
TYPE INFERENCE FOR C: APPLICATIONS TO

THE ANALYSIS OF INCOMPLETE PROGRAMS

LEANDRO T. C. MELO

TYPE INFERENCE FOR C: APPLICATIONS TO

THE ANALYSIS OF INCOMPLETE PROGRAMS

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Aluno: Leandro Terra Cunha Melo
Coorientador: Rodrigo Geraldo Ribeiro

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte

April 2019

LEANDRO T. C. MELO

TYPE INFERENCE FOR C: APPLICATIONS TO

THE ANALYSIS OF INCOMPLETE PROGRAMS

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais - Departamento de
Ciência da Computação. in partial fulfill-
ment of the requirements for the degree of
Doctor in Computer Science.

Student: Leandro Terra Cunha Melo
Co-advisor: Rodrigo Geraldo Ribeiro

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

April 2019

c© 2019, Leandro Terra Cunha Melo.
Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

Melo, Leandro Terra Cunha.

M528t Type inference for C: applications to the analysis of
incomplete programs / Leandro Terra Cunha Melo —
Belo Horizonte, 2019.

xxv, 158 p.: il.; 29cm.

Tese (doutorado) — Universidade Federal de Minas
Gerais - Departamento de Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira
Coorientador: Rodrigo Geraldo Ribeiro

1. Computação - Teses. 2. Parsing. 3. Análise
estática. 4. Source code generation. 5. Type inference.
6. Type theory. I. Orientador. II. Coorientador.
III. Título.

CDU 519.6*2.10(043)

Para Gusta con mucho Gusto.

Obrigado! Thank you! Danke!

Este trabalho tem sido uma jornada fenomenal. Ao longo desses últimos anos, cresci,
fundamentalmente, como pessoa. Realizei descobertas, sem saber o que estava desco-
brindo. Tenho aprendido a aprender. Hoje, sinto-me mais capaz de entender o que eu
não sei. Creio que essa seja uma sensação paradoxal inerente ao conhecimento: a cada
novo saber, um novo universo de incertezas.

Várias pessoas contribuíram para minha formação como Doutor; e para o fruto
material desse processo, que é esta tese. Direta ou indiretamente, toda contribuição
da qual usufruí se enquadra em pelo menos um de dois grupos: naquele de contexto
científico (i.e., relacionado à linha de pesquisa em que atuei), ou no âmbito de todas
as outras “coisas” da vida. Curiosamente, a conexão entre essas duas frentes pode ser
bastante sutil. Em certos casos, impossível de ser desvinculada.

Meu primeiro agradecimento vai para a pessoa que, de fato, soube me orientar,
Fernando M. Q. Pereira. O Fernando me apresentou às palavras e às ideias uma
perspectiva matemática, com a qual eu não era familiarizado. Ele me ensinou a pensar
e a me expressar no idioma da lógica; esteve presente e disponível em todas as etapas
desse trajeto; enxergou à distância e guiou-me por uma trilha produtiva e segura; foi
amigo e aberto para conversas sinceras (inclusive, para me incentivar a uma atividade
paralela: a elaboração de um curso de C++). Muito obrigado, Fernando.

Através do Fernando, conheci o Rodrigo G. Ribeiro, quem veio a ser meu co-
orientador. O Rodrigo produziu o embrião do que, eventualmente, se tornou o principal
artefato de software deste trabalho. Foi durante esse momento inicial que eu comecei,
sem que percebesse, uma espécie de libertação para a programação funcional, a qual
me levou a um casamento com a teoria de tipos. Em inúmeras situações, o Rodrigo
serviu como um ótimo consultor técnico. Muito obrigado, Rodrigo.

O que eu ainda não mencionei foi como cheguei até o Fernando. Lembro-me
que estava sentado no chão de meu (já vazio) apartamento na Alemanha, a poucos
dias de retornar definitivamente ao Brasil. Um amigo de infância, agora professor,
me ligou para conversar sobre um projeto que coordenava. Ele, Leonardo B. e

xi

Oliveira, procurava um engenheiro com meu perfil. Após algumas semanas, e sem
muita ambição, lá estava eu de volta à escola. E foi assim... as portas de uma excelente
academia de computação estavam abertas para mim. Muito obrigado, Léo.

A academia a qual me refiro é o Departamento de Ciência da Computação
(DCC) da Universidade Federal de Minas Gerais (UFMG), uma instituição
pública do Brasil. Nesse ambiente, tive a oportunidade de interagir com professores
admiráveis e de debater com alunos inteligentes, sempre amparado por boa infraestru-
tura e uma equipe de funcionários eficientes. Em particular, no Laboratório de
Compiladores, contei com um espaço confortável e propício ao estudo. Muito obri-
gado aos colegas do Dê Drégons Néste, especialmente ao Marcus R. de Araújo,
e a todos que participaram da minha estadia no campus.

Deixo também meus agradecimentos aos diversos revisores que availiaram trechos
desse trabalho contidos em múltiplas submissões a conferências científicas, fornecendo
feedback relevante. Inclusive, aos professores Fernando Castor Filho, Fábio Mas-
carenhas, Renato A. C. Ferreira, e Rodolfo S. F. de Resende, os quais com-
puseram a banca da minha defesa de tese. Muito obrigado a todos vocês. A propósito,
para que eu, antes de tudo isso, ingressasse no programa de doutorado, precisei de uma
carta de recomendação. Muito obrigado Renato C. Mesquita, por tê-la oferecido.

Há ainda um professor que preciso mencionar. Porém, não por suas lições de
matemática. Meu amigo, Rodrigo T. N. Cardoso. Muito obrigado por nossas
conversas filosóficas, por sua riqueza espiritual e visão positiva do mundo, pelos passeios
e companhia familiar e, é claro, pela motivação que me deu para encarar o doutorado.

Quem seria eu, se não fosse pelos maravilhosos pais que tenho... Foi ele, meu pai,
Fábio Souza Melo, quem introduziu a mim (quando eu era um pequeno tenista) o
significado de garra; de que, quando acreditamos e lutamos, a gente consegue. Sua
dedicação ao trabalho, assim como seu empenho em “correr atrás” do que é necessário,
inspiram o meu inconsciente – seu suor está presente a cada dia que vivo. Com meu
pai, aprendi a ser correto. Incondicionalmente. Muito obrigado, pai. Tê-lo por perto
é como sentir uma espécie de força oculta, dizendo que nada irá me faltar.

Oh, minha querida mãe, Fátima Leal Terra Melo! Quanta doçura, quanto
amor, quanto cuidado... Quantas palavras de conforto, de sabedoria, de sensibilidade...
De quanto se abdicou? Em tantas vezes me levantou; em quantas outras não me deixou
cair? Em tantas vezes me fez rir; em quantas outras não me deixou chorar? Com
quantos abraços me apertou? Com quantas mãos me segurou? Com quantos valores
me educou? Tantos, tantos, tantos... Incontáveis. Muito obrigado, mãe. Seu carinho
me ilumina; me abençoa; me protege; e me dá luz.

xii

Falando em família, tenho já minha própria descendência. Meus dóceis e vi-
brantes, filha Laura Mirachi Melo e filho Davi Mirachi Melo. A energia de vocês
é empolgante. A alegria de vocês é contagiante. Vocês não sabem, mas nossas brin-
cadeiras e gargalhadas diárias funcionam como um combustível (aditivado) para minha
alma. Não importa o quão pesado ou difícil é um dia de trabalho, chegar em casa e
recebê-los em meus braços é uma bomba de alto astral. Muito obrigado, Chimbinha.
Muito obrigado, Timburico. Vocês me enchem de orgulho e me dão o estimulo que
preciso para continuar...

Minhas preciosidades não foram, obviamente, concebidas por mim, isoladamente.
Elas foram gestadas com zelo único, pela minha inigualável esposa, Carla Borim
Mirachi Melo. Se eu tive tranquilidade para me concentrar neste doutorado (e em
minha carreira, como um todo), foi por eu saber que nossas crianças estavam, a qualquer
instante, bem acolhidas e entretidas. Se eu, há cerca de 5 anos, mergulhei nesse mar,
foi por que ela me deu um empurrãozinho e se dispôs e me ajudar a alcançar a margem.
Se eu tive persistência para permanecer nesse barco, foi por que ela não permitiu que
eu o deixasse virar. Muito obrigado, minha amável esposa; por me escutar (as palavras
e por entre elas), por dialogar, por acomodar meu sofrimento, por compartilhar minhas
emoções, pelo companheirismo.

Laura e Davi... crianças puras e lindas. Mas tão dependentes. Ainda que tenham
uma mãe com super poderes, nossa rotina contou com o suporte da “brigada especial”:
os avós. Em relação a esse ponto, um segundo agradecimento aos meus pais. Além
deles, muito obrigado aos meus sogros, Silvana Borim Mirachi e Luiz Antônio
Mirachi; pelo leva e traz, pelo olha um e olha outro, pelo dorme na casa, pela carona
para escola, e, naturalmente, pela atenção e carinho constantes.

Muito obrigado, meu irmão, Renato Terra Cunha Melo, pois nossas per-
sonalidades, reciprocamente influenciadas, estão entrelaçadas desde a origem. Muito
obrigado aos meus próprios avós, que, já cedo, se preocupavam com minha educação
e conjuntamente festejam minhas vitórias. Muito obrigado, Milene de Mello, pelos
guias de sobrevivência e descobertas sobre mim mesmo.

Receio ser impossível devidamente agradecer a todos que me acompanharam por
esse caminho. É até provável que eu não sequer saiba quem são exatamente todas essas
pessoas. Caso o seu nome não esteja aqui, por favor aceite minhas desculpas.

Muito obrigado, meu Deus! Por tudo.

xiii

Resumo

A inferência de tipos é uma funcionalidade comum a diversas linguagens de progra-
mação. Enquanto que, no passado, ela era predominante em linguagens funcionais (e.g.,
ML e Haskell), hoje em dia muitas linguagens orientadas a objeto ou multi-paradigmas
tais como C# e C++ oferecem tal recurso. Ainda assim, a inferência de tipos para
programas inteiros, não restrita apenas a expressões isoladas, continua sendo um pro-
blema em aberto no âmbito de C. A primeira dificuldade a ser driblada ao abordar
esse problema é o fato da análise sintática dessa linguagem requerer, também, infor-
mações semânticas sobre programa. Além disso, inúmeros desafios complexos emergem
ao longo do processo devido ao intricado sistema de tipos de C. Neste trabalho, apre-
sentamos uma solução para este problema: uma abordagem baseada no algoritmo de
unificação que nos permite inferir a estrutura de tipos da linguagem C.

Como principal aplicação de nossa técnica, investigamos a reconstrução de pro-
gramas parciais. Código-fonte incompleto aparece naturalmente durante o desenvolvi-
mento de software: nas etapas de projeto, evolução, testes, manutenção e, inclusive,
visando a análise de programas. Portanto, a capacidade de entender fragmentos de
código-fonte é um ativo valioso. Haja vista a variedade de tarefas nas quais tal co-
nhecimento pode ser utilizado: para (i) habilitar ferramentas de análise estática em
cenários onde componentes de software estejam inacessíveis; (ii) melhorar a precisão
de ferramentas de análise estática que não exigem configurações extras/especiais; (iii)
permitir que ferramentas para geração de testes e stubs possam ser aplicadas sem a
necessidade de compilar todo um projeto; e (iv) auxiliar programadores na extração
de estruturas de dados a partir de algoritmos. Nossa técnica foi avaliada em várias
bibliotecas C, tais como o GNU Coreutils, a GNULib, o GLib do GNOME e a GDSL;
em implementações disponíveis em um livro texto; e em trechos de código retirados de
projetos como CPython, FreeBSD e Git.

xv

Abstract

Type inference is a feature that is common to a variety of programming languages.
While, in the past, it has been prominently present in functional languages (e.g., ML
and Haskell), today, many object-oriented/multi-paradigm languages like C# and C++
offer, to a certain extent, such a feature. Nevertheless, whole-program type inference
is still an unsolved problem in C. The first difficulty encountered when tackling this
problem is the fact that parsing C requires, not only syntactic, but also semantic
information. Yet, greater challenges emerge due to C’s intricate type system. In this
work, we present a solution to this problem: a unification-based approach that lets us
infer types that are not declared.

As a primary application of our technique, we investigate the reconstruction of
partial C programs. Incomplete source code naturally appears in software develop-
ment: during design, and while evolving, testing and analyzing programs. Therefore,
the ability to understand it is a valuable asset. Reconstructing a partial program into
a complete well typed one can: (i) enable static analysis tools in scenarios where com-
ponents may be absent; (ii) improve precision of static analysis tools that require no
build-specifications; (iii) allow stub-generation and testing tools to work on code snip-
pets; and (iv) assist programmers on the extraction of data-structures from algorithms.
We evaluate our technique on code from a variety of C libraries such as GNU’s Core-
utils, GNULib, GNOME’s GLib, and GDSL; from implementations of a book; and on
snippets from popular projects like CPython, FreeBSD, and Git.

xvii

List of Figures

1.1 Functional style implementation of the mergesort algorithm 3
1.2 Challenge 1 . 5
1.3 Challenge 2 . 5
1.4 Challenge 3 . 6
1.5 Challenge 4 . 7

2.1 The µA language . 13
2.2 Prolog implementation of µA . 14
2.3 The µB language . 16
2.4 Prolog implementation of µB . 17

3.1 The µC language . 23
3.2 The syntax of constraints for µC . 26
3.3 The ̂ (hat) function . 28
3.4 The semantics of constraints . 29
3.5 The type predicates . 31
3.6 Constraint generation rules for µC . 33
3.7 Auxiliary constraint generator bs . 34
3.8 The lattice of shapes . 35
3.9 Shape classification of expressions . 36
3.10 Auxiliary constraint generators kd and sel 37
3.11 Example of the auxiliary constraint generators kd and sel 39
3.12 The typing rules for self-contained µC programs 41
3.13 Functions ari and sc . 42

4.1 The effect of asymmetries on classical unification 44
4.2 Unification algorithms Uc and Us . 47
4.3 The relax function . 47
4.4 The effect of inequalities ordering . 48

xix

4.5 Rules for preprocessing stage of the solving process 51
4.6 Rules for the 1st unification round of the solving process 55
4.7 Functions splitWob and orderSub . 56
4.8 Rules for the 2nd unification round of the solving process 57
4.9 Rules for the membership normalization stage of the solving process 59
4.10 The algorithm for convergence of field membership constraints 60
4.11 Rules for the record composition stage of the solving process 63
4.12 Rules for the de-orphanization stage of the solving process 66
4.13 The complete solver algorithm . 67
4.14 A summarized example of the type inference system 70
4.15 The typing rules of a µC program with type inference 73

5.1 PsycheC enabling static analyses . 85
5.2 PsycheC supporting software testing . 87

xx

List of Tables

2.1 Ambiguities in the C language . 12

3.1 The φ, ψ, and Θ data structures . 28

5.1 PsycheC reconstructing the GNU Coreutils programs 83
5.2 PsycheC extracting data structures . 89

xxi

Contents

Obrigado! Thank you! Danke! xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Discovering the Intricate Type System of C 4
1.2 The Contributions of This Work . 8
1.3 A Brief Roadmap for This Thesis . 9

2 Parsing Ambiguous Syntax 11
2.1 Properties of an Ambiguous-Program AST 12
2.2 From an Unambiguous AST Onwards 17

3 The µC Language and Constraints 19
3.1 The Definition of µC . 22

3.1.1 Programming Style . 24
3.2 The Syntax of µC Constraints . 25
3.3 The Semantics of µC Constraints . 27
3.4 Syntax Directed Constraint Generation 32

3.4.1 A Lattice of Shapes . 32
3.5 The Type System of µC . 40

4 Translating Constraints into Types 43
4.1 Subtyping and Unification . 43

xxiii

4.1.1 A Two-Phase Unification Approach 45
4.2 A Stage-based Solver . 48

4.2.1 Preprocessing . 49
4.2.2 1st Unification Round . 53
4.2.3 2nd Unification Round . 55
4.2.4 Membership Normalization . 58
4.2.5 Record Composition . 62
4.2.6 Insufficient Information and De-orphanization 64

4.3 Typing a Reduced µC Program . 71

5 An Overview of PsycheC 77
5.1 The C Language . 77

5.1.1 Unexpanded Macros . 78
5.1.2 Variadic functions and generic selections 79
5.1.3 Arrays x pointers, functions x function pointers 79
5.1.4 Miscellanea . 79

5.2 A Glimpse of Dynamic Semantics . 80
5.3 Empirical Evaluation . 81

5.3.1 Reconstructing Header Files . 82
5.3.2 Enabling Static Analyses . 84
5.3.3 Improving Static Analyses . 85
5.3.4 Supporting Software Testing . 86
5.3.5 Extracting Data-Structures . 87

6 Related Work 91
6.1 Parsing of Incomplete Sources . 91
6.2 Type inference . 92
6.3 Unification and Subtyping . 94
6.4 The Type System of C and Semantics 95

7 Final Thoughts 97
7.1 Future Work . 97

Publications 99

Bibliography 101

Appendix A Haskell Implementation of µC 109
A.1 The Syntax of µC . 109

xxiv

A.2 The Constraints Language . 111
A.3 The Substitutions . 111
A.4 The type-id of a Type . 113
A.5 The Mappings φ, ψ, and Θ . 113
A.6 The Semantics of Constraints . 115
A.7 The Type Predicate of Constraints Semantics 117
A.8 The Constraint Generators . 120
A.9 The build synonym Auxiliary Generator 123
A.10 The Classification of Expressions . 124
A.11 The keep or drop and select Auxiliary Generators 128
A.12 The Unifications Algorithms Uc and Us 129
A.13 The relax Function . 131
A.14 The Solver Configuration and Driver 131
A.15 The Preprocessing Stage of the Solving Process 132
A.16 The 1st Unification Round of the Solving Process 134
A.17 Functions splitWob and orderSub . 134
A.18 The 2nd Unification Round of the Solving Process 135
A.19 The Membership Normalization Stage of the Solving Process 137
A.20 The Field Convergence Algorithm . 138
A.21 The Record Composition Stage of the Solving Process 138
A.22 The De-orphanization Stage of the Solving Process 140
A.23 The Complete Solver Algorithm . 140
A.24 The Typing Rules . 141
A.25 Supporting Functions sc and ari . 146
A.26 The Pretty Printing of the Output . 146
A.27 The µC Parser . 151
A.28 The Driver of our Compiler . 155

xxv

Chapter 1

Introduction

Type inference, also known as type reconstruction, is a widespread feature of pro-
gramming languages. In a program written with a language that offers such a
feature, the declaration of a variable does not require an accompanying type an-
notation. The roots of type inference lie in the work of Hindley, Milner, and
Damas [Hindley, 1969, Milner, 1978, Damas and Milner, 1982], and are supported by
the unification algorithm of Robinson [Robinson, 1965]. This mechanism, which con-
sists of the automatic deduction of the types of program terms by inspecting how they
are used, has become popular through languages like ML and Haskell.

Nowadays, most programming languages provide certain level of type infer-
ence, but the capabilities offered by each of them vary a lot. Functional lan-
guages often offer a powerful inference mechanism that allows programs to be com-
pletely unannotated, even under the presence of high-order functions and differ-
ent sorts of polymorphism [Cardelli and Wegner, 1985]. Yet another advanced type
system appears in Scala. This language supports a mechanism that can infer
the types of terms based on their locality in the program’s abstract syntax tree
(AST) [Pierce and Turner, 2000, Odersky et al., 2001]. Object-oriented and multi-
paradigm languages like C# and C++ only provide a restricted form of type inference:
when a variable is declared in conjunction with an initializer expression, a placeholder
(var in C#, and auto in C++) may be employed to designated the type in question.

Given the ever-increasing popularity of type inference-enabled languages, we pose
the following question: is it feasible to incorporate such a feature into the archaic type
system of the (still popular) C language? The answer is yes. More precisely, the
technique that we present in this work is capable of creating complete definitions for
types that appear in a C program, which can be entirely free from struct, union, enum,
or typedef declarations. Because our type inference is intended to work on existing

1

2 Chapter 1. Introduction

code bases, we do not require a single syntax modification to the C language.
To illustrate our technique, let us present an example. The program in Figure 1.1

is a functional style implementation of the mergesort algorithm for linked lists. There
are two primary data structures being used in that source code: (i) node_t, a recursive
type that represents a node of the list - the field named value is responsible for carrying
the element’s data, the next field is a pointer to the following node; and (ii) pair_t, an
auxiliary type that holds the sublists that are split at each iteration. Neither node_t
nor pair_t are defined in the source. Therefore, if we attempt to compile our mergesort
implementation with a standard C compiler, error diagnostics of the kind “unknown
type” will be reported. However, by integrating type inference mechanisms, such as
ours, as an early compilation phase, the following declarations for node_t and pair_t

would be automatically produced.

struct TYPE_1__ { int value; struct TYPE_1__* next; };
typedef TYPE_1__* node_t;
struct TYPE_2__ { struct TYPE_1__* y; struct TYPE_1__* x; };
typedef TYPE_2__ pair_t;

The ability to write functional style C programs through the support of type
inference is an achievement per se. Nevertheless, the principal application of our
technique emerges in the context of partial programs. Incomplete source code ap-
pears in a variety of scenarios: during inception of a project, inside an editor or IDE;
in cross-platform development, when certain source is unavailable due to incompat-
ibilities; in the form of patches submitted for code reviewing; and as snippets con-
tained in reports from bug-trackers. Therefore, the ability to understand incomplete
sources is a desirable asset. Testimony of this importance is the fact that the pro-
gramming languages community has gone to great lengths to design tools that can
deal with partial programs [Koppler, 1997, Knapen et al., 1999, Chugh et al., 2009,
Dagenais and Hendren, 2008, Godefroid, 2014, Perelman et al., 2012].

In order to understand the source a partial C program, we need to deal with the
problematic situation of encountering declarations that refer to types whose definitions
might be missing. This setup corresponds quite accurately to that expected by our
technique. Toward a solution to this problem, we present what, to the best of our
knowledge, is the first type inference for C. With our system, partial program, Pp, can
be reconstructed into a new program P . P preserves every syntax of Pp, and includes
any type declaration (possibly) missing from Pp that is necessary to make P well typed.

As a terminology note, we would like to clarify the meaning of the term “com-
pilation” in this thesis. In the context of both C and C++, it is a common abuse

3

node_t merge_sort(node_t c) {
 if (!c) return 0;
 if (!(c->next)) return c;
 else {
 pair_t p = split(c);
 return merge(merge_sort(p.x), merge_sort(p.y));
 }
}

node_t merge(node_t a, node_t b) {
 if (!a) return b;
 else if (!b) return a;
 else {
 if (a->value < b->value) return new_node(a->value, merge(a->next, b));
 else return new_node(b->value, merge(a, b->next));
 }
}

node_t new_node(value_t value, node_t next) {
 node_t node = malloc(sizeof *node);
 node->next = next;
 node->value = value;
 return node;
}

pair_t split(node_t a) {
 pair_t s;
 if (!a) {
 s.x = 0;
 s.y = 0;
 } else if (!(a->next)) {
 s.x = a;
 s.y = 0;
 } else {
 pair_t p = split(a->next->next);
 s.x = new_node(a->value, p.x);
 s.y = new_node(a->next->value, p.y);
 }
 return s;
}

Figure 1.1. Functional style implementation of the mergesort algorithm for
linked lists. If the content of this figure is pasted, as is, into a file and an attempt
to compile it with an standard C compiler is made, error diagnostics of the kind
“unknown type” will be reported. These errors can be explained by the absence
of declarations for the types node_t, pair_t, and value_t. However, if our type
inference mechanism is integrated to the compilation process, suitable definitions
for node_t and pair_t, along with an synonym declaration to value_t, would be
automatically produced and, consequently, a successful compilation is obtained.

of wording to refer to compilation as the entire pipeline of building a program: (a)
preprocessing, (b) compiling, (c) assembling, and (d) linking. Our work is specifically

4 Chapter 1. Introduction

targeted at compilation, as in item (b). For instance, we do not generate function def-
initions (i.e., bodies for functions). Consequently, a program reconstructed with our
technique may not link. Nevertheless, stub-generation tools exist [Cadar et al., 2008,
Godefroid et al., 2005, Williams et al., 2005, Tillmann and De Halleux, 2008]. Those
are, however, beyond the scope of this work.

1.1 Discovering the Intricate Type System of C

A C program, in its usual format, does not require that its types are inferred. After
all, in this language it is expected that a declaration comes annotated with a type, and
that the definition of such type is available in the program. In spite of that, there is
a variety of scenarios where the definition of a type may be absent - we study those
in Section 5.3. Upon this situation, combined with an eventual need of, nevertheless,
working with such a program, the only possible solution is to “discover” what the
missing types look like. To this end, a type inference system must be employed.

In order to produce a well typed C program out of an incomplete source code
(the meaning of “incomplete” is formalized both in Chapter 2 and 3, just slightly
differently), we have to circumvent a number of challenges, which we now exemplify.
Even though this selection of snippets reflects the predominant difficulties faced by
our technique, inferring types that satisfy C’s type system involves additional hurdles.
Those are not necessarily mentioned in this section but they appear throughout the
text. We start with Challenge 1, which concerns the parsing of a C program.

Challenge 1. Determine the syntactic nature of program identifiers in a language that
relies on semantic information to guide parsing, considering that not all declarations
may be present.

Figure 1.2 illustrates this challenge. Program (a) does not contain enough infor-
mation to determine the syntactic nature of T. We could infer it either as an arithmetic
type1 or as a variable. The former hypothesis corresponds to the program in Figure 1.2
(b); the latter, to the program in Figure 1.2 (c). In Section 2, we discuss how to
postpone the decision about the nature of T until the inspection of additional program
syntax can provide us with disambiguation information. For instance, in Figure 1.2
(d), the declaration T b; allows us to deduce that T is a type; a situation where an
analogous conclusion indicates that T is a variable appears in the programs (e) and (f)
of this Figure 1.2. There, T participates as an operand of a binary expression.

1The C standard refers to integer and floating-point types collectively as arithmetic
types [ISO-Standard, 2011]{§6.2.5.21}.

1.1. Discovering the Intricate Type System of C 5

void f() {
 T * a;
}

typedef int T;
void f() {
 T * a;
}

int a, T;
void f() {
 T * a;
}

typedef int T;
void f() {
 T * a;
 T b;
}

(a) (b)

int T;
void f() {
 T * a;
 b + T;
}

(e)(d)

(c)

int T;
void f() {
 T * a;
 x = T * b;
}

(f)

Figure 1.2. (a) In this program, is T the name of a variable or of a type? (b)
A program where we know that T is a type because a declaration for it exists. (c)
A program where T is declared as a variable. (d) Even though the program does
not contain a declaration for T, we can conclude that T is a type (the grayed out
part is what could be a valid declaration for such type). (e-f) Programs where,
through the aid of extra syntax, it is possible to conclude that T is a variable.

Challenge 2. Distinguish between non-unifiable types that are mutually exchangeable.

void f() {
 T a;
 a = 0;
}

void f() {
 T b;
 b = 0;
 b / 10;
}

void f() {
 T c;
 c = 0;
 *c = 10;
}

(a) (b) (c)

void f() {
 T d;
 d + u;
}

(d) (e) (f)void f() {
 T e;
 e + p;
 *p = 10;
}

void f() {
 T e;
 p + e;
 *p = 10;
}

Figure 1.3. (a) In this program, is T an arithmetic or a pointer type? (b)
A program where T is an arithmetic type, since pointers cannot participate in
a division operation. (c) A program where T is a pointer: the only type that
supports the dereferencing expression. (d) Once more, is T an arithmetic or a
pointer type? (e) Not only T must be an arithmetic type, but it is restricted to
an integral one, e.g. an int. (f) Because the order of operands is not important
in an addition, T is again an integral type.

Neither the program in Figure 1.3 (a) nor the one in Figure 1.3 (d) are syntac-
tically ambiguous. In both cases, it is clear that T must be a type. However, those
programs are semantically ambiguous. In the former case, T can be int, int∗, int∗∗,

6 Chapter 1. Introduction

long, long∗, float, double∗∗, etc. In the latter, T can be either an arithmetic or a
pointer type, given that, in C, there are two possibilities for the operands involved in
an additive expression: (i) both of them have arithmetic types; or (ii) one of them is a
pointer, and the other an arithmetic type – further restricted to be an integral type.

As we explain in Section 3, we devise a lattice of shapes that helps us find
most general types through the analysis of extra program syntax. This lattice lets
us promote T to numeric in Figure 1.3 (b), and to pointer in Figure 1.3 (c): these
choices are justified by the fact that pointers cannot be used in a division opera-
tion [ISO-Standard, 2011]{§6.5.5}, and that C does not permit dereferencing arithmetic
types. In a similar way, our lattice classifies, in Figure 1.3 (e), p as a pointer and e as
an integral. The conclusions that can be drawn for Figure 1.3 (f) are the same as those
from Figure 1.3 (e), since the order of operands in addition does not affect typing.

Challenge 3. Account for unidirectional type relations represented by assignments.

void f() {
 int x;
 T1 a = x;
}

void f() {
 const int y;
 T2 b = y;
 b = 10;
}

void f() {
 T3 c;
 const int* w = c;
 *c = 10;
}

(a) (b) (c)

void f() {
 const int* z;
 T4 d = z;
}

(d) (e) (f) void f() {
 double m;
 T6 h = m;
}

void f() {
 T5 h;
 double m = h;
}

Figure 1.4. (a) A program where T1 can be of the same type of x, or also of
a const-qualified compatible integral, e.g., const int. (b) In this program, T2
cannot be inferred as const int, even though that is the exact type of y. (c)
Again, a situation where, despite the presence of an assignment, T3 cannot be
const int∗ – although it could be int∗. (d) Can the type T4 be int∗ in this
program? If not, for what reason? (e) A program where T5 could be double, int,
short, etc. (f) Can the type of T6 be int? If not, for what reason?

This challenge exists due to the implicit conversions that are allowed in C. In
particular, those involving type qualifiers [ISO-Standard, 2011]{§6.7.3}. Even though
we focus on const, the described behavior applies to volatile as well. In Figure 1.4
(a), T1 can be an int or const int (or any other compatible integral type, such as
long). The latter is possible because a constant variable may be created out of a
non-constant one. But, in Figure 1.4 (b), T2 must be int (or another non-const
integral type), because typing T2 as const int would lead to an invalid program,

1.1. Discovering the Intricate Type System of C 7

since assigning to a constant variable, as in b = 10, is not permitted – constants can
only be initialized.

The challenge gets harder in Figure 1.4 (c) due to the presence of pointers. Al-
though w has type const int∗, it is legal to have it assigned by a type with weaker
qualification [ISO-Standard, 2011]{§6.3.2.3-2}, like int∗. In fact, the expression ∗c =

10 indicates that c cannot be a constant, and the correct solution is to have T3 as
int∗. However, in Figure 1.4 (d) we have an assignment in the other way around. In
this case, the constant pointer appears on the right-hand-side, and T4 cannot be int∗,
since that would mean a break in the promise of immutability; making T4 const int∗,
on the other hand, would be correct.

Another domain of implicit conversions existing in C is the one relating to arith-
metic types. In this context, we are specifically interested on avoiding the truncation
of values [ISO-Standard, 2011]{§6.3.1.4-1}. The programs in Figure 1.4 (e) and (f)
illustrate this situation. In the former case, we could infer the type of T5 as an int

or a double. On the other hand, such choice is not allowed for the latter case: typing
T6 as int could lead to the loss of data. This fact is a potential source of undefined
behavior. Due to the aforementioned asymmetries, classical unification, which relies
on type equivalences, cannot be used in C. In Section 4, we discuss how to employ
subtyping for solving this problem, together with a novel unification approach.

Challenge 4. Generate types for variables whose nature is not restricted by syntax.

void f() {
 T1 d = malloc(8);
 *d = 9.9;
}

(a) (b) (c)void f() {
 T2 c = malloc(1);
 *c = 'a';
}

void f() {
 T3 v = malloc(4);
 *v;
}

Figure 1.5. What are the types T1, T2, and T3, considering that malloc’s
return type is void∗?

Figure 1.5 illustrates this challenge. The return type of malloc is void∗. In
programming language parlance, void∗ is a top type among pointers, meaning that
we can unify it with any other pointer type. However, there is no actual value whose
type is void∗. And yet, we need to instantiate it to produce a well typed program
for the incomplete source in Figure 1.5 (c). Further syntax in Figures 1.5 (a-b) lets us
conclude that T1 and T2 are arithmetic types; on the other hand, in Figure 1.5 (c) we
do not have this information. In Section 4.2 we define the notion of an “orphan”; T3 is
such one. In particular, it can be safely instantiated to an arbitrary type, as long as it
is a pointer.

8 Chapter 1. Introduction

1.2 The Contributions of This Work

The thesis of this work is that it is possible to implement a type inference mechanism
for the C programming language. During the course of designing such a technique,
we have architected solutions to challenging aspects of C’s type system. Through the
mechanism that we developed, a number of tools can be leveraged to better function
on a setup where source code is incomplete. The list below describes what we believe
to be our main contributions.

• Parsing C requires semantic knowledge in order to handle ambiguous syntax.
However, such information might not be available if a program lacks just a single
type declaration. In Section 2 we formalize a technique that deals with this
problem: parsing decisions are postponed until further syntax can be extracted
from the source code.

• The C language accepts liberal conversions. In particular, between a pointer
type and an integer type, i.e. the null pointer constant, 0. But those two types
are not syntactically interchangeable, thus they cannot be unified via a classical
algorithm, as typically employed in type inference. In Section 3 we explain how
to discover the nature of a type by means of a lattice of shapes (e.g. a pointer
or an arithmetic shape). Then, we use this information to prevent inconsistent
unifications.

• In C, implicit conversions of qualified (e.g. const and volatile) and pointer
types are asymmetric. This fact prevents us from using standard inference tech-
niques, since they rely on type equivalences. In Section 4 we discuss a strategy
to model pointer relations through subtyping, and an enhanced unification algo-
rithm that is capable of simultaneously dealing with equivalence and inequality
constraints.

• A program might not contain enough uses of its variables and functions so that
all types can be inferred. In Section 4.2 we describe how our type inference works
in this scenario. Unsolved types can be safely instantiated, without interfering
with solved type variables.

• To demonstrate the ideas advocated in this work, we have materialized them into
a tool called PsycheC2, presented in Section 5. This tool, which is a practical
contribution of this work, produces a C header containing any declaration that
is absent from the program that it receives as input. The #inclusion of this

2https://github.com/ltcmelo/psychec

1.3. A Brief Roadmap for This Thesis 9

header in the source code characterizes a reconstructed program that is expected
to compile successfully.

• In Section 5.3, we discuss how the successful reconstruction of a program en-
ables static analysis tools to work, even under a restricted environment; im-
proves the precision of “zero setup” static analysis tools; supports testing and
stub-generation; and serves as a general code completer for C programmers.

• We provide, in Appendix A, a full implementation of the µC language that we
use in Section 3.1 to explain the core ideas of our type inference. Given the
subtleties involved in our technique, and the fact that it combines a variety of
topics from the literature, we believe that an implementation that accurately
follows, side-by-side, a given formalism has a relevant pedagogical value.

1.3 A Brief Roadmap for This Thesis

The type inference mechanism that we propose consists of the following parts, in the
sequence as they are here enumerated.

1. A program, P , that lacks the declarations of types may contain syntax ambigu-
ities. Therefore, we must first parse the source code and arrive at an abstract
syntax tree (AST) that is unambiguous. This is the topic of Chapter 2.

2. To express the typing relations existing in C, we create a constraints language.
Such constraints are generated by means of traversing the AST of P . Chapter 3
contains the details of this process.

3. Solving the constraints of P requires a solver that is capable of simultaneously
dealing with both type equivalence and subtyping. We elaborate one in Chap-
ter 4. A complete solved form of our system let us infer the types that are
necessary to make P well typed.

Throughout the text, three supporting languages are introduced: µA, µB, and
µC. All of them are a subset of C, but contain only enough syntax that is essential
to the illustration of our ideas. Among them, µC is the principal one: it is used as
the basis of our formalism; a Haskell implementation of it is available in Appendix A.
Nevertheless, µC is not capable of dealing with C programs. To this latter end, we
have developed PsycheC, an industrial-strength tool that, alongside with an empirical
evaluation, is presented in Chapter 5. Related work appear in Chapter 6 and final
remarks in Chapter 7.

Chapter 2

Parsing Ambiguous Syntax

The C language uses a symbol table to guide parsing. Specifically, a parser checks the
content of this table to determine which grammar production is to be accepted, de-
pending on whether an identifier designates a program variable or the name of a type.
If declarations were not mandatory, it would be impractical to rely on such semantic
information. Therefore, when designing a broadly comprehensive type inference tech-
nique, the syntactic analysis that we perform must be still precise, yet flexible enough
to deal with the absence of declarations.

Revisiting Challenge 1

In Figure 1.2, from Section 1.1, we show programs with ambiguous syntax.
All of them contain the term x ∗ y;. This construct can be interpreted as
the multiplication of variables x and y, or the declaration of variable y as a
pointer to a type named x. When possible (i.e., the source is not inherently
ambiguous), our parser must be able to disambiguate such terms.

A known approach for parsing incomplete or erroneous syntax may is fuzzy pars-
ing [Koppler, 1997]. Yet, a fuzzy parser, by definition, does not rigorously recognize
a language. Such imperfection poses difficulties to the development of a type infer-
ence mechanism, since important information may be lost. To overcome this situation,
Knapen et al [Knapen et al., 1999] present an alternative approach, only resembling
fuzzy parsing, to deal with this problem. In their work, eight ambiguous constructs
of the C++ language are addressed. Out of those, three exist in C as well. We show
them in Table 2.1.

11

12 Chapter 2. Parsing Ambiguous Syntax

Table 2.1. Ambiguities that can happen due to missing declarations. The first
row of the table shows a syntax that is typical of a function call. However, if
a is the name of a type, that syntax would actually denote the declaration of a
variable b (the parenthesis are ignored). In the second row, when a is a type, we
have a cast expression for both constructs (the value dereferenced by ∗b and of
-b), instead of multiplication and subtraction, as they might appear. The last
row is the classical pointer versus multiplication ambiguity.

Ambiguity Syntax

Function call or variable declaration a(b);
Cast of unary expression or binary expression (a)∗b; (a)-b;
Pointer declaration or multiplication a ∗ b;

2.1 Properties of an Ambiguous-Program AST

Our syntax disambiguation strategy is based on Knapen’s, but with additional formal
guarantees. The principle behind a parser that can deal with programs where declara-
tions may be missing is to postpone certain decisions until there is enough information
to conduct disambiguation. To explain this strategy, we shall use a language called
µA, whose syntax appears in Figure 2.1. µA offers the minimum setup that allows us
to build semantically different versions of a ∗ b;. While we do not describe all the
ambiguity cases in Table 2.1, their handling is similar to the one we now illustrate.

The syntax of µA follows immediately from a corresponding the Prolog Definite
Clause Grammar (DCG) [Sterling, 1994, Ch.16] appearing in Figure 2.2. There, a
program is a list of terms separated by a semicolon, ;. Terms may be comprise of
a type declaration, Td, a variable declaration, Vd, or an expression, E. The top-level
non-terminal, P , has four attributes, Ti, Vi, Ts, and Vs: the first two are inherited; the
other two are synthesized. Thus, production P receives Ti and Vi and, if it successfully
consumes a string, it produces Ts and Vs.

We let T denote sets of names used as types, and V denote sets of names used
as variables. Terms, which are denoted by S, use the same four attributes Ti, Vi, Ts,
and Vs. A type declaration Td(x) succeeds if x is found to be the name of a new type
- only the type int is builtin in µA; hence, new types are aliases of int. A variable
declaration Vd(T, x) succeeds if x can be proven to be the name of a variable whose
type is present in the set of types T . Parsing an expression such as E(V) succeeds if
all the variables that this expression uses are present in the set of names V . A valid
µA program is formalized by Definition 1.

2.1. Properties of an Ambiguous-Program AST 13

P (T, V, T
′
, V

′
) ::=1 S(T, V, T

′′
, V

′′
); P (T

′′
, V

′′
, T

′
, V

′
);

P (T, V, T
′
, V

′
) ::=2 S(T, V, T

′
, V

′
);

S(T, V, T ∪ {z}, V) ::=3 Td(z) if z /∈ V
S(T, V, T, V ∪ {x}) ::=4 Vd(T, x) if x /∈ T
S(T, V, T, V) ::=5 E (V)

Td(z) ::=6 typedef int z

Vd(T, x) ::=7 z x if z ∈ T
Vd(T, x) ::=8 z ∗ x if z ∈ T

E(V) ::=9 x + y if x ∈ V ∧ y ∈ V
E(V) ::=10 x ∗ y if x ∈ V ∧ y ∈ V

Figure 2.1. The µA language. This is a minimalistic language that contains
an ambiguous syntax that mimics the pointer declaration versus multiplication
ambiguity of C. We assume that the only valid identifiers of µA are x, y, and z.
Note that the term x ∗ y can be derived by either V d or E.

