
mαcrφ@ufmg
Universidade Federal de Minas Gerais
Programa de Pós-Graduação em Engenharia Elétrica
Research group MACRO - Mechatronics, Control and Robotics

HUMAN-SWARM INTERACTION WITH
MULTI-ROBOT COVERAGE CONTROL IN

VIRTUAL REALITY ENVIRONMENT

Lucas Coelho Figueiredo
Belo Horizonte, Brazil

2018

Lucas Coelho Figueiredo

HUMAN-SWARM INTERACTION WITH
MULTI-ROBOT COVERAGE CONTROL IN

VIRTUAL REALITY ENVIRONMENT

Thesis submitted to the Graduate Program in Electri-
cal Engineering of Escola de Engenharia at the Univer-
sidade Federal de Minas Gerais, in partial fulfillment of
the requirements for the degree of Master in Electrical
Engineering.

Advisor: Luciano Cunha de Araújo Pimenta

Belo Horizonte, Brazil
2018

Figueiredo, Lucas Coelho.
F475h Human-swarm interaction with multi-robot coverage control in virtual

reality environment [recurso eletrônico] /Lucas Coelho Figueiredo. - 2018.
 1 recurso online (85 f. : il., color.) : pdf.

 Orientador: Luciano Cunha de Araújo Pimenta.

 Dissertação (mestrado) - Universidade Federal de Minas Gerais,
 Escola de Engenharia.

 Bibliografia: f.81-85.

 Exigências do sistema: Adobe Acrobat Reader.

 1. Engenharia Elétrica - Teses. 2. Robótica - Teses. 3. Realidade
Virtual - Teses. 4. Algoritmos – Teses. 5. Robôs – Sistemas de controle –
Teses. I. Pimenta, Luciano Cunha de Araújo. II. Universidade Federal de
Minas Gerais. Escola de Engenharia. III. Título.

 CDU: 621.3(043)

 Ficha catalográfica: Biblioteca Profº Mário Werneck, Escola de Engenharia da UFMG

Este trabalho é dedicado a meus
amados pais e meu irmão, que
foram fonte de inspiração e me

deram forças nas várias vezes que
pensei em desistir, e me deram

suporte moral, espiritual e
emocional nessa longa jornada.

Agradecimentos

Apesar de uma defesa de mestrado ser uma missão solo, eu só pude vencer essa longa batalha
graças a todas as pessoas que estivam comigo. Primeiramente, gostaria de agradecer aos
meus pais, Glória e Moacir, e meu irmão, Gabriel, pelo suporte incondicional. Sei que
para eu viver meus sonhos (e defender meu mestrado foi um deles), vocês tiveram que
abdicar de alguns de seus sonhos também, e eu sou extremamente grato por isso.

Ao meu orientador, Luciano Pimenta, por todos os ensinamentos, paciência e oportu-
nidades oferecidas. Me sinto muito feliz de ter tomado coragem de ir pedir um estágio
para você quando eu era apenas um aluno de segundo período. Desde então, estivemos
sempre trabalhando juntos em vários projetos. Muita coisa legal que aconteceu comigo eu
devo à você, incluindo meu trabalho atual, parte do meu intercâmbio e tudo que pude
aprender enquanto trabalhamos juntos. E obrigado também por não ter desistido de mim,
mesmo nos momentos que me distanciei do meu mestrado. Sou também muito grato ao
Ítalo Lelis, um grande gênio disfarçado de bolsista de iniciação científica que me ajudou
tanto durante esse trabalho. Saiba que você demostrou uma maturidade e capacidade de
aprender muito acima de qualquer expectativa que eu tinha e foi um grande prazer poder
trabalhar contigo.

Gostaria de agradecer também aos meus demais familiares, mas especialmente à minha
avó Conceição, que mesmo sem entender muito o que eu estudo, fez com que isso estivesse
diariamente em suas orações. Aos meus colegas de mestrado, obrigado pelo ombro amigo.
Foi sempre bom ter alguém numa situação semelhante a sua para compartilhar as dores e
felicidades. Aos meus colegas de trabalho na Hexagon Mining, gostaria de agradecer pela
flexibilidade e por propiciar que eu continuasse meu mestrado mesmo depois de contratado.
E aos meus amigos, gostaria de pedir perdão por todos os encontros que desmarquei ou
não pude ir, com desculpas variando entre "estou lotado de provas" a "estou escrevendo
um artigo" ou até mesmo "tenho que fazer um experimento e só posso ir lá no sábado". E
obrigado a vocês pela paciência e por entender o quanto isso era importante para mim.

Finalmente, agradeço a CAPES, CNPq e FAPEMIG pelo apoio financeiro para o projeto,
e à equipe do VerLab e J do DCC UFMG por gentilmente ceder espaço e equipamento
para nossos experimentos.

Gratiam pro gratia

viii

x

Resumo

Este trabalho apresenta a implementação de uma interface humano-enxame de robôs
aplicada à tarefa de cobertura por múltiplos robôs em ambientes não-convexos. Os
operadores são capazes de interagir com o grupo de robôs em ambiente de realidade
virtual (VR), o que possibilita um profundo grau de controle, imersão e intuitidade. Na
aplicação VR, a interação com os múltiplos robôs é abstraída em simples ações, permitindo
que o usuário interaja com o grupo de robôs criando e removendo obstáculos, criando
funções de distribuição de densidade e alterando a velocidade dos robôs. Simulações foram
implementadas usando ROS e Unity e demonstram que os robôs reagem a mudanças no
ambiente de simulação impostas pelo agente humano. Experimentos foram efetuados
em um grupo de robôs e-puck utilizando um sistema de localização baseado em tags de
realidade aumentada. Adicionalmente, um novo algoritmo para cálculo de diagramas de
Voronoi foi proposto. Esse algoritmo, chamado de Voro*, permite cálculos locais dos
diagramas, possibilitando a aplicação desses algoritmos em grandes números de robôs com
um desempenho que aumenta à medida que o número de robôs também aumenta.

Abstract

This work presents an implementation of a human-swarm interaction applied in a
coverage control task in non-convex environments. The operators are capable of interacting
with the robot swarm in a Virtual Reality (VR) environment, that allows a deep level of
control, immersivity and intuitivity. On the VR application, the multi-robot interaction is
abstracted in simple actions, allowing the user to interact the robot swarm by creating and
removing obstacles, creating density distribution functions and altering the speed of robots.
Simulations were implemented using ROS and Unity and demonstrated that robots could
react to the changes in the environment introduced by the operators. Experiments were
done using a group of e-puck robots using a localization system that uses augmented reality
tags. Additionally, a new algorithm for calculation of Voronoi diagrams was proposed.
This algorithm, called Voro*, allows calculating local diagrams, enabling this algorithm to
be applied in a large scale of robot groups with a better performance.

xiv

Contents

List of Figures xvii

Acronyms xxi

Notation xxiii

1 Introduction 1
1.1 Multi-robot coverage control problem . 6
1.2 Human-Swarm Interaction . 8

1.2.1 Objective and Contributions . 11

2 State of the Art 13
2.1 Human-Swarm Interaction . 15
2.2 Multi-robot coverage control problem . 17
2.3 Virtual Reality . 18
2.4 State of the art conclusions . 19

3 Methodology 21
3.1 Problem definition . 23
3.2 Voronoi diagram . 23
3.3 Geodesic distance . 25
3.4 Multi-robot coverage in convex environments 26

3.4.1 Robot Model . 27
3.4.2 Control Law and Actuation Variation 28
3.4.3 Estimating K̂i . 29
3.4.4 Non-convex environments adaptations 30

3.5 Discrete implementation for non-convex environments 31
3.5.1 Graph generation . 34
3.5.2 Robots and control law . 34

3.6 Virtual Reality environment development 35
3.6.1 Unity . 35

xv

3.6.2 ROS-C# Bridge . 36
3.6.3 Features implemented on VR application 37
3.6.4 Real world implementation . 41

3.7 Voro* algorithm . 41
3.7.1 Redefining the cost function d . 42
3.7.2 Changes to original Dijkstra’s based algorithm 43
3.7.3 Order of complexity . 45

4 Experiments and Results 47
4.1 Simulations . 49
4.2 Experiments . 53

4.2.1 First experiment . 55
4.2.2 Second experiment . 57

4.3 Voro* simulations . 60
4.3.1 Voro* behavior . 61
4.3.2 Voro* in different number of robot groups 68
4.3.3 Voro* compared with Dijkstra’s-based algorithm 72

5 Conclusions and Future Work 77

Bibliography 81

xvi

List of Figures

1.1 Group of robots as displayed in fiction. 3
1.2 The BoniRob, a robot developed by Bosch for agriculture. 4
1.3 Envision of autonomous cars, working as a collaborative robot swarm. . . 5
1.4 Sea Swarm project from MIT, that is building robots for absorbing oil spills

from oceans . 6
1.5 U.S. Navy fleet of autonomous boats. 7
1.6 Example of a fleet of autonomous boats protecting the mother ship using

robot coverage algorithms. 7
1.7 The Master Slave Manipulator Model NE9, developed for manipulation of

nuclear material and one of the first human-robot interaction interfaces. . 9
1.8 Mines of the future will be autonomous and the swarm or trucks need to

cooperate with human workers. 9
1.9 A human teleoperating a robot using a Virtual Reality headset. 10
1.10 The e-puck robot, used on the experiments. 11

3.1 A Voronoi diagram. 24
3.2 Comparison between a convex and non-convex shapes. 25
3.3 Comparison between the geodesic and Euclidean distance. 26
3.4 For some vector ui, the possible directions for Kiui are shown in the shaded

region, and a possible path is illustrated in red. 28
3.5 User wearing the virtual reality headset. 36
3.6 Setup for interfacing ROS and Oculus Rift. 37
3.7 Menu of the VR application showing the features. 38
3.8 Obstacle creation feature. Operator removed obstacles next to the light

blue region. 38
3.9 Obstacle removal feature. 39
3.10 User creating a Gaussian density distribution in aerial view. 39
3.11 User selecting a robot. 40
3.12 User using the teleport function. The green laser points to the position

where the user will be relocated. 41

xvii

3.13 Comparison between the Voro* and Dijkstra inspired Voronoi tessellation
algorithm. The robot considered for the Voro* algorithm (m) is the red one.
Black regions are nodes that were not expanded. Note that the Voronoi
region for the red robot is the same in both diagrams 43

4.1 Steps of the first simulation. 50
4.2 Deployment functional over the simulation. 51
4.3 Weightings of the robots. Around t = 150, the human changed the gain kpi

of robot 1 (green), which changed the weightings of all robots. 51
4.4 Steps of the second simulation. 52
4.5 Deployment functional over the second simulation. 53
4.6 Weightings of the robots. Around t = 350, the operator interacts with one

of the robots. 53
4.7 Team of e-puck robots used in the experiments. 54
4.8 User with the VR headset during the experiments. 55
4.9 Key steps at the first e-puck experiment. 56
4.10 Deployment functional over the simulation. 57
4.11 Weightings of the robots. Around t = 150, the human changed the gain kpi

of robot 1 (green), which changed the weights of all robots. 57
4.12 Key steps at the second e-puck experiment. 59
4.13 Deployment functional over the experiment. 60
4.14 Weightings of the robots. At the end of the experiment, the human agent

changed the weight of one of the robots. 60
4.15 Iteration times of each robot on the simulation with 20 robots. 62
4.16 Deployment functional over time. 62
4.17 Voronoi region calculated using Voro*, as seen from robot 1 (red) 63
4.18 Voronoi region calculated using Voro*, as seen from robot 2 (blue) 63
4.19 Voronoi region calculated using Voro*, as seen from robot 10 (light green) 64
4.20 Iteration times of each robot on the simulation with 20 robots varying the

density function. 65
4.21 Deployment functional over time. 66
4.22 Voronoi region calculated using Voro* in a experiment in which we have

changed the density distribution, as seen from robot 0 (red) 66
4.23 Voronoi region calculated using Voro*, in a experiment in which we have

changed the density distribution, as seen from robot 2 (blue) 67
4.24 Voronoi region calculated using Voro* in a experiment in which we have

changed the density distribution, as seen from robot 10 (light green) . . . 68
4.25 Iteration times of each robot on the simulation with 8 robots. 69
4.26 Iteration times of each robot on the simulation with 12 robots. 70

xviii

4.27 Iteration times of each robot on the simulation with 16 robots. 70
4.28 Iteration times of each robot on the simulation with 20 robots. 71
4.29 Iteration times of each robot on the simulation with 24 robots. 71
4.30 Average iteration time for the Voro* in different numbers of robot groups. 72
4.31 Average iteration time for Voro* after convergence in different numbers of

robot groups. 72
4.32 Comparison of the tessellations generated with Voro* when all robots are

in the same corner. 74
4.33 Comparison of the tessellations generated with Voro* when all robots are

close to convergence. 75

xix

xx

Acronyms

VR Virtual Reality

HRI Human-Robot Interaction

HSI Human-Swarm Interaction

xxi

xxii

Notation

General notation

a Italic lower case letters denote scalars

a Boldface italic lower case letters denote vectors

A Boldface italic upper case letters denote matrices

Symbols and operators

N Set of natural numbers

I Set of integer numbers

R Set of real numbers

p A position in a two-dimensional space

P A set of positions in a two-dimensional space

w Robot weight

Ω A given representation of the environment

q A point in Ω

V A Voronoi region

d(q,p) Distance function

gq,p) Geodesic distance function

W Weighted Voronoi region

H(P,W) Deployment functional

MW Mass of weighted Voronoi region

CWi Centroid of weighted Voronoi region

xxiii

u Robot control input

∆i Actuation error

hi(x) Actuation health function

Ki Control gain matrix

N〉 List of robots neighbors of robot i

G A graph

V Vertexes of the graph

E Edges of the graph

τ Tessellation map

xxiv

1
Introduction

1

3

When talking about multi-robot systems, the first idea that comes to mind of the
general public is a world of robotic domination. In some fiction movies that display groups
of robots, like "The Matrix" (Wachowski & Wachowski (1999)), "I, Robot" (Proyas (2004)),
and "The Terminator" (Cameron (1985)) robots are responsible for an apocalyptic world.
Figure 1.1 shows some remarkable scenes of both movies.. Although there is a strong
interest in using robots in military (IEEE Spectrum (2004a,b); SEI Insights (2004)), robot
groups can be used for doing the "good" too.

(a) Robot Army in "I, Robot".

Source: 20th Century Fox

(b) Robots in "The Terminator" during a combat scene.

Source: Orion Pictures

Figure 1.1: Group of robots as displayed in fiction.

