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Resumo

O surgimento de câmeras pessoais portáteis de baixo custo, combinado com a alta
qualidade dos sensores e a quase ilimitada capacidade de armazenamento em sites de
compartilhamento de vídeos despertou um crescente interesse pelos vídeos em primeira
pessoa. Tais vídeos são geralmente compostos de gravações de longa duração sem qual-
quer edição, capturadas por um dispositivo acoplado ao corpo do gravador, o que os
tornam tediosos e visualmente desagradáveis de assistir. Com isso, surgiu a necessi-
dade de prover acesso rápido à informação neles contida. Para suprir essa necessidade,
esforços vem sendo aplicados para o desenvolvimento de técnicas como Hyperlapse,
na qual o objetivo é acelerar o vídeo em primeira pessoa criando um vídeo reduzido
visualmente agradável de se assistir, e Hyperlapse Semântico, que além de acelerar o
vídeo, cria ênfase em trechos importantes, dado algum critério de semântica previa-
mente definido. Contudo, o método estado da arte em Hyperlapse Semântico, Semantic
Fast-Forward and Stabilized Egocentric Video (FFSE), negligencia o grau de importân-
cia da informação relevante, considerando apenas se a mesma é importante ou não.
Outras limitações do método FFSE são o número de parâmetros, a escalabilidade no
número de características visuais, e a mudança brusca nos fatores de aceleração en-
tre segmentos de vídeo consecutivos. Nesta tese, propomos uma metodologia livre de
parâmetros baseada em Codificação Esparsa para acelerar vídeos em primeira pessoa
de forma adaptativa e enfatizar as partes relevantes através de uma abordagem multi-
importância. O uso da abordagem proposta resultou na criação de vídeos reduzidos
mantendo uma maior quantidade de informação semântica, com menos transições br-
uscas nas taxas de aceleração, e mais suaves em relação ao resultado do método FFSE.

Palavras-chave: Vídeo em primeira pessoa, Aceleração semântica, Codificação es-
parsa, Problema da Reconstrução Mínima Esparsa.
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Abstract

The emergence of low-cost, high-quality personal wearable cameras combined with the
unlimited storage capacity of video-sharing websites have evoked a growing interest
in First-Person Videos. Such videos are usually composed of long-running unedited
streams captured by a device attached to the user body, which makes them tedious
and visually unpleasant to watch. Consequently, rise the need to provide quick access
to the information therein. To address this need, efforts have been applied to the
development of techniques such as Hyperlapse and Semantic Hyperlapse, which aims
to create visually pleasant shorter videos and emphasize semantic portions of the video
respectively. The state-of-the-art Semantic Hyperlapse method FFSE, negligees the
level of importance of the relevant information, by only evaluating if it is significant or
not. Other limitations of FFSE are the number of input parameters, the scalability in
the number of visual features to describe the frames, the abrupt change in the speed-up
rate of consecutive video segments. In this dissertation, we propose a parameter-free
Sparse Coding based methodology to adaptively fast-forward First-Person Videos, that
emphasize the semantic portions applying a multi-importance approach. Experimental
evaluations show that the proposed method creates shorter version video retaining
more semantic information, with fewer abrupt transitions of speed-up rates, and more
stable final videos than the output of FFSE.

Palavras-chave: First-person Videos, Semantic Fast-forward, Sparse Coding, Mini-
mum Sparse Reconstruction Problem.
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Chapter 1

Introduction

The WearCam, introduced in the nineties, is the precursor of what we know as wearable
cameras [Mann, 1998]. Despite being a functional product, the general public looked
at the WearCam and all other wearable devices as function-less mechanisms with the
strict purpose of acquiring specific data. Over the last couple of decades, technological
advances in integrated circuits technology dropped the cost and the power consump-

Wearable Computers (1980s) WearCam (1990s) Modern Wearable Cameras

Figure 1.1. Wearable devices evolution along time. Left column: Steve Mann,
known as the first cyborg, wearing his computers in the 1980s. Middle column:
WearCam introduced in the 1990s and referenced on the 15th annual conference on
Computers, Freedom & Privacy 2005. Right Column: modern wearable cameras.
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2 Chapter 1. Introduction

Figure 1.2. Illustration of the Always-On operation mode and the wearable
camera’s first-person Point of View.

tion of high-definition sensors and high-performance processors. Another advantage
of these new devices is regarding the increase in the capacity of memories. Thanks
to these technological advances, wearable cameras are no longer particularly designed
for research or industry. Figure 1.1 depicts the evolutionary process of such devices to
the general public. Cameras such as GoPro™, Narrative Clip, Looxcie, Google Glass
becomes a successful worldwide product.

Differently from tape recorders, creating videos using modern wearable devices
is cost-less, since the user has no concern about photographic films or cassette tapes.
Moreover, the user interaction with these devices is the most distinct characteristic.
Hand-held cameras bound the user capacity to interact with objects and perform ac-
tions, while fixed cameras limit the capturing area. Handling the current wearable
devices is simple as pointing the camera and click the shutter button. Also, since the
device is attached to the user body, it keeps the hands free to interact with objects or
perform any action. Hereinafter we refer to this operation mode as Always-On. Usu-
ally, the attaching point is on the head or chest of the user, capturing unprecedented
long-running Point of View footages as depicted in Figure 1.2.

Statistics about Internet usage in 2017 announce that online videos represented
70% of global traffic. Recent studies predict that this number will strike 80% by
2022 [Traffic-Inquiries, 2018]. Not only are Internet users watching more online video,
but they are also recording themselves and producing a growing number of videos for
sharing their day-to-day life routine. As pointed by del Molino et al. [2016], due to
the number of videos and their length, the recorder may never pay attention to the
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majority of recorded moments. Even highly significant moments will be lost along with
everyday activities which do not merit recording.

Therefore, this massive increase in the amount of data makes arise the need
for organizing and providing quick access to the information in First-Person Videos.
Nowadays, this problem is on the verge of magnifying, with the technological advances
in energy consumption and data storage capabilities, soon there will be cameras running
all day. Manually handling such amount of information will be impractical.

From the MylifeBits [Gemmell et al., 2002] project in early 2000 until today,
the processing of video data remains as one of the most challenging tasks for lifel-
ogging. Tasks such as acquisition, storage, and the usage of a large amount of data
are particularly hard for video processing. Dealing with First-Person Videos is even
more challenge, once methods developed to Third-Person Videos cannot be successfully
applied to First-Person Videos [del Molino et al., 2016]. The unconcerned recording
introduces side effects, such as poor illumination, jerky transitions, and blurred images,
which are not treated by Third-Person Video algorithms.

Some Third-Person Video solutions were fine-tuned or completely reworked to ad-
dress First-Person Video challenges. Besides good results reported to specific domains,
those methods do not hold the high accuracy when applied in the wild. Examples of
these solutions are: Social Interaction [Fathi et al., 2012a; Yang et al., 2016; Lee et al.,
2012], Video Summarization [Potapov et al., 2014; Lu and Grauman, 2013; Gygli et al.,
2014; Zhang et al., 2016], Gaze estimation [Xu et al., 2015; Fathi et al., 2012b], Video
Fast-Forward [Okamoto and Yanai, 2014; Higuchi et al., 2017], visualization of 360◦

videos in normal field-of-view [Su et al., 2016].

1.1 Contextualization

The ubiquity of inexpensive shoot video devices, along with the lower costs of producing
and storing videos are giving unprecedented freedom to the people to create increasingly
long-running first-person videos. On the other hand, such freedom might lead the user
to create lengthy and tedious videos, which are hard to watch in their entirety. Making
a more in-depth analysis of the First-Person Video problems, we summarize the top-3
issues as: video length, monotonicity, and the non-use of professional practices and
equipment (Figure 1.3).

Video length and the monotonicity of First-Person Video are related to the
Always-On mode. By pressing the shutter button, the camera records every moment
of the user activity, even the more unattractive actions, e.g ., to tie shoelaces before
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36 min of motorcycling

27 min of jogging

35 min of war action

43 min of running

41 min of parade

Long duration Videos: Monotonous and repetitive sequences: Effects of amateur recording:

Figure 1.3. Illustration of the problems related to First-Person Video (zooming
to details). Left column: Videos with long duration. Middle column: monotonous
videos, the thumbnails are all visually similar to the current frames. Right column:
blur images and jerky scene transitions due to non-usage of professional equipment
and techniques.

running, or the coach instructions before boxing. Moreover, it keeps recording until the
button is pressed again, which is usually done when the activity ends. Daily activities
are typically lengthy and repetitive; hence the associated video is interminable and te-
dious. Moving to the third listed problem, the non-use of professional equipment and
techniques is more related to technical problems. The lack of proper illumination con-
dition, worry-less camera handling, and non-usage of stabilizer solution create videos
composed of blurred images and jerky scene transitions. Figure 1.3 presents examples
of the cited problems.

The problems mentioned above lead to major issues: visual discomfort for the
watchers [Bai and Reibman, 2016], and make difficult the process of extracting infor-
mation [Poleg et al., 2015]. A video that can not have information extracted and create
visual discomfort when watching is doomed to be forgotten. One manner to reverse
this condition is to provide quick access to the video information.

Accelerating the video is one approach for reducing the impact of video length
and monotonicity related problems. Although the fixed sampling is the most widely
used technique, including in commercial video players, it produces jerky results when
applied in First-Person Video [Poleg et al., 2015]. Due to the camera being attached
to the user body, combined with non-usage of professional equipment and techniques,
the egocentric videos incorporate the natural body movements of the camera wearer.
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During daily activities, e.g ., walk, pedal, row, and sew, body movements are periodic,
thus sampling at a fixed rate will increase its frequency turning the video unwatchable,
and even nauseating. Consequently, fast-forward egocentric video had attracted the
attention of researchers since 2014 when arose the first Hyperlapse works [Kopf et al.,
2014; Karpenko, 2014].

Hyperlapse techniques aim at producing fast-forward videos from selecting a sub-
set of aligned frames that maximize the visual smoothness. Despite being able to ad-
dress the shake effects of fast-forwarding First-Person Videos, these techniques handle
every frame as equally important which is a major weakness of these techniques [Kopf
et al., 2014; Poleg et al., 2015; Joshi et al., 2015; Halperin et al., 2017; Ogawa et al.,
2017]. In such long and monotonous video, some portions are undoubtedly more rele-
vant than others, either for a visual content or context. One example is the recording
of a graduation commencement, the welcome ceremony, taking diploma on the stage,
and the family greetings are visually more memorable moments comparing with the
commencement speech. Most of the Hyperlapse-based techniques have the characteris-
tic of skipping stationary frames. Thus, if relevant frames are visually similar or static,
hyperlapse methods could not include them in the fast-forwarded version, completely
neglecting the relevant information.

A central challenge is to highlight the meaningful parts of the videos without
losing the whole message that the video should convey. Although video summariza-
tion techniques [del Molino et al., 2016; Mahasseni et al., 2017] provide quick access
to videos’ information, they only return segmented clips or single images of the rele-
vant moments. By not including the very last and the following frames of a clip, the
summarization might lose the clip context [Plummer et al., 2017].

In the last couple of years, Semantic-based fast-forward methods for first-person
videos have emerged as promising and effective approaches to deal with the tasks
of visual smoothness and semantic highlighting of first-person videos. These works
consider the semantic content of frames along with visual features to execute the frame
sampling process [Okamoto and Yanai, 2014; Ramos et al., 2016; Yao et al., 2016;
Higuchi et al., 2017; Lai et al., 2017; Lan et al., 2018]. Different acceleration rates were
applied to semantic and non-semantic segments creating the emphasis effect. The result
is the whole video being accelerated in a manner that segments containing semantic
content are played slower, even in slow-motion, than the remainder of the video.

To reach both objectives, visual smoothness and semantic highlight, some of these
techniques describe the video frames and their transitions by features, then formulate
an optimization problem using the combination of these features. Consequently, the
computation time and memory usage are impacted by the number of features used,
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since the search space grows exponentially. Therefore, such Semantic Hyperlapse meth-
ods are not scalable regarding the number of features.

1.2 Problem Definition

The problem addressed by this dissertation is the selection of frames with constraints
regarding visual smoothness, temporal continuity, and semantic load of the original
video. We break this problem in the following specific problems related to existing
Semantic Hyperlapse works:

1. Semantic information has been treated as a binary classification problem. Video
segments are classified as semantic if they are composed of frames with semantic
score higher than a threshold value.

2. Concept of semantics is defined in a ad hoc and restrict manner, by just con-
sidering the response of a defined and existing classifier combined with visual
attributes.

3. Abrupt transition of acceleration rates assigned to following segments.

4. The non-scalability and the efficiency of the frame sampling processing, since
they are based on an optimization modeling. Describe the frame using a high-
dimensional feature vector leads to an uncontrolled scenario.

1.3 Dissertation Statements

In this dissertation, we aim at creating an efficient and visually pleasant multi-
importance Semantic Hyperlapse for First-Person Videos preserving the video temporal
continuity. The definition of visually pleasant multi-importance Semantic Hyperlapse is
a video fast-forward technique designed to tackle the challenging production of smooth
accelerated video without significant semantic loss, and capable of emphasizing video
segments regarding their level of relevance.

The following questions, related to the problems presented in Section 1.2, guide
our discussion through this dissertation:

1. How to approach the semantic definition to create multi-level of relevance to the
frame content? Does this new approach lead to an improvement of amount of
retained semantic in the accelerated video?
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2. Is it possible to bind the semantic definition to the user preference?

3. Can Abrupt acceleration rate transitions present in semantically accelerated video
be addressed by smoothing the speed-up rates assigned to consecutive segments?

4. How to make the frame sampling process scalable regarding the number of fea-
tures used to describe the frames and their transitions?

We state that a Semantic Hyperlapse technique could be designed using sparse
coding theory to perform the frame sampling in a time efficient manner. Following we
list statements matching each specific questions listed in Section 1.3:

1. The multi-importance Semantic Hyperlapse is achieved by addressing the prob-
lem of semantic definition in a non-binary manner, creating a video semantic
profile that frames with the highest scores will have the highest values. The
multi-importance effect could be reached applying speed-up rates inversely pro-
portional to semantic levels.

2. A machine learning based method trained from users’ data tie the definition of
semantics to the users’ preferences.

3. Create an intermediary segment between two consecutive segments and apply a
speed-up rate defined by the average of the two original segments smooths abrupt
changes of acceleration rates.

4. Model the adaptive frame sampling step of the Hyperlapse as a Weighted Mini-
mum Sparse Reconstruction problem and solve using a weighted sparse coding-
based technique turns the frame sampling scalable in the number of features used
to describe the frames. Assigning lower weights to frames, and consequently, over-
sampling frames in regions of high camera movement create fast-forwarding video
composed of smoothing transitions.

1.4 Contributions.

To evaluate the dissertation statements, we propose a novel methodology capable of:

i. Analyzing, in a multi-level approach, the semantic content of a video to perform
the semantic extraction, the temporal segmentation, and assigning of speed-ups
rates to the video portions.
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ii. Refining the concept of semantic in a video considering what is important to the
user.

iii. Smoothing speed-up transitions between consecutive video segments.

iv. Performing sparse sampling-based adaptive frame selection to address the prob-
lem related to abrupt camera motions while not increasing the processing time.

Additional contributions of our approach are: i) a high-dimensional descriptor to
better describe the frames and the video transitions. ii) frame weighting processing
regarding the camera movement to address the abrupt camera motions related problem.
iii) creation of three datasets of First-Person Videos, the first dataset is composed
of a set of short-running videos (∼ 5 minutes) with a controlled amount of semantic
information; the second dataset is a labeled 80-hour multimodal (3D Inertial Movement
Unit, GPS, and RGB-D camera) set of lengthy first-person videos (∼ 1 hour) covering
a wide range of activities such as video actions, party, beach, tourism, and academic
life. Each frame is labeled with respect to the activity, scene, recorder ID, interaction,
and attention. iv) an exhaustive ablation analysis demonstrating the effect of applying
each of the proposed methodology steps and algorithms. The third dataset is a set of
frames from YouTube egocentric videos labeled with respect to two classes: videos with
high number of likes, and videos recorded in boring and monotonous places. The two
first datasets were used to perform the experimental evaluation, while the last dataset
was used to train a Convolutional Neural Network.

The results of this dissertation were published on:

• Michel M. Silva, Washington L. S. Ramos, Felipe C. Chamone, João P. K. Fer-
reira, Mario F. M. Campos, Erickson R. Nascimento. Making a long story
short: A Multi-Importance fast-forwarding egocentric videos with the
emphasis on relevant objects, Journal of Visual Communication and Image
Representation (JVCI), 2018.

• Michel M. Silva, Washington L. S. Ramos, João P. K. Ferreira, Felipe C. Cha-
mone, Mario F. M. Campos, Erickson R. Nascimento. A Weighted Sparse
Sampling and Smoothing Frame Transition Approach for Semantic
Fast-Forward First-Person Videos, IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

• Michel M. Silva, Washington L. S. Ramos, João P. K. Ferreira, Mario F. M.
Campos, Erickson R. Nascimento. Towards Semantic Fast-Forward and
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Stabilized Egocentric Videos, First International Workshop on Egocentric
Perception, Interaction, and Computing at European Conference on Computer
Vision (ECCVW), 2016.





Chapter 2

Related Work

In this chapter, we first present the taxonomy used to refer techniques, then we list
works related to Video Summarization, Video Fast-Forward, Hyperlapse, and Semantic
Hyperlapse.

Taxonomy. Many Computer Vision-related techniques output a video. In this dis-
sertation, we focused on techniques that produce a shorter video resuming the narrated
story in a given input video. The following taxonomy characterizes these techniques
according to the constraints imposed during the frame sampling process, which directly
implies in the output video.

Video Summarization. The term associated with techniques that present relaxed
constrains, or none, temporal continuity and visual smoothness restrictions. In
general, the output video is a set of temporally disconnected video segments
(skims).

Video Fast-Forward. This term refers to techniques that have tight temporal conti-
nuity restrictions. Output videos are composed of evenly spaced frames in time
resulting of a uniform sampling approach.

Hyperlapse. The term used to refer techniques which perform frame sampling with
balanced restrictions between visual smoothness and temporal continuity. To ad-
dress both imposed constraints, these methods perform adaptive frame sampling
process producing temporally continuous and visually pleasant results.

Semantic techniques. This term is related to techniques that perform the frame
sampling process concerning an extra constraint of emphasizing segments con-
taining semantic content. Given a defined semantic, the output is a video where

11
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segments containing this semantic content are emphasized by a visual effect, e.g .,
applying a lower speed-up rate, playing the segment in slow motion, applying
zoom-in on the image region containing the semantics, etc.

In the last years, video processing to resume the story of First-Person Videos
has been extensively studied, especially the video summarization problem. del Molino
et al. [2016] conducted a broad study over these techniques, and one of the topics
was the fundamental differences between Video Summarization and Hyperlapse tech-
niques. Hyperlapse methods are focused on creating a visually smooth and temporally
continuous fast-forward version of the input video, i.e., the video is sped up entirely not
removing any clips, unless there are stationary camera moments. Video summarization
methods, on the other hand, are focused on creating compact visual summaries capable
of presenting the most discriminative and/or the most enlightening parts of the video.
These summaries do not deal with temporal continuity or visual smoothness restric-
tions since they are usually presented as video skims, or key-frame collection. Although
the focus of this dissertation is Semantic Hyperlapse for First-Person Videos, we cover
highlighted works in related areas such as Video Summarization, Video Fast-Forward,
and Hyperlapse to present the big picture of the current literature.

2.1 Video Summarization

The ultimate goal of summarization techniques is to produce a compact version of the
video keeping the essential information by either creating a static storyboard, where
some selected frames resume the relevant video content [Lee et al., 2012; Song et al.,
2016; Marvaniya et al., 2016], or a dynamic video skimming, where selected clips from
the original stream are collated to compose the output video [Gong and Liu, 2000; Ngo
et al., 2003; Zhang et al., 2016].