Definition 1 (Valid µA Program). We say that P is a valid µA program if P is a list
of terms Td, Vd, or E, that can be derived from production P (∅,∅, T, V) using the
grammar in Figure 2.1. In this case, we say that T is the set of type names, and V is
the set of variable names of P . �

Lemma 1 (Properties of a Valid µA Program). The following properties are true about
a valid program P. Below, ++ is the list concatenation operator.

1. T ∩ V = ∅.

2. If P = P1 ++ a b; ++ P2, then ∃x ∈ T , such that typedef x a; ∈ P1.

3. If P = P1 ++ c + d; ++ P2, then:
(i) ∃x ∈ T , such that x c; ∈ P1,
(ii) ∃y ∈ T , such that y d; ∈ P1, and
(iii) {c, d} ⊆ V .

Proof. Direct from the grammar productions of µA.

1. Follows from the conditions in productions 3 and 4, i.e., x /∈ V and x /∈ T .

2. Follows from the condition in production 7, combined with that of 3 and 6.

3. Similar to the proof of 2.

14 Chapter 2. Parsing Ambiguous Syntax

Figure 2.2. A Prolog implementation of the µA language. If we provide p([],
[], T, V, [typedef, int, z, ;, z, *, y, ;, z, x, ;, x, *, y], []) as
an input to this program, the result obtained is composed by sets T = [z] and V
= [x, y]. This means that z is a type name, while x and y are variable names.

Example 1. Program P1 = typedef int a; a a; is not valid, because a is used both
as the name of a variable and of a type. Program P2 = a b; is not valid either,
because the name a is used as a type, but it has not been previously defined by a
typedef. Program P3 = int a; a + b; is not valid, since the name b is used as a
variable, but it has not been declared.

A valid µA program does not contain ambiguities. The term a ∗ b can always
be disambiguated by inspecting the sets T and V for the presence of a. The same
situation happens in C, since disambiguation of such syntax would be done by looking
up the symbol table and checking whether a is the name of a type or the name of a
program variable. Therefore, in order to reproduce the scenario desired for our type
inference, where type declarations are not necessarily present, we need to emulate the
absence of the semantic information that would be available to a compiler under normal
circumstances. To this end, Definition 2 formalizes the notion of a partial program.

Definition 2 (Partial µA Program). Let P be a valid µA program. We obtain a
partial program, Pp, by eliminating any number of terms from P . �

2.1. Properties of an Ambiguous-Program AST 15

Example 2. Program P = typedef int a; a b; a ∗ c; is valid, according to defini-
tion 1. There exist eight possible partial programs that we can produce out of P . A few
of them are: P1 = a b; a ∗ c; , P2 = typedef int a; a ∗ c; , and P3 = a b; a ∗ c; .

It can be noticed in Example 2 that partial programs are not always valid; to
the contrary, the process of eliminating terms is likely to produce an invalid program.
Furthermore, such partial programs may contain an ambiguity just like the one that
would exist in C, if type declarations are absent. For instance, the partial program Pp
= a ∗ b; is ambiguous because we do not know if a ∗ b is a multiplication between
a and b, or the declaration of b as a pointer to a value of type a. Nevertheless, there
are partial programs that, despite being invalid, provide us with enough information
for disambiguation. Consider Pp = a ∗ b; a c; . In this case, we can only have two
declarations: the second term, a c, lets us infer that the name a must be the name of a
type, not that of a program variable. Analogously, the two terms in Pp = a ∗ b; a + c;

must be expressions, for the second one lets us infer that a is the name of a variable.
Based on the observation that certain program terms let us disambiguate the am-

biguous ones, we define the language µB, whose logical grammar appears in Figure 2.3
- and Prolog implementation in Figure 2.4. This grammar uses a new non-terminal Abg
to carry over an ambiguity: upon matching a ∗ b we postpone the decision of whether a
is a type or variable. This name, a, will only be marked as a type if the partial program
contains either a term like typedef int a, or a declaration such as a b. Similarly, we
mark a as a variable if the partial program contains either a declaration such as x a,
or an expression like x + a. If all ambiguities in a partial program can be resolved, we
have a unambiguous program.

Definition 3 (Unambiguous Program). Let Pp be a partial program. We can success-
fully disambiguate Pp if the production Pp(∅,∅, T, V) succeeds on Pp, and every name
in Pp is either in T or in V . In this case, we refer to Pp as a unambiguous program. �

Despite the fact that an ambiguous partial program can be successfully parsed by
the grammar of Figure 2.3, it may happen that such program cannot be disambiguated.
That is the reason why we, in Definition 3, require that every name in the program is
put into either T or V , i.e. it is observed as a type or as a variable, respectively. As
an example of the inability to determine the nature of a name, in Pp = int x; a ∗ x;

no verdict about a can be made. Notwithstanding, we can prove several properties
of partial programs, even if they are still ambiguous, as we state in Theorem 1. This
theorem, which allows us to correlate P and Pp, gives us Corollary 1.

16 Chapter 2. Parsing Ambiguous Syntax

Pp(T, V, T
′
, V

′
) ::=a Sp(T, V, T

′′
, V

′′
); Pp(T

′′
, V

′′
, T

′
, V

′
);

Pp(T, V, T
′
, V

′
) ::=b Sp(T, V, T

′
, V

′
);

Sp(T, V, T, V ∪ {y}) ::=c Abgp(y)

Sp(T, V, T ∪ {z}, V) ::=d Tdp(z)
Sp(T, V, T ∪ {z}, V ∪ {x}) ::=e Vdp(z, x)
Sp(T, V, T, V ∪ {x, y}) ::=f Ep(x, y)

Abgp(y) ::=g x ∗ y

Tdp(z) ::=h typedef int z

Vdp(z, y) ::=i z y

Ep(x, y) ::=j x + y

Figure 2.3. The µB language. This is the grammar we use to disambiguate
programs. Instead of having two different productions that derive x ∗ y, only one
is provided, Abgp . On the other hand, upon matching of this syntax, we cannot
associate a neither to T nor to V . Such decision is postponed until sufficient
information is available to determine whether a is a variable or a type.

Theorem 1 (Correspondence between Partial and Original Programs). Let Pp be a
partial program of P. If Pp(∅,∅, Tp, Vp) succeeds on Pp, and P (∅,∅, T, V) succeeds
on P, then the following properties hold:

1. If x ∈ Tp, then x ∈ T .

2. If x ∈ Vp, then x ∈ V .

Proof. Direct from the grammar productions of µB.

1. Only productions d and e can insert names into Tp. Production e corresponds to
production 6, from Figure 2.1; and e to production 7. While the productions of
µA contain checks, e.g. requiring x to be in T , those in µB contain a side-effect,
i.e. they insert x into Tp.

2. Productions c, e, and f insert names into Vp. If x ∈ Vp due to f, then x is
the second operand of an addition – the check in production 9, from Figure 2.1
requires x ∈ V ; if x ∈ Vp due to e, then x appears in a term such as a x. Hence,
productions 4 and 7 insert x into V ; finally, if x ∈ Vp due to c, then Pp contains
a term a ∗ x. This term can be parsed in µA by either productions 8 or 10. Both
contain guards ensuring that x is a variable.

2.2. From an Unambiguous AST Onwards 17

Corollary 1 (Empty Intersection of Type and Variable Sets). Let Pp be a partial
program. If Pp(∅,∅, Tp, Vp) succeeds on Pp, then Tp ∩ Vp = ∅.

Proof. Follows from Theorem 1 and Lemma 1, Property 1, which ensures that names
in the program denote either types or variables.

Figure 2.4. A Prolog implementation of the µB language. If we provide p([],
[], T, V, [z, *, y, ;, z, x], []) as an input to this program, the result
obtained is composed by sets T = [z] and V = [y]. Because z is an element of
the set of types, we can disambiguate z * y as a declaration.

2.2 From an Unambiguous AST Onwards

Programs whose AST can be disambiguated are eligible for type inference. While we
have, in Section 2.1, drawn a correspondence between a supposedly partial and original
program, such relation is not important for type inference itself. Regardless of how the
variable and type names can be associated in any two programs, as long as our parser is
able to produce a correct AST, the technique that we propose can always be employed.
This is what we now explain in Chapter 3.

Chapter 3

The µC Language and Constraints

In C, a programmer is allowed to define new types through the declaration of an enum,
struct, or union. Moreover, the typedef construct can be used to declare a type
synonym. In a typical inference setup, the type of program terms would be deduced
in conformity to such declarations and to those of builtins, e.g., int and double. But
if declarations are not available, then a type inference-enabled language must be able
to synthesize complete definitions for the type used in a program. However, not only
due to syntax ambiguities but to semantic ones too, standard type inference alone is
not enough to achieve this task.

Revisiting Challenge 2

In Figure 1.3, from Section 1.1, we show programs with ambiguous mean-
ing. For instance, consider (a) and (d). In the former case, an ambiguity
exists because the constant 0 can be assigned either to an arithmetic or
pointer type; in the latter case, it is just as possible that T refers to an
arithmetic or pointer type too. But, if u is a pointer in program (d), then T

must be an arithmetic type that is an integral. There are other constructs
in C that lead to similar ambiguity problems. For instance, the expression
{1, 2, 3, 4} can be used to initialize different aggregate types1: an array
of four integers values (int[4]), a struct with four integer fields (struct
T {int a, b, c, d;}), or an array of two structs, each with two inte-
gers [ISO-Standard, 2011]{§6.7.8}.

The type inference mechanism that we propose adheres to standard practice: it

1An aggregate type collectively refers to arrays and structures [ISO-Standard, 2011]{§6.2.5.21}.

19

20 Chapter 3. The µC Language and Constraints

comprises a constraint generation phase, and a subsequent phase that solves those
constraints [Rémy, 2017, Ch.5]. But to deal with the type ambiguities of C, we sum-
marize, prior to constraint generation, information about how expressions2 are used
throughout the program. Based on such information, we build a lattice of shapes. In
this lattice, every AST expression is bound to a shape. During this preliminary phase,
we look for syntax that lets us move expressions up in the lattice until a fixed-point is
reached - this action corresponds to the disambiguating strategy we employ for the µB
language, as described in Chapter 2. The details about our lattice for arithmetic and
pointer types are presented in Section 3.4; a lattice for dealing with aggregate types
can be built under the same principles.

Before we move forward, let us discuss a few more features of C. In this
language, programmers can further refine a type by attaching to it a type quali-
fier [ISO-Standard, 2011]{§6.7.3}, such as const or volatile3. These qualifiers cause
certain relations among types to be unidirectional, incapacitating classical unification,
an algorithm that relies on symmetric relations between types, as a solving procedure.
This asymmetry that qualifiers impose on type relations can be particularly well seen
upon assignments.

Revisiting Challenge 3

In Figure 1.4, from Section 1.1, we show programs that illustrates asym-
metric type relations. In program (a), it is possible to type T1 as either
int or const int4. At first sight, this choice exists in Figure 1.4 (b) too.
However, because a const variable cannot be modified – it could have been
initialized, though – inferring T2 as const int yields an illegal program,
for the promise of immutability imposed on b is broken with b = 10.

Forgetting about const is a convenience also allowed in program (c). But
now, the situation is the opposite, and the types in question are pointers!
Here, it is possible to discard const because an implicit conversion from a
non-qualified to a qualified pointer is permitted: the latter denotes a type
more restricted than the former [ISO-Standard, 2011]{§6.3.2.3-2}. In fact,
typing T3 as int would be incorrect, given the expression ∗c = 10.

2Type specifiers within declarations are accounted as well, in a similar (and simpler) manner. But
we restrict the presentation to expressions.

3There are differences between volatile and const. Program P = void f() { int x; volatile

int y; y = x; } is valid, but had we used const, it would be invalid. Yet, both qualifiers share typing
rules, with const being stricter - without account of dynamic semantics

4Formal parameters and arguments of functions would be addressed in a similar manner: Tmust be

21

Finally, let us consider program (d). Inferring T4 without const yields an
illegal program in this case. The incorrectness is due to a conversion from
a qualified to a non-qualified pointer, which may only be done explicitly.
Otherwise, we would once more break a promise of immutability.

Based on the facts that we have observed, two conclusions can be drawn about the
typing relations of C. Whenever there is an assignment (or a similar binary operation)
between non-pointer types, it is always safe to discard any qualifier from the types in
either side of the expression. While the absence of const or volatile might come
as an expressivity loss from the standpoint of readability, it never renders a program
invalid in the perspective of type checking. We call such dropping of a qualifier as the
qualifier-neutral strategy.

The second conclusion that we can draw is subtler than the first one. Relations in-
volving pointers must be treated with additional care. Since the same memory location
would be accessible by different objects, in order to ensure that any restriction, such
as the promise of immutability, is not broken through a dereferencing expression, type
qualifiers must be taken into account. In particular, a const or volatile that appears
on the right-hand-side of an assignment must be propagated to the left-hand-side. We
call this the qualifier-aware strategy.

The last aspect of C that we bring to attention is that, when type declarations
are missing, syntax might not be sufficient to restrict at all the type of a variable. In
reality, the same syntax can be associated to an infinite variety of types (i.e. unbounded
polymorphism). That classical example of this situation appears with void∗. This is
an opaque type that is intended to be used only during conversions; there exists no
void data, and dereferencing such a pointer is not permitted. What if a program has
variables which are neither initialized nor used?

Revisiting Challenge 4

In Figure 1.5, from Section 1.1, we show programs where a same type, the
return of function malloc has different instantiations. In program (c), it is
not possible to determine what could have been the original T3. Actually,
all it takes to make that a valid program is to provide a declaration such as
typedef int T3 (any other concrete type would fit the purpose).

const int in program P = void g(T∗ v); void f() { const int∗ p; g(p); }. Arguments correspond
to the right-hand-side of an assignment, while the formal parameters correspond to its left-hand-side.

22 Chapter 3. The µC Language and Constraints

We have, in the previous paragraphs, initiated an exploration of what we consider
to be the most interesting challenges to the design of a type inference-enabled variation
of C. Those are not the only difficulties that one would face, however. But since
formalizing our technique for C in its entirety would be too laborious of a task –
yet, with parts without significant scientific interest, we proceed with a subset of the
language. Further characteristics of C’s type system are discussed in Chapter 5.

3.1 The Definition of µC

For the explanation of our type inference technique, we define a new language that,
just like C, contains the semantic ambiguity between a pointer and an integral. Such
language, which we call µC, also has other features like a nominal type system
[Pierce, 2004, Ch.19] and qualified types, so that it is rich enough to allow us to
explain the intricacies of the C type system. From now onwards, our presentation
can be mapped, side-by-side, to a Haskell implementation of µC that is available in
Appendix A and online5. Nevertheless, we call the attention of the reader to the
following fact: the raison d’être of µC and its accompanying implementation is to
support our theoretical discussion; in order to perform type inference on a C pro-
gram [ISO-Standard, 2011], PsycheC, which we introduce in Section 5, is the tool to be
used. Whenever it is appropriate, we correlate µC with PsycheC.

The syntax of µC appears in Figure 3.1; its implementation is available in Ap-
pendix A.1. We use a star superscript, ?, for the Kleene closure of grammar ele-
ments, and an asterisk, ∗, for pointer-related constructs. P stands for a program, F
for a function definition, D and Ds for declarations. A declaration D can be of a
program variable, a formal parameter, or a struct field; Ds is only suitable for the
declaration of a type synonym. Statements are represented by S, there exist three
of them: an expression-statement, consisting of an expression E followed by a semi-
colon; a declaration-statement, where a semi-colon follows a declaration D; and a
return-statement. This latter comes accompanied with an expression E, since, in µC,
a function is required to have a valued return - given that we do not offer any control-
flow statements, the last statement of a function body will always be return E;. This
requirement imposes no loss of generality, but it makes our formalism simpler, since
we avoid dealing with an ignored return, as it happens in C with a void function.

Among expressions, which are denoted by E, we subsume all binary ones by
means of an ⊕. This symbol, in µC, denotes four different operators: assignment,

5µC lives in the same repository of PsycheC: https://github.com/ltcmelo/psychec.

https://github.com/ltcmelo/psychec

3.1. The Definition of µC 23

=; addition, +; division, /; and logical OR, ||. As we discuss in Section 3.4, those
are good representatives of the binary operations present in C. The pointer-related
syntaxes are: dereferencing (also known as indirection), field access, and retrieval of
an object’s address. A program identifier is designated by x. Literals, which are int

and double, are represented by `. A type is denoted by τ . Every type can be modified
to a pointer τ∗, qualified through const, or composed into a function or record, like in
struct x {D?}. A named type Tn designates a type constructed from a name n. The
name of a type is a string consisting of a program identifier, possibly prefixed with the
keyword “struct”6. Not every type has a name, only records and those resulting from
a typedef declaration. As usual, α is a type variable.

P ::= D?
s F

? ;Program
F ::= τ f (D?) {S?} ;Function
Ds ::= typedef τ τ ′; ;Type synonym
D ::= τ x ;Var. or param.
E ::= ` ;Literal

| x ; Identifier-expr.
| E->x ;Field access
| ∗E ;Dereference
| &E ;Address-of
| E ⊕ E ;Bin. op.: =, +, /, ||

S ::= D; ;Decl. statement
| E; ;Expr. statement
| return E; ;Return

τ ::= int ; Integer
| double ;Floating point
| τ∗ ;Pointer type
| const τ ;Qualified type
| τ → τ ;Function type
| struct x {D?} ;Record type
| Tn ;Named type
| α ;Type variable

Figure 3.1. The syntax of µC. Toward cleanliness of the presentation, we omit
the comma separating formal parameters and the semi-colon between fields of a
record; x and f range over program identifiers. The µC language has additional
rules that are not reflected by this grammar. For instance, the τ in a local decla-
ration may not be an α (this type is reserved for internal use within constraints
- every type specifier has an associated type variable), the τ ′ in a typedef must
always be in the form Tn (i.e., the type being defined must be given a name), and
the last statement in a function body must be a return E;. Other restrictions
are discussed in the text when appropriate. The implementation corresponding
to this figure is available in Appendix A.1.

6In this context, we emphasize a non-obvious, and often misunderstood, difference between C++
and C. With the former language, the declaration struct T {...} defines a type named “T”. But in
C, and as we adhere to in µC, the name defined by that same declaration is actually “struct T”. An
effective idiom used by C programmers that puts both the name “T” and “struct T” into scope is to
define such aggregate type combined with a typedef, as in typedef struct T {...} T;.

24 Chapter 3. The µC Language and Constraints

3.1.1 Programming Style

A µC program looks quite similar to a C program. Therefore, we do not further
elaborate an specification for our language. Yet, the type system of µC has a quite
distinguishing feature: in our language, it is optional to provide definitions for types
(e.g. that of a struct or the declaration of a typedef synonym) used throughout
the program. For instance, Pr = T1 f() {T2 x; x->y=42; return x->y;}, despite
missing all the information about T1 and T2, is a valid program. Such flexibility is
permitted in µC because its type system is equipped with type inference.

Given that our language supports type inference, one may wonder why µC ex-
pects that variables are declared, and why its syntax requires that such declarations
are accompanied by a type annotation. The reason for this design is to have a sub-
set of C. After all, our main proposition is to provide a type inference technique for
the latter language, thus we cannot expect that the syntax of existing C programs is
modified. Apart from demanding the declaration of program variables7 and that such
declarations are accompanied by type annotations, writing programs that lack defini-
tions for types approximates µC to the niche of languages like Javascript, Python, and
SELF [Ungar and Smith, 1987].

In typical dynamic languages, the definition of a type may happen implicitly8,
based on how an object of such a type is used throughout the program. This same
programming style can be employed in our language. Reconsidering program Pr = T1

f() {T2 x; x->y=42; return x->y;}, mentioned earlier, our type inference creates
the definition of T2 as typedef struct T2 {int y;} T2;, and makes T1 a synonym
of int as in typedef int T1;. Once those declarations are available, a µC program
can be compiled just like C program would be. We refer to a program like Pr, where
type declarations are absent, as a reduced program; programs that originally contain
all declarations necessary for compilation are referred to as self-contained ones.

Definition 4 (Reduced and Self-contained Programs). Let P be a valid µC program
as according to the syntax of Figure 3.1. If and only if there is at least one direct
or transitive (through the application of type constructors) use, in P , of a named
type whose definition is not available, then we say that P is a reduced µC program.
Otherwise, we say that P is a self-contained µC program. �

7In PsycheC, it is not mandatory that the declaration of a program variable exists, in order to
account for global variables.

8It is not relevant to this discussion whether the underlying type construction mechanism is class-
or prototype-based.

3.2. The Syntax of µC Constraints 25

Example 3. Program P1 = T1 f() {T1∗ x; x=0; return ∗x;} is a reduced pro-
gram, but P2 = typedef int T2; T2 f() {T2∗ x; x=0; return ∗x;} is not. P2 is
a self-contained program.

3.2 The Syntax of µC Constraints

The formulation of our type inference closely follows that of Pottier and
Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005]. Parts where a divergence
occurs are explicitly pointed. In this Section, we present the syntax and semantics of
constraints; afterwards, in Section 3.4, the constraint generation rules are discussed;
and later, in Section 4.2, our constraint solving process is explained - the practice of
establishing program properties through a constraint system is employed by Nielson et
al. [Nielson et al., 2005, Ch.3-5] as well, but in the context of static analysis.

A constraint language has two groups of syntactic elements: one to designate
types, whose constructs we borrow from the definition of µC, and another for denoting
constraints themselves. The latter is presented in Figure 3.2 and implemented in
Appendix A.2. We use K for a constraint; > and ⊥ stand for truth and falsity,
respectively. K1∧K2 is the conjunction of two constraints; existential quantification is
denoted by ∃α.K, which means that a type variable α exists in constraint K; def x :

α in K is the introduction of an identifier that represents a program variable, by means
of an explicit substitution; the instantiation of a type is given by typeof (x, τ); constraint
syn τ as α is necessary for us to match the names of a type used in a declaration to
that of the eventually instantiated type; has(α, x : τ) is the field membership relation,
where we refer to α as the enclosing type, and to τ as the field type.

Besides def x : α in K, our syntax provides another constraint that binds a type
to an identifier: fun f : τ → α in K. The principle behind this latter constraint is
the same as that of the former. But, there is a technical, although subtle, difference
between the two: the type bound to fun is always of an arrow form; in def, that is never
the case. Because formal parameters are inherently captured by a def constraint, the
remaining component of a function that must be addressed is its return type. Thus,
offering an specific fun constraint brings certain benefits both from a formalism and
implementation standpoint. Those should become clear once we present the semantics
of constraints, in Section 3.3, our generators, in Section 3.4.

It remains to present our constraints for a type predicate, i.e. the way we
compare one type to another. At this point, we expand the work of Pottier and
Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005], in that our language ac-

26 Chapter 3. The µC Language and Constraints

K ::= > ;Truth
| ⊥ ;Falsity
| K1 ∧K2 ;Conjunction
| ∃α.K ;Existential quantification
| def x : α in K ;Variable introduction
| fun f : τ → α in K ;Function introduction
| typeof (x, α) ;Type instantiation
| syn τ as α ;Type synonym
| has(α, x : τ) ;Field membership
| τ1 ≡ τ2 ;Type equivalence
| τ1 ≤ τ2 ;Type inequality

Figure 3.2. The syntax of constraints for µC. We slightly abuse notation by
restricting certain types to a specific form, e.g. that τ is a type variable, α, or an
arrow, τ → α. This choice should facilitate the reader’s comprehension and can
be justified by our constraint generation rules, yet to be presented in Section 3.4.
Appendix A.2 contains the implementation of the constraints in this figure.

counts for relations both in the form of equivalence, ≡, and of inequality, ≤. The
reason for such expansion is to account for implicit conversions that exist in C. For
instance, an int can be assigned to a double, but the reverse can potentially lead to
value truncation9. Furthermore, we model the behavior between pointer types as a
subtyping relation, by interpreting τ∗ as a subtype of const τ∗. The rationale under
such approach is explained in in Section 3.3.

Given the presence of an inequality predicate (which ultimately implies subtyp-
ing) in our constraint language, a question that may arise is whether we are able to keep
our solving method within the bounds of an equality-only model, as in the framework
of Pottier and Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005]. The answer
to this question is yes. Our constraint solver operates on subtyping relations as if those
were equivalences. However, for the processing of inequalities we employ an ordering
criterion that ensures that a subtype will be (i) lifted to is base type if necessary, or
(ii) preserved as such, whenever possible. The details about this process are show in
Section 4.2.

9Even though such behavior is specified in the C standard[ISO-Standard, 2011]{§6.3.1.4-1}, both
gcc and clang are permissive in this regard, only producing a warning in such a case.

3.3. The Semantics of µC Constraints 27

3.3 The Semantics of µC Constraints

Reasoning in terms of constraints requires that we give meaning to them. Toward this
task, it is necessary to describe how the syntax of Figure 3.2 corresponds to types of
µC; not to arbitrary types but to ground types, those that are free from type variables,
i.e., ftv(τ) = ∅. Ground types are instantiated by means of a substitution, which is
denoted by [α 7→ τ]. The exact procedure under which such instantiation happens is
called an application. Such application may be over a constraint, for which notation
[α 7→ τ]K is employed, or over a type, as in [α 7→ τ]τ ′.

The exact representation of a substitution may vary. For instance, our implemen-
tation in µC is different than the one in PsycheC. While in the latter we use a map
that implicitly carries relations among types, in the former, we have a pair composed
by a stamp and a type. Encoding type variables through a stamp, which is just a nat-
ural number, is a convenience that facilitates the formalism. We adopt this approach
by following both Dubois and Ménissier-Morain [Dubois and Menissier-Morain, 1999]
and Naraschewski and Nipkow [Naraschewski and Nipkow, 1999]. Nevertheless, toward
clarity of the presentation, we abstract away the notion of a stamp. µC’s implementa-
tion of a substitution, alongside with its related operations, appear in Appendix A.3.

The C language adopts a nominal type system, thus the equivalence among types
cannot be established on the basis of their structure. It is necessary, therefore, the
ability to identify types by their name. When the syntax of µC was introduced in
Section 3.1, we mentioned that builtins, records, and typedefed types are considered
named types. However, a type like int∗ does not have a name. Yet, the character
string “int∗” could still uniquely identify it. We refer to such encoding of a type as a
typeid. Definition 5 formalizes this concept.

Definition 5 (Type Identification). Let τ be a type. We refer to the character string
that uniquely identifies it as the typeid of τ . To obtain the typeid of a type, function̂ (hat), defined in Figure 3.3, is applied to it. Such application is denoted by τ̂ . �

At this point, we are ready to present the semantics of our constraints. These
semantics, outlined in Figure 3.4 and implemented in Appendix A.6, are a collection
of requirements that must be satisfied by a type instantiation algorithm (in this work,
a constraint solver) that is capable of producing well typed programs. Our rules shall
be interpreted as a judgement that reads: K is satisfiable if there exist φ, ψ, and Θ

such that φ, ψ,Θ |= K holds, where |= is the satisfaction predicate, and φ, ψ, and Θ

are map data structures. Definition 6 formalizes this statement.

28 Chapter 3. The µC Language and Constraints

înt = “int”
d̂ouble = “double”
τ̂∗ = τ̂ ++ “∗′′

̂const τ = “const ′′ ++ τ̂

̂τ1 → τ2 = τ̂1 ++ “(∗)′′ ++ τ̂2

̂struct T {D?} = “struct T′′

T̂n = “n”

α̂i = “i”

Figure 3.3. The ̂ (hat) function. The application of this function over a type τ ,
denoted by τ̂ , yields a character string that uniquely identifies such a type. This
string is referred to the typeid of τ . In this figure, ++ is the list concatenation
operator. The implementation of ̂ appears in Appendix A.4.

Table 3.1. The description of the φ, ψ, and Θ map data structures.

Map From To Element

φ type variable type {α, τ}
ψ program identifier type {x, τ}
Θ typeid type (definition) {typeid, τ}

Definition 6 (Satisfaction Judgment). Let K be a constraint as according to the
grammar of Figure 3.2. We say that K is satisfiable if and only if the judgment
φ, ψ,Θ |= K holds, as required by the semantics of Figure 3.4, where φ, ψ, and Θ are
the data structures in Table 3.1.�

Prior to discussing the semantics of our constraints, let us establish further no-
tation. Given a map M , which may be any of φ, ψ, and Θ, whose key is k, we denote:
(i) the introduction of a new key-value pair to M by M ∪{k , τ}; (ii) the lookup of the
type τ associated with an existing key inM byM(k); (iii) and the assignment of a key
from M by M [k 7→ τ] – the similarity of this latter notation to that of a substitution
is intended.

We now go over each of the rules in Figure 3.4. KTrue is a tautology: it holds,
regardless of φ, ψ, or Θ. KAnd requires that both K1 and K2 hold, independently.
With KEx, we guarantee that every type variable introduced by an existential quantifier
is bound to a ground type, regardless of which exact type that is. However, due to
the possible absence of declarations, orphan type variables may remain uninstantiated
after the solving process. Nevertheless, as further explained in Section 4.2.6, it is always

3.3. The Semantics of µC Constraints 29

φ, ψ,Θ |= >
{KTrue}

φ, ψ,Θ |= K1 φ, ψ,Θ |= K2

φ, ψ,Θ |= K1 ∧K2
{KAnd}

φ[α 7→ τ], ψ,Θ |= K ftv(τ) = ∅
φ, ψ,Θ |= ∃α.K

{KEx}
φ, ψ[x 7→ φ(α)],Θ |= K

φ,ψ,Θ |= def x : α in K
{KDef}

φ, ψ[f 7→ (τ → φ(α))],Θ |= K

φ,ψ,Θ |= fun f : τ → α inK
{KFun}

φ, ψ,Θ |= ψ(x) ≡ α
φ, ψ,Θ |= typeof (x, α)

{KInst}

field(x,Θ(φ̂(α))) = τ ′ φ, ψ,Θ |= τ ′ ≡ τ
φ, ψ,Θ |= has(α, x : τ)

{KHas}
φ, ψ,Θ[τ̂ 7→ τ ′] |= τ ′ ≡ α
φ, ψ,Θ |= syn τ as α

{KSyn}

φ ` τ1 <: τ2

φ, ψ,Θ |= τ1 ≡ τ2
{KEq}

φ ` τ1 <: τ2

φ, ψ,Θ |= τ1 ≤ τ2
{KIq}

Figure 3.4. The semantics of constraints. φ maps type variables to types, ψ
maps program identifiers to types, and Θ maps a typeid (see Definition 5) to the
definition of a type. Notation τ̂ is used to refer to the typeid of τ . φ, ψ, and Θ
are maps as according to Definition 6. Function field retrieves, from a record,
the type of the field whose name is passed as the first argument. Appendix A.6
shows the implementation of our semantics validation.

possible to bind such orphans in a safe manner.
KDef introduces a variable, just like KFun introduces a function. Both rules are

quite similar in that they bind a program identifier to a type. Yet, because each formal
parameter is already subject to KDef, our main interest on KFun concerns a function’s
return type. This fact, which is the reason for why we separate the two, also allows us
provide clearer formalism and a simpler implementation (it is always safe to pattern
match a fun constraint against an arrow type, and whose return is a type variable).
KInst is a type instantiation rule as a well. In particular, it relies on the fact that any
program variable x has been previously introduced by KDef.

KSyn has interesting origins. Typically, in a language with native type inference,
program variables may be declared without an explicit type annotation. This is not
the case in µC, where type annotations are always present, it is just the definition of
such annotated types that may be missing. Therefore, our type inference must not
only reconstruct a type such that it makes the program well typed, but the typeid of
the inferred type must match that used in a given declaration. As an analogy, KSyn
is in our constraint language what typedef is in C.

A function named field is used by KHas. This function is only defined for
records, what implies that φ(α) must be a struct type whose definition is available

30 Chapter 3. The µC Language and Constraints

in Θ through typeid in question; it is an undefined behaviour to invoke this function
with any other type as an argument, The declaration of field takes, in addition to
a record, an identifier x. The result of an invocation to this function is the type, τ ′,
of field x, in the record given as argument. Because every generated has(α, x : τ)

constraint captures the field name within it, a declaration of such struct is expected,
and τ must be equivalent to τ ′.

The last two remaining rules, KEq, and KIq, have all one thing in common: their
premises rely on the type predicate τ1 <: τ2, which is defined under a syntactical
judgement of φ, exclusively. One should not confuse the τ1 ≤ τ2 constraint with the
τ1 <: τ2 type predicate; the former, as well as τ1 ≡ τ2, establishes a requirement that
is to be satisfied by the latter. But where does subtyping comes from in µC or C? The
answer to this question is twofold: first, as it can be show in Figure 3.5, our semantics
allows a conversion from int to double, but not the other way around - this relation
is a form of atomic subtyping [Mitchell, 1991]; second, subtyping relations also emerge
from the way we model pointer relations.

We interpret a pointer type, τ∗, as a subtype of a const pointer type, const τ∗.
This modeling establishes a partial order among types. An effect of such ordering is
that a τ∗ can be directly assigned to a const τ∗, but an assignment on the opposite
direction demands an explicit cast. Even though it is counter-intuitive to think of non-
const pointers being a subset of const pointers, this subtyping relation, which can also
be found in the work of Foster et al. [Foster et al., 1999], meets Liskov’s substitution
principle: a τ∗ can safely be used in a context where a const τ∗ is expected.

The type predicate rules of our constraints are shown in Figure 3.5. Their im-
plementation appear in Appendix A.7. Rules SInt, SDbl, SCon, SSpc, SVr, and SVl
are straightforward – SVrv and SVlv are similar to the latter two, although they apply
when φ(α) is the identity mapping (as discussed in Section 3.5, the typing rules of µC
ultimately require ftv(τ) = ∅ for typings to be valid). But a few of the other rules
might not be obvious at first sight. Let us being with SCnv, which is consequence
of the fact that µC permits an implicit conversion from int to double. Note that a
rule allowing such conversion in the other direction (i.e., from double to int) does
not exists, since that could lead to value truncation. Back in Figure 1.4, we have seen
that a non-const value can be assigned to a const one, and that assigning to a const

value is forbidden (const objects can only have their value specified during variable
initialization). SCl reflects the former statement, while the latter fact is ensured by
the absence of a predicate with φ ` τ1 <: const τ2 in its conclusion.

About half of the type predicates in Figure 3.5 have their premises and/or con-
clusions in the form φ ` d...e. We employ this notation to express that the relation in

3.3. The Semantics of µC Constraints 31

question is lifted into a pointer type. The exact rules that triggers this lifting is PPtr :
once it is observed that a given relation involves pointers, then slight different demands
are imposed on the constraints that participate in such relation. Due to its importance,
we highlight PPtr. However, the lifted versions of PInt, PDbl, PSpc, and PCon, look
the same as their counterparts without d and e, SInt, SDbl, SSpc, and SCon. That
happens because these predicates are not affected by the presence of pointer types.
But note that the semantics of lifted relations do not include a rule corresponding to
SCnv. As opposed to int <: double, the relation int∗ <: double∗ is not valid - that
would be an unsafe operation, since the memory cells dereferenced by those pointers
are of different size. On the other hand, as shown by predicate PCr, we do allow a
conversion from a non-const pointer type to a const pointer. Subtyping is further
discussed in Section 4.

φ ` int <: int
{SInt}

φ ` dint <: inte
{PInt}

φ ` int <: double
{SCnv}

φ ` τ1 <: τ2

φ ` const τ1 <: const τ2
{SCon}

φ ` τ1 <: τ2

φ ` const τ1 <: τ2
{SCl}

Tn1 = Tn2

φ ` Tn1 <: Tn2

{SSpc}

φ ` double <: double
{SDbl}

φ ` ddouble <: doublee
{PDbl}

Tn1 = Tn2

φ ` dTn1 <: Tn2e
{PSpc}

φ ` dτ1 <: τ2e
φ ` dconst τ1 <: const τ2e

{PCon}
φ ` dτ1 <: τ2e

φ ` dτ1 <: const τ2e
{PCr}

φ ` dτ1 <: τ2e
φ ` τ1∗ <: τ2∗

{PPtr}

φ ` τ <: τ ′ τ ′ = φ(α) ftv(τ ′) = ∅
φ ` τ <: α

{SV r}
φ ` dτ <: τ ′e τ ′ = φ(α) ftv(τ ′) = ∅

φ ` dτ <: αe
{PV r}

φ ` τ ′ <: τ τ ′ = φ(α) ftv(τ ′) = ∅
φ ` α <: τ

{SV l}
φ ` dτ ′ <: τe τ ′ = φ(α) ftv(τ ′) = ∅

φ ` dα <: τe
{PV l}

φ(α) = α

φ ` τ <: α
{SV rv}

φ(α) = α

φ ` α <: τ
{SV lv}

φ(α) = α

φ ` dτ <: αe
{PV rv}

φ(α) = α

φ ` dα <: τe
{PV lv}

Figure 3.5. The type predicate rules of our constraints semantics. This figure
is divided into two groups: relations that involve non-pointer types, and relations
where the involved types are pointers. The latter are those surrounded by d...e.
We refer to them as lifted relations. The highlighted (and to the right) rule,
PPtr, is responsible for lifting the predicates whenever it can be observed that the
participating types are pointers. Our semantics accepts a subtyping relation where
one of the types is the identity mapping – although, as discussed in Section 3.5,
the typing rules of µC ultimately require ftv(τ) = ∅ for typings to be valid. The
implementation of these rules is in Appendix A.7.

32 Chapter 3. The µC Language and Constraints

3.4 Syntax Directed Constraint Generation

The constraints of a µC program are generated by traversing its abstract syntax tree
(AST). To produce such AST, we put into practice the disambiguation algorithm pre-
sented in Section 2. During the traversal, constraints are generated for every construct
of µC (i.e., those in Figure 3.1), as according to the generators in Figure 3.6. There
are four main categories of them: (i) a top-level generator, 〈〈P,M〉〉p, that will handle
typedef declarations and, subsequently, invoke a generator for each of the program’s
function, ensuring that the return type is propagated; (ii) a generator for functions,
〈〈 (D?) {S?} : τr,M〉〉f , that consumes their formal parameters and, eventually, del-
egates to a generator that will deal with their bodies; (iii) a generator for statements,
〈〈S? : τr,M〉〉s, which, besides handling each statement, asserts that a function’s re-
turn type is matched by a return E; and (iv) an expression generator, 〈〈E : τ,M〉〉e.
The implementation of our constraint generation is available in Appendix A.8.

In addition to the main generators, we have a few auxiliary ones. The first thereof
to be explained is 〈〈 τ, α 〉〉bs. The role of this generator is to build a synonym for every
type that is used in a declaration or as the return of a function, even when such a type
is indirectly mentioned through a pointer modifier or a const qualifier, respectively,
as in τ∗ x; and in const τ x;. Such synonyms are necessary because the type system
of C is a nominal one, so we need a correlation between type variables and the actual
name of types in the program. The implementation of this generator is available in
Appendix A.9 and illustrated in Figure 3.7. The other two auxiliary generators are
more involving. Prior to describing their behavior, we need to explain our lattice of
shapes, which is related to theM that appears in the generators from Figure 3.6.

3.4.1 A Lattice of Shapes

A binary expression, E1 ⊕E2, from µC poses a challenge to our constraint generation
procedure: except for division, the sides of operations +, ||, and = may involve types
that are not necessarily unifiable. For instance, in a logical OR expression, E1 can be
of type int while E2 can be a pointer like int∗. As another example, recall that 0 is
the null pointer constant [ISO-Standard, 2011]{§6.3.2.3.3} in the C language. Hence,
a value of type int can be assigned to arithmetic and pointer types as well. Such an
assignment may also implicitly happen between the type variables we create for the
return of a function and that of a return-statement, e.g. as in P = int∗ f() { return

0; }. Therefore, our generators must be able to distinguish between values of pointer
and arithmetic types, avoiding a (wrong) unification between them.

