Departamento de Engenharia de Estruturas
Curso de Especialização em Estruturas

Trabalho Final

Análise Estrutural do Drive Dinâmico

Aluno:
Rafael Miranda Maschtakow

Orientador: Francisco Carlos Rodrigues

Belo Horizonte, 01 de Junho de 2016.
Índice

1.0 Resumo .. 5
1.1 Introdução .. 5
1.2 Objetivo .. 5
2.0 Bibliografia .. 6
2.1 Normas requeridas ... 6
3.0 Modelos computacionais ... 7
3.1 Modelo estrutural .. 7
4.0 Cargas e combinações .. 9
 4.1 Identificação dos carregamentos ... 9
 4.1.1 Análise estrutural .. 9
5.0 Resultados ... 11
 5.1 Análise estrutural .. 11
6.0 Conclusões .. 20
 6.1 Geral .. 20
7.0 ANEXO I – Cálculo da resistência das Colunas – Método da largura efetiva 21
8.0 ANEXO II – Cálculo da resistência das Colunas PROPOSTAS– Método da RESISTÊNCIA DIRETA 30
Lista de Figuras

Figura 1.1: Disposição das estruturas porta pallets drive dinâmicos. ... 5
Figura 3.1: Modelo em elementos finitos – Vista Isométrica... 7
Figura 3.2: Modelo em elementos finitos – Vistas. ...7
Figura 3.3: Modelo em elementos finitos de placa para análise do suporte. 8
Figura 3.4: Perfil da coluna a ser analisado (dimensões em milímetro). 8
Figura 4.1: Força devido ao impacto no batente. ... 10
Figura 5.1: Envelope com os máximos índices de utilização da estrutura. 11
Figura 5.2: Índice de utilização – Combinação B. ... 12
Figura 5.3: Índice de utilização – Combinação C. ... 13
Figura 5.4: Índice de utilização – Combinação D. ... 14
Figura 5.5: Esforços resistente – Método da resistência direta – Coluna intermediária. 15
Figura 5.6: Esforços resistente – Método da resistência direta – Coluna inferior. 15
Figura 5.7: Modos de falha das colunas observadas em campo... 16
Figura 5.8: Destaque para as diagonais (contraventamentos) flambadas. 17
Figura 5.9: Travessas deformadas – Flambagem local .. 17
Figura 5.10: Modo de falha da travessa – Carga crítica. ... 18
Figura 5.11: Índice de utilização da estrutura – Combinação B. ... 18
Figura 5.12: Índice de utilização da estrutura – Combinação C. .. 19
Figura 5.13: Índice de utilização da estrutura – Combinação D. ... 19
Listas de Tabelas
Tabela 4.1: Carregamentos considerados no modelo. ... 9
Tabela 4.2: Combinações de carregamento, conforme NBR 14762(Ref.[1]). 9
Tabela 4.3: Peso próprio da estrutura e equipamentos. .. 9
Tabela 4.4: Carga dos pallets. .. 9
Tabela 4.5: Carga no batente. .. 10
Tabela 5.1: Resumo dos resultados – Análise estática da estrutura.. 11
1.0 RESUMO

1.1 INTRODUÇÃO

Este trabalho irá apresentar uma análise estrutural dos porta pallets do tipo drive dinâmico instalados em um galpão industrial, com ênfase nos perfis formados a frio das colunas estruturais. Estas estruturas estão dispostas no galpão conforme apresentado na Figura 1.1.

![Figura 1.1: Disposição das estruturas porta pallets drive dinâmicos.](image)

Após alguns meses de operação observou-se problemas durante a operação dos porta pallets, como travamentos dos pallets e deformações nas estruturas das colunas.

Este trabalho também irá apresentar um perfil formados a frio que resista as cargas atuantes.

1.2 OBJETIVO

Apresentar a análise estrutural dos porta pallets realizada por elementos finitos e cálculos dos perfis formados a frio utilizando a norma Brasileira NBR 14762.
2.0 BIBLIOGRAFIA

2.1 NORMAS REQUERIDAS

Para a presente análise as seguintes normas foram adotadas:

3.0 MODELOS COMPUTACIONAIS

3.1 MODELO ESTRUTURAL

Realizou-se o modelo da estrutura em elementos finitos de barra, utilizando o software FEMAP, para avaliar a distribuição de carga na estrutura de armazenamento dos pallets. A Figura 3.1 e a Figura 3.2 apresentam o modelo realizado. Foram modeladas apenas quatro filas de armazenamento.

Figura 3.1: Modelo em elementos finitos – Vista Isométrica.

Figura 3.2: Modelo em elementos finitos – Vistas.