As far as egocentric videos are concerned, the following works have been devel-
oped recently [Lee et al., 2012; Lu and Grauman, 2013; Lin et al., 2015; Xiong et al.,
2015; Yang et al., 2016]. Lee et al. [2012] exploited interaction level, gaze, and ob-
ject detection frequency as egocentric properties to create a storyboard of keyframes
with important people and objects. Lu and Grauman [2013] produced video skims as
summaries instead of static keyframes. After splitting the video into sub-shots, they
computed the mutual influence of objects and estimated the subshots importance to se-
lect the optimal chain of subshots. Lin et al. [2015] designed a context-based highlight
detection algorithm based on structured Support Vector Machine (SVM) to generate
video highlights. Xiong et al. [2015] proposed a summarization method that fits in the
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user preference performing a story-based semantic retrieval in a storyline representa-
tion of the video. Gygli et al. [2015] selected the best subset of skims by combining
objectives such as interestingness, representativeness, and uniformity.

Recent approaches are based on highlight detection [Lin et al., 2015; Bettadapura
et al., 2016; Yao et al., 2016] and vision-language models [Sharghi et al., 2017; Plummer
et al., 2017; Panda and Roy-Chowdhury, 2017]. Bettadapura et al. [2016] proposed an
approach for identifying picturesque highlights. They used composition, symmetry and
color vibrancy as scoring metrics and leverage Global Positioning System (GPS) data
to filter frames by the popularity of the location. Plummer et al. [2017] presented
a semantically-aware video summarization. They optimize a linear combination of
visual features, i.e., representativeness, uniformity, interestingness, and vision-language
objectives to select the best subset of video segments. Despite these techniques create
summaries with relevant parts of egocentric videos, they produce, at best, temporally
discontinuous video sub-shots, cutting out semantically non-relevant parts of the input
video. However, these cut segments are crucial to holding the video context [Poleg
et al., 2015].

Cong et al. [2012] formulated the problem of video summarization as a dictionary
selection problem. They proposed a novel model to either extract keyframes or generate
video skims using sparsity consistency. Zhao and Xing [2014] proposed a method based
on online dictionary learning that generates key-frames collection summaries on-the-
fly. They used sparse coding to eliminate repetitive events and create a representative
short version of the original video. Sparse Coding has also been successfully applied to
many varieties of vision tasks [Wright et al., 2009; Zhao et al., 2011; Cong et al., 2012;
Zhao and Xing, 2014; Oliveira et al., 2014; Mei et al., 2014, 2015a]. The main benefit
of using sparse coding for frame selection is that selecting a different number of frames
does not incur an additional computational cost. This dissertation differs from sparse
coding video summarization since it produce an output video handling the shakiness
in the transitions via a weighted sparse frame sampling solution. Also, it is capable of
dealing with the temporal gap caused by discontinuous skims.

2.2 Hyperlapse and Video Fast-Forward

Video Fast-Forward and Hyperlapse techniques follow a multipath pipeline as depicted
in Figure 2.1. The disjunction point between these two classes of methods is the type
of frame sampling performed. Fast-Forward techniques perform a Uniform Frame Sam-
pling while Hyperlapse methods run an Adaptive Frame Selection. Uniform Sampling
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Figure 2.1. Steps performed by Video Fast-Forward methodologies. *Hyper-
lapse methods perform Adaptive Frame Sampling while Fast-Forward methods
run uniform Sampling.

is a frame selection method that follows a tight temporal constraint of selecting every
Fd-th frame of the video, where Fd is the required speed-up rate. We list the simplic-
ity and time efficiency as the primary advantages of the uniform sampling. However,
visual results become jerky when applied to First-Person Videos. Adaptive Selection
follows the temporal continuity and also visual smoothness constraints during the frame
sampling process which is guided by a maximization function, usually related to the
transition stability on the produced video. Output videos of both Video Fast-forward
and Hyperlapse techniques are composited of the frames selected in Frame Sampling
step directly or after applying a Video Stabilization processing.

Hyperlapse strategies for First-Person Videos can be divided into two categories:
3D model approach, where methods aim at firstly creating the whole environment
structure, and then finding a virtual optimal camera path through the scene to create
videos composited of smooth transitions; and, 2D approach, which includes methods
focused on finding an optimal set of frames based on visual smoothness criterion.

Methods applying the 3D model approach have the advantage of choice the cam-
era poses, once it is regarding to a virtual camera. However, to calculate the virtual
camera path it is necessary reconstruct the recorded surroundings first, which leads to
massive computational complexity, and needs a high scene parallax. A representative
member of the 3D model category is the work of Kopf et al. [2014]. Their approach
consists of three stages: i) scene reconstruction via structure-from-motion and per-
frame proxy geometries; ii) path planning by optimizing a 6D virtual camera path;
iii) and image-based rendering via projection, stitching, and blending of selected input
frames. Despite impressive results achieved by this technique, it requires substantial
scene overlap among frames and presents high computational cost. Moreover, if the
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scene parallax is small, it generates numerous artifacts. The authors used temporal seg-
mentation due to memory restriction, segmenting the video to make the computation
feasible.

The 2D based methods avoid the computational expensive 3D reconstruction
process by performing adaptive sampling of the frames in the input video [Karpenko,
2014; Poleg et al., 2015; Joshi et al., 2015; Ramos et al., 2016; Halperin et al., 2017].
Different to the 3D-based works that optimize the frame selection by creating a virtual
camera path, 2D methods perform the frame sampling using real camera poses only,
which lead to shakier videos when compared to 3D-based results.

The work of Karpenko [2014] performs fixed frame sampling, therefore by follow-
ing our taxonomy the work is a Fast-Forward technique. The authors inferred camera
orientations from gyroscope data, then fed into a video filtering pipeline to estimate
steady frames and stabilize the final video. Gyroscope data are gathering from the
Inertial Measurement Unit (IMU) of the capture device and used to remove the un-
wanted hand and body movements, to posterior filtering of the body shake from the
camera movements. This technique has the immediate restriction of needing data from
external sensors.

Poleg et al. [2015] proposed the Adaptive Frame Selection methodology by mod-
eling the sampling as a graph shortest path problem. The authors proposed to create
a graph from the input video taking the frames as nodes and edges as the transitions
from one frame to another. These transitions are modeled as a linear combination of
the shakiness, speed of motion, and appearance between pairs of frames. The Adap-
tive Frame Sampling is performed by running a shortest path algorithm on the created
graph. Their final video is composed of those frames related to nodes composing the
shortest path.

Recently, Halperin et al. [2017] extended the approach present in the work of Po-
leg et al. [2015] with an expansion of the field of view of the output video. They
created wide-view frames using the mosaicking technique on input frames of one or
more egocentric videos. A stabilization process is applied to created frames by mov-
ing a cropping area compensating the frame movement. A drawback of graph-based
methods is the number of parameters to be set by the user. Using default values does
not produce good results, as we discuss in Section 4.

Microsoft Hyperlapse [Joshi et al., 2015] is the state-of-the-art Hyperlapse method
as far as visual smoothness is concerned. The authors described the frame transitions
by feature tracking techniques to recover 2D camera motion. Further, they optimally
select the set of frames via dynamic-time-warping regarding the desired target speed-up
and the smoothness in frame-to-frame transitions jointly. Finally, they perform a 2D
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video stabilization based on homography transformation to produce the final video.

Wang et al. [2018] reinforced the importance of accelerating First-Person Videos
and expanded the borders of the applications. The authors showed how to create a hy-
perlapse video based on multiple spatially-overlapping sources. Using multiple sources,
the final video can be created synthesizing virtual routes created from paths traveled by
distinct cameras. Visual pleasant result is achieved by performing graph-based adap-
tive frame sampling combined with video stabilization and appearance smoothing.

With the spread in the number of omnidirectional devices, Ogawa et al. [2017]
and Rani et al. [2018] proposed fast-forward methods proper to 360◦ videos. Stable
results were achieved by performing an adaptive frame sampling process combined with
camera rotations into the omnidirectional sphere.

Although these solutions have succeeded in creating short and watchable versions
of long first-person videos, they often remove segments of high relevance to the user,
since the methods handle all frames as having the same semantic relevance.

2.3 Semantic Hyperlapse and Fast-Forward

Unlike Hyperlapse and Fast-Forward techniques, which the goal is to create a video
with the required number of frames and optimize the visual smoothness in the case of
Hyperlapse, Semantic Hyperlapse techniques also deal with the constraint of empha-
sizing video portions containing relevant content.

To the best of our knowledge, Okamoto and Yanai [2014] proposed the pioneering
semantic technique by fast-forwarding a guidance video with emphasis on selected
parts of the route. The authors considered street corners and pedestrian crosswalks
as semantic since the path can be comprehended by the actions performed on these
checkpoints. The camera motion was used to identify the street corners and an SVM
classifier was trained to detect the pedestrian crosswalks. The authors temporally
segmented the videos, fed each segment into the learning method and applied different
speed-ups based on the classification result. Following the processing for each segment,
frames were then uniformly sampled concerning to calculated speed-up. This way, the
methodology dynamically controls the video playing speed. Conversely to traditional
Fast-Forward method, they are not concerned about achieving a required speed-up rate
in the final video.

After the arising of Hyperlapse techniques in 2014, Ramos et al. [2016] designed
the first Semantic Hyperlapse approach producing visually smooth fast-forward videos
from First-Person Video with emphasis on a given semantic. The proposed method
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consists of creating a video profile based on the frame relevance, segmenting the video
w.r.t. the created semantic profile, calculating speed-up rates for each segment in a
manner that the semantic segments are played slower than the non-semantic ones, and
performing graph-based adaptive frame sampling. They assigned semantic scores for
each frame of the video through a liner combination over terms related to face detection
and attributes such as size, confidence, and centrality.

Silva et al. [2016] extended the work of Ramos et al. [2016] by improving the
temporal slicing strategy with a smarter thresholding method. Further, the authors
introduced a stabilization process specially designed to fast-forward video. The main
contributions of this stabilization method were to apply weighted homography trans-
formations and image stitching using frames dropped during the sampling process.
They also defined a new instability metric and performed a user study to demonstrate
that the results are more consistent with the participants’ opinion than the metric used
so far. Finally, the authors proposed a semantically controlled and labeled dataset to
evaluate fast-forward videos regarding to semantic.

As mentioned early, the main problem of graph-based frame sampling methods
is the number of free parameters to be set by the user. Aiming to address this issue,
Ramos [2017] proposed a bio-inspired automatic parameter setting methodology. The
author extended the work of Silva et al. [2016] by proposing a two-step automatic
parameter setting. The first step set the regularization terms of the equation that
calculate the speed-up rates assigned to each type of segment, while the second step
set the coefficients related to each term of the edge weighting during the graph modeling
process. In this dissertation, we propose to create a multi-importance approach. Rather
than labeling the segments as semantic or non-semantic as done so far, we aim to create
a methodology to assign levels of relevance into a multiple importance scale. Thus,
the segments can be emphasized according to their importance and not as a binary
problem. Further, we discuss the non-scalability regarding the video length and the
number of features used to represent frames and their transitions. Then, we present a
sparse-based frame sampling methodology to address the scalability issues.

Yao et al. [2016] proposed to learn the relationship between paired highlights
and non-highlights segments to create a summary of the video. Although the work
is focused on video summarization, it has a twofold output, a video skims of sport
highlight moments, and a semantic video fast-forward emphasizing sport highlight
moments. The authors emphasized relevant segments by playing them in slow motion
while the remaining of the video is played in a fast-forwarded manner. It is noteworthy
that the authors assume the length of highlight segments smaller than the length of non-
highlight segments. This assumption does not hold for videos such as the ‘Biking 50p’,
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‘Driving 50p’ and ‘Walking 75p’ presenting in the Semantic Dataset proposed by Silva
et al. [2016]. Similar to the work of Okamoto and Yanai [2014], the authors applied a
temporal segmentation due to the input length of the learning method. Each created
segment had assigned a speed-up rated regarding its length and predicted relevance,
creating the emphasis effect. The frame selection adopted by the authors is uniform
frame sampling. Therefore, by following the proposed taxonomy the work of Yao et al.
[2016] is a Semantic Fast-Forward technique. When compared to the work of Yao et al.
[2016], the methodology proposed in this dissertation is lighter and presents a more
modular approach since we model the semantic and identify segments boundaries using
classifier confidence and threshold. Furthermore, our segmentation strategy is capable
of handling different configurations for the highlights lengths.

Higuchi et al. [2017] proposed a video fast-forwarding interface to assist users in
tasks of finding important events on First-Person Videos. The system allows the user
to select relevant egocentric cues, which are used to create an elastic timeline playing at
original speed segments of the video containing the selected cues. The remaining of the
video is played faster given a speed-up set by the user. The acceleration of non-relevant
segments is based on uniform sampling, while the egocentric cues are ego-motion and
detection of hand and people.

Lai et al. [2017] proposed a Semantic-driven Hyperlapse technique to 360◦ videos.
The first step was to convert the video from 360◦ full panoramic to the normal field
of view. This conversion was focused on displaying the scene regions with higher
semantic content and visual saliency. The authors calculate the semantic content of a
frame based on objects detected using Convolutional Neural Network (CNN) and its
saliency, weighted by the user preference over a set of defined object. The semantic
score is then used to control the playback rate of the accelerated video. The scope of
the work of Lai et al. [2017] is slightly different from methods designed for First-Person
Videos. 360◦ videos see the world for every point of view at each camera pose, they
also do not present the user intention, e.g ., in an First-Person Video when an element
on the scene attracts the recorder’s attention this one will change his point of view to
look at it. This same behavior is not present in the 360◦ videos. From one 360◦ video,
a combinatorial number of normal field of view videos can be extracted.

Lan et al. [2018] proposed a learning method which learns visually what is relevant
in a video sequence and use this information to summarize an input video automatically.
The highlight of this video is to process frames online, as soon as a frame is presented
to the network, it is capable of determining how many frames will be jumped. It
is noteworthy that those techniques do not handle the suavity constraint, generating
shaky videos.
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In Table 2.3, we summarize the acceleration methods presented in Sec-
tions 2.2 and 2.3 by indicating the steps performed in a set of methodology steps,
the input data, and the efficiency of the sampling process. The non-semantic accelera-
tion techniques compose the top group of the table and the semantic ones the bottom
group.

Column HD shows the deficiency concerning method that performs Adaptive
Frame Sampling (column AFS) of handling High Dimensional feature vectors. The only
two methods capable of handling such feature vectors perform the uniform selection,
not an optimization-based frame sampling. Analyzing the table, we see that the work
of Lai et al. [2017] is the only Hyperlapse methodology which considers the semantic
content as a multi-level problem.

In this dissertation, we aim to create a novel methodology to produce semantic
hyperlapse of egocentric videos. The goal of the proposed methodology is to address
issues related to the existing works such as, treat the semantic analysis as a binary
problem, ad hoc semantic definition, and the scalability regarding the number of frames
and dimension of the feature vectors used to describe the frames. We model the
frame sampling step as a Minimum Sparse Reconstruction problem. To the best of
our knowledge, it is the first work to address this problem using Sparse Coding based
formulation. Other applications using Sparse Coding have achieved encouraging results
such as Image Compression [Romberg, 2008], Image Classification [Liu et al., 2015],
and Video Summarization [Mei et al., 2015b; Cong et al., 2012; Mei et al., 2014, 2015a].
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Table 2.1. This table the indicates methodology steps employed by each work
focused on video acceleration. Steps are described as: (SA) Semantic Analy-
sis, the values are: [7] not performed, [b] analyzed as binary problem, and [m]
analyzed using multi scale; (TS) Temporal Segmentation; (SE) Speed-up Esti-
mation; (AFS) Adaptive Frame Sampling; (VS) Video Stabilization. HD column
indicates which method is capable of handling High-dimensional Descriptor. SP
column stands for Sampling Performance, where the values are: [-] not available
(method which does not perform adaptive frame sampling); [p] poor (more than
1s per frame); and [r] regular (more than 1ms per frame), [g] great (less than 1ms
per frame). In the Input Video, FPV and FPVs stand for First-Person Video and
its plural form, respectively.

Methods
Methodology Steps Input

Video HD SP
SA TS SE AFS VS

Karpenko [2014] 7 7 7 7 X FPV 7 -
Kopf et al. [2014] 7 X 7 X X FPV 7 p
Poleg et al. [2015] 7 7 7 X 7 FPV 7 r
Joshi et al. [2015] 7 7 7 X X FPV 7 g
Halperin et al. [2017] 7 7 7 X X FPVs 7 r
Ogawa et al. [2017] 7 7 7 X 7 360◦ 7 r
Wang et al. [2018] 7 7 X X X FPVs 7 r
Rani et al. [2018] 7 7 7 X 7 360◦ 7 r

Okamoto and Yanai [2014] m X X 7 7 FPV 7 -
Ramos et al. [2016] b X X X 7 FPV 7 r
Silva et al. [2016] b X X X X FPV 7 r
Yao et al. [2016] m X X 7 7 FPV X -
Higuchi et al. [2017] b X 7 7 7 FPV 7 -
Ramos [2017] b X X X X FPV 7 r
Lai et al. [2017] m X X X X 360◦ 7 p
Lan et al. [2018] b 7 X 7 7 Any X -
Ours m X X X X FPV X g
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Methodology

In this chapter, we describe the proposed methodology to create smooth and continuous
fast-forward videos emphasizing the semantic contents of the original video in reduced
processing time. Our method consists of tree primary phases: i) Definition of Semantic
Segments; ii) Adaptive Frame Sampling; and iii) Output Video Producing.

Figure 3.1 depicts a schematic diagram of our methodology. Each frame of the
input First-Person Video is analyzed regarding its content creating a semantic video
profile – Figure 3.1-a. We segment the video into semantic and non-semantic segments
from the created semantic profile, and then, refine the semantic clips to create the
Multi-Importance approach. The Speed-up Estimation is performed to create an em-
phasis effect proportional to the video segment relevance – Figure 3.1-b (these three first
steps define the first phase of our methodology). The sparse sampling-based Adaptive
Frame Selection is modeled as an Minimum Sparse Reconstruction problem – Fig-
ure 3.1-c. The Smoothing Frame Transition step deals with discontinuities created by
the Minimum Sparse Reconstruction solution – Figure 3.1-d. Fill Gap Processing is an
additional step to avoid temporal discontinuities between video segments – Figure 3.1-
e. Steps (c), (d), and (e) compose the second phase of our methodology that selects
the frames to compose the accelerated video. Finally, we stabilize the created semantic
hyperlapse using the selected and non-selected frames – Figure 3.1-f – producing the
output video – Figure 3.1-g.

3.1 Definition of Semantic Segments

In this section, we cover the steps Semantic Analysis and Temporal Segmentation and
Speed-up Estimation depicted in Figure 3.1 (a) and (b), respectively. These methodol-
ogy steps describe how the frame content analysis is performed to create the semantic

21
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Figure 3.1. Overview of steps compositing the proposed sparse sampling-based
semantic hyperlapse methodology. Each frame is analyzed concerning its content
(a) creating a semantic profile of the input video. Following we perform a semantic
temporal segmentation of the created video profile (b). For each segment, a speed-
up rate is calculate regarding its relevance, and is performed a frame selection
process composed of the steps Sparse Frame Sampling (c) and Smoothing Frame
Transitions (d). The selected frames in each segment are then concatenated, and
the step of Fill Gap Processing is applied to tackle temporal discontinuities (e).
Finally, we stabilize (f) and compose the final semantic hyperlapse video (g).
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video profile, how this created profile is segmented, and the speed-up estimation for
each segment. We also discuss the proposed multi-importance temporal semantic seg-
mentation and speed-up estimation steps.

