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RESUMO 

 

 O desenvolvimento e o desempenho de materiais metálicos estão intrinsecamente 

relacionados à nossa capacidade de compreender como tratamentos térmicos, mecânicos 

e químicos atuam na estrutura até a nano-escala. Nesse sentido, desvendar a estrutura de 

interfaces destes materiais é crucial para o entendimento de suas propriedades. Os 

arranjos de interface têm sido caracterizados principalmente por técnicas de imagem, 

como microscopia eletrônica de varredura e transmissão, que podem acessar dados 

estruturais localmente, mas são técnicas destrutivas e estatisticamente limitadas. Neste 

trabalho, um detector de grande faixa angular, cobrindo 120° de ângulo de espalhamento, 

foi usado para acumular contagens de medições de difração de raios-X síncrotron em 

amostras de magnésio comercialmente puras. Tempos de aquisição estendidos permitiram 

a recuperação de configurações de estruturas de interface preferenciais através da 

observação de picos de difração muito fracos. Picos adicionais foram localizados 

próximos a reflexões fundamentais do Mg. Uma simulação cinemática de difração de 

raios-X de interfaces, fazendo uma varredura de estruturas de possíveis para o sistema 

cristalino em questão, foi realizada para estabelecer a correspondência de picos não-

fundamentais com a organização estrutural interfacial de átomos que podem ser 

responsáveis por tais dispersões. As interfaces simuladas cobriram uma ampla gama de 

deslocamentos angulares em relação aos principais planos do sistema hexagonal. As 

informações recuperadas sobre a deformação máxima no plano de interface (em relação 

a uma configuração bulk) e sua geometria estão relacionadas com condições que levam à 

minimização de energia local com uma configuração que permite a observação de 

difração de raios-X, representando um padrão ordenado de distribuições atômicas no Mg. 

A metodologia introduzida permite o monitoramento não-destrutivo de um sistema 

cristalino quando este é submetido a processos mecânicos que podem, por exemplo, 

modificar o tamanho e a orientação de grãos. 

Palavras-Chave: difração de raios-X; síncrotron; interfaces; reflexões proibidas 
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ABSTRACT 
 

 The development and performance of materials is intrinsically related to our 

capability of understanding thermal treatments, mechanical processing and chemical 

alloying down to the nanoscale. In this sense, unraveling the structure of interfaces is 

crucial for the opening of new regimes in property-performance space for a given material 

system. Interface arrangements have been mainly characterized by imaging techniques 

such as scanning and transmission electron microscopy, which can access structural data 

locally, but are destructive and statistically limited. In this work, a large angular range 

detector covering up 120° of scattering angle was used to accumulate counts from 

synchrotron X-ray diffraction measurements on commercially pure Mg samples. Long 

acquisition times allowed the retrieval of preferential interface structure configurations 

through the observation of very weak diffraction peaks. Additional peaks were located 

close to fundamental reflections. A kinematical simulation scanning possible interface 

structures was carried out to establish the correspondence of non-bulk peaks with the 

interfacial structural organization of atoms which may be responsible for such scatterings. 

The simulated interfaces were probed for a wide range of angular displacements with 

respect to the main cleavage planes of the bulk system. The information retrieved about 

the maximum strain at the interface plane (with respect to a pure bulk configuration) and 

their geometry are related with conditions that lead to local energy minimization with a 

symmetry that allows for the observation of x-ray diffraction, representing a long-range 

ordered pattern of atomic distributions in Mg. The introduced methodology allows for 

non-destructive monitoring changes in a system when it undergoes mechanical processes 

that may, for instance, modify grain sizes and orientation. 

Keywords: x-ray diffraction; synchrotron; interfaces; forbidden reflections 
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1.  GENERAL INTRODUCTION 
 

 Metals and alloys have played fundamental roles in applications and technological 

developments for several centuries. Despite all progress in improving desirable properties 

through alloying [1,2], thermomechanical processing [3,4], and the incorporation of 

reinforcing phases producing metal matrix composites [5], knowledge of the interface 

structure down to nanoscale is also crucial for designing materials with new regimes of 

property-performance space [6–8]. The interface structure of polycrystalline metallic 

materials, such as grain boundaries, subgrain boundaries, twin boundaries, and twist 

transition boundaries [9–11] strongly influence mechanical [1,12], 

electronic/optoelectronic [7] and thermal properties. Moreover, interfaces significantly 

affect diffusion kinetics and consequently mass transport, being thus fundamental to 

understanding phenomena such as the hydrogen embrittlement [13] and radiation damage 

evolution [14,15]. Despite the large body of work, there are still important questions on 

interfaces (or, crystalline defect cores) of metallic systems that remain unanswered, 

particularly those regarding their atomic arrangements.  

 The interface structure of metals and alloys has been mainly characterized by 

imaging techniques such as Scanning and Transmission Electron Microscopy 

(SEM/TEM), but while SEM and TEM techniques can access structural data locally, they 

are statistically limited and promote sample degradation. On the other hand, methods that 

rely on large-area results which are statistically relevant, such as X-ray Diffraction 

(XRD), may lack of a direct interpretation or depend of specific modeling. For instance, 

several methods used to determine parameters of the defect structure (e.g., crystallite size 

distribution, dislocation density, and planar fault probability) consider the breadth and 

general shape of the diffraction peaks [16]. 

 Recently, the continuous development of third generation synchrotron sources and 

their associated measurement equipment has opened the possibility of analyzing 

extremely weak X-ray reflections. These additional intensities are forbidden, non-

fundamental reflections that can occur under conditions where the defect lattice has a 

different periodicity than that of the bulk lattice. With this method, information such as 
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the interface preferential planes, defect density and formation energies can be extracted. 

For polycrystalline phases, diffractometer systems equipped with a broad-range detector 

allow for the simultaneous acquisition of a complete diffractogram with excellent 

reciprocal space resolution and very large count rate, offering higher accuracy and 

improved signal-to-noise ratios. 

 In this work, synchrotron X-ray diffraction experiments were performed in pure 

magnesium samples using a broad-range detector (Mythen 24K) and long acquisition 

times, allowing the retrieval of preferential interface structure configurations. A 

kinematical simulation scanning possible interface structures is required to establish the 

correspondence between the retrieved non-bulk (forbidden or non-fundamental) peaks 

with the structural organization of atoms which is responsible for such scatterings. We 

introduce this methodology by showing how to interpret the datasets in order to reveal 

the major, most probable interface types. The quantitative advantages over other methods, 

such as the microscopic specificity of the interface arrangement and the inherently non-

destructive X-ray characteristics render such approach unique in the field of Materials 

Science and Engineering. Through the rotation and matching of parts of the bulk material, 

it was possible to determine interfacial structures in metals with hexagonal close-packed 

(hcp) crystal structure. Mg and Mg alloys are widely used as a structural material many 

applications, owing to their high specific strength, low density and stiffness. In addition, 

the weak scattering of the Mg atoms (low atomic number) makes forbidden peaks hard to 

detect on weak sources. The method developed here is of general validity with respect to 

the material choice and can be employed on other polycrystalline and hcp metallic 

systems.  
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2.  BACKGROUND AND APPROACH 

 

2.1. Analysis of X-ray diffraction profiles to determine crystalline defects 

 

 Techniques such as transmission electron microscopy (TEM) or electron 

backscatter diffraction (EBSD) are powerful tools for the characterization of crystalline 

defects in metals and alloys. However, both TEM and EBSD require cautious and time-

consuming sample preparation that will likely impose further deformation and/or 

degradation of the studied materials.  

 Meanwhile, X-ray diffraction line profile analysis appeared as a tool that is able 

to provide statistically relevant information about crystalline defects in deformed metals 

and alloys. The main goal of this technique is to use the diffractograms as means to 

determine microstructural parameters such as crystallite size distribution, dislocation 

density, probability of planar defects, among others. The nature of peak broadening 

caused by crystallite size, dislocations or planar defects are essentially different, thus 

allowing the separation of these effects and the determination of their characteristic 

parameters [16]. 

 Several methods were developed to extract the microstructural parameters from 

the reflections whose structure factor for the bulk is not zero (fundamental reflections). 

Initially, peak width was used to determine the average size of crystallites and 

microdeformation of the crystal lattice. Within this category, the classic method of 

Williamson-Hall (1953) is the most employed. Later, this procedure was improved by 

Ungár and Borbély (1996) so that the peak broadening caused by anisotropic 

deformations was considered. In this context, anisotropic deformation means that the 

deformation component on the broadening of peaks is strongly dependent of the Miller 

indexes (ℎ𝑘𝑙). A similar modification was made in another important method known as 

the Warren-Averbach analysis (1990), which was able to provide characteristic 

parameters of the dislocation structure and the probability of planar defects, as well as 

crystallite sizes, in a work developed by Ungár et al. (1998). These methods require the 

evaluation of several reflections in order to obtain a successful analysis.  
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 Unlike the methods quoted above, some methods are based on the study of a single 

reflection. One of them is known as the Variance Method, which highlights the models 

developed by Wilson (1955) and Groma (1998). This method uses the normalized decay 

of the Bragg peak intensities to determine crystallite sizes and the characteristics of 

dislocation structures. Another equally in-depth method proposed by Capello et al. (2005) 

[17] is based on the analysis of the power law governing the intensity decay of the 

diffraction peaks and its asymmetry (known as Huang scattering) in the reciprocal space. 

This allows the extraction of elastic deformation values from the crystal lattice existing 

around the defect, and its dimensionality (punctual, linear, or planar). 

 Finally, with the increase of computational capacity, methodologies were 

developed for the analysis of X-ray diffraction profiles based on techniques of adjustment 

of the whole diffraction pattern. There are several profile fitting software to evaluate the 

diffractograms of polycrystalline materials, such as MAUD, FULLPROF, FOX, MStruct, 

MWP, WPPF, WPPM and CMWP [16]. All profile analysis methods for the 

characterization of defects in polycrystalline materials are based on indications present 

on Bragg peaks for fundamental reflections. 

 With the advent of synchrotron light sources, it's possible to obtain complete 

diffractograms with a much superior intensity than those measured in conventional 

equipments due to a combination of high brightness of the source and the use of high-

count, large area detectors. As an example, the XRD1 beamline of the Brazilian 

Synchrotron Light Laboratory (LNLS) [18] offers a solid-state detector (Mythen 24K) 

covering up 120° of scattering angle, in addition to the dipole accelerator on the source 

of the synchrotron beam. That can be used to accumulate counts from synchrotron XRD 

with a large gain when compared to conventional XRD equipment. In such conditions, 

the count rate increases over a factor of 108 with respect to a conventional lab equipment 

due to the photon flux of the source, considering approximately 1011 photons/s at the 

sample position in the synchrotron source and 107 photons/s in a standard laboratory 

source. Another 104 factor is introduced due to the large-range detector, which measures 

30720 points and is used over 1 hour accumulation (in the present study). If such 

diffractogram would be made point by point with 1 sec accumulation per point, it would 

require 8 hours to complete a measurement. Hence, acquiring 1h data in a long-arc system 
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such as the one described above improves the signal-to-noise ratio by an additional factor 

of 105. With such enhancements, the observation of very weak diffraction peaks becomes 

feasible. One can then retrieve information about weak scatterers such as segregated 

impurities or non-bulk structures that have reduced total volume (e.g. interfaces or other 

defect structures) inside the polycrystalline matrix. 

 In recent times, Nordlund (2002) introduced a fully atomistic modeling scheme to 

calculate and predict the diffuse X-ray scattering patterns from 311 defects in Si through 

reciprocal space maps [19]. The results, later confirmed by experimental data [20], 

demonstrated how both the defect width and length can be derived from the scattering 

intensities; most importantly, it demonstrated that X-ray methods can be used as a 

nondestructive, statistically relevant rapid method to characterize defects when combined 

with computer simulation predictions. More recently, Oliveira et al. (2014) [21] have 

shown that the use of reciprocal space maps and HRTEM simulations associated with 

synchrotron X-ray diffraction data could reveal additional intensities (reflections) which 

arise from crystalline defects in deformed thin CdTe films (Figure 2.1). Analysis of the 

maps allowed the retrieval of the lattice strain due to the presence of double-twin 

interfaces, as well as the evaluation of average defect size and density. These additional 

intensities are “forbidden reflections” for the bulk material, but occur under conditions 

where the atomic structure of the interfaces have a different periodicity than that of the 

original lattice (thus diffracting under permitted Bragg conditions for its arrangement). 

  

Figure 2.1 - Reciprocal space maps of a CdTe sample in the vicinity of (113) reflection: (a) 

(113) reflection without defect-induced intensities (b) (113) reflection with an additional 

reflection induced by double-twinning of the sample after plastic deformation. (c) HRTEM 

image of the defect. (Oliveira et al., 2014). 
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2.2. Severe Plastic Deformation 

 

 The induction of severe plastic deformation in metallic materials is a mean to 

increase resistance of metals and alloys through grain refinement, and it can depend on 

factors like temperature, strain rate and strain direction. Metalworking processing can 

affect material microstructure in different ways; the techniques used in this work are hot-

rolling and Severe Plastic Deformation (SPD). Equal Channel Angular Pressing (ECAP) 

is one of the most common SPD techniques used for the synthesis of bulk ultrafine-

grained or nanostructured materials, which can usually provide significant improvements 

on mechanical properties [22]. ECAP consists of the extrusion of a sample through a 

corner matrix (Figure 2.2), where the imposed strain is dependent on temperature, corner 

angle and number of passes through the channel. This processing can be repeated 

indefinitely as it promotes deformation without changing sample cross-section, leading 

to progressive amounts of deformation and structure refinement [23]. Since many of the 

fundamental properties of crystalline materials are dependent on grain size, SPD 

processing emerges as a powerful tool for producing materials with interesting properties, 

such as high strength or superplasticity [24]. 