Para avaliar a rigidez da coluna e, consequentemente, a distribuição de tensões com maior precisão devido à geometria do apoio, realizou-se o modelo em elementos de casca, utilizando o software FEMAP, conforme destacado na Figura 3.3 abaixo.
Figura 3.3: Modelo em elementos finitos de placa para análise do suporte.
Este modelo será utilizado para determinar com precisão as tensões atuantes no perfil utilizado nas colunas das estruturas dos porta pallets.

A Figura 3.4 abaixo apresenta a seção transversal do perfil que será analisado. A espessura da chapa utilizada é de 2,25mm.

Figura 3.4: Perfil da coluna a ser analisado (dimensões em milímetro).
4.0 CARGAS E COMBINAÇÕES

4.1 IDENTIFICAÇÃO DOS CARREGAMENTOS

4.1.1 Análise estrutural

Nessa seção serão identificados os carregamentos atuantes na estrutura (Tabela 4.1), que serão combinados para que se verifique a estrutura em diferentes condições de operação (Tabela 4.2).

Tabela 4.1: Carregamentos considerados no modelo.

<table>
<thead>
<tr>
<th>Número</th>
<th>Descrição</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peso próprio estrutural e equipamentos</td>
<td>PP</td>
</tr>
<tr>
<td>2</td>
<td>Carga dos pallets</td>
<td>CPL</td>
</tr>
<tr>
<td>3</td>
<td>Impacto no batente</td>
<td>IMP</td>
</tr>
</tbody>
</table>

Tabela 4.2: Combinações de carregamento, conforme NBR 14762(Ref.[1]).

<table>
<thead>
<tr>
<th>Identificação da combinação</th>
<th>Carregamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1,4(PP)</td>
</tr>
<tr>
<td>B</td>
<td>1,4(PP) + 1,4 (CPL)</td>
</tr>
<tr>
<td>C</td>
<td>1,4(PP) + 1,4 (CPL) + 0,84 (IMP)</td>
</tr>
<tr>
<td>D</td>
<td>1,4(PP) + 1,12 (CPL) + 1,4 (IMP)</td>
</tr>
</tbody>
</table>

Peso próprio dos elementos estruturais e estruturas de suporte – PP:

Tabela 4.3: Peso próprio da estrutura e equipamentos.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Peso [tf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrutura metálica (montantes, diagonais e travessas)</td>
<td>9,8</td>
</tr>
<tr>
<td>Roletes, freios, batentes e acessórios</td>
<td>33,6</td>
</tr>
<tr>
<td>TOTAL<sup>NOTA 1)</sup></td>
<td>43,4</td>
</tr>
</tbody>
</table>

Nota 1: Peso total relativo à 4 eixos de armazenamento.

Carga dos pallets – CPL:

A estrutura foi calculada considerando-a 100% ocupada.

Tabela 4.4: Carga dos pallets.

<table>
<thead>
<tr>
<th>Descrição</th>
<th>Peso [kgf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso por pallet</td>
<td>1.200</td>
</tr>
<tr>
<td>Número de pallets</td>
<td>448</td>
</tr>
<tr>
<td>TOTAL<sup>NOTA 1)</sup></td>
<td>537.600</td>
</tr>
</tbody>
</table>

Nota 1: Peso total relativo à 4 eixos de armazenamento.

Impacto no batente – IMP:

A carga no batente foi calculada considerando a retirada de um pallet em uma fileira ocupada com 14 pallets. Dessa forma, devido à inclinação da rampa os demais pallets (13) se deslocam e se chocam contra o batente. A Tabela 4.4 apresenta a carga dos pallets.
Tabela 4.5: Carga no batente.

<table>
<thead>
<tr>
<th>Inclinação da rampa</th>
<th>2.5º</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa dos pallets</td>
<td>15.600 kg</td>
</tr>
<tr>
<td>Altura de decida relativa</td>
<td>52.3 mm</td>
</tr>
<tr>
<td>Rigidez do batente</td>
<td>64.000 N/m</td>
</tr>
<tr>
<td>Força devido ao impacto</td>
<td>32.000 N</td>
</tr>
</tbody>
</table>

A pior condição dessa carga ocorre quando se retira um pallet do último nível, no centro das filas, conforme destacado na Figura 4.1.

Figura 4.1: Força devido ao impacto no batente.
5.0 RESULTADOS

5.1 ANÁLISE ESTRUTURAL

A Tabela 5.1 apresenta o resumo dos resultados, apresentados por meio do índice de utilização (IU) de cada componente estrutural. Os esforços resistentes da estrutura foram calculados conforme os requisitos da NBR 14762 (Ref. [1]), utilizando o método da largura efetiva conforme apresentado no tem 7.0.

O índice de utilização representa a razão entre os esforços atuantes e os admissíveis calculados pelo método da largura efetiva para cada estrutura. Para índices maiores que 1 a estrutura é considerada reprovada, ou seja, não atende os requisitos de segurança exigidos pela norma.

