long et al., 2011].
For instance, Singer and Schneider [2012] describe an experiment in which students
are encouraged to make more frequent commits to a version control system in a soft-
ware project course. The authors proposed a leaderboard based on the number of
commits from each student and established milestones/thresholds that would trigger
messages congratulating students and teams that reached the specified number of com-
mits. Akpolat and Slany [2014] uses weekly challenges to motivate students on applying
eXtreme Programming practices to their project. In this scenario, students compete
for a “challenge cup” award.

In comparison to GBL and GDBL approaches, few researchers explored gamifica-
tion in software engineering education, which still is an open field for more experiments
and proposals. This is supported by the small number of primary studies found in our
systematic mapping study [Souza et al., 2017a, 2018] and in the results of Alhammad
and Moreno [2018], which have found 10 and 21 primary studies respectively, with an

26 Chapter 2. Literature Review

intersection of 8 primary studies.
In software engineering education, gamification is used as a strategy to induce

learners to use specific software engineering abilities or practices, by promoting com-
petition or systematically rewarding learners as they perform expected actions or show
expected behaviors Souza et al. [2018]. Therefore, gamification is a relevant strategy to
support students in developing an appreciation of the importance of continued learning
and in acquiring habits for professional software development [Souza et al., 2018].

Findings of Alhammad and Moreno [2018] show that the most positively affected
aspect was student engagement. Nonetheless, the authors point that the primary
studies indicate that students’ overall performance and learning outcomes were also
found to have more positive than negative results, and it also improved the adoption
of software engineering best practices. The authors also discuss that gamification does
not necessarily require the implementation of costly tools and frameworks.

Regarding the challenges of gamification in software engineering education, a re-
curring concern is the difficulty of adapting gamification to each context [Souza et al.,
2018]. Each context requires great effort from the educators to setup game elements
appropriately, and still there is a chance of failure. This issue becomes even more
challenging because of the lack of a systematic approach for gamifying software engi-
neering education. That is, we need a set of systematic steps that software engineering
educators can follow to gamify their courses [Alhammad and Moreno, 2018]. Another
related issue is the lack of detailed justification for the selection of specific game ele-
ments in the published reports [Alhammad and Moreno, 2018], what makes difficult
to systematically replicate and adapt the approaches described. These problems may
lead to another issue: the sub-utilization of gamification, such as believing that the
technique is simply creating a “pointsification” system, i.e., turning gamification into
simply using points, badges and leaderboards as the core of the experience Fuchs and
Wolff [2016]; Souza et al. [2018]; Alhammad and Moreno [2018].

Assessing the impact of gamification is also difficult [Souza et al., 2018]. There is
still a relatively small quantity of empirical data to support generalizations, which leads
to the need for more empirical data. The studies in the field usually lack important
details that may support replication of studies and generalization of results [Alhammad
and Moreno, 2018], such as the context of the courses, background of students and so
on.

Finally, if not carefully planned, gamification may have negative impacts on learn-
ing Souza et al. [2018]; Alhammad and Moreno [2018]; Dal Sasso et al. [2017]. If not
gradually introduced, gamification may lead to extra cognitive workload for students,
which in turn may cause confusion or frustration, preventing students from fully un-

2.3. Gamification 27

derstanding and enjoying the “game” Alhammad and Moreno [2018]. Similarly, there
is the risk of students trying to “game the system”, i.e., students might become more
engaged in exploiting the rules to “win the game”, than following the expected flow
of activities or achieving learning goals Souza et al. [2018]. Dal Sasso et al. [2017]
supports this observation adding that “gamifying an already interesting activity may
move the focus from the activity itself to the reward system” [Dal Sasso et al., 2017].
The approach proposed by Grant and Betts [2013] showed that many new users work
intensively to acquire the easiest badges as quickly as possible, with increased user
activity immediately before the awarding of a badge and a strong activity decrease in
the period afterwards.

2.3.3 Cases of use of gamification in software engineering

education

Diniz et al. [2017] use gamification to orient and motivate undergraduate students to
contribute to open source software projects. The authors used four game elements:
quests, points, ranking and levels. Their approach was assessed with 17 students
contributing to a real open source project. Their results show the approach succeeded
in motivating and orienting newcomers to collaborate to open source projects. They
observed that the “quest” element was specially useful in guiding students and keeping
them invested, while points helped by providing feedback to students.

Akpolat and Slany [2014] use weekly challenges to motivate students on applying
eXtreme Programming practices to their project. The students had to compete for a
“challenge cup” award. Bell et al. [2011] expose students to software testing using a
game-like environment, HALO (Highly Addictive, sociaLly Optimized) Software En-
gineering. HALO uses MMORPG (Massively Multiplayer Online Role-Playing Game)
motifs to create an engaging and collaborative development environment. Students
performed software testing tasks as “quests” contextualized in a fictional storyline.
When students complete “quests”, they gain “experience points” and they “level up”.
Players gain social rewards (titles and levels) when they complete achievements (such
as successfully closing over 500 bugs). Students can track their progress and choose the
quests they want to perform in any order. Quests can be achieved alone or requiring a
developer to form a team and work collaboratively towards their goal.

Long et al. [2011] describe eight MMORPG elements incorporated in a project
based software engineering capstone course: (i) Narrative Context (Epic Story); (ii)
Feedback; (iii) Reputations; (iv) Rank, and Levels; (v) Marketplaces and Economies;
(vi) Competition under explicit and enforced rules; (vii) Teams; and (viii) Time Pres-

28 Chapter 2. Literature Review

sure.
Laskowski [2015] described an experiment of implementing gamification tech-

niques into software engineering and service-oriented architecture courses. In the first
course, authors used Points and Leaderboards and promoted competition. In the sec-
ond course, the authors used Points, Leaderboards, and Badges. Additionally, the
authors adopted a physical representation for Points, in the form of Poker Chips.

Uskov and Sekar [2014] propose the incorporation of over 20 gamification elements
in modern software engineering courses. The authors organize gamification elements in
three categories: (i) Progression Gamification Techniques; (ii) Feedback Gamification
Techniques; and (iii) Behavior Gamification Techniques. However, the authors did not
provide enough detail about which elements they used in a pilot study briefly described
in the study.

2.3.4 Game elements used in the gamification of software

engineering

In order to understand how gamification is being used in the context of software engi-
neering education, we analyzed which game elements are used in each primary study
(Table 2.3). Leaderboards, Points, and Levels are the most recurrent game mechanics
found (5, 4, and 4 primary studies, respectively). Competition is the most recurring
game design principle identified (4 primary studies). These results are further explained
in our literature review [Souza et al., 2018].

Table 2.3. Game elements used in SE education context[Souza et al., 2018]

Game Element Quantity
Leaderboards 5
Points 5
Milestones, Levels, Paths and
Progress

5

Competition 4
Collaboration, Altruism, Teams 4
Rewards 3
Challenges 2
Quests 2
Awards 1
Time Pressure 1
Gifts & Sharing 1
Status 1
Badges 1
Feedback 1

The study of Alhammad and Moreno [2018] supports our findings, stating that
leaderboards, points and levels were found to be the most frequently used game el-
ements with around 73% of the primary studies examined adopting one or more of

2.4. Discussion of literature gaps 29

these elements in their gamified framework. Their results also show that challenges,
feedback and rewards were the most adopted mechanics, and progression was the most
used dynamic. The authors go further suggesting that the approach used to select
which gamification elements to use for which purpose appears to be unclear. Finally,
Alhammad and Moreno [2018] analyze patterns in the joint use of game elements, ob-
serving that points and leaderboards are not only the most used game components,
but they are also the most often combined gamification components. Out of the 12 pa-
pers that implemented points in their gamified solution, 10 papers accompanied points
with a leaderboard [Alhammad and Moreno, 2018]. The combination of quests and
achievements were also a common pattern of components, and challenges and feedback
were the two game mechanics most often used together.

In a subsequent investigation, we combined the primary studies found in our
study [Souza et al., 2018] and in the study of Pedreira et al. [2015], and surveyed the
literature on gamification in software engineering (both in educational and professional
contexts), for a total of 58 primary studies (listed in Appendix A). Table 2.4 shows
the game elements identified in these studies. Points, badges and leaderboards were
the most recurring elements. Dal Sasso et al. [2017] refer to these elements as the
“PBL Triad”, and explain they are the most common form of feedback used in games.
Dal Sasso et al. [2017] suggest that these elements are widely used in gamification
systems, because they appear to work moderately well as extrinsic motivators.

However, Dal Sasso et al. [2017] warn that creating meaningful gamification en-
vironments is “a far from trivial endeavour”. According to the authors, selecting and
adapting game elements in a thematic environment is a strongly iterative process. The
authors also mention the risk of falling into “pointsification”, and go further alerting
of the risk of “stalling”, i.e. “if the gamification layer is not constantly revisited, main-
tained, and evolved, it risks to quickly become obsolete, and therefore will not only
be ignored by the users, but it might even cause decreased participation” [Dal Sasso
et al., 2017].

2.4 Discussion of literature gaps

To the best of our knowledge, no other work has proposed a framework for the joint
adoption of gamification and PBL in the context of software engineering education.
Alhammad and Moreno [2018] explain that there is a lack of systematic approaches
to support the use of gamification in this context. However, we found related work in
the specific areas of gamification and PBL in software engineering [Long et al., 2011;

30 Chapter 2. Literature Review

Table 2.4. Game elements to support software engineering practice and educa-
tion

Element Description Count
Points / Experience Points (XP) Feedback mechanics and track progress. Award based

on achievement or desired behavior.
32

Badges / Achievements Given when users complete some specific goal. 22
Leaderboards / Ladders Show users how they compare to others and others can

see them.
19

Quests / Tasks / Missions Set specifics objectives that users must complete in or-
der to obtain points and rewards.

18

Progress / Feedback Necessary to give users a measure of progress or feed-
back. It can have many forms and have many mechan-
ics.

17

Levels / Progression Show users where to go next, allowing them to prepare
for what is coming.

17

Rewards / Prices Something to give when a task is completed successfully. 16
Challenges Set specific challenges that users can try. Usually more

difficult than the normal tasks, but they give better
awards.

11

Guilds / Teams Allow users to form groups to help each other. 10
Ranking / Scores Show users the top users that have most points or scores. 9
Social Status Give users a greater visibility. Often used with leader-

boards.
9

Competition Allow users to compete with each other and challenge
themselves, winning rewards.

8

Customization / Avatars Allow users to create and customize their avatar or the
environment.

8

Narrative / Story Linked with the theme, it is a story to strengthen the
understanding of your gamification.

6

Branching Choices Give users the opportunity to choose their own path. 5

Singer and Schneider, 2012; Akpolat and Slany, 2014; Laskowski, 2015; Delgado et al.,
2017; Diniz et al., 2017; Rupakheti et al., 2017].

In the scope of gamification, there are several frameworks to support the creation
of gamified experiences for general purposes [Mora et al., 2015; Chou, 2015; Hunicke
et al., 2004; Klock et al., 2016]. We have also found proposals of frameworks to support
gamification of software engineering activities [Dal Sasso et al., 2017; Garcia et al.,
2017]. Nevertheless, these frameworks do not focus on software engineering education
activities. In the specific context of software engineering education, we have only found
reports describing experiences of using gamification [Laskowski, 2015; Long et al., 2011;
Singer and Schneider, 2012; Akpolat and Slany, 2014; Diniz et al., 2017]. However, as
stated by Alhammad and Moreno [2018], many of these reports do not provide sufficient
details to allow a systematic replication of their proposals.

Similarly, the related work on the use of PBL are focused on describing the impli-
cations and benefits of the use of this educational method in software engineering edu-
cation, but do not provide objective instructions on how to replicate their approaches.
For instance, Rupakheti et al. [2017] describe their lessons learned in experimenting
with PBL for a software requirement course, and Delgado et al. [2017] describe their
lessons while evolving a software engineering course over six semesters.

2.5. Final remarks 31

2.5 Final remarks

This chapter described the fundamental concepts used in this thesis, and provided an
overview of the literature on Project-Based Learning and gamification in the context
of software engineering education.

Our main findings from the literature review on the use of PBL are:

• PBL is based on constructivist and active learning theories. Therefore, its focus is
on learn-by-doing, and have students taking an active role in the learning process.
Therefore, instructors should step aside to a supportive role;

• PBL projects should be realistic and culminate in tangible products. The project
should be central to the learning experience;

• PBL should encourage teamwork and collaboration between students and instruc-
tors. However, tracking individual performance is important;

• PBL should give students sufficient room to decide and to negotiate aspects of
the projects;

• There are several issues and challenges related to PBL as a learning method, to
the setup of PBL courses, to the selection of meaningful projects, to tracking
students progress and learning outcomes, and to manage teamwork and consider
different profiles of students.

Our main findings from the literature review on the use of gamification are:

• Research on gamification in software engineering education is still preliminary
and more empirical studies are necessary to assess its relevancy for this area.

• Gamification is a promising area for further research, and software engineering
and development activities are suitable scenarios for gamification.

• Gamification is not a “stand-alone” educational tool. Gamification is more used
as a device to motivate and engage students in conforming to desired behaviors,
than to objectively make students learn.

• We identified two approaches for using gamification in software engineering ed-
ucation: the gamification of the classroom experience, and the gamification of
specific software engineering practices. While the former is concerned with moti-
vating and engaging students in classroom activities, the latter is more concerned

32 Chapter 2. Literature Review

with promoting the use of specific software engineering abilities and practices, or
with the development of specific skills.

• Points, Badges, Levels, and Leaderboards are the most recurring game elements
used for the gamification of software engineering. However, relying solely on these
elements may turn a gamification approach into a mere “pointsification” system.

• Designing a gamification strategy requires effort. Game elements need to be
selected and adapted appropriately for each context. However, there is a lack of
systematic approaches for gamification of software engineering education, and the
reports do not provide enough details to support replication of their approaches.

• When designing gamification approaches for software engineering education, de-
signers should be cautious about: not creating excessive additional cognitive
workload; gamification of meaningful aspects of the learning process, to mitigate
the risk of students deviating their focus from the learning goals; not stalling.

These findings are inputs for empirical investigations on the use of these methods
in software engineering courses (Chapters 3 and 4) and for the design of the GaPSEE
framework (Chapter 5).

Chapter 3

Empirical Study on the Use of
Gamification in Software
Engineering Education

This chapter describes our experience and provides an evaluation of the adoption of
gamification in a 60-hour introductory course on software engineering at Federal Uni-
versity of Minas Gerais (UFMG), in Brazil, during the second semester of 2016. The
goal of this study is to provide an initial understanding of how gamification fits in the
software engineering education context. In the context of this thesis, this study aims
to provide better understanding on the use of gamification in software engineering ed-
ucation. Therefore, this study supports the specific goal SG1 of this thesis (Investigate
how gamification can be used to support software engineering education).

In this study, we introduced two elements of games, namely badges and leader-
boards, to engage students and promote a safe competition environment by rewarding
students for their achievements. While badges award students by specific achievements,
a leaderboard aims to indicate the overall performance of every student with respect
to their peers. We introduced these game elements using the course webpage, where
students could have regular feedback. Therefore, considering the two main categories
of gamification approaches found in Chapter 2, gamification of the classroom experi-
ence and gamification of specific software engineering activities, we opted for the first,
as it demanded less effort and preparation to implement in the course.

We evaluated the proposed course features in two steps. First, we applied a
survey to 18 volunteer students to collect their feedback about the impact of badges
and leaderboards during their course experience. Second, we interviewed six randomly
selected students for a deeper investigation about their perceptions about the course

33

34
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

and the use of game elements. Our results show that badges had a greater impact on the
motivation of students than leaderboards. With respect to the number of participants
interviewed, it is important to highlight that the focus of this study is to report our
experiences and observations, rather than validating hypotheses.

The remainder of this chapter is organized as follows. Section 3.1 describes the
gamification elements introduced in the software engineering course under investiga-
tion. In Section 3.2, we describe the design of this study. Section 3.3 presents the
results of the study. In Section 3.4, we discuss our findings regarding the research
questions defined for this study. Section 3.5 discusses the threats to the validity of the
study. Section 3.6 concludes this chapter.

3.1 Course setup

The introductory software engineering course (“SE Course”, henceforth) aims to in-
troduce students to the concepts and methods required for the development of large
software intensive systems. Its prerequisite is familiarity with object-oriented program-
ming, demonstrated through a successful completion of the Modular Programming
course at UFMG (or equivalent course in another university).

This software engineering course is mainly based on two textbooks: Software
Engineering by Sommerville [2010] and The UML User Guide by Booch et al. [2005].
The course syllabus includes: software development process, agile methods, software
requirements analysis and specification, software design, system implementation and
testing, software reuse, and software quality. Previous instances of this course had
already been the target of experimental studies on alternative educational methods
[Figueiredo et al., 2014; Fernandes et al., 2016]. In the second semester of 2016, we
planned the inclusion of game elements in the course format. Specifically, we adopted
badges and leaderboards. A badge is a common element in games to recognize specific
achievements of players [dos Santos et al., 2018b]. Leaderboard is recurring element in
games to foster competition, allowing players to compare their progress or performance
against other players [Dicheva et al., 2015; Zichermann and Cunningham, 2011]. Both
elements capitalize on principles of social status and reputation.

In the context of the SE Course, we used badges to recognize specific actions
of students. We established eight badges in this first iteration of a gamified course.
Examples of badges are listed below.

• Agility and Precision: Awarded to the student who first submitted a correct
solution for a specific practical task, such as, code implementations, homework,

3.1. Course setup 35

or practical assignment.

• Clean Code: Awarded to students who used code standards explained in the
classroom to document the code and keep it easy to read.

• Performance Improvement: Awarded to the student who had the greater im-
provement in grade from the first to the second exam.

• Online Participation: Awarded to students who accessed all online material of
this course.

In the first day of class, the instructors communicated students about the exis-
tence of badges, but they did not provide details on how to obtain them. Whenever
a student met the criteria to receive a badge, all students were communicated in the
classroom and the badge was revealed in the course website with the name of students
who obtained it. Figure 3.1 shows examples of badges awarded to students during the
course. Additionally, these badges did not provide direct bonus grades or any advan-
tage in the course, apart from achievement recognition. However, the attendance to
the badges criteria would positively contribute to a better performance on the course
assignments and activities.

Figure 3.1. Examples of four badges in the SE course.

Leaderboard was incorporated with two resources: (i) a chart with partial grades
and (ii) a Hall of Fame. The chart with partial grades was a digital document that was
updated periodically and accessible in the course website, where students could track
their grades and compare their performance against other students. To preserve the
anonymity, the students were identified only by their university registration number.
The “Hall of Fame”, on the other hand, is a special page in the course website that

36
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

acknowledges the names of the top three best students of each course semester and the
top ten students of all times.

Table 3.1 shows the Hall of Fame with the top-10 best grades of all time in
the SE course. The second column of this table indicates the student grade in 100
points. The third and fourth columns indicate the semester and the student name,
respectively. Although Table 3.1 presents the best scores since 2011, this table was
only made available in the second semester of 2016 based on historical data. The best
students of each class, and the best students of all times were also awarded with badges.
Figure 3.2 shows the badges exhibited in the Hall of Fame for the top 3 students of all
time.

Table 3.1. Hall of Fame with the top ten students of all time in the SE Course

Position Grade Semester Student
1 96.50 2016-2 Student A
2 93.70 2011-1 Student B
3 93.50 2016-2 Student C
4 91.55 2016-1 Student D
5 91.25 2013-2 Student E
6 90.75 2013-2 Student F
7 87.04 2012-2 Student G
8 86.79 2014-1 Student H
9 86.50 2015-2 Student I
10 85.97 2014-1 Student J

Figure 3.2. Badges exhibited in the Hall of Fame for the top 3 students of all
time.

3.2 Study settings

This section explains how we planned and executed this study. Section 3.2.1 presents
the study goal and research questions while Section 3.2.2 discusses the research method
we adopted. Section 3.2.3 presents the survey and Section 3.2.4 explains the structure
of an interview with 6 randomly selected students.

3.2. Study settings 37

3.2.1 Study goals and research questions

The goal of this study is to investigate how the use of gamification could contribute to
motivate students in software engineering education. To achieve this goal, we formu-
lated two Research Questions (RQ) presented below.

RQ1. What are the student perceptions on the use of badges in the SE Course?
RQ2. What are the student perceptions on the use of leaderboards in the SE

Course?

3.2.2 Study design and research methods

To answer the research questions, we adopted two techniques. First, we conducted a
survey with the students to collect general impressions on the course (Phase I). Second,
we conducted interviews to further understand the perception of the students about the
gamification techniques used in the course (Phase II). The interviews and questionnaire
for the survey were in Portuguese. Therefore, any transcriptions presented in this
document were translated by the authors.

For both phases, the target population was all 36 students enrolled in the SE
Course. They were invited to participate in both studies by e-mail. To reduce possible
bias, the students were instructed that the participation in the survey and in the
interviews was not compulsory and this participation did not provide any benefits in
grades. Besides that, the student names were not revealed to the course professor
during the data analysis, to ensure that students would not be embarrassed for giving
negative responses.

3.2.3 Planning of the study phase I - Survey

Survey is an empirical strategy for collecting information from or about people to de-
scribe, compare or explain their knowledge, attitudes, and behavior using questionnaire
or checklist [Pfleeger and Kitchenham, 2001]. In the first phase of our study, a survey
was applied to collect a quantitative perspective of the students’ perception on the use
of badges and leaderboards in the SE course.

We created a questionnaire on Google Forms 1 with two parts: the first one was
composed of 4 questions about the background of the students; the second part had 8
questions about the perception of the students about the gamification elements used
in the course. Table 3.2 summarizes the items of the questionnaire. The background
questions were named BQ1 to BQ4, while the questions of the second part of our survey

1https://www.google.com/forms/about/

38
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

were named SQ1 to SQ8 (“ID” column). The second column (Questions) describes the
questions and the third column (Type of answer) describes the possible answers for
each question. Invitations were sent by e-mail to all 36 students formally enrolled in
the course, as described in Section 3.2.2.

Table 3.2. Questionnaire

ID Questions Type of answer
BQ1 Are you familiar with the term “Gamifica-

tion”?
Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

BQ2 How often do you play games? Likert Scale:
(1) Never; (2) Few times a year; (3) Few times a
month; (4) Few times a week; (5) Everyday

BQ3 Do you like playing games? Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

BQ4 If you play games, what are the main reasons
you play games? (multiple options allowed)

Multiple Choices:
[] For skill development; [] For the challenges; []
For the fun; [] For the competition; [] To enjoy
spare time.

SQ1 Did you find relevant the use badges to re-
ward individual achievements of students dur-
ing the course?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ2 Did you feel motivated to perform better in
order to be awarded a badge?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ3 Would you like to see more badges for other
achievements in this course?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ4 Would you like to see the use of badges
to reward individual achievements in other
courses?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ5 Did you find relevant the use the “Hall of
Fame” method?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ6 Did you feel motivated to improve your per-
formance in the course due to the “Hall of
Fame”?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ7 Would you like to see similar “Hall of Fame”
method in other courses?

Likert Scale:
(1) Definitely not; (2) Not; (3) Indifferent; (4) Yes;
(5) Definitely yes

SQ8 Do you have any suggestions or criticisms re-
garding the badges and “Hall of Fame” meth-
ods used during the course?

Open answer

3.2.4 Planning of the study phase II - Interviews

An interview is a research method defined by a conversation where questions are asked
and answers are given [Wohlin et al., 2012]. In this study, we used interviews to compli-
ment and deepen the results observed in the survey (Phase I), providing a qualitative
perspective on the students’ perception of the gamification elements introduced in the
SE Course.

3.3. Results 39

As described in Section 3.2.2, we sent invitation e-mails to all 36 students formally
enrolled in the course. In the invitation email, we made it clear that the participant
would have their personal data kept anonymously. We interviewed participants indi-
vidually, face-to-face or by video-conference, as they preferred in order to make the
situation more comfortable and natural for them. The interviews were executed after
the conclusion of the course, and students were informed that the course instructor
would not have access to the names of the participants, to reduce possible bias. Table
3.3 describes the interview script. This script is composed of 9 questions (“Questions”
column), named IQ1 to IQ9 (“ID” column). For instance, the first question (IQ1 in
Table 3.3) asks students if they track their partial grades during the course.

Table 3.3. Interview script

ID Questions
IQ1 Did you follow up on your partial grades during the course?
IQ2 Do you usually compare your grades in the course with the

grades of your colleagues? Why?
IQ3 What is your opinion about comparing your grades with the

grades of your colleagues? Is it positive or negative? Why?
IQ4 Do you feel motivated to perform better when comparing your

performance with other colleagues?
IQ5 What did you think of the “Hall of Fame” feature to keep track

of the top performers in the course in each semester?
IQ6 Did you receive any badges during the course? Do you think

this kind of recognition of student achievement is relevant?
IQ7 Did/would you feel motivated for receiving badges for your ac-

tions?
IQ8 Do you believe that if the criteria for badges were known, would

you work harder to obtain them?
IQ9 Do you believe that there should be more badges during the

course? Give examples of other kind of badges.

3.3 Results

In this section, we discuss the results of the study. Section 3.3.1 presents the descriptive
analysis of the results from the survey (Phase I). In Section 3.3.2, we discuss the
qualitative results of the interviews (Phase II).

3.3.1 Study phase I – Survey results

From the 36 students in the SE course, 18 participants answered the survey. Of these
students, 17 were undergraduate students of the Information System course and only
1 was an undergraduate student in the course of Computer Science.

Figure 3.3 presents the results for the questions BQ1 to BQ3 regarding the back-
ground of the participants. The first question (BQ1) was about the participant fa-

40
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

miliarity with the term “gamification”. 11 participants (61.1%) answered that they
were familiar with this term (8 were somewhat familiar and 3 were definitely familiar).
Only 4 participants (22.2%) claimed that they were definitely not familiar with the
term. Our second question (BQ2) was about the frequency in which participants play
games. Six participants (33.3%) claimed that they play games every day, 4 participants
(22.2%) play a few times a week and 5 participants (27.7%) play sometimes a month.
Only 3 participants (16.6%) claimed they play games only a few times a year. No
participant claimed to never plays games. In the third question (BQ3), we inquired
the participants about their appreciation for games. The results show that most of
participants (13 – 72.2%) confirmed that they like playing games.

Figure 3.3. Results for the survey background questions BQ1 to BQ3.

Figure 3.4 shows the results for the last background question (BQ4) in this pre-
questionnaire. BQ4 aims to understand the reasons why the participants like playing
games. In total, 17 participants (94.4%) stated that they aim to have fun. In addition,
12 participants (66.6%) claimed that one reason is to develop skills and the same
number of students said they like to face challenges when play games. Less frequently,
11 participants (61.1%) aimed to enjoy spare time and 8 participants (44.4%) aimed
for competition.

Figure 3.4. Results for the survey background question BQ4.

3.3. Results 41

Figure 3.5 presents the responses on the perception of students about the gamifi-
cation elements introduced in the course. Questions SQ1 to SQ4 (described in Section
3.2.3) were defined to investigate the students’ perception on the implementation of
badges in the course.

Figure 3.5. Survey results on the students perception on the use of badges.

As described in Section 3.1, eight badges were implemented in the SE course.
When participants were asked if they found the use of badges relevant (SQ1), the
responses were slightly positive (i.e., 7 positive, 6 neutral, and 5 negative responses as
presented in Figure 3.5). However, when asked if these badges motivated them towards
a better performance in the course (SQ2), Figure 3.5 shows that the responses were
negative (9 negative, 5 neutral, and 4 positive responses). When asked if they would
appreciate the existence of more badges in the course (SQ3), or the existence of similar
resource in other courses (SQ4), the responses were positive in both cases. This data
indicates that badges were well received by students, but they were not seen as a key
factor of motivation by the majority of them. Further investigation about these results
was explored in the interviews.

Regarding the leaderboards, specifically the “Hall of Fame”, the survey results
were generally negative, as seen in Figure 3.6. The questions SQ5 to SQ7 inquired
participants about the relevance of such resource (SQ5), about how it motivated them
to achieve better performance in the course (SQ6), and about the relevance of such
resource in other courses (SQ7). Although there were very positive responses for the
three questions, the negative responses were dominant. In the Phase II of this study,
we investigated the reasons of such negative perception.

Finally, we received 8 responses for the open question SQ8, regarding suggestions
and criticism on the use of the game elements introduced in the SE course. Two
participants suggested the addition of more badges as transcribed below.

“There should be more badges throughout the course”

42
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

Figure 3.6. Survey results on the students perception of the “Hall of Fame”.

“In general, I always work hard on the courses I’m enrolled. Thus, in
the software engineering course I felt that my dedication was recognized.
However, there should be more badges in the course for different types of
activities in order to try to reach as many students as possible. In my
opinion, the students who have also worked hard, but have not earned any
badges, could be discouraged and feel that their effort was not recognized.”

Three participants suggested that badges could be converted to bonus grades:

“It was not mentioned by the professor whether anyone who won badges or
appeared in the ’Hall of Fame’ would earn more grades for this. If I knew
this could happen, I would be more motivated.”

“Badges could be converted into extra grades. In my opinion, perhaps it is
the only way to really motivate students.”

“(. . .) Why there are no awards in grades? (. . .)”

Five students suggested that the course instructor should provide more details
on how to obtain the badges, so students could pursue them proactively:

“Maybe knowing what badges I could have obtained, it would make me mo-
tivated to “work” to get them. We did not have much incentive.”

“I think if we knew the titles or how to get some badges, we could be more
competitive to get them. Since we did not know which badges could be won,
it was difficult to focus on something specific in order to earn them. It
would be interesting to get at least some badges for the students in the next
course. Of course, they could have some ‘extras’ grades. But if the students
knew that it was possible to win the ’Clean Code’ badges, for example, more
students would try to make a better code. The proposal is super interesting.”

3.3. Results 43

“It would be interesting to report about the badges, at the beginning of the
course, so students could know about it in advance. And, what are the
criteria for choosing the badges; it is also interesting to know. In this course,
we had the badge ’Clean Code’, for example, what would be ’Clean Code’?
What specific characteristics the code should have, so that it is chosen?
I believe that extra information would be interesting to add awareness for
students who could not win the badges.”

“It would be interesting to disclosure the activities and rules to earn badges.
Thus, we could work focusing on them since the beginning of the course.”

“This method could be more interesting if the means of evaluation were
clearer and more objective. As ’Online Participation’, which online actions
are rewarded? Log in every day at the platform (online course), or see
all classes or post questions? In which case would any of these actions be
more accounted than another? Is the ordering for better online participation
updated every week? What do you get with your name in badge list or Hall
of Fame? Are there awards in grades? Is it visible among colleagues? And,
is this visibility positive?”

3.3.2 Study phase II – Interviews results

Based on the results of the survey, we planned and conducted interviews to obtain
a better understanding on the student perception on the gamification elements used.
Six students accepted the invitation for interviews. The interviews followed the script
described in Section 3.2.4. In order to identify the interviewee responses, we adopt
the identifiers “Participant A”, “Participant B”, “Participant C”, “Participant D”, “Par-
ticipant E”, and “Participant F” to refer to the participants, while preserving their
anonymity.

Regarding the leaderboards, we first investigated how students used the informa-
tion about their progress that we provided. As described in 3.1, the leaderboards were
introduced in the course with two resources: (i) a chart with partial grades updated
regularly, where students could compare their progress against other students; and (ii)
a hall of fame. First, we investigated if the students kept track of their progress (IQ1)
and if they used the partial grades to compare their performance against their col-
leagues (IQ2). Except for the Participant A, all participants stated they tracked their
progress in the course. Moreover, all participants, except for the participant C, stated
they used the grade chart to compare their performance against their colleagues. Par-
ticipant B, Participant D, Participant E, and Participant F stated that it was useful to

44
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

understand the overall performance of the classmates in order to know what their real
performance was. Participant A stated that this comparison was a consequence of the
competitiveness in the classroom. However, Participant C claimed that he always tried
to achieve the best grades, and he was not interested in comparing his performance to
the others.

Regarding the positive aspects of this comparison (IQ3), students mentioned three
main positive feedbacks: (i) students with lower performance than the average perfor-
mance of the class felt motivated to perform better, (ii) students tried to understand
how they could improve their learning strategy, and (iii) they talked to classmates with
better performance to exchange knowledge. One possible issue pointed by the partici-
pants was the risk of students acting only in response to the general performance of the
class, i.e., if everyone is getting poor grades, there is no reason to try to perform better.
Participant D also warned about the risk of creating ego conflicts in the class. With
respect to motivation of improving because of this comparison (IQ4), only Participant
A and Participant D had negative responses. Participant A would only feel inclined to
try to perform better in case the class had a better performance as a whole.

Question IQ5 inquired the participants about their opinion on the “Hall of Fame”
resource. Participant A did not like the strategy to implement the Hall of Fame,
and claimed that it did not capture the essence of software engineering, and it would
be better to acknowledge other aspects such as the best product developed instead of
grades. The other participants had positive perceptions about the recognition provided
by the Hall of Fame.

From the six participants in this study phase, only one (Participant C) received
badges (two) during the course. Participant C found the experience positive and re-
warding. Even without receiving badges, Participants B, D, and F found this element
rewarding and beneficial as a form of recognition for specific actions. Except for Par-
ticipant A, all others responded question IQ7 positively.

When we asked participants about the strategy of not revealing the criteria for
receiving each badge, the opinions were mixed. Participants B, C, and E defended
the idea of specifying the criteria for each badge as soon as possible, because students
would establish additional goals besides the grades and, from an educational perspec-
tive, it would become an opportunity to pay attention to aspects that they would not
normally observe. For Participants C, D, F, the criteria for obtaining badges could
make students focus too much attention on the game aspect and, somehow, they could
have a counterproductive effect on learning. Except for Participant A, all students
were positive when asked if they would like to see more badges in the course.

3.4. Discussion 45

3.4 Discussion

This section discusses the results presented in Section 3.3 and our general findings
regarding the research questions defined in Section 3.2.1.

3.4.1 RQ1 – Badges in a software engineering course

Our results showed a general positive perception of the students towards the use of
badges during the SE Course. Considering that we did not explore this resource to the
full potential, by having only eight badges, the students showed interest on them.