 

Figure 2.2 - Equal Channel Angular Pressing scheme. (Nakashima et al., 2000). 

When dealing with hexagonal close-packed materials, the grain refinement during 

SPD processing has different features than in other materials. For instance, there is 

evidence in Mg alloys that, above a critical initial coarse grain (CG) size, the grain 

refinement starts with the development of an inhomogeneous grain structure, with the 

new grains forming along the boundaries of the initial coarse grains (Figure 2.3). With 
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increasing strain, the grain refinement then spreads into the initial grain interiors, thereby 

leading to a more homogeneous fine grain structure. In hcp metals and alloys, dislocation 

mechanism of grain refinement requires the activation of both non-basal and basal slips 

[25], with dislocations on the basal plane having their activation made easier by external 

stresses. The glide on non-basal slip systems is more difficult, but the activation of these 

dislocations is facilitated by applying high stresses or elevated temperatures. Therefore, 

the stress concentrations induced by SPD at the boundaries of the initial grains yield the 

activation of both basal and non-basal slip processes, leading to the formation of fine 

grains at the pre-existing grain boundaries [26]. 

 

Figure 2.3 - Model for grain refinement of Mg after progressive passes of ECAP. Different 

initial grain structures like (a) and (d) can lead to distinct refinement mechanisms. [27]  

 

2.3. Interface structure in ultrafine-grained materials 

 

 Surfaces and interfaces play a particularly critical role in determining the 

mechanical behavior of materials that undergo different processing techniques. The 

concept of a hierarchical structure can be implemented to analyze the behavior of a 

material containing multiple length scale structures, either by being a single-phase 

material with inhomogeneous microstructure or by being a composite material [11]. The 

implementation of this concept enables the analysis to isolate the strengthening 

contributions of the various components within the hierarchical structure. The 

hierarchical interface structures in ultrafine-grained (UFG) materials can be characterized 
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under the following scheme: Level (0), consisting of boundaries between CG and UFG; 

Level (1), CG/CG and UFG/UFG boundaries; and Level (2), subgrain boundaries, twin 

structures and other special interfaces/boundaries. With this work being a statistical 

analysis of the presence of defects in mechanically deformed materials, a correlation that 

pinpoints exactly the contributions of each hierarchy levels may not be readily made. 

In hcp systems in general, the dominant deformation mode and main strengthening 

mechanism in addition to slip is known as deformation twinning. The appearance of twins 

is a phenomenon of great importance in hexagonal close-packed (hcp) materials like 

magnesium, titanium, and zirconium - the hcp structure is the most likely to form 

deformation twins when strained due to its limited number of available slip systems. In 

particular, studies on magnesium and its alloys show correlations between the initial 

microstructure and the formation of twin defects [28], and suggest that the induction of 

these defects by deformation processes can influence grain size and dislocation density, 

and also contributes to improve resistance. There are also suggested connections between 

twinning and anisotropic mechanical behavior of Mg-based materials. Additionally, 

stress vs. strain curves can indirectly indicate the formation of twin defects [26–28]. 

Twinning on the {101̅2} plane is the most common plastic deformation mode for hcp 

[29,30], although there have been reports on other twinning planes and other unusual 

configurations [12]. 

Despite that, previous studies also show that the probability of twinning happening 

in hcp structures decreases with decreasing grain size [33], which can be explained by the 

stress dependence of deformation mechanisms. The strain along the basal plane results 

from the easy glide of dislocations with <a>-type Burgers vectors. At the same time, the 

deformation in the direction of the crystallographic c-axis may be performed by glide of 

dislocations with <c+a>-type Burgers vectors or by twinning, since both processes 

operate mainly on pyramidal planes. An elevated deformation temperature and/or high 

stresses can increase the activation of pyramidal <c+a> dislocations at the expense of 

twin formation. In deformed hcp metals with smaller grain size, the stresses are higher 

mainly in the vicinity of grain boundaries [26], which facilitate the operation of 

dislocations, thereby reducing the occurrence of twinning. 
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In addition to the already documented XRD line profile analysis techniques [34], 

the use of transmission electron microscopy (TEM) or electron backscatter diffraction 

(EBSD) techniques in materials that have been subjected to such deformation processes 

allows visualization and verification of the most common induced defects and their 

microstructure, texture evolution and occurrence of specific types of defects [35]. 

Theoretical calculations and TEM observations for hcp metallic materials suggest the 

activation of <c+a> dislocations by strong deformation at elevated temperatures [36]. At 

room temperature, the critical resolved shear stress of pyramidal <c+a> dislocations is 

larger than the basal slip [37], and tends to decrease with higher temperatures. 

For hcp crystals, most atomistic simulation studies involving topological models, 

density functional theory (DFT) or molecular dynamics (MD) have been used to 

determine the atomic structure of grain boundaries with minimum energy, focusing 

mostly on coherent, symmetric tilt grain boundaries (STGBs). Structure predictions of 

common, uncommon and previously unobserved coherent twin boundaries have been 

modeled [38], but interfaces that deviate from exact coincidence may still have a 

multiplicity of atomic structures that compose them. That highlights the importance of 

evaluating both geometric and energetic aspects when searching for preferential structure 

configurations in computational simulations, since minimum-energy configurations can 

also be manifested through asymmetric boundaries (Figure 2.4) [39]. 

 

Figure 2.4 - Example of (a) symmetric and (b) asymmetric configurations of Mg interfaces 

with low energies. [39] 
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2.4. Fundamentals of X-ray Diffraction 

 

 The phenomenon of X-ray diffraction consists basically on the scattering and 

interference effects that an incident X-ray beam undergoes when interacting with a 

material. The study of this effect allows for the determination of the atomic and molecular 

structure of the samples, phase identification, information on the size distribution of 

grains in a polycrystalline sample, orientation (texture), among others. In a crystalline 

material where atoms are organized periodically in planes with characteristic spacing, the 

classic treatment of coherent (elastic) scattering is the main process investigated. 

 In elementary treatments of X-ray scattering, diffraction occurs according to 

Bragg's law: n = 2𝑑ℎ𝑘𝑙 sin 𝜃 
 This is the condition to be satisfied for the constructive interference of waves with 

an angle of incidence 𝜃 , for a set of crystallographic planes (ℎ𝑘𝑙)  separated by an 

interplanar distance 𝑑ℎ𝑘𝑙 (Figure 2.5). The diffracted beam is essentially composed of 

scattered rays where path differences will arise naturally, seeing that a crystalline material 

is a repetition system; fulfillment of Bragg's law will, therefore, follow the conditions: 

• On a few directions which satisfy Bragg's law, the scattering X-ray amplitudes 

add up and form diffractions peaks or spots (constructive interference); 

• On most other directions, which do not satisfy Bragg's law, the scattering X-ray 

amplitudes cancel each other out, forming no diffraction peaks or spots 

(destructive interference). 

 

 

Figure 2.5 - Schematic representation of Bragg's law (adapted from Stresstech Ltd.). 

(2.1) 
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 It's important to note that fulfillment of Bragg's law, and consequently diffraction, 

can occur by varying of any terms in the equation; therefore, the preferred mode for its 

application will depend on what factors one would want to obtain or study in the 

configuration of interest. 

 The method of interest in the present work is the powder diffraction method, 

where wavelength (beam energy) is kept fixed while the angle is varied. This is an ideal 

method to study materials with randomly oriented microcrystals in relation to the incident 

beam (powder materials, polycrystalline samples, and others). For those types of samples, 

the random orientation of the microcrystals relative to the incident beam is such that a 

statistically significant number of any set of planes will have a chance to diffract the X-

rays - that is, will be in the proper orientation to satisfy Bragg's condition - and manifest 

itself in the diffraction pattern. That is the equivalent of focusing the beam on a crystalline 

material rotated through all possible angles. Therefore, any diffraction pattern collected 

over powder method will be composed of multiple Bragg peaks obtained in different 

conditions, which in turn will each have different intensities, shapes and different angular 

positions. Furthermore, the use of a synchrotron X-ray radiation source for powder 

diffraction experiments has several advantages: since the high intensity and collimation 

of the beam provide a better spatial resolution of the incident/diffracted X-rays, we 

consequently have an improvement in angular resolution, useful for indexing unknown 

peaks. Other factors include a better signal-to-noise ratio and possibility to use different 

wavelengths (energies) from a continuous spectrum, among others. 

 

2.3.1. Kinematic Scattering Formalism 

 

 In general, the interaction of a crystalline material with X-rays is a complex 

process [40]. There are two levels of approximation for the treatment of this kind of 

interaction: the kinematic and dynamic scattering formalisms (approximations). The main 

difference between the two is related to the possibility (or not) that the scattered beam 

can be scattered multiple times before leaving the crystal: on the kinematic diffraction, an 

X-ray beam is not scattered more than once, and therefore it's considered that interactions 
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between the material and the diffracted beam are weak. For this to be accomplished, it is 

then postulated that: 

1. a crystal consists of individual crystallites slightly misaligned with each other; 

2. crystallite size is small enough (microcrystals); 

3. the misalignment between crystallites is large enough so that the interaction of X-

rays with the material beyond the size of the crystallites is negligible. 

 

 The formalism of dynamic diffraction, on the other hand, takes into account other 

types of wave interaction beyond scattering of the incident wave, and its required only 

when dynamic effects become significant, as is the case of near-perfect crystals. Since 

these effects are not observable for the majority of crystalline materials, the use of 

kinematical approximation is more adequate and simpler, especially in the analysis of 

polycrystalline materials (crystallites of reduced size). For that reason, the present study 

will limit itself to the use of kinematical formalism. 

 

2.3.2. Structure Factor for a Bragg Reflection 

 The integrated intensity of a Bragg peak is primarily a function of the atomic 

structure of the crystalline material, but is also dependent on secondary factors such as 

sample parameters (like grain size and distribution) and instrumental parameters. 

Structural parameters are, in general, the ones with greater influence on the integrated 

intensity, and will be the main focus of study in this work. 

 Elastic scattering must be considered for all the atoms that make up the crystal so 

that we can arrive at an expression for the scattered amplitude of the diffracted beam. 

Assuming that Bragg's law is satisfied, the scattered amplitude will basically be a function 

of atomic coordinates: if a crystal is nothing more than a repetition system of a 

fundamental unit cell (among the 14 known Bravais lattices), it suffices to consider how 

the atomic arrangement of just a single unit cell affects the scattering amplitude of a 

diffracted beam. The sum of this amplitude over the whole repetition system will give us 

the scattered amplitude of the whole crystal. 
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 In a simplified way, the structure factor |𝐹ℎ𝑘𝑙|2  is given as the square of the 

absolute value the of scattering amplitude (diffracted intensity) on a crystalline material. 

According to the kinematic scattering approximation, this amplitude is treated as a sum 

over all atoms in the unit cell: 

Fℎ𝑘𝑙  =  |∑ 𝑓i eσe2π𝑖 R⃗⃗ i |2 = |∑ 𝑓i eσe2π𝑖 (ℎ𝑥+𝑘𝑦+𝑙𝑧)i |2 

 In addition to the atomic positions within the unit cell defined by the vector �⃗� =
ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 , for a (ℎ𝑘𝑙) reflection that satisfies Bragg's law, the structure factor also 

suffers contributions from other structural factors: term 𝑓𝑖  represents the atomic 

scattering factor (a multiplier function dependent on the electronic distribution of each 

element present in the unit cell), and σ represents the Debye-Waller factor (a thermal 

motion attenuation function). 

 For a hexagonal close-packed lattice, which is the structure of the studied material 

in this work, we have base vectors whose in-plane lattice parameters 𝑎 and 𝑏 in the unit 

cell are equal and positioned at a 120° angle, and an out-of-plane lattice parameter 𝑐 such 

that 𝑎 =  𝑏 ≠  𝑐  and  𝛼 =  𝛽 =  90° , 𝛾 =  120°  (Figure 2.6). From Bragg’s law, its 

interplanar distance is given by [41]: 

1dhkl2 = 43 (ℎ2+ℎ𝑘+𝑘2a2 ) + 𝑙2c2 

 

Figure 2.6 - Schematic representation of the hcp crystal lattice and its main planes and 

directions (Cullity, B. D. 2001). 