3.1.1 Semantic Analysis

Numerous questions arise when a work mention the term semantic, e.g ., “What is se-
mantic information? ”, “How do you define it? ”, and “Why do you consider something as
semantic? ”. These are legitimate inquiries, once semantics is an open-minded concept
that can take every meaning, e.g ., recognition of car objects or actions, identification
of people, places, scenes, sound patterns, or behavior anomalies.

In this dissertation, we first bound the definition of semantic in an ad hoc manner
to make clear the evaluation process present in Section Experiment (4.5.1). Follow-
ing, we demonstrate how to exploit the unrestricted scope of the term semantic and
extrapolate its definition to fit the users’ preference.

3.1.1.1 Ad hoc definition

The ad hoc definition is used to facilitate the evaluation process and guide the under-
standing of visual results. Thus, we employ state-of-the-art methods achieving accuracy
comparable to humans in simple tasks, e.g ., face and pedestrian detection.

This definition was initially proposed and formulated in the first Semantic Hy-
perlapse work [Ramos et al., 2016]. The semantic information was encoded by the
score function S : R → R composed of three components: i) the confidence of the ex-
tracted information, which is given by the face or pedestrian detector; ii) the centrality
of the region returned by the semantic detector, as the input is an egocentric video,
the authors considered the central area of the frame as having a higher relevance to
the viewer; and iii) the size of the semantic region, representing a higher probability of
interaction, once larger areas mean closer objects generally – Figure 3.2.

Let k be the k-th Region of Interest (ROI) returned by the semantic detector (red
boxes in Figure 3.2) for the frame fx of dimensions W ×H. To quantify the centrality
of ROI, we use a Gaussian mask centered at the frame fx with standard deviation
σ = min(W/2, H/2) – right image in Figure 3.2. Higher values are assigned to objects
closer to the central point of the frame. The semantic score is given by:

Sx =
∑
k∈fx

ck · ak ·Gσ(k), (3.1)
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Figure 3.2. Semantic Score calculated in an Ad Hoc manner. The scoring
function is based on the classifier confidence about the extracted information,
the size, and the centrality of the semantic region returned by the detector (The
values reported are symbolic).

where ak is the normalized area size in pixels of the k-th ROI and ck is the normalized
confidence returned by the classifier for ROI k. By using the classifier confidence, the
relevance is assigned proportionally to the reliability of the semantic information. The
last step is to apply a threshold value on ck to filter false positive detections,

ck =

ck, if ck > thresholdck
0, otherwise.

(3.2)

3.1.1.2 Users’ Preferences

The use of ad hoc definition of semantics is restricted and applications dependent
such as suspect identification for law enforcement. Aiming to spread the application
spectrum of Semantic Hyperlapse techniques to general usage, we propose a user-based
Semantic Extractor focused on learning the users’ preferences from personal data.

We propose a Convolutional Neural Network (CNN) model to predict the prob-
ability of users to visually enjoy an input frame based on data gathering from a video
web-sharing platform. Once the goal of this network is to rate the “coolness” of an
image, we analyze the input frame in its entirety, similar to the scene recognition prob-
lem. Therefore, the proposed architecture is based on the VGG16, a well-known CNN
to scene recognition. The network weights were instantiated using the model trained
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1 x 1 x 4096 1 x 1 x 2 Cool

Not-Cool{

Figure 3.3. CoolNet Convolutional Neural Network architecture fine-tunned
from VGG-16. The original VGG 1000-output layer of the Fully Connected
Network was replaced by a 2-output layer related to the “Cool” and “Not-
Cool” classes – highlighted by the dashed green box. (Image adapted from
https://www.cs.toronto.edu/~frossard/post/vgg16/vgg16.png)

on MIT Places205 dataset [Zhou et al., 2014], and the final 1,000-output layer of the
Fully Connected Network used to classify an image into the 1,000 VGG classes was
replaced by a 2-output layer with random weights. The CNN was then fine-tuned in
our domain to classify the input frame into “Cool” or “Not-Cool”, creating the CoolNet
– Figure 3.3.

Dataset. To create the training dataset representing the users’ interest, we gathered
videos and their respective statistics such views, likes, and dislikes, from the most ac-
cessed video web-sharing platform. Once the scope of dissertation is egocentric videos,
we collected videos from the YouTube8M Dataset [Abu-El-Haija et al., 2016] using the
query “GoPro”. Returned videos were ranked according to Equation 3.3 and frames of
the 150-top-ranked videos were selected to composite the Cool class.

V ideo_scoring =
views

(dislikes/likes)
. (3.3)

Analyzing the selected videos, we found out most of them are related to radical
sports and gorgeous landscapes. Therefore, to compose the negative class, from the list
of queries in YouTube8M Dataset, we picked labels with the opposite concept of nature
and sports, i.e., “Home Video”, “Mobile Home”, “Office”, and “House”. Then, frames
of the 150 tops ranked videos following Equation 3.3 composite the “Not Cool” class.
Finally, after removing the intros, editing effects, and blurred frames, the final dataset

https://www.cs.toronto.edu/~frossard/post/vgg16/vgg16.png
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contains a total of 940, 030 labeled images. This dataset is one of the contributions of
this dissertation, and it is publicly available.

Training. Starting from the model trained on MIT Places205 dataset, we performed
the fine-tuning in our dataset. Each frame is presented to the network with probability
1 if it is in the class “Cool”, or 0 otherwise, and the network works to predict this label
correctly. The fine-tuning process follows the VGG authors guide-lines for training.

The validation process were performed using 80% of the dataset for training, and
20% for testing. After running a random search to tune the learning parameters, we
set 1× 10−6 for base_lr and 5× 10−4 for weight_decay. The final network’s accuracy
on test data was 98.03%.

Semantic Score. Once the network is fine-tuned in our domain, the Semantic Score
of a frame is given by the CNN confidence about the image be in the class “Cool”.
The training process performed is focused on analyzing the preferences of an average
Internet user since it gathers general data. However, this methodology can be extended
to a single-user-focused analysis, by gathering individual data.

3.1.2 Temporal Segmentation

In early Semantic Hyperlapse for First-Person Videos [Ramos et al., 2016; Silva et al.,
2016; Ramos, 2017], the sequence of computed Semantic Scores for each frame defined
the semantic profile of the video – Figure 3.4. From the semantic profile, a histogram
with semantic values was created, and a threshold value was calculated using the Otsu
thresholding method [Otsu, 1979] – dashed green lines in Figure 3.4. The semantic
profile of the video was then segmented using the calculated threshold in a manner that
every frame above this value is labeled as semantic. Sets of consecutive frames labeled
as semantic composite the semantic segments while the remaining frames composite
the non-semantic segments.

We extended this binary temporal semantic segmentation approach by refining
the segments taken as semantic in a multi-level relevance scale – Figure 3.1-b. This
way, we treat the problem of assigning relevance as a Multi-Importance approach and
not a binary classification.

We run the refinement process as depicted in Figure 3.4. First, the video is
segmented into semantic and non-semantic segments using the Otsu method over the
histogram of semantic content. When processing the i-th iteration, the segments as-
signed as non-semantic in iteration i− 1 are excluded, and a new profile is created by
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Figure 3.4. Proposed methodology to segment temporally the semantic video
profile iteratively to a Multi-Importance approach.

concatenating the semantic segments; then we re-execute the Otsu threshold over the
histogram of semantic information of the new profile and segment the original video
using the calculated threshold. The iteration processing stops when the highest value
of the semantic profile is lower than T times the threshold value returned by the Otsu
method.

3.1.3 Speed-up estimation

The widely used technique to create emphasis effect in fast-forward videos is to assign
a lower rate to relevant segments when compared to remaining of the video.

We follow this emphasizing method with an additional constraint of keeping the
speed-up of the whole fast-forward video closer the desired speed-up. Differently to
the work of Yao et al. [2016], we do not have restrictions regarding the length of the
segment. To address the constrain regarding the overall speed-up rate of the whole
video, the non-semantic segments have to be played faster than the desired speed-up
Fd since the semantic segments are emphasized applying a lower rate. Given an input
desired speed-up to the video, it is not a trivial task to estimate the speed-ups assigned
to the semantic and non-semantic segments, since the total duration of these segments
may vary a lot, and the final speed-up calculated over the final video should be closer
to the desired value Fd.
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Let Fd be the speed-up rate required by the user, Ls the total number of frames
of all semantic segments and Lns the number of frames of non-semantic segments. We
compute the semantic speed-up Fs and the non-semantic speed-up Fns by minimizing
the energy function:

D(Fns, Fs) =

∣∣∣∣Ls + Lns
Fd

−
(
Ls
Fs

+
Lns
Fns

)∣∣∣∣ . (3.4)

Equation 3.4 has multiple solutions since for every Fs value there is a Fns leading the
result to 0. Therefore, we solve this equation by an optimization problem in which
we minimize the energy function D(Fns, Fs) in a manner that value of the speed-up
assigned to semantic segments Fs is as low as possible and the difference between
speed-up rates assigned to non-semantic Fns and semantic segments Fs is as close as
possible. In this dissertation, we deal only with integer values to speed-up, and as the
aim is to emphasize relevant segments, the following three restrictions are imposed:
(i) Fs 6 Fd because we want emphasis in semantic parts; (ii) Fns > Fd, since we want
to achieve the desired speed-up in the fast-forward video and; (iii) Fs > ps · Fd, where
ps = Ls/(Ls + Lns), to avoid an excessive number of frames. Thus, the optimization
model as follows:

F ∗s , F
∗
ns = arg min

Fs, Fns

D (Fns, Fs) + λdif |Fns − Fs|+ λfs |Fs|

s.t. Fs 6 Fd

Fns > Fd

Fs > psFd,

(3.5)

where λdif and λfs are the regularization parameters used to control the importance
of keeping the speed-up rates closer or setting lower values to Fs, respectively. An
example of the search space is depicted in Figure 3.5.

Following the proposed idea of a multi-importance approach, we handle the dif-
ferent levels of semantic content defined in Section 3.1.2 by estimating speed-up for
semantic segments according to their relevance.

Our multi-importance strategy is implemented by following the iterative process
defined in Section 3.1.2. During the first iteration, the video is segmented based on the
threshold value calculated using the Otsu method, and Equation 3.5 is calculated. From
the second iteration and beyond, non-semantic segments defined in the last iteration
are ignored, and a new profile is created by concatenating all semantic segments defined
in the last iteration. At this point, we set the desired speed-up value Fd in Equation 3.5
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Figure 3.5. Example of the search space related to the speed-up optimization
function described in Equation 3.5.

to the semantic speed-up Fs calculated in the iteration i− 1, and new values for Fs
and Fns are calculated regarding the length of the new semantic and non-semantic
segments refined in iteration i. This process follows up to the stopping point defined
in Section 3.1.2.

The idea of this processing is to accelerate the less important segments with
the first non-semantic speed-up, higher than the value required by the user, while the
speed-up rates assigned to the semantic segments will be refined in a manner that as
higher is the relevance of a segment, lower is the value assigned.

Parameter Settings. Equation 3.5 has two parameters (λdif and λfs) highly related
to the input video, demanding user knowledge and effort to configure them. It is highly
probable that the user will stop before finding the best set of parameters, which could
lead to poor results. We set these parameters automatically using the Particle Swarm
Optimization (PSO) algorithm, heading an optimal result and also excluding the user
of the process’s pipeline, as presented in the work of Ramos [2017].

PSO algorithm is an iterative method that groups particles by arranging them
randomly in the search space [Kennedy and Eberhart, 1995]. At every iteration, the
particles positions (parameters values) are updated to follow the local and global best
particles. The solution is given by a fitness equation defined according to the problem.
To solve the optimization Equation 3.5, we define the following fitness equation:

fitness
λdif ,λfs

= c ·
∣∣∣∣F̂s − Fd + ps · Fd

2

∣∣∣∣+ |F̂d − Fd|+ pns · |F̂s − F̂ns|, (3.6)

which estimates λdif and λfs of Equation 3.5. The F̂s and F̂ns are the best values of
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Fs and Fns in the finite and discrete search space when replacing λdif and λfs with the
particle position. The value ps = Ls/(Ls + Lns) is the semantic percentage of the video,
pns = Lns/(Ls + Lns) is non-semantic percentage, c = 2 is a constant value to control
the importance of selecting a lower semantic speed-up, and F̂d is the calculated video
speed-up when applying the proposed semantic and non-semantic speed-ups given the
length of each segment, as described in the following Equation:

F̂d =
Ls + Lns

Ls/̂Fs + Lns/F̂ns

. (3.7)

3.2 Adaptive Frame Sampling

Adaptive Frame Sampling is the second phase of our three-phase methodology. The
goal of this step is to select a set o frame to produce a visually smooth and temporally
continuous accelerated video.

We proposed a sparse-based approach to perform the frame selection step in
our Semantic Hyperlapse methodology. The sparse-based approach models the frame
sampling as a Minimum Sparse Reconstruction problem, and applies two extra steps,
the Smoothing Frame Transitions and Fill Gap process.

3.2.1 Sparse-based selection

In general, hyperlapse techniques solve the adaptive frame selection problem searching
the optimal configuration (e.g ., shortest path in a graph or dynamic programming)
in a space of representation where different types of features are combined to repre-
sent frames or transitions between frames. Once the search space dimensionality is
corresponding to the length of the features vectors, most of these techniques use a
single value to represent complex characteristics of frames, such as frame movement or
appearance, and describe the whole frame using four features maximum [Joshi et al.,
2015; Poleg et al., 2015; Ramos et al., 2016; Silva et al., 2016; Halperin et al., 2017;
Ramos, 2017]. Otherwise, the use of a higher number or high-dimensional features
leads to exponential growth in the search space of the optimization problem. There-
fore, these methods are not scalable in the number of features used to describe the
frame and transitions.

We look at the use of a single value to describe complex characteristics as a
limitation. One example is the frame movement that is usually described as the mean
value of the optical flow magnitudes related to image pixels. Figure 3.6 depicts a frame
transition captured during a camera turning in a scene composed of fixed and moving
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Figure 3.6. Synthetic consecutive frames depicting a car is moving from left to
right and a camera turning to the right. A complex scene dynamics is depicted
on the second image, the car shifted to the right, once the car moved faster than
the camera, and the tree to the right, due to the camera movement.

objects. This figure illustrates the inconsistency of using a single value to describe
the movement of both fixed object moving left, opposite to the camera turn direction,
and a moving object going right. The same limitation is observed when describing
the frame appearance, usually calculated using the difference between color histograms
related to consecutive frames. However, the difference will result in a small value since
the same elements compose both images. Recent works present state-of-the-art results
in different applications using high-dimensional feature vectors [Otani et al., 2017; Lal
et al., 2019; Fu et al., 2019].

In this dissertation, we introduce the sparse-based Adaptive Frame Sampling
method formulated as a Minimum Sparse Reconstruction problem – Figure 3.7. The
goal is to create a formulation to the adaptive frame sampling step in which we can de-
scribe the frames and their transitions in more details with no impact in the processing
time.

Let D = [d1,d2,d3, · · · ,dn] ∈ Rc×n be a segment of the original video with n

frames represented in our feature space. Each entry di ∈ Rc stands for the feature
vector of the i-th frame. Let the video story v ∈ Rc be defined as the sum of the frame
features of the whole segment, i.e.,

v =
n∑
i=1

di. (3.8)

The goal is to find an optimal subset S = [ds1 ,ds2 ,ds3 , · · · ,dsm ] ∈ Rc×m, wherem� n

and {s1, s2, s3, · · · , sm} belongs to the set of frames in the segment.

Let the vector α ∈ Rn be an activation vector indicating whether d is in the
set S or not. The problem of finding the values for α that lead to a small reconstruction
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Figure 3.7. Sparse-based Adaptive Frame Sampling methodology. For each seg-
ment created in the temporal semantic profile segmentation, frame-wise processes
are performed to compute both weights, based on the camera movement, and
frame descriptors. The sampling step is modeled as a Minimum Sparse Recon-
struction (MSR) problem, in a manner that frames related to activated positions
of the sparse vector composite the final video.

error of v, can be formulated as a Locality-constrained Linear Coding (LLC) [Wang
et al., 2010] problem as follows:

arg min
α ∈ Rn

‖v −D α‖2 + λα ‖g �α‖2, (3.9)

where g is the Euclidean distance of each dictionary entry di to the segment representa-
tion v, and � is an element-wise multiplication operator. The λα is the regularization
term of the locality of the vector α.

The benefit of using LLC formulation instead of the traditional Sparse Coding
(SC) models, such as Orthogonal Matching Pursuit and Lasso, is twofold: i) the LLC
provides local smooth sparsity; and ii) it can be solved by an analytic solution, which
results in a smoother final fast-forward video in a lower computational cost.

Weighted Sampling. Abrupt camera motions are challenging issues for fast-
forwarding video techniques. They might lead to the creation of shaky and nauseating
videos. To tackle this issue, we used a weighted Locality-constrained Linear Coding
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formulation, where each dictionary entry has a weight assigned to it:

α? = arg min
α ∈ Rn

‖v −D α‖2 + λα ‖W g �α‖2, (3.10)

whereW is a diagonal matrix built from the weight vector w ∈ Rn, i.e., W , diag(w).
Let C ∈ Rg×n be the set of g Cumulative Displacement Curves [Poleg et al., 2014]

of a video composed of n frames. Each curve represents the cumulative sum of the
horizontal displacements of the Optical Flow magnitudes computed in a cell over the
5× 5 grid windows of the video frame, as depicted in Figure 3.7. Let C ′ ∈ Rg×n be the
set of derivative of each curve C w.r.t. time. We assume frame i to be within an interval
of abrupt camera motion if all curves C ′ present the same sign (positive/negative) at
the point i, which represents a head-turning movement [Poleg et al., 2014] – red boxes
in CDC curve in Figure 3.7. We assign a lower weight for these motion intervals to
enforce them to be composed of a larger number of frames. We empirically set the
weights to wi = 0.1 and wi = 1.0 for the frame features inside and outside the interval,
respectively.

This weighting formulation provides a flexible solution, in which we create dif-
ferent weights for frames based on the camera movements. When frames into regions
of high camera movement are sampled, they do not increase the sparsity/locality term
significantly, once their distance to the dictionary basis is multiplied by a lower weight.
However, regarding the reconstruction term, the first part of Equation 3.10, they con-
tribute similarly to any other frame since the weighting factor is not applied in this
part of the equation. Contextualizing in frame sampling, the solution of the weighted
formulation leads to an oversampling in regions of high camera movement minimizing
the reconstruction term with no impact in the locality term.

Speed-up Control. All frames related to the activated positions of the vector α? will
be selected to compose the final video. Since λα controls the sparsity, it also manages
the speed-up rate of the output video. The zero-value λα enables the activation of
all frames leading to a complete reconstruction. To achieve the desired speed-up, we
perform an iterative search starting from zero, as depicted in Algorithm 1. The function
NumberOfFrames(λ) (Algorithm 1 line 4) solves Equation 3.10 using λ as the value
of λα and returns the number of activations in α?.

Frame Description. Once our solution is able to handle high-dimensional frame de-
scriptions, we propose to describe the i-th frame through the feature vector di ∈ R446

by concatenating the following terms. The hofm ∈ R50 and hofo ∈ R72 are histograms
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Algorithm 1 Sparse-based frame sampling Lambda value adjustment
Require: Desired length of the final video V ideoLength.
Ensures: The λα value to reach the desired number of frames.
1: function Lambda_Adjustment(V ideoLength)
2: λα ← 0 , step← 0.1 , nFrames← 0
3: while nFrames 6= V ideoLength do
4: nFrames← NumberOfFrames(λα + step)
5: if nFrames ≥ V ideoLength then
6: λα ← λα + step
7: else
8: step← step/10
9: end if

10: end while
11: end function

of optical flow magnitudes and orientations of the i-th frame, respectively. The appear-
ance descriptor, a ∈ R144, is composed of the mean, standard deviation, and skewness
values of HSV color channels of the windows in a 4× 4 grid of the frame i. To define
the content descriptor, c ∈ R80, we first use the CNN YOLO [Redmon and Farhadi,
2016] to detect the objects in the frame i; then, we create a histogram with these
objects over the 80 classes of the YOLO architecture. Finally, the sequence descriptor,
s ∈ R100, is an one hot vector, with the mod(i, 100)-th feature activated indicating in
which portion of the video the frame is.