3.4. Syntax Directed Constraint Generation 33

〈〈P,M〉〉p

〈〈∅,M〉〉p = >
〈〈 typedef τ τ ′; D?

s F
?,M〉〉p = ∃α. syn τ ′ asα ∧ τ ≡ α ∧ 〈〈D?

s F
?,M〉〉p

〈〈 τr f(D?) {S?} F ?,M〉〉p = ∃α. 〈〈 τr, α 〉〉bs ∧ fun f : (τ1 → ...→ τn)→ α in

〈〈 (D?) {S?}, α,M〉〉f ∧ 〈〈F ?,M〉〉p

〈〈 (D?) {S?} : τr,M〉〉f

〈〈 (τ x,D?) {S?} : τr,M〉〉f = ∃α. 〈〈 τ, α 〉〉bs ∧ def x : α in 〈〈 (D?) {S?} : τr,M〉〉f
〈〈 () {S?} : τr,M〉〉f = 〈〈S? : τr,M〉〉s

〈〈S? : τr,M〉〉s

〈〈 τ x; S? : τr,M〉〉s = ∃α. 〈〈 τ, α 〉〉bs ∧ def x : α in 〈〈S? : τr,M〉〉s
〈〈E; S? : τr,M〉〉s = ∃α. 〈〈E : α,M〉〉e ∧ 〈〈S? : τr,M〉〉s
〈〈 return E; : τr,M〉〉s = ∃α. 〈〈M($ret), τr,M(E), α,= 〉〉kd ∧ 〈〈E : α,M〉〉e

〈〈E : τ,M〉〉e

〈〈 ` : τ,M〉〉e = ρ(`) ≡ τ
〈〈x : τ,M〉〉e = typeof (x, τ)

〈〈E->x : τ,M〉〉e = ∃α1α2α3. has(α2, x : α3) ∧ α1 ≡ α2
∗ ∧ α3 ≡ τ ∧ 〈〈E : α1,M〉〉e

〈〈 ∗E : τ,M〉〉e = ∃α. α ≡ τ∗ ∧ 〈〈E : α,M〉〉e
〈〈&E : τ,M〉〉e = ∃α1α2. α1 ≡ α2

∗ ∧ α1 ≡ τ ∧ 〈〈E : α2,M〉〉e
〈〈E1 ⊕ E2 : τ,M〉〉e = ∃α1α2. 〈〈E1 : α1,M〉〉e ∧ 〈〈E2 : α2,M〉〉e ∧

〈〈M(E1), α1,M(E2), α2,⊕, τ 〉〉sel∧
〈〈M(E1), α1,M(E2), α2,⊕〉〉kd

Figure 3.6. The constraint generators for µC. There are four principal ones:
a whole-program generator, 〈〈P,M〉〉p; a generator for functions, 〈〈 (D?) {S?} :
τr,M〉〉f ; another for statements, 〈〈S? : τr,M〉〉s; and an expression generator,
〈〈E : τ,M〉〉e. In this figure, we abbreviate the types in the formal parameters
D? of a function by τ1 → ... → τn. Therefore, the fun constraint of a function
that returns τr is written as fun f : (τ1 → ... → τn) → τr inK. We use an
artificial expression $ret to represent, inM, the return type of a function. These
generators are implemented in Appendix A.8.

A possible strategy to deal with this difficulty would be to have our genera-
tors entirely discard constraints of binary expressions. However, such naïve approach
would incur on the penalty that legitimate type relations get thrown away and, con-
sequently, information that is potentially necessary to the type inference is lost. A
smarter solution is needed. One might wonder why not simply looking up the types of
an expression’s operands in the symbol table. Indeed, that will work for self-contained

34 Chapter 3. The µC Language and Constraints

〈〈 const τ, α 〉〉bs = ∃α′. syn const τ as α ∧ syn τ as α′ ∧ constα′ ≡ α ∧ 〈〈 τ, α′ 〉〉bs
〈〈 τ∗, α 〉〉bs = ∃α′. syn τ∗ as α ∧ syn τ as α′ ∧ α′∗ ≡ α ∧ 〈〈 τ, α′ 〉〉bs
〈〈 τ, α 〉〉bs = syn τ as α

Figure 3.7. Auxiliary generator that builds synonyms for types that appear
in variable/parameter declarations and in the return of functions. Equivalence
constraints for the deconstructed types are produced as well. The implementation
of 〈〈 τ, α 〉〉bs is available in Appendix A.9.

µC programs (see Definition 4). Yet, relying on semantic information is, in general,
not an option, because reduced µC programs may lack the declaration of such types.

To deal with the absence of semantic information during constraint genera-
tion, we classify all expressions10 in a program according to a lattice of shapes, L =

〈{u, s, p, n, i, fp,m}, <,∨,⊥ = u,> = m〉, where u=undefined, s=scalar, p=pointer,
n=numeric, i=integral, fp=floating-point, and m=malformed (non-scalar types have
shape u). A shape of our lattice, referred to as S, resembles a shape as proposed by
Pottier and Régis-Gianas [Pottier and Régis-Gianas, 2006], i.e., a type with holes (un-
specified parts). But, in the latter case, a shape is the result of an inference algorithm;
while in L, shape information is an input to our type inference. Every C type has a
shape11, but not all shapes are C types, e.g., an expression can be classified as p even
though the underlying type of the pointer is unknown. Figure 3.8 gives our lattice’s
partial order and illustrates how program expressions are mapped to it.

The criteria employed in our shape classification mimics restrictions that the C
language imposes on operands of expressions. Figure 3.9 shows, in a syntax-directed
style, these exact rules. Their implementation appears in Appendix A.10. All rules
carry along a tableM, which, after the traversal JE, S,MK of each syntax, is updated
with a mapping from expression E to shape S. The shape associated with a given
expression is retrieved by M(E). Because we need to correlate the shape M(E) of
a return-statement return E;, with the return type, τr, of a function, an artificial
expression $ret is created for the latter. Even though µC does not support all the
operations available in C, our language is, from a type-wise standpoint, rich enough to
allow the demonstration of our lattice’s role. Of particular relevance is the selection of

10Variable declarations are as well considered for shape classification. For instance, through the
declaration int a;, we know that, if an expression a if found, then it is of shape i. More interestingly,
from a declaration like T∗ p;, we know that an expression p is of pointer type, regardless of the
meaning of T.

11In PsycheC, our classification into shapes honors all the integral and floating-point types that
exist in C, such as short and long, and double and float.

3.4. Syntax Directed Constraint Generation 35

int foo() {
 T a;
 a = 0;
 return a;
}

u

s

n

i fp

p

m

int foo() {
 T b;
 T2 i;
 i = 42;
 b = &i;
 return i;
}

int foo() {
 T c;
 c = 0;
 *c = 0;
 return 0;
}

int foo() {
 T d;
 d = 0;
 *d = 0;
 d / 7;
 return 0;
}

Figure 3.8. The lattice of shapes, L. The programs surrounding it illustrate
the classification of expressions to shapes like s, i, p, and m. These mappings,
consisting of an expression E and a shape S, are carried over by tableM so that
this information can be used during constraint generation.

binary expressions supported by µC:

· The division operation represents a category of binary expressions that require
both operands to be of arithmetic type. The shape resulting out of E1/E2 is at
least n.

· Expression E1 ||E2 stands for operations that allow arithmetic and pointer types
to be arbitrarily mixed. The return of logical OR, however, is of type int, thus
of shape i.

· An addition, E1 +E2, subsumes binary expressions in which, not only arithmetic
and pointer types can interact, but the type of one operand imposes a restriction
on the type of the other: precisely, if E1 is a p, then E2 must be i (and vice-versa).

· An assignment, =, is a distinguished expression, making a category on its own.

The goal of the classification of expressions into shapes is that it performs a sort
of “pre-inference”. We can only proceed with constraint generation once tableM has
been populated. As seen in Figure 3.6, only the generators for a binary expression and
a return-statement consult such table. QueryingM for shape information is necessary
for the workings of two auxiliary generators. One of them is 〈〈 S1, α1, S2, α2,M,⊕〉〉kd ,
which we refer to as keep or drop. Its purpose is to determine the nature of the relation

36 Chapter 3. The µC Language and Constraints

J0,S,MK→M∪ { 0 : s} J`i,S,MK→M∪ {`i : i} J`fp,S,MK→M∪ {`fp : fp}

Jx, S,MK→M∪ {x : S}
JE->x,S,MK→M′

JE->x, S,MK→M′ ∪ {E : p}
JE,S,MK→M′

J&E,S,MK→M′ ∪ {&E : p}

JE,S ∨ p,MK→M′

J∗E,S,MK→M′ ∪ {∗E : S}
JE1,S ∨ n,MK→M′ JE2,S ∨ n,M′K→M′′

JE1 /E2,S,MK→M′′ ∪ {E1 /E2 :M′(E1) ∨M′′(E2)}

JE2,S,MK→M′ JE1,S ∨M′(E2),M′K→M′′

JE1 = E2, L,MK→M′′ ∪ {E1 = E2 : S ∨M′′(E1)}
JE1,S ∨ s,MK→M′ JE2,S ∨ s,M′K→M′′

JE1 ||E2,S,MK→M′′ ∪ {E1 ||E2 : i}

JE1, (S ∧ s) ∨ {n, i, fp},MK→M′ JE2, i,M′K→M′′ M′(E1) is p
JE1 + E2,S,MK→M′′ ∪ {E1 + E2 : p}

JE2, (S ∧ s) ∨ {n, i, fp},MK→M′ JE1, i,M′K→M′′ M′(E2) is p
JE1 + E2,S,MK→M′′ ∪ {E1 + E2 : p}

JE1, (S ∧ s) ∨ {n, i, fp},MK→M′ JE2,M′(E1),M′K→M′′

JE1 + E2,S,MK→M′′′ ∪ {E1 + E2 :M′(E1) ∨M′′(E2)}

Figure 3.9. Syntax-directed rules for classification of expressions. Every ex-
pression in a program is assigned a shape, S, from our lattice, L. This evaluation,
denoted by JE,S,MK, results in a new pair that is added to table M through
M∪ {E : S}. This table is consulted during constraint generation of a binary
expression, E1⊕E2, and of return-statements, as show in Figure 3.6. The rules in
this figure mimic the restrictions imposed, by the C language, on operands of an
expression. Even though it does not appear in this figure, we actually traverse the
entire program (not only expressions) during the classification phase. In particu-
lar, information about declarations is gathered as well. For instance, upon T∗ p;
we know that T must be a pointer. From a presentation standpoint, we focus on
expressions, since they account for the most interesting rules. Our classification
implementation can be found in Appendix A.10.

between α1 and α2, and to produce appropriate constraints: (i) for symmetric relations,
an equivalence constraint, α1 ≡ α2, is produced; (ii) for subtyping relations, we produce
constraint α1 ≤ α2, which is further discussed in Section 4; (iii) if a relation cannot be
asserted for the types in question, no constraint is produced – it is “dropped”.

Table M is also consulted upon the use of the other auxiliary generator
〈〈 S1, α1, S2, α2,M,⊕〉〉sel . This generator is called select. Its purpose is to ensure
that we take advantage of C’s restrictions imposed on binary operations to refine the
type of operands and the result of such expressions. To this end, additional type equiv-
alence constraints are produced, based on the category of an operator. Let us discuss

3.4. Syntax Directed Constraint Generation 37

〈〈S1, α1,S2, α2,M,⊕〉〉kd =



>, if ((S1 ne S2) and (S1 is p or S2 is p))

α2 ≤ α1, if (⊕ is =)

α1 ≤ α2, if (S1 is i and S2 is fp)

α2 ≤ α1, if (S1 is fp and S2 is i)

α1 ≡ α2

〈〈S1, α1,S2, α2,M,⊕, τ 〉〉sel =



case ⊕ of

+ →


α1 ≡ τ ∧ α2 ≡ int, if (S1 is p)

α2 ≡ τ ∧ α1 ≡ int, if (S2 is p)

τ ≤ double

= → τ ≡ α1

|| → τ ≡ int

/ →


τ ≡ int ∧ α1 ≡ int ∧ α2 ≡ int,]

τ ≤ double ∧ α1 ≡ int ∧ α2 ≤ double, [

τ ≤ double ∧ α1 ≤ double ∧ α2 ≡ int, \

τ ≤ double ∧ α1 ≤ double ∧ α2 ≤ double

] if (S1 is iand S2 is i) [if (S1 is i) \ if (S2 is i)

Figure 3.10. The auxiliary generators keep or drop (kd), and select (sel). The
former produces constraint between the operands E1 and E2 of a binary expression
E1 ⊕ E2, while the latter produces constraints that individually refine either E1

or E2, or the result type of the operation. In the conditions to the right of
the case blocks, we use the textual notation and, or, is, and ne (not equal) to
avoid confusion with operator symbols from µC. The implementation of these
generators appears in Appendix A.11.

in more details each one of the auxiliary generators keep or drop and select. Their
formal description appear in Figure 3.10; their implementation in Appendix A.11.

kd The keep or drop generator: Whenever one of the shapes involved in a relation is
ranked as p in L, and the other shape is an arithmetic one (i.e., n, i, or fp), we
say that this relation is inconsistent; otherwise, it is consistent. Upon a binary
operation E1⊕E2 , one would typically produce an equivalence constraint between
the types of E1 and E2. Analogously, we would expect a relation of the same na-
ture between the return type of a function and the return-statements that exist
within it. However, a constraint associated with an inconsistent relation must be
dropped - in fact, not generated at all; otherwise it would trigger an incompatible
unification (called over-unification by Noonan et al. [Noonan et al., 2016]). Such
dropping does not affect stability of our solver because there is no loss of infor-

38 Chapter 3. The µC Language and Constraints

mation: given that both p and an arithmetic shape have high ranks, a constraint
more restrictive than the one being dropped must exist. This fact is stated in
Lemma 2.

Even upon consistent relations, we must still be cautious not to produce a
constraint that would trigger undesired conversions, like the truncation of a
double into an int or the assignment of a const to a non-const pointer. To
deal with such subtleties, instead of producing a type equivalence constraint,
α1 ≡ α2, the keep or drop generator may produce an inequality one. An
inequality constraint, α1 ≤ α2, implies a subtyping relation, which is necessary
under the following circumstances: (i) upon matching a return E; to the return
type of a function; (ii) always, for a binary expression that is an assignment,
E1 = E2; (iii) whenever the sides of binary expressions, E1 + E2, E1/E2, and
E1 ||E2 are of different arithmetic shapes, e.g., E1 is fp and E2 is i. Example 4
illustrates the role of keep and drop. The handling of subtyping relations by our
constraint solver is discussed in Section 4.

sel The select generator: We have just presented kd, which produces a constraint
(unless it is dropped) between the two operands of a binary expression. At this
time, our goal is to produce a constraint that will individually refine either one
of the operands or the result type of such operation. For an addition, +, as we
have seen in Figure 3.9, if one of the operands is a pointer, then the other must
be of integral type, e.g. an int; if both E1 and E2 are of arithmetic types, we
know that the result is that of the highest ranked operand, which must be a
subtype of double. The reasoning of this latter case, when both operands are
arithmetic, apply to the division operation, /, as well. In a logical OR, the result
type is always int, straight from the language rules. For assignments, sel ensures
that the type of the overall expression is the same as that of the left-hand-side
operand. This particular case is illustrated by Example 4 as well.

Lemma 2 (Classification of Expressions as Shapes). Given an expression E in a µC
program P , if M(E) is p (respectively, n, i, or fp), then 〈〈P,M〉〉d generates con-
straints that bind E to a pointer (respectively, an arithmetic) type.

Proof. Let us consider the case when M(E) = p. One of the rules, Figure 3.9, that
identifies a pointer, p, is J&E, S,MK. The construct &E is accordingly classified
through M ∪ {&E : p}. By inspection of the constraint generators in Figure 3.6,

3.4. Syntax Directed Constraint Generation 39

P

F

S

D

S

E

E E

S S

E

E E

E

int f () { T c ; c 0 ;

= *

c

=

10 ; return ;0 }

E

∃α0. syn int as α0 ^ fun f:⟶ α0 ^ ∃α1. syn T as α1 ^ def c:α1 in ∃α2α3α4. ⊤ ^ α3≡α2 ^ typeof(c,α3) ^ int≡α4 ^

∃α5α6α7α8. α7≤α6 ^ α6≡α5 ^ α8≡α6* ^ typeof(c,α8) ^ int≡α7 ^ ∃α9. α9 ≤ α0 ^ int≡α9 ^

21 3 4 7

result of =

13

1 32 4

6

6 7

9

8

8 result of = 9

10

10

11

11

12

12 13

5

5

Figure 3.11. Constraint generation and the role of auxiliary generators kd
and sel. This figure shows the constraints that are generated for the program
in Figure 1.3 (c). Boxed numbers map constraints to the syntax responsible for
producing them. We highlight a few cases: i) the black box numbered 5 illustrates
the “dropping” of a constraint (i.e. it is not generated at all, and > stands for
it). ii) the white boxes, 8 and 12, correspond to inequality constraints; those are
remarkably relevant due to the way that our solver works.

〈〈&E : τ,M〉〉e, produces a type variable of pointer type, α2∗, that is equivalent to
the type of E, which corresponds to α1. The other rules that identify pointers or
arithmetic shapes can be verified in a similar way.

Example 4. An illustration of the constraints we generate for the program in Fig-
ure 1.3 (c) appears in Figure 3.11. We use a boxed number to map a constraint to
the syntax that produces it. An inconsistent relation appears in the rounded-corner
black box numbered 5. This constraint, associated with a binary expressions involving
a pointer and an integral (0, the null pointer constant) gets dropped by the auxiliary
generator keep or drop. Inequalities appear in the white boxes 8 and 12. The role of
auxiliary generator select can be seen in the equivalences α3 ≡ α2 and α6 ≡ α5. In
this case however, the return type of the assignment is discarded, given that it appears
within an expression-statement.

A final consideration pertaining our lattice, L, is that neither µC or C contains
an actual scalar_t type. Therefore, if an expression remains with shape s, we could

40 Chapter 3. The µC Language and Constraints

deliberately choose to make it an int (or any arithmetic or pointer type). This decision
would not imply on any loss of generality. But care must be taken so that the chosen
type is the same across all uses of the given expression. Furthermore, the language
rules need to be respected, given that operations like addition are not defined for two
pointer types, for instance. Toward a flexible approach, in PsycheC we generate a
typedef int scalar_t; in this case.

3.5 The Type System of µC

A well typed µC program must respect the rules of Figure 3.12. There, Γ represents
the typing context, and Γ, x : τ denotes the inclusion of x, typed as τ , into Γ. Lookup
of the type bound to x within Γ is written as Γ(x). The typing context is builtin with
binary operators. Operands of certain expressions must be either of arithmetic type or
of scalar type. To address this situation, we make use of unary predicates ari and sc.
The former for either an int or double; the latter holds as well for those two types,
and also for pointers. The definition of ari and sc appear in Figure 3.13 and their
implementation in Appendix A.25.

The simplest typing of µC is that of a literal, TLit. In this case, the type can be
asserted regardless of Γ. The other primary expression of our language is an identifier-
expression, x, consisting of a program variable. Typing of a variable is done by rule
TVar : it just looks up the τ associated with x in Γ. A variable can only be included
into the typing context by either one of TPar or TDclSt. The only difference between
TPar and TDclSt is that the former is applied on the formal parameters of a function,
while the latter applies on declaration-statements.

Continuing with expressions, we now describe TFld. This rule first requires that
the base expression E of a field access is typed. Based on the definition of µC, a pointer
to a struct, τs∗, is to be expected. Then, we type the overall field access expression
as τf , which is the type of x within the record τs. Pointer-related rules TDrf and TAdr
are straightforward: they will construct or deconstruct a pointer type (informally, we
can view one as the inverse of the other).

Let us now look into an assignment. We have split the typing of this expression
into two rules. The reason for this separation is to accommodate the assignment of
the null pointer constant, 0, to both pointer and arithmetic types (a characteristic
of C that has already been thoroughly discussed). Rule TAsgZro accounts for this
situation. That is why, in the premise of this rule, it is enforced that τ is of scalar
type. An assignment where the right-hand-side is non-zero is handled by TAsg. This

3.5. The Type System of µC 41

Γ ` ` : ρ(`)
{TLit}

Γ(x) = τ

Γ ` x : τ
{TV ar}

Γ ` E : τs∗ field(x, τs) = τ

Γ ` E->x : τ
{TF ld}

Γ ` E : τp τ = τp∗
Γ ` ∗E : τ

{TDrf} Γ ` E : τ
Γ ` &E : τ∗

{TAdr}

Γ ` E : τ Γ ` Es : τs τs <: τ

Γ ` E = Es : τ
{TAsg}

Γ ` E : τ sc(τ)

Γ ` E = 0 : τ
{TAsgZr}

Γ ` E1 : τ1 sc(τ1) Γ ` E2 : τ2 sc(τ2) Γ ` || : τ1 → τ2 → int
Γ ` E1 || E2 : τ

{TOr}

Γ ` E1 : τ1 ari(τ1) Γ ` E2 : τ2 ari(τ2) Γ ` / : τ1 → τ2 → rank(τ1 , τ2)

Γ ` E1 / E2 : τ
{TDiv}

Γ ` E1 : τ1∗ Γ ` E2 : int Γ ` +ptr−int : τ1∗ → int→ τ1∗
Γ ` E1 + E2 : τ

{TAddPtrInt}

Γ ` E1 : int Γ ` E2 : τ2∗ Γ ` +int−ptr : int→ τ2∗ → τ2∗
Γ ` E1 + E2 : τ

{TAddIntP tr}

Γ ` E1 : τ1 ari(τ1) Γ ` E2 : τ2 ari(τ2) Γ ` + : τ1 → τ2 → rank(τ1 , τ2)

Γ ` E1 + E2 : τ
{TAddAri}

Γ, x : τ ` {S?} : τr
Γ ` {τ x; S?} : τr

{TDclSt}
Γ ` E : τ Γ ` {S?} : τr

Γ ` {E; S?} : τr
{TExpSt}

Γ ` (D?) {S?} : τr
Γ ` τr f(D?) {S?} : τr

{TFun}
Γ, x : τ ` (D?) {S?} : τr
Γ ` (τ x, D?) {S?} : τr

{TPar}
Γ ` {S?} : τr

Γ ` () {S?} : τr
{TBdy}

Γ ` E : τ τ <: τr
Γ ` { return E; } : τr

{TRet}
Γ ` 0 : τr sc(τr)

Γ ` { return 0; } : τr
{TRetZro}

Figure 3.12. The typing rules for self-contained µC programs. Γ, x : τ means the
introduction of x, with type τ , into Γ; correspondingly, Γ(x) retrieves that type τ
associated with x. Binary operators +, /, and || are built into Γ. Functions ari and
sc are predicates that hold for arithmetic and scalar types, respectively. rank is a
function that selects the type with highest rank - in µC, we extend the concept of
C’s integer conversion rank to account for double as well: rank(double, int) =
double and rank(int, double) = double. We recall that, in µC, a return is
always the last statement of a function.

latter rule independently types E1 and E2. It ensures that the subtyping relation
introduced in Section 3.3, and further discussed in Section 4.1, is respected.

Binary expressions for division and logical OR share the same structure. Like C,

42 Chapter 3. The µC Language and Constraints

ari(int) = >
ari(double) = >
ari(τ) = ⊥

sc(int) = >
sc(double) = >
sc(τ∗) = >
sc(τ) = ⊥

Figure 3.13. Functions ari and sc. Both of them are unary predicates. The
former is true, denoted by >, when the argument passed is an arithmetic type;
and false, denoted by ⊥, otherwise. The latter is true for an arithmetic or a
pointer type. Appendix A.25 shows the implementation of these functions.

our language requires that, in a division, both E1 and E2 are of arithmetic type; thus,
we see the use of function ari in the premise of rule TDiv. In analogous manner, TOr
enforces, by means of function sc in its premise, that the operands of disjunction are of
scalar type. The only other variation among those two rules concerns their return type.
TOr always return an int, while, for TDiv, we make use of an operator called rank. In
C, the rank of an integer type depends on its precision [ISO-Standard, 2011]{§6.3.1.1}.
But in µC, we slightly abuse this notion by incorporating a floating point type to this
concept. In particular, the rank double is made higher than that of int.

The last expression to be discussed is addition. We have three rules for this
operation. All of them share an underlying principle: they independently type E1 and
E2, and, based on τ1 and τ2, the result type is determined. When the first operand
of an additive expression is a pointer, then the second operand must be an int, and
the result is of the same type as the E1, i.e., τ1∗. This reasoning corresponds to rule
TAddPtrInt. The opposite situation, when the second operand is a pointer, has an
analogous typing and is represented by rule TAddIntPtr. The third possible scenario
of an addition happens when both of the operands are of arithmetic types. For this
case, rule TAddAri applies and operator rank selects higher ranked type.

It now remains to discuss the following rules of Figure 3.12: TExpSt, TRet,
TRetZro, TFun, and TBdy. The first one, TExp, applies on an expression-statement.
We do not care about the type of E because it is thrown away. TRet and TRetZro
handle the last statement of a function12. These two rules ensure that the type of
a return-statement matches the enclosing function’s declared return type, τr. Such
association is made through rule TCFun. Note that µC does not contain syntax for
invocations, so it is not necessary that we put f , the function name, into Γ. The role
of TBdy is simply to propagate τr through the body until a return is found.

12We remind the reader that our formulation from Section 3.2 requires that functions have a valued
return. In C, that is not the case, and PsycheC deals with non-valued returns by ignoring void

Chapter 4

Translating Constraints into Types

To infer the types of a µC program, we must solve the constraints presented in Sec-
tion 3.4. This procedure can be done via a first order logic model. Particularly often,
using classical unification [Robinson, 1965]. However, the generators from Figure 3.6
produce constraints not only in the form of equivalences, but also of inequalities. That
being said, the latter form of constraints prevents us from employing classical unifica-
tion to our system as whole: both symmetric and asymmetric type relations exist.

As mentioned in Section 3.3, the behavior of pointer related conversions mimics
that of a subtyping relation. a non-const pointer (in analogy, a subtype type), can be
implicitly assigned to a const pointer (in analogy a base type), i.e., τ∗ <: const τ∗.
But the reverse is not permitted. This modeling meets Liskov’s substitution principle.
Given such correspondence between subtyping and type qualifiers, we now rephrase
the terminology introduced in Section 4 from qualifier-neutral and qualifier-aware to
subtyping-neutral and subtyping-aware, respectively.

4.1 Subtyping and Unification

Let us exemplify how a naïve type inference system, one that does not account for
asymmetries in type relations, would deal with the interaction among const and non-
const pointers. In Figure 4.1, there is a program that features three assignments
involving pointers. Above it, we show what would be the core constraints produced for
such program. In order to illustrate the difference between equivalences and inequal-
ities, we lave a question mark, ?, in between the constraints that correspond to the
assignments. If the ? is made an ≡, as it would be the case in classical unification, we
end up with an unsolvable system (or we would need to indiscriminately discard the

43

44 Chapter 4. Translating Constraints into Types

T1 ≡ ⍺1 ^ const int∗ ≡ ⍺2 ^ ⍺1 ? ⍺2 ^ int∗ ≡ ⍺3 ^ ⍺1 ? ⍺3 ^ T2 ≡ ⍺4 ^ ⍺2 ? ⍺4

int foo() {
 T1 x;
 const int* cp;
 cp = x;
 int* ncp;
 ncp = x;
 T2 y;
 y = cp;
 return 0;
}

⍺1 ≤ ⍺2 ⇒ T1 <: const int∗
⍺1 ≤ ⍺3 ⇒ T1 <: int∗ ⍺1 = int∗
⍺2 ≤ ⍺4 ⇒ const int∗ <: T2

? is inequality

⍺1 ≡ ⍺2 ⇒ T1 = const int∗
⍺1 ≡ ⍺3 ⇒ T1 ≠ int∗
⍺2 ≡ ⍺4 ⇒ const int∗ = T2

? is equality

unsolvable

Figure 4.1. The effect of asymmetries on classical unification. At the top of
the figure we show what would be typical constraints for the program to the left.
Except that we use a question mark, ?, to represent the relation among types
in an assignment - those are highlighted in gray. A conventional system that is
based on classical unification would take the ? as ≡, treating such relations as
equivalence constraints. However, a consequence of this choice is that we are not
able to unify int∗ with α1 because, from α2 ≡ α1, we know that α1 has already
been instantiated as const int∗. On the other hand, by having the ? as ≤, it is
possible to find a solution for the given system of inequalities: because subtyping
is a reflexive relation, int∗ <: int∗ holds; and for the partial order of pointer
relations that we define, int∗ <: const int∗ holds as well.

const qualifier1). However, if the ? is replaced by ≤, a solution is possible, given that
subtyping is reflexive and the interpretation of int∗ <: const int∗ is respected.

Unification, constraint-based type inference, and subtyping, in its different incar-
nations (atomic, structural, non-structural), have been studied by Kaes [Kaes, 1992],
Smith [Smith, 1994], Pottier [Pottier, 1996, Pottier, 1998], Mitchell [Mitchell, 1991],
Simonet [Simonet, 2003], and Su et al. [Su et al., 2002], among other researchers. How-
ever, in their systems, subtyping is treated with an extra set of constraints relations
that need to be solved separately to the main inference algorithm. Recently, Dolan and
Mycroft [Dolan and Mycroft, 2017] introduced biunification, and, as a means to deal
with subtyping from first principles, they define positive types, τ+, negative types,
τ−, and the notion of bisubstitutions. Yet powerful and elegant, their system comes
with the extra complexity necessary to deal with bisubstitutions, which apply inde-
pendently on each side of a predicate τ+ ≤ τ−, resulting in an algebra of u and t

1The kcc compiler [Ellison and Rosu, 2012, Hathhorn et al., 2015, Runtime-Verification, 2017],
which strictly adheres to the C standard [ISO-Standard, 2011], rejects a program where constness
is lost; gcc and clang are more permissive: albeit with warnings, compilation succeeds - a further
discussion about the behavior of C compilers appears in Section 5.

4.1. Subtyping and Unification 45

lattice operators solved alongside with unification. For our specific scenario, it possible
to solve this problem without that extra complexity.

4.1.1 A Two-Phase Unification Approach

It may emerge as a hypothesis whether we could solve µC’s constraints with an atomic
subtyping system [Mitchell, 1991]. In fact, such approach would be similar to that
of Foster et al. [Foster et al., 1999]. However, because the pointer declarator, ∗, is a
type constructor that yields relations where the structure of the underlying type is of
interest, atomic subtyping is not enough. Even though C’s type system is a nominal
one, this scenario indicates that structural inference rules should be used. Foster et
al. [Foster et al., 1999] is solely concerned on inferring type qualifiers, not types entirely.
To this end, they “lift” one level of type qualification in order to model the different
behaviors of const: within and outside a pointer. But if we were to make use of only
atomic subtyping in µC, we would either loose the ability to model int <: double or
int∗ <: const int∗ and double∗ <: const double∗; or we would be unable to detect
the invalid relations int∗ <: double∗ and double∗ <: int∗.

Dolan and Mycroft’s biunification, on the other hand, would be capable of solving
the constraints generated for µC. Yet, we chose to develop a simpler algorithm for
such task. To the best of our knowledge, this is the first approach that simultaneously
deals with both type equivalence and inequality within a single solving method. Even
though a type equivalence could be replaced by two type inequalities, the presence
of the former lets us devise a simpler method to solve the latter. As opposed to
biunification, the technique we develop does not require bisubstitutions; our method
also gives importance to specific sides of a relation, though.

Our idea to deal with subtyping is to employ two different unification algorithms.
The first one is classical unification; the second is an elaborated version of unification
that is interleaved with a constraint ordering step which guarantees that the binding of
a type variable participating in a weak relation only happens after the binding of any
strong relations involving the type variable in question. Enforcing an specific partial
order by which type variables are bound has the same effect of solving the constraints
in any arbitrary sequence and later refining the types as according to such partial order.
As in the system by Dolan and Mycroft, the side (left or right) of types in constraint
relations must be preserved throughout the process. We refer to these two unification
algorithms as Uc and Us. They are defined in Figure 4.2, with implementation in
Appendix A.12. Both of them either halt due to an error or return a unifier. To denote
the trivial substitution, we use [].

46 Chapter 4. Translating Constraints into Types

Uc is the classical unification algorithm as presented by Martelli and Montanari
[Martelli and Montanari, 1982]. It contains a type variable binding rule, a few
rules that match ground types and eventually return an trivial substitution, and
complementary rules that account for type destructuring.

Us is a unification implementation that incorporates the subtyping-neutral and
subtyping-aware strategies that we discussed before. The strategy is represented
by the third parameter of the function. When the strategy value is not relevant,
we denote it as _ (an underscore); otherwise, we use (i) E, when subtyping is
to be Enforced; or (ii) R, when it is possible to Relax a subtyping requirement.
To range over either E or R, simply passing the strategy to the next rule, we use
m. By default, Us starts at R. Whenever we identify that pointer types are being
unified, the strategy is switched to E. During this state, conversions allowed by
Us, such as the one from an int to a double, are forbidden. The state can be
brought back to R if the type to the right (i.e., the type on the left-hand-side of a
µC assignment) is a const τ∗. An auxiliary relax function, defined in Figure 4.3
and available in Appendix A.13, is used during variable binding: depending on
the context, it causes a possibly existing const qualifier to be discarded. The
partial order resulting from Us satisfies the relation, R≤, below.

R≤ = {τ∗ ≤ const τ∗, double ≤ int, α ≤ τ}

Initially, unification Uc is applied on type equivalences. What emerges from this
step is a primary type instantiation that, in spirit similar to that of Peyton Jones et
al. [Peyton Jones et al., 2006], will serve as aid for the subsequent phases of our con-
straint solver. Later on, after has constraints are collected and grouped, unification
Uc is once more used to ensure that different uses of a given field all have the same
type. At this point, we are ready to start ordering inequalities, converting them into
side-preserving type equivalences, and applying unification Us. The sorting phase guar-
antees that the order established by our subtyping criteria is respected. For instance,
const τ∗ ≤ α would be handled before α ≤ τ∗, resulting in a safe binding order of
type variables. Figure 4.4 revisits the same program that was previously shown in Fig-
ure 4.1, but now attention is focused on the effect that the ordering of inequalities has
toward type instantiation. Further details about the role of our unification algorithms
during the solving process are discussed in Section 4.2.

One may observe in the implementation from Figure 4.2 that no unification rules
exist for types of the form struct T {D*}. The reason for this absence is because

4.1. Subtyping and Unification 47

Uc(α, τ) = [α 7→ τ]
Uc(τ, α) =Uc(α, τ)

Uc(int, int) = []

Uc(double, double) = []
Uc(const τ1, const τ2) =Uc(τ1, τ2)

Uc(τ1∗, τ2∗) =Uc(τ1, τ2)
Uc(Tn1 , Tn2) = [] if n1 ==n2

Us(α, τ∗,_) = [α 7→ τ∗]
Us(α, τ, E) = [α 7→ τ]
Us(α, τ, R) = [α 7→ relax(τ)]
Us(τ, α,_) = [α 7→ relax(τ)]
Us(int, int,_) = []
Us(int, double, R) = []
Us(double, double,_) = []
Us(const τ1, const τ2,m) = Us(τ1, τ2,m)
Us(const τ1, τ2, R) = Us(τ1, τ2, R)
Us(τ1∗, τ2∗,_) = Us(τ1, τ2, E)
Us(Tn1 , Tn2 ,_) = [] if n1 ==n2

Figure 4.2. Unification algorithms Uc and Us. The relations allowed by each of
the unification algorithms are not the same. Yet, they ensure that the type pred-
icates from Figure 3.5 are respected. Function relax, used during type variable
binding in Us, causes a const qualifier to be discarded, if one exists. Note the
rule PPtr from Figure 3.5 is only triggered by Uc, through the highlighted rule -
as discussed, additional care is necessary for dealing with subtyping of pointers.
That is the reason for the third parameter, the mode m: Relax or Enforce. Both
Uc and Us either halt due to an error or return a unifier. The implementation
corresponding to this figure is available in Appendix A.12.

relax(const τ) = τ
relax(τ∗) = relax(τ)∗
relax(τ) = τ

Figure 4.3. The relax function. “Relaxing” a type means to discard its const
qualifier, if one exists. This function is used by unification algorithm Uc. The
implementation of relax appears in Appendix A.13.

records are composed from has constraints and, once that is achieved, their defini-
tions are placed in Θ and only their typeids are relevant. As a result, unification of
record types is indirectly done by their names. As explained in Section 3.3, this is a
consequence of the fact that the µC (and C) adopts a nominal type system.

Another apparent omission in the implementation of our unification concerns
types of the form τ → τ . In this case, the reason why such rule does not appear in
Figure 4.2 is because µC does not contain syntax for a function invocation. Therefore,
unification between function types will never be triggered. Of course, this is not the
case in C, and PsycheC’s unification treat those appropriately. In fact, as we mention
in Section 5, our type inference is capable of detecting variadic functions by catching
errors that happen during unification of function arguments and formal parameters.

48 Chapter 4. Translating Constraints into Types

int foo() {
 T1 x;
 const int* cp;
 cp = x;
 int* ncp;
 ncp = x;
 T2 y;
 y = cp;
 return 0;
}

T1 ≡ ⍺1 ^ const int∗ ≡ ⍺2 ^ ⍺1 ≤ ⍺2 ^ int∗ ≡ ⍺3 ^ ⍺1 ≤ ⍺3 ^ T2 ≡ ⍺4 ^ ⍺2 ≤ ⍺4

⍺1 ≤ ⍺3 ⇒ (T1, int∗)
⍺1 ≤ ⍺2 ⇒ (int∗, const int∗)
⍺2 ≤ ⍺4 ⇒ (const int, T2)

with ordering

⍺1 ≤ ⍺2 ⇒ s (T1, const int∗)
⍺1 ≤ ⍺3 ⇒ (const int∗, int∗)
⍺2 ≤ ⍺4 ⇒ (const int∗, T2)

without ordering

does not unify

Figure 4.4. The effect of inequalities ordering. This program is the same as
the one in Figure 4.1. Again, we show, at the top, the constraints produced by
our generators – already using ≤ for assignments. However, at this time, we focus
attention to the order by which inequalities are passed to Uc. As it can bee seen
from the description of this algorithm in Figure 4.2, Uc does not accept a const
pointer as the left operand and a non-const one as the right operand, unless the
mode is currently set to Relax (which is not the case here, since we are dealing with
pointer types). The absence of such rule corresponds to the inability of assigning
a const pointer to a non-const one in µC and C. On the other hand, if we first
bind the relation representing ncp = x, T1 is instantiated as int∗, and the second
inequality goes through, since Uc admits the conversion int∗ <: const int∗.

4.2 A Stage-based Solver

The syntax of constraints was presented in Section 3.2. There, we introduced def x :

α in K, typeof (x, α), has(α, x : τ), and, among others, τ1 ≡ τ2 and τ1 ≤ τ2. Section 4.1
explains how the latter two varieties of constraints is solved. Yet, it remains to discuss
how we handle those that are neither equivalences nor inequalities. This task, which
we now give the details for, is accomplished through a rewriting system.

The state of our rewriting system is represented by means of a configuration.
A configuration consists of a tuple formed by the maps φ, ψ, and Θ, a constraint
K (produced by the generators from Section 3.4), and four auxiliary constraint lists.
The solving process is a sequence of rewrites. At each iteration, constraints are either
transformed or eliminated. The meaning of a configuration is preserved throughout
the process. For instance, typeof (x , α) can be interpreted as τx ≡ α, where τx stands
for the type of program variable x, as long as a corresponding side effect happens on
ψ. As a matter of fact, this particular rewrite matches rule KInst from Figure 3.4.
Appendix A.14 contains the implementation of our configuration, shown below.

4.2. A Stage-based Solver 49

〈φ, ψ,Θ, K, [Ke], [Ki], [Kw], [Kf]〉

– Ke is a list of equivalences. A constraint can be of the form τ1 ≡ τ2 either
because it was originally produced as such, or because it resulted from a con-
figuration rewrite.

– Ki is a list of inequality constraints, i.e., τ1 ≤ τ2.

– Kw is a also list of inequalities, henceforth known as wobbly inequalities.
The interpretation of a wobbly relation in our work is not the same as
that of a wobbly type in the work of Peyton Jones et al. [Jones et al., 2004,
Peyton Jones et al., 2006]. Yet, in both cases such term implies a notion of
uncertainty in the type inference algorithm. A wobbly inequality is formalized
by Definition 7 and illustrated in Example 5.

– Kf is a list of field membership constraints, i.e., has(α, x : τ).

Definition 7 (Wobbly Inequality). A wobbly inequality is an inequality τ1 ≤ τ2 where
both τ1 and τ2 are type variables, i.e., the constraint is of the form α1 ≤ α2. �

Example 5. None of the following inequalities are wobbly: α1∗ ≤ α2, α1∗ ≤ α2∗,
α1 ≤ const α2, const α1 ≤ const α2, α∗ ≤ double, Tn ≤ int, int ≤ int.

Our solving process happens in stages. Each stage consists of a group of rules.
We now present them, under the following names: i) preprocessing, ii) 1st unification
round, iii) 2nd unification round, (iv) membership normalization, and (v) record com-
position. In Section 4.2.6, we discuss a subsequent stage for handling orphan type
variables. The upcoming solver rules, use operator :: to prepend an element to a list,
and operator ++ for list concatenation. For the application of a substitution σ over a
list of constraints, [K], and constraint group, K, we augment the traditional notation
by σ[K] and σK, respectively. Because our mappings are help in an explicit way, by
means of the data structures φ, ψ, and Θ, a foreachValue function is used for the
application of a substitution over the types stored as values in those maps. A rewrite,
written as with its name labeled above, is defined by the upcoming rules. The
reflexive transitive closure of a rewrite is written as ∗.