(2.2) 

(2.3) 
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 In this case, we have a unit cell composed of only two atoms, located at positions 0 0 0  and 
13 23 12  ; its structure factor/wave amplitude (considering only the atomic 

positioning) is going to be expressed as: Fℎ𝑘𝑙 = 𝑓e2πi(h∙0+k∙0+l∙0) + 𝑓e2πi(h 3⁄ +2k 3⁄ +l 2⁄ ) = 𝑓[1 + e2πi{[(h+2k) 3⁄ ]+l 2⁄ }]. 
 Since this expression can be either real or complex, multiplication by the complex 

conjugate will give the square of its absolute value - Fℎ𝑘𝑙2 = Fℎ𝑘𝑙Fℎ𝑘𝑙∗  : |Fℎ𝑘𝑙|2 = 𝑓2[1 + e2𝜋𝑖[(ℎ+2𝑘) 3⁄ +𝑙 2⁄ ]][1 + e−2𝜋𝑖[(ℎ+2𝑘) 3⁄ +𝑙 2⁄ ]] 
= 4𝑓2 cos2 𝜋 (ℎ + 2𝑘3 + 𝑙2). 

 Observing the conditions of the Miller indexes ℎ, 𝑘 and 𝑙 in which the exponential 

factor takes an integer value, we'll then have that the structure factor for the hcp structure 

can assume four forms: 

{  
  ℎ + 2𝑘 = 3𝑛 , 𝑙 = 𝑒𝑣𝑒𝑛:            𝐹ℎ𝑘𝑙2 = 4𝑓2,ℎ + 2𝑘 = 3𝑛 ± 1 , 𝑙 = 𝑜𝑑𝑑:      𝐹ℎ𝑘𝑙2 = 3𝑓2,ℎ + 2𝑘 = 3𝑛 ± 1 , 𝑙 = 𝑒𝑣𝑒𝑛:      𝐹ℎ𝑘𝑙2 = 𝑓2,ℎ + 2𝑘 = 3𝑛 , 𝑙 = 𝑜𝑑𝑑:                  𝐹ℎ𝑘𝑙2 = 0.  

 It is noted that the last condition has a structure factor equal to zero, so any set of 

planes that meet this condition in a bulk system will not appear in the diffraction pattern 

since these reflection's intensity will be cancelled out (destructive interference). These 

conditions can be important to verify the occurrence of forbidden reflections (zero 

intensity) and investigate the appearance of additional reflections as a direct result of 

crystalline defects (induced or not). 

It's also noteworthy that, for its simplicity, the formalism presented to obtain the 

structure factor and the diffracted intensity in a crystal can be reproduced in 

computational simulations applied to different systems, having defined the configurations 

to be investigated along with their appropriate lattice symmetry. 

(2.4) 

(2.6) 

(2.5) 
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 The main focus of this work is to study the manifestation of grain boundaries 

and/or inner-grain defects (interfaces) in a single-phase polycrystalline metal, which in 

this case is commercially pure magnesium (CP-Mg). As presented before, a portion of 

these defect configurations can be categorized under twinning (symmetric defect where 

the junction between two crystals can be characterized as a "reflection" along a common 

plane, axis or point); in such cases, the atomic configuration on the interface plane of a 

twin-like defect of an hcp system is characterized by a face-centered cubic (fcc) structure. 

Figure 2.7 represents the most common slip and twinning planes for the hexagonal close-

packed crystal structure. Despite these planes being the most commonly observed for this 

system, all configurations in between could also manifest themselves in a real sample 

(processed or not), with more or less probability depending on energy minimization 

conditions. Therefore, the investigation of all possible planes inside the hcp lattice, 

passing through the most commonly observed ones, could be of interest. 

 

Figure 2.7 – Common slip and twinning planes of the HCP system (Jaber, 2015). 
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2.4. Objectives and Outline of the Dissertation 

 

 This work presents a novel approach for providing statistically relevant 

information on the atomic arrangement of interfaces in hcp materials (here, singe-phase 

commercially pure Mg) subjected to deformation and refinement processing. A better 

comprehension of the interface structure down to nanoscale is crucial for understanding 

the relation between microstructure and mechanical properties, and designing materials 

with new regimes of property-performance space. 

 To achieve that, synchrotron X-ray diffraction of the samples were performed with 

long acquisition times using a large-area reciprocal space detector, thus allowing the 

retrieval of forbidden (non-fundamental) reflections that indicate the existence of 

preferentially oriented interfaces. The Mg samples were evaluated in three distinct 

conditions: (i) processed by hot-rolling, (ii) processed by hot-rolling followed by tensile 

test, and (iii) processed by hot-rolling and SPD (ECAP) followed by tensile test. The 

combined rolling and ECAP processing were used to obtain grain refinement (i.e., high 

density of interfaces) with a homogeneous microstructure; the samples were further 

subjected to tensile tests in order to promote the generation of new crystalline defects for 

accommodating the plastic deformation and, consequently, higher density of interfaces. 

Kinematical simulations scanning possible interface structures were then performed to 

establish the correspondence of the forbidden peaks with the interfacial structural 

organization of atoms that were responsible for such scatterings. We conceptualize the 

simulation routines to reproduce the crystalline structure at the most basic level (a crystal 

with no defects) and verify its effectiveness and compatibility with a bulk XRD profile. 

After the routine is optimized, we take on the most important step, which is the attempt 

to reproduce the experimental profiles through the scanning of different arrangements of 

interfaces (rotation and matching of bulk crystals), determining the most probable 

interfacial configurations. 

 Concerning the outline of this dissertation, Chapter 3 presents the Materials and 

Methods section with an overview of the studied samples, XRD experiments and 

simulations. The Results and Discussion sections are presented in Chapters 4 and 5, 

respectively. Finally, Chapter 6 summarizes the conclusions of this work. 
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3.  MATERIALS AND METHODS 

 

3.1. Materials 

 

 The samples studied in this work consist of commercially-pure magnesium 

(99.9%). The material was provided by Rima Industrial S/A (Várzea da Palma, Brazil) as 

as-cast slabs with about 10 mm thickness. Samples were cut from the as-cast slabs and 

rolled to a thickness of 1 mm at a temperature of 673 K. Rectangular plates with 60 × 9.4 

× 1.0 mm were extracted from the rolled sheets. The plates were piled in groups of nine 

and covered with a copper sheet of 0.3 mm thickness to obtain a prismatic bar with 60 × 

9.4 × 9 mm which was processed by 4 passes of ECAP at 473 K using route C (sample is 

rotated 180° between each pass). Tensile specimens were machined from samples 

subjected to both rolling and ECAP processing. Testing was carried out in an Instron 

machine model 5582, at constant rate of crosshead displacement. Details of these 

procedure can be found in [27]. Finally, optical metallography of the samples was carried 

in a conventional optical microscope to evaluate the microstructure. The sample 

preparation consisted of grounding in abrasive papers, polishing, and chemical etching 

with a solution of 5% nitric acid in ethanol to reveal grain structure. 

 Table I below contains the received sample listings and specifications regarding 

their deformation tests: 

Table I - Listing of the CP-Mg slab samples. *Samples T1, T2 and T5  

were the ones chosen to do direct comparisons with the subsequent simulations. 

 Designation Tensile Test Specification ECAP Specification 
T1* T_inicial (none) (none) 

T2* T004_M4 𝛆 = 0,04 ; �̇� = 10-4 s-1 (none) 

T3 T006_M4 ε = 0,06 ; ε̇ = 10-4 s-1 (none) 

T4 T_inicial_CAP (none) 4 passes, 473 K, 135° 
T5* T004_M4_CAP 𝛆 = 0,04 ; �̇� = 10-4 s-1 4 passes, 473 K, 135° 

T6 T008_M4_CAP ε = 0,08 ; ε̇ = 10-4 s-1 4 passes, 473 K, 135° 
T7 T002_M4_CAP ε = 0,02 ; ε̇ = 10-4 s-1 4 passes, 473 K, 135° 
T8 T018_M6_CAP ε = 0,18 ; ε̇ = 10-6 s-1 4 passes, 473 K, 135° 
T9 T008_M6_CAP ε = 0,08 ; ε̇ = 10-6 s-1 4 passes, 473 K, 135° 
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 Variables ε and ε̇ represent the deformation load and strain rate, respectively. For 

the rectangular slabs, we have two control samples: one of them (T1) without any traction 

or SPD deformation, and another one (T4) being submitted exclusively to the ECAP 

processing. Despite that, samples T1 (hot-rolling), T2 (hot-rolling + tensile testing) and 

T5 (hot-rolling + ECAP + same tensile testing) were chosen to be the main subjects of 

comparison towards progressive deformation steps. 

         As mentioned previously, characterization methods for sample analysis are 

synchrotron X-ray diffraction, along with optical metallography to directly observe the 

formation and increase of grain boundaries and interfaces through grain refinement. The 

method of choice for the analysis of the diffraction profiles was the manual verification 

by Gaussian adjustments, and simulation of the diffraction profiles was done via scripts 

written in MATLAB®. 

 

3.2. MATLAB® simulation of kinematic scattering 

 

 The computational simulation of the Mg crystal lattice with and without defects 

and their respective XRD profiles follows a relatively simple execution line, composed 

of two main steps: (A) construction of the hexagonal close-packed lattice, and (B) 

simulation of the synchrotron X-ray scattering over the constructed lattice (Figure 3.1). 

All scripts developed are available in the Appendix of this dissertation. 

The possibility to choose and adjust parameters such as the size of the atom matrix 

or the size of the inserted defect on the bulk material allows us to have some basic control 

over the processing time of the routine, which is helpful because it allows the use of very 

reduced matrices for performance testing and troubleshooting on the initial stages of 

conception of the code. Once the routine is established, we can then dramatically increase 

the size of the matrix and induced interfaces in an attempt to potentialize the scattered 

intensity - that would be the equivalent of an extended signal collection time in a real X-

ray diffraction experiment. 
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Figure 3.1 - Execution line diagram of the synchrotron XRD profile simulations. 

 Two Mg crystals with 30 x 30 x 30 unit cells are simulated with atomic positions 

following the bulk structure. The edge of these crystals is removed, making a sphere of 

atoms without any specific faceting in order to reduce form factor effects on the 

simulations [19,21]. After generating the spherical domain of atoms without defects 

(Figure 3.2), we can insert the defect by performing a cut of customizable size and 

thickness in the original lattice. By removing a slice of the perfectly organized lattice, 

rotating it accordingly and inserting it back in the lattice, we can create the desired 

interfaces on the crystal lattice. One thing to note is that the rotation of a point around an 

arbitrary axis is often computed as a set of many distinct matrix operations; however, it 

is possible to obtain a matrix that executes the rotation in a single operation, which is the 

rotation matrix 𝑅 [42]: 

     𝑅 = [ cos 𝜃 + 𝑢𝑥2(1 − cos 𝜃) 𝑢𝑥𝑢𝑦(1 − cos 𝜃) − 𝑢𝑧 sin 𝜃 𝑢𝑥𝑢𝑧(1 − cos 𝜃) + 𝑢𝑦 sin 𝜃𝑢𝑦𝑢𝑥(1 − cos 𝜃) + 𝑢𝑧 sin 𝜃 cos 𝜃 + 𝑢𝑦2(1 − cos 𝜃) 𝑢𝑦𝑢𝑧(1 − cos 𝜃) − 𝑢𝑥 sin 𝜃𝑢𝑧𝑢𝑥(1 − cos 𝜃) − 𝑢𝑦 sin 𝜃 𝑢𝑧𝑢𝑦(1 − cos 𝜃) + 𝑢𝑥 sin 𝜃 cos 𝜃 + 𝑢𝑧2(1 − cos 𝜃) ] 
 This matrix governs the rotation of a given axis (defined at will) in the direction 

of a unit vector  �⃗�  =  (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)  where  𝑢𝑥2 + 𝑢𝑦2 + 𝑢𝑧2 = 1 , by an angle of 𝜃. In this 

case, the main benefit of a single matrix operation is the significant reduction in 

computational time required to perform the rotation. In computational simulations where 

rotations will be performed in large numbers along with a multitude of other variables, 

(3.1) 
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which is the case of this routine, having a practical computational time is a particular 

concern. 

 

Figure 3.2 - Generation process of an approximate spherical lattice (MATLAB®). 

The kinematical simulation of interface structures must make use, as a starting 

point, of the main symmetries and slip/twinning planes of the hcp system. Nevertheless, 

different interface structures can also be found [37–39]. In our simulations, we assume 

that abrupt interfaces take place between grains (although such occurrence does not apply 

to all interfaces). In such conditions, the permanence of a bulk lattice in the adjacent 

position of the interface plane, represented by a rotated crystal, gives rise to diffraction 

peaks that would not be observed in boundaries where amorphous or oxide grain contours 

take place. Therefore, aiming at identifying the occurrence of unexpected interface 

structures, our simulated crystals must present faceting occurring at angles in-between 

the main (highly symmetric) facets of an hcp system. Hence, the faceting planes of a 

simulated interface must be probed for a wide range of angular displacements with respect 

to three chosen slip and twinning planes of the hcp bulk system, namely the prismatic, 

pyramidal and tensile twinning planes [32], as indicated in Section 2.3.2. This is obtained 

by varying the cut planes according to the angles represented in Figure 3.3. 
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One of the crystals is left on a pre-defined orientation, while the other is rotated 

with respect to fixed axes that pass through the directions [11̅0], [010] and [001]. The 

angles between the planes and the vertical c axis of a reference unit cell are hereafter 

named α and β, while the angle of the plane rotated azimuthally with respect to the a axis 

of the ab plane of the hexagonal unit cell is referred as γ. These angles are equal to zero 

at the (110) , (010)  and (11̅0)  planes, respectively. All possible rotational 

configurations of the represented planes were scanned along the intervals between 0° and 

90° for a and b, and 0º to 120º for g, with steps of 0.1°. The rotation of the cut planes was 

made perpendicular to the vector that is normal to the defined planes. 