<table>
<thead>
<tr>
<th>Estrutura</th>
<th>IU admissível</th>
<th>Máx. IU calculado</th>
<th>Condição</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Comb. B</td>
<td>Comb. C</td>
</tr>
<tr>
<td>Colunas</td>
<td>1,0</td>
<td>1,05</td>
<td>1,15</td>
</tr>
<tr>
<td>Travessas</td>
<td>1,0</td>
<td>0,19</td>
<td>0,22</td>
</tr>
<tr>
<td>Diagonais</td>
<td>1,0</td>
<td>1,87</td>
<td>2,28</td>
</tr>
</tbody>
</table>

A Figura 5.1 apresenta o envelope com os máximos índices de utilização considerando todas as combinações apresentadas na Tabela 4.2. Conforme destacado, foram calculados esforços atuantes superiores aos admissíveis para algumas colunas e diagonais. A seguir serão detalhados os modos de falha dessas estruturas para as combinações B, C e D.

Os esforços admissíveis variam em função do tipo de solicitação (tração, compressão, flexão, etc.) e a condição de contorno (vinculação, comprimento destravado) de cada elemento.
Figura 5.2: Índice de utilização – Combinação B.

IU = 0,96
N_admissível = 147794 N
N_atuante = 141882 N
Modo de falha: Escoamento

IU = 1,05
N_admissível = 119246 N
N_atuante = 125208 N
Modo de falha: Flambagem

IU = 1,87
N_admissível = 2689 N
N_atuante = 5028 N
Modo de falha: Flambagem
Figura 5.3: Índice de utilização – Combinação C.

IU = 0,98
N_admissível = 119246 N
N_atuante = 116861 N
Modo de falha: Flambagem

IU = 1,15
N_admissível = 119246 N
N_atuante = 137133 N
Modo de falha: Flambagem

IU = 1,05
N_admissível = 147794 N
N_atuante = 155184 N
Modo de falha: Escoamento

IU = 2,28
N_admissível = 2689 N
N_atuante = 6131 N
Modo de falha: Flambagem
Figura 5.4: Índice de utilização – Combinação D.

Com o objetivo de avaliar a estrutura utilizando o método da resistência direta realizou-se o modelo em elementos finitos de casca utilizando o software Femap. Dessa forma, é possível calcular com maior precisão a rigidez dos apoios e, assim, definir os esforços admissíveis.

Para tanto foram realizadas análises iterativas que consideram o efeito não linear do material e geométrico da estrutura. Para o material, adotou-se o comportamento bilinear elastoplástico e os resultados serão apresentados nas figura abaixo.

Foram modeladas as duas condições de comprimento destravado das colunas, sendo a região intermediária mais esbelta e a inferior compacta, respectivamente detalhado na Figura 5.5 e na Figura 5.6.
Para as colunas intermediárias, o método da resistência direta indicou uma carga admissível ligeiramente superior (6%) ao determinado pela NBR 14672, pelo método da largura efetiva e apresentado no item 7.0.

Para as colunas inferiores, o modelo refinado permitiu calcular o fluxo assimétrico de tensões que ocorre na coluna devido à geometria do apoio adotada (ver Figura 3.3). O elevado gradiente de tensões ocasiona plastificação da seção transversal e formação da rótula plástica, conforme destacado na Figura 5.6.
Conforme destacado na Figura 5.7, ambos os modos de falha são observados em campo.

Figura 5.7: Modos de falha das colunas observados em campo.

A Figura 5.8 destaca os contraventamentos observados em campo com falhas. Conforme destacado na Tabela 5.1, algumas diagonais apresentam solicitação superior ao admissível para essas estruturas, sendo o modo de falha a flambagem global.

Devido à geometria dos contraventamentos, a flambagem de algumas diagonais não implica no colapso da estrutura. Porém, ocasiona redução da rigidez e estabilidade global da estrutura. Dessa forma, as cargas não lineares, efeitos de segunda ordem, se amplificam devido ao elevado grau de deslocabilidade da estrutura.
Figura 5.8: Destaque para as diagonais (contraventamentos) flambadas.

A Figura 5.9 apresenta a falha observada em algumas travessas. O dano é consequência da flexão da travessa devido à sua função estrutural de pórtico.

O momento fletor admissível foi calculado pela NBR14762 e confirmado por elementos finitos, conforme destacado na Figura 5.10. Destaca-se que os esforços normais atuantes na estrutura não são suficientes para ocasionar o tipo de falha destacado nessa figura.

Figura 5.9: Travessas deformadas – Flambagem local.
Figura 5.10: Modo de falha da travessa – Carga crítica.
Da Figura 5.11 à Figura 5.13 são apresentados os gráficos com os índices de utilização da estrutura, conforme NBR14762.
Figura 5.12: Índice de utilização da estrutura – Comбinação C.

