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Resumo

O entendimento de uma consulta é uma tarefa desafiadora, principalmente devido à
ambigüidade inerente da linguagem natural. Uma estratégia comum para melhorar a
compreensão das consultas em linguagem natural é anotá-las com informações semân-
ticas extraídas de uma base de conhecimento. No entanto, consultas com diferentes
intenções podem se beneficiar de diferentes estratégias de anotação. Por exemplo, al-
gumas consultas podem ser efetivamente anotadas com uma única entidade ou um
atributo de entidade, outras podem ser melhor representadas por uma lista de enti-
dades de um único tipo ou por entidades de vários tipos distintos, e outras podem ser
simplesmente ambíguas. Nesta dissertação, propomos um framework para aprendiza-
gem de anotações semânticas em consultas de acordo com a intenção existente em cada
uma. Experimentos minuciosos em um benchmark publicamente disponível mostram
que a abordagem proposta pode melhorar significativamente quando comparadas às
abordagens agnósticas baseadas em campos aleatórios de Markov e de aprendizado de
ranqueamento. Nossos resultados demonstram ainda, de forma consistente, a eficá-
cia de nossa abordagem para consultas de várias intenções, comprimentos e níveis de
dificuldade, bem como sua robustez ao ruído na detecção de intenção.

Palavras-chave: Aprendizado de ranqueamento, Recuperação da informação, Apren-
dizado de representações, Busca semântica, Anotação semântica em consultas.
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Abstract

Query understanding is a challenging task primarily due to the inherent ambiguity of
natural language. A common strategy for improving the understanding of natural lan-
guage queries is to annotate them with semantic information mined from a knowledge
base. Nevertheless, queries with different intents may arguably benefit from special-
ized annotation strategies. For instance, some queries could be effectively annotated
with a single entity or an entity attribute, others could be better represented by a
list of entities of a single type or by entities of multiple distinct types, and others
may be simply ambiguous. In this dissertation, we propose a framework for learning
semantic query annotations suitable to the target intent of each individual query. Thor-
ough experiments on a publicly available benchmark show that our proposed approach
can significantly improve state-of-the-art intent-agnostic approaches based on Markov
random fields and learning to rank. Our results further demonstrate the consistent ef-
fectiveness of our approach for queries of various target intents, lengths, and difficulty
levels, as well as its robustness to noise in intent detection.

Palavras-chave: Semantic Query Annotation, Learning to Rank, Intent-aware.
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Chapter 1

Introduction

A user’s search query has traditionally been treated a short, underspecified represen-
tation of his or her information need [Jansen et al., 2000]. Despite the trend towards
verbosity brought by the popularization of voice queries in modern mobile search and
personal assistant interfaces [Guy, 2016], query understanding remains a challenging
yet crucial task for the success of search systems. One particularly effective strategy
for improving the understanding of a query is to annotate it with semantic information
mined from a knowledge base, such as DBPedia.1 In particular, previous analysis has
shown that over 70% of all queries contain a semantic resource (a named entity, an
entity type, relation, or attribute), whereas almost 60% have a semantic resource as
their primary target [Pound et al., 2010].

1.1 Semantic Search

Semantic search is not limited to search on text resources, but also includes searching
on images, audio, video and other types of resources. Since this thesis presents an
approach for semantic search on text resources, we will limit the background discussion
on it. Semantics is primarily the linguistic, and also philosophical, study of meaning.
It deals with the relations between things — like words, phrases and symbols — and
what they denote. From this definition, we can say that semantic search is the act of
searching with meaning. For a better understanding of this concept, in the following,
we make a comparison between lexical search (which does not consider the meaning of
the query or of the retrieved information items) and semantic search.

1http://wiki.dbpedia.org/

1
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1.1.1 Lexical Search vs. Semantic Search

Just over a decade ago, most search engines were still performing lexical searching.
This means that, given a user query, they try to literally match the exact query words
or a variant of them in the documents collection without worrying about what the
whole query actually means, nor what the candidate documents say. To illustrate,
consider the query “stanford university” inputted to a search engine. Arguably the
homepage of the Stanford University2 is a good match for this query. Its homepage
have exactly these two terms in the title and probably in other sections, making the
search engine just need to find the occurrence of these terms without understand what
the words “stanford ” and “university” means, nor what they mean together.

The lexical approach works well for the previous example and for other similar
cases where the search engine only needs to literally match query terms, but now
consider the query “Tom Hanks movies where he plays a leading role”. This is an
example of a longer and more complex query, where the lexical approach would not
bring a satisfactory result. In this case, search engines need to “understand” what the
user is expecting as an answer to show the proper results. That is why we call this
type of query as a semantic search, because of the meaning inherent from it.

For humans, the intent of this query is clear: the user (probably) wants as a
result, a list of movies starred by the actor Tom Hanks, more specifically, movies
where his role was a leading one. Although, in this case, the query intent is (probably)
clear, the relevance of the results is relative. The terms leading role can have different
interpretations for different users, making the semantic search a challenging task. A
search engine following the lexical approach, when trying to match terms like “Tom
Hanks”, probably would bring results directly related to the actor instead of the movies,
even more difficult is to match the terms “ leading role“ in the page of the movies which
he starred, because they would not be present.

For the correct comprehension of the query, modern search engines combine dif-
ferent techniques aiming to understand what the user is looking for. Among these
techniques, we can highlight the query annotation task, which is the focus of this the-
sis, aiming to enrich a query with semantic resources, in order to help a search engine
understand the user needs.

2https://www.stanford.edu/

https://www.stanford.edu/


1.2. Semantic Query Annotation 3

1.2 Semantic Query Annotation

As previously discussed, the task of query annotation consists in generating a ranking of
semantic resources associated to the query. Formally, given a query q and a knowledge
base k, we use a function Ψ to extract candidate annotations, such that Ψ(q, k) = A =

{a1, a2, ..., an}, where A is a set of ranked semantic annotations which were extracted
from the knowledge base k, according to the query q.

State-of-the-art semantic query annotation approaches leverage features extracted
from the descriptive content of candidate semantic resources (e.g., the various textual
fields in the description of an entity [Zhiltsov et al., 2015; Nikolaev et al., 2016]) or
their structural properties (e.g., related semantic resources [Tonon et al., 2012]) in a
knowledge base. In common, these approaches treat every query uniformly, regardless
of its target intent. By ”intent“, in this thesis, we mean the type (or class) of a query,
like the traditional query classification, such as informational or navigational [Broder,
2002], instead of the synonym of “information need” in some contexts.

In contrast, we hypothesize that queries with different intents may benefit from
specialized annotation strategies. For instance, some queries could be effectively anno-
tated with a single entity (e.g., “us president”) or an entity attribute (e.g., “us president
salary”). Other queries could be better represented by a list of entities of a single type
(e.g., “us presidents”) or of mixed types (e.g., “us foreign affairs”). Finally, some queries
may be simply ambiguous and demand annotations suitable for disambiguation (e.g.,
“us”).

In this thesis, we propose a framework for learning semantic annotations suitable
to the target intent of each individual query. Our framework comprises three main
components: (i) intent-specific learning to rank, aimed to produce ranking models
optimized for different intents; (ii) query intent classification, aimed to estimate the
probability of each query conveying each possible intent; and (iii) intent-aware rank-
ing adaptation, aimed to promote the most relevant annotations given the detected
intents. To demonstrate the applicability of our framework, we experiment with a
state-of-the-art learning to rank algorithm for intent-specific learning, multiple classi-
fication approaches for intent classification, and two adaptive strategies for annotation
ranking. Thorough experiments using a publicly available semantic annotation test
collection comprising queries with different intents show that our proposed framework
is effective and significantly improves state-of-the-art intent-agnostic approaches from
the literature. Moreover, a breakdown analysis further reveals the consistency of the
observed gains for queries of various target intents, lengths, and difficulty levels, as
well as the robustness of the framework to noise in intent detection.
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1.3 Thesis Statement

The statement of this thesis is that the relevance of a semantic resource given a query
depends on the intent underlying this query and, consequently, queries with different
intents may benefit from different ranking models optimized for different intents. In
particular, by optimizing a ranking model for a specific intent, each model will behave
differently, promoting different annotations according to the intent which it was trained
for. For instance, queries seeking a specific entity (e.g., “donald trump”) should consider
annotations related to the name of the entity, while queries seeking for entities of a
single type (e.g., “us presidents”) should consider annotations related to a common
category in the knowledge base. This statement raises the following research questions,
which will be answered in the upcoming chapters:

Q1. Do different intents benefit from different ranking models?

Q2. How accurately can we predict the intent of each query?

Q3. How effective is our semantic query annotation approach?

Q4. What queries are improved the most and the least?

1.4 Thesis Contributions

The key contributions of this thesis can be summarized as follows:

1. An intent-aware framework for learning semantic query annotations from struc-
tured knowledge bases.

In this thesis we propose a framework for semantic query annotation that is
sensible to the user’s search intent. We detail each component of the framework
and the tasks involved in instantiating them. Despite the particular instantiations
chosen in this thesis, the framework is general and suitable for different methods.

2. An analysis of the specificity of several content and structural features for different
query intents.

Our approach uses multiple ranking models optimized specifically for different
intent, using features based on textual content and also semantic features derived
from the structure of the knowledge base. We analyze each model, investigating
the most relevant features in each intent, correlating them and discussing their
specificities.
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3. A thorough validation of the proposed framework in terms of annotation effec-
tiveness and robustness.

We present experimental results validating the proposed approach when com-
pared to state-of-the-art intent agnostic approaches for queries of various charac-
teristics, including different query intents, lengths and difficulty levels, discussing
success and failure cases.

1.5 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 describes background material on semantic search and discusses related
work on semantic query annotation, query intent classification and exploitation.

• Chapter 3 presents our proposed framework for learning semantic query annota-
tions, describes its components and their instantiation. We present the algorithms
used for intent detection, how the ranking models are trained and the strategies
used to choose them according to the detected intent. We also propose content
and structure based features to represent queries and semantic resources.

• Chapter 4 describes the experimental setup that supports the evaluation of the
proposed approach, detailing the knowledge base, queries, relevance judgments
and intent taxonomy used in our experiments. Baselines used for comparison and
the procedure undertaken to train and test them as well as our own models are
also described in this chapter.

• Chapter 5 presents the evaluation results of the proposed approach, evaluating
the effectiveness of having a specific ranking model for each intent, the accuracy
of intent classification and further evaluation for queries of different intents, sizes
and difficulty levels.

• Chapter 6 concludes this thesis, summarizing the contributions and conclusions
made along the chapters. Future work on the applicability of the proposed frame-
work with different ranking algorithms and query intents is also presented.





Chapter 2

Background and Related Work

This chapter is divided in two parts. First, in Section 2.1 we provide a background
discussion of basic tasks for semantic search used in this thesis, followed by an overview
of related work on Section 2.2. In particular, in Section 2.2.1 we present related work
on semantic query annotation using knowledge bases, and in Section 2.2.2 we discuss
related attempts to exploit query intents in different search tasks.

2.1 Basic Tasks for Semantic Search

When searching on text resources, users express their intention through natural lan-
guage text. In this section we discuss some basic techniques that are commonly (though
not always) used by state-of-art approaches to deal with semantic search on text. Be-
yond theses techniques, we focus on Natural Language Processing (NLP), an research
area and application that explores how computers can be used to understand and
manipulate natural language text. Bellow, we list common NLP tasks:

Part-Of-Speech (POS) tagging. Consists in identify, from a pre-defined set,
the grammatical role of each word of a sentence. Each pre-defined grammatical role
have a tag to identify itself. Some typical POS tags are: NN (noun), VB (verb),
adjective (JJ). POS-tagging is important to help in word sense disambiguation, which
may vary according to the context. The word table could be a place where you sit, a
2-D layout of numbers and we can also have the expression ”table a discussion“. To
illustrate, let us consider the sentence: The sailor dogs the hatch. After using POS-
tagging we have:

The/DT sailor/NN dogs/VBZ the/DT hatch/NN

7
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We can observe that the word ”dogs“ were tagged as a verb (VBZ), not as the
more common plural noun. Semantically analyzing the sentence, is possible to infer
that ”sailor “ and ”hatch“ implicate ”dogs“ as an action to the object ”hatch“ in the
nautical context.

Shallow Parsing (or Chunking). The task of chunking is to identify and tag
the basic constituents of a sentence, based on the POS-tagged words, and then linking
them to higher order units that have discrete grammatical meanings. Some typical
chunking tags are: NP (noun phrase), VB (verb phrase), ADJP (adjective phrase). A
possible chunking of the example query from Section 1.1.1 is:

(S
(NP Tom/NNP Hanks/NNP)
(NP movies/NNS)
where/WRB
he/PRP
(VP plays/VBZ)
(NP a/DT leading/JJ role/NN)

)

The sentence (S) above, was chunked in noun phrases (NP) and verb phrases
(VP). The words ”where“ and ”he“ did not fit this rule and were not tagged. The
chunking task can be used as a first step for entity recognition and sentence parsing.
For instance, the first noun phrase, formed by proper nouns, can indicate the presence
of an entity. The verb phrase can indicate a relation between the entity, in the beginning
of the sentence, and noun phrase after the verb.

