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Abstract

In the first part of this work, we study the regularity of weak solutions (in an appropriate

space) of the elliptic partial differential equation
(=Ap)*u+ (=Ay)’u= f(z) in RY,

where 0 < s < 1 and 2 < ¢ < p < N/s, and we prove that these solutions are locally in C%*(RY).

In the sequence, we prove the existence of solutions of the problem

(=A,)°u+ (—A)*u = [ul’* u+ Ag(z)[u|?u in RV,

where 1 < ¢ < p < N/s, X is a parameter and ¢ satisfies some integrability conditions. As an
application of the previus result, we show that, if 0 < s < 1,2 < ¢ <p < N/s and g is bounded,

then the obtained solutions are continuous and bounded.

In the final part of the work, we study the behavior as p — oo of u,, a positive least energy

solution of the problem

« B — .
[(=0)" + (=2g) | 0 = 1y [l ()3, im0
u=0 in RY\Q

()| = [lull

where Q C RY is a smooth bounded domain, d,, is the Dirac delta distribution supported at z,,,

1) if 1
lim@:Qe (0,1) if 0<fB<ax<
p=00 P (1l,0) if 0<a<pf<1

and
Jiny o> 1

with R denoting the inradius of 2.



Introduction

In Chapter 1, we investigate the regularity of weak solutions of the (p, ¢)-Laplacian problem

(=8 u+ (=A)u=f in RY (1)

. _ _Np F RN A LORN). wi N
Where0<s<1,N>sp,ps—N_Sp,2<q§p<ooandf€LPs (RVYN LY(R ),Wlth9>sp.

_ps
The hypothesis f € L#7i-1(RY) ensures that we can apply variational methods, and the condition
f € LY(RY) is necessary to apply the Moser’s iteration technique to obtain a bound in L*-norm
for a solution.

For any ) < s <1 < m < o0, the fractional m-Laplacian operator, under suitable smoothness
condition on ¢, can be written as

(—Am)sqﬁ(x) — 921lim ’¢(x) _ ¢(y)‘m_2(¢(x> — ¢(y))dy, = RN, (2)

e=0 JRN\ B, (x) |z — y|Ntem
where B.(z) := {y € RY; |y — z| < €}, see [24, 31, 43] for more details.

There are several notions of the fractional Laplacian operator in the current literature, all
of which agree when the problems are set on the whole RY. However, some of them differ in a
bounded domain.

Recently, a lot of attention has been given to studying problems involving fractional operators
in many different contexts, such as thin obstacle problem, finance, phase transitions, stratified

materials, optimization, anomalous diffusion, semipermeable membranes, minimal surfaces. For
details, see [14, 20, 24, 49].

When s =1, (1) becomes a (p, q)-Laplacian problem of the form
(=Ap)u+ (=Aju= f(z), xeR", (3)
which has its origin in the general reaction-diffusion problem
uy = div(D(u)Vu) + f(z,u), z€RY, t>0, (4)

where D(u) = |Vul|P™2 + |Vu|?72. The regularity of solution of (3) has been studied by He
and Li [21]. They showed that the weak solutions are locally C'®. For a general term D(u),
problem (4) has a wide range of applications in Physics and related sciences such as Biophysics,
Plasma Physics, and Chemical Reaction design. In such applications, the function u describes a
concentration, and the first term on the right-hand side of (4) corresponds to a diffusion process
with a diffusion coefficient D(u); the term f(z,u) stands for the reaction, related to sources

2



3 CONTENTS

and energy-loss processes. Typically, in chemical and biological applications, the reaction term
f(z,u) is a polynomial in u with variable coefficients (see [29, 37, 49]). Still in this case, when
the solutions are local minimizers for a class of integral functionals assuming that 1 < p < ¢, P.
Baroni, G. Mingione and M. Colombo, (see [5] and [6]), proved C** regularity.

In the case p,q # 2, problem (1) is both non-local and non-linear. Furthermore, its leading
operator (—A,)* is degenerate when p > 2. To establish optimal regularity estimates up to the
boundary is not only relevant by itself, but also has useful applications to obtain multiplicity
results for more general non-linear and non-local equations, such as those investigated by
lanizzotto, Liu, Perera and Squassina [35] in the framework of topological methods and Morse
theory.

The first difficulty found in problem (1) is how to define a weak solution, since W*?(£2) is not
always embedded into W*9(§2) when p # ¢ (see in Appendix A.2 and [41]). For this purpose, we
usually consider the reflexive Banach space

W = D*?(RY) N D¥4(RY)

endowed with the norm
”uHW = [u]s,p + [u]s,q7

where D*"™(RY) = {u € L™ (RY); [u],,, < oo} and [u],,, denotes the Gagliardo-norm

o (], . B )

for all u € D*™(RY), see [10] for details.

3|

S

The non-homogeneity of the operator (—A,)® + (—A,)* introduces technical difficulties to
obtain weak solutions of problems involving this operator. The regularity of these solutions is
also an issue. It is worth to mention that [, is a norm in D*™(RYM), but not in W™ (RN).
Note that W*™(RY) ¢ D*™(RY), so in D*™(RY) we have more functions as candidates to solve
problems of the type (1). Another important property that motivates us to consider the space
D*™(R") is that it is the completion of C*(RY) with respect to the norm [], ., which makes
it possible to calculate some integrals, since compact support functions simplify integrations,
eliminating boundary terms.

Our first and main result is concerned with local regularity of weak solutions of the problem
(1), using the Moser iteration. We will show that, under integrability conditions of f, the solutions
of the problem (1) are bounded in RY. Moreover, under the additional condition f € L2 (RY)
we will prove that u is locally Holder continuous, in other words, for any compact set Q C RV,

if f € L>®(Q) then u € C%*(Q).

The continuity of the solution w is proved in Section 1.2 by adapting arguments used by
lanizzotto, Mosconi and Squassina in [34] and Serrin [45]. The main idea is to control the
oscillation of the function u in any ball. In order to do that, we prove a Harnack-type inequality
for weak solutions of problem (1). Viscosity solutions methods, as well as barrier arguments, are
frequently used in our approach. Since this kind of argument is not valid if 1 < p < 2, our proof
only applies for 2 < ¢, p < 0.
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In Chapter 2, we will study existence and regularity of weak solutions of the following problem
involving the fractional critical p-exponent

(A u+ (—A))*u = |uP*2u+ Ag(z)|u["2u in RN ©)

where 0 < s < 1, N > sp, pi = N]\i’;p, 1 <qg<p<r<pi Ais a positive parameter and g

satisfies the following integrability conditions:

(91) g is integrable and g € L' (RY), with ¢, = £

ps—r’

(g2) there exist an open set 2, € RY and oy > 0 such that g(z) > ap > 0, for all z € €,

When s =1, problem (6) is reduced for the (p, ¢)-Laplacian equation

(—A))u+ (=A)u = [ul” 2u + Ag(x)|u|"?u, =€ RN, (7)

The existence of a nontrivial solution of the problem (7) was studied by Chaves, Ercole and
Miyagaki in [19]. They showed the existence of a nontrivial solution if A is large enough. Using
the theory of regularity developed by He and Li in [21], they showed that the weak solutions are
locally Che if g € L' (RY) N L>*°(RY).

Motivated by [19], we show that there exists a nontrivial solution of the problem (6) for
A large enough and 1 < ¢ < p < r < pi. Under the restrictions 1 < ¢ < %__81) <p<

max {p,pj — zﬁ} <r < p: and N > p?s, we show that (6) has a solution of any A > 0, which

is be done by applying a version of the Mountain Pass Theorem (see [30]) and estimates for the
extremal function, (see [7, 10, 42]).

We also adapt standard arguments to prove the boundedness of Palais-Smale sequences.
In order to overcome the lack of compactness of Sobolev’s embedding, we prove a pointwise
convergence result, which together with the Brezis-Lieb lemma yields the weak convergence.
Following arguments similar to [19, 38, 51], we obtain a strict upper bound for ¢y, the level of the
Palais-Smale sequence, which is valid for all A large enough. Applying this fact and arguments
adapted from [19, 32], we conclude that the nonnegative corresponding critical points provide
nontrivial solutions of I, (the Euler Lagrange functional associated to (6)).

When the embedding W5 () < L*(Q2) for 1 < ¢ < p* is not compact, for example, when
Q = RY some concentration-compactness principle or minimization restricted methods (see
[47, 50]) have been used to find weak solutions in W*?(RY) of problems involving the fractional
p-Laplacian.

In Chapter 3, we investigate the behavior of least energy solutions of a fractional (p,q(p))-
Laplacian problem as p goes to infinity.

We consider a smooth bounded domain 2 C RY, N > 1, and the Sobolev space of fractional
order s € (0,1) and exponent m > 1,

W™ (Q) = {u cL"RY):u=0inRY\Q and U]y < oo},
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where [u],,, is defined in (5).

As it is well known, <W§ Q) [] ) is a uniformly convex Banach space (also characterized

s,m

as the closure of C2°(Q) with respect to [-], ), compactly embedded into L"(£2) whenever
Nm
1<r<m;:= N — sm’ m < N/s,
00, m > N/s.
Moreover, -
W™ (Q) = Co(Q) if m > N/s. (8)

(The notation A << B means that the continuous embedding A < B is compact.) It follows
that the infimum

lullZ

U m
Asm 1= inf {Hﬂ cu e W)\ {O}}
is positive and, in fact,it is a minimum.

The compactness in (8) is consequence of the following Morrey’s type inequality (see [24])

sup M <Cul,, , forall ueW;™Q), 9)
(@)£0.0) |z —y|* ™ 7

which holds whenever m > N/s. If m is sufficiently large, the positive constant C' in (9) can be
chosen uniform with respect to m (see [28, Remark 2.2]).

We consider the nonhomogeneous problem

(-8, + (-0 w = plu@) * u(e)se, 0
u=0 in RV\Q, (10)
uza)| = [Jull

where o, 3, p,q and p > 0 satisfy suitable conditions, z, € Q) is a point where u attains its sup

norm (|u(zy)| = [Ju|l..), 6z, is the Dirac delta distribution supported at x, and € be a bounded,
smooth domain of RY.

Proceeding as in [4] and [26], one can arrive at (10) as the limit case, as r — oo, of the
problem

(=2, 4+ (=80)° | w= e full? ™" Jul i @
u=0 in RY\ Q,

where ||-||, denotes the standard norm in the Lebesgue space L"(£2).

Therefore, we define the formal energy functional associated with (10) by

1 %
ulf + = [ult — =, >0,
[u] q[bg pHHm

a?p

and formulate our hypotheses on «, 5, p and ¢ to guarantee the well-definiteness of this functional.
For this, we take into account (8) and the following known facts:
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o WiP(Q) L Wi (Q) for any 0 < s <1< ¢ < p < oo (see [41, Theorem 1.1]),
° W52’m2(Q) N ng,ml(Q>7 whenever 0 < 51 < 89 <1 < my < my < 00 (see [11, Lemma
2.6]).
Thus, we assume that «, 3, p and ¢ satisfy one of the following conditions:
0O<a<p<1l and N/a<p<gq (11)

or

0<f<a<l and N/B<q<p. (12)

The assumption (11) provides the chain of embeddings WEUQ) — WEP(Q) = Co(Q)
whereas (12) yields WP () — W(Q) < C,(Q). Therefore, the Sobolev space

X(Q) Wf’q(Q),[-]/&q) if 0<a<pf<l and N/a<p<gq
o W(?’p(Q),[-]a,p> if 0<pf<a<l and N/B<q<p,
is the natural domain for the energy functional E,. Note that

X(Q) c WP NWHQ) and X(Q) —— Co(Q).

Once we have chosen X (£2), a weak solution of (10) is defined (see Definition 3.2.2).
We conclude by observing that weak solutions of (10) are also viscosity solutions of
Lopu+Lg,u=0 inD:=Q\{x,}
and we use this fact to argue that nonnegative least energy solutions are strictly positive in (2.

Then we fixed the fractional orders o and 5 (with « # (), allow ¢ and p to depend suitably
on p (¢ =q(p) and p = p,) and denote by u, the positive least energy solution of the problem

(=0)" + (D) 0 = 1y [0 ()b, im0

u=0 in RV\Q
u(ap)] = llulls
where x, = x,, is the point such that |u(z,)| = ||u/|c.

In the sequence we determine the asymptotic behavior of the pair (u,,z,) € X(2) x Q, as p
goes to 00.

For any 0 < s < 1, we use the following notation,

and (L;u)(z):= inf M

) ()
(L) (x):=  sup P T

E (13)

yeRN\[z} Y — 7|
There are a substantial amount of papers in the recent literature dealing with the asymptotic

behavior of solutions as a parameter goes to infinity in problems that involve a combination of
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first order, local operators and nonlinearities of different homogeneity degrees (see [4], [9], [16],
[17], [18], [23], [26], [40]). In [4], Alves, Ercole and Pereira determined the asymptotic behavior,
as p — oo, of the following problem of order 1

[_Ap + (_Aq(p))} U = Hp |U($u>|p72 u(ry)0,, in
u=20 in 00 (14)

u(@u)] = llull -

Their work motived us to formulate an adequate fractional version of (14) and study, in the
present paper, the behavior of the corresponding least energy solutions as p goes to infinity.

For fractional operators, there are a few works focusing in such type of asymptotic behavior.
Most of recent ones deal with the problem of determining the limit equation satisfied, in the
viscosity sense, by the limit functions (as m — o) of a family {u,,} of minimizers. In general,

such limit equation combines the operators £, £ and their sum

Lo:=Lr+ L.

We refer to this latter operator as s-Holder infinity Laplacian, accordingly to [15], where
it was introduced. In that paper, Chambolle, Lindgren and Monneau studied the problem of
minimizing the functional

u(z) — u(y)|™
[u]Q,s,m ::/ | ( ) N(+s)n|1 dl’dy
alo |-yl

on the set -
Xy ={uelC@:u=g ondQ},

where g € C%$(9Q) is given. After showing the existence of a unique minimizer u,, € X, for
this problem (assuming m > N/s), they proved that, up to a subsequence, u,, — ., € C**(Q)
uniformly and that this limit function is a viscosity solution of

Liu=0 in Q
u=g on 0.

They also showed that u, is an optimal Holder extension of g in (2.

In [39], Lindqvist and Lindgren characterized the asymptotic behavior (as m — oo) of the
only positive, normalized first eigenfunction u,, of (—A,,)* in W™ (Q2). Namely, u,, > 0 in €,
[wmll,, = 1 and [un]},, = Asm, where

Ago r=inf {7, € W™ () and [, = 1}

is the the first eigenvalue of (—A,,)°. Among several results, they proved that

lim /Ao = B < 42 yge e\ {0} (15)

m—00 ~ 19l

and that any limit function u, of the family {u,,} is a positive viscosity solution of the problem

max{Lyu , Lou+ R u} =0 in
u=0 in RV \ Q.
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In [28], Ferreira and Pérez-Llanos studied the asypmtotic behavior, as m — oo, of the solutions
of the problem

/ ) v ) u(x))dy = f(z,u) in Q

o=y
u=g in RV\ Q,
for the cases f = f() and f = f(u) = [u"™ 4 with © := lim,,_0 #(m)/m < 1 (the exponent
of the nonlinearity goes to infinity "sublinearly”). In the first case, they obtained different limit
equations involving the operators L, £ and £ according to the sign of the function f(x). In
the second case, they established the limit equation

min {—L_ u — u®, —Loou} = 0.