Figure 3.3 - Representation of the interface planes, defined as a function of the angles α, β and 

γ with respect to the (110), (010) and (11̅0) planes of the hcp unit cell. 

Finally, once the cut plane is determined and the rotations and insertions are done, 

we have the completed simulated hexagonal lattice with grain interfaces, as demonstrated 

in the example shown on Figure 3.4. From there, we can then simulate the diffraction 

profiles and compare them to the diffractograms of the hexagonal bulk lattice (that is, 

without the insertion of defects). A close-up example of the result is observed in Figure 

3.5, where the atoms of the original bulk crystal are represented by blue spheres, while 

the inserted atoms of a rotated lattice are included as green spheres. The insertion has a 

finite size along one direction and spans over the whole crystal along two directions (a 

large slab). The interfaces obtained in such procedure are representative of extended grain 

boundary interfaces, or extended defects, that may occur inside our Mg samples. 
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Figure 3.4 - Simulation of a defect in an approximate spherical lattice: (a) bulk cut, (b) rotation 

of the bulk slice and (c) insertion. 

 

Figure 3.5 - Representation of a bulk Mg crystal with the c-axis along the horizontal direction 

(left panel). A rotated bulk crystal (green spheres) in inserted at its host matrix (blue spheres), 

generating two identical interfaces (right panel). Note: Atoms that appear superimposed at the 

interfaces are in fact displaced along the direction perpendicular to the represented figure plane. 

 

3.3. Synchrotron X-ray diffraction experiments 

 

 X-ray diffraction data was acquired in the XRD1 beamline of the Brazilian 

Synchrotron Light Laboratory (LNLS – Campinas, São Paulo, Brazil). The full beamline 

layout consists of a white beam slit of 4 mm, a vertical focusing mirror, a Si(111) double 

crystal monochromator and physical slits of 4 mm and 2 mm (Figure 3.6), having a total 
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length of 18,2 m between the beam output (by the bending magnet) and the experimental 

station. The bending magnet acts as a source from which a monochromatic 12 keV (which 

corresponds to a wavelength of 𝜆 = 1.03293 Å) beam with an integrated flux of 1011 

photons/s comes out, focusing at the sample position with a spot size of 3 mm x 0.7 mm. 

The experimental station incorporates a Newport® 3-circle diffractometer (N3050-P1) 

with a maximum amplitude of 150°, and a Mythen 24K linear detection system from 

Dectris® consisting of 30720 channels that cover an angular range of 120°. The Mg 

samples were illuminated at a fixed incident angle of 10°, resulting in a penetration depth 

of approximately 100 μm. For this penetration depth, the formation of native oxide on the 

sample surface is negligible. Our acquisitions were restricted to a maximum integration 

time of 3600 seconds (one hour) and the oxide layer on the sample surface is removed 

immediately before measurements. In order to fill up detection gaps of the detector array, 

two acquisitions with a 0.5° difference were carried out for each sample. The intensity 

profile is then extracted using the dataset from the second acquisition for angular intervals 

without data at the first scattering angle. Data acquisition was done using a Red Hat 

workstation with the Py4Syn python package, developed at LNLS. 

Figure 3.6 - XRD1 beam line layout (LNLS archive).  

 Preparation of the magnesium samples was relatively simple, following only a 

polishing step with fine-grained sandpaper sheets (600 and 1200 grit sizes) and coating 

with a thin Kapton® adhesive tape to prevent any formation of oxide layers on the surface 

of the samples that could manifest in the diffraction patterns (Figure 3.7). The Kapton® 

polyimide film is a good barrier material useful in various systems, and has a low enough 

crystallinity so that its diffraction pattern is negligible when added to the sample of 

interest [46].  
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Figure 3.7 - Simplified representation of the rectangular slab samples evaluated: (a) in its initial 

state with specified mechanical processing, (b) after polishing, and (c) attached to the Kapton® 

tape and on to the diffractometer. 
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4.  RESULTS 

 

4.1. Magnesium Sample Overview 

 

 A first overview of our samples is provided by optical metallography, depicted in 

Figure 4.1. The optical microstructure of the commercially pure Mg ingot is shown in 

Fig. 4.1(a), which exhibits large grain sizes (~300 μm). Figs. 4.1(b) and (c) represents 

the hot-rolled (T1) and hot-rolled submitted to tensile test (T2) samples respectively, 

whereas Fig. 4.1(d) depicts the sample processed by hot-rolling and ECAP followed by 

tensile test (T5). One notices that the grain size is considerably reduced (in the range of 

tens of microns to a few micrometers) when subjecting the samples to rolling and ECAP 

processes, creating a large amount of interfaces with a consequently larger and more 

random distribution of interface orientation [27]. For Mg, it is known that untreated grain 

sizes of the order of 300 microns are commonly retrieved, while treatments such as ECAP 

and traction/compression reduce the grain sized to tens of micrometers. 

 

Figure 4.1 - Optical metallography images of Mg samples in four distinct conditions: (a) as-cast 

sample, (b) hot-rolled sample (T1), (c) hot-rolled sample subjected to a tensile test (T2), and (d) hot-

rolled, processed by ECAP, and submitted to a tensile test (T5). The experimental parameters of the 

tensile tests were similar for samples exhibited in (b) and (c). 
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4.2. Synchrotron X-ray diffraction of hcp materials 

 

 Figure 4.2(a) shows a sketch of the synchrotron XRD setup used. The simulated 

diffractogram of bulk Mg based on a reference crystal structure [47] corresponds to the 

blue XRD pattern exhibited in Figure 4.2(b), where all the observed peaks respect the 

rules of structure factor extinction for the hcp lattice (i.e., fundamental peaks) [41]. The 

experimental data recorded in our setup for the sample T2, subjected to hot-rolling and 

tensile test, is shown in red in Figure 4.2(b), where arrows mark the presence of peaks 

which do not correspond to the bulk material diffraction. The distinct intensities between 

fundamental peaks is ascribed to texture effects on the measured sample (simulated data 

stands for a powder with random domain orientations). Despite only showing the XRD 

profile for one of the samples, it’s important to note that all nine samples exhibited the 

same non-corresponding peaks, only with distinct relative intensities. This fact will come 

in hand in the discussion section later on. 

A zoom of selected angular regions pointing the most intense additional peaks 

observed is provided in Figure 4.2(c). The retrieved additional peaks are located close to 

the Mg (102), (200), (204) and (300) reflections. We have carried out a careful analysis 

of Mg oxides, and their diffraction peaks do not occur for angles where additional peaks 

were retrieved. Oxide peaks coming from a thin layer at the surface are also known to be 

broad, if the compound is crystalline, or to appear as a smooth background at lower 

scattering angles if the compound is amorphous. The presence of impurities (such as Si) 

and their possible clustering into intermetallic was also not observed. Such peaks are then 

related to extended atomic configurations (interface core) inside polycrystalline Mg. 

Since grains are individual single crystals, the regular atomic configurations that generate 

diffraction peaks which are not bulk-related can only be found in interfaces such as grain 

boundaries, subgrain boundaries, twin boundaries, and twist transition boundaries [9–11].  
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Figure 4.2 - (a) Sketch of the diffraction setup used, with a long linear detector (24 x 1280 

channels). (b) Measured (upper panel, red curve) and simulated/bulk (lower panel, blue curve) 

diffraction profiles for Mg. (c) Selected regions of the diffractograms for the measured (upper 

panel) and simulated/bulk (lower panel) diffraction profiles. 
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 After measuring the CP-Mg samples, we have the raw, full synchrotron XRD 

profiles collected for all nine samples, shown in Figure 4.3: 

  

Figure 4.3 - Overview of raw data synchrotron XRD profiles for all nine CP-Mg samples. The  dotted 

lines mark the position of additional peaks observed. 

 Indexing and interpretation of the characteristic peaks for the Mg crystalline 

structure can be done through several different methods, such as by comparison using 

diffraction patterns from databases, or automated analysis through the use of phase 

identification software (HiScore Plus, Match!, etc). This type of software basically works 

under the same method of comparison, but can also provide data processing, calculation 

of phase percentages (for composite materials), etc. Here, we chose to use the method of 

direct comparison using a diffraction pattern obtained through the Crystallographic Open 

Database (COD) [47] and presented with PowderCell software [48]. The whole set of 

samples corresponds well to the database standards, and aside from the aforementioned 

non-fundamental peaks highlighted in Figs. 4.2 and 4.3, no peaks corresponding to other 

materials or possible oxide formations were observed. 
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 By making Gaussian fittings to these specific reflection peaks, we could extract 

parameters such as width at half height (FWHM), height or integrated area that would 

allow for the inferring of information about, for example, grain sizes and asymmetries 

that characterize different types of defects generated inside each sample after the 

deformation tests. However, being that these samples are polycrystalline but not actually 

powdered, the relative intensity of the additional peaks could, in part, be associated with 

innate texture effects induced when choose a specific orientation/placing of the samples 

on the diffractometer (see Fig. 3.7). Therefore, it could not be a fully reliable source data 

to evaluate. 

 With that being said, having the XRD profiles of the actual Mg samples in hand 

and extracting the parameters of the reflection peaks of interest enables us to associate 

them with the previously proposed computational simulation, at least in a qualitatively 

level, in an attempt to reproduce the conditions in which we observe the peaks suggested 

as induced by defect formation. If that can be done, we can therefore verify the possible 

configurations of interfaces and try to offer explanations regarding the formation process 

of those defects with respect to the planes of occurrence, predicted microstructural 

characteristics and properties, among others aspects. 

 

4.3. Simulating XRD profiles for a perfect hcp lattice 

 

 Firstly, a kinematical simulation of a bulk Mg crystal was carried out in an attempt 

to verify the accuracy of the simulation routines in comparison with the XRD profile of 

a real Mg bulk. This means interfaces were not introduced. 

 The diffraction of simulated crystal lattices with and without the insertion of grain 

interfaces were obtained for the scattering amplitude of all relevant sets of (ℎ𝑘𝑙) planes 

(00L, 01L, 10L, 11L, 20L, 21L e 30L), up to the imposed limit where 𝑙 =  9. The 

simulation of planes with Miller indexes beyond this value would be unnecessary, since 

Bragg peaks for those reflections would appear at angular positions that were out of the 

reach for the beamline detectors on the real samples (in other words, we couldn’t observe 

past this point with the current experimental setup). 
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 After simulating the scattering amplitude for all sets of planes using an energy of 𝜆 = 1.03293 Å (the same used on the experimental measurements), all of the simulated 

profiles were merged into a complete diffractogram for a Mg bulk. It was seen that the 

simulated Bragg peaks for the perfect crystal lattice were highly corresponding in their 

angular positions (2θ) when compared to the reference diffraction pattern [47]. The only 

factor that differentiates the simulated diffractogram from the database reference is the 

non-inclusion of the multiplicity factor in the calculation of the hexagonal lattice structure 

factor, which was not considered essential until the present stage of study. The 

multiplicity factor was not incorporated since relative proportion of hkl planes is not of 

interest, and also not to interfere or cause incorrect interpretations of the integrated 

intensity values for single, non-fundamental reflections that have no correspondence with 

integer Miller indexes. This choice was maintained when incorporating the grain 

interfaces into the simulated lattices. 

 

4.4. Simulating XRD profiles for an hcp lattice with grain interfaces α, β and γ 

 

 The primary objective for these simulation routines was to verify the occurrence 

of scattered amplitudes that could be attributed exclusively to the insertion of defects 

(being it grain boundaries, twin boundaries, or any other interfacial structure). 

Subsequently, the objective is to try specifying an interface (cut) direction that produces 

diffraction peaks as close as possible to those observed in the real CP-Mg samples. 

As the angles and inclusion interfaces α, β and γ are varied, we find out which 

configurations produce diffractions peaks with appreciable intensity at similar positions 

where additional peaks were observed in the measurements of, e.g., Fig. 4.2(b). We must 

mention here that many configurations of rotation and interface inclusions do not produce 

any additional diffraction peaks, while others produce peaks at positions in the 

diffractogram where no appreciable intensity was measured above the background. 

The diffraction intensity from our computer-generated matrix of atoms is retrieved 

by the kinematical relation: 
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𝐼(𝑞) = |𝐴𝑜∑𝑓𝑀𝑔,𝑖(𝑞)𝑒−𝜎2𝑹𝑖2/2𝑑2𝑒𝑖𝑞.𝑹𝑖𝑖 |2 
where q is the reciprocal space condition in which the scattering intensity is evaluated, 𝐴0 is a constant used for normalizing the total scattering intensity, 𝑓𝑀𝑔,𝑖(𝑞) is the atomic 

scattering factor of the Mg atom at position i, σ is an effective fluctuation of the 

defect/host crystal interface position, set to 2.0, which allows for broadening of the profile 

and reduction of finite size oscillations from the simulated interfaces, and d is the Mg-

Mg atomic distance considering a bulk hard sphere model (𝑑 =  0.321 𝑛𝑚). 