3.2.1.1 Smoothing Frame Transitions

A solution α? does not ensure a final continuous fast-forward video. Occasionally,
the solution might provide a low reconstruction error of small and highly detailed
segments of the video. Thus, by creating a better reconstruction with a limited number
of frames, α? might ignore stationary moments or visually similar views and output
videos comparable to results of summarization methods.

We address this issue by dividing the frame sampling into two steps. First, we
run the weighted sparse sampling to reconstruct the video using a required speed-up
multiplied by a factor SpF . The resulting video contains 1/SpF of the desired number
frames. Then, we iteratively insert frames into the shakier transitions (Figure 3.8) until
the video achieves the exact number of frames.

Let I(Fx, Fy) be the instability function defined by

I(fx, f y) = AC(fx, f y) × (py − px − Fd). (3.11)

The function AC(fx, f y) calculates the Earth Mover’s Distance [Pele and Werman,
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Figure 3.8. For each segment of the video, we evaluate the Appearance Cost
using Equation 3.11 over all selected frames. Then, we smooth shakier transitions
iteratively by inserting frames from the original video.

2009] between the color histograms of the frames fx and f y. The second term of the
instability function is related ot the speed-up deviation. Let pi be the index of the i-th
frame in the original video. We calculate the speed-up deviation by the difference of
the required speed-up Fd and the distance between frames fx and f y, i.e., py − px. We
identify a shakier transition using the Equation 3.12:

i? = arg max
i ∈ Rm

I(f si , f si+1
). (3.12)

The frames f si? to f si?+1
, i.e., solution of Equation 3.12, compose the transition with

the most visually dissimilar frames and a distance between them higher than the re-
quired speed-up – red circle in Figure 3.8.

After identifying the shakier transition, from the subset with frames of the original
video ranging from f si? to f si?+1

, we choose the frame f j? that minimizes the instability
of the frame transition as follows:

j? = arg min
j ∈ Rn

I(f si? , f j)
2 + I(f j, f si?+1

)2. (3.13)

For each iteration, the frame f j? selected to smooth the shakier transition is added
in the set of selected frames S. Equations 3.12 and 3.13 can be solved by exhaustive
search, since the interval is small.

3.2.1.2 Fill Gap between segments

Using LLC formulation over video segment may lead to temporal discontinuities be-
tween some of the segments. These discontinuities occur due to the frame selection
being performed to each segment disregarding the others. Once the last selected frame
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of one segment is far from the first selected frame of the following video segment, it
turns in a visual gap when the final video is composited. Section 3.2.1.1 presents a
valid solution by inserting frames and tackling the visual discontinuities created inside
the segments. However, it has no effect on frames transitions between the segments.

Abrupt speed-up difference between video segments is an additional issue present
in most semantic fast-forward methods in the literature. This abrupt difference is
caused by the selection of speed-up rates assigned to video segments. Generally, it
occurs when one segment containing a significant amount of semantic information is
followed by, or follows, a non-semantic segment. This case would cause abrupt differ-
ence on the speed-up rates assigned to each segment, e.g ., in experiment “Driving_50p”
a semantic segment with speed-up 1× is followed by a 14× non-semantic segment. In
this section, we present a solution that addresses both the visual gap and the abrupt
speed-up difference issues.

To address the visual gap issue, we first calculate the instability index (Equa-
tion 3.11) between the last frame of a segment A and the first frame of its consecutive
segment B. If the instability index is higher than the average instability over all tran-
sitions of segment A, then we create a new segment delimited by the last frame of
segment A and the first frame of the segment B (Figure 3.1-e). This newly created
segment is then used to smooth the speed-up transition and fill the visual gap. To
tackle the abrupt speed-up difference issue, we define the speed-up rate for the new
segment as the average value between the speed-ups of A and B. Finally, we fill the
visual gap by running the Weighted Sparse Frame Sampling and Smoothing Frame
Transitions, defined in Sections 3.2.1 and 3.2.1.1 respectively, using the smoother cal-
culated speed-up.

3.3 Output Video Producing

In the last phase of our methodology, we have the set S of candidate frames to composite
the final video. These frames are candidates because they yet can be dropped during
the video stabilization, the first step of the Producing Output Video processing. Video
stabilization step refines the set S by stabilizing the selected frames, and if necessary,
replacing frames which yield to homograph transformations that distort the frames or
make impossible to reconstruct them. After this refinement, all frames in set S will
compose the final video.
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3.3.1 Video Stabilization

As studied and discussed in the work of Kopf et al. [2014], traditional video stabi-
lization algorithms do not perform at their best when applied to egocentric videos.
The poor performance can be assigned to the difficulty of tracking motion between
successive frames due to abrupt changes in camera pose, which is intensified in the
accelerated version. In this dissertation, we propose to stabilize the final video similar
to the stabilization method present in our previous work Silva et al. [2016], which is
particularly designed for accelerated videos. Following in this Section, we describe the
stabilizer in details.

As the stabilizer is designed to accelerated videos, its input is the output set S of
selected frames from the sampling phase. Algorithm 2 details the stabilization process.
Initially, we split the video into segments of fixed size γ, and select one master frame
for each segment (Figure 3.9). A master frame Mk of the k-th segment is the frame
f that maximizes the number of inliers obtained with RANSAC when computing the
homography transformation from images into the k-th segment to f .

The next step is to smooth out the frame transitions by using the computed
master frames. The key idea is to create smooth frame transitions by setting target
image planes on masters Mpre and Mpos, then modifying the image planes of frames
between these masters in a manner to smooth the transition from Mpre to Mpos image
planes. As shown in line 5 of Algorithm 2, for each frame fi of the accelerated video,
we compute a frame f̂i of the stabilized video using f̂i = H1−w

fi,Mpre
·Hw

fi,Mpos
· fi. The

matrices Hfi,Mpre and Hfi,Mpos transform the frame fi to the previous master frame
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Figure 3.9. Stabilization methodology. The top row depicts the original video
in a frame sequence. The middle row shows the selected and dropped frames in
the sampling process (larger blue and smaller red frames, respectively). The last
row presents an example of the accelerated video segmentation, master frames,
and terms γ, ∆ and δ.
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Algorithm 2 Egocentric Accelerated Video Stabilizer
Require: Set of frames S in the accelerated Video; Set D of dropped frames during

the sampling process; The crop_area and drop_area.
Ensures: The set of stabilized frames V .
1: function VideoStabilizer(S, D)
2: V ← {}
3: for all fi ∈ S do
4: w ← (δ · (2 · γ) /∆)

5: f̂i ← H1−w
fi,Mpre

·Hw
fi,Mpos

· fi
6: while f̂i ∩ crop_area < crop_area do
7: if f̂i ∩ drop_area = drop_area and ExistUnusedFrames(D) then
8: f̂i ← Stiching

(
f̂i, GetUnusedFrame(D)

)
9: else

10: fd ← SelectNewFrame (D, fi)
11: w ← (δ · (2 · α) /∆) . Recalculate distances using fd as fi.
12: f̂i ← H1−w

fi,Mpre
·Hw

fi,Mpos
· fd

13: end if
14: end while
15: V ← V + {f̂i ∩ crop_area}
16: end for
17: end function

Mpre and to the posterior master frame Mpos, respectively. The δ value is number of
frames from fi to Mpre and ∆ is the number of frames between Mpre and Mpos. Like in
the work of Hsu et al. [2012], we weight both homography transformations according
to the distance to the master frames.

Black areas may be created after applying the homography transformations due
to abrupt camera motions and the large elapsed time between consecutive frames in
the accelerated videos. Thus, we define two areas centered at the frame to decide when
a frame should be reconstructed: the drop area delimited by the red line in Figure 3.10,
and equals to dp% size of the frame; and the crop area delimited by the green line in
Figure 3.10, and equals to cp% size of the frame (cp > dp).

The drop area dp% is the center of the image, where the viewer focuses on the
majority of the time, then it is not allowed to have any black or reconstructed areas
in this region. The region between the drop and crop areas is related to the peripheral
vision, thus we consider permitted to have artifacts but not black areas. In the final
video, we remove the regions outside of crop area, therefore, having black areas within
them does not cause any issue. The defined reconstruction process ensure every f̂i

frame covers the crop area.

The location of the black areas created by the application of the homography
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transformation in the image leads to three possible cases with related actions: i) black
areas outside of the crop area – Figure 3.10-a – no further action is required; ii) black
areas outside of the drop area and inside the crop area – Figure 3.10-b – image recon-
struction needed; and iii) black area inside the drop area – Figure 3.10-c – discard the
image and select a new one in the set of dropped frames.

There are two conditions for reconstructing a frame: i) f̂i does not create black
regions in the central area; and ii) there are unused frames in the dropped set D for
stitching. If both these conditions hold, we perform the stitching using f̂i and a new
frame from D. If one of the conditions is false, we discard f̂i and select a new frame fd
from D and recalculate the distances and homography matrices. Once the crop area is
covered, the intersection between this area and the frame f̂i compose the i-th frame in
the stabilized video.

If the f̂i does not cover the crop area in the final of the processing, we select
a new frame f ?d belonging to the interval [f i−1, f i+1] in the set of dropped frames D
(Algorithm 2 line 10) and that maximizes the equation:

f ?d = arg max
fd

( Gσ(p) · ( R(fd, fi−1) +R(fd, fi+1) ) · (η + S(fd)) ), (3.14)

a)

c) d)

b)

#2 iteration

#3 iteration

#4 iteration

Drop area

Crop area

#1 iteration

Figure 3.10. Possible cases after the application the homography transforma-
tions in relation to crop and drop areas. a) Image covers the crop area – no further
action required. b) Image covers the drop area but does not cover the crop area
– reconstruction is needed. c) Image does not cover crop area neither the drop
area – discard the image and select a new one in the unset frames set. d) Result
of the reconstruction process – each dashed line illustrate one algorithm iteration
result.
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where Gσ(x) is a Gaussian function with mean one and standard deviation σ in the
position x, p is the percentage of the crop area covered by dj, R(.) is the number of
inliers obtained with RANSAC and S(.) is the semantic score given by Equation 3.1.
η is used to avoid multiplying by zero.

Frames in set V are the final to composite the output video.

3.3.2 Video Compositing

All selected frames of each segment created by the semantic temporal segmentation are
inserted in the set of selected frames S to compose the final video. This set is refined
using the egocentric video stabilization described in the Section 3.3.1 in which frames
are transformed or even replaced to create a smooth final video creating the new set
V . The output is produced by the frames in set V sorted by the index of these frames
in the original video. The final accelerated video speed-up (Ff ) is given by the ratio
between the number of frames in the original video (n) and the number of frames in
set V :

Ff =
n

|V|
. (3.15)



Chapter 4

Experiments

We present the experimental evaluation of the proposed methodology, which includes
describing the datasets used, the parameters configuration, weights setting, methods,
and metrics chosen for quantitative comparison and the result discussion. We also
discuss what makes some information a good semantic for general propose, how to
learn and extract it, and how to infer it based on the users’ preference.

4.1 Datasets

We use two datasets to run the experimental evaluation of the proposed methodol-
ogy. Due to the limited amount of available controlled and labeled data regarding
specific semantic content, were created two sets of videos using wearable devices. The
aim of the first Dataset is to evaluate the amount of semantic content kept in the
accelerated video and how it is related with the semantic load of the original video.
Therefore, the Semantic Dataset is composed of smaller videos (∼ 5 minutes per video)
with controlled percentage of frames containing semantic content. On the other hand,
the Dataset of Multimodal Semantic Egocentric Videos (DoMSEV) is composed of
lengthy (∼ one hour per video) and unconstrained videos combined with multimodal
data. The DoMSEV dataset is used to stress the methodology testing the scalability
and running times.

4.1.1 Annotated Semantic Dataset

This dataset is publicly available1 and it was first presented in the work of Silva et al.
[2016]. The videos composing this dataset were recorded focusing on managing the

1https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/epic2016-dataset/
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0% Semantic

25% Semantic

50% Semantic

75% Semantic

Figure 4.1. Examples of the proposed controlled Semantic Dataset. Frames in
the first row represent the videos of the Biking category. Frames in the second row
represent the videos of the Walking category. Frames in the third row represent
the videos of the Driving category.

total of frames containing semantic information. Hereinafter this dataset is referred
to as Semantic Dataset, and it is composed of 11 sequences recorded while performing
everyday activities, such as Biking, Driving, and Walking. Table 4.1 presents the com-
plete information for each video composing the Semantic dataset and Figure 4.1 depict
random samples. All the sequences are labeled as: 0p, for videos with approximately
no semantic information (Biking 0p, Driving 0p, and Walking 0p); 25p, for the videos

Table 4.1. Information about videos compositing the proposed Semantic con-
trolled Dataset. Duration is the length of the video before the acceleration. In
Camera column, Hero stands for the GoPro® line product.

Info

Videos Semantic
(%)

Duration
(mm:ss) Mount Camera Image

Resolution FPS

Biking_0p 0% 4:59 Helmet Hero3+ 1280× 720 60
Biking_25p 25% 9:29 Helmet Hero3+ 1920× 1080 30
Biking_50p 50% 7:29 Helmet Hero3+ 1280× 720 60
Biking_50p_2 50% 4:08 Helmet Hero3+ 1280× 720 60
Driving_0p 0% 5:15 Head Hero3+ 1920× 1080 30
Driving_25p 25% 4:26 Head Hero3+ 1920× 1080 30
Driving_50p 50% 5:45 Head Hero3+ 1920× 1080 30
Walking_0p 0% 4:34 Head Hero3+ 1920× 1080 30
Walking_25p 25% 6:06 Head Hero3+ 1920× 1080 30
Walking_50p 50% 6:25 Head Hero3+ 1920× 1080 30
Walking_75p 75% 8:36 Head Hero3+ 1920× 1080 30
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containing relevant semantic information in 25% of its frames (Biking 25p, Driving 25p,
and Walking 25p); 50p, for the ones with around a half of their frames has some se-
mantic content (Biking 50p, Biking 50p2, Driving 50p, and Walking 50p); and 75p, for
the videos with 75% of their frames containing relevant semantic (Walking 75p). It is
worth noting that even when video belongs to the class 0p, it still contains semantics
on its frames. The reason of being classified as 0p is mainly because it does not have
a minimum number of frames with high semantic score. The semantic information la-
beled in this dataset is faces for Walking videos, and pedestrian for Biking and Driving
ones.

4.1.2 Multimodal Semantic Egocentric Videos

Aside from the Semantic Dataset, to test the running times and scalability of egocentric
methodologies, we proposed an unrestricted 80-hour Dataset of Multimodal Semantic
Egocentric Videos (DoMSEV). The videos compositing this dataset cover a wide range
of activities such as shopping, recreation, daily life, attractions, party, beach, tourism,
sports, entertainment, and academic life. The recording conditions vary in light (from
sunny day to night, and also artificial lights), scenes (indoor/outdoor), places (from
calm natural environment to crowded urban spaces), camera mounting (head, helmet,
and chest), capturing device (RGB-D sensor and commercial egocentric cameras), and
recorders varying in gender, age, height, and preferences. All details mentioned earlier
are annotated for the videos.

The multimodal data was recorded using either a GoPro Hero™camera or a
built setup composed of a 3D Inertial Measurement Unit (IMU) attached to the Intel
Realsense™ R200 RGB-D camera. Figure 4.2 shows the setup used, a few examples of
frames from the videos, and the fields used to label the video and the frames. Table 4.2
exhibits the videos information, videos entitled ‘A_c’ were recorded simultaneous to
the video ‘A’ (not including suffix ‘_c’) but with the Point of View set in the user’s
chest.

The recorders labeled the videos informing the scene where the segments were
taken (e.g ., indoor, urban, crowded environment, etc.), the activity performed (e.g .,
walking, standing, browsing, driving, biking, eating, cooking, observing, in conversa-
tion, etc.), if something caught their attention and when they interacted with some
object. Example of labels are depicted in Figure 4.2. Also, we create a profile for each
recorder representing their preferences over the 80 classes of the YOLO classifier [Red-
mon and Farhadi, 2016] and the 48 visual sentiment concepts defined by Sharghi et al.
[2017]. To create the recorders’ profile, we asked them to indicate their interest in each
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IMU
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GSP
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Depth

Recorder

ID
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Weight
Age
Gender
Preferences

Camera
Mounting

◦ Head
◦ Helmet

◦ Chest
◦ Shoulder
◦ Hand

{
Activity

Frequency

◦ Every day
◦ Often
◦ Sometimes
◦ Rarely
◦ First-time

{

Frame Action

◦ Walking
◦ Running
◦ Standing
◦ Biking
◦ Driving
◦ Playing
◦ Cooking
◦ Eating
◦ Observing
◦ In conversation
◦ Browsing
◦ Shopping

{
Attention

◦ None
◦ Playing 
  attention
◦ Interacting

{

Scene

◦ Indoor
◦ Nature
◦ Crowed 
  environment
◦ Urban

{

Figure 4.2. Sample and labels of the Dataset of Multimodal Semantic Egocentric
Videos (DoMSEV). Top-left: setup used to record videos with RGB-D camera and
IMU. Top-right: frame samples from DoMSEV. Bottom: Annotated information
for videos and frames. The symbol ◦ indicates the possible values for the respective
annotation.

class and concepts in a scale from 0 to 10.
Table 4.2 summarizes the diversity of sensors, camera mounting, length of the

videos, and activities that can be found in the dataset. 3D model for printing the built
setup, and the dataset are publicly available 2.

4.2 Competitors

In this Section, we present the competitors used to perform the experimental evaluation
of the proposed methodology. The first methodology is the graph-based adaptive frame
selection EgoSampling (ES) proposed by [Poleg et al., 2015], which is a Hyperlapse tech-

2https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018-dataset/

https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018-dataset/
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Table 4.2. Information about videos in the proposed Multimodal dataset. Du-
ration is the length of the video before the acceleration. In Camera column,
RS200 stands for RealSense™R200 by Intel® and Hero is a GoPro® line product.
Following abbreviation was used in Videos column due to the space limitation:
Academic Life (Aca), Attraction (Att), Beach (Bea), Daily Life (Dai), Entertain-
ment (Ent), Party (Par), Recreation (Rec), Shopping (Sho), Sport (Spo), and
Tourism (Tou).