Named-Entity Recognition (NER). Is the task of recognizing which word
sequences from the text might refer to an entity and classify it into a pre-defined
category, such as the name of persons, organizations, locations, etc. A named entity is
real world object that can be described. It can be abstract (i.e., ”Theory of relativity“)
or have a physical existence (i.e., ”Albert Einstein“). In the example above (the query
“Tom Hanks movies where he plays a leading role”), with NER, the words ”Tom Hanks“
can be recognized as a person, given signs that the query is related to him.

2.1.1 Raw Text and Structured Text

When searching on the web, the available documents are basically textual content
written in natural language. To perform a lexical search, this type of data can be
sufficient. But, to perform a semantic search, we need more structured data. In this
section we discuss the importance of structured data for semantic search.
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Figure 2.1: Hybrid results for the query ”tarantino movies“. Combining a traditional
list of documents with a possible direct answer for this query.

Generally, semantic queries expect a more direct response, rather than a list of
documents that possibly contain what the user is looking for. Modern search engines
combine both types of results, expecting to directly show the answer to the user, with-
out the need of clicking in the documents of the resulting list. Figure 2.1 illustrates an
example of results combination from a search engine for the query ”tarantino movies“.
From Figure 2.1 we can see a traditional list of documents, possible containing the
answer for the query. We can also note semantic boxes, on the top and on the right.
The box of the top have a list of movies directed or written by Quentin Tarantino,
which seems to be the most appropriated answer to this query. The box in the right
shows information about the person Quentin Tarantino, which is the central entity of
the query. It is quite probable that these boxes already have what the user is looking
for.

In Figure 2.1, the result for the query ”tarantino movies“ was assertive when
returning a list of movies directed or written by Quentin Tarantino. However, there
are other public figures whose last name is ”Tarantino“ (Giuseppe Tarantino, Javier
Tarantino, Ray Tarantino, etc), how the search engine was able to realize that we
were referring to Quentin Tarantino, writer and filme producer? This is possible with
structured data, which allows to notice a strong relation between the entity ”Quentin
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Tarantino“ with several other entities of the type ”film“, which is a synonym of ”movie“,
a term present in the query.

Structured data are intended to organize the information in a format that can be
read by computers. A type of structured data are the knowledge bases, which represent
a set of records in a database, which typically refer to some kind of ”knowledge“ about
the world. By convention, records are stored in triples in the format subject predicate
object. In The following, we present 6 records1 extracted from DBPedia2:

<Quentin_Tarantino> <type> <Person>
<Quentin_Tarantino> <placeOfBirth> <Knoxvi l le , _Tennessee>
<Reservoir_Dogs> <wri te r> <Quentin_Tarantino>
<Kill_Bill_Volume_2> <wri te r> <Quentin_Tarantino>
<Reservoir_Dogs> <type> <Film>
<Kill_Bill_Volume_2> <type> <Film>

A well structured knowledge base, always use the same identifiers to refer to the
same type of information in different records. For instance, all records about the place
of birth of a person, will use the predicate ”placeOfBirth“. That is the consistency
between records that makes possible to find, for example, the films written by Quentin
Tarantino, as illustrated by Figure 2.1. On the other hand, in a collection of raw text,
written in natural language, text may not be orthographically or grammatically correct
and the same information can be expressed in different forms by different authors, mak-
ing it difficult to extract information. For example, the sentences ”Quentin Tarantino
was born in Knoxville, Tennessee“, ”Tarantino is from Knoxville, TN“ and ”Knoxville
is the place of birth of Quentin Tarantino“, all of them express the same information,
which for humans is easy to realize, but not so easy for a machine.

Although the advantages provided by a knowledge base, to query on this type
of data is need a specialized language, which is not friendly for common users. A
common approach is to combine both types of data, allowing a traditional searching
on text collections, but enriched by knowledge bases.

2.2 Related Work

In this section we present related work on semantic query annotation using knowledge
bases and also related attempts to exploit query intents in different search tasks.

1For better understanding, we omitted the URL part from the triples, leaving just the names of
the objects.

2Detailed information about DBPedia is given in Section 4.1
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2.2.1 Semantic Query Annotation

Semantic search approaches [Bast et al., 2016] have been extensively researched in
recent years, motivated by a series of related workshops and evaluation campaigns [de
Vries et al., 2007; Balog et al., 2009; Alonso and Zaragoza, 2008]. While some research
has been devoted to semantic search on the open Web [Bron et al., 2010; Santos et al.,
2010b; Balog et al., 2009], particularly relevant to this paper are approaches focused
on ranking semantic resources (e.g., named entities) mined from a structured domain,
such as a knowledge base. The top ranked resources can be used directly to enrich
a search engine’s results page with structured semantic information [Bi et al., 2015]
or indirectly to annotate the user’s query for further processing for improved search
quality.

Search in knowledge bases is typically performed using structured query languages
such as SPARQL.3 However, producing structured queries requires some expertise from
the user, which limits the applicability of this approach in a broader scenario. To
support unstructured querying, most previous semantic search approaches adapt tra-
ditional IR techniques to find, in the knowledge base, resources that match the user’s
query. For instance, some related works have used standard bag-of-words models, like
BM25 [Balog and Neumayer, 2013; Tonon et al., 2012; Pérez-Agüera et al., 2010] and
language models (LM) [Elbassuoni et al., 2009; Elbassuoni and Blanco, 2011; Neumayer
et al., 2012; Zhiltsov and Agichtein, 2013; Herzig et al., 2013]. Extending traditional
bag-of-words models, multi-fielded approaches have been proposed to appropriately
weight information present in different fields describing a semantic resource. For in-
stance, approaches based on BM25F [Blanco et al., 2011; Fetahu et al., 2015; Tonon
et al., 2012; Pérez-Agüera et al., 2010; Blanco et al., 2010; Campinas et al., 2011]
permit the combination of the BM25 scores of different fields into the final retrieval
score. Multi-fielded approaches based on a mixture of language models have also been
proposed [Ogilvie and Callan, 2003; Bron et al., 2013], which linearly combine query
likelihood estimates obtained from multiple fields.

Also contrasting with bag-of-words models, recent approaches have exploited de-
pendencies among query term occurrences in the descriptive content of a semantic
resource. Building upon the framework of Markov random fields (MRF) [Metzler and
Croft, 2005], these approaches construct a graph of dependencies among the query
terms, which is used to estimate the relevance of each retrieved semantic resource. In
particular, Zhiltsov et al. [2015] introduced a multi-fielded extension of MRF, called
FSDM, which estimates the weight of each field with respect to three types of query

3https://www.w3.org/TR/rdf-sparql-query/
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concept: unigram, ordered bigram, and unordered bigram. FSDM was later extended
by Nikolaev et al. [2016], who proposed to estimate field weights with respect to in-
dividual query concepts. To cope with the explosive number of concepts (i.e., every
possible unigram, ordered, and unordered bigram), they instead learn field weights
with respect to a fixed set of concept features (e.g., the probability of occurrence of
the concept in a field). In contrast to both of these approaches, we propose to learn
the appropriateness of intent-specific feature-based ranking models for each individual
query, by automatically predicting the target intent of this query. In Chapter 5, we
compare our approach to FSDM as a representative of the current state-of-the-art.

In addition to exploiting the descriptive content of semantic resources, other
researchers have adopted a hybrid approach [Bron et al., 2013; Tonon et al., 2012;
Rocha et al., 2004; Elbassuoni et al., 2009; Herzig et al., 2013], leveraging structural
properties of the knowledge base. In these approaches, an initial ranking of semantic
resources is either re-ranked or expanded using the knowledge base structure to find
related resources, which can be done through structured graph traversals [Tonon et al.,
2012] or random walks [Rocha et al., 2004]. For instance, Tonon et al. [2012] exploited
entities initially retrieved using BM25 as seeds in the graph from which related entities
could be reached. Bron et al. [2013] proposed a method that makes a linear combination
of the scores of a content-based approach using language models and a structure-based
approach, which captures statistics from candidate entities represented according to
their relations with other entities, expressed in RDF triples. Relatedly, Elbassuoni
et al. [2009] proposed a language modeling approach to rank the results of exact,
relaxed, and keyword-augmented graph-pattern queries over RDF triples into multiple
subgraphs. The Kullback-Leibler divergence between the query language model and
the language models induced by the resulting subgraphs was then used to produce the
final ranking. While our main focus is on learning strategies rather than on specific
features, to demonstrate the flexibility of our proposed framework, we exploit multiple
structural properties of each semantic resource as additional features. In particular,
these features are used for both detecting the intent of a query as well as for ranking
semantic resources in response to this query.

2.2.2 Exploiting Query Intents

The intent underlying a user’s search query has been subject of intense research in
the context of web search. Broder [2002] proposed a well-known intent taxonomy,
classifying web search queries into informational, navigational and transactional. Rose
and Levinson [2004] later extended this taxonomy to consider more fine-grained classes.
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In the context of semantic search, Pound et al. [2010] categorized queries into four major
intents: entity queries, which target a single entity; type queries, which target multiple
entities of a single type; attribute queries, which target values of a particular entity
attribute; and relation queries, which aim to find how two or more entities or types
are related. Entity queries and type queries accounted for more than 50% of a query
log sampled in their study, whereas attribute and relation queries accounted for just
over 5%. Other works focused on more specific intents, such as a question intent [Tsur
et al., 2016], which targets answers to the question expressed in the query. In our
experiments, we use an intent taxonomy comprising the three major classes described
in these studies, namely, entity, type, and question queries, as well as an additional
class including less represented intents, such as attribute and relation queries.

In addition to detecting query intents, several approaches have attempted to
adapt the ranking produced for a query in light of some identified query property, such
as its intent. For instance, Yom-Tov et al. [2005] proposed to adaptively expand a query
depending on its predicted difficulty. Kang and Kim [2003] proposed to apply different
hand-crafted ranking models for queries with a predicted informational, navigational,
or transactional intent. However, such a hard intent classification may eventually harm
the effectiveness of an adaptive approach, when queries of different intents benefit from
a single ranking model [Craswell and Hawking, 2004]. To mitigate this effect, instance-
based classification approaches have been used to identify similar queries (as opposed
to queries with the same predicted intent) for training a ranking model. For example,
Geng et al. [2008] resorted to nearest neighbor classification for building training sets
for a given test query. Relatedly, Peng et al. [2010] proposed to estimate the benefit
of multiple candidate ranking models for a given query by examining training queries
that are affected by these models in a similar manner. In the context of search result
diversification, Santos et al. proposed adaptive approaches for estimating the coverage
of different query aspects given their predicted intent [Santos et al., 2011] as well as for
estimating when to diversify given the predicted ambiguity of the query [Santos et al.,
2010a]. Our proposed approach resembles these adaptive ranking approaches as we also
resort to query intent classification as a trigger for ranking adaptation. Nonetheless,
to the best of our knowledge, our approach is the first attempt to produce adaptive
learning to rank models for a semantic search task.
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2.3 Summary

In this chapter we presented background discussion about basic tasks for semantic
search and a related work on semantic query annotations and query intent exploitation.
In particular, in Section 2.1 we presented basic natural language tasks that generally
supports semantic search on texts, including POS-tagging, named-entity recognition
and shallow parsing. While, in Section 2.1.1, we presented how structured data can
help on semantic search in contrast to raw text written in natural language.

In the second part of this chapter, on Section 2.2 we presented the related work.
More specifically, in Section 2.2.1 we discussed the related work on semantic query
annotation, presenting approaches that adapts traditional IR techniques to search on
knowledge bases, we also present approaches based on Markov random fields, which
considers the dependency between query terms and some variants using a multi-field
representation of the resources, and finally, approaches adopting a hybrid solution
which generates an initial ranking and then reorders it using information from knowl-
edge bases. In Section 2.2.2, we discuss about related works on query intent exploita-
tion, presenting approaches that propose different types of intents and approaches that
adapts the resulting according to the detected intent.

In the next chapter we will present our proposed intent-aware framework for
learning to rank semantic query annotations.



Chapter 3

Intent-Aware Ranking Adaptation
for Semantic Query Annotation

Annotating queries with semantic information is an important step towards an im-
proved query understanding [Alonso and Zaragoza, 2008]. Given a query, our goal is
to automatically annotate it with semantic resources mined from a knowledge base,
including named entities, attributes, relations, etc. For instance, the query “us presi-
dent” could be annotated with arguably relevant semantic resources including “Donald
Trump”, “Federal Government”, “White House.” In this paper, we hypothesize that the
relevance of a semantic resource given a query depends on the intent underlying this
query. For the previous example, knowing that the query “us president” targets infor-
mation around a single entity could promote alternative semantic resources including
“Inauguration”, “First 100 days”, and “Controversies”.