Some configurations retrieved that simulate observed peaks are unambiguous and 

univocal, while in other cases the observed peaks can be obtained by more than one 

interface configuration (atomic arrangement and periodicity). In the next paragraph we 

provide details of the simulated outcome, while in the following we establish conditions 

to infer the most probable interfaces in cases where two or more geometric conditions 

give rise to non-fundamental diffraction peaks. 

Since all additional, non-fundamental peaks appear below 2𝜃 =  80° (see Fig. 

4.2), our simulated scattering range was limited to this angle. As the cut/rotated crystal is 

inserted into the host original matrix with angles near a specific interface that generates 

additional scattering peaks, some intensity is observed. The incoming simulated peak has 

an onset and then drifts in 2θ, generally achieving a maximum intensity at a specific 

position. After this point, the simulated peak drifts along a similar range while its intensity 

starts to decrease, vanishing afterwards. Such set of conditions establish a range of 

possible interface angles and a maximum strain condition, which can be understood as 

the difference between the interplanar spacing retrieved experimentally (from the 2θ 

angle value) and the corresponding d-spacing obtained from the peak intensity of the 

simulated interface (which makes use of bulk lattice parameters). We assume here that 

near the interface core (in the adjacent bulk material) the lattice parameters a and c do not 

differ considerably from those measured in bulk Mg. Figure 4.4 shows a comparison of 

a simulated peak (blue line) and a measured non-fundamental peak (red line). In this 

figure, the width of the simulation peak and its lateral intensity oscillations are due to the 

finite crystal size. Despite of its broader profile, the simulated peak width still allows one 

(4.1), 
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to distinguish them from any neighboring peaks observed experimentally. An example of 

a simulated peak is provided in Figure 4.5(a). Here, the non-fundamental peak observed 

experimentally at the scattering angle 2θ = 67.02° is retrieved on the simulation with a 

maximum intensity at 2θsim = 66.93°. It can be seen that the simulated intensity is 

significant for interface angles α spanning from 29.5° to 32.8°. The maximum of the 

simulated intensity is compared to the maximum of measured intensity in Figure 4.5(b), 

showing that a relatively low strain with respect to a bulk configuration is obtained. 

 

Figure 4.4 - Experimental (red line) and simulated (blue line) interface peaks. The larger width 

and side maxima observed in the blue curve are due to the finite size of our simulated crystal. 

 

Figure 4.5 - (a) Simulated intensity profile for interface peak at 2θ = 67.02° plotted with respect 

to the interface angle and scattering angle (2θ). (b) Detailed view of the observed maximum 

intensity for the tilt angles used for the α plane interface near 31.2°. 
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 Simulations were carried out for the cutting planes indexed by the angles shown 

in Figure 3(a), as stated previously. Steps of 0.01° on interface tilt angle were used along 

a 90° range for α and β and 120° range for γ. Additional peaks were not observed for 

variations in the γ angle, while several conditions of α and β were capable to produce 

diffraction intensity along the 2θ range. The retrieved conditions of inserted rotated 

crystal slabs that lead to the occurrence of one (or more) interface peaks in the 

diffractogram are listed in Table II. We have gathered the information of the experimental 

and simulated peak position in 2θ (scattering angle), the type of rotation (α, β or γ planes), 

the angle of rotation of the inserted crystal (that creates the interface), the maximum 

estimated strain (considering a simplified bulk one-dimensional distortion), the interface 

angular tolerance, and the corresponding peak spread in 2θ. For the experimental peaks 

with more than one possible interface structure (2θ = 29.32° and 67.02°), the relative 

intensity of the simulated peaks is also depicted in the third column of Table II. Only 

simulated peaks with an estimated strain differing less than 2% are listed here. Finally, 

we have also simulated stacking faults [49] in which the ABAB registry along the c (00L) 

axis is replaced by ABCAB (local insertion of a [111] FCC plane) and ABBA stackings, 

and the known {101̅2} twin in Mg [32]. These simulations do not reproduce any of the 

observed peaks. 

 The most probable configurations for interfaces that generate the observed peaks 

are indicated by bold characters in Table II. While for the measured peaks at 2θ = 29.32° 

and 41.95° the lowest strain solutions observed are compatible with both the peak position 

(experimental) and the maximum simulated intensity (theory), the peaks at 2θ = 25.33° 

and 67.02° have non-trivial solutions. For the lowest angle peak (2θ = 25.33°), only one 

solution was retrieved, with a large interface angle tolerance. In this case, where the 

simulated peak intensity is shown in Figures 4.6(a) and 4.6(b), the 2θ angle of the 

intensity maximum of the simulation would require a highly strained interface. 

Nevertheless, one can assume that the energy minimization for this interface takes place 

for the interface angle that corresponds to a near zero strain condition (informed between 

parentheses in the second line of Table II), still producing an appreciable intensity at this 

specific scattering angle. For the highest angle peak (2θ = 67.02°), the simulated peak 

that corresponds to the minimum strain condition (0.08% compressive) presents a very 
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low intensity if compared to a much more intense condition that takes place at 0.12% 

compressive strain. We therefore assume that this second solution (which was shown in 

Fig. 4.5) is the most probable to induce the appearance of a strong experimental interface 

peak, such as the one observed in sample T2 shown in Fig. 4.2(b). Three of the interface 

conditions selected as probable ones are originated by α-type interface planes, while only 

one is obtained from a β-type interface plane. 

 

Table II - Experimental and simulated peak positions for interfaces (first and second columns). 

All retrieved conditions that lead to an estimated strain of less than 2% with respect to bulk 

interface configurations are listed (except for the 25.33° peak, see text for discussion). The relative 

intensity (with corresponding interface plane), interface angles and estimated strain of the 

experimental peak with respect to the bulk simulated configuration are depicted in the third, fourth 

and fifth columns, respectively. The sixth and seventh columns of the table exhibit the angular 

tolerance in the interface angle (range for which at least 10% of the simulated peak intensity is 

still observed) and its angular spread along the diffraction (2θ) angle. 

Experimental 

peak position 

2 (degrees) 

Simulated 

peak 

position 

2 (degrees) 

Relative 

intensity/ 

Interface 

plane 

Interface 

angle 

(degrees) 

Estimated 

strain (%) 

(max. sim.) 

Interface 

angular 

tolerance 

Peak spread 

in 2 

(simulation) 

25.33° 
24.445° 

(25.330°) 
1 () 

62.10° 

(63.32°) 

-3.44 

(0)* 
3.60° 2.23° 

29.32° 

29.321° 1 () 30.162° 0.003 12.00° 0.09° 

29.609° 0.048 () 39.775° 0.97 5.48° 0.20° 

29.632° 0.009 () 39.162° 1.04 1.93° 0.21° 

41.95° 42.106° 1 () 40.802° 0.35 3.15° 0.69° 

67.02° 

66.958° 0.007 () 44.023° -0.08 2.01° 2.12° 

66.927° 1 () 31.179° -0.12 3.72° 1.69° 

66.850° 0.081 () 23.448° -0.22 3.81° 1.38° 

66.773° 0.066 () 73.059° -0.33 1.28° 3.77° 
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Figure 4.6 - (a) Simulated intensity profile of the interface peak at 25.33° plotted with respect 

to the interface angle and scattering angle (2θ). The intensity observed at the left corner is due to 

the proximity of the (002) bulk peak. In this case the maximum of the simulated intensity does 

not match the 2θ position of the experimentally observed peak with low strain values. 

Nevertheless, the interface angle can be tuned to a value where considerable diffraction intensity 

is still observed, yielding a peak at the measured 2θ position for a β-type interface. (b) Detailed 

view of the observed 2θ maximum intensity for the tilt angles used for the β plane interface near 

62.5°, indicating the maximum simulated intensity peak and the observed interface peak 

position.  

Similarly to Figs. 4.5 and 4.6, the intensity of the forbidden peaks observed at 2 

= 29.32° and 2 = 41.95° as a function of the interface tilt angle are shown in Figures 

4.7(a)-(d). These are cases of unambiguous or univocal solutions, as it can be seen by its 

retrieved data in Table II. 
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Figure 4.7 - (a) Simulated intensity profile for the interface peak at 2θ = 29.32° plotted with 

respect to the interface angle and scattering angle. (b) Detailed view of the simulated maximum 

intensity. (c) Simulated intensity profile for the interface peak at 2θ = 41.95° plotted with 

respect to the interface angle and scattering angle. (d) Detailed view of the simulated maximum 

intensity.  
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5.  GENERAL DISCUSSIONS 

 

 The most probable interface structures for each of the non-fundamental peaks 

retrieved experimentally from our XRD methodology are represented schematically in 

Figure 5.1(a-d). In this figure, atomic configurations for the conditions marked in bold in 

Table II were graphically generated by a MATLAB® script and visualized in POV-

Ray™. The axis of crystallographic planes for the bulk matrix (blue) and the interfaced 

crystal (other colors) are also shown. One notices that the distinct patterns in the interface 

line are retrieved. Their geometry may be related with conditions that lead to local energy 

minimization with a symmetry that allows for XRD, representing a long-range ordered 

pattern of atomic distributions in Mg. One must recall here that other interface conditions 

also produced diffraction intensities, but in regions of the diffractogram where no 

additional peaks were experimentally observed. Therefore, our solutions do not rule out 

the existence of interfaces with reduced symmetry (i.e., interfaces that do not generate X-

ray peaks), but rule out the occurrence of highly symmetric configurations in our samples, 

such as commensurate configurations (superstructures) at the grain interfaces. It is also 

important to notice that the interfaces observed here are extended ones, since all 

additional (non-fundamental) peaks measured are considerably sharp. No signal of 

interfaces with reduced size (broad peaks) were measured. 
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Figure 5.1 - Representation of the most probable Mg grain interfaces that generate additional 

XRD peaks in our measurements. Note: Atoms that appear superimposed at the interfaces are in 

fact displaced along the direction perpendicular to the represented figure plane. 

We make use of the idea of observing Mg interfaces by XRD to compare the 

interplay of interface relative volume and the condition of pure Mg samples after 

mechanical processing. Figure 5.2(a) shows the full simulated diffractogram, with the 

non-fundamental peaks marked with arrows. Selected samples T1, T2 and T5 are shown 

in panels Fig.5.2(b-d), providing an overview of interface behavior after mechanical 

processing. In Fig. 5.2(b) we show a measurement of a hot-rolled Mg sample (T1). For 

this condition the interface peaks at 29.32° and 41.95° are quite intense with respect to 

the interface peaks at 25.33° and 67.02°. A tensile strain of  = 0.04 at a rate of  = 10-4 

s-1 was then applied to the sample (T2). The results, already exposed in Figure 4.2, are 

reproduced in Figure 5.2(c). After tensile tests, one observes the reduction of the 
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diffraction from α-plane interfaces at 29.32° and 41.95°, indicating that the re-orientation 

of grains takes place reducing the overall presence of these types of interfaces. On the 

other hand, tensile strain enhances the signal of peaks at 25.33° (β plane) and 67.02° (α 

plane), which points out to an increase in the overall population of such interfaces. 

Finally, the same tensile test was applied to the hot-rolled sample after ECAP processing 

(T5), and the diffractogram of Figure 5.2(d) was measured. ECAP is known to be a severe 

plastic deformation technique that produce ultrafine grain size and a consequent increase 

in the interface’s density in metals and alloys [23,32]. Therefore, the relative reduction in 

the population of both α-like and β-like interfaces that induce the appearance of the 

measured peaks might be explained by the introduction of novel configurations of 

interfaces. Besides that, the XRD results can be compared to the metallography images 

of Figure 4.1, where ECAP refines the grain size but still leaves micrometer-sized 

interfaces, justifying the experimental interface diffraction peak width in our experiments 

(a coherence length of approximately 2 m is produced at the bending magnet source 

used here). 

 

Figure 5.2 - (a) Simulated diffractogram for a crystal containing the four most relevant 

interfaces described in Table I. (b) XRD measurement of the hot-rolled Mg sample (T1). (c) 

XRD measurement obtained under the same conditions for the rolled sample subjected to tensile 

strain  = 0.04 with rate  = 10-4 s-1 (T2). (d) XRD measurement for the rolled sample 

subjected to the same tensile strain/rate as (c) after ECAP processing (T5). 
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Figure 5.3 shows the relative intensity of the four retrieved forbidden peaks, 

displayed with respect to the processing procedure applied to the samples of Figure 5.2. 

Although a quantitative comparison is not recommended here (as it was said in Section 

4.2, samples have distinct textures), large changes on all peak intensities can be ascribed 

to the reduction of the total volume of grain boundary interfaces that diffract at these peak 

positions. 

 

Figure 5.3 - Relative intensity of forbidden peaks as a function of processing type. 