Companies like Bosch are heavily investing in groups of robots for agriculture. (Ruck-
elshausen et al., 2009) show the BoniRob (Figure 1.2), the autonomous robot developed
by Deepfield Robotics, a Bosch startup, that can do various tasks in a farm. Lottes et al.
(2017), researchers from the University of Bonn have developed a method for identifying
weeds in farms using images from low-cost UAVs. Industry reports1 show that Bosch
is already developing robotic swarms for agriculture. Swarm robotics is an approach to

1https://spectrum.ieee.org/automaton/robotics/industrial-robots/
bosch-deepfield-robotics-weed-control

https://spectrum.ieee.org/automaton/robotics/industrial-robots/bosch-deepfield-robotics-weed-control
https://spectrum.ieee.org/automaton/robotics/industrial-robots/bosch-deepfield-robotics-weed-control

4 CHAPTER 1. INTRODUCTION

multi-robot control in which robots are deployed in large numbers (Tan & Zheng (2013)).
The main advantages of using a swarm of robots in agriculture is replacing the manual
labor, which has become scarce and unreliable, because of the increasing lack of interest of
people to work on farms and the constant emigration to urban areas. Also, robots and
image processing can be much more accurate and fast to analyze for problems in the farm
and provide actionable information for decision making.

Figure 1.2: The BoniRob, a robot developed by Bosch for agriculture.

Source: Bosch

Another great example of application for robotic swarms is self-driving cars. Some
companies like Tesla, Baidu, Waymo, Ford and NuTonomy are doing their first tests
of a commercially available autonomous vehicle (CBS Insights (2018)). So far, the
implementations of autonomous vehicles are concerned about perceiving the environment
and interacting with other vehicles, especially human-driven cars. But in the future, it is
expected that vehicles will drive autonomously, interacting with each other as a gigantic
robotic swarm. Since the vehicles will be always exchanging information among themselves,
they will keep a very short distance between one another and we won’t have traffic lights
anymore, greatly reducing the commute time and increasing safety. Some papers are
already addressing the problem of autonomous vehicles swarms, in applications like path
planning (Jann et al. (2017)), traffic optimization (Sharon et al. (2018)) and intersection
management (Hausknecht et al. (2011)). Figure 1.3 shows a envision of autonomous cars.

5

Figure 1.3: Envision of autonomous cars, working as a collaborative robot swarm.

Source: The Motor Report Australia

Although robot swarm applications are becoming more feasible, beneficial and real,
there will be undoubtedly some kind of interaction of robots with humans at some level.
Humans could give orders, collaborate in the tasks or give information to the group, so
real world robotics applications need to be ready to deal with human interaction. The
main goal of this work is to implement an interaction between a human and a robotic
swarm and analyze how can the human work together and influence the actions of the
robot group. Robots can interact with humans in a variety of ways, but in this work, we
have implemented such interface using a Virtual Reality (VR) headset. VR is one of the
new trends in gaming, telepresence and robotics, and bring great benefits because of its
immersivity, intuitivity and level of control. We will discuss VR in a deeper detail on the
next chapter.

In some applications for robotic swarms, they must distribute each other in an envi-
ronment to accomplish a task or sense the environment. For example CNN (2014) shows
the Sea Swarm project from MIT (Figure 1.4), that developed a robot that can work in
oil spills collecting residue. Instead of using very expensive ships with work crews, they
have developed a swarm of robots that can distribute in an area, find out where are the
largest concentrations of oil, communicate with other robots and then absorb it, in a much
cheaper and faster way than using manned ships.

6 CHAPTER 1. INTRODUCTION

Figure 1.4: Sea Swarm project from MIT, that is building robots for absorbing oil spills
from oceans

Source: Seaswarm MIT

But how could these oil cleaning robots distribute themselves in such area? In our work,
the task of robot coverage control was the task chosen to the robot group to accomplish
under the influence of the human agent. As we will discuss more deeply in the following
section, robot coverage is a trending topic in robotics, with applications in search and
rescue, sensing, and patrolling. Thus, another focus of this work is to investigate how
these robots could optimally place themselves in the environment, considering relevant
parameters like the areas that are more important, presence of obstacles and even the
performance of each robot. We have also implemented interfaces in which humans can
help robots to accomplish the coverage problem, defining the important areas, controlling
the obstacles in the area, and increasing the weight of each robot on the coverage of the
region. In addition, we will also discuss a new method of robot coverage that is able to
locally calculate the control laws for the robots, with great benefits in performance in
distributed systems.

1.1 Multi-robot coverage control problem

Inspired by Cortes et al. (2004), the robot coverage problem can be defined as a special
problem in multi-robot systems in which we are concerned in optimally displacing a group
of robots in a certain region, based on some criteria, like the importance of an area, sensor
range, robot performance and others. As we could see in the previous example, robot
coverage has applications in natural disasters but also in military, environmental sensing,
rescue, patrolling and others. One great example of robotic swarms in a coverage problem
is the swarm of robot boats developed by the U.S. Office of Naval Research, displayed in

1.1. MULTI-ROBOT COVERAGE CONTROL PROBLEM 7

Figure 1.5 (IEEE Spectrum (2014)). They have developed a fleet of autonomous robot
boats that can perform maneuvers autonomously to defend their mother-ship or surround
enemy ships. In a situation in which a surface missile or a torpedo is fired in the direction
of the mother-ship, the autonomous robot boats could physically intercept the projectile
and take the damage instead. For such task, the robot fleet needs to be positioned around
the mother-ship in such a way that it would minimize the required time to reach any point
around the mother-ship, to safely intercept any incoming fire. Multi-robot coverage control
strategies can address this problem and ensure an optimal displacement for protecting the
mother-ship.

Figure 1.5: U.S. Navy fleet of autonomous boats.

Source: U.S. Navy

(a) Mother-ship with robot boats covering the
area around her and an incoming projectile.

(b) One of the robots intercept the projectile,
saving the mother-ship.

Figure 1.6: Example of a fleet of autonomous boats protecting the mother ship using
robot coverage algorithms.

In this work, we are specially interested in environments that have obstacles, which
we call "non-convex" environments. Moreover, we also consider situations in which the
obstacles can change over time, and thus affecting the optimal distribution of robots. This

8 CHAPTER 1. INTRODUCTION

would happen for example in a fleet of ships. If we have some other ships around the
mother-ship, they can be treated as obstacles by our coverage strategy.

As we previously discussed, robot-swarms in the real world will always need a interaction
with a human at a certain level. A human could provide information that cannot be inferred
by the robots, for example, which areas around the mother-ship are more important and
thus require a denser coverage. But how could this human interact with the robots while
they are accomplishing the task? The study of the relation between humans and robots
swarms is a whole field of study, called Human-Swarm Interaction, which we will discuss
briefly.

1.2 Human-Swarm Interaction

Before talking about Human-Swarm Interaction, we need first to understand the concept
of Human-Robot Interaction (HRI). Put simply, HRI is the field of study of interactions
between human and robots. In HRI, usually there is some kind of interface that provides
to humans a way by which they can influence the actions of a robot. For example, a
joystick, a computer, a smartphone app, or even human gestures. One of the first HRI
interfaces accomplished was the "The Master Slave Manipulator Model NE9 ", built in
1960. It was a robotic arm designed for handling nuclear material, and it copied the
movement of a human from an interface similar to the manipulator. In other words, by
using this interface, the human could control very precisely the desired position of the
manipulator actuator that was in another room. Figure 1.7 shows the robot serving a
coffee to a woman. The robot is controlled by a person in the second plane of the picture.
For a better understanding of the interface, please watch the video in the footnote2.

In Human-Swarm Interaction, we are concerned about how could a human interact
with an unlimited amount of robots. One great example of Human-Swarm Interaction
is imagining a big operation of autonomous trucks (Figure 1.8). In this context, the
autonomous trucks have to go back and forth from the mine pit, bringing ore, but all of
this in an automated and independent way, with the mission of reducing overall time taken
for each truck to make a round trip. Considering the existence of a system that monitors
the operation of trucks, their positions and status in real time, the vehicles can have full
knowledge of the position of other trucks around, thus they can cooperate with themselves
to cross intersections without stopping or letting a faster vehicle over take them. But
if one vehicle is teleoperated, or operated by a human agent, the robot swarm needs to
interact with this human agent, either predicting when they are arriving in an intersection,
or always giving them preference, for example. Another example of how human agents
can interact with the swarm of autonomous trucks is giving them information about the
environment, like changes in the roads, alert them about hazards in the road or manually

2The Master Slave Manipulator Model NE9 video: https://www.youtube.com/watch?v=7YEMMpngZTE

https://www.youtube.com/watch?v=7YEMMpngZTE

1.2. HUMAN-SWARM INTERACTION 9

Figure 1.7: The Master Slave Manipulator Model NE9, developed for manipulation of
nuclear material and one of the first human-robot interaction interfaces.

Source: British Pathe

changing the trajectory planned for a truck.

Figure 1.8: Mines of the future will be autonomous and the swarm or trucks need to
cooperate with human workers.

Source: Suncor Energy

In some HRI applications, an abstraction layer that facilitates the operation of the
robot is developed. Some robotic systems may have a lot of inputs (for example, each joint
of a robotic manipulator), and controlling them individually is a hard task for the human

10 CHAPTER 1. INTRODUCTION

and takes out the intuitivity and easiness of control. In swarm robotics, since the number
of robots can be very large, controlling each robot could be an overwhelming task. Thus,
creating an abstraction layer to allow the human to interact with the swarm is beneficial
for the operator. In this work, we have implemented a coverage control algorithm that
abstracts the control of the robot swarm, allowing the operator to interact with the robots
with just a few variables. For the interface, we choose the use of an Virtual Reality headset,
because it provides a very intuitive and easy to use interface.

Virtual Reality (VR) is any computer-generated scenario that simulates the experience
using video, audio, vibration or any other sense stimulation. So basically, a video game or
a simulator can be Virtual Reality. VR is becoming more popular nowadays because of
VR headsets, which are screens with lenses that are attached to the head of a person. In
the same way headphones increased the immersiveness by approaching the speakers to
the ears, VR headsets are increasing the immersiveness approaching screens to the eyes.
VR can be interesting when interacting with robots because it is intuitive and provides
the human a high degree of immersion and control. VR systems have improved largely
recently because of advancements in computer graphics and the economical interest of
exploring this technology. Nowadays, we have consumer hardware, like HTC Vive and
Oculus Rift that are both inexpensive, widely supported by the developer community and
provide tracking cameras for getting user’s motion, which gives an even deeper level of
interaction.

Figure 1.9: A human teleoperating a robot using a Virtual Reality headset.

Source: Quartz Media LCC

1.2. HUMAN-SWARM INTERACTION 11

1.2.1 Objective and Contributions

This work is divided in two contributions. The first presents the implementation of a
human-swarm interaction strategy with the use of a multi-robot coverage framework in
non-convex environments. The interface for the interaction of the robot group with a
human agent is provided by a virtual reality (VR) environment. On the virtual reality
application, the control of the group of robots is abstracted to simple commands, allowing
the users to interact with the swarm by creating and removing obstacles, creating density
distribution functions and altering the speed of robots. Simulations were implemented
using ROS and Unity and demonstrate that robots could react to the changes of the
simulation environment imposed by the human agent. Real experiments were implemented
using e-puck robots.

Figure 1.10: The e-puck robot, used on the experiments.

Source: Wikimedia

The second contribution presents a novel algorithm for decentralized calculation of
Voronoi tessellations in non-convex environments. The new proposed algorithm allows the
robots to calculate their Voronoi diagrams, required to the coverage control algorithm,
without having to calculate diagrams of the surrounding robots and also without assuming
anything about which robots could be their neighbors. The order of complexity of the
new algorithm is also significantly lower, and inversely proportional to the number of

12 CHAPTER 1. INTRODUCTION

robots, without impacts on the diagrams generated. To test the algorithm and compare its
performance, simulations were implemented with large groups of robots to show that the
average calculation time decreases as the robotic swarm grows, and that the algorithm is
able to calculate local Voronoi diagrams without assuming which robots are their neighbors.

2
State of the Art

13

2.1. HUMAN-SWARM INTERACTION 15

2.1 Human-Swarm Interaction

As defined by Kolling et al. (2016), robot swarms consist of "multiple robots that coor-
dinate autonomously via local control laws based on the robot’s current state and nearby
environment, including neighboring robots". Robotic swarms are useful because of their
scalability and robustness to local failure of single robots. Since a robot swarm can have
a priori unlimited number of members, the algorithms and control laws need to be as
decentralized as possible, but in some cases, they have to cooperate to accomplish a task.

A number of recent projects have contributed to the development of robot hardware that
can implement robot swarms and test coordination algorithms in a real world environment.
One of them is the Swarm-bot (Mondada et al. (2004)), which is a small but robust platform
developed for implementing swarm robotics strategies. One of the robot’s features include
a small arm and a gripper, which allows the robot to attach to other robots and perform
collaborations, like building a bridge using themselves. Another great example is the
Kilobot (Rubenstein et al. (2012)), which is a small and affordable robot which can be
deployed in huge numbers, some works have even implemented a thousand-robot swarm
experiment (Rubenstein et al. (2014)). However the Kilobot is slow and lacks in essential
features such as wireless communication. Other prominent robot is the e-puck (Mondada
et al. (2009)), which was the robot used in this work. The e-puck is a small differential
robot with some useful features, like Bluetooth communication, encoder wheels, IR sensors
and cameras. There are also some recent works that have built robots that are affordable,
open source and can be 3D printed, like the HeRo robot (Rezeck et al. (2017)), which
makes the deployment of a large number of robots accessible and easy.

In real world applications, robots need to be able to interact with humans at some level.
Thus, it is important to understand the level of interaction of the operator with the robot
swarm. In Kolling et al. (2016), one of the classifications for the HSI applications evaluates
the level of attention from the human to work with the robots. In applications that robots
are performing independent activities, for example search and rescue (Yamaguchi et al.
(2017)), the human agent needs to give to robots individual attention to foresee their
actions. These kinds of activities give an O(n) order of complexity to the human, since
each robot needs the same operator interaction, thus increasing the complexity in a linear
manner with the number of robots. A different form of control is when the operator
interacts with the robots in a higher level of abstraction, influencing the robot swarm as a
whole, or any other task that the number of robots is not relevant for the abstraction. As
we will see in the Chapter 3, during the development of our application, we have chosen to
implement an abstraction layer that would influence the robot swarm instead of individual
robots, thus allowing the human agents to operate with a few variables.