Student perception on the role of badges was twofold: (i) they served as a social
reward, a public recognition of the student skill or effort; and (ii) they served as a
secondary goal, besides the grades and approval, to strive for when performing the
course activities. These two elements can be further explored to motivate students not
only in performing better in the course, but also as a motivation to further explore
software engineering good practices. For instance, it can make students aware of good
practices related to the use of tools, of good practices for coding, and so on. In this
initial study, we opted for keeping the requirements for earning badges in secret to
avoid the students expectation of grades, but we are aware of the motivation it can
generate.

One of the students participating in the interviews was particularly unsatisfied
about the gamification elements in the course, because he wanted them to explore
the practical nature of software engineering and professional practices. This is an
important feedback, considering that another approach would be the gamification of
specific software engineering activities, as discussed in Chapter 2.

Another issue we observed about the gamification strategy is that most students
think of grades as the only reward they can achieve in a course. The feedback received in
the survey reflects this rationale: students often asked how the badges would translate
into higher grades. It was a surprise to see that they also perceived some value in the
social recognition aspect of badges.

3.4.2 RQ2 – Leaderboards in a software engineering course

The use of leaderboards in the course was received with mixed opinions. The results
of Phase I of the study had more negative responses than positive ones. In the survey,
we focused specifically in the Hall of Fame resource. The results obtained from Phase
II gave us additional perspectives on this issue.

46
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

First, we observed that students used the partial results to regularly compare
their performance against each other, and felt motivated to perform better when they
had lower grades than the others. These periodic updates were seen as a baseline to
understanding the overall performance of the class and to assess their own performance.
The interviews showed that the Hall of Fame was seen as a social recognition of the
efforts of the students, and it was also seen in a good light from this perspective. We
believe that the negative aspect of this strategy may be related to the exclusive focus
on grades. While grades are a direct measure of the student performance in the course,
it could be complemented by other measures. For instance, we could use additional
badges to assess the student performance by their number of achievements.

3.5 Threats to validity

In this section, we document potential threats to the study validity and discuss some
bias that may have affected the study results. We also explain our actions to mitigate
them.

Results: The results presented in the study are first and foremost observations,
suggestions and lessons learned for further research. We have obviously presented our
own interpretation on the analysis of the surveys and interviews. However, there may
be several other important issues in the data collected, not yet discovered or reported
by us.

Interviews: In order to avoid the risk of bias and misinterpretations of the six
interviews in our study (and also to avoid depending on good memory of interviewers),
we decided to carefully record all interviews and shared with another researcher of
this study. After that, one of them was responsible for transcription of all interviews.
Therefore, audio and text were available for analyses. Moreover, some meetings were
necessary in which the researchers discussed about each answer and extracted all pos-
itive and negative impressions about each question. Thereby, we could increase the
chance of obtaining an unbiased interview analysis.

Number of Participants: The data collected only captures the subjective opin-
ion of each student. A larger number of participants should be interviewed to capture
the general view of a broader audience. However, it was our first experience with gam-
ification on software engineering education, and we had a good number of volunteers
to participate in our study, without any concrete benefits (i.e., grades). About 50% of
all students of the course participated in the survey, but less than 20% took part in
the interviews. However, we do not attempt to generalize to a larger population, but

3.6. Final remarks 47

merely discuss some interesting issues discovered during this study (survey and inter-
view). We then presented some discussions, suggestions, lessons learned, and insights
for future research. Additionally, this study is an experience report. Therefore, we are
concerned in reporting our observations in this scenario, rather than validating any
hypothesis.

3.6 Final remarks

In this chapter, we described an experience of introducing gamification elements
(namely, badges and leaderboards) in a software engineering course. We are aware
that the gamification technique has more to offer, but in this first experience, we re-
lied on the most basic and popular elements. Our study was focused on the student
perception and the motivational aspect of the approach, rather than on their impact
in grades.

Our results showed a positive perception of the use of badges in the course.
Students showed interest in badges and saw them as both (i) a social reward and (ii)
secondary goals to strive for in the course, besides grades and approval. Regarding
the use of leaderboards, our quantitative results showed a negative perception of the
resource. However, in the interviews, most of the students mentioned that they like to
compare their performance against each other, and, when their performance is lower
than the rest of the class, they feel motivated to try to perform better or to rethink
their learning strategy. In addition, students liked the possibility of being recognized
for their efforts.

We believe that gamification has a motivational role in software engineering ed-
ucation that requires further exploration and evaluation. Although our results cannot
be generalized, we provided some evidences on the relevance of this technique in an
educational environment. A major drawback is that gamification requires significant
effort from instructors to setup and to maintain their elements during a course. Signif-
icant lessons learned from this study, that support the specific goal SG1 (Investigate
how Gamification can be used to support software engineering education) of this thesis,
are:

• Social recognition is relevant for students motivation. However, grades are still
the most common reward they expect.

• Badges were perceived as secondary goals for student to strive for in addition to
approval in the course. Therefore, it is relevant to evaluate the role of badges

48
Chapter 3. Empirical Study on the Use of Gamification in Software

Engineering Education

as motivators for the adoption of specific software engineering skills, such as
following a process.

• One student explicitly claimed that the gamification should promote the practical
aspect of software engineering education. However, as a first contact with gami-
fication, we opted for a more simplistic approach, that was positively received.

• The Hall of Fame (leaderboard) was received with mixed opinions. While the
students said they would not compare their grades with other students for the
purpose of competition, they compare grades with the purpose of assessing their
performance in the course in comparison with their colleagues.

• Students would like the existence of more badges and that everyone could try to
earn them, instead of having badges awarded for a single student. Again, it is an
indication that students are more interested in personal progress than competing
with colleagues.

The next chapter describes an investigation on the use of PBL in software engi-
neering education. To achieve that, an Action Research study was performed to sys-
tematically understand the issues of using PBL in an introductory software engineering
course, and identify possible solutions to address these issues. The next chapter briefly
describes the introduction of game elements in this PBL course, as an instrument to
motivate students in performing specific software engineering practices.

Chapter 4

Empirical Study on the Use of PBL
in Software Engineering Education

This chapter describes the experience of adopting Project-Based Learning (PBL) in an
introductory software engineering course at Federal University of Lavras (UFLA). An
Action Research study was carried with the purpose of gradually introducing PBL in a
software engineering course. The action research cycles spanned over four academic pe-
riods of the software engineering course offered in the curriculum of the undergraduate
program in Information Systems at UFLA. Thirty-two students responded a question-
naire to collect data about the students perceptions on the use of PBL in software
engineering education. We compared their responses to the perceptions of 17 stu-
dents that conducted a similar project in a practical assignment in a similar software
engineering course using traditional teaching methods.

This study is directly related to the specific goal SG2 (Investigate how PBL can
be used to support software engineering education) of this thesis. The remainder of this
chapter is organized as follows. Section 4.1 describes the goals, method, and the study
design applied in the execution of this study. Section 4.2 describes the course subject to
investigation. Section 4.3 describes the Action Research study and its results. Section
4.4 presents the results of a survey with students. Section 4.5 presents the discussion of
the results. Section 4.6 discusses the main threats to the validity of this study. Finally,
Section 4.7 concludes this chapter.

4.1 Study settings

This section explains how we planned and executed this study. Section 4.1.1 presents
the goal and research questions of this study. Section 4.1.2 discusses the research

49

50
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

strategy to answer the research questions. Section 4.1.3 describes the process for the
execution of this study.

4.1.1 Study goals and research questions

The goal of this study is to understand the challenges and lessons learned from the use
of Project-Based Learning in software engineering education. To achieve this goal, we
propose the following Research Questions (RQ):

RQ1. What are the challenges of using PBL in an introductory software engi-
neering course?

RQ2. What is the perception of students on the use of PBL in an introductory
software engineering course?

4.1.2 Research method

To answer the research questions, we conducted an Action-Research study in an intro-
ductory software engineering course with the purpose of incrementally refining a PBL
approach to introduce a practice-oriented learning method.

Action Research is a research approach that advocates the intervention in a prob-
lem, the proposal of solutions and their application, for the purpose of solving the
problem and creating theory regarding the action [Coughlan and Coghlan, 2002]. In
Action Research, the researchers attempt to solve a real-world problem while simulta-
neously studying the experience of solving the problem [Davison et al., 2004]. While
most empirical research methods have researchers attempting to observe the world as
it currently exists, in Action Research, the researchers aim to intervene in the studied
situations for the explicit purpose of improving the situation [Easterbrook et al., 2008].

According to Easterbrook et al. [2008], Action Research has been pioneered in
fields such as education, where major changes in educational strategies cannot be stud-
ied without implementing them, and where implementation implies a long-term com-
mitment, because the effects may take years to emerge. Similarly, dos Santos and
Travassos [2009] suggest that this method seems to be a useful research methodol-
ogy when considering the social challenges involved in software engineering research,
and the long history of success in similar domains, in terms of research practice and
challenges, such as education and nursing.

4.1. Study settings 51

4.1.3 Study design

In Action Research, activities are organized in a structured cyclic process, called “Ac-
tion Research Cycle”. Figure 4.1 presents the Action Research Cycle adopted in this
study. This process usually includes the following activities: “Diagnosis and Planning”,
“Intervention”, “Evaluation”, and “Reflection and Learning” [Davison et al., 2004].

Figure 4.1. Action Research cycle, adapted from Davison et al. [2004].

The study was carried in four iterations of an introductory software engineering
course, from 2016 to 2017. Each course is considered a cycle of the Action Research
cycle. In each cycle, we executed the following activities in each phase.

Diagnosis and Planning Phase: Prioritization of problems to address in the
current cycle and definition of actions to be taken. This phase was executed before the
beginning of each course, defining a Course Plan describing how the actions would be
translated to teaching strategy.

Intervention Phase: Execution of the Course Plan and data collection. During
this phase, we assigned, monitored, and assessed Practical Projects.

Evaluation Phase: Evaluation of the course outcomes, from the perspective
of students and instructors. In this phase, we analyzed the data collected during the
course.

Reflection and Learning Phase: Identification and documentation of lessons
learned. During this phase, we reflect on the outcomes of the cycle, identifying positive
outcomes from the actions taken in the current cycle, and possible issues to be addressed
in following iterations.

52
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

4.2 Course setup

The software engineering course (“SE course”, henceforth) is a 60 hours introductory
course offered every semester at Federal University of Lavras, included in the curriculum
of the Information System Bachelor undergraduate program. The SE course aims to
introduce students to the concepts and methods required for the development of large
software intensive systems. The prerequisite for taking this course is the approval in
the Object-oriented Programming course.

This software engineering course is mainly based on two textbooks: Software
Engineering by Sommerville [2010] and The UML User Guide [Booch et al., 2005].
The course syllabus includes: software development process, agile methods, software
requirements analysis and specification, software design, system implementation and
testing, configuration management, and software quality.

In previous iterations (before 2016), the SE course was heavily theoretical. Its
main activities were mostly based on traditional lectures, exams and practical exercises
where students had to design a fictitious software by using UML diagrams. From 2016
to 2018, we adapted the course in order to introduce a more practical approach. We
shifted from the teacher-centered method to PBL and introduced a practical assignment
in the format of a project, equivalent to 60% of the course grades. Two exams and
punctual exercises were responsible for the remaining grades.

4.2.1 PBL in the software engineering course

PBL was introduced gradually in the course, as it was the first experience of the course
lecturer with this educational method. The following characteristics (based on PBL)
were introduced over these four course installments under investigation.

• Project-based: The software development project is a central part of the course.
All classroom activities and lectures are driven by the progression of the project.

• Driving questions: All activities of the project are driven by meaningful ques-
tions that direct students into investigating and applying software engineering
theory for the project.

• Realistic: The project and its process are based on real world problems and
methods. The development of the project is organized in iterations, inspired
by the Scrum sprints and ceremonies [Schwaber and Sutherland, 2016], and the
students are encouraged to use up-to-date tools to support the execution of their
projects.

4.2. Course setup 53

• Tangible Product: All projects should result in a minimum working software
adequate to the project needs. This product is developed iteratively, creating
partial artifacts along the process (documentation and prototypes).

• Balance between guidance and freedom of choice: The lecturer act as
knowledge facilitators and mentors in the course. The role of the lecturer is to
provide meaningful tasks that provide directions for the project progress, and
to support students in performing these tasks. However, these tasks should give
students room to make decisions on how to execute them. Therefore, the lecturer
provides a general roadmap of meaningful activities, and the students decide
the order and the means to accomplish these activities. This process results in
students having to investigate tools, methods and techniques in the theory or
real-world cases.

• Evidence based: The students have to provide evidences of performing tasks
(mostly related to software development life cycle). Therefore, in order to monitor
progress, the students have to not only deliver artifacts but also describe how
they performed each task with evidences (e.g., logs of tools, minutes of meetings,
specific sections of a document).

• Teamwork: The students work in teams, simulating small software developing
companies.

The general organization of the course is described as follows. In the first weeks of
the course, an anchoring problem of the project is discussed with the students, and the
assignment project is presented to the class. Students organize themselves in teams.
The project is organized in three iterations, with the first devoted to understanding the
project needs, and the two others focusing on the design and development of the project.
During each iteration, the lecturer and teaching assistant dedicate some classroom
time to support students in the execution of the project, by providing directions for
the progress of the project, and performing hands-on classroom activities to mentor
students in the practice of specific software engineering activities (e.g., designing use
case scenarios, designing architectural design documentation). By the end of each
iteration, students deliver artifacts (documentation and increments of the product)
and present their results to the lecturer in the format of a seminar (similar to a Sprint
Review ceremony from Scrum [Schwaber and Sutherland, 2016]). After presentations,
students discuss lessons learned, challenges, and the relations of theory and practice
(similar to a Sprint Retrospective ceremony from Scrum [Schwaber and Sutherland,
2016]).

54
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

4.2.2 Learning goals

The assignment is structured in accordance to the learning goals described in Table
4.1. The “Question” is the driving question of the assignment, i.e., the main inquiry
that drives all activities related to the project. The “topics of interest” reflects what
topics from the course syllabus should be addressed in the project execution, and the
respective skill areas from SWECOM [Ardis et al., 2014]. The “specific skills” are
the specific competencies related to the topics of interest that should be developed by
students during the project execution. The specific skills were based on SWECOM
technical skills [Ardis et al., 2014]. Finally, general skills are relevant crosscutting
personal skills, described in SE 2014 [IEEE/ACM, 2015], to any software engineering
professional in formation.

Table 4.1. Learning goals of the assignment

Driving Question "How can we systematically design and develop a software product to meet customer
needs?”

Topics of Interest Course Syllabus: {software requirements analysis and specification, software
design, system implementation and testing, configuration management}

SWECOM Skill Areas: {Software Requirements; Software Design; Soft-
ware Construction; Software Testing. }

Specific SE Skills Elicit customer needs and describe system requirements

Design software in accordance to functional and non-functional requirements

Develop software in accordance to design decisions

Test software using appropriate methods

Use appropriate version control tools to manage the evolution of the soft-
ware.

General SE Skills Professional Knowledge: Show mastery of software engineering knowledge and
skills and of the professional standards necessary to begin practice as a software
engineer.

Teamwork: Work both individually and as part of a team to develop and
deliver quality software artifacts.

Design Solutions in Context: Design appropriate solutions in one or
more application domains using software engineering approaches that integrate
ethical, social, legal, and economic concerns.

Perform Trade-Offs: Reconcile conflicting project objectives, finding ac-
ceptable compromises within the limitations of cost, time, knowledge, existing
systems, and organizations.

End-User Awareness: Demonstrate an understanding and appreciation of
the importance of negotiation, effective work habits, leadership, and good commu-
nication with stakeholders in a typical software development environment.

Continuing Professional Development: Investigate and use appropriate
up-to-date tools and technologies suitable for the execution of the project.

4.3. Observation from the Action Research cycles 55

4.3 Observation from the Action Research cycles

This section summarizes the main results observed from the action research cycles.
We defined a set of aspects that present the main characteristics that evolved over
the course installments as consequences of issues identified in the “Evaluation” and
“Reflection and Learning” phase of the cycles, and subsequent actions proposed and
implemented in the “Diagnosis and Planning” and “Intervention” phases. Table 4.2
presents an overview of the four installments of the SE course (the action research
cycles), describing the number of students enrolled in the course, the distribution of
teams, the type of project used in the assignment, and the criteria for evaluating
students. The following subsections describe how the course evolved and the lessons
we learned in the context of each aspect.

Table 4.2. Overview of the installments of the SE course
Cycle # Stud. Teams Type of Project Evaluation Criteria
2016.1 13 1 team

(13 stud.)
Real project
External client

Subjective, based on artifacts pro-
duced, presentation

2016.2 18 5 teams
(3-5 stud.)

Chosen by students
Lecturer validates projects

Predefined list of expected artifacts
with objective evaluation criteria,
presentation

2017.1 7 1 team
(7 stud.)

Fictitious project
Lecturer as client

Individual performance, evidences of
achieving expected outcomes, arti-
facts, presentation.

2017.2 11 2 teams
(5-6 stud.)

Real Project
Lecturer as interface of the
client

Individual performance, evidences of
achieving expected outcomes (gami-
fication), artifacts, presentation.

4.3.1 Type of project and realism

In the 2016.1 cycle, there was a single project for the entire class. To achieve realism,
we planned the use of a real project with a real customer. The driving problem was the
management of room allocation and their keys at UFLA. The customer were employees
at DADP (Pedagogical Support and Development Office), the sector responsible for the
reservation of physical spaces and for providing resources (e.g., datashow) and keys to
access the requested rooms.

The use of a real project, with a real customer, motivated students. However,
the customer was not always available. In the middle of the project, the responsibility
over keys and resources for classroom was moved from the original customer to another
department at the institution. Therefore, we learned that the use of real clients can
be risky, because it introduces variables that are out of the lecturer’s control, such as
availability of the stakeholders, and abrupt changes in business rule.

56
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

In the 2016.2 cycle, students were free to choose their own projects, conditioned
to the lecturer’s approval. This decision led to new problems. The selection of the
projects consumed substantial effort, as each team had to reach consensus on what they
wanted to do, and the professor had to approve that scope, considering a minimum
complexity expected and viability. For instance, Team B initially wanted to develop a
simple website. The instructors had to intervene and assist them in choosing relevant
features to transform the project in a Web application with more opportunity to apply
software engineering concepts. Additionally, students change their scope during the
project execution, as they try to reduce its complexity in order to make it viable. One
of the teams (Team C) decided to change their project in the second iteration, and
they had substantial rework with the specification. Moreover, we observed the risk of
unbalanced complexity among projects of different teams, that may lead to conflicts.

Furthermore, by having different projects for each team, it was harder to promote
discussion among students. Students had difficulty in sharing lessons with other teams
and discussing about the techniques they had to apply in their projects abstracting dif-
ferent project scopes. Mentoring teams in classroom activities was difficult to manage,
because instructors had to consider different contexts and it was difficult to provide
meaningful examples that would cover all students’ projects. Scaling this approach
would also require more teaching assistants to support a higher number of different
projects. Finally, the students seemed less interested in watching the presentation of
their peers.

In the 2017.1 cycle, we tried a different approach: the students were given
a single problem (proposed by the lecturer), and the lecturer acted as requirement
provider for the project. The change in the type of project solved a number of issues
of the previous courses: (i) Less time consumed negotiating the scope and complexity
of projects; (ii) increased availability of the customer, therefore the students had more
contact with a stakeholder; (iii) higher immersion of students in a simulated work
environment; (iv) more control over the project scope, for instance, we could simulate
changes in the scope after each sprint review, and ensure the alignment to learning
goals; (v) removal of the risk of high impact changes in business rules or in stakeholders
composition; and (vi) it was easier to align lecture examples and classroom activities
with the project, as there was only one project for all students.

Despite the fact that the project of 2017.1 cycle was completely fictitious (devel-
opment of a Web application for a hostel), we did not observe decreased interest of the
students. Considering the previous cycles, we believe that the realism of the project
is not only dependent of the nature of the project (real versus fictitious projects), but
also from the realistic simulation of professional environments.

4.3. Observation from the Action Research cycles 57

Finally, in the 2017.2 cycle, we merged the ideas of the 2016.1 and 2017.1 cycles,
and proposed a problem from the real world, with the lecturer acting as an interface
between students and the real client. The problem was related to the development of
a software application to support production chain and logistics in a small factory of
cleaning products. The lecturer investigated the needs of the problem domain, and
envisioned the specification of a software product, acting as the requirement provider
for the students. As a consequence, the lecturer had a greater effort to understand
the problem in anticipation. However, it led to a more convincing narrative for the
project. It motivated students into thinking in practical solutions for the problem. The
students were more inclined to try to understand the context of the problem than in
creating their own interpretations of the client’s needs.

All teams worked on their own projects, sharing the same theme/problem. It
contributed to the activities conducted in class, where the students could share experi-
ences in a common context. Although there was the risk of students copying the work
of others, it did not happen. The teams developed their projects in different technolo-
gies, and each team produced different types of documentation. We believe the focus
on the activities, rather than the deliverables, contributed to this outcome.

From our observation, we believe that realism can be achieved by designing mean-
ingful narratives and activities that simulates professional software engineering envi-
ronments. It is more important to setup an appropriate narrative that is believable
for students than necessarily relying on real projects, with real customers. It is impor-
tant to define meaningful activities during the projects and to make sure that students
understand and reflect on the importance of each activity, rather than introducing a
variety of topics, methods and tools for students to use.

4.3.2 Guidance, freedom of choice, and evaluation

In the 2016.1 cycle, at the beginning of each iteration, the lecturer and external client
negotiated with students the goals of the iteration in terms of artifacts and increments
to be delivered by the end of the iteration. Every week, the lecturer devoted classroom
time to discuss the progress of the project, and to mentor students in hands-on activities
related to the project. However, following the open-ended nature of the canonical PBL
approach, the project was loosely structured. There were no specific tasks that students
had to complete, and students were completely free (and encouraged) to reflect on
how to achieve the goals of the iteration. Therefore, the evaluation of students was
subjective, focusing on the adequacy and correctness of the artifacts they developed,
and the individual contribution observed in classroom.

58
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

The lack of clear evaluation criteria was confusing to students. The progress of
the project was heavily dependent on the instructor’s guidance. The students were not
proactive in discovering the next relevant steps for continuing the project, and they
always delivered their work products in the last day of the iterations, with little room
for improvements. Despite the fact that students were asked to use version control
tools, for instance, the course failed to motivate them in the use of such tools to
improve collaboration.

In the 2016.2 cycle, we tried to address these problems by introducing a list of
work products the students were expected to produce, and a checklist of attributes we
would use to evaluate those work products (as mentioned in Table 4.2). This decision
was made to provide clear evaluation criteria both for instructors and for students.

By providing students with evaluation criteria based on the artifacts they have
to deliver, students focused more on the documentation rather than on the execution
of activities and their purpose. We observed that some teams created documentations
that did not reflect the activities they performed in their projects. In some cases,
instead of documenting their decisions and what they did in the project, students
opted to use templates found in the internet that were much more complex than what
they were expected to deliver. Therefore, the evaluation criteria may have led students
to believe they would be evaluated for the quality of the documents they produced
rather than the activities they performed to produce those artifacts. Again, students
only delivered their work products in the exact deadlines. Therefore, it was difficult to
provide guidance and feedback to avoid this problem in advance.

In the 2017.1 cycle, instead of providing a full list of expected work products,
in the beginning of each iteration, the lecturer negotiated the goals of the iteration,
and the outcomes students were expected to achieve. These expected outcomes were
related to the solution of smaller problems that would require students to apply soft-
ware engineering theory. These outcomes were described as a list of activities that
had specific results, but needed students to investigate how to achieve them (e.g., “de-
scribe the customer needs”, “document system requirements”, “create a baseline of the
project”). Students were free to choose how to document the outcomes of each activity.
The evaluation of students was based on the achievement of the expected outcomes and
iteration goals, the individual contribution, and the correctness of the work products.
In this particular cycle, the observation of individual contribution was facilitated by
the smaller number of students.

Students had a more active role in negotiating their learning goals. Consequently,
students were more interested in the activities. For instance, the use of Git increased
considerably, the students explored the use of branches, 5 (out of 7) students acted as

4.3. Observation from the Action Research cycles 59

active collaborators in the GitHub project, and they reached the mark of 60 commits.
After the second iteration, students proactively felt the necessity of refactoring the
code to increase maintainability. They changed from a perspective of documenting
first, to a perspective of discussing possibilities, experimenting and then documenting
what was relevant.

In the 2017.2 cycle, we improved the format introducing gamification. The ex-
pected outcomes were described as “quests”. Each iteration had a set of optional and
mandatory quests. The mandatory quests were tasks directly related to the goals of
the iteration. Optional quests were related to advance topics or further investigation
and use of software engineering tools, methods and techniques. These quests were
organized in weekly deadlines. Teams were awarded with badges and points (for classi-
fication in a leaderboard) for each task they provided adequate evidences of execution
in time. Additionally, the lecturer provided feedback for improvement for the teams
that submitted evidences in time. The grading was still based on the final artifacts
of each iteration and individual performance. However, the quests provided students
with a clear roadmap of tasks they had to follow for the progression of the project
and criteria for the evaluation of their artifacts. The teams were competing among
themselves for the “best team” and they had a shared goal: they were competing for a
collective reward (pizza) if they reached a specified amount of points.

The main contribution was providing students with a structured set of activities,
and giving freedom to students, so they could choose how and when to address each one.
Similar to what was discussed in the lessons of Chapter 3, badges and achievements
were understood as smaller goals for students to follow, while striving for the main
goal. The idea of having to provide evidences to earn achievements, reinforced the
reflection on what they were doing. The feedback mechanics also contributed to a
higher involvement of the students of one team, who contacted instructors more often
to question about the correctness of their evidences. This also allowed the instructors
to observe a continuous effort from this team. The teams were more immersed in the
shared goal to obtain the reward (the pizza day), than in the competition among teams.

Therefore, it is possible to balance control and students’ freedom by providing
students with meaningful activities that give them room to critically evaluate which
ones to perform, in which order to execute them, and with room to accomplish them
in varied means. Moreover, allowing students to negotiate aspects of the project is
important to increase their participation in the learning process.

60
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

4.3.3 Teamwork and scalability

In the 2016.1 cycle, the 13 students enrolled in the course worked together as a single
team for the execution of the project. The size of the team led students to organize
themselves in sub teams. Consequently, each sub team focused on specific tasks, which
limited their practical experience during the assignment. For instance, the version
control tool (Git and GitHub) was underused. Only one student used the tool, as he
was responsible for integrating the source code provided by his teammates locally. It
created communication problems between the sub teams, which resulted in problems in
work products consistency. Additionally, the distribution of effort was unbalanced, as
some students worked more than others. Lastly, it was difficult to assess the individual
participation of students.

In the 2016.2 cycle, 18 students were enrolled in the course. We limited the
size of team to five members, which resulted in the students organizing themselves in
five teams. The size of the teams decreased the problem of specialization, and allowed
for better tracking of individual performance. Specially with the support of a teaching
assistant (the author). However, the different projects of each team impacted in extra
effort to track the progress and support students more closely. The execution of hands-
on activities in classroom was also compromised by the variety of projects, as it was
difficult for the lecturer to provide practical examples that could resemble all projects.

In the 2017.1 cycle, only seven students were enrolled in the course. We al-
lowed the students to work as a single team. However, the low number of students
allowed easier guidance and tracking of individual progress of students. The lecturer
and teaching assistant were allowed to offer more mentoring activities.

In the 2017.2 cycle, there were 11 students enrolled. The students organized
themselves into two teams of 5 and 6 members, respectively. As discussed previously,
both teams had to work on their own projects, sharing the same theme/problem. It
decreased the difficulty to manage classroom activities, allowed the use of the project as
an example for contextualizing theory in lectures, and decreased the effort to support
the execution of the teams’ projects, as they did not need to shift contexts from team
to team.

Therefore, we acknowledge that PBL is not easy to scale, in terms of number of
students. Consequently, the greater the quantity of teams to support, the greater the
effort for the instructors. However, allowing the students to form large teams leads
to the risk of students specializing in fewer activities of the assignment, which in turn
hampers their learning. Furthermore, larger teams make it difficult to track individual
performance, and to identify team members that are not contributing.

4.4. Questionnaire analysis 61

Based in our experience in these 4 cycles regarding composition of teams, we
believe that the best approach would be limit team size to 3 to 6 members. Project
complexity should be tuned in accordance to the team size, in order to avoid overload.
Having a single driving problem for the projects of all teams is also a good prac-
tice to decrease the effort to manage PBL activities. Finally, the use of gamification
and roadmaps of activities, also decrease dependency on instructor’s guidance for the
project progression, as they encourage proactivity.

Finally, we observed that teamwork is a skill that is difficult to teach, and it
was a recurring complaint from students. Difficulty in scheduling meetings out of
classroom time and lack of commitment of team members were observed in all cycles.
The individual evaluation and allocation of classroom time for the execution of project
activities may alleviate these problems, but are not definite solutions.

4.4 Questionnaire analysis

In order to understand the students’ perception on the use of PBL to support practical
education in the software engineering course, we performed an Opinion Survey study.
According to Easterbrook et al. [2008], survey studies are used to identify characteristics
of a wide population and are usually associated with the application of questionnaires.
Surveys are meant to collect data to describe, compare or explain knowledges, attitudes
and behaviors [Easterbrook et al., 2008].

A questionnaire was created to collect the participants responses. Table 4.3
presents the structure of the questionnaire. It was structured in four sections, and
ten questions, labeled with unique identifiers (Q1 to Q10). The first section (Partici-
pant Information) is composed of questions about the background of the participants.
The second (Learning Method) is composed of questions designed to evaluate the per-
ception of students about the use of practical development projects in the course and
the use of traditional classes. The third part (Learning Topics) inquires students about
their perception on the contribution of the project in learning specific software engi-
neering topics. The fourth (“Positive and Negative aspects”) asks the participants to
describe the positive and negative aspects of the project as a practical assignment.

For the purpose of comparison, we also applied the questionnaire to students of
a software engineering course with similar syllabus and a practical assignment with
similar scope (in 2017). However, this course adopted traditional teaching process
(Non-PBL).

62
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

Table 4.3. Questionnaire Structure

Section ID Question Type of answer
Participant
Information

Q1 Undergraduate Program Open answer

Q2 Academic period [1 to 12]
Q3 Team during the project Open answer
Q4 Was this your first contact with a Software

Engineering course? Which other SE related
course you have taken?

[yes/no]
Open answer

Q5 Do you have any experience with SE as a
professional or trainee?

[yes/no]

Learning method Q6 Evaluate the statement: “Practical assign-
ments, focused on the development of a soft-
ware project, are fundamental for developing
skills/learning SE”

Likert Scale:
(1) Totally disagree; (2) Partially
disagree; (3) Indifferent; (4) Par-
tially agree; (5) Totally agree

Q7 Evaluate the statement: “Traditional ex-
pository lectures, with punctual evaluation
methods (exams and specific assignments),
are sufficient for learning SE”

Likert Scale:
(1) Totally disagree; (2) Partially
disagree; (3) Indifferent; (4) Par-
tially agree; (5) Totally agree

Learning
Topics

Q8 Rate how much the Software Project
Assignment contributed for developing
skills/learning the following topics
a. Software requirements
b. Software design and analysis
c. Software construction
d. Software configuration management
e. Agile methods

Nominal Scale:
(1) Nothing; (2) Very little; (3)
Reasonably; (4) Substantially; (5)
Totally

Positive and
Negative

aspects of the
Software

Project as a
practical

assignment

Q9 What are the positive aspects of the Soft-
ware Project as a practical assignment?

Open answer

Q10 What are the negative aspects of the Soft-
ware Project as a practical assignment?

Open answer

4.4.1 Population sample

Table 4.4 describes the sampling of the target population of this study. We considered
two samples for analysis and discussion. One for the SE course using PBL as learning
method (labelled “PBL”) and the other for a course using traditional teacher-centered
approach (labelled Non-PBL). The PBL population is composed of 36 students formally
enrolled in three cycles of the action research study (2016.2, 2017.1 and 2017.2 cycles).
We did not collect data from the 2016.1 course. The Non-PBL population is composed
of 35 students formally enrolled in a single installment of the course. The courses
are offered in two distinct institutions - UFLA (for the PBL course) and UFMG (for
the Non-PBL course). The author of this thesis acted as teaching assistant in both
institutions during the PBL and Non-PBL courses.

The students were invited to participate in the study in the last day of each
course. They were informed that participation was not mandatory, that it would not
reflect in grades, and that their anonymity would be preserved.

4.4. Questionnaire analysis 63

Forty-nine students participated in the study. The PBL sample is formed of 32
students. Not all students enrolled in the courses took part in the survey. As a result,
the 32 participants include 15 (out of 18) from the 2016.2 cycle, 6 (out of 7) from
the 2017.1 cycle and 11 (out of 11) from the 2017.2 cycle. The Non-PBL sample is
composed of 17 (out of 35) students from a single installment of the course. In the
Non-PBL course, the students formed 10 teams, and the sample includes participants
of 8 different teams.

Table 4.4. Population sampling

Class Population Sample Participation Rate
PBL 2016-2 18 15 83.3%
PBL 2017-1 7 6 85.7%
PBL 2017-2 11 11 100%
PBL (Total) 36 32 88.9%
Non-PBL 35 17 49%
Total 71 49 69%

4.4.2 Participants background

Most of the participants were undergraduate students in Information Systems (44 par-
ticipants – 89.8%). Figure 4.2 shows the academic terms (semester) in which the
students were formally enrolled at the time of their participation in the study (Q2).
Participants of the Non-PBL group were students at UFMG, in which the SE course
is later in their degree program.

Figure 4.2. Academic period of the participants (Q2).

Figure 4.3 shows the distribution of students for whom the course was their
first contact with software engineering (Q4). For most of the students, this course
was their first contact with software engineering in the academia (39 participants –
79.5%). However, considering that the participants of the Non-PBL sample take the

64
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

SE course later (see Figure 4.2), it is reasonable that a larger number of participants
of this sample had already taken some software engineering related course. Figure 3
shows the distribution of participants with and without professional experience with
software development and software engineering activities (Q5). Similarly, a bigger
percentage of participants in the Non-PBL course had previous professional experience
with software development and software engineering activities (58.8%, in comparison
to 43.7% of the PBL sample). However, for both Q4 and Q5 questions, there was no
significant statistical difference between PBL and Non-PBL samples, using the two-
proportions hypothesis testing, which may be an indication that both samples have
similar backgrounds.