Such results in that paper are compatible with the ones obtained for the local operator in [8] for
the first case and in [17] for the second case.

Recently, in [22], Rossi and Silva studied the problem of minimizing the Gagliardo seminorm
‘], among the functions v € W*™(R") satisfying the constraints
v=g InR¥\Q and LY {v>0}NQ)<a, (16)

where the function g in R\ Q and the constant « € (0, LY (Q)) are given, and £~ (D) denotes the
N-dimensional Lebesgue volume of the subset D C RY. They proved that, up to subsequences,
the family {u,,} of minimizers converges uniformly to a function u.,, as m — oo, that solves the
equation

Liu=0 in{u>0}NN

in the viscosity sense and also minimizes the s-Holder seminorm |-|, among the functions in
W (RN) satisfying (16). Further, they showed the convergence of the respective extremal
values, that is: [un,],, — |usl,-

More recently, in [27], Ercole, Pereira and Sanchis studied the asymptotic behavior of w,,, the
positive solution of the minimizing problem

A, = inf {[u]gnm cu € Wi™(Q) and /(log lu|)wdx = 0}
Q

where w € L*(Q) is a positive weight satisfying |lw|, = 1. After showing that u,, is the positive
(weak) solution of the singular problem

—(Ap)*u = Apw(z)u™ in Q
u=0 in RV )\ Q

they proved that, up to subsequence, {u,,} converges uniformly to a function u., € 08 *(Q) and
VA — |Uuso|, - Moreover, the limit function ue is a positive viscosity solution of

Liu+|ul,=0 in Q
u=0 in RV\Q

satisfying
0< /(log [usoJwdz < 0o and  Qs(us) < Qs(u) Yu € C’g’s(ﬁ) \ {0},
Q

where Q(u) := |ul, / exp ([, (log |u|)wdz) .



Chapter 1

Global Holder regularity for the
fractional (p, g)-Laplacian

In this chapter we study the regularity of weak solution of the fractional (p,q)-Laplacian

problem

(=A)) u+ (=A)*u=f in RY (1.1)
where s € (0,1), N > sp, 2 < ¢ < p < o0, pt = N]\i’;p and f € L%(RN) N LY(RY), with
0 > %. The hypothesis f € L (RY) guarantees that the problem is well-posed, while that the

condition f € LY(RY) is necessary for the application of Moser’s iteration technique to obtain a
bound in L*-norm for a solution.

We recall that, for any 1 < m < oo, the fractional m-Laplacian operator, under suitable
smoothness condition on ¢, can be written as

[6(z) — ()" *(6(x) — 6(y))

|z —y| Vo

dy, VzeRY, (1.2)
e—0 RN\BE($)

where B.(z) :={y € RY; |y — z| < e}

Our main result is concerned with local regularity of weak solution of the problem (1.1):

Theorem 1.0.1 Let 6 > X f € L1 (RN) N L/(RY) and u € D**(RY) N D**(RY) a solution
of (1.1). Then u € L>(RY).

Moreover, if f € LS(RY), then u is locally Hélder continuous with exponent o, namely,

loc
we O (RN with a € <()7 S(PT—II))
P

The additional condition f € L2 (RY) in the above theorem is used to control the oscillations
of u in a ball.
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1.1 Preliminaries

1.1.1 Functions spaces

For all measurable function v : RV — R, let

o= ([ [ 0", ,) ™

be the Gagliardo semi-norm. We will consider the following spaces (see [2, 24, 12] for details):

W™ Q) ={u e L™(Q) ; [u]sma < oo},
equipped with the norm

[wlls,m = HUHWS””(Q) = ||u||Lm(Q) + [u]sm,0;
and

W™ (€) = {u € W™ (RY); u=0in RM\Q},
W (@) = (WH(Q))", m' = —— (dual space).
—

For any 1 <m < % we define the reflexive Banach space

D*™(RY) := {u € L™ (R™); [u]s,m < 00},

where m} = 2% and [Jsm = [Jsmpy 18 @ norm in D=™(RY). The so-called best Sobolev

constant for the embedding
D*™(RN) — L™ (RY) is given by

Ll (1.3)

inf
ueDsm(RN)\{0} ||u]

S =

see [10] for details.

We will frequently make use of the following space (see [34]):

Definition 1.1.1 Let Q C RYN be bounded. We set !

Ju(z)™

W™ (Q) := L RM:3U >0 sm —
( ) {U € loc( ) 2 1L, ||U||W ) +\/]RN (1+ ‘x’)NJrsm

da:<oo}.

If Q is unbounded, we set

WEm™(Q) = {u e L™ (RN) : uw € W™(Q) for any bounded ' C Q}.

loc loc

1) € U means that €2 is a compact subset of U.
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For all a € (0, 1] and all measurable u : Q — R we set

[u(r) — u(y)
[tlgag) = sup |z —yle
eyeQazy 1T 7Y

Co(Q) ={ueC): ||y < 00}
Throughout the chapter we assume that 0 < o < 1 and
C(@) = € (@),
which is a Banach space under the norm

HUHCa(ﬁ) = [Jul|Leq) + \U|Ca@).

We recall, (see [34]), that the nonlocal tail centered at x € RY with radius R > 0, is defined
as

i )"
Tail,(u; ; R) = (Rsm / %@) . (1.4)
B

R |7 =
We will also set T'ail,,(u; 0; R) = Tail,(u; R).

Remark 1.1.2 Note that, if u € Loo(RY) and m > 1 then

m—1
[Taily(u; R)]™ " = R*™ / —'“(%m dy
B$,(0) Y|
< Ro™|fuf! / |y
B%(0)
= R Ny [Juf7? / g
R

_ Nooy [ju] 2"

sm

Thus, if u € Loo(RY) we have Tail,,(u; R)™ ! < C, where C = C(u,m, N, s) is independent of
R.

1.1.2 Some elementary inequalities

For all m > 1 and t € R, we set
I (t) = [t|™ %t

We recall a few well-known inequalities

(a+b)™ < 2™ a™ +b™), a,b>0, m>1; (1.5)
(a+b)™ <a™+b"a,b>0, me(0,1];
|Jm+1(a) — Jm+1(b)‘ < m(Jm(a) + Jm(b))|a —b|, a,b R, ¢ > 1.
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Using the Taylor’s formula and Young’s inequality, we can prove that, for all # > 0 exists
Cy > 0 such that

(a+b)?—a? <0a? + Cyb?, a,b>0, ¢>0, and Cp — o0 as § — 0. (1.8)

For any b > 0, consider the function f(t) = J,,(t) — Jn(t — ). Its global minimum is
f(b/2) = 227mpm~1 and hence we obtain the inequality

(@) = Jn(a —b) > 227" Va €R, b >0, and ¢ > 1. (1.9)
Finally, in order to apply Moser iteration process, we will use the following lemma:

Lemma 1.1.3 Let 1 <m < o and g : R — R be an increasing function. Defining

6= [ (g ()Edr, teR,

we have that
Jm(a —=b)(g(a) —g(b)) = [G(a) — G(D)[™, Va,beR.

Proof. We will present the proof basead in an idea that can be found at [12, Lemma A.2].
Observe that we can suppose a > b without loss of generality. Then, the fundamental theorem
of calculus yields

Jm(a —b)(g(a) — g(b)) = (a — )" *(a = b)(g(a) — g(b))
=(a—"b m_l/b g'(r)dr
1 / (G ()" dr

!

)
=(a—0b)""

([ o)

thanks to Jensen’s inequality. m

1.1.3 Some basic properties of (—A,)* + (—A,)*

The following result describes a fundamental non-local feature of the fractional (p, ¢)-Laplacian
operator (—A,)* + (—A4,)°.

Given 1 < g < p < oo and Q C RY we denote by
W(Q) = WP(Q) N W>9(<).

Definition 1.1.4 Let Q C RY be a domain bounded. We say that u € W(Q) is a weak solution
of (—Ap)*u+ (—=Ay)*u = f in Q if, for all ¢ € C5°(9),

2 /RN /RN I Ey)ﬁﬁfg) P dray /Q fedz.

m=p,q
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The weak inequality (—A,)%u + (—A,)°u < f in Q will mean that

I (u(z) —u(y))(p(z) — ¢(y))
Z /RN /RN |z — y|N+sm dzdy < /Qfgad:v,

m=p,q

for all ¢ € C°(Q), ¢ > 0. Similarly for (—A,) u+ (—A,)%u > f.

Remark 1.1.5 By Lemma 2.3 in [34] the functional

Wi (@)3 o ()i [ [ 2R =0 g,

is finite and belongs to W=*™(Q), which implies that the Definition 1.1.4 makes sense.

Lemma 1.1.6 Suppose that u € W(Q) satisfies (—A,)%u + (—A,)*u = f weakly in Q for some
feL(Q). Letve L (RY) be such that

loc

' o)™
dist Q 0 T o Natem
ist(supp (v),§2) > 0, /Qc (1 + || N+sm

dz < oo, for m € {p,q}.
Then, u+v € W(Q) and satisfies (—Ap)*(u+v) + (—=Ay)*(u +v) = f + h weakly in Q, where

_ Jm(u(z) — uly) —v(y)) = Jn(u(z) —uly)) ,
h(x) =2 _Z [upp(v) |LE - y|N+sm -

Proof. 1t suffices to consider the case when 2 is bounded. Define K = supp (v) and consider
U c RY such that,

m—1
QeU and ||ullwsm@w +/ ( [u(2)] dr < oo
RN

1+ ’ml)N+sm

for m € {p, ¢}.

Without loss of generality we can assume that Q € U € K¢, since dist (2, K) = d > 0.
Clearly u +v = w in U, and thus u +v € W*™(U) for m € {p,q}. Moreover, for m € {p, q} we
have

/. |U(I)+U(x)|m_ldx§0/w Md:)ﬁtC/}RN dew

(1 + ‘x’)N—i-sm 14+ ’x|>N+sm 14+ |x|>N+sm

Therefore, u 4+ v € W(2).
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Now assume that (—A,)%u + ( ) u = f weakly in 2. Choose ¢ € C3°(Q2) and compute

I (u() +0(x) — uly) — v(y))(p(z) — w(y))dxdy
= pq RN JRY |:v—y|N+5m
:mz;q// ’x_ )y)]gfg) — W) 4y
B Zp:q// |x_ ﬂzvtsi(y)w(y)dxdy
:mzp:q/w éN (y)‘)zsfgi)—w(y))dxdy
" Zp:q// \x—y\Nﬁ’z (y)dxdy
Z//
thus, we obtain
mZ;q /R ) /R ) + () ‘—xu_(yy)‘;+ziy))(<p(x) — W) 41q,
-/ ( oy [ Jm(U(x)—U(?/)|;E(5|)])V; In{u(e) = uly) dy) (@)
= [ @)+ (s

where in the end we have used Fubini’s theorem. The density of C*°(Q2) in W™ (2) allows to
conclude. m

The arguments used to show the next lemma are in [34, Proposition 2.10], we will make an
adaptation.

Lemma 1.1.7 Let Q2 be bounded, and let u,v € W(Q) satisfy u < v in Q°. Then (u —v); €

Proof. Tt is enough to prove that, if u,v € W™ (Q) satisfy u < v in Q¢, then (u—v)™ € W™ (Q).

Denote w = (u — v)* and let U  Q be as in Definition 1.1.1 for both u and v. We split the
Gagliardo norm in RY as

|m
dzd
// |x— |N+sm Y

lw(z) —w(y)| //
- 2 — = dad
/U u | — y[Nem d dy + c].as— ’NJrsm ray
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where we used that w = 0 in Q¢ since v < v in Q° The first term is bounded, since
u,v € W#P(U). For the second term we have

|z —y| > Caou(l+]y|), forall ze€Q and yeU®

since dist(€2, U¢) > 0. Thus we obtain,

/ Ue |$ — y|N+smdxdy

< o [ Q@ + o ae) ([ )

< Cop / (@)™ + Jo(2)|™) dz.

Taking, m = {p, ¢}, we conclude the Lemma. =

Proposition 1.1.8 (Comparison Principle) Let Q) be bounded, and let u,v € W(Q) satisfy
u < wv in Q°. Suppose that, for all o € W5P(Q)NW 4 (Q), ¢ >0 in Q, it is valid

u())(¢(x) — o))
_qu /RN /RN |ZE _ |N+sm dxdy
> /RN /RN |z _(y>‘)z(vf£i) - gD(y>><11$<11y.

m=p,q

Then v < v in .

Proof. The proof is a straightforward calculus, but for convenience of the reader we sketch the
details. Subtracting the above equations and adjusting the terms, we obtain

o= [ [ (2 |<j>_) e LG
v (PRt S DY (o) — sty (110

since ¢ > 0.

We show that the integrand is non-negative for ¢ = (u — v)™ which belongs to W(2) thanks
to Lemma 1.1.7 . Taking a = v(z) — v(y) and b = u(z) — u(y) , the identity

Tn(B) — Jm(a) = (m — 1)( b—a/|a+t o) "2t

yields
Im(u(z) —u(y)) — Jm(v(z) —v(y)) = (m = 1) [(u—v)(@) = (u—v)(y)] Qn(z,y),

whete Q) = [ [to(a) = o) + (= 0)(a) = (u= ) ()" .



16 1.1. PRELIMINARIES

We have Q,,(z,y) > 0 and Q,,(z,y) = 0 only if v(z) = v(y) and u(z) = u(y).

Rewriting the integrands in (1.10) we obtain

RN JRN A
(¢ —1) [(u—v)(x) — (u—v)(y)] Qy(z,y) 3 .
L el ) (6t@) = elady <0. (111

We now choose the test function ¢ = (u — v)™ and define

p=u—v=(u=-0)"—(u-v)", p=(u-v)" =y

From (1.11) results that

[ (=D e o) = 00 g,
n /RN /RN ( q— () - wﬁz))_(zrjv(i)q— ¢+(y))Qq(x,y)) dody < 0

Using the inequality

E=—mET—nN) > " =0T, VEnEeR,

[ [ o0 rat),,,,
RN JRN |x_y|N+5p
(¢ — DIt () = ¢ (y)PQqy(x, y

|z — y|N+sa

we can see that

+ )dxdy <0.

Thus
(@) =¢"(y) or Qm(z,y) =0,
at a. e. point (z,y). Also the latter alternative implies that ¢ (z) = ¢ (y), and so

(u—v)T(zr)=C>0, VoecRY
The boundary condition implies that C' = 0 and consequently v > v in RY. =

Proposition 1.1.9 Suppose €2 is bounded and u € Wsm(Q) neE

loc (52); with v € [O, 1] such that
1- 1— ‘ > 2
v { m( s), if m ,

1-m(l-s) if m<2.

m—1 ’

Then (—Ay,)*u = f strongly in Q for some f € LS. ().

