UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM CONSTRUÇÃO CIVIL

ANÁLISE COMPARATIVA ENTRE A MODELAGEM COMPUTACIONAL E O MODELO SEMI-AUTOMATIZADO PARA CÁLCULO DE EDIFÍCIO DE MÚLTIPLOS ANDARES

Autor: Simão Resende Benedetti Orientador: Prof. PhD. José Márcio Fonseca Calixto

> Belo Horizonte Abril/2019

Simão Resende Benedetti

"ANÁLISE COMPARATIVA ENTRE A MODELAGEM COMPUTACIONAL E O MODELO SEMI-AUTOMATIZADO PARA CÁLCULO DE EDIFÍCIO DE MÚLTIPLOS ANDARES"

Dissertação apresentada a Escola de Engenharia da Universidade Federal de Minas Gerais como parte dos requisitos para obtenção do título de Mestre em Construção Civil. Área de concentração: Materiais de Construção Civil. Linha de pesquisa: Materiais Cimentícios.

Orientador: Prof. PhD. José Márcio Fonseca Calixto

Belo Horizonte Escola de Engenharia da UFMG 2019

SIMÃO RESENDE BENEDETTI

"ANÁLISE COMPARATIVA ENTRE A MODELAGEM COMPUTACIONAL E O MODELO SEMI-AUTOMATIZADO PARA CÁLCULO DE EDIFÍCIO DE ANDARES MÚLTIPLOS"

Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Construção Civil e aprovada em sua forma final pelo Mestrado em Construção Civil do Departamento de Engenharia de Materiais e Construção da Escola de Engenharia da Universidade Federal de Minas Gerais.

Belo Horizonte, 30 de abril de 2019

BANCA EXAMINADORA

Prof. Dr. José Marcio Fonseca Calixto Orientador UFMG Profa. Dra Gláucia Nolasco de Almeida PUC/MG

Prof. Dr. Sebastião Salvador Real Pereira UFMG

Dedico este trabalho à minha amada esposa Alice.

AGRADECIMENTOS

Agradeço ao Professor José Márcio Fonseca Calixto, pela enorme compreensão, apoio e confiança depositada durante a elaboração deste trabalho;

Ao eterno Professor, padrinho e amigo Estêvão Bicalho Pinto Rodrigues, pela paciência e confiança, pelos excelentes conselhos e ensinamentos ao longo de tantos anos;

Aos amigos e colegas da E. Bicalho, especialmente ao Marcelo, pelo apoio, além da tolerância com minha ausência;

Aos professores do Departamento de Engenharia de Estruturas (DEES) Elizabeth Vieira Maia e Sebastião Salvador Real Pereira por participarem da banca examinadora do projeto e por suas importantes sugestões para estudo e melhorias no texto;

Aos professores do Departamento de Engenharia de Materiais e Construção (DEMC), especialmente, Adriana Gumieri, Adriano Silva, Maria Teresa Aguilar e Paula Bamberg, pela contribuição à minha formação como engenheiro durante os cursos de graduação e mestrado;

Aos professores do Departamento de Engenharia de Estruturas (DEES), especialmente, Ana Lydia Silva, Antônio Carlos Rabelo, Armando Lavall, Élvio Piancastelli, Felício Bruzzi, Gilson Queiroz, Jacqueline Flor, Marcelo Greco, Márcio Dario da Silva, Ney Amorim Silva, Roberto Márcio da Silva, Ronaldo Azevedo Chaves e Roque Pitangueira pela contribuição à minha formação como engenheiro durante os cursos de graduação e especialização em estruturas;

Aos meus pais e meu irmão por todo o amor e carinho;

A Deus por estar comigo em todos os momentos.

RESUMO

Concreto armado é o material composto pela inserção de barras de aço no interior do concreto de modo a garantirem a resistência aos esforços de tração e compressão. O avanço na tecnologia do concreto possibilitando a utilização de elementos mais resistentes e, principalmente, o desenvolvimento de softwares de modelagem computacional conduziram a novas formas de elaborar projetos estruturais. Neste trabalho foi feita uma análise comparativa entre um projeto estrutural realizado em 1989 com o elaborado na atualidade. Para isso, foram levantados os dados de um edifício comercial composto de 2 pavimentos de garagem e lojas, 1 pavimento pilotis, 11 pavimentos tipo, 1 pavimento de cobertura e casa de máguinas e caixa d'água. O projeto estrutural original foi elaborado, para concreto com f_{ck} ≥ 15 MPa, através de modelos manuais simplificados para a análise das ações verticais e, sob a ação do vento, com o auxílio de software para análise de pórtico plano. O edifício foi modelado no sistema computacional CAD/TQS®. A carga na fundação que teve um aumento de apenas 3% em relação ao projeto original. No caso das cargas verticais devido à ação do vento houve um aumento de 7%. O comparativo do peso de aço detalhado e a taxa de aço por pavimento e por elemento estrutural foi realizado. Primeiramente pode-se constatar que a taxa média de aço dos pilares para o edifício, sem alteração do fck, foi de 103,5 kg/m³ para 105,6 kg/m³ (aumento de 2,0%). Quanto à armação das vigas a taxa média foi de 115,2 kg/m³ para 102,9 kg/m³ (redução de 10,7%). Já para a armação das lajes a taxa média foi de 42,7 kg/m3 para 49,3 kg/m3 (aumento de 15,5%). Por fim, a taxa de armação total do edifício que foi calculada como 92,4 kg/m³ no projeto original, no edifício modelado passou a ser de 91,7 kg/m³, o que indica uma redução de 0,8%. Para o teste da modelagem com f_{ck} de 25 MPa, constatou-se que a taxa média dos pilares diminuiu de 105,6 kg/m³ para 67,2 kg/m³ (redução de 36,4%).

Palavras-chave: concreto armado, engenharia de estruturas, projeto estrutural e sistema computacional.

ABSTRACT

Reinforced concrete is the material composed by the insertion of steel bars inside the concrete in order to guarantee the resistance to tensile and compression stresses. Advances in concrete technology have made the material stronger and more durable. At the same time, the development of computational modeling software has led to new ways of designing reinforced concrete buildings. In this work, a comparative analysis was carried out between a structural design carried out in 1989 and a more recent one. For this, data were collected from a commercial 14-story high building. The original structural design was elaborated for concrete with characteristic compressive strength equal to 15 MPa. Simplified manual models were used for the analysis of the gravity loads and, for lateral (wind) loads, a computer software model was employed. The building was modeled on the CAD/TQS® computer system. The load on the foundation had an increase of only 3% over the original design. In the case of vertical loads due to wind forces, there was an increase of 7%. The comparison of the detailed steel weight and the steel rate per floor and structural element was performed. First, it can be seen that the average steel rate of the columns for the building, without a change in concrete compressive strength, was 103.5 kg/m³ to 105.6 kg/m³ (an increase of 2.0%). As for the beams, the average rate was 115.2 kg/m³ for 102.9 kg/m³ (10.7% reduction). For the slabs, the average rate was 42.7 kg/m³ for 49.3 kg/m³ (an increase of 15.5%). Finally, the total steel consumption rate for the building changed from 92.4 kg/m³ in the original design to 91.7kg/m³ in the modeled building, which is very similar. For the modeling the building with concrete with characteristic compressive strength equal to 25 MPa, it was verified that the average steel consumption rate in the columns decreased from 105.6 kg/m³ to 67.2 kg/m³ (reduction of 36.4%).

Keywords: reinforced concrete, structural engineering, structural design and computational system.

LISTA DE FIGURAS

Figura 2.1 – Reações de apoio para lajes retangulares6
Figura 2.2 – Apoios e carregamentos de uma viga contínua6
Figura 2.3 – Eixos globais, cargas, reações, deslocamentos e rotações de um pórtico plano7
Figura 2.4 – Discretização de laje poligonal em barras de grelha8
Figura 2.5 – Barra de grelha entre nós com três graus de liberdade
Figura 2.6 – Pórtico espacial com cargas verticais e horizontais9
Figura 2.7 – Barra de pórtico espacial entre nós com seis graus de liberdade10
Figura 3.1 – Corte Longitudinal do projeto arquitetônico18
Figura 3.2 – Corte Transversal do projeto arquitetônico
Figura 3.3 – Planta da situação do edifício no terreno20
Figura 3.4 – Planta da casa de máquinas e da caixa d'água21
Figura 3.5 – Planta do pavimento de cobertura (forro da cobertura)22
Figura 3.6 – Planta do 14º pavimento (piso da cobertura)23
Figura 3.7 a – Planta do pavimento tipo (repete 11 vezes)24
Figura 3.7 b – Planta arquitetônica do pavimento tipo redesenhada, cotas em cm. 25
Figura 3.8 – Planta do pavimento pilotis
Figura 3.9 – Planta do segundo nível de garagem e sobrelojas
Figura 3.10 – Planta do pavimento térreo (primeiro nível de garagem e lojas)28

Figura 3.11 – Planta da sexta à décima terceira laje, terceiro tipo, el.+18,15 à el.+39,50, cotas em centímetro
Figura 3.12 – Corte A-A do pavimento tipo
Figura 3.13 – Corte B-B do pavimento tipo31
Figura 3.14 – Corte C-C do pavimento tipo31
Figura 3.15 – Corte D-D do pavimento tipo31
Figura 3.16 – Corte E-E do pavimento tipo32
Figura 3.17 – Corte F-F do pavimento tipo
Figura 3.18 – Redução dos pilares na el.+27,3033
Figura 3.19 – Redução dos pilares na el.+36,4533
Figura 3.20 – Memória de cálculo, do projeto original, de algumas lajes do pavimento tipo, unidades de comprimento em cm, cargas em kgf/m ² e momentos em kgf.m/m
Figura 3.21 – Memória de cálculo, do projeto original, da viga V19 do pavimento tipo, unidades de força em kgf, de comprimento em m
Figura 3.22 – Memória de cálculo, do projeto original, da descida de cargas por pilares de cada pavimento tipo, unidades de força em kgf37
Figura 3.23 – Armação positiva e negativa das lajes do pavimento tipo
Figura 3.24 – Armação da viga V17 do pavimento tipo
Figura 3.25 – Armação dos pilares P13 e P14 de um lance do pavimento tipo 40
Figura 3.26 – Planta da segunda laje, pilotis, el.+5,9041
Figura 3.27 – Corte A-A do pilotis42
Figura 3.28 – Corte B-B do pilotis42
Figura 3.29 – Corte C-C do pilotis

Figura 3.30 – Memória de cálculo, do projeto original, de algumas lajes do pavimento pilotis, unidades de comprimento em cm, cargas em kgf/m ² e momentos em kgf.m/m
Figura 3.31 – Planta da primeira laje, garagem, el.+3,0544
Figura 3.32 – Corte A-A da garagem45
Figura 3.33 – Corte B-B da garagem45
Figura 3.34 – Corte C-C da garagem45
Figura 3.35 – Memória de cálculo, do projeto original, de algumas lajes do pavimento de garagem, unidades de comprimento em cm, cargas em kgf/m ² e momentos em kgf.m/m47
Figura 3.36 – Mapa do Brasil com as isopletas da velocidade básica do vento48
Figura 3.37 – Memória de cálculo para encontrar as cargas horizontais devido à ação do vento (parte I)
Figura 3.38 – Memória de cálculo para encontrar as cargas horizontais devido à ação do vento (parte II)
Figura 3.39 – Tabela dos coeficientes de pressão e de forma para edificações de planta retangular com destaque para o vento atuando a 90º53
Figura 3.40 – Indicação dos seis pórticos planos e direções ortogonais sobre a planta do pavimento tipo que possui maior repetição54
Figura 3.41 – Pórticos alinhados no projeto original55
Figura 3.42 – Memória do projeto original com as cargas, em kgf, provenientes da ação do vento sobre os pilares P1 e P2056
Figura 3.43 – Memória do projeto original com numeração das barras, dos respectivos nós iniciais e finais, área e momento de inércia da seção transversal e cargas aplicada nos nós
Figura 3.44 – Listagem da saída do programa de análise estrutural com os resultados de deslocamentos, em metros, e rotação, em radianos59

- Figura 3.45 Listagem de saída do programa de análise estrutural com os resultados dos esforcos solicitantes nas extremidades das barras: forcas, em kgf, e momentos, em kgf.m.60 Figura 3.46 – Listagem de saída do programa de análise estrutural com os resultados dos esforções solicitantes nas extremidades das barras 179 e 180 correspondentes à viga V17 no piso da cobertura: forças, em kgf, e momentos, em kgf.m.....60 Figura 3.47 – Diagrama de momento fletor, em kgf.m, e força cortante, em kgf, na viga V17 no piso da cobertura sob a ação do vento......61 Figura 3.48 – Planta de locação dos centros de carga dos pilares na fundação. .62 Figura 3.49 – Planta dos tubulões da fundação......63 Figura 3.51 – Visualização 3D do modelo estrutural......66 Figura 3.53 – Pavimentos criados, pé-direito e modelos para lajes escolhido.....68 Figura 3.55 – Aba Cobrimentos com informações sobre os valores dos cobrimentos adotados para os elementos estruturais.....70 Figura 3.56 – Cargas distribuídas sobre a laje L2 do pavimento tipo......71 Figura 3.57 – Malha de 35 x 35 cm da grelha das lajes e vigas de parte do pavimento tipo......72 Figura 3.58 – Ábaco para determinação dos coeficientes de arrasto em edificação paralelepipédica em vento de baixa turbulência......74

Figura 3.62 – Indicação dos cinco pórticos planos e direções ortogonais sobre a planta do pavimento tipo que possui maior repetição.......78

- Figura 3.65 Tabela dos coeficientes de pressão e de forma para edificações de planta retangular com destaque para o vento atuando a 0º......81
- Figura 3.66 Aba Materiais com classe C25 para os elementos estruturais.......82

Figura 4.3 –	Armação positi	va e negativa	das lajes do	pavimento tipo	
	3 1	0	,		

Figura 4.4 – Armação da viga V17 do pavimento tipo......90

Figura 4.5 – Armação dos pilares P13 e P14 de um lance do pavimento tipo.91

- Figura 4.7 Desenho de armação da viga V17, do pavimento tipo......93

Figura 4.9 – Tabelas de cargas dos pilares na fundação – Projeto original..........98

Figura	4.10 – Tabelas de cargas dos pilares na fundação – Modelagem computacional
Figura	4.11 – Tabelas de cargas dos pilares na fundação – Modelagem computacional com vento nas duas direções102
Figura 4	4.12 – Comparativo do peso de aço dos pilares, por pavimento, do projeto original e da modelagem computacional111
Figura	4.13 – Comparativo da taxa de aço dos pilares, por pavimento, do projeto original e da modelagem computacional111
Figura	4.14 – Comparativo do peso de aço das vigas, por pavimento, do projeto original e da modelagem computacional112
Figura	4.15 – Comparativo da taxa de aço das vigas, por pavimento, do projeto original e da modelagem computacional112

- Figura 4.20 Comparativo da taxa de aço dos pilares, por pavimento, da modelagem computacional com $f_{ck} = 15$ MPa e da modelagem computacional com $f_{ck} = 25$ MPa......116

LISTA DE TABELAS

Tabela 2.1 – Classes de agressividade ambiental e risco de deterioração da estrutura 13
Tabela 2.2 – Correspondência entre a classe de agressividade ambiental e o cobrimento mínimo14
Tabela 2.3 – Correspondência entre a classe de agressividade e a qualidade do concreto14
Tabela 2.4 – Cobrimento mínimo15
Tabela 2.5 – Comparação entre os cobrimentos mínimos
Tabela 4.1 – Verificação da flecha das lajes para o projeto original
Tabela 4.2 – Verificação das flechas das lajes e vigas para o modelo estrutural .86
Tabela 4.3 – Comparação dos valores das flechas das lajes
Tabela 4.4 – Comparação das cargas dos pilares na fundação101
Tabela 4.5 – Comparação das cargas dos pilares na fundação104
Tabela 4.6 – Desenhos de armação e pesos de aço totais – Projeto original 105
Tabela 4.7 – Pesos de aço por pavimento e por elementos
Tabela 4.8 – Volumes de concreto e área de formas totais, por pavimento e por elementos
Tabela 4.9 – Taxas de armação por elementos e níveis – Projeto original108
Tabela 4.10 – Pesos de aço por elementos e níveis – Modelagem computacional
Tabela 4.11 – Taxas de armação por elementos e níveis – Modelagem computacional

LISTA DE ABREVIATURAS E SIGLAS

CA	Concreto Armado
CAD	Computer Aided Design
c/	a cada (espaçamento)
CP	Concreto Protendido
el.	Elevação
MEF	Método dos Elementos Finitos
NBR	Norma Brasileira
TQS	Tecnologia e Qualidade em Sistemas
UFMG	Universidade Federal de Minas Gerais

LISTA DE SÍMBOLOS

Ca	Coeficiente de arrasto
Ce	Coeficiente de forma externo
f _{ck}	Resistência característica do concreto à compressão
Hx	Carga horizontal na direção x
Hy	Carga horizontal na direção y
L	Laje
Ма	Momento fletor positivo na direção a
Mb	Momento fletor positivo na direção b
Mx	Momento fletor em torno de x
My	Momento fletor em torno de y
Nz	Carga vertical axial
Р	Pilar
S ₁	Fator topográfico
S ₂	Fator de rugosidade
S ₃	Fator estatístico
V	Viga
Vo	Velocidade básica
Vk	Velocidade característica
Ха	Momento fletor negativo na direção a
Xb	Momento fletor negativo na direção b
Δ	Letra grega delta – variação
Ø	Diâmetro

LISTA DE UNIDADES

cm	centímetro
cm²/m	centímetro quadrado por metro
kg	quilograma
kg/m³	quilograma por metro cúbico
kgf	quilograma-força
kgf/m	quilograma-força por metro
kgf/m²	quilograma-força por metro quadrado
kgf/m³	quilograma-força por metro cúbico
m	metro
m/s	metro por segundo
m²	metro quadrado
m³	metro cúbico
mm	milímetro
MPa	mega Pascal
S	segundo
tf	tonelada-força
tf.m	tonelada-força vezes metro
%	por cento

SUMÁRIO

AGRA	DECIMENTOSv
RESUM	//Ovi
ABSTR	RACT
LISTA	DE FIGURASviii
LISTA	DE TABELASxiv
LISTA	DE ABREVIATURAS E SIGLASxvi
LISTA	DE SÍMBOLOSxvii
LISTA	DE UNIDADES xviii
SUMÁF	RIOxix
1	INTRODUÇÃO1
1.1	Considerações Iniciais1
1.2	Justificativa2
1.3	Objetivos
1.4	Estrutura da Dissertação3
2	REVISÃO BIBLIOGRÁFICA5
2.1	Modelos de Análise Estrutural5
2.1.1 M	létodos aproximados com vigas contínuas5
2.1.2 P	órtico plano6
2.1.3 A	nalogia de Grelha Equivalente7
2.1.4 P	órtico Espacial9
2.1.5 M	létodo dos Elementos Finitos10
2.1.6 E	studos comparativos10
2.2	Alterações no quantitativo das estruturas de concreto armado devido à
	modificação da norma NBR 6118 (2003)13

2.2.1	Critérios de durabilidade	13
2.2.2	2 Estudos comparativos	16
3	METODOLOGIA	17
3.1	Dados do Edifício	17
3.2	Dados do Projeto Estrutural	29
3.2.1	Parâmetros gerais	29
3.2.2	2 Pavimento tipo – formas, cargas verticais e armações	29
3.2.3	3 Pavimento pilotis – formas e cargas verticais	41
3.2.4	Pavimento da primeira garagem – formas e cargas verticais	44
3.2.5	5 Cargas horizontais	48
3.2.6	S Locação de pilares e tubulões	61
3.3	Modelagem Computacional	64
3.3.1	Dados do edifício modelado	64
3.3.2	2 Cargas verticais	70
3.3.3	3 Cargas horizontais	73
3.4	Modelagem computacional levando em consideração o vento atua	ando nas
	direções x e y	77
3.4.1	Restrições nos apoios da fundação	78
3.4.2	2 Cargas horizontais	79
3.5	Modelagem computacional levando em consideração re	sistência
	característica à compressão do concreto fck igual a 25 MPa	82
4	APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	83
4.1	Análise dos deslocamentos em lajes, vigas e nos pórticos	83
4.1.1	Deslocamento das lajes - resultados do projeto original	83
4.1.2	2 Deslocamento das lajes e vigas - resultados da modelagem do e	difício no
sis	stema computacional	85
4.1.3	B Deslocamento dos pórticos - resultados da modelagem do edifício no	o sistema
CO	omputacional	87
4.2	Análise das armações das lajes, vigas e pilares	
4.2.1	Resultados do projeto original	
4.2.2	2 Resultados da modelagem do edifício no sistema computacional	91
4.2.3	3 Comparação dos resultados	94

4.3	Cargas nos	pila	res para o dim	ensio	onamento	da f	undação		97
4.3.1	Resultados do	o pro	jeto original						97
4.3.2	Resultados	da	modelagem	do	edifício	no	sistema	computaci	onal
cor	nsiderando a a	ação	do vento aper	nas n	a direção	y			99
4.3.3	Resultados	da	modelagem	do	edifício	no	sistema	computac	onal
cor	nsiderando a a	ação	do vento nas	duas	direções				.102
4.4	Tabelas de	peso	o e taxas de a	ço po	or pavime	nto e	por eleme	ento	.105
4.4.1	Resultados do	o pro	jeto original						. 105
4.4.2	Resultados da	a mo	delagem do eo	difício	o no siste	ma c	omputacio	nal	.108
4.4.3	Resultados da	a mo	delagem do e	difício	o no siste	ma c	omputacio	nal levando	o em
cor	nsideração res	sistêr	ncia caracterís	tica a	à compre	ssão	do concre	to f _{ck} igual	a 25
MP	a								.115
5		ÕES	E SUGESTÔ	ήEΘ					
5	CONCLUS								.117
REFE	RÊNCIAS BI	BLIO	REFERENCIAS BIBLIOGRAFICAS119						

1 INTRODUÇÃO

1.1 Considerações Iniciais

Concreto armado é o material composto pela inserção de barras de aço no interior do concreto de modo a trabalharem em conjunto e garantirem a resistência aos esforços de tração e compressão. Rigorosas modificações nos critérios de durabilidade dos elementos estruturais, o avanço na tecnologia do concreto possibilitando a utilização de elementos mais resistentes e, principalmente, o desenvolvimento de *softwares* de modelagem computacional conduziram a novas formas de elaborar projetos estruturais. Por isso, o dimensionamento e detalhamento das estruturas prediais em concreto armado passou por significativas mudanças nas últimas três décadas já que a definição das seções transversais dos elementos estruturais das edificações (lajes, vigas e pilares) e a obtenção das áreas de aço para resistirem aos esforços solicitantes devem respeitar essas modificações.