0% 20% 40% 60% 80% 100%

Non-PBL

PBL (Total)

PBL 2017-2

PBL 2017-1

PBL 2016-2

No

Yes

Figure 4.3. First Contact with software engineering in academia (Q4).

0% 20% 40% 60% 80% 100%

Non-PBL

PBL (Total)

PBL 2017-2

PBL 2017-1

PBL 2016-2

No

Yes

Figure 4.4. Professional experience with software development or software en-
gineering (Q5).

4.4.3 Evaluation of the learning method

The goal of question Q6 is to collect the participants perception on the relevance
of a practical assignment for the development of a software project in the context
of developing skills or learning software engineering. Figure 4.5 shows that most of
the participants indicated that it is important to some degree. In the PBL sample,

4.4. Questionnaire analysis 65

all responses were positive (“4” or “5” in the Likert scale): twenty-three participants
(71.9%) responded that “Totally agree” with the statement, and 9 participants (28.1%)
responded that “Partially agree” with the statement. In the Non-PBL sample, 9 par-
ticipants (52.9%) answered that “Totally agree” with the statement, 7 participants
(41.2%) answered that “Partially agree” with the statement, and only 1 participant
(5.9%) answered that “Partially disagree” with the statement. No significant statistical
difference was found for the two samples using unpaired t-test (t(47)=1.7218, p=0.09).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PBL

Non-PBL

(1) Totally disagree (2) Partially disagree (3) Indifferent (4) Partially agree (5) Totally agree

Figure 4.5. Evaluation of the use of software projects as practical assignment
in software engineering education (Q6).

The purpose of question Q7 was to evaluate if the participants agree that the use
of traditional lectures, with punctual evaluation methods (exams and specific assign-
ments), are sufficient for learning software engineering. Figure 4.6 shows that, for the
PBL sample, the opinions were divided. However, there was a majority of negative
responses (20 – 62.5%). Nine participants (28.1%) responded that “Totally disagree”
with the statement, 11 participants (34.4%) responded that “Partially disagree” with
the statement, 2 participants (6.2%) responded that are “Indifferent” toward the state-
ment, 5 participants (15.6%) responded that “Partially agree” with the statement, and
5 participants (15.6%) responded that “Totally agree” with the statement. The Non-
PBL sample was more emphatic toward a negative perspective of traditional lectures
for software engineering education: 4 participants (23.5%) answered that “Totally dis-
agree” with the statement, 9 participants (52.9%) answered that “Partially disagree”
with the statement, and 4 participants (23.5%) answered that “Partially agree”. How-
ever, no significant statistical difference was found for the two samples using unpaired
t-test (t(47)=0.8110, p=0.42).

Therefore, both samples agree that it is important to introduce development
projects in the context of software engineering education, and both samples believe, to
some degree, that traditional lectures and exams are not sufficient for learning software
engineering. It is interesting to notice that the PBL sample had a greater proportion of
positive responses towards the use of traditional approaches in comparison to the Non-
PBL sample (Q7). However, all responses of the PBL sample were positive regarding

66
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

PBL

Non-PBL

(1) Totally disagree (2) Partially disagree (3) Indifferent (4) Partially agree (5) Totally agree

Figure 4.6. Evaluation of the use of traditional lectures and punctual assign-
ments in software engineering education (Q7).

the use of software development projects as assignments.

4.4.4 Evaluation of the project contribution to learning

software engineering topics

In question Q8, the participants were asked to what extent the software development
project contributed to learn of development skills in five topics covered in the introduc-
tory software engineering course. Namely, the topics assessed were: “Software Require-
ments”, “Software Design”, “Software Construction”, “Configuration Management”, and
“Agile Methods”.

Figure 4.7 shows the distribution of responses of the PBL sample. Results show
that “Software Requirements” and “Software Design” were the topics most benefited
from the use of the project as a learning instrument, followed by Agile Methods, Soft-
ware Construction and Configuration Management, in this specific order.

In the case of “Software Requirements”, we believe that the students were highly
motivated with the opportunity to simulate the interaction with stakeholders. In these
courses, one instructor played the role of a customer, and the students had to arrange
meetings with him, interview him for requirement elicitation, and validate requirements
and increments in each project iteration.

In the case of “Software Design”, we believe that a software project they had to
really implement provided students with a more tangible experience on the impact of
design than asking students to design hypothetical software systems. On the other
hand, the implementation of the software project was considered a negative aspect for
some students (as will be discussed in Section 5.4). Therefore, “Software Construction”
was the only topic directly mentioned in the negative aspects. Consequently, it makes
sense that this topic had the greater proportion of low score responses.

Figure 4.8 shows the distribution of responses of the Non-PBL sample. Only
one topic (Agile Methods) had the number of responses “4. Substantially” and “5.
Totally” superior to 50%. We believe that a key difference in the results was the role of

4.4. Questionnaire analysis 67

the instructors in the practical assignments. In the PBL course, the instructors were
constantly guiding students in the appliance of theory in the project and ensuring that
the project contributed to their learning goals. In the Non-PBL course, understanding
the link between theory and practice was a responsibility of the students. For instance,
two of the most recurring negative aspects pointed by the Non-PBL sample was the lack
of orientation in activities and the lack of classroom activities to support the project
development. One of the students stated that “[the project] led students to perform
some activities without real interest or without acknowledging the real application of
what they were doing”.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Configuration Management

Software Construction

Agile Methods

Software Design

Software Requirements

(1) Nothing (2) Very Little (3) Reasonably (4) Substantialy (5) Totally

Figure 4.7. Contribution of the project in learning specific software engineering
topics (Q8) for the PBL sample.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Software Design

Software Construction

Configuration Management

Software Requirements

Agile Methods

(1) Nothing (2) Very Little (3) Reasonably (4) Substantialy (5) Totally

Figure 4.8. Contribution of the project in learning specific software engineering
topics (Q8) for the Non-PBL sample.

Figure 4.9 shows the analysis of the median values for the responses of both
samples. It is interesting to notice that, except for “Agile Methods”, all topics had the
median value one point higher in the PBL sample responses, in comparison to the Non-
PBL sample responses. Significant statistical difference was observed for the results

68
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

of the topics “Software Requirements” (t(47) = 4,0724, p=0,0002), “Software Design”
(t(47) = 4.9216, p < 0.0001) and Configuration Management (t(47) = 2.0714, p =
0.04). However, considering the small sample size and the single installment of the
Non-PBL course, additional data are required to allow generalization.

Figure 4.9. Comparison of the results for Q8.

4.4.5 Positive and negative aspects of the PBL course

In questions Q9 and Q10, the participants were asked to describe the positive and
negative aspects of the software development project assignment they participated. To
analyze the answers, we used an approach inspired by the coding phase of Ground
Theory [Stol et al., 2016]. Therefore, two researchers analyzed the responses individ-
ually and marked relevant segments with “codes” (tagging with keywords). Later, the
researchers compared their codes to reach consensus, and tried to group these codes
into relevant categories. Consequently, it is possible to count the number of occur-
rences of codes and the number of items in each category to understand what recurring
positive and negative aspects are pointed by the participants, and propose possible
lessons learned.

Regarding the positive aspects, the data analysis resulted in 24 different codes,
which occurred 54 times. The codes were grouped in five main categories: Learning
Process (16 occurrences), Professionalism (10 occurrences), Practice (14 occurrences),
and software engineering Skills (14 occurrence). Figure 4.10 presents the categories,
subcategories and codes. The numbers in parenthesis represent the number of times
the code was assigned to the responses.

4.4. Questionnaire analysis 69

Figure 4.10. Positive aspects stated in the responses of Q9.

The category “Learning Process” groups codes related to the participants state-
ments regarding how the project helped them in acquiring, retaining and deepening

70
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

knowledge, and how it facilitated the understanding of the software engineering top-
ics learned in class. For instance, 10 students mentioned positive aspects related to
improved learning and comprehension of software engineering topics, 3 students men-
tioned the project contributed to personal development or skill development, and 2
students mentioned they liked the evaluation process because it was more dynamic
and it did not rely on memorization.

The category “Professionalism” groups codes related to the participants percep-
tion on how the project simulates a work environment similar to the professional con-
text of software engineering. The simulation of a professional environment was directly
mentioned by 7 students. Three students also mentioned that the project allowed them
to develop a professional perception, that it prepares for the future professional life,
that the pressure for delivering work products was relevant for understanding industry
dynamics.

The category “Practice” groups codes related to the positive aspects of the prac-
tical nature of the project. The most recurrent codes were related to how the project
allowed the participants to see in action the theory they learned in classroom (6 partic-
ipants), and how the project allowed the participants to practice (apply) the concepts
they learned (5 participants). Three participants claimed that the practical experience
was positive in general.

The category “SE Skills” groups codes related to software engineering activities
the participants explicitly stated as positive outcomes of the project. Seven partici-
pants mentioned soft skills such as teamwork (in 5 responses), learning new technolo-
gies and methods (in 1 response) and dealing with stakeholders (in 1 response). Seven
participants mentioned process related topics, such as understanding the software de-
velopment process (2 responses), requirements elicitation (2 responses), agile methods
(1 response), documentation (1 response), and planning for software development (1
response).

For the negative aspects, the data analysis resulted in 17 different codes, which
occurred 42 times. The codes were grouped in five main categories: Time (18 occur-
rences), Teamwork (11 occurrences), Application Development (7 occurrences), Project
as a Learning Tool (5 occurrences), and Development Process (1 occurrence). Figure
4.11 presents the categories, subcategories and codes. The numbers in parenthesis
represent the number of times the code was assigned to the responses.

The most recurrent issues pointed by the participants were related to Time (18
occurrences). Students complained that this type of activities demands too much time
(12 occurrences), and that it was troublesome to divide their time with other activities
from the university (6 occurrences).

4.4. Questionnaire analysis 71

Figure 4.11. Negative aspects stated in the responses of Q10.

The problems in the category of Teamwork (11 occurrences) were mainly related
to the lack of commitment of some team members (4 occurrences), and unbalanced
effort distribution (4 occurrences), i.e., some students did more activities than others.
In fact, these problems were observed in every iteration of the course (as described in
Section 4.2.1). Other issues related to this category were the difficulty in managing
people and conflicts (1 occurrence), and communication problems (1 occurrence). One
participant pointed a issue that is similar to a concern described in Section 4.3.3:
the division of the activities among team members may compromise learning, since
students tend to develop the tasks they are already familiar with. Therefore, activities

72
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

in classroom should promote at least a minimum contact of the students with each
topic, and instructors should encourage students to participate in all activities.

Regarding the Application Development (6 occurrences), two participants be-
lieved that the development of the application was not related to the scope of the
course. One participant stated that the development of the application should be
simplified. Other issues were specifically related to programming skills, as three stu-
dents complained about having to code, the lack of familiarity with the technologies
(programming language and framework), and the lack of experience with software de-
velopment compromised the student ability to contribute.

The category “Project as a Learning Tool” (6 occurrences) grouped three negative
aspects: three students claimed the project was too laborious; one student claimed
that the students were not prepared to deal with problems that are external to the
academia; and one participant believed that the assignment penalizes students that
prefer a theoretical approach and are not used to work under pressure. One student
mentioned that the approach lacks deepness regarding the execution of each phase
of software development. Finally, only one student complained about the excess of
documentation.

4.4.6 Comparison of positive and negative aspects between

PBL and Non-PBL courses

Table 4.5 lists all positive aspects found captured from the results of Q9, their cate-
gories, the number of occurrences (#) and the percentage of participants who men-
tioned them (%) for each sample (PBL, Non-PBL, and Total). Comparing the positive
aspects identified for the PBL and Non-PBL samples, we observe a total of 28 unique
codes, with 4 exclusive codes from the Non-PBL sample, 16 exclusive for the PBL
sample, and 8 codes in common for both samples. There were 87 occurrences of these
codes, with 7 occurrences for the exclusive codes from the Non-PBL sample, 19 for the
exclusive codes of the PBL sample, and 61 for the codes in common for both samples.

Table 4.6 presents the distribution of the positive aspects in relation to their
categories for the PBL and Non-PBL samples. The data show that the majority
positive aspects stated by the Non-PBL sample are grouped in the categories “Specific
SE Skills” and “Practice”. The positive aspects pointed by the PBL sample are more
evenly distributed, with a higher count of positive aspects related to the learning
experience. The category “Professionalism” was also more present in the responses
of the PBL samples.

4.4. Questionnaire analysis 73

Table 4.5. Positive aspects identified in the responses of the PBL and Non-PBL
samples for Q9.

Positive Aspects Category #
PBL

%
PBL

#
Non-
PBL

%
Non-
PBL

#
Total

%
Total

Apply knowledge Practice 5 15,6% 8 47,1% 13 26,5%
See theory in action Practice 6 18,8% 4 23,5% 10 20,4%
Better comprehension of the learning
topics

Learning 6 18,8% 3 17,6% 9 18,4%

Simulation of Professional Environ-
ment

Professionalism 7 21,9% 1 5,9% 8 16,3%

Teamwork SE Skills 5 15,6% 2 11,8% 7 14,3%
Understanding the SW dev. Process SE Skills 2 6,3% 4 23,5% 6 12,2%
Agile Methods SE Skills 1 3,1% 3 17,6% 4 6,2%
Practical experience Practice 3 9,4% 1 5,9% 4 8,2%
Use of collaboration tools SE Skills 3 17,6% 3 6,1%
Personal development Learning 2 6,3% 2 4,1%
Requirement Elicitation SE Skills 2 6,3% 2 4,1%
Learning Learning 2 6,3% 2 4,1%
Understanding the relevance of pro-
cess artifacts

SE Skills 2 11,8% 2 4,1%

Not having to rely on memorization Learning 1 3,1% 1 2,0%
Learn new technologies and methods SE Skills 1 3,1% 1 2,0%
More dynamic evaluation Learning 1 3,1% 1 2,0%
Motivation Learning 1 3,1% 1 2,0%
Retain Knowledge Learning 1 3,1% 1 2,0%
Documentation SE Skills 1 3,1% 1 2,0%
Pressure for delivering work products Professionalism 1 3,1% 1 2,0%
Planning for the SW development SE Skills 1 3,1% 1 2,0%
Preparation for the future Professionalism 1 3,1% 1 2,0%
Professional vision Professionalism 1 3,1% 1 2,0%
Skill development Learning 1 3,1% 1 2,0%
Deepen knowledge Learning 1 3,1% 1 2,0%
Contact with stakeholders SE Skills 1 3,1% 1 2,0%
Product release SE Skills 1 5,9% 1 2,0%
Play a process role Professionalism 1 5,9% 1 2,0%

Table 4.6. Categorization of the positive aspects identified in the responses of
the PBL and Non-PBL samples for Q9

Categories # PBL % PBL # Non-PBL % Non-PBL # Total % Total
SE Skills 14 25,9% 15 45,5% 29 33,3%
Practice 14 25,9% 13 39,4% 27 31,0%
Learning 16 29,6% 3 9,1% 19 21,8%
Professionalism 10 18,5% 2 6,1% 12 13,8%
% PBL= [# PBL] / 54
% Non-PBL= [# Non-PBL] / 33
% Total = [# Total]/87

Similarly, Table 4.7 lists the negative aspects identified in the answers of Q10.
Comparing the negative aspects stated by the PBL and Non-PBL samples, we observe
a total of 34 unique codes, with 17 exclusive codes from the Non-PBL sample, 10
exclusive for the PBL sample, and 7 codes in common for both samples. There were
82 instances of these codes, with 30 for the exclusive codes from the Non-PBL sample,
11 for the exclusives codes of the PBL codes, and 41 for the codes in common for both
samples.

74
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

Table 4.7. Negative aspects identified in the responses of the PBL and Non-PBL
samples for Q10.

Negative Aspects Category #
PBL

%
PBL

#
Non-
PBL

%
Non-
PBL

#
Total

%
Total

Demands much time Time 12 37,5% 4 23,5% 16 32,7%
Time conflict with other activities Time 6 18,8% 1 5,9% 7 14,3%
Lack of Commitment Teamwork 4 12,5% 1 5,9% 5 10,2%
Unbalanced distribution of effort Teamwork 4 12,5% 1 5,9% 5 10,2%
Lack of orientation in activities Project as

learning tool
5 29,4% 5 10,2%

Laborious Project as
learning tool

3 9,4% 1 5,9% 4 8,2%

Lack of classroom activities to support the
project development

Project as
learning tool

4 23,5% 4 8,2%

Extensive documentation artifacts Documentation 4 23,5% 4 8,2%
Difficulty in managing people and conflicts Teamwork 1 3,1% 1 5,9% 2 4,1%
Deviates from the course scope Application

Development
2 6,3% 2 4,1%

The project should be simplified Application
Development

1 3,1% 1 5,9% 2 4,1%

The process is promotes lack of inter-
est/demotivation

Development
Process

2 6,3% 2 4,1%

The process seems useless Development
Process

2 6,3% 2 4,1%

The documentation is tiresome Documentation 2 6,3% 2 4,1%
Division of tasks may compromise learning Teamwork 1 3,1% 1 2,0%
Lack of communication Teamwork 1 3,1% 1 2,0%
Lack of familiarity with technology Application

Development
1 3,1% 1 2,0%

Having to program Application
Development

1 3,1% 1 2,0%

Lack of experience with sw development Application
Development

1 3,1% 1 2,0%

Not ready to face external problems Project as
learning tool

1 3,1% 1 2,0%

Penalize students with different learning
styles

Project as
learning tool

1 3,1% 1 2,0%

Broad and subjective scope Project as
learning tool

1 5,9% 1 2,0%

The phases should resolve quicker Project as
learning tool

1 5,9% 1 2,0%

Lack of depth Project as
learning tool

1 3,1% 1 2,0%

Lack of feedback Project as
learning tool

1 5,9% 1 2,0%

Excess of Documentation Documentation 1 3,1% 1 2,0%
Rigid Development Method Development

Process
1 3,1% 1 2,0%

The process does not contribute to learning Development
Process

1 3,1% 1 2,0%

Unrealistic process Development
Process

1 3,1% 1 2,0%

Process requires too much details in some
parts

Development
Process

1 3,1% 1 2,0%

Outdated materials Documentation 1 3,1% 1 2,0%
Unpractical documentation Documentation 1 3,1% 1 2,0%
Excessive formalism in documentation Documentation 1 3,1% 1 2,0%
Documentation susceptive to changes Documentation 1 3,1% 1 2,0%

Table 4.8 presents the distribution of the negative aspects in relation to their
categories for the PBL and Non-PBL samples. The data show that the majority of the
negative aspects stated by the Non-PBL sample are grouped in the categories “Project

4.4. Questionnaire analysis 75

as Learning Tool”, “Documentation” and “Development Process”.

Table 4.8. Categorization of the negative aspects identified in the responses of
the PBL and Non-PBL samples for Q10

Categories # PBL % PBL # Non-PBL % Non-PBL # Total % Total
Time 18 42,9% 5 12,5% 23 28,0%
Project as learn-
ing tool

6 14,3% 13 32,5% 19 23,2%

Teamwork 11 26,2% 3 7,5% 14 17,1%
Documentation 1 2,4% 10 25,0% 11 13,4%
Development
Process

0 0,0% 8 20,0% 8 9,8%

Application
development

6 14,3% 1 2,5% 7 8,5%

% PBL= [# PBL] / 42
% Non-PBL= [# Non-PBL] / 40
% Total = [# Total]/82

The category “Project as Learning Tool” is directly related to the perceptions
of the students regarding the learning process. The main complaints were related to
the lack of orientation for the execution of the project and the lack of activities in the
classroom to provide direct support to the development of the project. These two points
were objectively addressed in the PBL courses, where the development of the project
was the core activity in the course. Therefore, not only the lecturers devoted several
classrooms activities for mentoring students and providing time for students to work
in classroom, but also the course was structured focusing on continuous orientation for
the project development.

In the “Documentation” category, the participants stated that the documentation
they had to provide was too extensive, not practical, and boring. In the “Development
Process” category, the students stated that it was far from what the participant believed
was the reality of a professional environment, that the students perceived little value in
the development process and its documentation, that the process had little contribution
for learning, and that the process promoted demotivation in the students. In the PBL
courses, a key point addressed was the focus on expected activities students should
perform rather than on documentation, giving the students freedom to choose how to
perform them. Therefore, in the PBL approach, the students had to focus on goals,
not on following a process or filling document templates.

Considering the positive and negative aspects for each population sample, the
PBL sample provided 54 positive codes and 42 negative codes. The Non-PBL sample
provided 33 and 40 positive and negative codes, respectively. Therefore, the proportion
of positive aspects codes was higher in the PBL sample and the proportion of negative
codes was higher in the Non-PBL sample.

76
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

4.5 Discussion

The experience of using PBL in an introductory software engineering course was pos-
itive both in the students and instructors’ perceptions. There was an initial concern
that the learn-by-doing approach would be more confusing than the learn-then-practice
approach in the specific case of an introductory SE course. However, we perceived that
students were more engaged in the learning process using the PBL approach, and the
approach allowed a better immersion regarding the software development process. In
the following subsections, we summarize the main observations made in relation to the
research questions defined in Section 4.1.1.

4.5.1 RQ1 – The challenges of using PBL in an introductory

software engineering course

The main challenges we observed during the Action-Research study were:
Scaling PBL: The main challenge of scaling PBL is providing the right amount

of guidance for students for a large number of students. In the cases described in
Section 4.2.1, the class with the best overall results was Class 2017.1. This class
had the smallest number of students enrolled. Therefore, the instructors were able to
provide better guidance and feedback for students. Having all teams developing the
same project and introducing gamification were useful actions to replicate the success
of class 2017-1 in class 2017-2. The introduction of gamification in the later instance
of the course allowed the instructors to provide general directions to students, in form
of achievements and badges, without recurring to a strict process, and streamlined the
evaluation of teams progress. The problem of scaling PBL is discussed in the literature
[Gary, 2015; Harms and Hastings, 2016].

Selection of appropriate projects: Projects play the central role in PBL
approaches. The literature suggests the use of real open-ended projects. However,
(i) the lack of control over the project and (ii) the volatility of the commitment of
external stakeholders are threats that need to be carefully analyzed. For the first (i),
especially in the case of introductory courses, instructors must be aware of the risk
that the project may not support expected learning outcomes or provide students with
meaningful opportunities to apply specific knowledge related to the course syllabus (this
problem was previously discussed by Nguyen et al. [2013]). For the second (ii), external
stakeholders may lack the motivation or availability for participating in the project. It is
also difficult to demand students to meet with stakeholders in environments external to
the university, or outside classroom time. Finally, external stakeholders are susceptible

4.5. Discussion 77

to changes in their business rules, that may invalidate the whole project, and external
clients may abandon the project in the middle of the course. All these situations
may lead to student frustration, or risk of not addressing expected learning outcomes.
Harms and Hastings [2016] state that “projects need to not be too shallow and yet
not be too idealistic either”. The issues of using real customers or having instructors
playing the role of customer is discussed by Daun et al. [2016]. Kizaki et al. [2014]
warn that the participation of external person as real customers may be problematic,
as their availability and expectations are not controlled.

Tracking progress and learning outcomes of students: Teamwork is an
important software engineering skill, not only in curricular guidelines [IEEE/ACM,
2015] but also in the students’ perception (see Table 4.10). However, it is difficult to
track the individual progress of students. The data obtained from students’ response
show that there is difference in commitment levels in the teams, and that some students
work more than others. The more open-ended the project is, the more difficulty some
students have in understanding what they are supposed to do. Classroom activities
helped alleviating this problem in the cases described in Section 4.2.1, as the instructors
could watch the participation of each student in teams. Also, gamification provided the
students with clear goals they could use to measure and plan their progress. Finally,
defining effective evaluation processes for assessing the students performance is difficult,
because of the nature of PBL projects. As discussed by Fagerholm and Vihavainen
[2013], the assessment design plays a key role in what students will focus on. We
noticed this problem in class 2016-2. All these issues are discussed in previous works
[Gary, 2015; Harms and Hastings, 2016; Fukuyasu et al., 2013].

Balancing guidance and freedom of choice: Balancing the intervention of
professors for guidance and the students freedom to decide what to do is challenging.
For instance, in Class 2016.2, the students were given documentation templates, and
their evaluation was based on the delivery of such artifacts. As mentioned, this led
students to focus on filling artifacts with little reflection on their importance. On the
other hand, relying only on the instructors’ guidance, as the case of Class 2016.1, may
confuse students if there is no roadmap of activities. Therefore, it is specially important
to design meaningful activities or driving questions that guide the development of the
project, without imposing specific approaches that limit students choice. Martin et al.
[2014] consider that the ill-structured nature of problems is one of the cornerstones of
PBL and one of the main sources of difficulties in using PBL. Therefore, we opted to
give students a clear roadmap of “what to do” but leaving them free to choose “how to
do it”. In this aspect, gamification allowed the instructors to provide this roadmap, by
using achievements and badges, and to link it to the evaluation rubrics of the course.

78
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

Additionally, the use of a reference model, such as SWECOM [Ardis et al., 2014],
supported instructors in defining meaningful goals for students to pursuit during the
execution of the project.

4.5.2 RQ2 – Students’ perception on the use of PBL in an

introductory software engineering course

The main findings from the questionnaire responses were that the students perceived
a positive contribution of the practical project in their learning process in relation to
specific software engineering topics. The topics that received better ratings were “Soft-
ware Requirements” and “Software Design”. However, in a scale of 1 (no contribution)
to 5 (totally contributed), the median value was above 4. In comparison to the percep-
tions of students in a course using a software development project, but not the PBL
approach, these median values of the PBL samples were 1 point higher for all topics,
except for “Agile Methods”.

The most recurrent positive aspect observed by the students were related to the
simulation of a professional environment (7 responses), the better comprehension of
the topics learned in classroom, and the possibility of seeing the theory in practice.
In general, most of the responses were related to the learning process. Therefore, we
believe that PBL was received positively by the students.

The most predominant negative aspects were related to the time-consuming na-
ture of PBL, and problems related to working in teams. The first problem is inherent
to the PBL approach, while the second is a challenge that is often related to software
engineering and an expected skill to be developed [IEEE/ACM, 2015]. In contrast,
the participants of the Non-PBL sample made more complaints about the project as
a learning tool and the documentation that was required for evaluation. Our inter-
pretation of this data is that the projects are more meaningful for students in PBL
courses.

Regarding the use of a practical software development project for learning soft-
ware engineering, both samples shared similar distribution of responses, stating that
they are strongly favorable to its relevance. Similarly, both samples shared similar
distribution of response disagreeing that traditional expository lectures and evaluation
methods are sufficient for learning software engineering. For both questions, the re-
sponses were even more emphatic when we segment the population in students with
some professional experience with software engineering or software development, and
students without experience. The students with professional experience seem to favor
learning methods that promotes practice. One student also mentioned that the PBL

4.6. Threats to validity 79

format penalizes students who prefer a theoretical approach and are not used to work
under pressure, which was already discussed in previous work [Zhi, 2016].

Therefore, there was a general positive acceptance of PBL from the students. A
software development project not only helped in balancing theory and practice but
also provided students with the opportunity to understand some aspects that only
theory would not address. However, we noticed that using the educational project in
the context of a PBL process was more beneficial than using it in a traditional course
format. Our interpretation is that the project in Non-PBL course was not sufficiently
contextualized and synchronized with lectures, and students have difficulty in linking
theory to practice in this scenario. In contrast, PBL provides meaningful context for
practice in the learning process, enforcing the students perception of the importance
of each decision they make in the project.

4.6 Threats to validity

In this section, we document potential threats to the study validity and discuss some
bias that may have affected the study results. We also explain our actions to mitigate
them.

Results: The results presented in the study are first and foremost observations,
suggestions and lessons learned for further research. We have obviously presented our
own interpretation of the analysis of the questionnaires and classroom experiences.
However, there may be several other important issues in the data collected, not yet
discovered or reported by us. Nevertheless, our reports may provide significant insights
for other researchers and educators when planning or evaluating PBL approaches in
similar settings.

Questionnaires: In order to avoid the risk of misinterpretations of the questions,
the questionnaire was developed in stages. The first version of the questionnaire was
reviewed by two researchers who are also software engineering professors. It was then
piloted with three students in order to assess if the questions were clear, not ambiguous,
and if the available options for answers were coherent. Additionally, the participation
in the questionnaire was not compulsory, it preserved the participants anonymity, the
participation did not contribute for grades, and the questionnaires were always applied
at the end of the course. These decisions were made to avoid the bias of students
providing positive answers for the sake of fearing bad consequences or hoping that it
would somehow benefit them.

Number of Participants: A larger number of participants should be surveyed

80
Chapter 4. Empirical Study on the Use of PBL in Software

Engineering Education

to capture the general view of a broader audience. However, the study was limited to
the population of students that (i) were enrolled in the course, and (ii) were willing
to participate in the questionnaire. For instance, the Non-PBL sample had a lower
participation rate. However, by forcing students to participate in the questionnaire, or
rewarding the participation with grades, we would introduce more bias. Additionally,
this type of study is limited by the availability of professors willing to allow the author
to participate in their teaching activities, and who were willing to use the approaches
considered for this study.

Population sampling: The comparison of the PBL and Non-PBL samples
suffers from the bias of being from different institutions. Therefore, there is the bias
of the participants having different backgrounds (universities, cities, lecturers, class
size) and the comparison not being adequate. However, other options were considered
such as having half of the class using PBL and the other using traditional lectures,
or alternating the learning methods in different semesters in the same institution.
However, the cost-benefit of both approaches was not relevant. In the case of this study,
both courses are part of the degree plan for undergraduate programs in Information
Systems, both share similar syllabus, both are 60 hours courses, and both are provided
by public institutions. The author of this work acted as a teaching assistant in both
setups. We acknowledge that further investigation is required, and that our results
may not be appropriate for generalization.

4.7 Final remarks

This chapter presented an experience report on the use of PBL in an introductory
software engineering course. The approach was applied in four academic periods, for
a total of 49 students participated in this course. An Action Research study was per-
formed to support the incremental evolution of the course, identifying key problems
and gradually proposing changes to the course. The main challenges faced during the
Action Research study were related to scaling PBL, selecting appropriate projects,
tracking progress and learning outcomes of students, and balancing guidance and free-
dom of choice. Gamification, the use of training techniques from the industry (e.g.,
mentoring), and the adoption of reference models for the definition of meaningful goals
for students were relevant resources for addressing those issues.

In addition to the observation of the cases, 32 students responded a questionnaire
to collect their perceptions about the course. The responses show an overall positive
reception of the method. We compared these responses to the responses of 17 students

4.7. Final remarks 81

who participated in an introductory software engineering course with similar syllabus
that also used a software development project with similar learning goals. However,
this second course adopted a traditional teaching instead of PBL. The overall responses
of the PBL sample were more positive than the responses of the Non-PBL sample, both
in relation to the contribution of the project to learning specific software engineering
topics, and in relation to the proportion of positive and negative aspects stated by the
students. However, both samples agree in similar proportion that practical development
projects are necessary for learning software engineering, while they disagree in similar
proportion that traditional lectures are sufficient for learning software engineering.

In the context of this thesis, the results of this chapter support the specific goal
SG2 (Investigate how PBL can be used to support software engineering education). The
observed challenges of adopting PBL are in accordance with the challenges identified
in the literature (Chapter 2). In the 2017.2 Research cycle, we introduced the use of
gamification for specific software engineering practices. Therefore, in this thesis we
explored both the gamification of the classroom experience, and the gamification of
specific SE practices, as discussed in Chapter 2. Hence, this chapter also provided
insights for the specific goals SG1 (Investigate how Gamification can be used to support
software engineering education) and SG3 (Investigate the benefits and drawbacks of the
joint use of gamification and PBL to support software engineering education).

The next chapter describes GaPSEE: a framework to support the adoption of
PBL and gamification in software engineering education. The lessons learned from the
experience described in this chapter are inputs for the proposal of this framework.

Chapter 5

A Framework for the Gamification
of Project Based Software
Engineering Education

This chapter describes GaPSEE (Gamification of Projects for Software Engineering
Education), a framework for gamification of project-based software engineering educa-
tion. According to Mora et al. [2015], “a framework is a real or conceptual structure
intended to serve as a support or guide for the building of something that expands the
structure into something useful”. As a framework, GaPSEE is intended to provide a
set of guidelines and a process to support lecturers in planning the execution of prac-
tical assignments to introduce practice in software engineering related courses. The
framework is based on the lessons obtained from the studies described in the previous
chapters.

The remainder of this chapter is organized as follows. Section 5.1 describes the
goals and scope of GaPSEE. Section 5.2 describes the target audience of GaPSEE. Sec-
tion 5.3 describes the organization of GaPSEE in components. Section 5.4 provides an
overview of the organization of a practical assignment in accordance to GaPSEE. Sec-
tion 5.5 presents the guidelines defined by GaPSEE. Section 5.6 describes the process
suggested by GaPSEE and its activities. Section 5.7 presents a set of observations and
suggestions to be considered when implementing GaPSEE in a software engineering
related course.

83

84
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

5.1 Goal and scope

The goal of GaPSEE is to support educators in the planning and execution of practi-
cal assignments for software engineering related courses, using principles of PBL and
Gamification. Therefore, GaPSEE has three core concepts in its foundation: software
engineering education, Project-based Learning (PBL), and gamification.

From the perspective of software engineering education, GaPSEE is intended to
provide an alternative approach to introduce practice in the educational process of
software engineering. Therefore, it provides a process and recommendations to help
educators in the setup, execution, evaluation, and refinement of practical assignments,
using principles from Project-Based Learning and Gamification.

From the PBL perspective, GaPSEE is intended to provide good practices on
how to adapt PBL principles to the context of software engineering education, in order
to fill the gap between theory and practice. The principles of PBL are intended to
introduce a real-world basis to the assignment, with convincing projects where students
can practice theory, and apply appropriate tools and methods to develop solutions in
context. However, it is not a PBL framework. Therefore, GaPSEE identifies a set
of practices and elements of PBL that are useful and adapts them to the context of
software engineering education. The focus of GaPSEE is the practical assignment,
which can be used from the start to end of a course, or restricted to a portion of a
course. Educational projects play central role in GaPSEE, as instruments to achieve
desired learning outcomes, not only regarding technical knowledge, but also exposing
students to other practical aspects that are often difficult to illustrate in lectures.