4.2.1 Preprocessing

Rules from this group, illustrated in Figure 4.5, are the first ones to be applied during
the solving process. PP-and ensures that each constraint of a conjunction is prepro-

50 Chapter 4. Translating Constraints into Types

cessed. PP-ex inserts an identity mapping into φ - in the semantics of Figure 3.4, KEx
expects that such α will eventually be instantiated. PP-syn guarantees that a type
variable is matched with the canonical version of a type: If the computed typeid is
known, an equivalence constraint is created; otherwise, a new mapping in Θ is added.
Both PP-def and PP-fun introduce x into ψ (the former needs to preprocess the en-
closed constraint as well). The difference between those and PP-inst is that the latter
assumes that a program identifier is already known. The last three remaining rules,
PP-has, PP-eq, and PP-iq simply move the current constraint to the slot in the config-
uration that is reserved for that kind of constraint: has(α, x : τ) goes to [Kf]; τ1 ≡ τ2

goes to [Ke]; and τ1 ≤ τ2 is moved to [Ki]. In summary, the preprocessing rules simply
move constraints around or eliminates them with a side effect on φ, ψ, and Θ. This ob-
servation allows to state Lemma 3. There, and in the remainder of this text, Θstd is the
map of standard types, containing pairs of typeids and definitions for builtins like int
and double. The implementation of the preprocessing stage appears in Appendix A.15.

Lemma 3 (Termination of Preprocessing Stage). Let C4 = 〈φ4, ψ4,Θ4, K, [Ke]
4,

[Ki]
4, [Kw]4, [Kf]

4〉 be any configuration assigned to K. By rewriting C4 with
PP

 , as defined in Figure 4.5, either the solver halts due to an error, or ∃Cpp =

〈φpp, ψpp,Θpp,>, [Ke]pp, [Ki]pp, [Kw]pp, [Kf]pp〉, such that C4 PP

 ∗ Cpp.

Proof. By strong induction on the size of a constraint K. We show that, at each
iteration, if the solver does not halt due to an error, then we are taken, by one or two
steps, to a configuration where either K decreases or K is >. Thus, we eventually
arrive at a preprocessed form, 〈φ, ψ,Θ, >, [Ke], [Ki], [], [Kf]〉. During the PP

 rewrite,
side effects on φ, ψ,Θ, [Ke], [Kf], or [Ki] do not influence termination. The size of a
constraint is defined as follows.

size(>) = 1

size(⊥) = 1

size(τ1 ≡ τ2) = 1

size(τ1 ≤ τ2) = 1

size(has(α, x : τ)) = 1

size(typeof (x, τ)) = 1

size(syn τ α) = 1

size(∃α.K) = 1 + size(K)

size(def x : α inK) = 1 + size(K)

size(fun f : τ → α inK) = 1 + size(K)

size(K1 ∧K2) = size(K1) + size(K2)

4.2. A Stage-based Solver 51

{PP−and}
〈φ, ψ,Θ, K1 ∧K2 , [Ke], [Ki], [], [Kf]〉 PP

 〈φ′′, ψ′′,Θ′′, > , [Ke]
′′, [Ki]

′′, [], [Kf]′′〉
where

〈φ, ψ,Θ, K1 , [Ke], [Ki], [], [Kf]〉 PP
 〈φ′, ψ′,Θ′, > , [Ke]

′, [Ki]
′, [], [Kf]′〉

〈φ′, ψ′,Θ′, K2 , [Ke]
′, [Ki]

′, [], [Kf]′〉 PP
 〈φ′′, ψ′′,Θ′′, > , [Ke]

′′, [Ki]
′′, [], [Kf]′′〉

{PP−ex}
〈φ, ψ,Θ, ∃α.K , [Ke], [Ki], [], [Kf]〉 PP

 〈 φ′ , ψ′,Θ′, > , [Ke]
′, [Ki]

′, [], [Kf]′〉
where

〈 φ ∪ {α, α} , ψ,Θ, K , [Ke], [Ki], [], [Kf]〉 PP
 〈φ′, ψ′,Θ′, > , [Ke]

′, [Ki]
′, [], [Kf]′〉

{PP−def }
〈φ, ψ ,Θ, def x : α in K , [Ke], [Ki], [], [Kf]〉 PP

 〈φ′, ψ′ ,Θ′, > , [Ke]
′, [Ki]

′, [], [Kf]′〉
where

〈φ, ψ ∪ {x, φ(α)} ,Θ, K , [Ke], [Ki], [], [Kf]〉 PP
 〈φ′, ψ′,Θ′, > , [Ke]

′, [Ki]
′, [], [Kf]′〉

{PP−fun}
〈φ, ψ ,Θ, fun f : τ → α in K , [Ke], [Ki], [], [Kf]〉 PP

 〈φ′, ψ′ ,Θ′, > , [Ke]
′, [Ki]

′, [], [Kf]′〉
where

〈φ, ψ ∪ {f, τ → φ(α)} ,Θ, K , [Ke], [Ki], [], [Kf]〉 PP
 〈φ′, ψ′,Θ′, > , [Ke]

′, [Ki]
′, [], [Kf]′〉

{PP−syn}
〈φ, ψ,Θ, syn τ as α , [Ke], [Ki], [], [Kf]〉 PP

 〈φ, ψ, Θ′ , Θ′(τ̂) ≡ α , [Ke], [Ki], [], [Kf]〉
where

Θ′ = if τ̂ ∈ Θ then Θ else Θ ∪ {τ̂ , α}

{PP−inst}
〈φ, ψ,Θ, typeof (x, τ) , [Ke], [Ki], [], [Kf]〉 PP

 〈φ, ψ,Θ, ψ(x) ≡ τ , [Ke], [Ki], [], [Kf]〉 if x ∈ ψ

{PP−has}
〈φ, ψ,Θ, has(α, x : τ) , [Ke], [Ki], [], [Kf]〉 PP

 〈φ, ψ,Θ, > , [Ke], [Ki], [], has(α, x : τ) :: [Kf] 〉

{PP−eq}
〈φ, ψ,Θ, τ1 ≡ τ2 , [Ke], [Ki], [], [Kf]〉 PP

 〈φ, ψ,Θ, > , (τ1 ≡ τ2) :: [Ke] , [Ki], [], [Kf]〉

{PP−iq}
〈φ, ψ,Θ, τ1 ≤ τ2 , [Ke], [Ki], [], [Kf]〉 PP

 〈φ, ψ,Θ, > , [Ke], (τ1 ≤ τ2) :: [Ki] , [], [Kf]〉

Figure 4.5. The preprocessing rules of the solving process. Rule PP-ex is
responsible for populating φ with existentially quantified type variables (it uses
an identity mapping for that purpose). In this stage, the solver only halts due
to an error if a malformed K is detected by PP-inst. None of these rules add
constraints to [Kw], that is why we show it as an empty list. The implementation
of preprocessing appears in Appendix A.15.

– Basis: size(K) = 1. The constraint must be one of >, ⊥, has(α, x : τ), τ1 ≡ τ2,
τ1 ≤ τ2, typeof (x, τ), or syn τ α.

52 Chapter 4. Translating Constraints into Types

· >: By PP->, the configuration is simply propagated, it is already a prepro-
cessed one.

· ⊥: The solver halts due to an error, given no rule matches this constraint.

· τ1 ≡ τ2, τ1 ≤ τ2, and has(α, x : τ): By PP-eq, PP-iq, and PP-has, respec-
tively, we take a step to a configuration where K becomes >. An error never
happens.

· typeof (x, τ): By PP-inst, either the solver halts due to an error (i.e., in the
event that x ∈ ψ does not hold), or we take a step to a configuration where
K becomes an equivalence constraint. By PP-eq, a subsequent step is taken
a to a preprocessed configuration.

· syn τ α: By PP-syn, by an argument similar to the one used to deal with
typeof (x, τ). The difference is that an error never happens in this case.

– Induction: Let us assume that our claim holds for size(K) ≤ N , for any N > 1.
We show that it continues to hold for size(K) = N + 1. In such setup, K must
contain, within it, at least a conjunction, K1∧K2, or one of recursive constraints
∃α.K, def x : α inK, and fun f : τ → α inK.

· K1 ∧ K2: We have that size(K1 ∧ K2) = N + 1 ⇒ size(K1) + size(K2) −
N = 1. Since no constraint of size 0 exists, both size(K1) ≤ N and
size(K2) ≤ N . By the hypothesis, either the solver halts due to an error
or 〈φ, ψ,Θ, K1, [Ke], [Ki], [], [Kf]〉 PP

 〈φ′, ψ′,Θ′,>, [Ke]
′, [Ki]

′, [], [Kf]
′〉. Anal-

ogous reasoning can be employed for K2.

· def x : α inK, fun f : τ → α inK, or ∃α.K: The proofs are similar for
these three constraint forms. For the demonstration, we use the first one.
There, def x : α inK = N + 1 ⇒ 1 + size(K) = N + 1 ⇒ size(K) =

N . By the hypothesis, either the solver halts due to an error or 〈φ, ψ ∪
{x, φ(α)},Θ, K, [Ke], [Ki], [], [Kf]〉 PP

 〈φ′, ψ′,Θ′,>, [Ke]
′, [Ki]

′, [], [Kf]
′〉.

Another fact about the preprocessing rules is that they preserve the seman-
tics of constraints from Figure 3.4. To establish this property, we adopt the no-
tion of entailment. But, as opposed to Pottier and Rémy [Pottier and Rémy, 2003,
Pottier and Rémy, 2005], we do not do it on the constraint level: instead, our state-
ments are at the configuration level. The explanation for such deviation is because we
reason about constraints alongside φ, ψ, and Θ. One configuration entails another, as
formalized in Definition 8, if the former is at least as strict as the latter. There, K is

4.2. A Stage-based Solver 53

the constraint group consisting of K, [Ke], [Ki], [Kw], and [Kf]. In Lemma 4, we claim
that preprocessing is stable in regards to the semantics of constraints.

Definition 8 (Configuration Entailment). A configuration C entails a configuration C ′,
denoted C
 C ′, if and only if, for any φ, ψ, and Θ, the assertion φ, ψ,Θ |= K, ∀K ∈ K
⇒ φ, ψ,Θ |= K ′, ∀K ′ ∈ K′, where K is the constraint group of C, and K′ that of C ′.
We write C ≡ C ′ if and only if C
 C ′ and C ′
 C holds. �

Lemma 4 (Stability of Preprocessing Stage). Let C4 = 〈φ4, ψ4,Θ4, K, [Ke]
4, [Ki]

4,

[Kw]4, [Kf]
4〉 be any configuration assigned to K. If ∃Cpp = 〈φpp, ψpp,Θpp,>, [Ke]pp,

[Ki]pp, [Kw]pp, [Kf]pp〉, such that C4 PP

 ∗ Cpp, then C4 ≡ Cpp.

Proof. By case analysis on the rules composing the PP

 rewrite, from Figure 4.5. We
refer to the constraint group of C4 as K4, and to that of Cpp as Kpp.
Case PP-has, PP-eq, and PP-iq.
These rules simply move K to one of the auxiliary lists [Ke], [Ki], or [Kf]. Thus,
K4 = Kpp and C4 ≡ Cpp immediately holds.

Case PP-inst.
This rewrites typeof (x, τ) as ψ(x) ≡ α. By KInst, from Figure 3.4, C4 ≡ Cpp holds.

Case PP-def and PP-fun.
PP-def inserts the pair {x, φ(α)} in ψ, ensuring that the mapping ψ[x 7→ φ(α)] exists,
and forwards the nested K. By KDef, from Figure 3.4, C4 ≡ Cpp holds. Analogous
reasoning can be employed for PP-fun and KFun.

Case PP-ex.
The same as PP-def and PP-fun, but the map where the insertion happens is φ. By
KEx, from Figure 3.4, C4 ≡ Cpp holds.

Case PP-syn.
This either inserts or updates the pair {τ̂ , α} in Θ, ensuring that the mapping Θ[τ̂ 7→ τ ′]

exists, and replaces K with Θ(τ̂) ≡ α. By KSyn, from Figure 3.4, C4 ≡ Cpp holds.

Case PP-and.
Similar to the proof of Lemma 3.

4.2.2 1st Unification Round

Once preprocessing is over, we start a sequence of stages that bind type variables.
Type equivalences are the first constraints to be addressed. The relations in [Ke] have

54 Chapter 4. Translating Constraints into Types

either been produced as such by our generators from Section 3.4, or they resulted from
a rewrite transformation that happened during the preprocessing stage. The rules
of this group appear in Figure 4.6. UE-base unifies both sides of an equivalence via
unification algorithm Uc, from Figure 4.2. At each iteration, if such a call does not halt
due to an error, then a substitution σ is returned. If σ is not the trivial substitution,
then it is a unifier [α 7→ τ] that is applied to maps φ, ψ, and Θ, and to constraint
lists [Ke], [Ki], and [Kw] – note that it is not necessary modify [Kw] because, at this
moment, it is empty. To express the correlation between the maps φ, ψ, and Θ, to the
maps φ′, ψ′, and Θ′ of a rewritten configuration, we introduce Definition 9; likewise,
Definition 10 states a similar correlation between K and K′. The effect of applying
a substitution σ, that is a unifier, on the elements of a configuration is formalize by
Lemma 5. The implementation of the 1st unification round appears in Appendix A.16.

Definition 9 (Mapping Extension). Let D be any of the φ, ψ, or Θ, and D′ be a
respective φ′, ψ′, or Θ′. If dom(D) = dom(D′), and ∀e ∈ dom(D), relations D(e) <: τ

and D′(e) <: τ ′, where τ <: τ ′, hold, then we say that D′ is an extension of D, denoted
by D � D′. �

Definition 10 (Constraint Reduction). Let K be a constraint group, such that τ1 ≡ τ2

(alternatively, τ1 ≤ τ2) ∈ K, and K′ be another constraint group, such that K′ =

K\ τ1 ≡ τ2 (alternatively, τ1 ≤ τ2). If ∀K ∈ K′, τ1 = τ2, then we say that K′ is a
reduction of K, denoted by K � K′. �

Lemma 5 (Extension of φ and Reduction of K under Substitution). Let 〈φ, ψ,Θ,>,
[Ke], [Ki], [Kw], [Kf]〉 be a configuration, such that K = τ1 ≡ τ2 (alternatively, τ1 ≤ τ2)
∈ K. If σ = Uc(τ1, τ2) (alternatively Us(τ1, τ2)), then, foreachValue(σ, φ) = φ′ ⇒ φ �
φ′, and σ (K\K) = K′ ⇒ K � K′.

Proof. When σ is the trivial substitution, [], the proof is immediate, since φ = φ′ ⇒
φ � φ′, and K\K = K′ ⇒ K � K′. Otherwise, σ is a unifier [ασ 7→ τσ] for τ1 ≡ τ2.
The part K � K′ is straightforward. For the mappings, applying the substitution leads
to one of the following, depending on the structure of τσ:

– τσ = ασ′ : The predicates involving a type such that φ(α) = ασ = τ hold both
in φ and φ′ by SVrv, SVlv, PVrv, and PVlv, possibly through a different type
variable. Predicates involving a type τ such that ftv(τ) = ασ continue to hold in
φ′ by transitivity.

– ftv(τσ) = ∅: ∀α ∈ φ, where φ(α) = ασ = τ , we have that τ <: τ1 and τ <: τ2

(or τ1 <: τ and τ2 <: τ). Because σ is an unifier, τσ <: τ1 and τσ <: τ2 (or

4.2. A Stage-based Solver 55

{UE−base}
〈φ, ψ,Θ,>, (τ1 ≡ τ2) :: [Ke] , [Ki], [], [Kf]〉 UE

 〈 φ′ , ψ′ , Θ′ ,>, [Ke]
′ , [], [Ki]

′ , [Kf]′ 〉
where

σ = Uc(τ1, τ2)

φ′ = foreachValue(σ, φ)

ψ′ = foreachValue(σ, ψ)

Θ′ = foreachValue(σ,Θ)

[Ke]
′ = σ[Ke]

[Ki]
′ = σ[Ki]

[Kf]′ = σ[Kf]

Figure 4.6. Rules for the 1st unification round of the solving process. Uc is
essentially the classical unification algorithm. The substitutions obtained are
applied the maps of φ, ψ, and Θ, and to the constraints in the auxiliary lists,
except for [Kw], which is empty. Appendix A.16 shows the implementation of
this stage.

τ1 <: τσ and τ2 <: τσ) hold in φ′. This means that certain relations that hold, in
φ, by SVrv, SVlv, PVrv, and PVlv, now hold by SVr, SVl, PVr, and PVl in φ′.
Predicates that transitively rely on those continue to hold.

Corollary 2 (Extension of ψ and Θ through φ). Let σ be a substitution. If
foreachValue(σ, φ) = φ′ ⇒ φ � φ′, then, foreachValue(σ, ψ) = ψ′ ⇒ ψ � ψ′, and
foreachValue(σ,Θ) = Θ′ ⇒ Θ � Θ′.

Proof. The types in ψ and Θ are just a mirror of the types in φ.

4.2.3 2nd Unification Round

Before the rules from this group are applied, we have already instantiated types whose
relations derive from declarations present in a program; from associations with literals;
or from binary expressions (when they can be determined, through our lattice from
Section 3.4). It is now time to instantiate types that are modeled through subtyping
relations, like those in assignments. To deal with such inequality constraints, we employ
the second algorithm from Figure 4.2: unification Us. However, prior to doing so, we
must order [Ki] and separate wobbly inequalities from non-wobbly ones. To this end,
we rely on supporting functions splitWob and orderSub, defined in Figure 4.7, and on
rewrite SO.

56 Chapter 4. Translating Constraints into Types

splitWob ((α1 ≤ α2) :: [K1], [K2]) = splitWob ([K1], (α1 ≤ α2) :: [K2])

splitWob ((τ1 ≤ τ2) :: [K1], [K2]) = splitWob ([K1]++(τ1 ≤ τ2), [K2])

splitWob (⊥ :: [K1], [K2]) = [K1], [K2]

orderSub ((const τ1∗ ≤ τ2) :: [Kk], [Ks]) = orderSub ([Kk], (const τ1∗ ≤ τ2) :: [Ks])

orderSub ((τ1 ≤ τ2∗) :: [Kk], [Ks]) = orderSub ([Kk], (τ1 ≤ τ2∗) :: [Ks])

orderSub ((double ≤ τ) :: [Kk], [Ks]) = orderSub ([Kk], (double ≤ τ) :: [Ks])

orderSub ((τ ≤ int) :: [Kk], [Ks]) = orderSub ([Kk], (τ ≤ int) :: [Ks])

orderSub ((τ1 ≤ τ2) :: [Kk], [Ks]) = orderSub ([Kk] ++ [(τ1 ≤ τ2)], [Ks])

orderSub (⊥ :: [Kk], [Ks]) = [Ks] ++ [Kk]

Figure 4.7. Function splitWob, responsible for the splitting of wobbly relations
(returning a tuple with separate lists), and function orderSub, which ensures that
subtyping is respected during variable binding, as discussed in Section 4.1. Con-
straint ⊥ plays the role of a sentinel in both functions. In orderSub, list [Ks]
stands for strong constraint requirements. Those take precedence (i.e., must be
unified before) over weak ones, represented by list [Kk]. The implementation of
these supporting functions is available in Appendix A.17.

The rationale for such splitting is that a relation like α1 ≤ α2 does not refine
a type on neither of its sides. Non-wobbly inequalities, on the other hand, should be
interpreted as an strengthened constraint that resulted from the 1st unification round.
To ensure a proper ordering of type variable binding, we consider such inequalities with
higher “priority”. Therefore, they are unified first, through rule UI-base. Subsequently,
UW-base proceeds with the unification of (eventually remaining) wobbly relations. One
way to reason about this approach is as follows: Wobbly relations propagate, but do
not influence, a type’s requirements. Once they are are unified, no subtyping relation
will be violated. Both splitWob and orderSub, terminate, as stated in Lemma 6. The
implementation of the rules from the 2st unification round appear in Appendix A.18.

Lemma 6 (Termination of Inequality Ordering and Wobbly Splitting). If any of the
functions orderSub and splitWob, defined in Figure 4.7, is invoked with an argument
[K], whose last element (i.e., the sentinel) is the constraint ⊥, then the function returns.

Proof. Both functions rely on a stop condition determined by a sentinel, whose distance
to the head of the input list decreases at each step. Eventually, ⊥ is matched and the
function returns.

4.2. A Stage-based Solver 57

{SO}
〈φ, ψ,Θ,>, [], [Ki] , [] , [Kf]〉 SO

 〈φ, ψ,Θ,>, [], [Ki]
′′ , [Kw] , [Kf]〉

where

[Ki]
′, [Kw] = splitWob([Ki] ++ [⊥])

[Ki]
′′ = orderSub ([Ki]

′ ++ [⊥], [])

{UI−base}
〈φ, ψ,Θ,>, [], (τ1 ≤ τ2) :: [Ki] , [Kw], [Kf]〉 UI

 〈 φ′ , ψ′ , Θ′ ,>, [], [Ki]
′′′ , [Kw]′′ , [Kf]′ 〉

where

σ = Us(τ1, τ2)

φ′ = foreachValue(σ, φ)

ψ′ = foreachValue(σ, ψ)

Θ′ = foreachValue(σ,Θ)

[Ki]
′ = σ[Ki]

[Kw]′ = σ[Kw]

[Kf]′ = σ[Kf]

[Ki]
′′, [Kw]′′ = splitWob([Ki]

′ ++[Kw]′, [⊥])

[Ki]
′′′ = orderSub ([Ki]

′′ ++ [⊥], [])

{UW−base}
〈φ, ψ,Θ,>, [], [], (τ1 ≤ τ2) :: [Kw] , [Kf]〉 UW

 〈 φ′ , ψ′ , Θ′ ,>, [], [], [Kw]′ , [Kf]′ 〉
where

σ = Us(τ1, τ2)

φ′ = foreachValue(σ, φ)

ψ′ = foreachValue(σ, ψ)

Θ′ = foreachValue(σ,Θ)

[Kw]′ = σ[Kw]

[Kf]′ = σ[Kf]

Figure 4.8. Rules for the 2nd unification round of the solving process, which
depend on functions splitWob and orderSub from Figure 4.7. Prior to starting this
stage, a single rewrite to split wobbly relations and sort inequality constraints is
necessary, that is the role of SO. Afterwards, we proceed with the unification of
[Ki], done UI-base, and of [Kw], done by UW-base. The implementation of this
unification round is available in Appendix A.18.

58 Chapter 4. Translating Constraints into Types

4.2.4 Membership Normalization

In this stage, we assemble the fields that compose a struct. To this end, membership
relations are first organized. In Figure 4.9, rewrite SH sorts has constraints in two-
levels: (i) by their enclosing α, which identifies a given record; and (ii) by their field
name. Placing has constraints in such order eases the task of MN-join, which creates
equivalences between type variables that denote a unique struct (rules MN-skip and
MN-nfld are essentially terminators – the latter is necessary for the case where no field
membership relations exist). These new equivalences are then unified with Uc, the
classical unification algorithm from Figure 4.2. – we refer to this rule as UE-again,
since its implementation is roughly the same as that of UE, from the 1st unification
round, in Figure 4.6.

Even though it is not shown in Figure 4.9, the procedure that we have just
described must be repeated until convergence of field membership relations, as defined
by the algorithm in Figure 4.10. By convergence, we mean that, in order to discover
that a struct field is a pointer to a value whose the type is that same struct, it is
necessary to unify the enclosing α of all the has constraints. Yet, such unification may,
in turn, lead to the discovery of further has constraints whose field is of the α type in
question. This goes on and on... But given that it is impossible to create infinite types
in C or µC, rewrite ◦

 always terminates. This fact is formally stated by Lemma 7.
Appendix A.19 shows the implementation of the membership normalization stage.

Lemma 7 (Termination of Field Membership Convergence). Let C = 〈φ, ψ,Θ,>, [], [],

[], [Kf]〉 be a configuration. By rewriting C with ◦
 , as defined in Figure 4.10, either the

solver halts due to an error, or ∃Cν = 〈φν , ψν ,Θν ,>, [], [], [], [Kf]ν〉, such that C ◦
 Cν.

Proof. First, we show that the rewrites, SH

 , MN

 ∗, and UE

 ∗, from Figure 4.9 terminate,
or the solver halts due to an error. Second, we show that the condition if [Kf]sh 6=
[Kf]ν fails to hold, eventually.

Case SH

 SH.

sortBy is a standard sorting algorithm, invoked with a pure binary predicate, P. An
error never happens and the function always returns. As a consequence, this rewriting
rule terminates.

Case MN

 ∗ MN-join.

While [Kf] is non-empty, with at least two has constraints in front of ⊥, the head of
the list is moved to the back, decreasing the distance from the new head to the sentinel.

4.2. A Stage-based Solver 59

{SH }
〈φ, ψ,Θ,>, [], [], [], [Kf] 〉 SH

 〈φ, ψ,Θ,>, [], [], [], [Kf]′ 〉
where

[Kf]′ = sortBy(P, [Kf])
P (has(α1, x1 : τ1), has(α2, x2 : τ2)) = case α1 == α2 =⇒ x1 < x2

_ =⇒ α1 < α2

{MN−join}
〈φ, ψ,Θ,>, [Ke], [], [], has(α1, x1 : τ1) :: has(α2, x2 : τ2) :: [Kf] 〉 MN

 〈φ, ψ,Θ,>, [Ke]
′ , [], [], [Kf]′ 〉

where

[Kf]′ = has(α2, x2 : τ2) :: [Kf] ++ [has(α1, x1 : τ1)]

[Ke]
′ = case α1 == α2 && x1 == x2 =⇒ (τ1 ≡ τ2) :: [Ke]

_ =⇒ [Ke]

{MN−skip}
〈φ, ψ,Θ,>, [Ke], [], [], has(α, x : τ) :: ⊥ :: [Kf] 〉 MN

 〈φ, ψ,Θ,>, [Ke], [], [], [Kf]′ 〉
where

[Kf]′ = [Kf] ++ [has(α, x : τ)]

{MN−nfld}
〈φ, ψ,Θ,>, [], [], [], [⊥] 〉 MN

 〈φ, ψ,Θ,>, [], [], [], [] 〉

{UE−again}
〈φ, ψ,Θ,>, (τ1 ≡ τ2) :: [Ke] , [], [], [Kf]〉 UE

 〈 φ′ , ψ′ , Θ′ ,>, [Ke]
′ , [], [], [Kf]′ 〉

where

σ = Uc(τ1, τ2)

φ′ = foreachValue(σ, φ)

ψ′ = foreachValue(σ, ψ)

Θ′ = foreachValue(σ,Θ)

[Ke]
′ = σ[Ke]

[Kf]′ = σ[Kf]

Figure 4.9. Rules for the membership normalization stage of the solving process.
We omit the definition of function sortBy, since it is a standard sorting algorithm.
Only the comparison predicate that it uses, P, is of interest. Even though UE-
again is essentially a duplicate of UE-base, from Figure 4.6, we keep it in this
figure to stress such second use of the classical unification algorithm, Uc – during
this stage, however, both the lists [Ki] and [Kw] are empty. These rewrites are
successively invoked by the recursive converge function, defined in Figure 4.10.
This function ensures that all enclosing type variables inside has constraints are
unified. A final observation is that ⊥ is used as a sentinel during processing of [Kf]
– this constraint is appended to that list prior to the first invocation. In summary,
the idea here is to iterate over has relations, producing equivalences among type
variables that correspond to struct types (note that such constraints are kept in
the configuration). Appendix A.16 shows the implementation of this stage.

60 Chapter 4. Translating Constraints into Types

〈φ, ψ,Θ,>, [], [], [], [Kf]〉 ◦ 〈φν , ψν ,Θν ,>, [], [], [], [Kf]ν〉
=

〈φ, ψ,Θ,>, [], [], [], [Kf]〉 SH
 〈φ, ψ,Θ,>, [], [], [], [Kf]sh〉
MN
 ∗ 〈φ, ψ,Θ,>, [Ke]mn, [], [], [Kf]mn ++ [⊥]〉
UE
 ∗ 〈φν , ψν ,Θν ,>, [], [], [], [Kf]ν〉
◦
 〈φ′, ψ′,Θ′,>, [], [], [], [Kf]′〉 if [Kf]sh 6= [Kf]ν

Figure 4.10. The algorithm for convergence of field membership relations. The
recursive nature of this rewrite, denoted by ◦

 , is on par with the existence of
recursive types. We may only discover that a field of a given struct is a pointer
to the type of this same struct, if the enclosing α of a has constraint containing
such field type gets unified. Such discovery triggers further unifications which
may eventually lead the discovery of recursive fields at a deeper (more nested)
level. Because the definition of infinite types is impossible in C or µC, this rewrite
always terminates. The implementation of ◦ is available in Appendix A.20.

Case MN

 ∗ MN-skip.

While [Kf] is non-empty, with a single has constraint in front of ⊥, the head of this
list is moved to the back, and the sentinel is reached.

Case MN

 ∗ MN-nfld.

This rule terminates immediately. It is only matched when no field membership rela-
tions exist, i.e., [Kf] is originally empty.

Case UE

 ∗ UE-again.
While [Ke] is non-empty, the head of this list is extracted, and τ1 and τ2 are passed as
arguments of a call to Uc. If unification halts due to an error, then the solver halts as
well. Otherwise, we take a step to a configuration with size of [Ke] decreased by one.

Condition [Kf]sh 6= [Kf]ν .

By induction on the number of new equivalence constraints, N≡, created by MN-join
in [Ke].

– Basis: N≡ = 1. We have a single new equivalence, τ1 ≡ τ2. Then only two
matching membership relations has(α, x : τ1) and has(α, x : τ2) exist. By UE-
again, τ1 and τ2 are passed as arguments of a call to Uc. Given that unification
does not halt due to an error, σ is either the trivial substitution, [], or a unifier
[αx 7→ τ]. In the former case, [Kf]sh == [Kf]ν holds and ◦

 terminates. In the
latter, the aforementioned constraints become has(α, x : τ) and has(α, x : τ). A
subsequent unification between these fields types (occurring in the next iteration)

4.2. A Stage-based Solver 61

returns the trivial substitution, leading to [Kf]sh == [Kf]ν , and, consequently,
to the termination of ◦

 .

– Induction: Let us assume that our claim holds for N≡ = N , for any N > 1. We
show that it continues to hold for N≡ = N +1. In such setup, N matching mem-
bership relations has(α, x : τ1), has(α, x : τ2), . . . , has(α, x : τN−1), has(α, x : τN)

exist. By the hypothesis, either the solver halts due to an error, or it terminates
when processing relations has(α, x : τ1), has(α, x : τ2), . . . , has(α, x : τN−1). In
the latter case, we know that a unifier σ = [α1−2 7→ τ1−2, . . . , αx 7→ τ] exists.
At this point, the arrangement is similar to that of the basis: when matching
has(α, x : τ) and has(α, x : τN), either we have a trivial substitution and ◦

terminates because [Kf]sh == [Kf]ν , or another unifier is computed and termi-
nation happens in the next iteration.

4.2.4.1 Structural Form

Until now, the first four stages of the solving process have been presented: preprocess-
ing, 1st unification round, 2nd unification round, and membership normalization. Once
the rules from those groups have been evaluated, we reach a distinguished configuration
state where: (i) the only constraints remaining to be processed are the ones in [Kf] -
those has(α, x : τ) relations will contain a type variable as their enclosing type and,
possibly, as their field type too; (ii) all existentially quantified type variables, except for
those in [Kf], are mapped to ground types in φ. This setup is, structure-wise, a solu-
tion to our type inference problem! The types mapped by φ result from a substitution
(list) known as a the most general unifier.

Although the structure of records is complete at this point, we still need to
combine has(α, x : τ) constraints and extract struct definitions out of them. Since
C adopts a nominal type system, the records we create must be made synonyms to
the type specifiers appearing in a program. But before entering into the details of this
process, let us formalize the current state of our solver: such distinguished configuration
is known as a structural solved form, as stated by Definition 11. The use of term
structural is on pair with the idea of a structural type system. Throughout the text,
other variations of a solved form will be presented, in particular one that is appropriate
to the nominal type system of µC. In Definition 11, the backslash, \, denotes the set
difference operation. Example 6 illustrates it. Program variables in ψ whose type
cannot be determined are the subject of Section 4.2.6.

62 Chapter 4. Translating Constraints into Types

Definition 11 (Structural Solved Form). Let Ci = 〈∅,∅,Θstd, K, [], [], [], []〉 be an
initial configuration implied by a constraint K. A structural solved form of Ci is a
configuration Cs = 〈φ, ψ,Θ,>, [], [], [], [Kf]〉 such that:

φ⋃
{α,τ}

ftv(τ) = ∅, ∀α ∈ K \ (αf ∪ αψ ∪ αΘ)

where: αf =

[Kf]⋃
has(α,x:τ)

α, αψ =

ψ⋃
{x,τ}

ftv(τ), αΘ =
Θ⋃
{τ̂ ,τ}

ftv(τ)

�

Example 6. The structural solved form of the example in Figure 3.11,
which presents the constraints produced for the program in Figure 1.3, has
φ = {{α0, int}, {α1, int∗}, {α2, int∗}, {α3, int∗}, {α4, int}, {α5, int}, {α6, int},
{α7, int}, {α8, int∗}, {α9, int}}, ψ = {{c, int∗}, {f, int(∗)()}}, Θ = {{"T", int∗},
{"int", int}, {"double", double}}, and [Kf] = [].

We bring to attention the fact that, different than Pottier and
Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005] and Odersky et
al. [Odersky et al., 1999], our solved forms, including the structural one from
Definition 11 and others that latter appear, are stated by means of a configuration C,
and not by means of K. The reason why we do it this way is because, in a nominal
type system, it is necessary to decouple the definitions of types from their names,
a distinction accomplished by the pairs contained in Θ. In addition, such nominal
nature of C and µC prevents us from having a fully solved form where has(α, x : τ)

constraints still exit. Despite this variation in notation, a configuration-based solved
form continues to represent a satisfiable constraint.

4.2.5 Record Composition

This group consists of the rules in Figure 4.11. When we arrive at this stage of the
solving process, field membership relations will always have a type variable as their
enclosing type, like in has(α, x : τ); possibly, they will have a type variable also as
their field type too, like in has(α, y : αf∗) - this latter situation happens for nested
records (including pointer indirections). Our task is to create a new struct for each
unique α in [Kf]. To accomplish that, we traverse has constraints and apply either
one of the rules RC-inst or RC-upd. The first rule, RC-inst, is responsible for type
instantiation. The name of the struct that it creates is composed by the typeid of

4.2. A Stage-based Solver 63

{RC−inst}
〈φ, ψ,Θ,>, [], [], [], has(α, x : τ) :: [Kf] 〉 RC

 〈 φ′ , ψ, Θ′ ,>, [], [], [], [Kf]′ 〉
where

n = “TYPE_” ++ α̂
τs = struct n {τ x}

σ = [α 7→ Tn]
φ′ = foreachValue(σ, φ)

Θ′ = foreachValue(σ,Θ ∪ {n, τs})
[Kf]′ = σ[Kf]

{RC−upd}
〈φ, ψ,Θ,>, [], [], [], has(Tn, x : τ) :: [Kf] 〉 RC

 〈φ, ψ, Θ(n)← τ ′r ,>, [], [], [], [Kf]〉
where

τr = struct y {D?} = Θ(n)

τ ′r = if x ∈ D? then τr else struct y {(τ x) :: D?}

Figure 4.11. The record composition rules of the solving process. Because our
type system is a nominal one, a mapped type in φ either is an uninstantiated α,
or a τ whose typeid has an associated record definition in Θ. The meaning of
operation Θ(n) ← τ ′r is that the definition of record type τr is updated with a
new field, making it a record τ ′r (note that T̂n = n). We remind the reader that,
as defined by Figure 3.1, D? stands for the list of fields of a record. The name
used to instantiate a struct is composed by “TYPE_” plus the typeid of the α
in the has constraint. A typedef to this name is later generated. Appendix A.21
contains the implementation of the record composition stage.

the α in question plus the prefix “TYPE_". The choice of this name is, nevertheless,
arbitrary2, as long as we later declare a typedef that maps it to the named type Tn
under which it appears in the program. Example 7 illustrates this mechanism. The
second rule, RC-upd, processes records that have already been instantiated and update
their fields. Appendix A.21 shows the implementation of the record composition stage.

Example 7. Consider program P = int f() {T v; v->field=42; return 0;}. As-
sume that we reconstruct T as a record named TYPE_23. In order to make P a valid pro-
gram, it is only necessary that declaration typedef struct TYPE_23 {int field;}

T; is provided.

2In practice, one needs to be careful not to introduce a name that collides with a name already
existing in the program.

64 Chapter 4. Translating Constraints into Types

4.2.5.1 Nominal Form

This stage, record composition, combined with the previously presented ones, prepro-
cessing, 1st and 2nd unification rounds, and membership normalization, comprise the
core of our solver. By successive application of the rules in Figures 4.5, 4.6, 4.8, 4.11,
and 4.9, we are able to reconstruct any missing type declaration in a µC program. We
refer to such configuration where records are fully defined and can be identified by their
names as a nominal solved form. A nominal solved form, formalized by Definition 12,
is an elaboration of the structural solved form from Definition 11. In order to enhance
our solver so that the entire C language is covered, a few extra steps are necessary
(e.g., handling of variadic functions and array decaying). Those are briefly discussed
in Section 5.

Definition 12 (Nominal Solved Form). Let Ci = 〈∅,∅,Θstd, K, [], [], [], []〉 be an initial
configuration implied by a constraint K. A nominal solved form of Ci is a configuration
Cn = 〈φ, ψ,Θ,>, [], [], [], []〉, where αψ and αΘ are as in Definition 11, and the following
holds:

φ⋃
{α,τ}

ftv(τ) = ∅, ∀α ∈ K \ (αψ ∪ αΘ)

�

4.2.6 Insufficient Information and De-orphanization

Our approach to deal with orphans is inspired by Haskell 98, which defaults instanti-
ation of such types to the ? Haskell kind [Faxén, 2002, Peyton Jones et al., 2003]. In
our solver, defaulting rules are employed as well. But it is necessary that we distinguish
among a few different cases, depending on both absent and existing syntax in the pro-
gram. At this point, we extend the scope of the discussion beyond µC, since there is
a relevant aspect of C that must be addressed for orphan types. Our de-orphanization
logic is now explained. Example 8 illustrates it. Using the terminology introduced with
Figure 3.1, consider x to be a program variable that is neither initialized nor used:

1. If no local declaration for x is available, we instantiated its type as int.

2. Otherwise, when a local declaration τ x; exists, we proceed in one of two ways:

2.1. If τ is a named type Tn prefixed by “struct”, τ is instantiated as a record
whose name is matched with a type synonym, i.e., a typedef.

2.2. Otherwise, the (∗ and const deconstructed) type is instantiated as int.

4.2. A Stage-based Solver 65

Example 8. In program int f() { a; return 0;}, a declaration T a; is implicitly
created and the orphan T is instantiated as int. This is an example of case 1, above.
For an example of case 2.1, consider program int f() { struct T a; return 0;}.
Now, T must be instantiated as a record. But in program int g() { T a; return

0;}, which reflects case 2.2, we can, again, use int to de-orphanize T.

The notion of an orphan type is formalized by Definition 13. Essentially, an
orphan is a variable that remains uninstantiated in ψ and Θ after we reached a nominal
solved form. Toward cleanliness of the presentation, we explained in Section 3.1 that a
µC program is not allowed to contain undeclared variables – those would correspond to
global variables in C. Thus, the rule in Figure 4.12, where we show the de-orphanization
stage, does not handle item 1 in the aforementioned list. Nevertheless, PsycheC, the
tool we introduce in Chapter 5, covers all the possible situations.

Definition 13 (Orphans). Let Cn = 〈φ, ψ,Θ,>, [], [], [], []〉 be a configuration in nom-
inal solved form, as according to Definition 12. The set of orphan type variables, otv,
of Cn is given by otv(Cn) = αψ ∪ αΘ, where αψ and αΘ are as in Definition 11. �

The de-orphanization stage is the closure of our type inference. Once rule DO
from Figure 4.12 is evaluated, it is guaranteed that every type variable that has been
existentially quantified is now instantiated, and that each ground type has its name
mapped to its definition in Θ. At this point, our solver configuration is a sound
solution to the constraints that were originally produced. Yet, one task still remains
to be performed: to rewrite Θ back to the syntax of µC However, we do not further
describe this process because it is mostly an engineering task - we encourage the reader,
nevertheless, to inspect such implementation in both µC and PsycheC. We refer to the
configuration reached at this stage as a complete solved form. as stated by Definition 14.