In this chapter, we propose an intent-aware framework for learning to rank se-
mantic query annotations. In particular, we posit that the probability P(r∣q) that a
given semantic resource r satisfies the user’s query q should be estimated in light of
the possible intents i ∈ I underlying this query. Formally, we define:

P(r∣q) =∑
i∈I

P(i∣q)P(r∣q, i), (3.1)

where P(i∣q) is the probability that query q conveys an intent i, with ∑i∈I P(i∣q) = 1,
and P(r∣q, i) is the probability of observing semantic resource r given the query and
this particular intent.

In Figure 3.1, we describe the three core components of our framework. In partic-
ular, the query intent classification and the intent-specific learning to rank components
rely on supervised learning approaches to estimate P(i∣q) and P(r∣q, i), respectively,
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for each intent i ∈ I. In turn, the intent-aware ranking adaptation component imple-
ments two alternative policies to suit the final ranking to the detected intents of each
individual query.

i2

i4

i3

i1

Li2

Li4

Li3

Li1
i1

i3 i4

i2

intent-specific
learning to rank

query intent
classification

A

C q

intent-aware
ranking adaptation

Figure 3.1: Intent-aware semantic query annotation. Each intent-specific ranking
model Li is learned on a query set comprising only queries with intent i. The query
intent classification model C is learned on a set comprising queries of various intents.
The intent-aware ranking adaptation strategy A uses the query intent classification
outcome to decide on how to leverage the intent-specific ranking models.

3.1 Query Intent Classification

The first component of our framework is responsible for predicting the possible intents
underlying a query [Brenes et al., 2009]. For this task, we adopt a standard multi-
label classification approach. In particular, we aim to learn a query classification
model C ∶ X → Y mapping the input space X into the output space Y . Our input
space X comprises m learning instances {x⃗j}mj=1, where x⃗j = Φ(qj) is a feature vector
representation of query qj as produced by a feature extractor Φ. In turn, our output
space Y comprises m labels {yj}mj=1, where yj corresponds to one of the target intents
i ∈ I assigned to query qj by a human annotator. To learn an effective classifier C, we
experiment with several classification algorithms in Section 5.2.

Table 3.1 presents the features we use to represent a query for intent classifica-
tion. We use a total of 31 simple features, including both lexical as well as semantic
ones. Lexical features like number of query terms and mean query term size can help
detect, for example, natural language queries, which are usually longer than others. In
addition, part-of-speech tags can help identify question queries, indicating the presence
of wh-pronouns (e.g., what, where, why, when). Lastly, semantic features include the
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number of categories and number of ontology classes returned when using the query
to search a knowledge base. Our intuition is that queries seeking for a specific entity
will probably return fewer categories or ontology classes than queries seeking for a list
of entities. For instance, the query “eiffel ” returns only 5 categories, while the query
“ list of films from the surrealist category” returns more than 103,000.

Table 3.1: Query features for intent classification.

# Feature Qty

1 No. of query terms 1
2 Avg. query term size (in characters) 1
3 No. of matched categories in DBPedia 1
4 No. of matched ontology classes in DBPedia 1
5 No. of POS tags of different types 27

TOTAL 31

3.2 Intent-Specific Learning to Rank

The second component of our framework aims to produce multiple ranking models,
each one optimized for a specific query intent i ∈ I. To this end, we resort to learning
to rank [Liu et al., 2009]. Analogously to our query intent classification models in
Section 3.1, our goal is to learn an intent-specific ranking model Li ∶ V →W mapping
the input space V into the output space W . Our input space includes n learning
instances {V⃗j}nj=1, where V⃗j = Ω(qj,Rj) is a feature matrix representation (produced by
some feature extractor Ω) of a sample of semantic resources r ∈Rj retrieved for query
qj annotated with intent i. In our experiments, Rj is produced using BM25 [Robertson
et al., 1995], although any unsupervised ranking technique could have been used for this
purpose. Our output space W comprises n label vectors {W⃗j}

n
j=1, where W⃗j provides

relevance labels for each semantic resource r ∈Rj. To learn an effective ranking model
Li for each intent i ∈ I, we use LambdaMART [Wu et al., 2008], which represents the
current state-of-the-art in learning to rank [Chapelle and Chang, 2011].

Table 3.2 lists all 216 features used to represent each semantic resource r ∈ Rj.
Features #1-#6 are content-based features commonly used in the learning to rank lit-
erature [Liu et al., 2009], such as number of tokens, BM25, coordination level matching
(CLM), TF, and IDF scores. These are computed in a total of 8 descriptive fields of r,
such as name, attributes, categories (see Section 4.1 for a full description). Since TF
and IDF are defined on a term-level, query-level scores are computed using multiple
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summary statistics (sum, min, max, avg, var). Finally, CLM, TF, IDF, and TF-IDF
are computed for both unigrams and bigrams. Next, features #7-#14 are semantic
features derived from a knowledge base. For instance, feature #7 indicates whether r
is an entity directly mentioned in the query, while feature #8 considers the number of
direct connections between r and all entities mentioned in the query. As an example
of the latter feature, in the query “songs composed by michael jackson”, the candidate
resource “Thriller” will be directly related to the entity “Michael Jackson” (present in
the query). For both features, we use DBPedia Spotlight1 for entity recognition in
queries. Features #9-#14 are query-independent features quantifying the connectivity
of each candidate resource r with respect to other resources in the knowledge base
(e.g., entities, categories, ontology classes).

Table 3.2: Semantic resource features for learning to rank. Features marked as ‘Bi’ are
computed also for bigrams.

# Feature Bi Qty

1 No. of tokens (per-field) 8
2 BM25 (per-field) 8
3 CLM (per-field) 4 16
4 TF (per-field sum, min, max, avg, var) 4 80
5 IDF (per-field sum) 4 16
6 TF-IDF (per-field sum, min, max, avg, var) 4 80
7 Matching entity 1
8 No. of direct relations with query entities 1
9 No. of matched relations with query terms 1
10 No. of inlinks 1
11 No. of outlinks 1
12 No. of linked ontology classes 1
13 No. of linked categories 1
14 No. of linked entities 1

TOTAL 216

To keep our approach general, instead of handpicking features more likely to be
useful for a particular intent, we use the same 216 available features when learning every
intent-specific model Li. To ensure that the learned model Li is indeed optimized to
its target intent i, intent-specific learning is achieved by using one training query set
per intent, as illustrated in Figure 3.1.

1http://spotlight.dbpedia.org/
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3.3 Intent-Aware Ranking Adaptation

Sections 3.1 and 3.2 described supervised approaches for learning a query intent clas-
sification model C as well as multiple intent-specific ranking models Li for all i ∈ I.
Importantly, all of these models are learned offline. When an unseen query q is sub-
mitted online, we must be able to return a ranking of semantic resources well suited
to the target intent of q. Because we tackle query intent classification as a multi-label
problem, we can actually estimate the probability P(i∣q) of different intents i ∈ I given
the query q.

To exploit this possibility, we devise two strategies to adapt the ranking produced
for a query q to the target intent(s) of this query. Our first strategy, called intent-aware
switching, assigns each query a single intent, namely, the most likely one as predicted by
the intent classification model C. For instance, for a target set of intents I = {i1, i2, i3}
of which i1 is predicted as the most likely for q, we could instantiate Equation (3.1)
with P(i1∣q) = 1, P(i2∣q) = 0, and P(i3∣q) = 0. As a result, only P(r∣q, i1) (estimated via
ranking model L1) would have an impact on the final ranking, such that:

P(r∣q) = P(r∣q, i1).

Some queries may have no clear winning intent. Other queries may prove sim-
ply difficult to classify correctly. To cope with uncertainty in intent classification, we
propose a second ranking adaptation strategy, called intent-aware mixing. In this strat-
egy, we use the full probability distribution over intents predicted by the classification
model C to produce the final ranking for q. In the aforementioned example, suppose
the predicted intent distribution is P(i1∣q) = 0.7, P(i2∣q) = 0.2, and P(i3∣q) = 0.1. Lever-
aging this distribution directly in Equation (3.1), we have a mixture of intent-specific
ranking models contributing to the final ranking:

P(r∣q) = 0.7 ×P(r∣q, i1)

+ 0.2 ×P(r∣q, i2)

+ 0.1 ×P(r∣q, i3).

To assess the effectiveness of our proposed intent-aware ranking adaptation strate-
gies for semantic query annotation, in the next section, we compare these strategies to
each other as well as to state-of-the-art intent-agnostic approaches from the literature.
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3.4 Summary

In this chapter, we presented our intent-aware framework for learning to rank semantic
query annotations, which posits that detecting the intent behind a given query and
annotating it with semantic information extract from a knowledge base can lead better
results compared to agnostic approaches. The proposed framework is composed by
three core components, which were described in the sections of this chapter. In par-
ticular, in Section 3.1, we discussed the first component of the framework, presenting
our approach for intent classification and the features used to represent a query. In
Section 3.2, we discussed the second component, presenting our approach to produce
multiple ranking models, each one optimized for a specific query intent and the list of
features used to represent the semantic resources. Finally, in Section 3.3, we presented
two strategies for ranking adaptation, intent-aware switching, which assigns each query
a single intent and intent-aware mixing, which uses the full probability distribution over
intents predicted by the classification model.

In the next chapter, we will present the experimental setup, used to conduct our
evaluation experiments.



Chapter 4

Experimental Setup

In this chapter, we detail the experimental setup that supports the evaluation of our
proposed intent-aware semantic query annotation approach introduced in Chapter 3.
In particular, our experiments aim to answer the following research questions:

Q1. Do different intents benefit from different ranking models?

Q2. How accurately can we predict the intent of each query?

Q3. How effective is our semantic query annotation approach?

Q4. What queries are improved the most and the least?

In the following, we describe the knowledge base, queries, relevance judgments,
and intent taxonomy used in our experiments. We also describe the baselines used for
comparison and the procedure undertaken to train and test them as well as our own
models.

4.1 Knowledge Base

The knowledge base used in our experiments is the English portion of DBPedia 3.7,1

which comprises information extracted from Wikipedia dumps generated in late July
2011. DBPedia is available in the form of Resource Description Framework (RDF)2

triples. RDF is a framework recommended by the World Wide Web Consortium
(W3C)3 for representing semantic information on the Web in the form of subject-
predicate-object triples, where it is possible to describe additional information of a

1http://wiki.dbpedia.org/data-set-37
2https://www.w3.org/RDF/
3https://www.w3.org/
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web resource (e.g. <Albert Einstein, deathDate, 1955-04-18>) or its relation with
other resources (e.g. <Albert Einstein, spouse, Mileva Maric>).

Each resource on DBPedia belongs to one of three types of concepts: enti-
ties, categories and ontologies. Entities include all kinds of semantic resources, from
real entities (e.g. Albert Einstein) to abstract concepts (e.g. Theory of Relativ-
ity), while categories represent a group of entities with something in common (e.g.
Harry Potter Characters) and ontologies are classes with the aim of classifying enti-
ties in a formal and generic way (e.g. Person, Animal, Place). A resource is iden-
tified by a URL, which is prefixed according to the three aforementioned concepts:
“http://dbpedia.org/resource/” for entities, “http://dbpedia.org/resource/Category:”
for categories and “http://dbpedia.org/ontology/” for ontologies. This version of DB-
Pedia contains information on more than 3.6 million entities organized in over 170,000
categories and 320 ontology classes in a 6-level deep hierarchy.

The information provided by the DBPedia dataset is available in different text
files, where each line contains a RDF triple describing a piece of information, except
the ontology file, which is a XML4 file, listing and relating the hierarchy between each
class (details are given bellow). The files are separated according to the information
they contains, for instance, one file contains RDF triples relating an entity with a cat-
egory it belongs, while other contains RDF triples relating an entity with its attribute
information, and so on. In the following we list the files used in this thesis, describing
and giving examples of each one:

• DBPedia Ontology: This file is the only one that is in a format other than RDF
triples. It is formatted as a Web Ontology Language (OWL)5, a pattern proposed
by W3C, which is a XML listing and relating the hierarchy between ontology classes.
In the example below, we present the definition of two classes: “British Royalty” (on
line 1) and “Scientist” (on line 6).