From the gamification perspective, GaPSEE provides instructors with a selection
of game elements adapted to the context of project-based software engineering educa-
tion. Therefore, gamification is used to present the educational project in the format of
a game, providing directions and systematically rewarding and acknowledging students
actions that support the achievement of learning goals or the execution of the project.

It is not included in the scope of this framework:

• Recommendations regarding evaluation methods (i.e., grading);

• Recommendations towards the learner perspective (i.e., lecturers are the target
audience, not learners);

• Being a PBL framework (i.e. this framework adopts concepts and practices from
PBL for the specific context of software engineering education);

5.2. Target audience 85

• Being a Gamification framework (i.e., this framework proposes the use and con-
textualization of an initial set of game elements for the specific context of software
engineering education);

• Suggestion of learning topics.

5.2 Target audience

GaPSEE is designed for software engineering lecturers who seek alternative methods for
introducing practice in the teaching process. Considering the constructivist and active
nature of PBL and Gamification in learning, GaPSEE target audience are lecturers
who are comfortable with the idea of acting as facilitators rather than acting as the
central role in the teaching process. The results of Rodrigues et al. [2018] motivate
the development of the framework, showing that there is a demand for more accessible
resources to support the adoption of games and gamification in software engineering
education.

5.3 Components

GaPSEE is structured in three elements: guidelines, process, and suggestions for im-
plementation. GaPSEE guidelines are a set of recommendations that summarize the
lessons learned from the literature and empirical studies described in previous sections.
GaPSEE process is a recommended workflow for the planning, execution, evaluation,
and refinement of practical assignments in accordance to GaPSEE guidelines. GaPSEE
suggestions for implementations are a set of observations on specific activities of the
GaPSEE process that should be considered when instantiating GaPSEE in a practi-
cal assignment. The components are not prescriptive, but rather provide directions
on relevant aspects of the planning and execution of practical assignments in software
engineering education.

5.4 Structure and roles in GaPSEE practical

assignments

A practical assignment defined in accordance to GaPSEE assumes the form of a soft-
ware engineering project, with a goal that should be achieved by the development of
a tangible product. A tangible product is any work product that can be objectively

86
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

verified and evaluated. Examples of tangible products include software applications,
reports, specifications, documentation. Results such as acquisition of new knowledge,
development of skills, and discussions are not tangible products.

The project is organized in iterations with clear goals, that sequentially culminate
in the goal of the project. In each iteration there is a set of activities that should provide
students with directions for the achievement of the iteration goal. These activities
should allow students to have active voice, with room to decide and negotiate how to
complete each task. Fulfilment of activities is confirmed by providing evidences that
demonstrate their conclusion. The fulfilment of iterations is marked by the delivery of
partial artifacts that address the goals of iterations. Figure 5.1 illustrates the expected
structure of a practical assignment in accordance to GaPSEE.

Figure 5.1. GaPSEE project layout

This roadmap of activities is presented in the format of a game, in a competitive
environment. Project iterations are presented as levels, with tasks or quests (the activ-
ities) that are worth points and badges for ranking teams in a leaderboard. Each task
has specific deadlines, in order to motivate students to work in a structured schedule
(simulating the context of professional software development). The fulfilment of tasks
is validated by the lecturer with feedback, allowing and motivating students to make
improvements to their work products (chance to fail). The conclusion of levels takes
the form of a Boss Battle1, in which teams have to present their partial artifacts for
the lecturers to validate them in accordance to the iterations goals. By the end of the
project, the best ranked teams are rewarded with awards or recognition (e.g., position
in a hall of fame).

Lectures should be planned in order to provide the necessary support for the
execution of the project. Therefore, the project should be central to the organization
of the pedagogical sequence of topics addressed in lectures, synchronized with the

1Boss Battle is a game element that introduces a special challenge at the end of a game level, that
players have to overcome in order to complete that level [dos Santos et al., 2018a].

5.5. GaPSEE Guidelines 87

iterations of the project. Students work in teams, and should take protagonist role in
the execution of the assignment. Lecturers act in a supportive role, providing feedback
and helping teams in the pursuit of the project goals.

5.5 GaPSEE Guidelines

This section describes GaPSEE guidelines. These guidelines summarize lessons learned
from literature and empirical studies, discussed in previous chapters. These guidelines
are designed as recommendations for the conception of practical assignments in software
engineering education. However, these guidelines do not define directions on “how” to
systematically define a practical assignment, but general recommendations on “what”
should and should not be considered in the design of assignments using gamification and
PBL. Table 5.1 summarizes the 15 guidelines from GaPSEE, for which the justification
is given in the following paragraphs. The first version of these guidelines was presented
by Souza et al. [2019a].

GaPSEE-01: “The assignment should have significant real-world basis, grounded
in realistic problems or methods, in order to provide an interesting, concrete and con-
vincing example of software engineering practice”.

Justification: One of the guidelines of IEEE/ACM [2015] is that “the curriculum
should have a significant real-world basis”. Therefore, the goal is to use the “Realism”
characteristic of PBL [Blumenfeld et al., 1991], to introduce practical situations con-
textualized in real problems and/or real methods. Previous experiences (Chapter 4)
show that creating an immersive environment that simulates professional software en-
gineering activities is also observed as “realistic” by students, rather than only relying
in real problems that are often difficult to identify and introduce in classroom.

GaPSEE-02: “The project should balance realism (authenticity) with level of
control and viability, in order to allow the achievement of learning goals while remaining
significant”.

Justification: The literature [Harms and Hastings, 2016; Delgado et al., 2017;
Nguyen et al., 2013] and our previous experiences (Chapter 4) show that it is impor-
tant to carefully balance realism with control in the planning of practical assignment.
The use of real projects, with external stakeholders is interesting to provide more au-
thenticity to a project. However, the use of real projects results in additional effort
and risks related to ensuring the adequacy of the assignment to learning goals, to
the availability of these stakeholders, and to the stability of business rules and goals.
Therefore, realism is important, but cannot compromise the adequacy of the assign-

88
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

Table 5.1. GaPSEE Guidelines
ID Guidelines
GAPSEE-01 The assignment should have significant real-world basis, grounded in realistic

problems or methods, in order to provide an interesting, concrete and convinc-
ing example of software engineering practice.

GAPSEE-02 The project should balance realism (authenticity) with level of control and
viability, in order to allow the achievement of learning goals while remaining
significant.

GAPSEE-03 The assignment should be driven by a question or problem without a predeter-
mined solution.

GAPSEE-04 The assignment should result in a series of artifacts that culminate in a tangible
final product that addresses the driving question or problem.

GAPSEE-05 The assignment should use software process to contextualize software engineer-
ing practice and promote the use of appropriate and up-to-date tools, methods,
and standards.

GAPSEE-06 The assignment should promote the development not only of technical knowl-
edge, but also expose students to personal and professional skills related to
software engineering.

GAPSEE-07 The assignment should allow students to work collaboratively with peers and
lecturer to construct knowledge.

GAPSEE-08 Lecturers should act as knowledge facilitators, supporting students for the con-
clusion of the project and achievement of learning goals.

GAPSEE-09 The assignment should allow students to have significant autonomy of choice,
motivating continued and self-directed learning for the development of solutions
in context.

GAPSEE-10 Gamification should have software engineering as a central theme, tailored for
specific contexts.

GAPSEE-11 Gamification should systematically support the development of specific behav-
iors that converge to expected learning outcomes or that contributes for the
project execution.

GAPSEE-12 The gamification approach should provide students with directions for the ex-
ecution of the project and mechanisms to track their progress.

GAPSEE-13 The gamification approach should promote social recognition of the students
efforts.

GAPSEE-14 Gamification strategy and selection of game elements should be grounded in
clear objectives, aligned with learning goals of the assignment.

GAPSEE-15 The assignment rubrics should provide clear indication of what students should
focus on during the project execution, and the evaluation criteria should con-
sider some aspects of the gamification approach.

ment to its learning goals. As stated by Harms and Hastings [2016], “projects need not
to be too shallow and yet not be idealistic either”.

GaPSEE-03: “The assignment should be driven by a question or problem without
a predetermined solution”.

Justification: The anchoring question or problem of the project should allow
a variety of solutions, in order for the students to develop their own approaches to
answering the question or solving the problem [Blumenfeld et al., 1991].

GaPSEE-04: “The assignment should result in a series of artifacts that culmi-
nate in a tangible final product that addresses the driving question or problem”.

Justification: The development of a tangible product by means of the creation
of a series of partial artifacts is a key characteristic of PBL [Blumenfeld et al., 1991].
This characteristic is also interesting for the students to get used to a process-based
approach of software engineering. This process also allows addressing and linking

5.5. GaPSEE Guidelines 89

different learning topics in a coherent sequence.
GaPSEE-05: “The assignment should use software process to contextualize soft-

ware engineering practice and promote the use of appropriate and up-to-date tools,
methods, and standards”.

Justification: One of the guidelines of IEEE/ACM [2015] is that software process
should be central to the curriculum organization and to students’ understanding of
software engineering practice. Additionally, the concept of a process makes it easier for
lecturers to create a logical sequence of steps for the execution of the project addressing
the diverse topics in the course syllabus. However, the implementation of this guideline
should not conflict with the guideline GaPSEE-09.

GaPSEE-06: “The assignment should promote the development not only of tech-
nical knowledge, but also expose students to personal and professional skills related to
software engineering”.

Justification: According to IEEE/ACM [2015], graduates in software engineering
programs should be able to demonstrate not only technical knowledge, but also skills
related to professional knowledge, teamwork, design of solutions in context, trade-offs,
end-user awareness, and continuing professional development. Therefore, not only the
assignment should promote development of technical skills, but also expose students to
issues related to nontechnical aspects of software engineering, including management,
communication, and teamwork.

GaPSEE-07: “The assignment should allow students to work collaboratively with
peers and lecturer to construct knowledge”.

Justification: Teamwork is not only a key element in PBL [Blumenfeld et al.,
1991; Thevathayan, 2018] but also an expected skill for software engineers [IEEE/ACM,
2015]. Therefore, the assignment should encourage collaboration.

GaPSEE-08: “Lecturers should act as knowledge facilitators, supporting students
for the conclusion of the project and achievement of learning goals”.

Justification: In PBL, lecturers assume a supportive role, as knowledge facili-
tators, while students assume protagonist role on their learning process. This way,
the assignment should encourage students to develop self-learning skills, with lectur-
ers supporting the students with insights on how theory could be applied to achieve
goals. For instance, Delgado et al. [2017] suggest that technical topics included in the
syllabus should support the development of the project and should be covered early in
the course.

GaPSEE-09: “The assignment should allow students to have significant auton-
omy of choice, motivating continued and self-directed learning for the development of
solutions in context”.

90
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

Justification: Blumenfeld et al. [1991] state that in PBL, project should allow
students to have active voice on how to achieve their goals and negotiate some aspects
of the project. This is important for developing self-directed learning skills and for mo-
tivating students with freedom to use the technologies they desire or feel comfortable.

GaPSEE-10: “Gamification should have software engineering as a central theme,
tailored for specific contexts”.

Justification: Literature on gamification of software engineering education re-
vealed two approaches for using gamification in software engineering education [Souza
et al., 2018]: the gamification of the classroom experience, and the gamification of
specific software engineering practices. While the first is concerned in motivating and
engaging students in classroom activities, the later is more concerned in promoting the
use of specific software engineering abilities and practices, or in the development of
specific skills. We have observed that the later approach is better suited for supporting
practical approaches and PBL. However, it requires customization of the gamification
approach to the specific courses or projects.

GaPSEE-11: “Gamification should systematically support the development of
specific behaviors that converge to expected learning outcomes or that contributes for
the project execution”.

Justification: In the study described in chapter 4 and in some studies described
in chapter 2 [Akpolat and Slany, 2014; Singer and Schneider, 2012; Long et al., 2011],
gamification was used as a device to motivate students in conforming to desired be-
haviors, such as the more frequent use of specific tools, acquiring the habit of applying
specific techniques, or being more participative in the classroom. Gamification was
also used as a strategy to induce learners to use specific software engineering abilities
or practices, by promoting competition or systematically rewarding learners as they
performed expected actions or showed expected behaviors. Therefore, gamification is a
relevant strategy to support students in developing an appreciation of the importance
of continued learning and in acquiring habits for professional software development
[Souza et al., 2018].

GaPSEE-12: “The gamification approach should provide students with directions
for the execution of the project and mechanisms to track their progress”.

Justification: Martin et al. [2014] consider that the ill-structured nature of prob-
lems is one of the cornerstones of PBL and one of the main sources of difficulties in
using PBL. In our previous experiences, gamification provided the students with clearer
goals they could use to plan and track their progress in the form of achievements, quests
and badges (chapter 4). In the study described in chapter 3, badges were perceived
as secondary goals for student to strive for in addition to approval in the course, and

5.6. GaPSEE Process 91

elements such as leaderboards provided additional instruments for students to compare
their performance with classmates. Therefore, gamification should be used to define a
roadmap of activities in a game format.

GaPSEE-13: “The gamification approach should promote social recognition of
the students efforts”.

Justification: Gamification should be used to support systematic recognition of
students behaviors in the form of feedback, and to increase the social status of students,
as they work their way to the top positions of leaderboards and hall of fame in the
course.

GaPSEE-14: “Gamification strategy and selection of game elements should be
grounded in clear objectives, aligned with learning goals of the assignment”.

Justification: As described in guideline GaPSEE-10, GaPSEE adopts gamifica-
tion as an instrument to provide incentives for the development of specific behaviours
and skills, and it requires appropriate tailoring for each context. However, it is impor-
tant to define goals for gamification. For instance, gamification can be used to increase
students confidence in performing tasks, for motivation, for competition. Therefore,
it is important to define the purpose of gamification and define only mechanics that
support these goals. The selection of game elements that are not focused or aligned
with the expected outcomes of the assignment, may lead to students’ overhead, or to
deviation of the focus to the game and not to learning aspects.

GaPSEE-15: “The assignment rubrics should provide clear indication of what
students should focus on during the project execution, and the evaluation criteria should
consider some aspects of the gamification approach”.

Justification: Defining and providing students with objective evaluation criteria
is a valuable resource for keeping students from feeling lost or confused about what
should they focus [Fagerholm and Vihavainen, 2013]. The assignment rubrics should
clearly define how the performance on the gamification aspect of the assignment is
translated to grades, and what are the boundaries between grades and gamification
scores.

5.6 GaPSEE Process

GaPSEE process is a suggested workflow of activities to support the planning, exe-
cution, evaluation and refinement of practical assignments, in accordance to GaPSEE
guidelines. This process adopts a PDCA (Plan-Do-Check-Act) cycle, for three dimen-
sions: the assignment, the project, and the gamification. The assignment dimension

92
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

Figure 5.2. Expected actions for each component of GaPSEE

is related to the definition of the learning goals of the practical activity. The project
dimension is related to the planing of the projects goals and activities. And the gam-
ification dimension is related to the definition of the game elements and mechanics to
support the assignment. Figure 5.2 illustrates PDCA phases for each dimension.

The GaPSEE process streamlines these activities in a structured process, pre-
sented in Figure 5.3. The process is composed of four phases: Setup, Execution,
Evaluation, and Refinement. However, none of these phases and their activities are
mandatory. This process is a suggestion of sequential steps in order to systematically
apply the recommendations proposed in GaPSEE. The following subsections describe
the goals, expected actions and expected outcomes of the activities for each phase.

5.6.1 Setup phase

The goals of this phase are to: define the expected learning outcome of the educational
project; plan a software engineering project from both a PBL and a Gamification
perspective; and prepare useful resources for the assignment execution.

The Setup Phase includes the following activities: “Define Learning Goals”, “Plan
the Educational Project”, “Establish a Gamification Strategy” , and “Prepare Re-
sources”.

The learning goals or outcomes define what knowledge is expected for the stu-
dents to learn or skills to develop. The educational project is the mean for the students

5.6. GaPSEE Process 93

Figure 5.3. GaPSEE process

to achieve the learning goals. The gamification strategy is the form of delivering the
project, focusing on enriching the learning experience. The following paragraphs de-
scribe details of each activity.

Define Learning Goals: The goal of this activity is to plan the expected learn-
ing outcomes for the educational project. Therefore, it is important to define (i) which
topics of the course syllabus should be addressed in the assignment; (ii) expected
learning outcomes, both in terms of specific skills related to the learning topics of the
course, and general skills relevant for software engineering professionals; and (iii) a
driving question or problem, to foster inquiry along the assignment.

Plan the Educational Project: The goal of this activity is to define a software
engineering related project to address the driving question or problem, and the learning
goals of the assignment. This includes: defining the goal and scope of the project;
planning the people involved (in case of external stakeholders); and defining iterations
and activities for the project (a project roadmap).

Plan the Gamification Strategy: The goal of this activity is to plan how gam-
ification is going to be incorporated in the assignment. Therefore, this activity includes:
definition of goals for the gamification; selection of game elements; and definition of
game mechanics and dynamics.

Prepare Resources: The goal of this activity is to prepare all necessary ma-
terials for the execution of the assignment (including tools, environments, handout

94
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

materials and rubrics). We recommend that at least the following information should
be made available for students in anticipation to the start of the assignment:

• Assignment instructions: Clear information about the goal of the assignment,
learning topics involved.

• Project schedule and plan: The details on the scope of the project, activities,
deadlines, milestones, stakeholders, expected results, etc.

• Game rules: Details on the mechanics of the game, regarding how participants
are expected to interact with instructors, what are the goals (tasks, challenges,
achievements), how to deliver evidences of completed tasks, how to score points,
what are constraints, and other relevant information for students to know how
to behave in the game.

• Evaluation Rubrics: Objective details on the rubrics to be used for the evaluation
and grading of students. Special attention should be given to how gamification
and PBL relate to students’ grades. The open nature of PBL activities may be
confusing for students. As students direct their activities based on the given
assessment criteria, the assessment design plays a key role in what students will
focus on Fagerholm and Vihavainen [2013](GAPSEE-15). It is also important
to link the gamification approach to the evaluation strategy, in order to provide
students with converging incentives for pursuing desired outcomes (GAPSEE-16).

5.6.2 Execution phase

The goals of this phase are to: kick-off the project; guide and support students to
achieve learning goals; guide and support students in the project execution; reinforce
the execution of the game mechanics; review the status of the assignment, project and
gamification approach; and take corrective actions when needed. The activities of this
phase are:

Start the Assignment: The goal of this activity is to perform the kick-off
of the project, describing the rules of the assignment and getting the commitment of
students and relevant stakeholders. For the assignment, it is important to communicate
the learning goals, the driving question, and the evaluation rubrics. For the project,
it is important to communicate the goals, the schedule, the people involved (and their
roles), and details about the process (e.g., mandatory tools, communication channels,
and standards). For the gamification approach, it is important to detail the mechanics
of the game and, if applicable, how the game mechanics relate to evaluation rubrics.

5.6. GaPSEE Process 95

Support the Execution of the Assignment: The goal of this activity is to
monitor the status of the project, to track the students’ progress, to provide guidance
for students towards achieving expected learning outcomes, and to sustain gamification
along the assignment.

Evaluate Students Activities: The goal of this activity is to review the arti-
facts produced by students and to provide relevant feedback.

Take Corrective Actions: The goal of this activity is to perform changes in the
assignment, project or gamification mechanics during the execution of the assignment
to address problems and deviations. In case of problems or deviations in the assignment
execution, corrective actions may be necessary in order to ensure the achievement of
the expected learning outcomes. It is important to negotiate and communicate any
changes in the assignment, project, and gamification approach to all parties involved
(students, instructors, and external members).

Finish the Assignment: The goal of this activity is to conclude the assignment,
with proper reflection on the outcomes of the project.

5.6.3 Evaluation phase

The goal of this phase is to evaluate the outcomes of the assignment in the perspective
of students and instructors, regarding learning outcomes, project results, and gamifi-
cation goals. This activity is not related to course evaluation or grading process, nor
the instructors’ assessment of students specific activities. This activity is intended to
evaluate the level of success of the assignment, and possible causes for positive and
negative outcomes, for improvements for future replications of the approach. There-
fore, it is important to collect and analyze data on the perception of all stakeholders
of the assignment (students, lecturers, and external members). Therefore, the activi-
ties of this phase should be executed after the conclusion of the course or assignment,
because: (i) only at the end of the course, the lecturer could have insight on the stu-
dents’ accomplishment of learning outcomes; and (ii) students could provide authentic
opinion on the course without fear of compromising their grades or performance in the
course. The activities of this phase are:

Collect Data: The goal of this activity is to prepare and apply appropriate
instruments to collect data about the performance and perception of all stakeholders
involved in the project about the assignment execution and results. This includes
students, instructors, and external members. The data to be collected should be in
accordance to definitions of the planning phase.

Analyze Data: The goal of this activity is analyze the data collected in the

96
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

previous activity and identify possible lessons. The instructors should use appropriate
quantitative or qualitative methods to evaluate the data. For qualitative data obtained
from questionnaires, interviews and post-mortem analysis, techniques from ground the-
ory (such as open coding) may be useful to identify key information from unstructured
responses. For objective answers, descriptive statistics may be suitable to describe and
graphically present interesting aspects of the data [Wohlin et al., 2012].

Document Results: This activity aims to document the lessons learned from
the analyzed data to provide inputs for future instalments of the assignment (in case of
recurring courses), for planning new assignments for future courses, or for maintaining a
data set for benchmarking. Additionally, this phase may result in reports for academic
or educational communities. Therefore, it is important to document the settings used
for the assignment (as defined in the “Setup Phase”) for long term analysis of changes
that lead to improvements in the assignment evaluation.

5.6.4 Refinement phase

The goal of the “Refinement Phase” is to plan adjustments for future assignments based
on the lessons learned. This phase is composed of a single activity “Make adjustments
to the assignment”, in which the instructors should review the learning goals, evaluation
rubrics, project details, and gamification elements.

The lessons documented in the previous phase may indicate the need for adjust-
ments of the assignment for future installments. Possible signs of this necessity are:
observed learning outcomes below the expected goals, too much effort being directed to
secondary activities in the project, recurrent failure in meeting deadlines or addressing
the project scope, low participation of external stakeholders, etc.

Therefore, it is suggested that, among other factors, the assignment is reviewed re-
garding: learning goals; evaluation rubrics; project stakeholders and their roles; project
process and deadlines; support tools and environments; gamification mechanics, dy-
namics and aesthetics.

5.7 Suggestions for implementation

This section describes general considerations about each phase of the GaPSEE process,
which may be useful for the implementation of GaPSEE in software engineering related
courses. These considerations are exemplified by referencing a pilot study executed in
an introductory software engineering course (“PLT case”, henceforth).

5.7. Suggestions for implementation 97

5.7.1 Planning the assignment

In the activity “Define Learning Goals” (Section 5.6.1), the assignment should be
planned considering two types of skills to be developed by the students, which we
refer as “specific skills” and “general skills” (GAPSEE-06). The specific skills are di-
rectly related to topics of the course syllabus that are planned for the assignment.
These skills are related to technical knowledge. For instance, for the PLT case, these
specific skills were related to: software requirements elicitation; software requirements
specification; software requirements verification and validation; software architectural
design; software construction planning; managing software construction; detailed de-
sign and coding; debugging and testing; software test planning; and software testing
techniques.

The general skills are related to personal skills expected from software engineers.
For instance, in the PLT case, we considered the qualities desired for software engi-
neering graduates (ACM/IEEE, 2015):

Professional Knowledge: Show mastery of software engineering knowledge
and skills and of the professional standards necessary to begin practice as a software
engineer.

Technical Knowledge: Demonstrate an understanding of and apply appropri-
ate theories, models, and techniques that provide a basis for problem identification and
analysis, software design, development, implementation, verification, and documenta-
tion.

Teamwork: Work both individually and as part of a team to develop and deliver
quality software artifacts.

Design Solutions in Context: Design appropriate solutions in one or more ap-
plication domains using software engineering approaches that integrate ethical, social,
legal, and economic concerns.

Perform Trade-Offs: Reconcile conflicting project goals, finding acceptable
compromises within the limitations of cost, time, knowledge, existing systems, and
organizations.

End-User Awareness: Demonstrate an understanding and appreciation of the
importance of negotiation, effective work habits, leadership, and good communication
with stakeholders in a typical software development environment.

Continuing Professional Development: Learn new models, techniques, and
technologies as they emerge and appreciate the necessity of such continuing professional
development.

The driving question guides the inquiry of the assignment, leading students to

98
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

reflect on practical aspects of the adoption of the theory from the topics of interest
along the development of the expected outcomes. This driving question or problem is
the theme or anchor of the assignment, and the reference to support the selection of
relevant projects for the course. For the PLT case, the driving question was: How can
we systematically design and develop a software product to meet customer needs?. The
defined question leads to outcomes that are within the scope of the course, however
the approaches to be taken and the results should not be predefined (GAPSEE-03).
A counter example would be to ask students to apply a specific bad smell detection
tool against a controlled data set and objectively evaluate the precision of students re-
sponses. Although the later assignment would fit the course, it does not take advantage
of the constructivist and explorative ideas of PBL, giving little room for reflection.

Table 5.2 summarizes the planning of the assignment for the PLT case. This
assignment was planned to be executed in the entire duration of the course.

Table 5.2. Learning goals of the assignment in PLT case.

Driving Question "How can we systematically design and develop a software product to meet customer
needs?”

Topics of Interest Software Requirements; Software Design; Software Construction; Software Testing.

Specific SE Skills Software Requirements: Software Requirements Elicitation; Software Require-
ments Specification; Software Requirements Verification and Validation.

Software Design: Software Architectural Design.

Software Construction: Software Construction Planning; Managing Soft-
ware Construction; Detailed Design and Coding; Debugging and Testing.

Software Testing: Software Test Planning; Software Testing Techniques.

General SE Skills Professional Knowledge: Understand and apply practices and tools from
professional software development.

Teamwork: Plan and execute activities in teams of 3 to 5 students. Use tools to
support collaborative work (version control systems and project management tools).

Design Solutions in Context: Develop a software product considering
aspects related to application domain, business domain, and specificities from
customer needs.

Perform Trade-Offs: Prioritize requirements and critically analyze tech-
nologies and design strategies, balancing cost (effort) and quality.

End-User Awareness: Interact with requirement provider to understand,
validate, and negotiate functional and non-functional requirements.

Continuing Professional Development: Investigate state-of-the-art tools
and methods for software development.

When defining the learning goals of the assignment, relevant source materials may

5.7. Suggestions for implementation 99

be considered, such as: international or local curricular guidelines, bodies of knowledge,
and reference models. For instance, SE 2014 [IEEE/ACM, 2015] provides recommenda-
tion on topics and skills that should constitute an undergraduate software engineering
education. Similarly, SWECOM [Ardis et al., 2014] provides a comprehensive body of
knowledge for skills and competences that are expected from software engineers (for
instance, the specific knowledges in the PLT case are derived from SWECOM). Finally,
best practices bodies of knowledge and industry reference models, such as SWEBOK
[Bourque et al., 2014] and CMMI [Team, 2010], may also provide directions on impor-
tant topics and skills for software engineers.

5.7.2 Planning the project

According to [Bender, 2012], PBL may be defined as using authentic, real-world
projects, based on a highly motivating and engaging question, task, or problem, to
teach students academic content in the context of working cooperatively to solve the
problem. Therefore, in GaPSEE, the main PBL principle to be considered is the
authenticity of PBL projects, in order to motivate learning through scenarios that re-
sembles real contexts for software engineering practice (GAPSEE-01). Projects should
be grounded in the real world. It means that it is interesting that the project fits in
one or more of the following criteria:

• Authentic Problems: The project goal is anchored in real-world problems. It may
be designing a software to address the problem of a real organization, assessing
the quality of a real product or process, or creating guidelines for a problem from
the literature.

• Authentic stakeholders: The project has external stakeholders actively partici-
pating in the process. It may be a real customer providing requirements, a real
customer to validate a prototype, an open-software community to evaluate pull
requests, or dealing with real end-users of an application.

• Authentic methods: The project uses real world process, tools or standards,
simulating the professional environment. It may be a project that requires a
process in adherence to specific reference models (e.g., CMMI for development),
the adoption of community rules for contributing to an open-source project, or
simulation of processes used in real professional environment.

Lecturers should consider the balance between authenticity and control of the
assignment (GAPSEE-02). Addressing real problems may limit the coverage of topics

100
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

of the course syllabus that are relevant for the project. Using external stakeholders
for providing requirements or validation of work products may lead to risks related
to availability and stability of business rules. However, relying in fictitious projects,
may lead to decreased immersion. Therefore, we suggest that lecturers contextualize
the projects in authentic problems that are relevant for students, and focus on the
use of real methods, processes and tools for the execution of the project, simulating
the professional practice of software engineering. In case of external stakeholders, we
suggest that lecturers act as interface between them and the students.

The project goal must be aligned to the driving question of the assignment. In
accordance to the expected characteristics of a PBL project, it has to result in a
tangible product (GAPSEE-04). Therefore, the project goal must drive students to
the development of a product, and, during its execution, expose learners to situations
that encourage them to investigate the relevant learning topics.

A “tangible product” is a concrete result composed of one or more artifacts created
by the learners. In the context of software engineering, this final product may be
a software product, a software specification, a set of guidelines, reports, and other
relevant artifacts related to the software engineering practice. It means that the goal of
the project cannot be “learning”, “understanding”, or similar abstract and immeasurable
achievements, as those goals are part of the expected learning outcomes. The project
has to be the instrument to allow achieving these learning goals, but it has its own
goal in the form of a final product that addresses the driving question of problem of
the assignment.

In order to provide guidance for the development of the project, GaPSEE suggests
instructors to provide a set of desired activities for students. The idea is that these
activities provide a roadmap for the project in the form of a light process. Therefore,
these activities should not be strict tasks with rigid predefined outputs. Instead, these
activities should preferably give students room to reflect, plan and execute them with
varied approaches (GAPSEE-09). For instance, an activity such as “identify customer
needs” is open enough to allow students to investigate how to collect the customer
requirements and how to document it. In contrast, the activity “interview the customer
to elicit needs” with a requirement document template provided for students, may limit
the students opportunity to negotiate, investigate and plan the activity. Additionally,
the first scenario provides more room for students and instructors to interact and reflect
on different approaches. We are aware that some activities cannot have this level of
openness, however, it is interesting to pursue a balance.

In accordance to GAPSEE-04, in order to create a tangible product, the project
may result in a series of partial artifacts. However, these artifacts are not necessarily

5.7. Suggestions for implementation 101

mapped one to one with activities. We suggest that the project should be planned
in phases or iterations with a set of activities. Each phase or iteration results in a
partial artifact that is relevant for the end product. The idea is that these phases or
iterations (i) provide students with a notion of a process, (ii) provide a roadmap for
the project, and (iii) provide control points or milestones to evaluate and reflect on the
status of the project (GAPSEE-05). However, depending on the size and duration of
the project, it may not be viable to segment the project in more than one iteration.
In our experiences, we have always opted for using three iterations, which has been
successful.

For the PLT case, the goal of the project of the teams was “the development of a
web application to support management of practical assignments”. Table 5.3 describes
the goal and expected artifacts of each iteration of the project. Table 5.4 exemplifies
the activities for one iteration of the PLT case.

Table 5.3. Iterations of the PLT case
Goal Expected outcome

1. Specify project needs and plan the project. 1. Requirement specification.
2. Selection of support tools.
3. Project baseline.

2. Design, implement and test the first increment of the
project.

1. Software design description.
2. Software increment.
3. Verification reports.
4. Project baseline.

3. Design, implement and test the second increment of the
project.

1. Revised software design description.
2. Software increment.
3. Verification reports.
4. Project baseline.

Table 5.4. Tasks of the second iteration of the PLT case
ID Task
#18 Negotiate sprint backlog.
#19 Select development technologies.
#20 Design the high-level structure of the system.
#21 Describe an architectural design pattern for the system.
#22 Document the detailed design of the system.
#23 Suggest 2 design patterns for the system.
#24 Develop software in accordance to requirements and detailed

design.
#25 Establish and apply project standards for coding.
#26 Document code through comments.
#27 Define commit rules for Git in the project Readme file.
#28 Support traceability between requirements and backlog items.
#29 Support and maintain traceability between commits and backlog

items.
#30 Deliver at least 60% of the sprint backlog.
#31 Create test cases.
#32 Test the software and report defects.
#33 Report project status.
#34 Document project baselines.
#35 Validate the product increment.

102
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

5.7.3 Planning gamification

As mentioned before, gamification can focus on classroom experience or on specific
software engineering practice behavior. In this activity of GaPSEE, the focus is on the
second approach. Therefore, the design of the gamification approach should incorporate
software engineering as the main theme, and it should be tailored to the specific context
of the educational project planned in the previous activity (GAPSEE-10). Despite the
fact that gamification introduces a ludic aspect to the serious context of education,
grounding it on the specifics of software engineering practice, may not only create a
more attractive assignment, but also help to make it more meaningful.

Therefore, the gamification approach should promote concepts and principles of
software engineering, and reinforce the use of specific practices and skills that are in
accordance to the project activities and to the desired learning outcomes. The gami-
fication approach should support instructors in guiding students on how they should
behave and execute activities, by systematically rewarding and acknowledging desired
behaviors (GAPSEE-11). For instance, gamification could promote professionalism by
rewarding students that meet deadlines accordingly, or who conform to specific stan-
dards or quality criteria in the development of artifacts.

We suggest that lecturers should define goals related to feelings that are expected
to be instilled in students during the assignment. These goals are similar to the con-
cepts of “Aesthetics” in the MDA (Mechanics, Dynamics and Aesthetics) framework
[Hunicke et al., 2004]. In MDA, game design is organized in three elements: “Me-
chanics” represent structured use of game components that create the game rules;
“Dynamics” are the interactions that emerge from mechanics during gameplay; and
Aesthetics are the emotions that result from the gameplay. Therefore the first step is
the definition of aesthetics or gamification goals (GAPSEE-14). In our previous ex-
periences (including the PLT case), we considered the following goals for gamification:
challenge, confidence, collaboration, engagement, fun, learning, motivation, relevance,
recognition, and satisfaction.