Proof. See Proposition 2.12, [34]. m
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1.2 Interior Holder regularity

Now we assume that 2 < ¢ < p < oo and we will prove a weak Harnack type inequality for
non-negative supersolutions and then we will obtain an estimate of the oscillation of a bounded
weak solution in a ball. In the sequence Br = B(0; R) and W(Q2) = W*P(Q) N WW1(Q).

Theorem 1.2.1 Let2 < q < p < oo and u € W(Bpgys) satisfying weakly

—K em Bpgys (1.12)
e RY

{(—Ap)SUH Ag)tu
u(z)

for some K > 0. Then there o € (0,1) and C > 0 such that

1/(q—1)
inf u>o ][ w? tdx - C (KRsp)l/(p—l) _
Brya Br\Br/2

>
>0

Proof. Choose a function ¢ € C*(RY) be such that 0 < ¢ < 1 in RY, ¢ = 1 in By
and ¢ = 0 in Bf. By Proposition 1.1.9, [(—=A,,)%¢| < C; weakly in Bj, for m > 2. Set
¢r(r) = ¢(37/R), so that pr € C*(RY), 0 < pr < 1in RY, op =11in Br, pr =0 in By

and |(=An)%¢| < C1R™*™ weakly in Bg/3. Given o € (0,1), consider

1/(m—1)
][ ™ e and w = oL(q)pr + XBg\Bp U
Br\Br/2

L(m) = (

Thus w € W(Bg/3), and by Lemma 1.1.6 we have weakly in Bg/s,

(=4p) w(z) + (=4g)*w(z) (— )(UL( Jer(@)) + (=4y)* (0 L(g)#r(2))

A 2) —u(®)) — Jn(oLla)on()
2 Z /BR\BR/2 ( |I —z|2[+sm ( or )dy

m=p,q

< (0L(q))" ' (=Ap) ¢r(x) + (0 L(q)T (= Ag) wr()
/ Jm (0 L(q)pr(x) — u(y)) — Jm (0 L(q)r(2)) 4.
Br\Br/2 ‘x

_y‘N+sm

+2

m=p,q

Thus using the inequality (1.9) set

(=) w(x) + (=4, w(z) < Cl(ajL%i?)p_l + Cl(U]L%(sZ))q_l

p—1 q—1
— 23—10/ (U(y>>]\/+ dy _ 23—q/ (u<y)>N+ dy
Br\BRr/» ‘iL‘ - Z/‘ P Br\Bg/2 ’x - Z/’ 4
< GilaL@)™ | Ci(oL(@)™ _ Co(Lp)™"  Ci(L(g)"
-~ Rsp qu RSP qu .
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Applying the Holder’s inequality we have L(q) < L(p), for p > ¢ and thus, since o € (0,1)
the above inequality yields

(—Ap)sw(l‘) + (—Aq)sw(x) < (Clo_q—l _ 02) ((L(;)s])gp_ n (L(é)st)lq— ) ‘

1/(g=1)
Choosing 0 < ¢ < min {1, (%) } we get the upper estimate

(=Ap)°w(z) + (A w(z) < —%(Lg—)f_l. (1.13)

— 5 \ /(1) o )
We set C' = (0—2) and distinguish two cases:

o If L(g) < C(K R)1/#=Y), then
inf u>02>0L(q) _ﬁ(KRsp)l/(pfl);

Brya
o If L(q) > C(KR*)Y®=Y then using (1.13) we obtain weakly in Bg/s
(=Ap)*w(z) + (=Ag) w(z) < =K < (=4y) u(z) + (=4q) u(z) (1.14)
W = XBp\Bgpt = U, TE By (1.15)

Using the Proposition 1.1.8, we obtain that w < u in R¥, in particular

inf w > inf w > oL(q) énf or = oL(q) > ocL(q) — C(KR*)Y/®=1,
R/4

Brya Bprya

and so the we concludes proof. m

Lemma 1.2.2 Let R< 1,2 < q<p<ooandu e W(Bg3) such that

{(—AP>SU + (—Aq)su Z —K BR/g (116)
u >0, in Bpg,

for some K > 0. If u € L®°(RY) then there exist o € (0,1), Ko >0, C > 0 and for alle >0 a
constant C. > 0 such that

1

infu>o ][ u?'dx — 6(K0Rs(p_q))z’%1 —esupu — C.Tail,(u_; R).
Br Br\Bpg/2

Br

Proof. Let us apply Lemma 1.1.6 for the functions v and v = u_, so that uy = v + v and
(1 = Bp/3. Then we have weakly in Bp/s,

(=Ap)*uy () + (A ur(z) = (=4,)%u(z) + (=Ay)*u(x)
2% / Jm(u() — uly) — u_(y)) = Jm(u(z) — u(y)) ,

|z —y| Ve

Y

o (w(x) —u(y)" ' = (u(z))"!
>-K-C Z /u<0} [ dy
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where in the end we have used that |z — y| > §|y\, for all y € {u < 0} C B and « € Bp/s. By
inequality (1.8), for any 6 > 0 there exists Cy > 0 such that weakly in Bp/s,

((_Ap)s + (—Aq)s)u+(x) > K- CZ /{ <0}6’(u(x))m1 — Cyluly))™ N

N+sm
= vl
> —K - CQZ SUP /HN+smdy 092/ HN+sm
m=p,q m=pg? B 1Y
o gy , _
> —K — Tor (s];g) u) ~ Tor (Taily(u_; R))"~"

Using the Remark 1.1.2 we can see that T'ail,(u_; R) < Cp, where Cj is independent of R > 0.
We also have R < R*?=9) for R € (0,1], since ¢ < p. Thus,

KR® < KR + C0 (sup u) + Cp (T'ail,(u_; R))pil

Br

q—1 g—1 -1
+ CRs®=9¢ <sup u) + CyR*—9 (Taz'lq(u,; R))ﬁ>q

Br

p—1
< KR*®=9 4 Cp (sup u) + Cy (Taily(u_; R))""+ (CO + Cy) MyR*P~9.

Br
where My > 0 is a constant independent of R > 0, that depend on |[ul|ze(rx).

Consequently, given € > 0 we can take § < min {1 } to obatin

7Cp1

L 1
(KRSP) "< (KGR D)5ma + esupu + C.Taily(u_; R)

Br
where Ko = Ko(K, ||u| L @ny) > 0 is independent of R > 0.

Therefore, applying the Lemma 1.2.1 for u, results

1/(g—1)
~ 1
inf = inf uy >0 ][ uwi~ldx — (KR*)r1
Br/a Brja Br\Br/2

1

ﬁ
>0 ][ u?'dx - (KORS(”_‘]))F%1 —esupu — C.Tail,(u_; R).
Br\Bpg/2

Br
which concludes the the proof m

Now we use the above results to produce an estimate of the oscillation of a bounded function
u such that (—A,)%u + (—A,)*u is locally bounded. We set for all R > 0, 2o € RY

Q(u; w03 R) = |[ul| oo (Bp(ae) + Taily(u; zo; R),  Q(u; R) = Q(u; 0; R).
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Theorem 1.2.3 Let 2 < ¢ <p < oo, Ry € (0,1] and u € W(Bg,) N L=(RY) be a function such
that
l(—=Ap)*u+ (—A,)°u| < K weakly in Bp,,

for some K > 0. Then there exist o € (0,1) and C > 0 such that, for all r € (0, Ry) we have

stp-a)) 71 r\°
ogcu < C [(KORO(” q)> + Q(u; Ro)} (E) :

where Ko = Ko(K, ||u||peo@ny) > 0 is independent of R > 0.

Proof. For all integer 7 > 0 we set R; = %,Bj = B,, and %Bj = Bg, /2. We claim that there
are o € (0,1) and XA > 0, a non-decreasing sequence (m;) and a non-increasing sequence (M),
such that
m; < igfu <sup < M;, M; —m; = )\RJO.‘, for any 5 > 0.
I 4
We argue by induction on j.
2[ull Loo(By)

Step zero: We set My = supu and mg = My — AR, where 0 < A < 7o
0

Br,

Inductive step: Assume that the sequences (m;) and (M;) are constructed up to the index j.
Then

M; —m; :][ (M; — u)dz +][ (u —my)dz
Br\Bgr/2

Br\Bpg/2

1 1
< (][ (M; — u)q_ldx> + <][ (u— mj)q_ldx> :
Br\BR2 Br\BRy2

Since (M) is non-increasing and (m;) is non-decreasing, M; — u and u — m; are bounded in
RY. Moreover, for all j > 0 we have

M; —u < My—wu and u—m; <u—my.

Let o € (0,1), C > 0 be as in Lemma 1.2.2. Multiply the previous inequality by o to obtain,
via Lemma 1.2.2,

o(M; —my) < inf (M; — u) + inf (u —m;) + 2C(KoR:"~9)5

Bj+1 Bj1 !

+ ¢ |sup(M; — u) +sup(u — m;) | + C.Tail,(M; — u)_; R;)

B; B;

+ C.Tail,((u —mj)_; R;).

Setting universally e = ¢, C = max{QO , C.} and rearranging, we have

o
< - — J— .
g?flu <(1 2)(M] m;)

_1
+C {(KORgW)) "4 Taily(M; — u)_; Ry) + Tail,((u —m;)_; R;)
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In Appendix A.2, using the arguments of [34], we estimate both non-local tails,

Tait (M — )i ) < © sttt + L] e s0) 0 as a0
0
the same being valid for Tail,((v — m;)_). Therefore
1
o s(p—a) 7T 1 Qs Ro)]
< - — P . p—1 A
gscu < (1 2) (M; —m;)+C (KORO ) +C {)\S(a) + Ro RS

Recalling that M; —m; = AR} and R; = %, it follows that

o 1
< 4“ —— p— o
g]sflu <4 [(1 2) + CS(a) 1} AR,
o p% S(;f:q)fo‘ Q(U, RO) «
+4°C {Ko Ry +R—8‘} LAARE

Now we choose a € (0, %) universally such that

al(1-2 = _ 7
e [(1-2)+cs@m] < (1-9)
which is possible because S(a) — 0 as o — 0. Now, setting

4a+1 1 s(p—q) _a .
A=-——0C [Kg’l Ry T4 %} (1.17)
0

QHUHLOO(BRO(xO))

7 , since 4°M1C'/o > 2 and
0

we have A\ >

o o
oscu < (1— Z))\R?‘H + Z)\RJQ‘H

Bjt1
We may pick m;i, M, such that

: o
m; S mji1 S éﬂf u S ;up u S Mj+1 S Mj, Mj+1 — M = )\Rj+17
g+l 1

which completes the induction and proves the claim.
Now fix r € (0, Ry) and find an integer j > 0 such that R;4; < r < R;. Thus R; < 4r.
Hence, by the claim and (1.17), we have

o s(p—q)) 7T . T\
OSTC < ng <ARF <C [(KORO > + Q(u; RO)} (Ro) ,

which concludes the argument. m

Corollary 1.2.4 Let u € W(Bag, (7)) N L=(RY) such that
(=A,) u+ (—Ay)°u| < K weakly in Bog, (o),
for some K >0 and Ry € (0,1]. Then there exist C > 0 and o € (0,1) such that

S(p— 1 —Q
[ulcoa(Br, (@) < € [(KoRo(p D)ot + Q(u; w0 2Ro) | Ry
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Proof. Given z,y € Bg,(x). Let r = |x — y| < Ry. Let us apply the Theorem 1.2.3 to the ball

| ] )
Tail,(u; x; Ro)P ™' = Rsp/ |z — y|N+sp
v ? Sy @l —yNre
) Ju(y) P!
< O + OB [
L (BQR()( 0)) 0 BgRO(xO) |x0 - y|N+5p

for a universal C, where as usual we used |v —y| > |z — y|/2 for y € B5p (z0) and x € Bg,(z).
This implies that,
Q(u; ;3 Ry) < CQ(u; o; 2Ry)

and thus we obtain the desired estimate on the Holder seminorm. m

1.3 Proof of Theorem 1.0.1

In this section, we present the proof of the Theorem 1.0.1. Replacing u by |u|, we can assume
that v > 0.

Given a f € L%(RN ), consider the problem

{ (=Ap)u+ (=Ag)'u=f in RY (1.18)

u(z) >0, ze€RY,

where s € (0,1), N > sp, 1 < ¢ <p <ooand p} = NJ\_[I;p. We will denote
W = D*?(RY) n D¥4(RY)

which is a Banach space with the induced norm

lulw = fulg, + [ul,, -

Definition 1.3.1 We say that u € W is a weak solution of (1.18) if

Jp(u(x) —u(y))  Jy(u(z) —uly)) B i i
/RN/RN( |z — y|N+sp T ) (p(z) — p(y))drdy = fedax,

|z — y| Nt RN

for all p € W.

The following remark is a direct consequence of the spaces involved and the key to concluding
the continuity of the solutions of (1.18).

Remark 1.3.2 1) Note that, W C W(Q) for any Q C RY a bounded domain.
2) The  condition  f € L (RM) ensures  for  the  functional
Y — / fodz to be well defined for any ¢ € W.

RN
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Proof of Theorem 1.0.1. By Remark 1.3.2, if u € W satisfies (1.18) with f € L (RY), then

loc

given 7y € RY and 0 < Ry < 1 we have u € W (Bag,(70)) and [(—A,)%u + (—A,)%u| < K =
||f||L<>o(B2R0 (z0))- Now, by applying Corollary 1.2.4 we have

S{p— L —
[tlco 3y an) < C [ (KoRE™ )7 + Q(us wo; 2Ro) | By,

Given 2 C RY compact, we consider a covering ) C U Bp,(z) withx € Q and 0 < R; < 1.

We use the same arguments of the proof of Theorem 1.1 in [34], to conclude that u € C%(2).

Pg
To show that u € L®(RY), we assume that f € L#-T(RY) N LY(RY) and use the Moser
iteration process.