Particularmente, a produção de concretos, com resistência mecânica maior e mais duráveis, possibilitaram o dimensionamento de pilares mais esbeltos e com menor ocorrência de variações de seção entre pavimentos. Consequentemente, reduziram-se as variações da forma, o volume de concreto necessário e o impacto arquitetônico.

Os *softwares* atuais de modelagem computacional são capazes de fazer a integração da análise estrutural com o dimensionamento, detalhamento, verificação de atendimento às normas e, ainda, auxiliar na produção de desenhos. A possibilidade de fazer diversos testes variando-se soluções estruturais, seções de elementos, materiais de diferentes resistências, modelos de análise linear e não-linear, analogias de grelhas, pórticos espaciais e método dos elementos finitos em um tempo de processamento bastante reduzido alterou significativamente a forma como o projeto estrutural é elaborado.

A proposta deste trabalho é fazer uma análise comparativa entre um projeto estrutural realizado no final dos anos 80 com o projeto elaborado na atualidade. Para isso, serão levantados os quantitativos de formas, concreto e aço para a montagem da estrutura de um mesmo edifício comercial. Primeiramente será feita a leitura dos desenhos estruturais do projeto original para calcular os somatórios de consumo de materiais. Em seguida o edifício será modelado em *software* de cálculo estrutural para extração dos quantitativos para o mesmo edifício, porém com os métodos e parâmetros atuais.

1.2 Justificativa

Edifícios em concreto armado, calculados sem o auxílio de *softwares* capazes de analisarem modelos espaciais, provavelmente foram detalhados gerando quantitativos de materiais menos econômicos em comparação aos edifícios modelados e detalhados com a assistência de modelos mais sofisticados. Embora existam diversos tipos de modelos estruturais para um edifício é importante quantificar a diferença no consumo de materiais.

Além disso, a produção de concretos com resistências à compressão superiores àquelas indicadas nos projetos anteriores à revisão da norma NBR 6118 (2003) possibilitaria um novo dimensionamento dos elementos, conduzindo também a uma redução das seções dos pilares, menor área de formas e volume de concreto. É interessante estimar a diferença no consumo de materiais que poderia ser obtida com a variação da resistência.

O ganho de tempo para a elaboração do projeto estrutural é considerável com a facilidade de aplicação das ferramentas computacionais; porém é interessante verificar se o detalhamento obtido realmente atende os mesmos requisitos e não apresenta falhas técnicas mantendo-se a qualidade e segurança do projeto original.

Por outro lado, edifícios em concreto armado, projetados e executados utilizandose critérios da NBR 6118 (1980), com cobrimentos da armadura menores, conduziam a detalhamentos mais econômicos em comparação às mesmas peças calculadas com cobrimento maior, após a revisão da NBR 6118 (2003).

1.3 Objetivos

O objetivo geral é comparar os quantitativos de materiais da estrutura para um edifício levando-se em conta as diversas variações existentes na resistência, parâmetros de durabilidade das versões da norma brasileira e métodos de análise, dimensionamento e detalhamento para avaliar os ganhos de qualidade no projeto estrutural.

Os objetivos específicos são:

- a) extrair os quantitativos de volume de concreto e peso de aço necessários para executar a estrutura;
- b) fazer uma análise das diferenças de consumo de concreto e aço obtidas entre o método computacional e o cálculo semi-automatizado;
- c) fazer nova modelagem do edifício para diferente valor de resistência à compressão do concreto (f_{ck}) dos pilares.

1.4 Estrutura da Dissertação

A presente pesquisa encontra-se dividida em capítulos cujos assuntos são descritos a seguir.

No Capítulo 2, tem-se uma revisão bibliográfica sobre os modelos de análise estrutural aplicados no cálculo e projeto dos edifícios de concreto armado, além de comparativos de algumas exigências entre as diferentes versões das normas brasileiras e apresentação de resultados encontrados em outros trabalhos semelhantes.

No Capítulo 3, encontra-se a descrição do edifício em questão e a metodologia adotada para a execução de toda a modelagem computacional.

Os resultados obtidos são apresentados no Capítulo 4, além de uma análise comparativa com as pesquisas similares apresentadas no Capítulo 2.

Por fim, as principais conclusões provenientes da discussão realizada no capítulo anterior são apresentadas no Capítulo 5, com algumas sugestões para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

2.1 Modelos de Análise Estrutural

Um dos aspectos relevantes para esta pesquisa é quantificar a diferença entre os modelos computacionais para análise, dimensionamento e detalhamento das estruturas de concreto armado. A seguir, são apresentados alguns dos principais modelos de análise estrutural utilizados no projeto de edifícios.

2.1.1 Métodos aproximados com vigas contínuas

Os métodos aproximados com vigas contínuas possuem certas limitações para seu uso no cálculo de estruturas mais complexas, com isso, na prática atual, esses modelos não são mais utilizados em projetos elaborados com auxílio de uma ferramenta computacional. Contudo, por se tratar de um modelo no qual é possível fazer os cálculos manuais, ele pode ser adotado como forma de verificação e validação dos resultados. O entendimento do funcionamento da estrutura é imprescindível para a elaboração de um projeto adequado e por meio da adoção de modelos simplificados isso é possível. (ARAÚJO, 2010; KIMURA, 2007).

As cargas das lajes são transferidas para as vigas por área de influência conforme a Figura 2.1, e os esforços e flechas nas vigas são calculados por meio do modelo clássico de viga contínua, ilustrado na Figura 2.2. A reação vertical obtida nos apoios das vigas é transferida como carga concentrada para os pilares e/ou outras vigas. Dessa forma os elementos estruturais são calculados de forma totalmente independente. (KIMURA, 2007).

Os apoios da laje na Figura 2.1 são considerados infinitamente rígidos. Os apoios da viga na Figura 2.2 também representam vigas ou pilares indeslocáveis. Tais simplificações provocarão as maiores diferenças quando em comparação com outros modelos.

Figura 2.1 – Reações de apoio para lajes retangulares. Fonte: Silva (2014).

Figura 2.2 – Apoios e carregamentos de uma viga contínua. Fonte: Martha (2014).

Os modelos simplificados têm sido utilizados há bastante tempo e estruturas construídas a partir de projetos estruturais que os adotaram permaneceram seguras e em bom funcionamento durante toda a sua vida útil. (ARAÚJO, 2010).

2.1.2 Pórtico plano

É o modelo utilizado para análise dos carregamentos verticais e horizontais provenientes do vento atuando sobre um conjunto de vigas e pilares presentes em um mesmo alinhamento do edifício. Trata-se de um modelo muito eficiente para a avaliação da estabilidade global de edifícios e análise dos efeitos do vento. (KIMURA, 2007).

A Figura 2.3 mostra um exemplo do modelo de pórtico plano que pode corresponder a uma "fatia" da estrutura ou a uma simplificação do modelo tridimensional. (MARTHA, 2011).

Figura 2.3 – Eixos globais, cargas, reações, deslocamentos e rotações de um pórtico plano. Fonte: Martha (2014).

2.1.3 Analogia de Grelha Equivalente

A analogia da grelha equivalente é o método numérico utilizado para análise de lajes nos Sistemas CAD-TQS®. O método pode ser utilizado para análise de lajes poligonais de formas diversas, incluindo também as vigas de apoio, e considerando-se as deformações das vigas. A laje é discretizada através de dois conjuntos de linhas com espaçamento definido pelo usuário formando uma grelha equivalente que representa a laje maciça de forma aproximada. Na Figura 2.4 está um exemplo de laje discretizada pelo modelo de analogia de grelha equivalente. As barras da grelha, dispostas segundo a direção *x*, possuem seção retangular com largura b = Δy e altura h, onde Δy é o espaçamento entre as barras e h é a espessura da laje. As barras dispostas segundo a direção *y* possuem largura b = Δx e altura h. (ARAÚJO, 2010).

Figura 2.4 – Discretização de laje poligonal em barras de grelha. Fonte: Araújo (2010).

A Figura 2.5 representa o elemento de grelha com os seus três graus de liberdade para o nó final de uma barra qualquer.

Figura 2.5 – Barra de grelha entre nós com três graus de liberdade. Fonte: Kimura (2007).

2.1.4 Pórtico Espacial

O pórtico espacial é um modelo tridimensional composto por barras que representam os pilares e vigas possibilitando a análise global da estrutura, conforme representado na Figura 2.6. As lajes são tratadas como elementos que possuem elevada rigidez no plano horizontal. (KIMURA, 2007).

Figura 2.6 – Pórtico espacial com cargas verticais e horizontais. Fonte: Kimura (2007).

Da mesma forma que na Figura 2.5, a Figura 2.7 representa o elemento de pórtico espacial com os seus seis graus de liberdade para o nó final de uma barra qualquer.

Figura 2.7 – Barra de pórtico espacial entre nós com seis graus de liberdade. Fonte: Kimura (2007).

2.1.5 Método dos Elementos Finitos

A análise estrutural do pavimento de um edifício deve levar em consideração a interação entre as vigas e as lajes que o compõem, pois trata-se de uma estrutura única, contínua, formada por lajes e vigas, que se apoiam em alguns pontos sobre os pilares. Para o cálculo dessa estrutura única existem métodos numéricos refinados, como o Método dos Elementos Finitos. Os recursos computacionais existentes possibilitam a análise acoplada do pavimento todo por meio de *softwares* sofisticados voltados para a realização da análise de esforços e deslocamentos. (ARAÚJO, 2010).

Mesmo neste modelo mais sofisticado existem simplificações. A modelagem do edifício busca representar o real comportamento da estrutura. Porém, as fases da construção influenciam nas cargas ao longo do tempo. Além disso, a reologia do concreto modifica a deformabilidade da estrutura com o passar do tempo.

2.1.6 Estudos comparativos

Diversos estudos têm sido realizados para a comparação entre os diferentes modelos e a seguir os resultados obtidos em alguns deles serão destacados.

Faria *et al.* (2015) compararam resultados de duas análises estruturais distintas em um pavimento de um edifício residencial. A primeira foi pelo *software* comercial CAD-TQS® enquanto a segunda foi através de elementos laje-viga-pilar analisados separadamente.

Foram encontradas diversas diferenças em várias etapas: distribuição das cargas, análise, dimensionamento e detalhamento dos elementos estruturais. As cargas lineares e distribuídas sobre lajes podem ter diferentes formas de distribuição para as vigas; os elementos podem ter diferentes discretizações e a escolha das armaduras, espaçamento e melhor diâmetro das barras (FARIA *et al.*, 2015).

Para o dimensionamento das vigas, os resultados demonstram pouca diferença entre o detalhamento obtido pelo modelo do *software* em comparação com o método manual. Já para as lajes, cujos resultados diferiram consideravelmente entre os dois métodos, o processo de aproximações simplificadas diverge da solução da grelha. No caso dos pilares a variação da carga entre os modelos foi de até 30%, o que, entretanto, não ocasionou variação na armação detalhada. (FARIA *et al.*, 2015).

Prado *et al.* (2005) fizeram uma comparação entre os métodos simplificados e os métodos numéricos, que são mais gerais fazendo a análise de forma integrada considerando a deformação conjunta das vigas e das lajes. Foi considerada uma análise de lajes retangulares isoladas com todas as possíveis condições de contorno e relações entre os lados. Os métodos numéricos foram o MEF e o método da analogia de grelha equivalente. Os autores alertam para a importância de avaliar a inércia à torção correta das barras, pois gera uma influência direta sobre os resultados.

Chagas (2012) fez análise comparativa dos momentos fletores atuantes sobre as vigas de um pavimento de edifício obtidos através de nove diferentes modelos estruturais. Os modelos foram: Vigas Contínuas, Pórtico Plano Simplificado, Pórtico Plano, Vigas Discretizadas em Grelha, Vigas e Lajes Discretizadas em Grelha, Laje com Elementos Finitos de casca, Pórtico Espacial sem Laje, Pórtico Espacial com

Grelha de Vigas e Lajes e Pórtico Espacial com Laje modelada por Elementos Finitos. Toda a análise foi desenvolvida no *software* SAP2000 V.14.2.3.

Ainda em relação ao trabalho de Chagas (2012), o modelo de Vigas Contínuas considerou a reação das lajes proveniente do método de Czerny. O Pórtico Plano Simplificado adotou o critério das rigidezes dos pilares da NBR 6118 (2014). Os Pórticos Planos foram modelados com todos os pavimentos, sendo os pilares com suas reais alturas e engastados nas bases. O modelo de Vigas Discretizadas em Grelha mantém a forma de lançamento das cargas das lajes, porém há interseção das mesmas em um plano. Já o modelo de Vigas e Lajes Discretizadas em Grelha abandona o método de Czerny e utiliza uma distribuição de barras perpendiculares espaçadas a cada 50 cm. A Laje com Elementos Finitos de casca possui uma discretização em malha quadrada de 10 cm e seis graus de liberdade em cada um dos quatro nós. Por sua vez, os três modelos de pórticos espaciais utilizam conjunto das grelhas ou elementos finitos no prédio todo.

Chagas (2012) comparou para cada uma das vigas do pavimento os momentos fletores negativos nos apoios e positivos nos vãos. As diferenças foram consideráveis. Como conclusão, os modelos simplificados não são indicados para o caso de vigas que se apoiam em outras vigas. Os métodos da grelha e dos elementos finitos foram ferramentas eficientes na distribuição dos esforços. A análise conjunta com o pórtico possibilita encontrar esforços menores.

Barboza (2008) agrupou série de dados e informações sobre a concepção de edifícios e modelos de um projeto estrutural. Foi feita a análise por meio do *software* CAD/TQS e explicado os critérios para garantir a estabilidade global, modelos de análise de deslocamentos e esforços solicitantes dos elementos estruturais do pavimento, e consideração de pórticos planos e espaciais para análise de vigas e pilares, sob as ações verticais e horizontais.

2.2 Alterações no quantitativo das estruturas de concreto armado devido à modificação da norma NBR 6118 (2003)

A norma brasileira NBR 6118, que trata do projeto de estruturas de concreto, passou por alteração de versão em 2003, o que modificou o dimensionamento e, consequentemente, o custo das estruturas.

2.2.1 Critérios de durabilidade

Critérios de durabilidade mais severos foram inseridos na norma brasileira NBR 6118 (2003), e persistiram na versão de 2014, de modo a classificar o ambiente no qual a estrutura se encontra em diferentes níveis de agressividade (Tabela 2.1). Para cada uma dessas classes, a norma impõe limites mínimos para espessura do cobrimento de vigas, lajes e pilares (Tabela 2.2), valores mínimos para a resistência característica à compressão do concreto e valores máximos para o seu fator águacimento (Tabela 2.3). A versão da norma NBR 6118 de 1980 exigia valores bastante menores para a espessura do cobrimento (Tabela 2.4). Os critérios prescritos desde 2003 fizeram com que a qualidade do concreto exigida fosse maior, e que as larguras mínimas dos elementos estruturais aumentassem de modo a possibilitar a perfeita concretagem dos mesmos.

-					
Classe de agressivida- de ambiental		Agressivi- Classificação geral do tipo de		Risco de dete-	
		dada	ambiente para efeito de projeto	rioração da es-	
		uaue	ambiente para erento de projeto	trutura	
1		Fraca	Rural	Insignificante	
		, rucu	Submersa	lineiginieune	
П		Moderada	Urbana ^{a,b}	Pequeno	
Ш		Forte	Marinha ^a	Grande	
		Fone	Industrial ^{a,b}		
IV		Muito forto	Industrial ^{a,c}	Elovada	
		Multo Iorte	Respingos de maré	Elevado	
(a)	(a) "Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes				
(b)	Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em o- bras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65%, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.				
(c)) Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branquea- mento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.				

Tabela 2.1 – Classes de agressividade ambiental e risco de deterioração da estrutura Fonte: NBR 6118 (2014)

Tabela 2.2 – Correspondência entre a classe de agressividade ambiental e o cobrimento mínimo Fonte: NBR 6118 (2014)

	Componente ou Elemento	Classe de Agressividade Ambiental Tabela 6.1 NBR 6118:2014			
Tipo de Estrutura		I	II	Ш	I∨ ^c
		Cobrimento Nominal - mm			
	Laje ^b	20	25	35	45
	Viga/Pilar	25	30	40	50
Concreto Armado	Elementos estruturais em contato com o solo ^d	30		40	50
	Laje	25	30	40	50
Concreto Protendido"	Viga/pilar	30	35	45	55
a - Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para o concreto armado					

b - Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com re-

vestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento tais como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros tantos, as exigências desta tabela podem ser substituídas por 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm. c -Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de áqua e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV. d - No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

O an anala 2	Tipo ^{b, c}	Classe de agressividade (Tabela 6.1)				
Concreto "		1.	ll II	111	IV	
Relação	CA	≤ 0,65	≤ 0 ,60	≤ 0,55	≤ 0,45	
agua/cimento em massa	СР	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45	
Classe de concreto	CA	≥ C20	≥C25	≥C30	≥ C40	
(ABNT NBR 8953)	CP	≥ C25	≥ C30	≥ C35	≥ C40	
 ^a O concreto empreg ABNT NBR 12655. ^b CA corresponde a c 	ado na execuç omponentes e	ão das estrutura elementos estru	as deve cumprir co turais de concreto a	m os requisitos es armado.	stabelecidos na	

Tabela 2.3 – Correspondência entre a classe de agressividade e a qualidade do concreto Fonte: NBR 6118 (2014)

Tipo de	Componente	Classificação quanto ao	Classificação quanto ao	Cobrimento
Estrutura	a ou Elemento revestimento ambi		ambiente	(mm)
Concreto Armado		Concreto revestido com argamassa	No interior de edifícios	5
	Laje	de espessura mínima de 1 cm	Ao ar <mark>l</mark> ivre	15
		Concrete anaronte	No interior de edifícios	20
		concreto aparente	Ao ar <mark>liv</mark> re	25
	Viga/Pilar	Concreto revestido com argamassa	No interior de edifícios	15
		de espessura mínima de 1 cm	Ao ar <mark>liv</mark> re	20
		Concrete anaronte	No interior de edifícios	20
		concreto aparente	Ao ar <mark>l</mark> ivre	25
		30		
	El	ementos estruturais em meio forteme	40	

Tabela 2.4 – Cobrimento mínimo Fonte: adaptado da NBR 6118 (1980)

A Tabela 2.5 mostra uma comparação entre as tabelas 2.2 e 2.3 para facilitar a visualização desta diferença na exigência da norma brasileira em função da maior preocupação com a durabilidade da estrutura em concreto armado. Como exemplo foi escolhida uma estrutura em meio urbano e revestida, e percebe-se que o valor de cobrimento mínimo exigido na norma atual é no mínimo 10 mm superior ao cobrimento da norma de 1980: isso corresponde a um aumento da espessura de cobrimento de 66,7% para as lajes e de 50% para as vigas e pilares.