Figura 5.13: Índice de utilização da estrutura – Comбinação D.
6.0 CONCLUSÕES

6.1 GERAL

Este trabalho apresenta a análise da estrutura metálica dos porta pallets, indicando que as colunas e diagonais mais solicitadas da estrutura não atendem os requisitos de segurança mínimo exigido pela NBR14762 (Ref. [1]).

Os esforços admissíveis foram calculados utilizando o método da largura efetiva e estão apresentados no item 7.0 deste trabalho.

A recomendação para a solução da falha estrutural encontrada é da redução do carregamento atuante, reduzindo a quantidade de pallets estocados. Neste caso o reforço estrutural não será recomendado pois a estrutura será removida em breve.

O perfil equivalente para resistir as cargas atuantes está apresentado no ANEXO II sendo utilizado o método da resistência direta.
ANEXO I – CÁLCULO DA RESISTÊNCIA DAS COLUNAS – MÉTODO DA LARGURA EFETIVA

DADOS DE ENTRADA

$t := 2,25 \text{ mm}$

$b_1 := 89,5 \text{ mm}$

$b_2 := 33 \text{ mm}$

$b_{3x} := 15,5 \text{ mm}$

$b_4 := 21 \text{ mm}$

$b_5 := 13,5 \text{ mm}$

$b_{3w} := 16,25 \text{ mm}$

$f_y := 300 \text{ MPa}$

$N_e := 9 600 \cdot 1,4 \text{ kgf}$

$N := 13 440 \text{ kgf}$

$l_w := 1,1 \text{ m}$

$l_z := 1,5 \text{ m}$

$l_c := 1,1 \text{ m}$

$K_w := 1$

$K_z := 1$

$K_c := 1$

$E := 205 \text{ GPa}$

$G := \frac{E}{2 \cdot (1 + 0,3)} = 7,8846 \cdot 10^{10} \text{ Pa}$
\[CG_y = 0 \]

\[
CG_z = 31.6413 \text{ mm}
\]

\[A_y = 576,25 \text{ mm}^2 \]

\[I_z = 6.7866 \times 10^{-7} \text{ m}^4 \]

\[I_y = 4.1642 \times 10^{-7} \text{ m}^4 \]

Centro de torção:

\[y_0 = 0 \]

\[P_{0x} = b_2 + b_3 + 4 \]

\[P_{0y} = b_4 \]

\[x_0 = \frac{b_0}{2} + 2b_1 \]

\[z_0 = \sqrt{c_{x^2} + c_{y^2} + v_{0x}^2 + v_{0y}^2} \]

\[x_0 = 0.6932 \text{ m} \]

\[z_0 = 0.6932 \text{ m} \]
\[J = \frac{1}{3} \left(b_1 \cdot t^3 + 2 \cdot b_2 \cdot t^3 + 2 \cdot b_3 \cdot t^3 + b_4 \cdot t^3 + 6 + 2 \cdot b_5 \cdot t^3 \right) \]

\[J = 975,7969 \text{ mm}^4 \]

\[C_w = \frac{t \cdot b_0 \cdot f_0^3 \cdot h_0}{12} \left(\frac{3 \cdot b_0 \cdot t + 2 \cdot h_0 \cdot t}{6 \cdot b_0 \cdot f_0 \cdot t + h_0 \cdot t} \right) \]

\[C_w = 3,8574 \cdot 10^8 \text{ mm}^6 \]

1 - Caso de compressão uniforme na seção transversal

\[\lambda_0 = \sqrt{\frac{A}{g \cdot y \cdot N_c}} \]

\[\lambda_0 = 1,1473 \]

\[\alpha = 0,40 \quad \text{Demais seções} \]

\[\beta = 0,5 \left(1 + \alpha \cdot (\lambda_0 - 0,2) + \lambda_0^2 \right) \]

\[\beta = 1,3902 \]

\[\rho = \begin{cases} 1 & \text{se } 1 \leq 0,4597 \\ \frac{1}{\beta + \sqrt{\beta^2 - \lambda_0^2}} & \text{else} \\ 1 & \end{cases} \]

\[\rho = 0,4597 \]

\[\xi = 1 \]

\[k = 4 \quad \text{para AA} \]

\[k_2 = 0,43 \quad \text{para AL} \]

\[\sigma = 269 \text{ MPa} = 26,9 \frac{kN}{cm^2} \]
1.1 - Largura efetiva do elemento 1 - Elemento AA

\[\lambda_{p1} = \frac{b_1}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p1} = 0,7584 \]

\[b_{ef1} = \begin{cases} b_1 \cdot \left(1 - 0,22 \right) / \lambda_{p1} & \text{if } b_1 \cdot \left(1 - 0,22 \right) / \lambda_{p1} \leq b_1 \\ b_1 \cdot \left(1 - 0,22 \right) / \lambda_{p1} & \text{else} \end{cases} \]

\[b_{ef1} = 0,0838 \text{ m} \]