Definition 14 (Complete Solved Form). Let Ci = 〈∅,∅,Θstd, K, [], [], [], []〉 be an initial
configuration implied by a constraintK. A complete solved form of Ci is a configuration
Cc = 〈φ, ψ,Θ,>, [], [], [], []〉 such that:

φ⋃
{α,τ}

ftv(τ) = ∅, ∀α ∈ K

�

We now establish certain properties about our constraint solver, defined in Fig-
ure 4.13. This complete algorithm is denoted by the rewrite I

 . First, we claim that
it is strongly normalizing. This statement is formalized by Theorem 2. Termination

66 Chapter 4. Translating Constraints into Types

{DO}
〈φ, ψ,Θ,>, [], [], [], []〉 DO

 〈 φ′ , ψ′ , Θ′ ,>, [], [], [], []〉
where

bind ((τ̂ , α) :: [. . .]) = if τ̂ startsWith “struct ”
then [α 7→ struct τ̂ { int dummy }] :: (bind [. . .])
else [α 7→ int] :: (bind [. . .])

bind (_ :: [. . .]) = bind [. . .]
bind [] = []

σ = bind [{τ̂ , τ} | ∀τ ∈ Θ]

φ′ = foreachValue(σ, φ)

ψ′ = foreachValue(σ, ψ)

Θ′ = foreachValue(σ,Θ)

Figure 4.12. The de-orphanization rule of the solving process. We create a
list of substitutions σ for each pair of elements in Θ. By default, an orphan is
instantiated as an int. Unless, there is syntax in the program that demands
the orphan to be instantiated as a record. In such a case, we create a struct
with a dummy field (the C standard prohibits a record with a non-empty field
list [ISO-Standard, 2011]{§6.7.2.1.8}). Note the difference between brackets []
and []. The former denotes a list, while the latter is part of our notation for a
substitution. Therefore, in [α 7→ int] : (bind [. . .]), we are prepending to a list.
startsWith is an auxiliary function that tests the prefix of typeid string. The
implementation of de-orphanization is available in Appendix A.22.

is easily observable: Our set of rewrites is limited. At every iteration, the algorithm
either transforms a constraint or eliminates it, causing a side effect upon φ, ψ, or Θ.
Eventually, the auxiliary lists [Ke], [Ki], [Kw], and [Kf] are emptied, except when a
unification error happens and the solver halts.

Theorem 2 (Termination of Constraint Solving). Let C4 = 〈φ4, ψ4,Θ4, K, [Ke]
4,

[Ki]
4, [Kw]4, [Kf]

4〉 be any configuration assigned to K. By rewriting C4 with I
 , as

defined in Figure 4.13, either the solver halts due to an error, or ∃C = 〈φ, ψ,Θ,>, [],
[], [], []〉, such that C4 I

 C.

Proof. By case analysis on the rewrites PP

 ∗, UE

 ∗, SO

 , UI

 ∗, UW

 ∗, ◦ , RC

 , and DO

 , from
Figures 4.5, 4.6, 4.8, 4.10, 4.11, and 4.12, respectively.

Case PP

 ∗ PP-has, PP-eq, PP-iq, PP-inst, PP-def, PP-fun, etc.
By Lemma 3.

Case UE

 ∗ UE-base.

4.2. A Stage-based Solver 67

〈∅,∅,Θstd,K, [], [], [], []〉 I
 〈φf , ψf ,Θf ,>, [], [], [], []〉
=

〈∅,∅,Θstd,K, [], [], [], []〉 PP
 ∗ 〈φpp, ψpp,Θpp,>, [Ke]pp, [Ki]pp, [], [Kf]pp〉
UE
 ∗ 〈φue, ψue,Θue,>, [], [Ki]ue, [], [Kf]ue〉
SO
 〈φso, ψso,Θso,>, [], [Ki]so, [Kw]so, [Kf]so〉
UI
 ∗ 〈φui, ψui,Θui,>, [], [], [Kw]ui, [Kf]ui〉
UW
 ∗ 〈φuw, ψuw,Θuw,>, [], [], [], [Kf]uw〉
◦
 〈φue′ , ψue′ ,Θue′ ,>, [], [], [], [Kf]ue′〉
RC
 ∗ 〈φrc, ψrc,Θrc,>, [], [], [], []〉
DO
 〈φf , ψf ,Θf ,>, [], [], [], []〉

Figure 4.13. The complete solver algorithm. The process consists of successive
applications of the rewrites from Figures 4.5, 4.6, 4.8, 4.9, 4.11, and 4.12. Those
from Figure 4.9 are encapsulated by the field membership converge rewrite, ◦ ,
from Figure 4.10. Appendix A.23 shows the implementation of this algorithm,
denoted by I

 .

While [Ke] is non-empty, the head of this list is extracted, and τ1 and τ2 are passed as
arguments of a call to Uc. If unification halts due to an error, then the solver halts as
well. Otherwise, we take a step to a configuration with size of [Ke] decreased by one.

Case SO

 SO.

By Lemma 6, both orderSub and splitWob terminate. An error never happens.

Case UI

 ∗ UI-base.

Similar to the proof of UE

 , but the auxiliary list whose size decreases is [Ki]. In addition,
by Lemma 6, both orderSub and splitWob terminate.

Case UW

 ∗ UW-base.

Similar to the proof of UE

 , but the auxiliary list whose size decreases is [Kw].

Case ◦
 SH, MN-join, MN-skip, MN-nfld, and UE-again.

By Lemma 7.

Case RC

 ∗ RC-inst.

While [Kf] is non-empty, the head of this list is extracted, and a struct is composed
(with a name based on α, and containing field x). Because the substitution σ is
manually constructed, an error never happens. We take a step to a configuration
where the size of [Kf] decreases by one.

68 Chapter 4. Translating Constraints into Types

Case RC

 ∗ RC-upd.
Similar to the proof of RC-inst, but, in this rule, we update an already instantiated
struct.

Case DO

 DO.
An error never happens in this rule. Its termination depends on that of bind. At each
iteration of this function, the size of [. . .] decreases; eventually we have [] and bind
returns.

During the discussion about the preprocessing stage, we introduced the notion of
configuration entailment. This property, which is related to the semantics of Figure 3.4,
is actually preserved throughout the entire solving process, but with a caveat: Lemma 4
ensures C ≡ C ′, while in Theorem 3, stated below, the entailment is C
 C ′. A
corresponding completeness property, however, cannot be established, since the de-
orphanization stage “blindly” instantiates type variables.

Lemma 8 (Preservation of Entailment through φ, ψ, Θ, and K). Let C = 〈φ, ψ,Θ,>,
[Ke], [Ki], [Kw], [Kf]〉 and C ′ = 〈φ′, ψ′,Θ′,>, [Ke]

′, [Ki]
′, [Kw]′, [Kf]

′〉 be preprocessed
configurations. If φ � φ′, ψ � ψ′, Θ � Θ′, K � K′, and either assertion A≡ or A≤
(defined below) hold, then C
 C ′.
A≡: [Ki] = [Ki]

′ and [Kw] = [Kw]′.

A≤: [Ki]
′++ [Kw]′ respect the relation R≤, as defined in Section 4.1.

Proof. By induction on the structure of a type, τ , in the rules KEq and KIq, from
Figure 3.4.

Theorem 3 (Soundness of Constraint Solving). Let C4 = 〈φ4, ψ4,Θ4, K, [Ke]
4,

[Ki]
4, [Kw]4, [Kf]

4〉 be any configuration assigned to K. If ∃C = 〈φ, ψ,Θ,>, [Ke],

[Ki], [Kw], [Kf]〉, such that C4 I
 C, then C4
 C.

Proof. By case analysis on the rewrites PP

 ∗, UE

 ∗, SO

 , UI

 ∗, UW

 ∗, ◦ , RC

 , and DO

 , from
Figures 4.5, 4.6, 4.8, 4.10, 4.11, and 4.12, respectively.

Case PP

 ∗ PP-has, PP-eq, PP-iq, PP-inst, PP-def, PP-fun, etc.
By Lemma 4.

Case UE

 ∗ UE-base.
By Lemma 5, Corollary 2, and Lemma 8, with assertion A≡.

Case SO

 SO.
By Lemma 8, with assertion A≤.

4.2. A Stage-based Solver 69

Case UI

 ∗ UI-base.
By Lemma 5, Corollary 2, and Lemma 8, with assertion A≤. For the first iteration,
the hypothesis is guaranteed by invocations of splitWob and orderSub in SO. In each
following iteration, UI-base, itself, invokes those two functions.

Case UW

 ∗ UW-base.

Similar to the proof of UI-base.

Case ◦
 SH, MN-join, MN-skip, MN-nfld, and UE-again.

Similar to the proof of UE-base.

Case RC

 ∗ RC-inst.
The name of the instantiated struct is created from the typeid, α̂. By either SSpc or
PSpc, from Figure 3.5, we have φ � φ′ and Θ � Θ′, so that C4 |= C holds.

Case RC

 ∗ RC-upd.
Our semantics does not account for structural decomposition of a record type (fields
themselves are unified during the membership normalization stage), C4 |= C immedi-
ately holds.

Case DO

 DO.

By any of the predicates from Figure 3.5, except for SVr, SVl, PVr, PVl, SVrv, SVlv,
PVrv, and PVlv, , C4 |= C holds.

Corollary 3 (Complete Instantiability of Constraint Solving). Given two configura-
tions Ci = 〈∅,∅,Θstd, K, [], [], [], []〉 and Cc = 〈φ, ψ,Θ,>, [], [], [], []〉, if Ci
 Cc, then Cc
is a complete solved form of Ci.

Proof. By Theorems 2 and 3.

To conclude this section, Figure 4.14 shows a complete example of our type
inference system, starting from the generation of constraints, until the end of our
solving process. The code snippet which we infer types to is based on the function
new_node from Figure 1.1. In this example, not every rule of our solver is used:
wobbly inequalities do not appear and the membership normalization does not exist
at all, since there is no multiple uses of a given struct field. Even though the de-
orphanization stage is not illustrated (due to space), type variable α12 is an orphan
that gets instantiated as int.

70 Chapter 4. Translating Constraints into Types

 Φ = { { α0, α0}, { α1, α1}, { α2, α2}, { α3, α3}, { α4, α4}, { α5, α5}, { α6, α6}, { α7, α7}, { α8, α8}, { α9, α9}, { α10, α10}, { α11, α11}, { α12, α12}, { α13, α13},

 { α14, α14}, { α15, α15}, { α16, α16}, }

 ψ = { { new_node, α0(*)(node_t, value_t)}, { next, α2}, { node, α3}, { value, α1}, }

 Θ = { { double, double}, { int, int}, { node_t, α0}, { value_t, α1}, }

 [Ke] = α3≡α16 α1≡α12 α3≡α13 α15≡α11 α13≡α14* α11≡α10 α2≡α6 α3≡α7 α9≡α5 α7≡α8* α5≡α4 α0≡α3 α0≡α2

 [Kf] = has(α14, value:α15) has(α8, next:α9)

 [Ki] = α16≤α0 α12≤α11 α6≤α5

 [Kw] = []

Preprocessing

node_t new_node(value_t value,
 node_t next) {
 node_t node;
 node->next = next;
 node->value = value;
 return node;
}

u

s

n

i fp

p

m

∃α0. syn node_t as α0 ^ fun new_node:node_t⟶value_t⟶ α0 ^ ∃α1. syn value_t as α1 ^ def value:α1 in

∃α2. syn node_t as α2 ^ def next:α2 in ∃α3. syn node_t as α3 ^ def node:α3 in ∃α4α5α6. α6≤α5 ^ α5≡α4 ^ ∃α7α8α9.

has(α8, next:α9) ^ α7≡α8* ^ α9≡α5 ^ typeof(node,α7) ^ typeof(next,α6) ^ ∃α10α11α12. α12≤α11 ^ α11≡α10 ^ ∃α13α14α15.

has(α14, value:α15) ^ α13≡α14* ^ α15≡α11 ^ typeof(node,α13) ^ typeof(value,α12) ^ ∃α16. α16≤α0 ^ typeof(node,α16) ^ ⊤

K =

$ret

next

node

value

node->next

node->value

node->next=next

node->value=value

 Φ = { { α0, α8*}, { α1, α12}, { α2, α8*}, { α3, α8*}, { α4, α4}, { α5, α4}, { α6, α8*}, { α7, α8*}, { α8, α8}, { α9, α4}, { α10, α10}, { α11, α10}, { α12, α12},

 { α13, α8*}, { α14, α8}, { α15, α10}, { α16, α8*}, }

 ψ = { { new_node, α8*(*)(node_t, value_t)}, { next, α8*}, { node, α8*}, { value, α12}, }

 Θ = { { double, double}, { int, int}, { node_t, α8*}, { value_t, α12}, }

 [Kf] = has(α8, value:α10) has(α8, next:α4)

 [Ki] = α8*≤α8* α12≤α10 α8*≤α4

 [Ke] = [Kw] = []

1st Unification Round

 Φ = { { α0, α8*}, { α1, α12}, { α2, α8*}, { α3, α8*}, { α4, α8*}, { α5, α8*}, { α6, α8*}, { α7, α8*}, { α8, α8}, { α9, α8*}, { α10, α12},

 { α11, α12}, { α12, α12}, { α13, α8*}, { α14, α8}, { α15, α12}, { α16, α8*}, }

 ψ = { { new_node, α8*(*) (node_t, value_t)}, { next, α8*}, { node, α8*}, { value, α12}, }

 Θ = { { double, double}, { int, int}, { node_t, α8*}, { value_t, α12}, }

 [Kf] = has(α8, value:α12) has(α8, next:α8*)

 [Ke] = [Ki] = [Kw] = []

2nd Unification Round: unify inequalities

 Φ = { { α0, TYPE_8*}, { α1, α12}, { α2, TYPE_8*}, { α3, TYPE_8*}, { α4, TYPE_8*}, { α5, TYPE_8*}, { α6, TYPE_8*},

 { α7, TYPE_8*}, { α8, TYPE_8}, { α9, TYPE_8*}, { α10, α12}, { α11, α12}, { α12, α12}, { α13, TYPE_8*}, { α14, TYPE_8},

 { α15, α12}, { α16, TYPE_8*}, }

 ψ = { { new_node, TYPE_8*(*)(node_t, value_t)}, { next, TYPE_8*}, { node, TYPE_8*}, { value, α12}, }

 Θ = { { TYPE_8, struct TYPE_8 { α12 value; TYPE_8* next; } }, { double, double}, { int, int},

 { node_t, TYPE_8*}, { value_t, α12}, }

 [Ke] = [Kf] = [Ki] = [Kw] = []

Record Composition

Figure 4.14. A summarized example of our type inference system. On the top-
left corner, a function that is based on the code from Figure 1.1. On the top-right
corner, the construction of the lattice of shapes. The constraints, K, together
with the relevant solver rules, occupy most of the figure. Rules that have no
effect on this particular example are not shown, except for the de-orphanization
stage, which instantiates α12 as int.

4.3. Typing a Reduced µC Program 71

4.3 Typing a Reduced µC Program

In Section 3.1, we explained that a valid µC program does not necessarily contain
definitions for all the types it uses. A program which lacks the declaration of a struct

or a typedef is denominated, by Definition 4, a reduced program. In order to type such
a program, we need to somehow enrich the typing context. Possibly, with the maps φ, ψ,
and Θ that we carry in a configuration. We know, from Section 4.2 that we can rewrite
Ci = 〈∅,∅,Θstd, K, [], [], [], []〉 as a complete solved form, Cc = 〈φ, ψ,Θ,>, [], [], [], []〉, as
stated by Definition 14. What remains to be done is to verify whether the types in a
complete solved form allows us to type check a µC program.

A typical judgment for a constraint-based type system would be Γ, K ` t : τ ,
where t is a typeable term of the language and K is a satisfiable constraint. We slightly
deviate from Pottier and Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005] in
this regard, since our “satisfiable constraint” is actually a configuration. In particular,
one in complete solved form. Our formulation also diverges from that of Pottier and
Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005] in the fact that we do not
deal with the generalization and instantiation of type schemes. In this aspect, we are
closer to the original HM(X) framework by Odersky et al. [Odersky et al., 1999].

The typing judgment employed for a reduced µC program is given by Γ, ψ,Θ `
t : τ , where t can be a function F , a declaration D, an statement S, or an expression
E - we do not type the program P as a whole, to make the presentation simpler. The
interpretation of this judgment is that t has type τ within an composite environment
consisting of Γ and the mapping information available in ψ and Θ. Therefore, the
rules that we previously presented in Figure 3.12 are now enhanced with such larger
environment, and shown in Figure 4.15. Most of typing rules remain untouched, except
for the few ones which we now discuss. The implementation of our type checking rules
appear in Appendix A.24.

Rules TCDclSt and TCPar are, respectively, the counterparts of rules TDclSt
and TPar. The difference between them is that, in the former, the type of variable x,
is obtained from ψ and Θ and included in Γ. Looking at the constraint generation rules
from Figure 3.6, this type emerges from syn τ as α and def x : α in K. Eventually,
upon an use of x, as shown by TCVar, τ is fetched from Γ. In this rule, we additionally
require that Γ(x) = ψ(x). Even though such enforcement is not necessary for the
typing itself, it is imposed to ensure correctness of our solving process: for a given
declaration τd x, the type τ that we make a synonym of τd, in Θ, must be the same
associated with x, in ψ3. A similar check exists in rule TCRet.

3PsycheC, as opposed to our µC implementation, allows for undeclared variables within a function.

72 Chapter 4. Translating Constraints into Types

The other typings that have been adjusted from Figure 3.12 are those of rules
TCExpSt, TCAsg, TCRet, and TCFld. In the first one, TCExpSt, we simply require
that the type of an expression-statement, albeit discarded, must be a ground one.
TCAsg and TCRet remain essentially the same. The only subtlety is that the subtyping
relation now needs to be established on the premises of φ, respecting the semantics of
Figure 3.5. In regards to TCFld, the modification is that we make it explicit the
retrieval of a struct definition by looking up its name in Θ.

By ensuring that the typings in Figure 4.15 hold, we guarantee soundness of our
constraints and thus of our type inference. This property is formally stated, at the
expression level, in Theorem 4. Extending this claim to entire functions and to the
overall program is straightforward - although the proof would involve no additional
concept, extra machinery would be necessary. A property of completeness, however,
cannot be established for our type inference system. Besides the incompleteness in-
herent to the solver of Section 4.2, we do not account for value categories as specified
in C [ISO-Standard, 2011]{§6.3.2.1}. For instance, although p = &42; can be verified
from a type checking perspective (assuming p is int∗), this is not a valid statement,
since taking the address of a literal is a forbidden operation.

Theorem 4 (Soundness of Constraint Generation - for Expressions). Let E be an ex-
pression of a self-contained program P, and P ′ be a reduced program derived from
P, whose table of shapes is M. Given a configuration Ce = 〈φe, ψe,Θe, 〈〈E :

τ,M〉〉e, [Ke]e, [Ki]e, [Kw]e, [Kf]e〉, if Γ ` E : τ holds in P, then ∃C =

〈φ, ψ,Θ,>, [Ke], [Ki], [Kw], [Kf]〉, such that Ce
 C, and Γ, ψ,Θ ` E : τ ′, holds in
P ′, where τ ′ <: τ .

Proof. By induction on the structure of E in the typing rules from Figure 3.12. We
show the proof for cases TAsg and TDiv. The others follow similar principles.

Case TAsg.

We have that Γ ` E = Es : τ is well typed. By TAsg, from Figure 3.12, Γ ` E : τ and
Γ ` Es : τs, where τs <: τ . We want to prove that Γ, ψ,Θ ` E = Es : τ ′, where τ ′ <: τ ,
is also well typed, given the configuration Ce = 〈φe, ψe,Θe, 〈〈E = Es : α,M〉〉e, [Ke]e,

[Ki]e, [Kw]e, [Kf]e〉. To this end, it is necessary to demonstrate that the following hold:
(i) Γ, ψ,Θ ` E : τ ′; (ii) Γ, ψ,Θ ` Es : τs′ ; and (iii) τs′ <: τ ′;

1. By the constraint generation rules from Figure 3.6, we have that Ce =

〈φe, ψe,Θe, K∃. Ke ∧ Kes ∧ Kkd ∧ Ksel, [], [], [], []〉.

When that is the case, x will not be found by TCVar within Γ(x), but it will exist under ψ(x).

4.3. Typing a Reduced µC Program 73

Γ, ψ,Θ ` ` : ρ(`)
{TCLit}

Γ(x) = ψ(x) = τ ftv(τ) = ∅
Γ, ψ,Θ ` x : τ

{TCV ar}

Γ, ψ,Θ ` E : τs∗ field(x,Θ(τ̂s)) = τ

Γ, ψ,Θ ` E->x : τ
{TCFld}

Γ, ψ,Θ ` E : τp τ = τp∗
Γ, ψ,Θ ` ∗E : τ

{TCDrf}
Γ, ψ,Θ ` E : τ

Γ, ψ,Θ ` &E : τ∗
{TCAdr}

Γ, ψ,Θ ` E : τ Γ, ψ,Θ ` Es : τs τs <: τ

Γ, ψ,Θ ` E = Es : τ
{TCAsg}

Γ, ψ,Θ ` E : τ sc(τ)

Γ, ψ,Θ ` E = 0 : τ
{TCAsgZr}

Γ, ψ,Θ ` E1 : τ1 sc(τ1) Γ, ψ,Θ ` E2 : τ2 sc(τ2) Γ ` || : τ1 → τ2 → int
Γ, ψ,Θ ` E1 || E2 : τ

{TCOr}

Γ, ψ,Θ ` E1 : τ1 ari(τ1) Γ, ψ,Θ ` E2 : τ2 ari(τ2) Γ ` / : τ1 → τ2 → rank(τ1, τ2)

Γ, ψ,Θ ` E1 / E2 : τ
{TCDiv}

Γ, ψ,Θ ` E1 : τ1∗ Γ, ψ,Θ ` E2 : int Γ ` +ptr−int : τ1∗ → int→ τ1∗
Γ, ψ,Θ ` E1 + E2 : τ

{TCAddPtrInt}

Γ, ψ,Θ ` E1 : int Γ, ψ,Θ ` E2 : τ2∗ Γ ` +int−ptr : int→ τ2∗ → τ2∗
Γ, ψ,Θ ` E1 + E2 : τ

{TCAddIntP tr}

Γ, ψ,Θ ` E1 : τ1 ari(τ1) Γ, ψ,Θ ` E2 : τ2 ari(τ2) Γ ` + : τ1 → τ2 → rank(τ1, τ2)

Γ, ψ,Θ ` E1 + E2 : τ
{TCAddAri}

Γ, ψ,Θ ` E : τ ftv(τ) = ∅ Γ, ψ,Θ ` {S?} : τr
Γ, ψ,Θ ` {E; S?} : τr

{TCExpSt}

(Γ, x : Θ(ψ̂(x))), ψ,Θ ` {S?} : τr
Γ, ψ,Θ ` {τ x; S?} : τr

{TCDclSt}
Γ, ψ,Θ ` {S?} : τr

Γ, ψ,Θ ` () {S?} : τr
{TCBdy}

Γ, ψ,Θ ` (D?) {S?} : τr
Γ, ψ,Θ ` τr f(D?) {S?} : τr

{TCFun}
(Γ, x : Θ(ψ̂(x))), ψ,Θ ` (D?) {S?} : τr

Γ, ψ,Θ ` (τ x, D?) {S?} : τr
{TCPar}

Γ, ψ,Θ ` E : τe τe <: Θ(τ̂r))

Γ, ψ,Θ ` { return E; } : τr
{TCRet}

Γ, ψ,Θ ` 0 : Θ(τ̂r) sc(Θ(τ̂r))

Γ, ψ,Θ ` { return 0; } : τr
{TCRetZro}

Figure 4.15. The type checking rules of a µC program, with type inference.
Most of them are similar to those in Figure 3.12. The rules now account for
the mappings φ, ψ, and Θ, extracted from a configuration in complete solved
form Cc = 〈φ, ψ,Θ,>, [], [], [], []〉. Such configuration corresponds to a satisfiable
constraint. Appendix A.24 contains the implementation of these typing rules.

74 Chapter 4. Translating Constraints into Types

2. By PP-and, from Figure 4.5, Ce is eventually decomposed into Ce′ =

〈φe, ψe,Θe, Ke1, [], [], [], []〉 = 〈φe, ψe,Θe, 〈〈E : α1,M〉〉e, [], [], [], []〉, and three
other configurations, Ce′′ , Ce′′′ , and Ce′′′′ .

3. By the hypothesis, ∃Ce1 = 〈φe1, ψe1,Θe1,>, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉, such
that Γ, ψe1, Θe1 ` E1 : α1, where α1 <: τ1.

4. We now have that Ce′′ = 〈φe1, ψe1,Θe1, Kes, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉 =
〈φe1, ψe1,Θe1, 〈〈Es : α2,M〉〉e, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉.

5. By the hypothesis, again, ∃Ce2 = 〈φe2, ψe2,Θe2,>, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉,
such that Γ, ψe2,Θe2 ` E2 : α2, where α2 <: τ2.

6. We now have that Ce′′′ = 〈φe2, ψe2,Θe2, Kkd, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉 =
〈φe2, ψe2,Θe2, α2 ≤ α1, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉.

7. By Lemma 3, ∃Ce, such that Ce′′′ PP

 ∗ Ckd, since an error never happens in PP-iq.

8. We now have that Ce′′′′ = 〈φe2, ψe2,Θe2, Kkd, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉 =
〈φe2, ψe2,Θe2, α ≤ α1, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉.

9. By Lemma 3, ∃Ce, such that Ce′′′ PP

 ∗ Cpp, since an error never happens in PP-iq.

10. By Lemma 4, Ce ≡ Ce1 ≡ Ce2 ≡ Ckd ≡ Cpp.

11. By Theorem 3, Cpp |= C, and the following hold: Γ, ψ, Θ ` E : α1, where α1 <: τ ,
and Γ, ψ, Θ ` Es : α2, where α2 <: τs <: α1. These satisfy (i) and (ii).

12. By Corollary 3, α1 = τ ′, so that ftv(τ ′) = ∅, α2 = τs′ , so that ftv(τs′) = ∅, and
τs′ <: τ ′ <: τ , satisfying (iii).

Case TDiv.
We have that Γ ` E1 / E2 : τ is well typed. By TDiv, from Figure 3.12, Γ ` E1 : τ1

and Γ ` E2 : τ2. We want to prove that Γ, ψ,Θ ` E1 / E2 : τ ′, where τ ′ <: τ , is also
well typed, given the configuration Ce = 〈φe, ψe,Θe, 〈〈E1 / E2 : α,M〉〉e, [Ke]e, [Ki]e,

[Kw]e, [Kf]e〉. To this end, it is necessary to demonstrate that the following hold: (i)
Γ, ψ,Θ ` E1 : τ1′ , where τ1′ <: τ1; (ii) Γ, ψ,Θ ` E2 : τ2′ , where τ2′ <: τ2; (iii) ari(τ1 ′);
(iv) ari(τ2 ′); and (v) Γ ` / : τ1′ → τ2′ → rank(τ1′ , τ2′).

1. By the constraint generation rules from Figure 3.6, we have that Ce =

〈φe, ψe,Θe, K∃. Ke1 ∧ Ke2 ∧ Kkd ∧ Ksel, [], [], [], []〉. In the case of division,
/, we can safely omit Kkd, since Ksel is stricter than Kkd. Reconsidering,
Ce = 〈φe, ψe,Θe, K∃. Ke1 ∧ Ke2 ∧ Ksel, [], [], [], []〉.

4.3. Typing a Reduced µC Program 75

2. By PP-and, from Figure 4.5, Ce is eventually decomposed into Ce′ =

〈∅,∅,Θstd, Ke1, [], [], [], []〉 = 〈φe, ψe,Θe, 〈〈E1 : α1,M〉〉e, [], [], [], []〉, and two
other configurations, Ce′′ and Ce′′′ .

3. By the hypothesis, ∃Ce1 = 〈φe1, ψe1,Θe1,>, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉, such
that Γ, ψe1, Θe1 ` E1 : α1, where α1 <: τ1.

4. We now have that Ce′′ = 〈φe1, ψe1,Θe1, Ke2, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉 =
〈φe1, ψe1,Θe1, 〈〈E2 : α2,M〉〉e, [Ke]e1, [Ki]e1, [Kw]e1, [Kf]e1〉.

5. By the hypothesis, again, ∃Ce2 = 〈φe2, ψe2,Θe2,>, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉,
such that Γ, ψe2,Θe2 ` E2 : α2, where α2 <: τ2.

6. We now have that Ce′′′ = 〈φe2, ψe2,Θe2, Ksel, [Ke]e2, [Ki]e2, [Kw]e2, [Kf]e2〉 =
〈φe2, ψe2,Θe2, α ≤ double ∧ α1 ≤ double ∧ α2 ≤ double, [Ke]e2, [Ki]e2, [Kw]e2,

[Kf]e2〉. Note: We are not strictly correct here, given that, in Figure 3.10, there
are multiple cases for the division operator, /. Yet, the case we use for this
demonstration is the less strict one.

7. By Lemma 3, ∃Cpp, such that Ce′′′ PP

 ∗ Cpp, since an error never happens in PP-iq.

8. By Lemma 4, Ce ≡ Ce1 ≡ Ce2 ≡ Cpp.

9. By Theorem 3, Cpp |= C, and the following hold: Γ, ψ, Θ ` E1 : α1, where
α1 <: double <: τ1, and Γ, ψ, Θ ` E2 : α2, where α2 <: double <: τ2. These
satisfy (i) and (ii).

10. By Corollary 3, α1 = τ1′ , so that ftv(τ1′) = ∅, and α2 = τ2′ , so that ftv(τ2′) = ∅.
As a consequence, ari(τ1′) and ari(τ2′) hold, satisfying (iii) and (iv).

11. Given (iii) and (iv), satisfaction of (v) is straightforward.

Chapter 5

An Overview of PsycheC

PsycheC consists of two components. Constraint generation, as described in Section 3, is
implemented in C++ through an AST visitor. Our parser is a modified and extended
version of the parser from the Qt Creator IDE [Qt-Project, 2017]. The constraint
solver is implemented in Haskell. It follows the principles discussed in Section 4.2.

5.1 The C Language

The first standardized version of C, published by ANSI, is known as
C89 [ANSI-Standard, 1989]1. Since then, two major revisions of the language have
been published by ISO. They are respectively known as C99 [ISO-Standard, 1999] and
C11 [ISO-Standard, 2011]. Over time, C compilers introduced extensions to the lan-
guage and non-ISO dialects emerged. Besides, the ISO standard does not specify a
formal semantics for C. For that reason, alternative interpretations of the language’s
behaviour can been seen in different compilers. As a result, a survey conducted by
Memarian et al. [Memarian et al., 2016] concludes that the expectations of C program-
mers, the assumptions of static analysis tools, the behaviour of compilers, and the ISO
standard, diverge among themselves in several aspects.

Given the aforementioned subtleties, how accurately can we verify programs
reconstructed by PsycheC? Our primary guidance is the ISO standard, but ac-
tual validation is done through compilers. A C11 compiler that attempts to rigor-
ously conform to the standard is kcc [Ellison and Rosu, 2012, Hathhorn et al., 2015,
Runtime-Verification, 2017]. It can diagnose issues that neither gcc, clang, nor icc,
even in strict/pedantic mode, might detect. On the other hand, gcc and clang, which

1C89 was later ratified by ISO and referred to as C90 [ISO-Standard, 1990]. We disregard C95,
since it is an amendment.

77

78 Chapter 5. An Overview of PsycheC

are free (and open source) compilers, are more widely adopted in the industry. There-
fore, while we test PsycheC with all those compilers, we ultimately strive for compliance
with gcc and clang.

PsycheC covers almost all C99 language constructs. At the point of this writing,
we lack designated initializers for arrays, compound literals, static array indices, and
complex numbers. Although C11 brings significant features (e.g. memory model, mul-
tithreading, preprocessor-related and library additions), few of them relate to static
semantics. In its current form, PsycheC addresses the fundamental typing relations of
C that are necessary for type inference. As shown in Section 5.3, we are capable of
reconstructing the latest releases of many C libraries and incomplete source from pop-
ular open-source projects. Limitations and cases with special treatment are discussed
in the following paragraphs.

5.1.1 Unexpanded Macros

The input of PsycheC is a translation unit [ISO-Standard, 2011]{§5.1.1.1}, so the sub-
mitted incomplete source must have been preprocessed. One question arising from
this scenario is: how to handle macros whose definitions are unavailable? The ideal
case is when a macro, even in expanded form, conforms to C’s grammar. Object-
and function-like macros usually fit into this case, allowing successful parsing and a
valid program reconstruction. For situations in which syntax errors appear due to unex-
panded macros, PsycheC offers an extension-point that allows one to register predefined
expansions - we observe that such macros frequently belong to a project’s API, in which
case this configuration can be done once and shared across developers. Nevertheless,
we highlight that, among thousands of lines evaluated as described in Section 5.3, less
than ten unique syntactically-invalid macros were found.

Example 9. In partial program P1 = [void g() { M_A(10); }], M_A is an unexpanded
macro. Since P1 is accepted by C’s grammar, PsycheC can parse it and infer M_A as
a function. Partial program P2 = [void f() { M_B(int, x) }], however, is invalid: we
would be passing a type as an argument. But if a predefined expansion for `M_B(T,
V)’, such as `T V;’, is registered in advance, PsycheC can reconstruct P2.

Declarations in C often appear surrounded by platform-specific decorators like a
calling conventions specification (e.g. _cdecl), GNU’s __attribute__ specifiers, or
Microsoft’s __declspec import/export directives. Those decorators do not influence
the typing relations of a partial program and are used by a compiler’s backend for
object-code generation. However, decorators do render an incomplete source invalid.

5.1. The C Language 79

PsycheC can handle them through empty builtin expansions configured on a platform-
specific basis. This is the same mechanism employed by IDE’s like Qt Creator to enable
parsing (and, consequently, semantic-oriented features) in code editors.

5.1.2 Variadic functions and generic selections

Variadic functions are inferred in the following manner. Constraints of function types
are ordered by increasing number of arguments. During unification of those arguments,
errors due to incompatible types or to inconsistent parameter-count are caught. Every
function in ψ for which such errors are identified is made variadic - the ellipsis, ...,
is placed at the index that triggered the error. Variadic functions such as those from
the printf family can be registered into PsycheC so that the format-specifier string is
used to determine the type of variadic arguments.

Relying on unification errors due to incompatible argument types helps us handle
C11’s generic selection [ISO-Standard, 2011]{§6.5.1.1}. But since a variadic function
must have at least one named argument [ISO-Standard, 2011]{§6.7.6.3/5-9}, for an
error occurring at the first index PsycheC #defines a _Generic macro that forwards to
artificial functions, one for each instantiated argument type. When _Generic appears
in the program, either because the source was preprocessed or the keyword was directly
used2, we parse the call but constraints are not generated for arguments.

5.1.3 Arrays x pointers, functions x function pointers

Our constraint’s language does not distinguish array access from pointer expres-
sions3. Due to the decaying rule [ISO-Standard, 2011]{§6.3.2.1.3}, this inability is
not a limitation. Contexts in which this differentiation matters, such as within the
sizeof operator, affect dynamic semantics. Decaying from function to function point-
ers [ISO-Standard, 2011]{§6.3.2.1.4} is handled by an ad-hoc unification rule that al-
lows conversion between the two, combined with a late stage in our solving process
that performs that decaying.

5.1.4 Miscellanea

Below, we list a few other characteristics of PsycheC’s implementation.
2A generic selection is a primary expression [ISO-Standard, 2011]{§6.5.1.6}. While normally used

in macro definitions, the _Generic keyword is a compiler symbol, not a preprocessor one.
3Array declarations are recognized, but in certain cases it is necessary to analyse further syn-

tax. For instance, a bracket-less declaration like T var; could actually hide an array in the case a
typedef int T[2]; would exist.

80 Chapter 5. An Overview of PsycheC

– We do not introduce storage-class specifiers [ISO-Standard, 2011]{§6.7.1} into
declarations, except for a typedef, of course. Those do not influence typing.

– By default, field accesses are unified as composing an struct – no special recog-
nition for bit-fields [ISO-Standard, 2011]{§6.7.2.1} is employed. A declaration of
an union is produced by PsycheC only if such a variable appears in the partial
program through an elaborated-type-specifier, e.g. union U v;. Union types are
a frequent cause of undefined behavior since they permit writing to one field, but
reading from another.

– C scoping rules allows for an enumerator to be used without qualification. There-
fore, it is not possible for PsycheC to match an enumerator to a given enumeration,
unless its declaration is in the program on which type inference is performed. Like
we do it for unions, the declaration of an enumeration is only produced if a vari-
able appears through an elaborated-type-specifier, e.g. enum E e; (a placeholder
is used as an enumerator).

– When PsycheC encounters a name in a context where a constant-expression
[ISO-Standard, 2011]{§6.6} is required, such as in a case statement, a #define

will be generated. A constexpr constraint exists for this purpose.

5.2 A Glimpse of Dynamic Semantics

Despite a varying degree of language-completeness coverage, there has been numer-
ous studies on the formalization of dynamic semantics for C [Ellison and Rosu, 2012,
Papaspyrou, 1998, Papaspyrou, 2001, Krebbers, 2015, Krebbers and Wiedijk, 2015,
Blazy and Leroy, 2009] and even focused on its concurrency model [Batty et al., 2016,
Nienhuis et al., 2016]. Within this matter, we call attention to the fact that, while our
type inference produces well typed programs, this does not eliminate the risk of unde-
fined behaviours, a topic thoroughly studied by Hathhorn et al. [Hathhorn et al., 2015].

PsycheC cannot guarantee that a reconstructed program will behave well at run-
time; not even when a partial program is derived from another that is originally free
from undefined behaviors. An obvious obstacle that prevents us from establishing
stronger dynamic semantics properties is that values may be absent in an incomplete
source. In addition to that, there are aspects which our type inference does not ac-
count for: (i) inaccuracies resulting from the inference of arithmetic types, which can
lead to signed integer overflows; (ii) fields of a composed struct may be in differ-
ent order from those in the original struct – just as problematic, what we infer as

5.3. Empirical Evaluation 81

a struct could actually be a union; (iii) missing array declarations are always in-
ferred as pointers, possibly leading to unbound memory accesses; (iv) the definition of
functions are not synthesized, only their declarations - we note that stub-generation
tools [Cadar et al., 2008, Godefroid et al., 2005] can mitigate this problem.

A further observation to make is that PsycheC’s reconstruction is cast-free: we
do not introduce type casts in the program on which type inference is performed;
hence, we do not change type relations already in place. In particular, we respect
the contracts [Wadler and Findler, 2009] between types and subtypes that we create
to handle qualifiers. Finally, we once more emphasize that our results pertain to
the static semantics of programs; hence, undefined behavior does not compromise our
ability to discover typing information.

5.3 Empirical Evaluation

The key contribution of this thesis is a technique to infer types in a C program. As
we have seen in the previous sections, this endeavour implies no small amount of work,
because C is not designed, from its beginning, to be amenable to type inference. Given
this observation, why would one go over all this trouble to reconstruct a C program?
The answer to this question is another contribution of our work. In the upcoming
sections, we describe practical uses of a type inference engine for incomplete C sources.

The use cases that we shall discuss are not an exhaustive list of the possibilities
that our ideas open up. PsycheC is a realistic, down-to-earth tool, with a community of
users4. Since late 2016, PsycheC has been available through an online interface, where
users upload their source, and get back a complete program. We know that this website
has been used in different and, often, unexpected ways: as a code completion helper
and as an assistant that reconstructs programs before they are forwarded to other tools
that require a fully compilable C program.

While we have, throughout our experiments, collected code from numerous open
source repositories (and even a few proprietary ones), it is impossible to claim that
PsycheC is free from errors or unbiased toward certain programming style. In particular,
there is likely some exotic C feature that we have not yet seen, what can be considered
a threat to the validity of the evaluation. Nevertheless, we expect that, in regards to
typing aspects of C, our implementation is complete.

4Earlier in the year of 2017, PsycheC appeared among GitHub’s most trending C projects.

82 Chapter 5. An Overview of PsycheC

5.3.1 Reconstructing Header Files

Goal: Show that we can reconstruct header files of real-world programs.

Motivation: When porting source code across platforms, it may happen that a soft-
ware component depends on infrastructure that is not available on the target platform.
For instance, during embedded software development, it can be the case that custom-
hardware drivers cannot be compiled on traditional architectures, where we would like
to run simulation or analyses. This was the original motivation for the development of
PsycheC: to use Valgrind on software implemented for a particular embedded platform.
PsycheC was used to aid porting those programs to Linux.

Benchmark: The 11 first programs (lexicographic order) from the latest version, 8.27,
of the GNU Coreutils library - change owner appears twice because its implementation
is split into two files. All headers, macro definitions, and top-level declarations are
entirely removed from the source5, the hardest setup for PsycheC’s inference. Programs
from GNU Coreutils are written in C99.

Discussion: Coreutils programs feature a rich set of C language constructs, an ex-
tensive variety of types, and broad coding style. Table 5.1 shows the result of our
evaluation. Because we use an aggressive methodology to produce partial programs,
the samples that we test have some of the ambiguous syntax seen in Table 2.1. The
parsing technique of Section 2 disambiguates some of them, as reported in column
Alg. When further syntax is still not enough for us to resolve ambiguities, we resort to
heuristics, following the approach of Knappen et al. [Knapen et al., 1999]. Thus, x(y)
is disambiguated as a function call; and x*y is disambiguated as a pointer declaration,
for instance. Column Heu shows how often we resorted to heuristics. Our guesses
turned out to be 100% correct for the Coreutils programs. This accuracy can be ex-
plained by the fact that those heuristics are based on common coding guidelines and
constructs such as a multiplication with a discarded result is rare. Nevertheless, the
algorithmic disambiguation presented in Section 2 is relevant to allow a formal end-to-
end approach of our type inference. Table 5.1 also shows that constraint-solving time
is proportional to the numbers of constraints, an expected result.