Tabela 2.5 – Comparação entre os cobrimentos mínimos Fonte: adaptado da NBR 6118 (1980) e da NBR 6118 (2014)

Tipo de Estrutura	Componente ou Elemento	Cobrimento mínimo (mm)			
		NBR 6118 (2014)	NBR 6118 (1980)		
		Classe de Agressividade Ambiental II	Concreto revestido com argamassa de espessura		
			mínima de 1 cm		
			Ao ar livre	No interior de edifícios	
Concreto	Laje	25	15	5	
Armado	Viga/Pilar	30	20	15	

A norma NBR 6118 (1980) exigia que o concreto tivesse a resistência característica f_{ck} não inferior a 9 MPa; porém não limitava o fator água/cimento.
2.2.2 Estudos comparativos

Ferreira e Oliveira (2005) ressaltam que o maior impacto nos projetos estruturais está relacionado à durabilidade das estruturas de concreto. Os autores dimensionaram um edifício de 13 pavimentos de acordo com as recomendações das duas versões da norma, a de 1980 e a de 2003, visando comparar os quantitativos e custos consequentes das recomendações. Os resultados encontrados demonstram que um maior volume de concreto é necessário para projetar o edifício com os critérios atuais, porém a quantidade de aço foi significativamente reduzida, principalmente nos pilares. Com isso, a norma mais recente apresentou um custo 5% maior do que a norma de 1980, porém a qualidade estrutural aumentou significativamente garantindo maior durabilidade e vida útil à mesma.

Magalhães e Fonte (2006) fizeram análise comparativa de um edifício de 18 pavimentos, dimensionado pela NBR 6118 (2003) e NBR 6118 (1980). Os aspectos avaliados foram os modelos I e II de cálculo ao cisalhamento de vigas, a variação na resistência característica f_{ck} de 30 e 40 MPa, os critérios de imperfeições geométricas locais e o momento mínimo para pilares, os esforços devido ao vento ou devido ao desaprumo e a influência do cobrimento do concreto. Os quantitativos da estrutura, quando dimensionada de acordo com a norma NBR 6118 (2003) tiveram um aumento no consumo do concreto de 2,56%, um aumento no consumo de formas de 0,47% e uma diminuição no consumo de aço de 4,41% (MAGALHÃES e FONTE, 2006).

Rebêlo (2011) fez uma análise comparativa de consumo de aço e concreto para quatro diferentes modelos variando-se a resistência característica f_{ck} de 25, 35 e 50 MPa com o auxílio do *software* EBERICK V6 GOLD. Para os modelos originais, com uso de concreto de f_{ck} igual a 25 MPa, foram considerados consumos de 100%. A redução do consumo de aço foi de aproximadamente 32% para f_{ck} 35 MPa, e 37% para f_{ck} 50 MPa.

3 METODOLOGIA

Inicia-se este capítulo descrevendo a edificação objeto desta dissertação através das plantas arquitetônicas. A seguir são apresentados os parâmetros adotados no projeto estrutural retirados da memória de cálculo. Na sequência, detalha-se a análise computacional instrumento principal deste trabalho.

3.1 Dados do Edifício

O prédio de uso comercial é composto de 2 pavimentos de garagem e lojas, 1 pavimento pilotis, 11 pavimentos tipo, 1 pavimento de cobertura e casa de máquinas e caixa d'água. A altura total da edificação é de 49,90 m. As Figuras 3.1 e 3.2 mostram através dos cortes principais do projeto arquitetônico da edificação esta distribuição e também as reduções de área construída.

Figura 3.1 – Corte Longitudinal do projeto arquitetônico.

Figura 3.2 – Corte Transversal do projeto arquitetônico.

A Figura 3.3 mostra a planta de situação do edifício. O terreno possui 30,00 m de frente e 36,00 m de profundidade formando uma área de 1080,00 m². A edificação ocupa uma área de 23,84 x 18,525 m². Portanto, apresentando uma relação de aspecto de 0,41 (23,84 x 18,525 / 1080,00) ou 2:5.

Figura 3.3 – Planta da situação do edifício no terreno.

A planta da casa de máquinas está na Figura 3.4. A elevação do seu piso interno é el.+46,15. Uma parede dupla separa o reservatório d'água da casa de máquinas. A laje de forro das salas do nível de baixo está na el.+44,40.

Figura 3.4 – Planta da casa de máquinas e da caixa d'água.

A planta da cobertura, na Figura 3.5, tem a função de delimitar as lajes e vigas que compõem o forro das salas do 14º pavimento e os terraços descobertos. As elevações são diferentes em até 4,35 m pois a laje de forro sobre as salas está prevista na el.+44,40; a el.+48,78 é o nível da laje de fechamento do reservatório d'água. É importante observar que há uma laje inclinada de forro sobre a caixa da escada.

Figura 3.5 – Planta do pavimento de cobertura (forro da cobertura).

A planta do 14º pavimento (Figura 3.6) apresenta o último nível com salas comerciais, que nesse nível são apenas duas. Existem duas lajes planas impermeabilizadas sem acesso a pedestres e duas elevações de el.+41,50 e el.+41,45 (em metro).

Figura 3.6 – Planta do 14º pavimento (piso da cobertura).

A planta original do pavimento tipo, está na Figura 3.7 a. Como já comentado, são 11 pavimentos tipo, do 3º ao 13º pavimento, (el.+9,05m a el.+38,55m). É importante observar que existe uma quase total simetria das salas 01 a 06 com as salas 07 a 12. Portanto, a torre é praticamente simétrica em torno do plano vertical, com exceção da caixa de escada e elevadores.

Para uma melhor compreensão da planta do pavimento tipo da arquitetura, ela foi redesenhada (Figura 3.7 b) para servir de referência para o lançamento do modelo estrutural e para a avaliação das sobrecargas de utilização, revestimento e alvenarias.

Figura 3.7 a – Planta do pavimento tipo (repete 11 vezes).

Figura 3.7 b – Planta arquitetônica do pavimento tipo redesenhada, cotas em cm.

A Figura 3.8 apresenta os pilotis coberto e descoberto. A projeção do tipo pode ser observada em linha tracejada. A elevação é el.+5,90 e a partir deste nível apenas a torre terá prosseguimento através da escada e dos três elevadores.

Figura 3.8 – Planta do pavimento pilotis.

A Figura 3.9 é a planta do segundo nível de garagem (30 vagas) e sobrelojas. Este nível dá continuidade ao acesso ao estacionamento por meio da rampa de veículos iniciada no pavimento inferior. É importante ressaltar que tanto no pavimento térreo quanto no segundo pavimento não houve indicação para a locação e posicionamento dos pilares essenciais para a concepção estrutural pelo arquiteto. A planta das sobrelojas mostra os vazios de pé-direito duplo assim como sobre o *hall* de entrada. Há duas elevações previstas nas áreas deste pavimento, el.+3,05 e el.+3,15.

Figura 3.9 – Planta do segundo nível de garagem e sobrelojas.

A Figura 3.10 apresenta a planta do pavimento térreo que é composto pelas vagas de garagens e lojas no nível da rua. A elevação de todo o piso acabado é el.+0,15m. O portão de acesso para veículos está à esquerda com largura livre de 2,80 m. Ao todo são sete lojas com a mesma largura interna de 3,22 m que possuem acesso vertical por escada caracol metálica para as sobrelojas no segundo pavimento. Além disso, a entrada para a portaria de pedestres está no centro com a mesma medida de 3,22 m e existem três elevadores para pessoas e uma caixa de escada sem janelas. Ao fundo são mostradas as projeções da rampa de carros e a projeção do pavimento superior. Ao todo foram previstas 33 vagas de garagem com medidas variáveis e não cotadas.

Figura 3.10 – Planta do pavimento térreo (primeiro nível de garagem e lojas).

3.2 Dados do Projeto Estrutural

O projeto estrutural foi elaborado em 1989. Foi utilizado o modelo laje-viga-pilar para a análise estrutural das ações verticais. Para a análise da ação do vento o modelo foi o de pórticos planos alinhados. Portanto, a superposição destes efeitos resultou nos valores totais das solicitações utilizadas no dimensionamento e posterior detalhamento das peças estruturais.

Apresenta-se a seguir os parâmetros necessários ao nosso estudo, obtidos da leitura do projeto estrutural do edifício.

3.2.1 Parâmetros gerais

- a) concreto com $f_{ck} \ge 15$ MPa;
- b) cobrimento mínimo de concreto das lajes, vigas e pilares de 1,5 cm;
- c) cobrimento mínimo de concreto das escadas e do reservatório elevado de 2,5 cm;
- d) fundação em blocos de coroamento com um, dois ou quatro tubulões.

3.2.2 Pavimento tipo - formas, cargas verticais e armações

As Figuras 3.11 a 3.17 são plantas e cortes presentes no desenho de forma do pavimento tipo. A planta foi redesenhada a fim de uma melhor visualização.

Figura 3.11 – Planta da sexta à décima terceira laje, terceiro tipo, el.+18,15 à el.+39,50, cotas em centímetro.

Figura 3.12 – Corte A-A do pavimento tipo.

Figura 3.13 – Corte B-B do pavimento tipo.

Figura 3.14 – Corte C-C do pavimento tipo.

Figura 3.15 – Corte D-D do pavimento tipo.

Figura 3.16 – Corte E-E do pavimento tipo.

Figura 3.17 – Corte F-F do pavimento tipo.

As Figuras 3.18 e 3.19 mostram as reduções de seções dos pilares e em quais níveis elas ocorrem.

Figura 3.19 - Redução dos pilares na el.+36,45.

Para o cálculo das cargas verticais nas vigas e pilares, as memórias do projeto indicam a utilização de tabelas simplificadas para a distribuição das reações de apoio e momentos fletores das lajes sobre as vigas. Como exemplo, na Figura 3.20, encontra-se cópia da memória original da análise das lajes L1, L2 e L3 do pavimento tipo (Figura 3.11).

Na Figura 3.20 pode-se observar que L1 está engastada na laje L2, L2 está engastada em três bordas (L1, L3 e L16) e L3 está engastada em L2 e L17. Relembrando, o modelo aqui adotado para a vinculação das lajes verifica a continuidade em cada direção em no mínimo 1/3 do vão das lajes contiguas para termos um engaste (se o vão possuir parte apoiada e parte engastada, este será apoiado se o valor correspondente for menor que 2/3 do vão total).

As cargas das lajes são 200 kgf/m² de peso próprio, a sobrecarga de utilização de 200 kgf/m² e 80 kgf/m² de revestimento do piso, estas últimas de acordo com a NBR 6120 (1980). O modelo para o cálculo simplificado da carga da alvenaria foi dividir o valor total do peso desta sobre a área da laje.

Na Figura 3.20 pode-se observar também que estão anotados os valores dos momentos fletores (Ma, Mb, Xa e Xb) e reações de apoio que foram obtidos por tabelas de análise simplificada de lajes retangulares.

Processo semelhante foi empregado para o cálculo dos esforços em todas as lajes do pavimento tipo.

Figura 3.20 – Memória de cálculo, do projeto original, de algumas lajes do pavimento tipo, unidades de comprimento em cm, cargas em kgf/m² e momentos em kgf.m/m.

Como se sabe no modelo laje-viga-pilar as reações das lajes são lançadas como cargas das vigas. Na Figura 3.21 está representada a memória de cálculo para a viga V19, com as parcelas de cargas detalhadas. Os esforços solicitantes foram calculados através de programa para vigas contínuas na HP97.

Figura 3.21 – Memória de cálculo, do projeto original, da viga V19 do pavimento tipo, unidades de força em kgf, de comprimento em m.

Após as reações de todas as vigas sobre seus apoios serem calculadas, chega-se à carga nos pilares, conforme mostrado na Figura 3.22. Como exemplo, pode-se ver o valor de 21305 kgf que a viga V19, mostrada acima, descarrega sobre o pilar P13. Da mesma forma, o valor de 20344 kgf mostrado no pilar P1 vem da viga V19.

Figura 3.22 – Memória de cálculo, do projeto original, da descida de cargas por pilares de cada pavimento tipo, unidades de força em kgf.

As Figuras 3.23 a 3.25 são exemplos dos diversos tipos de armações existentes no projeto original: armações positivas e negativas de lajes e de vigas, e o detalhamento das armaduras dos pilares, respectivamente. Todas foram desenhadas manualmente a nanquim e caligrafia técnica, porém, para uma melhor compreensão da armação da viga e do pilar eles foram redesenhados em *software* CAD.

Figura 3.23 – Armação positiva e negativa das lajes do pavimento tipo.

A Figura 3.24 mostra o detalhamento da armação da viga V17 que possui três apoios. O desenho foi feito em CAD para melhorar a visualização.

Figura 3.24 – Armação da viga V17 do pavimento tipo.

A Figura 3.25 apresenta o detalhamento dos pilares P13 e P14 para um lance do pavimento tipo. O desenho foi feito em CAD para melhorar a visualização.

Figura 3.25 – Armação dos pilares P13 e P14 de um lance do pavimento tipo.

3.2.3 Pavimento pilotis - formas e cargas verticais

As Figuras 3.26 a 3.29 são as formas do pavimento pilotis retirado do projeto estrutural original. A planta foi redesenhada a fim de uma melhor visualização.

Figura 3.26 – Planta da segunda laje, pilotis, el.+5,90.

Figura 3.27 – Corte A-A do pilotis.

Figura 3.28 – Corte B-B do pilotis.

Figura 3.29 - Corte C-C do pilotis.

As cargas verticais do pilotis, foram também obtidas, utilizando o modelo laje-vigapilar. Como exemplo, a seguir encontra-se a memória original da análise das lajes L1, L2 e L3 do pavimento pilotis, Figura 3.30, conforme a planta de forma apresentada na Figura 3.26.

As cargas das lajes L1, L2 e L3 incluem sobrecarga de utilização de 400 kgf/m², 100 kgf/m² de camada impermeabilizante (apenas na região descoberta), 300 kgf/m² de peso próprio, 80 kgf/m² de revestimento do piso, dando um total de 880 kgf/m². Ao lado de cada laje foram anotados os valores de momentos fletores (Ma, Mb, Xa e Xb) e reações de apoio que foram obtidos pelas tabelas de análise de lajes.

$$\begin{array}{c} 41. h = \frac{1}{2} \\ h \ge (\frac{430 + 0.60 \cdot 400}{1031}) \cdot 3 \cdot (30)^{3} k_{0} \\ \hline \\ n \ge 0 \\ \hline n \ge 0 \\ \hline \\ n \ge 0 \\ \hline n \ge 0 \\ \hline \\ n \ge 0 \\ \hline n \ge 0 \\ \hline \\ n \ge 0 \\ \hline n \ge 0$$

Figura 3.30 – Memória de cálculo, do projeto original, de algumas lajes do pavimento pilotis, unidades de comprimento em cm, cargas em kgf/m² e momentos em kgf.m/m.

3.2.4 Pavimento da primeira garagem – formas e cargas verticais

As Figuras 3.31 a 3.34 são as formas do pavimento da primeira garagem retirado do projeto estrutural original. A planta foi redesenhada a fim de uma melhor visualização.

Figura 3.31 – Planta da primeira laje, garagem, el.+3,05.

Figura 3.32 – Corte A-A da garagem.

Figura 3.33 – Corte B-B da garagem.

Figura 3.34 – Corte C-C da garagem.

A seguir encontra-se a memória da análise das lajes L1, L2 e L3 do pavimento de garagem (Figura 3.35), conforme a planta de forma mostrada na Figura 3.31. Como pode-se verificar o modelo é o de laje-viga-pilar.

As cargas da laje L1 incluem sobrecarga de utilização de 400 kgf/m², 100 kgf/m² de camada impermeabilizante (apenas na região descoberta), 300 kgf/m² de peso próprio 80 kgf/m² de revestimento do piso, dando um total de 880 kgf/m². Já as cargas das lajes L2 e L3 incluem sobrecarga de utilização de 400 kgf/m², 300 kgf/m² de peso próprio, 80 kgf/m² de revestimento do piso, dando um total de 780 kgf/m².

Ao lado de cada laje foram anotados os valores de momentos fletores (Ma, Mb, Xa e Xb) e reações de apoio que foram obtidos pelas tabelas de análise de lajes.

Este mesmo procedimento foi aplicado nos demais pavimentos da edificação.

Figura 3.35 – Memória de cálculo, do projeto original, de algumas lajes do pavimento de garagem, unidades de comprimento em cm, cargas em kgf/m² e momentos em kgf.m/m.

A memória de cálculo do projeto apresenta os parâmetros utilizados para a consideração do vento sobre o edifício. De acordo com a localização do edifício (Belo Horizonte) e com o mapa de isopletas de velocidade do vento no Brasil da norma NBR 6123 (1988), mostrado na Figura 3.36, a velocidade básica do vento (V₀) considerada no projeto foi de 31,5 m/s.

Figura 3.36 – Mapa do Brasil com as isopletas da velocidade básica do vento. Fonte: NBR 6123 (1988).

Na Figura 3.37 são apresentados os valores adotados para velocidade básica do vento (V₀), fator topográfico (S₁), fator de rugosidade (S₂) e fator estatístico (S₃). Tais fatores são definidos também pela NBR 6123 (1988).

O segundo item mostrado, na Figura 3.37, é o fator topográfico (S1) de 1,0. Esse valor é adimensional e obedece ao critério da NBR 6123 (1988) de acordo com as variações do relevo onde o prédio foi construído. O valor de 1,0 refere-se a terrenos planos ou fracamente acidentados. O terceiro item indicado, na Figura 3.37, é o fator de rugosidade do terreno (S₂), função das dimensões em planta da edificação e da altura do prédio. Para esse edifício, foi adotada a categoria III que corresponde a terrenos planos com obstáculos. O segundo parâmetro é função da dimensão do prédio que o configurou como classe B, correspondente à toda edificação na qual a maior dimensão horizontal ou vertical esteja entre 20 e 50 metros. Como o edifício possui altura de h = 42,55 m (altura que não considera a laje de forro, casa de máquinas e caixa d'água) até o piso da cobertura, e medidas em planta no pavimento tipo de a = 23,79 m e b = 17,975 m (Figura 3.11 mostra as cotas em planta). Portanto, a maior dimensão é a altura e está compreendida entre 20 m e 50 m; por isso, adotou-se classe B. Por fim, o último cálculo do terceiro item é a altura do edifício sobre o terreno feito em três faixas de altura (0 a 10 m, 10 a 30 m e 30 a 60 m).

O quarto item apresentado (Figura 3.37) corresponde ao fator estatístico (S₃), que mede o grau de segurança requerido e a vida útil da edificação. Esse valor é adimensional e de acordo com as prescrições da NBR 6123 (1988) é igual a 1,0 para edificações residenciais ou comerciais. A Figura 3.37 mostra ainda o cálculo da velocidade característica do vento (V_k), em m/s, para as três faixas de altura já especificadas.

ANALISE DO VENTO
1. VELOCOADE BÁSICA.

$$N_{2}= 34,5 \text{ m/A}$$

2. FATOR TOPOGRAFICO
SI=1.0
3. FATOR 52. MEOSIONOE 3. CLASSE B
a) $O \in H \leq 10$
 $S_{2}= 0.60+0.65+0.74 = 0.66$
b) $10 \leq H \leq 30$
 $S_{2}= 0.63+0.90+0.97 = 0.90$
c) $30 \leq H \leq 60$.
 $S_{2}= 1.01+1.04+1.06 = 1.04$
4. FATOR ESTATISTICS: S3
 $S_{3}=1.00$
5. VELOCIONOE CARACTERISTICA
 $M_{K}= NTO S_{1}S_{2}S_{3}$
a) $0 \leq H \leq 10$
 $M_{K}= 31.5 \times 1.0 \times 0.66 \times 10 = 20.8 \text{ m/A}$
b) $10 \leq H \leq 30$
 $M_{K}= 31.5 \times 0.90 = -28.4 \text{ m/A}$
c) $30 \leq H \leq 60$
 $M_{K}= 31.5 \times 1.04 = 3.28 \text{ m/A}$

Figura 3.37 – Memória de cálculo para encontrar as cargas horizontais devido à ação do vento (parte I).

A Figura 3.38 apresenta a memória de cálculo da pressão dinâmica do vento e dos coeficientes de pressão e forma externos, também conforme a NBR 6123 (1988). Na Figura 3.39 tem a imagem da norma supracitada, que mostra de onde vieram os coeficientes que servirão para multiplicar a pressão dinâmica e encontrar a pressão de cálculo; nela foram destacados os valores de C_e encontrados na tabela para A = +0,8 e B = -0,6.

A memória de cálculo também mostra que o vento foi considerado apenas na direção *y* devido ao formato da torre do edifício que tem uma medida superior à outra em 32,4% (a = 23,79 m e b = 17,975 m). Por conta disso, foram previstos pilares e vigas com maiores valores de momento de inércia nessa direção conferindo grande rigidez ao esforço lateral. A Figura 3.40 ilustra os seis pórticos e as direções ortogonais.