Let M > 0 and 8 > 1, we set for simplicity uy; = min{u, M} and

‘ 7, set < M,

We can see that gg s is continuous and has bounded derivative. Hence,

Uy = gﬁ?M(U) eWwn LOO(RN)

Then we consider the test function ¢ = gga(u) in the Definition (1.3.1) and use Holder’s
inequality, to set

Lo (PR + PO ) s = gty

= | f(ft)gﬁ,M(U(ﬂf))dfv: A yuyy()dz < || flloluyg o (1.19)

Setting

Bmm
pf+m —
and using Lemma 1.1.3 for m € {p, ¢}, a = u(x), and b = u(y), results of (1.19) that

Gar(0(x) — () ﬁ
< .
/]RN /RN |(13 — y|Ntop dady < || f|lollwa,lle

By Sobolev inequality (1.3) we get

|Gam(u(@)) — G m(uly))l?
S G de dzd
(/RN| s, (u() x) /RN /RN ’x_y’NJrsp ey

< [/ lloll ey llor
From (1.20)

gip Btp-1p} - 5
S(Fg ) (Lo de)” <Albld

+m1

%szl@mewz i, M) (1.20)

A
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Equivalently using 8 > 1

L

(B+p—1)p} : P
s Ps " —|— —_ ]_
([ )™ <o (=) i, 1.21)
RN p
where C = C4(s,p, N, || flle) > 0. By setting
ﬁn +p—1 s Bn
n B P “>lando,=——"-—<1,
Prtr = w0 Po= > tandon=g—m

we can see that (/3,) is increasing, and we obtain of (1.21) for 8 = 8, > 1

1 Ao
2 B
”uMHL@’ﬁnH(RN) < Ofnn Bnril HUMH(ZE’/&,L(RN)'

Iterating this inequality and using that o, < 1, we get for any n > 1

n+1 n
Zﬁ (”“ 1>B° Haj

<=t 1157 (1.22)
=1

||UM||L9/3n+1(RN) [Ju MHLPS(RN)

Setting v = 2= = (N(espl))e’ we have v > 1 since that 6 > %,
n+1
n 2 -7
= +p-1)L——7~
Bn=7"Po+ (p—1) po—
Therefore,

Bn =y ol pi(pt —¢)
lim —=8+(p—1)1lim ——— =83,+(p—1 =55 )
n—o0 ”)/ 50 ( )n—>oo ’y"(’y — 1) 60 (p )’)/ —1 9’(]9: — Q’p)

Thus, using the limit comparison test, we conclude that

On the other hand, for any n € N consider a,, = H ﬁjﬁ? . Thus,

Ina, =1n (jl;[lﬁfj> = ;Elnﬁu

that is
a, = e \i=1 b , forall neN.
Since hm —— = 0, there exists a constant K > 0 such that

t—o0 \/_
Int < Kvt, ¥t>0. (1.23)
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Using that 3; > yy" with v > 1 and the inequality (1.23), we have

Z_m@qz L A= KZ 1 %m(%)i<m.

Therefore a,, is convergent, namely,

+oo 1

[187 <=
J

i1

Moreover,

B Yos s —0p
lim o — Lim lim ~"+ — lim Ps _ Ps .
n—00 H 4 n—00 H ,y/BjJr]_ n—00 7 Bn+1 n—00 ﬁn+l o’ s — o’

Using these estimates and taking n — 400 in (1.22) we obtain

PS*QP PS*QP

| < Cllull

for some C' = C(s,p, N, ||f|ls) > 0. Letting M — +o0, we conclude that u € L*(R"), and

(1.24)

Lot (RN LPS RN

917
p579

HUHLOO RN) < C1||u| LP5 (RN)Y

Remark 1.3.3 The condition 2 < q < p is necessary only to prove the continuity of u. To prove
the boundedness u we can assume that 1 < q < p.



Chapter 2

Existence and regularity of solution to
an equation involving the fractional
(p,q) -Laplacian in R

In this chapter, we first study the existence and regularity of nontrivial weak solutions for
the following nonlinear elliptic problem of fractional (p, ¢)-Laplacian type involving the critical
Sobolev exponent

(=Ap)*u+ (=A)*u = |uP*2u+ Ag(@)|u]"?u in RN
u(x) >0 r € RV,

(2.1)
where s € (0,1), 1 < g < p <71 <pi N > sp, pi = N]\i’;p, A > 0 is a parameter and

(=A)s + (=A)7 is the fractional (p, g)-Laplacian operator.

The function ¢ will satisfy some hypothesis amoong the following

(g1) g is integrable and g € LY(RY), with ¢t = p%'

(g2) there is an open set Q, C RY and ag > 0 such that g(x) > ap > 0,Vx € Q;

(93) g € L=(RY).
About existence our main results are as follows.
Theorem 2.0.1 Assume that g : RN — R satisfies the conditions (g1) and (gs).

(1) If 1 < q <p<r<ps then there exists \* > 0 such that, for any A\ > \*, problem (2.1)
has at least one nontrivial and nonnegative weak solution in V.

N(p—1
(1) If 1 < ¢ < —]89 ) <p< max{p,p:——q 1} <r <pl, N > p?s, then (2.1) has a

non-trivial weak solution in W for any A > 0.

In a second moment, we will use the regularity theory of Chapter 1 to show that the solutions

of (2.1) are of class C.%. More precisely, we have

26
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Theorem 2.0.2 Let 2 < ¢ < p <7 <pi, A > 0and 0 < s < 1, be such that N > sp.
Assume that (g1) and (g3) is holds. If u € D¥P(RN) N DSP(RY) is a solution of (2.1), then
u € L®RN) N Ce (RY).

2.1 Preliminaries

Let 1<m< % and v : RY — R measurable function. The quantity

1
Py .\
dad
(// rx—ywm vy

defines a uniformly convex norm on the reflexive Banach space

. Nm
D™ (RN) = L™s (RM): ithm' = ———.
(R) = {u € L™ (R™); [ul,,,, < o0} with m] = -———

In our context, we denote by ||.||; the norm of L{(RY) for any ¢ € (1,00) and the Sobolev
constant given by

S = inf

ueDs™m(

i (2.2)

is the associated Rayleigh quotient.

The constant S is well defined and is positive by the fractional Sobolev inequality. Very
recently, Brasco, Mosconi and Squassina obtained in [10] that there exists a radially symmetric
nonnegative decreasing minimizer U = U(r) for S. The authors also showed that U satisfies

[ULem

Moreover, for any € > 0 the function

"= S, (2.3)

Ue(x) = c(N—sm)jm U(|z|/e)

is also a minimizer for S satisfying (2.3).

Let W := D*P(RY) N D*9(RY) endowed with the norm

||u||W = [u]s,p + [u]s,q :
The following lemma can be found in [36, lemma 4.8].

Lemma 2.1.1 Let Q CRY | 1 < p < oo and {u,} C LP(Q) be a bounded sequence converging
to u almost everywhere in . Then u, — u in LP(Q).

In the sequel will prove a result related to the compactness.
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Lemma 2.1.2 Let (uy,)nen be a bounded sequence in W. Then there exists u € W such that up
to a subsequence, u,(r) — u(x) a.e. in RY. Moreover, for m € {p,q} we have

m

lim [u, —u], = lim ([un]gnm — [u]znm> )

n—oo ’ n—o00

Proof. Let (uy,)nen be a sequence in W such that,
[unlyy = [tn],, + [unl,, < C, Yn €N (2.4)
It is standart to show that W is an uniformly convex Banach space (W is reflexive Banach
space). Thus there exists u € W such that u,, — u in W.

On the other hand, given €y C RY compact, using Holder’s inequality we have
P

|un )| " ps
unpdx—i—// dxdy < [Q]s» / Up |7° + [Un |
/Qol ’ Qo J Qo |I |N+S ’ O| ]R”| [ ] P

Q]
g( 5 +1 ] [u ]Spgc.

Therefore u, € W*P(Qy) for each n € N and all Q) compact. Since the embedding
WeP(Qy) < LP(Qy) is compact, it follows that the embedding W — L (R") is compact.

Hence up to a subsequence, u,, — u in L} (RY) and consequently u,(z) — u(z) a.e. in RY.

In the second part of the lemma, let m € {p, ¢} and define
Uy (z, y) = Ll ~unly) fj”fy) e L"(RY x RY)
|z —y|m
By the first part of the lemma

Uy (z,y) = U(x,y) = M, a.e. in RY x RY.
[ —y|mts

Since (uy,) is bounded in W it follows that (U, )nen is bounded in L™(RY x RY), Lemma 2.1.1
then implies that
U, — U in L™(RY x RY).

By applying the Brezis Lieb Lemma we complete the proof. m

Throughout the text, for any 1 < m < oo, we will constantly use the notation,

Jn(t) = |t|™t, for all t € R.

2.2 Mountain Pass Geometry

In this section we will use the mountain pass theorem to show the existence of a solution to
(2.1). To commodity of the reader, let us recall the mountain pass theorem.
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Theorem 2.2.1 Let X be a real Banach space and ® € CHX,R). Suppose that ®(0) = 0 and
that there exist B,p > 0 and x, € X\B,(0) such that

(i) ®(u) > B for allu € X with ||u||x = p;

(i) ®(z1) < B.

There exists a sequence (u,) C X satisfying
®(u,) — ¢ and 9'(u,) — 0,

where ¢ is the minimazx level, defined by

¢ := inf {maxq)(y(t)) cy € C([0,1],R),7(0) =0 and ~(1) = xl} :

>0
For a proof and applications of this theorem, see [30, 3, 46, 48].
Definition 2.2.2 We say that u € W is a weak solution to the problem (2.1) if

Bule) —uly) | o) = o)y
/RN /RN < |z — y|N+sp + |z — y|[N+sa ) (p(z) — p(y))dzdy

= / (u)P* " 2ut pda + )\/ g(ut) 2utpdx,  for all p € W.
RN

RN

In this way, the Euller-Lagrange functional for (2.1) is given by,

I(u) = = [ulf  + = [u]] L (ut)Prda — A /RN g(ut) dx, (2.5)

54 ok
q Ds JrN r

where u* = max{4u,0} and u € W.

Lemma 2.2.3 Let (g1) hold. Then Iy is well defined, for all X\ > 0, I, € C*(W,R) and for all
u, p € W we have

I(u)e = /RN /RN (prz(_x) —uly)) | Jlulz) - u(‘y))) (¢(x) = p(y))dady

s =y

/RN (uh)Ps2u T pda — )\/RN g(u™) " 2uTpd. (2.6)

Proof. The proof of this fact can be found in [43], but we give an idea of it. Thanks to the
(g1) and the embedding D*P(RY) < LP:(RY), we have I, is well defined, Gateaux-differentiable
in W and its Gateaux-derivate is given by (2.6).

Now, let u, — u € W as n — co. Without loss of generality, we assume that u, — v a.e. in
RY. Then for m € {p,q} the sequence

_ m—2 _
‘un(x) un(?/)’ (Un(l'? un(y)) is bounded in Lm/ (R2N)
|$_y|(N+sm)/m e
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and
) o= ) = 2O 3 ) )
it A e
a.e. in RZV

Thus, the Brezis-Lieb Lemma yields

lim |un(x7y) —Z/{(J?,y)’m/dl'dy
n—00 n JRrn
= lim {/ |Z/I (z,y)|™ dzdy — / |M(m,y)|m,dxdy} (2.7)
n—o0 n JRn

. un(@) —un ()™ |ulz) —u(y)|™
=1 — dzdy.
nl_}[{.lo/n /n{ |x_y|N+sm ‘x_y‘N+sm ray

The fact that u,, — u strongly in WV implies that

From (2.7) it follows that U, — U in L™ (R?V).

Given ¢ € W using (1.3), (¢1) and the dominate convergence theorem we can see that

/ (u:{)p:_lgodx — (u+)p:_1g0dx (2.9)
RN RN
and

[ oty ede = [ gy eds (2.10)

RN

Note that ple) — o) € L"™(R*™), for m € {p,q}. From (2.8), (2.9) and (2.10) we have

|I _ yl(N+sm)/m

(I)(un) — Iy (u))p — 0 as n — oo.

Therefore,

I (uy,) — I}
3(0) = Bl = sup [an) = ()]
PEW,p#£0 ||90||W
= s ()~ w))el 0.

PeEW,lpllw<1

Thus, I} (u,) — Ii(u), as n — oo, that is, I} € C*(W,R). m

In the sequel, we show that, if 1 < ¢ < p <r < p! and g satisfy the conditions (g1), (g2) then
I, satisfies the Mountain Pass geometry.
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Lemma 2.2.4 There exist 5,p > 0 and ug € W satisfying:

(i) ||uolw > p and Ix(ug) < 0,
(it) Ix(u) > B for any uw € W with ||ullw = p.

2
Pi—

Proof. First note that by Holder’s inequality, with ¢ =

r

A A ) )
> [ oty < gl lf, < Colulfy (2.11)
T RN T
and (1.3) yields,
1 +\p: 1 e Dy
— [ (u")Psdx < = [u]? < Csllulfyy (2.12)
p: RN p:S% v

Let us suppose [u], , < [|u[lw < 1,. Since ¢ <p < r < p; it follows that

1 * ,

1) > ([ul2, + [l ) = Collulf = rllully
1 * ,

> (1012, + [ul2, ) = Collull5 = Crllul

w — Cillul[jy.

1
2 ?TlpHUHI;v — Cylfu

Thus, there are p, 5 > 0 such that I\(u) > g, for all u € W, with ||u||w = p.

Now, let v9 € W\{0} be such that vy > 0. Then, for any ¢ > 0, one has

(tvo) = _tp [vol} z [vol g /R 0 tpp; /]R 3
Ix\(tv v +— v vodx vy da.
Ao 0lsp P Olsg =5 |0 9V P A

s

Since 1 < ¢ < p <r < pi, it follows that I)(tu) — —o0 as t — 0.

Consequently, there exists ug = tyvg € W such that ||ug||ywy > pand Iy, < 0. =
Lemma 2.2.5 Let (u,) C W be a Palais-Smale sequence. Then (u,)nen is bounded in W.
Proof. Let (uy,)nen be such that

I(up) < dp and I (u,) — 0 in W*.

Thus, for all n large

1
o+ il ual b = () = 14 ()

(Do (-2 ()
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That is, for all n large, we have
kO(l + [Un]w) > ky [Un]i,p + ko [un]g’q )

where kg, k1 and ko are positive constants that do not depend on n.
Suppose ||uy,|lw — oo. Then we have three cases to consider:

L [un];, — o0 and [u,]]  — oo.

2. [un]}, — oo and [u,]] , is bounded.

3. [un];, is bounded and [u,]] , — oco.

The first case cannot occur. Indeed, it implies that [u,]} ) > [u,]] , for all n large, and thus

ks
20-1

ko(1 + llunllw) > ki [Un]i,p + k2 [un]g,q > ky [un]g,p + k2 [un]g,q > [[wn 3y

which contradicts the fact that ||u,|/yw — oo.

If the second case occurs, we have, for all n large,
o (1 [unl,y + [l ) = o funl?, + K )t = o [l

and hence we arrive at the absurd

ki 1 1 (]
0<—<1 211 =0.
< ko — ns0 ([un]p * [, ]2 + [w,]? )

$,p s,p

Proceeding as in the second case, one can check that the third case cannot happen as well. m

2.3 Estimate for the energy level

For each A > 0 we denote by,

Cy = ue%lf{o} r?éaoxb\(tu). (2.13)

Lemma 2.3.1 Let (g1) and (g2) hold. If 1 < g <p < r < p%, then there exists \* > 0 such that
0<ey < xS forall A\ >\,

Proof. 1t follows from Lemma 2.2.4 that I(u) > > 0 whenever ||ul|,y = p. This fact implies
that ¢, > B > 0.

We recall that Q, = {x € RY;g(z) > 0}. Let ugp € W\{0} with support in Q, such that
ug > 0 and ||ug||p: = 1. Since

*

tP te A" tPs
Ii(tug) = — [uo)? | + — [uo] s,¢7 — / guodr — —, t >0,
—lul?, + ol = 2 [ guide =

s
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we can see that I)(tug) — —oo as t — oo and that Iy(tug) — 0 as ¢ — 07. These facts imply
that there exists ¢, > 0 such that

r?gaox I(tug) = I(tyuo).