1 <owl:Class rdf:about="http://dbpedia.org/ontology/BritishRoyalty">
2 <rdfs:subClassOf rdf:resource="http://dbpedia.org/ontology/Person"></rdfs:subClassOf>
3 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"></rdfs:subClassOf>
4 </owl:Class>
5
6 <owl:Class rdf:about="http://dbpedia.org/ontology/Scientist">
7 <rdfs:subClassOf rdf:resource="http://dbpedia.org/ontology/Person"></rdfs:subClassOf>
8 <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl\#Thing"></rdfs:subClassOf>
9 </owl:Class>

4https://www.w3.org/XML/
5https://www.w3.org/OWL/

https://www.w3.org/XML/
https://www.w3.org/OWL/
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For each class definition, it is also listed from what classes it is derived (through the
subClassOf element). In the example, “British Royalty” is a subclass of “Person”,
which is a subclass of “Thing”, and “Scientist” is a subclass of “Person”, which is a
subclass of “Thing”. This structure forms a hierarchy tree of ontologies classes, where
the root note is the class “Thing”.

• Categories Label: A file containing RDF triples, listing all categories existing in the
DBPedia collection, relating their URLs with their names. In the example below, we
present RDF triples for four categories: “Princesses of Wales”, “British humanitar-
ians”, “Daughters of British earls” and “Road accident deaths in France”. The first
part of the triple is the category URL, followed by the predicate label (through the
URL http://www.w3.org/2000/01/rdf-schema#label and the third part is the
label string:
1 <http://dbpedia.org/resource/Category:Princesses_of_Wales>¿

<http://www.w3.org/2000/01/rdf-schema#label>¿
"Princesses of Wales"@en

2 <http://dbpedia.org/resource/Category:British_humanitarians>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"British humanitarians"@en

3 <http://dbpedia.org/resource/Category:Daughters_of_British_earls>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"Daughters of British earls"@en

4 <http://dbpedia.org/resource/Category:Road_accident_deaths_in_France>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"Road accident deaths in France"@en

• Categories Skos: A file containing RDF triples using the Simple Knowledge Organi-
zation System (SKOS)6, a W3C recommendation to represent structured vocabulary.
In this file, categories are related to each other according to their subject specificity,
indicating if a certain category is a broader or a narrow subject of other. In the ex-
ample below, we present three RDF triples, indicating that the category “Princesses
of Wales” has “British royal titles” and “British princesses by marriage” categories as
a broader subject, while the category “British humanitarians” has the “Humanitari-
ans” category as a broader subject. The first and third parts of the RDF triple are
related categories URLs and the second is the predicate indicating the type of the
relation, which can be broader or narrow :
1 <http://dbpedia.org/resource/Category:Princesses_of_Wales>¿

<http://www.w3.org/2004/02/skos/core#broader>¿

6https://www.w3.org/2004/02/skos/

http://www.w3.org/2000/01/rdf-schema#label
https://www.w3.org/2004/02/skos/
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<http://dbpedia.org/resource/Category:British_royal_titles>

2 <http://dbpedia.org/resource/Category:Princesses_of_Wales>¿
<http://www.w3.org/2004/02/skos/core#broader>¿
<http://dbpedia.org/resource/Category:British_princesses_by_marriage>

3 <http://dbpedia.org/resource/Category:British_humanitarians>¿
<http://www.w3.org/2004/02/skos/core#broader>¿
<http://dbpedia.org/resource/Category:Humanitarians>

• Entities Label: A file containing RDF triples, listing all entities existing in the
DBPedia collection, relating their URLs with their names. In the example below, we
present RDF triples for three entities: “Diana, Princess of Wales”, “Frances Shand
Kydd” and “John Spencer, 8th Earl Spencer”. The first part of the triple is the
entity URL, followed by the predicate label, indicating that it is being defined its
label (through the URL http://www.w3.org/2000/01/rdf-schema#label, and the
third part is the label string:

1 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"Diana, Princess of Wales"@en

2 <http://dbpedia.org/resource/Frances_Shand_Kydd>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"Frances Shand Kydd"@en

3 <http://dbpedia.org/resource/John_Spencer,_8th_Earl_Spencer>¿
<http://www.w3.org/2000/01/rdf-schema#label>¿
"John Spencer, 8th Earl Spencer"@en

• Extended Abstracts: A file containing RDF triples, defining the extended abstract
of all entities. In the example below, we present a RDF triple of the entity “Diana,
Princess of Wales”. The first part of the triple is the entity URL, followed by the
predicate abstract (through the URL http://dbpedia.org/ontology/abstract)
and the third part is a text of the extended abstract:

1 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://dbpedia.org/ontology/abstract>¿
"Diana, Princess of Wales (Diana Frances;nee Spencer; 1 July 1961 - 31 August 1997) was

an international personality of the late 20th century as the first wife of Charles,
Prince of Wales, whom she married on 29 July 1981. (...) From 1989, she was the

president of Great Ormond Street Hospital for Children."@en

• Ontology Infobox Properties: A file containing RDF triples, defining attribute values
for entities. This attributes are those which appears in the infoboxes of Wikipedia,
and can be a raw value (like a date or population number) or can be another entity.

http://www.w3.org/2000/01/rdf-schema#label
http://dbpedia.org/ontology/abstract
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The example bellow sets four attributes for the entity “Diana, Princess of Wales”,
her birth place, date and her parents. The first part of the triple is the entity for
which the attribute is being set, the second part is the predicate indicating which
attribute is and the third part is the attribute value, which can be a string or a URL
to another entity:

1 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://dbpedia.org/ontology/birthPlace>¿
<http://dbpedia.org/resource/Sandringham,_Norfolk>

2 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://dbpedia.org/ontology/birthDate>¿
"1961-07-01"

3 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://dbpedia.org/ontology/parent>¿
<http://dbpedia.org/resource/Frances_Shand_Kydd>

4 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://dbpedia.org/ontology/parent>¿
<http://dbpedia.org/resource/John_Spencer,_8th_Earl_Spencer>

• Ontology Infobox Types: A file containing RDF triples relating a entity to a on-
tology class. The example bellow presents three RDF triples, classifying the en-
tity “Diana, Princess of Wales” in three classes: “British Royalty”, “Person” and
“Thing”. The first part of the triple is the entity URL that is being classified, the
second part is the predicate type (through the URL http://www.w3.org/1999/02/

22-rdf-syntax-ns#type) and the third part is a URL of a ontology class:

1 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>¿
<http://dbpedia.org/ontology/BritishRoyalty>

2 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>¿
<http://dbpedia.org/ontology/Person>

3 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>¿
<http://www.w3.org/2002/07/owl#Thing>

• Entities Categories: A file containing RDF triples relating a entity to a category. The
example below presents four RDF triples, indicating that the entity “Diana, Princess
of Wales” belongs to four categories: “Princess of Wales”, “British humanitarians”,
“Daughters of British earls” and “Road accident deaths in France”. The first part of
the triple is the entity URL that is being setting, the second part is the predicate

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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subject (through the URL http://purl.org/dc/terms/subject) and the third part
is a URL of a category:
1 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿

<http://purl.org/dc/terms/subject>¿
<http://dbpedia.org/resource/Category:Princesses_of_Wales>

2 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://purl.org/dc/terms/subject>¿
<http://dbpedia.org/resource/Category:British_humanitarians>

3 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://purl.org/dc/terms/subject>¿
<http://dbpedia.org/resource/Category:Daughters_of_British_earls>

4 <http://dbpedia.org/resource/Diana,_Princess_of_Wales>¿
<http://purl.org/dc/terms/subject>¿
<http://dbpedia.org/resource/Category:Road_accident_deaths_in_France>

• Redirects: A file containing RDF triples defining alternative URLs for the same
entity. The example below presents four RDF triples, setting four different URLs for
the entity “Diana, Princess of Wales”. In this example, the entity “Diana, Princess of
Wales” can also be referred as “Lady Di”, “Lady Diana”, “Diana Spencer” or “Princess
Di”, all the four URLs points to the same final URL. The first part of the triple is the
alternative URL for the entity, the second part is the predicate wikiPageRedirects
(through the URL http://dbpedia.org/ontology/wikiPageRedirects) and the
third part is the entity URL to which it will be redirected:
1 <http://dbpedia.org/resource/Lady_Di>¿

<http://dbpedia.org/ontology/wikiPageRedirects>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

2 <http://dbpedia.org/resource/Lady_Diana>¿
<http://dbpedia.org/ontology/wikiPageRedirects>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

3 <http://dbpedia.org/resource/Diana_Spencer>¿
<http://dbpedia.org/ontology/wikiPageRedirects>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

4 <http://dbpedia.org/resource/Princess_Di>¿
<http://dbpedia.org/ontology/wikiPageRedirects>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

• Disambiguations: A file containing RDF triples disambiguating entities. Similar to
the Redirects file, presents alternative URLs to the same entity, but the origin URL
is ambiguous. The example below, presents three RDF triples indicating that the
ambiguous names “Di”, “Diana” and “Diana Spencer (disambiguation)” refer to the

http://purl.org/dc/terms/subject
http://dbpedia.org/ontology/wikiPageRedirects
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same entity “Diana, Princess of Wales”. The first part of the triple is the ambiguous
entity URL, the second part is the predicate wikiPageDisambiguates (through the
URL http://dbpedia.org/ontology/wikiPageDisambiguates) and the third part
is the entity URL to which it disambiguates:

1 <http://dbpedia.org/resource/Di>¿
<http://dbpedia.org/ontology/wikiPageDisambiguates>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

2 <http://dbpedia.org/resource/Diana>¿
<http://dbpedia.org/ontology/wikiPageDisambiguates>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

3 <http://dbpedia.org/resource/Diana_Spencer_(disambiguation)> ¿
<http://dbpedia.org/ontology/wikiPageDisambiguates>¿
<http://dbpedia.org/resource/Diana,_Princess_of_Wales>

Each RDF triple on DBPedia can be viewed as a part of a massive graph, where
entities, categories and ontologies are nodes and their semantic relation are edges.
Building on the aforementioned examples of RDF triples around the entity Diana,
Princess of Wales, Figure 4.1 illustrates how this triples, together, can be viewed as
a graph. Entity nodes (represented as gray nodes) can be linked to other entities,
categories (white) or ontologies (black) nodes. Each link between nodes, (represented
as edges in Figure 4.1), have a label indicating the type of this relation. For instance,
in Figure 4.1, the entity node Diana, Princess of Wales are linked to other entities,
like Sandringham, Norfolk, which is, according to the edge label, her birth place. Her
node is also linked to the ontology node Person, indicating this node is a person, and
to some category nodes, like Princess of Wales and Road accident deaths in France.

To create the knowledge base for our experiments, we parsed all this files and
created two linked structures: a graph (like illustrated in Figure 4.1) to explore the
semantic relation between resources and a textual content index to help while searching
for query terms. The graph were built upon the Titan 0.5.47 and the textual content
were indexed using Elasticsearch 1.7.5.8

To build the graph, first we parsed the files Entities Label, Categories Label and
DBPedia Ontology to create the nodes for all entities, categories and ontologies existing
in the DBPedia collection, respectively. The other files were parsed to build the edges.
The file Categories Skos were parsed to link the category nodes to each other, while
the Ontology Infobox Properties were parsed to link entity nodes to each other. The

7http://titan.thinkaurelius.com
8https://www.elastic.co/products/elasticsearch

http://dbpedia.org/ontology/wikiPageDisambiguates
http://titan.thinkaurelius.com
https://www.elastic.co/products/elasticsearch
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Figure 4.1: Part of a knowledge base graph built from RDF triples.

file Ontology Infobox Types were parsed to link entity nodes with ontology nodes and
the file Entities Categories were parsed to link entity nodes with category nodes.

For the textual content, we created a fielded content representation as proposed by
Zhiltsov et al. [2015], dividing the entity content in different fields: Names, Attributes,
Categories, Similar entity names and Related entity names fields. In addition, we
included three other fields: Ontology classes, URL and All. Each field has a different
meaning and we built them parsing different files, as described below:

• Names: All names of an entity parsed from the Entities Label file.

• Attributes: Information describing the entity, parsed from the Extended Abstract
and Infobox Properties file, extracting all textual properties that is not another
entity, e.g. birth dates from persons, population from places.

• Categories: Name of categories from the Category Labels file, from categories to
which the entity belongs to, listed in the Categories Entities file.

• Similar entity names: Alternative names to the same entity (e.g. “Lady Di”,
“Diana Spencer”, “Princess Di”), parsed from the Redirects and Disambiguations
files.

• Related entity names: Entities names that are directly related to the given entity
with the predicate of this relation, e.g. “birth place Sandringham, Norfolk”, built
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from the Infobox Properties file, considering only the triples where the attribute
value is a valid entity.

• Ontology classes: Class names of ontologies to which the entity belongs, parsed
from Ontology Infobox Types file.

• URL: The entity URL parsed from the Entities Label file.

• All: Special field concatenating the available content from all fields above.