Os seis pórticos planos compostos pelos conjuntos de vigas e pilares são: V17, P3, P11 e P20; V18, P4, P12 e P21; V19, P1, P13 e P25; V21, P1, P14 e P26; V22, P5, P15 e P22; V23, P6, P16 e P23. É importante observar que existe uma quase total simetria em torno do eixo *y* fazendo com que os três pórticos de cada lado possam ser igualados entre si.
Figura 3.38 – Memória de cálculo para encontrar as cargas horizontais devido à ação do vento (parte II).

				N	/alores	de C _e	para			
Altura relativa			α = 0°			α = 90°				$c_{_{pe}}$ médio
		A ₁ e B ₁	$A_2 e B_2$	с	D	А	В	$C_1 e D_1$	$C_2 e D_2$	
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 0,8	- 0,5	+ 0,7	- 0,4	+ 0,7	- 0,4	- 0,8	- 0,4	- 0,9
0,2 b ou h (o menor dos dois) $\frac{h}{b} \le \frac{1}{2}$	$2 \le \frac{a}{b} \le 4$	- 0,8	- 0,4	+ 0,7	- 0,3	+ 0,7	- 0,5	- 0,9	- 0,5	- 1,0
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 0,9	- 0,5	+ 0,7	- 0,5	+ 0,7	- 0,5	- 0,9	- 0,5	- 1,1
$\frac{1}{2} < \frac{h}{b} \le \frac{3}{2}$	2≤ <mark>a</mark> ≤4	- 0,9	- 0,4	+ 0,7	- 0,3	+ 0,7	- 0,6	- 0,9	- 0,5	- 1,1
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 1,0	- 0,6	+ 0,8	- 0,6	+ 0,8	- 0,6	- 1,0	- 0,6	- 1,2
$\frac{3}{2} < \frac{h}{b} \le 6$	$2 \le \frac{a}{b} \le 4$	- 1,0	- 0,5	+ 0,8	- 0,3	+ 0,8	- 0,6	- 1,0	- 0,6	- 1,2
			0°]	- 1	[2h	ou b/2 (o meno	r dos dois)

Tabela 4 - Coeficientes de pressão e de forma, externos, para paredes de edificações de planta retangular

Figura 3.39 – Tabela dos coeficientes de pressão e de forma para edificações de planta retangular com destaque para o vento atuando a 90º. Fonte: Adaptado da NBR 6123 (1988).

Figura 3.40 – Indicação dos seis pórticos planos e direções ortogonais sobre a planta do pavimento tipo que possui maior repetição.

A Figura 3.41 mostra o alinhamento dos três pórticos à esquerda com a numeração de barras e nós que foi utilizada para lançamento da estrutura num sistema computacional de análise estrutural para cálculo de deslocamentos e esforços em pórticos planos.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	126 125 117 124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	126 126 125 117 124 108
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	126 125 117 124 108
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	125 117 124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	125 117 124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117 124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$e1. +33, 40 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	124 108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	123
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$e1. +30, 35 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	123
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+30,35 091 092 093 094 095 096 097 098 163 164 165 166 52 66 80 94 108 e1.+27,30 082 083 084 085 086 087 088 089	2.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+27,30 032 033 033 033 033 033 033 033 e1.+27,30 082 083 084 085 086 087 088 089	000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+27,30 082 083 084 085 086 087 088 089	033
$\begin{array}{c} e1.+27,30\\ e1.+27,30\\ \hline 082\\ \hline 082\\ \hline 083\\ \hline 084\\ \hline 085\\ \hline 088\\ \hline 089\\ \hline 090\\ \hline 088\\ \hline 090\\ \hline 000\\ \hline$	e1.+27,30 082 083 084 085 086 087 088 089	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I 159 I 160 IØJ 161 I 162 IMJ 100 I 200	090
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		101
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9 23 37 51 65 79 93 107 000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+24,25 U/3 U/4 U/5 U/6 U/7 U/8 U/9 U/9 U/9 U/9	081
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		120
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+21,20 064 065 066 067 068 069 070 071	072
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	151 152 153 154 195 196	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 21 35 49 63 77 91 105	119
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+18,15 055 056 057 058 059 060 061 062	063
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	147 148 $ \underline{\omega} $ 149 150 $ \underline{\omega} $ 193 194	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6 20 34 ^{\Con} 48 62 76 ^{\Con} 90 104	118
$e1. + 12, 05 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	e1.+15,10 046 047 048 049 050 051 052 053	054
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	143 144 <u>1</u> 145 146 <u>1</u> 191 192	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 19 33 ~ 47 61 75 ~ 89 103	117
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+12,05 037 038 039 040 041 042 043 044	045
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	139 140 🛨 141 142 🔞 189 190	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 18 32 46 60 74 88 102	116
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+9,00 028 029 030 031 032 033 034 035	036
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	135 136 🗠 137 138 🏷 187 188	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 17 31 45 59 73 87 101	115
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1. +5. 90 019 020 021 022 023 024 025 026	027
$e1. +3, 05 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	131 132 \\ 133 134 \Q 185 186	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 16 30^{10} 44 58 72^{10} 86 100	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e1.+3,05 010 011 012 013 014 015 016 017	114
e1.+0,05 001 002 003 004 005 006 007 008 009	127 128 - 129 130 9 183 184	114 018
e1.+0,05 001 002 003 004 005 006 007 008 009	$1 15 29 \overline{2} 43 57 71 \overline{2} 85 99 10 10 10 10 10 10 10 10$	114 018
anananana manananan nanananan nanananan nananana	e1.+0,05 001 002 003 004 005 006 007 008	114 018 113
P20 P11 P3 P21 P12 P4 P25 P13 P1	P20 P11 P3 P21 P12 P4 P25 P13	114 018 113 009

Figura 3.41 – Pórticos alinhados no projeto original.

Já a Figura 3.42 é parte da memória de cálculo original que mostra a ação do vento sobre pilares pertencentes aos pórticos planos: no caso são apresentados os esforções nos pilares P1 e P20.

-4	1952	- 127			-4-	1464	+135	Ť
	3904	118				2927	126	3.05
3,80	3904	103			0,34	2927	-117	u u
S	3904	100			V	2927	108	<i>u</i>
-	3415	191				2561	- 95	4.30,30.
	2926	82			2	2195	30	
	2326	73				2195	81	t.
33	2926	64		Ţ	52	2195.	72	-
40.	2926	1 <5			Ő	2195	43	Т и
	29.2%		FT			2195		† u
	22/10	46				1/2/	- 54	- Ii
	2248	- 37			*	1686	- 45 .	3,05
	1592	28			3	1136	-36	3.15
1,63	1531	- 19			16,2	1148	27	280
.8	1492	10				1119	- 18	-
♦	772	1			V	579	3	3,0
		P20				4	P1	

Figura 3.42 – Memória do projeto original com as cargas, em kgf, provenientes da ação do vento sobre os pilares P1 e P20.

Como se viu na Figura 3.38 a pressão de cálculo do vento foi modelada em três faixas de carga uniformemente distribuída ao longo da altura. Valores estes estão reapresentados na Figura 3.42 juntamente com os valores encontrados para as forças de arrasto por pavimento.

Os valores das forças estáticas devidas ao vento apresentados na Figura 3.42 foram determinados por meio de uma adaptação da Equação 3.1 (item 4.2.2 da NBR 6123, 1988):

$$F = (C_e - C_i).q.A \tag{3.1}$$

Onde,

F = força devida ao vento, em kgf; C_e = coeficiente de forma externo; C_i = coeficiente de forma interno; q = pressão de cálculo do vento, em kgf/m²; A = área frontal perpendicular ao vento, em m².

Como pode-se observar na Figura 3.38, o projeto original não levou em consideração o coeficiente de forma interno. Essa opção é conservadora, pois as paredes possuem aberturas e são consideradas permeáveis segundo a NBR 6123 (1988), logo, os valores do coeficiente de forma interno seriam positivos e, pela Equação 3.1, reduziriam o valor da força.

O valor da área foi obtido multiplicando-se a soma da metade do pé-direito inferior e a metade do pé-direito superior pela dimensão que recebe o vento (a = 23,79 m). Os valores de pressões de cálculo indicados na Figura 3.42 já estão minorados pelo coeficiente de forma respectivo, conforme mostrado na Figura 3.38. Porém é importante observar que os valores das forças encontradas na Figura 3.42 não estão considerando a existência de dois conjuntos simétricos de três pórticos alinhados. Portanto, os valores dessas forças devem ser reduzidos à metade para que possam ser lançados como cargas nos respectivos nós.

Foi realizado o lançamento dos três pórticos planos alinhados (Figura 3.41) no programa *Structural Analysis by Finite Elements* para cálculo dos deslocamentos e esforços solicitantes. A Figura 3.43 apresenta memória do projeto na qual são listadas as barras, seus respectivos nós iniciais e finais, área e momento de inércia da seção transversal.

Por exemplo, pela Figura 3.41, pode-se ver que o primeiro lance do pilar P20 foi representado pela barra 1 entre os nós 1 e 10. Conforme a Figura 3.31, da planta da primeira laje, o pilar P20 possui 30 x 90 cm de seção transversal. Logo, sua área é 2700 cm² ou 0,27 m² e seu momento de inércia na direção *y* é 1,82 x 10⁶ cm⁴ ou 0,0182 m⁴.

DEFINI	ÇÃO DA	s BAR	RAS	
		100	24	1 . S
BARRA	1: NO	2:NO	A	MOM INÉECIA
			1	8 6
1	7	.10	0,27	0,0182
2	10	73	0,47	0,0182
3	13	28	0,24	0,0182
4	28	37	0,24	9,0128
5	37	46 .	0,24	0,0128
6	46	55	0,24	85100
F	55	64	0,15	0 0045
8	64	73	0.15	1.11
. 9	73	82 .	0.15	11
10	82	2 L C	. 015 .	11
77	31	. 700	0.15	11 -
75	100	109	9,15	90045
13	203	118	9.10	60013
14	. 118	FSL	0.10	0.0013
15	2	77	0,60	6,2000
76	11	20	9,51	0,Jaas
7.4	20	29	9,48	0,1024

Figura 3.43 – Memória do projeto original com numeração das barras, dos respectivos nós iniciais e finais, área e momento de inércia da seção transversal e cargas aplicada nos nós.

A Figura 3.44 apresenta uma parte do relatório de saída do programa de análise estrutural com os deslocamentos horizontais (U) e verticais (V), em metro, e a rotação (Omega), em radianos, em cada nó da estrutura. É interessante observar que os nós 1 ao 9 não possuem qualquer deslocamento, pois, são as bases engastadas dos pilares P20, P11, P3, P21, P12, P4, P25, P13 e P1.

NODE DISPLACEMENTS

Node		17	Gæega
1	.000000	.000000	.000000
2	.000000	.000000	.000000
3	.000000	.000000	.000000
ų	.000000	,000000	.000000
L'U	.000000	,000000	.000000
6	.000000	.000000	,000000
7	.000000	.000000	.000000
8	.000000	.000000	.000000
9	.000000	.000000	.000000
10	.000603	.000130	000351
11	.000575	~.000033	000346
12	.000566	000064	000334
1. Z	.000567	.000180	000344
14	.000556	~.0000 33	000337
15	.000557	000064	-,000329
16	.000559	,000092	-,000048
17	.000573	000015	000340
18	.000573	000017	000367

Figura 3.44 – List	agem da saída	do programa	de análise	estrutural of	com os	resultados de	е
	deslocamento	s, em metros,	e rotação,	em radiano	DS.		

59

A Figura 3.45 prossegue com parte do relatório de saída do programa mostrando as barras, os respectivos nós iniciais (I) e finais (J), bem como as forças horizontais (FX1, FX2), verticais (FY1, FY2) e momentos fletores (MZ1 e MZ2).

BEAM C	ORNER	FORCES						
Beas	i	J	FX1	F¥1	MZ1	FX2	F¥2	M72
a second	the state	10	-862.	-22712.	4278.	862.	22712.	-1691.
2	. 10	19	-1460,	-21679.	4383.	1460.	21679.	-297.
3	19	28	-2201.	-19847.	5014.	2201.	19847.	1920.
Д	28	37	-2298.	-17473,	4167.	2298.	17473.	2842.
5	37	46	-2361.	-14825,	394i .	2361.	14825.	3260.
6	46	55	-2418.	-12089,	3755.	2418.	12089.	3619.
7	55	64	-1577.	-9804.	2204.	1577.	9804.	2605.
8	64	73	-1674.	-7745.	2515.	1674.	7745.	2590.
9	73	82	-1456,	-5852.	2140.	1456.	5852.	2301.
10	82	91	-1365.	-4146.	1967.	1365.	4146.	2197.
11	91	100	-1061.	-2699.	1456.	1061.	2699.	i780.
12	100	109	-929,	-1523.	1193.	929.	1523.	1641.

Figura 3.45 – Listagem de saída do programa de análise estrutural com os resultados dos esforços solicitantes nas extremidades das barras: forças, em kgf, e momentos, em kgf.m.

Com estes esforções solicitantes nas extremidades das barras foram traçados os diagramas de esforço cortante e momento fletor para as vigas de cada pavimento. A Figura 3.46, mostra as forças e momentos nas extremidades das barras 179 e 180 correspondentes à viga V17 do piso da cobertura. Essa viga está se apoiando sobre os pilares P20, P11 e P3 respectivamente nos nós 127, 128 e 129. A Figura 3.47 ilustra o diagrama de momento fletor e esforço cortante para a viga V17 no nível da cobertura obtidos dessa forma.

BEAM	CORNER	FORCES						
Beas	I	J	FX1	F¥1	MZ1	FX2	FY2	MI2
178 179 180	122 127 128	123 128 129	-101. 751. 47.	-538. -159. -324.	-2213. -383. -1379. -437.	101. -751. -47. 863.	538. 159. 324. 187.	-2095. -442. -1210. -534.

Figura 3.46 – Listagem de saída do programa de análise estrutural com os resultados dos esforções solicitantes nas extremidades das barras 179 e 180 correspondentes à viga V17 no piso da cobertura: forças, em kgf, e momentos, em kgf.m.

Figura 3.47 – Diagrama de momento fletor, em kgf.m, e força cortante, em kgf, na viga V17 no piso da cobertura sob a ação do vento.

3.2.6 Locação de pilares e tubulões

As Figuras 3.48 e 3.49 apresentam os desenhos de locação dos pilares na fundação e dos tubulões dimensionados para receber as cargas do projeto original.

No modelo estrutural lançado no sistema computacional foi considerada a restrição à translação na direção de *y* e à rotação em torno do eixo *x*, somente para os apoios dos pilares P1, P3 a P6, P11 a P16, P20 a P23, P25 e P26 conforme a análise dos seis pórticos rígidos da Figura 3.40.

Figura 3.48 – Planta de locação dos centros de carga dos pilares na fundação.

P110

3.3 Modelagem Computacional

O edifício, descrito no item 3.1, foi modelado no sistema computacional CAD/TQS®, versão 18.17 que é capaz de fazer a análise estrutural e o dimensionamento das seções dos elementos e seu detalhamento, inclusive com desenhos de formas e armações. O sistema comercial CAD/TQS® é um dos *softwares* mais difundidos em escritórios de projetos no Brasil o que facilita o acesso para os profissionais da engenharia de estruturas e, por isso, foi a ferramenta adotada para essa pesquisa.

O CAD/TQS® combina o modelo de grelha (lajes e vigas) para análise dos deslocamentos e esforços oriundos das ações verticais com o modelo de pórtico espacial (vigas e pilares) para análise dos deslocamentos e esforços decorrentes das ações horizontais.

3.3.1 Dados do edifício modelado

A Figura 3.50 apresenta um corte esquemático do modelo estrutural com os níveis e as suas elevações em metro. A Figura 3.51 mostra a visualização 3D.

Figura 3.50 - Corte esquemático do modelo estrutural.

Figura 3.51 – Visualização 3D do modelo estrutural.

A Figura 3.52 é uma imagem da tela do CAD/TQS® onde é escolhido o modelo estrutural a ser adotado na análise em questão (aba Modelo). Optou-se por utilizar o modelo IV. Como descrito pelo desenvolvedor, este modelo refinado é constituído de grelhas e pórticos espaciais trabalhando em conjunto. Inclui também o efeito de diafragma rígido das lajes devidamente incorporado.

Nos pavimentos simulados por grelha de lajes, os esforços resultantes das barras de lajes sobre as vigas são transferidos como cargas para o pórtico espacial, ou seja, há integração entre ambos os modelos. A observação na parte inferior da Figura 3.52 contém maiores detalhes sobre o modelo.

	Modelo Pavimentos Materi	iais Cobrimentos Cargas Critérios G	erenciamento					
Mod	elo estrutural do edifício:							
1.0	Modo manual		?					
11 0	Esforços verticais por vigas co	ontinuas ou grelhas, sem vento	?					
III C	Esforços verticais por vigas ou	u grelha, vento por pórtico espacial	?					
IV 🤆	Modelo de vigas e pilares, flex	ibilizado conforme critérios.	?					
V C	🔿 Modelo conjunto de Pórtico/G	ārelhas/Vigas (versão 10 e anteriores)	?					
VI C	[°] Modelo de vigas, pilares e laje	es, flexibilizado conforme critérios.	?					
A estrutura se comporta como um corpo único, sem juntas ou torres separadas C Comportamento de corpos separados por espaços ou juntas, sob ação de vento								
Vig	jas de transição / tirantes	Processo P-Delta	Análise dinâmica					
Vig	jas de transição / tirantes	Processo P-Delta Pré-moldados	Análise dinâmica Efeito incremental					

Figura 3.52 – Modelo de cálculo IV foi o escolhido nos dados do edifício.

A Figura 3.53 apresenta a aba Pavimentos que permite nos diferentes níveis a escolha do modelo de cálculo para lajes: no caso o modelo escolhido foi de grelha de lajes planas. As várias denominações para os pavimentos tipo se deve às reduções das seções transversais dos pilares em diferentes níveis no projeto original (Figuras 3.18 e 3.19).

No caso específico da imagem da Figura 3.53 o pavimento selecionado é o "Tipo31", correspondente às elevações el.+18,15, el.+21,20 e el.+24,25. Portanto, o número de pisos, mostrado na figura, é igual a 3. O pé-direito é de 3,05 m.

Gerais Modelo Pavimentos Materiais Cobrimentos Cargas Critérios Gerenciament
Pavimento Tipo31 Título Tipo31 Núm. do projeto 14 Número de pisos 3 Pé-direito (m) 3.05 Classe Tipo Título opcional Tipo31 Prefixo de plantas Tipo2Red Modelo estrutural Ipo3 Greiha de lajes planas Ipisos auxiliares Pisos auxiliares Pisos auxiliares

Figura 3.53 – Pavimentos criados, pé-direito e modelos para lajes escolhido.

A Figura 3.54 (aba Materiais) revela que a classe de resistência do concreto selecionada foi a C15, para concretos com resistência característica f_{ck} de 15 MPa. Além disso, a verificação de f_{ck} mínimo precisou ser desativada pois o valor da resistência do concreto exigida pela norma brasileira atual é superior ao indicado para a época na qual o projeto foi realizado. Isso não implica em nenhum problema pois o cálculo será realizado com a tensão resistente e o módulo de elasticidade correspondentes.

Outra informação relevante na Figura 3.54 é a definição da Classe de Agressividade Ambiental I, correspondente a baixo risco de deterioração.

Figura 3.54 – Aba Materiais com informações sobre os materiais.

A Figura 3.55 apresenta a aba Cobrimentos. Nessa imagem pode-se observar que os cobrimentos das lajes, vigas e pilares foram definidos como 1,5 cm. Além disso, a verificação de cobrimento mínimo precisou ser desativada pois o valor da camada protetora de concreto exigida pela NBR 6118 (2014) é superior ao indicado para a época na qual o projeto foi realizado. Isso não implica em problemas para a comparação pois o cálculo será realizado com a altura útil da seção transversal correta.

Cobrimentos em cm Lajes convencionais Lajes protendidas Vigas	Inferior 1.5 1.5 1.5	Superior 1.5 1.5	Difer sec inf sup 0 0	Valores de norma Valores diferenciados por planta Pré-moldados
Pilares Fundações	1.5 2.5		1	Fatores atenuantes Rígido controle de qualidade e de tolerância de medidas na obra
⊂Cobrimento de eleme Vigas e lajes ⊂Verificação de cobrir	entos em cont 3	ato com o s Pilares	olo em cm 4.5	Classe de agressividade ambiental
Maior altura de bain Maior bitola de viga Maior bitola de lajes IV Desativar a veri	ha 60 /pilar 25 s 12.5 ficação dos c	mm mm mm cobrimentos	mínimos	Alterar
Combrimento em cm d	a amadura in	ferior (positi	va) das laies	

Figura 3.55 – Aba Cobrimentos com informações sobre os valores dos cobrimentos adotados para os elementos estruturais.