Hence
d
0=~ [Ix(tuo)—y,
= ! [wolf, + 4! [uolf, — ML /]RN gupdz — tﬁz_l
so that

luols, | Tuolsy

r—p r—q
t)\ t/\

O<A/ guide = 27" for all A > 0.
RN
It follows that ¢y — 0 as A — oo. Since I)(t ug) — 0 as ty — 07, there exists A* > 0 such that

s N »
r?gaoxl}\(tuo) = L\(t\ug) < NSSP’ for all A > \*.

Since ¢, < max I\ (tug), we conclude that

G < — 8% for all A > \*
C)\<N or a >

Now, we use the Appendix A.1 and the condition

N(p—1)
N

— S

N>p’sand 1 < q< <p§max{p,p:—il}<r<p:. (2.14)
p_

to show that ¢, < %Sﬂp , for all A > 0.

Lemma 2.3.2 Assume that (2.14), (g1) and (g2) hold. Then, €\ € (O, %S%>, for any A > 0,
where Ty is defined in (2.13).

Proof. We can assume without loss of generality that 0 € Q . Fix R > 0 such that Byr(0) C Q,
p: = land v.(x) =0

and denote u. = u. g as in Appendix A.1. Define v. = ———, so that ||v.
U

H ellps
for all z € RM\Q,,.

Consider the function v : [0,00) — R given by

W(t) : = Ih(tve)
tP s AT
= — P — — — "dz.
p {'UE]s,p + q ['UE]s,q p: r /RN gUE x
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In this way, v it is continuous, ¥(0) = 0 and tlim ¥ (t) = —oo. Then there exists t. > 0 such
— 00
that,
@Z)(ta) = sup ¢(t) = sup ]A(tve)'

>0 £>0
Thus, ¢'(t.) = 0, that is
2 ot 0 [ue? =t = ! / _guidz =0. (2.15)
R
Using the condition (g) we obtain

et <t o]t !,

As g < ( ) combining (A.6), Lemma A.1.2 and (A.9) we get

q(N—sp)

W, <S+0(E ) and [0l <OE # ). (2.16)
Using (2.16) we have
1P < [Ua]p +tr [Ua]q
<S+O(g RN pO( ).
Therefore for any £ > 0 small enough, there exists t2 > 0 such that ¢, <2, Ve <z.

Sp)

From (2.15), (¢1) and Holder inequality, we have
! [Ug]fp < Pl 4 )\tg_l/ guldx
I RN

<27 Mgl e el (2.17)

Moreover, as ||vc|[,» = 1, by Sobolev inequality

S = Sllvellpy < [vels, -
Hence, from (2.17)
S < [uely, <277+ Allgllyte el (2.18)

Using (2.16)-(2.18) there exist 7' > 0 such that for any ¢ > 0, t. > T.

* 2
Let f(t) = % [vely, — t:g, then f attains its maximum at ¢ty = [v.]{3 7. Note also that

N > p?s > sp implies N(p — 1) < p(N — sp) and thus ( ) <p<r.

N(p 1)

Hence, for ¢ < &, applying Lemma A.1.2 for ¢ < < r and using (g2) we obtain

Vlt) = f(t) + = ol - AE [ e

T JrN
te )\ d
g tE £ — A— r
F) 4 Dt -2 [ g

(1) T
w&a—»;%wm

N a(N—sp) (@=1) (\y_r(N=sp)
S@P—l—cle P —|—628 2 — (3 P ( P ),
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with ¢, ¢g, ¢3 > O(independent of €). Since, ¢ < p and max {p,pz — z%} < r we have

N—sp_ aN—sp) (p—l)(N_T(N—Sp))
p p? p p

from which we can choose ¢ > 0 small so that 1(t.) < %Sﬂp

S N
Hence, ¢y = inf supl)(tu) < supl(tv.) =¢(t.) < —=S*r. m
A= ety SO Inltu) < sup ly(fve) = te) < 5

2.4 Existence of Solution

Proof of Theorem 2.0.1. We know that the functional I, has the structure of the mountain
pass theorem, and from Lemma 2.2.5 its (PS) sequence is bounded. Let (u,) C W be a (PS)
sequence satisfying

In(un) — ¢y and I} (u,) — 0,

where ¢, is the minimax level of the mountain pass theorem associated with I. Using the same
arguments of [48, Theorem 4.2] (see also [44]) we conclude that ¢, < @,.

Since that (u,) is bounded in W, up to a subsequence one has u, — u in W and applying
Lemma 2.1.2 we have u,, — v a.e. in RV.

To prove case (i) in Theorem 2.0.1, we will use Lemma 2.3.1 to get A* > 0 such that
0 < cn €06 < %S% for all A > A*, while for case (i) we use Lemma 2.3.2 to get
0<C)\§E)\<%S% for all A > 0.

Claim: Let u, = max{—u,,0}. Then u, — 0 in W. In particular, u;” — u a.e. in RY.

Indeed, since I} (up)u, — 0,

L ,x el A 1) = )y

—/ (u,)Ps2uu dm+)\/ g(u) 2wt u, do + o(1)
RN RN

Using the elementary inequality, for m = {p, ¢},
07 (2) = o™ ()| < T (v(@) = v(y)) (v (x) = v (y)), for all z,y € RY,

it follows that u,, — 0 in W. Hence u,, — 0 a.e. in RY, in particular v, — v a.e. in R¥.

Applying the Lemma 2.1.1 for (u;}") which is bounded in L?Ps(RY) results

(wH)Pi=t — 51 i LT (RY) (2.19)
and

(uh) ™ — ™ in Lo (RY). (2.20)
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Let m € {p,q} and denote

Since u, — u a.e. in R we have

u(@) — u(y)|"™*(u(x) — u(y))

. N
[z — [ a.e. in R™.

U (z,y) — U(z,y) =

Moreover,

/7/’%@MWM®SW£%
RN JRN

Thus (i4,,) is bounded in L™ (R?Y) for m € {p, ¢}. By Lemma 2.1.1 yields

U, — U in L™ (R™?). (2.21)

v(z) — oY)
’Q? _ y’(N—i-sm)/m

Now note that given ¢ € W we have
(2.21) that

p(z) —¢(y) p(x) — p(y)
/RN /RN Uy (z,y) - y|(N+sm)/mdxdy — o U(z,y) P y’(NHm)/mdxdy. (2.22)

€ L™(R*). Hence, it follows from

It follows from (2.19), (2.20) and (2.22) that I}(u,)e — I5(u)e and so u is a solution (weak)
of (2.1).

We know that u > 0. It remains to verify that u # 0. Let
. p . : q __.
nh_}rr;() [unl;, =1 a >0 and nh_)rgo [un]s, =10 > 0.

and suppose that u = 0.

Since I} (u,)u, — 0, we also have

[unll ) + [un]l, = )\/ g(u)rdz + / (u)Psdz + o(1)

RN

Using the condition (¢;) and the weak convergence ()" — u” in L7 (RY) we get

)\/ g(ul)dz — 0.
RN

Thus,
[un]f;p =a+o(1), [un]g’q =b+o(1), and ||lu,

Py _
p:—af‘i_b‘i‘O(l)

By taking into account that I)(u,) — ¢, we have

-4 - — = ¢y > 0. (2.23)
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Hence
1 N—sp) (1 1)
cn=al|—-— +0| - —— 2.24
g <p Np q p; (2.24)
s
> q—. 2.25
>t (2:25)

The equality (2.23) shows that a + b # 0. The definition of S show that

p
PE
s

S(a+b)» <a=a>0.

Thus

Then by (2.25) we have

N
which is a contradiction, because ¢y < S+ . This concludes the proof. l

2.5 Regularity of solutions

In this section we will apply the regularity results proved in Section 1.2 to show that if u € W
satisfies (2.1), then u € L®(RY) N C2 (RY).

loc

Proof of Theorem 2.0.2. Due to Theorem 1.0.1, it is enough to show that v € L/®:~D(RM)
for some 6 > Sﬂp. In fact, if this is true, then since u € LPs(R") and g e LYRM)N LOO(RN) where

t > 0 is give in (g;), we have by the Holder’s inequality for v = -l 1 and o = p £=—that
0(ps—1)—ps p%:ll
7‘ 571 s—r *__
[ a0 < o1 oy ([ %u) <.
RN RN
for 6 > ¥ > jV D which implies that M > 0). Therefore f = Agu™™' + uPs~! €
sp Np—N+sp —1

LY(RY), with 6 > S—]\;, which jointly with Theorem 1.0.1 give us u € L>(RY).

Let us show that u € LY@~ (RY) for some 6 > S—]\;. Let M > 0 and 8 > 1, and denote as
before uy; = min{u, M}.

Define hg p/(t) = t(min{t, M })?~1, thus,

t3, set < M,
hﬁ’M(t):{ tMP=1 set > M.
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We have that hg s is increasing, continuous and has bounded derivative. Hence, if v € W,
then hgar(u) € W. Using the test function ¢ = hg(u) in (2.6) we get

Sp(u(@) —uly)) | Je(ulz) —u(y)) B . i
/RN /]RN< |x — y|N+SP - |CL’ _ y|N+Sq ) (hrB:M<u(x)) hﬂM( (y))) dzdy

:)\/ gu’"_lhg,M(u)daz+/ uP>hg (w)da (2.26)
RN RN

= )\/ guruﬁjldx + / up:uf/fldx =:J; + Jo,
RN RN
where
Jy = )\/ gu'us da
RN
and

Ja ::/ wPrulda,
RN

To estimate the term Jy we proceed as in [12]. Using Holder’s inequality and the fact that
uy < u, we obtain

*_p B—1
Jy = uPs pué\z uPdx
RN

= / wPrul T e + / wPrul da (2.27)
{u<Ko} {u=Ko}

*
s

P gp o %
< Kg_l/ uPsdx + </ upzdx> ’ (/ up:ug\i V% dx) ,
RN {u>Ko} RN

where Ky > 1 is a constant that will be choosen later. To estimate .J;, note that, since uy; < u
we get

T

r A1 61 i)
A gu'wy; de < AKy || gl pewy uPsde | .
{U<K0} RN

and on the other hand, since Ky > 1 and r < p?, using that g € L*(R") and applying Hélder’s
inequality we obtain

/\/ gu'ul e < )\/ guPul e < )\||g||Loo(RN)/ wPiul T da
{u=Ko} {u=Ko} {u=Ko}

P

<C (/ upzdx> " (/ upzugi_l)”sdx> o
{u>Ko} RN

Then
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Let

Gp.m(t) :/0( (T )) rdr > ———— T P (min{t, M})%. (2.28)

By Sobolev inequality (2.2), and Lemma 1.1.3 we can see that

5( [ Gaututo)

Consequently,

5( [ 1Gaaituto)

P

<\ PR |G (u GﬁM( ()P
ps
<) | g,
< Ji + Js.

L*
* Ps
psdx) <Ky <||u||m(

i)

Ps—p P

T . Ps 3
+CY (/ up:dx> ’ (/ upsu(ﬁ R dz ) )
{u>Ko} RN

From (2.28), and the above inequality, we get

*
s

p P PE
p e p-1
() (Lo Par) "< G (s

*
Ps—

. p§p . (/3 ;; %
+ Cy / uPsdx / uPsu,y, Tar)”
{u>Fo} RN

Fixing 6 > Sﬂp, we take 8 > 1 such that

5 (RN)> (2.29)

*

(8- 1)p+ps—9(ps )i-e-ﬁzpﬁ(pzp—:l)—(p—l)-

S

and as u € LPs(RY) we can choose Ky = Ky(3,u) > 0 such that

Ps p
U2 " =2 (i)
{u>Ko} 2\B+p—1
Hence from (2.29) we get

. x _1
(/ urs ”dx) go(p—+ﬁ ) Ko (||u||Lps
RN p

If we now take the limit as M goes to oo, we finally get that u € LOP:—D(RN).

ran)

Consequently, u € L>®°(RY). The hypothesis g € L*(RY), implies that f = |u[P*"2u +
Aglu|""?u € L>(RY). Therefore, by Theorem 1.0.1 results u € C¢ (RY). B



Chapter 3

On the behavior of least energy
solutions of a fractional (p, q¢(p))-
problem as p goes to infinity

In this chapter, first, we consider the nonhomogeneous problem

(80 + (-0 u = pluw) * u(z)s,, w0
uw=0 in RN\ Q, (3.1)
|u(z)] = [Jull

where «, 3, p,q and p > 0 satisfy suitable conditions, =, € 2 is a point where v attains its sup

norm (|u(z,)| = ||ul|.,), 0z, is the Dirac delta distribution supported at x, and 2 be a bounded,
smooth domain of RY.

Proceeding as in [4] and [26], one can arrive at (3.1) as the limit case, as r — oo, of the
problem

(=80 + (=20 | u =l ™ in ©
u=0 in RY\ Q,

where ||-||, denotes the standard norm in the Lebesgue space L"(£2).

In Section 3.3, we fix the fractional orders a and § (with o # ), allow ¢ and p to depend
suitably on p (¢ = ¢(p) and p = p,) and denote by u, the positive least energy solution of the
problem

@ B — .
(=0)" + (D) 0 = 1y [0 ()b, im0 0
u=0 in RV\Q
()] = ulle

In the sequence we determine the asymptotic behavior of the pair (u,, x,) € X () x Q, as p goes
to oo.

Our main results are stated in Theorem 3.0.1 below, where, for each s € (0, 1],

Co°(Q) == {u € Co(Q) : |ul, < o0},

40
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with |-|, denoting the s-Holder seminorm, defined by

lul, = sup{M cx,y € Q  and x;éy} (3.2)
|z =y

Theorem 3.0.1 Assume that

limq<p)::Q€{<?’1 if 0<fB<ax<l

p%oo? (,OO) if O<O€<6<1

and
A= plg{)lo Y, > R7%,
where R is the inradius of ) (i.e. the radius of the largest ball inscribed in ).

Let p,, — o0o. There exist v, € ) and uq € C’g’ﬁ(ﬁ) such that, up to a subsequence, T, — Too
and u,, — U uniformly in Q. Moreover:

(i) 0 < un(z) < (ARP) T (dist(z,00))° Yz € Q,
(ii) dist(zs, Q) = R,
(i) too(o0) = [|ticelo. = R¥(ARP)T,

(iv) Jusly = (ARP)@T,

(v) |UOO|B =R P = min{ﬂ cv € C’g”B(ﬁ) \ {O}},

lucclloe 1]l oo

(Vi) u is a viscosity solution of

max {E;Lu, ([,gu)Q} = max {—E;u, (—EgU)Q} nQ\ {7},

where in the above equation the operators are defined according to the following notation,
where 0 < s < 1:

ey M) —ulm) ) () e i W) —u(@)
(£:) (@) T e W —al d (L) (@) yeRNi{x} ly—z|® (33)

Our approach in this Chapter is inspired by the arguments and techniques developed in some
of the works above mentioned and can be applied to the fractional version of [26] and also for
studying a fractional version for the system considered in [40].
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3.1 Preliminaries

Let 2 be a bounded, smooth domain of RY, N > 1, and consider the Sobolev space of fractional
order s € (0,1) and exponent m > 1,

Wo™(Q) = {u cL™(RY):u=0in RY\Q and [l < oo},

"
(/RN/RN |.77— N—i—smddy

As it is well known, <Wos’m(Q)7 ]

where

-

is the Gagliardo seminorm.