Based on previous experiences and findings from the literature, we propose an
initial set of game elements we found relevant for the achievement of these goals (Table
5.5). However, as a framework, this is not an exhaustive list of game elements nor are
these elements mandatory. Instructors are free to adapt these elements to their needs
or preferences, and to include different elements that are not present in this initial set.
In case the goal is to create a more generalist framework to support gamification, the
following resources may be useful: “Six Steps to Gamification” or 6D Werbach and
Hunter [2012]), 5H2W [Klock et al., 2016], or Octalysis [Chou, 2015].

5.7. Suggestions for implementation 103

Table 5.5. GaPSEE suggestion of game elements to achieve gamification goals.

Element Description Goal
Quests,missions,
or tasks

Set specifics objectives that users must complete in
order to progress in the game or to earn rewards.

Challenge, Confidence, Learning,
Engagement, Relevance.

Levels A section or part of a game with specific goals. A
progress unit in the game.

Challenge, Confidence, Learning,
Engagement, Relevance.

Points Reward for the accomplishment of specific actions
or achievements.

Engagement, Fun, Motivation,
Recognition, Satisfaction.

Leaderboard Visual representation of the team position in a
ranking system, based on any metrics related to
the progress in the game (e.g., points, badges, com-
pleted levels).

Engagement, Fun, Motivation,
Recognition, Satisfaction.

Time pressure Time constraints related to the execution of actions
in the game.

Challenge, Collaboration, Engage-
ment, Fun, Motivation, Relevance,
Satisfaction.

Feedback Immediate response of the game in relation to
player actions. Used to notify players of accom-
plishing any relevant action in the game.

Confidence, Collaboration, Learn-
ing, Motivation, Relevance.

Rewards Recompense, award or prizes related to accom-
plishment of specific actions or achievements in the
game.

Collaboration, Engagement, Fun,
Motivation, Recognition, Satisfac-
tion.

Badges Reward in the format of visual representation of
the accomplishment of specific actions or achieve-
ments.

Fun, Motivation, Recognition, Sat-
isfaction.

Boss Battles Specially difficult challenges, usually related to the
conclusion of levels in games.

Challenge, Engagement, Fun,
Learning, Motivation.

Hall of Fame Visual recognition of the top players in the game. Fun, Motivation, Recognition, Sat-
isfaction.

Narrative A story to contextualize gamification. Collaboration, Engagement, Fun,
Learning, Motivation, Relevance.

These game elements were organized in mechanics and dynamics tailored to the
specific context of software engineering education. These mechanics and dynamics are
organized in five aspects of the assignment, that should be considered when designing
the gamification approach: the context or scope of the project; the process; rewards;
feedback; and social aspects.

For the “context or scope of the project” dimension, instructors might find rele-
vant to create a fictitious narrative to contextualize the project, especially when there
is not a real customer interacting with the students. Therefore, the game element
“Narrative” can be used to create a more immersive environment for the project, con-
sequently creating a more convincing context for competition. For instance, in the
PLT case, the project was contextualized as a stage of a fictitious bidding process to
select a provider for an educational organization, where teams act as small software
companies competing for the contract. Therefore, we introduced a narrative to foster
the competition between teams, and to motivate the collaboration between students.

To organize the process as a game (process dimension), the project iterations may
be presented as game levels, grouping a set of activities and having a clear goal. In
each level, the activities planned in the “Plan the educational project” activity can be
defined as tasks, missions or quests, each one with specific deadlines (time pressure).

104
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

These tasks can have different levels of challenge, and can be described as mandatory
(main quests) or optional (side quests). By the end of each level, the teams have to
obtain the approval or validation of the lecturer, in a presentation. This “confrontation”
can be enacted as a Boss Battle. Therefore, in each level, the students have to plan
which tasks they are going to execute and how to complete them, giving them choices
and reinforcing reflection and trade-offs by having students planning how to progress
in the project. These mechanics also enable a sense of goal-orientation and the ability
to measure the progress in the project/game (GAPSEE-12). These dynamics can be
augmented if supported by visual indications of progress, such as progress bars or
navigation maps with indication of the status of the project. Figure 5.4 shows the
tasks for the first level of the PLT case.

Level 1: Requirements and Planning
Week 1 Week 2 Week 3

Create a Git-Hub
project

Define the project scope

Create user interface
prototypes

Define policies for
the use of Git-Hub
(regarding access

rules and directory
structure)

Specify system requirements

Define the project
development life-cycle

Elicit customer needs

Establish verification criteria
for the requirements

Define the product backlog
in a management tool

Define functional
and non-functional

requirements

Define policies for the use of
Git-Hub (regarding access

rules and directory
structure)

Create a Project Baseline

Figure 5.4. First level of the assignment in PLT case.

Rewards create an instant sense of achievement. They represent benefits a user
gets for completing some action or reaching some achievement. Rewards are the most
basic mechanics to provide positive feedback for players when they are doing the right
expected actions in games. Points, badges, physical goods, and in-game currency are
all examples of rewards. In GaPSEE, we strongly recommend the use of points and
badges to create a more entertaining and game-like experience for the assignment. Not
only for competing against others, these elements may also provide students with the
opportunity to create personal goals and compete with themselves.

Badges and points are specially recurring game elements in gamification ap-
proaches. In GaPSEE they can be used to reward the successful conclusion of tasks. For
instance, in the PLT case, each task was associated to a trophy (example of badge), with
different tiers associated to their complexity (bronze for easy tasks, silver for medium
tasks, and gold for difficult tasks). Therefore, students could track the progress of
all teams by identifying which trophy each team had obtained. Each trophy was also

5.7. Suggestions for implementation 105

associated to points, that was used as a score system to rank teams in a leaderboard.
These mechanics supported competition, completion, and progress dynamics.

For the “Feedback” dimension, we suggest using feedback as incentive for students
to execute tasks in time. In PLT case, the conclusion of tasks were not graded, only
the artifacts and presentation delivered at the end of each level. However, these tasks
guided students towards the development of these artifacts and presentations in accor-
dance to expected criteria for the evaluation. Therefore, the lecturer provided feedback
for teams each time they completed tasks in time. The feedback included confirmation
of the appropriate execution of tasks (which would lead to appropriate artifacts by
the end of the level) or suggestions for improvements. Consequently, this mechanic
provided students with the chance to fail (i.e., students could retry, considering the
improvements suggested by lecturer’s feedback), and systematic incentive to follow the
project schedule. The adoption of badges, progress bars, notifications, scores and other
components also contribute for providing feedback on the students’ actions. The goal
is to create an environment where students have some freedom to experiment, creating
a feeling of confidence.

In the “social recognition” dimension, leaderboards, scoreboards, and hall of fame
are elements that can promote social status among students and reinforce competi-
tion dynamics. In our previous experiences, these components also helped students
in understanding their performance in contrast to their peers, and motivated them to
try to improve their performance. Badges are also another mechanism for students
to showcase their achievements and progress in the project, leading to the feeling of
social recognition. Social recognition may provide an important motivator factor for
students (GAPSEE-13). However, it is important to remember that, in an educational
environment, competition may not please everyone. For instance, students with lower
performance may feel demotivated or even embarrassed. The use of avatars and nick-
names or alias, may help introducing some level of anonymity. Figure 5.5 shows the
weekly leaderboard used in the PLT case.

5.7.4 Executing the assignment

The instructors must periodically assess the achievement of the learning goals. Gary
[2015] points that, given the open-ended nature of PBL activities, each student has
different learning experiences, and no two projects or teams are the same, however the
learning goals are the same for everyone. Therefore, students need the right amount of
guidance towards learning outcomes, and tracking their progress is difficult.

As suggested in the PBL method, the project should take a central role in the

106
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

Figure 5.5. Leaderboad in the PLT case.

learning process, therefore, we suggest instructors to use classroom time to explore the
assignment project in collaboration with the students (GAPSEE-07). Classroom time
can be used to provide hands-on guidance in the use of specific techniques and tools, or
at least provide specific examples using the students’ projects when lecturing specific
topics that students are expected to apply on their assignments.

During the assignment execution, the instructors must reinforce the students’
commitment to the activities of the project and to the evaluation rubrics of the as-
signment. The first provides students with clear goals for what they have to do to
advance in the project, and the later provides students with objective criteria about
how they are supposed to advance in the project (GAPSEE-15). As a facilitator, it
is the instructor’s responsibility to motivate students about the importance of (“why”)
the actions they are performing (GAPSEE-08).

As the project plays a central role in the assignment (and in the learning process,
if adopting PBL), it is important to check its progress continuously. Instructors should
periodically check if the project is still viable, i.e., if the students are able to develop
the final product in the planned schedule, if the tools and processes are adequate, and
if there is still commitment from the parties involved. Changes may be necessary in
order to ensure that the project is adequate for the assignment purpose, for the people
involved, and for the time available.

5.7. Suggestions for implementation 107

In GaPSEE, we suggest that the instructors guide students towards the identifica-
tion of evidences of performing the activities, instead of relying in providing predefined
documents templates for students to fill or strict format of artifacts to be produced.
This suggestion comes from our previous experiences (Chapter 4) where we observed
that students associate documentation to beadledom. Additionally, by giving freedom
to the students to choose how to demonstrate the completion of an activity, we are also
giving them more room to reflect on what strategy they will use to actively keep track
of their activities. The goal is to induce students to think more about the activity they
are doing, than in the manual process of filling documents. Evaluating these evidences
periodically allows instructors to understand the progress of students project, and to
anticipate misinterpretations or difficulties students may face during iterations. The
number of activities successfully completed allows instructors to quantitatively track
the progress of the project. The control points at the end of each iteration allow in-
structors to qualitatively assess the status of the project and to evaluate the students
in relation to the learning outcomes.

Giving feedback to students is very important in GaPSEE, as it allows students
to continually improve and to reflect about their mistakes. However, the instructors
may have time restrictions, specially in large classes, to continually provide feedback
for all activities performed by students, in timely manner. Gamification mechanics may
be used to limit the number of feedback a team is allowed to have for each activity,
or to limit the time-frame in which the opportunity to receive feedback is possible.
Therefore, students are rewarded for the good behavior of meeting deadlines.

However, we advise instructors not to convert gamification points directly into
grades. The progress of students in the gamification aspect of the assignment should
give them indication of how they are progressing in the right direction. We advise
lecturers to consider varied criteria to evaluate students, as teams and individually, such
as participation, collaboration, demonstration of technical or professional knowledge,
and others (GAPSEE-15).

By the end of each phase or iteration, the lecturer should promote reflection on
the results. These milestones are important for assessing the status of the project.
From the instructor perspective, it is a major opportunity to evaluate the progress
of students and take corrective actions in the assignment structure, if needed. For
students, it is a relevant opportunity to share experiences with classmates and with
instructors, and to receive objective feedback on the progress of their projects. Each
phase ends with a reflection activity planned as a presentation and a discussion.

From the gamification perspective, it is important to ensure the execution of the
game mechanics and to monitor if the expected dynamics are emerging from these

108
Chapter 5. A Framework for the Gamification of Project Based

Software Engineering Education

mechanics. In case of the use of software tools to support specific game elements and
mechanics (such as management of the point system, handling and keeping track of
badges, or maintaining a leaderboard), this activity requires little effort. However, in
case of manual approaches, this activity may require some additional attention.

Some mechanics may not work properly as intended, therefore instructors need to
observe mechanics that are often violated, forgotten, that are difficult to implement, or
that are causing unexpected dynamics that are leading students to negative outcomes.
Control points of the assignment should be used to discuss problems in the gamification
mechanics and reflect on the possibility of changing some rules.

In case of problems or deviations in the assignment execution, corrective actions
may be necessary in order to ensure the achievement of the expected learning outcomes.
It is important to negotiate and communicate any changes in the assignment, project,
and gamification approach to all parties involved (students, instructors, and external
members).

5.8 Final remarks

This chapter presented GaPSEE, a framework to support lecturer in the planning and
execution of practical assignments for software engineering education using principles
of PBL and gamification. The framework is composed of guidelines, a process, and
suggestions for implementation. The design of the framework is intended to use the
best qualities of PBL and gamification to address the challenges of contextualizing
practice in software engineering education. PBL is a comprehensive method to in-
troduce practice in classroom, engaging students in team activities, and encouraging
the development of both technical and personal skills. However, the adoption of PBL
suffers from some challenges. Similarly, gamification is a recent trend that requires
considerable effort to adapt to each context appropriately.

Therefore, this framework proposes that PBL and gamification can be used to
compliment each other: PBL provides meaningful contextualization for software en-
gineering practice in educational environment, while gamification adds systematic ac-
knowledgement and feedback for students actions, providing motivation, guidance, and
confidence in the learning process. Consequently, the novelty of this framework lies on:
(i) proposing a set of recommendations for the adoption of PBL and gamification con-
sidering the specific characteristics of software engineering education; (ii) using PBL
and gamification complementing each other; and (iii) proposing a reusable structure for
practical assignments in a game format, preserving relevant concepts and philosophy

5.8. Final remarks 109

of PBL.
In this chapter, the description of GaPSEE is focused on its core components

and recommendations. However, a practical guide for the use of this framework is in
continuous development at http://www.gapsee.com.br .

In the following chapter, this framework is evaluated in a series of case studies,
in the perspective of lecturers and students with respect to its adequacy in defining
practical assignments for software engineering education.

Chapter 6

Evaluation of the Proposed
Framework

This chapter describes the planning, execution and analysis of a set of case studies
to evaluate practical assignments defined in accordance with the recommendations of
GaPSEE. The evaluation was based on case studies with four professors from three
federal universities in Brazil. These lecturers applied GaPSEE to setup and execute
practical assignments using PBL principles and gamification in five distinct software
engineering related courses: two software engineering courses, a Web development
course, a software quality and measurement course, and a software processes course.
After the execution of the assignments, the students of these courses were invited to
answer a questionnaire, and the lecturers were interviewed by the researcher.

This chapter is organized as follows. Section 6.1 describes the study design, re-
search questions, methods, and procedures for data analysis. Section 6.2 describes the
planning and execution of the case studies used for the evaluation of the GaPSEE
approach. Section 6.3 presents the execution of a survey study to collect the stu-
dents’ perception on the GaPSEE approach, as it was implemented in the practical
assignments of the case studies. Section 6.4 describes the results of interviews with
the lecturers of each case study. Section 6.5 promotes a discussion of the results in
relation to the research questions of the study. Section 6.6 discusses possible threats
to the validity of the study and actions performed to mitigate them. Finally, Section
6.7 closes the chapter with final remarks.

111

112 Chapter 6. Evaluation of the Proposed Framework

6.1 Study settings

This section describes the planning and execution of this study, in relation to its goal,
research questions, and the research strategy.

6.1.1 Study goal and research questions

The goal of this study is to evaluate GaPSEE, regarding its adequacy to software
engineering education, in the perspective of lecturers and students, in the context of
practical assignments planned and executed in accordance with the recommendations
of the framework.

In order to achieve this goal, we defined three research questions to guide the
execution of this study:

RQ1. What is the lecturers’ perception towards a practical assignment planned
and executed in accordance with the recommendations of GaPSEE?

RQ2. What is the students’ perception towards a practical assignment planned
and executed in accordance with the recommendations of GaPSEE?

RQ3. What are the main benefits and drawbacks of the adoption of Gamifi-
cation and PBL principles for software engineering education, in accordance with the
recommendations of GaPSEE?

For questions RQ1 and RQ2, the goal was to investigate the lecturers’ and stu-
dents’ perception regarding the adequacy of GaPSEE regarding the definition of prac-
tical assignments for software engineering education. This evaluation study was not
intended to evaluate the documentation of the framework and its usability.

6.1.2 Study design and research methods

In order to address the research questions, this study was structured in a process as
illustrated in Figure 6.1. Therefore, this study adopts case study method to observe
the use of GaPSEE for the planning and execution of practical assignments in software
engineering related courses. For data collection, this study relies on a survey study and
interviews. For the data analysis, we use descriptive statistics and the Open Coding
technique from Ground Theory [Stol et al., 2016].

Runeson et al. [2012] define case study as “an empirical enquiry that draws on mul-
tiple sources of evidence to investigate one instance (or a small number of instances) of a
contemporary software engineering phenomenon within its real-life context, especially
when the boundary between phenomenon and context cannot be clearly specified”.

6.2. Case Studies 113

Therefore, our case studies consisted of the use of GaPSEE to setup and execute prac-
tical assignments in real educational environments (i.e., software engineering related
courses), to investigate the perception of lecturers and students towards this educa-
tional intervention. Section 6.2 presents details about the case studies planning and
execution.

According to Easterbrook et al. [2008], survey studies are used to identify char-
acteristics of a wide population and are usually associated with the application of
questionnaires. Surveys are meant to collect data to describe, compare or explain
knowledge, attitudes and behaviors [Easterbrook et al., 2008]. Given the large number
of students, we considered the use of questionnaires more appropriate to collect data
from the students’ perceptions on the case study, and for the analysis using descriptive
statistics. The results from this segment of the study are related to RQ2. Section 6.3
presents details about the survey study execution and results.

An interview is a research method defined by a conversation where questions are
asked and answers are given [Wohlin et al., 2012]. In this study, we used interviews to
collect data about the lecturers perception on the application of GaPSEE. Considering
the smaller population of lecturers, interviews are plausible as instruments for data
collection. The results from this segment of the study are related to RQ1. Section 6.4
presents details about the interviews execution and results.

6.2 Case Studies

This section presents the details of the planning and execution of case studies in order
to investigate the application of the recommendations proposed in GaPSEE in real
educational environments, without direct intervention of the researcher.

Planning of
case studies

Execution of
case studies

Survey with
Students

Interview with
Lecturers

Data analysis

Figure 6.1. Study design.

114 Chapter 6. Evaluation of the Proposed Framework

6.2.1 Selection of case studies

In order to select appropriate courses for running case studies, we defined a set of
criteria:

• The course must address (direct or indirectly) software engineering
topics: The target course should fit to the scope of GaPSEE, i.e., there should
be value in incorporating practical aspects of software engineering in the course.

• The course must have been offered before by the lecturer: The lecturer
of the course should have already offered the same course before, in order to allow
insights from comparison between the case study and previous installments of the
course.

• The course must be offered in the available time frame: Given the time
restrictions of this study, the course should be offered in the first semester of
2019.

• The lecturer of the course must have availability for meetings: The
lecturer should have availability for periodic meetings with the researcher for the
planning of the study and for data gathering during its execution.

Considering the limitations imposed by these criteria, six professors from four
federal universities were invited to participate in the study. Four professors, from 3
different institutions (UFLA, UFMG, and UFPA), accepted the invitation. The pro-
fessors were chosen by convenience, given the necessity of a long period of observation
and interaction. In all case studies, the researcher supported the planning of the as-
signments in accordance with GaPSEE. However, the researcher did not interfere in
the execution of the assignments directly, only supported the professors in preparing
materials and answering questions in moments of doubt.

Table 6.1 presents the background of the participant professors (identified as L1,
L2, L3, and L4, describing their experience (in years) in higher level education, experi-
ence (in years) in software engineering education (as lecturer or researcher), experience
(in years) in software engineering practice, and experience with specific educational
methods (PBL, gamification, game-based learning, or any other mentioned by the lec-
turers).

Therefore, a pilot study was executed in 2018 (case study PLT), in order to
validate the format of the case studies and the procedures for data collection and
analysis. In 2019, we conducted four additional case studies, referenced as SQM,

6.2. Case Studies 115

Table 6.1. Background of the participants

Participant L1 L2 L3 L4
Exp. in Teaching 4 10 6 3
Exp. In SE Education 4 10 6 3
Exp. as Practitioner in SE 10 0 5 0
Exp. with Serious games No Yes Yes No
Exp. with Gamification Yes Yes Yes No
Exp. with PBL Yes No Yes No
Exp. with other teaching methods No No Yes No
Case Studies PLT,

PRO
SQM SWE WEB

SWE, PRO, and WEB. Table 6.2 describes the history of each course, regarding the
number of times it was offered before by its lecturer, and the previous use of practical
assignments, PBL, and Gamification in each course. All case studies were executed
in courses that have been offered before at least twice by their lecturers. This was
intended to allow the lecturers of each course to notice the differences between the use
of the approach proposed in GaPSEE, and their previous teaching experiences in those
courses. Four of them had already used some kind of practical assignment. One had
already used PBL as educational method. And two had already used gamification in
the context of that specific course.

Table 6.2. Use of practical assignments, PBL, and Gamification in previous
iterations of each course

Case Course # Times this
course has been
offered before

Practical
Assignments

PBL Gamification

PLT Sw Engineering 4 Yes Yes Yes

SQM Sw Quality and
Measurement

5 No No No

SWE Sw Engineering 2 Yes No Yes

PRO Sw Processes 2 Yes No No

WEB Web Development 2 Yes No No

The procedures for collecting data consisted of four instruments:

• Feedback from lecturers: The lecturers provide the researcher with periodic
feedback on the execution of the assignments in each xase study. The researcher
took notes and interpreted the feedback into information to understand difficulties
and patterns in the adoption of GaPSEE.

• Interviews: The researcher interviewed lecturers to collect data about their
perception on the execution of the assignments in their courses.

116 Chapter 6. Evaluation of the Proposed Framework

• Surveys: The researcher applied questionnaires to collect the students’ percep-
tions on the execution of the assignments.

• Data extraction from tools: Data from the execution of the gamification was
gathered from electronic sheets and communication channels.

6.2.2 Preparation and execution of the case studies

An initial meeting with each participant lecturer was executed before the start of their
respective courses. In this meeting, the researcher presented GaPSEE to the partic-
ipant professors, exposing its recommendations and process, with examples. During
this meeting, the researcher and lecturers planned the scope of the projects for the
assignment of their respective courses, in accordance with expected learning outcomes
for the course. The following driving questions and project goals were defined for each
course:

PLT: “How to systematically develop a software to meet customer needs?” -
Development of a Web application to support management of practical assignments.

SQM: “How to use software metrics to evaluate the internal quality of a soft-
ware?” - Execution of a quality assessment, and the development of an action plan for
quality improvement.

SWE: “How to document the specification of a software project for third party
development?” - Development of software project plan, including specification, design
and test cases.

PRO: “How to implement configuration management and measurement processes
in a software organization?” - Development of process improvement plan for the pro-
cesses of configuration management and measurement in accordance with process im-
provement reference models.

WEB: “How to systematically develop a Web application?” - Development of a
Web application to support management of personal contents.

The subsequent meetings had the purpose to support the lecturers in defining
the project structure and gamification strategy. Before the start of the semester, all
lecturers had defined a roadmap of activities for their assignments, organized in three
iterations, and the gamification approach. For all case studies, the gamification was
planned with the following target aesthetics: Challenge, Confidence, Engagement, Mo-
tivation, Collaboration, Recognition, Learning, Satisfaction, Relevance, and Fun.

Table 6.3 presents details on the execution of each case study, regarding the
number of students enrolled, number of teams, and period of execution. The courses
are offered to undergraduate students of Computer Science and Information Systems.

6.2. Case Studies 117

The case study SQM was also attended by four graduate students. A total of 112
students (28 teams) attended these courses. The courses were offered in the first
semester of 2019 (except for the pilot case study, PLT, executed in 2018).

The case studies PLT, WEB, and SWE extended throughout the entire duration
of their respective courses. The case studies SQM and PRO were limited to specific
stages of the courses, in accordance with the topics addressed in the assignment. The
remainder of their respective courses were executed using traditional methods. There-
fore, the adoption of the framework was customized in accordance to the needs and
characteristics of each course.

The lecturers with no previous experience with PBL required additional support
of the researcher in the planning of their assignment, specially in designing the roadmap
of activities for the projects and in planning their lectures to be aligned with the
schedule of the assignment. Therefore, it was noticed that the framework usability
differs according to the user background experience.

Table 6.3. Organization of the case studies

Case Course Programs # Stds Teams Period
PLT Sw Engineering Und. Inf. Systems

Und. Comp. Science
14 4 teams

(3 - 4 stds.)
2018

April - July

SQM Sw Quality and
Measurement

Und. Inf. Systems
Und. Comp. Science
Grad. Comp. Science

22 6 teams
(3 - 6 stds.)

2019
March - May

SWE Sw Engineering Und. Inf. Systems 27 5 teams
(5 - 6 stds.)

2019
April

PRO Sw Processes Und. Inf. Systems
Und. Comp. Science

10 5 teams
(2 - 3 stds.)

2019
April - May

WEB Web Development Und. Inf. Systems
Und. Comp. Science

39 8 teams
(4 - 5 stds.)

2019
April - June

The assignments initiated with a kick-off presentation, where the lecturers pre-
sented the assignment, the goals of their respective projects, the rules of gamification,
evaluation and grading procedures.

During the execution of the case studies, online electronic sheets were used to
document the progress of the teams for each course. These electronic sheets described
the roadmap of activities in the form of quests (mandatory and optional), deadlines,
badges and points associated with each task, and the status of each team in respect to
the execution of these tasks. The sheet was organized in levels (the iterations of the
project), and also presented a leaderboard weekly updated. Figure 6.2 presents one of

118 Chapter 6. Evaluation of the Proposed Framework

Figure 6.2. A level from the SQM case study

the levels of the assignment from case SQM, represented in the electronic sheet, and
Figure 6.3 illustrates the leaderboard of the course.

Figure 6.3. The leaderboard from SQM case study

Besides the initial effort to setup the assignments, the case studies were conducted

6.3. Survey with students 119

without intervention of the researcher. Periodical meetings were held to discuss the
progress of the assignments and to identify needs for changes. However, no change was
necessary in respect to the execution of the assignments.

By the end of the assignments, each lecturer presented the winning teams, and
awarded them with the predefined rewards (for instance, the lecturers of the SWE,
SQM, and PRO, rewarded the winning teams with pizza). At this moment, the students
were invited to participate in a survey study (Section 6.3) voluntarily, with no impact
on grades. After the conclusion of the assignments, the lecturers were interviewed by
the researcher (Section 6.4).

6.3 Survey with students

This section describes the execution of a survey study to collect and analyze data on
the students perceptions about the resulting educational intervention applied to their
respective courses using GaPSEE.

A questionnaire was created in Google forms 1 to collect data from participants.
The questionnaire was structured in five sections: (i) participants background; (ii) im-
portance and adequacy of the practical assignment to the software engineering courses;
(iii) gamification goals; (iv) development of skills; and (v) positive and negative aspects
of the assignment. The first version of this questionnaire was created with the support
of the lecturers involved in the case studies, and was piloted with three students to
understand if its items were clear and if they addressed the research question RQ1 of
this study. The final version of the questionnaire is presented in Appendix B.

6.3.1 Population Sample

Table 6.4 describes the population and sample size for each case study and the totals
for the study. The study was executed in the context of case studies “SQM”, “SWE”,
“PRO”, and “WEB”. We did not apply this survey study in the pilot case study (“PLT”).
Therefore, the total population for this study was 98 students, from which 76 (77.6%)
students voluntarily participated in the study. The sample size of the case studies
SQM, SWE, PRO, and WEB corresponds to 21.1%, 31.5%, 13.2%, and 34.2% of the
total sample, respectively.

1http:www.googles.com/forms

120 Chapter 6. Evaluation of the Proposed Framework

Table 6.4. Population sample for the survey study.

Course Population Sample %
SQM 22 16 72,7%
SWE 27 24 88,9%
PRO 10 10 100,0%
WEB 39 26 66,7%
Total 98 76 77,6%

6.3.2 Results

This subsection describes the results of the survey. The following five subsections
describe the results for each section of the survey questionnaire.

6.3.2.1 Participants background

The first section of the questionnaire was composed of questions related to the back-
ground of participants: superior education program attended, age, gender, professional
experience, and frequency of playing games. The sample population consists of grad-
uate and undergraduate students from Computer Science and Information Systems
programs (as described in Figure 6.4). Figure 6.5 presents the participants’ (a) age,
(b) gender, (c) professional experience (in years), and (d) frequency of playing games.
Most (80%) of the participants are between 21 to 25 years old, and most participants
are male (84%). Most of the participants (55%) had no professional experience in
software engineering or software development, while 26 participants (34%) have up to
2 years of professional experience, and only 8 participants have more than 3 years of
experience. Regarding the frequency in which the participants play games, only 5 par-
ticipants declared never playing games, 39 play in a monthly basis, and 33 declared to
play at least in a weekly basis.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SQM

SWE

PRO

WEB

Total

Computer Science - Graduate

Computer Science - Undergraduate

Information Systems - Undergraduate

Figure 6.4. Higher education program attended by the participants (N=76).

Therefore, the typical profile of the participants is an undergraduate student,
male, 21 to 25 years old, with no professional experience and with the habit of playing
games in a somewhat regular basis (between rarely and weekly). This profile corre-
sponds to 23 participants (30.3%) of our sample.

6.3. Survey with students 121

(a) (b)

0% 20% 40% 60% 80% 100%

SQM

SWE

PRO

WEB

Total

Gender

Female Male Not declared

0% 20% 40% 60% 80% 100%

SQM

SWE

PRO

WEB

Total

Age

<=20 21 - 25 26 - 30 31 - 35 >35

0% 20% 40% 60% 80% 100%

SQM

SWE

PRO

WEB

Total

Professional Experience

None <=1 year 1 - 2 3 - 5 >5

0% 20% 40% 60% 80% 100%

SQM

SWE

PRO

WEB

Total

Frequency of Playing Games

1. Never 2. Rarely 3. Monthly 4. Weekly 5. Daily

(a) (b)

(c) (d)

Figure 6.5. Participants’ (a) age,(b) gender, (c) professional experience (in
years), and (d) frequency of playing games (N=76).

6.3.2.2 Importance of practice and adequacy of the assignment to software
engineering education.

The second section of the questionnaire is composed of two items, asking the par-
ticipants to rate, in a scale of “1” (totally irrelevant) to “5” (fundamental), (i) the
importance of practice to the course they attended, and (ii) the adequacy of the prac-
tical assignment to the context of the course. Figure 6.6 presents the results for these
items.

For the first (i), 56 participants (73.7%) assigned the highest rate (5) for this
item, and only 2 participants (2.6%), from the WEB and SQM case studies, assigned
the the lowest values (“1” or “2”) for this item. Therefore, there is a clear indication
that students perceive “practice” as a very important aspect of the software engineering
related courses.

For the second (ii), 44 participants (57.9%) rated the adequacy of the assignment
as “5” (completely appropriate), and no participant assigned the values “1” or “2” for

122 Chapter 6. Evaluation of the Proposed Framework

this item. Therefore, there is evidence that the practical assignment (in accordance
with GaPSEE) was perceived as adequate for the courses.

1

0

1

0

4

8

14

24

56

44

I M P O R T A N C E O F P R A C T I C E F O R T H I S
C O U R S E

H O W A P P R O P R I A T E W A S T H E P R A C T I C A L
A S S I G N M E N T F O R T H E C O U R S E

1 2 3 4 5

Figure 6.6. Importance of practice for software engineering education and ade-
quacy of the assignment for the courses.

6.3.2.3 Gamification goals

In the third section of the questionnaire, participants were asked to rate several aspects
related to the expected goals of the gamification (the aesthetics, in the MDA frame-
work). Therefore, the participants had to evaluate to which extent the gamification
approach instilled feelings related to: challenge, confidence, engagement, motivation,
collaboration, recognition, learning, satisfaction, relevance, and fun. All items were
statements that the participants had to evaluate using Likert scale values of “-2” (com-
pletely disagree) to “2” (completely agree). This section of the framework was inspired
in the MEEGA+ questionnaire [Petri et al., 2017].

Figure 6.7 presents the results for each item, organized by goal. For all items,
there is a majority of positive answers (“Partially agree” or “Totally agree”). However,
some items related to motivation, recognition and fun received lower ratings. Specifi-
cally, these items are related to: motivation as a consequence of rewards and being the
best teams in the course; considering a personal recognition factor to be in one of the
best teams; and all questions related to fun. On the other hand, some items related
to challenge (Q1), confidence (Q3, Q4), engagement (Q6), learning (Q15, Q16, Q17,
Q19), and relevance (Q24, Q25) received the highest ratings.

Figure 6.8 summarizes these results in box-plot for better comparison. Except
for “challenge”, all aspects had more than one related questionnaire item. Therefore,
the box-plot graph uses the average value of the items for each aspect. All results were
positive. However, “Fun” had the lowest overall ratings of all aspects, while “Challenge”,
“Confidence”, “Engagement”, “Learning”, and “Relevance” were better rated.

6.3. Survey with students 123

GERAL

4

4

6

8

6

8

16

19

15

33

31

24

15

16

23

Q 2 8

Q 2 9

Q 3 0
FUN

Totally Disagree (-2) Disagree (-1) Indifferent (0) Agree (1) Totally Agree (2)

0 7 47 22Q 1CHA L LENGE

1

1

4

1

2

8

8

6

41

29

25

23

37

42

Q 2

Q 3

Q 4

CONF IDENCE

1 3

2

10

11

41

23

21

40

Q 5

Q 6

ENGAGEMENT

1

4

5

1

3

7

6

1

14

18

20

10

32

21

16

30

26

26

29

34

Q 7

Q 8

Q 9

Q 1 0

MOT IVAT ION

1

1

5

3

12

10

37

31

21

31

Q 1 1

Q 1 2

C O L L A B ORA T I ON

3

2

7

12

14

37

26

25

26

Q 1 3

Q 1 4

R ECOGN I T ION

1

1

1

1

1

7

4

7

8

8

13

9

31

32

27

25

27

37

34

39

31

36

Q 1 5

Q 1 6

Q 1 7

Q 1 8

Q 1 9

L EARN ING

2

1

1

1

8

4

8

15

7

36

25

33

29

27

31

Q 2 0

Q 2 1

Q 2 2

SAT I S F ACT ION

1

1

1

1

4

2

7

5

10

5

10

12

12

35

26

20

23

24

26

45

43

33

34

Q 2 3

Q 2 4

Q 2 5

Q 2 6

Q 2 7

R E L EVANCE

4

4

6

8

6

8

16

19

15

33

31

24

15

16

23

Q 2 8

Q 2 9

Q 3 0

FUN

Figure 6.7. Results of the Survey for the Aesthetics of the gamification approach.