1.2 - Largura efetiva do elemento 2 - Elemento AA

\[\lambda_{p2} = \frac{b_2}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p2} = 0,2796 \]

\[b_{ef2} = \begin{cases} b_2 \cdot \left(1 - 0,22 \right) / \lambda_{p2} & \text{if } b_2 \cdot \left(1 - 0,22 \right) / \lambda_{p2} \leq b_2 \\ b_2 \cdot \left(1 - 0,22 \right) / \lambda_{p2} & \text{else} \end{cases} \]

\[b_{ef2} = 0,0252 \text{ m} \]
1.3w - Largura efetiva do elemento 3w - Elemento AA

\[\lambda_{p3w} = \frac{b_{3w}}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p3w} = 0,1377 \]

\[b_{ef3w} = \begin{cases} b_{3w} \left(1 - \frac{0,22}{\lambda_{p3w}} \right) & \text{if } \left(b_{3w} \left(1 - \frac{0,22}{\lambda_{p3w}} \right) \leq b_{3w} \left(\frac{1 - 0,22}{\lambda_{p3w}} > 0 \right) \right) \\ b_{3w} \left(1 - \frac{0,22}{\lambda_{p3w}} \right) & \text{else} \end{cases} \]

\[b_{ef3w} = 0,0162 \text{ m} \]

1.3z - Largura efetiva do elemento 3z - Elemento AA

\[\lambda_{p3z} = \frac{b_{3z}}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p3z} = 0,1313 \]

\[b_{ef3z} = \begin{cases} b_{3z} \left(1 - \frac{0,22}{\lambda_{p3z}} \right) & \text{if } \left(b_{3z} \left(1 - \frac{0,22}{\lambda_{p3z}} \right) \leq b_{3z} \left(\frac{1 - 0,22}{\lambda_{p3z}} > 0 \right) \right) \\ b_{3z} \left(1 - \frac{0,22}{\lambda_{p3z}} \right) & \text{else} \end{cases} \]

\[b_{ef3z} = 0,0155 \text{ m} \]
1.4 - Largura efetiva do elemento 4 - Elemento AL

\[\lambda_{p4} = \frac{b_4}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p4} = 0,1779 \]

\[b_{ef4} = \begin{cases} b_4 \left(\frac{1 - 0,22}{\lambda_{p4}} \right) & \text{se} \quad \left(b_4 \left(\frac{1 - 0,22}{\lambda_{p4}} \right) \right) \leq b_4 \wedge \left(\frac{b_4 \left(1 - 0,22 \right)}{\lambda_{p4}} \right) > 0 \end{cases} \]

\[b_{ef4} = 0,021 \] m

1.5 - Largura efetiva do elemento 5 - Elemento AL

\[\lambda_{p5} = \frac{b_5}{t} \sqrt{\frac{k \cdot E}{\sigma}} \]

\[\lambda_{p5} = 0,3489 \]

\[b_{ef5} = \begin{cases} b_5 \left(\frac{1 - 0,22}{\lambda_{p5}} \right) & \text{se} \quad \left(b_5 \left(\frac{1 - 0,22}{\lambda_{p5}} \right) \right) \leq b_5 \wedge \left(\frac{b_5 \left(1 - 0,22 \right)}{\lambda_{p5}} \right) > 0 \end{cases} \]

\[b_{ef5} = 0,0135 \] m
RESUMO DAS REDUÇÕES DE LARGURA

\(b_{ef1} = 0,0838 \, m \) \(b_1 = 0,0895 \, m \)

\(b_{ef2} = 0,0252 \, m \) \(b_2 = 0,033 \, m \)

\(b_{ef3} = 0,0162 \, m \) \(b_3 = 0,0162 \, m \)

\(b_{ef4} = 0,0155 \, m \) \(b_4 = 0,0155 \, m \)

\(b_{ef5} = 0,0135 \, m \) \(b_5 = 0,0135 \, m \)

\[A_g = b_1 \cdot t + 2 \cdot b_2 \cdot t + 2 \cdot b_3 \cdot t + 2 \cdot b_4 \cdot t + 2 \cdot b_5 \cdot t \]

\[A_g = 578,25 \, mm^2 \]

\[A_{ef} = b_{ef1} \cdot t + 2 \cdot b_{ef2} \cdot t + 2 \cdot b_{ef3} \cdot t + 2 \cdot b_{ef4} \cdot t + 2 \cdot b_{ef5} \cdot t \]

\[A_{ef} = 530,1208 \, mm^2 \]

\[\frac{A_{ef}}{A_g} = 0,9166 \]

\[\lambda_{01} = \sqrt{\frac{A_{ef} \cdot f_y}{N_e}} \]

\[\lambda_{01} = 1,0955 \]

\[\alpha = 0,21 \quad \text{Adotado valor mais conservador} \]