3.3.2 Cargas verticais

As cargas verticais são lançadas no modelador estrutural. Podem ser cargas concentradas, distribuídas por área, distribuídas lineares. Nesta pesquisa as cargas lineares foram lançadas sobre as vigas que recebem alvenarias e a carga distribuída sobre as lajes foi definida nos dados de cada laje. A Figura 3.56 apresenta o modelador estrutural na região das lajes L1, L2 e L3 do pavimento tipo com os valores das cargas lineares (CL) e os valores das cargas distribuídas sobre as lajes (CD). Além disso, foi mostrado na Aba Seção/Carga dos dados da laje L2 a carga distribuída que foi definida com uma parcela permanente e a outra acidental, conforme os dados da Figura 3.20.

CL 0,41	CL 🕞 767	(CL 🔒 41	CL 0.7	670,9071.4
CD 0.18/0.2			400 60	CD 1	.05/0.2
	a da <mark>na</mark> da se		ee ee		
					CD-0.08/0
					L6
	<mark>ب</mark>		2		5 m n n 4
1.4	57		57		LD 0.08/0
LI	o <mark>.</mark>		ó	L3	o c
CD 0 145/0	2	00 0 21/0 2		CD A 2/A 2	L7 -
40 0771070	·· ·	CD 0.2770.2	<u>ပ</u>	CD 0.2/0.2	0
					CD 0.08/0
					L8
					CD 0.08/0
CL 0.767 CL L	1.575				
	L 1 2				
Deducidadaian					
Dados de lajes					~
Identificação Seção/Carga	Modelo Grelha	Temper/Retração Def	alhamento Cata	alogadas	
Maciça Nervurada R N	ervurada T Vigota	Trelicada Pré-fabrica	da Mista		
. [Laia			1
_		Laje	SA Ferres	sura	
<u>E</u> spessura 8	cm		<u></u>		
		viga			
Rebaixo (cm) 0	Carga distribuída	(tf/m²) 0.21/0.2			Al <u>t</u> erar
Rebaixo da laie, positivo se	abaixo do nível conv	rencionado do pavimento	o.em.cm.		
			, on on.		
				OK Can	celar
Definição de carregamentos					>
Caso/Carga					/
0.21/0.2	Numéricas ,	Alfanuméricas			-
	Carga distri	buída por área			1
	Carga princ	ipal ou permanente	0.21	tf/m2	
	Carga acid	ental	0.2	tf/m2	
			,		
					1
					_
Inserir Anagar	Caso 0001-TO	DAS - Todas permanent	es e acidentais d	os pavimentos	•
				parimentos	
Entre com o valor total da carg	ja, ou a componente tes definida po edifíc	permanente, caso haja : in	eparação de		
Sargas asideritais e permahen	tes dominida no calífic				
			Γ	OK Cancelar	

Figura 3.56 – Cargas distribuídas sobre a laje L2 do pavimento tipo.

A Figura 3.57 apresenta parte do desenho da malha da grelha discretizada para o pavimento tipo. Através desta malha montada automaticamente o sistema é capaz de fazer a distribuição das cargas e resolver o sistema de equações a fim de encontrar os deslocamentos e esforços em cada nó e barra. Todas as cargas verticais distribuídas por unidade de comprimento ou de área bem como cargas concentradas são aplicadas no modelo estrutural e transmitidas à grelha gerada. Por fim, os esforços solicitantes gerados são transferidos para os sistemas de dimensionamento de lajes e vigas.

Figura 3.57 – Malha de 35 x 35 cm da grelha das lajes e vigas de parte do pavimento tipo.

3.3.3 Cargas horizontais

A força global na direção do vento é obtida através da Equação 3.2 (item 6.3.6 da NBR 6123, 1988):

$$F_a = C_a. q. A_e \tag{3.2}$$

Onde,

 F_a = força de arrasto na direção do vento, em kgf; C_a = coeficiente de arrasto para a direção considerada; q = pressão de cálculo do vento, em kgf/m²; A_e = área efetiva frontal perpendicular ao vento, em m².

A Figura 3.58, retirada da norma NBR 6123 (1988), apresenta o ábaco de cálculo do coeficiente de arrasto (C_a) da Equação 3.2 em edificações paralelepipédicas com ventos de baixa turbulência.

Figura 3.58 – Ábaco para determinação dos coeficientes de arrasto em edificação paralelepipédica em vento de baixa turbulência. Fonte: NBR 6123 (1988).

As Figuras 3.59 e 3.60 apresentam o cálculo dos coeficientes de arrasto para as dimensões do edifício, em planta no pavimento tipo e altura total de ação do vento (dados conforme a memória de cálculo original presente na Figura 3.38) para o ábaco de vento em baixa turbulência.

Além disso, a Figura 3.60 possui a definição da norma NBR 6123 (1988) de alta turbulência, o que ajuda a justificar a escolha pelo ábaco de baixa turbulência, já que não há informação definitiva da altura média das edificações na região onde o prédio foi construído.

Figura 3.59 – Cálculo do coeficiente de arrasto do vento na direção y a partir das medidas do edifício com a utilização do ábaco de baixa turbulência de acordo com a norma NBR 6123 (1988).

Ângulo	Largura (m)	🗆 – Turbulência do ver	nto:
90	23 79	🖲 Baixa	
270	23.79	C Alta	
2/0	17.98		
190	17.98	Altura com vento (r	n]
100	17.50	42.55	
		Estimar	
		não excede duas ve	zes a altura
argura na direção peficientes de arra	do vento asto CA	vizinhanças, estenda na direção e sentido incidente, para uma uma distância mínim - 500m p/até 40m di - 1000m p/até 55m di - 2000m p/até 70m di - 3000m p/até 80m di	es nas endo-se esta edificação a a de: e altura; le altura; le altura; le altura;
rgura na direção eficientes de arra Ângulo	do vento asto CA CA	 L1/L2 vizinhanças, estende na direção e sentido incidente, para uma o uma distância mínim. 500m p/até 40m de 1000m p/até 55m de 2000m p/até 80m de 3000m p/até 80m de 3000m p/até 80m de 3000m p/até 80m de 11/L2 	es nas endo-se esta edificação a a de: e altura; le altura; le altura; le altura. H/L1
rgura na direção eficientes de arra Ângulo 90	do vento asto CA CA 1.30	L1/L2 1.32	es nas endo-se esta do vento edificação a a de: e altura; le altura; le altura; le altura, he altura. <u>H/L1</u> 1,79
rgura na direção eficientes de arra Ângulo 90 270	do vento asto CA CA 1.30 1.30	L1/L2 L1/L2 1.32 1.32	es nas endo-se esta do vento edificação a a de: e altura; le altura; le altura; le altura, le altura. <u>H/L1</u> 1,79 1,79
rgura na direção eficientes de arra <u>Ângulo</u> 90 270 0	do vento asto CA CA 1.30 1.30 1.16	L1/L2 1.32 1.32 0.76	es nas endo-se esta do vento edificação a a de: e altura; le altura; le altura; le altura he altura. <u>H/L1</u> 1,79 1,79 2,37

Figura 3.60 – Cálculo dos coeficientes de arrasto do vento a partir das medidas do edifício e definição de alta turbulência de acordo com a norma NBR 6123 (1988).

A Figura 3.61 apresenta o item Vento da aba Cargas. Nessa aba estão os parâmetros para estimativa da pressão devida à ação do vento sobre a estrutura de acordo com a norma NBR 6123 (1988). É importante observar a convenção dos ângulos de incidência do vento e que os dados de V₀, S₁, S₂ e S₃ estão definidos exatamente iguais à memória do projeto original.

Como no projeto original foi considerada apenas a ação do vento na direção *y*, a primeira modelagem realizada também desprezou a ação na direção *x*. Dessa forma, os valores de coeficiente de arrasto e os ângulos indicados foram evidenciados na Figura 3.61. Porém, uma alteração importante teve de ser realizada nessa definição para melhor representar o projeto original e adequar a

comparação entre os modelos: o coeficiente de arrasto precisará ser alterado para 1,4, pois, conforme as Figuras 3.38 e 3.39, os coeficientes de forma do projeto original foram adotados 0,8 de pressão e 0,6 de sucção, totalizando 1,4.

Figura 3.61 – Parâmetros da ação do vento, para modelo com vento apenas na direção y.

3.4 Modelagem computacional levando em consideração o vento atuando nas direções *x* e *y*

Além da modelagem com a ação do vento apenas na direção *y*, foi realizada uma modelagem considerando a ação do vento nas duas direções para avaliar se a opção de desprezar a ação em *x* foi uma decisão válida para projetar o edifício.

Para a nova modelagem, o edifício criado no *software* CAD/TQS® foi duplicado para um novo edifício. Nesse novo edifício foram realizadas algumas modificações antes do processamento.

3.4.1 Restrições nos apoios da fundação

Como ressaltado anteriormente, foi considerada a restrição à translação na direção de *y* e à rotação em torno do eixo *x*, somente para os apoios dos pilares P1, P3 a P6, P11 a P16, P20 a P23, P25 e P26. Além disso, para esse novo modelo, foi necessário adicionar restrições à translação na direção de *x* e à rotação em torno do eixo *y*, somente para os apoios dos pilares P1, P2 a P7, P11 a P17 e P19 a P26, pois são alguns dos pilares da torre que fariam a composição de cinco pórticos rígidos da Figura 3.62.

Figura 3.62 – Indicação dos cinco pórticos planos e direções ortogonais sobre a planta do pavimento tipo que possui maior repetição.

3.4.2 Cargas horizontais

Assim como realizado no item 3.3.3, o coeficiente de arrasto do vento na direção *x* foi determinado, como mostrado na Figura 3.63, através do ábaco de vento em baixa turbulência.

Figura 3.63 – Cálculo do coeficiente de arrasto do vento na direção *x* a partir das medidas do edifício com a utilização do ábaco de baixa turbulência de acordo com a norma NBR 6123 (1988).

A Figura 3.64 apresenta o item Vento da aba Cargas. Os dados estão iguais ao item 3.3.3. Porém, uma alteração importante teve de ser realizada nessa definição para manter a coerência do projeto original e adequar a comparação entre os modelos: o coeficiente de arrasto precisará ser alterado para 1,4, pois, conforme a Figura 3.65, os coeficientes de forma adotados são 0,8 de pressão e 0,6 de sucção, totalizando 1,4.

Figura 3.64 – Parâmetros da ação do vento, para o modelo com vento nas duas direções.

	Valores de C _e para									
Altura relativa		α = 0°			α = 90°				c _{pe} médio	
		A ₁ e B ₁	A ₂ e B ₂	С	D	Α	В	C ₁ e D ₁	C ₂ e D ₂	
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 0,8	- 0,5	+ 0,7	- 0,4	+ 0,7	- 0,4	- 0,8	- 0,4	- 0,9
0,2 b ou h (o menor dos dois) $\frac{h}{b} \le \frac{1}{2}$	$2 \le \frac{a}{b} \le 4$	- 0,8	- 0,4	+ 0,7	- 0,3	+ 0,7	- 0,5	- 0,9	- 0,5	- 1,0
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 0,9	- 0,5	+ 0,7	- 0,5	+ 0,7	- <mark>0,</mark> 5	- 0,9	- 0,5	- 1,1
$\frac{1}{2} < \frac{h}{b} \le \frac{3}{2}$	$2 \le \frac{a}{b} \le 4$	- 0,9	- 0,4	+ 0,7	- 0,3	+ 0,7	- 0,6	- 0,9	- 0,5	- 1,1
	$1 \le \frac{a}{b} \le \frac{3}{2}$	- 1,0	- 0,6	+ 0,8	- 0,6	+ 0,8	- 0,6	- 1,0	- 0,6	- 1,2
$\frac{3}{2} < \frac{h}{b} \le 6$	$2 \le \frac{a}{b} \le 4$	- 1,0	- 0,5	+ 0,8	- 0,3	+ 0,8	- 0,6	- 1,0	- 0,6	- 1,2

Tabela 4 - Coeficientes de pressão e de forma, externos, para paredes de edificações de planta retangular

Figura 3.65 – Tabela dos coeficientes de pressão e de forma para edificações de planta retangular com destaque para o vento atuando a 0º. Fonte: Adaptado da NBR 6123 (1988).

3.5 Modelagem computacional levando em consideração resistência característica à compressão do concreto f_{ck} igual a 25 MPa

Um terceiro modelo foi criado para avaliar o impacto da alteração da resistência característica à compressão do concreto f_{ck} para 25 Mpa, principalmente nos pilares. Os pilares, por serem elementos predominantemente solicitados à compressão, possivelmente terão uma grande redução do peso de aço ao se aumentar o valor do f_{ck} de 15 MPa para 25 MPa, que é o valor mínimo de classe de concreto para edifícios inseridos na Classe de Agressividade Ambiental II, conforme a Tabela 2.3 (NBR 6118, 2014).

Para a nova modelagem, o edifício criado no *software* CAD/TQS®, com vento em apenas uma direção, foi duplicado para um novo edifício. Nesse novo edifício, foi realizada a modificação na classe de concreto das vigas, pilares e lajes para C25, antes do processamento, apresentada na Figura 3.66.

Gerais Modelo Pavimentos Materiais Cobrimento	s Cargas Critérios	Gerenciamento			
Modo de fornecimento de Fck	Fcks gerais	Classe			
C Definir valores em kgf/cm2	Vigas/Lajes	C25 -			
 Usar somente valores tabelados 	Pilares	C25 🔻			
Concreto para elementos estruturais em:	Fundações	C15 -			
 Concreto armado 		,			
C Concreto protendido	Desativar a ver	ificação de Fck mínimo			
Classe de agressividade ambiental	- Fcks diferenciados p	oor piso/planta			
I - Fraca - Rural / Submersa	Vigas/Lajes				
]					
Alterar		Pilares			
	Elementos pré-mold	ados			
	Alterar				
	Alvenaria estrutural				
	Blocos vazados de CONCRETO				
	Fabricantes p/o projeto				
Os Ecke definidos pesta tela serão usados pos modelo	de nórtico espacial e	grelhas e no			

Us FCKs definidos nesta tela serao usados nos modelos de portico espacial e grelhas e no dimensionamento/detalhamento de vigas, pilares, lajes, escadas e fundações.

Figura 3.66 – Aba Materiais com classe C25 para os elementos estruturais.

4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Este capítulo apresenta os resultados obtidos da leitura da memória de cálculo, dos desenhos de formas e armações do projeto original bem como da análise e detalhamento dos elementos estruturais obtidos do processamento e edição gráfica do edifício no sistema computacional CAD/TQS®, versão 18.17. O capítulo apresenta ainda um estudo comparativo desses resultados.

4.1 Análise dos deslocamentos em lajes, vigas e nos pórticos

O primeiro parâmetro para comparação foi o valor dos deslocamentos verticais de lajes e vigas além do deslocamento horizontal no alto do edifício.

4.1.1 Deslocamento das lajes - resultados do projeto original

Os deslocamentos das lajes no projeto original foram calculados conforme tabelas simplificadas que levavam em consideração a rigidez infinita das vigas de apoio tornando-as indeslocáveis. A Tabela 4.1 apresenta os valores das flechas e a verificação do limite do projeto original.

Laje	l _x (cm)	l _y (cm)	0,7q (kgf/m²)	2,4g+0,7q (kgf/m²)	h (cm)	a ₁ (cm)	a _{1, lim} (cm)	a ₂ (cm)	a _{2, lim} (cm)	Situação
L1	338	645	140	968	8	0,12	0,68	0,84	1,13	Ok
L2	335	789	140	1124	8	0,06	0,67	0,47	1,12	Ok
L3	335	789	140	1100	8	0,12	0,67	0,92	1,12	Ok

Tabela 4.1 – Verificação da flecha das lajes para o projeto original

Onde:

- l_x vão teórico na direção *x*
- l_y vão teórico na direção y
- 0,7q carga acidental reduzida
- 2,4g+0,7q carga total combinada
- h espessura da laje
- a₁ flecha inicial
- a_{1, lim} valor máximo admissível (I/500), onde l é o vão teórico menor, para a carga acidental reduzida 0,7q
- a₂ flecha final considerando o efeito da fluência
- a_{2, lim} valor máximo admissível (I/300), onde l é o vão teórico menor, para a carga total combinada 2,4g+0,7q

4.1.2 Deslocamento das lajes e vigas - resultados da modelagem do edifício no sistema computacional

A Figura 4.1 apresenta as isopletas de deslocamentos verticais nas lajes L1, L2 e L3 do pavimento tipo, para a combinação quase permanente (carga permanente mais 30% do valor da carga acidental). Os valores encontram-se multiplicados por 2,46 para estimar o deslocamento no tempo infinito.

Na Figura 4.1 podem-se observar os deslocamentos máximos (flechas) das Lajes L1, L2 e L3 em 1,17 cm, 0,70 cm e 1,68 cm, respectivamente. Este resultado foi obtido através do modelo de grelha para lajes planas. As flechas máximas das vigas V15, V17, V18 e V19 entre as lajes L1, L2 e L3 também estão indicadas na Figura 4.1.

Ainda na Figura 4.1, é importante ressaltar que nos pilares o deslocamento está nulo. Porém nas vigas, assim como nas lajes, há pequenas flechas. Isso pode ser observado pelas curvas de isopletas que não se fecham entre uma laje e outra.

A Tabela 4.2 apresenta os valores das flechas e faz a verificação para o critério de flecha limite da NBR 6118 (1980). As flechas das lajes foram calculadas subtraindose os valores das flechas das vigas.

tipo com sentido positivo para cima, em cm.

Laje ou Viga	l _x (cm)	l _y (cm)	Flecha da grelha (cm)	h (cm)	flecha _{lim} (cm)	Situação
L1	338	645	0,74	8	1,13	Ok
L2	335	789	0,27	8	1,12	Ok
L3	335	789	0,98	8	1,12	Ok
V15	355	-	0,04	60	1,18	Ok
V17	803	-	0,43	60	2 , 68	Ok
V18	803	-	0,44	60	2,68	Ok
V19	970	-	0,96	60	3,23	Ok

Tabela 4.2 – Verificação das flechas das lajes e vigas para o modelo estrutural

Onde:

- I_x vão teórico na direção *x*
- I_v vão teórico na direção y
- h altura da laje ou da viga

flecha_{lim} valor máximo admissível (I/300), onde I é o vão teórico menor, para a combinação quase permanente (NBR 6118, 1980) Na Tabela 4.3 os deslocamentos das três lajes do pavimento tipo (L1, L2 e L3) foram comparados a fim de explicitar as diferenças do cálculo simplificado com o computadorizado. Com a subtração dos valores das flechas das vigas, o modelo da grelha apresenta deslocamentos para as lajes próximos aos calculados pelo método simplificado.

Laje	Flecha do modelo simplificado (cm)	Flecha da grelha <mark>(</mark> cm)	Diferença no modelado (%)	
L1	0,84	0,74	-12%	
L2	0,47	0,27	-43%	
L3	0,92	0,98	7%	

Tabela 4.3 – Comparação dos valores das flechas das lajes

4.1.3 Deslocamento dos pórticos - resultados da modelagem do edifício no sistema computacional

Na Figura 4.2 são apresentados os valores do deslocamento máximo no topo do edifício e a verificação da referência normativa. Estão identificados os resultados dos deslocamentos horizontais para o modelo com vento em uma única direção e o resultado para o vento nas duas direções.

Na primeira hipótese o valor máximo de deslocamento é de 0,65 cm considerandose a combinação frequente para a verificação da NBR 6118 (2014), o caso de carregamento preponderante foi a ação do vento na direção *y*. Já na segunda hipótese o valor máximo de deslocamento é de 2,16 cm para o caso de carregamento do vento na direção *x*. De qualquer modo, a verificação é atendida para as duas situações.

É importante observar que o valor máximo de deslocamento na direção *x* é superior ao valor máximo de deslocamento na direção *y*. Isso poderia ser esperado devido aos baixos momentos de inércia dos pilares da torre nessa direção, exceto o pilar P1, além da pequena rigidez das vigas dos cinco pórticos sugeridos na Figura 3.62.
Ainda na Figura 4.2, é relevante a diferença dos valores entre pisos que, para a primeira hipótese é de apenas 0,10 cm e para a segunda hipótese é de 0,19 cm (aumento de 90%). Já a diferença entre os valores no topo do edifício é de 232%, o que indica a importância de se fazer o cálculo para as duas direções em quaisquer edifícios.