Box Plot Template

Labels Challenge Confidence Engagement Motivation Colaboration Recognition Learning Satisfaction Relevance Fun
Min 0 -1,666666667 -1 -1 -1,5 -1,5 -0,6 -1,666666667 -1,6 -2
Q1 1 1 1 0,25 0,5 0,5 1 0,666666667 1 0

Median 1 1,333333333 1,5 1 1 1 1,3 1 1,4 0,666666667
Q3 2 1,666666667 1,625 1,75 1,5 2 1,8 1,75 1,8 1,333333333

Max 2 2 2 2 2 2 2 2 2 2
IQR 1 0,666666667 0,625 1,5 1 1,5 0,8 1,083333333 0,8 1,333333333

Upper Outliers 0 0 0 0 0 0 0 0 0 0
Lower Outliers 0 2 8 0 1 0 3 2 2 0

Data Table Challenge Confidence Engagement Motivation Colaboration Recognition Learning Satisfaction Relevance Fun
1,0 2,0 1,5 1,5 2,0 2,0 2,0 2,0 2,0 2,0
1,0 2,0 1,5 1,5 1,5 2,0 1,8 2,0 1,8 1,7
1,0 2,0 1,5 1,5 1,5 2,0 1,8 1,7 1,8 1,3
0,0 1,0 0,5 0,0 1,0 0,5 0,6 1,0 1,4 1,3
1,0 1,7 1,0 1,3 1,0 1,5 1,6 1,0 1,2 0,3
1,0 1,0 1,5 0,5 1,5 1,0 1,0 1,0 1,2 0,7
1,0 1,7 0,5 1,0 0,5 1,0 1,4 1,3 1,6 0,0
1,0 1,0 0,5 1,0 0,5 0,5 1,6 0,7 0,6 0,0
1,0 1,0 2,0 0,8 -0,5 2,0 1,8 1,3 1,2 -0,3
1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
1,0 1,0 1,5 2,0 1,5 2,0 2,0 2,0 1,8 1,0
1,0 2,0 1,0 1,3 2,0 2,0 2,0 1,3 1,8 0,3
1,0 1,7 2,0 1,5 0,5 2,0 1,2 2,0 1,6 1,0
2,0 2,0 2,0 0,3 0,5 0,5 1,8 0,7 2,0 1,7
2,0 1,3 1,0 1,8 0,0 1,0 1,0 -0,3 1,6 -1,0
1,0 0,0 1,0 -0,8 1,0 -0,5 0,8 -0,7 0,6 -0,3
0,0 0,3 1,0 0,0 0,5 -1,5 0,0 0,0 0,0 0,0
1,0 1,3 2,0 1,8 2,0 2,0 1,8 1,7 1,8 1,7
1,0 1,0 1,5 1,8 1,0 1,5 1,4 1,3 1,6 0,0
2,0 2,0 1,0 0,5 1,0 0,0 1,8 0,7 1,4 0,0
1,0 1,0 -1,0 -0,3 0,5 0,0 1,0 0,0 0,0 -2,0
1,0 1,7 1,5 1,0 0,0 0,0 1,4 1,0 1,0 0,7
2,0 1,7 1,0 -0,3 1,0 0,0 1,0 1,3 1,0 0,0
1,0 0,3 0,5 -0,8 1,0 0,0 0,8 0,7 0,6 -1,0
0,0 1,0 -1,0 -0,3 0,5 -1,5 -0,6 -0,7 0,2 -0,7
2,0 -1,7 2,0 -1,0 0,0 0,5 0,4 -1,0 -1,6 -1,3
2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
1,0 1,7 1,5 1,5 2,0 1,0 2,0 2,0 1,4 1,3
1,0 1,7 2,0 1,8 2,0 1,0 2,0 1,7 1,2 1,3
2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
2,0 1,7 2,0 2,0 1,5 2,0 2,0 2,0 2,0 1,3
1,0 1,7 2,0 2,0 1,5 2,0 2,0 2,0 2,0 1,7
1,0 2,0 2,0 2,0 2,0 1,0 2,0 2,0 2,0 1,3
2,0 2,0 2,0 2,0 1,0 2,0 2,0 1,0 1,6 1,3
1,0 1,7 1,5 1,5 2,0 1,0 2,0 2,0 1,8 1,3
2,0 1,7 1,5 2,0 1,5 1,0 2,0 1,3 1,6 1,7
1,0 2,0 2,0 1,8 1,0 2,0 2,0 1,7 1,8 0,3
2,0 1,7 1,5 1,8 1,0 0,5 2,0 1,0 2,0 2,0
1,0 1,7 1,5 1,3 2,0 1,0 2,0 1,7 1,0 1,0
1,0 2,0 1,5 1,5 1,5 1,0 1,6 1,7 1,4 1,7
1,0 1,7 1,0 1,3 1,5 1,5 2,0 1,3 1,6 0,7
1,0 1,0 1,5 2,0 1,5 2,0 1,4 1,3 1,2 1,3
1,0 0,3 1,5 1,5 0,5 1,5 1,0 0,3 1,2 1,7
1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
2,0 1,0 0,5 0,8 1,5 1,0 1,0 1,0 1,2 1,3
1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,7 0,8 1,0
2,0 2,0 2,0 2,0 1,5 2,0 2,0 0,7 1,0 1,3
2,0 1,7 1,5 1,8 1,5 1,5 1,6 1,3 1,6 2,0
2,0 2,0 2,0 1,5 0,5 0,0 1,6 0,7 1,4 0,0
0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 -0,7
1,0 1,7 1,0 1,8 1,5 1,5 1,0 2,0 1,6 2,0
2,0 2,0 1,5 0,8 2,0 -0,5 1,8 2,0 2,0 0,7

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

Min Outlier Max Outlier

Challenge Confidence Engagement Motivation Collaboration Recognition Learning Satisfaction Relevance Fun

https://www.vertex42.com/ExcelTemplates/box-whisker-plot.html © 2009 Vertex42 LLC

Figure 6.8. Participants’ perception on aesthetic aspects of the gamification
approach.

124 Chapter 6. Evaluation of the Proposed Framework

6.3.2.4 Development of skills

In the fourth section of the questionnaire, the participants were asked to rate how much
the assignment supported the development of general and specific skills. Each course
had a specific set of expected skills to be developed during the assignment. Partici-
pants were asked to evaluate the contribution of the assignment for the development
of these skills in a nominal scale ranging from “significant negative contribution” (-2)
to “Significant positive contribution” (2). Figure 6.9 presents the distribution of the
total number of each rating for the responses of participants of each case study. For
all case studies, the participants perceived a positive contribution of the assignment
for the development of the specific skills related to each course. The SWE case study
presented the highest number of ratings indicating “Significant positive contribution”
(2).

0% 20% 40% 60% 80% 100%

SQM

SWE

PRO

WEB

Significant negative contribution (-2) Small negative contribution (-1)
No contributted (0) Small positive contribution (1)
Significant positive contribution (2)

Figure 6.9. Participants’ perception on development of specific skills.

Similarly, participants were also asked to rate the support of development of gen-
eral skill using the same rate. All courses shared the same expected general skills (as
described in Chapter 5): professional knowledge, teamwork, ability to design of so-
lutions in context, ability to perform trade-offs, end user awareness, and continuing
professional development. Figure 6.10 presents the overall distribution of responses
for each general skill. All items received majority of positive ratings (over 78.9%).
The “professional knowledge” and “continuing professional development” received larger
number of positive responses (“1” or “2” ratings), and even the larger number of “sig-
nificant positive contribution” (2) ratings. “Teamwork” received the larger number of
neutral responses (13). The SQM and WEB study cases gathered the larger number
of neutral and negative responses, while the SWE case study had a single occurrence
of a neutral (0) response, and the “PRO” case study had two neutral responses (0) and
a single “small negative contribution” (-1) response.

6.3. Survey with students 125

1

2

1

2

2

1

2

2

2

2

13

11

8

8

4

30

19

24

25

25

22

42

41

40

41

39

47

P R O F E S S I O N A L K N O W L E D G E

T E A M W O R K

D E S I G N S O L U T I O N S I N C O N T E X T

P E R F O R M T R A D E - O F F S

E N D U S E R A W A R E N E S S

C O N T I N U I N G P R O F E S S I O N A L
D E V E L O P M E N T

Totally Disagree (-2) Disagree (-1) Indifferent (0) Agree (1) Totally Agree (2)

Figure 6.10. Participants’ perception on development of general skills.

6.3.2.5 Positive and negative aspects of the assignment

The fifth section of the questionnaire provided three open questions for the participants
regarding their thoughts on positive and negative aspects of the assignment, and ad-
ditional comments with critics or suggestions for the assignment. The first and second
questions were mandatory, only the latter was optional. To analyze the answers, we
used an approach inspired by the coding phase of Ground Theory [Stol et al., 2016].
The researcher analyzed the responses in iterations and marked relevant segments with
codes (tagging with keywords). The analysis was finished after a number of coding it-
erations, when no new codes were found (saturation). Then, these codes were grouped
in categories. Consequently, it is possible to count the number of occurrences of codes
and the number of items in each category to understand what recurring positive and
negative aspects were pointed by the participants, and propose possible lessons learned.

Tables 6.5 and 6.6 presents the results from the open coding phase of the analysis
of positive and negative aspects pointed by participants. These tables describe the
codes, the number of occurrences of the codes for each case study and the total number
of occurrences, and define a category for each code.

We mapped a total of 100 codes, where 55 codes are related to positive aspects
(positive codes, henceforth) and 45 codes are related to negative aspects (negative
codes, henceforth). These codes occurred 156 and 72 times, respectively, in the re-
sponses of the participants. It is important to notice that each response can be associ-
ated with more than one code. Figure 6.11 presents the distribution of the occurrences
of positive and negative codes. It is possible to notice that 61 (39.1%) occurrences of
positive codes are concentrated in the SWE case study.

126 Chapter 6. Evaluation of the Proposed Framework

Table 6.5. Positive codes and categories mapped from the responses of the
participants.

Code PRO SQM SWE WEB Total Category
Learning and using new tools and tech-
nologies

0 2 1 8 11 Learning Improvements

Escape from traditional methods 1 1 2 4 8 Learn./Teach. Approach
Application of theory in practice 3 4 1 0 8 Learn./Teach. Approach
Competition 1 1 5 1 8 Gamification
Increased engagement 1 1 5 0 7 Learning Improvements
Roadmap of activities 1 0 2 3 6 PBL / Project Structure
lecturer support 0 3 3 0 6 Learn./Teach. Approach
Practical approach 2 0 0 4 6 Learn./Teach. Approach
Increased motivation 2 0 4 0 6 Learning Improvements
Feedback 1 3 1 1 6 Gamification
Simulation of real scenario 1 2 0 2 5 PBL / Project Structure
Gamification 0 1 4 0 5 Gamification
Teamwork 0 1 2 1 4 Teamwork
Dynamic 0 0 3 0 3 Qualities
Interesting 0 0 2 1 3 Qualities
Partial deliveries 0 1 0 2 3 PBL / Project Structure
Applied learning/teaching 0 1 2 0 3 Learn./Teach. Approach
More engaged lecturer 0 2 1 0 3 Learn./Teach. Approach
Knowledge acquisition 0 0 3 0 3 Learning Improvements
Rewards 1 0 2 0 3 Gamification
Diverse team 0 0 0 2 2 Teamwork
Quality: Satisfactory 0 1 1 0 2 Qualities
Flexibility and freedom 0 0 0 2 2 PBL / Project Structure
PBL 0 2 0 0 2 PBL / Project Structure
Work in a entire project 0 0 1 1 2 PBL / Project Structure
Educational method 0 0 2 0 2 Learn./Teach. Approach
Promotes immersion 2 0 0 0 2 Learn./Teach. Approach
Quality of content and instructions 0 0 2 0 2 Learn./Teach. Approach
Search for appropriate solu-
tions/knowledge

1 0 1 0 2 Learn./Teach. Approach

Arouse interest in continuous learning 0 0 0 2 2 Learning Improvements
Knowledge sharing between students 0 0 0 2 2 Learning Improvements
Learning 0 0 1 1 2 Learning Improvements
Professional knowledge 0 0 2 0 2 Learning Improvements
Ranking 0 1 1 0 2 Gamification
Did not cause overhead (time) in parallel
with other courses

0 1 0 0 1 Time and Effort

Improved performance of teams 0 0 1 0 1 Teamwork
Beneficial 0 0 1 0 1 Qualities
Enriching 0 0 0 1 1 Qualities
Fun 0 0 1 0 1 Qualities
Not boring 1 0 0 0 1 Qualities
Organized structure 0 1 0 0 1 Qualities
Positive 0 0 1 0 1 Qualities
Development of a tangible product 0 0 0 1 1 PBL / Project Structure
Practical project 0 0 0 1 1 PBL / Project Structure
Combine theory and practice 0 1 0 0 1 Learn./Teach. Approach
Explores individual qualities 0 0 0 1 1 Learn./Teach. Approach
Good for beginners 0 0 0 1 1 Learn./Teach. Approach
Interaction between student and lec-
turer

0 0 1 0 1 Learn./Teach. Approach

Learn by doing 0 0 1 0 1 Learn./Teach. Approach
Participative course 0 0 1 0 1 Learn./Teach. Approach
Theoretical foundation 0 0 0 1 1 Learn./Teach. Approach
Better comprehension 0 1 0 0 1 Learning Improvements
Exposes students to the importance of
practice

0 0 0 1 1 Learning Improvements

Knowledge retention 0 1 0 0 1 Learning Improvements
Skill development 0 0 0 1 1 Learning Improvements
Totals 18 32 61 45 156

6.3. Survey with students 127

Table 6.6. Negative codes and categories mapped from the responses of the
participants.

Code PRO SQM SWE WEB Total Category
Unclear information or instructions 0 4 1 3 8 PBL/Project Structure
Time 0 2 2 3 7 Time and Effort
Lack of introductory theory 1 0 0 4 5 Learn./Teach. Approach
Lack of freedom to choose their own
projects

0 2 0 2 4 PBL/Project Structure

Teamwork 0 2 2 0 4 Teamwork
Lack of details or difficulty in a particu-
lar topic

0 0 2 1 3 Learn./Teach. Approach

Selected tools or technologies 0 2 0 1 3 PBL/Project Structure
Structure of presentation 0 1 0 1 2 Other
Unbalanced effort or engagement from
teammates

0 1 1 0 2 Teamwork

Frequency of deliveries 1 1 0 0 2 Time and Effort
Number of tasks/deliveries 0 2 0 0 2 Time and Effort
Lack of bonus grades 0 1 0 0 1 Evaluation and Grading
Unclear details about grading 0 0 0 1 1 Evaluation and Grading
Competition 0 1 0 0 1 Gamification
Boring /tiresome lectures that did not
contribute for the activities

0 0 0 1 1 Learn./Teach. Approach

Did not cover the course syllabus 0 0 0 1 1 Learn./Teach. Approach
Restricted 0 0 0 1 1 Learn./Teach. Approach
Focus on aspects that should be sec-
ondary

0 0 0 1 1 Learn./Teach. Approach

Hard for participants without practical
experience

1 0 0 0 1 Learn./Teach. Approach

Lack of alignment between assignment
and the course

0 1 0 0 1 Learn./Teach. Approach

Prefer smaller individual tasks 0 0 0 1 1 Learn./Teach. Approach
Reduced learning 0 0 0 1 1 Learn./Teach. Approach
Students felt lost 0 1 0 0 1 Learn./Teach. Approach
The approach to cover the topics in
classroom

0 0 0 1 1 Learn./Teach. Approach

Infrastructure 0 0 0 1 1 Other
Lack of incentives for collaboration 0 1 0 0 1 Other
Lack of personal approach 0 0 1 0 1 Other
Delivery of work products 0 1 0 0 1 PBL/Project Structure
Difficulty in handling tools and tech-
nologies

0 0 1 0 1 PBL/Project Structure

Lack of templates 0 1 0 0 1 PBL/Project Structure
Loose structure 0 0 0 1 1 PBL/Project Structure
Unbalanced projects 0 1 0 0 1 PBL/Project Structure
Unclear goals 0 0 0 1 1 PBL/Project Structure
Individualism 0 0 1 0 1 Teamwork
Motivation in teamwork is unfair 0 0 1 0 1 Teamwork
Team composition 0 0 1 0 1 Teamwork
Team size 0 0 1 0 1 Teamwork
Additional extra-class effort 1 0 0 0 1 Time and Effort
Constant effort may overlap with other
courses and hampers performance

0 0 0 1 1 Time and Effort

Number of tasks with same deadline 1 0 0 0 1 Time and Effort
Should use less classroom time 1 0 0 0 1 Time and Effort
Totals 6 25 14 27 72

128 Chapter 6. Evaluation of the Proposed Framework

However, considering the different sample size for each case study, these totals
are not appropriate for comparison. To understand the density of positive and negative
codes in each case study, we calculated the ratio of the number of occurrences of positive
and negative codes per participants (positive code ratio and negative code ratio, for
reference). Figure 6.12 presents these ratios for the entire sample and for each case
study. For the entire sample, the negative code ratio is 0.95 occurrences per participant
and the positive code ratio is 2,05 occurrences per participant. For negative codes, the
lowest ratios are related to the SWE and PRO case studies (0.58 and 0.6, respectively.),
and the highest ratios are related to the SQM and WEB case studies (1.56 and 1.04,
respectively). For positive codes, the highest ratios are related to the SWE and SQM
case studies (2.54 and 2.0, respectively.), and the lowest ratios are related to the PRO
and WEB case studies (1.80 and 1.73, respectively). For all case studies, the ratio of
positive codes is higher than the ratio of negative codes. Therefore, the case study
SWE has the best overall results, regarding the students perception.

Regarding the positive codes, all participants stated at least one positive aspect
about the assignment. There were 156 occurrences of these codes in the responses (each
answer could present more than one code). The top five positive codes (in number of
occurrences) are: “Learning and using new tools and technologies”, “Escape from tra-
ditional methods”, “Application of theory in practice”, “competition”, and “Increased

Positive Codes Negative Codes
WEB 45 27

SWE 61 14

SQM 32 25

PRO 18 6

18
6

32

25

61

14

45

27

Figure 6.11. Distribution of occurrences of positive and negative codes for the
case studies.

6.3. Survey with students 129

0,
60

1,
56

0,
58

1,
04

0,
95

1,
80 2,

00

2,
54

1,
73

2,
05

0,00

0,50

1,00

1,50

2,00

2,50

3,00

P R O S Q M S W E W E B T O T A L

Negative Aspects Positive Aspects

Figure 6.12. Ratio of Codes per Participants for positive and negative aspects
(# occurrence of positive or negative codes) / (size of the sample).

engagement”. In relation to the negative codes, 53 participants (69.7%) indicated
negative aspects. Even though this item was mandatory in the questionnaire, 21 par-
ticipants (27.6%) stated they did not have any negative points to indicate about the
practical assignment. There were 72 occurrences of these codes in the responses (each
answer could present more than one code). The top five negative codes (in number of
occurrences) are: “Unclear information or instructions”, “Time”, “Lack of introductory
theory”, “Lack of freedom to choose their own projects”, and “Teamwork”.

The negative and positive codes were grouped in 9 categories: “PBL and project
structure”, “Learning and Teaching Approach”, “Time and Effort”, “Teamwork”, “Evalu-
ation and Grading”, “Gamification”, “Learning Improvements”, “Qualities” and “Others”.
Table 6.7 summarizes the categories of codes and the respective number of occurrences
for positive and negative codes.

Table 6.7. Occurrences of positive and negative codes for each category.

Category Pos. codes Neg. codes Total
Learn./Teach. Approach 49 16 65
PBL/Project Structure 22 21 43
Learning Improvements 39 1 40
Gamification 24 1 25
Teamwork 7 10 17
Time and Effort 1 15 16
Qualities 14 1 15
Other 0 5 5
Evaluation and Grading 0 2 2
Total 156 72 228

The categories with higher occurrences of positive codes are: “Learning and
Teaching Approach” (49 occurrences), “Learning Improvements” (39 occurrences),
“Gamification” (24 occurrences), and “PBL and Project structure” (22 occurrences).

130 Chapter 6. Evaluation of the Proposed Framework

This is an evidence of a positive attitude of the students towards the format of the
assignment, and the perception of positive impacts of this assignment to their learn-
ing process. In addition, elements of PBL and gamification were also consistently
mentioned as positive aspects of the assignment format. Gamification, in special, was
almost exclusively seen as a positive aspect, with only one participant stating that com-
petition is not an appropriate strategy to motivate students. For PBL, however, there
were mixed opinions (22 versus 21 occurrences of positive and negative codes). Posi-
tive codes in this category include the existence of a roadmap of activities to guide the
execution of the project, fidelity to the professional context of software development,
and working in iterations with partial deliveries. Negative codes includes the clarity
of information or instructions, the desire of students to choose their own projects, and
disagreement on the tools and technologies used in the project.

The categories with higher occurrence of negative codes are: “PBL and Project
structure” (21 occurrences), “Learning and Teaching Approach” (16 occurrences), “Time
and Effort” (15 occurrences), and “Teamwork” (10 occurrences). Although there were
only 16 occurrences of negative codes out of the 65 occurrences of all codes in “Learning
and Teaching Approach”, negative aspects in this category include lack of introductory
theory, insufficient coverage of the course syllabus, and difficulties or lack of details
in specific topics. The category “Time and Effort” groups complaints about the time
required to execute the project, the number of tasks, and the frequency of deliveries. For
“Teamwork”, the occurrence of negative codes was slightly superior to positive codes,
indicating problems about unbalanced engagement of team members and individualism.

In the “Qualities” categories, we mapped statements using adjectives to describe
the assignment as fun, interesting, dynamic, beneficial, enriching, positive, not boring,
and organized. In only one code the assignment is described with a negative quality:
“restricted” (as in slow, as opposed to dynamic).

The “Evaluation and Grading” category groups two comments about the lack of
bonus grades to reward the execution of secondary tasks in the projects, and the lack
of clear information about the grading system. The “Other” category groups additional
complaints about the structure of presentations, infrastructure in the laboratory for
the execution of practical activities, and lack of a personal approach in the evaluation
of activities.

These results in general are evidences of a positive perception of the students
towards the GaPSEE approach, as it was implemented in each course.

6.4. Interviews with lecturers 131

6.4 Interviews with lecturers

We conducted semi-structured interviews to capture the perception of the four lecturers
in respect to the application of GaPSEE in their courses.The script for the interview
was first piloted in the pilot case study (PLT), and its final configuration is presented in
Table 6.8. It is divided in four sections: the first includes questions about the experience
background of the interviewee; the second includes questions about the interviewee’s
experience with educational methods such as game-based learning, gamification, and
PBL; the third section includes questions about the previous installments of the course
under investigation; the fourth section includes questions about the case study. The
responses for questions 1.1 to 3.1 were already addressed in Section 6.2. Therefore,
this section focuses on the analysis of the answers of the questions 3.2 to 4.10.

Table 6.8. Script for interviewing lecturers

1. Background
1.1. What is your experience background as a Professor? (years)
1.2. What is your experience background in Software Engineering education? (lecturing or
research)
1.3. What is your experience background in Software Engineering as a practitioner?
1.4. Which Software Engineering related courses have you teach?

2. Use of teach/learning methods
2.1. How often do you use practical assignments in your courses? What are your thoughts
about it?
2.2. Have you ever used Project-Based Learning in your courses? What are your thoughts
about it?
2.3. Have you ever used games in your courses? What are your thoughts about it?
2.4. Have you ever used gamification in you courses? What are your thoughts about it?
2.5. Have ever used any other educational methods not mentioned?

3. About the course
3.1. How many times have you offered this course before?
3.2. What is the relevance of practice in this course?
3.3. What have you done to promote practice in previous installments of this course?
3.4. What are your thoughts on students motivation in previous installments of this course?

4. About the PBL/Gamification approach used in the case study
4.1. Did you perceive any difference in students reaction to the course activities in relation to
previous installments of the course?
4.2. Did you perceive any difference in the management of the course/assignment? 4.3. Did you
find relevant the use of such approach (PBL/Gamification)? Why?
4.4. Do you believe this approach is useful for introducing practice in classroom?
4.5. What are the positive aspects of this approach?
4.6. What are the negative aspects of this approach?
4.7. What would you have done differently?
4.8. Do you intend to use this approach again (with improvements, if needed) in future install-
ments of this course?
4.9. Do you intend to use this approach again (with improvements, if needed) in other courses?
4.10. Would you suggest using this approach to other lecturers?
4.11. Do you believe it would be relevant to have guidelines or instructions to support the use
of this approach?

132 Chapter 6. Evaluation of the Proposed Framework

6.4.1 Previous installments of the courses

In question 3.2, the interviewees were asked about the relevance of practice for their
respective courses. All four lecturers agreed on the importance of practice.

[SWE] “Essential to allow students to connect the concepts from the diverse
specific areas from software engineering”.

[SQM] “Important, however I always find challenging to propose a practical
assignment in this course”.

[PRO] “It is essential. Not necessarily in the format of a project. But it
is important because if students are provided only with theory, they will
only memorize the processes, without knowing how they really work in real
contexts”.

Regarding the previous attempts to introduce practice in the courses (item 3.3),
in previous instances of the courses related to cases SWE, PRO, and WEB the lecturers
used sporadic exercises and isolated, smaller practical assignments to address specific
topics. For the SQM case, the lecturer indicated that the proposal of a relevant practical
assignment has always been a challenge to him. Therefore previous installments only
used exercises, serious games and, sometimes, experiences with tools, to introduce
practice to the SQM course.

Regarding the attitude of students in previous installments of the courses (item
3.4), the interviewees revealed different perspectives. For the lecturer of the SQM
case, the students of his institution usually show high engagement and motivation.
However the participation of the students in this course is usually low. For the lecturer
of the SWE course, the motivation of the students was intimately related to their
affinity with the topics of the course. As a consequence, students with no affinity
for the topics addressed in the course had lower motivation and engagement, and the
lecturer had no other resource to raise their engagement and motivation rather than
grades. The lecturer of the WEB case mentioned that students were generally less
engaged, and that they were usually highly motivated in the first two weeks of course,
until they were faced with difficulties and challenges. Additionally, this lecturer also
mentioned that the participation of the students was limited to some students with
prior professional experience, which shared experiences, while other students often
interrupted the lectures to raise questions about topics unrelated to the course (usually
associated with difficulties in programming and object-oriented paradigm).

6.4. Interviews with lecturers 133

6.4.2 Changes in students’ attitudes

Regarding the difference in the attitude of students (item 4.1), the interviewees men-
tioned improvements in: participation, engagement, confidence, collaboration,

The participants were unanimous regarding improvements in the participation
of the students in comparison to previous instances of the courses. Both in terms of
frequency and quality. Not only students interacted more frequently with lecturers,
raising questions, suggesting ideas, and seeking validation, but also these interactions
were more focused to the project and related topics.

[PLT]“There was a higher interest of the students because it was a real
project. Furthermore, there was increased participation of students in sug-
gestions of new ideas to improve the product”.

[PRO] “Students also asked more questions related to the project”.

[SQM] “There was little improvement in engagement. However, there was
a clear difference in the higher interaction between students and lecturers
(professor and teaching assistant), because of the practical assignment and
gamification (competition, roadmap of activities and the students’ desire to
obtain feedback)”.

[SWE] “The students started to ask more questions, because they wanted
to deliver work products adequate to the tasks, by the end of each level.
Therefore, they made lots of validations and reviews of these work products
with me, before delivering. (...) in each theoretical lecture, the students
asked questions related to the practical project”.

[WEB] “The students were more participative in the course, using the ‘cam-
pus virtual’ [system used to support courses at the university] to raise ques-
tions. (...) The questions from students were better, more focused on the
context of the project, and not arbitrary in respect to topics unrelated to the
course”.

Interviewees described an increased engagement of the students in the realization
of the activities and really trying to understand the topics from the course, in order to
propose appropriate solutions and achieve better results in their projects.

[PRO] “They tried to understand the problem and propose an appropri-
ate solution. The students really sought to understand how the processes
worked”.

134 Chapter 6. Evaluation of the Proposed Framework

[SWE] “As a lecturer, I was always doing this abstraction of how to associate
the theory to the activity that was being executed [in the assignment], and
getting them [the students] interested by the topic in order to understand
how it would help them in the execution of the task. (...) As a consequence,
I perceived increased interest in the execution of these tasks. It was pretty
much caused by the competition, the leaderboards, the desire for the rewards
of each level, and the desire to achieve the first place in the course”.

[PLT] “The students seemed more competitive, trying to do their best. I
don’t know if it happened because there was a reward, or because they were
really striving to develop the best project. (...) They were more engaged in
the development of the project. (...) There was much larger utilization of
Git and the real interest in learning about its use, in comparison to previous
installments of the course”.

[SQM] “The approach provided incentives for the student to be engaged, to
strive to achieve their best results”.

[WEB] “I perceived that when you provide a challenge, they [the students]
appear more engaged, there is a competition among them. Previously, it
was like they were ‘simply doing yet another exercise’ ”.

Participants described the impact of feedback on students confidence in the ex-
ecution of the assignments, specially as a consequence of being given a chance to fail
and improve before the proper evaluation.

[SWE] “Students reported that they learned a lot because they were not
charged with the deliveries only in the final deadlines. Instead, they were
motivated to execute activities with antecedence, which allowed them to re-
fine their work products, delivering results closer to what was expected. This
leads to increased students’ satisfaction, because no one likes to be evaluated
without the possibility to improve. This immediate feedback cycle makes stu-
dents more satisfied with the possibility to improve throughout the process”.

[PRO]“After the first iteration they get used to the routine of delivering be-
fore the deadlines in order to get feedback and improve their work products
before the final submission. (...) Feedback makes the students more confi-
dent in executing the activities, as they have a chance to fail and improve”.

6.4. Interviews with lecturers 135

[PLT] “Some students, who were insecure about their capacity to execute
the project, used the roadmap of smaller activities and feedback to make
progress in the project. There was a particular case in which a team was
insecure during the assignment, and yet achieved the best score”.

The lecturers of cases PRO and WEB mentioned improvements in the interaction
or collaboration between students.

[PRO] “I believe the students discussed more with their teammates, allowing
the sharing of knowledge and experiences”.

[WEB]“In the current installment, these students [with prior professional
experience] acted as leaders of their teams, sharing their knowledge not only
with me, but also with their teammates, and students without professional
experience could assimilate how a company really works. (...) and they
discussed more within their teams”.

The lecturer of the case PLT also mentioned better results, better understanding
of the importance of each activity, and increased volume of partial results. Finally, the
lecturers of the WEB and PRO cases mentioned that the students were more proactive
and independent.

6.4.3 Changes in the management and preparation of the

assignment

Participants stated that there is an initial effort to plan the entire project prior of the
start of the assignment, however they were unanimous that the approach did not cause
additional effort that would make the approach unfeasible.

The lecturer of the SWE case discussed that his adoption of PBL for the whole
course made him think of his course as a project, having to propose meaningful activ-
ities to address each topic of the course syllabus. This led him to a deep reflection on
the course, specially on the development of skills and effective learning. The lecturer
of the WEB case mentioned that this approach made it easier to manage the course.
As the format made the students more independent and proactive.

The lecturer of the PLT case discussed the positive impacts of having a single
project for all teams. It allowed homogeneous communication with the students, mak-
ing it easier to use the project as example to ground the lectures, easier to provide
feedback, and allowing the use of the project in supervised practical activities in class-
room time.

136 Chapter 6. Evaluation of the Proposed Framework

6.4.4 Relevance and positive aspects of GaPSEE approach

All interviewees were unanimous in respect to the relevancy of the approach defined
by GaPSEE. Their answers for item 4.3 are transcribed as follows.

[WEB] “Yes, because the students were more motivated and we [educators]
have to try new approaches to make students more active and more inter-
ested. Also, because students don’t want this traditional format anymore.
However, I believe it [GaPSEE] is more applicable to some disciplines”.

[PLT] “Yes. I believe that PBL motivates the students in doing something
real, meaningful, and gamification supports the motivation. There is an
increased motivation, I don’t know if it caused by the competition, or by the
reward, or by the fact that students earn badges. It makes them feel more
capable”.

[SWE] “Yes. PBL helps in the definition of crosscutting activities for the
course. The gamification supports motivation and engagement, which was
a big challenge I had: motivating students without affinity with the top-
ics addressed in the course. I believe these methods are complimentary.
PBL made me analyze the topics and transform them into tasks that allow
students to develop competences. The gamification brings motivation, en-
gagement, competition and development of good rapport between students,
which is well fitted for the context of a project”.

[SQM] “Yes.Specially because of the gamification”.

[PRO] “Yes. The project allowed better contextualization of the topics in
a meaningful way, grounded in a more realistic problem. The gamification
motivated the students towards a better position in the leaderboards, trying
to earn more points. The approach was also interesting for promoting team-
work. I believe the students discussed more with their teammates, allowing
the sharing of knowledge and experiences”.

Table 6.9 summarizes the positive aspects of the approach pointed by the par-
ticipants. We used the open coding technique to code the positive aspects from the
responses of interviewees, in order to provide categorization and quantification of these
positive aspects. Table 6.9 provides the codes, the number of their occurrence in each
interview, the total number of their occurrences in all interviews, and their categories.

6.4. Interviews with lecturers 137

Table 6.9. Codes and categories related to positive aspects mapped from the
interviews.