\[\beta_1 = 0,5 \left[1 + \alpha (\lambda_{01} - 0,2) + (\lambda_{01})^2 \right] \]

\[\beta_1 = 1,1377 \]
\[p_1 = \begin{cases}
\frac{1}{\beta + \sqrt{\beta^2 - (\lambda_0 \lambda_1)^2}} & \leq 1 \\
\frac{1}{\beta + \sqrt{\beta^2 - (\lambda_0 \lambda_1)^2}} & > 1
\end{cases} \]

\[p_1 = 0.446 \]

\[\psi = 1 \]

\[k = 4 \quad \text{para} \quad AA \]

\[k_2 = 0.43 \quad \text{para} \quad AL \]

\[\sigma = f_y \cdot p_1 \]

\[\sigma = 13.379 \quad \text{KN/cm}^2 \]
CÁLCULO

\[N_{cRd} = \frac{\sigma f \cdot A}{y} \]

\[N_{cRd} = 6777,4975 \ kgf \]

\[N_{ez} = \frac{\pi^2 \cdot E \cdot I}{K_z \cdot I \cdot z} = 62230,6318 \ kgf \]

\[N_{ez} = 62230,6318 \ kgf \]

\[N_{ew} = \frac{\pi^2 \cdot E \cdot I_w}{K_w \cdot I_w^2} \]

\[N_{et} = \frac{1}{r_0^2} \left(\frac{\pi^2 \cdot E \cdot C_w}{1 + G \cdot J} \right) \]

\[N_{et} = 19210,0112 \ kgf \]

\[N_{ext} = \frac{N_{ez} + N_{et}}{2} \left(1 - \left(\frac{z_0}{r_0} \right)^2 \right) \]

\[N_{ext} = 15443,9212 \ kgf \]

\[N_{ad} = \min \left(\left[N_{cRd} \ N_{ez} \ N_{ew} \ N_{et} \ N_{ext} \right] \right) \]

\[N_{ad} = 6777,4975 \ kgf \]
8.0 ANEXO II – CÁLCULO DA RESISTÊNCIA DAS COLUNAS PROPOSTAS–MÉTODO DA RESISTÊNCIA DIRETA
Memoria de Cálculo - Método da Resistência Direta

Propriedades mecânicas do material utilizado

\[\begin{align*}
\text{fy} & = 235 \text{ MPa} & \text{Limite de escoamento} \\
\text{fu} & = 400 \text{ MPa} & \text{Limite de resistência} \\
E & = 205 \text{ GPa} & \text{Módulo de Elasticidade} \\
G & = 77 \text{ GPa} & \text{Módulo de elasticidade transversal} \\
v & = 0,3 & \text{Coeficiente de Poisson} \\
\end{align*} \]

\[\begin{align*}
\text{Nc}_{\text{sd}} & = 16000 \cdot 1,5 \text{ kgf} & \text{Carga axial solicitante de cálculo} \\
\text{Mx}_{\text{sd}} & = 0 \text{ kgf cm} & \text{Momento fletor solicitante de cálculo em X} \\
\text{My}_{\text{sd}} & = 0 \text{ kgf cm} & \text{Momento fletor solicitante de cálculo em Y} \\
\end{align*} \]

Dados do perfil

\[\begin{align*}
\text{Ab} & = 1661 \text{ mm}^2 & \text{Área bruta do perfil (U 150x75x25x4,75)} \\
I_x & = 598,23 \text{ cm}^4 & \text{Momento de inércia da seção bruta em relação ao eixo x} \\
I_y & = 93,76 \text{ cm}^4 & \text{Momento de inércia da seção bruta em relação ao eixo y} \\
d_x & = 75-21,79 \text{ mm} & \text{Maior distância no eixo X do CG da seção à borda do perfil} \\
d_y & = 75 \text{ mm} & \text{Maior distância no eixo Y do CG da seção à borda do perfil} \\
W_x & = \frac{I_x}{d_y} & \text{Módulo de resistência à flexão no eixo X} \\
W_y & = \frac{I_y}{d_x} & \text{Módulo de resistência à flexão no eixo Y} \\
\end{align*} \]

Método da resistência direta (MRD)

---Barras submetidas à compressão centrada---

\[\begin{align*}
\text{LF}_{\text{global}} & = 776 \frac{N}{\text{mm}^2} & \text{Fator de carga para flambagem global} \\
\text{LF}_{\text{local}} & = 1183 \frac{N}{\text{mm}^2} & \text{Fator de carga para flambagem local elástica} \\
\text{LF}_{\text{dist}} & = 1183 \frac{N}{\text{mm}^2} & \text{Fator de carga para flambagem distorcional elástica} \\
\end{align*} \]

\[\begin{align*}
N_e & = \text{Ab} \cdot \text{LF}_{\text{global}} & \text{Carga teórica de flambagem global} \\
N_e & = 1288,936 \text{ kN} & \\
\end{align*} \]
\(N_l = Ab \cdot LF \)
Fator axial de flambagem local elástica