Table 4.1 illustrates an example of a fielded representation of the entity “Diana,
Princess of Wales”. Indexed terms were lower-cased, stemmed using Krovetz [1993]
stemmer and stopwords were removed. From Table 4.1, it follows that, each field is
a concatenation of terms parsed from the files discussed above. For instance, we can
observe that the field Similar entity names is composed by the names found in the
Redirects and Disambiguations files and the Ontology Classes field is a concatenation
of the three classes, “British Royalty”, “Person” and “Thing”. The same goes for the
other fields.

Table 4.1: Multi-fielded entity representation for Princess Diana

Field Content

Names Diana, Princess of Wales

Attributes Diana, Princess of Wales (Diana Frances; nÃ©e Spencer; 1 July 1961 - 31 August
1997) was an international personality of the late 20th century (...). death Date
1997-08-31 birth Date 1961-07-01 title Princess

Categories Princesses of Wales British humanitarians Daughters of British earls English An-
glicans Mine action Mountbatten-Windsor family Road accident deaths in France
Spencer-Churchill family 1961 births 1997 deaths (...)

Similar entity names Diana Spencer, Princess of Wales; Lady Diana Spencer; Diana Princess of Wales;
Princess Di; Lady Di; (...)

Related entity names resting Place Althorp resting Place Northamptonshire death Place Pitie-Salpetriere
Hospital birth Place Sandringham, Norfolk parent Frances Shand Kydd parent
John Spencer, 8th Earl Spencer

Ontology Classes British Royalty Person Thing

URL http://dbpedia.org/resource/Diana,_Princess_of_Wales

All Omitted. (All content above concatenated)

4.2 Queries, Relevance Judgments, and Intents

We use a publicly available benchmark9 built on top of DBPedia 3.7, which comprises
a total of 485 queries from past semantic search evaluation campaigns [Balog and

9http://bit.ly/dbpedia-entity

http://bit.ly/dbpedia-entity
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Neumayer, 2013]. In total, there are 13,090 positive relevance judgments available.
While some of these include graded labels, for a homogeneous treatment of all queries,
we consider relevance as binary. Each evaluation campaign has distinct characteristics,
comprising queries from different types, as described bellow:

• INEX-XER: The INitiative for the Evaluation of XML retrieval (INEX) organizes
a XML Entity Ranking track (INEX-XER) to provide a forum where researchers
may compare and evaluate techniques for engines that return lists of entities.
The INEX-XER 2009 track seeks a list of entities, where entities are represented
by their Wikipedia/DBPedia page.

• TREC Entity: The Text REtrieval Conference (TREC), from 2009, organizes a
related entity finding task from the Entity Track, which provides queries focused
on specific relationship between entities.

• SemSearch ES: Semantic Search Challenge (SemSearch) in the World Wide Web
Conference, from 2010 and 2011, establishes an academic competition for the
best systems that can answer a number of queries that are focused on the task
of Entity Search (ES). This task provides short keyword queries seeking for a
particular entity.

• SemSearch LS: List Search (LS) is the second task of the Semantic Search Chal-
lenge (SemSearch) which provides more complex queries expecting multiple en-
tities as answer.

• QALD-2: The Question Answering over Linked Data (QALD) challenge, 2012
edition, aims at providing an benchmark for assessing and comparing state-of-
the-art-systems that mediate between a user, expressing his or her information
need in natural language, and linked data sources.

• INEX-LD: The INEX 2012 evaluation campaign is consisted of a five tracks:
Linked Data, Relevance Feedback, Snippet Retrieval, Social Book Search, and
Tweet Contextualization. Query collection were selected from the Ad-hoc Search
Task of the Linked Data (LD) track and consists of keyword-style queries with
different intents.

Queries from these different evaluation campaigns forms a benchmark with a
wide variety of query intents, including entity, type, relation and attribute queries, as
well as queries with a question intent. Following past research [Balog and Neumayer,
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2013; Zhiltsov et al., 2015; Nikolaev et al., 2016], we organize these queries into four
intent-specific query sets, the salient statistics of which are described in Table 4.2:

• E : Short keyword queries taken from SemSearch ES collection referring to a par-
ticular entity from different classes, like places (e.g., “orlando florida”), real per-
sons (e.g., “jack johnson”), fictional characters (e.g., “harry potter ”), companies
(e.g., “pizza populous detroit mi ”) and many others. Some queries are ambiguous
(e.g. “ben frankling” which can be a person or a ship);

• T : Keyword queries from three different collections (INEX-XER, TREC Entity,
SemSearch LS) expecting a list of entities of a certain type, some of them are
generic (e.g., “continents in the world ”), others more restrictive (e.g. “movies
with eight or more academy awards”);

• Q : Natural language question queries from QALD-2 collection. This collection
includes queries seeking for a specific entity (e.g. “who is the husband of Amanda
Palmer? ”), while others expects a list of entities with a simple request (e.g. “Give
me a list of all American inventions”) and others are more complex (e.g. “Which
daughters of British earls died in the same place they were born in? ”);

• O : Queries with different intents from INEX LD collection, including queries
searching a particular entity (e.g. “invented telescope”), entities from certain
type (e.g. “tango music composers”), queries relating two or more entities (e.g.
“Nelson Mandela John Dube”) and queries searching for attribute information of
a particular entity (e.g. “Sweden Iceland currency”).

We decided to consider these four sets of queries as intents due to the fact that
they were provided by different benchmark campaigns, focusing in different search
tasks and with distinct revelance judgment strategies. To check that this division
makes sense, Figure 4.2 illustrates the distribution of query types throughout the four
query groups we are using (E, T, Q, O). To this end, each query was manually labelled
by three different people into one of the query types proposed by Pound et al. [2010]
(Entity, Type, Attribute, Relation, Other).

From Figure 4.2, it follows that group E, which has queries seeking for a specific
entity, has 84% of Entity queries, 9% of Type queries, 1% of Attribute queries, 3%
of Relation queries and 3% of Other queries. Group T, which has queries seeking
for entities of a specific type, has 86% of Type queries, 3% of Entity queries, 6% of
Attribute queries, 4% of Relation queries and 1% of other queries. Group Q, which has
natural language questions, mostly has Entity and Type queries, with 35% and 54%
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respectively, followed by 7% of Attribute queries, 4% of Relation queries and 0% of
Other queries. Group O, comprising queries from different aspects, is the most diverse
group, with 28% of Entity queries, 43% of Type queries, 1% of Attribute queries, 14%
of Relation queries and 14% of Other queries.

Figure 4.2: Query types distribution over each intent group

Table 4.2: Statistics of the intent-specific query sets used in our evaluation. Length
and qrels denote per-query averages of query length and positive judgments in each
set.

Set Campaign [Balog and Neumayer, 2013] Queries Length Qrels

E SemSearch ES 130 2.7 8.7
T INEX-XER, SemSearch LS, 115 5.8 18.4

TREC Entity
Q QALD-2 140 7.9 41.5
O INEX-LD 100 4.8 37.6

TOTAL 485 5.3 26.55

Continuing the analysis of each query group, from Table 4.2, it follows that,
besides the semantic diversity of each set, this collection of queries is also diverse in
terms of length and number of relevant results. The Q set has the largest queries, with
an average of almost 8 terms per query, and the largest number of relevant results,
with an average of 41 relevant entities per query. On the other hand, the E set, has
the shortest queries (2.7 terms on average) and the smallest number of relevant (8.7
entities). The set with most queries is the Q set, with 140 queries, while the O set has
the least number, with 100 queries.
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4.3 Retrieval Baselines

We compare our approach to multiple intent-agnostic baselines from the literature. As
a vanilla ad-hoc search baseline, we consider BM25 with standard parameter settings
(k1 = 1.2, b = 0.8). To assess the effectiveness of our intent-aware ranking adaptation
strategies introduced in Section 3.3, we further contrast them to two intent-agnostic
strategies, which consistently apply a single ranking model for all queries, regardless
of their target intent. As illustrated in Table 4.3, the fixed strategy applies a model
Li learned on one intent-specific query set, whereas the oblivious strategy applies a
model LR learned on a set of random queries. For a fair comparison, both of these
baseline strategies as well as our own intent-aware switching and mixing strategies use
the same learning algorithm (LambdaMART) and ranking features (all 216 features in
Table 3.2). Lastly, we further contrast our approach to FSDM [Zhiltsov et al., 2015]
(see Section 2.2.1) as a representative of the current state-of-the-art.

Table 4.3: Example application of intent-agnostic (baseline) and intent-aware ranking
adaptation strategies.

intent-agnostic intent-aware

i fixed-E fixed-T fixed-Q fixed-O oblivious switching mixing

E LE LT LQ LO LR LE ∑iwiLi

T LE LT LQ LO LR LT ∑iwiLi

Q LE LT LQ LO LR LQ ∑iwiLi

O LE LT LQ LO LR LO ∑iwiLi

4.4 Training and Test Procedure

Figure 4.3: Division of the data for a 5-fold cross-validation of each model.
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Figure 4.3 describes the division of the training and test folds for each model.
For a fair comparison between our intent-aware semantic query annotation approach
and the intent-agnostic baselines described in Section 4.3, we randomly downsample
all query sets in Table 4.2 until they reach 100 queries each (i.e., the number of queries
in the smallest query set). This ensures the learning process is not biased towards
any particular intent. To learn an intent-specific model Li for each intent i ∈ I =

{E,T,Q,O}, we perform a 5-fold cross validation in the corresponding query set from
Table 4.2. For the oblivious strategy, the intent-agnostic model LR is also learned
via 5-fold cross validation on a set of 100 queries sampled uniformly at random from
the four intent-specific query sets after downsampling. This multi-intent query set is
also used to tune the parameters of FSDM [Zhiltsov et al., 2015] for different concepts
(unigrams, ordered and unordered bigrams) and each of the fields listed in Section 4.1.
The weights for unigrams, ordered bigrams and unordered bigrams are equal to 0.68,
0.18 and 0.14 respectively. Weights for each field for the three concepts are shown
in Table 4.4. In each cross-validation round, we use three partitions (60 queries) for
training, one for validation (20 queries), and one (20 queries) for testing.

Learning to rank is performed using the LambdaMART implementation in
RankLib 2.7,10 optimizing for normalized discounted cumulative gain at the top 100 re-
sults (nDCG@100). LambdaMART is deployed with default hyperparameter settings,11

with 1,000 trees with 10 leaves each, minimum leaf support 1, unlimited threshold can-
didates for tree splitting, learning rate 0.1, and early stopping after 100 non-improving
iterations. All results are reported as averages of all test queries across the five cross-
validation rounds. In particular, we report nDCG@10, precision at 10 (P@10), and
mean average precision (MAP). All evaluation metrics are calculated on the top 100
results returned by each approach. To check for statistically significant differences
among them, we use a two-tailed paired t-test and write △ (▽) and ▲ (▼) to denote
significant increases (decreases) at the 0.05 and 0.01 levels, respectively. A further
symbol ○ is used to denote no significant difference.

4.5 Summary

This chapter introduced the research questions inherent to the proposed method and
gave details of the experimental setup aimed to answer them. In Section 4.1, we
presented the knowledge base indexed from DBPedia and how we parsed its RDF

10https://sourceforge.net/p/lemur/wiki/RankLib%20How%20to%20use/
11Hyperparameter tuning on validation data showed no significant improvements in our preliminary

tests.

https://sourceforge.net/p/lemur/wiki/RankLib%20How%20to%20use/
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Table 4.4: Tunned fields weight for each query concept for the FSDM approach.

Fields

Query Concept Names Attributes Categories Similar Entities Related Entities

Unigrams 0.11 0.37 0.20 0.17 0.15
Ordered Bigrams 0.18 0.28 0.18 0.24 0.12
Unordered Bigrams 0.24 0.35 0.09 0.14 0.18

triples to create a fielded representation of entities and the relation between them.
We also presented, in Section 4.2, the test collection composed by a set of queries
from different evaluation benchmarkings. Each set comprises queries with different
characteristics that we considered as search intents, totaling 4 types: entity queries,
type queries, question queries and other queries (like attribute queries and relation
queries). In Section 4.3, we presented the intent-agnostic baseline methods used to
make a comparison evaluation. We used the BM25 as a vanilla baseline and FSDM as
a state-of-the-art one. We also used an agnostic learning-to-rank model in contrast to
our intent-aware ranking adaptation strategies also based on learning-to-rank models.
Finally, in Section 4.4, we detailed the training and test procedure using 5-fold cross-
validation and how we separated data for each fold for each query type to guarantee
a fair comparison between all models. Chapter 5 will present the experimental results
answering the research questions stated in this chapter.





Chapter 5

Experimental Evaluation

In this chapter, we empirically evaluate our approach in order to answer the four re-
search questions stated in Chapter 4. First, in Section 5.1 we investigate the effective-
ness of using different ranking models for different query intents. Then, in Section 5.2,
we test the accuracy in predicting the intent behind queries and the robustness to noise
in prediction. In Section 5.3, we present the effectiveness of our approach in contrast
to different baselines and, in Section 5.4, we present a further analysis for queries with
different intents, lengths, and difficulty. Finally, in Section 5.5, we discuss some suc-
cessful and failure cases where the intent-awareness model can contribute to a better
result when compared to the agnostic model.