Info

Videos Duration
(hh:mm:ss) Mount Camera G

P
S

IM
U

D
ep

th

Aca_01 00:26:10 head Hero4 X X
Aca_02 00:45:08 chest Hero5 X X
Aca_03 00:36:38 helmet Hero4
Aca_04 01:04:12 head Hero5
Aca_05 00:33:11 head Hero5 X X
Aca_06 01:39:24 head Hero5 X X
Aca_07 00:45:02 helmet Hero5 X X
Aca_08 01:11:33 head Hero5 X X
Aca_09 01:02:53 helmet RS200 X X
Aca_10 02:04:33 head Hero5 X X
Aca_11 01:02:04 hand Hero4
Aca_12 01:03:31 chest Hero5 X
Aca_13 00:47:14 helmet RS200 X X X
Aca_13_c 00:43:37 chest Hero5 X X
Att_01 01:25:55 helmet Hero4
Att_02 01:31:10 chest Hero5 X X
Att_03 01:31:05 head Hero5 X X
Att_04 01:11:21 head Hero5 X X
Att_05 00:57:10 head Hero5 X X
Att_06 00:46:54 head Hero5 X X
Att_07 01:30:25 chest Hero4
Att_08 00:32:41 chest Hero5 X X
Att_09 01:03:02 helmet RS200 X X
Att_09_c 00:52:43 chest Hero4 X
Att_10 00:59:09 helmet RS200 X X
Att_11 01:17:20 helmet RS200 X X X
Att_11_c 01:08:46 chest Hero5 X X
Att_12 01:28:03 chest Hero5 X X
Att_13 00:35:21 helmet RS200 X X
Att_14 00:40:35 helmet RS200 X X X
Att_14_c 00:46:35 chest Hero5 X X
Bea_01 00:39:32 head Hero3
Bea_02 01:41:39 head Hero3
Dai_01 01:16:45 head Hero5 X X
Dai_02 01:33:39 head Hero5 X X
Dai_03 01:12:34 head Hero5 X X

Info

Videos Duration
(hh:mm:ss) Mount Camera G

P
S

IM
U

D
ep

th

Ent_01 00:14:14 head Hero4 X X
Ent_02 00:18:50 chest Hero5 X X
Ent_03 01:01:50 chest Hero5 X X
Ent_04 01:09:06 helmet RS200 X X
Ent_05 01:00:54 helmet RS200 X X
Ent_05_c 00:55:25 chest Hero5 X
Ent_06 01:21:54 helmet RS200 X X X
Ent_06_c 01:36:48 chest Hero5 X X
Ent_07 01:19:47 helmet RS200 X X X
Ent_07_c 02:02:08 chest Hero5 X X
Par_01 01:02:32 chest Hero5 X X
Rec_01 01:19:05 helmet Hero4
Rec_02 01:30:40 head Hero5 X X
Rec_03 00:57:39 helmet Hero4
Rec_04 02:15:15 helmet Hero5 X X
Rec_05 01:11:45 chest Hero5 X X
Rec_06 01:03:42 head Hero5 X X
Rec_07 01:47:44 helmet Hero4
Rec_08 01:44:15 shoulder Hero5 X X
Rec_09 00:48:36 helmet Hero4
Rec_10 00:49:02 helmet Hero4
Rec_11 00:46:04 chest Hero5 X X
Rec_12 00:59:01 helmet Hero4
Sho_01 00:54:06 helmet Hero5 X X
Sho_02 00:50:27 chest Hero4
Spo_01 00:51:56 head Hero5 X X
Spo_02 00:43:20 head Hero5 X X
Spo_03 02:22:21 head Hero5 X X
Spo_04 01:01:39 chest Hero4
Tou_01 00:55:35 chest Hero4
Tou_02 02:22:52 head Hero5 X X
Tou_03 00:41:40 helmet RS200 X X
Tou_04 01:46:38 helmet RS200 X X
Tou_05 00:59:43 head Hero5 X X
Tou_06 01:25:17 chest Hero4
Tou_07 01:05:03 head Hero5 X X
Tou_08 01:01:03 head Hero5 X X

nique following the taxonomy proposed in this dissertation. The second competitor is
the state-of-the-art Hyperlapse methodology Microsoft Hyperlapse (MSH) [Joshi et al.,
2015] concerning the visual smoothness of the accelerated video. We also compare with
the graph-based Semantic Hyperlapse Semantic Fast-Forward and Stabilized Egocen-
tric Video (FFSE) [Silva et al., 2016], the state-of-the-art method regarding amount of
semantics kept in the final video.
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Figure 4.3. Graph-based Adaptive Frame Sampling. (a) Graph modeling consid-
ering τmax equals 3, meaning that every frame is connected to its three consecutive
frames. (b) Example of a shortest path, frames related to nodes in this solution
compose the final video.

We also extended the methodology proposed in the work of Silva et al. [2016]
changing the temporal segmentation and speed-up definition by our proposed Multi-
Importance approach. This method is referred as Ours/Graph hereinafter, and it
is used to evaluate and validate the proposed Multi-Importance semantic analysis.
Following we present the graph modeling and details about the parameter setting.

4.2.1 Graph-based selection

Graph-based solution for adaptive frame sampling was first proposed in the work of
Poleg et al. [2015] and successfully applied in the works of Ramos et al. [2016]; Silva
et al. [2016]; Ramos [2017]; Halperin et al. [2017]; Wang et al. [2018].

For each segment created in the Temporal Segmentation step described in Sec-
tion 3.1.2, we model a Directed Acyclic Graph with frames as nodes and frame tran-
sitions as edges. Every nodes is connected using weighted directed edges to its τmax
nodes, related to the subsequent frames – Figure 4.3-(a). The weight wi,j of the edge
connecting the i-th node to j-th node is given by the linear combination of terms re-
lated to frame transition, as shown in Equation 4.1. These terms are: instability Ii,j,
appearance Ai,j, velocity Vi,j, and semantic Si,j.

wi,j = (λI · Ii,j + λV · Vi,j + λA · Ai,j + λS · Si,j) ·
⌈

(j − i)
F

⌉
. (4.1)

The last component of this equation is a weighting factor that enhances transitions
between frames with lower distance and F is the speed-up rate applied to the graph
which the edge belongs. The coefficients λ are regularization factors for the respective
cost terms.
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The Ii,j term models the instability of the transition from the i-th frame to the
j-th frame computing the motion direction of each frame by estimating the Focus of
Expansion. The term Vi,j controls the sense of speed in the output video by skipping
more frames where the camera motion is low and skipping less when the motion is
high. A video with consecutive dissimilar images indicates that the camera is unsta-
ble. Therefore, a visually pleasant video is composed of visually similar frames; this
similarity is modeled as Ai,j calculating the Earth Mover Distance [Pele and Werman,
2009] between the color histograms of the i-th and j-th images. We refer the reader to
the work of Poleg et al. [2015] to an in-depth description of each component. The term
Si,j is used to penalize the transitions that are not composed of frames with relevant
semantic information, and computed as:

Si,j =
1

Si + Sj + ε
, (4.2)

where Sx is the semantic score defined in Equation 3.1 for the x-th frame, and ε avoids
dividing by zero when both scores are null.

The adaptive frame sampling is described as the problem of finding the shortest
path on this modeled graph. For this, a source node is connect to the τmax first nodes,
and a target node is connected to the last τmax frames – Figure 4.3. Weights connecting
both source to nodes, and nodes to target, are set to 0. All frames compositing the
shortest path on the graph modeled to the video segment are added to the set of
selected frames S to produce the final video.

Parameter Setting. A drawback of the graph based Frame Sampling methods is
the number of parameters to be set by the user. Equation 4.1 has a total of four
parameters highly related to the input video, and with a large search space, once these
values assume continuous values. Similar to the parameter setting of the speed-up
regularization terms, the configuration of four parameters demands user knowledge
and effort. In this case, it is highly probable that the user will not find the right
parameters. Using fixed parameters as done in the work of Poleg et al. [2015] does not
lead to the best result, as can be confirmed by analyzing their results (EgoSampling)
in Section 4.5.

To address this issue, we set the values of the terms λI , λV , λA and λS in Equa-
tion 4.1 by applying an automatic and user-free parameter setting using the Particle
Swarm Optimization (PSO) algorithm. The fitness function used is defined by Equa-



48 Chapter 4. Experiments

tion 4.3:

fitness
λI ,λV ,λA,λS

=
J

MaxJ
+

∣∣∣∣∣ L̂− ELEL

∣∣∣∣∣+
Ŝ∗ − Semantics

Ŝ∗
, (4.3)

where J is the jitter of the generated fast-forward video,MaxJ is the maximum possible
jitter for the video, EL is the expected number of frames, L̂ = L/F̂d is the final video
length, L is the original video length, and Ŝ∗ is the maximum value for the semantic
score of the fast-forward video.

The Semantics value represents the semantic content of the generated fast-
forward video. It is the sum of the semantic score computed by Equation 3.1 using all
frames. We compute the jitter as the magnitude of the mean deviation of the Focus
of Expansion locations along the selected frames. The maximum possible jitter is the
jitter of a hypothetical video in which for every frame the Focus of Expansion is as far
as possible from the previous.

4.3 Parameters Setup

Parameters of our methodology were empirically set following a careful procedure to
achieve satisfactory overall results.

Ad hoc Semantic Analysis – Section 3.1.1 – For the experiments on evaluating the
semantic content, we used the NPD Face Detector [Liao et al., 2016] and a pedestrian
detector [Dollár, 2016] as the semantic extractors. Values 60 and 100 were used for
thresholdck in Equation 3.2 as minimum confidence to accept a face detection and
pedestrian detection, respectively.

Temporal Segmentation – Section 3.1.2 – We filtered the semantic profile using a
Gaussian function with standard deviation σ = 5 ·FPS, where FPS stands for Frames
Per Second. Segments smaller than 5 seconds were discarded by connecting them to
adjacent segments since short ranges would result in a flash on accelerated videos.

Graph-based Frame Sampling – Section 4.2.1 – We set the number of nodes outgo-
ing edges τmax as 100. In the calculation of the edge semantic cost term (Equation 4.2),
ε was set as 1.

Sparse-based Frame Sampling – Section 3.2.1 – We used SpF = 2 during the
Smoothing Frame Transitions, in a manner that half of the frames compositing the
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final video were sampled to reconstruct well the context of the original video, and the
other half to smooth the transitions.

Video Stabilization – Section 3.3.1 – The size of the segments for selecting the master
frames was defined as γ = 4. The drop area da was set to dp% = 50% of the frame
and the crop area ca was set as cp% = 90% of the frame total area. In Equation 3.14,
we used η = 0.5 and σ = 10.

4.4 Evaluation criterion

We perform the experimental evaluation of the proposed methodology by a quantita-
tive analysis regarding four aspects: amount of semantic information retained in the
accelerated video, deviation of achieved speed-up based on the required value, visual
instability, and temporal discontinuity of the output video.

Semantics. For the Semantic evaluation, use the ad hoc definition of semantics that
states the relevant information as pedestrian in videos with high speed camera forward
movement, e.g ., videos recorded when Biking or Driving, and face in the remaining
sequences. The semantic index of the accelerated video is given by the ratio between
the sum of the semantic content in each frame of the final video and the maximum
possible semantic value for the original accelerated using the required speed-up rate Fd
as defined in Equation 4.4:

SV =

∑mc

i=1 S(fsi)∑mr

i=1 S(fti)
, (4.4)

where mc is the number of frames in the accelerated video, mr is the number of frames
needed to create a accelerated video with the required speed-up Fd, fsi stands for the
i-th frame of the accelerated video, and fti stands for the top-i ranked frame of the
original video regarding the semantic content [Ramos et al., 2016]. S(f) stands for the
semantic content of the frame f and is defined by Equation 3.1.

Semantic value is larger for videos composed of frames that have semantic regions
with a higher confidence assigned by the classifier, a larger area, and located in the
central part of the image.

Visual Instability. Most of the fast-forward methodologies either use qualitative met-
rics, based on subjective human evaluation [Kopf et al., 2014; Joshi et al., 2015], or
the quantitative evaluation by analyzing the deviation of the epipole/Focus of Expan-
sion (FOE) jitter [Poleg et al., 2015] in the produced video. However, we demonstrated
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Figure 4.4. Visual instability result of the user study. (Left) Mean value of
instability calculated using the Epipole Jitter deviation over all sequences for all
three techniques. (Center) Mean value related to the users’ opinion concerning the
visual instability of produced accelerated videos. (Right) Average value of visual
instability calculated by the proposed Instability metric (Equation 4.5). The
result of the proposed metric reflect better the users’ opinion than the Epipole
jitter deviation.

through a user study that the deviation of the epipole jitter metric occasionally assigned
better scores for shakier videos, contradicting users’ opinion. Among the possible rea-
sons for the bad performance of the epipole jitter metric, we list the epipole estimation
error and the weakness of relying on a single value. Therefore, we propose a metric
to evaluate the smoothness of the final produced video concerning the whole frame by
analyzing the pixel intensity standard deviation in a sliding buffer. We get inspiration
on the qualitative evaluation employed by Joshi et al. [2015], where they used a side-
by-side comparisons and standard deviation frames of a few consecutive images. The
metric is defined as follows:

I = M

(
1

n
·

n∑
i=1

∑
j∈Bi

(fj − f̄i)2

(nB − 1)

)
, (4.5)

where n is the number of frames in the video, Bi is the i-th buffer composed by nB
temporal neighbor frames, f j is the j-th frame of the video, f̄i is the average frame of
the buffer Bi, M(·) is a function that returns the mean value for the pixels of a given
image and I indicates the instability index of the video. A smoother video yields a
smaller I value. We use buffer size equals 7 for all experiments.

Figure 4.4 depicts the users’ opinion gathered in the user study performed con-
cerning the visual instability of the produced videos. To create the database used in
the user study, we collected the output videos produced by the acceleration techniques:
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EgoSampling (ES) [Poleg et al., 2015]; Microsoft Hyperlapse (MH) [Joshi et al., 2015],
and Fast-Forward Based on Semantic Extraction (FFSE) [Silva et al., 2016]. We run
the techniques in 9 egocentric videos from the EgoSequences Dataset [Poleg et al.,
2015], with the 10 as the required speed-up, producing accelerated videos of average
35-second length. During the user study, we asked 33 subjects to watch the (unlabeled)
videos and grade the video instability with respect to its smoothness in an assessment
questionnaire. Higher values indicate shakier videos. Epipole jitter results state ES
produce smoother videos when compared to the MSH, which is the state-of-the-art
regarding visual smoothness, as depicted by the users’ opinion. Figure 4.4 shows that
the proposed Instability reflects the subjects’ preferences.

Speed-up Deviation. Speed-up metric is given by the absolute difference between
the achieved speed-up rate and the required value Fd. The achieved speed-up is the
ratio between the number of frames in the original video and in its accelerated ver-
sion (Equation 3.15). In this dissertation, we used required speed-up Fd = 10 for all
experiments.

Temporal Discontinuity. To measure the video Discontinuity, we propose to use
the Root-Mean-Square Error (RMSE) over the selected frames jumps and the required
speed-up rate for that video, as follows

D =

√∑m
i=2 ((fsi − fsi−1

)− Fd)2
(m− 1)

, (4.6)

where fsi is the index of i-th selected frame on the original video, Fd is the required
speed-up rate, and m is the number of frames in the accelerated video. Higher values
indicate that the accelerated video contains long jumps, which creates visual gaps.

4.5 Results

In this section, we present the quantitative results concerning the experimental evalu-
ation of the proposed method.

4.5.1 Multi Importance Semantic Analysis

In order to perform a quantitative evaluation, we use the Ad hoc definition of semantic
presented in Section 3.1.1.1. Pedestrian detection is used as semantic information in
videos with high speed camera movement, e.g ., Biking and Driving, and face detection
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Figure 4.5. Semantic content retained in the accelerated videos produced by
ES, MSH, FFSE, and our methods in the Semantic Dataset. The use of Multi-
Importance approach leads our both graph and sparse based methodologies to
keep twice the semantic information retained by the best competitor (FFSE).
Higher values are better.

to videos with low speed camera, e.g ., Walking. To demonstrate the invariability of the
results regarding the frame sampling step, the Multi-Importance approach was applied
in both graph-based and sparse-based adaptive frame sampling.

Figure 4.5 shows the fraction of the semantic content retained from the maximum
value that can be present in a accelerated video. We calculate this maximum by
summing over the m top-ranked frames with relation to the semantic content, where
m is the ratio between the original video length n and the required speed-up rate Fd
(we refer the reader to Section 4.4 for more details).

The combination of the multi-importance approach with an adaptive frame se-
lection creates accelerated videos with even more emphasis in the semantic segments,
leading our methodology to outperform the competitors, excepting in “Walking 50p”.
Analyzing experiments “Driving 0p” and “Driving 25p”, we manage to keep around 30%

of the possible semantic information, while the best competitor takes around 10%, what
means three times more semantic information retained in the final video. Sequences
“Walking 75p” and “Walking 50p” are failure cases, the Multi-Importance approach did
not increase the amount of semantic retained. A single semantic segment was created
in these experiment due to low variation in the semantic profile of the videos.

Our methodology manages to keep around 2 times more semantic content than
the best competitor (FFSE), which is also a semantic fast-forward method. In com-
parison to the MSH, which is the best non-semantic competitor, the average semantic
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information kept is 5 times higher.

4.5.2 Semantic based on users’ opinion

In Section 4.5.1, due to the need of establishing a ground truth for experimental evalua-
tion and exhibition proposes, we perform the experiments using a predefined semantic:
face detection for videos with slow movements and pedestrian for the others. How-
ever, semantics is more than faces or pedestrians, by definition it is everything that
has significance for someone. In this Section, we present the results of the proposed
methodology to assign semantic score to video frames based on the user’s attention.

Our methodology assign a semantic score to frames using the preference of the
user from web video statistics. We train a CNN to learn how to identify a “Cool”
frame based on the images composing the videos which the user likes. Besides of being
applied to general purpose, this approach can be user specific, i.e., learning the interest
of a single person.

After the training, the CoolNet is capable of rate the video frames based on the
“Cool” concept learned from the training data. Therefore, the user does not need to
specify the semantic information to produce the Hyperlapse video, the methodology
use the CoolNet to assign relevance to frames instead.

Figure 4.6 depicts network score related to different scenes. Analyzing the as-
signed scores and their respective images, we inferred that the Network classifies with
high score frames with nature elements, e.g ., forest, beach, dirty roads and gardens.
This preference for natural scenarios is due to the fact that most of the images labeled
as “Cool” in the gathered Dataset are related to radical sports and beautiful landscapes.
Uniform frames, like indoor looking images, walls, and offices, yield to a low rating.
In the left image in Figure 4.6, when the recorder passes through an inside garden,
the network attributes an average rating. In the center image, the recorder is walking
inside a building hall, which the net considers unattractive. In the right image, the
recorder goes to an outside area with trees and gardens, which are highly rated by the
net.

Even though the CoolNet incorporates user’s preferences to estimate the relevance
of each frame, it could be not enough to cover all possible semantics. We address this
issue by combining semantic extractors, making a linear combination of their output.
In this case, the output is a fast-forward video emphasizing segments which have either
face or beautiful landscapes, for example. Additionally, since the score for each frame
is given by a linear combination, we have the freedom to set which extractor has more
influence. The reader is referred to https://youtu.be/faOr7OLvH8w?t=293 for visual

https://youtu.be/faOr7OLvH8w?t=293
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Figure 4.6. Semantic Profile curve of the CoolNet for every frame of a sample
video. The left image depicts an inside garden, with its medium score. The
central image is a building hall, that the CoolNet does not consider containing
large semantic content. The right image is a garden with a outdoor view, for
which CoolNet gives the highest scores.

results of the accelerated video produced by the CoolNet and semantic combination.

4.5.3 Smoothing of Speed-up transitions

As stated in Section 1.2, one of the problems concerning semantic fast-forward method-
ologies is the abrupt difference of speed-ups when changing from a semantic segment
to a non-semantic one, or vice versa. One drawback of the abrupt difference in speed-
up transitions is to create a virtual effect on the final video. In this dissertation, we
address this problem of smoothing the speed-up transitions during the Fill Visual Gap
between segments processing (Section 3.2.1.2).

We evaluate the speed-up smoothing effect by calculating the Root Mean Square
Error (RMSE) between the acceleration rates applied to consecutive segments, as de-
scribed in Equation 4.7

S =

√∑
i∈SS (Fi − Fi−1)2

(|VS|)
, (4.7)

where Fi is the speed-up rate applied to the i-th segment of the video, VS is the set
of video segments. Higher values indicate that the accelerated video contains abrupt
difference of speed-up transitions.