Codes WEB SWE SQM PRO PLT Total NDI* Category
(+) Engagement and interest 1 7 0 1 4 13 4 Impr. students’ attitude
(+) Motivation 3 3 0 2 4 12 4 Impr. students’ attitude
(+) Participation and inter-
action with lecturers

6 2 2 1 1 12 5 Impr. students’ attitude

Element: Roadmap of activ-
ities

2 1 1 2 4 10 5 PBL

(+) Meaningful contextual-
ization of practice

0 2 1 2 3 8 4 Benefits for lecturers

Element: Competition 1 2 2 0 2 7 4 Gamification
Element: Gamification 0 2 1 2 2 7 4 Gamification
(+) Independence and proac-
tivity

4 0 0 1 0 5 2 Impr. students’ attitude

Element: Project 2 0 0 0 3 5 2 PBL
(+) Teamwork, collaboration
and knowledge sharing

2 1 0 1 0 4 3 Impr. students’ attitude

Element: Feedback 0 0 1 1 2 4 3 Gamification
Element: PBL 0 2 0 1 1 4 3 PBL
(+) Better results 1 1 0 0 1 3 3 Impr. students’ attitude
(+) Confidence 0 0 0 1 2 3 2 Impr. students’ attitude
(+) Lecturer: Reflection of
skill development

0 3 0 0 0 3 1 Benefits for lecturers

(+) Exposes students to tools
and practical aspects not ad-
dressed in the course

0 0 1 0 1 2 2 Impr. students’ attitude

(+) Systematic development
of activities

0 0 0 0 2 2 1 Impr. students’ attitude

Element: Leaderboards 1 1 0 0 0 2 2 Gamification
Element: Rewards 0 1 0 0 1 2 2 Gamification
Element: Teamwork 1 0 0 1 0 2 2 PBL
(+) Lecturer: Better plan-
ning of activities

0 1 0 0 0 1 1 Benefits for lecturers

(+) Lecturer: Critical analy-
sis on effective learning

0 1 0 0 0 1 1 Benefits for lecturers

(+) Understanding of profes-
sional software development

1 0 0 0 0 1 1 Impr. students’ attitude

Element: Badges 0 0 0 0 1 1 1 Gamification
Element: Challenge 1 0 0 0 0 1 1 Gamification
Element: Evidences of appli-
cation of skills

0 1 0 0 0 1 1 PBL

Element: Freedom to choose
or negotiate aspects of the
project

1 0 0 0 0 1 1 PBL

Element: Partial deliveries 0 0 0 0 1 1 1 PBL
Element: Simulation of pro-
fessional practices

1 0 0 0 0 1 1 PBL

Total 28 31 9 16 35 119

*NDI: number of distinct interviews mentioning each code.

138 Chapter 6. Evaluation of the Proposed Framework

As a result, the most recurring positive aspects were related to improvements
in students attitudes towards the assignment: “Engagement and interest” (13 occur-
rences), “Motivation” (12 occurrences), and “Participation and interaction with lectur-
ers” (12 occurrences). The first is related to increased interest and engagement of the
students in lectures and in the execution of tasks. The second is related to increased
motivation for students to strive for better results, to participate in activities, or sim-
ply by appearing more enthusiastic about the execution of the assignment. The third
is related to increased participation of the students, by actively asking questions, and
sharing difficulties and experiences with the lecturer during the assignment.

However, only two codes was unanimous between the lecturers: “Participation
and interaction with lecturers” and “Element: Roadmap of activities”. The later is
related to the benefits of providing students with a organized plan of activities for the
entire project, which was often seen as a cause of systematic delivery of activities by
students. The codes “Engagement and interest”, “Element: Competition”, “Element:
Gamification”, “Meaningful contextualization of practice”, and “Motivation” were men-
tioned in at least four distinct interviews.

The positive aspects were grouped in four categories: “improvements in students’
attitude”, “benefits for lecturers”, “gamification”, and “PBL”. Table 6.10 presents the
total number of occurrences of the codes for each category. The category with higher
occurrence of its codes is “Improvements in students’ attitudes”, which groups the codes
related to positive changes in students outcomes and behaviour during the assignment.
The categories “PBL” and “Gamification” group codes related to specific mentions of
these methods and their respective elements. The codes related to these categories
were mentioned in equal proportion (25 and 24 occurrences, respectively).

Table 6.10. Categories of codes mapped from the interviews.

Category # Occurrences Average NDI
Impr. in students attitude 57 2,7
PBL 25 2,0
Gamification 24 2,4
Benefits for lecturers 13 1,8

6.4.5 Negative aspects of GaPSEE approach and

improvements for replications of the case studies

Reflecting on the execution of the case studies, the lecturers mentioned some aspects
they would have done differently. Lecturers from cases SWE, WEB, and SQM men-
tioned changing the strategy for team composition. For the first and second, in future

6.4. Interviews with lecturers 139

applications of the approach they would enforce the formation of teams with compli-
mentary skills or experiences, rather than relying in students affinity. However, the
later suggest that would not restrict teams in size or composition.

[SQM] “I would allow more freedom [for students] to select their teams.
Students should not be forced to work with people they do not know or do not
have affinity. And would create a document clearly defining the gamification
rules, and how the grading works. Distinguishing clearly that gamification
concepts do not necessarily impact in higher grades”.

[WEB] “Forming the teams based on complimentary skill levels, rather than
on students affinities. Teams formed by people with previous experience had
better performance than teams formed by people without experience”.

[SWE] “I would define teams with complimentary skills (would not let this
decision to students)”.

The lecturer from case SWE also mentioned that he would put more effort in the
explanation of the project goal, and reinforce its goals in the beginning of each level.
The lecturer from the case PLT also mentioned he would insist more remembering stu-
dents about the dates of deadlines, and track students closer. Finally, the lecturer from
the case SQM would document and describe in more details the boundaries between
gamification and grading, reinforcing the importance of the guideline GAPSEE-15.

[SWE] “I would worry more about explaining the goal of the project. I
thought students had understood the goal of the tasks, however they misun-
derstood them, and when I realized it, it was too close to the delivery date.
(...) Maybe I could assign the first day of each level for the students to ex-
plain the goal of that level (instead of me), to validate their understanding
of the tasks”.

[PRO] “Would dedicate more time to explain the format of the assignment
and the gamification before the start of the assignment”.

[PLT] “Would insist more about the delivery dates with reminders. And
would track students progress closer”.

Regarding the lecturer position on negative aspects of the GaPSEE approach, the
lecturers of cases PLT, PRO, and SWE mentioned the students difficulty in working in

140 Chapter 6. Evaluation of the Proposed Framework

teams. Other shortcomings mentioned were: the amount of time consumed for tracking
students’ progress in comparison to traditional assignments (PLT); the confusion (for
students) regarding the boundaries between gamification scores and grading (SQM); the
lack of treatment for different learning profiles (SWE); the lack of systematic support for
gamification (SWE); and the difficulty in tracking individual contribution of students
(PRO).

[SQM] “Evaluation was confusing (for students), because it was hard to
distinguish what were grades and gamification points.”.

[WEB] “People with less experience or previous knowledge, made less ques-
tions. Don’t know if this caused by insecurity or because the questions are
solved inside the teams. In previous installments, these students asked more,
even though their questions were not necessarily related to the course.There
are people who do not like to work with periodic deadlines, and would prefer
to have a single delivery”.

[SWE] “Students who do not know how to work in teams. Lack of treatment
for different students profile (eg., introverts, students who take competition
too seriously and forget about learning goals, and students who do not know
how to work in teams). I missed a systematic support for gamification.
A tool of platform. Gamification requires immediate feedback, and tool to
support this process would increase the benefits of the approach”.

[PRO] “It consumes more time to track students progress in comparison to
traditional practical assignments”.

[PLT] “Teamwork: some students do not contribute and others work more.
However, this is intrinsic from group activities”.

Most of these negative aspects, however, are related to the implementation of the
framework and not about the approach itself. Therefore, we agree that the framework
does not consider different profiles of learners, and that the effort required to track
students progress is a challenge for the adoption of the approach.

6.4.6 Perspective on the use and recommendation of GaPSEE

All lecturers described the approach as relevant to introduce practice in classroom, all
of them said they would use GaPSEE again and recommend it to other lecturers. They

6.5. Discussion 141

were also positive in the perspective of using GaPSEE in other courses they lecture.
The lecturer of SQM mentioned that the use of this approach in other courses should be
gradual. The lecturer of WEB even considered using the approach in other courses not
related to software engineering, such as “compiler design” and “theory of computing”,
after some study on how to adapt it.

The lecturers mentioned that the documentation of GaPSEE recommendations
and process are useful for an initial use of the approach. The lecturer of SWEmentioned
that GaPSEE provides a complete educational approach, allowing lecturer to focus on
reflections about development of competences. We observed that, during the meetings
for planning the assignments of each case study, having an example case (the PLT
study) helped the lecturers in understanding the format of the assignments proposed
by GaPSEE. Therefore, a practical guide would be useful for helping GaPSEE users in
their first contact with framework.

A final comment provided by the SWE lecturer about GaPSEE approach worth
mentioning is:

[SWE] “Student recognition is a small thing that we eventually fail to do
over time, but it makes a lot of difference for students”.

6.5 Discussion

The experience of using of principles PBL and Gamification to plan and execute prac-
tical assignments in software engineering related courses, in accordance with the rec-
ommendations of GaPSEE, was successful, both for students and lecturers. In the
following paragraphs we summarize the main observations made in relation to the
research questions defined in Section 6.1.1.

Regarding RQ1 (What is the lecturers’ perception towards a practical assignment
planned and executed in accordance with the recommendations of GaPSEE?), the
results of the interviews (Section 6.4) show a positive perception of the lecturers towards
the joint use of gamification and PBL for introducing practice in software engineering
education. The results show that these methods are complimentary: PBL introduces
practice in a meaningful way, and gamification contributes with incentives for students
motivation, participation and engagement in the execution of projects. GaPSEE seems
useful for a gradual introduction of both PBL and gamification elements, in a structured
approach. For instance, the lecturer of the case SQM, seemed more interested in
gamification and cautious about PBL. In his case, the introduction of elements of PBL
were subtle. Additionally, there was unanimity about the relevance of the use of a

142 Chapter 6. Evaluation of the Proposed Framework

gamified roadmap of activities to support the execution of projects. PBL suggests the
use of ill-structured problems/projects. However, students often feel lost with this lack
of structure and objective directions. Therefore, this element of GaPSEE introduced
the idea of badges, tasks, and achievements to organize the projects in a structure
that is both more approachable for students and related to process based approaches
of software engineering.

In respect to RQ2 (What is the students’ perception towards a practical assign-
ment planned and executed in accordance with the recommendations of GaPSEE?),
the results from the survey with students (section 6.3) show a positive attitude of the
students towards the practical assignments, in terms of relevance, the goals of gamifi-
cation, development of skills, and general positive aspects. It seems that, for students,
the approach was specially welcomed because of the opportunity to escape from the
traditional methods, and the opportunity to try a practical approach where they could
apply the theory in meaningful contexts. Additionally, there were 10 occurrences of
positive codes related to the role of the lecturers in the assignments, which is coherent
to the lecturers perception to an increased participation of the students. For students,
gamification was specially relevant for creating a competitive environment, and because
of the feedback dynamic. PBL was relevant because of its practical nature. However,
PBL and the project structure generated mixed feelings in the students. While some
enjoyed because they could work in an entire project, with incremental deliveries, that
simulated professional environments, others still felt that the instructions were not
clear enough, and were not pleased with the restriction in the selection of projects or
tools.

Finally, for RQ3 (What are the main benefits and drawbacks of the adoption
of Gamification and PBL principles for software engineering education, in accordance
with the recommendations of GaPSEE?), this evaluation study confirmed our previous
position about how these methods compliment each other, which was supported both
by students and lecturers. PBL is an effective learn-by-doing method, and students
become more active in this approach, and satisfied by the application of theory. Gam-
ification provides incentives for students to engage in the execution of the project, and
provides a strategy to introduce a roadmap of activities to guide students towards the
application of specific skills in the assignment. However, there are inherent challenges
from PBL which remains troublesome. For instance, teamwork is a skill that is desired
to be developed along the courses. However, the difficulties to work in teams that
students already have cause discomfort. It is hard for lecturers to objectively measure
the individual contribution of students in the assignments, and asking them to evaluate
teammates is not the most appropriate approach. Additionally, GaPSEE does not con-

6.5. Discussion 143

sider the diverse profiles of learners, and not everyone is comfortable with competition,
with pressure, with forced interaction with peers. Although these are typical situations
of professional environments, not all students like to be exposed to these situations.

From the observation of lecturers using GaPSEE to plan practical assignments
for their respective courses, we derived the following lessons in relation to the lecturer
role:

• GaPSEE enforced a reflection on skills that students should develop during the
course. Therefore, lecturers had to prioritize and organize their lectures in order
to really provide students with significant support for the development of the
projects.

• Practical assignments were already used by the lecturers. However, the lecturers
used to apply short assignments with no continuity. The adoption of a long term
project, with sequential iterations that linked several learning topics helped cre-
ating more meaningful examples of practice. This practice resulted in additional
effort, specially in planning the assignment. However this additional effort is
manageable, and the result was positively acknowledged by students.

• Gamification is useful to create continuous challenges for students, and to cre-
ate an objective measurement of students progress. However, gamification is
not necessarily fun. Lecturers must be careful when planning the gamification
mechanics, in order to keep the students focused in what really matters: the
expected learning outcomes.

• Students appreciated the escape from traditional teaching methods. In addition
to being able to apply theory, students were particularly interested in learning new
tools and technologies that are used in actual professional software engineering
activities.

• All case studies proposed projects to address controlled problems. Yet, only
four students complained about the project themes, and only three complained
about the technologies used in the projects. Therefore, we believe that the lack of
authentic problem is not deterrent. The use of authentic methods, procedures and
tools is sufficient to engage students in meaningful practical learning experience.

• Both students and lecturers perceived improvements in engagement and interest.
Competition is a key cause pointed by students for increased engagement and
determination to achieve better results.

144 Chapter 6. Evaluation of the Proposed Framework

• The approach was manageable in the case studies with different number of stu-
dents. The “WEB” case study had 39 enrolled students, and even with no teach-
ing assistant and no tools for systematic support for gamification, the effort to
execute the assignment was appropriated. The roadmap of activities decreased
the dependency of students towards the lecturer guidance, which is important to
address the scalability challenge of PBL. However, the most recurring negative
aspect pointed by students was related to “unclear information or instructions”.

• Having a roadmap of activities was praised as a positive aspect of the approach,
both by students and lecturers. This has proven particularly useful to address the
PBL problem of students feeling lost as consequence of the ill-structured nature
of PBL projects.

6.6 Threats to validity

In this section, we document potential threats to the study validity and discuss some
bias that may have affected the study results. We also explain our actions to mitigate
them.

Selection of case studies: The educators invited for participation in the case
studies were selected by convenience. This decision was made because of the expected
long duration of the case studies, the necessity of availability of the lecturers for periodic
meetings, and the specific scope of the courses for the experiment. Nevertheless, the
results also considered the perspective of students, which was in accordance with the
perspective of educators.

Results: The results presented in the study are first and foremost observa-
tions, suggestions and lessons learned for further research. These results are tied to
the GaPSEE strategy for the adoption of PBL and gamification. Therefore, it is not
representative of all possible strategies to adopt these methods individually or in con-
junction. These results also reflect individual perceptions of students and lecturers,
and our interpretations of their responses. However, there may be several other impor-
tant issues in the data collected, not yet discovered or reported by us. Nevertheless,
our reports may provide significant insights for other researchers and educators when
planning or evaluating educational approaches in similar settings. Additionally, it is
hard to distinguish the evaluation of the framework and the evaluation of the specific
implementations in each case study.

Questionnaires and interview scripts: In order to avoid the risk of misin-
terpretations of the questions, the questionnaires were developed in stages. The first

6.7. Final Remarks 145

version of the questionnaire was reviewed by two researchers who are also software
engineering professors. It was then piloted with three students in order to assess if
the questions were clear, not ambiguous, and if the available options for answers were
coherent. Additionally, the participation in the questionnaire was not compulsory, it
preserved the participants anonymity, the participation did not contribute for grades,
and the questionnaires were always applied at the conclusion of the course. These de-
cisions were made to avoid the bias of students providing positive answers for the sake
of fearing bad consequences or hoping that it would somehow benefit them. For the in-
terviews, the script was first piloted in the PLT case study. The use of semi-structured
interviews was also relevant for allowing the adaptation of questions on-the-fly, in case
the interviewer noticed any possible misunderstanding of questions. After the conclu-
sion of the analysis, the final manuscript related to the results of the interviews were
sent to the interviewees for validation. This validation did not result in change requests
from interviewees.

Number of Participants: A larger number of participants should be inter-
viewed to capture the general view of a broader audience. However, the time and
effort required to execute the case studies were restrictive. In addition, this type of
study is limited by the availability of professors willing to allow the researcher to partic-
ipate in their teaching activities, and that were willing to use the approaches considered
for this study. However, we opted to execute the case studies in distinct institutions in
order to cover a broader audience of students and courses. The sample of students for
each case study was limited to the population of students that (i) were enrolled in the
courses and (ii) were willing to participate in the questionnaire. By forcing students to
participate in the questionnaire, or rewarding the participation with grades, we would
introduce more bias and it would be ethically inappropriate.

Population sampling: The participants of the study are from different institu-
tions. Therefore, there is the bias of the participants having different backgrounds and
the comparison not being adequate. However, the target population of GaPSEE are
lecturers of courses related to software engineering education. Therefore, the diversifi-
cation of institutions is positive to capture perspectives of lectures inserted in different
educational environments, with heterogeneous students.

6.7 Final Remarks

This chapter described the planning and execution of a set of case studies to evaluate
practical assignments derived from the recommendations of GaPSEE. Data collected

146 Chapter 6. Evaluation of the Proposed Framework

from lecturers and students show a positive attitude of the participants towards the
assignments. These results are evidences of: (i) the adequacy of GaPSEE for the plan-
ning and execution of practical assignments in software engineering education, and
the consequent (ii) adequacy of the joint adoption of gamification and PBL to sup-
port software engineering education. Contributing to the specific goal SG3 of this
thesis (Investigate the benefits and drawbacks of the joint use of gamification and PBL
to support software engineering education), we observed that the joint use of PBL
and gamification allows a meaningful contextualization of practice, with incentives for
participation, engagement, and motivation of students. The proposal of a gamified
roadmap of activities provides a structured guide for students to develop specific skills,
without limiting their freedom to choose how to achieve results. As negative aspects,
there is the increased effort (however, manageable) to plan the project, and to sys-
tematically support gamification. In addition, it is still difficult to track the individual
contribution of students, and problems related to teamwork (that are inherent to group
activities) is uncomfortable for students. Finally, a limitation of GaPSEE is the lack
of consideration for different profiles of learners.

Chapter 7

Conclusion

This chapter summarizes the results of this thesis, regarding its goals, contributions
and future work. Section 7.1 summarizes the key findings of this thesis. Section 7.2
reviews our main contributions . Section 7.3 outlines possible ideas for future work.

7.1 Summary

Introducing practice in software engineering education is challenging, however it is also
necessary. Active learning methods are specially relevant for introducing practice in
educational environments, and project-based learning is specially useful in the context
of engineering and computing education. Similarly, the use of game based approach
is not a novelty in software engineering education. However, gamification is a recent
trend that has been popularizing in educational context. In this thesis, we propose and
evaluate the joint adoption of PBL and gamification to support practice in software
engineering education. To achieve this goal, we conducted a set of empirical studies in
order to understand how these methods contribute to software engineering education,
both individually and in conjunction. Then we proposed a conceptual framework to
support lecturers in planning and execution of practical assignments for software en-
gineering related courses, using principles from PBL and gamification. Therefore, this
thesis summarizes lessons and perceptions from 10 software engineering related courses
that used these methods.

In relation to the specific goal SG1 of this thesis (“Investigate how PBL can be
used to support software engineering education”), the literature study in Chapter 2
revealed that PBL is a long established educational approach that is useful to contex-
tualize practice, by exposing students to a learn-by-doing paradigm that encourages
teamwork and collaboration. However, there are several challenges related to the use

147

148 Chapter 7. Conclusion

of PBL, related to the setup of PBL courses, the selection of projects, tracking learning
outcomes, and managing teamwork and different profiles of learning. In Chapter 4, we
confirmed some of these challenges in empirical studies: the difficulty to scale PBL;
the importance of balancing authenticity and control in PBL projects; the difficulty
of students in understanding what to focus on, and to track their progress; and the
difficulty in balancing students freedom of choice and voice with sufficient guidance
towards expected learning outcomes.

In relation to the specific goal SG2 of this thesis (“Investigate how gamification
can be used to support software engineering education”), our systematic literature study
(Chapter 2) revealed that gamification is not a “stand-alone” educational method, i.e.,
it is used as a secondary device, frequently related to raising students engagement
and motivation. Literature shows two perspectives for gamification in education: the
gamification of the classroom experience, a generalist approach; and the gamification
of specific practices of software engineering, a specialist approach. In Chapter 3, we
experimented the use of the generalist approach, with limited results. In Chapter 4, we
introduced the specialist approach in order to address specific issues of PBL courses, by
systematically rewarding students for the application of software engineering practices,
providing directions for students with a roadmap of activities, and promoting increased
engagement through competition.

In relation to the specific goal SG3 of this thesis (“Investigate the benefits and
drawbacks of the joint use of gamification and PBL to support software”), we defined a
framework (GaPSEE) summarizing the lessons from Chapters 2, 3 and 4, in order to
provide a systematic approach to adopt principles of gamification and PBL in practical
assignments in software engineering courses (Chapter 5). Then, we conducted five case
studies with four lecturers using GaPSEE, and collected data about the perception of
students and lecturers (Chapter 6). For lecturers, the main benefits of using gamifica-
tion and PBL in conjunction are: increased students participation and interaction with
lecturers; increased engagement and motivation of students; meaningful contextualiza-
tion of practice; and having a roadmap of activities to guide and track the progress of
students. For students, the main benefits are related to: the format of the assignment
(e.g., practical application of theory, and escaping from traditional educational meth-
ods); improvements on learning (e.g., getting to know new technologies, engagement,
motivation); the competition and having a roadmap of activities to guide them. For
the drawbacks, the approach proposed by GaPSEE still suffers from some problems of
PBL related to teamwork and the different profiles of learners. The additional effort
required to setup and execute GaPSEE was mentioned as manageable by lecturers.
For the students, the drawbacks are related to additional time consumed in this type

7.2. Contribution 149

of assignment, and some aspects related to the project structure (e.g., need for more
objective instructions, disagreement with the selection of technologies and projects).
Therefore, our results show that the joint use of gamification and PBL was received
with more positive than negative perception, from both students and lecturers.

7.2 Contribution

As discussed in Chapter 2, the use of gamification and PBL suffers from the lack of rec-
ommendations and models for the systematic adoption of these models, considering the
specificities from software engineering education. Therefore, the novelty of this thesis
lies on the proposal of conceptual framework that supports lecturers in adapting key
principles from PBL and gamification to specific characteristics of software engineer-
ing education. Additionally, we investigated specific problems of PBL that could be
addressed by the introduction of gamification, such as scalability, difficulty in tracking
students progress, and the students’ difficulty in dealing with the ill-structured nature
of PBL projects.

This thesis resulted in the following contributions.

• We documented results of a systematic study of the literature about game-
related methods in software engineering education, defining, compar-
ing and mapping these methods in three categories: gamification, Game-Based
Learning, and Game Development Based Learning.

• We documented results of an ad-hoc study of the literature on the use of
PBL for software engineering education, exposing key challenges on the use
of such educational method.

• We collected lessons from 5 software engineering courses using gamifi-
cation and or PBL to support the definition of GaPSEE. Providing empirical
data about the use of these methods to support software engineering education.

• We defined a conceptual framework (GaPSEE) to support lecturers in
the use of gamification and PBL for planning and executing practical as-
signments in software engineering education. The framework proposes a set of
guidelines, a process, and suggestions of implementation.

• We collected data from five case studies to evaluate GaPSEE in relation
to the perception of 4 lecturers and 76 students in 5 software engieering related
courses.

150 Chapter 7. Conclusion

• We summarized data about the perception of 76 students and four lec-
turers on the use of GaPSEE in five case studies.

7.3 Future Work

Considering that our first attempt to evaluate GaPSEE was positive, these results
are only preliminary indicatives of the usefulness and adequacy of the joint use of
gamification and PBL to support software engineering education. Therefore, it is
necessary to expand the scope of our evaluation before proper generalization of our
results, with additional case studies and experiments comparing this approach to other
educational methods.

During the execution of case studies, we perceived that the different background
experience of the lecturers impacted in different levels of readiness to adapt GaPSEE.
Therefore, we believe that the documentation of GaPSEE should evolved in order to
include instructions for the gradual incorporation of its recommendations. For instance,
a model prioritizing sets of recommendations for gradual incorporation over course
installments would be useful for lecturers who had never used gamification nor PBL.

One limitation of GaPSEE is not dealing with different profiles of learners. This
problem is also discussed in the PBL literature [Zhi, 2016], and has been investigated
in the context of educational gamification [Knutas et al., 2014]. In the case studies, we
observed students who were motivated by competition, students who used the elements
provided by the approach to compete with themselves, and students who were not fond
of gamification. Therefore, future work includes the characterization of the different
profiles of software engineering learners in practical assignments, and the inclusion of
recommendations in GaPSEE in order to achieve positive impact to a broader audience,
or to support further tailoring of the approach to address specific profiles.

Other limitation that is relevant to be further explored in future work is the
necessity of a customizable tool to support the implementation of GaPSEE. As men-
tioned by one of the lecturers in the case studies (Chapter 6), software support not
only could improve the systematic provision of immediate feedback, but also increase
students immersion.

Finally, future work could also explore the adoption of GaPSEE in other knowl-
edge areas. For instance, in Chapter 6, one of the lecturers mentioned his intention to
investigate the use of GaPSEE in compiler design. Therefore, it is important to eval-
uate the adequacy of GaPSEE to other knowledge areas, and investigate the changes
needed to achieve adequacy.

Bibliography

Akpolat, B. S. and Slany, W. (2014). Enhancing software engineering student team
engagement in a high-intensity extreme programming course using gamification. In
2014 IEEE 27th Conference on Software Engineering Education and Training (CSEE
T), pages 149–153. ISSN 1093-0175.

Alhammad, M. M. and Moreno, A. M. (2018). Gamification in software engineering
education: A systematic mapping. Journal of Systems and Software, 141:131–150.
ISSN 0164-1212.

Andrews, J. H. and Lutfiyya, H. L. (2000). Experiences with a software maintenance
project course. IEEE Transactions on Education, 43(4):383–388. ISSN 0018-9359.

Ardis, M., Fairley, D., Hilburn, T., Nidiffer, K., Towhidnejad, M., and Willshire, M.
(2014). The software engineering competency model (swecom). Technical report,
Los Alamitos, CA, USA.

Baker, A., Navarro, E. O., and van der Hoek, A. (2005). An experimental card game for
teaching software engineering processes. Journal of Systems and Software, 75(1):3–
16. ISSN 0164-1212.

Barnes, T., Powell, E., Chaffin, A., and Lipford, H. (2008). Game2learn: Improving
the motivation of cs1 students. In Proceedings of the 3rd International Conference
on Game Development in Computer Science Education, pages 1–5, New York, NY,
USA. ACM.

Bedwell, W. L., Pavlas, D., Heyne, K., Lazzara, E. H., and Salas, E. (2012). Toward
a taxonomy linking game attributes to learning: An empirical study. Simulation &
Gaming, 43(6):729–760.

Bell, J., Sheth, S., and Kaiser, G. (2011). Secret ninja testing with halo software
engineering. In Proceedings of the 4th international workshop on Social software
engineering, pages 43--47. ACM.

151

152 Bibliography

Bender, W. N. (2012). Project-Based Learning: Differentiating Instruction for the 21st
Century. Corwin. ISBN 978-1-4129-9790-4.

Bessa, B., Cunha, M., and Furtado, F. (2012). Engsoft: Ferramenta para simulação de
ambientes reais para auxiliar o aprendizado baseado em problemas (pbl) no ensino
de engenharia de software. In XX Workshop sobre Educação em Computação (WEI).

Blake, M. B. (2003). A student-enacted simulation approach to software engineering
education. IEEE Transactions on Education, 46(1):124–132. ISSN 0018-9359.

Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., and Palincsar,
A. (1991). Motivating project-based learning: Sustaining the doing, supporting the
learning. Educational Psychologist, 26(3-4):369–398.

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). The Unified Modeling Language
User Guide. Addison Wesley, 2nd edition.

Bourque, P., Fairley, R. E., et al. (2014). Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Chao, J. and Randles, M. (2009). Agile software factory for student service learning.
In 22nd Conference on Software Engineering Education and Training, pages 34–40.
ISSN 1093-0175.

Chen, C. Y., Hong, Y. C., and Chen, P. C. (2014). Effects of the meetings-flow
approach on quality teamwork in the training of software capstone projects. IEEE
Transactions on Education, 57(3):201–208. ISSN 0018-9359.

Chou, Y.-k. (2015). Actionable gamification: Beyond points, badges, and leaderboards.
Octalysis Group.

Coughlan, P. and Coghlan, D. (2002). Action research for operations management.
International journal of operations & production management, 22(2):220–240.

Dal Sasso, T., Mocci, A., Lanza, M., and Mastrodicasa, E. (2017). How to gamify soft-
ware engineering. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 261--271. IEEE.

Dantas, R., Barros, M., and Werner, C. (2004). A simulation-based game for project
management experiential learning. In In Proceedings of the Sixteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE’04. Cite-
seer.

Bibliography 153

Daun, M., Salmon, A., Weyer, T., Pohl, K., and Tenbergen, B. (2016). Project-based
learning with examples from industry in university courses: An experience report
from an undergraduate requirements engineering course. In 2016 IEEE 29th Inter-
national Conference on Software Engineering Education and Training (CSEE&T),
pages 184–193.

Davison, R., Martinsons, M. G., and Kock, N. (2004). Principles of canonical action
research. Information Systems Journal, 14(1):65–86.

Delgado, D., Velasco, A., Aponte, J., and Marcus, A. (2017). Evolving a project-
based software engineering course: A case study. In 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEE&T), pages 77–86.

Deterding, S., Sicart, M., Nacke, L., O’Hara, K., and Dixon, D. (2011). Gamification.
using game-design elements in non-gaming contexts. In CHI’11 Extended Abstracts
on Human Factors in Computing Systems, pages 2425–2428.

Dicheva, D., Dichev, C., Agre, G., and Angelova, G. (2015). Gamification in education:
A systematic mapping study. Educational Technology Society, 18(3):75–88. ISSN
EISSN-1436-4522.

Diniz, G. C., Silva, M. A. G., Gerosa, M. A., and Steinmacher, I. (2017). Using
gamification to orient and motivate students to contribute to oss projects. In 2017
IEEE/ACM 10th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), pages 36--42. IEEE.

dos Santos, A. L., Maurício, R. d. A., Dayrell, M., and Figueiredo, E. (2018a). Ex-
ploring game elements in learning programming: An empirical evaluation. In 2018
IEEE Frontiers in Education Conference (FIE), pages 1--9. IEEE.

dos Santos, A. L., Souza, M. R. A., Figueiredo, E., and Dayrell, M. (2018b). Game
elements for learning programming: A mapping study. In Proceedings of the 10th
International Conference on Computer Supported Education (CSEDU), pages 89–
101. INSTICC, SciTePress.

dos Santos, P. S. M. and Travassos, G. H. (2009). Action research use in software
engineering: An initial survey. In 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, pages 414–417. ISSN 1949-3770.

Dubois, D. J. and Tamburrelli, G. (2013). Understanding gamification mechanisms for
software development. In Proceedings of the 2013 9th Joint Meeting on Foundations

154 Bibliography

of Software Engineering, ESEC/FSE 2013, pages 659–662, New York, NY, USA.
ACM.

Easterbrook, S., Singer, J., Storey, M., and Damian, D. (2008). Selecting empirical
methods for software engineering research. In Guide to advanced empirical software
engineering, pages 285–311. Springer.

Ellis, H. J. C., Morelli, R. A., Lanerolle, T. R., and Hislop, G. W. (2007). Holistic
software engineering education based on a humanitarian open source project. In 20th
Conference on Software Engineering Education Training (CSEET), pages 327–335.
ISSN 1093-0175.

Fagerholm, F. and Vihavainen, A. (2013). Peer assessment in experiential learning
assessing tacit and explicit skills in agile software engineering capstone projects. In
2013 IEEE Frontiers in Education Conference (FIE), pages 1723–1729. ISSN 0190-
5848.

Fernandes, E., Oliveira, J., and Figueiredo, E. (2016). Investigating how features
of online learning support software process education. In 2016 IEEE Frontiers in
Education Conference (FIE), pages 1–8.

Figueiredo, E., Pereira, J. A., Garcia, L., and Lourdes, L. (2014). On the evalua-
tion of an open software engineering course. In 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, pages 1–8. ISSN 0190-5848.

Fioravanti, M. L., Sena, B., Paschoal, L. N., Silva, L. R., Allian, A. P., Nakagawa,
E. Y., Souza, S. R., Isotani, S., and Barbosa, E. F. (2018). Integrating project based
learning and project management for software engineering teaching: an experience
report. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, pages 806--811. ACM.

Fuchs, M. and Wolff, C. (2016). Improving programming education through game-
ful, formative feedback. In 2016 IEEE Global Engineering Education Conference
(EDUCON), pages 860--867. IEEE.

Fukuyasu, N., Saiki, S., Igaki, H., Matsumoto, S., and Kusumoto, S. (2013). A case
study of cloud-enabled software development pbl. In 2013 14th ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing, pages 499–504.

Bibliography 155

Garcia, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., and Penabad, M. (2017). A
framework for gamification in software engineering. Journal of Systems and Software,
132(C):21–40. ISSN 0164-1212.

Gary, K. (2015). Project-based learning. Computer, 48(9):98–100. ISSN 0018-9162.

Grant, S. and Betts, B. (2013). Encouraging user behaviour with achievements: an
empirical study. In Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 65--68. IEEE Press.

Hamari, J. (2017). Do badges increase user activity? a field experiment on the effects
of gamification. Computers in Human Behavior, 71:469–478. ISSN 0747-5632.

Hanakawa, N. (2015). Contest based learning with blending software engineering and
business management: For students’ high motivation and high practice ability. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol-
ume 2, pages 360–369. ISSN 0270-5257.

Harms, S. and Hastings, J. (2016). A cross-curricular approach to fostering innovation
such as virtual reality development through student-led projects. In 2016 IEEE
Frontiers in Education Conference (FIE), pages 1–9.

Herold, M. J., Lynch, T. D., Ramnath, R., and Ramanathan, J. (2012). Student
and instructor experiences in the inverted classroom. In Frontiers in Education
Conference (FIE), pages 1–6. IEEE.

Herranz, E., Colomo-Palacios, R., de Amescua Seco, A., and Yilmaz, M. (2014). Gam-
ification as a disruptive factor in software process improvement initiatives. j-jucs,
20(6):885–906.