5.1 Intent Specificity

The core hypothesis of our proposal is that different queries may benefit from a ranking
model optimized to their intent. To verify this hypothesis, we address Q1, by assessing
the specificity of ranking models optimized to the four intents described in Table 4.2.
To this end, Figure 5.1 correlates the importance assigned to all 216 features by each
intent-specific ranking model Li, for i ∈ I = {E,T,Q,O}. Feature importance is quan-
tified using the least square improvement criterion proposed by Lucchese et al. [2015]
for gradient boosted regression tree learners, such as LambdaMART. This method is
based on the original work on gradient boosted regression trees from Friedman [2001].
For each tree of the model, for each feature a measure similar to the least square im-
provement measure proposed by Friedman [2001] is computed. Since each tree split
node improves the objective function, the total gain for a feature can be estimated
by summing up the gains across all the split nodes for all trees where the feature is
used. From Figure 5.1, we observe a generally low correlation (ρ < 0.5) between models,

37
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Figure 5.1: Spearman’s correlation coefficient for feature importance across pairs of
intent-specific ranking models.

except for the LE and LO models, with ρ ≈ 0.7.

Table 5.1 lists the five most important features for each intent-specific model.
The entity-oriented LE model gives importance to features related to the occurrence
of bigrams in the name and similar entities fields. For instance, the query “martin
luther king” expects semantic resources named “Martin Luther King III” and “Martin
Luther King High School.” The type-oriented LT model considers a variety of distinct
features, two features related to the categories field are present in the top 5, which are
useful for queries like “state capitals of the united states of america.” The question-
oriented LQ model gives importance to features describing the relation between entities
and ontology classes, derived from both content fields as well as the graph structure
underlying the knowledge base. These can help to identify relevant resources linked to
an entity in the query through qualified relations, as in the query “who was the successor
of john f. kennedy? ” Lastly, the LO model, which is optimized on a set comprising
queries of various intents, strongly favors content-based features, which are arguably
effective for broad queries such as “einstein relativity theory.” Recalling question Q1,
these results provide a strong indication of the specificity of different models to queries
of different intents.

Since each ranking model gives importance to different features, the next exper-
iment aims to check whether, given a query intent, the best ranking model is in fact
the one which it was trained for. Table 5.2 compares the performance of queries from a
specific intent when applied to each existing ranking model. From Table 5.2, it follows
that the ranking model that best performs for each query intent is the one correspond-
ing to the same intent. We can also note that the LT model is the most balanced one,
performing reasonably well for all intents. This can be explained because, as we already
discussed above, the LT model gives importance to a variety of distinct features, and
probably generalizes better to different types of intent.
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Table 5.1: Top 5 features per ranking model.

# Feature

1 TF-IDF sum of bigrams in similar entities
2 Matching entity

LE 3 TF sum of bigrams in similar entities
4 TF avg of bigrams in similar entities
5 TF-IDF max of bigrams in similar entities

1 CLM in categories
2 CLM in all content

LT 3 No. of inlinks
4 No. of tokens in similar entities
5 TF-IDF sum of bigrams in categories

1 BM25 in ontology classes
2 No. of matched relations with query terms

LQ 3 No. of direct relations with query entities
4 No. of inlinks
5 TF-IDF max of unigrams in ontology classes

1 TF sum of bigrams in name
2 BM25 in name

LO 3 TF-IDF max of unigrams in categories
4 TF-IDF max of bigrams in name
5 TF-IDF var of bigrams in all content

Intent Model P@10 nDCG@10 MAP

O

LO 0.259 0.303 0.113
LT 0.237○ 0.274○ 0.102○

LQ 0.140▼ 0.157▼ 0.056▼

LE 0.236▽ 0.268▼ 0.100○

T

LO 0.202▼ 0.211▼ 0.148▼
LT 0.289 0.327 0.218
LQ 0.195▼ 0.215▼ 0.137▼

LE 0.146▼ 0.139▼ 0.111▼

Q

LO 0.045▼ 0.079▼ 0.061▼

LT 0.104▼ 0.198▼ 0.144▽
LQ 0.143 0.273 0.202
LE 0.038▼ 0.070▼ 0.049▼

E

LO 0.245▼ 0.445▼ 0.329▼

LT 0.177▼ 0.298▼ 0.224▼

LQ 0.131▼ 0.213▼ 0.158▼
LE 0.293 0.498 0.386

Table 5.2: Performance of each query intent when applied to specific ranking models.

5.2 Intent Classification Accuracy

The results in the previous experiment suggest that exploiting the specificity of different
query intents may result in more effective ranking models. Before investigating whether
this is indeed the case, in this section, we address Q2, with the aim of establishing
what level of query intent detection accuracy can be attained in practice. To this
end, we experiment with a range of traditional classification algorithms implemented
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in Scikit-learn 0.17.1,1 optimized via 5-fold cross validation using the same partitions
leveraged for learning to rank, as detailed in Section 4.4. Table 5.3 reports intent
classification accuracy averaged across test queries in all cross-validation rounds. As
shown in the table, according to a two-tailed paired t-test over the accuracy of each
fold, all algorithms (except AdaBoost) are statistically equivalent. We choose to use
Stochastic Gradient Descent (SGD) with a log loss, performing an incremental logistic
regression as the intent classifier in the remainder of our experiments.

Table 5.3: Query intent classification accuracy.

Algorithm Accuracy

AdaBoost 0.670▼
Support Vector Machines 0.740○
Gradient Boosting 0.757○
Bagging 0.760○
Random Forest 0.765○
Logistic Regression 0.770

Table 5.4: Confusion matrix for the intent classification.

Predicted Intent
O Q E T

Original Intent

O 71 0 25 4
Q 0 94 0 6
E 20 0 77 3
T 15 14 5 66

According to Table 5.3, the chosen classifier has an accuracy of 77%, which raises
the question of which intent is mistakenly identified in the 33% of the remaining queries.
Table 5.4 illustrates the confusion matrix relating the original intent of the queries
with the intent identified by the classifier. From Table 5.4 it follows that, from the 100
queries in group O, 71 are correctly classified, 25 are mistakenly classified as E and
4 as T. Queries from group Q are the most correct, with 94 correctly classified and
missing only 6 as T. Group E, 77 are correctly classified, 20 are mistakenly classified as
O and 3 as T. Queries from group T are the most misclassified, correctly classifying 66
queries, while 15 are mistakenly classified as O, 14 as Q and 5 as E. Structurally, queries
from the Q group are the most different – they are longer and have common part-of-
speech classes from natural language sentences – which explains the high accuracy in
this group, while the others (O, E and T) are structurally similar and can confuse the
classifier.

The top performing classifier in Table 5.3 still leaves room for further improve-
ment in intent classification accuracy. An interesting question here is whether this

1http://scikit-learn.org/

http://scikit-learn.org/
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Figure 5.2: Semantic query annotation robustness for simulated intent classifiers of a
range of accuracy levels.

level of accuracy is enough for an effective deployment of our proposed intent-aware
semantic query annotation approach. To further investigate the role of the intent clas-
sification component in our approach, we measure the impact of a range of simulated
intent classifiers on the effectiveness of the produced ranking of semantic annotations.
In particular, starting from a perfect intent classifier (i.e., an oracle), we gradually
introduce noise in the classification outcome by replacing the correct intent with a ran-
dom one, up to the point where the classification itself becomes a random guess of the
four available intents (i.e., E, T, Q, and O). As shown in Figure 5.2, our intent-aware
switching strategy can outperform the intent-agnostic oblivious strategy with up to
50% of random noise in intent classification, which is a remarkable result. Recalling
Q2, the experiments in this section demonstrate that accurate intent classification is
feasible, and that the overall ranking annotation performance is robust to a consider-
able amount of noise in the predicted intents.

5.3 Annotation Effectiveness

Section 5.1 showed the promise of leveraging intent-specific ranking models, while Sec-
tion 5.2 demonstrated that achieving this promise is feasible with reasonably accurate
query intent classifiers. In this section, we address Q3, by assessing the effectiveness of
our intent-aware semantic query annotation approach in contrast to the various base-
lines described in Section 4.3. These include BM25 as a vanilla ad-hoc search baseline,
FSDM as a representative of the current state-of-the-art, and multiple deployments of
LambaMART using baseline intent-agnostic ranking adaptation strategies (fixed and
oblivious) as well as our proposed intent-aware strategies (switching and mixing). Ta-
ble 5.5 summarizes the results of this investigation in terms of P@10, nDCG@10, and



42 Chapter 5. Experimental Evaluation

MAP averaged across all 400 test queries from the four query sets in Table 4.2.2 In
each row describing baseline results (the top half of the table), a first of the symbols
introduced in Section 4.4 denotes a statistically significant difference (or lack thereof)
with respect to LambdaMART (switching), whereas a second symbol denotes poten-
tial differences with respect to LambdaMART (mixing). A further symbol is shown
alongside LambdaMART (switching) to denote a significant difference (or lack thereof)
with respect to LambdaMART (mixing). For each evaluation metric, we also report
the number of queries negatively affected (−), positively affected (+), and unaffected
(=) when comparing each approach to LambdaMART (mixing).

Table 5.5: Comparison of intent-agnostic (BM25, FSDM, LambdaMART fixed and
oblivious) and intent-aware (LambdaMART switching and mixing) semantic query
annotation.

P nDCG MAP

@10 − = + @10 − = + @100 − = +

BM25 0.181▼▼ 52 188 160 0.250▼▼ 99 99 202 0.163▼▼ 99 58 243
FSDM 0.204▼▼ 72 182 146 0.289▼▼ 115 105 180 0.195▼▼ 126 63 211
LambdaMART

(fixed-E) 0.178▼▼ 35 213 152 0.244▼▼ 69 119 212 0.162▼▼ 76 60 264
(fixed-T) 0.202▼▼ 50 212 138 0.275▼▼ 95 113 192 0.172▼▼ 101 58 241
(fixed-Q) 0.152▼▼ 36 182 182 0.215▼▼ 57 122 221 0.139▼▼ 56 69 275
(fixed-O) 0.188▼▼ 48 209 143 0.260▼▼ 93 110 197 0.163▼▼ 96 64 240
(oblivious) 0.192▼▼ 40 214 146 0.276▼▼ 87 113 200 0.178▼▼ 98 58 244

(switching) 0.227▼ 28 302 70 0.329▼ 90 169 141 0.219▼ 101 89 141
(mixing) 0.243 0.346 0.229

From Table 5.5, we first observe that FSDM performs strongly, outperforming
all intent-agnostic variants deployed with LambdaMART, which confirms its effective-
ness as a representative of the state-of-the-art. Also of note is the fact that a single
model trained on a set of multiple intents using the oblivious strategy cannot consis-
tently improve upon the best performing intent-specific model, produced by the fixed-T
strategy. In contrast, both of our intent-aware ranking adaptation strategies are able
to consistently leverage the best characteristics of each individual intent, significantly
outperforming all intent-agnostic baselines in all settings. In particular, compared to
FSDM, our switching strategy improves by up to 11% in P@10, 14% in nDCG@10, and
12% in MAP. Compared to the best performing intent-agnostic strategy under Lamb-
daMART (fixed-T), gains are as high as 12% in P@10, 20% in nDCG@10, and 27%
in MAP. Lastly, we also note that our mixing strategy further significantly improves
upon the switching strategy. This result suggests that merging multiple intent-specific

2Effectiveness breakdown analyses per query intent and various other query characteristics are
presented in Section 5.4.
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models (the mixing strategy) can be safer than applying a single model associated with
the most likely query intent (the switching strategy). Recalling Q3, these results attest
the effectiveness of our intent-aware ranking adaptation for semantic query annotation.

5.4 Breakdown Analyses

The previous analysis demonstrated the effectiveness of our approach on the entire set of
400 queries. To further shed light on the reasons behind such an effective performance,
we address question Q4, by analyzing the improvements brought by our approach for
queries with different intents, lengths, and difficulty.

5.4.1 Analysis by Query Intent

Table 5.6 breaks down the results in Table 5.5 according to the target intent of each
query. For brevity, only the best among the fixed strategy variants is shown. Note that
while our approach aims to predict the correct intent of each query, there is no guar-
antee that a perfect intent classification will be achieved, as discussed in Section 5.2.
Hence, it is important to understand how well our approach performs on queries of
each target intent. From Table 5.5, as expected, the best fixed strategy for each group
of queries is that optimized for the group itself (e.g., fixed-E is the best fixed strategy
for entity queries—the E group). Nonetheless, our intent-aware mixing strategy is
the most consistent across all groups, with effectiveness on a par with the best fixed
strategy for each group. Compared to our switching strategy, the mixing strategy is
particularly effective for type queries (the T group), with statistical ties for all other
groups. Regarding performance differences across the target intents, we note that all
approaches achieve their best absolute performance on E queries followed by queries
with other intents (the O group), which also includes entity queries. The effective re-
sults attained even by the simple BM25 baseline suggest that queries with these intents
are well handled by content-based approaches.