Além disso, a Figura 4.2 também apresenta o resultado da deslocabilidade do edifício para o caso de vento em uma direção apenas, porém com f_{ck} de 25 MPa.

	vento em uma dire	eçao ape	nas (y)	
Comportamento em	Serviço - ELS			
Deslocamentos horizontai	s			
altura total do edifício	- H (m) 49.9			
Altura entre pisos - Hi (m) 3.0			
Deslocamento	Valor máximo (cm)	Caso	Referência (cm)	Situação
Topo do edificio (cm)	(H/ 7647) .65	5	(H/ 1700) 2.9	4 OK
Entre pisos (cm)	(Hi/ 3106) .10	5	(Hi/ 850) .3	6 OK
Caso 5 - Atuação do vento a 90)o			
	Vento nas duas	direções		
		-		
• • • • •	O			
Comportamento em	Serviço - ELS			
Comportamento em	Serviço - ELS			
Comportamento em Deslocamentos horizontai	ı Serviço - ELS s			
Comportamento em Deslocamentos horizontai Altura total do edifício	n Serviço - ELS is - н (m) 49.9			
Comportamento em Deslocamentos horizontai Altura total do edifício Altura entre pisos - Hi (n Serviço - ELS is - H (m) 49.9 m) 3.0			
Comportamento em Deslocamentos horizontai Altura total do edifício Altura entre pisos - Hi (Deslocamento	 Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) 	Caso	Referência (cm)	Situação
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm)	<pre>Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm)</pre>	Caso 7	Referência (cm) (H/ 1700) 2.9	Situação 4 OK
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm)	<pre>Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19</pre>	Caso 7 7	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontai Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm)	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19	Caso 7 7	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º	<pre>Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm)</pre>	Caso 7 7	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º	<pre>Serviço - ELS S - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 </pre>	Caso 7 7	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontal Altura total do edificio Altura entre pisos - Hi (Deslocamento Topo do edificio (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3 enas (γ) fck = 25 MI	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire Serviço ELS	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3 enas (y) fck = 25 Mi	Situação 4 OK 6 OK
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º Comportamento em	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire Serviço - ELS	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3 enas (Y) fck = 25 MI	Situação 4 OK 6 OK Pa
Comportamento em Deslocamentos horizontai Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º Comportamento em	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire Serviço - ELS	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3 enas (y) fck = 25 Mi	Situação 4 OK 6 OK Da
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º Comportamento em Deslocamentos horizontais	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H/ 1626) .19 Vento em uma dire Serviço - ELS s	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3 enas (y) fck = 25 MI	Situação 4 OK 6 OK Pa
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0° Comportamento em Deslocamentos horizontais	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H/ 1626) .19 Vento em uma dire Serviço - ELS s - H (m) 49.9	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3 enas (y) fck = 25 MI	Situação 4 OK 6 OK Pa
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0° Comportamento em Deslocamentos horizontais	Serviço - ELS is - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dim Serviço - ELS s - H (m) 49.9 n)	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (H1/ 850) .3 enas (y) fck = 25 MI	Situação 4 OK 6 OK Pa
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0° Comportamento em Deslocamentos horizontais Altura total do edifício - Altura entre pisos - Hi (s	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire Serviço - ELS s - H (m) 49.9 n) 3.0 Valor máximo (cm)	Caso 7 7 eção ape	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3 enas (Y) fck = 25 Mi	Situação 4 OK 6 OK Pa
Comportamento em Deslocamentos horizontal Altura total do edifício Altura entre pisos - Hi (Deslocamento Topo do edifício (cm) Entre pisos (cm) Caso 7 - Atuação do vento a 0º Comportamento em Deslocamentos horizontais Altura total do edifício - Altura entre pisos - Hi (s Deslocamento Topo do edifício (cm)	Serviço - ELS s - H (m) 49.9 m) 3.0 Valor máximo (cm) (H/ 2312) 2.16 (H1/ 1626) .19 Vento em uma dire Serviço - ELS s - H (m) 49.9 n)	Caso 7 7 eção ape Caso 5	Referência (cm) (H/ 1700) 2.9 (Hi/ 850) .3 enas (y) fck = 25 Mi Referência (cm) (H/ 1700) 2.94	Situação 4 OK 6 OK Da Situação OK

Figura 4.2 – Análise do Estado Limite de Serviço para deslocamentos horizontais do edifício.

4.2 Análise das armações das lajes, vigas e pilares

O segundo parâmetro para comparação foi o detalhamento obtido para os elementos estruturais.

4.2.1 Resultados do projeto original

Alguns exemplos de armações do projeto original foram apresentados no item 3.2.2 nas Figuras 3.23, 3.24 e 3.25, sendo, respectivamente, armação de lajes L1, L2 e L3 do pavimento tipo, viga V17 também do pavimento tipo e um lance do pavimento tipo dos pilares P13 e P14. Para facilitar o entendimento da análise, as figuras serão repetidas aqui na mesma ordem nas Figuras 4.3, 4.4 e 4.5.

Figura 4.3 – Armação positiva e negativa das lajes do pavimento tipo.

Figura 4.4 – Armação da viga V17 do pavimento tipo.

Figura 4.5 – Armação dos pilares P13 e P14 de um lance do pavimento tipo.

4.2.2 Resultados da modelagem do edifício no sistema computacional

A Figura 4.6 detalha a armação positiva e negativa de trecho das lajes L1, L2 e L3 do pavimento tipo, trata-se do desenho obtido no sistema computacional após a edição gráfica do usuário.

A Figura 4.7 refere-se ao dimensionamento e detalhamento do sistema para a viga V17 do pavimento tipo. Na armação da viga pode-se observar o desenho da sua armação longitudinal e com cortes transversais, a presença das armaduras positivas, negativas, laterais (costelas) e estribos.

Figura 4.6 – Desenho de armação positiva e negativa das lajes L1, L2 e L3 do pavimento tipo.

Figura 4.7 – Desenho de armação da viga V17, do pavimento tipo.

A figura 4.8 refere-se ao dimensionamento e detalhamento do sistema para os pilares P13 e P14 em um lance do pavimento tipo, nela contém o desenho da sua armação longitudinal e com seção transversal com a presença das armaduras verticais, estribos e grampos.

Figura 4.8 – Desenho de armação dos pilares P13 e P14, em um lance do pavimento tipo.

4.2.3 Comparação dos resultados

A armação das lajes L1, L2 e L3 (Figuras 4.3 e 4.6) evidencia que um maior peso de aço seria necessário para executá-las no caso do pavimento ter sido calculado pelo método computacional. Na laje L1, a armação positiva horizontal está com um detalhamento de Ø6,3 c/10, enquanto que no projeto original estava com Ø6,3 c/15. Já a armação positiva vertical dessa mesma laje, que foi desenhada com Ø5 c/15, possuía Ø4,6 c/15. Observa-se que a utilização de diâmetros de barras de 4,6

milímetros nos desenhos originais passou a ser detalhada nos tempos atuais com diâmetro mínimo de 5,0 mm para as armações convencionais.

Ainda sobre as lajes, podemos observar que os momentos negativos entre as lajes L2 e L3 demandaram um detalhamento de Ø8 c/12,5 no projeto original e Ø8 c/10 no modelado.

Com essas pequenas alterações o edifício modelado precisaria de um maior peso de aço para a armação do pavimento tipo do prédio. Isso se deve à uma diferente consideração das condições dos apoios e análise das diferentes rigidezes provocando deslocamentos maiores e esforços localizados que o modelo simplificado não tinha condições de visualizar, em alguns casos.

Para a armação da viga V17 (Figuras 4.4 e 4.7) o projeto original considerou uma menor rigidez nos pilares de extremidade P3 e P20. Ao se comparar as armações negativas observa-se que 3 Ø 16,0 mm no projeto original para o apoio esquerdo passou a ser 3 Ø 20,0 mm (aumento de 56,1% na área); no apoio intermediário 6 Ø 20,0 mm alterou para 4 Ø 20,0 mm (redução de 33,3% na área) e no apoio direito variou de 3 Ø 16,0 mm para 6 Ø 16,0 mm (aumento de 100,0% na área).

Ainda sobre a viga V17, verifica-se que as armações positivas também alteraram: 2 Ø 16,0 mm no primeiro vão passou a ser 4 Ø 10,0 mm (redução de 21,9% na área) e 5 Ø 16,0 mm no segundo vão variou para 2 Ø 16,0 mm (redução de 60,0% na área).

A armação da costela, ou armadura de pele, aumentou de 2x2 Ø 6,3 mm para 2x4 Ø 8,0 mm (aumento de 224,5%), o que se deve à armadura mínima para vigas com altura mínima de 60 cm.

A armação dos estribos tanto do primeiro quanto para o segundo vão reduziu em comparação ao projeto simplificado, pois o detalhamento do primeiro vão está com Ø5,0 c/17,5 e tinha Ø6,3 c/10, já no segundo vão está com Ø5,0 c/15 e Ø5,0 c/17,5 e antes tinha o valor de Ø6,3 c/9 e Ø6,3 c/15.

Pode-se dizer que a análise dos esforços combinados da carga horizontal com a carga vertical no método simplificado produziu um detalhamento maior para estribos e momentos positivos. Porém, no modelo combinado de grelha e pórtico espacial, os momentos negativos nas extremidades provocam uma redistribuição dos esforços reduzindo acentuadamente as armações positivas e negativas intermediárias, desse modo, o detalhamento produzido acarreta em um menor peso de aço para as vigas.

Para a armação dos pilares P13 e P14 (Figuras 4.5 e 4.8), a armação do projeto original foi de 26 \emptyset 20,0 mais 4 \emptyset 16,0 mm, porém a armação obtida no sistema foi de 24 \emptyset 20,0 mm. Dessa forma a área total de aço da seção transversal que seria de 89,68 cm² passaria a ser de 75,36 cm², o que configura uma redução de 16,0%.

4.3 Cargas nos pilares para o dimensionamento da fundação

O terceiro parâmetro para comparação foi o valor das cargas dos pilares para dimensionamento da fundação.

4.3.1 Resultados do projeto original

Na Figura 4.9 os pilares e as suas respectivas cargas estão tabelados:

- a) da primeira tabela constam os pilares P100 ao P124 apenas com a carga vertical axial (N_z) dos pilares considerada positiva no sentido para baixo, em tf. Como esses pilares não fazem parte dos pórticos da torre eles não absorvem cargas horizontais ou momentos fletores devido à ação do vento;
- b) da segunda tabela constam os pilares P1 ao P8 e P10 ao P26 (P9 não está relacionado, pois apoia-se sobre viga na garagem, ocorrendo a transição da carga para outros elementos até chegar à fundação) com duas hipóteses de cargas: a primeira delas corresponde à combinação de cargas verticais compostas pelo peso próprio, sobrecargas, revestimentos e alvenarias. A segunda apresenta as cargas provenientes do esforço de vento. A carga vertical axial (Nz) dos pilares é positiva no sentido para baixo, em tf, a carga horizontal na direção y (Hy), em tf, e o momento fletor em torno de x (Mx), em tf.m.

Pode-se observar que os pilares dos seis pórticos planos resistentes ao vento P1, P3, P4, P5, P6, P11, P12, P13, P14, P15, P16, P20, P21, P22, P23, P25 e P26 possuem cargas horizontais e momento fletor considerando apenas o vento na direção *y*.

Pilar	Nz (tf)	Pilar	Hipótese	Nz (tf)	Hy (tf)	Mx (tf.m)
P100	41,4	24	1ª	925,6	-	-
P101	39,8	P1	2ª	+/- 19,0	+/- 20,5	+/- 234,0
P102	62,3		1ª	61,5	-	-
P103	34,5	P2	2ª	-	-	-
P104	14,0	D2	1ª	218,9	-	-
P105	63,3	P5	2ª	+/- 13,0	+/- 3,2	+/- 17,5
P106	61,9	D/	1ª	239,6	-	-
P107	131,1	F4	2ª	+/- 13,0	+/- 3,5	+/- 17,0
P108	96,5	P5	1ª	272,7	-	-
P109	20,2	15	2ª	+/- 13,0	+/- 3,5	+/- 17,0
P110	96,8	P6	1ª	215,2	-	-
P111	33,8		2ª	+/- 13,0	+/- 3,2	+/- 17,5
P112	8,5	P7	1ª	173,4	-	-
P113	104,4		2ª	-	-	-
P114	55,6	P8	1ª	157,5	-	-
P115	4,1		2ª	-	-	-
P116	27,4	P10	1ª	108,9	-	-
P117	15,5		2ª	-	-	-
P118	32,3	P11	1ª	4/1,5	-	-
P119	9,6		2ª	+/- 9,0	+/- 6,5	+/- 40,5
P120	15,1	P12	1ª	450,9	-	-
P121	19,2		Zº 1.3	+/-9,0	+/- 6,0	+/- 38,5
P122	7,8	P13	 Te	513,1	-	-
P123	4,1		2= 1a	+/-4,0 512.2	+/- 3,5	+/- 18,5
P124	10,2	P14		+/- 1.0		-
NZ			2- 1a	450.1	+/- 3,5	+/- 18,5
	1	P15	2ª	+/-90	+/- 6.0	+/- 38 5
	/у		12	461.6		-
4		P16	2ª	+/- 9.0	+/- 6.5	+/- 40.5
Ну			1ª	131.6		-
	M×	P17	2ª	-	-	-
× // //	\cap		1ª	175.9	-	-
		P18	2ª	-	-	-
	1	D10	1ª	80,8	-	-
		P19	2ª	-	-	-
		D 20	1ª	163,3	-	-
-		P20	2ª	+/- 22,0	+/- 1,2	+/- 4,0
CONVENÇÃO DE FOR	ÇAS:	D21	1ª	162,1	-	-
		FZI	2ª	+/- 22,0	+/- 0,5	+/- 4,0
M× = MOMENTO EM TORNO DO	EIXO X	P22	1ª	161,9	-	-
NZ = CARGA VERTICAL		122	2ª	+/- 22,0	+/- 0,5	+/- 4,0
		P23	1ª	161,7	-	-
Hy = CARGA HORIZONTAL NA	DIREÇÃO Y		2ª	+/- 22,0	+/- 1,2	+/- 4,0
	ALC.	P24	1ª	129,0	-	-
TIPUIESES DAS AU	<u>, UES:</u>		2ª	-	-	-
		P25	1ª	106,8	-	-
1a) = PESO PRÓPRIO + SOBRE	ECARGA		2ª	+/- 10,5	+/- 0,5	+/- 0,5
2a) = VENTO NA DIREÇÃO Y		P26	1ª	98,8	-	-
			2ª	+/- 10,5	+/- 0,5	+/- 0,5

Figura 4.9 – Tabelas de cargas dos pilares na fundação – Projeto original.

4.3.2 Resultados da modelagem do edifício no sistema computacional considerando a ação do vento apenas na direção y

Na Figura 4.10, os pilares e as suas respectivas cargas estão tabelados separadamente, assim como feito no item 4.3.1.

	Pilar	Nz (tf)	Pilar	Hipótese	Nz (tf)	Hy (tf)	Mx (tf.m)
	P100	38,1	D1	1ª	1019,1	-	-
	P101	36,9	PI	2ª	+/- 34,7	+/- 24,7	+/- 257,3
	P102	65,7		1ª	58,9	-	-
	P103	32,2	P2	2ª	-	-	-
	P104	17,0		1ª	249,5	-	-
	P105	46,5	P3	2ª	+/- 17,8	+/- 4,3	+/- 20,8
	P106	46,9		1ª	277,9	-	-
	P107	131,0	P4	2ª	+/- 9,6	+/- 4,3	+/- 20,7
	P108	99,8	05	1ª	302,4	-	-
	P109	23,4	P5	2ª	+/- 9,7	+/- 4,3	+/- 21,3
	P110	89,2		1ª	262,0	-	-
	P111	28,0	P6	2ª	+/- 18,5	+/- 4,2	+/- 21,7
	P112	9,6		1ª	177,3	-	-
	P113	99,5	P7	2ª	-	-	-
	P114	61,8		1ª	185,2	-	-
	P115	10,6	P8	2ª	-	-	-
	P116	24,1		1ª	138,0	-	-
	P117	30,6	P10	2ª	-	-	-
	P118	30,0		1ª	378,8	-	-
	P119	9,2	P11	2ª	+/- 7,8	+/- 10,8	+/- 49,9
	P120	10,2		1ª	369,9	-	-
	P121	19,6	P12	2ª	+/- 6,3	+/- 9,9	+/- 48,9
	P122	8,1		1ª	507,8	-	-
	P123	5,5	P13	2ª	+/- 3,8	+/- 3,3	+/- 21,3
	P124	14,0		1ª	510,1	-	-
		· · ·	P14	2ª	+/- 4,8	+/- 4,3	+/- 22,5
Nz				1ª	373,2	-	-
			P15	2ª	+/- 6,9	+/- 9,9	+/- 50,6
	/	/ y		1ª	370,7	-	-
			P16	2ª	+/- 7.5	+/- 10.8	+/- 52.7
	<u>/ '''y</u>	7		1ª	138,4	-	-
		M×	P17	2ª	-	-	-
×	//	\cap		1ª	179.4	-	-
	+		P18	2ª	-	-	-
		t		1ª	108.1	-	-
			P19	2ª		-	-
				1ª	200.9	-	-
1			P20	2ª	+/-24.1	+/- 1.3	+/- 4.9
CONVENÇÃO DE	FOR	CAS:		1ª	191.5	-	-
		<u></u>	P21	2ª	+/-21.6	+/- 1.1	+/- 4.7
My - NOMENTO EN TOR				1ª	187.0	-	-
			P22	2ª	+/- 22.3	+/- 1.1	+/- 4.9
NZ = CARGA VERTICAL				1ª	194.3	-	-
Hy = CARGA HORIZONT.	AL NA	DIREÇÃO Y	P23	2ª	+/- 25.3	+/- 1.2	+/- 5.1
				1ª	145.9		
HIPÓTESES DAS	S AC	CÕES:	P24	2ª	-	-	-
				1ª	152.6	-	-
1a) = PESO PRÓPRIO +	SOBRI	ECARGA	P25	2ª	+/- 9.2	+/- 0.1	+/- 0.3
				1ª	154.3	-	-
2a) = VENTO NA DIREC	, AO Y		P26	2ª	+/- 9.6	+/- 0.1	+/- 0.3

Na Tabela 4.4 os pilares e as suas respectivas cargas estão listados e comparados por meio da diferença em porcentagem. Uma escala de cores foi definida para facilitar o entendimento e leitura da tabela a fim de se identificar quais foram as maiores variações de cargas nos pilares da análise do edifício feita pela modelagem computacional.

Para a primeira hipótese de cálculo correspondente somente ao carregamento vertical (peso próprio, sobrecargas, revestimentos e alvenarias), tem-se as cargas verticais (N_z) dos pilares P25, P26, P115 e P117 com as maiores diferenças. Isso se deve a uma diferente redistribuição dos esforços que ocorre no modelo discretizado da grelha.

A consideração da rigidez do pilar P1 (pilar da caixa de escada) que passou a receber maiores cargas verticais tanto para a primeira quanto para a segunda hipótese se deve a critérios diferentes na consideração do engastamento das vigas que se apoiam sobre este pilar, pois o pórtico espacial tem uma maior capacidade de analisar os deslocamentos e rotações dos elementos sob a ação das cargas.

Porém, é importante destacar que as diferenças não são relevantes quando se analisa o valor total das cargas. Ambas análises apresentam valores próximos, com uma diferença de apenas 3%. No caso das cargas verticais devido à ação do vento a diferença é de 7%.