When comparing our frame sampling without applying the speed-up transitions
smoothing with our full methodology, the average Root Mean Square Error (RMSE)
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Figure 4.7. Smoothing Speed-up transition by the Fill Gap processing. Horizon-
tal lines indicates the ranges where frames were effectively sampled. Top image
depict the problem of temporal discontinuities related to sparse-based adaptive
frame sampling. Bottom image show frames sampled in the Gap between the
segments and the speed-up transition smooth.

values are 5.7 and 3.6 before and after applying the smoothing step on the Semantic
Dataset, respectively. Experiments performed in the DoMSEV dataset resulted in
values 8.4 and 4.5 before and after applying the speed-up transition step. Figure 4.7
depicts the speed-up rates applied in the video segments, horizontal lines indicates the
ranges where frames were sampled during the frame sampling. Top image depicts the
problem related with sparse-based adaptive frame sampling, gaps are created between
the last frame of a segment and the first frame of the following segment. Bottom image
depicts the effect of the Fill Gap step smoothing the speed-ups transitions.

4.5.4 Sparse-based Semantic Hyperlapse

The reported results regarding the Semantic Evaluation show that the sparse-based
frame sampling applying the Multi-Importance approach outperforms the state-of-the-
art semantic hyperlapse technique (Figure 4.5). We extend the experimental evaluation
of the proposed sparse-based sampling to the analysis of Visual Instability, Temporal
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Figure 4.8. Experimental evaluation regarding the Temporal Discontinuities.
Bars show the average Instability Index over all videos in the Semantic Dataset
achieved by each methodology. Our sparse-based framework outperforms the
competitors. Lower values indicate more stable videos.

Discontinuity, Speed-up Deviation, and Processing time.
The results for Instability are presented as the mean of the instability indexes

calculated over all sequences using Equation 4.5 – Figure 4.8, lower values are better.
Cyan dashed line stands for the average instability index among the original videos, and
the black dotted line stands for the average instability index of the naively accelerated
videos. Ideally, it is better to yield an instability index as close as possible to the
original video. The chart shows that our method created videos as smooth as the
state-of-the-art method MSH.

Figure 4.9 shows the average Root Mean Square Error (RMSE) of the jumps
regarding the required speed-up rate Fd. MSH has an advantage over other competi-
tors since it is a non-semantic hyperlapse, which means that the whole video will be
accelerated in a rate very close to the required speed-up. On the other hand, semantic
hyperlapse techniques eventually will have segments accelerated with a lower speed-up
to create emphasis, and with a higher play rate to compensate the lower speed-ups.

Comparing only semantic acceleration methodologies, our proposed sparse-based
framework achieved the lowest value. We assign this improved results to the method-
ological steps Smoothing Frame Transitions and Fill Gap between Segments, since the
first use the distance between frames to smooth a transition, and the second step fill
the temporal gap resulting of the frame sampling. We refer the reader to Section 4.6.4
for more experiments related to the Fill Gap step.

Regarding speed-up analysis, the average absolute difference over all experiments
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Figure 4.9. Experimental evaluation regarding the Visual Instability. Bars show
the average RMSE between the frame jumps and the required speed-up rate over
all videos in the Semantic Dataset. The best value is achieved by the MSH, which
is a non-semantic Hyperlapse. Regarding semantic methodologies, the proposed
sparse-based frameworks achieved the best value. Lower values are better.

over the Semantic Dataset was smaller than the one for the proposed graph-based
methodology (0.8) and sparse-based (0.9). Other competitors performed poorly in this
criteria: ES (11.0), FFSE (3.3), and MSH (1.2).

4.5.5 Processing Time

Our proposed sparse-based methodology outperform the competitors analyzing the re-
sults concerning amount of retained semantic information, visual stability, proximity
of achieved speed-up to the desired value, and time to run the adaptive frame sam-
pling. To stress the methodology, we ran a detailed performance assessment in the
unconstrained DoMSEV dataset comparing our methodology against the second best
competitor regarding semantic retained in the final video, which is the FFSE using our
Multi-Importance approach (Section 4.2.1). Results are showed in Tables 4.3 and 4.4.
As can be seen in the mean values regarding the whole dataset present in the end of
Table 4.4, our graph-based method outperforms by a small margin the sparse-based
frame sampling in the metric Semantic retained. Analyzing the Visual Instability,
sparse-based approach leads, it means that the frame sampling neglected the gain in
semantic to create a more smooth video. The speed-up deviation of the sparse-based
approach is tree times lower than the graph-based solution.

However, the highlighting result when comparing the sparse-based approach to
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Table 4.3. Comparison between the sparse and graph based approaches in
the unconstrained DoMSEV w.r.t. semantic retained, visual instability, speed-up
achieved, and processing time of frame sampling step.

Semantic1(%) Instability2 Speed-up2 Time2(s)

Videos Graph Sparse Graph Sparse Graph Sparse Graph Sparse

Aca_01 32.6 26.5 46.8 45.1 0.0 0.3 1,477.1 5.1
Aca_02 41.9 28.0 34.5 32.8 0.0 0.4 2,587.2 8.9
Aca_03 32.6 28.0 42.8 41.4 0.0 0.2 2,112.9 9.7
Aca_04 28.0 23.7 34.5 35.1 0.4 0.2 3,882.0 10.4
Aca_05 28.7 26.9 42.0 39.6 2.2 0.1 1,810.0 6.5
Aca_06 38.1 34.4 36.5 33.1 0.0 0.1 6,976.3 12.6
Aca_07 26.8 21.4 41.5 41.0 0.2 0.8 2,802.9 6.2
Aca_08 24.5 19.5 31.5 34.4 2.4 0.1 4,252.7 18.8
Aca_09 24.7 20.7 50.4 48.4 0.0 0.2 3,298.5 8.7
Aca_10 25.1 24.1 51.6 48.1 1.5 0.2 8,759.3 32.7
Aca_11 20.1 22.7 42.6 31.1 1.0 0.3 3,176.9 10.5
Aca_12 32.2 28.2 33.8 30.8 1.0 0.1 4,373.4 21.9
Aca_13 40.0 46.7 30.0 19.9 2.4 0.2 2,623.4 21.4
Aca_13_c 40.5 19.5 20.0 27.6 0.1 0.2 2,533.3 5.8
Att_01 27.0 22.1 38.1 36.1 0.0 0.4 5,102.3 12.6
Att_02 59.2 66.7 25.6 32.2 0.0 0.2 6,003.6 19.4
Att_03 46.7 75.3 40.3 30.0 4.1 0.0 3,762.0 226.8
Att_04 48.9 50.9 37.9 35.9 0.5 0.6 4,851.0 15.6
Att_05 50.6 51.5 36.1 34.9 1.0 0.1 3,320.9 13.2
Att_06 26.9 21.6 46.4 45.9 1.0 0.4 2,812.6 9.2
Att_07 32.0 26.3 44.8 43.7 0.0 0.8 7,011.0 12.5
Att_08 77.5 81.4 37.8 36.4 1.7 0.3 1,762.0 7.0
Att_09 21.5 12.2 52.4 37.5 0.0 0.7 3,265.1 16.2
Att_09_c 44.4 46.5 39.6 47.0 0.3 0.4 4,458.3 22.7
Att_10 43.7 35.6 45.6 44.8 0.3 0.2 4,043.8 9.6
Att_11 39.2 17.8 35.8 20.6 0.0 0.5 6,025.0 9.4
Att_11_c 31.5 27.3 21.1 36.5 0.0 0.1 5,684.4 13.2
Att_12 53.3 32.8 24.0 21.6 0.7 0.2 7,020.3 13.0
Att_13 31.9 27.3 47.8 46.8 0.2 0.0 2,460.5 7.9
Att_14 24.2 21.3 43.2 28.4 0.1 0.1 2,502.5 6.2
Att_14_c 30.1 24.5 33.8 41.0 0.0 0.4 2,399.6 4.5
Bea_01 26.6 18.8 32.8 30.1 0.0 0.1 5,364.7 15.4
Bea_02 30.5 28.5 29.1 36.3 0.0 0.3 21,922.4 50.9
Dai_01 20.0 16.3 49.0 44.4 2.6 0.2 5,222.0 16.0
Dai_02 25.5 25.7 46.8 35.4 3.5 0.2 5,741.3 65.4
Dai_03 27.2 23.4 33.5 28.0 0.0 0.0 3,868.3 61.8

1Higher is better. 2Lower is better.

the graph-based is the processing time evaluation regarding the frame sampling process.
The average time spent to the sparse-based approach to perform the frame sampling
step was 27.8 s, including the steps Weighted Sparse-based Frame Sampling, Smooth
Frame Transition, and Fill Gap between segments, against 4,728.4 s of the graph-
based approach including the graph modeling, shortest path calculation, and automatic
parameter-setting processes. These values represent an average of 0.2 ms per frame
for the sparse-based solution against 0.36 ms per frame for the frame-based approach.
Figure 4.10 shows the time spent during the frame sampling step related to the length
of input videos for all experiments in the DoMSEV.
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Table 4.4. Continuation of the comparison between the sparse and graph based
approaches in the unconstrained DoMSEV w.r.t. semantic retained, visual insta-
bility, speed-up achieved, and processing time of frame sampling step. The Mean
row is regarding the whole dataset, i.e., the average value of the column of both
Tables 4.3 and 4.4.

Semantic1(%) Instability2 Speed-up2 Time2(s)

Videos Graph Sparse Graph Sparse Graph Sparse Graph Sparse

Ent_01 35.9 32.1 24.0 30.6 0.0 0.5 827.2 2.1
Ent_02 64.4 62.7 37.5 32.2 0.3 0.0 1,063.8 3.0
Ent_03 31.4 26.0 31.4 23.9 1.0 0.6 3,945.5 17.4
Ent_04 32.8 29.8 45.5 42.7 0.0 0.1 4,505.9 10.0
Ent_05 33.2 29.4 39.1 21.4 0.0 0.1 3,786.1 8.6
Ent_05_c 23.9 22.1 25.9 34.1 0.0 0.1 4,063.8 13.2
Ent_06 7.3 65.1 38.6 19.9 2.0 0.5 5,894.6 183.0
Ent_06_c 27.5 17.0 22.7 22.1 0.8 0.4 5,478.1 16.8
Ent_07 83.3 68.1 28.7 24.1 0.0 0.2 4,735.2 360.4
Ent_07_c 39.6 13.4 9.4 8.2 0.0 0.2 7,389.0 15.4
Par_01 24.1 19.3 28.5 31.0 0.0 0.6 3,275.9 8.0
Rec_01 22.6 18.5 40.1 39.3 0.0 0.6 4,601.6 16.4
Rec_02 44.8 38.4 43.9 45.3 0.6 0.6 6,054.6 14.9
Rec_03 72.7 76.7 43.6 42.3 0.4 0.4 3,379.9 12.6
Rec_04 25.0 22.7 40.6 43.2 0.0 0.4 10,955.5 16.9
Rec_05 31.7 24.1 28.9 27.7 2.5 0.5 4,775.1 10.5
Rec_06 11.2 10.0 48.2 47.1 4.5 0.0 3,459.6 86.4
Rec_07 22.8 19.8 39.1 37.5 0.0 0.3 10,105.4 12.3
Rec_08 26.3 25.9 38.4 33.5 3.7 0.7 5,957.0 23.3
Rec_09 23.9 20.1 30.7 27.5 0.0 0.0 7,162.1 71.7
Rec_10 67.0 68.8 19.7 24.8 0.0 0.2 3,048.9 32.3
Rec_11 65.2 67.6 11.6 11.6 0.0 0.2 2,802.9 23.7
Rec_12 46.0 40.0 18.5 17.7 0.0 0.3 3,962.0 19.5
Sho_01 25.8 21.3 43.7 43.1 0.0 0.7 3,368.7 6.6
Sho_02 30.4 24.4 43.7 42.1 0.3 0.5 3,076.1 8.3
Spo_01 24.4 22.5 36.6 34.7 0.0 0.5 3,694.5 7.4
Spo_02 12.6 11.4 53.3 47.0 0.0 0.4 2,387.6 4.2
Spo_03 31.6 22.3 37.9 33.8 0.0 0.1 13,915.1 19.5
Spo_04 45.9 40.7 32.7 31.0 0.0 0.7 2,774.9 10.2
Tou_01 62.9 64.7 31.6 29.8 2.1 0.3 3,283.4 14.6
Tou_02 47.2 47.8 54.3 51.7 3.2 0.9 9,331.0 31.9
Tou_03 33.9 31.2 38.8 39.3 0.0 0.3 2,668.3 5.8
Tou_04 29.2 25.3 56.4 54.1 0.1 0.5 8,302.5 15.3
Tou_05 56.8 57.6 33.1 31.1 1.2 0.2 3,735.8 11.6
Tou_06 33.6 34.7 26.4 27.1 6.2 0.2 4,810.6 37.4
Tou_07 42.7 44.8 37.1 40.4 4.5 0.1 3,906.1 17.7
Tou_08 32.7 29.3 29.4 32.2 4.4 0.2 3,419.4 53.0

Total mean 36.0 33 .1 36 .6 34.6 0 .9 0.3 4 ,728 .4 27.8

1Higher is better. 2Lower is better.

It is noteworthy that the graph-based approach runs a parameter setup to adjust
4 parameters and then performs the shortest path for each segment. Our sparse-based
approach runs the analytic solution for the minimum reconstruction problem followed
by the frame transition smoothing step, and the fill gap between segments steps. Time
represented in Y-axis in the chart indicates the execution time of graph-based approach
grows exponentially with the number of frames in the input video, while the sparse-
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Figure 4.10. Processing time analysis of related to the input video length of
graph and sparse based approaches. Trendline of each set of points follows a
second order polynomial form.

based approach is not influenced by the number of frames in the input video. This 180×
of time speed-up regarding sparse-approach over the graph-solution and the invariance
concerning the input video length is due to the analytic solution of LLC formulation.

Table 4.5 presents the average time (in milliseconds) to process each frame (res-
olution 720p) of the input video regarding the steps to accelerate the video for the
proposed method, graph-based semantic Hyperlapse (Section 4.2.1), and Microsoft
Hyperlapse (MSH) [Joshi et al., 2015]. The table is organized in Frame Description,
Frame Sampling, and Video Stabilization columns.

The proposed method executes the optical flow inference, object detection using
YOLO, and extracts features related to the color histograms of the image to compute
the Frame Description; following, the proposed method estimate the speed-up rates to
each video segment and solve the LLC formulation to execute the Frame Sampling;
and finally, it performs the Video Stabilization step. The most time-consuming task
during the Frame Description step is to calculate the color histogram features followed
by the optical flow inference. Frame Sampling is the step sped-up in this work. Video
Stabilization leads as the most time-consuming step by a large margin, spending be-
tween 12 seconds in the best case and 24 seconds in the worst case per frame. It is
noteworthy that the Video Stabilization time process is highly dependent on the frame
sampling and the input video itself.

The graph-based semantic Hyperlapse executes the optical flow inference, cal-
culates the Earth Mover’s Distance (EMD) of the color histograms, and models the
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Table 4.5. Average time processing per frame to perform the complete fast-
forward pipeline of our proposed method, graph-based semantic fast-forward, and
Microsoft Hyperlapse (MSH). The values are in milliseconds. The * indicates
value reported by the authors.

Method
Frame Description Frame Sampling

Video
StabilizationOptical

Flow YOLO Features
Extraction

Speed-up
Estimation Sampling

Ours 177.74 33.33* 231.49 0.21 0.16 12,000 – 25,000

Optical
Flow

EMD
Histograms

Edge
Weights

Speed-up
Estimation Sampling

Graph-based 177.74 61.57 19.83 0.21 31.72 14,000 – 24,000

MSH 0.02* 0.005*

graph calculating the edge weights to compute the Frame Description; following, the
graph-based method estimate the speed-up rates to each video segment, optimize the
parameters settings, and find the shortest path in the created graph to execute the
Frame Sampling; and finally, it executes the Video Stabilization step. The most time-
consuming task during the Frame Description step is to infer the optical flow.

The authors of the Microsoft Hyperlapse work reported the values 0.02 millisec-
onds to create the frame description and 0.005 milliseconds to execute the frame sam-
pling and stabilize the video. The values were measured running on a single core of a
2.67 GHz Intel Xeon X5650 PC from 2011 running Windows 8.1 (Reported informa-
tion).

Experiments were conducted in a computer with an i7-6700K CPU @ 4.00GHz
and 16 GB of memory. The values reported to Ours and Graph-based have no code
optimization, while the MSH was highly optimized by a team of professional software
engineerings to run in real time on standard personal computer and even in smart
phones architectures.

4.6 Ablation Study

Along the ablation analysis, we discuss effect of each methodological step in the sparse-
based final result, i.e., application of steps Weighted Sparse Frame Sampling, the
Smoothing Frame Transitions, and Fill Gap between segments during the frame sam-
pling process. We also compare the LLC formulation to other general sparse coding
formulations, and the usage of Convolutional Neural Networks (CNN) deep-features
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Figure 4.11. The effect of applying the Weighted Sparse Sampling in an abrupt
camera movement segment of a real experiment. Black arrows are the frames
of the original video, red arrows are the frames selected by non-weighted sparse
sampling, and the green arrows represent the frames sampled by the weighted
sparse sampling. Each image is related with the respective numerated arrow.

instead of the hand-crafted features proposed in this dissertation. Finally, we evaluate
the benefits of applying the Video Stabilization to produce the final accelerated video.

4.6.1 Weighted Sparse Sampling

As stated in Section 3.2.1, we introduce a new model based on weighted sparse sam-
pling to address the problem of abrupt camera motions. In this model, small weights
are applied to frames into temporal regions of abrupt camera motions increasing the
probability of these frames being selected and, consequently, to create a smooth se-
quence.

To test the efficiency of the proposed solution, we evaluate the number of frames
sampled by the weighted and non-weighted frame sampling in regions stated as having
abrupt camera motions by the CDC-based classifier (Section 3.2.1) on the Semantic
Dataset. The weighted version manages to sample, in average, three times more frames
than the non-weighted version.

Figure 4.11 illustrates the effect of solving the sparse sampling by weighting the
activation vector in a real experiment. Weighting strategy create smoother frame
movement by using a denser sampling in curves (Figure 4.11-b) than when applying
the non-weighted sparse sampling version (Figure 4.11-a). In this particular segment,
our approach sampled twice the number of frames, leading to less shaky in lateral
motions.
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4.6.2 Detection of abrupt camera movement

As important as using a weighted formulation is the estimation of the weight values.
The calculation of weight matrix W used in the weighted sparse sampling formula-
tion (Equation 3.10) is based on the detection of video segments with abrupt camera
movements. To detect these segments, we estimate the optical flow in a 5× 5 grid
window between all consecutive frames by applying the sparse optical flow proposed
in the work of Poleg et al. [2014]. The information of the horizontal displacements is
used to create the Cumulative Displacement Curves (CDC) [Poleg et al., 2014].

The advantage of using CDC over Optical Flow (OF) to detect abrupt camera
movements is regarding the CDC robustness against dynamic objects in the scene. By
using OF, camera motion can be miss-estimated in case of a displacement of large
objects, e.g ., a car or a person close to the recorder.

Figure 4.12 illustrates the OF and the CDC of a video recorded in a controlled
environment. For this experiment, a person crossed the path of the camera to show the
effect of the movement of scene components. Figure 4.12-b shows the average optical
magnitude for each frame of the video, and the abrupt camera movement are inferred
through thresholding. The moving object results in high average magnitude, leading
the detector to miss-interpretation in some cases (red boxes in X-axis). However, when
analyzing the CDC (Figure 4.12), the moving object caused interference in some of the
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Figure 4.12. Comparison of abrupt camera detection using Optical Flow versus
Cumulative. Images show the Displacements Curves Cumulative Displacement
Curves CDC (a) and Optical Flow OF (b) of a video recorded in a controlled
environment. Green and Red boxes in the x-axis indicate true and false abrupt
camera motion detection, respectively. The false detection was actually small
variations in the scene and a person walking through the scene.
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displacement curves only, not affecting the overall result (green boxes in X-axis).