5 m) is a uniformly convex Banach space (also characterized

as the closure of C¢°(Q2) with respect to [-], ), compactly embedded into L"(£2) whenever
Nm
1§r<m::: N — sm’ m<N/S’
00, m > N/s.
Moreover, -
W™ (Q) = Co(R2) if m > N/s. (3.4)

(The notation A << B means that the continuous embedding A < B is compact.) It follows
that the infimum

As;m = Inf {% cu € W)\ {O}}

is positive and, in fact, a minimum.

The compactness in (3.4) is consequence of the following Morrey’s type inequality (see [24])

ju(z) — U(y)l

sup ——— < C [y

< ems  YueWrm™(Q) (3.5)
@y)#00) |z —y|” ’

which holds whenever m > N/s. If m is sufficiently large, the positive constant C' in (3.5) can
be chosen uniform with respect to m (see [28, Remark 2.2]).

In [39], Lindqvist and Lindgren characterized the asymptotic behavior (as m — oo) of the
only positive, normalized first eigenfunction u,, of (—A,,)* in Wy (). Namely, u,, > 0 in Q,
[tmll,, = 1 and [un]},, = Asm, where

Ay r=inf {[u], € W™ () and [, = 1}

is the the first eigenvalue of (—A,,)°. Among several results, they proved that

Tim /A % Vo e Cx@)\ {0} (3.6)



43 3.1. PRELIMINARIES

Let (—=A,,)" be the s-fractional m-Laplacian, the operator acting from W™ (Q) into its
topological dual, defined for all u, p € W3 () by

(~An) ), = /RN /RN [u(z) — u(y)|™ " (u(z) —uly))(p(z) - w(y))dzdy.

|.T . y|N+Sm

We recall that (—A,,)°u is the Gateaux derivative at a function u € W™ () of the Fréchet
differentiable functional v — m™! [v]”"

s,m "

An alternative pointwise expression for (—A,,)" u is

[ulw) — u(y)[" ™ (uly) — u(z)) ,

N+sm Y-

(Lomia) =2 [

(3.7)
RN |z — y|

As argued in [39], this expression appears formally as follows

N ()" (ula) =) e@) = W),

=y

N R B U R AV
a /]RN o) (/}RN |z — y| Ve dy) d

[ e ( [ [u() - “’(j)'_my,N(if) ~ u(y)) dx) »

= [ oLl

As usual, we interpret (3.1) as an identity between functionals applied to the (weak) solution
u. Thus,

(=8 u ), + (A u ), =plule)P 2 ule)e(e) VeeX©), (38

where X (€2) is an appropriate Sobolev space (that will be derived in the sequence). The functional
at the left-hand side of (3.8) is the Gateaux derivative of the Fréchet differentiable functional
v pt [wlb, + q ! [v]},, at u. However, the functional at the right-hand side is merely related to
the right-sided Géteaux derivative of the functional ¢ — p~' ||p||%. whenever u assumes its sup
norm at a unique point x,. This has to do with the following fact (see Lemma 3.2.5 and Remark

3.2.6): if u € C(2) assumes its sup norm only at x, € €2, then

p P _
lim 1t el ““”oo:|u(xu)|p*2u(xu)¢(xu), Ve @)

e—0t pe

Therefore, we define the formal energy functional associated with (3.1) by

1 %
[ulo, + . [u]f, — » lull?, . n>0,
and formulate our hypotheses on «, 3, p and g to guarantee the well-definiteness of this functional.
For this, we take into account (3.4) and the following known facts:
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o WiP(Q) L Wi(Q) for any 0 < s <1< ¢ <p < oo (see Appendix A.2 and [41, Theorem

o W52™(Q) — Wyt (), whenever 0 < 51 < s < 1 < my; < my < 0o (see [11, Lemma
2.6]).

Thus, we assume that «, 5, p and ¢ satisfy one of the following conditions:
0<a<f<1l and N/a<p<g (3.9)

or

0<f<a<l and N/B<q<p. (3.10)

The assumption (3.9) provides the chain of embeddings WPUQ) — WEP(Q) = Co(Q)
whereas (3.10) yields WP (Q) < W (Q) << Cy(Q). Therefore, the Sobolev space
WEQ), Hﬁ,q> if 0<a<f<1l and N/a<p<yq

X(Q):=
) Woa’p(Q),[-]MD) if 0<pf<a<l and N/B<q<p,

is the natural domain for the energy functional E,. Note that

X(Q) cWPQ)NWPQ) and X(Q) —— Co(Q).

Once we have chosen X (2), a weak solution of (3.1) is defined (see Definition 3.2.2) by means
of (3.8).

As for the parameter i, we assume that
1> Aoy, (3.11)

where
. [U]Z,p o,p [e]izp
Aa,p = inf Tl cue WP )\ {0} p = —= >0 (3.12)

lell%

for some function e € W3*(2)\{0} . The existence of e is a consequence of the compact embedding

of W5"P(Q2) into Cy(£2) that holds in both cases (3.9) and (3.10).

It turns out that (3.11) is also a necessary condition for the existence of weak solutions (see
Remark 3.2.3).

Assuming the above conditions on «, 3,p,q and pu we show the existence of at least one
positive weak solution that minimizes the energy functional either on W %(Q)\ {0} , when (3.9)
holds, or on the following Nehari-type set

Ny = {u e WP (@) \ {0} : [ulf, + [ult, = el } (3.13)

when (3.10) holds. Both type of minimizers are referred in this work as least energy solutions of
(3.1). The reason behind the appearance of the Dirac delta is that the set where a minimizer of
E,, attains its sup norm is a singleton (as we will show).
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3.2 Existence of a positive least energy solution

In this section, we assume that p satisfy (3.11) and that «, 3, p and ¢ are related by one of the
conditions (3.9) or (3.10). Our goal is to prove the existence of at least one positive least energy
solution u, € X (£2) \ {0} for the problem (3.1).

Remark 3.2.1 We recall that [[ul],, < [u],,, for allu € W5™ () since

lu(@)] = [u(y)l| < [u(z) —uly)] ifulz)uly) <O0.

Definition 3.2.2 We say that a function v € X(Q) is a weak solution of (3.1) if ||ul|, = |u(z,)|
and

(=) w0), 4 (A wg), . = plu(m)P u(w)p(), Yo € X(Q).
Remark 3.2.3 Ifu € X(Q) is a weak solution of (3.1), then (by taking ¢ = u)
[ufap + [ulfg = nellullZ
If, in addition, u # O the definition of A, yields
pllullse = [ula, + [ulh, > [ulG, 2 Aap % -

This shows that (3.11) is a necessary condition for the existence of a nontrivial weak solution.

Proposition 3.2.4 Suppose that o, 5, p and q satisfy (3.9). There exists at least one nonnegative
function u, € X(Q2) \ {0} such that

Eu(u,) < E(u) Yue X(9).

Proof. Let

Ngq = inf{ s cu e WHIQ)\ {O}} > 0. (3.14)

lull5

Since X (Q) = W(Q) we have

E, (u) >

o
uq __upz
[u]5,4 pH |

sy = S Wl () = hllels) Vue X(@),

=

1
q

where h : [0, 00) — R is given by
1
h(t) = -1 - 1 (e/Ag,q> .
q P

Noting that tlim h(t) = oo and
—00

1 q

h(t) > h([u (m)"’]q‘ﬁ o (1 - 1) {u (M)_p}
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we conclude that E, is coercive and bounded from below. Hence, by standards arguments of the
Calculus of Variations (recall that X (Q) = WP(Q) — W (Q) <> Cy(Q)) we can show that
the functional E,, assumes the global minimum value at a function u, € X (2).

Now, in order to verify that u, # 0 we show that E,(v) < 0 = E,(0) for some v € W (Q).
Let u € W5"(22) \ {0} be such that

p
[U]a,p - Aap + 1
S ullf 2

A

By density and compactness, there exists a sequence {¢,} C C2°(€2) such that [¢,], , = [u]

a7p
and ||¢y|| = ||lul|,, - Therefore, there exists ny € N such that

[@no]i,p < )\a,p + M

lenollee = 2

< u.
Since ¢, € X(2) we have

u(tony) < g [@no]ﬁ,q ET (1 ap) <

for some ¢ > 0 sufficiently small. Thus, v := ty,, is such that E,(v) < 0.
According to Remark 3.2.1, E,(Ju,|) < E,(u,). Therefore, we can assume u, > 0in ). m

In the sequence we show that under (3.9) any minimizer of the energy functional £, is a weak
solution of (3.1). For this we need the following result proved in [33] and we will reproduce here.

Lemma 3.2.5 Let u e C(Q) and I, :={z € Q : |u(z)| = ||ul|}. Then,

ek el — [l
e—0t pe

= m:anx{|u(x)|p_2 u(z)p(z) €T}, VeelQ).

Remark 3.2.6 According to the notation of the Lemma 3.2.5, if for some L € R,

max {|u(z)["* u(z)p(z) : 2 € T} < L < min {Ju(z)[" " u(z)p(z) : 2 € T},

for all ¢ € C(2), then

u(@)|" 2 u(z)p(z) = L= [u(y)"uy)e(y), YeeC@Q) and z,yel,.

Of course this implies that T, is a singleton, say T, = {x,}, and therefore the Lemma 3.2.5
yields

P _ p _
e—0t pe

Proposition 3.2.7 Suppose that o, 5,p and q satisfy (3.9). If u € X () satisfies
Eulu) € Eu() Voe X(Q)

then u is a weak solution of (3.1).
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Proof. Let p € X () and € > 0. By hypothesis,

Eu(u + €p) — Eu(@)

0< = A<€> - NB(E)v
€
where » , . .
A(E) - [U + Ego]a,p - [u]a,p + [U + 630],8,(1 - [u]/j,q
’ €ep €q
and

-+ el = lulll,

B(e) = | ”

As we already know (from the Introduction)

L:= lim A(e) = ((—A,)" u, <p>a7p + (A, u, §0>B,q'

e—0T

According to Lemma 3.2.5

lim B(e) = max {|u(91:)|p_2 u(z)p(z) :z €l,}.

e—0t

Consequently,
- max {|u(3(;)\p_2 u(z)p(z) xel,} <L

Now, repeating the above arguments with ¢ replaced with —¢ we also conclude that

L < pmin {Ju(z)]” > u(z)p(r) : x € T, } .

It follows that (see Remark 3.2.6) T', = {z,} and

)

L = plu(z, U(20) P (Tu)-

Now, let us analyze £, under the hypothesis (3.10). First we observe that £, is unbounded
from below in X (€2). In fact, this follows from the identity (where e € W;"’(Q) is given in (3.12))

4 tP
Bu(te) = ~[elh, = 5 (0= o) el ¥E>0. (3.15)

Thus, as usual, we look for a minimizer of E,, restricted to Nehari-type set NV, given by (3.13).

Taking (3.10) into account, the following properties for a function v € X () \ {0} can be

easily verified

uE N, < B, (u) = (é - %) ul?, (3.16)

and 1

[u]q P—q
tue N, — [u’ < P d t= b . 3.17
u N# [u]a,p MHuHoo an (MHUHZO - [U]Z,p ( )
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The latter property shows that N, # @, since

le]ap = Aan llellse < pllells -
Moreover, combining (3.14) and (3.16) we obtain,

pllullty = [ulg, + [ulg, > (W, = Asg llulls
for an arbitrary u € N,. Consequently,

1

Y pa
me><43) >0, YueN,
o

and

1 1 1 1 A p—q
s (2-1) uq>(———))\ (i) S0, VueN,
() (q p) sallulle > (5= 2) dns g

Another property is that

[y, < %y [ulg,, Yu€eN,, (3.18)
q
which also follows from (3.14), since
[u]q q b
o, < lula, + [ulf, = nllull, < p <Tﬁj = 1 (Apq) @ [ulf, -

Proposition 3.2.8 Suppose that «,5,p and q satisfy (3.10). There exists at least one
nonnegative function u, € W (Q) \ {0} such that

E,(u,) < E,(u) Yu€eN,.

Proof. Let {u,} € N, be a minimizing sequence:

E,(u,) = (é — %) [unlh, — my = inf {E,(u) 1 u € N,}.

Taking (3.18) into account and using compactness arguments, we can assume that wu,

converges to a function u, € W "(Q) uniformly in C(Q) and weakly in both Sobolev spaces
WP (Q) and WJ(Q). Of course, u, # 0 since

1

o\ ma
]l > (i) -0

0

< [un)? +M%HSMMﬁG%V—H%%J:MM%MMNQZMMAQ,

a,p n a,p
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thus implying that fu, € N,, where

1

q p—q
0 .= [uﬂ]ﬁg < 1.
pllwllZg — Tuuls, B

Consequently,

my, < E,(0u,,)
1 1 1 1
=09~ —~ ) [u,l’ <(———)hminfunq = lim E,(u,) = m,,,
(=2 ) i, < (5 -5 ) tmint ., = tin B, () = m,
that is, 0 = 1, u, € N, and m, = E,,(u,,).

Remark 3.2.1 and (3.17) show that |u,| € N, and E,(|u,|) < E,(u,). Thus, we can assume
that v, > 0in Q. =

Proposition 3.2.9 Suppose that o, 5,p and q satisfy (3.10). If u € N, is such that
E,(u) < E,(v), YveN,
then u is a weak solution of (3.1).
Proof. Let ¢ € X(12) be fixed. Since u € N, we have p|[ull}, — [u]}, , = [u]§, > 0. Thus, by
continuity there exists ¢ > 0 such that
pllu+spllf, — [u+ sl , >0, Vs € (—¢e).

It follows that
T(s)(u+sp) € N,, Vs e (—¢e),

where )

7(s) = ( Ju+ 5@]5,(1 >”q , S E(—€€).

pllu+ spllf, — [u+ sl

Therefore, the function

P 7(s)?

V(s) == Eu (T(s)u+ sp)
= (s [u+ sl +

[u+splh, — 1 |u+sel’,, se(—€e)

7(s)’
p
assumes a minimum value at s = 0. This implies that

> 0. (3.19)

Using Lemma 3.2.5 and observing that 7(07) = 1 and u € N, we compute

Y(O) = ((=8) w,0), + (=20 u, ), — pmax {|u(z) " u(z)p(z) : v € T} .
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Hence, (3.19) yields,

L Max {\u(x)]p_z w(x)p(z) 1z € Fu} < < (—A,)" u, go>a7p + < (_Aq)ﬁ u, g0>ﬁ7q.

Replacing ¢ by —¢ we obtain
(=) w0),, + ((~A) ), < pmin {Ju(x) " ulz)p(e) : 2 € T,}
P B.a
Hence, according to Remark 3.2.6, I', = {z,} and

< (_Ap)a U, §0>a,p + < (_Aq)ﬁ U, 90>5,q =K |u(xu)|p_2 u(l’u)sﬁ(%)

We gather the results above in the following theorem.