Both gcc and clang compile, without errors or warnings, the original programs.
However, the original programs fail when compiled with kcc6 because this compiler does

5Invalid syntax due to unexpanded macros happened for the following macros:
INT_BUFSIZE_BOUND, TYPE_SIGNED, GETOPT_HELP_OPTION _DECL, GETOPT_VERSION_OPTION_DECL,
IF_LINT, SET_COMPONENT and _GL_UNUSED.

6Our kcc compilations have been performed through RV-Match, available at: https://
runtimeverification.com/match/.

https://runtimeverification.com/match/
https://runtimeverification.com/match/

5.3. Empirical Evaluation 83

Table 5.1. Reconstruction of the GNU Coreutils programs. LoC: lines of code
in the Original program and in the Partial one; Disamb: syntactical ambigui-
ties resolved Algorithmically or Heuristically; and Semantic ambiguities resolved
through our lattice; Constr: constraints of type Equivalences and of Subtyping,
along with the Time (seconds) required to solve them; gcc/clang/kcc: number
of Warnings and Errors.

LoC Disamb Constr gcc clang kcc
O P A H S Eq Sub Time W E W E W E

base64.c 349 259 1 6 0 1,043 43 0.853 5 0 4 0 0 0
basename.c 189 150 3 6 2 503 32 0.279 6 0 4 0 0 0
cat.c 767 695 3 4 5 1,983 132 3.569 5 0 5 0 0 0
chcon.c 586 504 6 7 8 1,326 83 1.530 5 0 5 0 1 0
chgrp.c 318 244 1 5 2 734 43 0.484 11 0 12 0 0 0
chmod.c 569 468 3 7 10 1,435 123 1.757 6 0 9 0 0 0
chown.c 330 259 1 5 0 811 43 0.547 4 0 11 0 0 0
chown-core.c 554 507 9 1 2 1,932 143 3.233 3 0 3 0 0 0
chroot.c 429 366 8 4 15 1,349 98 1.675 14 0 15 0 2 0
cksum.c 318 249 2 4 1 768 40 0.564 2 0 2 0 1 0
comm.c 457 359 1 6 0 1,930 76 2.773 5 0 5 0 0 0

not support the non-standard #include_next extension - trying to compile, with kcc,
source preprocessed by other compiler does not work either, due to builtin expansions
such as __builtin_va_list. On the other hand, kcc successfully compiles all the
programs reconstructed by PsycheC.

Given that kcc is stricter than gcc and clang, it may come as surprise why the
later diagnoses more warnings than the former. The reason for a large number of
warnings by gcc and clang is because those two compiler detect if PsycheC redeclares a
function or type that is part of C’s standard library. As a matter of fact, the imprecision
mentioned in the previous paragraph can render such redeclaration inconsistent with
the one from the standard library. It is possible to run PsycheC in a stdlib-compatible
mode so that it matches standard library names and uses the official declarations.
But at this point, only part of the C’s standard library has been implemented and
this evaluation has been performed on the basis of “pure inference”. Other sources of
imprecisions of PsycheC that might trigger warnings are the following ones:

· Signed x unsigned mismatch: PsycheC cannot not always differentiate between
undeclared signed and unsigned types; implicit conversions among them is per-
mitted.

· Value is not an enumerator: upon switchs on enumerated types, gcc and clang
might alert that an identifier in a case is not an enumerator. Even though the
information that a name is an enumerator might not be inferable from syntax in
this situation, PsycheC annotates the expression and its parts with a constexpr

84 Chapter 5. An Overview of PsycheC

constraint, matching to C’s constant-expression [ISO-Standard, 2011]{§6.6} rule
- a #define with an arbitrary value is generated.

· Unused expression result: due to unexpanded object-like macros in an expression-
statement.

5.3.2 Enabling Static Analyses

Goal: Give static analyses tools the means to handle programs partially available.

Motivation: Prominent static analysis tools, such as SonarQube, OClint,
Splint [Larochelle et al., 2001, Evans, 1996], PVSStudio, clangStaticAnalyser,
Checkmarx, Coverity, Klocwork and Frama-C [Cuoq et al., 2012] require full source
files. They usually integrate with the build system. Analyzing cross-platform and em-
bedded software can be arduous in this scenario. In fact, few of the aforementioned
tools offer versions for Windows, Linux, and OSX. The industry tries to mitigate this
problem with component-packages and plugin-based services. However, it is difficult
to provide such support for every conceivable system. As consequence of these short-
comings, many static analysis tools cannot handle partial programs: they skip source
sections or break down, when absent declarations are encountered. Either way, a diag-
nostic cannot be produced.

Benchmark: PVS-Studio7, a tool that detects bugs in C, C++ and C# programs,
and that works for Windows and Linux. The PVS-Studio website contains a vast suite
of code snippets from popular open-source projects. But in order to analyze them,
PVS-Studio needs the entire program. We have reconstructed many of those partial
programs and submitted them to static analysis.

Discussion: Figure 5.1 shows the types that PsycheC reconstructs to three snippets
taken, as-is, from PVS-Studio’s show-case. Each of these examples illustrates a particu-
lar issue that PVS-Studio finds automatically. The program we reconstruct is diagnosed
with the same issues as the original programs. In spite of that, a program reconstructed
by PsycheC does not, necessarily, contain all issues that would have been diagnosed for
the original program. For instance, PsycheC might not differentiate between a signed
and an unsigned arithmetic type (due to an implicit conversion), or, in the absence of
a value that indexes an array, a buffer overrun may not be detectable. But in many
situations, the cause of a diagnostic lies on the structure of a program. In cases similar

7Frontpage at https://www.viva64.com/en/pvs-studio/; show-case examples at https://www.
viva64.com/en/inspections/

https://www.viva64.com/en/inspections/
https://www.viva64.com/en/inspections/

5.3. Empirical Evaluation 85

a) int​ ​_PyState_AddModule(PyObject*​ ​module,​ ​struct​ ​PyModuleDef*​ ​def) ​ ​{
​ ​​ ​​ ​​ ​PyInterpreterState​ ​*state;
​ ​​ ​​ ​​ ​if ​ ​(def->m_slots) ​ ​{
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​PyErr_SetString(PyExc_SystemError,​ ​"PyState...");
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​return ​ ​-1;
​ ​​ ​​ ​​ ​}
​ ​​ ​​ ​​ ​state​ ​=​ ​GET_INTERP_STATE();
​ ​​ ​​ ​​ ​if ​ ​(!def) ​ ​return ​ ​-1;
​ ​​ ​​ ​​ ​//...
}

 struct​ ​PyModuleDef ​ ​{ ​ ​int​ ​m_slots;​ ​} ​ ​;
typedef ​ ​int​ ​PyObject​ ​;
typedef ​ ​int​ ​​ ​PyInterpreterState​ ​;
int​ ​*​ ​GET_INTERP_STATE ​ ​() ​ ​;
int​ ​PyErr_SetString​ ​(int​ ​,char*) ​ ​;
int​ ​PyExc_SystemError;

b) bit32​ ​siHDAMode_V() ​ ​{
​ ​​ ​​ ​if(saRoot->memoryAllocated.agMemory[i].totalLength ​ ​>​ ​biggest) ​ ​{
​ ​​ ​​ ​​ ​​ ​​ ​if(biggest​ ​<​ ​saRoot->memoryAllocated.agMemory[i].totalLength) ​ ​{
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​save​ ​=​ ​i;
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​biggest​ ​=​ ​saRoot->memoryAllocated.agMemory[i].totalLength;
​ ​​ ​​ ​​ ​​ ​​ ​}
​ ​​ ​​ ​}
}

 typedef ​ ​struct​ ​TYPE_6__​ ​TYPE_3__;
typedef ​ ​struct​ ​TYPE_5__​ ​TYPE_2__;
typedef ​ ​struct​ ​TYPE_4__​ ​TYPE_1__;
typedef ​ ​int​ ​bit32;
struct​ ​TYPE_5__​ ​{ ​ ​TYPE_1__*​ ​agMemory;​ ​};
struct​ ​TYPE_6__​ ​{ ​ ​TYPE_2__​ ​memoryAllocated;​ ​};
struct​ ​TYPE_4__​ ​{ ​ ​int​ ​totalLength;​ ​};
int​ ​biggest,​ ​i,​ ​save;
TYPE_3__*​ ​saRoot;

c) type_p ​ ​find_structure​ ​(const​ ​char​ ​*name,​ ​enum​ ​typekind ​ ​kind) ​ ​{
​ ​​ ​​ ​​ ​structures ​ ​=​ ​s;​ ​​ ​// ​ ​assignment
​ ​​ ​​ ​​ ​s->kind ​ ​=​ ​kind;
​ ​​ ​​ ​​ ​s->u.s.tag​ ​=​ ​name;
​ ​​ ​​ ​​ ​structures ​ ​=​ ​s;​ ​​ ​// ​ ​re-assignment
​ ​​ ​​ ​​ ​return ​ ​s;
}

 /*​ ​Forward ​ ​declarations ​ ​omitted ​ ​due​ ​to ​ ​space​ ​*/
typedef ​ ​TYPE_3__*​ ​type_p;
typedef ​ ​enum​ ​typekind ​ ​{
​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​____Placeholder_typekind ​ ​} ​ ​typekind;
struct​ ​TYPE_7__​ ​{char​ ​const*​ ​tag;​ ​};
struct​ ​TYPE_8__​ ​{TYPE_1__​ ​s;​ ​};
struct​ ​TYPE_9__​ ​{int​ ​kind;​ ​TYPE_2__​ ​u;​ ​};
TYPE_3__*​ ​s,​ ​*​ ​structures;

Figure 5.1. On the left, snippets from open-source projects. On the right, types
inferred by PsycheC which preserve the same issues diagnosed for the complete
program by PVS-Studio. (a) CPython: An if condition checks validity of the
pointer def. However, this pointer is dereferenced in a previous if through access
to field def->m_slots, potentially causing a segmentation fault. (b) FreeBSD:
Nested if conditions with semantically equal expressions, only that the operator
is inverted and the operands are at opposite sides. The conditions are redundant.
(c) gcc: Successive assignments of the structures variable. One of them is
meaningless.

to the snippets from Figure 5.1, PsycheC produces declarations that lead to the same
diagnostics.

5.3.3 Improving Static Analyses

Goal: Eliminate false-positives from static analyses tools.

Motivation: Some static analyses tools employ a variation of fuzzy pars-
ing [Koppler, 1997] to deal with partial programs. An appealing advantage of this
approach is that it requires “zero setup”. Zero setup offers opportunities for broader
use-cases: a developer can analyze source regions within a code editor, or individual

86 Chapter 5. An Overview of PsycheC

functions extracted from a VCS (Version Control System), or code snippets submitted
to a bug-tracker. However, without the aid of a type inference such as the one we
propose, the zero setup scenario becomes less likely to be explored, since precision of
the analysis degrades and the number of false-positives increases.

Benchmark: Cppcheck8, a static analyzer for C and C++, which detects errors such
as out-of-bounds memory accesses, memory leaks and null pointer dereferences, for
instance.

Discussion: Consider the hand-picked program P = void f() { x b = 1; a ∗ b;

++b; } . When processing this program, Cppcheck produces at, ++b, a false-positive
diagnostic due to the use of “uninitialised variable b”. This error happens because it
cannot distinguish that a ∗ b must be a multiplication, not a declaration. CppCheck
could benefit from a tool like PsycheC by reconstructing this program prior to the
analysis, in which case the false-positive could be eliminated.

5.3.4 Supporting Software Testing

Goal: Enable, from isolated functions, the generation of stubs to test programs.

Motivation: A number of stub-generators, capable of fabricating meaning-
ful test-input data, have been proposed to support software testing. Ex-
amples include KLEE [Cadar et al., 2008], PathCrawler [Williams et al., 2005],
DART [Godefroid et al., 2005], and PEX [Tillmann and De Halleux, 2008]. However,
these tools do not address a practical aspect of testing complex systems: the abil-
ity to decouple, at the source level, functions of interest from their dependencies. This
possibility makes testing more convenient and accessible. Thus, the aforementioned
tools still require a complete program, either to be statically analyzed or symbolically
executed.

Benchmark: PathCrawler, a tool that automatically generates test inputs for func-
tions written in C. We use the version of PathCrawler available through an online
interface9

Discussion: The function displayed in Figure 5.2 has been submitted as a patch10 to
the git project. The purpose of check_header_line is to enforce that no two operations
such as adding, removing, copying, or renaming a file can happen simultaneously when
a user issues command git commit. It does not scale to run tools such as PathCrawler

8Available at http://cppcheck.sourceforge.net/ on July 2017
9Available at http://pathcrawler-online.com:8080/ on July 2017.

10Available at https://github.com/git/git/commit/d70e9c5c8c865626b6e69c2bf9fd0e368543617b

http://cppcheck.sourceforge.net/
http://pathcrawler-online.com:8080/

5.3. Empirical Evaluation 87

static int check_header_line(struct apply_state *state, struct patch *patch) {
 int extensions = (patch-­>is_delete == 1) + (patch-­>is_new == 1) +
 (patch-­>is_rename == 1) + (patch-­>is_copy == 1);
 if (extensions > 1)
 return error(_("inconsistent header lines %d and %d"),
 patch-­>extension_linenr, state-­>linenr);
 if (extensions && !patch-­>extension_linenr)
 patch-­>extension_linenr = state-­>linenr;
 return 0;
}

 struct patch {
 int is_delete;
 int is_new;
 int is_rename;
 int is_copy;
 char* extension_linenr; };
struct apply_state {
 char* linenr; };

Figure 5.2. On the left, a function introduced as a patch to the git project.
On the right, types inferred by PsycheC which allowed PathCrawler to generate
test-input data for a conclusive verdict of correctness.

on the entire program for every single commit. But to quickly provide preliminary
feedback to a developer, we wish to generate test-input data for check_header_line
and verify whether its implementation is correct.

PsycheC lets us solve this problem. From the isolated function, we infer types
struct patch and struct apply_state; hence, enabling the compilation of function
check_header_line. We submitted the reconstructed program to PathCrawler, along
with a context and an oracle definition. PathCrawler could generate all test-input data
we expected (sixteen cases, corresponding to the combinations of flags is_delete,

is_rename, is_new, and is_copy) and of emitting a successful verdict for the func-
tion implementation. PsycheC can be used to help testing patches whenever a function
appears in its entirety, the reason for which we picked this example.

5.3.5 Extracting Data-Structures

Goal: Extract complete definitions of data structures from software libraries.

Motivation: Many libraries provide, today, essential data structures, such as lists,
binary trees, and hash tables. But relying on external libraries can be undesirable, due
to dependency management or due to the sheer size and complexity of the library. The
issue becomes more exacerbated if only a tiny portion of source code is to be reused.
Under these circumstances, copying-and-pasting can be a workaround. However, such
a manual process is error-prone and requires significant effort to navigate through the
sources in order to hand-pick only the necessary parts of an implementation.

Benchmark: Functions that manipulate Abstract Data Types from the following
industry-quality open-source libraries: GNOME’s GLib [GNOME-Project, 2017], the

88 Chapter 5. An Overview of PsycheC

GNU Portability Library Gnulib [Free-Software-Foundation, 2017] and the Generic
Data Structure Library (GDSL) [GDSL-Team, 2017]. In addition, we considered func-
tions from Sedgewick’s book [Sedgewick, 2002]11. We select as targets only functions
that comprise the API of a basic “insert” operation (e.g. inserting an item into a list,
inserting an item into a tree, etc) and consider the availability of data-structures in
each library.

Discussion: We establish the following reconstruction criteria: by starting with a
single function, we continuously add more of them until we are able to reconstruct at
least 60% of the original data structure. It is in the nature of our technique that, the
more we see of an incomplete source, the more accurate becomes the inference. For
this experiment, a few macros, which were expanded, appear in the slice: function-like
macros to conveniently access fields of complex structs. In this experiment, PsycheC
infers quite complex types. All programs we reconstruct compile successfully on gcc
and clang. Kcc compiles all, but one of them: Gnulib’s reconstructed hash table. When
compiling it, kcc terminates without issuing any message.

Table 5.2 gives us an idea of how much of a data structure PsycheC can reconstruct
from just a few functions – the exact number of them are indicated in column Slice size.
The Exact matches correspond to fields inferred as the same type as in the original
library’s declaration. Others have either been Converted (e.g. between int and long)
or identified as Scalar, because the available syntax was not enough to differentiate
an integer from a pointer (e.g. a variable initialized with 0). Fields in the original
library’s implementation that do not appear in the slice are marked as Unavailable.
An interesting observation about Table 5.2 is that inference from all implementations
result in at a least one Orphan or Partial type, a type which we can only partially infer.
For instance, a field inferred as a function pointer but whose return type is unknown.
Another example is a pointer, but with unknown underlying type. Orphans and partial
types typically correspond to the item being inserted, which, for extensibility purposes,
is an opaque pointer (a pointer to an unspecified type) or comes from a user-supplied
function-pointer or typedef.

The implementation style of ADTs also varies across libraries. While some of them
use a single struct with all the fields, others split the ADT representation across two
structs: typically, one for the node representation and another with fields that support
the provided operations. When comparing the complexity of Sedgewick’s textbook
implementations against the industrial ones, the greatest difference appears with hash

11The functions we shall use are available online in the following websites: https://www.cs.
princeton.edu/~rs/Algs3.c1-4/code.txt and https://www.cs.princeton.edu/~rs/Algs3.c5/
code.txt

https://www.cs.princeton.edu/~rs/Algs3.c1-4/code.txt
https://www.cs.princeton.edu/~rs/Algs3.c1-4/code.txt
https://www.cs.princeton.edu/~rs/Algs3.c5/code.txt
https://www.cs.princeton.edu/~rs/Algs3.c5/code.txt

5.3. Empirical Evaluation 89

Table 5.2. Field reconstruction of ADTs from different implementations. Fields:
fields Used and Unavailable in the slice taken; Inferred: types inferred Exactly;
implicitly Converted; as Scalars, when syntax does not differentiate between a
pointer and an integer; only Partially, such as a pointer whose underlying type is
unknown; and Orphans; Slice Size: number of API functions that compose the
slice. The last columns show the result of compiling our reconstructed programs
with gcc, clang, and kcc.

Fields Inferrence Slice Compiler
ADT Used Unav E C S P O size gcc clang kcc

G
Li
b

Doub. Link. List 3 0 2 0 0 0 1 1 ok ok ok
Queue 5 0 4 0 0 0 1 1 ok ok ok

AVL Tree 12 2 3 3 1 2 3 3 ok ok ok
Hash Table (open addr.) 8 5 2 0 2 4 0 1 ok ok ok

G
D
SL

Doub. Link. List 6 0 4 0 1 1 0 2 ok ok ok
Queue 6 3 3 0 1 1 1 3 ok ok ok

BST Tree 9 1 4 0 1 3 1 5 ok ok ok
RB Tree 7 4 4 0 1 0 2 4 ok ok ok

Hash Table (chain.) 9 1 0 2 0 6 1 1 ok ok ok

G
nu

lib

Link. List 3 3 1 0 1 1 0 1 ok ok ok
AVL Tree 7 1 4 2 0 1 0 2 ok ok ok
RB Tree 7 1 1 0 1 1 0 2 ok ok ok

Hash Table 10 5 2 5 2 2 1 1 ok ok Unav

Se
dg

ew
ic
k

Sing. Link.List 2 0 1 0 0 0 1 2 ok ok ok
Priority Queue 4 1 3 0 0 0 1 1 ok ok ok
Splay Tree 4 0 3 0 0 0 1 4 ok ok ok
RB Tree 4 0 3 0 0 0 1 4 ok ok ok

Hash Table (chain.) 3 0 2 0 0 0 1 2 ok ok ok
Hash Table (open addr.) 1 0 0 0 0 1 0 1 ok ok ok
Graph (adj. matrix) 3 0 2 0 1 0 0 2 ok ok ok
Graph (adj. list) 5 0 4 0 1 0 0 3 ok ok ok

tables: for an open-addressing scheme, Sedgewick stores the table in a simple array;
the professional libraries employ more advanced techniques. Hash tables are also the
most challenging ADTs to reconstruct, among the ones we evaluated. They typically
involve a larger number of fields, more opaque data, and many user-supplied functions
to calculate keys, define item equality, allocate notes, etc. The GDSL implementation,
in particular, uses shorts for some internal types, which we infer as ints, reducing
the number of exact matches. In regards to the graph evaluation, we considered as an
“insert” operation both the API to insert vertices and to insert edges into the graph.

Chapter 6

Related Work

The technique that we have presented in this thesis follows from a long string of research
in programming languages. In this section, we highlight what we consider to be the
prominent contributions that helped us devise what is, to the best of our knowledge,
the first type inference mechanism that is capable of dealing with the type system of
the C programming language.

6.1 Parsing of Incomplete Sources

There exists a body of work about parsing C and/or C++ in face of missing pro-
gram parts [Bischofberger, 1993, Koppler, 1997, Knapen et al., 1999, Padioleau, 2009,
Moonen, 2001, Gazzillo and Grimm, 2012, McPeak and Necula, 2004]. These previous
techniques approach the problem of parsing incomplete programs from a software engi-
neering perspective, and have been used in the construction of tools such as bug finders,
code browsers, syntax highlighters and code auto-completers. Parsing of partially avail-
able code allows such tools to deal with programs that either contain syntactic errors
or that make use of non-standard language extensions. Such shortcomings emerge, in
particular, when programs are being edited.

The approaches adopted to parse incomplete code vary depending on their goals.
For instance, Padionelau [Padioleau, 2009] combines ad-hoc techniques and heuristics
based on typical idioms and conventions used by programmers to build a parser; Moo-
nen2001 [Moonen, 2001] proposes the notion of an island grammar, which is a grammar
slightly more liberal than the official one for the language in question, yet allowing late
refinements; Koppler97 [Koppler, 1997] introduces a so-called fuzzy parser, a parser
tolerant of programming faults and source incompleteness. However, none of the afore-

91

92 Chapter 6. Related Work

mentioned solutions is suitable for type inference, given that the AST produced by the
parser may not be completely correct.

To build a precise AST for an incomplete program, a parser must carry the ambi-
guities that it discovers, until they can eventually be disambiguated - if disambiguation
is possible. We can look at this problem from the perspective of Generalized LR (GLR)
parsers. A GLR is an LR parser that forks itself upon an ambiguous construct and ex-
pects that only a single thread of execution will continue until the end of the process.
One disadvantage of GLR parsers is their typical performance overhead –an aspect
that has been addressed by McPeak and Necula [McPeak and Necula, 2004]. However,
McPeak and Necula do not deal with the possible absence of a symbol table.

Along the lines of GLR parsing, Gazillo and Grimm [Gazzillo and Grimm, 2012]
propose a technique that is capable of addressing incompleteness in the source code
by means of a predefined configuration for the preprocessor. The work by Gazillo and
Grimm is particularly focused on the interactions between the C grammar and that
of the preprocessor. Their approach also accounts for predefined configurations at the
AST level; hence, distinguishing the different code paths that come from preprocessing
conditionals. It is likely that the parser from Gazillo and Grimm can be adapted to
our needs, but it would require that we design a custom configuration for it.

Our parsing strategy can best be compared to the work of Knapen et
al. [Knapen et al., 1999]. The overall principle for AST disambiguation that we em-
ploy is based on ideas introduced by them. Nevertheless, because Knapen et al. do
not present the operational details of their approach, it is difficult to state precisely
how it differs from ours. Furthermore, their work is motivated by software engineering
tooling: they do not attempt to reconstruct a program (for subsequent type inference)
as we do. We emphasize that Knapen et al.’s presentation is based in plain English;
thus, the formalism that we provide in section 2 is a contribution of our work.

6.2 Type inference

The subject of type inference was independently approached in a number of previ-
ous works. Hindley, Milner, and Damas are pioneers in this field [Hindley, 1969,
Milner, 1978, Damas and Milner, 1982]; yet, early ideas by Kaplan and Ull-
man [Kaplan and Ullman, 1978] and Borning and Ingalls [Borning and Ingalls, 1982],
on the front of Smalltalk, are worth mentioning as well. Wand [Wand, 1987b] was
the first to prove correctness of classical the algorithm. Since then, numerous varia-
tions and extensions of type inference mechanisms have been presented. For instance,

6.2. Type inference 93

Wand [Wand, 1987a, Wand, 1988] follows up on the work of Cardelli [Cardelli, 1984]
to integrate record types plus inheritance into a type system. As another example,
Palsberg and Schwartzbach [Palsberg and Schwartzbach, 1991] further developed type
inference in the context of object-oriented programming.

Within a traditional type inference algorithm, one would follow a syntax-directed
approach where traversal of the program’s abstract syntax tree is interleaved with
on-the-fly application of type substitutions. While it is feasible to have an efficient
implementation of such technique, this formulation has at least two disadvantages:
substantial type manipulation is to be expected, and the process of verifying whether a
program is well typed is needlessly tied to an specific process of determining the actual
types that validate such statement.

To decouple these two tasks (i.e. checking for program well typedness and dis-
covering satisfying types), alternative formulations of type inference have been pro-
posed. Important in this front was the idea of reducing a type inference problem
into two parts: (i) an algebra responsible for capturing the restrictions imposed by
the program on a type, and (ii) a system for solving the pertinent equations arriv-
ing from such modelling [Rémy, 1992]. Eventually, such decomposition strategy be-
came informally known as constraint generation and constraint solving. Pottier and
Rémy [Pottier and Rémy, 2003, Pottier and Rémy, 2005] have done significant develop-
ment on this front by extending the constraint-based HM(X) framework from Odersky
et al. [Odersky et al., 1999]. Nevertheless, the first explicit association between the
properties of a type and the mathematical terminology of a constraint is likely due to
Cardelli [Cardelli and Wegner, 1985].

Our type inference is implemented after the HM(X) algorithm, but we follow
more closely the formulation presented by Pottier and Rémy [Pottier and Rémy, 2003,
Pottier and Rémy, 2005], even though we do not deal with type schemes. The main
difference between our approach and the one from languages such as Haskell and ML
is the fact that we do not have the definition of algebraic types – on the contrary,
we are trying to build them. Moreover, we use type promotions, conversions, and
restrictions involving expressions in C as a way around parametric polymorphism.
Such strategy of leveraging properties of a language type system as an aid to re-
construct well typed programs from partial ones is also employed by Dagenais and
Hendren [Dagenais and Hendren, 2008], but in the context of Java.

94 Chapter 6. Related Work

6.3 Unification and Subtyping

Despite differences in the existing approaches to type inference, the underlying prin-
ciple by which most of them ensure equivalence between two types remains the same:
through the unification algorithm by Robinson [Robinson, 1965], and improvements
over it, such as the work by Martelli and Montanari [Martelli and Montanari, 1982].
While unification suits well typical statically typed functional languages, this algo-
rithm, in its classical structure, is not a viable choice for systems that feature subtyp-
ing. Such mismatch is inherent to the nature of unification, given that a subtyping
relation imposes the need of “unifying” types that are not considered equivalent.

There has been a significant amount of work that mixes unification and sub-
typing in interesting ways. But prior to entering into a discussion about this topic,
we need to settle some terminology. When talking about subtyping it is appropriate
to elaborate on the exact form of subtyping under discussion. In the simplest setup,
we can view types as belonging to a finite partially ordered set (poset): e.g., int

<: double. This interpretation of subtyping requires no notion of type constructors.
Mitchel [Mitchell, 1991] presents an strategy to combine unification with such atomic
relations. Tiuryn and Wand have built on this latter work in order to address recursive
types [Tiuryn and Wand, 1993].

In our presentation, we deal with a form of subtyping that cannot be modeled
through atomic relations only. First, because it is not possible to propagate a (valid)
ordering like int <: double uniformly through pointers, i.e., int∗ <: double∗ does
not type check. Second, because not all ground types can be determined in advance, yet
we still need to ensure that relations like τ∗ <: const τ∗ hold. Therefore, our system
must account for the influence of type constructors and the structure of constructed
types. Structural subtyping is the terminology employed in the literature to denote
the form of subtyping that appears under such scenario.

Numerous formulations that combine unification with structural subtyping
have been presented [Kaes, 1992, Smith, 1994, Fuh and Mishra, 1988, Pottier, 1996,
Pottier, 1998, Simonet, 2003]. Despite the varying approaches in each of the tech-
niques, they all share to certain extent a common aspect in regards to the handling of
inequality constraints: solving of the subtyping relations is not tightly integrated to the
unification algorithm, but left as a separate (e.g. as a post-processing) procedure. The
usual reason for this separation is to avoid dealing with complex constraint relations
that emerge during type inference. In fact, a few of the aforementioned works make a
noteworthy effort on proposing constraint simplification methods.

In a recent work, Dolan and Mycroft [Dolan and Mycroft, 2017] presented a tech-

6.4. The Type System of C and Semantics 95

nique that deals with subtyping directly as part of the unification problem. A promi-
nent characteristic of their technique is the distinction between input and output types
that participate in a subtyping relation. Based on this premise, they introduce the
so-called biunification, plus the consequential notion of bisubstitutions. In spite of its
elegance, this approach also brings non-negligible complexity. Much of this complexity
is due to the algebraic manipulations that are necessary to implement lattice oper-
ators. This lattice ensures that substitutions are applied in a way that respects the
unidirectionality of assignments between type and subtype.

As an attempt to position our work, we emphasize its simplicity and applicability.
By simplicity, we mean that the underlying techniques comprising the building blocks
of our type inference are well understood and easy to implement. Yet, our approach
allows a transparent handling of both type equivalence and type inequality constraints.
Precisely, we are capable of dealing with structural subtyping whenever the finite set
of structure-modifying type constructors is known in advance (in our case, the ∗ used
in pointers). The price of the simplicity of our model is the higher computational
complexity of its algorithmic implementation –a consequence of the inequality ordering
stage that happens during unification. Nevertheless, such cost is only paid for subtyping
relations actually produced. These relations appear in small number, compared to the
equivalence constraints used in typical unification, since we take advantage of program
constructs that allows us to instantiate type in an exact way.

6.4 The Type System of C and Semantics

There is a significant amount of research that investigate dynamic properties
of C [Ellison and Rosu, 2012, Papaspyrou, 1998, Papaspyrou, 2001, Krebbers, 2015,
Krebbers and Wiedijk, 2015, Blazy and Leroy, 2009]. However, we are mostly inter-
ested on the static semantics of this language, given that our works is about type
inference. Nevertheless, we briefly mention aspects related to dynamic semantics be-
cause, in certain cases, they have influenced our design.

C’s type system has been studied in the context of program analysis re-
search [Steensgaard, 1996, Necula et al., 2002a]. Even though such works apply limited
forms of type inference, they do so as a way towards a specific goal. Their formulation
is not thorough enough for the task of inferring declarations and type definitions in a
program. Previous work focusing on the type system of C and its type checker exists as
well: e.g., Smith and Volpano [Smith and Volpano, 1996] propose ML-style polymor-
phism to the language; Necula et al. [Necula et al., 2002b] introduce CCured, a type

96 Chapter 6. Related Work

system for C that offers better safety guarantees to pointer usage (with static verifi-
cation and dynamic checks); Chandra and Reps [Chandra and Reps, 1999] present, in
face of common pointer-related errors, an advanced type checking mechanism based on
the memory layout of objects. However, these works modify C; They do not address
the exact task of type inference for the language as it is currently standardized.

Recently, Noonan et al. [Noonan et al., 2016] presented a type inference algo-
rithm for machine code that correlates with our work. Their tool, Retypd, consists of
two components: 1) a sound inference algorithm constructed over a type-system that is
richer and more powerful than the actual C type-system; 2) a heuristic-based transla-
tion mechanism that converts types from such type-system to C types. Although there
is, at first sight, an apparent overlapping of techniques between theirs and our work,
we are dealing with different problems: Retypd starts with a program in binary format,
extracts types out of it, and reports (translated) C types that could have existed in
the source code that originated the program in question. We, on the other hand, must
ensure that the types we instantiate exactly match a given source code. There is as
well a work by Mycroft [Mycroft, 1999] for the decompilation of target machine code
back into C programs. While Mycroft seems to make use of type inference, there is not
much material about this topic in his presentation.

Foster et al. [Foster et al., 1999] presents a technique for the inference of the
qualifiers of a type based on atomic subtyping. They deal with the same problem of
modelling the behavior of const and how it interacts with pointers. The difference
is that, as opposed to the scenario where our type inference works, the formulation
of Foster et al. assumes that the base types (i.e., those “behind” a const qualifier or
pointer modifier) are known. In other words, they do not need to be discovered. Foster
et al. models a type qualifier by “lifting” the typing rules so that they continue to hold
as they would for the non-qualified types. While this approach works for the inference
of qualifiers, it is not sufficient for inference of complete types. With only atomic
subtyping, it would not be possible to correctly type relations like int <: double or
int∗ <: const int∗ and double∗ <: const double∗, and, at the same time, report
errors for relations such as int∗ <: double∗ and double∗ <: int∗.

Chapter 7

Final Thoughts

This thesis has presented a type inference mechanism for the C programming language.
As an application of our technique, we have investigated the problem of understanding
programs whose source code may lack declarations (either of variables or those that de-
fine types). Throughout the text, we showed (i) how to understand syntactic constructs
that are locally ambiguous but which can be disambiguated within a larger context;
(ii) a “pre inference” approach that lets us give meaning to a program according to a
valid (static) semantics of C, even though symbolic information might not be available
for use; and (iii) a constraint generation and constraint solving style of type inference
that is capable of satisfying the idiosyncrasies of C’s type system.

In this work we also showed a variety of scenarios in which our technique can
be employed for the reconstruction of partial C programs, so that static analysis tools
(and others that rely on a compilable source code) can still work on them. We believe
that the theoretical framework developed by us, and the tool constructed to sustain
our ideas, PsycheC, opens up many possibilities for researchers and practitioners.

7.1 Future Work

The existence of a type inference engine for C unveils very interesting possibilities
of research concerning the dynamic semantics of that language. Currently, we do
not associate size information with array types. Instead, they are made plain point-
ers like int∗. Yet, current state-of-the-art symbolic range analyses, à la Nazaré et
al. [Nazaré et al., 2014] should let us associate conservative size expressions with such
type; hence, giving us int[42] or int[N+M], for instance.

Another question that our ideas bring forward concerns signed integer overflows.
Can we leverage the strength of static analyses [Rodrigues et al., 2013] to determine

97

98 Chapter 7. Final Thoughts

the exact type of scalars that are used in signed arithmetic operations/conversions,
and, with that information, offer more precise overflow related diagnostics?

Finally, while writing code with the support of PsycheC, programmers have at
their disposal an new programming language: one that reuses C’s syntax, but that
supports type inference. The impact of this “new language” onto the productivity of C
programmers is worth to be assessed in a holistic manner.

Software PsycheC’s online interface is available at http://cuda.dcc.ufmg.br/

psyche-c. This webpage receives syntactically valid C snippets, and gives back the
declarations that make that code compilable, through a reconstructed program. The
implementation of PsycheC is hosted on https://github.com/ltcmelo/psychec, un-
der an open-source license.

http://cuda.dcc.ufmg.br/psyche-c
http://cuda.dcc.ufmg.br/psyche-c
https://github.com/ltcmelo/psychec

Publications

A paper containing the essence of the work presented in this thesis has been published
in the 2018 edition of Principles of Programming Languages (POPL). A preliminary
discussion of type inference for a simplified C-like language appears in the 2016 edition
of Simpósio Brasileiro de Linguagens de Programação (SBLP). While a student in the
Computer Science department of the Universidade Federal de Minas Gerais, I was also
involved in other projects. Below is a list of publications in which I have participated.

· Inference of static semantics for incomplete C programs ; Leandro T. C. Melo,
Rodrigo G. Ribeiro, Marcus R. de Araújo, Fernando M. Q. Pereira; POPL 2018.

· Inferência de Tipos Dependentes em C ; Marcus R. de Araújo, Leandro T. C.
Melo, Fernando M. Q. Pereira; SBLP 2017.

· Compilação Parcial de Programas Escritos em C ; Rodrigo G. Ribeiro, Leandro
T. C. Melo, Marcus R. de Araújo, Fernando M. Q. Pereira; SBLP 2016.

· SMOV: Array Bound-Check and Access in a Single Instruction; Antônio L. M.
Neto; Leandro T. C. Melo; Omar P. Vilela, Fernando M. Q. Pereira, Leandro
B. Oliveira; IEEE ICNS 2016.

· Protecting Programs Against Memory Violation In Hardware; Antônio L. M.
Neto; Leandro T. C. Melo; Omar P. Vilela, Fernando M. Q. Pereira; Leandro
B. Oliveira; IEEE Latin America Transactions 2015.

· NomadiKey: User Authentication for Smart Devices based on Nomadic Keys ;
Leonardo Cotta, Artur L. Fernandes, Leandro T. C. Melo, Luis F. Sag-
gioro, Frederico Sampaio, Antônio L. M. Neto, Antônio F. Loureiro, Italo Cunha,
Leonardo B. Oliveira; IEEE ICC 2016.

· Teclanômade: Uma solução de autenticação para usuários de dispositivos in-
teligentes baseada em Teclados Nômades ; Antônio L. M. Neto, Artur L. Fer-
nandes, Frederico Sampaio, Leonardo Cotta, Leandro T. C. Melo, Luis F.
Saggioro, Leonardo B. Oliveira; SBSeg 2015.

99

Bibliography

[ANSI-Standard, 1989] ANSI-Standard (1989). ANSI X3.159-1989 - The C program-
ming language.

[Batty et al., 2016] Batty, M., Donaldson, A. F., and Wickerson, J. (2016). Overhaul-
ing sc atomics in c11 and opencl. In POPL, volume 51, pages 634--648. ACM.

[Bischofberger, 1993] Bischofberger, W. R. (1993). Sniff: a pragmatic approach to a
C++ programming environment (abstract). OOPS Messenger, 4(2):229.

[Blazy and Leroy, 2009] Blazy, S. and Leroy, X. (2009). Mechanized semantics for the
clight subset of the c language. Journal of Automated Reasoning, 43(3):263--288.

[Borning and Ingalls, 1982] Borning, A. H. and Ingalls, D. H. H. (1982). A type decla-
ration and inference system for smalltalk. In Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’82, pages
133--141, New York, NY, USA. ACM.

[Cadar et al., 2008] Cadar, C., Dunbar, D., and Engler, D. (2008). KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems programs. In
OSDI, pages 209--224. USENIX.

[Cardelli, 1984] Cardelli, L. (1984). A semantics of multiple inheritance. In Semantics
of data types, pages 51--67. Springer.

[Cardelli and Wegner, 1985] Cardelli, L. and Wegner, P. (1985). On understanding
types, data abstraction, and polymorphism. ACM Computing Surveys (CSUR),
17(4):471--523.

[Chandra and Reps, 1999] Chandra, S. and Reps, T. (1999). Physical type checking
for c. In ACM SIGSOFT Software Engineering Notes, volume 24, pages 66--75.
ACM.

101

102 Bibliography

[Chugh et al., 2009] Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. (2009). Staged
information flow for javascript. In PLDI, pages 50--62. ACM.

[Cuoq et al., 2012] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J.,
and Yakobowski, B. (2012). Frama-c. In International Conference on Software
Engineering and Formal Methods, pages 233--247. Springer.

[Dagenais and Hendren, 2008] Dagenais, B. and Hendren, L. (2008). Enabling static
analysis for partial java programs. In OOPSLA, pages 313--328. ACM.

[Damas and Milner, 1982] Damas, L. and Milner, R. (1982). Principal type-schemes for
functional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 207--212. ACM.

[Dolan and Mycroft, 2017] Dolan, S. and Mycroft, A. (2017). Polymorphism, subtyp-
ing, and type inference in mlsub. In POPL, pages 1--13. ACM.

[Dubois and Menissier-Morain, 1999] Dubois, C. and Menissier-Morain, V. (1999).
Certification of a type inference tool for ml: Damas–milner within coq. Journal
of Automated Reasoning, 23(3):319--346.

[Ellison and Rosu, 2012] Ellison, C. and Rosu, G. (2012). An executable formal se-
mantics of c with applications. In POPL, volume 47, pages 533--544. ACM.

[Evans, 1996] Evans, D. (1996). Static detection of dynamic memory errors. In PLDI,
volume 31, pages 44--53. ACM.

[Faxén, 2002] Faxén, K.-F. (2002). A static semantics for haskell. J. Funct. Program.,
12(5):295--357.

[Foster et al., 1999] Foster, J. S., Fähndrich, M., and Aiken, A. (1999). A theory of
type qualifiers. ACM SIGPLAN Notices, 34(5):192--203.

[Free-Software-Foundation, 2017] Free-Software-Foundation (2017). Gnulib - the gnu
portability library. https://www.gnu.org/software/gnulib/.

[Fuh and Mishra, 1988] Fuh, Y.-C. and Mishra, P. (1988). Type inference with sub-
types. In European Symposium on Programming, pages 94--114. Springer.

