
Universidade Federal de Minas Gerais (UFMG)
Av. Antônio Carlos 6627, CEP 31270-901,
Belo Horizonte, MG Brasil

DISSERTAÇÃO DE MESTRADO Nº 1128

Longitudinal Control Strategies for Unmanned
Ground Vehicles in Uneven Terrains

Victor Ricardo Fernandes Miranda

Belo Horizonte
July 26, 2019



UNIVERSIDADE FEDERAL DE MINAS GERAIS
GRADUATE PROGRAM IN ELECTRICAL ENGINEERING

Longitudinal Control Strategies for Unmanned Ground
Vehicles in Uneven Terrains

Thesis presented to the Graduate Program in
Electrical Engineering of the Federal University
of Minas Gerais as a partial requirement to ob-
tain a Master’s degree in Electrical Engineering.

Victor Ricardo Fernandes Miranda

Advisor: Leonardo Amaral Mozelli
Co-Advisor: Armando Alves Neto

Belo Horizonte
July 26, 2019



UNIVERSIDADE FEDERAL DE MINAS GERAIS

ESCOLA DE ENGENHARIA
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Estratégias de Controle Longitudinal para Veículos
Terrestres Não Tripulados em Terrenos Irregulares

Dissertação de Mestrado submetida à Banca Examina-
dora designada pelo Colegiado do Programa de Pós-
Graduação em Engenharia Elétrica da Universidade
Gederal de Minas Gerais, como requisito para ob-
tenção do Título de Mestre em Engenharia Elétrica.

Victor Ricardo Fernandes Miranda

Orientador: Leonardo Amaral Mozelli
Co-Orientador: Armando Alves Neto

Belo Horizonte
26 de Julho de 2019



                    Miranda, Victor Ricardo Fernandes.
M672e               Estratégias de controle longitudinal para veículos terrestres não 

tripulados em terrenos irregulares [recurso eletrônico] / Victor Ricardo 
Fernandes Miranda. – 2019.

                            1 recurso online (70 f. : il., color.) : pdf.
 

       Orientador: Leonardo Amaral Mozelli.
       Coorientador: Armando Alves Neto.
       

                             Dissertação (mestrado) Universidade Federal de Minas Gerais,
                       Escola de Engenharia.                     
                        
                            Bibliografia: f. 65-70.
                            Exigências do sistema: Adobe Acrobat Reader.

      1. Engenharia elétrica - Teses. 2. Veículos autônomos - Teses.              
3. Controle robusto - Teses. 4. Teoria do controle não-linear -Teses.         I. 
Mozelli, Leonardo Amaral. II. Alves Neto, Armando. III. Universidade 
Federal de Minas Gerais. Escola de Engenharia.  IV. Título.

                                                                                                                 CDU: 621.3(043)

                             Ficha catalográfica: Biblioteca Profº Mário Werneck, Escola de Engenharia da UFMG





ACKNOWLEDGEMENTS

First, I thank to my family. In special to my parents Geraldo Ricardo and Mariza,
who always encouraged me and supported my choices, guiding me and transmitting all their
experience. Thanks to you, all this was possible.

I am very grateful to my mentors Leonardo Mozelli and Armando Neto for their guidance
in the last two years and for sharing their knowledge with me since college. Besides, I must thank
the members of the examination committee, the professors Gustavo Freitas, João Pedro Sansão
and Victor Costa, for sharing their valuable opinions and insightful comments, contributing to
improve this work.

I thank the colleagues and employees of UFMG and of the School of Engineering. Thank
to the members of the research groups D!FCON and MACRO. Specially the students from the
CORO laboratory, for the friendship built.

Thanks to all the professors of the Graduate Program in Electrical Engineering (PPGEE),
their teachings contributed to the conclusion of this work.

Finally, I acknowledge the financial support provided by CAPES and PPGEE.



RESUMO

VICTOR R. F. MIRANDA. Longitudinal Control Strategies for Unmanned Ground Vehi-
cles in Uneven Terrains. 2019. 70 f. Master dissertation (Master student Engenharia Elétrica) –
Escola de Engenharia (UFMG), Belo Horizonte – MG.

Este trabalho aborda estratégias de controle longitudinal para rastreamento de trajetórias de
referência por um veículo terrestre não tripulado, considerando alterações no tipo e nas condições
do terreno. Também apresenta a construção de uma plataforma móvel off-road de quatro rodas,
com arquitetura Ackermann, em escala reduzida, para realização de tarefas em um ambiente de
terreno irregular.

Em vários cenários de aplicação de um robô móvel terrestre, como nas tarefas de mineração
e agricultura, deve-se trafegar por terrenos irregulares e não-estruturados. Isso pode afetar o
desempenho do veículo durante a execução dessas tarefas em velocidades mais altas. Essas
irregularidades no terreno, bem como mudanças no tipo do solo e alterações na carga transportada
pelo robô, são distúrbios que afetam a dinâmica do robô, acarretando dificuldades no ponto de
vista do controle de velocidade e navegação.

Tendo em vista esses problemas, propõe-se a construção de uma plataforma, que possibilite a
sua utilização em terrenos irregulares, para realização de tarefas de forma semi-autônoma. Dessa
forma, duas técnicas de controle em espaço de estados são abordadas visando reduzir o efeito
dos distúrbios causados pelo terreno e por eventuais mudanças no robô durante a execução de
uma tarefa: um controlador Robusto PID, sintonizado por meio de LMIs, e um controlador não
linear, sintonizado por técnica Backstepping com ação integral no erro.

A plataforma construída foi equipada com sensores de baixo custo e um computador embarcado,
possibilitando testes reais para avaliação do desempenho de cada controlador projetado.