4.6.3 Smooth Frame Transition

To analyze the effects of the Smooth Frame Transition step, we first execute the sparse-
based frame sampling only, and then we execute the sparse-based frame sampling
followed by the Smooth Frame Transition. The step Fill Gap between segments is not
performed to make clear the comparison.

By computing the coefficient of variation (CV), we measured the relative variabil-
ity of the points representing the appearance cost of the frames (blue and red points
in Figure 4.13). The appearance cost is computed as the Earth Mover’s Distance [Pele
and Werman, 2009] between the color histogram of frames in a transition.

After applying the proposed smoothing approach, we achieved CV = 0.97, while
the simple sampling provided CV = 2.39. The smaller value for our method indicates
a smaller dispersion and consequently fewer visual discontinuities inside the segments.
Figure 4.13 shows the result when using the Smooth Frame Transition (SFT) approach
and the non-smooth approach during the frame sampling step. The horizontal axis
contains the index of the selected frames and the vertical axis represents the appearance
cost between the i-th frame and the following frame in the final video. Points in the
red line represent the oversampling pattern of non-smoothed sparse sampling, in which
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Figure 4.13. Frame sampling and appearance cost of the transitions in the final
video before and after applying the Smoothing Frame Transitions (SFT) to the
video “Walking 25p”. Images with blue border show the frames composing the
transition with the highest appearance cost using SFT. Images with red borders
are related to the non-smoothed sparse sampling.
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many frames are sampled in segments hard to reconstruct followed by a big jump.

The abrupt scene changing is depicted by high values of appearance cost. Red-
bordered frames in Figure 4.13 show an example of two images that compose the transi-
tion with the highest appearance cost for a fast-forwarded version of the video “Walking
25p” using non-smooth approach. After applying the SFT step, we see a more spread
sampling covering all segments, and with less video discontinuities. Blue-bordered im-
ages present the frames composing the transition with the highest appearance cost
using the sparse sampling with the SFT step. By comparing the red and blue curves,
one can clearly see that after using SFT, we achieve smoother transitions, i.e., lower
values for the appearance cost.

4.6.4 Filling Gap Between Segments

The effect of the Fill Gap Between Segments step was evaluated by producing videos
either using the proposed methodology (sparse-based frame sampling, Smooth Frame
Transition, and Fill Gap Between Segments) and the methodology without the Fill
Gap Between Segments step.

Table 4.6 shows the results of the evaluation performed using the sequences in
the Semantic Dataset concerning the amount of semantic retained, visual instability,
temporal discontinuity, and deviation between the required and achieved speed-up
rates. The Column “Discontinuity” in Table 4.6 presents the temporal gap problem

Table 4.6. Evaluation of the frame sampling modeling applying only the Smooth-
ing Frame Transition (STF) step and applying the complete framework with Fill
Gap step.

Semantic(%)1 Instability2 Discontinuity2 Speed-up
Deviation2

Videos SFT Ours SFT Ours SFT Ours SFT Ours

B.0p 22.4 22.4 23.4 20.7 9.3 9.3 0.3 0.3
B.25p 20.9 23.6 48.9 43.0 20.7 10.1 0.6 0.9
B.50p 26.4 27.9 29.0 27.7 34.3 9.2 0.2 0.5
B.50p 2 19.2 21.2 25.8 24.2 38.9 10.7 0.2 1.1
D.0p 28.1 29.3 43.9 40.5 36.5 11.4 0.3 0.8
D.25p 25.2 25.7 34.2 33.1 15.8 9.6 2.7 2.0
D.50p 19.5 22.2 35.7 35.0 29.3 10.0 1.3 2.6
W.0p 7.4 7.4 36.9 32.3 7.1 7.1 0.0 0.0
W.25p 37.1 38.5 33.3 30.8 12.3 9.7 1.0 0.6
W.50p 23.4 26.7 34.7 32.5 21.3 13.7 0.0 0.5
W.75p 48.9 52.7 33.0 30.1 27.3 10.3 0.1 0.6

Mean 25 .3 27.1 35 .9 31.8 23 .0 10.1 0.6 0 .9

1Higher is better 2Lower is better
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related to the frame selection of the sparse-based frame sampling, and by comparing
the results, we can observe the effect of applying the Fill Gap correction between
segments presented in Section 3.2.1.2. After applying the proposed step, the RMSE
between inter-frames jumps and the required speed-up Fd dropped from 23.0 (STF) to
10.1 (Ours).

Fill Gap Between Segments steps also leads to the creation of more visual stable
videos, as showed in column “Instability”. However, the speed-up deviation increases
from 0.3 without using Fill Gap step to 0.9 when using this step. This behavior is
expected, using Fill Gap step implies in run frame sampling more often, increasing the
cumulative error.

The complete methodology proposed in this dissertation outperformed the frame
sampling without applying the Fill Gap Between Segments step regarding semantic,
instability and mainly in discontinuity matters. Finally, the semantic retained in the
video produced by the complete methodology is greater than the amount related to
the video produced without using the Fill Gap Between Segments.

4.6.5 Comparison between Sparse Coding formulations

As presented in Section 3.2.1, the first step of our sparse-based approach to frame se-
lection is to model the sampling process as a Minimum Sparse Reconstruction problem.
The final video will be composed of the frames related to the dictionary basis selected
by the solution of the Minimum Sparse Reconstruction problem, which lead to better
video story reconstruction. The design decision in this step is the choice of which
formulation to solve the Minimum Sparse Reconstruction problem. We present the
experimental evaluation comparing the performance of tree formulations: Locality-
constrained Linear Coding (LLC), Orthogonal Matching Pursuit (OMP) and Lasso
(SC).

In the proposed methodology, the Minimum Sparse Reconstruction problem is
solved using the formulation presented in Section 3.2.1. The same problem can be
solved by the Lasso formulation based on the weighted sparse coding using L1 distance
as follows:

α? = arg min
α ∈ Rn

1

2
‖v −D α‖22 + λα ‖W α‖1, (4.8)

where λα is a regularization term of the sparsity of α. The definitions of D, v, W , and
α are the same as presented in Section 3.2.1. We solved Equation 4.8 using the Lasso
package implementation [Efron et al., 2004], and we adjusted the λα value according
to Algorithm 1.
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The Minimum Sparse Reconstruction problem can be also solved by the Orthog-
onal Matching Pursuit (OMP) based on the sparse coding using L0 distance as follows:

α? = arg min
α ∈ Rn

1

2
‖v −D α‖22 + λα ‖α‖0. (4.9)

This equation is solved using the Orthogonal Matching Pursuit implementation, and
λα value is calculated according to Algorithm 1. Due to the usage of L0 distance to
calculate the sparsity term, weighting can not be applied to dictionary basis.

As stated by Wang et al. [2010], the locality present in the LLC formulation
provides better results than sparse solutions, since locality leads to sparsity without
reciprocity. To verify this statement in the frame sampling problem, we run LLC,
OMP, and SC approaches over all videos of the Semantic Dataset. To make the analysis
of effects among the sparse coding formulations feasible, we did not apply the steps
Fill Gap Between Segments and Video Stabilization. Table 4.7 presents the results
concerning the amount of retained semantic, visual instability, temporal discontinuity,
absolute speed-up deviation, and running times of the sampling step.

The overall result of Table 4.7 shows the LLC approach achieves the best perfor-
mance in creating smoother videos and with a significant amount of semantic informa-
tion (second better). OMP outperforms LLC in all videos in the discontinuity of the
frame selection. However, the running times for OMP are approximately 25× slower
than LLC in average for the Semantic dataset. This is due to the analytic solution

Table 4.7. Evaluation of the frame sampling modeling by Locality-constrained
Linear Coding (LLC) and regular sparse coding methods Orthogonal Matching
Pursuit (OMP) and Lasso (SC).

Semantic(%)1 Time(s)2 Instability2 Discontinuity2 Speed-up
Deviation2

Videos LLC SC OMP LLC SC OMP LLC SC OMP LLC SC OMP LLC SC OMP

B.0p 24.6 21.5 22.6 3.1 63.8 67.9 23.4 24.2 23.9 9.8 7.7 5.8 0.3 0.2 0.2
B.25p 20.4 19.4 22.9 1.2 16.9 25.3 48.9 49.3 46.4 21.8 20.3 5.3 0.6 0.6 0.6
B.50p 26.3 28.9 29.9 1.6 19.9 33.5 29.0 31.8 31.7 34.3 14.2 5.6 0.2 0.2 0.2
B.50p 2 18.1 18.2 23.4 1.0 8.9 24.6 25.8 26.4 27.4 38.8 35.1 5.1 0.8 0.2 0.2
D.0p 30.0 28.1 31.6 0.7 13.9 30.7 43.9 45.4 41.5 10.8 15.7 6.7 0.3 0.3 0.3
D.25p 24.7 25.8 26.2 0.5 8.2 14.1 34.2 35.3 35.2 22.0 15.0 6.3 2.1 2.1 2.1
D.50p 19.0 19.3 21.6 0.6 5.8 10.1 35.7 37.0 38.5 27.6 39.1 6.4 1.3 1.5 1.3
W.0p 7.5 7.9 11.3 0.9 26.1 26.1 36.8 38.0 32.6 8.4 15.6 4.7 0.0 0.0 0.0
W.25p 36.7 35.9 31.4 0.9 30.8 13.1 33.3 35.5 33.8 12.3 11.5 5.7 1.0 0.6 0.0
W.50p 25.2 24.8 25.2 0.8 24.1 27.6 34.7 36.2 36.2 19.2 15.7 6.0 0.0 0.1 0.1
W.75p 49.4 44.6 49.1 1.0 16.0 29.6 33.0 37.0 36.3 35.7 23.4 7.0 0.3 0.1 0.1

Mean 25 .6 24 .9 26.8 1.1 21 .3 27 .5 34.4 36 .0 34 .8 21 .9 19 .4 5.9 0 .6 0.5 0.5

1Higher is better 2Lower is better
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provided by LLC. Regarding the speed-up evaluation, all competitors achieved closer
values with respect to speed-up deviation.

Bearing an analytic solution is also a major advantage of LLC over both SC and
OMP as it leads to better performance. The column “Time” in Table 4.7 shows the
running times for each frame sampling method. When using LLC, the frame sampling
becomes approximately 20× faster than the best competitor (SC).

4.6.6 Feature Scalability

One of the problems related to current frame sampling methodologies in literature is
the non-scalability regarding the number of features used to characterize frames and
their transitions. This limitation is related to the direct mapping from the number
of features to the dimensionality of the search space where the solution of the opti-
mization problem relies on. One of the advantages of solving the Minimum Sparse
Reconstruction problem using the LLC formulation is the analytic solution instead of
the optimization solution.

To demonstrate the capability of our methodology in handling high dimensional
features, we perform the frame sampling step using CNN deep-features instead of
hand-crafted features (di ∈ R446) proposed in Section 3.2.1. Frames descriptors were
extracted from the Architecture AlexNet cropped after the layer fc-7, resulting in a
4,069d-feature vector for each frame (di ∈ R4,069).

Table 4.8. Evaluation of the frame sampling describing the video frames
through handcrafted features proposed in Section 3.2.1 against using Deep fea-
tures (AlexNet layer fc7).

Semantic(%)1 Instability2 Discontinuity2 Speed-up
Deviation2

Videos Hand-
crafted Deep Hand-

crafted Deep Hand-
crafted Deep Hand-

crafted Deep

B.0p 22.4 18.9 20.7 26.2 9.3 6.4 0.3 0.2
B.25p 23.6 25.1 43.0 44.6 10.1 16.3 0.9 1.6
B.50p 27.9 32.6 27.7 30.2 9.2 13.9 0.5 1.3
B.50p 2 21.2 24.6 24.2 26.3 10.7 13.1 1.1 2.6
D.0p 29.3 30.6 40.5 35.3 11.4 17.8 0.8 2.0
D.25p 25.7 34.6 33.1 29.6 9.6 12.9 2.0 3.3
D.50p 22.2 28.6 35.0 33.7 10.0 12.1 2.6 3.2
W.0p 7.4 12.9 32.3 36.3 7.1 6.1 0.0 0.0
W.25p 38.5 39.4 30.8 26.3 9.7 13.9 0.6 1.1
W.50p 26.7 26.7 32.5 30.7 13.7 16.5 0.5 1.4
W.75p 52.7 57.7 30.1 30.1 10.3 14.9 0.6 1.7

Mean 27 .1 30.2 31 .8 31.7 10.1 13 .1 0.6 1 .7

1Higher is better 2Lower is better
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Table 4.8 presents the results for the Semantic dataset. Sparse sampling per-
formed using deep-features outperformed the sampling from hand-crafted features in
Instability and Semantic metrics. However, the discontinuity values for experiments
using hand-crafted features outperformed the values for the frame sampling using deep-
features.

4.6.7 Video Stabilization

To evaluate the effect of the Video Stabilization process, we compared the visual insta-
bility index of accelerated videos from Semantic Dataset before and after applying this
step. Figure 4.14 depicts the achieved results heading our discussion, in which 100%

improvement indicates that the output video became as stable as the original one.
Regarding Walking and Biking experiments, the application of the stabilization

step led to an improvement meaning the creation of a more stable final video. Driv-
ing experiments are failure cases of the application of the stabilization process. Our
assumption is that the reason for the badly performance is two fold. First, videos
recorded in a moving car have mostly high speed of motion causing low scenes overlaps
between the accelerated video frames. Thus, due to the features mismatches, the target
homography planes are erroneously computed, leading the video to present unstable
transitions. The second reason is related to the diversity of motions in patches of the
frame. Most of the frames are forward-facing views composed of the car dash and wind-
shield. The frame region depicting the car dash presents slow motion while the region
related to the windshield has high speed motion. If the homography transformation
was calculated mostly by keypoints sampled in the windshield region, this transforma-
tion will deform the car dash generating shakiness. Otherwise, if the keypoints sampled
to calculate the homography transformation are from the car dash, the transformation
will be insufficient to stabilize the image region related to the windshield.

The average stability improvement over all experiments in the Semantic Dataset
by applying the Stabilization process was 3.5%. Analyzing the effect of this stabilization
excluding the failures cases, Driving experiments, the value improvement is 9.1%.

A more detailed performance assessment of stabilizing accelerated egocentric
videos was performed by comparing our stabilization method with the work of Joshi
et al. [2015] (MSH), which is a smoothed homography frame-to-frame transformation.
We create a video using the frames selected by the MSH frame sampling step. Then, we
execute our stabilization step on this video. To evaluate the smoothness, we compare
the values of the instability index of this stabilized video with the MSH video.

The average instability values over all experiments in the Semantic Dataset was
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Figure 4.14. Visual stability improvement by applying the Video Stabilization
process in the accelerated videos. An improvement of 100% indicates that the
output video is as stable as the original one. The W., D., and B. stand for
Walking, Driving, and Biking experiments, respectively.

equal to 35.0, facing 34.0 achieved by MSH stabilizer. However, our methodology
has not been designed to perform well with larger movements, like driving. Then,
considering the Driving sequences as outliers samples and not including them in the
analysis, our stabilizer achieved an average instability index of 32.3 against 32.5 of the
MSH stabilizer. Further, in the work of Joshi et al. [2015], the authors stated that
their frame selection is optimal. Therefore, our video stabilization outperforms theirs
stabilizer step in the best set of frames.

4.7 Concluding Remarks

To the sight of clarification, we summarize the results achieved and presented in this
research, and associate them to the scientific hypothesis presented in Section 1.3.

The first dissertation statements is that a Multi-Importance approach is achieved
by addressing the speed-up rates inversely proportional to the semantic level of the seg-
ment. Results presented in Sections 4.5.1 demonstrated that the graph-based method-
ology retained almost 3× more semantic information when using the proposed Multi-
Importance approach when compared to the graph-based technique which treats the
semantic definition as a binary problem (FFSE method). The amount of semantic in-
formation retained in the final video when using the sparse-based frame sampling was
as high as the graph-based in both analyzed datasets (Sections 4.5.1 and 4.5.4).

The second dissertation statements is: A machine learning based method trained
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from users’ data tie the definition of semantics to the users’ preferences. We proposed
the CoolNet to confirm this hypothesis, and the results in Section 4.5.2 showed that a
machine learning method is capable of infer the users’ preference directly from video
frames and the video statistics. The main advantage is to define semantics without
user interaction or object predefinition.

Regarding the smoothing of abrupt changes of speed-up rates, the third disserta-
tion statements suggest to create an intermediate segment and used the mean values
between the preceding and following segments speed-up value. Experiments performed
in Section 4.5.3 demonstrated that after applying the proposed speed-up smoothing
approach, the RMSE between the speed-up applied to consecutive video segments
dropped from 5.7 to 3.6 in the Semantic dataset, and from 8.4 to 4.5 in DoMSEV.

The last dissertation statements is regarding to model the frame sampling as a
Minimum Sparse Reconstruction problem and solving through a sparse-based technique
turns the frame sampling process scalable in the number of features and creates visual
stable videos. Results performed in Sections 4.5.4 comparing to semantic hyperlapse
methods demonstrate the videos produced by the proposed sparse-based technique
are more visually stable. Also, the amount of retained semantic is greater than the
competitors (Section 4.5.1). Finally, the scalability is confirmed in Section 4.6.6 by
executing the frame sampling describing the frame and transitions using the deep-
feature (di ∈ R4096) extracted using the AlexNet CNN.

Concluding this Section, we detail how methodology step composed the published
works during the development of this dissertation. The graph-based frame sampling
combined with the Multi-Importance approach and an in-depth analysis of the Video
Stabilization method were published at the Journal of Visual Communication and
Image Representation (JVCI) 2018 [Silva et al., 2018a]3. Parts of the sparse-based
approach, such as sparse-based frame sampling and Smoothing Frame Transition step,
and the Dataset of Multimodal Semantic Egocentric Videos (DoMSEV) were pub-
lished at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2018 [Silva et al., 2018b]4.

3Project webpage: https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/jvci2018/
4Project webpage: https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018/

https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/jvci2018/
https://www.verlab.dcc.ufmg.br/semantic-hyperlapse/cvpr2018/
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Conclusions

In this dissertation, we tackled the challenging task of creating Semantic Hyperlapse for
first-person videos through a parameter-free sparse coding-based framework composed
of the adaptive frame sampling, Smooth Frame Transition, and Fill Gap steps. The
frame sampler was modeled as a Minimum Sparse Reconstruction problem using a
weighted formulation allowing a denser sampling along the segments with high camera
movement. Smoothing Frame Transitions step identifies peaks of visual instability and
inserts new frames to address abrupt camera movements by using a denser sampling
along the segments with high movement. Finally, the Fill Gap processing deals with
both visual discontinuities introduced by the sampler and abrupt changes in speed-up
rates between video segments. Contrasting with previous fast-forward techniques that
are not scalable in the number of features used to describe the frame/transition, our
method is not limited by the size of feature vectors.

The experiments showed that our method was superior to state-of-the-art se-
mantic fast-forward methods in terms of semantic, speed-up, stability, and processing
time. We also performed an ablation analysis that showed the improvements provided
by the weighted modeling, smoothing transition step, and Fill Gap between segments.
An additional contribution of this dissertation are the three proposed datasets. The
first is a 80-hour multimodal dataset with several annotations related to the recorder
preferences, activity, interaction, attention, and the scene where the video was taken.
The second is a dataset with controlled amount of semantic information per video to
perform semantic evaluation. The third is a dataset of frames from YouTube egocentric
videos split in two classes: videos with high number of likes, and videos recorded in
boring and monotonous places.

Regarding the dilemma of semantic definition, we proposed a methodology – be
it general or customized – learns semantics from the user preferences. To validate the
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proposed methodology, we ran quantitative experiments, based on fixed and specific
semantics, and qualitative experiments, using the Recorder-Aware semantic approach
proposed here.