 Interesting considerations concerning our results can be drawn in the perspective 

of recent works that evaluate the orientation and energy of symmetric and asymmetric 

tilts of grain boundaries. A work by Silva et. Al. [50] showed that high-pressure torsion 

(another SPD technique that induces UFG formation) applied to Mg samples can generate 

grain boundaries with low misorientation angles that average at about 30°; that seems to 

be compatible with one of the retrieved interfaces in this work, despite not providing 

further information that could confirm the exact preferential interface of those grains. The 

energy of symmetric grain boundaries was evaluated by molecular dynamics by Wang et. 

al. [38]. Their modelling is based on tilting both sides of Mg and Ti crystals varying the 

equivalent of our β angle. They found that besides the endpoints (0° and 90° tilts with 

respect to the hcp c-axis), local minima of the grain boundary configuration energy are 

retrieved in four specific tilt angles. Ostapovets and Sheikj-Ali proposed, more recently, 
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that asymmetric configurations (a distinct tilt for each side of the grain boundary) would 

lead to smaller energies than symmetric tilts [39]. This finding is in agreement with our 

retrieved interfaces, shown in Figure 5.1 as a result of X-ray non-fundamental peak 

analysis. A more complete scenario was obtained by Zhu et. al., using an evolutionary 

search algorithm [51]. In this last work, asymmetric interfaces were found and classified 

into families in which the sharp discontinuity of grain boundaries is observed without the 

presence of atomic voids observed for the symmetric case. All these simulations point 

out, albeit of their restricted direct applicability to materials in real non-equilibrium 

thermodynamic conditions (with T > 0 K), that interfaces such as those retrieved in our 

work may be less energetic than usually investigated twin-plane conditions. We believe 

our results are a first glimpse of what can be produced in new generation synchrotrons 

with wide-range detection systems, which will surely extend the applicability of the 

method and provide interesting feedback for a broad spectrum of research ranging from 

ab-initio theoretical calculations to applications tuning properties of polycrystalline 

materials.  
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6.  CONCLUSIONS 

 

We have shown in this work that a kinematical modeling consisting of a rotated 

hexagonally close-packed lattice for Mg divided in two domains with an interface can be 

used to verify that non-fundamental diffraction peaks may arise from grain boundaries 

and interfaces. In our model, the boundary interface angle is varied in small steps for the 

main planes of the system and the diffraction intensity profile is simulated. We are able 

then to infer the preferential interface conditions for Mg, with information about the 

maximum strain at the interface plane with respect to a pure bulk configuration. 

The obtained diffractograms with progressively increasing intensities of defect-

induced peaks show that the proposed and assembled simulation routines can reproduce 

effects caused by local distortion of lattice parameters on the scattered intensities with 

relative reliability, which gives us greater confidence when expanding the simulations to 

different orientations or configurations of defects. The use of simulations, although 

limited in terms of computational capacity, gives us an advantage in the sense that, once 

consolidated for the hcp structure, the calculation routines can be adapted not only to 

other crystal arrangements and interface orientations that are often reported in literature, 

but to more complex crystalline systems like the rhombohedral or triclinic crystals, etc. 

It would also be interesting to extend the simulation routines to make it easily adaptable 

to other types of crystalline lattices and other types of analysis, such as the simulation of 

diffraction maps in reciprocal space rather than line profiles, or the joint study of more 

than one type of crystalline defect at a time. 

The knowledge of X-ray peaks arising from interfaces allows for monitoring 

changes in a system when it undergoes mechanical processes that refine grain sizes and 

modify grain orientation (for instance). Contrary to most of the microscopy results 

explored in the field (optical microscopy, electron microscopy, atomic force microscopy) 

X-rays are sensitive to buried grains. Such inherent characteristic drives the method 

beyond the microscopy surface analysis, providing at the same time statistical relevance 

(due to large area illumination) and depth capabilities (incident angle can be modified in 

a polycrystalline sample). Metals, alloys and other polycrystalline materials may benefit 
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from this perspective, where the existence of a population of a given interface can be 

maximized or minimized to retrieve desired mechanical/chemical/physical properties. 
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APPENDIX 

 

Listings are given here of MATLAB® scripts developed for the simulation routines 
performed in this work (I), as well as scripts that were used to generate some of the figures 
in this dissertation (II) and other complementary calculations (III). 

MATLAB® is a registered trademark of The MathWorks, Inc. Further information 
can be found at http://www.mathworks.com. 

 

I – Simulation Routines (MATLAB®) 

A. Crystal Lattice Assembly 

function : hcp3d_lattice(nParticles) 1 
 2 
fmg = 12; 3 
nPart = nParticles^2; 4 
intRoot = floor(sqrt(nPart)); 5 
if (sqrt(nPart) - intRoot) > 1e-7 6 
     disp('Number of particles should be a perfect square.'); 7 
     coords = zeros(2,nPart); 8 
     Lx = 0.0; 9 
     Ly = 0.0; 10 
     return  11 
end; 12 
 13 
Q = 5.21; 14 
sepDist = 3.2094/Q; 15 
clatt = 5.2108; 16 
Lx = sepDist * 1 * sqrt(nPart); 17 
Ly = Lx*sqrt(3)/2; 18 
Natomsc = nPart; 19 
 20 
xPos = linspace(sepDist/2, Lx-sepDist/2, 1 * sqrt(nPart)) - Lx/2; 21 
yPos = (sqrt(3)/2)*xPos; 22 
[X,Y] = meshgrid(xPos,yPos); 23 
X(1:2:end,:) = X(1:2:end,:) + sepDist/2; 24 
maxZ = max(size(X)); 25 
Z = zeros(maxZ,maxZ) - nPart/4; 26 
coords = [reshape(X,1,numel(X)); reshape(Y,1,numel(Y))]; 27 
X2 = X; 28 
Y2 = Y + 0.5*sepDist; 29 
Z2 = Z + 0.5; 30 
 31 
natoms = numel(X); 32 
atoms = zeros(1,1); hcpcor = zeros(1,1); 33 
for f = 1:natoms; 34 
    atoms(f,1) = X(f); 35 
    atoms(f,2) = Y(f); 36 
    atoms(f,3) = Z(f); 37 
    atoms(f+natoms,1) = X2(f); 38 
    atoms(f+natoms,2) = Y2(f); 39 
    atoms(f+natoms,3) = Z2(f); 40 
end; 41 
for g = 2:2:(1*Natomsc) 42 
    for f = 1:natoms; 43 
        atoms(f+natoms*g,1) = X(f); 44 
        atoms(f+natoms*g,2) = Y(f); 45 
        atoms(f+natoms*g,3) = Z(f) + g*0.5; 46 
        atoms(f+natoms*(g+1),1) = X2(f); 47 
        atoms(f+natoms*(g+1),2) = Y2(f); 48 
        atoms(f+natoms*(g+1),3) = Z2(f) + g*0.5; 49 
    end; 50 
end; 51 
 52 
limitsphere = intRoot - 0; 53 
maxradsphere = (sqrt(2))*(floor(limitsphere)); 54 
maxnatoms = numel(atoms(:,1)); 55 
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cont = 0; 56 
S = zeros(1,1); fmglocal = zeros(1,1); fmgreal = zeros(1,1); 57 
for i = 1:maxnatoms 58 
    if ((atoms(i,1)^2)+(atoms(i,2)^2)+(atoms(i,3)^2)) <= maxradsphere^2 59 
        S(i) = 25; 60 
        fmglocal(i) = fmg; 61 
        cont = cont + 1; 62 
        fmgreal(cont)= fmg; 63 
    else 64 
        S(i) = 1; 65 
        fmglocal(i) = 0; 66 
    end; 67 
end; 68 
atoms(:,4) = fmglocal(:); 69 
 70 
cont = 0; 71 
for i = 1:numel(atoms(:,4)) 72 
    if atoms(i,4) == 12 73 
        cont = cont + 1; 74 
        atomes(cont,:) = atoms(i,:); 75 
    end; 76 
end; 77 
atomlist = atomes; 78 
save 'mgcrystal_perf.mat' fmg sepDist clatt atomlist; 79 
end; 80 

 

B. Generate Matrix Projections 

function : hcp3d_projections(fmg,sepDist,clatt,atomlist) 1 
 2 
theta1 = input('  Choose bulk orientation, in deg [(100) is 90°]= '); 3 
thetarad1 = theta1*(pi/180); 4 
X1 = atomlist(:,1)*cos(thetarad1) - atomlist(:,2)*sin(thetarad1); 5 
Y1 = atomlist(:,1)*sin(thetarad1) + atomlist(:,2)*cos(thetarad1); 6 
Z1 = atomlist(:,3); atomproj1 = [X1 Y1 Z1 atomlist(:,4)]; 7 
 8 
theta2 = input('  Choose insertion orientation, in deg [(110) is 60°]= '); 9 
thetarad2 = theta2*(pi/180); 10 
X2 = atomlist(:,1)*cos(thetarad2) - atomlist(:,2)*sin(thetarad2); 11 
Y2 = atomlist(:,1)*sin(thetarad2) + atomlist(:,2)*cos(thetarad2); 12 
Z2 = atomlist(:,3); atomproj2 = [X2 Y2 Z2 atomlist(:,4)]; 13 
save 'mgcrystal_proj.mat' fmg sepDist clatt atomproj1 atomproj2; 14 
end;15 

 

C1. Progressive Assembly of Interfaces: Out-of-Plane Rotation (α) 

function : hcp3d_progcutA(fmg,sepDist,clatt,atomproj1,atomproj2,path,coordstep) 1 
 2 
dcutsize = 2; 3 
for z = coordstep 4 
    Palpha = [ -0.8002 -6.171e-16 0 ; -0.2667 -0.308 z ; 0.8002 -0.308 z ]; 5 
    D = det(P); 6 
    A = P; A(:,1) = 1; dA = det(A); 7 
    B = P; B(:,2) = 1; dB = det(B); 8 
    C = P; C(:,3) = 1; dC = det(C); 9 
    d = 1; 10 
    a = ((-1)*d/D)*dA; 11 
    b = ((-1)*d/D)*dB; 12 
    c = ((-1)*d/D)*dC; 13 
 14 
    normP = [a b c]; 15 
    modP = sqrt((a^2)+(b^2)+(c^2)); 16 
    angle = acos(c/modP); 17 
    theta = (pi/2)-(angle); inclangle = -theta*(180/pi); 18 
 19 
for dp = 1:numel(atomproj1(:,1)) 20 
    distcut = abs(a*atomproj1(dp,1)+b*atomproj1(dp,2)+c*atomproj1(dp,3)+d)/sqrt(a^2+b^2+c^2); 21 
    if distcut > dcutsize 22 
        atomproj1(dp,4) = 12; 23 
    else 24 
        atomproj1(dp,4) = 0; 25 
    end; 26 
end; 27 
 28 
cutatomlist = []; 29 
cont = 0; 30 
for i = 1:numel(atomproj1(:,4)) 31 
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    if atomproj1(i,4) == 12 32 
        cont = cont + 1; 33 
        cutatomlist(cont,:) = atomproj1(i,:); 34 
    end; 35 
end; 36 
atomcut1 = cutatomlist; 37 
 38 
inclanglerad = (-inclangle)*(pi/180); 39 
X = atomproj2(:,1); 40 
Y = atomproj2(:,2)*cos(inclanglerad) - atomproj2(:,3)*sin(inclanglerad); 41 
Z = atomproj2(:,3)*cos(inclanglerad) + atomproj2(:,2)*sin(inclanglerad); 42 
atomproj2 = [X Y Z atomproj2(:,4)]; 43 
 44 
for dp = 1:numel(atomproj2(:,1)) 45 
    distcut = abs(a*atomproj2(dp,1)+b*atomproj2(dp,2)+c*atomproj2(dp,3)+d)/sqrt(a^2+b^2+c^2); 46 
    if distcut < dcutsize 47 
        atomproj2(dp,4) = 12; 48 
    else 49 
        atomproj2(dp,4) = 0; 50 
    end; 51 
end; 52 
 53 
cutatomlist = []; 54 
cont = 0; 55 
for i = 1:numel(atomproj2(:,4)) 56 
    if atomproj2(i,4) == 12 57 
        cont = cont + 1; 58 
        cutatomlist(cont,:) = atomproj2(i,:); 59 
    end; 60 
end; 61 
atomcut2 = cutatomlist; 62 
 63 
atomdefect = [atomcut1 ; atomcut2]; 64 
 65 
save 'mgcrystal_pov.mat' atomcut1 atomcut2; 66 
save 'mgcrystal_defect.mat' atomdefect; 67 
 68 
atomcalc = atomdefect; atomname = 'atomdefect'; 69 
hcp3d_fft(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep); 70 
end; 71 

 