		Projete	Original		Edifício	Modela	ado no S	istema	19) Nz -	28) Nr -	2a) Цу –	2ª) My -
Dilar		riojeto	onginal			Comput	tacional		Diference no	Diference no	Diference no	Diference no
Filar	1ª) Nz	2ª) Nz	2ª)Hy	2ª) Mx	1º) Nz	2ª) Nz	2ª) Hy	2ª) Mx	Modelado (%)	Modelado (%)	Modelado (%)	Modelado (%)
	(tf)	(tf)	(tf)	(tf.m)	(tf)	(tf)	(tf)	(tf.m)	modelado (%)	modelado (%)		modelado (76)
P1	925,6	19,0	20,5	234,0	1019,1	34,7	24,7	257,3	10%	83%	20%	10%
P2	61,5	0,0	0,0	0,0	58,9	0,0	0,0	0,0	-4%	0%	0%	0%
P3	218,9	13,0	3,2	17,5	249,5	17,8	4,3	20,8	14%	37%	34%	19%
P4	239,6	13,0	3,5	17,0	277,9	9,6	4,3	20,7	16%	-26%	23%	22%
P5	272,7	13,0	3,5	17,0	302,4	9,7	4,3	21,3	11%	-25%	23%	25%
P6	215,2	13,0	3,2	17,5	262,0	18,5	4,2	21,7	22%	42%	31%	24%
P7	173,4	0,0	0,0	0,0	177,3	0,0	0,0	0,0	2%	0%	0%	0%
P8	157,5	0,0	0,0	0,0	185,2	0,0	0,0	0,0	18%	0%	0%	0%
P10	108,9	0,0	0,0	0,0	138,0	0,0	0,0	0,0	27%	0%	0%	0%
P11	471,5	9,0	6,5	40,5	378,8	7,8	10,8	49,9	-20%	-13%	66%	23%
P12	450,9	9,0	6,0	38,5	369,9	6,3	9,9	48,9	-18%	-30%	65%	27%
P13	513,1	4,0	3,5	18,5	507,8	3,8	3,3	21,3	-1%	-5%	-6%	15%
P14	512,2	4,0	3,5	18,5	510,1	4,8	4,3	22,5	0%	20%	23%	22%
P15	450,1	9,0	6,0	38,5	373,2	6,9	9,9	50,6	-17%	-23%	65%	31%
P16	461,6	9,0	6,5	40,5	370,7	7,5	10,8	52,7	-20%	-1/%	66%	30%
P17	131,6	0,0	0,0	0,0	138,4	0,0	0,0	0,0	5%	0%	0%	0%
P18	1/5,9	0,0	0,0	0,0	1/9,4	0,0	0,0	0,0	2%	0%	0%	0%
P19	80,8	22.0	0,0	0,0	200.0	24.1	1.2	0,0	34%	10%	0%	0%
P20	163,5	22,0	1,2	4,0	200,9	24,1	1,5	4,9	190/	- 2%	120%	1 90/
P21	162,1	22,0	0,5	4,0	191,5	21,0	1,1	4,7	16%	-270	120%	22%
P22	161,5	22,0	1.2	4,0	10/ 3	22,5	1,1	4,5	20%	15%	0%	23%
P23	129.0	22,0	1,2	4,0	145.9	23,3	0.0	0.0	13%	0%	0%	0%
P24	106.8	10.5	0,0	0,0	152.6	9.2	0,0	0,0	43%	-12%	-80%	-40%
P26	98.8	10,5	0.5	0.5	154.3	9.6	0,1	0.3	56%	-9%	-80%	-40%
P100	41.4	0.0	0.0	0.0	38.1	0.0	0.0	0.0	-8%	0%	0%	0%
P101	39.8	0.0	0.0	0.0	36.9	0.0	0.0	0.0	-7%	0%	0%	0%
P102	62.3	0.0	0.0	0.0	65.7	0.0	0.0	0.0	5%	0%	0%	0%
P103	34.5	0.0	0.0	0.0	32.2	0.0	0.0	0.0	-7%	0%	0%	0%
P104	14,0	0,0	0,0	0,0	17,0	0,0	0,0	0,0	21%	0%	0%	0%
P105	63,3	0,0	0,0	0,0	46,5	0,0	0,0	0,0	-27%	0%	0%	0%
P106	61,9	0,0	0,0	0,0	46,9	0,0	0,0	0,0	-24%	0%	0%	0%
P107	131,1	0,0	0,0	0,0	131,0	0,0	0,0	0,0	0%	0%	0%	0%
P108	96,5	0,0	0,0	0,0	99,8	0,0	0,0	0,0	3%	0%	0%	0%
P109	20,2	0,0	0,0	0,0	23,4	0,0	0,0	0,0	16%	0%	0%	0%
P110	96,8	0,0	0,0	0,0	89,2	0,0	0,0	0,0	-8%	0%	0%	0%
P111	33,8	0,0	0,0	0,0	28,0	0,0	0,0	0,0	-17%	0%	0%	0%
P112	8,5	0,0	0,0	0,0	9,6	0,0	0,0	0,0	13%	0%	0%	0%
P113	104,4	0,0	0,0	0,0	99,5	0,0	0,0	0,0	-5%	0%	0%	0%
P114	55,6	0,0	0,0	0,0	61,8	0,0	0,0	0,0	11%	0%	0%	0%
P115	4,1	0,0	0,0	0,0	10,6	0,0	0,0	0,0	159%	0%	0%	0%
P116	27,4	0,0	0,0	0,0	24,1	0,0	0,0	0,0	-12%	0%	0%	0%
P117	15,5	0,0	0,0	0,0	30,6	0,0	0,0	0,0	97%	0%	0%	0%
P118	32,3	0,0	0,0	0,0	30,0	0,0	0,0	0,0	-7%	0%	0%	0%
P119	9,6	0,0	0,0	0,0	9,2	0,0	0,0	0,0	-4%	0%	0%	0%
P120	15,1	0,0	0,0	0,0	10,2	0,0	0,0	0,0	-32%	0%	0%	0%
P121	19,2	0,0	0,0	0,0	19,6	0,0	0,0	0,0	2%	0%	0%	0%
P122	7,8	0,0	0,0	0,0	8,1	0,0	0,0	0,0	4%	0%	0%	0%
P123	4,1	0,0	0,0	0,0	5,5	0,0	0,0	0,0	34%	0%	0%	0%
P124	16,2	0,0	0,0	0,0	14,0	0,0	0,0	0,0	-14%	0%	0%	0%
Total	7620,0	224,3	70,6	515,3	7820,7	239,8	96,0	608,2	3%	7%	36%	18%

Tabela 4.4 – Comparação das cargas dos pilares na fundação

Diferença entre -5,0% e 5,0%
Diferença em módulo entre 5,0% e 10,0%
Diferença em módulo entre 10,0% e 40,0%
Diferença em módulo maior que 40,0%

4.3.3 Resultados da modelagem do edifício no sistema computacional considerando a ação do vento nas duas direções

Na Figura 4.11 os pilares e as suas respectivas cargas estão tabelados separadamente, com a ação do vento sendo considerada nas duas direções.

Figura 4.11 – Tabelas de cargas dos pilares na fundação – Modelagem computacional com vento nas duas direções.

Na Tabela 4.5 pode-se observar que os valores de N_z para a ação do vento na direção *y* são menores do que aqueles valores obtidos para a ação do vento na direção *x*, exceto no caso dos pilares P2, P7, P13, P14, P17 e P24 que estão destacados. Porém, são valores inferiores àqueles da primeira hipótese de cálculo (peso próprio, sobrecargas, revestimentos e alvenarias), logo não seriam preponderantes para o dimensionamento dos pilares e da fundação.

Outro ponto importante a ser citado é o valor de H_x e M_y para os pilares P1, P25 e P26. Tais valores são relevantes para o dimensionamento da fundação neste elemento e no projeto original não foram considerados.

Porém, com exceção do valor de momento fletor em torno de *y* no pilar P1, nota-se que nos demais pilares os valores provenientes do vento na direção *x* não seriam preponderantes para o dimensionamento e detalhamento dos pilares do edifício.

	E	difício N	lodelad	o com ve	ento ap	enas em	y	Edit	fício Moo	delado (com ven	to nas di	uas dire	ções	1ª) Nz - Dif.	2ª) Nz - Diferença	2ª) Hy - Diferença	2ª) Mx - Diferença	
Pilar	1ª) Nz	2ª) Nz	2ª) Hy	2ª) Mx	3ª) Nz	3ª) Hx	3ª) My	1ª) Nz	2ª) Nz	2ª) Hy	2ª) Mx	3ª) Nz	3ª) Hx	3ª) My	entre	entre	entre	entre	
	(tf)	(tf)	(tf)	(tf.m)	(tf)	(tf)	(tf.m)	(tf)	(tf)	(tf)	(tf.m)	(tf)	(tf)	(tf.m)	modelos (%)	modelos (%)	modelos (%)	modelos (%)	
P1	1019,1	34,7	24,7	257,3	0,0	0,0	0,0	1018,6	34,4	24,7	257,3	1,4	66,0	1108,0	0%	-1%	0%	0%	Diferença entre -5,0% e 5,0%
P2	58,9	0,0	0,0	0,0	0,0	0,0	0,0	59,1	0,0	0,0	0,0	16,4	0,2	0,6	0%	0%	0%	0%	Diferença em módulo entre 5,0% e 10,0%
P3	249,5	17,8	4,3	20,8	0,0	0,0	0,0	250,3	17,9	4,3	20,8	6,9	0,4	1,5	0%	1%	0%	0%	Diferença em módulo entre 10,0% e 40,0%
P4	277,9	9,6	4,3	20,7	0,0	0,0	0,0	278,1	9,6	4,3	20,7	5,0	0,4	1,5	0%	0%	0%	0%	Diferença em módulo maior que 40,0%
P5	302,4	9,7	4,3	21,3	0,0	0,0	0,0	302,8	9,7	4,3	21,3	6,7	0,4	1,5	0%	0%	0%	0%	
P6	262,0	18,5	4,2	21,7	0,0	0,0	0,0	261,2	18,4	4,2	21,6	7,7	0,4	1,5	0%	-1%	0%	0%	
P7	177,3	0,0	0,0	0,0	0,0	0,0	0,0	177,8	0,0	0,0	0,0	14,5	0,2	0,7	0%	0%	0%	0%	Valores significativos obtidos da 3ª hipótese
P8	185,2	0,0	0,0	0,0	0,0	0,0	0,0	183,9	0,0	0,0	0,0	0,0	0,0	0,0	-1%	0%	0%	0%	com ação do vento em x
P10	138,0	0,0	0,0	0,0	0,0	0,0	0,0	138,4	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P11	378,8	7,8	10,8	49,9	0,0	0,0	0,0	378,7	7,8	10,7	49,9	7,4	0,7	2,9	0%	0%	-1%	0%	
P12	369,9	6,3	9,9	48,9	0,0	0,0	0,0	370,1	6,3	9,9	49,0	3,4	0,8	2,9	0%	0%	0%	0%	
P13	507,8	3,8	3,3	21,3	0,0	0,0	0,0	505,7	3,9	3,4	21,4	20,5	1,2	4,7	0%	3%	3%	0%	
P14	510,1	4,8	4,3	22,5	0,0	0,0	0,0	512,4	4,8	4,3	22,6	21,3	1,2	4,7	0%	0%	0%	0%	
P15	373,2	6,9	9,9	50,6	0,0	0,0	0,0	373,1	6,9	9,9	50,6	4,4	0,8	2,9	0%	0%	0%	0%	
P16	370,7	7,5	10,8	52,7	0,0	0,0	0,0	370,2	7,5	10,8	52,5	2,1	0,8	3,0	0%	0%	0%	0%	
P17	138,4	0,0	0,0	0,0	0,0	0,0	0,0	138,9	0,0	0,0	0,0	8,2	0,3	0,7	0%	0%	0%	0%	
P18	179,4	0,0	0,0	0,0	0,0	0,0	0,0	179,2	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P19	108,1	0,0	0,0	0,0	0,0	0,0	0,0	106,8	0,0	0,0	0,0	0,1	0,3	1,1	-1%	0%	0%	0%	
P20	200,9	24,1	1,3	4,9	0,0	0,0	0,0	199,8	24,2	1,3	4,9	8,9	0,3	1,5	-1%	0%	0%	0%	
P21	191,5	21,6	1,1	4,7	0,0	0,0	0,0	190,0	21,6	1,1	4,7	5,9	0,3	1,5	-1%	0%	0%	0%	
P22	187,0	22,3	1,1	4,9	0,0	0,0	0,0	188,5	22,3	1,1	4,9	6,7	0,3	1,5	1%	0%	0%	0%	
P23	194,3	25,3	1,2	5,1	0,0	0,0	0,0	195,5	25,2	1,2	5,1	9,9	0,3	1,5	1%	0%	0%	0%	
P24	145,9	0,0	0,0	0,0	0,0	0,0	0,0	147,2	0,0	0,0	0,0	3,6	0,2	0,9	1%	0%	0%	0%	
P25	152,6	9,2	0,1	0,3	0,0	0,0	0,0	153,4	9,2	0,1	0,3	2,3	3,8	22,9	1%	0%	0%	0%	
P26	154,3	9,6	0,1	0,3	0,0	0,0	0,0	153,5	9,6	0,1	0,3	2,9	3,8	22,9	-1%	0%	0%	0%	
P100	38,1	0,0	0,0	0,0	0,0	0,0	0,0	38,1	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P101	36,9	0,0	0,0	0,0	0,0	0,0	0,0	37,0	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P102	65,7	0,0	0,0	0,0	0,0	0,0	0,0	65,7	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P103	32,2	0,0	0,0	0,0	0,0	0,0	0,0	32,3	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P104	17,0	0,0	0,0	0,0	0,0	0,0	0,0	17,0	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P105	46,5	0,0	0,0	0,0	0,0	0,0	0,0	46,4	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P106	46,9	0,0	0,0	0,0	0,0	0,0	0,0	46,8	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P107	131,0	0,0	0,0	0,0	0,0	0,0	0,0	130,9	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P108	99,8	0,0	0,0	0,0	0,0	0,0	0,0	100,2	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P109	23,4	0,0	0,0	0,0	0,0	0,0	0,0	23,7	0,0	0,0	0,0	0,0	0,0	0,0	1%	0%	0%	0%	
P110	89,2	0,0	0,0	0,0	0,0	0,0	0,0	89,1	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P111	28,0	0,0	0,0	0,0	0,0	0,0	0,0	28,2	0,0	0,0	0,0	0,0	0,0	0,0	1%	0%	0%	0%	
P112	9,6	0,0	0,0	0,0	0,0	0,0	0,0	9,4	0,0	0,0	0,0	0,0	0,0	0,0	-2%	0%	0%	0%	
P113	99,5	0,0	0,0	0,0	0,0	0,0	0,0	99,7	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P114	61,8	0,0	0,0	0,0	0,0	0,0	0,0	61,5	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P115	10,6	0,0	0,0	0,0	0,0	0,0	0,0	10,6	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P116	24,1	0,0	0,0	0,0	0,0	0,0	0,0	24,3	0,0	0,0	0,0	0,0	0,0	0,0	1%	0%	0%	0%	
P117	30,6	0,0	0,0	0,0	0,0	0,0	0,0	30,5	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P118	30,0	0,0	0,0	0,0	0,0	0,0	0,0	30,1	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P119	9,2	0,0	0,0	0,0	0,0	0,0	0,0	9,2	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P120	10,2	0,0	0,0	0,0	0,0	0,0	0,0	10,2	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P121	19,6	0,0	0,0	0,0	0,0	0,0	0,0	19,6	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P122	8,1	0,0	0,0	0,0	0,0	0,0	0,0	8,1	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P123	5,5	0,0	0,0	0,0	0,0	0,0	0,0	5,5	0,0	0,0	0,0	0,0	0,0	0,0	0%	0%	0%	0%	
P124	14	0,0	0,0	0,0	0,0	0,0	0,0	13,8	0,0	0,0	0,0	0,0	0,0	0,0	-1%	0%	0%	0%	
Total	7820,7	239,8	96,0	608,2	0,0	0,0	0,0	7821,1	239,6	96,0	608,2	166,5	83,4	1191,2	0%	0%	0%	0%	

Tabela 4.5 – Comparação das cargas dos pilares na fundação

4.4 Tabelas de peso e taxas de aço por pavimento e por elemento

O quarto e principal parâmetro para comparação foi o peso de aço detalhado e a taxa de aço por pavimento e por elemento estrutural.

4.4.1 Resultados do projeto original

Após a leitura de todo o projeto de armações foi possível relacionar os desenhos com o peso de aço indicado nas tabelas de aço para encontrar o quantitativo de peso de aço necessário para todo o prédio, conforme a Tabela 4.6 (pesos por desenhos) e a Tabela 4.7 (pesos por elementos). Para isso foi necessário analisar os pesos de aço por desenhos e separar por tipos de elementos.

	Peso de	Peso de	Peso
Título do Desenho	Aco CA-	Aco CA-	Total de
	50 (kg)	- 60 (kg)	Aço (kg)
Lajes da Garagem (EL.+3,05) Armação positiva e negativa	2.969	142	3.111
Garagem - Armação das vigas - 1ª Parte	900	136	1.036
Garagem - Armação das vigas - 2ª Parte	1.603	86	1.689
Garagem - Armação das vigas - 3ª Parte	810	137	947
Garagem - Armação das vigas - 4ª Parte	2.351	40	2.391
Garagem - Armação das vigas - 5ª Parte	2.220	53	2.273
Lajes do Pilotis (EL.+5,85 e EL.+5,90) Armação das Lajes e Vigas - 1ª Parte	3.385	595	3.980
Pilotis - Armação das vigas - 2ª Parte	2.147	35	2.182
Pilotis - Armação das vigas - 3ª Parte	1.247	83	1.330
Pilotis - Armação das vigas - 4ª Parte	2.836	62	2.898
Pilotis - Armação das vigas - 5ª Parte	2.738	73	2.811
Pavimento Tipo - EL.+9,00 - Armação das Lajes e Vigas - 1ª Parte	841	606	1.447
Pavimento Tipo - EL.+9,00 - Armação das Vigas - 2ª Parte	2.977	212	3.189
Pavto Tipo (EL.+12,05 a +39,50) - Armação das Lajes e Vigas - 1ª Parte	7.230	4.700	11.930
Pavimento Tipo (EL.+12,05 a +39,50) - Armação de Vigas - 2ª Parte	2.500	1.030	3.530
Pavimento Tipo (EL.+12,05 a +39,50) - Armação de Vigas - 3ª Parte	18.914	0	18.914
Piso da Cobertura - EL.+42,55 - Armação das Lajes, Pilares e Vigas - 1ª Parte	1.288	299	1.587
Piso da Cobertura - EL.+42,55 - Armação das Vigas - 2ª Parte	2.843	41	2.884
Forro da Cobertura - Armação das Lajes e Vigas - 1ª Parte	359	169	528
Forro da Cobertura - Armação das Vigas - 2ª Parte	2.234	58	2.292
Piso e Forro da Casa de Máquinas - Armação	2.238	354	2.592
Pilares - Armação - 1ª Parte	7.404	941	8.345
Pilares - Armação - 2ª Parte	3.231	1.377	4.608
Pilares - Armação - 3ª Parte	18.297	469	18.766
Pilares - Armação - 4ª Parte	6.957	881	7.838
Pilares - Armação - 5ª Parte	1.275	159	1.434
Total	101.794	12.738	114.532

Tabela 4.6 - Desenhos de armação e pesos de aço totais - Projeto original

Davimente	Peso de Aço (kg)							
Pavimento	Pilares	Vigas	Lajes	Total				
Garagem - el.+3,05	7.078	8.336	3.111	18.525,0				
Pilotis - el.+5,90	4.408	9.839	3.362	17.609,0				
Pavimento Tipo - el.+9,00	3.937	3.406	1.230	8.573,0				
Povimento Tino, el 112 OE e el 115 10	3.550	2.594	963	7.107,0				
	3.159	2.594	963	6.716,0				
	3.487	2.449	963	6.899,0				
Dovimento Tino, al 119 15 a al 127 20	2.913	2.449	963	6.325,0				
Pavimento 1100 - el.+16,15 a el.+27,50	2.493	2.449	963	5.905,0				
	2.043	2.449	963	5.455,0				
	2.015	2.440	963	5.418,0				
Pavimento Tipo - el.+30,35 a el.+36,45	1.540	2.440	963	4.943,0				
	1.325	2.440	963	4.728,0				
Pavimento Tipo - el.+39,50	1.253	2.440	963	4.656,0				
Piso da Cobertura - el.+42,55	1.337	2.944	1.153	5.434,0				
Forro da Cobertura - el.+45,60	827	2.377	443	3.647,0				
Piso da Casa de Máquinas - el.+47,30	-	1.694	242	1.936,0				
Forro da Casa de Máquinas - el.+49,90	-	484	172	656,0				
Total	41.365,0	53.824,0	19.343,0	114.532,0				

Tabela 4.7 – Pesos de aço por pavimento e por elementos

Embora o projeto original não tivesse informação de quantitativo de volume de concreto e área de formas nos desenhos, através da modelagem do edifício no sistema exatamente com as dimensões das plantas das formas e elevações corretas foi possível obter o consumo exato através de relatório emitido pelo programa. O resultado se encontra na Tabela 4.8.

Device and a	Va	lume de C	oncreto (m	1 ³)	Área de Formas (m²)				
Pavimento	Pilares	Vigas	Lajes	Total	Pilares	Vigas	Lajes	Total	
Garagem - el.+3,05	37,1	66,1	76,0	179,2	356,8	581,9	639,9	1.578,6	
Pilotis - el.+5,90	30,2	71,7	83,2	185,1	303,8	640,3	745,7	1.689,8	
Pavimento Tipo - el.+9,00	27,0	26,1	28,3	81,4	261,9	276,0	353,6	<mark>891,</mark> 5	
Pavimento Tino, el 112 OF a el 115 10	25,0	21,4	22,2	68,6	237,6	215,3	277,6	730,5	
	25,0	21,4	22,2	68,6	237,6	215,3	277,6	730,5	
	21,3	20,4	22,5	64,2	222,3	216,1	280,5	718,9	
Device ante Ting al 110 15 a al 127 20	21,3	20,4	22,5	64,2	222,3	216,1	280,5	718,9	
Pavimento Tipo - el.+18,15 a el.+27,50	21,3	20,4	22,5	64,2	222,3	216,1	280,5	718,9	
	21,3	20,4	22,5	64,2	222,3	216,1	280,5	718,9	
	18,1	20,9	22,5	61,5	196,7	221,5	280,6	698,8	
Pavimento Tipo - el.+30,35 a el.+36,45	18,1	20,9	22,5	61,5	196,7	221,5	280,6	698,8	
	18,1	20,9	22,5	61,5	196,7	221,5	280,6	<mark>698,</mark> 8	
Pavimento Tipo - el.+39,50	15,3	21,4	22,5	59,2	175,4	226,0	280,7	682,1	
Piso da Cobertura - el.+42,55	15,3	21,7	24,7	61,7	175,4	225,9	274,7	<mark>676,</mark> 0	
Forro da Cobertura - el.+45,60	14,8	29,3	8,4	52,5	193,6	232,2	102,0	527 , 8	
Piso da Casa de Máquinas - el.+47,30	-	18,0	8,4	26,4	-	210,0	69,8	279,8	
Forro da Casa de Máquinas - el.+49,90	-	7,3	3,9	11,2	-	57,1	55,2	112,3	
Total	329,2	448,7	457,3	1.235,2	3.421,4	4.408,9	5.040,6	12.870,9	

Tabela 4.8 – Volumes de concreto e área de formas totais, por pavimento e por elementos

Com base nas informações das Tabelas 4.7 e 4.8 foi possível calcular a taxa de aço dos elementos estruturais por pavimento e elemento. O resultado obtido encontra-se na Tabela 4.9.