Theorem 3.2.10 Suppose that o, 5,p and q satisfy either (3.9) or (3.10), and that u satisfies
(3.11). Then (3.1) has at least one nonnegative least energy solution u, € X () \ {0} .

We remark that u, € X(Q) \ {0} given by Theorem 3.2.10 is a nonnegative weak solution of
the fractional harmonic-type equation

[(-A,,)a + (—Aqﬂ w=0 (3.20)
in the punctured domain Q \ {z,}, since

(=8 wu )+ () wu,0), =0 Ve O\ {wy,}). (3.21)

Consequently, if p > ﬁ and ¢ > ﬁ (see Remark 3.2.11) one can adapt the arguments

developed in [28, Lemma 3.9] and [39, Proposition 11] to verify that u,, is also a viscosity solution
of
Lopu+Lsu=0 inQ\{z,}, (3.22)

(recall the definition of L;,, in (3.7)). This means that w, is both a supersolution and a
subsolution of (3.22), that is, u, meets the (respective) requirements:
o (Lapp)(0) + (Lsgp)(z0) < 0 for every pair (zo, ) € (U {zy, }) x CHRY) satisfying
o(ro) = uu(rg) and ¢(z) <wuu(r) VreRY\ {xuwao} ,
o (Lo,p0)(wo) + (Lsqp)(g) > 0 for every pair (xg,¢) € D x CH(RY) satisfying
e(z0) = uy(z0) and @(z) > u,(z) Vo eRY\ {z,,,z0}.
Remark 3.2.11 As observed in [39], if D is a bounded domain of RN, m > = and ¢ € C}(RY),

then the function L., given by (3.7) is well defined and continuous at each point x € D.
Obviously, the same holds for 1 = @ +k, where k is an arbitrary constant and ¢ € CHRN), since

(Lomt) () = (Lsmp) ().

Moreover, it is simple to check that u, fulfills both requirements above even for test functions of
the form ¢ = ¢ + k.
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It is interesting to notice that u, > 01in Q' {xuu} as consequence of u, being a supersolution
of (3.22). The argument comes from [39, Lemma 12]: by supposing that u,(zo) = 0 for some
xo € Q\ {xu#} and noting that 0 Z u > 0, we can find a nonnegative and nontrivial test function
© € CHRY) satisfying

o(10) = 0 < p(a) < ule) Vo€ RY\ {2, 20}

Hence,

2[o(y) " 2 o(y)" % oly
o< [ 2L ay - [ 2Ly < (20000 + (Logpan) <0
S r— P

which leads to the contradiction ¢ = 0.

3.3 Asymptotic behavior as p goes to infinity

Let D be a bounded smooth (at least Lipschitz) domain of RY. We recall that (CQ’S(E), ||8)
is a Banach space, but

Co"(D) # Cx(D) .
That is, C2°(D) is not || ,-dense in Cy*(D).

However, we have the following lemma that follows from [27, Lemma 9].

Lemma 3.3.1 Let v € Cy°(D). There exists a sequence {v,} C C®°(D) such that

lim [Jogl,, = [0, and limsupo, <o,
k—o0 k—o0

Now, returning to our bounded domain €2, let

R := maxdist(z, RV \ Q).

TN
It is the inradius of €): the radius of the largest ball inscribed in (2.

Let Bgr(zo) be a ball centered at zy € Q with radius R and let ¢r : Br(xg) — [0, R] be the
distance function to the boundary dBg(xo), that is,

or(z) == R — |z — x0] .

It is simple to verify that ¢p € Cy*(Bg(xg)), for every s € (0, 1], with
l¢rll =R and |pg|, = R (3.23)

Moreover, it is clear that ¢ extended by zero outside Bg(xy) belongs to C5*(Q) and its s-Holder
seminorm is preserved. In particular, such an extension is a Lipschitz function vanishing outside
Q). Hence,

dor € Wy™(Q) — WZ™(Q) Vse(0,1) and m > 1.



52 3.3. ASYMPTOTIC BEHAVIOR AS P GOES TO INFINITY

(Note that we are considering 2 at least a Lipschitz domain.) Consequently, we can apply [27,
Lemma 7] to conclude that

lim [¢g],,, = |¢rl, = R'™%, foreachs € (0,1). (3.24)

m— 00

The proof of the following proposition is adapted from [39] where (3.6) is proved.

Proposition 3.3.2 For each s € (0,1] one has

lim /A =R ° = |orl, min ol (3.25)

m—300 orlle vect@noy 1]l

Proof. The second equality in (3.25) follows from (3.23). Since ¢r € Co°() \ {0} to prove
the third equality in (3.25) it suffices to verify that

e < o

s Yoelr(Q))\{o}. (3.26)

1]l oo

Let v € Cg*(Q)\ {0} . According to Lemma 3.3.1, there exists a sequence {v,} € C°(Q) such
that

lim ol = ol and Limsup o, < Jol,.
k—o0 k—oo
Hence, (3.6) yields
R™* < limsup [oel, vl
— e — )
koo [kl M0l

concluding the proof of the third equality in (3.25)
Now, let us prove that

lim X/ s = R°.

m—00

First, observing that

mé [¢R]s,m
107l
we obtain from (3.23) and (3.24) that
[®r] |OR|
limsup Y/ Asm < lim 2 = = R°. (3.27)
m—o0 m=o |[0rll  I9rll.

To prove that

R~ < liminf ( m) (3.28)

m— 00

we fix mg > & and take, for each m sufficiently large, u,, € W™ (2) such that [jun,||,, =1 and

)\s,m = [um]z’lm .
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According to (3.5), we have

|t () = um(y)]

(Ul = sup

" @a)£00) |z —y[* ™o
= sup [tm () s—N( )l ’x_y’(mo m
(x’y)7£(0’0) |x — y| m
< (diam(Q)) e ™) gup  [4m(®) = Uum(y)
@y)#00) |z —y|m

N N N N)

< (diam(9)) "o~ ™ C [uy), . = C(diam(€)) o= 8/x ..

08— __

The estimate (3.27) implies that {u,,} is uniformly bounded in the Holder space C, 7m0 (),

which is compactly embedded in Cy(€2). It follows that, up to a subsequence, {u,,} converges
uniformly in § to a function u € Cy(€2) such that ||jul| =

For each 1 < k < m, we have, by Holder’s inequality,

[t () = i (y)[* | )" "
U (T) — U, Uy ( m m
/ / S dady < [ ( / / ) ~unly dxdy)
QJQ |x — y| m |Jj - y|
k
< |Q|2(1—£) ([Um]s,m) — |Q|2 (1-£) <m/—)\sjm> ‘

Making m — oo, using the uniform convergence, Fatou’s Lemma and the above estimate we

obtain
dxdy < lim inf X k dzdy

< Q] hmmf(%) .

Therefore,

Jun

%
o 5170 1) < (5.

Since R~* < |u|, (according to (3.26)) we obtain (3.28). =

In the remaining of this section we fix a, 8 € (0,1), with a # 3, and consider ¢ a continuous
function of p satisfying

(1),1 if 0<f<ax<l (3.29)

a (
plggop Qe{(,oo) if 0<a<p<l.

We maintain the notation ¢ instead of ¢(p) to simplify the presentation. Note that (3.29) implies
that

lim ¢ = o0

pP—00

Moreover, g < pif Q € (0,1) and p < ¢ if @ € (1, 0).
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Our goal is to study the asymptotic behavior, as p — oo, of the least energy solution u, of
the problem

(=80 + (=80 | w= gy [ul% 8, in ©

[ull o = ulzy) and ¢ 4 >0 in Q (3.30)
u = in RY\ Q,
where p, satisfies
A= pli)rgo o, > R, (3.31)
with R denoting the inradius of 2.
This condition guarantees that
tp > Aap (3.32)

for all p sufficiently large, say p > py. Moreover, by taking a larger py one of the conditions (3.9)
or (3.10) is fulfilled. So, according to Theorem 3.2.10, for each p > py the problem (3.30) has at
least one positive least energy solution

[ WEPQ) i 0<fB<a<l
u, € Xp(Q) := { Wqu(Q) if 0<a<p<l.

Remark 3.3.3 Combining (3.24) and (3.31) we have

lim [(bR]a’p =R%<A:=lim Y.

p=o |[0r| o peo

Consequently, i, [|pr|%, > [¢rl,,, for all p large enough.

Proposition 3.3.4 Suppose (3.29) and (3.31) hold. Then,

plgrolo [up]/a,q =

(AR®)®T  and  lim |Ju,|_ = R*(AR%)@, (3.33)
p—00

Proof. We assume that p is large enough so that wu, exists according to Theorem 3.2.10.

Since u, is a weak solution of (3.30) and W/*4(2) is continuously embedded into C'(Q) we
have )
[up]qﬁq < [up]ip + [Up]gaq =y lupllZ, < MPM7 (3.34)
’ ’ ’ (/As.0)

so that .
([up]ﬁ,q) P

Vo

[up]g,q

v )‘ﬁ,q .

Hence, taking into account the first equality in (3.25) and (3.31) we easily check that the
second limit in (3.33) is a consequence of the first one.

< lupllo <

Let us then prove the first limit (3.33).
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We start with the case @ € (1,00), where necessarily p < ¢ (and 0 < a < ). After isolating
[up] 5, 10 (3.34) we obtain

p

. ) Y Hp “r ==
lim sup [u < lim = (ARP)e T, 3.35
p_)oop[ p]ﬁ,q = e (m ( ) ( )

Let

O e A S T e
ox, or, |

(Note from Remark 3.3.3 that ¢ is well-defined). It is simple to verify that

1 1
E,,(tor) = (5 - 2—9) t1(orl5, -
Noticing that
1 1 1 1
(3= 3) lty = Bl < By (e0m) = (5 = ) e7foult, <0
we obtain
ppR? — [omlh, " /T o
[Wplg, > t[bRls, = = [Pr]5, = 1 — (ap) :
PlB,q B.q [QbR]%g B9 [¢R]5,q p
where (65]
a, = 2P (3.36)
YR
Since
lim a, = R = e <1
pooo P AR A ’
we can verify that
plggo 1—(a,)r =1
Hence,
- ~(ymR\T " (ARNTT
U atlerls, 2 i (mm Jm (Yr-@r) ={7) —ORT

Combining this with (3.35) we obtain the first limit in (3.33).

Now, let us analyze the case @ € (0,1), where necessarily ¢ < p (and 0 < 8 < «). In this
case,

1 1

0< (% — 219) [up)h , = Epy(up) < By, (tor) = (5 - 2—)) t' [R5,
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where 1

- onls, N\ (D, \T
tp RIS, — [¢R]Z,p pp P — [QSR]Z,p

(which is also well-defined according to Remark 3.3.3). It follows that

[¢R] . P—q
[up]@q < t[¢R]B7q = ({’/N_pvaﬂ;pr)> ;

where a,, is also given by (3.36). Consequently,

[9r]5 a (Rlﬁ) = 1
lims < li 4 = — = (ARP)@T | 3.37
1§L£p [Up]@q a pggo ( YR/ — (ap)P ( ) 40

After isolating [up], . in (3.34) we obtain

P )
a/)\ P—q B\ T-0
lim inf [up]ﬂ’ > lim (ﬂ> — (R_> — (AR,B) 1717

p—00 97 pooo \’//Tp
which combined with (3.37) provides the first limit in (3.33). =
Corollary 3.3.5 Suppose (3.29) and (3.51) hold. Then,

1 Q
ﬁ < . . .
Aa (AR7)eT < liminf [y, , < h;{igp [tp]

< (ARP)a".

Proof. 1t follows from the second limit in (3.33) combined with the estimates

Aap [upllse < Tupla, < Tunle, + luplh g = pp llupllS, -

In the next proposition we prove that the limit functions of the family {up}p as p — 00,

belongs to C§”’(Q2) and minimize the quotient |ul, / ||ull  in Cg**(Q) \ {0}.

>po

Proposition 3.3.6 Let {p,} and {q.} satisfying (3.29), with p, — oo, and let p, = p,,
satisfying (3.31). Then, there exist us € C’g’ﬂ(ﬁ) and To, € €2 such that, up to subsequences,
Up, — Uso uniformly in 0 and x,, — To € 2, with

oo (o) = ||t = RP(ARP) T,

Moreover,

lusols = (ARP)21 =lim [uy, ],
and
Uoly _ 1 _ min “ls (3.38)
sl R? wectP@niop lullo '
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Proof. Sinﬁe (2 is bounded, we can assume that (passing to a subsequence) x,, converges to
a point T, € €. Fix my > N/ and assume that n is large enough so that mg < {pn, qn} -

Taking into account the inequality (3.5), we have (as in Proposition 3.3.2)

|upn (z) — Up,, ()|

Up, |g_n = sup
Pom0 (am)2(0,0) lz — y|* ™o
< (diam(Q) o o) sup  [U2a(®) = U (9)]
@a)£00) |z —y|P

N N

< (diam(2)) el [upn]@qn '

The first limit in (3.33) implies that {u,,} is uniformly bounded in the Hélder space

08— __ _
C, ¥ (€2), which is compactly embedded in Cy(£2). It follows that, up to a subsequence, {u,, }

converges uniformly in 2 to a function us, € Co(Q). Of course, ||us| = Un(Ts) and, by virtue
of the second limit in (3.33),

Uoo(To) = RE(ARP)TT > 0,
so that x., & 0S.

Now, if m > mg and n is sufficiently large such that ¢, > m, Holder’s inequality yields

m

m _ gn qn
’upn(x) Up,, (y)‘ d[L‘dy S |Q|2(17q7n) ’upn(x) Up,, (y)‘ dl’d’y
aJo Nm +Bm aJa N+Bqn

|z —y[ o |z =y
< 1P ([up ), )

Hence, combining the first limit in (3.33) and Fatou’s Lemma,

QJQ

T — |,8m n—00 |x . lem-l-ﬂ

<[P timinf ([, )" = 10 (AR?)

Therefore,

1

|tso| g = lim (// [uo(z |;omy)| dxdy) < (AR%)@T,
m—0o0

It follows that u., € CJ”(€). Hence, observing that

v u u
1: in ‘|5<‘oo‘5: |tool g

RP ecti@noy Wl ~ lluxlle  RB(ARS)TT

we obtain

ool > (AR?)T.
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Therefore,
IS T
|u00|5 = (AR%)@=1 = lim [upn]g,qn
and )
uely _ (ARDT 1l
luclle  RE(ARS)TT R wecd? @0y 0]l
[ |

Remark 3.3.7 Considering Corollary 3.3.5 we can reproduce the proof of Proposition 3.3.6 to
conclude that, in the case Q@ € (0,1), the limit function is more reqular: uy € C’g’a(ﬁ) and,
moreover,
pro < Ltela oy
[[ttoo| o
These estimates are also valid in the complementary case @ € (1,00), where obviously the (-
reqularity is better that a-reqularity since 0 < a < 3.