[Gazzillo and Grimm, 2012] Gazzillo, P. and Grimm, R. (2012). Superc: parsing all of
c by taming the preprocessor. ACM SIGPLAN Notices, 47(6):323--334.

https://www.gnu.org/software/gnulib/

Bibliography 103

[GDSL-Team, 2017] GDSL-Team (2017). The generic data structures library. http:

//home.gna.org/gdsl/.

[GNOME-Project, 2017] GNOME-Project (2017). The gnome library - glib. https:

//developer.gnome.org/glib.

[Godefroid, 2014] Godefroid, P. (2014). Micro execution. In ICSE, pages 539--549.
ACM.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., and Sen, K. (2005). Dart: directed
automated random testing. In PLDI, pages 213--223. ACM.

[Hathhorn et al., 2015] Hathhorn, C., Ellison, C., and Rosu, G. (2015). Defining the
undefinedness of C. In PLDI, pages 336--345. ACM.

[Hindley, 1969] Hindley, R. (1969). The principal type-scheme of an object in combi-
natory logic. Transactions of the american mathematical society, 146:29--60.

[ISO-Standard, 1990] ISO-Standard (1990). ISO/IEC 9899:1990 - The C programming
language.

[ISO-Standard, 1999] ISO-Standard (1999). ISO/IEC 9899:1999 - The C programming
language.

[ISO-Standard, 2011] ISO-Standard (2011). ISO/IEC 9899:2011 - The C programming
language.

[Jones et al., 2004] Jones, S. P., Washburn, G., and Weirich, S. (2004). Wobbly types:
type inference for generalised algebraic data types. Technical report, Technical Re-
port MS-CIS-05-26, Univ. of Pennsylvania.

[Kaes, 1992] Kaes, S. (1992). Type inference in the presence of overloading, subtyping
and recursive types. In ACM SIGPLAN Lisp Pointers, number 1, pages 193--204.
ACM.

[Kaplan and Ullman, 1978] Kaplan, M. A. and Ullman, J. D. (1978). A general scheme
for the automatic inference of variable types. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 60-
-75. ACM.

[Knapen et al., 1999] Knapen, G., Laguë, B., Dagenais, M., and Merlo, E. (1999).
Parsing C++ despite missing declarations. In IWPC, pages 114--125. IEEE.

http://home.gna.org/gdsl/
http://home.gna.org/gdsl/
https://developer.gnome.org/glib
https://developer.gnome.org/glib

104 Bibliography

[Koppler, 1997] Koppler, R. (1997). A systematic approach to fuzzy parsing. Softw.
Pract. Exper., 27(6):637--649.

[Krebbers, 2015] Krebbers, R. (2015). The C Standard Formalized in Coq. PhD thesis,
Radboud University Nijmegen.

[Krebbers and Wiedijk, 2015] Krebbers, R. and Wiedijk, F. (2015). A typed c11 se-
mantics for interactive theorem proving. In Proceedings of the 2015 Conference on
Certified Programs and Proofs, pages 15--27. ACM.

[Larochelle et al., 2001] Larochelle, D., Evans, D., et al. (2001). Statically detecting
likely buffer overflow vulnerabilities. In USENIX Security Symposium, volume 32.
Washington DC.

[Martelli and Montanari, 1982] Martelli, A. and Montanari, U. (1982). An efficient
unification algorithm. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(2):258--282.

[McPeak and Necula, 2004] McPeak, S. and Necula, G. C. (2004). Elkhound: A fast,
practical glr parser generator. In International Conference on Compiler Construc-
tion, pages 73--88. Springer.

[Memarian et al., 2016] Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chis-
nall, D., Watson, R. N., and Sewell, P. (2016). Into the depths of c: Elaborating
the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 1--15. ACM.

[Milner, 1978] Milner, R. (1978). A theory of type polymorphism in programming.
Journal of computer and system sciences, 17(3):348--375.

[Mitchell, 1991] Mitchell, J. C. (1991). Type inference with simple subtypes. Journal
of functional programming, 1(3):245--285.

[Moonen, 2001] Moonen, L. (2001). Generating robust parsers using island grammars.
In Reverse Engineering, 2001. Proceedings. Eighth Working Conference on, pages
13--22. IEEE.

[Mycroft, 1999] Mycroft, A. (1999). Type-based decompilation (or program recon-
struction via type reconstruction). In European Symposium on Programming, pages
208--223. Springer.

Bibliography 105

[Naraschewski and Nipkow, 1999] Naraschewski, W. and Nipkow, T. (1999). Type
inference verified: Algorithm w in isabelle/hol. Journal of Automated Reasoning,
23(3):299--318.

[Nazaré et al., 2014] Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., and
Pereira, F. M. Q. (2014). Validation of memory accesses through symbolic analyses.
In OOPSLA, pages 791--809. ACM.

[Necula et al., 2002a] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W.
(2002a). Cil: Intermediate language and tools for analysis and transformation of
c programs. In International Conference on Compiler Construction, pages 213--228.
Springer.

[Necula et al., 2002b] Necula, G. C., McPeak, S., and Weimer, W. (2002b). Ccured:
Type-safe retrofitting of legacy code. In ACM SIGPLAN Notices, volume 37, pages
128--139. ACM.

[Nielson et al., 2005] Nielson, F., Nielson, H. R., and Hankin, C. (2005). Principles of
program analysis. Springer.

[Nienhuis et al., 2016] Nienhuis, K., Memarian, K., and Sewell, P. (2016). An opera-
tional semantics for c/c++11 concurrency. In OOPSLA, pages 111--128.

[Noonan et al., 2016] Noonan, M., Loginov, A., and Cok, D. (2016). Polymorphic type
inference for machine code. In PLDI, pages 27--41. ACM.

[Odersky et al., 1999] Odersky, M., Sulzmann, M., and Wehr, M. (1999). Type infer-
ence with constrained types. Theory and practice of object systems, 5(1):35--55.

[Odersky et al., 2001] Odersky, M., Zenger, C., and Zenger, M. (2001). Colored local
type inference. ACM SIGPLAN Notices, 36(3):41--53.

[Padioleau, 2009] Padioleau, Y. (2009). Parsing C/C++ code without pre-processing.
In CC, pages 109--125. Springer.

[Palsberg and Schwartzbach, 1991] Palsberg, J. and Schwartzbach, M. I. (1991).
Object-oriented type inference, volume 26. ACM.

[Papaspyrou, 1998] Papaspyrou, N. S. (1998). A Formal Semantics for the C Pro-
gramming Language. PhD thesis, National Technical University of Athens. Athens
(Greece).

106 Bibliography

[Papaspyrou, 2001] Papaspyrou, N. S. (2001). Denotational semantics of ansi c. Com-
puter Standards & Interfaces, 23(3):169--185.

[Perelman et al., 2012] Perelman, D., Gulwani, S., Ball, T., and Grossman, D. (2012).
Type-directed completion of partial expressions. In PLDI, pages 275--286. ACM.

[Peyton Jones et al., 2003] Peyton Jones, S. et al. (2003). The Haskell 98 language
and libraries: The revised report. Journal of Functional Programming, 13(1):0--255.

[Peyton Jones et al., 2006] Peyton Jones, S., Vytiniotis, D., Weirich, S., and Wash-
burn, G. (2006). Simple unification-based type inference for gadts. In ICFP, vol-
ume 41, pages 50--61. ACM.

[Pierce, 2004] Pierce, B. C. (2004). Types and Programming Languages. MIT Press,
1st edition.

[Pierce and Turner, 2000] Pierce, B. C. and Turner, D. N. (2000). Local type inference.
ACM Transactions on Programming Languages and Systems (TOPLAS), 22(1):1--
44.

[Pottier, 1996] Pottier, F. (1996). Simplifying subtyping constraints. In ACM SIG-
PLAN Notices, volume 31, pages 122--133. ACM.

[Pottier, 1998] Pottier, F. (1998). A framework for type inference with subtyping. In
ACM SIGPLAN Notices, volume 34, pages 228--238. ACM.

[Pottier and Régis-Gianas, 2006] Pottier, F. and Régis-Gianas, Y. (2006). Stratified
type inference for generalized algebraic data types. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, pages 232--244, New York, NY, USA. ACM.

[Pottier and Rémy, 2003] Pottier, F. and Rémy, D. (2003). The essence of ML type
inference (preliminary version). Extended preliminary version of The Essence of ML
Type Inference, in Advanced Topics in Types and Programming Languages.

[Pottier and Rémy, 2005] Pottier, F. and Rémy, D. (2005). The essence of ML type
inference. In Pierce, B. C., editor, Advanced Topics in Types and Programming
Languages, chapter 10, pages 389--489. MIT Press.

[Qt-Project, 2017] Qt-Project (2017). The qt creator ide. https://www.qt.io/ide/.

Bibliography 107

[Rémy, 1992] Rémy, D. (1992). Extending ML type system with a sorted equational
theory. Research Report 1766, Institut National de Recherche en Informatique et
Automatisme, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France.

[Rémy, 2017] Rémy, D. (2017). Type systems for programming languages.
http://pauillac.inria.fr/ remy/mpri/cours.pdf – accessed July, 2018.

[Robinson, 1965] Robinson, J. A. (1965). A machine-oriented logic based on the reso-
lution principle. J. ACM, 12(1):23--41.

[Rodrigues et al., 2013] Rodrigues, R. E., Campos, V. H. S., and Pereira, F. M. Q.
(2013). A fast and low overhead technique to secure programs against integer over-
flows. In CGO, pages 1–11. ACM.

[Runtime-Verification, 2017] Runtime-Verification (2017). Rv-match. https://

runtimeverification.com/match/.

[Sedgewick, 2002] Sedgewick, R. (2002). Algorithms in C (3rd Edition). Addison Wes-
ley.

[Simonet, 2003] Simonet, V. (2003). Type inference with structural subtyping: A
faithful formalization of an efficient constraint solver. In Asian Symposium on Pro-
gramming Languages and Systems, pages 283--302. Springer.

[Smith and Volpano, 1996] Smith, G. and Volpano, D. (1996). Towards an ml-style
polymorphic type system for c. In European Symposium on Programming, pages
341--355. Springer.

[Smith, 1994] Smith, G. S. (1994). Principal type schemes for functional programs with
overloading and subtyping. Science of Computer Programming, 23(2-3):197--226.

[Steensgaard, 1996] Steensgaard, B. (1996). Points-to analysis in almost linear time.
In POPL, pages 32–41.

[Sterling, 1994] Sterling, L. (1994). The Art of Prolog. MIT Press, 2nd edition.

[Su et al., 2002] Su, Z., Aiken, A., Niehren, J., Priesnitz, T., and Treinen, R. (2002).
The first-order theory of subtyping constraints, volume 37. ACM.

[Tillmann and De Halleux, 2008] Tillmann, N. and De Halleux, J. (2008). Pex: White
box test generation for .net. In TAP, pages 134--153. Springer.

https://runtimeverification.com/match/
https://runtimeverification.com/match/

108 Bibliography

[Tiuryn and Wand, 1993] Tiuryn, J. and Wand, M. (1993). Type reconstruction with
recursive types and atomic subtyping. In Colloquium on Trees in Algebra and Pro-
gramming, pages 686--701. Springer.

[Ungar and Smith, 1987] Ungar, D. and Smith, R. B. (1987). Self: The power of
simplicity, volume 22. ACM.

[Wadler and Findler, 2009] Wadler, P. and Findler, R. B. (2009). Well-typed programs
can’t be blamed. In ESOP, pages 1--16. Springer.

[Wand, 1987a] Wand, M. (1987a). Complete type inference for simple objects. Sym-
posium on Logic in Computer Science, (2).

[Wand, 1987b] Wand, M. (1987b). A simple algorithm and proof for type inference.
Fundamenta Informaticae, 10(2):115--121.

[Wand, 1988] Wand, M. (1988). Corrigendum: Complete type inference for simple
objects. Third Annual Symposium on Logic in Computer Science.

[Williams et al., 2005] Williams, N., Marre, B., Mouy, P., and Roger, M. (2005).
Pathcrawler: Automatic generation of path tests by combining static and dynamic
analysis. In EDCC, pages 281--292. Springer.

Appendix A

Haskell Implementation of µC

This Appendix contains a Haskell implementation of the µC language that we intro-
duced in Section 3.1. This source code, together with a a suite of test cases, can be ob-
tained from PsycheC’s GitHub repository, at https://github.com/ltcmelo/psychec/
tree/master/formalism. The copyright of this source code, distributed under the
terms of the GPLv3 license, is due to Leandro T. C. Melo. The reader is encouraged to
read, compile, and run it. A great effort has been put into making this implementation
very close to the formalism presented throughout this thesis. As a reminder, in order
to employ our type inference technique on C programs, the PsycheC tool should be
used instead. Besides being open-sourced in the aforementioned GitHub repository, an
online interface to PsycheC is available at http://cuda.dcc.ufmg.br/psyche-c/.

A.1 The Syntax of µC

The implementation of µC’ syntax, as presented in Figure 3.1.

data Stamp = Stamp Int deriving (Eq, Ord , Show)

newtype Ident = Ident { _x :: String } deriving (Eq, Ord , Show)

data Type = IntTy

| DoubleTy

| PtrTy Type

| ConstTy Type

| ArrowTy Type [Type]

| RecTy [Decl] Ident

109

https://github.com/ltcmelo/psychec/tree/master/formalism
https://github.com/ltcmelo/psychec/tree/master/formalism
http://cuda.dcc.ufmg.br/psyche-c/

110 Appendix A. Haskell Implementation of µC

| NamedTy Ident

| TyVar Stamp

deriving (Eq, Ord , Show)

data BinOptr = Add

| Divide

| Or

| Assign

deriving (Eq, Ord , Show)

data Lit = IntLit Int

| DoubleLit Double

deriving (Eq, Ord , Show)

data Expr = NumLit Lit

| Var Ident

| FldAcc Expr Ident

| Deref Expr

| AddrOf Expr

| BinExpr BinOptr Expr Expr

deriving (Eq, Ord , Show)

data Stmt = ExprStmt Expr

| DeclStmt Decl

| RetStmt Expr

deriving (Eq, Ord , Show)

data Decl = Decl { _ft :: Type , _fx :: Ident } deriving (Eq,

Ord , Show)

data FunDef = FunDef Type Ident [Decl] [Stmt] deriving (Eq,

Ord , Show)

data TypeDef = TypeDef Type Type deriving (Eq, Ord , Show)

data Prog = Prog [TypeDef] [FunDef] deriving (Eq, Ord , Show)

A.2. The Constraints Language 111

A.2 The Constraints Language

The implementation of our constraints language, as presented in Figure 3.2.

data K = T

| B

| K :&: K

| Exists [Type] K

| Def Ident Type K

| Fun Ident Type

| TypeOf Ident Type

| Syn Type Type

| Has Type Decl

| Type :=: Type

| Type :<=: Type

deriving (Eq, Ord , Show)

A.3 The Substitutions

The implementation of substitutions, as described in Section 3.3.

data Subst = Stamp :-> Type

| Trivial

deriving (Eq, Ord , Show)

class Substitutable a where

-- | Apply a substitution.

apply :: Subst -> a -> a

-- | Convenience for multiple applications.

applyMany :: [Subst] -> a -> a

applyMany sl a = foldr (\s acc -> apply s acc) a sl

-- | Get the free type variables.

ftv :: a -> [Stamp]

instance Substitutable a => Substitutable [a] where

apply s = map (apply s)

ftv = foldr (union . ftv) []

112 Appendix A. Haskell Implementation of µC

instance Substitutable Type where

apply Trivial t = t

apply s t@(IntTy) = t

apply s t@(DoubleTy) = t

apply s (PtrTy t) = PtrTy (apply s t)

apply s (ConstTy t) = ConstTy (apply s t)

apply s (ArrowTy rt pt) = ArrowTy (apply s rt) (apply s pt)

apply s (RecTy fs x) = RecTy (apply s fs) x

apply s t@(NamedTy _) = t

apply (st :-> t) t’@(TyVar st ’) = if st == st ’ then t else t’

ftv IntTy = []

ftv DoubleTy = []

ftv (PtrTy t) = ftv t

ftv (ConstTy t) = ftv t

ftv (ArrowTy rt pt) = ftv rt ‘union ‘ ftv pt

ftv (RecTy fs _) = ftv fs

ftv (NamedTy _) = []

ftv (TyVar st) = [st]

instance Substitutable K where

apply Trivial k = k

apply _ T = T

apply s (k1 :&: k2) = (apply s k1) :&: (apply s k2)

apply s (Exists t k) = Exists (apply s t) (apply s k)

apply s (Def x t@(TyVar _) k) = Def x (apply s t) (apply s k)

apply s (Fun f t@(ArrowTy rt pl)) = Fun f (apply s t)

apply s (TypeOf x t) = TypeOf x (apply s t)

apply s (Syn t1 t2) = Syn (apply s t1) (apply s t2)

apply s (Has t fld) = Has (apply s t) (apply s fld)

apply s (t1 :=: t2) = (apply s t1) :=: (apply s t2)

apply s (t1 :<=: t2) = (apply s t1) :<=: (apply s t2)

ftv _ = []

instance Substitutable Decl where

apply s (Decl t x) = Decl (apply s t) x

ftv (Decl t _) = ftv t

instance Substitutable v => Substitutable (Map k v) where

A.4. The type-id of a Type 113

apply s = Map.map (apply s)

ftv = Map.foldr (union . ftv) []

-- This function exists for presentation purposes.

foreachValue :: Substitutable a => [Subst] -> Map k a -> Map k a

foreachValue s = Map.map (applyMany s)

A.4 The type-id of a Type

The implementation of function ̂ (hat), as according to Definition 5.

newtype TypeId = TypeId { _id :: String } deriving (Eq, Ord ,

Show)

-- | Compute the typeid of a type.

hat :: Type -> TypeId

hat IntTy = TypeId "int"

hat DoubleTy = TypeId "double"

hat (PtrTy t) = TypeId $ (_id (hat t) ++ "*")

hat (ConstTy t) = TypeId $ "const " ++ (_id (hat t))

hat (ArrowTy rt pt) = TypeId $

(_id (hat rt)) ++ "(*)(" ++

(foldr (\t acc -> (_id (hat t)) ++ acc) ")" pt)

hat (RecTy _ x) = TypeId (_x x)

hat (NamedTy x) = TypeId (_x x)

hat (TyVar (Stamp n)) = TypeId $ "α" ++ (show n)

A.5 The Mappings φ, ψ, and Θ

The implementation of the map data structures and operations, according to Defini-
tion 6.

type Phi = Map Stamp Type

type Psi = Map Ident Type

type Theta = Map TypeId Type

114 Appendix A. Haskell Implementation of µC

-- | Find , in Psi , the type mapped to an identifier.

findInPsi :: Ident -> Psi -> Type

findInPsi x psi =

case Map.lookup x psi of

Just t -> t

_ -> error $ "no τ for identifier " ++ show (ppK x) ++ " in

ψ\n"

-- | Find , in Phi , the type mapped to a stamp.

findInPhi :: Stamp -> Phi -> Type

findInPhi st phi =

case Map.lookup st phi of

Just t -> t

_ -> error $

"no τ for stamp " ++ show (ppK st) ++ " in φ\n"

-- | Find , in Theta , the type mapped to a typeid.

findInTheta :: TypeId -> Theta -> Type

findInTheta hat theta =

case Map.lookup hat theta of

Just t -> t

_ -> error $

"no τ for typeid " ++ show (ppK hat) ++ " in Θ\n"

-- | Add , to Psi , an identifier to type mapping.

addToPsi :: Ident -> Type -> Psi -> Psi

addToPsi x t psi =

case Map.lookup x psi of

Just t -> error $

show (ppK t) ++ ", indexed by " ++

show (ppK x) ++ ", is already in ψ\n"

_ -> Map.insert x t psi

-- | Add , to Phi , a stamp to type mapping.

addToPhi :: Stamp -> Type -> Phi -> Phi

addToPhi st t phi =

case Map.lookup st phi of

Just t -> error $

A.6. The Semantics of Constraints 115

show (ppK t) ++ ", indexed by " ++

show (ppK st) ++ ", is already in φ\n"

_ -> Map.insert st t phi

-- | Add , to Theta , a type id to type mapping.

addToTheta :: TypeId -> Type -> Theta -> Theta

addToTheta tid t theta =

case Map.lookup tid theta of

Just t -> error $

show (ppK t) ++ ", indexed by " ++

show (ppK tid) ++ ", is already in Θ\n"

_ -> Map.insert tid t theta

A.6 The Semantics of Constraints

The implementation of our constraints semantics, as presented in Figure 3.4.

validateSemantics :: (Phi , Psi , Theta) -> K -> Bool

validateSemantics (phi , psi , theta) k = satisfies (phi , psi ,

theta) k

satisfies :: (Phi , Psi , Theta) -> K -> Bool

-- | KT

satisfies (_, _, _) T = True

-- | KAnd

satisfies (phi , psi , theta) (k1 :&: k2) =

let check1 = satisfies (phi , psi , theta) k1

check2 = satisfies (phi , psi , theta) k2

in if trace_Sema

then trace ("[trace Sema] " ++ show (ppK k1)) check1

&& trace ("[trace Sema] " ++ show (ppK k2)) check2

else check1 && check2

-- | KEx

satisfies (phi , psi , theta) kk@(Exists tl k) =

116 Appendix A. Haskell Implementation of µC

let f st = isGround (findInPhi st phi)

in foldr (\(TyVar st) acc -> f st && acc) True tl

&& satisfies (phi , psi , theta) k

-- | KDef

satisfies (phi , psi , theta) (Def x (TyVar st) k) =

findInPsi x psi == findInPhi st phi

&& satisfies (phi , psi , theta) k

-- | KFun

satisfies (phi , psi , theta) (Fun f (ArrowTy rt@(TyVar st) p) k)

=

findInPsi f psi == ArrowTy (findInPhi st phi) p

&& satisfies (phi , psi , theta) k

-- | KInst

satisfies (phi , psi , theta) k@(TypeOf x t@(TyVar _)) =

satisfies (phi , psi , theta) ((findInPsi x psi) :=: t)

-- | KSyn

satisfies (phi , psi , theta) (Syn t a@(TyVar _)) =

let t’ = findInTheta (hat t) theta

in satisfies (phi , psi , theta) (t’ :=: a)

-- | KHas

satisfies (phi , psi , theta) (Has (TyVar st) (Decl t x)) =

let tt = findInPhi st phi

t’ = field x (findInTheta (hat tt) theta)

in satisfies (phi , psi , theta) (t’ :=: t)

-- | KEq

satisfies (phi , _, _) k@(t1 :=: t2) = isSubTy phi t1 t2

-- | KIq

satisfies (phi , _, _) k@(t1 :<=: t2) = isSubTy phi t1 t2

trace_Sema = False

-- | Return the type of the field in a record.

A.7. The Type Predicate of Constraints Semantics 117

field :: Ident -> Type -> Type

field x (RecTy ds _) =

let ds’ = filter (\(Decl _ x’) -> x == x’) ds

in case length ds’ of

1 -> _ft (ds’ !! 0)

_ -> error $ "record has no field " ++ show (ppK x) ++ "\n"

field _ t = error $ "type " ++ show (ppK t) ++ " is not a

record\n"

-- | Return whether the type is a ground type.

isGround :: Type -> Bool

isGround t =

if ftv t == []

then True

else False

-- | Supporting function to check entailment across rewrites.

checkEntail :: (Config , Config) -> K -> Config

checkEntail (cfg , cfg ’) k =

if validateSemantics ((phi cfg), (psi cfg), (theta cfg)) k

then cfg ’

else error $ "entailment failed"

A.7 The Type Predicate of Constraints Semantics

The implementation of our type predicate, as presented in Figure 3.5.

isSubTy :: Phi -> Type -> Type -> Bool

isSubTy phi t1@(TyVar st1) t2 =

if (isIdentity phi t1)

then True

else (isGround (findInPhi st1 phi))

&& isSubTy phi (findInPhi st1 phi) t2

isSubTy phi t1 t2@(TyVar st2) =

if (isIdentity phi t2)

then True

else (isGround (findInPhi st2 phi))

118 Appendix A. Haskell Implementation of µC

&& isSubTy phi t1 (findInPhi st2 phi)

isSubTy phi (ConstTy t1) (ConstTy t2) =

isSubTy phi t1 t2

isSubTy phi (ConstTy t1) t2 =

isSubTy phi t1 t2

isSubTy phi t@(PtrTy t1) t’@(PtrTy t2) =

isSubTyPtr phi t1 t2

isSubTy _ IntTy IntTy = True

isSubTy _ DoubleTy DoubleTy = True

isSubTy _ IntTy DoubleTy = True

isSubTy _ (NamedTy x1) (NamedTy x2) = x1 == x2

isSubTy _ t1@(RecTy _ _) t2@(RecTy _ _) = t1 == t2

isSubTy phi t1 t2 =

error $ "unknown (value) subtyping relation " ++

show (ppK t1) ++ "<:" ++ show (ppK t2)

isSubTyPtr :: Phi -> Type -> Type -> Bool

isSubTyPtr phi t1@(TyVar st1) t2 =

if (isIdentity phi t1)

then True

else (isGround (findInPhi st1 phi))

&& isSubTyPtr phi (findInPhi st1 phi) t2

isSubTyPtr phi t1 t2@(TyVar st2) =

if (isIdentity phi t2)

then True

else (isGround (findInPhi st2 phi))

&& isSubTyPtr phi t1 (findInPhi st2 phi)--}

isSubTyPtr phi (ConstTy t1) (ConstTy t2) =

isSubTyPtr phi t1 t2

isSubTyPtr phi t1 (ConstTy t2) =

isSubTyPtr phi t1 t2

isSubTyPtr phi (PtrTy t1) (PtrTy t2) =

isSubTyPtr phi t2 t2

isSubTyPtr _ IntTy IntTy = True

isSubTyPtr _ DoubleTy DoubleTy = True

isSubTyPtr _ (NamedTy x1) (NamedTy x2) = x1 == x2

isSubTyPtr _ t1@(RecTy _ _) t2@(RecTy _ _) = t1 == t2

isSubTyPtr phi t1 t2 =

error $ "unknown (reference) subtyping relation " ++

A.7. The Type Predicate of Constraints Semantics 119

show (ppK t1) ++ "<:" ++ show (ppK t2)

-- | Subtyping predicate for ground types.

isSubTy ’ :: Type -> Type -> Bool

isSubTy ’ (TyVar _) _ = error $ "expected ground type "

isSubTy ’ _ (TyVar _) = error $ "expected ground type "

isSubTy ’ (ConstTy t1) (ConstTy t2) =

isSubTy ’ t1 t2

isSubTy ’ (ConstTy t1) t2 =

isSubTy ’ t1 t2

isSubTy ’ (PtrTy t1) (PtrTy t2) =

isSubTyPtr ’ t1 t2

isSubTy ’ IntTy IntTy = True

isSubTy ’ DoubleTy DoubleTy = True

isSubTy ’ IntTy DoubleTy = True

isSubTy ’ (NamedTy x1) (NamedTy x2) = x1 == x2

isSubTy ’ t1@(RecTy _ _) t2@(RecTy _ _) = t1 == t2

isSubTy ’ t1 t2 =

error $ "unknown (value/ground) subtyping relation " ++

show (ppK t1) ++ "<:" ++ show (ppK t2)

isSubTyPtr ’ :: Type -> Type -> Bool

isSubTyPtr ’ (TyVar _) _ = error $ "expected ground type "

isSubTyPtr ’ _ (TyVar _) = error $ "expected ground type "

isSubTyPtr ’ (ConstTy t1) (ConstTy t2) =

isSubTyPtr ’ t1 t2

isSubTyPtr ’ t1 (ConstTy t2) =

isSubTyPtr ’ t1 t2

isSubTyPtr ’ (PtrTy t1) (PtrTy t2) =

isSubTyPtr ’ t2 t2

isSubTyPtr ’ IntTy IntTy = True

isSubTyPtr ’ DoubleTy DoubleTy = True

isSubTyPtr ’ (NamedTy x1) (NamedTy x2) = x1 == x2

isSubTyPtr ’ t1@(RecTy _ _) t2@(RecTy _ _) = t1 == t2

isSubTyPtr ’ t1 t2 =

error $ "unknown (reference/ground) subtyping relation " ++

show (ppK t1) ++ "<:" ++ show (ppK t2)

120 Appendix A. Haskell Implementation of µC

-- | Whether we have an identity relation.

isIdentity phi t@(TyVar st) = t == findInPhi st phi

A.8 The Constraint Generators

The implementation of the constraint generators from Figure 3.6.

generateConstraints :: Prog -> M -> IO K

generateConstraints p m = do

(c, _) <- runStateT (genProg p m) 0

return c

-- | The generator is typed as a monad to allow isolation of

-- the fresh variable supply.

type GenMonad a = StateT Int IO a

fresh :: GenMonad Type

fresh = do

n <- get

put (n + 1)

return $ TyVar (Stamp n)

-- | Constraint generation for a program.

genProg :: Prog -> M -> GenMonad K

genProg (Prog _ []) _ = return T

genProg (Prog [] ((FunDef rt f d s):fs)) m = do

a <- fresh

syn <- buildSyn rt a

let pt = foldl (\acc (Decl t _) -> t:acc) [] d

k <- genFun d s a m

k’ <- genProg (Prog [] fs) m

return $

Exists [a] $

syn :&:

Fun f (ArrowTy a pt) k :&:

k’

genProg (Prog ((TypeDef t1 t2):tds) fs) m = do

A.8. The Constraint Generators 121

a <- fresh

k <- genProg (Prog tds fs) m

return $

Exists [a] $

(Syn t2 a) :&:

(a :=: t1) :&:

k

-- | Constraint generation for functions.

genFun :: [Decl] -> [Stmt] -> Type -> M -> GenMonad K

genFun [] s rt m = genStmt s rt m

genFun ((Decl t x):dx) s rt m = do

a <- fresh

syn <- buildSyn t a

k <- genFun dx s rt m

return $

Exists [a] $

syn :&:

Def x a k

-- | Constraint generation for statements.

genStmt :: [Stmt] -> Type -> M -> GenMonad K

genStmt ((DeclStmt (Decl t x)):sl) rt m = do

a <- fresh

syn <- buildSyn t a

k <- genStmt sl rt m

return $

Exists [a] $

syn :&:

Def x a k

genStmt ((ExprStmt e):sl) rt m = do

a <- fresh

k1 <- genExpr e a m

k2 <- genStmt sl rt m

return $

Exists [a] k1 :&:

k2

genStmt ((RetStmt e):[]) rt m = do

a <- fresh

122 Appendix A. Haskell Implementation of µC

k <- genExpr e a m

return $

Exists [a] $

keepOrDrop (shape (Var (Ident "$ret")) m) rt (shape e m) a

Assign :&:

k

-- | Constraint generation for expressions.

genExpr :: Expr -> Type -> M -> GenMonad K

genExpr (NumLit l) t _ = return (rho l :=: t)

genExpr (Var x) t _ = return (TypeOf x t)

genExpr (FldAcc e x) t m = do

a1 <- fresh

a2 <- fresh

a3 <- fresh

k <- genExpr e a1 m

return $

Exists [a1, a2, a3] $

(Has a2 (Decl a3 x)) :&:

(a1 :=: (PtrTy a2)) :&:

(a3 :=: t) :&:

k

genExpr (Deref e) t m = do

a <- fresh

k <- genExpr e a m

return $

Exists [a] $

(a :=: PtrTy t) :&:

k

genExpr (AddrOf e) t m = do

a1 <- fresh

a2 <- fresh

k <- genExpr e a2 m

return $

Exists [a1, a2] $

(a1 :=: PtrTy a2) :&:

(a1 :=: t) :&:

k

genExpr e@(BinExpr op e1 e2) t m = do

A.9. The build synonym Auxiliary Generator 123

a1 <- fresh

a2 <- fresh

k1 <- genExpr e1 a1 m

k2 <- genExpr e2 a2 m

return $

Exists [a1, a2] $

k1 :&:

k2 :&:

keepOrDrop (shape e1 m) a1 (shape e2 m) a2 op :&:

select (shape e1 m) a1 (shape e2 m) a2 t op

-- | The type of a literal.

rho :: Lit -> Type

rho (IntLit _) = IntTy

rho (DoubleLit _) = DoubleTy

A.9 The build synonym Auxiliary Generator

The implementation of auxiliary generator build synonym, as presented in Figure 3.7.

-- | Recursively build type synonyms.

buildSyn :: Type -> Type -> GenMonad K

buildSyn t@(PtrTy tt) a = do

b <- fresh

syn <- buildSyn tt b

return $

Exists [b] $

Syn t a :&:

Syn tt b :&:

((PtrTy b) :=: a) :&:

syn

buildSyn t@(ConstTy tt) a = do

b <- fresh

syn <- buildSyn tt b

return $

Exists [b] $

Syn t a :&:

124 Appendix A. Haskell Implementation of µC

Syn tt b :&:

((ConstTy b) :=: a) :&:

syn

buildSyn t a =

return $ Syn t a

A.10 The Classification of Expressions

The implementation for the classification of expressions to shapes of our lattice L,
corresponding to the rules in Figure 3.9.

data Shape = Undefined

| Scalar

| Pointer

| Numeric

| Integral

| Floating

deriving (Eq, Ord , Show)

newtype M = M { _shapes :: Map Expr Shape } deriving (Eq, Ord ,

Show)

classifyE :: Expr -> Shape -> M -> (Shape , M)

classifyE e@(NumLit v) _ m =

insertOrUpdate e sp m

where

sp = case v of

(IntLit 0) -> Scalar

(IntLit _) -> Integral

_ -> Floating

classifyE e@(Var _) sp m =

insertOrUpdate e sp m

classifyE e@(FldAcc e’ x) sp m =

insertOrUpdate e sp m’

where

(_, m’) = classifyE e’ Pointer m

classifyE e@(Deref e’) sp m =

A.10. The Classification of Expressions 125

insertOrUpdate e sp m’

where

(_, m’) = classifyE e’ Pointer m

classifyE e@(AddrOf e’) sp m =

insertOrUpdate e Pointer m’

where

(_, m’) = classifyE e’ sp m

classifyE e@(BinExpr Add e1 e2) sp m =

insertOrUpdate e sp’’’’ m’’

where

sp’ = if (sp == Integral

|| sp == Floating

|| sp == Numeric)

then sp

else Scalar

(sp1 , m’) = classifyE e1 sp’ m

sp’’ = if (sp1 == Pointer)

then Integral

else if (sp == Integral

|| sp == Floating

|| sp == Numeric)

then sp

else Scalar

(sp2 , m’’) = classifyE e2 sp’’ m’

sp’’’ = if (sp2 == Pointer)

then Integral

else sp ’’

(sp3 , m’’’) = classifyE e1 sp’’’ m’’

sp’’’’ = if (sp3 == Pointer || sp2 == Pointer)

then Pointer

else Numeric

classifyE e@(BinExpr Divide e1 e2) sp m =

insertOrUpdate e Numeric m’’

where

(_, m’) = classifyE e1 Numeric m

(_, m’’) = classifyE e2 Numeric m’

classifyE e@(BinExpr Or e1 e2) sp m =

insertOrUpdate e Integral m’’

where

126 Appendix A. Haskell Implementation of µC

(_, m’) = classifyE e1 Scalar m

(_, m’’) = classifyE e2 Scalar m’

classifyE e@(BinExpr Assign e1 e2) sp m =

insertOrUpdate e sp1 m’’

where

(sp2 , m’) = classifyE e2 sp m

(sp1 , m’’) = classifyE e1 sp2 m’

classifyD :: Decl -> M -> (Shape , M)

classifyD (Decl { _ft = t, _fx = x }) m =

insertOrUpdate (Var x) (ty2shape t) m

insertOrUpdate :: Expr -> Shape -> M -> (Shape , M)

insertOrUpdate e sp m =

(sp’, M $ Map.insert e sp ’ (_shapes m))

where

sp’ = case Map.lookup e (_shapes m) of

Just sp ’’ ->

case sp’’ of

Pointer -> sp’’

Integral -> sp’’

Floating -> sp’’

Numeric ->

if (sp == Integral || sp == Floating)

then sp

else sp’’

Scalar ->

if (sp == Integral

|| sp == Floating

|| sp == Pointer)

then sp

else sp’’

Undefined -> sp

Nothing -> sp

shape :: Expr -> M -> Shape

shape e m =

case Map.lookup e (_shapes m) of

A.10. The Classification of Expressions 127

Just sp -> sp

Nothing -> Undefined

ty2shape :: Type -> Shape

ty2shape IntTy = Integral

ty2shape DoubleTy = Floating

ty2shape (ConstTy t) = ty2shape t

ty2shape (PtrTy _) = Pointer

ty2shape _ = Undefined

-- | Build lattice of shapes until stabilization.

buildLattice :: Prog -> M -> M

buildLattice p@(Prog _ fs) m =

let

go ((DeclStmt d):xs) acc =

let (sp, m) = classifyD d acc

in go xs m

go ((ExprStmt e):xs) acc =

let (sp, m) = classifyE e (shape e acc) acc

in go xs m

go ((RetStmt e):[]) acc = snd $ classifyE e (shape e acc)

acc

handleParam ds = map (\d -> DeclStmt d) ds

handleRet rt m = M $ Map.insert (Var (Ident "$ret"))

(ty2shape rt) (_shapes m)

m’ = foldr (\(FunDef rt _ ds ss) acc -> go ((handleParam

ds) ++ ss)

(handleRet rt acc)) m fs

in if (m’ == m)

then m’

else buildLattice p m’

128 Appendix A. Haskell Implementation of µC

A.11 The keep or drop and select Auxiliary

Generators

The implementation of auxiliary generators keep or drop and select, as presented in
Figure 3.10.

-- | Keep or drop a constraint.

keepOrDrop :: Shape -> Type -> Shape -> Type -> BinOptr -> K

keepOrDrop sp1 a1 sp2 a2 op =

if (sp1 /= sp2

&& (sp1 == Pointer || sp2 == Pointer)

&& sp1 /= Undefined

&& sp2 /= Undefined)

then T

else if (op == Assign)

then (a2 :<=: a1)

else if (sp1 == Integral && sp2 == Floating)

then (a1 :<=: a2)

else if (sp1 == Floating && sp2 == Integral)

then (a2 :<=: a1)

else (a1 :=: a2)

-- | Select operands and result types.

select :: Shape -> Type -> Shape -> Type -> Type -> BinOptr -> K

select sp1 a1 sp2 a2 t op =

case op of

Add -> if (sp1 == Pointer)

then (a1 :=: t) :&: (a2 :=: IntTy)

else if (sp2 == Pointer)

then (a2 :=: t) :&: (a1 :=: IntTy)

else (t :<=: DoubleTy)

Assign -> (t :=: a1)

Or -> (t :=: IntTy)

Divide -> if (sp1 == Integral && sp2 == Integral)

then (t :=: IntTy)

:&: (a1 :=: IntTy)

:&: (a2 :=: IntTy)

else if (sp1 == Integral)

A.12. The Unifications Algorithms Uc and Us 129

then (t :<=: DoubleTy)

:&: (a1 :=: IntTy)

:&: (a2 :<=: DoubleTy)

else if (sp2 == Integral)

then (t :<=: DoubleTy)

:&: (a1 :<=: DoubleTy)

:&: (a2 :=: IntTy)

else (t :<=: DoubleTy)

:&: (a1 :<=: DoubleTy)

:&: (a2 :<=: DoubleTy)

A.12 The Unifications Algorithms Uc and Us
The implementation of our unification algorithms, as presented in Figure 4.2.

data StratMode = Relax

| Enforce

deriving (Eq, Ord , Show)

class Substitutable a => UnifiableC a where

uC :: a -> a -> [Subst]

uS :: a -> a -> StratMode -> [Subst]

instance UnifiableC Type where

uC (TyVar st) t2 =

let s = st :-> t2

in if (trace_UC)

then trace("[trace uC] " ++ show (ppK s)) [s]

else [s]

uC t1 t2@(TyVar _) = uC t2 t1

uC IntTy IntTy = [Trivial]

uC DoubleTy DoubleTy = [Trivial]

uC t1@(NamedTy x1) t2@(NamedTy x2)

| x1 == x2 = [Trivial]

| otherwise = error $ "can ’t unify named types " ++

(show $ ppK t1) ++ "::" ++ (show $ ppK t2)

uC (ConstTy t1) (ConstTy t2) = uC t1 t2

130 Appendix A. Haskell Implementation of µC

uC (PtrTy t1) (PtrTy t2) = uC t1 t2

uC t1@(RecTy fs1 x1) t2@(RecTy fs2 x2) = undefined

uC (ArrowTy rt1 [pt1]) (ArrowTy rt2 [pt2]) = undefined

uC t1 t2 = error $ "unknown unification from " ++

(show $ ppK t1) ++ " to " ++ (show $ ppK t2)

uS t1@(PtrTy _) (TyVar st) _ = [st :-> t1]

uS t1 t2@(TyVar st) sm

| sm == Enforce = [st :-> t1]

| otherwise = [st :-> (relax t1)]

uS (TyVar st) t2 _ = [st :-> (relax t2)]

uS IntTy IntTy _ = [Trivial]

uS IntTy DoubleTy Relax = [Trivial]

uS DoubleTy DoubleTy _ = [Trivial]

uS t1@(NamedTy x1) t2@(NamedTy x2) _

| x1 == x2 = [Trivial]

| otherwise = error $ "can ’t unify named types " ++

(show $ ppK t1) ++ "::" ++ (show $ ppK t2)

uS (ConstTy t1) (ConstTy t2) sm = uS t1 t2 sm

uS (ConstTy t1) t2 Relax = uS t1 t2 Relax

uS t1 (ConstTy t2) _ = uS t1 t2 Relax

uS (PtrTy t1) (PtrTy t2) _ = uS t1 t2 Enforce

uS t1@(RecTy fs1 x1) t2@(RecTy fs2 x2) _ = undefined

uS (ArrowTy rt1 [pt1]) (ArrowTy rt2 [pt2]) _ = undefined

uS t1 t2 _ = error $ "unknown unification from " ++

(show $ ppK t1) ++ " to " ++ (show $ ppK t2)

instance UnifiableC Decl where

uC (Decl t1 x1) (Decl t2 x2)

| x1 == x2 = uC t1 t2

| otherwise = error $ "can ’t unify decl " ++

(show x1) ++ "::" ++ (show x2)

uS (Decl t1 x1) (Decl t2 x2) m

| x1 == x2 = uS t1 t2 m

| otherwise = error $ "can ’t unify decl " ++

(show x1) ++ "::" ++ (show x2)

instance UnifiableC a => UnifiableC [a] where

A.13. The relax Function 131

uC [] [] = [Trivial]

uC _ [] = error "can ’t unify lists , different lengths"

uC [] x = uC x []

uC (a1:as1) (a2:as2) =

let s = uC a1 a2

s’ = uC (applyMany s as1) (applyMany s as2)

in s ++ s’

uS [] [] _ = [Trivial]

uS _ [] _ = error "can ’t unify lists , different lengths"

uS [] x m = uS x [] m

uS (a1:as1) (a2:as2) m =

let s = uS a1 a2 m

s’ = uS (applyMany s as1) (applyMany s as2) m

in s ++ s’

trace_UC = False

trace_US = False

A.13 The relax Function

The implementation of the const relax function, used by unification Us and presented
in Figure 4.3.