Human-Swarm interactions were accomplished using different interface layers across
previous works. Becker et al. (2014) have developed a web page in which users from all

16 CHAPTER 2. STATE OF THE ART

over the world could interact to help a simulated group of robots, accomplishing a task to
move an object using the arrow keys to control where the robots should go, forming new
shapes by combining them, but the user can only tell the direction in which the robotic
swarm should move as a whole. So, in this case, the abstraction is the control law provided
by the arrow keys, and the interface is the web page receiving control from the keyboard.
In the work of Diaz-Mercado et al. (2015), the users could interact with a group of robots
in a coverage problem, in a very similar solution that we are approaching in this work.
Users could change the importance of the regions, and thus attracting robots to a specific
region, by using a tablet to place a Gaussian density distribution function to inform for
the robots the most important regions. However, they only consider convex environments
and interacting with a tablet screen gives a much shallower level of interaction than VR.
Nunnally et al. (2013) also deploy a swarm of robots in a coverage control problem. The
method for coverage is based in vector fields, with repulsive forces to repel the robots
from one another and cover the area as sparse as possible, and the interaction with the
human is based in a haptic feedback interface, which is similar to a robotic arm. However,
the human interacts with the robots by changing the repulsive forces around the robots
and thus, it characterizes a O(n) effort from the operator, which needs to interact with
the robots individually instead of the group as a whole. Some other works have also used
haptic interfaces in the context of HSI (Setter et al. (2015)), where a haptic interface was
developed to select and control a robot which was the leader of the swarm. Kolling et al.
(2013) developed user interfaces for a experiment involving a group of volunteers. One of
their experiments involved solving an information foraging problem, in which robots need
to explore an environment and report their findings to a base station. Moreover, robots are
only able to communicate locally. Human agents collaborated with the robotic swarm by
choosing the location of beacons using a keyboard and mouse, which influence the behavior
of robots. In the work of Gioioso et al. (2014), the interface chosen for collaborating
with the robots was the operator own hands. Using gestures, the human could control
a swarm of aerial robots allowing them to engage different formations depending on the
hand gestures. In the work of Lee et al. (2011), a haptic interface was used to control
another formation of aerial vehicles. In one of their examples, they have implemented
a master-slave algorithm in which the operator could select one or many robots and
teleoperate them, while the other robots would keep a formation.

Because of the interest in autonomous vehicles, there is also a line of research related
to human interaction with vehicles. Self-driving cars could be seen as a swarm of robots
that drive the humans to their destination. Industry, academia and government have
concerns in how to make these vehicles safe, efficient, but also comfortable and that could
give the humans some sense of control (Kun (2018)) and could enable humans to reengage
to controlling the car (Debernard et al. (2016)), in such way that the human and the
self-driving car cooperate on the task of driving.

2.2. MULTI-ROBOT COVERAGE CONTROL PROBLEM 17

There are also many other examples on how humans could interact with robot swarms.
But, as a conclusion, an important feature that must be provided by all these forms
of interaction are the interfaces, that should allow the humans to avoid the activity of
individually controlling an overwhelming amount of information, by creating an abstraction
layer with a few and intuitive parameters to interact with.

2.2 Multi-robot coverage control problem

Multi-robot coverage has also been a largely studied problem in robotics. As previously
explained, robot coverage is concerned in optimally displacing a group of robots in a
certain region. An important work in this field was done by Cortes et al. (2004), in which
the problem of multi-robot coverage was introduced with a solution based on Voronoi
diagrams and the Lloyd’s algorithm (Lloyd (1982)). The main idea is to converge to a
Centroidal Voronoi Tessellation, i.e., when all robots are located in their respective Voronoi
region centroids, the solution is reached. One of the key points of the paper is that in the
definition of the coverage algorithms, one consideration that the author makes is that the
algorithms should run in a decentralized fashion, so that robots are able to calculate their
control laws only depending on the positions of their neighbors and their own.

Many expansions of Cortes et al. (2004) have been proposed. Pimenta et al. (2008)
used geodesic distance instead of the standard Euclidean distance to address non-convex
environments. The work has also considered that robots could be heterogeneous, thus
robots with a higher coverage weight value could cover a larger area. Pierson et al. (2015,
2017) developed an adaptive controller to adjust the weights of the robot based on their
sensor quality and actuator performance. For example, in a coverage task in which robots
need to collect images, their performance can be evaluated regarding the image quality. In
the same way, the actuator performance can be evaluated analyzing the difference between
the expected and performed movement of the robot. If there is a difference, it might
indicate that the robot is in a difficult terrain or its actuator is not performing well, so its
weight is reduced in favor of a better overall coverage.

Some other works have also addressed the problem of coverage in non-convex environ-
ments. As we discussed before, the first works used the centroid to guide the robots towards
the optimal displacement, and in a non-convex region, the centroid may lie inside an
obstacle, which could lead the control law invalid. Pimenta et al. (2008), as we mentioned
before, used geodesic distances and a control law based on a gradient, therefore it could
also deal with the non-convexity of an environment. Breitenmoser et al. (2010) addressed
the problem using the same go-to-centroid controller applied in convex environments,
with the addition of a TangentBug local planner (Kamon et al. (1998)) to prevent robots
colliding with obstacles, such that if the centroid lies inside an obstacle, the robot would
stay as close to the centroid as possible, on the border of the obstacle. Kantaros et al.

18 CHAPTER 2. STATE OF THE ART

(2014) have considered non-convex environments too, but in such way that the robots have
a maximum visibility distance, however there is no mention on which method is used for
calculating the diagrams.

Bhattacharya et al. (2013) proposes a way for calculating Voronoi diagrams in an
approach inspired by Dijkstra’s algorithm for graph search (Dijkstra (1959)). Each robot
is a seed of the Dijkstra’s, and thus the Voronoi partitions are calculated as the wavefronts
collide. The robot control laws given to robots do not depend on the centroid of the
Voronoi region, but instead the control law points to the direction which maximizes the
projection with the solution proposed by Pimenta et al. (2008). This method of Dijkstra’s
inspired coverage control is the chosen method in this work, based on their efficiency and
not dependency on the centroid of the Voronoi region.

2.3 Virtual Reality

Due to the availability of virtual reality consumer electronics nowadays, there is a strong
trend in applying virtual reality in the context of robot control and teleoperation. El-Shawa
et al. (2017) investigated VR as a HRI for simulation in training, considering environments
in which robots and humans work together and collaborate. Volunteers have contributed
to their experiments, in which they could see robots doing gestures and should inform
in what position they could see the robot commands more clearly, thus validating that
the participants could see and interact with the robots in a safe distance even in VR
environment. Nigolian et al. (2017) have implemented an interface that allowed a group of
self-reconfigurable modular robots (SRMR) to be controlled by an operator. They have
used Roombots modules (Spröwitz et al. (2014)), which have SRMR capabilities, and in
their experiment, they have used a group of them to form structures. Users interacted
with the Roombots using a VR headset and a hand tracking system, in a similar setup
than we have used.

Another trending and interesting application of VR in robotics is medical training
and recovery. In the works of Klamroth-Marganska et al. (2017); Choi et al. (2018), VR
headsets were used to help patients to walk again with the help of robot exoskeletons. In
those works, a VR application was developed to create exercises for the patients. They
have also used motion tracking in the legs to give the patients visual feedback of the
movement in the VR training. Both works have reported that the use of VR increased the
strength gain of the patients, helping them in their recovery.

Other recent VR applications involving robotics allow users, for example, to interact
with manipulators using VR and a joystick (Guerin et al. (2014)). In that work, a
framework for controlling robots using VR is detailed, which enables the operator to grab
the joints of a manipulator, create obstacles and plan trajectories. However, no source code
of their proposed framework was released. Additionally, they have used second-generation

2.4. STATE OF THE ART CONCLUSIONS 19

Oculus headsets, which does not have the motion tracking system that we have used. One
of the other few works that have used HSI with VR is the one by Hönig et al. (2015).
In fact, they have used mixed reality, which is the combination of VR and Augmented
Reality (AR). Together, it means that not only objects are represented virtually, but they
also take part in the real world too, modifying the perceiving of the actual environment
for the robots and humans. In that work, they have combined simulations in Unity and
the real-time experiments in physical world, and in one of their use cases they also created
virtual humans that could be followed by drones, enabling safer tests. Du et al. (2016)
have used a VR headset to teleoperate a robot for a SLAM mapping and compared the
results with a autonomous mapping. Differently of all these previous works described in
this section, we focus on head mounted VR, with motion tracking of the user and handheld
wireless controllers, which allow a deeper level of immersiveness and control of the group
of robots.

2.4 State of the art conclusions

As a conclusion, the three main topics discussed in this work have been heavily studied
recently, however a junction of the three — interacting with a swarm of robots using
a virtual reality headset, with the robots solving a coverage problem — has not been
attempted before. In the next chapters, we will discuss the mathematical background, the
implementation and results of the human-swarm interface developed in this work.

20 CHAPTER 2. STATE OF THE ART

3
Methodology

21

3.1. PROBLEM DEFINITION 23

3.1 Problem definition

In this work, for the development, we are considering a group of robots that can commu-
nicate with any other of them in a wireless network topology. The agents can randomly
communicate with one another. Robots are fully aware of their own global positioning
and the position of other robots. Other information, like coverage weights and speed are
also exchanged. For the development part, and all the mathematical tools, we will also
consider robots that are holonomic, meaning that they can move in any direction at any
given time.

The problem that we are aimed to solve is to develop a multi-robot control algorithm
that can receive commands from a human operator. Such human operator would influence
the coverage of robots and aid them to get external information or reach a better coverage.

On this problem, we will focus more in developing a proof-of-concept instead of a
product, showing that integrating a group of robots in a human interface is feasible.

3.2 Voronoi diagram

Imagine that a certain city wants to build new schools and wants to know which areas
need the most. One way they could analyze this is by looking which areas are more far
to the current schools. To better understand that, they could build a Voronoi diagram.
According to Aurenhammer (1991), a Voronoi diagram is a partition of a geometrical
space in which generating points are associated to the region of the space closest to it
than any other generating points. In the previous example, the current schools would be
the generating points of the diagram. Figure 3.1 shows a Voronoi Diagram, where black
dots are generating points. In the Figure, take for example the point in the red area in
the upper part of the Figure. This red area is closer to the black point inside it than any
other black point in the Figure. Voronoi diagrams are very useful to identify and classify
the positioning of resources or points of interest. Another example, given the position of
police stations in a city, a Voronoi diagram would define the closest police station for each
region. Also, we would see areas that are too far from police stations, thus showing areas
that need better coverage or more police officers.

24 CHAPTER 3. METHODOLOGY

Figure 3.1: A Voronoi diagram.

Source: Wikimedia.

Let’s now understand the Voronoi diagram mathematically. Let Ω ⊂ R2 be a given
representation of the environment, P = {p1, . . . ,pn} be the set of configurations pi = [xi, yi]
of n points, where pi ∈ Ω and q a point in Ω. Let {V1, . . . , Vn} be the Voronoi partitions in
Ω. Thus, each cell is defined as

Vi = {q ∈ Ω | d(q,pi) ≤ d(q,pj), ∀j 6= i}, (3.1)

where d is a function that measures distances between points in Ω and agents.
The Voronoi boundary ∂Vi is defined as:

∂Vi = ∪nj=1lij ∪ {∂Ω ∩ Vi}. (3.2)

where lij is the bisector:

lij = {q ∈ Ω|d(q,pi) = d(q,pj), j 6= i}. (3.3)

The function d can be represented in any way that suits convenience to the problem
to be solved. We consider in our problem that the space Ω can be non-convex (Pimenta
et al. (2008); Bhattacharya et al. (2013)). A convex shape is such that any pair of points
inside the set can be connected with a line from one to another, so that all points in this
line are inside this shape. A non-convex shape is any shape where this property does not

3.3. GEODESIC DISTANCE 25

hold. Figure 3.2 shows a convex and a non-convex shape.

(a) A convex shape (b) A non-convex shape

Figure 3.2: Comparison between a convex and non-convex shapes.

Source: Wikimedia

3.3 Geodesic distance

The term geodesic distance refers to the shortest distance between two points considering
the shape of the environment. Opposing to the Euclidean distance, the geodesic distance
may not be the length of a straight line and depends on the geometry of the environment,
including obstacles, curvature, and other factors. In geography, the term geodesic distance
refers to the distance on the surface of earth. In graph theory, it is the shortest distance
between two vertexes, considering the sum of costs of the edges connecting them. In the
scope of this work, since we deal with environments with obstacles, it is crucial to deal
with geodesic distances. As we will see, considering geodesic distance is not as simple as
Euclidean distance, because while calculating the straight line distance between two points
is as straightforward as using the Pythagorean theorem, computing the geodesic distance
in our context requires the use of graph search algorithms. Figure 3.3 shows a comparison
between Euclidean and geodesic distance, in a environment such that the possible routes
are the ones over the black lines.

26 CHAPTER 3. METHODOLOGY

Figure 3.3: Comparison between the geodesic and Euclidean distance.

3.4 Multi-robot coverage in convex environments

Our abstraction to enable a human operator to interact with the robot swarm is based
on coverage control, in which the goal is to optimally displace a group of heterogeneous
robots in a given non-convex area. Inspired by the work of Cortes et al. (2004), we define
an optimization-based method to reach an optimal displacement of the robot group. We
will first describe the convex environment situation, since it is simpler and will give us
mathematical background to understand the coverage control problem. In Section 3.4.4,
we will talk about the necessary considerations to deal with non-convex environments.

Following Pimenta et al. (2008); Pierson et al. (2015, 2017), we also consider that the
robots may vary in performance, thus they are heterogeneous robots, which have different
weights w = {w1, . . . , wn}. As we are dealing with robots with weights, we can define the
Voronoi distance function d as:

d(q,pi) = ‖q − pi‖2 − w2
i . (3.4)

where ‖q,pi‖ represents the Euclidean distance between q and pi.
Let {W1, . . . ,Wn} be the geodesic weighted Voronoi partition of Ω, with each cell defined

as:

Wi = {q ∈ Ω | ‖q − pi‖2 − w2
i ≤ ‖q − pj‖2 − w2

j ,∀j 6= i}. (3.5)

As a measure of the system performance we define the deployment functional:

H(P,W) =
n∑
i=1

ˆ
Wi

[‖q − pi‖2 − w2
i]φ(q)dq , (3.6)

where the function φ : Ω → R+ is a density distribution function which defines a weight for

3.4. MULTI-ROBOT COVERAGE IN CONVEX ENVIRONMENTS 27

each point in Ω. Therefore, points with greater weight values should be better covered by
the robots than points with smaller values.

We also define the mass of the Voronoi region MWi
and the centroid of the Voronoi

region, CWi as:

MWi
=
ˆ
Wi

φ(q)dq and CWi = 1
MWi

ˆ
Wi

qφ(q)dq . (3.7)

In a coverage problem, our goal is to optimally displace the robots in the environment,
which in an optimization problem perspective, translates to minimize the value of H(P,W).
An interesting result is that the critical points of H(P,W) happen when robots are located
in the centroids of their respective Voronoi regions, or pi = CWi , as detailed by Pimenta
et al. (2008). Thus, one way to minimize the value of H(P,W) and reach a critical value
would be to make the robots follow the gradient of the deployment functional, which can
be represented as:

∂H
∂pi

= −2
ˆ
Wi

(q − pi)φ(q)dq , (3.8)

but using Equation (3.7), we can simplify the gradient as:

−
ˆ
Wi

(q − pi)φ(q)dq = −MWi
(CWi − pi) , (3.9)

Thus, we can see that as proven by Cortes et al. (2004), the critical values of the
functional would be reached when all robots are in the centroid of their Voronoi cells. One
way to drive the robots to their centroids is to use the Lloyd’s algorithm (Lloyd (1982)),
in such way that we could reach the optimal robot configuration by: 1) constructing the
Voronoi diagram, 2) computing the centroids of the Voronoi regions, 3) setting the agents
position to the centroid positions, and repeat from 1).