C2. Progressive Assembly of Interfaces: Out-of-Plane Rotation (β) 

function : hcp3d_progcutB(fmg,sepDist,clatt,atomproj1,atomproj2,path,coordstep) 1 
 2 
dcutsize = 2; 3 
for z = coordstep 4 
    Pbeta = [ -0.308 0.8002 0 ;  0.308 -0.2667 0 ; 0.308 0 z ]; 5 
    D = det(P); 6 
    A = P; A(:,1) = 1; dA = det(A); 7 
    B = P; B(:,2) = 1; dB = det(B); 8 
    C = P; C(:,3) = 1; dC = det(C); 9 
    d = 1; 10 
    a = ((-1)*d/D)*dA; 11 
    b = ((-1)*d/D)*dB; 12 
    c = ((-1)*d/D)*dC; 13 
 14 
    normP = [a b c]; 15 
    modP = sqrt((a^2)+(b^2)+(c^2)); 16 
    angle = acos(c/modP); 17 
    theta = (pi/2)-(angle); inclangle = -theta*(180/pi); 18 
 19 
for dp = 1:numel(atomproj1(:,1)) 20 
    distcut = abs(a*atomproj1(dp,1)+b*atomproj1(dp,2)+c*atomproj1(dp,3)+d)/sqrt(a^2+b^2+c^2); 21 
    if distcut > dcutsize 22 
        atomproj1(dp,4) = 12; 23 
    else 24 
        atomproj1(dp,4) = 0; 25 
    end; 26 
end; 27 
 28 
cutatomlist = []; 29 
cont = 0; 30 
for i = 1:numel(atomproj1(:,4)) 31 
    if atomproj1(i,4) == 12 32 
        cont = cont + 1; 33 
        cutatomlist(cont,:) = atomproj1(i,:); 34 
    end; 35 
end; 36 
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atomcut1 = cutatomlist; 37 
 38 
ang1 = (-30)*(pi/180); 39 
X = atomproj2(:,1)*cos(ang1) - atomproj2(:,2)*sin(ang1); 40 
Y = atomproj2(:,2)*cos(ang1) + atomproj2(:,1)*sin(ang1); 41 
Z = atomproj2(:,3); 42 
atomproj2 = [X Y Z atomproj2(:,4)]; 43 
 44 
inclanglerad = (-inclangle)*(pi/180); 45 
X = atomproj2(:,1)*cos(inclanglerad) + atomproj2(:,3)*sin(inclanglerad); 46 
Y = atomproj2(:,2); 47 
Z = atomproj2(:,3)*cos(inclanglerad) - atomproj2(:,1)*sin(inclanglerad); 48 
atomproj2 = [X Y Z atomproj2(:,4)]; 49 
 50 
ang2 = (30)*(pi/180); 51 
X = atomproj2(:,1)*cos(ang2) - atomproj2(:,2)*sin(ang2); 52 
Y = atomproj2(:,2)*cos(ang2) + atomproj2(:,1)*sin(ang2); 53 
Z = atomproj2(:,3); 54 
atomproj2 = [X Y Z atomproj2(:,4)]; 55 
 56 
for dp = 1:numel(atomproj2(:,1)) 57 
    distcut = abs(a*atomproj2(dp,1)+b*atomproj2(dp,2)+c*atomproj2(dp,3)+d)/sqrt(a^2+b^2+c^2); 58 
    if distcut < dcutsize 59 
        atomproj2(dp,4) = 12; 60 
    else 61 
        atomproj2(dp,4) = 0; 62 
    end; 63 
end; 64 
 65 
cutatomlist = []; 66 
cont = 0; 67 
for i = 1:numel(atomproj2(:,4)) 68 
    if atomproj2(i,4) == 12 69 
        cont = cont + 1; 70 
        cutatomlist(cont,:) = atomproj2(i,:); 71 
    end; 72 
end; 73 
atomcut2 = cutatomlist; 74 
 75 
atomdefect = [atomcut1 ; atomcut2]; 76 
 77 
save 'mgcrystal_pov.mat' atomcut1 atomcut2; 78 
save 'mgcrystal_defect.mat' atomdefect; 79 
 80 
atomcalc = atomdefect; atomname = 'atomdefect'; 81 
hcp3d_fft(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep); 82 
end; 83 

 

C3. Progressive Assembly of Interfaces: In-Plane Rotation (γ) 

function : hcp3d_progcutX(fmg,sepDist,clatt,atomproj1,atomproj2,path,coordstep) 1 
 2 
dcutsize = 1; 3 
for x = coordstep 4 
    P = [ -0.308 0.8002 16 ; -0.308 0.8002 15 ; x -0.2667 16 ]; 5 
    D = det(P); 6 
    A = P; A(:,1) = 1; dA = det(A); 7 
    B = P; B(:,2) = 1; dB = det(B); 8 
    C = P; C(:,3) = 1; dC = det(C); 9 
    d = 1; 10 
    a = ((-1)*d/D)*dA; 11 
    b = ((-1)*d/D)*dB; 12 
    c = ((-1)*d/D)*dC; 13 
     14 
    normP = [a b c]; 15 
    modP = sqrt((a^2)+(b^2)+(c^2)); 16 
    angle = acos(a/modP); 17 
    theta = (pi/2)-(angle); inclangle = -theta*(180/pi); 18 
 19 
for dp = 1:numel(atomproj1(:,1)) 20 
    distcut = abs(a*atomproj1(dp,1)+b*atomproj1(dp,2)+c*atomproj1(dp,3)+d)/sqrt(a^2+b^2+c^2); 21 
    if distcut > dcutsize 22 
        atomproj1(dp,4) = 12; 23 
    else 24 
        atomproj1(dp,4) = 0; 25 
    end; 26 
end; 27 
 28 
cutatomlist = []; cont = 0; 29 
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for i = 1:numel(atomproj1(:,4)) 30 
    if atomproj1(i,4) == 12 31 
        cont = cont + 1; 32 
        cutatomlist(cont,:) = atomproj1(i,:); 33 
    end; 34 
end; 35 
atomcut1 = cutatomlist; 36 
 37 
inclanglerad = (-inclangle)*(pi/180); 38 
X = atomproj2(:,1)*cos(inclanglerad) - atomproj2(:,2)*sin(inclanglerad); 39 
Y = atomproj2(:,2)*cos(inclanglerad) + atomproj2(:,1)*sin(inclanglerad); 40 
Z = atomproj2(:,3); 41 
atomproj2 = [X Y Z atomproj2(:,4)]; 42 
 43 
for dp = 1:numel(atomproj2(:,1)) 44 
    distcut = abs(a*atomproj2(dp,1)+b*atomproj2(dp,2)+c*atomproj2(dp,3)+d)/sqrt(a^2+b^2+c^2); 45 
    if distcut < dcutsize 46 
        atomproj2(dp,4) = 12; 47 
    else 48 
        atomproj2(dp,4) = 0; 49 
    end; 50 
end; 51 
 52 
cutatomlist = []; 53 
cont = 0; 54 
for i = 1:numel(atomproj2(:,4)) 55 
    if atomproj2(i,4) == 12 56 
        cont = cont + 1; 57 
        cutatomlist(cont,:) = atomproj2(i,:); 58 
    end; 59 
end; 60 
atomcut2 = cutatomlist; 61 
 62 
atomdefect = [atomcut1 ; atomcut2]; 63 
save 'mgcrystal_pov.mat' atomcut1 atomcut2; 64 
save 'mgcrystal_defect.mat' atomdefect; 65 
 66 
atomcalc = atomdefect; atomname = 'atomdefect'; 67 
hcp3d_fft(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep); 68 
end; 69 

 

D1. Fast-Fourier Transform of Assembled Lattice: Out-of-Plane Rotations (α, β) 

function : hcp3d_fft(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep) 1 
 2 
path2 = strcat('angle_',num2str(inclangle),'_step_',num2str(coordstep)); 3 
mkdir(path,path2); 4 
 5 
lambda = 1.03293; 6 
sigma = 2.0; 7 
lmax = 5; 8 
Imin = 0.000; 9 
Imax = 9.000; 10 
Ncont = 1500; 11 
Istep = (Imax-Imin)/Ncont; 12 
Imin = Imin+Istep; 13 
Imax = Imax+Istep; 14 
 15 
atomfourier = zeros(1,Ncont+1); 16 
Q = zeros(1,Ncont+1); 17 
tth = zeros(1,Ncont+1); 18 
mgfourier = zeros(Ncont+1,2); 19 
maxnatoms = numel(atomcalc(:,1)); 20 
 21 
for hLoc = 0:3 22 
    for kLoc = 0:1 23 
        contloc = 1; 24 
        for j = Imin:Istep:Imax 25 
            lLoc = j; 26 
            atomtemp = zeros(maxnatoms,1); 27 
            atomsoma = 0; 28 
            Dhkl = sqrt((3*(sepDist^2)*(clatt^2))/((4*(hLoc^2+(hLoc*kLoc)+kLoc^2))+(3*(sepDist^2)*(lLoc^2)))); 29 
            Qloc = (2*pi)/Dhkl; 30 
            for f = 1:maxnatoms 31 
                if atomcalc(f,4) == fmg 32 
                    fmgLocal = 12.22064*exp(-Qloc/6.94162) + 0.09719; 33 
                else 34 
                    fmgLocal = 0; 35 
                end; 36 
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                atomtemp(f,1)=(fmgLocal*exp(sigma)*(exp(2*pi*1i*(hLoc*atomcalc(f,1)+kLoc*atomcalc(f,2)+lLoc*atomcalc(f,3))))); 37 
                atomsoma = atomsoma + atomtemp(f); 38 
            end; 39 
            atomfourier(contloc) = abs(atomsoma)^2; 40 
            if atomfourier(contloc) < 0 41 
                atomfourier(contloc) = 0; 42 
            end; 43 
            Q(contloc) = Qloc; 44 
            tth(contloc) = (2*asin(Qloc*lambda/(4*pi)))*(180/pi); 45 
            contloc = contloc + 1; 46 
        end; 47 
        mgfourier(:,1) = real(transpose(tth)); 48 
        mgfourier(:,2) = real(transpose(atomfourier)); 49 
                 50 
        fftname = strcat(atomname,'_ang',num2str(inclangle),'_',num2str(hLoc),num2str(kLoc),'j','.txt'); 51 
        fftfile = fullfile(path,path2,fftname); 52 
        save(fftfile,'mgfourier','-ascii'); 53 
        end; 54 
    end; 55 
end;56 

 

D2. Fast-Fourier Transform of Assembled Lattice: In-Plane Rotation (γ)  

function : hcp3d_fftXh(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep); 1 
 2 
path2 = strcat('angle_',num2str(inclangle),'_step_',num2str(coordstep)); 3 
mkdir(path,path2); 4 
 5 
lambda = 1.03293; 6 
sigma = 2.0; 7 
lmax = 5; 8 
Imin = 0.000; 9 
Imax = 9.000; 10 
Ncont = 1500; 11 
Istep = (Imax-Imin)/Ncont; 12 
Imin = Imin+Istep; 13 
Imax = Imax+Istep; 14 
 15 
atomfourier = zeros(1,Ncont+1); 16 
Q = zeros(1,Ncont+1); 17 
tth = zeros(1,Ncont+1); 18 
mgfourier = zeros(Ncont+1,2); 19 
maxnatoms = numel(atomcalc(:,1)); 20 
 21 
for kLoc = 0 22 
    for lLoc = 0:6 23 
        contloc = 1; 24 
        for j = Imin:Istep:Imax 25 
            hLoc = j; 26 
            atomtemp = zeros(maxnatoms,1); 27 
            atomsoma = 0; 28 
            Dhkl = sqrt((3*(sepDist^2)*(clatt^2))/((4*(hLoc^2+(hLoc*kLoc)+kLoc^2))+(3*(sepDist^2)*(lLoc^2)))); 29 
            Qloc = (2*pi)/Dhkl; 30 
            for f = 1:maxnatoms 31 
                if atomcalc(f,4) == fmg 32 
                    fmgLocal = 12.22064*exp(-Qloc/6.94162) + 0.09719; 33 
                else 34 
                    fmgLocal = 0; 35 
                end; 36 
                atomtemp(f,1)=(fmgLocal*exp(sigma)*(exp(2*pi*1i*(hLoc*atomcalc(f,1)+kLoc*atomcalc(f,2)+lLoc*atomcalc(f,3))))); 37 
                atomsoma = atomsoma + atomtemp(f); 38 
            end; 39 
            atomfourier(contloc) = abs(atomsoma)^2; 40 
            if atomfourier(contloc) < 0 41 
                atomfourier(contloc) = 0; 42 
            end; 43 
            Q(contloc) = Qloc; 44 
            tth(contloc) = (2*asin(Qloc*lambda/(4*pi)))*(180/pi); 45 
            contloc = contloc + 1; 46 
        end; 47 
        mgfourier(:,1) = real(transpose(tth)); 48 
        mgfourier(:,2) = real(transpose(atomfourier)); 49 
         50 
        fftname = strcat(atomname,'_ang',num2str(inclangle),'_j',num2str(kLoc),num2str(lLoc),'.txt'); 51 
        fftfile = fullfile(path,path2,fftname); 52 
        save(fftfile,'mgfourier','-ascii'); 53 
        end; 54 
    end; 55 
end;56 
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function : hcp3d_fftXk(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep) 1 
 2 
path2 = strcat('angle_',num2str(inclangle),'_step_',num2str(coordstep)); 3 
mkdir(path,path2); 4 
 5 
lambda = 1.03293; 6 
sigma = 2.0; 7 
lmax = 5; 8 
Imin = 0.000; 9 
Imax = 9.000; 10 
Ncont = 1500; 11 
Istep = (Imax-Imin)/Ncont; 12 
Imin = Imin+Istep; 13 
Imax = Imax+Istep; 14 
 15 
atomfourier = zeros(1,Ncont+1); 16 
Q = zeros(1,Ncont+1); 17 
tth = zeros(1,Ncont+1); 18 
mgfourier = zeros(Ncont+1,2); 19 
maxnatoms = numel(atomcalc(:,1)); 20 
 21 
for hLoc = 0:3 22 
    for lLoc = 0:6 23 
        contloc = 1; 24 
        for j = Imin:Istep:Imax 25 
            hLoc = j; 26 
            atomtemp = zeros(maxnatoms,1); 27 
            atomsoma = 0; 28 
            Dhkl = sqrt((3*(sepDist^2)*(clatt^2))/((4*(hLoc^2+(hLoc*kLoc)+kLoc^2))+(3*(sepDist^2)*(lLoc^2)))); 29 
            Qloc = (2*pi)/Dhkl; 30 
            for f = 1:maxnatoms 31 
                if atomcalc(f,4) == fmg 32 
                    fmgLocal = 12.22064*exp(-Qloc/6.94162) + 0.09719; 33 
                else 34 
                    fmgLocal = 0; 35 
                end; 36 
                atomtemp(f,1)=(fmgLocal*exp(sigma)*(exp(2*pi*1i*(hLoc*atomcalc(f,1)+kLoc*atomcalc(f,2)+lLoc*atomcalc(f,3))))); 37 
                atomsoma = atomsoma + atomtemp(f); 38 
            end; 39 
            atomfourier(contloc) = abs(atomsoma)^2; 40 
            if atomfourier(contloc) < 0 41 
                atomfourier(contloc) = 0; 42 
            end; 43 
            Q(contloc) = Qloc; 44 
            tth(contloc) = (2*asin(Qloc*lambda/(4*pi)))*(180/pi); 45 
            contloc = contloc + 1; 46 
        end; 47 
        mgfourier(:,1) = real(transpose(tth)); 48 
        mgfourier(:,2) = real(transpose(atomfourier)); 49 
         50 
        fftname = strcat(atomname,'_ang',num2str(inclangle),'_',num2str(hLoc),'j',num2str(lLoc),'.txt'); 51 
        fftfile = fullfile(path,path2,fftname); 52 
        save(fftfile,'mgfourier','-ascii'); 53 
        end; 54 
    end; 55 
end;56 