-- | Relax constness.

relax :: Type -> Type

relax (ConstTy t) = t

relax (PtrTy t) = PtrTy (relax t)

relax t = t

A.14 The Solver Configuration and Driver

The implementation of our solver’s configuration, as described in Section 4.2, along
with the solver driver.

132 Appendix A. Haskell Implementation of µC

data Config = Config

{ phi :: Phi ,

psi :: Psi ,

theta :: Theta ,

k :: K,

kE :: [K],

kI :: [K],

kW :: [K],

kF :: [K]

}

deriving (Eq, Ord , Show)

A.15 The Preprocessing Stage of the Solving

Process

The implementation of the preprocessing rules from Figure 4.5.

preprocess :: Config -> Config

-- | PP-and

preprocess cfg@(Config { k = k1 :&: k2 }) =

let cfg ’ = preprocess (cfg { k = k1 })

in preprocess $ (cfg ’ { k = k2 })

-- | PP-ex

preprocess cfg@(Config { k = Exists ts k’ }) =

let self t@(TyVar st) acc = addToPhi st t acc

phi ’ = foldr self (phi cfg) ts

in preprocess $ cfg { phi = phi ’, k = k’ }

-- | PP-syn

preprocess cfg@(Config { k = Syn t a, theta }) =

let theta ’ = if Map.member (hat t) theta

then theta

else addToTheta (hat t) a theta

in preprocess $ cfg { theta = theta ’,

A.15. The Preprocessing Stage of the Solving Process 133

k = ((findInTheta (hat t) theta ’) :=:

a) }

-- | PP-def

preprocess cfg@(Config { k = Def x (TyVar st) k’ }) =

let psi ’ = addToPsi x (findInPhi st (phi cfg)) (psi cfg)

in preprocess $ cfg { psi = psi ’, k = k’ }

-- | PP-fun

preprocess cfg@(Config { k = Fun f (ArrowTy (TyVar st) t) k’ })

=

let psi ’ = addToPsi f (ArrowTy (findInPhi st (phi cfg)) t)

(psi cfg)

in preprocess $ cfg { psi = psi ’, k = k’ }

-- | PP-inst

preprocess cfg@(Config { k = TypeOf x t }) =

let k’ = findInPsi x (psi cfg) :=: t

in preprocess $ cfg { k = k’ }

-- | PP-eq

preprocess cfg@(Config { k = k’@(t1 :=: t2), kE }) =

preprocess $ cfg { k = T, kE = k’:kE }

-- | PP-has

preprocess cfg@(Config { k = k’@(Has _ _), kF }) =

preprocess $ cfg { k = T, kF = k’:kF }

-- | PP-iq

preprocess cfg@(Config { k = k’@(t1 :<=: t2), kI }) =

preprocess $ cfg { k = T, kI = k’:kI }

-- | PP-end

preprocess cfg@(Config { k = T }) =

if (not trace_PP)

then cfg

else trace ("[trace PP]\n" ++ showConfig cfg ++ "\n") cfg

trace_PP = False

134 Appendix A. Haskell Implementation of µC

A.16 The 1st Unification Round of the Solving

Process

The implementation of the 1st unification round rule from Figure 4.6.

trace_U = False

unifyEq :: Config -> Config

-- | UE-base

unifyEq cfg@(Config { kE = k@(t1 :=: t2):kE_ }) =

let s = uC t1 t2

phi ’ = foreachValue s (phi cfg)

psi ’ = foreachValue s (psi cfg)

theta ’ = foreachValue s (theta cfg)

kE’ = applyMany s kE_

kF’ = applyMany s (kF cfg)

kI’ = applyMany s (kI cfg)

cfg ’ = cfg { phi = phi ’,

psi = psi ’,

theta = theta ’,

kE = kE’,

kF = kF’,

kI = kI’ }

rw = unifyEq (checkEntail (cfg , cfg ’) k)

in if (not trace_U)

then rw

else trace("[uni -eq]: " ++ show (ppK s)) rw

A.17 Functions splitWob and orderSub

The implementation of functions splitWob and orderSub from Figure 4.7.

A.18. The 2nd Unification Round of the Solving Process 135

-- | Order inequality constraints.

orderSub :: [K] -> [K] -> [K]

orderSub ((t1@(PtrTy (ConstTy _)) :<=: t2):kW) kS =

orderSub kW ((t1 :<=: t2):kS)

orderSub ((t1 :<=: t2@(PtrTy _)):kW) kS =

orderSub kW ((t1 :<=: t2):kS)

orderSub ((t1@DoubleTy :<=: t2):kW) kS =

orderSub kW ((t1 :<=: t2):kS)

orderSub ((t1 :<=: t2@IntTy):kW) kS =

orderSub kW ((t1 :<=: t2):kS)

orderSub ((t1 :<=: t2):kW) kS =

orderSub (kW ++ [t1 :<=: t2]) kS

orderSub (B:kW) kS =

kS ++ kW

-- | Split wobbly relations.

splitWob :: [K] -> [K] -> ([K], [K])

splitWob (w@((TyVar _) :<=: (TyVar _)):k) kW =

splitWob k (w:kW)

splitWob (nw@(t1 :<=: t2):k) kW =

splitWob (k ++ [nw]) kW

splitWob (B:k) kW =

(k, kW)

A.18 The 2nd Unification Round of the Solving

Process

The implementation of the 2nd unification round rules from Figure 4.8.

unifyIq :: Config -> Config

-- | SO

splitOrder cfg =

let (kI’, kW ’) = splitWob ((kI cfg) ++ [B]) []

kI’’ = orderSub (kI’ ++ [B]) []

in cfg { kI = kI’’, kW = kW ’}

136 Appendix A. Haskell Implementation of µC

-- | UI-base

unifyIq cfg@(Config {

kI = k@(t1 :<=: t2):kI_ }) =

let s = uS t1 t2 Relax

phi ’ = foreachValue s (phi cfg)

psi ’ = foreachValue s (psi cfg)

theta ’ = foreachValue s (theta cfg)

kI’ = applyMany s kI_

kF’ = applyMany s (kF cfg)

kW’ = applyMany s (kW cfg)

(kI’’, kW ’’) = splitWob (kI’ ++ kW’ ++ [B]) []

kI’’’ = orderSub (kI’’ ++ [B]) []

cfg ’ = cfg { phi = phi ’,

psi = psi ’,

theta = theta ’,

kI = kI’’’,

kF = kF’,

kW = kW’’ }

rw = unifyIq (checkEntail (cfg , cfg ’) k)

in if (not trace_U)

then rw

else trace("[uni -iq]: " ++ show (ppK s)) rw

-- | UI-end

unifyIq cfg = cfg

-- | UW-base

unifyWb :: Config -> Config

unifyWb cfg@(Config { kI = k@(t1 :<=: t2):kI_ }) =

let s = uS t1 t2 Relax

phi ’ = foreachValue s (phi cfg)

psi ’ = foreachValue s (psi cfg)

theta ’ = foreachValue s (theta cfg)

kI_ ’ = applyMany s kI_

kF’ = applyMany s (kF cfg)

cfg ’ = cfg { phi = phi ’,

psi = psi ’,

A.19. The Membership Normalization Stage of the Solving Process 137

theta = theta ’,

kI = kI_ ’,

kF = kF’ }

rw = unifyWb (checkEntail (cfg , cfg ’) k)

in if (not trace_U)

then rw

else trace("[uni -w]: " ++ show (ppK s)) rw

-- | UW-end

unifyWb cfg = cfg

A.19 The Membership Normalization Stage of the

Solving Process

The implementation of the rules from Figure 4.9.

-- | SH

sortHas :: Config -> Config

sortHas cfg =

let criteria k1@(Has t1 (Decl _ x1)) k2@(Has t2 (Decl _ x2))

| t1 == t2 = compare x1 x2

| otherwise = compare t1 t2

in cfg { kF = sortBy criteria (kF cfg) }

-- | MN-join

normFlds :: Config -> Config

normFlds cfg@(Config {

kE,

kF = h@(Has t1 (Decl ft1 x1)):kF_@(Has t2 (Decl

ft2 x2):_) }) =

let kE’ = if (t1 == t2) && (x1 == x2)

then (ft1 :=: ft2):kE

else kE

in normFlds cfg { kE = kE’, kF = kF_ ++ [h] }

-- | MN-skip

normFlds cfg@(Config { kF = h@(Has _ _):B:kF_ }) =

138 Appendix A. Haskell Implementation of µC

cfg { kF = kF_ ++ [h] }

-- | MN-nfld

normFlds cfg@(Config { kE = [], kF = [B] }) =

cfg { kF = [] }

A.20 The Field Convergence Algorithm

The implementation of the convergence algorithm from Figure 4.10.

-- | Convergence of has constraints

converge :: Config -> IO Config

converge cfg = do

let cfg ’ = sortHas cfg

debug "sort -membership" (showConfig cfg ’)

let cfg ’’ = normFlds cfg ’ { kF = (kF cfg ’) ++ [B] }

debug "equalize -fields" (showConfig cfg ’’)

let cfg ’’’ = unifyEq cfg ’’

debug "unify -fields" (showConfig cfg ’’’)

if (kF cfg ’’) == (kF cfg ’’’)

then return $ cfg ’’’

else converge cfg ’’’

A.21 The Record Composition Stage of the

Solving Process

The implementation of the record composition rules from Figure 4.11.

composeRecs :: Config -> Config

-- | RC-inst

A.21. The Record Composition Stage of the Solving Process 139

composeRecs cfg@(Config {

phi ,

psi ,

theta ,

kF = k@(Has t@(TyVar st@(Stamp n)) d):kF_

}) =

let x = Ident $ "TYPE_" ++ (show n)

t = NamedTy x

s = st :-> t

theta ’ = (addToTheta (hat t) (RecTy [d] x) theta)

in composeRecs cfg { phi = apply s phi ,

psi = apply s psi ,

theta = apply s theta ’,

kF = apply s kF_ }

-- | RC-upd

composeRecs cfg@(Config {

theta ,

kF = k@(Has t@(NamedTy _) d):kF_ }) =

case findInTheta (hat t) theta of

r@(RecTy dl x) ->

let r’ = if (elem d dl) then r else (RecTy (d:dl) x)

in composeRecs cfg { kF = kF_ ,

theta = getsUpdate (hat t) r’ theta }

_ -> error $ "can ’t recognized record " ++ show (ppK k)

-- | RC-end

composeRecs cfg = cfg

-- | Update the type id to type mapping of Theta.

getsUpdate :: TypeId -> Type -> Theta -> Theta

getsUpdate tid t theta =

case Map.lookup tid theta of

Just _ -> Map.alter (_ -> Just t) tid theta

_ -> error $ show (ppK tid) ++ " can ’t be found in φ for

update\n"

140 Appendix A. Haskell Implementation of µC

A.22 The De-orphanization Stage of the Solving

Process

The implementation of the de-orphanization rule from Figure 4.12.

deorph :: Config -> Config

-- | DO

deorph cfg@Config { phi , psi , theta } =

cfg { phi = phi ’, psi = psi ’, theta = theta ’ }

where

bind ((tid , TyVar st@(Stamp n)):l) =

if "struct " ‘isPrefixOf ‘ (_id tid)

then (st :-> (RecTy [Decl IntTy (Ident "dummy")] (Ident

(_id tid)))):(bind l)

else (st :-> NamedTy (Ident "int/* orphan */ ")):(bind l)

bind (_:l) = bind l

bind [] = []

s = bind (Map.toList theta)

phi ’ = foreachValue s phi

psi ’ = foreachValue s psi

theta ’ = foreachValue s theta

A.23 The Complete Solver Algorithm

The implementation of the complete solver procedure from Figure 4.13.

solveConstraints :: K -> Config -> IO Config

solveConstraints k cfg = do

let cfgPP = preprocess cfg

debug "preprocessing" (showConfig cfgPP)

let cfgUE = unifyEq cfgPP

debug "unify -equivalences" (showConfig cfgUE)

A.24. The Typing Rules 141

let cfgSO = splitOrder cfgUE

debug "split -order -inequalities" (showConfig cfgSO)

let cfgUI = unifyIq cfgSO

debug "unify -inequalities" (showConfig cfgUI)

let cfgUP = unifyWb cfgUI { kI = (kW cfgUI), kW = [] }

debug "unify -wobbly" (showConfig cfgUP)

cfgUF <- converge cfgUP

let cfgCR = composeRecs cfgUF

debug "compose -records" (showConfig cfgCR)

let cfgOR = deorph cfgCR

debug "deorph" (showConfig cfgOR)

return cfgOR

debug msg content = do

putStrLn $ "\n<<< " ++ msg ++ " >>>\n" ++ content

writeFile (msg ++ ".log") content

A.24 The Typing Rules

The implementation of the typing rules, as presented in Figure 4.15.

type Gamma = Map Ident Type

verifyTyping :: Config -> Gamma -> Prog -> [Type]

verifyTyping c g p = typeProg c g p

-- | TCPrg

typeProg :: Config -> Gamma -> Prog -> [Type]

typeProg c gam (Prog _ fl) =

foldr (\f acc -> (typeFunDef c gam f):acc) [] fl

142 Appendix A. Haskell Implementation of µC

-- | TCFun

typeFunDef :: Config -> Gamma -> FunDef -> Type

typeFunDef c gam (FunDef rt f dl s) =

typeParam c gam dl s rt

-- | TCPar

typeParam :: Config -> Gamma -> [Decl] -> [Stmt] -> Type -> Type

typeParam c gam [] s rt = typeStmt c gam s rt

typeParam c gam ((Decl t x):dl) s rt =

let t’ = findInTheta (hat (findInPsi x (psi c))) (theta c)

gam ’ = addToGamma x t’ gam

in typeParam c gam ’ dl s rt

-- Type checking signature for statements.

typeStmt :: Config -> Gamma -> [Stmt] -> Type -> Type

-- | TCDcl

typeStmt c gam ((DeclStmt (Decl t x)):sl) rt =

let t’ = findInTheta (hat (findInPsi x (psi c))) (theta c)

gam ’ = addToGamma x t’ gam

in typeStmt c gam ’ sl rt

-- | TCExp

typeStmt c gam ((ExprStmt e):sl) rt =

let t = typeExpr c gam e

in if (isGround t)

then typeStmt c gam sl rt

else error $ "expected ground type " ++ show (ppC t)

++ " for expression " ++ show e

-- | TCRetZro

typeStmt c gam ((RetStmt (NumLit (IntLit 0))):[]) rt =

let rt’ = (findInTheta (hat rt) (theta c))

in if isScalar rt’

then rt ’

else error $ "0 doesn ’t type with " ++ show (ppC rt ’) ++ "

as return"

-- | TCRet

A.24. The Typing Rules 143

typeStmt c gam ((RetStmt e):[]) rt =

let t = typeExpr c gam e

rt’ = (findInTheta (hat rt) (theta c))

in if isSubTy ’ t rt’

then rt ’

else error $ "return doesn ’t type "

++ show (ppC rt) ++ "::" ++ show (ppC rt ’)

-- Type checking signature for expressions.

typeExpr :: Config -> Gamma -> Expr -> Type

-- | TCLit

typeExpr _ _ (NumLit l) = rho l

-- | TCVar

typeExpr c gam e@(Var x) =

let t = findInPsi x (psi c)

in if (t == findInGamma x gam && isGround t)

then t

else error $ "Γ and C type mismatch " ++ (show e)

-- | TCFld

typeExpr c gam (FldAcc e x) =

let pt = typeExpr c gam e

in case pt of

PtrTy rt ->

case findInTheta (hat rt) (theta c) of

t@(RecTy dl _) -> field x t

_ -> error $ "expected record in Γ " ++ show (ppC rt)

_ -> error $ "expected " ++ show (ppC pt) ++ " typed as

pointer"

-- | TCDrf

typeExpr c gam (Deref e) =

let t = typeExpr c gam e

in case t of

PtrTy t’ -> t’

_ -> error $ "dereference doesn ’t type check"

144 Appendix A. Haskell Implementation of µC

-- | TCAdr

typeExpr c gam (AddrOf e) =

PtrTy (typeExpr c gam e)

-- | TCAsgZro

typeExpr c gam (BinExpr Assign e1 (NumLit (IntLit 0))) =

let lht = dropTopQual $ typeExpr c gam e1

in if isScalar lht

then lht

else error $ "0 assignment doesn ’t type check"

-- | TCAsg

typeExpr c gam (BinExpr Assign e1 e2) =

let lht = typeExpr c gam e1

rht = typeExpr c gam e2

in if isSubTy ’ rht lht

then rht

else error $ "assignment doesn ’t type check"

-- | TCAdd

typeExpr c gam (BinExpr Add e1 e2) =

let lht = dropTopQual $ typeExpr c gam e1

rht = dropTopQual $ typeExpr c gam e2

in case lht of

PtrTy _ -> if rht == IntTy

then lht

else error $ "expected int as RHS of +"

_ -> case rht of

PtrTy _ -> if lht == IntTy

then rht

else error $ "expected int as LHS of +"

_ -> if isArith lht && isArith rht

then highRank lht rht

else error $ "incompatible types in + (Add)"

-- | TCOr

typeExpr c gam (BinExpr Or e1 e2) =

let lht = dropTopQual $ typeExpr c gam e1

rht = dropTopQual $ typeExpr c gam e2

A.24. The Typing Rules 145

in if isScalar lht && isScalar rht

then IntTy

else error $ "incompatible types in || (OR)"

-- | TCDiv

typeExpr c gam (BinExpr Divide e1 e2) =

let lht = dropTopQual $ typeExpr c gam e1

rht = dropTopQual $ typeExpr c gam e2

in if isArith lht && isArith rht

then highRank lht rht

else error $ "incompatible types in / (div)"

-- | Drop top -level qualifier.

dropTopQual :: Type -> Type

dropTopQual (ConstTy t) = dropTopQual t

dropTopQual t = t

-- | Find , in Gamma , the type mapped to an identifier.

findInGamma :: Ident -> Gamma -> Type

findInGamma x gam =

case Map.lookup x gam of

Just t -> t

_ -> error $

"no τ for identier " ++ show (ppK x) ++ " in Gamma\n"

-- | Add , to Gamma , an identifier and its mapped type.

addToGamma :: Ident -> Type -> Gamma -> Gamma

addToGamma x t gam =

case Map.lookup x gam of

Just t -> error $

show (ppK t) ++ ", indexed by " ++

show (ppK x) ++ ", is already in Γ\n"

_ -> Map.insert x t gam

146 Appendix A. Haskell Implementation of µC

A.25 Supporting Functions sc and ari

The implementation of supporting functions for the typing rules, as presented in Fig-
ure 3.13.

-- | Return whether the type is an arithmetic type.

isArith :: Type -> Bool

isArith IntTy = True

isArith DoubleTy = True

isArith _ = error $ "expected arithmetic type"

-- | Return whether type is an scalar type.

isScalar :: Type -> Bool

isScalar (PtrTy _) = True

isScalar IntTy = True

isScalar DoubleTy = True

isScalar _ = error $ "expected scalar type"

-- | Return the highest ranked of 2 arithmetic types.

highRank :: Type -> Type -> Type

highRank t1 t2 =

if t1 == IntTy

then t2

else t1

A.26 The Pretty Printing of the Output

The implementation of our pretty printing of constraints, shapes, types, and the con-
figuration.

class PrettyK a where

ppK :: a -> PP.Doc

instance PrettyK a => PrettyK [a] where

ppK v = foldr (\x acc -> ppK x PP.<+> PP.text " " PP.<+> acc)

PP.empty v

A.26. The Pretty Printing of the Output 147

instance PrettyK Ident where

ppK = PP.text . _x

instance PrettyK TypeId where

ppK = PP.text . _id

instance PrettyK Type where

ppK IntTy = PP.text "int"

ppK DoubleTy = PP.text "double"

ppK (PtrTy t) = ppK t PP.<> PP.text "*"

ppK (ConstTy t) = PP.text "const " PP.<> ppK t

ppK (ArrowTy rt ps) =

(PP.hcat $ PP.punctuate (PP.text "? ") (map ppK ps))

PP.<> PP.text "? " PP.<> ppK rt

ppK (RecTy flds x) = PP.text "[record " PP.<> ppK x PP.<>

PP.char ’]’

ppK (NamedTy x) = ppK x

ppK (TyVar (Stamp i)) = PP.text "?" PP.<> PP.text (show i)

instance PrettyK Subst where

ppK Trivial = PP.text "<null -subst >"

ppK (st :-> t) = ppK st PP.<> PP.text "->" PP.<> ppK t

instance PrettyK K where

ppK T = PP.text "?"

ppK B = PP.text "?"

ppK (k1 :&: k2) = ppK k1 PP.<+> PP.text " ^ " PP.<+> ppK k2

ppK (Exists t k) =

PP.text "?" PP.<>

(foldl (\acc t@(TyVar _) -> acc PP.<> ppK t) PP.empty t)

PP.<>

PP.text ". " PP.<> ppK k

ppK (Def x t k) =

PP.text "def" PP.<+> ppK x PP.<> PP.colon PP.<> ppK t PP.<+>

PP.text "in" PP.<+> ppK k

ppK (Fun f t@(ArrowTy _ _)) =

PP.text "fun" PP.<+> ppK f PP.<> PP.colon PP.<> ppK t

ppK (TypeOf x t) =

148 Appendix A. Haskell Implementation of µC

PP.text "typeof(" PP.<> ppK x PP.<> PP.text ","

PP.<> ppK t PP.<> PP.char ’)’

ppK (Syn t1 t2) =

PP.text "syn " PP.<> ppK t1 PP.<> PP.text " as " PP.<> ppK

t2

ppK (Has t fld) =

PP.text "has" PP.<>

PP.parens (ppK t PP.<> PP.comma PP.<+>

ppK (_fx fld) PP.<> PP.colon PP.<>

ppK (_ft fld))

ppK (t1 :=: t2) = ppK t1 PP.<> PP.text "?" PP.<> ppK t2

ppK (t1 :<=: t2) = ppK t1 PP.<> PP.text "?" PP.<> ppK t2

instance PrettyK Stamp where

ppK (Stamp n) = PP.text "?" PP.<> PP.text (show n)

class PrettyM a where

ppM :: a -> PP.Doc

instance PrettyM Shape where

ppM Undefined = PP.text "<undefined >"

ppM Scalar = PP.text "<scalar >"

ppM Pointer = PP.text "<pointer >"

ppM Integral = PP.text "<integral >"

ppM Floating = PP.text "<floating >"

ppM Numeric = PP.text "<numeric >"

instance PrettyM M where

ppM m =

let

pp (NumLit v) = PP.text $ show v

pp (Var x) = PP.text (_x x)

pp (FldAcc e x) = pp e PP.<> PP.text "->" PP.<> PP.text

(_x x)

pp (Deref e) = PP.char ’*’ PP.<> pp e

pp (AddrOf e) = PP.char ’&’ PP.<> pp e

pp (BinExpr Add e1 e2) = pp e1 PP.<> PP.char ’+’ PP.<> pp

e2

A.26. The Pretty Printing of the Output 149

pp (BinExpr Divide e1 e2) = pp e1 PP.<> PP.char ’/’ PP.<>

pp e2

pp (BinExpr Or e1 e2) = pp e1 PP.<> PP.text "||" PP.<> pp

e2

pp (BinExpr Assign e1 e2) = pp e1 PP.<> PP.char ’=’ PP.<>

pp e2

in Map.foldrWithKey (\k v acc -> pp k PP.<+> ppM v PP.$$

acc)

PP.empty

(_shapes m)

class PrettyAST a where

fmt :: Int -> a -> PP.Doc

instance PrettyAST a => PrettyAST [a] where

fmt n (s:sl) =

fmt n s PP.<> (foldr (\s d -> fmt (n + 1) s PP.<> d)

PP.empty sl)

instance PrettyAST Expr where

fmt n e@(NumLit _) = indent n PP.<> PP.text "NumLit"

fmt n e@(Var _) = indent n PP.<> PP.text "VarDecl"

fmt n e@(FldAcc x t) = indent n PP.<> PP.text "FieldAccess"

fmt n e@(Deref e1) = indent n PP.<> PP.text "Deref" PP.<> fmt

(n + 1) e1

fmt n e@(AddrOf e1) = indent n PP.<> PP.text "AddrOf" PP.<>

fmt (n + 1) e1

fmt n e@(BinExpr _ e1 e2) = indent n PP.<> PP.text "BinExpr"

PP.<>

fmt (n + 1) e1 PP.<> fmt (n + 1)

e2

instance PrettyAST Stmt where

fmt n (ExprStmt e) = indent n PP.<> PP.text "ExprStmt" PP.<>

fmt (n + 1) e

fmt n (DeclStmt _) = indent n PP.<> PP.text "DeclStmt"

fmt n (RetStmt e) = indent n PP.<> PP.text "RetStmt" PP.<>

fmt (n + 1) e

150 Appendix A. Haskell Implementation of µC

instance PrettyAST Decl where

fmt n (Decl _ _) = indent n PP.<> PP.text "Decl"

instance PrettyAST FunDef where

fmt n f@(FunDef _ _ ps s) =

PP.text "Function" PP.<>

(foldr (\p d -> fmt (n + 1) p PP.<> d) PP.empty ps) PP.<>

fmt (n + 1) s

instance PrettyAST Prog where

fmt n p@(Prog _ fs) =

(foldr (\f d -> fmt (n + 1) f PP.<> d) PP.empty fs)

indent :: Int -> PP.Doc

indent n = PP.char ’\n’ PP.<> PP.text (replicate n ’ ’)

class PrettyC a where

ppC :: a -> PP.Doc

instance PrettyC TypeId where

ppC tn = PP.text $ _id tn

instance PrettyC Ident where

ppC x = PP.text $ _x x

instance PrettyC Decl where

ppC (Decl t x) = PP.space PP.<> ppC t PP.<+> ppC x PP.<>

PP.semi

instance PrettyC Type where

ppC IntTy = PP.text "int"

ppC DoubleTy = PP.text "double"

ppC (PtrTy t) = ppC t PP.<> PP.char ’*’

ppC (ConstTy t) = PP.text "const" PP.<+> ppC t

ppC (ArrowTy rt pt) =

ppC rt PP.<> PP.text "(*)" PP.<>

PP.parens (PP.hcat $ PP.punctuate (PP.text ", ") (map ppC

A.27. The µC Parser 151

pt))

ppC (RecTy fld x) =

let prefix = if "struct " ‘isPrefixOf ‘ (_x x)

then ""

else "struct "

in PP.text prefix PP.<> PP.text (_x x) PP.<+>

PP.braces (PP.hcat $ (map ppC fld))

ppC (NamedTy x) = PP.text $ _x x

ppC (TyVar (Stamp n)) = PP.text "?" PP.<> PP.text (show n)

showMap m = show $

Map.foldrWithKey

(\k v acc -> PP.lbrace PP.<> PP.space PP.<> ppK k PP.<>

PP.comma PP.<> PP.space PP.<> ppC v PP.<>

PP.rbrace PP.<> PP.comma PP.<> PP.space PP.<>

acc)

PP.empty m

showConfig cfg@(Config { phi , psi , theta , k, kE, kF, kI, kW }) =

show $

PP.text (" φ = { " ++ showMap phi) PP.<+> PP.text "}\n" PP.<>

PP.text (" ψ = { " ++ showMap psi) PP.<+> PP.text "}\n" PP.<>

PP.text (" Θ = { " ++ showMap theta) PP.<+> PP.text "}\n"

PP.<>

PP.text " [Ke] = " PP.<> ppK kE PP.<+> PP.text "\n" PP.<>

PP.text " [Kf] = " PP.<> ppK kF PP.<+> PP.text "\n" PP.<>

PP.text " [Ki] = " PP.<> ppK kI PP.<+> PP.text "\n" PP.<>

PP.text " [Kw] = " PP.<> ppK kW

A.27 The µC Parser

The parser we use for µC. This implementation does not deal with the ambiguities of
the grammar of µA and µB. For a parser that employs the techniques we described in
Section 2, please check our tool, PsycheC.

langDef = emptyDef {

152 Appendix A. Haskell Implementation of µC

Token.identStart = letter ,

Token.identLetter = alphaNum <|> char ’_’,

Token.reservedNames =

["int", "double", "const", "return", "struct", "typedef"

],

Token.reservedOpNames =

["*", "/", "+", "||", "=", "&", "->"]

}

lexer = Token.makeTokenParser langDef

identifier = Token.identifier lexer

reserved = Token.reserved lexer

reservedOp = Token.reservedOp lexer

parens = Token.parens lexer

braces = Token.braces lexer

integer = Token.integer lexer

float = Token.float lexer

semi = Token.semi lexer

whiteSpace = Token.whiteSpace lexer

comma = Token.comma lexer

symbol = Token.symbol lexer

parseSource :: String -> Either String Prog

parseSource = either (Left . show) Right . parse progParser ""

progParser :: Parser Prog

progParser = Prog <$> many tydefParser <*> many funParser

tydefParser :: Parser TypeDef

tydefParser = TypeDef <$> (reserved "typedef" *>) tyParser <*>

tyParser <* semi

funParser :: Parser FunDef

funParser = FunDef

<$> tyParser

<*> identParser

<*> parens (declParser ‘sepBy ‘ comma)

<*> stmtListParser

A.27. The µC Parser 153

tyParser :: Parser Type

tyParser = f <$> nonPtrTyParser <*> (many starParser)

where

f t ts = foldr (_ ac -> PtrTy ac) t ts

nonPtrTyParser :: Parser Type

nonPtrTyParser = try (qualTyParser intTyParser)

<|> try (qualTyParser fpTyParser)

<|> try (qualTyParser namedTyParser)

<|> qualTyParser recTyParser

starParser :: Parser ()

starParser = () <$ symbol "*"

intTyParser :: Parser Type

intTyParser = IntTy <$ reserved "int"

fpTyParser :: Parser Type

fpTyParser = DoubleTy <$ reserved "double"

namedTyParser :: Parser Type

namedTyParser = f <$> (optionMaybe (reserved "struct")) <*>

identParser

where

f Nothing n = NamedTy n

f _ n = NamedTy (Ident ("struct " ++ (_x n)))

-- For simplicity , we require in muC that the ‘const ’ keyword

comes before a type ,

-- specifier. In standard C, that ’s not necessary.

qualTyParser :: Parser Type -> Parser Type

qualTyParser p = f <$> (optionMaybe (reserved "const")) <*> p

where

f Nothing t = t

f _ t = ConstTy t

recTyParser :: Parser Type

recTyParser = RecTy

<$> braces (declParser ‘sepBy ‘ semi)

154 Appendix A. Haskell Implementation of µC

<*> identParser

declParser :: Parser Decl

declParser = Decl <$> tyParser <*> identParser

exprParser :: Parser Expr

exprParser = buildExpressionParser table baseExprParser

where

table =

[[Prefix (reservedOp "*" >> return Deref)]

, [Prefix (reservedOp "&" >> return AddrOf)]

, [Infix (reservedOp "/" >> return (BinExpr Divide))

AssocLeft]

, [Infix (reservedOp "+" >> return (BinExpr Add))

AssocLeft]

, [Infix (reservedOp "||" >> return (BinExpr Or))

AssocLeft]

, [Infix (reservedOp "=" >> return (BinExpr Assign))

AssocLeft]]

baseExprParser :: Parser Expr

baseExprParser = f <$> fldAccParser <*> (many (reservedOp "->"

*> identParser))

where

f fld xs = foldr (\ x acc -> FldAcc acc x) fld xs

fldAccParser :: Parser Expr

fldAccParser = f <$> primExprParser <*> option id fldAcc

where

f x expr = expr x

fldAcc = flip FldAcc <$> (reservedOp "->" *> identParser)

intParser :: Parser Lit

intParser = IntLit <$> (fromInteger <$> integer)

fpParser :: Parser Lit

fpParser = DoubleLit <$> float

primExprParser :: Parser Expr

A.28. The Driver of our Compiler 155

primExprParser = NumLit <$> (try fpParser <|> intParser)

<|> Var <$> identParser

stmtParser :: Parser Stmt

stmtParser = RetStmt <$> (reserved "return" *> exprParser)

<|> try (DeclStmt <$> declParser)

<|> ExprStmt <$> exprParser

stmtListParser :: Parser [Stmt]

stmtListParser = braces (stmtParser ‘endBy ‘ semi)

identParser :: Parser Ident

identParser = Ident <$> identifier

A.28 The Driver of our Compiler

The driver of µC’s compiler (and other supporting code).

-- Copyright (c) 2018 Leandro T. C. Melo (ltcmelo@gmail.com)

-- License: GPLv3

-- This implementation focus readability and formalism.

{-# LANGUAGE NamedFieldPuns #-}

import Control.Monad

import Control.Monad.Except

import Control.Monad.State

import Data.List

import Data.Map (Map)

import Data.Set (Set)

import qualified Data.List as List

import qualified Data.Map as Map

import qualified Data.Set as Set

import Debug.Trace

import System.Environment

import System.Exit

import System.IO

156 Appendix A. Haskell Implementation of µC

import Text.ParserCombinators.Parsec

import Text.ParserCombinators.Parsec.Expr

import Text.ParserCombinators.Parsec.Language

import qualified Text.ParserCombinators.Parsec.Token as Token

import qualified Text.PrettyPrint.HughesPJ as PP

main :: IO ()

main = do

putStrLn "compile muC program"

args <- getArgs

case args of

[file] -> do

src <- readFile file

src ’ <- compile src

putStrLn $ "\n\n" ++ src ’

let (name , _) = break (== ’.’) file

writeFile ("new_" ++ name ++ ".c") src ’

_ -> error "invalid argument"

compile :: String -> IO (String)

compile src =

case parseSource src of

Left err -> return err

Right p -> do

debug "AST" (show (fmt 0 p))

let m = buildLattice p (M $ Map.empty)

debug "lattice of shapes" (show $ ppM m)

k <- generateConstraints p m

debug "K" (show $ ppK k)

let

phi_i = Map.empty

psi_i = Map.empty

theta_i = (Map.fromList [(hat IntTy , IntTy),

(hat DoubleTy , DoubleTy)])

cfg = Config

A.28. The Driver of our Compiler 157

phi_i

psi_i

theta_i

k

[] [] [] []

cfg ’@(Config { phi , psi , theta }) <- solveConstraints k

cfg

debug "final config" (showConfig cfg ’)

let ok = validateSemantics (phi , psi , theta) k

debug "semantics" (if ok then "OK" else error "does NOT

hold\n")

let ts = verifyTyping cfg ’ Map.empty p

debug "typing" ("OK")

let preamble = rewriteInC (theta Map.\\ theta_i)

src ’ = preamble ++ src

return src ’

-- | Rewrite inferred types to their C form. This function is

simplified.

-- Check PyscheC for a complete implementation.

rewriteInC :: Map TypeId Type -> String

rewriteInC theta =

let

p (tid@(TypeId id), RecTy _ _)

| "struct " ‘isPrefixOf ‘ id = False

| otherwise = True

p (tid@(TypeId id), t)

| "const " ‘isPrefixOf ‘ id = False

| "*" ‘isSuffixOf ‘ id = False

| tid == (hat t) = False -- Duplicate: self -definition.

| otherwise = True

filtered = filter p (Map.toList theta)

print (t1, t2) acc = "typedef " ++

PP.render (ppC t2) ++ " " ++

158 Appendix A. Haskell Implementation of µC

PP.render (ppC t1) ++ ";\n" ++ acc

tydefs = foldr print "" filtered

in

(rewriteInC ’ theta) ++ tydefs

rewriteInC ’ :: Map TypeId Type -> String

rewriteInC ’ theta =

let print ’ (RecTy _ (Ident x)) = "typedef struct " ++ x ++ "

" ++ x ++ ";\n"

print ’ (PtrTy t) = print ’ t

print ’ (ConstTy t) = print ’ t

print ’ _ = ""

print (tid@(TypeId id), t) acc

| "struct " ‘isPrefixOf ‘ id = PP.render (ppC t) ++ ";\n"

| otherwise = print ’ t ++ acc

in foldr print "" (Map.toList theta)

	Obrigado! Thank you! Danke!
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Discovering the Intricate Type System of C
	1.2 The Contributions of This Work
	1.3 A Brief Roadmap for This Thesis

	2 Parsing Ambiguous Syntax
	2.1 Properties of an Ambiguous-Program AST
	2.2 From an Unambiguous AST Onwards

	3 The C Language and Constraints
	3.1 The Definition of C
	3.1.1 Programming Style

	3.2 The Syntax of C Constraints
	3.3 The Semantics of C Constraints
	3.4 Syntax Directed Constraint Generation
	3.4.1 A Lattice of Shapes

	3.5 The Type System of C

	4 Translating Constraints into Types
	4.1 Subtyping and Unification
	4.1.1 A Two-Phase Unification Approach

	4.2 A Stage-based Solver
	4.2.1 Preprocessing
	4.2.2 1st Unification Round
	4.2.3 2nd Unification Round
	4.2.4 Membership Normalization
	4.2.5 Record Composition
	4.2.6 Insufficient Information and De-orphanization

	4.3 Typing a Reduced C Program

	5 An Overview of PsycheC
	5.1 The C Language
	5.1.1 Unexpanded Macros
	5.1.2 Variadic functions and generic selections
	5.1.3 Arrays x pointers, functions x function pointers
	5.1.4 Miscellanea

	5.2 A Glimpse of Dynamic Semantics
	5.3 Empirical Evaluation
	5.3.1 Reconstructing Header Files
	5.3.2 Enabling Static Analyses
	5.3.3 Improving Static Analyses
	5.3.4 Supporting Software Testing
	5.3.5 Extracting Data-Structures

	6 Related Work
	6.1 Parsing of Incomplete Sources
	6.2 Type inference
	6.3 Unification and Subtyping
	6.4 The Type System of C and Semantics

	7 Final Thoughts
	7.1 Future Work

	Publications
	Bibliography
	A Haskell Implementation of C
	A.1 The Syntax of C
	A.2 The Constraints Language
	A.3 The Substitutions
	A.4 The type-id of a Type
	A.5 The Mappings , , and
	A.6 The Semantics of Constraints
	A.7 The Type Predicate of Constraints Semantics
	A.8 The Constraint Generators
	A.9 The build synonym Auxiliary Generator
	A.10 The Classification of Expressions
	A.11 The keep or drop and select Auxiliary Generators
	A.12 The Unifications Algorithms Uc and Us
	A.13 The relax Function
	A.14 The Solver Configuration and Driver
	A.15 The Preprocessing Stage of the Solving Process
	A.16 The 1st Unification Round of the Solving Process
	A.17 Functions splitWob and orderSub
	A.18 The 2nd Unification Round of the Solving Process
	A.19 The Membership Normalization Stage of the Solving Process
	A.20 The Field Convergence Algorithm
	A.21 The Record Composition Stage of the Solving Process
	A.22 The De-orphanization Stage of the Solving Process
	A.23 The Complete Solver Algorithm
	A.24 The Typing Rules
	A.25 Supporting Functions sc and ari
	A.26 The Pretty Printing of the Output
	A.27 The C Parser
	A.28 The Driver of our Compiler