3.4.1 Robot Model

In this section, we will describe the models considered for the robot dynamics. Let’s
consider an integrator dynamics, and that low-level controllers are in place to cancel
existing dynamics and enforce the desired control input. As done by Pierson et al. (2017),
we also consider an additive actuation error, denoted by ∆i. This error could represent an
actuator problem or hard terrain, for example. Thus, the dynamics of the robot can be
written as:

ṗi = kpiui +∆i,

where ui is the control input and kpi a proportional gain for robot i. We also assume that
∆i has the following form:

28 CHAPTER 3. METHODOLOGY

∆i =

 ∆i,1 ∆i,2

∆i,3 ∆i,4

ui, (3.10)

so, pi can be written as:

ṗi = Kiui, Ki =

 kpi +∆i,1 ∆i,2

∆i,3 kpi +∆i,4

 . (3.11)

For simplification, we assume that Ki is a positive definite matrix. This means that
given a control input ui, the robot might deviate from its control input in 90◦ in each
direction, as in Figure 3.4. On the Figure, the red path shows a possible path that the
robot would take. In consequence, the weightings of this robot would be adjusted according
to the deviance of the path comparing to ui. Also, as we will see in Section 3.4.3, it’s
unlikely that we will know the values in ∆i and thus, an estimator is used.

ui

Kiui

Figure 3.4: For some vector ui, the possible directions for Kiui are shown in the shaded
region, and a possible path is illustrated in red.

3.4.2 Control Law and Actuation Variation

In order to minimize the value of H(P,W), a control law (ui) to drive the robots needs to
be chosen. We choose the desired input for the robots as the move-to-centroid controller,
which implements the gradient-descent control inspired from Equation (3.9), written as:

ṗi = ui = kpi(CWi − pi), (3.12)

Replacing the with the identities found in Equation (3.11), we have

ṗi = ui + ∆i = Ki(CWi − pi), (3.13)

Now, we will define a function that translates Ki to scalar, and thus giving a notion of
"health" of robot i:

3.4. MULTI-ROBOT COVERAGE IN CONVEX ENVIRONMENTS 29

hi = f(Ki),

where hi is the actuation performance "health" and f(Ki) is a function that translates Ki

to a scalar based in its properties. The choose of the function can vary for each application,
but we require that f(Ki) is bounded when Ki is bounded and continuous. In our case,
f(Ki) will be the matrix norm of Ki, but it could be the determinate, eigenvalues, trace
or any custom function, as long as it preserves the requirement. Also, since robots do not
know the true value of Ki, we will define K̂i as the estimation for Ki. In Section 3.4.3, we
will describe such estimator.

Now, consider that we have multiple robots, and each of them can have different
actuation errors. In order to deal with that, we use the following weightings adaptation
law from Pierson et al. (2017):

ẇi = −kw
MWi

∑
j∈Ni

(
(wi − f(K̂i))− (wj − f(K̂j))

)
(3.14)

where kw is a positive proportional gain constant. The idea of this controller is that it
evaluates the Ki health of the current robot and their neighbors, and adjusts their weights.
When the weight correction converges, the value of (wi − f(K̂i)) will be the same for all i,
as discussed in one of our works (Pierson et al. (2017)).

3.4.3 Estimating K̂i

To compute the estimated matrix K̂i, we use the following online estimator:

˙̂
Ki = λi − K̂iΛi

λ̇i = ṗi(CWi − pi)T

Λ̇i = (CWi − pi)(CWi − pi)T .

(3.15)

We further simplify this expression as

˙̂
Ki =

ˆ t

0
λ̇i(τ)dτ − K̂i

ˆ t

0
Λ̇i(τ)dτ

=
ˆ t

0
Ki(CWi(τ)− pi(τ))(CWi(τ)− pi(τ))Tdτ

− K̂i

ˆ t

0
(CWi(τ)− pi(τ))(CWi(τ)− pi(τ))Tdτ

= −K̃iΛi(t)

(3.16)

where K̃i = (K̂i−Ki). Note that although (3.15) and (3.16) are mathematically equivalent,
the robots can only directly compute (3.15) because they do not have knowledge of the

30 CHAPTER 3. METHODOLOGY

true error K̃i. However, the form in (3.16) is useful for analysis.
Proofs in one of our previous works show the stability of the estimator (Pierson et al.

(2017)) and weightings adjustment controller in Equation (3.14). Put simply, this estimator
evaluates how aligned is the actual movement of the robot compared to the control input.

3.4.4 Non-convex environments adaptations

In Equation 3.13, we have described a control law that minimizes H(P,W) by driving
the robots towards their Voronoi region centroids. However, in non-convex environments,
some adaptations need to be done for solving the coverage control problem. In this section,
we will discuss the adaptations needed, inspired by the framework developed by Pimenta
et al. (2008).

Geodesic distance

In non-convex environments, the shortest traversable distance between two points may
not be the Euclidean distance, because of the obstacles. In order to deal with that, we
have to redefine our distance function d as

d(q,pi) = g(q,pi)2 − w2
i , (3.17)

where g(q,pi) represents the geodesic distance between q and pi.
Since the Voronoi tessellation is defined using d, in non-convex environments it is

defined as

Wi = {q ∈ Ω | g(q,pi)2 − w2
i ≤ g(q,pj)2 − w2

j ,∀j 6= i}. (3.18)

This also implies changes in our deployment functional, which can be represented as:

H(P,W) =
n∑
i=1

ˆ
Wi

[g(q,pi)2 − w2
i]φ(q)dq , (3.19)

Control law

In non-convex environments, we should not use a control law based in the centroid of the
Voronoi regions, because the centroids might be located inside obstacles or unreachable
locations. Given that, we have to use a different control law than the one proposed by
Cortes et al. (2004).

Many works have addressed this problem of using Voronoi tessellations for multi-robot
coverage in non-convex environments, but we will use the control law described by Pimenta
et al. (2008) for this work, which can be written as

3.5. DISCRETE IMPLEMENTATION FOR NON-CONVEX ENVIRONMENTS 31

ui = kpi
∂H
∂pi

= 2kpi
ˆ
Wi

g(q,pi)φ(q)zpi,qdq, (3.20)

where zpi,q is the unit vector along the tangent at pi to the geodesic joining pi and q.
In other words, zpi,q points to the direction where the geodesic path was created when
calculating the distance from pi to q. The control law given in Equation (3.20) is actually
very similar to the result found in Cortes et al. (2004), however, we restrict ourselves to
not simplify the equation using the centroid of the Voronoi region. One way to better
understand the result in Equation (3.20) is to think that it points in the direction of the
gradient of the Voronoi region, thus, reducing its value and reaching a critical point.

K̂i Estimator

Since our K̂i estimator uses the control law for convex environments, we have to adapt it
to use the control law in Equation (3.20).

˙̂
Ki = λi − K̂iΛi

λ̇i = ṗi
(
∂H
∂pi

)T
Λ̇i =

(
∂H
∂pi

)(
∂H
∂pi

)T
.

(3.21)

Such estimator works in the same way as the one for convex environments, discussed in
Section 3.4.3. The estimator calculates the alignment of the movement of the robot with
the control law. Now that we have discussed all the necessary adaptations for non-convex
environments in our coverage control problem, we will now discuss the implementation
and pseudo-algorithms.

3.5 Discrete implementation for non-convex environ-
ments

In order to implement the control algorithm, we need a way to calculate the Voronoi
tessellations. In this work, we use a discrete graph search based on the work of Bhattacharya
et al. (2013). The environment Ω is discretized in uniform tiling, creating a graph G with
vertexes V(G) and edges E(G) and a discretized density distribution φ. The idea behind the
algorithm presented by Bhattacharya et al. (2013) is to use a modified version of Dijkstra’s
algorithm (Dijkstra (1959)), in which each robot would be a different starting Voronoi
site of the algorithm. The places where the wavefronts from different robots collide form
the boundaries of the Voronoi tessellation. For this work, we modified the algorithm from
Bhattacharya et al. (2013) in order to obtain the Voronoi partitions that are neighbors

32 CHAPTER 3. METHODOLOGY

of one another, which is necessary for adjusting the weights as in Equation (3.14). The
algorithm was implemented using Python and ROS. The source code is also available at
GitHub1.

The complete pseudo-code for computing tessellations and control commands is the
Adapted_Tessellation_and_Control algorithm, where η is a list of graph neighbors
of a specific vertex. Ni is the list of robot neighbors of robot i and P(u) is a function that
returns the position of the center of the node that the two-dimensional array u is located.
Lines 33, 34 and 35 were added to the original algorithm described by Bhattacharya et al.
(2013) to add the determination of the Voronoi cell neighbors Ni.

Now, we will go through the lines of the pseudo-algorithm. The inputs are the graph
that describes the region Ω with the obstacles, the current robot locations, the robot
weights and the density distribution function. From lines 1 to 5, we initialize some variables
before we run the Dijkstra’s-based algorithm. From lines 6 to 12, we initialize the robots
as generating points of the Voronoi diagram. In lines 11 and 12, we initialize the neighbors
of the generating points, which will be used to calculate the control integral, and will help
us tell the direction that the robots should go to minimize the deployment functional. Line
13 initializes the Priority Queue, which is used by Dijkstra’s Algorithm. From lines 14 to
35, we have the expansion of the graph, which will create wavefronts from the generating
points until they collide, forming the Voronoi borders. Basically, the Priority Queue will
always have the lowest cost node as its first element, so when the lowest cost node is
requested in line 15, this element should be popped from the Priority Queue. Lines 21
and 22 calculate the mass of the Voronoi region and the control integral of the robot.
From lines 24 to 27, we have the expansion of the neighbors of this node. Their geodesic
distance is the geodesic distance of their generator neighbor plus the Euclidean distance
between them. Then, the cost of this node from robot j is calculated. If this cost is lower
than the current cost of this node, it is expanded and added to the Priority Queue. If
the expansion of the node fails (the calculated cost is greater than the current cost of the
node), it means that we have reached the border of the Voronoi region. Lines 33 to 35
enlists both robots as neighbors of one another. The algorithm will run from lines 14 to
35 until all nodes are expanded. When all of them are expanded, and thus, the Priority
Queue is empty, we will go to lines 36 and 37. This is where the next goal of the robot is
calculated, based in the control integral and the neighbors of the robot that are free of
obstacles. Finally, the algorithm returns the tessellation map, the goals of each robot, the
list of neighbors of each robot and the mass of the Voronoi regions.

1Source code will be available at https://github.com/lucascoelhof/voronoi-hsi

https://github.com/lucascoelhof/voronoi-hsi

3.5. DISCRETE IMPLEMENTATION FOR NON-CONVEX ENVIRONMENTS 33

{τ, {p′i},Ni,MWi} = Adapted_Tessellation_and_Control(G, {pi}, {wi}, φ)
Modified from (Bhattacharya et al. (2013))
Inputs: a. Graph G

b. Agent locations pi ∈ Ω, i = 1, 2, · · · , N
c. Agent weight wi ∈ R, i = 1, 2, · · · , N
d. Discretized density distribution function φ

Outputs: a. The tessellation map τ ∈ I2

b. The next position of each robot, p′i ∈ Ω, i = 1, 2, · · · , N
c. The list of neighbors of each robot, Ni i = 1, 2, · · · , N
d. Mass of Voronoi partitions MWi , i = 1, 2, · · · , N

1 Initiate g: Set g(v) :=∞, ∀v ∈ V(G) // Geodesic distances
2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Weights
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 // Pointer to robot neighbor. η : V(G)→ V(G)
5 Initiate η: Set η(v) := ∅, ∀v ∈ V(G)
6 for each (i ∈ {1, 2, · · · , N})
7 Set g(pi) = 0
8 Set ρ(pi) = −w2

i

9 Set τ(pi) = i
10 Set Ii := 0 // The control integral. Ii,0 ∈ C
11 for each (q ∈ ηG(pi)) // For each neighbor of pi
12 Set η(q) = q
13 Set Q := V(G) // Set of un-expanded vertices
14 while (Q 6= ∅)
15 q := arg minq′∈Q ρ(q′) // Maintained by a heap data-structure.
16 if (g(q) ==∞)
17 break
18 Set Q := Q− q // Remove q from Q
19 Set j := τ(q)
20 Set s := η(q)
21 if (s != ∅) // Equivalently, q /∈ {pi}
22 Set Ij += φ(q)× g(q)×

(
P(s)−P(pj)

)
23 Set MWj+ = φ(q)
24 for each (w ∈ ηG(q)) // For each neighbor of q
25 Set g′ := g(q) + g(q, w)
26 Set ρ′ := d(g′, wj)
27 if (ρ′ < ρ(w))
28 Set g(w) = g′

29 Set ρ(w) = ρ′

30 Set τ(w) = j
31 if (s != ∅) // Equivalently, q /∈ {pi}
32 Set η(w) = s
33 else
34 m = τ(w) // Gets robot id
35 Nj+ = m // Adds robot m to the list of neighbors of j
36 for each (i ∈ {1, 2, · · · , N})
37 Set p′i := arg maxu∈ηG(pi) (P(u)−P(pi)) · Ii // Choose action best aligned along Ii.
38 return {τ , {p′i},Ni,MWi}

34 CHAPTER 3. METHODOLOGY

3.5.1 Graph generation

The graph G is constructed using the occupancy grid data provided from a grayscale
image, such that white areas indicate regions that are free, and the probability of an
obstacle in the region increases as the color approaches black, with black indicating a 100%
possibility of having an obstacle. The map_server 2 package reads the grayscale image
file and creates an occupancy grid. The occupancy grid is a M ×N matrix, in which each
element represents a small discretized area from the map along a probability of that area
being an obstacle, with values varying from 0% to 100%. This matrix is used to build a
graph that connects the vertexes with their neighboring vertexes based on the probability
of obstacle. If the neighbor has over 20% obstacle probability value, it is considered an
obstacle and thus it is not connected to the graph. As we will discuss deeper in the
following sections, in our VR application the operators can create obstacles, and when
they do it, the occupancy grid is updated and consequently, the graph also is updated.