Hesse-Biber, S. N. (2010). Mixed methods research: Merging theory with practice.
Guilford Press.

Hevner, A. and Chatterjee, S. (2010). Design science research in information systems.
In Design research in information systems, pages 9–22. Springer.

Hunicke, R., LeBlanc, M., and Zubek, R. (2004). Mda: A formal approach to game
design and game research. In Proceedings of the AAAI Workshop on Challenges in
Game AI, volume 4, page 1722.

IEEE/ACM, T. J. T. F. o. C. C. A. (2015). Software engineering 2014: Curriculum
guidelines for undergraduate degree programs in software engineering. Technical
report, New York, NY, USA.

156 Bibliography

Jazayeri, M. (2015). Combining mastery learning with project-based learning in a first
programming course: An experience report. In IEEE/ACM 37th IEEE International
Conference on Software Engineering, pages 315–318. ISSN 0270-5257.

Kizaki, S., Tahara, Y., and Ohsuga, A. (2014). Software development pbl focusing on
communication using scrum. In 2014 IIAI 3rd International Conference on Advanced
Applied Informatics, pages 662–669.

Klock, A. C. T., Gasparini, I., and Pimenta, M. S. (2016). 5w2h framework: a guide
to design, develop and evaluate the user-centered gamification. In Proceedings of
the 15th Brazilian Symposium on Human Factors in Computing Systems, page 14.
ACM.

Knutas, A., Ikonen, J., Maggiorini, D., Ripamonti, L., and Porras, J. (2014). Cre-
ating software engineering student interaction profiles for discovering gamification
approaches to improve collaboration. In Proceedings of the 15th International Con-
ference on Computer Systems and Technologies, CompSysTech ’14, pages 378--385,
New York, NY, USA. ACM.

Krusche, S., Reichart, B., Tolstoi, P., and Bruegge, B. (2016). Experiences from an
experiential learning course on games development. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, SIGCSE ’16, pages 582–587,
New York, NY, USA. ACM.

Kuhrmann, M. and Münch, J. (2018). Enhancing software engineering education
through experimentation: An experience report. In 2018 IEEE International Con-
ference on Engineering, Technology and Innovation (ICE/ITMC), pages 1–9. ISSN
.

Laskowski, M. (2015). Implementing gamification techniques into university study path
- a case study. In 2015 IEEE Global Engineering Education Conference (EDUCON),
pages 582–586. ISSN 2165-9559.

Long, J., James, N., and Young, L. S. (2011). Multiplayer on-line role playing game
style grading in a project based software engineering technology capstone sequence.
In American Society for Engineering Education. American Society for Engineering
Education.

Macias, J. A. (2012). Enhancing project-based learning in software engineering
lab teaching through an e-portfolio approach. IEEE Transactions on Education,
55(4):502–507. ISSN 0018-9359.

Bibliography 157

Marques, M., Ochoa, S. F., Bastarrica, M. C., and Gutierrez, F. J. (2018). Enhanc-
ing the student learning experience in software engineering project courses. IEEE
Transactions on Education, 61(1):63–73. ISSN 0018-9359.

Marques, M. R., Quispe, A., and Ochoa, S. F. (2014). A systematic mapping study
on practical approaches to teaching software engineering. In 2014 IEEE Frontiers
in Education Conference (FIE) Proceedings, pages 1–8. ISSN 0190-5848.

Martin, J. G., López, C. L., and Martínez, J. E. P. (2014). Supporting the design and
development of project based learning courses. In 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, pages 1–6. ISSN 0190-5848.

MEC (2016). Catálogo nacional de cursos superiores de tecnologia. Technical report.

Meira, S. (2015). Sistemas de informação e engenharia de software – cadê as escolas?
Computação Brasil, 28:11–15.

Mora, A., Riera, D., Gonzalez, C., and Arnedo-Moreno, J. (2015). A literature review
of gamification design frameworks. In 2015 7th International Conference on Games
and Virtual Worlds for Serious Applications (VS-Games), pages 1–8.

Moreno, A. M., Sanchez-Segura, M. I., Medina-Dominguez, F., and Carvajal, L. (2012).
Balancing software engineering education and industrial needs. J. Syst. Softw.,
85(7):1607--1620.

Mäkiö, J., Mäkiö-Marusik, E., Yablochnikov, E., Arckhipov, V., and Kipriianov, K.
(2017). Teaching cyber physical systems engineering. In IECON 2017 - 43rd Annual
Conference of the IEEE Industrial Electronics Society, pages 3530–3535.

Navarro, E. and van der Hoek, A. (2009). Multi-site evaluation of simse. SIGCSE
Bull., 41(1):326–330. ISSN 0097-8418.

Nguyen, D. M., Truong, T. V., and Le, N. B. (2013). Deployment of capstone projects
in software engineering education at duy tan university as part of a university-wide
project-based learning effort. In 2013 Learning and Teaching in Computing and
Engineering, pages 184–191.

Pedreira, O., García, F., Brisaboa, N., and Piattini, M. (2015). Gamification in software
engineering – a systematic mapping. Information and Software Technology, 57:157–
168. ISSN 0950-5849.

158 Bibliography

Peixoto, D. C. C., Possa, R. M., Resende, R. F., and Pádua, C. I. P. S. (2011). An
overview of the main design characteristics of simulation games in software engineer-
ing education. In 2011 24th IEEE-CS Conference on Software Engineering Education
and Training (CSEE&T), pages 101–110. ISSN 1093-0175.

Peixoto, D. C. C., Resende, R. F., and Pádua, C. I. P. S. (2014). Evaluating software
engineering simulation games: The ugalco framework. In 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings, pages 1–9. ISSN 0190-5848.

Petri, G., von Wangenheim, C. G., and Borgatto, A. F. (2017). A large-scale evalu-
ation of a model for the evaluation of games for teaching software engineering. In
2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-SEET), pages 180--189. IEEE.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles of survey research: Part 1:
Turning lemons into lemonade. SIGSOFT Softw. Eng. Notes, 26(6):16--18. ISSN
0163-5948.

Prikladnicki, R., Albuquerque, A. B., von Wangenheim, C. G., and Cabral, R. (2009).
Ensino de engenharia de software: Desafios, estratégias de ensino e lições aprendidas.
In Anais do FEES09 Fórum de Educação em Engenharia de Software.

Radermacher, A., Walia, G., and Knudson, D. (2014). Investigating the skill gap
between graduating students and industry expectations. In Companion Proceedings
of the 36th International Conference on Software Engineering, pages 291–300, New
York, NY, USA. ACM.

Razali, R. and Chitsaz, M. (2010). Cases development for teaching software engi-
neering. In 2nd International Conference on Education Technology and Computer
(ICETC), volume 2.

Rodrigues, P., Souza, M., and Figueiredo, E. (2018). Games and gamification in soft-
ware engineering education: A survey with educators. In 2018 IEEE Frontiers in
Education Conference (FIE), pages 1--9. IEEE.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case study research in
software engineering: Guidelines and examples. John Wiley & Sons.

Rupakheti, C. R., Hays, M., Mohan, S., Chenoweth, S., and Stouder, A. (2017). On
a pursuit for perfecting an undergraduate requirements engineering course. In 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEET),
pages 97–106.

Bibliography 159

Sancho-Thomas, P., Fuentes-Fernández, R., and Fernández-Manjón, B. (2009). Learn-
ing teamwork skills in university programming courses. Computers Education,
53(2):517–531. ISSN 0360-1315.

Schwaber, K. and Sutherland, J. (2016). The scrum guide (2013). Available at:
http://www. scrumguides. org/docs/scrumguide/ v1/scrum-guide-us.pdf.

Shuto, M., Washizaki, H., Kakehi, K., Fukazawa, Y., Yamato, S., and Okubo, M.
(2016). Learning effectiveness of team discussions in various software engineering
education courses. In 2016 IEEE 29th International Conference on Software Engi-
neering Education and Training (CSEE&T), pages 227–231.

Singer, L. and Schneider, K. (2012). It was a bit of a race: Gamification of version
control. In 2012 Second International Workshop on Games and Software Engineer-
ing: Realizing User Engagement with Game Engineering Techniques (GAS), pages
5–8. ISSN .

Sommerville, I. (2010). Software engineering. New York: Addison-Wesley, 9th edition.

Souza, M., Moreira, R., and Figueiredo, E. (2019a). Playing the project: Incorporando
a gamificação em abordagens baseadas em projetos para a educação em engenharia
de software. In Anais do XXVII Workshop sobre Educação em Computação, pages
71--80, Porto Alegre, RS, Brasil. SBC. ISSN 2595-6175.

Souza, M., Moreira, R., and Figueiredo, E. (2019b). Students perception on the use of
project-based learning in software engineering education. In Proceedings of XXXIII
SBES - Education Track.

Souza, M. R. A., Constantino, K. F., Veado, L. F., and Figueiredo, E. M. L. (2017a).
Gamification in software engineering education: An empirical study. In 2017 IEEE
30th Conference on Software Engineering Education and Training (CSEE&T), pages
276–284.

Souza, M. R. A., Veado, L., Moreira, R. T., Figueiredo, E., and Costa, H. (2018). A sys-
tematic mapping study on game-related methods for software engineering education.
Information and Software Technology, 95:201–218. ISSN 0950-5849.

Souza, M. R. A., Veado, L. F., Moreira, R. T., Figueiredo, E. M. L., and Costa,
H. A. X. (2017b). Games for learning: bridging game-related education methods
to software engineering knowledge areas. In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering Education and Training
Track (ICSE-SEET), pages 170–179.

160 Bibliography

Stol, K. J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software engineer-
ing research: A critical review and guidelines. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 120–131.

Sunaga, Y., Shuto, M., Washizaki, H., Kakehi, K., Fukazawa, Y., Yamato, S., and
Okubo, M. (2016). Which combinations of personal characteristic types are more
effective in different project-based learning courses? In 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEET), pages 137–
141.

Sunaga, Y., Washizaki, H., Kakehi, K., Fukazawa, Y., Yamato, S., and Okubo, M.
(2017). Relation between combinations of personal characteristic types and educa-
tional effectiveness for a controlled project-based learning course. IEEE Transactions
on Emerging Topics in Computing, 5(1):69–76. ISSN 2168-6750.

Team, C. P. (2010). Cmmi R© for development, version 1.3. Technical report, Carnegie
Mellon University.

Thevathayan, C. (2018). Evolving project based learning to suit diverse student co-
horts. In Proceedings of the 22nd International Conference on Evaluation and As-
sessment in Software Engineering 2018, pages 133--138. ACM.

Uskov, V. and Sekar, B. (2014). Gamification of software engineering curriculum. In
2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages 1–8. ISSN
0190-5848.

von Wangenheim, C. G. and da Silva, D. A. (2009). Qual conhecimento de engenharia
de software é importante para um profissional de software? In Anais do II Fórum
de Educação em Engenharia de Software (FEES), pages 1–8.

von Wangenheim, C. G. and Shull, F. (2009). To game or not to game? IEEE Softw.,
26(2):92--94. ISSN 0740-7459.

Warin, B., Talbi, O., Kolski, C., and Hoogstoel, F. (2016). Multi-role project (mrp):
A new project-based learning method for stem. IEEE Transactions on Education,
59(2):137–146. ISSN 0018-9359.

Werbach, K. and Hunter, D. (2012). For the Win: How Game Thinking Can Revolu-
tionize Your Business. Wharton Digital Press. ISBN 978-1-613-63023-5.

Wilhelm, W. J., Logan, J., Smith, S. M., and Linda, L. F. (2002). Meeting the demand:
Teaching "soft" skills. Institute of Education Sciences, page 80.

Bibliography 161

Winterfeldt, G. and Hahne, C. (2014). Controlling quad-copters a project-based ap-
proach in the teaching of application design. In 2014 IEEE Global Engineering
Education Conference (EDUCON), pages 961–968. ISSN 2165-9559.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., and Wessln, A. (2012).
Experimentation in Software Engineering. Springer Publishing Company, Incorpo-
rated. ISBN 9783642290435.

Wu, B. and Wang, A. I. (2012). A guideline for game development-based learning: A
literature review. Int. J. Comput. Games Technol., 2012. ISSN 1687-7047.

Yamada, Y., Inaga, S., Washizaki, H., Kakehi, K., Fukazawa, Y., Yamato, S., Okubo,
M., Kume, T., and Tamaki, M. (2014). The impacts of personal characteristic on
educational effectiveness in controlled-project based learning on software intensive
systems development. In 2014 IEEE 27th Conference on Software Engineering Ed-
ucation and Training (CSEE T), pages 119–128. ISSN 1093-0175.

Zhi, G. C. (2016). A project-based blended learning mode for mobile applicaton de-
velopment course. In 2016 11th International Conference on Computer Science Ed-
ucation (ICCSE), pages 757–762. ISSN 978-1-4799-3922-0.

Zichermann, G. and Cunningham, C. (2011). Gamification by Design - Implementing
Game Mechanics in Web and Mobile Apps. O’Reilly. ISBN 978-1-449-39767-8.

Zorzo, A., Nunes, D., Matos, E., Steinmacher, I., Leite, J., Araujo, R., Correia, R.,
and Martins, S. (2017). Referenciais de formação para os cursos de graduação em
computação. sociedade brasileira de computação (sbc). 153p, 2017. Technical report.

Appendix A

Primary Studies used in the
Systematic Mapping

[S1] B. S. Akpolat and W. Slany, “Enhancing software engineering student team en-
gagement in a high-intensity extreme programming course using gamification”, IEEE
Conference on Software Engineering Education and Training, 2014.

[S2] A. L. D. Buisman and M. C. J. D.Van Eekelen, “Gamification in educational
software development”, Computer Science Education Research Conference, 2014.

[S3] K. Berkling and C. Thomas, “Gamification of a software engineering course
and a detailed analysis of the factors that lead to it’s failure”, International Conference
on Interactive Collaborative Learning, 2013.

[S4] V. Uskov and B. Sekar, “Gamification of software engineering curriculum”,
Frontiers in Education Conference, 2014.

[S5] M. Laskowski, “Implementing gamification techniques into university study
path - A case study”, IEEE Global Engineering Education Conference, 2015.

[S6] J.N. Long and L. S. Young, “Multiplayer on-line role playing game style
grading in a project based software engineering technology capstone sequence”, ASEE
Annual Conference and Exposition, 2011.

[S7] C. Thomas and K. Berkling, “Redesign of a gamified Software Engineering
course”, International Conference on Interactive Collaborative Learning, 2013.

[S8] W. Q. Qu, Y. F. Zhao, M. Wang and B. Liu, “Research on teaching gamifica-
tion of software engineering”, International Conference on Computer Science Education,
2014.

[S9] D. F. Bacon, D. C. Parkes, Y. Chen, M. Rao, I. Kash, and M. Sridharan,
“Predicting your own effort,” in Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’12), pp. 695–702, 2012.

163

164 Appendix A. Primary Studies used in the Systematic Mapping

[S10] J. Bell, S. Sheth and G. Kaiser, “Secret Ninja Testing with HALO Software
Engineering”, International Workshop on Social Software Engineering, 2011.

[S11] A. A. de Melo, M. Hinz, G. Scheibel, C. D. M. Berkenbrock, I. Gasparini,
and F. Baldo, “Version Control System Gamification: A Proposal to Encourage the
Engagement of Developers to Collaborate in Software Projects,” presented at the Pro-
ceedings of the 6th Int. Conf. on Social Computing and Social Media (SCSM’2014),
2014.

[S12] S. Dencheva, C. R. Prause, and W. Prinz, “Dynamic Selfmoderation in a
Corporate Wiki to Improve Participation and Contribution Quality,” presented at the
Proceedings of the 12th European Conference on Computer Supported Cooperative
Work (ECSCW’11), 2013.

[S13] A. Dorling, McCaffery, F., “The gamification of SPICE,” Communications
in Computer and Information Science, vol. 290, pp. 295–301, 2012.

[S14] D. Duarte, C. Farinha, M. M. da Silva, and A. R. da Silva, “Collaborative
Requirements Elicitation with Visualization Techniques,” Proceedings of the IEEE 21st
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE’12), 2012.

[S15] D. J. Dubois and G. Tamburrelli, “Understanding gamification mechanisms
for software development,” Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE’13), 2013, pp. 659–662.

[S16] J. Fernandes, D. Duarte, C. Ribeiro, C. Farinha, J. Madeiras Pereira, and
M. Mira da Silva, “iThink: A Game-Based Approach Toward Improving Collaboration
and Participation in Requirement Elicitation,” Procedia Computer Science, vol. 15,
pp. 66–77, 2012 2012.

[S17] S. Grant and B. Betts, “Encouraging user behavior with achievements: an
empirical study,” Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR’13), 2013, pp. 65–68

[S18] K. Januszevski, “Visual Studio Achievements Programs Brings Gamification
to Development”, 2012.

[S19] T. D. LaToza, U. o. C. Dept. of Inf., Irvine, Irvine, CA, USA, W. Ben
Towne, A. van der Hoek, and J. D. Herbsleb, “Crowd development,” Proceedings
of the 6th Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE’13), pp. 85–88, 2013.

[S20] S. Nikkila, D. Byrne, H. Sundaram, A. Kelliher, and S. Linn, “Taskville:
visualizing tasks and raising awareness in the workplace,” Proceedings of Conference
on Human Factors in Computing Systems (CHI’2013), 2013.

165

[S21] S. Nikkila, S. Linn, H. Sundaram, and A. Kelliher, “Playing in Taskville:
Designing a Social Game for the Workplace,” Proceedings of Int. Conf. on Computer
Human Interaction (CHI’2011) – Workshop on Gamification: Using Game Design El-
ements in Non-Game Contexts, 2011.

[S22] C. R. Prause, J. Nonnen, and M. Vinkovits, “A Field Experiment on Gami-
fication of Code Quality in Agile Development,” Proceedings of the 24th Annual Work-
shop of the Psychology of Programming Interest Group (PPIG’2012), 2012.

[S23] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and K.
Schneider, “Mutual assessment in the social programmer ecosystem: an empirical inves-
tigation of developer profile aggregators,” Proceedings of the Conference on Computer
supported cooperative work (CSCW’13), pp. 103–116, 2013.

[S24] L. Singer and K. Schneider, “Influencing the adoption of software engineer-
ing methods using social software,” Proceedings of the International Conference on
Software Engineering (ICSE’12), 2012.

[S25] L. Singer and K. Schneider, “It was a bit of a race: Gamification of ver-
sion control,” Proceedings of the 2nd International Workshop on Games and Software
Engineering (GAS’12), pp. 5–8, 2012.

[S26] W. Snipes, V. Augustine, A. R. Nair, and E. Murphy-Hill, “Toward recogniz-
ing and rewarding efficient developer work patterns,” Proceedings of the International
Conference on Software Engineering (ICSE’13), pp. 1277–1280, 2013.

[S27] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences gamifying devel-
oper adoption of practices and tools,” Proceedings of the 36th International Conference
on Software Engineering (ICSE’2014), 2014.

[S28] R. Sukale and M. S. Pfaff, “QuoDocs: improving developer engagement in
software documentation through gamification,” Proceedings of the 32nd ACM Confer-
ence on Human Factors in Computing Systems (ACHI’2014), 2014.

[S29] J. Thom, D. Millen, and J. DiMicco, “Removing gamification from an enter-
prise SNS,” Proceedings of the ACM Conference on Computer Supported Cooperative
Work (CSCW’12), pp. 1067–1070 , 2012.

[S30] R. Troughton, “Gamification in Software Development and Agile,” Software
Developer’s Journal, 2012.

[S31] B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social QA sites
are changing knowledge sharing in open source software communities,” Proceedings of
the 17th ACM conference on Computer supported cooperative work social computing
(CSCW’2014), 2014.

[S32] P. G. F. Matsubara and C. L. C. da Silva, "Game Elements in a Software
Engineering Study Group: A Case Study", Proceedings of the 39th International Con-

166 Appendix A. Primary Studies used in the Systematic Mapping

ference on Software Engineering: Software Engineering and Education Track, 2017.

[S33] A. Bartel, P. Figas and G. Hagel, "Towards a Competency-based Education
with Gamification Design Elements", Proceedings of the 2015 Annual Symposium on
Computer-Human Interaction in Play, 2015.

[S34] I. Chow and L. Huang, "A Software Gamification Model for Cross-Cultural
Software Development Teams", Proceedings of the 2017 International Conference on
Management Engineering, Software Engineering and Service Sciences, 2017.

[S35] D. Elm, G. F. Tondello, D. L. Kappen, M. Ganaba, M. Stocco and L. E.
Nacke, "CLEVER: A Trivia and Strategy Game for Enterprise Knowledge Learning",
Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play
Companion Extended Abstracts, 2016.

[S36] S. Albertarelli, F. Dassenno, L. Galli and G. Pasceri, "The Rise of Serious
Games and Gamified Application in Software Development", Proceedings of the Second
ACM International Conference on Mobile Software Engineering and Systems, 2015.

[S37] S. K. Sripada, Y. R. Reddy and S. Khandelwal, "Architecting an Extensible
Framework for Gamifying Software Engineering Concepts", Proceedings of the 9th
India Software Engineering Conference, 2016.

[S38] S. -K. Thiel and U. Lehner, "Exploring the Effects of Game Elements in
M-participation", Proceedings of the 2015 British HCI Conference, 2015.

[S39] G. C. Diniz, M. A. G. Silva, M. A. Gerosa and I. Steinmache, "Using Gami-
fication to Orient and Motivate Students to Contribute to OSS Projects", Proceedings
of the 10th International Workshop on Cooperative and Human Aspects of Software
Engineering, 2017.

[S40] L. C. Stanculescu, A. Bozzon, R.-J. Sips and G.-J. Houben, "Work and Play:
An Experiment in Enterprise Gamification", Proceedings of the 19th ACM Conference
on Computer-Supported Cooperative Work Social Computing, 2016.

[S41] K. Kurihara, "Toolification of Games: Achieving Non-game Purposes in the
Redundant Spaces of Existing Games", Proceedings of the 12th International Confer-
ence on Advances in Computer Entertainment Technology, 2015.

[S42] O. Korn, M. Funk and A. Schmidt, "Towards a Gamification of Industrial
Production: A Comparative Study in Sheltered Work Environments", Proceedings of
the 7th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
2015.

[S43] L. Lema Moreta; A. C. Gamboa; M. G. Palacios, "Implementing a Gamified
application for a Risk Management course", IEEE Ecuador Technical Chapters Meeting
(ETCM), 2016.

167

[S44] F. Kifetew; D. Munante; A. Perini; A. Susi; A. Siena; P. Busetta,
"DMGame: A Gamified Collaborative Requirements Prioritisation Tool", IEEE 25th
International Requirements Engineering Conference (RE), 2017.

[S45] P. Busetta; F. M. Kifetew; D. Munante; A. Perini; A. Siena; A. Susi, "Tool-
Supported Collaborative Requirements Prioritisation", IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), 2017.

[S46] F. Steffens; S. Marczak; F. F. Filho; C. Treude; C. R. B. de Souza, "A
Preliminary Evaluation of a Gamification Framework to Jump Start Collaboration Be-
havior Change", IEEE/ACM 10th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), 2017.

[S47] T. Dal Sasso; A. Mocci; M. Lanza; E. Mastrodicasa, "How to gamify soft-
ware engineering", IEEE 24th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), 2017.

[S48] T. Barik; E. Murphy-Hill; T. Zimmermann, "A perspective on blending
programming environments and games: Beyond points, badges, and leaderboards",
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
2016.

[S49] J. Brito; V. Vieira; A. Duran, "Towards a Framework for Gamification De-
sign on Crowdsourcing Systems: The G.A.M.E. Approach", 12th International Con-
ference on Information Technology - New Generations, 2015.

[S50] A. Bernik; D. Radošević; G. Bubaš, "Introducing gamification into e-
learning university courses", 40th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO), 2017.

[S51] A. Bartel; G. Hagel, "Gamifying the learning of design patterns in software
engineering education", IEEE Global Engineering Education Conference (EDUCON),
2016.

[S52] C. B. Chirila; R. Raes; A. Roland, "Towards a generic gamification of sorting
algorithms", 12th IEEE International Symposium on Electronics and Telecommunica-
tions (ISETC), 2016.

[S53] N. Unkelos-Shpigel; I. Hadar, "Gamifying Software Engineering Tasks Based
on Cognitive Principles: The Case of Code Review", IEEE/ACM 8th International
Workshop on Cooperative and Human Aspects of Software Engineering, 2015.

[S54] F. M. Kifetew; D. Munante; A. Perini; A. Susi; A. Siena; P. Busetta; D.
Valerio, "Gamifying Collaborative Prioritization: Does Pointsification Work?", IEEE
25th International Requirements Engineering Conference (RE), 2017.

[S55] L. Piras; P. Giorgini; J. Mylopoulos, "Acceptance Requirements and Their
Gamification Solutions", IEEE 24th International Requirements Engineering Confer-

168 Appendix A. Primary Studies used in the Systematic Mapping

ence (RE), 2016.
[S56] N. Unkelos-Shpigel; I. Hadar, "Inviting everyone to play: Gamifying collab-

orative requirements engineering", IEEE Fifth International Workshop on Empirical
Requirements Engineering (EmpiRE),2015.

[S57] M. Fuchs; C. Wolff, "Improving programming education through game-
ful, formative feedback", IEEE Global Engineering Education Conference (EDUCON),
2016.

[S58] M. Z. H. Kolpondinos; M. Glinz, "Behind Points and Levels — The Influence
of Gamification Algorithms on Requirements Prioritization", IEEE 25th International
Requirements Engineering Conference (RE), 2017.

Appendix B

Questionnaire for the Evaluation of
the Framework

This Appendix presents the questionnaire used in the survey study described in Chapter
6.

169

Section 1 - Participant's Background

• What program are you attending?

◯ Information System (Undergrad.)

◯ Computer Science (Undergrad.)

◯ Computer Science (Grad.)

• Age

◯ 20 or less

◯ 21 - 25

◯ 26 - 30

◯ 31 - 35

◯ 36 or greater

• Professional experience in software engineering or software development

(including trainee and internship programs)

◯ None

◯ Less than 1 year

◯ 1 – 2 years

◯ 3 – 5 years

◯ More than 5 years

• How often do you play games?

◯ Never

◯ Rarely

◯ Monthly

◯ Weekly

◯ Daily

Section 2 – Relevancy and adequacy of the practical assignment

• How important is “practice” to the learning process of this course?

◯ ◯ ◯ ◯ ◯

 1 2 3 4 5

• How appropriate was the practical assignment to this course?

◯ ◯ ◯ ◯ ◯

 1 2 3 4 5

Completely irrelevant:

This course should

focus only in theory.

Highly important:

Practice is imperative

for this course.

Completely inadequate Completely adequate

170 Appendix B. Questionnaire for the Evaluation of the Framework

Section 3 – About the gamification

• Evaluate each of the following affirmative

Challenge
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q1. The tasks of the assignment
were adequately challenging

◯ ◯ ◯ ◯ ◯

Q2. Having a roadmap of activities
made me confident about the
execution of the assignment

◯ ◯ ◯ ◯ ◯

Confidence
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q3. The interaction with the
lecturer kept me confident on
what needed to be done

◯ ◯ ◯ ◯ ◯

Q4. Receiving feedback made me
more confident that I was in the
right path.

◯ ◯ ◯ ◯ ◯

Engagement
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q5. I felt engaged in the execution
of the tasks

◯ ◯ ◯ ◯ ◯

Q6. I wanted to complete the
maximum number of tasks
possible.

◯ ◯ ◯ ◯ ◯

Motivation
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q7. The format of the practical
assignment kept motivated in the
execution of the project

◯ ◯ ◯ ◯ ◯

Q8. The possibility of having my
team acknowledged as “the best“
motivated me in pursuing better
results

◯ ◯ ◯ ◯ ◯

Q9. The possibility of receiving
rewards motivated me in pursuing
better results

◯ ◯ ◯ ◯ ◯

Q10. The possibility of receiving
feedback to improve my results
motivated me to complete tasks in
antecedence

◯ ◯ ◯ ◯ ◯

171

Collaboration
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q11. The practical assignment
promoted moments of
collaboration among students

◯ ◯ ◯ ◯ ◯

Q12. The practical assignment
promoted improved interaction
between students and lecturers

◯ ◯ ◯ ◯ ◯

Recognition
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q13. I felt that my efforts were
acknowledged

◯ ◯ ◯ ◯ ◯

Q14. Having my team ranked as
“the best” is a form of personal
recognition

◯ ◯ ◯ ◯ ◯

Learning
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q15. The practical assignment
contributed to my learning process

◯ ◯ ◯ ◯ ◯

Q16. The practical assignment was
efficient for my learning process

◯ ◯ ◯ ◯ ◯

Q17. The practical assignment
helped me in contextualizing
theory in professional practice

◯ ◯ ◯ ◯ ◯

Q18. The classroom activities
contributed to my progress in the
project

◯ ◯ ◯ ◯ ◯

Q19. The feedback from lecturers
was important for my learning
process

◯ ◯ ◯ ◯ ◯

Satisfaction
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q20. Completing tasks gave me
the feeling of accomplishment

◯ ◯ ◯ ◯ ◯

Q21. I felt satisfied with the results
of my team

◯ ◯ ◯ ◯ ◯

Q22. I felt satisfied with what I
learned in the practical
assignment

◯ ◯ ◯ ◯ ◯

172 Appendix B. Questionnaire for the Evaluation of the Framework

Relevance
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q23. The project and its tasks
were relevant to my personal
interests

◯ ◯ ◯ ◯ ◯

Q24. The link between the
assignment and the course is clear

◯ ◯ ◯ ◯ ◯

Q25. This format of assignment is
adequate for this course

◯ ◯ ◯ ◯ ◯

Q26. I prefer to learn using this
method than using other learning
methods

◯ ◯ ◯ ◯ ◯

Q27. I would like to have more
courses using this learning method

◯ ◯ ◯ ◯ ◯

Fun
Totally

disagree
Disagree Neutral Agree

Totally
Agree

Q28. The format of the assignment
was fun

◯ ◯ ◯ ◯ ◯

Q29. There was a fun situation
during the assignment

◯ ◯ ◯ ◯ ◯

Q30. The practical assignment
promoted moments of fun in the
competition

◯ ◯ ◯ ◯ ◯

173

Section 3 – Skill Development

• Evaluate the contribution of the practical assignment towards the development of

the following specific skills:

Significant negative contribution (-2); Small negative contribution (-1); No contribution

(0); Small positive contribution (1); Significant positive contribution (2)

PRO (-2) (-1) (0) (1) (2)

Understand and apply the Configuration Management
process from MPS.BR

◯ ◯ ◯ ◯ ◯

Understand and apply the Measurement process from
MPS.BR

◯ ◯ ◯ ◯ ◯

Adapt and apply tools to support process
improvement in specific organizational contexts

◯ ◯ ◯ ◯ ◯

Adapt process to the needs of specific organizational
contexts

◯ ◯ ◯ ◯ ◯

SWE (-2) (-1) (0) (1) (2)

Elicit and document software requirements ◯ ◯ ◯ ◯ ◯

Plan a software project ◯ ◯ ◯ ◯ ◯

Establish a strategy for software testing ◯ ◯ ◯ ◯ ◯

SQM (-2) (-1) (0) (1) (2)

Define and plan criteria for quality evaluation of a
software product

◯ ◯ ◯ ◯ ◯

Apply and analyze measurements for assessing quality
aspects of software product

◯ ◯ ◯ ◯ ◯

Propose corrective actions to improve the internal
quality of a software product

◯ ◯ ◯ ◯ ◯

Understand the concept of code smells and apply
techniques for their identification and treatment.

◯ ◯ ◯ ◯ ◯

Use tools for static analysis of source code ◯ ◯ ◯ ◯ ◯

WEB (-2) (-1) (0) (1) (2)

Selection and use of technologies for Web applications ◯ ◯ ◯ ◯ ◯

Specification, componentization, and prototyping of
Web development projects

◯ ◯ ◯ ◯ ◯

Use of version control systems (Git) ◯ ◯ ◯ ◯ ◯

Use of GitHub features for planning and documenting
the project evolution

◯ ◯ ◯ ◯ ◯

174 Appendix B. Questionnaire for the Evaluation of the Framework

• Evaluate the contribution of the practical assignment towards the development of

the following general skills:

Significant negative contribution (-2); Small negative contribution (-1); No contribution

(0); Small positive contribution (1); Significant positive contribution (2)

General Skills (-2) (-1) (0) (1) (2)

Professional Knowledge: develop mastery of software
engineering knowledge and skills and of the
professional standards necessary to begin practice as
a software engineer.

◯ ◯ ◯ ◯ ◯

Technical Knowledge: Demonstrate an understanding
of and apply appropriate theories, models, and
techniques that provide a basis for problem
identification and analysis, software design,
development, implementation, verification, and
documentation.

◯ ◯ ◯ ◯ ◯

Teamwork: Work both individually and as part of a
team to develop and deliver quality software artifacts.
Design Solutions in Context: Design appropriate
solutions in one or more application domains using
software engineering approaches that integrate
ethical, social, legal, and economic concerns.

◯ ◯ ◯ ◯ ◯

Perform Trade-Offs: Reconcile conflicting project
goals, finding acceptable compromises within the
limitations of cost, time, knowledge, existing systems,
and organizations.

◯ ◯ ◯ ◯ ◯

End-User Awareness: Demonstrate an understanding
and appreciation of the importance of negotiation,
effective work habits, leadership, and good
communication with stakeholders in a typical software
development environment.

◯ ◯ ◯ ◯ ◯

Continuing Professional Development: Learn new
models, techniques, and technologies as they emerge
and appreciate the necessity of such continuing
professional development.

◯ ◯ ◯ ◯ ◯

175

Section 4 – Positive and Negative aspects

• What did you perceived as POSITIVE in the educational method used in the practical

assignment?

[Long answer text, with minimum character count of 10]

• What did you perceived as NEGATIVE in the educational method used in the

practical assignment?

[Long answer text, with minimum character count of 10]

• Additional comments (compliments, critics, suggestions) [Optional]

[Long answer text, with minimum character count of 10]

176 Appendix B. Questionnaire for the Evaluation of the Framework