Compared to the intent-agnostic FSDM baseline, our largest improvements are
observed for type queries (the T group) and question queries (the Q group). For T
queries, the structure-based features exploited by our learning to rank approach bring
only small improvements, as observed by contrasting LambdaMART (oblivious) with
FSDM. However, with our proposed intent-aware ranking adaptation strategies, further
marked improvements are observed, with the mixing strategy significantly improving
upon the oblivious strategy by up to 25% in P@10, 35% in nDCG@10, and 44% in
MAP. For Q queries, both the extra features exploited via learning to rank as well
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Table 5.6: Effectiveness breakdown by query intent.

P nDCG MAP

@10 − = + @10 − = + @100 − = +

E queries (100 queries)

BM25 0.240▼▼ 14 45 41 0.416▼▼ 29 17 54 0.320▼▼ 32 8 60
FSDM 0.286○○ 19 49 32 0.499○○ 37 19 44 0.396○○ 47 10 43
LambdaMART

(fixed-E) 0.293△○ 12 74 14 0.498○○ 29 31 40 0.387○○ 34 14 52
(fixed-T) 0.177▼▼ 4 35 61 0.299▼▼ 11 17 72 0.224▼▼ 11 5 84
(fixed-Q) 0.131▼▼ 6 28 66 0.214▼▼ 10 14 76 0.158▼▼ 9 6 85
(fixed-O) 0.245▼▼ 16 46 38 0.445▽▼ 27 21 52 0.329▼▼ 25 13 62
(oblivious) 0.239▼▼ 9 50 41 0.434▼▼ 21 22 57 0.329▼▼ 28 7 65

(switching) 0.282○ 8 74 18 0.486○ 27 33 40 0.377○ 29 16 55
(mixing) 0.297 0.502 0.390

T queries (100 queries)

BM25 0.190▽▼ 17 37 46 0.193▼▼ 27 18 55 0.141▼▼ 27 9 64
FSDM 0.211○▼ 22 34 44 0.223○▼ 30 18 52 0.167○▼ 31 10 59
LambdaMART

(fixed-E) 0.146▼▼ 7 32 61 0.140▼▼ 10 22 68 0.111▼▼ 13 9 78
(fixed-T) 0.289▲○ 17 65 18 0.327▲○ 32 33 35 0.219▲○ 39 12 49
(fixed-Q) 0.195▽▼ 14 39 47 0.215▽▼ 25 22 53 0.137▼▼ 17 9 74
(fixed-O) 0.202○▼ 16 38 46 0.211▽▼ 24 19 57 0.149▼▼ 28 9 63
(oblivious) 0.216○▼ 12 52 36 0.225○▼ 28 22 50 0.146▼▼ 28 10 62

(switching) 0.232▼ 4 66 30 0.260▼ 16 36 48 0.185▼ 21 12 67
(mixing) 0.271 0.303 0.210

Q queries (100 queries)

BM25 0.060▼▼ 3 61 36 0.108▼▼ 5 52 43 0.077▼▼ 6 37 57
FSDM 0.061▼▼ 6 58 36 0.127▼▼ 9 53 38 0.098▼▼ 9 38 53
LambdaMART

(fixed-E) 0.038▼▼ 0 60 40 0.070▼▼ 3 51 46 0.050▼▼ 6 34 60
(fixed-T) 0.104▼▼ 9 69 22 0.199▽▼ 17 51 32 0.144▽▽ 19 39 42
(fixed-Q) 0.143○○ 8 88 4 0.273○○ 12 74 14 0.203○○ 19 53 28
(fixed-O) 0.045▼▼ 2 59 39 0.080▼▼ 3 51 46 0.062▼▼ 7 35 58
(oblivious) 0.091▼▼ 5 69 26 0.177▼▼ 11 54 35 0.132▼▼ 14 38 48

(switching) 0.142○ 7 89 4 0.267○ 11 75 14 0.198○ 18 53 29
(mixing) 0.141 0.266 0.194

O queries (100 queries)

BM25 0.235○▼ 18 45 37 0.282○▽ 38 12 50 0.113○○ 34 4 62
FSDM 0.258○○ 25 41 34 0.308○○ 39 15 46 0.119○○ 39 5 56
LambdaMART

(fixed-E) 0.236○▼ 16 47 37 0.268▼▼ 27 15 58 0.100▼▼ 23 3 74
(fixed-T) 0.237○▽ 20 43 37 0.275○▼ 35 12 53 0.103○▼ 32 2 66
(fixed-Q) 0.140▼▼ 8 27 65 0.157▼▼ 10 12 78 0.057▼▼ 11 1 88
(fixed-O) 0.259○○ 14 66 20 0.304○○ 39 19 42 0.113○▽ 36 7 57
(oblivious) 0.221▼▼ 14 43 43 0.267▽▼ 27 15 58 0.105○▼ 28 3 69

(switching) 0.254○ 9 73 18 0.305○ 36 25 39 0.116○ 33 8 59
(mixing) 0.264 0.312 0.123
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as our ranking adaptation strategies help, with the switching strategy improving even
further compared to the oblivious one by up to 56% in P@10, 51% in nDCG@10, and
50% in MAP. Figure 5.3 further illustrates the consistent improvements in terms of
nDCG@100 attained by our intent-aware strategies (here represented by the mixing
strategy) compared to the intent-agnostic oblivious baseline. Indeed, not only does
mixing improve more queries than it hurts compared to oblivious, but it also shows
larger increases and smaller decreases throughout queries of all four intents. Analyzing
each intent separately, the most noticeable difference can be observed for Q queries,
with mixing performing better for 50% of the queries and losing in only 10%. For E
and T queries, the differences in nDCG are not as high, but mixing is still superior for
60% of the queries. The smallest gap between the two strategies appears in O queries,
although once again mixing performs better for 60% the queries.

(a) All queries

(b) E queries (c) T queries

(d) Q queries (e) O queries

Figure 5.3: Differences in nDCG@100 between LambdaMART (mixing) and Lamb-
daMART (oblivious) across: (a) all queries; (b) E queries; (c) T queries; (d) Q queries;
(e) O queries. Positive values indicate mixing is better.
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5.4.2 Analysis by Query Length

Continuing our detailed analysis, Table 5.7 breaks down the results from Table 5.5
according to the length of each query. In particular, we consider three groups of queries:
short queries, with 1 or 2 terms (74 queries); medium queries, with 3 or 4 terms (193
queries); and long queries, with 5 or more terms (133 queries). From Table 5.7, we
observe relatively higher performances of all approaches on short queries compared
to those of other lengths. FSDM delivers a particularly strong performance on this
group, with only a small gap from our mixing strategy, which is the overall best. This
can be explained by FSDM’s previously discussed effectiveness on E queries, which
have only 2.7 terms on average. Compared to the oblivious strategy, mixing brings
substantial and significant improvements, once again demonstrating the benefits of an
intent-aware ranking adaptation. For medium and long queries (5 or more terms), both
of our intent-aware strategies bring even more pronounced improvements compared to
all intent-agnostic baselines, with the top performing mixing strategy outperforming
the oblivious strategy by up to 32% in P@10, 30% in nDCG@10, and 36% in MAP. This
tendency is somewhat expected given the effective performance observed in Table 5.7
for the proposed intent-aware strategies on Q queries, which are typically longer (8
terms on average).

5.4.3 Analysis by Query Difficulty

To complete our breakdown analysis, we regroup all 400 queries in our investigation
according to their difficulty. In particular, we consider three groups: difficult queries,
with 3 or less relevant results in the ground-truth (108 queries); moderate queries,
with 4 to 20 relevant results (184 queries); and easy queries, with more than 20
relevant results (108 queries). The results of this investigation are shown in Table 5.8.
From the table, we note as expected that difficult queries generally incur in reduced
precision at early ranks (as measured by both P@10 and nDCG@10), while easy
queries tend to penalize recall at lower ranks (as measured by MAP). Nevertheless, our
intent-aware adaptation strategies are once again the most effective across all groups
of queries, with the mixing strategy consistently providing the overall best results.
For difficult queries (3 or less relevant results), compared to the oblivious strategy,
mixing improves by up to 19% in P@10, 24% in nDCG@10, and 26% in MAP. For
easy queries (21 or more relevant results), improvements are as high as 24% in P@10,
27% in nDCG@10, and 39% in MAP.
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Table 5.7: Effectiveness breakdown by query length.

P nDCG MAP

@10 − = + @10 − = + @100 − = +

1 or 2 terms (74 queries)

BM25 0.253▼▼ 8 28 38 0.363▼▼ 18 12 44 0.268▼▼ 21 3 50
FSDM 0.323○○ 15 34 25 0.456○○ 28 9 37 0.331○○ 36 3 35
LambdaMART

(fixed-E) 0.324○○ 8 50 16 0.453○○ 21 19 34 0.327○○ 23 5 46
(fixed-T) 0.227▼▼ 6 28 40 0.315▼▼ 11 12 51 0.217▼▼ 9 3 62
(fixed-Q) 0.170▼▼ 8 20 46 0.217▼▼ 10 7 57 0.143▼▼ 8 1 65
(fixed-O) 0.265▼▼ 11 28 35 0.398▼▼ 19 9 46 0.269▼▼ 22 2 50
(oblivious) 0.276▼▼ 7 35 32 0.394▼▼ 15 12 47 0.278▼▼ 21 3 50

(switching) 0.324○ 8 52 14 0.455○ 21 19 34 0.324○ 21 5 48
(mixing) 0.337 0.465 0.332

3 or 4 terms (193 queries)

BM25 0.196▼▼ 27 82 84 0.264▼▼ 54 32 107 0.161▼▼ 47 21 125
FSDM 0.221○▼ 38 81 74 0.308▽▼ 57 41 95 0.198▽▼ 56 25 112
LambdaMART

(fixed-E) 0.182▼▼ 18 91 84 0.253▼▼ 36 46 111 0.161▼▼ 35 24 134
(fixed-T) 0.234○▼ 30 96 67 0.307▽▼ 58 42 93 0.182▼▼ 61 20 112
(fixed-Q) 0.165▼▼ 17 74 102 0.234▼▼ 30 46 117 0.150▼▼ 28 27 138
(fixed-O) 0.209▼▼ 26 95 72 0.284▼▼ 53 42 98 0.170▼▼ 45 26 122
(oblivious) 0.208▼▼ 23 90 80 0.296▼▼ 51 39 103 0.183▼▼ 49 19 125

(switching) 0.240▼ 12 137 44 0.349▼ 47 71 75 0.227○ 49 35 109
(mixing) 0.265 0.376 0.239

5 or more terms (133 queries)

BM25 0.119▼▼ 17 78 38 0.167▼▼ 27 55 51 0.106▼▼ 31 34 68
FSDM 0.114▼▼ 19 67 47 0.171▼▼ 30 55 48 0.115▽▼ 34 35 64
LambdaMART

(fixed-E) 0.092▼▼ 9 72 52 0.116▼▼ 12 54 67 0.072▼▼ 18 31 84
(fixed-T) 0.141○▼ 14 88 31 0.206○▽ 26 59 48 0.134○▽ 31 35 67
(fixed-Q) 0.124▼▼ 11 88 34 0.186▼▼ 17 69 47 0.120▼▼ 20 41 72
(fixed-O) 0.114▼▼ 11 86 36 0.148▼▼ 21 59 53 0.094▼▼ 29 36 68
(oblivious) 0.121▼▼ 10 89 34 0.181▼▼ 21 62 50 0.116▼▼ 28 36 69

(switching) 0.156○ 8 113 12 0.230○ 22 79 32 0.150▽ 31 49 53
(mixing) 0.160 0.236 0.158

Recalling Q4, the results in this section demonstrate the consistency of our intent-
aware ranking adaptation strategies for semantic query annotation. Overall, both the
switching and the mixing strategies achieve generally improved results for queries of
different target intents, lengths, and difficulty levels, often significantly. Particularly,
question-oriented queries (the Q intent), long queries (queries with 5 or more terms),
and moderate to easy queries (queries with 4 or more relevant results) are the ones
that benefit the most from our intent-aware approach.
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Table 5.8: Effectiveness breakdown by query difficulty.