3.5.2 Robots and control law

To deal with the possibility of dynamically changing the environment Ω, some small
changes to the Adapted Lloyd’s algorithm presented by Bhattacharya et al. (2013) were
implemented. But the overall algorithm still consists of iterating over the Voronoi dia-
gram calculation and updating the positions of the robots at each iteration. The pseudo
algorithm follows:

{
τ f , {pi}f , {wi}f

}
= Motion_Algorithm (G, {pi}, {Wi}, φ)

Inputs: a. Occupancy Grid OG
b. Initial agent locations pi ∈ Ω, i=1,2,··· ,N
c. Discretized density distribution function φ
d. Agent weight wi ∈ R, i=1,2,··· ,N

Outputs: a. Final tessellation map τ ∈ I2

b. Robot final position, p′i ∈ V(G), i=1,2,··· ,N
c. Robot final weightings, w′i ∈ R

1 while (t < n) // not converged
2 G = build_graph(OG)
3 Set {τ , {p′i},MWi} :=

Adapted_Tessellation_and_Control (G, {pi}, {wi}, φ)
4 for each (i ∈ {1, 2, · · · , N})
5 Move ith robot from P(pi) to P(p′i)
6 Set pi = p′i // Update robot positions
7 Adapt_Weightings(wi, MWi)
8 return {τ , {p}, {w}} // Latest tessellation & positions

Adapt_Weightings is an implementation of the Equation (3.14), build_graph is a
function that builds the graph as described in subsection 3.5.1 when there are changes on

2ROS map_server package. http://wiki.ros.org/map_server

http://wiki.ros.org/map_server

3.6. VIRTUAL REALITY ENVIRONMENT DEVELOPMENT 35

occupancy grid OG. The estimation of t is the current elapsed time and n is a time set for
convergence. It’s worth also mentioning that at the robot position control level (line 5),
the Estimation of K̂i should happen, implementing Equation (3.21). The pseudo-algorithm
for Adapt_Weightings follows:

{
{wi}f

}
= Adapt_Weightings (G, {pi}, {Wi}, φ)

Inputs: a. Robot weights wi ∈ R, i=1,2,··· ,N
b. Agent locations pi ∈ Ω, i=1,2,··· ,N
c. Voronoi regions Wi ∈ R, i=1,2,··· ,N
d. Robot neighbors Ni ∈ R, i=1,2,··· ,N

Outputs: a. Final robot weights map wfi ∈ R, i=1,2,··· ,N

1 Initiate wfi : Set w
f
i := 0, ∀ i ∈ {1, 2, · · · , N}

1 for each (i ∈ {1, 2, · · · , N})
2 for each (j ∈ {1, 2, · · · , N})
3 if j ∈ Ni // If j is a neighbor of i
4 wfi + = −kw

MWi

(
(wi − f(K̂i))− (wj − f(K̂j))

)
5 return

(
{w}f

)
// Updated weights

3.6 Virtual Reality environment development

In order to achieve an intuitive and flexible human interactions, we have developed the
interface for robot control in the coverage abstraction using a virtual reality headset. The
chosen headset, Oculus Rift, is a virtual reality headset developed by Oculus VR. It has a
1080x1200 resolution OLED display per eye, with a 110◦ field of view. Oculus has also a
set of two controllers, called Oculus Touch, and a positional tracking system, Constellation.
It uses two infrared cameras to get the position of the headset and the two controllers in
six degrees of freedom. Figure 3.5 shows a user wearing the Oculus Rift.

3.6.1 Unity

In order to facilitate the development of the VR application, we have used a game engine
called Unity. Game engines are software development environments that provide core
functionality for creating games, such as a rendering engine, physics, collision detection,
scripting and so on. Game engines also receive a lot of plug-ins from the community, which
makes the development easier. Moreover, integrating with a VR headset in Unity is a
fairly simple task. Among other game engines, Unity is known for being simpler to use
than its counterparts. Also, Unity has a integration with ROS, as we will see in the next
section.

36 CHAPTER 3. METHODOLOGY

Figure 3.5: User wearing the virtual reality headset.

3.6.2 ROS-C# Bridge

For this work, an interface between ROS#, Unity and Oculus was developed, which
publishes in ROS the positions of the headset, hands and button states in ROS3. Since
Oculus is only officially supported in Windows and ROS in Ubuntu, we used ROS in a
Ubuntu virtual machine hosted by a Windows computer, which is running Unity to create
the virtual reality application, with the help of VRTK 4. VRTK provides tools and libraries
that help on the development of VR applications in Unity. To communicate between Unity
and ROS, we used ROS# (Bischoff (2018)), which is a set of libraries and tools in C# for
communication between ROS and C# applications. We used Stage5 simulator for robot
simulation, and rosbridge6 to communicate with ROS#.

Figure 3.6 shows the setup used for the simulations. The Linux VM was used only
for simplification, as we could have two separate computers using exactly the same
implemented software.

Virtual reality can bring some benefits to human-swarm interaction. Some of the main
advantages of VR HSI are:

3Source code will be available at https://github.com/lucascoelhof/oculus-ros-sharp
4VRTK https://vrtoolkit.readme.io/
5Stage simulator http://wiki.ros.org/stage
6Rosbridge package.http://wiki.ros.org/rosbridge_suite

https://github.com/lucascoelhof/oculus-ros-sharp
https://vrtoolkit.readme.io/
http://wiki.ros.org/stage
http://wiki.ros.org/rosbridge_suite

3.6. VIRTUAL REALITY ENVIRONMENT DEVELOPMENT 37

Figure 3.6: Setup for interfacing ROS and Oculus Rift.

Physical Isolation

On virtual reality, the user does not need to be close to the agents to control them, as long
the agents still have communication with the human who is controlling the swarm. This
greatly expands the operational flexibility because it removes the distance constraints,
allowing the human to control the swarm even when the robots are in dangerous or
inhospitable locations.

Robot and environment additions

Since the world is a computer graphics world, we are free to modify it and add any features
that are impossible in real world. For example, for this work we implemented a flyover and
teleporting feature, which is totally feasible in virtual world, but not yet fully replicable in
real world for regular humans.

Intuitiveness and immersion

A virtual reality headset with motion tracking and handheld wireless controllers feels very
intuitive to humans. It gives them the freedom to look and walk around and interact with
the world with common gestures, like grabbing, pinching and pressing. Also, because of
the high field of view and resolution, the users feel totally immersed on the virtual world.

3.6.3 Features implemented on VR application

On the VR application, implemented using Unity, users can see the robots, obstacles, the
Voronoi tessellation and the density distribution function. This is feasible assuming a
central system responsible to broadcast the position of all robots and a known map to the

38 CHAPTER 3. METHODOLOGY

VR application. In order to interact with the robots, users can teleport, fly over, create
and remove obstacles, set robot weights and create density distribution functions. Figure
3.7 shows the user interface with the commands available.

(a) Left hand menu.
(b) Right hand menu.

Figure 3.7: Menu of the VR application showing the features.

These are the implemented interactions between the users and the group of robots:

Obstacle creation and removal

When users press the A button, an obstacle is created in the location of their right arm.
When creating this obstacle, ROS# publishes on ROS the new occupancy grid, and the
Voronoi application reads it and updates the graph and the tessellation. Likewise, they can
also remove obstacles using B button. Since the graphs are updated and the tessellation
algorithm runs regularly, the robots can react to the new obstacles. Figure 3.8 shows the
process of creating an obstacle and Figure 3.9 shows a user removing obstacles.

(a) Before. (b) User vision. (c) After

Figure 3.8: Obstacle creation feature. Operator removed obstacles next to the light blue
region.

3.6. VIRTUAL REALITY ENVIRONMENT DEVELOPMENT 39

(a) Before. (b) User vision.
(c) After.

Figure 3.9: Obstacle removal feature.

Density function interaction

The coverage control algorithm implemented allows the use of density distribution functions,
which can attract the robots. For simplicity, we modeled these density distributions as a
two-dimensional Gaussian functions. When the user presses the right trigger button, a
Gaussian is created. The function is modeled using the following equation,

f(x, y) = B + Ae
−
(
(x−xcσ)2

+(y−ycσ)2
)

(3.22)

where B is a constant, A is the height where the arm of the user is raised, xc and yc

are the position of the right arm in relation to the tessellation plane in each respective
coordinate and σ can be controlled by moving the left arm in relation to the right arm.
Approaching the arms reduces the value of σ while moving them away increases σ. When
the user sets the new density function, ROS# sends the Gaussian parameters to the
Voronoi application, which regenerates the density distribution. This update influences
the robot controllers, and will make robots converge to another distribution, changing
then the Voronoi diagrams.

Figure 3.10: User creating a Gaussian density distribution in aerial view.

40 CHAPTER 3. METHODOLOGY

Robot gains and weight

To allow humans to manually set the speed gain of the robots, they can select a speed gain
kpi and then hold the right trigger button to create a radius that is used to select a group
of robots and increase their kpi gains. As shown on Equation (3.18) and Equation (3.14),
this will have impact on the weight values of the robots and thus, their Voronoi partition
Wi. When a value is set, we use ROS# to publish to our coverage control application the
new values of kpi .

Figure 3.11: User selecting a robot.

Teleporting

Although using the Oculus Constellation the users can walk freely on the virtual world, it
can be tiring or limiting to walk around always. To solve this problem, we implemented
a teleporting feature using VRTK. When users press the right thumb button in Oculus
Touch, a laser pointer shows up, and when the button is released, the user is teleported to
the pointer location.

Aerial view

To better see the world and the robots and get a panoramic view of the simulation, we
implemented a feature that allows users to have an aerial view of the simulated area.
When users press the left right thumb button, they are teleported to a place above, with a
better view. Also, using the aerial view they can produce density distributions with values
much higher than standing on ground.

3.7. VORO* ALGORITHM 41

Figure 3.12: User using the teleport function. The green laser points to the position where
the user will be relocated.

3.6.4 Real world implementation

Given the interface developed, it’s also worth discussing what a real implementation
would be like. Given that the algorithm needs the position of all robots to calculate
the tessellation seen by the human operator, we would need a way to centralize this
information in the computer which is dealing with the rendering for the VR headset. If the
environment has obstacles that can change over time, we also need a entity which would
collect such data. It could be a human operator or even sensors installed on the robots.

3.7 Voro* algorithm

Bhattacharya et al. (2013) and Section 3.5 introduced the Dijkstra-based algorithm for
calculating Voronoi tessellations and also the control law of the robots. In Section 2.2, we
introduced coverage control algorithms. If we consider a decentralized strategy, in which
each robot has to calculate their control law for themselves, all the solutions proposed before
have a common flaw: either robots need to calculate the Voronoi regions of all the other
robots or they need to make considerations about who would be their Voronoi diagram
neighbors before actually knowing them. This can severely cripple the performance of
the algorithm and overall convergence strategy because it brings unnecessary calculations,
since in order to calculate its control law, a robot only needs to calculate its own region.
In this section, we will introduce a new algorithm based on the work of Bhattacharya
et al. (2013) and the A* algorithm (Hart et al. (1968)), which we call Voro*. The A* is an
extension of Dijkstra’s algorithm that introduced a heuristic function to bias the vertex
expansion in the direction of the goal. Consider that each robot needs to calculate their
Voronoi diagram locally, and as shown before, each robot in the algorithm presented by

42 CHAPTER 3. METHODOLOGY

Bhattacharya et al. (2013) is a seed of the Dijkstra’s algorithm. In the same way as A*
improved Dijkstra’s with a heuristic, we could also do that considering that the heuristic
is the Euclidean distance between a point q in the region Ω and the position of the robot
for which we are calculating the Voronoi region (which we will call pm).

3.7.1 Redefining the cost function d

As we previously introduced in Sections 3.2 and 3.4, the cost function d defines the
boundaries of the Voronoi regions. As we want to calculate the Voronoi region of only one
robot, we need some way of biasing the expansion of the graph nodes towards the position
of the robot pm. One way we could do that is using the following function:

d∗(q,pi,pm) = g(q,pi)2 − w2
i + h(q,pm), (3.23)

where h(q,pm) represents the heuristic function, which is given by Euclidean distance
between q and pm.

Consider now the inequality that mathematically defines the Voronoi diagrams, that
we introduced earlier in Section 3.2 and redefined in Section 3.4. If we substitute our new
cost function into the inequality, we will have:

Wi = {q ∈ Ω | d∗(q,pi,pm) ≤ d∗(q,pj,pm), ∀j 6= i}.

Wi = {q ∈ Ω | g(q,pi)2 − w2
i + h(q,pm) ≤ g(q,pj)2 − w2

j + h(q,pm),∀j 6= i}.

We can see that our heuristic function was introduced in both sides of the inequality
with the same value: a function of q, which is the position of a point in Ω and pm, which
is constant during the calculation of the diagram. Since they are constant and present in
both sides of the inequality, canceling h(q,pm) in both sides, we will have:

Wi = {q ∈ Ω | g(q,pi)2 − w2
i ≤ g(q,pj)2 − w2

j ,∀j 6= i}. (3.24)

which is the same set introduced in Section 3.4
This implicates that the introduction of the heuristic function has not changed the

geometry of the Voronoi diagrams. Even though the expansion of nodes is biased, the
outcomes, which are the Voronoi diagram and the control law given for robot m, are the
same. Figure 3.13 shows a diagram generated by the Dijkstra’s inspired and Voro*. The
black areas are the nodes that were not expanded, and thus not demanded a calculation.

3.7. VORO* ALGORITHM 43

(a) Voro* algorithm. (b) Dijkstra’s inspired algorithm.

Figure 3.13: Comparison between the Voro* and Dijkstra inspired Voronoi tessellation
algorithm. The robot considered for the Voro* algorithm (m) is the red one. Black

regions are nodes that were not expanded. Note that the Voronoi region for the red robot
is the same in both diagrams

3.7.2 Changes to original Dijkstra’s based algorithm

In order to transform theAdapted_Tessellation_and_Control into a local calculation
of the Voronoi diagram considering a heuristic function, a few changes were introduced.
In addition to changes to the d function, for running the algorithm in a decentralized
fashion and know when there are no more nodes in the priority queue for expansion, we
need to know when nodes from the robot of interest are entering and exiting the priority
queue. Basically, this happens when a node from robot m is expanded or when other
robot reaches a node with a lower cost than m. The pseudo-code follows in the next page.
There are some substantial changes from the algorithm in Section 3.5 but the overall idea
stays the same. First difference are the outputs. Since we are concerned in calculating the
control law for only one robot, the outputs also now reference only robot m. Alongside
with the heuristic function, we have also introduced the concept of node candidate, used
with the ζ symbol. The node candidate is a element in the priority queue that has not
been expanded yet. We will keep track of all node candidates that robot m generates, as
we do in lines 13, 25, 39 and 42. Each time m gets a node candidate (lines 12 and 42), a
counter is increased, and each time a node candidate of m loses a node for other robot
(line 39) or the node is expanded by robot m (line 25), the counter is decreased. Keeping
track of the node candidates allows us to halt the while loop as soon as we don’t have any
expandable nodes in the Priority Queue.