Corollary 3.3.8 One has
Uso () < (ARﬁ)ﬁ (dist(z,99))" VaeQ

and, therefore, the mazrimum point xo, of Us @S also a maximum point of the distance function
to the boundary Of).

Proof. For each z € Q2 let y, € 02 be such
dist(z, Q) = |z — ya| .
Then, since e (y.) = 0 and [uc |z = (ARB)ﬁ , we get
oo (2) = it (@) = ()] < el 2 — 3 l” = (AR?) T (list(, 02))°
Hence, observing that dist(z, 08) = |z — y,| < R and us(2s) = Rﬁ(ARﬁ)ﬁ, we obtain

RP(AR?)@T < (ARP)TT (dist(100, 092))” < (AR®) 7T RP,

so that
dist(r,0Q) = R = ||dist(-,0Q)|| . -

In the sequel, we argue that the function u, is a viscosity solution of the equation
max {£+u (£+u)Q} = max {—E‘u (—E_U)Q} (3.39)
a™ B8 a B8 :

in Q\ {z} (the operators £} and £, are defined in (3.3)). This means that us is both a
supersolution and a subsolution of (3.39) or, equivalently, u., meets the (respective) requirements:
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e max {(E;‘go) (x0), ((Eggo) (mo))Q} < max {(—E;w) (o), ((—E/ggo) (xo))Q} for every the
pair (zg, ) € (2\ {zs}) X CHRY) satisfying

o(xo) = u(zy) and o(z) <wu(z) Yo eRY\ {zy 2},

e max {(E;rgo) (o), ((Eggo) (xo))Q} > max {(—ﬁgcp) (xo), ((—ﬁggp) (xo))Q} for every the
pair (79, ) € (Q\ {z}) x CHRY) satisfying

o(xo) = u(zy) and o(z) >u(z) VaeRY\ {zg 25},

A proof of the following result (where t* = max {4-t,0}), adapted from [15, Lemma 6.5], can
be found in [28, Lemma 6.1].

Lemma 3.3.9 Ifs € (0,1), p € CHRY), lim 2z, — z, then,

nll_r}(l)o Am(gp(zm)) = (‘C;r,oo@)(l’o) and 7%1_1}(1)0 Bm((P(Zm)) — <_£;OOS0)($0),
where
RY [y — Zm|
and
O e e
RN Yy — zm]

The proof of the next result is based on [28] and [39].

Proposition 3.3.10 The function us, is a viscosity solution of (3.39) in the punctured domain
Q\ {zx}. Moreover, uy > 0 in Q.

Proof. In order to verify that u., is a supersolution of (3.39) in 2\ {z.} we fix a pair
(20,9 € (@\ {z0}) x CL(RY) satisfying
©0(10) = Uso(z0) and () < us(z) Vo € RY\ {z¢, 200}

Since x¢ # T = limz,, we can assume that there exist no € N and a ball B,(z), centered
at zy and with radius p, such that

T, & By(zo) C 2\ {zx}) Vn >no.

Hence,
Lop,tin + Lp gty =0 inB,(z), Vn>n, (3.40)

in the viscosity sense.

By standard arguments, we can construct a sequence {z,} C B,(x¢) such that z, — = and

b = in (1) = (2) = () = pl20) < (o) = pl@) ¥ #
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It follows that the function v, := ¢ + k,, satisfies
U(2n) = Un(2,) and Y(x) <up(z) Va e By(x).
Consequently, (see Remark 3.2.11)
(Lapn¥n)(zn) + (L6, 0n)(20) = (Lapn®)(2n) + (Lsg.0)(20) <0, Vn > mno.
The inequality can be write as
n—1 n—1 n—1 n—1
A+ Al < By + Bl (3.41)

Where Apn = Apn(SO(ZTL))7 AQn = AQH(SO(ZWI))’ Bpn = Bpn (@(Zn>) a‘nd BQTL = BQn(sD(Zn))

We have

an—1 n—1
lim Y Aﬁﬁ_l + AZZ_I = lim Apn (pn_\l/l + ((Aqn)p"fl/Apn>p )

= max {lim A, , (im Aqn)lim o }
= max {(£3)(x0). [(£59) (w0)]“}

where the latter equality follows from Lemma 3.3.9. Analogously, we compute

lim "% Bg;‘_l + ng‘l = max {(—E;tp)(a?o), [(—ﬁESO) (%)}Q} .

Therefore, (3.41) yields

max {(E;'gp)(xo), [(ﬁgu) (ZL‘O)}Q} < max {(—E;gp)(xo), [(—Egu) (mo)]Q} ,
which shows that us is a viscosity supersolution of (3.39) in Q\ {z}.

Similarly, by symmetric arguments, we can prove that u, is a viscosity subsolution of (3.39)

in Q\ {z}.

The positivity of u., in 2 comes from the fact that u., is a supersolution of (3.39). Indeed,
adapting the argument of [39, Lemma 22], if uo(z9) = 0, then either

(La@)(wo) < (=Lgp)(zo) or (LEp)(wo) < (—Lye)(x0)
for a nonnegative, nontrivial ¢ € C!(R”) satisfying
©(70) = Uoo(10) = 0 < (1) < uo(x) Yo € RV \ {20, 200}
In the first case, this yields

plz) sup ©(y) L inf ©(y)

120 — Y™ T yerM\fao} 1Z0 — Y|" T weRM\{xo} |20 — y[”

<0 VzeRY\ {z}
and leads to the contradiction ¢ = 0. Obviously, in the second case we arrive at the same
contradiction. m

Proof of Theorem 3.0.1. It follows by gathering Proposition 3.3.6, Corollary 3.3.8 and
Proposition 3.3.10. |



Appendix

A.1 Estimates for usp

Let U be a radially symmetric and decreasing minimizer for the Sobolev constant defined in
(1.3) for m = p and it is know from [12] that there exist constants ¢, co > 0 and 6 > 1 such that

D <U(a)) € ——, Vz|>1, (A1)
k= s
uer) 1
< Z > 1. A2
Uir)y — 2 vrz (A.2)

Multiplying U by a positive constant if necessary, we may assume that U satisfies the following:

(i) (=A,)°U = UP*~! in RY
.. * N
(i) VT2, = [[UG = 5.

For any ¢ > 0, the function

N—sp

Us(x) =06~ 7 U(|z]/9)

is also a minimizer for S, satisfying (¢) and (7).

We may assume that 0 € €,. For any § > 0 and R > 0 consider the radially symmetric
non-increasing function s g : [0,00) — R by

_ [ Us(r), ser <R,
Usr = 0, ser > 0R.

Therefore, we have the following estimates from [42].

Lemma A.1.1 For any R > 0, exist C = C(N,p,s) > 0 such that for any 6 < %

J

[@s,rl;, < S + C(}—z);ﬂ? (A.3)
L6°Plog(R/6), se N = sp?

m p C ’ )

_ * N ) _

sl > 5% — O(Z)¥/oD. (A5)
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Let ¢ > 0. Since 2, is open, we can taking R > 0 fixed such that Byr(0) C €, and let us
define the function u. g : [0,00) — R by

_N-sp . p—1
usp(r) =¢ » Usp(r), withd =c7 .

Therefore applying (A.3)-(A.5) yield

uerl?, < Swe™ 7 +O(1). (A.6)

The demonstrations of the following lemma can be found in [7].

Lemma A.1.2 Let u. r be defined as above. Then the following estimates hold fort > 1,

p N—sp _ N-—sp
e rllp: =S e 7 +O(1). (A7)
N(p—1)—t(N—sp)
ke p+O(1), set>]gv(pf_sl),
| ue,rll; > kline| + O(1), set = ]\;\51:1)
0O(1), set< A]/é’fs;)

(A.8)

The next result is a very important because it compares the different Gagliardo seminorms
of the function u. g.

Lemma A.1.3 The following estimates hold for 1 <t < N(p:sl),

[uER] <O(1), for1 <t< N]i[p—_—sl)’ (A.9)

where k is a positive constant independent of €.

Proof. Using the notation of [7], we have usr = G5 r(Us(r)) and thus
" 7(Nfsp)t
[UE,R]S it =& »?

_(Nfs

=& G(;R U5 (AIO)

(N =p)t |G6R U5 GéR(Ufs(y))‘t
— ’ dxd
/RN /RN ’x_y’NJrst ray

Using the mean value theorem there exists 7 € (0,1) such that

|Gsr(Us(x)) = Gar(Us(y)] < IG5 p(Us(x) + 7(Us(y) — Us(2))[|Us(y) — Us(x)] (A.11)

[ﬂa Rl

and from [7, Section 5] we have

N+sp

5.1 (Us(z) +7(Us(y) — Us(z)) < 1+ 2057 = ¢ (A.12)

8]
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Substituting (A.11) and (A.12) into (A.10) we have
o e |G r(Us(x) + 7(Us(y) — Us(@))['|Us(y) — Us(x)['
[u€,R]8t S €
RN JRN

|JZ _ y|N+8t

(N— sp)t
g [ BO-UE,
RN JRN ’m_y’NHt

<o VO gy
9
= (N sp)t /]RN /]RN |$_y|N+St

(N(p— 1)(10 t)— (N sp)t
=(C¢e p2

dxdy

S, t
where we have used that § = ¢ 7 . Note that if t < Y2=1 then

(N(p—l)(p—t)—(N—sp)t>o

and hence
[, R] <O0(1), forall t<

N(p—1)
~

— S

A.2 A non embedding

The example presented in this appendix are in [41]. We will only do one review.

If 2 is a bounded domain in RV, 1 < g <p<ooand s =0,1,2, ..., then W*P(Q) C W*4(Q).
Let us consider the case s = 1. Using the Holder inequality we have

11
[ullo@) < Q77 [lulle@),  Vu € LP(Q).
In the same way we obtain
11
V| e < Qa7 ||Vu||r), Yu e wte(Q).
Thus, WHP(Q) C W4 for any 1 < ¢ < p < 0.

However this property does not hold when s in not an integer. It is against our intuition
at first, since if Q is bounded set then LP(Q) C L4(Q) and WHP(Q2) € W4(Q). Thus, using a
” s-interpolation” it was to be expected that W*?(Q2) C W*9(Q2). But this is not true.

It should be noted , for Q@ C RY we have

(x 4+ h) " g s
1 fllwsr) = [1fllzr@) (/ Al |h|N+sr()‘ dhdx) , forall feW*(Q).

We consider the case s € (0,1). Consider Q@ = (0,27) and for any n € N the function
©n : Q — C give for
‘Pn(x) =¢€
Let us use the sequence ¢, to construct a function g € W*P\W=4 for s € (0,1) and
1<g<p<ox.
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Lemma A.2.1 For any n € N we have

lenllwsr@) ~n°, as n — oo.

Proof. Let 1 <r < oo and s € (0,1). We have,

/ lon|"dz —/ e |"dx = 2.
eale + )~ s e
/ / e " dhda e dhds

2mn |€7,§ _ 1’
Note that, since 1 — cost < t? for all t > 0 we have
2mn | i€ T 2mn 1— z
0 gsr—f— 0 ésr—&-
21 2mn
r r 1-—
<2 € g2 / 1-costye
0 2

Moreover,

(Sl

£ST+1 - Serrl

2mn

_ ;/ 5 (1-s)— 1d§+22 é;—sr—ld
2

25 (2m)" S>+2% 1 1

(1l —s) rs | (2m)rs (27rn)’”5

Therefore,
I, ~n®, as n— .

Thus, ||¢n|lwsr@) ~n°, as n—o00. =

We assume that p < oo and we will construct by induction on j sequences \; and n; such
that
7) =" Ajn,(2), belongs to W*P(2) but not to W(%).
j=21

We choose A\; =1 and n; = 1. Assume that A, ..., \j,ny, ..., n; already constructed, let

1 ,
folz) == ——€"" and g;(x Zkkgpnk

nsjl/q
By Lemma A.2.1 we have

r 1
”fTLHWS,r(Q) ~ W’ for all 1 S r < oQ.

On the other hand, f, — 0 pointwise as n — oco. By Brezis-Lieb lemma, for 1 < r < oo we
have as n — oo

| fallivsr @ = 1 fa + 95 = gillwsr) = 1o+ gillivsr @) = 95 lwsr @) + o(1)
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that is
[ fo + gilliver) = 95 l[er@) + | fulliyer@) +0(1), as n— oo

Thus, for n sufficiently large, we have

4
’lfn+g]|’WSP < Hg]HWSP +W (A-l?’)
and o o
2 2
1fn + GillWar ) 2 1195 l1%ar ) + G = = G (A.14)

Therefore, using the hypothesis , we have

€ W*P(Q) = ngH};Vs,p(Q) = C(p).

_ 1 . —
Thus, we choose A\; = Wams and nj1 = n. So

i+l
fot 95 =g = Z Ak@n, ()
k=1

Adding up in j > 1 we have

lgllwer@) < Clp +ij/q o0

7>1

and

gl > Z

7j>1

Therefore, g € W*P(Q)\W*2(Q).

A.3 Estimates for non-local tails

We present here the estimates of both non-local tails proved by lannizzoto, Mosconi and
Squassina in [34].

Lemma A.3.1 Consider Ry > 0 and R; =
A > 0, numbers m; and M; such that

4] , Bj = Bg,. Assume that, there exists o € (0, 1),

. _ o
m; glgfugsupugMj, M; —mj = ARS.

Then,
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Proof. We have,

7j—1
. - s (uly) —m;)”
Taily((u —m;); Rj)"™ = R Z/ | |N+SZ’ w
k=0 Y Br\Br+1 Y

. (u(y) —m;)~
+Rp/c |y|NHsp

By hypothesis, for all 0 < k£ < j — 1 we have, in By\B.1,
<my —my < (my — M;) + (M —my) = MR — R}),

p—1

(u —my)-

hence

Jj—1 _ A\p—1 Jj—1 R — R& p—1
D T ERET D O M i
Bi\Biot1 |y |V ep — JB\Biys |y|NFsp
—0 k=0

i—1 a(j—k) p—1

_ yp—1 pa(p—1) (4 _1)

= NW'R E / Wi dy
k=0 ¥ Br\Br+1 Y

< ONTLS(a) RSP,

where we have set, for all « € (0,1),

XL (4om — 1)
Z:; 4spn

noting S(a) — 0 as a — 0.

On the other hand, we have
mj < i}rglfu <supu < [Jul|zeo(By)s

i B;

enee (uly) —my)? (Il W) O, Rt
u(y) —m; Ul Loo(By) + [ul(y)])P™ u, Ro)"~

/c [y dé/l [y W= O

Therefore, choosing o < sp/(p — 1) and using the inequalities above we have
u, Ry)P ' RP
Taily((u—mj)_; R’ < CAN7'S(a) R #=1) +C’Q( ];)zp J

0

 Ro)" 'R
Tail,((u —m;)_; R;) < C [)\p 'S(a)RY (P=1) Qu ng)p ]
0

<C [AS(a)l/(p_l) n —Q(gf")] Re.
0

namely,
} 1/(p—1)

In an analogous way we show that

Tail (M = 0)- ) < € A8/ + L)
0

with S(a) = 0 as a — 0%,
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