P nDCG MAP

@10 − = + @10 − = + @100 − = +

Difficult: 3 or less relevant results (108 queries)

BM25 0.059○▼ 8 75 25 0.224▼▼ 17 59 32 0.179▼▼ 19 43 46
FSDM 0.064○○ 11 74 23 0.256▽▼ 18 60 30 0.214○▽ 23 45 40
LambdaMART

(fixed-E) 0.057▼▼ 1 88 19 0.218▼▼ 7 65 36 0.177▼▼ 13 43 52
(fixed-T) 0.062○▽ 7 81 20 0.230▽▼ 17 57 34 0.180▼▼ 21 41 46
(fixed-Q) 0.051▼▼ 4 79 25 0.208▼▼ 6 64 38 0.173▼▼ 9 47 52
(fixed-O) 0.056▽▼ 4 81 23 0.213▼▼ 10 61 37 0.168▼▼ 13 44 51
(oblivious) 0.063○▽ 5 87 16 0.259▽▼ 15 59 34 0.213▽▼ 20 41 47

(switching) 0.069○ 1 101 6 0.308○ 8 82 18 0.260○ 16 59 33
(mixing) 0.075 0.322 0.268

Moderate: 4 to 20 relevant results (184 queries)

BM25 0.210▼▼ 27 81 78 0.260▼▼ 57 27 100 0.194▼▼ 58 12 114
FSDM 0.245○▼ 40 71 73 0.308○▼ 64 32 88 0.235○▽ 73 14 97
LambdaMART

(fixed-E) 0.214▼▼ 23 86 75 0.260▼▼ 45 38 101 0.196▼▼ 48 14 122
(fixed-T) 0.210▼▼ 17 88 79 0.264▼▼ 38 43 103 0.196▼▼ 44 13 127
(fixed-Q) 0.165▼▼ 17 69 98 0.208▼▼ 34 41 108 0.148▼▼ 29 18 137
(fixed-O) 0.218▼▼ 29 81 74 0.274▼▼ 51 32 101 0.195▼▼ 57 17 110
(oblivious) 0.214▼▼ 19 92 73 0.276▼▼ 46 40 98 0.202▼▼ 53 13 118

(switching) 0.261▼ 15 132 37 0.329▼ 48 62 74 0.245▼ 51 25 108
(mixing) 0.279 0.345 0.257

Easy: 21 or more relevant results (108 queries)

BM25 0.255▼▼ 17 32 59 0.259▼▼ 25 13 70 0.094▼▼ 22 3 83
FSDM 0.275▽▼ 21 37 50 0.292▼▼ 33 13 62 0.107▼▼ 30 4 74
LambdaMART

(fixed-E) 0.239▼▼ 11 39 58 0.244▼▼ 17 16 75 0.089▼▼ 15 3 90
(fixed-T) 0.328○○ 26 43 39 0.338○○ 40 13 55 0.125○▼ 36 4 68
(fixed-Q) 0.232▼▼ 15 34 59 0.233▼▼ 17 17 74 0.089▼▼ 18 4 86
(fixed-O) 0.268▼▼ 15 47 46 0.283▼▼ 32 17 59 0.104▼▼ 26 3 79
(oblivious) 0.283▼▼ 16 35 57 0.292▼▼ 26 14 68 0.103▼▼ 25 4 79

(switching) 0.328▽ 12 69 27 0.352▽ 34 25 49 0.134▼ 34 5 69
(mixing) 0.350 0.371 0.143
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5.5 Success and Failure Cases

For more detailed qualitative analysis, we focus on discussing some success and failure
cases of the LambdaMART (switching) model, showing query examples where intent-
awareness can contribute to a better result when compared to the agnostic Lamb-
daMART (oblivious) model, and examples where it cannot. To this end, we selected
queries with the largest difference in terms of MAP between the LambdaMART (switch-
ing) and the agnostic LambdaMART (oblivious), meaning a hight improvement on the
final ranking. To investigate the opposite case, where intent-awareness did not help to
improve the final ranking, we also selected queries with the smallest difference in terms
of MAP.

We observe that, in general, the fact that LambdaMART (switching) is composed
of different models, trained specifically for different intents, makes each model prioritize
the most suitable features for each intent, helping LambdaMART (switching) perform
better than the agnostic one (oblivious). In particular, comparing the performance of
the intent-aware model, LambdaMART (switching), with LambdaMART (oblivious)
for question answering queries (the Q set), we can observe that LambdaMART (switch-
ing) can behave more properly to answer questions than LambdaMART (oblivious).
In the query QALD2_tr-15 “Who created Goofy?”, LambdaMART (switching) has a
MAP score of 1.0, bringing the only relevant entity ( “Art Babbitt”) in the top of the
ranking, while in LambdaMART (oblivious) it does not appear in the top 100 results,
that is, the MAP score is 0. This can be explained by the ranking model trained specif-
ically to question intent in LambdaMART (switching), which considers, as the second
and third most important features, the No. of direct relations with query entities and
No. of matched relations with query terms (features #8 and #9 from Table 3.2), re-
spectively. In this example, the candidate entity “Art Babbitt” is directly related to the
query entity “Goofy” by the term “created”, also present in the query, and contributing
to put this entity on the top of the results, while in LambdaMART (oblivious) these
two features are the 7th and 15th in the list of importance, respectively.

Another example that illustrates that the proper use of features benefits intent-
aware models, is the query SemSearch_ES-135 “spring shoes canada” (from the E set).
In LambdaMART (switching), the relevant entity “Spring store” appears on the top of
the ranking with a MAP score of 1.0, while in LambdaMART (oblivious) in the 3rd
place, with a MAP score of 0.33. In LambdaMART (switching), the most important
feature for this query, is the TF-IDF bigrams sum in the similar entities field, benefiting
the candidate “Spring store”, which has the bigram “spring store” as an alternative name
in the similar entities field. In LambdaMART (oblivious), this feature is the 3rd most
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important.

For most of the cases where the intent-aware LambdaMART (switching) was
worse than agnostic LambdaMART (oblivious), the difference in the MAP score be-
tween both were small, and can be explained by the mistakenly use of inappropri-
ate features, caused by a mistaken annotation or by the inadequate relations on the
knowledge base. An example of mistaken annotation is the query SemSearch_ES-142
“windsor hotel philadelphia”, where LambdaMART (switching) has a MAP score of
0.64 and mistakenly put the candidate entity “Windsor Hotel Montreal” on the top
of the ranking because DBPedia Spotlight annotated the query with this entity and
LambdaMART (switching) considered the feature Matching entity in the query, mis-
takenly promoting this entity to the top, while LambdaMART (oblivious) has a MAP
score of 0.92 and did not consider the feature Matching entity.

An example of inadequate relations on the knowledge base is the query
QALD2_te-76 “List the children of Margaret Thatcher”, where LambdaMART (switch-
ing) has a MAP score of 0.04, putting non relevant entities, like “Geoffrey Howe” and
“Douglas Hurd” on the top, leaving the two relevant entities (“Carol Thatcher” and
“Mark Thatcher”) in the 17th and 28th position of the ranking, respectively. This hap-
pened because there are many repeated relationships between the query entity “Mar-
garet Thatcher” and the entity “Geoffrey Howe” (and “Douglas Hurd” as well), causing
the feature No. of direct relations with query entities, considered by LambdaMART
(switching), to be overvalued for these candidates. Since LambdaMART (oblivious)
does not give such importance to this feature, it can put the two relevant entities on
the top of the ranking, with a MAP score of 1.0.

5.6 Summary

In Chapter 3 we proposed an intent-aware framework for learning to rank semantic
query annotations and, in Chapter 4, we introduced the research questions inherent to
the proposed framework and gave details of the experimental setup aimed to answer
them. In this chapter, we presented the experimental evaluation which thoroughly
validated the effectiveness of our framework.

In Section 5.1 we answered the first research question, which is about the effec-
tiveness of using different ranking models for different query intents. We listed the
feature importance of each ranking model, showing that each one gives importance to
different features. We also computed the Spearman’s rank correlation between them to
further show that they are really distinct. Besides, we tested queries of each intent in
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all ranking models to show that different queries benefit from ranking models optimized
to their intent.

In Section 5.2 we answered the second research question about the accuracy in
intent prediction. We presented the accuracy of a range of traditional classification
algorithms, showing that logistic regression can obtain the highest accuracy, predicting
77% of query intents correctly. We also tested how much noise in intent prediction our
framework can withstand to still be superior to agnostic approaches, getting a value of
50% of noise, a considerable amount.

In Section 5.3, we presented the effectiveness of our two strategies (switching
and mixing) when compared to different baselines, showing that both strategies signif-
icantly outperform agnostic methods, with the mixing strategy getting better scores.
In Section 5.4, we presented a further analysis, comparing both of our strategies with
agnostic baselines for queries with different intents, lengths and difficulties. In all cases,
at least one of the two strategies outperformed the baselines.

In Section 5.5, we discussed some success and failure cases where our intent-
awareness framework could contribute to a better result when compared to the agnos-
tic baseline, showing that our approach benefits from the use of appropriate features
corresponding to the query intent. On the other hand, mistaken annotations on the
knowledge base or the misuse of inappropriate features may harm our approach.

With this chapter, we conclude the experimental evaluation of our intent-aware
semantic query annotation framework. In the next chapter, we recap on the contribu-
tions of this thesis and future work.





Chapter 6

Conclusions and Future Work

With the growth of Internet access, mainly through mobile devices, seeking for infor-
mation using search engines has become a common task of our daily lives, increasing
the number of searches and consequently their diversity. This evolution makes the
area of information retrieval remain challenging, even over the years. A search can
have different goals and expect different types of results, so it is important that search
engines be aware of this diversity, to adapt their searching strategy according to the
user’s intent and properly deliver the expected answer. With this aim, we proposed a
framework for learning to rank semantic annotations, which detects the intent behind
the query and adapts the final ranking according to it.

The following sections summarize the conclusions drawn from our investigation
and the main contributions of this work, to finally conclude with directions for future
works.

6.1 Summary of Contributions

In the following, we summarize the main contributions of this thesis.
An intent-aware framework for learning semantic query annotations. In

Chapter 3 we proposed a framework for semantic query annotations that is sensitive to
the user’s search intent, comprising three main components: (i) intent-specific learning
to rank, aimed to produce ranking models optimized for different intents; (ii) query
intent classification, aimed to estimate the probability of each query conveying each
possible intent; and (iii) intent-aware ranking adaptation, aimed to promote the most
relevant annotations given the detected intents.

An analysis of the specificity of several content and structural features
for different query intents. In Chapter 3, we proposed a set of features based on
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textual content and also semantic features derived from the structure of the knowledge
base. These features were used in different ranking models, optimized according to
the different query intents. In Chapter 5 we made an analysis of the features for each
ranking model, investigating the most relevant features in each intent, correlating them
and discussing their specificities.

A thorough validation of the proposed framework. In Chapter 5, we
thoroughly validated our intent-aware framework in contrast to state-of-the-art intent
agnostic approaches from different aspects, including an intent agnostic approach which
uses the same learning-to-rank method used by our framework, to demonstrate the
advantages of considering the query intent while ranking. In particular, in Section 5.4
we performed several breakdown analyses, comparing results for different query intents,
lengths and difficulty levels. We also made a qualitative analysis of our approach in
Section 5.5, discussing success and failure cases.

6.2 Summary of Conclusions

We presented a framework for learning to rank semantic annotations suitable to the
intent of each individual query. Our approach predicts the intent of a target query and
adapts the ranking produced for this query using one of two strategies: switching, which
applies a ranking model trained on queries of the same intent as predicted for the target
query, or mixing, which combines the results of multiple intent-specific ranking models
according to their predicted likelihood for the target query. Extensive experiments
on a publicly available benchmark demonstrated the effectiveness of our approach for
semantic query annotation, with significant improvements compared to state-of-the-art
intent-agnostic approaches. The results also attested the consistency of the observed
improvements for queries of different intents, lengths, and difficulty levels.

6.3 Directions for Future Work

In the future, we plan to assess the impact of intent-aware learning on frameworks
other than learning to rank. Preliminary results in this direction show that the FSDM
baseline, which is based on the Markov random fields framework, can be improved with
an intent-aware approach to hyperparameter tuning, although with less marked gains
compared to the ones observed in our experiments with feature-based models using
learning to rank.
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For future work in the context of intent awareness, we intend to evaluate our
approach with a larger intent taxonomy, including more queries with less common
intents such as attribute and relation queries. We also intend to focus on the problem
of question answering, inspired by the effectiveness of the natural language question
model in our experiments, we can explore specific features for question answering and
contrast with state-of-the-art approaches for this task. We can also apply the proposed
framework in tasks of query expansion to deal with the fundamental issue of vocabulary
mismatch in information retrieval, according to the identified intent.

Finally, another direction for future work is the enhancement and maintenance
of the knowledge base, exploring strategies to enrich it with data from the open web
and also discuss strategies to deal with data temporality, e.g. the query “us president”
will expect different answers over time.
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