44 CHAPTER 3. METHODOLOGY

{τ, {p′m},Nm,MWm} = Voro*(G, {pm}, {wi φ,m)
Inputs: a. Graph G

b. Agent locations pi ∈ Ω, i = 1, 2, · · · , N
c. Agent weight wi ∈ R, i = 1, 2, · · · , N
d. Discretized density distribution function φ
e. ID of the robot m

Outputs: a. The tessellation map τ ∈ I2

b. The next position of robot m, p′m
c. The list of neighbors of robot m, Nm
d. Mass of Voronoi partition MWm

1 Initiate g: Set g(v) :=∞,
for all v ∈ V(G) // Geodesic distances

2 Initiate ρ: Set ρ(v) :=∞, ∀v ∈ V(G) // Weights of the nodes
3 Initiate τ : Set τ(v) := −1, ∀v ∈ V(G) // Tessellation
4 Initiate ζ: Set ζ(v) := ∅, ∀v ∈ V(G) // Candidate for the node
5 Initiate c: Set cm := 0, // Counter of nodes from robot m on Priority Queue
6 Initiate η: Set η(v) := ∅, ∀v ∈ V(G) // Pointer to robot neighbor. η : V(G)→ V(G)
7 Set Im := 0 // The control integral. Im,0 ∈ C
8 for each (i ∈ {1, 2, · · · , N})
9 Set g(pi) = 0
10 Set ρ(pi) = −w2

i
11 Set τ(pi) = i
12 if (i == m)
13 Set cm+ = 1
14 for each (q ∈ ηG(pi)) // For each neighbor of pi
15 Set η(q) = q
16 Set Q := V(G) // Set of un-expanded vertices
17 while (Q 6= ∅ ∧ cm > 0)
18 q := arg minq′∈Q ρ(q′) // Maintained by a heap data-structure.
19 if (g(q) ==∞)
20 break
21 Set Q = Q− q // Remove q from Q
22 Set j := τ(q)
23 Set s := η(q)
24 if (j == m)
25 Set cm− = 1
26 if (s != ∅ ∧ j == m) // Equivalently, q /∈ {pi}
27 Set Im += φ(q)× g(q)× (P(s)−P(pm))
28 Set MWm+ = φ(q)
29 for each (w ∈ ηG(q)) // For each neighbor of q
30 Set g′ := g(q) + g(q, w)
31 Set ρ′ := d∗(g′, pm, wj)
32 if (ρ′ < ρ(w))
33 Set g(w) = g′

34 Set ρ(w) = ρ′

35 Set τ(w) = j
36 if (s != ∅) // Equivalently, q /∈ {pi}
37 Set η(w) = s
38 if (ζ(w)′ == m)
39 Set cm− = 1
40 Set ζ(w) = j
41 if (j == m)
42 Set cm+ = 1
43 else if (j == m)
44 k = τ(w) // Gets robot id
45 Nm+ = k // Adds robot m to the list of neighbors of m
46 Set p′m := arg maxu∈ηG(pm) (P(u)−P(pm)) · Im // Choose action best aligned along Im.
47 return {τ , {p′m},Nm,MWm}

3.7. VORO* ALGORITHM 45

3.7.3 Order of complexity

When compared with the performance of the Dijkstra’s inspired algorithm, Voro* has also
its advantages. Bhattacharya et al. (2013) stated that the order of complexity of this
algorithm is a function of the number of vertexes and edges:

O(E(G) log(V(G))),

but given that we are in a two dimensional space, thus the maximum number of neighbors
one vertex could have is eight, we can simplify the order of complexity to:

O(8V(G) log(V(G))) = O(V(G) log(V(G))).

Since Voro* calculates only local diagrams and the order of complexity is directly
proportional to the number of the vertexes, the number of vertexes that Voro* expands
is significantly lower and thus, the Voronoi region is calculated faster. In fact, as the
number of the robots increase, the smaller will be the Voronoi regions and then, the order
of complexity of Voro* can be inversely proportional to the number of robots. As the time
of this writing, we cannot provide a mathematical proof of this complexity order, but in
the Results chapter we will show in simulation that increasing the number of robots will
decrease the computational cost.

46 CHAPTER 3. METHODOLOGY

4
Experiments and Results

47

4.1. SIMULATIONS 49

4.1 Simulations

To demonstrate the HSI application and the coverage controller, we first conducted
simulations1. Using a rectangular environment with three obstacles in the middle, the
results demonstrate the interaction between the user and robots and the convergence of
the algorithm even after modifications made by the human operator.

All agents start with kpi = 1. The white radius around the robots show their current
weight. On simulation, we have used differential drive robots, so we have used a point-offset
controller (Michael & Kumar (2009)) to address the nonholonomic constraints. To show
the convergence of the algorithm, the human agent did not interact with the group of
robots until around t = 150. Then, the human agent selects robot 1 (green) to increase
its kpi value to 3.2. Because of the adaptive weightings controller on Equation (3.14),
increasing the kpi value increases the weight of robot 1, while decreasing the weightings
of other robots, as shown in Figure 4.3. Since we use a geodesic distance as in Equation
(3.17), increasing the weight of the robot will increase its Voronoi partition V1. At t = 200,
the human agent created a Gaussian shaped density distribution function centered on the
intersection of the Voronoi partitions of robots 7 (orange), 2 (blue) and 5 (purple). This
changed the convergence and attracted more robots to that area. Figure 4.1d shows the
convergence of robots and the increased number of robots on that area, differently from
Figure 4.1c, in which the robots are more spread around. Then, the human agent creates
a flat density function, which removes the importance of the previously set area. Around
t = 300, the human agent changed the occupancy grid of the area, connecting some of
the obstacles in the area. On Figure 4.1e, we can see that because of the dynamic graph
generation present on the Motion_Algorithm, the robots could react to the changes of
the obstacles and reached another optimal distribution. Figure 4.2 shows the deployment
functional over time. Spikes present around t = 200 and t = 250 are because of changes on
the density distribution function.

1Simulation video available at https://www.youtube.com/watch?v=cpniwb6UrF8

https://www.youtube.com/watch?v=cpniwb6UrF8

50 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Distribution of robots and tessellation
at t = 0

(b) Convergence of robots to an optimal
position at t = 150

(c) Robot 1 with increased weight and a
larger Voronoi region than in Figure 4.1b

(d) Convergence showing robots attracted
by a Gaussian density function.

(e) Changes on the obstacles were
introduced but robots were able to reach a

new convergence.

Figure 4.1: Steps of the first simulation.

4.1. SIMULATIONS 51

Figure 4.2: Deployment functional over the simulation.

Figure 4.3: Weightings of the robots. Around t = 150, the human changed the gain kpi of
robot 1 (green), which changed the weightings of all robots.

In a second simulation, we have evaluated the human-robot interaction using a larger
group of robots. Apart from the number of robots, this simulation has the same parameters
as the previous one. In Figure 4.4a, we can see the initial deployment of the robots. At
t = 228s, the operator decides to interact with the robots by creating a Gaussian-shaped
density distribution function right in the center of the environment. Note that, this time,
the human interacted with the robots before the convergence, as we can see in Figure 4.4b.
In Figure 4.4c, at t = 288s, we can see that the robot swarm has adapted its coverage to

52 CHAPTER 4. EXPERIMENTS AND RESULTS

consider the density function. After that, the operator creates a flat distribution function,
chooses a robot to increase its weight and creates an obstacle. Figure 4.4d shows the final
deployment of the robots with the new obstacles and a robot with increased weight. At this
simulation, we can see that robots seem to have converged to a local minimum, because
there is a higher concentration of robots in the left bottom corner of the environment and
the density distribution is flat. In this case, the human agent could, for example, help the
robots by creating density functions that would disperse them from that region, allowing
them to overcome the local minimum. Figure 4.5 the deployment functional over time and
Figure 4.6 the weightings of the robots.

(a) Distribution of robots and tessellation
at t = 0

(b) Deployment before applying the
Gaussian density distribution function

(t = 228s).

(c) Deployment after some time after the
density function was applied (t = 288s).

(d) Final convergence after changing the
weight of a robot and introducing obstacles

(t = 380s).

Figure 4.4: Steps of the second simulation.

4.2. EXPERIMENTS 53

0 50 100 150 200 250 300 350 400 450
Time (s)

0

1000000

2000000

3000000

4000000

5000000

6000000

D
e
p
lo

y
m

e
n
t

fu
n
ct

io
n
a
l

Figure 4.5: Deployment functional over the second simulation.

0 50 100 150 200 250 300 350 400 450
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
e
ig

h
ti

n
g
s

Figure 4.6: Weightings of the robots. Around t = 350, the operator interacts with one of
the robots.

4.2 Experiments

To test the Human Swarm Interaction in a real environment, we set up experiments using
a group of e-puck2 robots (Figure 4.7). The e-puck is a small robot developed by GCtronic
for research and education purposes. Among its features, it has cameras, IR sensors and

2e-puck robot: http://www.e-puck.org/

http://www.e-puck.org/

54 CHAPTER 4. EXPERIMENTS AND RESULTS

communicates via Bluetooth connection. We used the infrastructure from VeRLab3 and J4

for the experiments. For the localization, we used Augmented Reality (AR) tags on top of
each e-puck robot, with a camera over the simulation area to track the position of each
robot. For localization using AR tags in ROS, we used ar_track_alvar5 package.

Figure 4.7: Team of e-puck robots used in the experiments.

Some changes had to be implemented to allow a smooth experiment. The e-puck robots
have been in service for 9 years already at VeRLab and they are not in their best shape,
especially regarding motors and battery. Their speed control is not accurate anymore:
for example, giving a 0.4 forward speed makes they go forward perfectly, but sending 0.5
makes them vibrate and move in a speed lower than we could see when sending 0.4, which
makes the feedback linearization controller used in the simulation unpractical, because it
assumes linearity on the control response. Thus in order to deal with that, we decided to
control the e-puck robots with a point-and-go position controller, in which the robot turns
if the angle error is above a certain error or go forward otherwise, which is a suboptimal
controlling method, but the only way that could work considering the condition of the
robots.

The experiments of this section are available in a video, which is hosted online for
3VeRLab at UFMG: http://www.verlab.dcc.ufmg.br
4J at UFMG: http://www.j.dcc.ufmg.br/
5ar_track_alvar: http://wiki.ros.org/ar_track_alvar

http://www.verlab.dcc.ufmg.br
http://www.j.dcc.ufmg.br/
http://wiki.ros.org/ar_track_alvar

4.2. EXPERIMENTS 55

Figure 4.8: User with the VR headset during the experiments.

the reader convenience: https://www.youtube.com/watch?v=tMZiT0ObciI. The colors
of the Voronoi diagram were added later through video editing, because projecting the
image over the robots during the experiment would affect the AR tag tracking.

4.2.1 First experiment

In the first experiment, robots start from the lower left corner, as in Figure 4.9a. They all
start with kpi = 1. The human agent has the same controls as they had on the simulation
results, but it let the robots converge to a optimal displacement before first interacting with
them, to show the convergence of the algorithm. At t = 135s, the human creates obstacles,
that changed the distribution of the robots. Figure 4.9b shows their displacement at that
time.

At t = 180s, the human interacts with the yellow robot, changing its gain kp to 3 and
thus changing its weight. The weight of the robots is shown in the video as the white
radius around the robot, in which the larger the circle, the greater is the value of the
weight. After a while, we can see that the yellow robot not only has a larger radius, but
also is covering a larger area than its neighbors. Also, because of the adaptive weight
controller, the robots around the yellow robot lose weight. In Figure 4.9e, we can see
the weights of each robot and how they changed after the human robot affected them.
Around t = 240s, the human creates a Gaussian shaped density distribution function in a
position centered at the map. Upon the creation of the function, a larger concentration of
robots is expected in the region, which happens, but since the yellow robot has a larger
weight, it dominates that region, which can be seen at Figure 4.9e. Figure 4.10 shows
the H functional value over the experiment. Spikes were caused by the interaction with
obstacles and the modification of the density distribution function.

https://www.youtube.com/watch?v=tMZiT0ObciI

56 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Initial robot distribution, at t = 0s
(b) Convergence of robots to an optimal

position at t = 135s

(c) Human created obstacles that changed
the distribution.

(d) Human removed the obstacle recently
created, changing the tessellations.

(e) Distribution of the robots around the
Gaussian shaped density function placed
around the center of the area, at t = 270s

Figure 4.9: Key steps at the first e-puck experiment.

4.2. EXPERIMENTS 57

0 50 100 150 200 250 300 350 400
Time (s)

0.0

0.2

0.4

0.6

0.8

1.01e7

D
e
p
lo

y
m

e
n
t

Fu
n
ct

io
n
a
l

Figure 4.10: Deployment functional over the simulation.

0 50 100 150 200 250 300 350 400
Time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

W
e
ig

h
t

Figure 4.11: Weightings of the robots. Around t = 150, the human changed the gain kpi of
robot 1 (green), which changed the weights of all robots.

4.2.2 Second experiment

In a second experiment, we set up four robots, in the same conditions of the last experiment,
but just with a different map and another sequence of interactions. Robots start from
the lower left corner, as in Figure 4.12a. On t = 115s, they reach convergence, as in
Figure 4.12b, then the human agent starts erasing an obstacle from the environment,
concluding it at t = 180s, with final map shown in Figure 4.12c. Then the human creates

58 CHAPTER 4. EXPERIMENTS AND RESULTS

a Gaussian shaped density distribution function in the center of the image, and thus the
robots converge around t = 210s, displayed in Figure 4.12d. Then the human agent creates
another Gaussian shaped density distribution function, but in the left side of the image,
reaching convergence around t = 255s as in Figure 4.12e. Thus, the human creates a flat
distribution function, in which the robots converge around t = 285s as in Figure 4.12f.
At the end, the human also changes the weight of the blue robot, and the divergence of
weights can be seen on Figure 4.14

Figure 4.13 shows the H functional value over the experiment. This graph has a very
different shape from the exponential form that we are used to see in these results. In fact,
this shape happened because right at the beginning of the experiment the system suffered
from localization errors, as we can see in the video. Positioning errors greatly affects the
value of H. Moreover, at the end of the experiment, we can see that the robots reduced
their overall H functional value, thus showing that they have reached a better convergence.
Spikes were caused by the changes in the density distribution. The higher steady value for
H at the end of the experiment is because of the flat distribution created.

4.2. EXPERIMENTS 59

(a) Initial robot distribution, at t = 0s (b) Convergence of robots to an optimal
position at t = 115s

(c) Human removed an obstacle from the
environment.

(d) Robots converge to a Gaussian shaped
density distribution in the center of the

area at t = 210s.

(e) Robots converge to a Gaussian shaped
density distribution in the left side of the

area at t = 255s.

(f) Robot convergence to a flat density
distribution at t = 285s

Figure 4.12: Key steps at the second e-puck experiment.

60 CHAPTER 4. EXPERIMENTS AND RESULTS

0 50 100 150 200 250 300 350 400
Time (s)

0

500000

1000000

1500000

2000000

2500000

D
e
p
lo

y
m

e
n
t

Fu
n
ct

io
n
a
l

Figure 4.13: Deployment functional over the experiment.

0 50 100 150 200 250 300 350 400
Time (s)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

W
e
ig

h
t

Figure 4.14: Weightings of the robots. At the end of the experiment, the human agent
changed the weight of one of the robots.

4.3 Voro* simulations

In order to test the proposed algorithm, a new simulation setup was built. In order
to compare the algorithms fairly and remove external interactions, the human robot
interaction part was removed from this setup. First, we will show general aspects of the
Voro* algorithm in a simulation, and an example of a full convergence and the diagrams

4.3. VORO* SIMULATIONS 61

seen from different robots. Secondly, we will test the Voro* algorithm with different
number of robot groups to show that its order of complexity reduces when the number of
robots increases. And lastly, we will compare it to the Dijkstra’s-inspired algorithm.