 

 
function : hcp3d_fftXhk(fmg,sepDist,clatt,inclangle,atomname,atomcalc,path,coordstep) 1 
 2 
path2 = strcat('angle_',num2str(inclangle),'_step_',num2str(coordstep)); 3 
mkdir(path,path2); 4 
 5 
lambda = 1.03293; 6 
sigma = 2.0; 7 
lmax = 5; 8 
Imin = 0.000; 9 
Imax = 9.000; 10 
Ncont = 1500; 11 
Istep = (Imax-Imin)/Ncont; 12 
Imin = Imin+Istep; 13 
Imax = Imax+Istep; 14 
 15 
atomfourier = zeros(1,Ncont+1); 16 
Q = zeros(1,Ncont+1); 17 
tth = zeros(1,Ncont+1); 18 
mgfourier = zeros(Ncont+1,2); 19 
maxnatoms = numel(atomcalc(:,1)); 20 
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 21 
for lLoc = 0:6 22 
    for hLoc = Imin:Istep:Imax 23 
        contloc = 1; 24 
        for j = Imin:Istep:Imax 25 
            lLoc = j; 26 
            atomtemp = zeros(maxnatoms,1); 27 
            atomsoma = 0; 28 
            Dhkl = sqrt((3*(sepDist^2)*(clatt^2))/((4*(hLoc^2+(hLoc*kLoc)+kLoc^2))+(3*(sepDist^2)*(lLoc^2)))); 29 
            Qloc = (2*pi)/Dhkl; 30 
            for f = 1:maxnatoms 31 
                if atomcalc(f,4) == fmg 32 
                    fmgLocal = 12.22064*exp(-Qloc/6.94162) + 0.09719; 33 
                else 34 
                    fmgLocal = 0; 35 
                end; 36 
                atomtemp(f,1)=(fmgLocal*exp(sigma)*(exp(2*pi*1i*(hLoc*atomcalc(f,1)+kLoc*atomcalc(f,2)+lLoc*atomcalc(f,3))))); 37 
                atomsoma = atomsoma + atomtemp(f); 38 
            end; 39 
            atomfourier(contloc) = abs(atomsoma)^2; 40 
            if atomfourier(contloc) < 0 41 
                atomfourier(contloc) = 0; 42 
            end; 43 
            Q(contloc) = Qloc; 44 
            tth(contloc) = (2*asin(Qloc*lambda/(4*pi)))*(180/pi); 45 
            contloc = contloc + 1; 46 
        end; 47 
        mgfourier(:,1) = real(transpose(tth)); 48 
        mgfourier(:,2) = real(transpose(atomfourier)); 49 
         50 
        fftname = strcat(atomname,'_ang',num2str(inclangle),'_',num2str(hLoc),num2str(kLoc),'j','.txt'); 51 
        fftfile = fullfile(path,path2,fftname); 52 
        save(fftfile,'mgfourier','-ascii'); 53 
        end; 54 
    end; 55 
end;56 

 

E. Executable

clear; 1 
path = strcat('C:/Users/USER/Desktop/hcp3d_plots/',datestr(clock,'dd-mmm-yyyy HH.MM.SS')); mkdir(path); 2 
disp(datestr(clock,'dd-mmm-yyyy HH.MM.SS')); 3 
 4 
fprintf('\n'); disp('- HCP LATTICE -'); disp('Define the crystal lattice size.'); 5 
nParticles = input('  nPart = '); 6 
fprintf('  wait ...\n'); 7 
hcp3d_lattice(nParticles); 8 
load mgcrystal_perf.mat; 9 
 10 
fprintf('Enter information on plane projections.\n'); 11 
hcp3d_projections(fmg,sepDist,clatt,atomlist); 12 
load mgcrystal_proj.mat; 13 
 14 
planestep = input('Choose between alpha/beta or gamma [z/x]: ','s'); 15 
if planestep == 'z' 16 
    for step = %insert manually% 17 
        if step == 0 18 
            step = -1e-007; 19 
        end; 20 
        coordstep = step; 21 
        hcp3d_progcut(fmg,sepDist,clatt,atomproj1,atomproj2,path,coordstep); 22 
    end; 23 
    fprintf('- END - Total elapsed time is %g seconds.\n',time); 24 
elseif planestep == 'x' 25 
    for step = %insert manually% 26 
        coordstep = step; 27 
        hcp3d_progcutX(fmg,sepDist,clatt,atomproj1,atomproj2,path,coordstep); 28 
    end; 29 
    fprintf('- END - Total elapsed time is %g seconds.\n',time); 30 
else 31 
    disp('Please return a valid input! Try again.'); 32 
    break; 33 
end; 34 
disp('____________________________________________________________________________');35 
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II – Extraction of Atom Matrices Figures for POV-Ray™ (MATLAB®) 

A. Extraction of Bulk Matrix (Full Bulk + Projections)

load mgcrystal_proj.mat; 1 
path = strcat('C:/Users/USER/Desktop/hcp3d_plots/POV-Ray/bulk - ',datestr(clock,'dd-mmm-yyyy HH.MM.SS')); mkdir(path); 2 
 3 
%% ATOMLIST 4 
atompov = []; 5 
cont = 0; 6 
for i = 1:numel(atomlist(:,3)) 7 
    if atomlist(i,3) >= -5 8 
        if atomlist(i,3) <= 5 9 
            if atomlist(i,1) >= -1 10 
                if atomlist(i,1) <= 1 11 
                    cont = cont + 1; 12 
                    atompov(cont,1) = atomlist(i,1); 13 
                    atompov(cont,2) = atomlist(i,2); 14 
                    atompov(cont,3) = atomlist(i,3); 15 
                end; 16 
            end; 17 
        end; 18 
    end; 19 
end; 20 
 21 
for j = 1:numel(atompov(:,3)) 22 
    if abs(atompov(j,1)) < 0.0000001 23 
        atompov(j,1) = 0.00000; 24 
    end; 25 
end; 26 
for j = 1:numel(atompov(:,3)) 27 
    if abs(atompov(j,2)) < 0.0000001 28 
        atompov(j,2) = 0.00000; 29 
    end; 30 
end; 31 
 32 
arq = strcat(path,'/atomlist.pov'); 33 
lines = []; 34 
for line = 1:numel(atompov(:,1)); 35 
    povstr=strcat('sphere{<',num2str(atompov(line,1)),',',num2str(atompov(line,2)),',',num2str(atompov(line,3)),'>,0.13}'); 36 
    lines = strvcat(lines,povstr); 37 
    disp(line) 38 
end; 39 
dlmwrite(arq,lines,''); 40 
 41 
%% ATOMPROJ1 42 
atompov = []; 43 
cont = 0; 44 
for i = 1:numel(atomproj1(:,3)) 45 
    if atomproj1(i,3) >= -5 46 
        if atomproj1(i,3) <= 5 47 
            if atomproj1(i,1) >= -1 48 
                if atomproj1(i,1) <= 1 49 
                    cont = cont + 1; 50 
                    atompov(cont,1) = atomproj1(i,1); 51 
                    atompov(cont,2) = atomproj1(i,2); 52 
                    atompov(cont,3) = atomproj1(i,3); 53 
                end; 54 
            end; 55 
        end; 56 
    end; 57 
end; 58 
 59 
for j = 1:numel(atompov(:,3)) 60 
    if abs(atompov(j,1)) < 0.0000001 61 
        atompov(j,1) = 0.00000; 62 
    end; 63 
end; 64 
for j = 1:numel(atompov(:,3)) 65 
    if abs(atompov(j,2)) < 0.0000001 66 
        atompov(j,2) = 0.00000; 67 
    end; 68 
end; 69 
 70 
arq = strcat(path,'/atomproj1.pov'); 71 
lines = []; 72 
for line = 1:numel(atompov(:,1)); 73 
    povstr=strcat('sphere{<',num2str(atompov(line,1)),',',num2str(atompov(line,2)),',',num2str(atompov(line,3)),'>,0.13}'); 74 
    lines = strvcat(lines,povstr); 75 
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    disp(line) 76 
end; 77 
dlmwrite(arq,lines,''); 78 
 79 
%% ATOMPROJ2 80 
atompov = []; 81 
cont = 0; 82 
for i = 1:numel(atomproj2(:,3)) 83 
    if atomproj2(i,3) >= -5 84 
        if atomproj2(i,3) <= 5 85 
            if atomproj2(i,1) >= -1 86 
                if atomproj2(i,1) <= 1 87 
                    cont = cont + 1; 88 
                    atompov(cont,1) = atomproj2(i,1); 89 
                    atompov(cont,2) = atomproj2(i,2); 90 
                    atompov(cont,3) = atomproj2(i,3); 91 
                end; 92 
            end; 93 
        end; 94 
    end; 95 
end; 96 
 97 
for j = 1:numel(atompov(:,3)) 98 
    if abs(atompov(j,1)) < 0.0000001 99 
        atompov(j,1) = 0.00000; 100 
    end; 101 
end; 102 
for j = 1:numel(atompov(:,3)) 103 
    if abs(atompov(j,2)) < 0.0000001 104 
        atompov(j,2) = 0.00000; 105 
    end; 106 
end; 107 
 108 
arq = strcat(path,'/atomproj2.pov'); 109 
lines = []; 110 
for line = 1:numel(atompov(:,1)); 111 
    povstr=strcat('sphere{<',num2str(atompov(line,1)),',',num2str(atompov(line,2)),',',num2str(atompov(line,3)),'>,0.13}'); 112 
    lines = strvcat(lines,povstr); 113 
    disp(line) 114 
end; 115 
dlmwrite(arq,lines,'');116 

 

III – Data Retrieval (MATLAB®) 

A. Maximum Estimated Strain (1D Distortion)

clear; 1 
lambda = 1.03293; 2 
tthsim = %insert manually% 3 
tthexp = %insert manually% 4 
 5 
distexp = lambda/(2*sin((tthexp*(pi/180))/2)); 6 
distsim = lambda/(2*sin((tthsim*(pi/180))/2)); 7 
str = ((distexp-distsim)/distsim)*100; 8 
 9 
fprintf('- Strain - \nfor tthsim = %g° \n    str = %g \n\n',tthsim,str);10 

 

 

B. Miller Index Estimate (l only)

clear; 1 
lambda = 1.03293; 2 
sepDist = 3.2094; clatt = 5.2108; 3 
 4 
hLoc = %insert manually% 5 
kLoc = %insert manually% 6 
tthsim = %insert manually% 7 
 8 
tthrad = tthsim*(pi/180); 9 
lLoc = sqrt((4*(clatt^2))*(((sin(tthrad/2)^2)/(lambda^2))-((hLoc^2 + (hLoc*kLoc) + kLoc^2)/(sepDist^2))/3)); 10 
fprintf('for tthsim = %g° \n    lLoc = %g \n\n',tthsim,lLoc); 11 