5.1 Limitations

The major drawback of the proposed methodology is to model the frame sampling
problem regardless of temporal information about frames transitions, only appearance
and movement characteristic of frames were encoded. Due to this limitation, it was nec-
essary to employ two post-processing step during the frame sampling, i.e., Smoothing
Frame Transitions and Fill Gap Between Segments.

The video stabilization technique does not perform satisfactorily when the camera
motion is high or the scene present regions with different movement behaviors, like
recording from the inside of a moving car. This is due to the premise that a global
and planar homography transformation can be used to stabilize the scene. However,
homography transformation are only acceptable when the surface is planar.

We can also point out as a limitation of this dissertation the bounded definition
of semantic focused only on the user who will watch the video. This definition does
not consider the recorder interest. Here we present one example of this limitation:
considering a video recorded by a person who passes through a beach along his path
to work, besides the fact of the beach is a natural view, it could not be interesting for
him once he sees this scenario every day.

Regarding the emphasis effect to attract the user attention to the relevant in-
formation of the video, we only explored the difference of speed-ups. By using this
approach, the user is capable of identifying the relevant parts of the video, but it could
not understand why these parts are important. One example of this situation, the user
sees the playback speed-up decreasing in a video segment containing people and trees,
(s)he will not understand why the acceleration rate decreases in this part if (s)he is not
aware of the semantics used in the Semantic Hyperlapse process.

5.2 Future works

The research area that this dissertation belongs is recent, there are many opportunities
to expand the borders. Following we present some directions to continue improving
the creation of Semantic Hyperlapse for First-Person Videos focusing, but not limited
to, addressing the limitations presented in Section 5.1.
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Regarding the temporal representation limitation, the dictionary used in the
sparse coding based frame sampling could be formulated encoding information about
the inter frames relations, such as, frame alignment, movement pattern and velocity,
and visual continuity. By formulating the dictionary in this manner, also the video
story representation and the insight about the activation vector should be revised.

To improve the stabilization process, we could represent an unsteady sequence
of selected frames by virtually created frames composing visually stable transitions.
These virtual frames could be created by, for example: reconstructing the geometry of
the scene where the video was recorded and repositioning virtual cameras; using non-
rigid transformations to increase the alignment between consecutive frames; or even
training a Convolutional Neural Network to learn how to create a visually pleasant
sequence of frames given a unsteady input video segment.

Given the amount of available information, the semantic definition problem could
be approached fusing multimodal data. Internet activity can be used to infer the user’s
profile, defining what is relevant for specific users. Furthermore, analyze the recorder
behavior while recording the video using extra sensors such as depth information, iner-
tial measurements, heart beating, and temperature sensors1, could provide information
to infer what attracts was important to the record. In this last example, the system
could remember the record what as relevant in that specific video. One application ex-
ample, a foreign person recording a video visiting a specific monument in the new city
where he/she just moved in. After a few years, when this person passes through the
same monument, he/she could act differently, because it is now part of his/her routine.
However, the person will be able to remember the feeling of seeing the monument in
the first time when watching the Semantic Hyperlapse of his/her first visit.

To address the emphasis effect limitation mentioned early, methods such zooming-
in where is the relevant information on the image and the changing of speed-up could
be combined to emphasize which are the relevant parts of the video and why they
are important. An additional emphasis approach is to play the relevant segments in
slow-motion. For this, frame rendering approaches could be applied.

Additional contributions can be reached by using the labeled dataset proposed
in this dissertation. For each frame of the videos, we have annotation about the scene
where the frame was taken. A study can be conducted using the scene information to
related the place where the frame was taken with the semantics. For example, using
noise patterns as relevant information, if a person is in a concert, the noise pattern is
different from the case in which the person is inside a library.

1Most of these sensor are attached on moderns action cameras and smart watches.
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Also, the semantic definition and the policy applied in the frame sampling could
be modified by the activity performed by the recorder using annotation of the proposed
dataset. One example of this situation is the difference between a person jogging and
standing in a bus stop. When someone is jogging, the visual stability of the camera is a
major problem and should have a proper attention during the frame sampling, and at
the same time, it is more difficult to attract the attention of the jogger. Controversially,
to sample frames in the video segment in which the person is standing in the bus stop
is not a challenging task, and a lot of situations and objects could attract the recorder
attention since he/she is idle while waiting for the bus.

Finally, we suggest the use of the annotation of recorder interest as a potential
study to understand how the recorder behavior during the video capture is related to
his/her personal interest. This discussion can be extended to the topic of how the
information about the personal interest of the recorder can be used to infer semantics
in an unknown situation.



Bibliography

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B.,
and Vijayanarasimhan, S. (2016). Youtube-8m: A large-scale video classification
benchmark. CoRR, abs/1609.08675.

Bai, C. and Reibman, A. R. (2016). Characterizing distortions in first-person videos.
In Proceedings of the IEEE International Conference on Image Processing (ICIP),
pages 2440–2444.

Bettadapura, V., Castro, D., and Essa, I. (2016). Discovering picturesque highlights
from egocentric vacation videos. In Proceedings of the IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1–9, Lake Placid, USA.

Cong, Y., Yuan, J., and Luo, J. (2012). Towards scalable summarization of consumer
videos via sparse dictionary selection. IEEE Transactions on Multimedia, 14(1):66–
75. ISSN 1520-9210.

del Molino, A. G., Tan, C., Lim, J. H., and Tan, A. H. (2016). Summarization of Ego-
centric Videos: A Comprehensive Survey. IEEE Transactions on Human-Machine
Systems, 47(1):65--76. ISSN 21682291.

Dollár, P. (2016). Piotr’s Computer Vision Matlab Toolbox (PMT).
https://github.com/pdollar/toolbox.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression.
Annals of Statistics, 32:407--499.

Fathi, A., Hodgins, J. K., and Rehg, J. M. (2012a). Social interactions: A first-person
perspective. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1226–1233. ISSN 1063-6919.

Fathi, A., Li, Y., and Rehg, J. M. (2012b). Learning to Recognize Daily Actions
Using Gaze. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., and Schmid,

77



78 Bibliography

C., editors, Proceedings of the European Conference on Computer Vision (ECCV),
pages 314--327, Berlin, Heidelberg. Springer Berlin Heidelberg.

Fu, T.-J., Tai, S.-H., and Chen, H.-T. (2019). Attentive and adversarial learning for
video summarization. In Proceedings of the IEEE Winter Conference on Applications
of Computer Vision (WACV), Hawaii, USA. to appear.

Gemmell, J., Bell, G., Lueder, R., Drucker, S., and Wong, C. (2002). Mylifebits:
Fulfilling the memex vision. In 10th ACM International Conference on Multimedia,
pages 235--238, New York, NY, USA. ACM.

Gong, Y. and Liu, X. (2000). Video summarization using singular value decomposition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 174–180. ISSN 1063-6919.

Gygli, M., Grabner, H., and Gool, L. V. (2015). Video summarization by learning
submodular mixtures of objectives. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3090–3098, Boston, USA. ISSN
1063-6919.

Gygli, M., Grabner, H., Riemenschneider, H., and Van Gool, L. (2014). Creating Sum-
maries from User Videos. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 505--520.

Halperin, T., Poleg, Y., Arora, C., and Peleg, S. (2017). Egosampling: Wide view
hyperlapse from egocentric videos. IEEE Transactions on Circuits and Systems for
Video Technology, PP(99):1–1. ISSN 1051-8215.

Higuchi, K., Yonetani, R., and Sato, Y. (2017). Egoscanning: Quickly scanning first-
person videos with egocentric elastic timelines. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, CHI ’17, pages 6536--6546,
New York, NY, USA. ACM.

Hsu, Y.-F., Chou, C.-C., and Shih, M.-Y. (2012). Moving camera video stabilization
using homography consistency. In Proceedings of the IEEE International Conference
on Image Processing (ICIP), Orlando, FL, USA. (IEEE).

Joshi, N., Kienzle, W., Toelle, M., Uyttendaele, M., and Cohen, M. F. (2015). Real-time
hyperlapse creation via optimal frame selection. ACM Trans. Graph., 34(4):63:1--
63:9. ISSN 0730-0301.



Bibliography 79

Karpenko, A. (2014). The technology behind hyperlapse from instagram.
http://instagram-engineering.tumblr.com/post/95922900787/hyperlapse. Accessed:
2016-05-12.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948 vol.4.

Kopf, J., Cohen, M. F., and Szeliski, R. (2014). First-person hyper-lapse videos. ACM
Trans. Graph., 33(4):78:1--78:10. ISSN 0730-0301.

Lai, W.-S., Huang, Y., Joshi, N., Buehler, C., Yang, M.-H., and Kang, S. B. (2017).
Semantic-driven Generation of Hyperlapse from 360◦ Video. ArXiv e-prints.

Lal, S., Duggal, S., and Sreedevi, I. (2019). Online video summarization: Predicting
future to better summarize present. In Proceedings of the IEEE Winter Conference
on Applications of Computer Vision (WACV), Hawaii, USA. to appear.

Lan, S., Panda, R., Zhu, Q., and Roy-Chowdhury, A. K. (2018). Ffnet: Video fast-
forwarding via reinforcement learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6771–6780. ISSN 2575-
7075.

Lee, Y. J., Ghosh, J., and Grauman, K. (2012). Discovering important people and
objects for egocentric video summarization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1346–1353. ISSN 1063-
6919.

Liao, S., Jain, A. K., and Li, S. Z. (2016). A fast and accurate unconstrained face de-
tector. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
38(2):211–223. ISSN 0162-8828.

Lin, Y. L., Morariu, V. I., and Hsu, W. (2015). Summarizing while recording: Context-
based highlight detection for egocentric videos. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshop (ICCVW), pages 443–451.

Liu, G., Liu, Y., Guo, M., Liu, P., and Wang, C. (2015). Non-negative locality-
constrained linear coding for image classification. Intelligence Science and Big Data
Engineering. Image and Video Data Engineering. Lecture Notes in Computer Sci-
ence., 9242:462--471. ISSN 16113349.



80 Bibliography

Lu, Z. and Grauman, K. (2013). Story-driven summarization for egocentric video. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2714–2721. ISSN 1063-6919.

Mahasseni, B., Lam, M., and Todorovic, S. (2017). Unsupervised video summariza-
tion with adversarial LSTM networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 202--211, Honolulu, USA.

Mann, S. (1998). ’wearcam’ (the wearable camera): personal imaging systems
for long-term use in wearable tetherless computer-mediated reality and personal
photo/videographic memory prosthesis. In Digest of Papers. Second International
Symposium on Wearable Computers (Cat. No.98EX215), pages 124–131.

Marvaniya, S., Damoder, M., Gopalakrishnan, V., Iyer, K. N., and Soni, K. (2016).
Real-time video summarization on mobile. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), pages 176–180.

Mei, S., Guan, G., Wang, Z., He, M., Hua, X. S., and Feng, D. D. (2014). L2,0
constrained sparse dictionary selection for video summarization. In 2014 IEEE In-
ternational Conference on Multimedia and Expo (ICME), pages 1–6. ISSN 1945-7871.

Mei, S., Guan, G., Wang, Z., Wan, S., He, M., and Feng, D. D. (2015a). Video
summarization via minimum sparse reconstruction. Pattern Recognition, 48(2):522
– 533. ISSN 0031-3203.

Mei, S., Wang, Z., He, M., and Feng, D. (2015b). Resource restricted on-line video
summarization with minimum sparse reconstruction. In Picture Coding Symposium
(PCS), pages 139–143.

Ngo, C.-W., Ma, Y.-F., and Zhang, H. (2003). Automatic video summarization by
graph modeling. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 104–109 vol.1.

Ogawa, M., Yamasaki, T., and Aizawa, K. (2017). Hyperlapse generation of omnidirec-
tional videos by adaptive sampling based on 3d camera positions. In Proceedings of
the IEEE International Conference on Image Processing (ICIP), pages 2124–2128.
ISSN 2381-8549.

Okamoto, M. and Yanai, K. (2014). Summarization of Egocentric Moving Videos for
Generating Walking Route Guidance, pages 431--442. Springer Berlin Heidelberg,
Berlin, Heidelberg.



Bibliography 81

Oliveira, G., Nascimento, E., Vieira, A., and Campos, M. (2014). Sparse spatial coding:
A novel approach to visual recognition. IEEE Transactions on Image Processing
(TIP), 23(6):2719–2731. ISSN 1057-7149.

Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J., and Yokoya, N. (2017). Video
summarization using deep semantic features. In Proceedings of the Asian Confer-
ence on Computer Vision (ACCV), pages 361--377, Cham. Springer International
Publishing.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66. ISSN 0018-9472.

Panda, R. and Roy-Chowdhury, A. K. (2017). Collaborative summarization of topic-
related videos. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4274–4283, Honolulu, USA.

Pele, O. and Werman, M. (2009). Fast and robust earth mover’s distances. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV), pages
460–467. ISSN 1550-5499.

Plummer, B. A., Brown, M., and Lazebnik, S. (2017). Enhancing video summarization
via vision-language embedding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1052–1060, Honolulu, USA.

Poleg, Y., Arora, C., and Peleg, S. (2014). Temporal segmentation of egocentric videos.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2537–2544.

Poleg, Y., Halperin, T., Arora, C., and Peleg, S. (2015). Egosampling: Fast-forward
and stereo for egocentric videos. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4768–4776.

Potapov, D., Douze, M., Harchaoui, Z., and Schmid, C. (2014). Category-specific video
summarization. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 540--555.

Ramos, W. L. S. (2017). Semantic Hyperlapse for Egocentric Videos. Master’s thesis,
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.

Ramos, W. L. S., Silva, M. M., Campos, M. F. M., and Nascimento, E. R. (2016). Fast-
forward video based on semantic extraction. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), pages 3334–3338, Phoenix, AZ, USA.



82 Bibliography

Rani, P., Jangid, A., Namboodiri, V. P., and Venkatesh, K. S. (2018). Visual odometry
based omni-directional hyperlapse. In Rameshan, R., Arora, C., and Dutta Roy,
S., editors, National Conference on Computer Vision, Pattern Recognition, Image
Processing, and Graphics, pages 3--13, Singapore. Springer Singapore.

Redmon, J. and Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. ArXiv
e-prints.

Romberg, J. (2008). Imaging via compressive sampling. IEEE Signal Processing Mag-
azine, 25(2):14–20. ISSN 1053-5888.

Sharghi, A., Laurel, J. S., and Gong, B. (2017). Query-focused video summariza-
tion: Dataset, evaluation, and a memory network based approach. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2127–2136, Honolulu, USA.

Silva, M. M., Ramos, W. L. S., Chamone, F. C., Ferreira, J. P. K., Campos, M. F. M.,
and Nascimento, E. R. (2018a). Making a long story short: A multi-importance fast-
forwarding egocentric videos with the emphasis on relevant objects. Journal of Visual
Communication and Image Representation (JVCI), 53:55 – 64. ISSN 1047-3203.

Silva, M. M., Ramos, W. L. S., Ferreira, J. P. K., Campos, M. F. M., and Nascimento,
E. R. (2016). Towards semantic fast-forward and stabilized egocentric videos. In
Proceedings of the European Conference on Computer Vision Workshop (ECCVW),
pages 557--571, Amsterdam, NL. Springer International Publishing.

Silva, M. M., Ramos, W. L. S., Ferreira, J. P. K., Chamone, F. C., Campos, M. F. M.,
and Nascimento, E. R. (2018b). A weighted sparse sampling and smoothing frame
transition approach for semantic fast-forward first-person videos. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2383–2392, Salt Lake City, USA.

Song, X., Chen, K., Lei, J., Sun, L., Wang, Z., Xie, L., and Song, M. (2016). Category
driven deep recurrent neural network for video summarization. In IEEE International
Conference on Multimedia Expo Workshops, pages 1–6.

Su, Y.-C., Jayaraman, D., and Grauman, K. (2016). Pano2vid: Automatic cinematog-
raphy for watching 360◦ videos. In Proceedings of the Asian Conference on Computer
Vision (ACCV).



Bibliography 83

Traffic-Inquiries (2018). Cisco visual networking index: Forecast and methodology,
2017-2022. Technical report 1543280537836565, CISCO.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010). Locality-
constrained linear coding for image classification. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3360–3367, San
Francisco, USA. ISSN 1063-6919.

Wang, M., Liang, J., Zhang, S., Lu, S., Shamir, A., and Hu, S. (2018). Hyper-lapse
from multiple spatially-overlapping videos. IEEE Transactions on Image Processing
(TIP), 27(4):1735–1747. ISSN 1057-7149.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. (2009). Robust face
recognition via sparse representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 31(2):210–227. ISSN 0162-8828.

Xiong, B., Kim, G., and Sigal, L. (2015). Storyline representation of egocentric videos
with an applications to story-based search. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 4525–4533.

Xu, J., Mukherjee, L., Li, Y., Warner, J., Rehg, J. M., and Singh, V. (2015). Gaze-
enabled Egocentric Video Summarization via Constrained Submodular Maximiza-
tion Supplementary Material. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 58, page 6964.

Yang, J. A., Lee, C. H., Yang, S. W., Somayazulu, V. S., Chen, Y. K., and Chien,
S. Y. (2016). Wearable social camera: Egocentric video summarization for social
interaction. In IEEE International Conference on Multimedia Expo Workshops, pages
1–6.

Yao, T., Mei, T., and Rui, Y. (2016). Highlight detection with pairwise deep ranking
for first-person video summarization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Zhang, K., Chao, W.-L., Sha, F., and Grauman, K. (2016). Video Summarization
with Long Short-Term Memory, chapter Proceedings of the European Conference
on Computer Vision (ECCV), pages 766--782. Springer International Publishing,
Amsterdam, NL.

Zhao, B., Fei-Fei, L., and Xing, E. P. (2011). Online detection of unusual events in
videos via dynamic sparse coding. In Proceedings of the IEEE Conference on Com-



84 Bibliography

puter Vision and Pattern Recognition (CVPR), pages 3313--3320, Colorado Springs,
USA.

Zhao, B. and Xing, E. P. (2014). Quasi real-time summarization for consumer videos.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2513–2520, Columbus, USA. ISSN 1063-6919.

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A. (2014). Learning deep
features for scene recognition using places database. In Advances in Neural Infor-
mation Processing Systems 27, pages 487--495. Curran Associates, Inc.


	Agradecimentos
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contextualization
	1.2 Problem Definition
	1.3 Dissertation Statements
	1.4 Contributions.

	2 Related Work
	2.1 Video Summarization
	2.2 Hyperlapse and Video Fast-Forward
	2.3 Semantic Hyperlapse and Fast-Forward

	3 Methodology
	3.1 Definition of Semantic Segments
	3.1.1 Semantic Analysis
	3.1.2 Temporal Segmentation
	3.1.3 Speed-up estimation

	3.2 Adaptive Frame Sampling
	3.2.1 Sparse-based selection

	3.3 Output Video Producing
	3.3.1 Video Stabilization
	3.3.2 Video Compositing


	4 Experiments
	4.1 Datasets
	4.1.1 Annotated Semantic Dataset
	4.1.2 Multimodal Semantic Egocentric Videos

	4.2 Competitors
	4.2.1 Graph-based selection

	4.3 Parameters Setup
	4.4 Evaluation criterion
	4.5 Results
	4.5.1 Multi Importance Semantic Analysis
	4.5.2 Semantic based on users' opinion
	4.5.3 Smoothing of Speed-up transitions
	4.5.4 Sparse-based Semantic Hyperlapse
	4.5.5 Processing Time

	4.6 Ablation Study
	4.6.1 Weighted Sparse Sampling
	4.6.2 Detection of abrupt camera movement
	4.6.3 Smooth Frame Transition
	4.6.4 Filling Gap Between Segments
	4.6.5 Comparison between Sparse Coding formulations
	4.6.6 Feature Scalability
	4.6.7 Video Stabilization

	4.7 Concluding Remarks

	5 Conclusions
	5.1 Limitations
	5.2 Future works

	Bibliography