\(N_l = 1964,963 \text{kN} \)

\(N_{\text{dist}} = Ab \cdot LF_{\text{dist}} \)
Fator axial de flambagem distorcional elástica

\(N_{\text{dist}} = 1964,963 \text{kN} \)

Flambagem global da barra por flexão, torção ou flexo-torção

\[\lambda_0 = \left(\frac{Ab \cdot fy}{N_e} \right)^{0,5} \]

\(\lambda_0 = 0,5503 \)

\(NcRe = \begin{cases}
0,658 \lambda_0^2 \cdot Ab \cdot fy & \text{if } \lambda_0 \leq 1,5 \\
0,877 \lambda_0^2 \cdot Ab \cdot fy & \text{else}
\end{cases} \)

\(NcRe = 343,8665 \text{kN} \)
Força axial de compressão resistente associado à flambagem global

Flambagem local

\[\lambda_l = \left(\frac{NcRe}{N_l} \right)^{0,5} \]
Índice de esbeltez reduzido associado à flambagem local

\(\lambda_l = 0,4183 \)

\(NcRl = \begin{cases}
NcRe & \text{if } \lambda_l \leq 0,776 \\
\left[1 - \frac{0,15}{\lambda_l} \right] \cdot \frac{NcRe}{0,8} & \text{else}
\end{cases} \)

\(NcRl = 343,8665 \text{kN} \)
Força axial de compressão resistente associado à flambagem local

Flambagem distorcional

\[\lambda_d = \left(\frac{Ab \cdot fy}{N_{\text{dist}}} \right)^{0,5} \]
Índice de esbeltez reduzido associado à flambagem distorcional

\(\lambda_d = 0,4457 \)

\(NcDist = \begin{cases}
Ab \cdot fy & \text{if } \lambda_d \leq 0,561 \\
\left[1 - \frac{0,25}{\lambda_d} \right] \frac{Ab \cdot fy}{\lambda_d^{1,2}} & \text{else}
\end{cases} \)

\(NcDist = 390,335 \text{kN} \)
Força axial de compressão resistente associado à flambagem distorcional
\[NcRk = \min (NcRl, NcDist, NcRe) \]

\[NcRk = 343,865 \, kN \quad \text{Valor característica da força axial de compressão resistente} \]

\[\gamma = 1,2 \quad \text{Fator de ponderação da resistência} \]

\[Nc_{Rd} = \frac{NcRk}{\gamma} \]

\[Nc_{Rd} = 286,555 \, kN \quad \text{Força axial de cálculo resistente a compressão} \]

Barras submetidas à flexão simples no eixo X

\[LFx_{\text{FLT}} = 1518 \frac{N}{mm} \quad \text{Fator de carga para flambagem lateral com torção} \]

\[LFx_{\text{local}} = 1624 \frac{N}{mm} \quad \text{Fator de carga para flambagem local elástica} \]

\[LFx_{\text{dist}} = 1624 \frac{N}{mm} \quad \text{Fator de carga para flambagem distorcional elástica} \]

\[Mx_e = Wx \cdot LFx_{\text{FLT}} \quad \text{Momento teórico de flambagem lateral com torção} \]

\[Mx_e = 1,2108 \times 10^5 \, N \, m \]

\[Mx_1 = Wx \cdot LFx_{\text{local}} \quad \text{Momento teórico de flambagem local elástica} \]

\[Mx_1 = 1,2954 \times 10^5 \, N \, m \]

\[Mx_{\text{dist}} = Wx \cdot LFx_{\text{dist}} \quad \text{Momento teórico de flambagem distorcional elástica} \]

\[Mx_{\text{dist}} = 1,2954 \times 10^5 \, N \, m \]

Flambagem lateral com torção

\[\lambda_{0fx} = \left(\frac{Wx \cdot fy}{Mx_e} \right)^{0,5} \]

\[\lambda_{0fx} = 0,3935 \]

\[Mxre = \begin{cases} Wx \cdot fy & \text{if } \lambda_{0fx} \leq 0,6 \\ 1,11 \left(1 - 0,278 \cdot \lambda_{0fx}^2 \right) \cdot Wx \cdot fy & \text{if } \lambda_{0fx} < 1,336 \\ \frac{Wx \cdot fy}{\lambda_{0fx}^2} & \text{else} \end{cases} \]

\[Mxre = 18744,54 \, N \, m \quad \text{Momento fletor resistente associado à flambagem lateral com torção} \]
Flambagem local

\[\lambda_{lfk} = \left(\frac{M_{xre}}{M_{x}} \right)^{0.5} \]

\[\lambda_{lfk} = 0.3804 \] Índice de esbeltez reduzido associado à flambagem lateral com torção

\[M_{xrl} = \begin{cases} M_{xre} & \text{se } \lambda_{lfk} \leq 0.776 \\ \frac{1 - 0.15}{\lambda_{lfk}} M_{xre} & \text{se } \lambda_{lfk} > 0.776 \end{cases} \]

\[M_{xrl} = 18744.54 \text{ N} \cdot \text{m} \] Momento fletor resistente associado à flambagem local