4.3.1 Voro* behavior

Since Voro* calculates only local diagrams, the tessellations are seen differently for each
robot. For exemplification of the behavior of the algorithm, we set up a simulation run
using 20 robots, in a 80 × 80 graph and we will analyze the evolution of the algorithm
over time from different robots. We have also produced a video of this simulation:
https://www.youtube.com/watch?v=8lD5Qx13bWY.

As on the HSI simulations, we setup a simulation in which robots started from the
left bottom corner. All robots have the same weight. The density distribution function
is flat and equal to 1. In Figure 4.17, we can see the Voronoi diagrams built for robot 0,
which has a red region. Throughout the simulation, the robot does not change much of
its position, staying in the left bottom corner of the region for the whole simulation. We
can see that it has only calculated a local diagram, which corresponds to a very small
fraction of the whole graph. At the border of the Voronoi region, we can see some dark
points, which indicate that the node has not been expanded. This happened because the
red robot was a candidate for the node but it lost for another robot. When the robot
loses the candidacy for a node, the counter of nodes in the priority queue reduces, and
thus the counter might reach zero without the node expanding. However, as we discussed
in Section 3.7.1 and we will show in simulations in the following sections, the Voronoi
diagram generated for the red robot would be the same as generated by the algorithm by
Bhattacharya et al. (2013).

Robot 2, in blue (Figure 4.18), had an interesting behavior. Differently from the red
robot, robot 2 changed its position quite a lot, finishing the distribution with totally
different neighbors from what it started. This is an interesting result because it shows
that Voro* does not make any assumptions on which robots would be the neighbors of the
given robots before calculating the tessellations.

Robot 10, in light green in Figure 4.19 started calculating almost the entire region.
This is due to the fact that its Voronoi region expanded to one of the borders of the region,
and thus allowing nodes with high cost values on the graph to be expanded. However,
as the deployment converges to an optimal displacement, the area of expanded nodes
drastically decreases. As a comparison, the iteration at t = 0 took 2.149s to calculate, but
the last image, at t = 441s took 0.176s, improving speed by 12 times.

As we mentioned iteration times, it’s also worth analyzing the iteration times throughout
the simulation for each robot. Figure 4.15 shows iteration times during the simulation
for all robots. We can see that some robots had an iteration time of around 2.5s in

https://www.youtube.com/watch?v=8lD5Qx13bWY

62 CHAPTER 4. EXPERIMENTS AND RESULTS

the beginning, and all iteration times converged to a value around 0.2s after 350s. This
convergence is due the fact that when the robots converge to an optimal deployment in a
region that all robots have the same weight and the density distribution function is flat,
robots tend to have Voronoi regions of similar sizes. Figure 4.16 shows the deployment
functional value over time. We can clearly see that the robots asymptotically converged to
a local minimum of the deployment functional.

0 100 200 300 400 500
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.15: Iteration times of each robot on the simulation with 20 robots.

0 100 200 300 400 500 600
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 1e7

D
e
p
lo

y
m

e
n
t

f u
n
ct

io
n
a
l

Figure 4.16: Deployment functional over time.

4.3. VORO* SIMULATIONS 63

(a) t = 0s (b) t = 156s

(c) t = 238s (d) t = 442s

Figure 4.17: Voronoi region calculated using Voro*, as seen from robot 1 (red)

(a) t = 0s (b) t = 135s

(c) t = 324s (d) t = 438s

Figure 4.18: Voronoi region calculated using Voro*, as seen from robot 2 (blue)

64 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) t = 0s (b) t = 187s

(c) t = 259s (d) t = 441s

Figure 4.19: Voronoi region calculated using Voro*, as seen from robot 10 (light green)

As we mentioned before, all iteration times converged to a similar value because the
density distribution was flat and all robots had the same weight. In a second experiment,
we will show the behavior of the algorithm when we have heterogeneous robots and a
Gaussian density distribution function.

On the second simulation, we setup 20 robots in the same map as used before. The
graph used had 80× 80 cells. However, robots 10 (light green), 15 (aqua) and 18 (teal) had
weights equal to 2.5. All the other robots had w = 1. At around t = 585s, we have created
a Gaussian shaped density distribution function centered in the middle of the region Ω.

We will discuss the results from the same robots that we have used in the previous
experiment. Robot 0 (red, Figure 4.22), starts from the left bottom corner. As before, it
does not change much of its position. When the operator creates the Gaussian shaped
density distribution function, it attracts the robots to the center, and we see that the
area of the robot increases, because the areas in the edges of the region now have a lower
importance.

Robot 2 (blue, Figure 4.23) also has an interesting result. We can see that its tessellation
started all black. It happened because it started next to a robot that had a larger weight
than its, so this robot took all the nodes surrounding this robot. To cover this situation,
we have programmed that the robot should move to the surrounding node with largest
weight, making the robot go to the edge of the Voronoi region, where it can have a better
chance of having its own Voronoi region. At t = 51s, robot 2 has its own region because
both robots have moved away from one another sufficiently. At t = 539s we can see that

4.3. VORO* SIMULATIONS 65

robots have converged, and so did robot 2. At t = 936s, we have another Voronoi diagram,
which shows robot 2 has a larger area, due to the concentration of robots in the middle.

Robot 10 (light green, Figure 4.24) is one of the robots chosen to have a larger weight.
We can see that in convergence (t = 550s) it has a region a bit larger than the other robots.
His neighbors (left and right side) are the other two robots also chosen to have a larger
weight. When the Gaussian shaped density distribution function is created, this robot
goes to the center of it, along with the other robots. We can clearly see that the region of
robot 10 is smaller than some other robots that are not close to the center. This happened
because robot 10 region is more important now, and thus more robots will be attracted
by this region, so Voronoi regions tend to be smaller around there. However, we can see
that its region is bigger than other robots in similar positions that do not have the same
weight, as the red and light blue robots that are around.

When analyzing the iteration times in Figure 4.20, we can see that they converged, as
in the first experiment, but after creating the density distribution (in t = 585s), we can
see that iteration times start to diverge. Because of the density function, there is a wider
variety of Voronoi region sizes, because robots close to the center of the density distribution
function will have a smaller region. Figure 4.21 shows the deployment functional during
the simulation.

0 200 400 600 800 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.20: Iteration times of each robot on the simulation with 20 robots varying the
density function.

66 CHAPTER 4. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000
Time (s)

0

1

2

3

4

5

6

7

8

9 1e7

D
e
p
lo

y
m

e
n
t

Fu
n
ct

io
n
a
l

Figure 4.21: Deployment functional over time.

(a) t = 0s (b) t = 477s

(c) t = 657s (d) t = 928s

Figure 4.22: Voronoi region calculated using Voro* in a experiment in which we have
changed the density distribution, as seen from robot 0 (red)

4.3. VORO* SIMULATIONS 67

(a) t = 0s (b) t = 147s

(c) t = 539s (d) t = 936s

Figure 4.23: Voronoi region calculated using Voro*, in a experiment in which we have
changed the density distribution, as seen from robot 2 (blue)

68 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) t = 0s (b) t = 147s

(c) t = 550s (d) t = 928s

Figure 4.24: Voronoi region calculated using Voro* in a experiment in which we have
changed the density distribution, as seen from robot 10 (light green)

4.3.2 Voro* in different number of robot groups

For this setup, we used again the Stage simulator as our simulation environment. We
tested with 5 different groups of robots: 8, 12, 16, 20 and 24 robots. Although a even
larger number of robots would be preferable, it was not possible to simulate more robots
in the same computer, because with 24 robots the computer used in the simulation already
reaches maximum processing power and adding more robots would artificially increase the
iteration time. However, this number of robots is sufficient for showing the tendency of
inversely proportional cost of the algorithm with more robots.

In the first simulation, we used the same cavern-like map used in previous experiments.
We ran the simulation for around 500 seconds and two metrics were measured: the average
iteration time of the Voro* algorithm throughout the whole simulation and the average
time after convergence. Figure 4.25 shows the iteration time for each robot. We can
see that as the robots approach convergence of the distribution, their iteration times
also converge. This is due to the fact that at the beginning, there is a big difference in
Voronoi diagram sizes, due to the fact that they start from a corner, but as they evenly
distribute the region among themselves, the size of the diagrams is comparable. As we
have briefly shown in Equation (3.7.3), the order of the complexity of Voro* is proportional
to the number of vertexes, and thus, the size of the expanded nodes of the graph. Since
Voro* expands the nodes in a biased fashion, the number of nodes is not only smaller,

4.3. VORO* SIMULATIONS 69

but proportional to the size of the Voronoi diagram of the current robot. The following
figures show the iteration times for different group sizes. Figure 4.30 shows the average
Voro* iteration times after convergence and 4.31 the average Voro* iteration times after
convergence. We can see that as we increase the number of robots, the average times
decrease. However, we can see that the values are tending to a stabilization. This is due
to the fact that although the algorithm was running in a decentralized fashion, all robot
instances were running in the same computer. Also, there is an initialization cost which
was not taken into account, which has a cost proportional to the amount of robots that a
given robot can communicate in the moment.

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.25: Iteration times of each robot on the simulation with 8 robots.

70 CHAPTER 4. EXPERIMENTS AND RESULTS

0 100 200 300 400 500
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.26: Iteration times of each robot on the simulation with 12 robots.

0 100 200 300 400 500
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.27: Iteration times of each robot on the simulation with 16 robots.

4.3. VORO* SIMULATIONS 71

0 100 200 300 400 500
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.28: Iteration times of each robot on the simulation with 20 robots.

0 100 200 300 400 500
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

It
e
ra

t i
o
n
 t

im
e
 (

s)

Figure 4.29: Iteration times of each robot on the simulation with 24 robots.

72 CHAPTER 4. EXPERIMENTS AND RESULTS

8 10 12 14 16 18 20 22 24
Number of robots

0.20

0.25

0.30

0.35

0.40

0.45

Ite
ra

tio
n

tim
e

(s
)

Average iteration time

Figure 4.30: Average iteration time for the Voro* in different numbers of robot groups.

8 10 12 14 16 18 20 22 24
Number of robots

0.15

0.20

0.25

0.30

0.35

Ite
ra

tio
n

tim
e

(s
)

Average iteration time after convergence

Figure 4.31: Average iteration time for Voro* after convergence in different numbers of
robot groups.

4.3.3 Voro* compared with Dijkstra’s-based algorithm

In this part, we will compare the performance of the Voro* algorithm with the Dijkstra’s
based algorithm from Bhattacharya et al. (2013) in different situations and show that the
time for calculating the tessellations is smaller in Voro* and the tessellation diagrams are
the same, as mathematically shown in Equation (3.7.3).

4.3. VORO* SIMULATIONS 73

We have setup a simulation environment with 20 robots and w = 1 for all robots.
However, to make the iteration times longer and allow a better comparison, we have used
a 800× 800 graph. Then, we setup the robot swarm in three different positions and ran the
algorithm in the exact same positions for the Dijkstra’s-based algorithm and for 3 instances
of Voro*. Figure 4.32 shows the comparison. It’s worth noticing that in Voro* the nodes
on the graph expanded in the direction of the robots, but the formed Voronoi diagram is
the same, showing empirically what we have presented in Section 3.7.1 holds. Figure 4.32a
shows the diagrams of the Dijkstra’s-based algorithm, that took 86.89s to finish. Robot 0
(red) has a much smaller region and finished in 2.94s. Robot 2 (blue) took 6.08s to finish
its iteration. Robot 3 (yellow) region is the perfect example of the worst-case scenario
in Voro*. Because of the length of its Voronoi region, it had to calculate all the other
Voronoi regions. Its iteration took longer than the Dijkstra’s-based algorithm, running for
136.79s. This longer time is due to the extra comparisons that the Voro* has to do every
iteration and also because Voro* ends up inserting more nodes in the priority queue that
end up unused. As our priority queue is arranged as a heap, insertions have a O(log(N))
complexity, where N is the size of the priority queue, thus, in a big graph as this one, Voro*
does worse than the previous algorithm. Figure 4.32d has robot 3 tessellations, that show
that the diagrams of all robots are exactly the same found in Figure 4.32a, also showing
that the introduction of the heuristic function does not distorts the Voronoi diagrams.

74 CHAPTER 4. EXPERIMENTS AND RESULTS

(a) Dijkstra’s-based algorithm (b) Voro* on robot 0

(c) Voro* on robot 2 (d) Voro* on robot 3

Figure 4.32: Comparison of the tessellations generated with Voro* when all robots are in
the same corner.

Then, we setup the robots in a different deployment, close from which they would
reach an optimal configuration. Figure 4.33 compare the tessellations as calculated from
the algorithm from Bhattacharya et al. (2013) and Voro* as seen from the same robots as
we used before. Again, it’s worth noticing that the Voronoi diagrams are exactly the same
when we compare them in Figure 4.33a. The algorithm in Bhattacharya et al. (2013) took
86.26s to finish, which is very close to the one found in the previous example. Robot 0
took 25.96s, robot 2 21.25s and robot 3 took 20.55s.

4.3. VORO* SIMULATIONS 75

(a) Dijkstra’s-based algorithm (b) Voro* on robot 0

(c) Voro* on robot 2 (d) Voro* on robot 3

Figure 4.33: Comparison of the tessellations generated with Voro* when all robots are
close to convergence.

Thus, we can see that Voro* is more efficient when considering a decentralized strategy,
in which each robot would need to calculate their control law by themselves, instead of a
central computation.

76 CHAPTER 4. EXPERIMENTS AND RESULTS

5
Conclusions and Future Work

77

79

In this work, we have explored human-swarm interfaces and proposed one for interfacing
with a group of robots in a coverage control abstraction. The abstraction using coverage
control is interesting because it allowed operators to dramatically influence the positioning
and behavior of the robotic swarm using just a few parameters. We used as an interface a
Virtual Reality headset, which enabled operators to have a deep and intuitive experience
while interacting with the robots. Virtual Reality also allows some commands that are
much more immersible than joysticks, tablets, haptic interfaces and some other interfaces
used in previous works in the field of Human-Swarm Interaction. The operators could
interact with the swarm by different actions, like creating functions that could attract
more robots to a specific position, interacting with the obstacles by adding or removing
them, move around freely using a teleportation and fly-over feature or selecting specific
robots to increase their coverage weight. Simulations and experiments with real robots
proved the strategy and allowed the human agents to freely interact with the robots. We
could show that interacting with a group of robots in VR can be beneficial because it gives
a very deep level of immersion, but at the same time keeping the human physically isolated,
which could be applied for example for teleoperating a swarm of robots in hazardous
environments or simply too far away from the human operator. Also, it’s worth mentioning
that since we’ve used common libraries and abstraction layers, like Unity and VRTK, and
made it available online on GitHub, one could easily adapt the current software to work
with any other VR headset other than Oculus Rift. Also, other contributions of this work
are the open software Oculus Rift driver for ROS. A disadvantage of VR is that it requires
a high and steady throughput of data to render the information in the headset for the
user.