A fim de facilitar a visualização das taxas de aço e a ordem de grandeza dos valores foi criada uma escala de cores correspondentes a intervalos numéricos das taxas. A partir dessa separação é possível observar que os pilares e as vigas são elementos que possuem uma elevada concentração de armação em pequenos volumes de concreto e as lajes apresentam taxas bastante inferiores.

No caso, em particular desse edifício, as grandes seções de pilares nos pavimentos inferiores, embora tenham contribuído para evitarem taxas de armação muito elevadas, ainda assim, não foram suficientes para reduzir ainda mais o peso de aço necessário. Os valores das médias por elemento, médias por pavimento, média total e a taxa de armação total foram calculados e informados na mesma tabela.

Devimente	Taxa de Armação (kg/m³)							
Pavimento	Pilares	Vigas	Lajes	Média				
Garagem - el.+3,05	190,8	126,1	40,9	119,3				
Pilotis - el.+5,90	146,0	137,2	40,4	107,9				
Pavimento Tipo - el.+9,00	145,8	130,5	43,5	106,6				
Devimento Tino, el 1205 e el 11510	142,0	121,2	43,4	102,2				
Pavimento Tipo - el.+12,05 a el.+15,10	126,4	121,2	43,4	97,0				
	163,7	120,0	42,8	108,9				
Devimento Tino, el 11915 e el 12720	136,8	120,0	42,8	99,9				
Pavimento Tipo - el.+18,15 a el.+27,50	117,0	120,0	42,8	93,3				
	95,9	120,0	42,8	86,3				
	111,3	116,7	42,8	90,3				
Pavimento Tipo - el.+30,35 a el.+36,45	85,1	116,7	42,8	81,5				
	73,2	116,7	42,8	77,6				
Pavimento Tipo - el.+39,50	81,9	114,0	42,8	79,6				
Piso da Cobertura - el.+42,55	87,4	135,7	46,7	89,9				
Forro da Cobertura - el.+45,60	55,9	81,1	52,7	63,2				
Piso da Casa de Máquinas - el.+47,30	-	94,1	28,8	41,0				
Forro da Casa de Máquinas - el.+49,90	-	66,3	44,1	36,8				
Média	103,5	115,2	42,7	87,1				
Taxa do armação optro $0 \circ 50 \text{ kg/m}^3$			Taxa do	Armação				

Tabela 4.9 – Taxas de armação por elementos e níveis – Projeto original

Taxa de armação entre 0 e 50 kg/m³	
Taxa de armação entre 50 e 90 kg/m³	
Taxa de armação entre 90 e 120 kg/m³	
Taxa de armação maior do que 120 kg/m³	

Taxa de Armação
Total (kg/m ³)
92,4

4.4.2 Resultados da modelagem do edifício no sistema computacional

Com base nas informações da Tabela 4.8 e dos pesos de aço obtidos do processamento do modelo estrutural foi possível calcular a taxa de aço dos elementos estruturais por pavimento. Os resultados dos pesos de aço por elementos e pavimentos além das taxas de aço estão nas Tabelas 4.10 e 4.11.

A Tabela 4.11 apresenta, com a mesma escala de cores utilizada na Tabela 4.9 os valores das taxas de armação correspondentes aos intervalos selecionados.

Devimente	Peso de Aço (kg)			
Pavimento	Pilares	Vigas	Lajes	Total
Garagem - el.+3,05	9.310	6.532	3.459	19.301,0
Pilotis - el.+5,90	5.003	9.088	4.341	18.432,0
Pavimento Tipo - el.+9,00	4.032	3.318	1.591	8.941,0
	3.069	2.184	1.093	6.346,0
Pavimento 11po - el.+12,05 a el.+15,10	3.091	2.217	1.093	6.401,0
	2.724	2.169	1.093	5.986,0
Pavimento Tipo - el.+18,15 a el.+27,30	2.315	2.169	1.093	5.577,0
	2.241	2.169	1.093	5.503,0
	1.965	2.118	1.093	5.176,0
Pavimento Tipo - el.+30,35 a el.+36,45	1.683	2.069	1.093	4.845,0
	1.683	2.069	1.093	4.845,0
	1.606	2.009	1.093	4.708,0
Pavimento Tipo - el.+39,50	1.446	1.991	1.093	4.530,0
Piso da Cobertura - el.+42,55	1.369	2.876	1.534	5.779,0
Forro da Cobertura - el.+45,60	1.336	2.115	156	3.607,0
Piso da Casa de Máquinas - el.+47,30	-	2.000	598	2.598,0
Forro da Casa de Máquinas - el.+49,90	-	477	174	651,0
Total	42.873,0	47.570,0	22.783,0	113.226,0

Tabela 4.10 – Pesos de aço por elementos e níveis – Modelagem computacional

Tabela 4.11 – Taxas de armação por elementos e níveis – Modelagem computacional

Pavimento	Taxa de Armação (kg/m³)		1 ³)	
	Pilares	Vigas	Lajes	Média
Garagem - el.+3,05	250,9	98,8	45,5	131,8
Pilotis - el.+5,90	165,7	126,8	52,2	114,9
Pavimento Tipo - el.+9,00	149,3	127,1	56,2	110,9
Pavimento Tipo - el.+12,05 a el.+15,10	122,8	102,1	49,2	91,4
	123,6	103,6	49,2	92,2
	127,9	106,3	48,6	94,3
Pavimento Tipo - el.+18,15 a el.+27,30	108,7	106,3	48,6	87,9
	105,2	106,3	48,6	86,7
	92,3	103,8	48,6	81,6
Pavimento Tipo - el.+30,35 a el.+36,45	93,0	99,0	48,6	80,2
	93,0	99,0	48,6	80,2
	88,7	96,1	48,6	77,8
Pavimento Tipo - el.+39,50	94,5	93,0	48,6	78,7
Piso da Cobertura - el.+42,55	89,5	132,5	62,1	94,7
Forro da Cobertura - el.+45,60	90,3	72,2	18,6	60,3
Piso da Casa de Máquinas - el.+47,30	-	111,1	71,2	60,8
Forro da Casa de Máquinas - el.+49,90	-	65,3	44,6	36,7
Média	105,6	102,9	49,3	85,9

Taxa de armação entre 0 e 50 kg/m³		Taxa de Armação	
Taxa de armação entre 50 e 90 kg/m³		Total (kg/m³)	
Taxa de armação entre 90 e 120 kg/m³		01.7	
Taxa de armação maior do que 120 kg/m³		91,7	

Primeiramente pode-se constatar que as taxas de aço dos pilares reduziram bastante em alguns níveis. Porém nos níveis el.+3,05, el.+5,90, el.+9,00, el.+33,40 adiante a armação chegou a aumentar, provavelmente pela consideração do momento mínimo e de alguns esforços localizados em pilares de borda e de canto que tiveram momentos negativos das vigas que se apoiavam, diferentemente do considerado no projeto original. De qualquer modo, a taxa média dos pilares para o edifício foi de 103,5 kg/m³ para 105,6 kg/m³ (aumento de 2,0%).

A armação das vigas, quase em todos os níveis, teve uma redução do peso de aço e consequentemente na taxa de armação. Isso se deve em parte à distribuição dos momentos negativos para os pilares extremos, redução dos momentos positivos. Além disso, o esforço do vento se redistribui de maneira diferente da considerada no projeto original aliviando um pouco os esforços das vigas do pórtico espacial. Assim, a taxa média das vigas para o edifício foi de 115,2 kg/m³ para 102,9 kg/m³ (redução de 10,7%).

Outro ponto relevante é o aumento na taxa de armação das lajes em todos os níveis, de tal forma que a taxa média das lajes foi de 42,7 kg/m³ para 49,3 kg/m³ (aumento de 15,5%).

Por fim, a taxa de armação total do edifício que foi calculada como 92,4 kg/m³ no projeto original, no edifício modelado passou a ser de 91,7 kg/m³, o que indica uma redução de 0,8%.

As Figuras 4.12 a 4.19 apresentam alguns gráficos para facilitar a visualização da comparação dos consumos e taxas de armação dos elementos por pavimento.

Figura 4.12 – Comparativo do peso de aço dos pilares, por pavimento, do projeto original e da modelagem computacional.

Figura 4.13 – Comparativo da taxa de aço dos pilares, por pavimento, do projeto original e da modelagem computacional.

Figura 4.14 – Comparativo do peso de aço das vigas, por pavimento, do projeto original e da modelagem computacional.

Figura 4.15 – Comparativo da taxa de aço das vigas, por pavimento, do projeto original e da modelagem computacional.

Figura 4.16 – Comparativo do peso de aço das lajes, por pavimento, do projeto original e da modelagem computacional.

Figura 4.17 – Comparativo da taxa de aço das lajes, por pavimento, do projeto original e da modelagem computacional.

Figura 4.18 – Comparativo do peso de aço total, por pavimento, do projeto original e da modelagem computacional.

Figura 4.19 – Comparativo da taxa de aço média, por pavimento, do projeto original e da modelagem computacional.

4.4.3 Resultados da modelagem do edifício no sistema computacional levando em consideração resistência característica à compressão do concreto f_{ck} igual a 25 MPa

A Tabela 4.12 apresenta, com a mesma escala de cores utilizada na Tabela 4.11, os valores das taxas de armação dos elementos com a variação do f_{ck} para 25 MPa.

Pavimento	Taxa de Armação (kg/m³)		1 ³)	
	Pilares	Vigas	Lajes	Média
Garagem - el.+3,05	98,4	93,9	41,0	77,8
Pilotis - el.+5,90	87,4	114,1	47,0	82,8
Pavimento Tipo - el.+9,00	79,8	114,4	50,6	81,6
	72,8	91,9	46,8	70,5
	70,2	98,4	46,8	71,8
	71,3	95,7	46,1	71,1
Pavimento Tipo - el.+18,15 a el.+27,30	71,3	95,7	46,1	71,1
	71,3	95,7	46,1	71,1
	70,3	93,4	46,1	70,0
Pavimento Tipo - el.+30,35 a el.+36,45	72,2	89,1	47,1	69,5
	72,2	89,1	47,1	69,5
	72,0	86,5	47,1	68,6
Pavimento Tipo - el.+39,50	77,2	83,7	46,1	69,0
Piso da Cobertura - el.+42,55	74,8	119,3	55,9	83,3
Forro da Cobertura - el.+45,60	81,8	68,6	16,7	55,7
Piso da Casa de Máquinas - el.+47,30	-	100,0	64,1	54,7
Forro da Casa de Máquinas - el.+49,90	-	64,7	43,3	36,0
Média	67,2	93,8	46,1	69,0

Tabela 4.12 – Taxas de armação dos elementos (f_{ck} = 25 MPa) por níveis – Modelagem computacional

Taxa de armação entre 0 e 50 kg/m³	
Taxa de armação entre 50 e 90 kg/m³	
Taxa de armação entre 90 e 120 kg/m³	
Taxa de armação maior do que 120 kg/m³	

Taxa de Armação
Total (kg/m³)
72,9

Para o teste da modelagem com f_{ck} de 25 MPa, mantendo-se a geometria e seções transversais de todos os elementos do edifício, constatou-se grande redução na taxa de armação em todos os níveis, para os pilares. Deste modo, a taxa média dos pilares diminuiu de 105,6 kg/m³ para 67,2 kg/m³ (redução de 36,4%).

Ainda sobre a Tabela 4.12, no caso das vigas, a taxa média diminuiu de 102,9 kg/m³ para 93,8 kg/m³ (redução de 8,8%) e para as lajes, a taxa média reduziu de 49,3 kg/m³ para 46,1 kg/m³ (redução de 6,5%).

A Figura 4.20 mostra um gráfico para facilitar a visualização da comparação das taxas de armação dos pilares por pavimento.

Figura 4.20 – Comparativo da taxa de aço dos pilares, por pavimento, da modelagem computacional com f_{ck} = 15 MPa e da modelagem computacional com f_{ck} = 25 MPa.

5 CONCLUSÕES E SUGESTÕES PARA CONTINUIDADE DO ESTUDO

A engenharia de estruturas passou por significativas mudanças nos últimos trinta anos, dentre elas as rigorosas modificações nos parâmetros exigidos para garantir a sua durabilidade, o desenvolvimento de materiais mais resistentes e com maior trabalhabilidade possibilitando seções transversais mais esbeltas.

Além disso, o emprego de *softwares* de modelagem computacional capazes de representar a estrutura real de diferentes formas, com a possibilidade de fazer variações na solução estrutural, seções de elementos, e uma visualização espacial com interação entre diferentes elementos com análise conjunta dos deslocamentos e esforços. Diversos estudos comparativos entre modelos diferentes de cálculo já foram realizados, porém de forma quantitativa para um caso real de edifício projetado não são muitos os registros dos estudos elaborados.

Esta pesquisa buscou fazer uma análise comparativa entre um projeto estrutural realizado no final dos anos 80 com o mesmo edifício modelado em sistema computacional da atualidade. Para isso, foram levantados os quantitativos de concreto e aço nos desenhos do projeto original; em seguida o edifício modelado teve seus quantitativos extraídos.

O primeiro elemento comparativo foram os deslocamentos das lajes do pavimento tipo. A diferença entre os métodos, para três lajes diferentes, acarretou em diferenças de 12%, 43% e 7% em comparação ao modelo simplificado.

O segundo parâmetro para comparação foi o detalhamento obtido para os elementos estruturais. A armação das lajes evidencia que um maior consumo de aço seria necessário para a armação do pavimento tipo do prédio. Foi comparada a armação de uma viga qualquer do pavimento tipo e a área de aço do negativo no apoio à esquerda aumentou 56,1%; no apoio intermediário houve uma redução de 33,3% e no apoio à direita um aumento de 100,0%. Quanto às armações positivas

houve uma redução de 21,9% no primeiro vão e uma redução de 60,0% no segundo vão. Quanto à armação da costela, ou armadura de pele, houve um aumento de 224,5%. Por fim, quanto aos estribos tanto do primeiro quanto do segundo vão houve uma redução da armação. Para a armação de um lance de dois pilares quaisquer foi verificada uma redução de 16,0%.

O terceiro parâmetro para comparação dos resultados foi a carga na fundação que teve um aumento de apenas 3% em relação ao projeto original. No caso das cargas verticais devido à ação do vento houve um aumento de 7%.

O quarto e principal parâmetro para comparação foi o peso de aço detalhado e a taxa de aço por pavimento e por elemento estrutural. Primeiramente pode-se constatar que a taxa média de aço dos pilares para o edifício, sem alteração do f_{ck}, foi de 103,5 kg/m³ para 105,6 kg/m³ (aumento de 2,0%). Quanto à armação das vigas a taxa média foi de 115,2 kg/m³ para 102,9 kg/m³ (redução de 10,7%). Já para a armação das lajes a taxa média foi de 42,7 kg/m³ para 49,3 kg/m³ (aumento de 15,5%). Por fim, a taxa de armação total do edifício que foi calculada como 92,4 kg/m³ no projeto original, no edifício modelado passou a ser de 91,7 kg/m³, o que indica uma redução de 0,8%.

Para o teste da modelagem com f_{ck} de 25 MPa, constatou-se que a taxa média dos pilares diminuiu de 105,6 kg/m³ para 67,2 kg/m³ (redução de 36,4%).

Para continuidade do estudo, sugere-se:

- realização de estudos comparativos para edifícios residenciais e/ou comerciais com até 5 pavimentos, entre 5 e 10 pavimentos, entre 10 e 15 pavimentos;
- realização de estudos empregando diferentes modelos computacionais para comparação entre softwares, elementos de placa em substituição à grelha, etc.;
- realização de estudos empregando concretos com diferentes valores de f_{ck}:
 20 MPa, 25 MPa, 30 MPa, 35 MPa e 40 MPa para analisar os ganhos de seção transversal e deslocabilidade.

REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto - Procedimento. Rio de Janeiro, 2014.

_____. **NBR 6118**: Projeto de estruturas de concreto - Procedimento. Rio de Janeiro, 2003.

_____. NBR 6118: Projeto e execução de obras de concreto armado. Rio de Janeiro, 1980.

_____. NBR 6120: Cargas para o cálculo de estruturas em edificações. Rio de Janeiro, 1980.

_____. NBR 6123: Forças devidas ao vento em edificações. Rio de Janeiro, 1988.

ARAÚJO, J. M. Curso de Concreto Armado. 3. ed. Rio Grande: Dunas, v. II, 2010. 395 p.

BARBOZA, M. R. **Concepção e análise de estruturas de edifícios em concreto armado.** Relatório Final de Iniciação Científica, Departamento de Engenharia Civil, Universidade Estadual Paulista, Bauru, 2008, 161 p.

BENINCÁ, M. E. **Comparação entre modelos de análise estrutural de edifícios em concreto armado: estudo de caso.** Trabalho de Conclusão de Curso, Departamento de Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016, 191 p.

CHAGAS, D. P. Análise comparativa entre modelos estruturais para edifícios de concreto armado. Trabalho de Conclusão de Curso, Departamento Acadêmico de Construção Civil, Universidade Tecnológica Federal do Paraná, Curitiba, 2012, 71 p. FARIA, J. N. C.; CALIXTO, J. M. F.; MAIA, E. V. Estudo comparativo de procedimentos de análise e dimensionamento de pavimentos de edifícios em concreto armado. In: 55º Congresso Brasileiro do Concreto. Bonito: IBRACON. 2015.

FERREIRA, M. P.; OLIVEIRA, D. R. C. Análise quantitativa dos dimensionamentos de um edifício residencial de concreto armado de acordo com as recomendações da NBR 6118:1978 e da NBR 6118:2003. In: 47° Congresso Brasileiro do Concreto. Recife: IBRACON. 2005.

KIMURA, A. Informática aplicada em estruturas de concreto armado: cálculo de edifícios com o uso de sistemas computacionais. 1. ed. São Paulo: Pini, 2007. 624 p.

MAGALHÃES, C. W. F. S.; FONTE, A. O. C. Análise comparativa do custo da estrutura de um edifício de concreto armado quando dimensionado pela NBR-6118 (2003) e NBR-6118 (1978). In: 48º Congresso Brasileiro do Concreto. Rio de Janeiro: IBRACON. 2006.

MARTHA, L. F. **Análise de estruturas: conceitos e métodos básicos.** 1. ed. Rio de Janeiro: Elsevier, 2010. 524 p.

PRADO, A. A.; ARAÚJO, D. L.; DUARTE, M. A. Avaliação dos esforços solicitantes em pavimentos de edifícios de concreto armado: comparação entre métodos clássicos, analogia de grelha e o MEF. In: 47° Congresso Brasileiro do Concreto. Recife: IBRACON. 2005.

REBÊLO, R. R. Análise comparativa de consumo de material de edifícios variando-se o f_{ck} da estrutura. 2011. Disponível em: http://faq.altoqi.com.br/content/406/683/pt-br/an%C3%A1lise-comparativa-de-consumo-de-material-de-edif%C3%ADcios-variando_se-o-fck-da-estrutura.html. Acesso em: 05/04/2019.

ROCHA, A. M. Prática de dimensionamento do concreto armado baseado na NB-1 de 1977. 2. ed. Rio de Janeiro: Editora Científica, 1977. 389 p.

SANTOS, L. M. **Projeto estrutural de edifícios de concreto armado.** Escola Politécnica da Universidade de São Paulo, 1984, São Paulo.

SILVA, M. D. Estudo comparativo entre a utilização dos concretos convencional e leve nos elementos horizontais das estruturas de edifícios. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais, Belo Horizonte, 2003, 152 p.

SILVA, N. A. **Notas de aulas sobre concreto armado I.** Departamento de Engenharia de Estruturas – EE-UFMG, 2014, Belo Horizonte.