Flambagem distorcional

\[\lambda_{xdf} = \left(\frac{W_x f_y}{M_{x \text{ dist}}} \right)^{0.5} \]

\[\lambda_{xdf} = 0.3804 \] Índice de esbeltez reduzido associado à flambagem distorcional

\[M_{xrDist} = \begin{cases} W_x f_y & \text{se } \lambda_{xdf} \leq 0.673 \\ \frac{1 - 0.22}{\lambda_{xdf}} W_x f_y & \text{se } \lambda_{xdf} > 0.673 \end{cases} \]

\[M_{xrDist} = 18744.54 \text{ N} \cdot \text{m} \] Momento fletor resistente associado à flambagem distorcional

\[M_{xRk} = \min (M_{xrl}, M_{xrDist}, M_{xre}) \]

\[M_{xRk} = 18744.54 \text{ N} \cdot \text{m} \] Valor característico do momento fletor resistente

\[\gamma_f = 1.1 \] Fator de ponderação da resistência

\[M_{x \text{ Rd}} = \frac{M_{xRk}}{\gamma_f} \]

\[M_{x \text{ Rd}} = 17040.4909 \text{ N} \cdot \text{m} \] Momento fletor resistente de cálculo

---Barras submetidas à flexão simples no eixo Y---

\[LF_{y \text{ FLT}} = 39807 \frac{N}{\text{mm}^2} \] Fator de carga para flambagem lateral com torção

\[LF_{y \text{ local}} = 7746 \frac{N}{\text{mm}^2} \] Fator de carga para flambagem local elástica

\[LF_{y \text{ dist}} = 7746 \frac{N}{\text{mm}^2} \] Fator de carga para flambagem distorcional elástica

\[M_{y} = W_y \cdot LF_{y \text{ FLT}} \] Momento teórico de flambagem lateral com torção
Momento teórico de flambagem local elástica

\[M_{\text{local}} = \frac{Wy \cdot LF_y}{M_y} \]

Momento teórico de flambagem distorcional elástica

\[M_{\text{dist}} = \frac{Wy \cdot LF_y}{M_y} \]

Flambagem lateral com torção

\[\lambda_0 \cdot f_y = \left(\frac{Wy \cdot f_y}{M_y} \right)^{0.5} \]

\[\lambda_0 \cdot f_y = 0.0768 \]

Momento fletor resistente associado à flambagem lateral com torção

\[Myr = 4140.8758 \text{ N m} \]

Flambagem local

\[\lambda_{lfy} = \left(\frac{Myr}{M_y} \right)^{0.5} \]

\[\lambda_{lfy} = 0.1742 \]

Índice de esbeltez reduzido associado à flambagem lateral com torção

Momento fletor resistente associado à flambagem local

\[Myr = 4140.8758 \text{ N m} \]

Flambagem distorcional

\[\lambda _{ydf} = \left(\frac{Wy \cdot f_y}{M_y} \right)^{0.5} \]

\[\lambda _{ydf} = 0.1742 \]

Índice de esbeltez reduzido associado à flambagem distorcional

Momento fletor resistente associado à flambagem distorcional

\[Myr_{Dist} = \frac{Wy \cdot f_y}{0.673} \]
else
$$\left[1 - \frac{0.22}{\lambda y df}\right] \frac{W_y f_y}{\lambda y df}$$

\[\text{MyRDist} = 4140,8758 \text{ N m}\]

Momento fletor resistente associado à flambagem distorcional

\[\text{MyRk} = \min \left(\text{Myrl, MyrDist, Myr}\right)\]

\[\text{MyRk} = 4140,8758 \text{ N m}\]

Valor característico do momento fletor resistente

\[\text{MyRd} = \frac{\text{MyRk}}{\gamma_f}\]

\[\text{MyRd} = 3764,4325 \text{ N m}\]

Momento fletor resistente de cálculo

\[\text{IU} = \frac{\text{Nc Sd}}{\text{Nc Rd}} + \frac{\text{Mx Sd}}{\text{Mx Rd}} + \frac{\text{My Sd}}{\text{My Rd}}\]

Índice de utilização

\[\text{IU} = 0,8213\]

\[\frac{\text{Nc Sd}}{\text{Nc Rd}} = 0,8213\]

\[\frac{\text{Mx Sd}}{\text{Mx Rd}} = 0\]

\[\frac{\text{My Sd}}{\text{My Rd}} = 0\]