The control law used for the robots to improve the distribution allowed them to
converge to optimal displacements, as we have seen on the Results chapter, however it
must be noted that a gradient-descent optimization is used, and thus, the deployment is
faded to converge to a local minimum. The possibility of this happening is very related to
the topology of the environment. One of the future works could investigate for example
the possibility of using a sampling based control law that could help the swarm converging
to a global minimum.

Although we have done experiments, it’s worth noticing that the methods for acquiring
the position of the robots and the map are not practical in a real world product application.
To apply the developed algorithm in such conditions, another source of position is required.
If the robots are outdoors, we could use GPS. If indoors, we could have a localization
method based on mapping, as Monte Carlo Localization (Fox et al. (2001)). The map could
be acquired before running the algorithm using SLAM (Ayache & Faugeras (1988)) or even
be constructed during the execution of the coverage control algorithm, using multi-robot
SLAM techniques, as developed in recent works such as Atanasov et al. (2015).

Later on, we have shown the Voro* algorithm, that calculates Voronoi diagrams locally

80 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

and in some conditions greatly improves algorithms previously proposed that uses Dijkstra’s
inspired algorithms for graph search to build the Voronoi tessellations (Bhattacharya et al.
(2013)).

In the same way we have expanded a Dijkstra’s-based algorithm to an A*-based
algorithm. We believe that applying sampling-based algorithms for path-planning, like
RRT*, for calculating Voronoi tessellations could be possible as well. This could enable
faster calculations for the diagrams. Sampling-based algorithms could also help to search
for the global minimum of the deployment functional. This also can be an interesting
future work that needs some deeper investigation.

It may also seem curious for the reader why the Voro* was not used in the HSI
simulations and experiments. There are some reasons for it. First, and most relevant, to
generate the image that the operator sees in VR, we need to compute all the regions from
all robots, thus the Dijkstra’s-based Voronoi algorithm is necessary. Another reason is
that Voro* only makes difference when the group of robots has a substantial amount of
robots. Because of hardware limitations, we have only ran experiments with 4 robots,
which would make the results from Voro* identical to the former algorithm.

Another point of the Voro* algorithm is that although we claim that it is faster than
previous algorithms, and we discuss about the iteration time during steady time, this
metric is irrelevant in some cases. Depending on the task of the robots, after converging
the algorithm could be aborted. However, in some cases that the algorithm needs to be
running even after convergence, for example when the density function or obstacles can
vary throughout time and the robots need to react to it, Voro* can be superior to the
previous algorithms.

Some previous works in HSI have also involved different human operators and analyzed
their reaction with the interface and delivered metrics about it. A statistical analysis of
our interface with many different operators could also be an interesting future work.

Bibliography

Atanasov, N., Ny, J. L., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active
information acquisition: Theory and application to multi-robot SLAM. 2015 IEEE
International Conference on Robotics and Automation (ICRA), (pp. 4775–4782).

Aurenhammer, F. (1991). Voronoi diagrams - a survey of fundamental geometric data
structure. ACM Computing Surveys, 23, 345–405.

Ayache, N. & Faugeras, O. D. (1988). Building, Registrating, and Fusing Noisy Visual
Maps. Int. J. Rob. Res., 7(6), 45–65.

Becker, A., Ertel, C., & McLurkin, J. (2014). Crowdsourcing swarm manipulation
experiments: A massive online user study with large swarms of simple robots. 2014
IEEE International Conference on Robotics and Automation (ICRA), (pp. 2825–2830).

Bhattacharya, S., Ghrist, R., & Kumar, V. (2013). Multi-robot coverage and exploration
on Riemannian manifolds with boundaries. Int. J. Rob. Res., 33(1), 113–137.

Bischoff, M. (2018). ROS#. https://github.com/siemens/ros-sharp. [Online; accessed
22. Apr. 2018].

Breitenmoser, A., Schwager, M., Metzger, J. C., Siegwart, R., & Rus, D. (2010). Voronoi
coverage of non-convex environments with a group of networked robots. 2010 IEEE
International Conference on Robotics and Automation, (pp. 4982–4989).

Cameron, J. (1985). The Terminator.

CBS Insights (2018). 44 corporations working on au-
tonomous vehicles. https://www.cbinsights.com/research/
autonomous-driverless-vehicles-corporations-list. [Online; accessed 22.
Apr. 2018].

Choi, W. S., Kwon, H. S., Park, W. K., Park, J. H., Lee, S. B., & Heo, S. Y. (2018). Effects
of robot-mediated gait training combined with virtual reality system. 2018 International
Conference on Electronics, Information, and Communication (ICEIC), (pp. 1–2).

81

https://github.com/siemens/ros-sharp
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list

82 BIBLIOGRAPHY

CNN (2014). MIT unveils swimming, oil-cleaning robots. http://edition.cnn.com/
2010/TECH/innovation/08/26/mit.oil.robot/index.html. [Online; accessed 22.
Apr. 2018].

Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2004). Coverage control for mobile
sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.

Debernard, S., Chauvin, C., Pokam, R., & Langlois, S. (2016). Designing human-machine
interface for autonomous vehicles. IFAC-PapersOnLine, 49, 609–614.

Diaz-Mercado, Y., Lee, S. G., & Egerstedt, M. (2015). Distributed dynamic density
coverage for human-swarm interactions. 2015 American Control Conference (ACC), (pp.
353–358).

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer. Math.,
1(1), 269–271.

Du, J., Sheng, W., & Liu, M. (2016). Human-guided robot 3D mapping using virtual
reality technology. 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), (pp. 4624–4629).

El-Shawa, S., Kraemer, N., Sheikholeslami, S., Mead, R., & Croft, E. A. (2017). “Is this
the real life? Is this just fantasy?”: Human proxemic preferences for recognizing robot
gestures in physical reality and virtual reality. 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (pp. 341–348).

Fox, D., Thrun, S., Burgard, W., & Dellaert, F. (2001). Particle Filters for Mobile Robot
Localization. SpringerLink, (pp. 401–428).

Gioioso, G., Franchi, A., Salvietti, G., Scheggi, S., & Prattichizzo, D. (2014). The
flying hand: A formation of UAVs for cooperative aerial tele-manipulation. 2014 IEEE
International Conference on Robotics and Automation (ICRA), (pp. 4335–4341).

Guerin, K. R., Riedel, S. D., Bohren, J., & Hager, G. D. (2014). Adjutant: A framework for
flexible human-machine collaborative systems. 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, (pp. 1392–1399).

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Hausknecht, M., Au, T.-C., & Stone, P. (2011). Autonomous intersection management:
Multi-intersection optimization. IEEE International Conference on Intelligent Robots
and Systems, (pp. 4581–4586).

http://edition.cnn.com/2010/TECH/innovation/08/26/mit.oil.robot/index.html
http://edition.cnn.com/2010/TECH/innovation/08/26/mit.oil.robot/index.html

BIBLIOGRAPHY 83

Hönig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., & Ayanian, N. (2015). Mixed
reality for robotics. 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), (pp. 5382–5387).

IEEE Spectrum (2004a). Can the U.S. Military Combat the Coming Swarm
of Weaponized Drones? https://spectrum.ieee.org/tech-talk/aerospace/
military/us-military-evaluates-antidrone-tech. Online; accessed 22. Apr. 2018.

IEEE Spectrum (2004b). Debating slaughterbots and the future of autonomous
weapons. https://spectrum.ieee.org/automaton/robotics/military-robots/
debating-slaughterbots. Online; accessed: 22 Apr. 2018.

IEEE Spectrum (2014). U.S. Navy Tests Robot Boat Swarm to Overwhelm
Enemies. https://spectrum.ieee.org/automaton/robotics/military-robots/
us-navy-robot-boat-swarm. [Online; accessed 22. Apr. 2018].

Jann, M., Anavatti, S., & Biswas, S. (2017). Path planning for multi-vehicle autonomous
swarms in dynamic environment. (pp. 48–53).

Kamon, I., Rimon, E., & Rivlin, E. (1998). TangentBug: A Range-Sensor-Based Navigation
Algorithm. Int. J. Rob. Res., 17(9), 934–953.

Kantaros, Y., Thanou, M., & Tzes, A. (2014). Visibility-oriented coverage control of
mobile robotic networks on non-convex regions. 2014 IEEE International Conference
on Robotics and Automation (ICRA), (pp. 1126–1131).

Klamroth-Marganska, V., Baur, K., Nagle, A., Riener, R., & Toigo, M. (2017). Strength
training of the upper extremity in virtual reality with an exoskeleton robot. 2017
International Conference on Virtual Rehabilitation (ICVR), (pp. 1–6).

Kolling, A., Sycara, K., Nunnally, S., & Lewis, M. (2013). Human Swarm Interaction: An
Experimental Study of Two Types of Interaction with Foraging Swarms. Journal of
Human-Robot Interaction, 2(2), 103–128.

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human
Interaction With Robot Swarms: A Survey. IEEE Trans. Hum.-Mach. Syst., 46(1),
9–26.

Kun, A. L. (2018). Human-Machine Interaction for Vehicles: Review and Outlook. HCI,
11(4), 201–293.

Lee, D., Franchi, A., Giordano, P. R., Son, H. I., & Bülthoff, H. H. (2011). Haptic
teleoperation of multiple unmanned aerial vehicles over the internet. 2011 IEEE
International Conference on Robotics and Automation, (pp. 1341–1347).

https://spectrum.ieee.org/tech-talk/aerospace/military/us-military-evaluates-antidrone-tech
https://spectrum.ieee.org/tech-talk/aerospace/military/us-military-evaluates-antidrone-tech
https://spectrum.ieee.org/automaton/robotics/military-robots/debating-slaughterbots
https://spectrum.ieee.org/automaton/robotics/military-robots/debating-slaughterbots
https://spectrum.ieee.org/automaton/robotics/military-robots/us-navy-robot-boat-swarm
https://spectrum.ieee.org/automaton/robotics/military-robots/us-navy-robot-boat-swarm

84 BIBLIOGRAPHY

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2),
129–137.

Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). Uav-based crop
and weed classification for smart farming.

Michael, N. & Kumar, V. (2009). Planning and Control of Ensembles of Robots with
Non-holonomic Constraints. Int. J. Rob. Res., 28(8), 962–975.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.-C., Floreano, D., & Martinoli, A. (2009). The e-puck, a Robot Designed
for Education in Engineering. Proceedings of the 9th Conference on Autonomous Robot
Systems and Competitions, 1(1), 59–65.

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W., Floreano, D., Deneubourg, J.-L.,
Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). Swarm-Bot: A New Distributed
Robotic Concept. Autonomous Robots, 17(2), 193–221.

Nigolian, V., Mutlu, M., Hauser, S., Bernardino, A., & Ijspeert, A. (2017). Self-
reconfigurable modular robot interface using virtual reality: Arrangement of furniture
made out of roombots modules. 2017 26th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), (pp. 772–778).

Nunnally, S., Walker, P., Chakraborty, N., Lewis, M., & Sycara, K. (2013). Using Coverage
for Measuring the Effect of Haptic Feedback in Human Robotic Swarm Interaction.
2013 IEEE International Conference on Systems, Man, and Cybernetics, (pp. 516–521).

Pierson, A., Figueiredo, L. C., Pimenta, L. C., & Schwager, M. (2017). Adapting to sensing
and actuation variations in multi-robot coverage. Int. J. Rob. Res., 36(3), 337–354.

Pierson, A., Figueiredo, L. C., Pimenta, L. C. A., & Schwager, M. (2015). Adapting to
performance variations in multi-robot coverage. 2015 IEEE International Conference
on Robotics and Automation (ICRA), (pp. 415–420).

Pimenta, L. C. A., Kumar, V., Mesquita, R. C., & Pereira, G. A. S. (2008). Sensing and
coverage for a network of heterogeneous robots. 2008 47th IEEE Conference on Decision
and Control, (pp. 3947–3952).

Proyas, A. (2004). I, Robot. 20th Century Fox.

Rezeck, P. A. F., Azpurua, H., & Chaimowicz, L. (2017). HeRo: An open platform for
robotics research and education. 2017 Latin American Robotics Symposium (LARS)
and 2017 Brazilian Symposium on Robotics (SBR), (pp. 1–6).

BIBLIOGRAPHY 85

Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot
system for collective behaviors. 2012 IEEE International Conference on Robotics and
Automation, (pp. 3293–3298).

Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a
thousand-robot swarm. Science, 345(6198), 795–799.

Ruckelshausen, A., Biber, P., Dorna, M., Gremmes, H., Klose, R., Linz, A., Rahe, R.,
Resch, R., Thiel, M., Trautz, D., & Weiss, U. (2009). Bonirob: An autonomous field
robot platform for individual plant phenotyping. Precision Agriculture, 9, 841–847.

SEI Insights (2004). Army robotics in the military. https://insights.sei.cmu.edu/
sei_blog/2017/06/army-robotics-in-the-military.html. Online; accessed: 22
Apr. 2018.

Setter, T., Kawashima, H., & Egerstedt, M. (2015). Team-level properties for haptic
human-swarm interactions. 2015 American Control Conference (ACC), (pp. 453–458).

Sharon, G., Albert, M., Rambha, T., Boyles, S., & Stone, P. (2018). Traffic optimization
for a mixture of self-interested and compliant agents. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI-18).

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., & Ijspeert, A. J. (2014). Roombots:
A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous
modular robot. Rob. Auton. Syst., 62(7), 1016–1033.

Tan, Y. & Zheng, Z.-y. (2013). Research Advance in Swarm Robotics. Defence Technology,
9(1), 18–39.

Wachowski, L. & Wachowski, L. (1999). The Matrix.

Yamaguchi, S. P., Karolonek, F., Emaru, T., Kobayashi, Y., & Uhl, T. (2017). Autonomous
position control of multi-unmanned aerial vehicle network designed for long range wireless
data transmission. 2017 IEEE/SICE International Symposium on System Integration
(SII), (pp. 127–132).

https://insights.sei.cmu.edu/sei_blog/2017/06/army-robotics-in-the-military.html
https://insights.sei.cmu.edu/sei_blog/2017/06/army-robotics-in-the-military.html

	Contents
	List of Figures
	Acronyms
	Notation
	Introduction
	Multi-robot coverage control problem
	Human-Swarm Interaction
	Objective and Contributions

	State of the Art
	Human-Swarm Interaction
	Multi-robot coverage control problem
	Virtual Reality
	State of the art conclusions

	Methodology
	Problem definition
	Voronoi diagram
	Geodesic distance
	Multi-robot coverage in convex environments
	Robot Model
	Control Law and Actuation Variation
	Estimating i
	Non-convex environments adaptations

	Discrete implementation for non-convex environments
	Graph generation
	Robots and control law

	Virtual Reality environment development
	Unity
	ROS-C# Bridge
	Features implemented on VR application
	Real world implementation

	Voro* algorithm
	Redefining the cost function d
	Changes to original Dijkstra's based algorithm
	Order of complexity

	Experiments and Results
	Simulations
	Experiments
	First experiment
	Second experiment

	Voro* simulations
	Voro* behavior
	Voro* in different number of robot groups
	Voro* compared with Dijkstra's-based algorithm

	Conclusions and Future Work
	Bibliography