Palavras-chave: Veículos Autônomos; Rastreamento de trajetória; Controle Robusto; Controle
Não Linear; Robótica Móvel. .
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ABSTRACT

VICTOR R. F. MIRANDA. Longitudinal Control Strategies for Unmanned Ground Vehi-
cles in Uneven Terrains. 2019. 70 f. Master dissertation (Master student Engenharia Elétrica) –
Escola de Engenharia (UFMG), Belo Horizonte – MG.

This work presents control strategies to track longitudinal trajectories by an unmanned ground
vehicle, considering changes in terrain type and conditions. It also features the design and
construction of a small, off-road, four-wheeled, Ackermann platform, able to travel in uneven
terrains.

In several scenarios of mobile robot’s application, as in mining and agriculture tasks, it is
necessary to drive on irregular and unstructured terrains. This may directly affect the vehicle
performance while executing these tasks at higher speeds. These terrain irregularities, as well as
changes in the soil type and changes in the load carried by the robot, are disturbances that affect
the robot dynamics, causing difficulties in the point of view of navigation and speed control.

In view of these problems, a simple platform was built, which can be used in irregular terrains, to
perform semi-autonomous tasks. Thus, to achieve this autonomous tracking, this thesis proposes
two control techniques to reduce the effect of ground disturbances and changes in the robot
mass during the execution of a task: Robust PID controller, tuned by an LMI approach, and a
nonlinear controller, tuned by a Backstepping technique, with integral action.

This platform is equipped with low-cost sensors and embedded computers. Simulation and
real-life experiments are presented to illustrate the performance of each designed controller.

Keywords: Autonomous ground vehicle; Trajectory tracking; Robust control; Nonlinear
control; Mobile Robots.
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CHAPTER

1
INTRODUCTION

1.1 Motivation
Mobile Robotics has experienced substantial growth in the last decades, thanks to the

wide applicability in civilian, industrial and military sectors. It is commonly associated with
improvements in security, accuracy, agility and cost reduction in the execution of tasks.

The Unmanned Aerial Vehicles (UAVs) are commonly used in military and civil sectors
for tasks such as reconnaissance, search and rescue, military defense, delivering medical supplies,
patrol missions, journalism, among others, attracting researches as in Rudol and Doherty [2008]
and Tomic et al. [2012]. Another possibility is to help in agricultural production, a strong industry
in the primary sector, where autonomous UAVs are currently being employed to execute some
tasks, such as monitoring of crops, identification of pests, maintenance of breeding grounds and
greenhouses, soil analysis and application of pesticides, as in Schmale III et al. [2008] and Costa
et al. [2012]. Figures 1.1(a), 1.1(b) and 1.2 show UAVs performing some of these tasks.

(a) Hexarotor (b) Fixed-wing

Figure 1.1 – (a) is hexarotor in a pulverization mission (Source: http://www.senar.org.br/agricultura-precisao/drone-
aumenta-eficiencia-da-pulverizacao-agricola/), and (b) is a fixed-wing UAV in a monitoring mission
(Source: www.santoslab.com).
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Figure 1.2 – An MQ-9 Reaper remotely piloted aircraft assigned to the California Air National Guard’s
163rd (Source: https://dod.defense.gov/News/Article/Article/1348274/air-force-drones-help-california-
firefighters-combat-wildfires/).

Despite the use of UAVs to perform these tasks, other activities require the use of ground
mobile robots, called Unmanned Ground Vehicles (UGVs). In some activities, the use of ground
robots is required to obtain more precision, security and payload in execution. In the agricultural
industry, for example, these UGVs are used in harvest and planting, pesticide application with
precision for a specific plant (avoiding wastes and reducing costs), among others, enabling
research as in Cheein and Carelli [2013] and Velasquez et al. [2016]. The UGVs are commonly
used to load and people transportation, due to increased safety and load capacity in relation
to UAVs, as in Jo et al. [2014] and Dias et al. [2015]. In addition, there are some locations
of difficult operation for UAVs, such as caves and mines, requiring the use of ground robots.
These conditions inspired the SubT DARPA challenge1, where scientist teams from around the
world are challenged to develop robots that is able to move, detect objects and map subsurface
networks of caves and mines in unpredictable conditions. The Figures 1.3(a), 1.3(b), 1.4(a) and
1.4(b) shows UGVs performing some tasks autonomously.

(a) Autonomous Passenger Car (b) HX01 prototype

Figure 1.3 – (a) is an autonomous car developed by the UBER company
(Source: https://www.b9.com.br/65014/uber-revela-seu-carro-autonomo/), and (b) is an autonomous
loader vehicle (HX01) under developing by Volvo (Source: https://www.volvoce.com/deutschland/de-
de/about-us/news/2016/elektrische-baustellenloesung/).

1 www.subtchallenge.com
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(a) Autonomous Passenger Car (b) CMU prototype for the DARPA Challenge

Figure 1.4 – (a) is an autonomous tractor in an farming mission (Source: www.asirobots.com), and (b) is the robot
developed by Carnegie Mellon University (CMU) for the SubT DARPA challenge.

These robots can be remotely operated by human pilots or autonomously guided by
embedded navigation systems. Thus, to perform autonomous tasks with precision and efficiency,
it is necessary a robust navigation system, which can often be expensive. In this context, this
dissertation is motivated to develop a low-cost navigation system to control an UGV in tracking
autonomously longitudinal trajectories.

1.2 Problem
In an autonomous system, it is important that the control system operates robustly and

precisely during missions. In several scenarios of UGVs, discussed in the last section, the robot
must travel across uneven and unstructured terrains, as in mining and agriculture tasks. These
scenarios can directly affect the performance of an UGV in the execution of tasks at higher
speeds.

Terrain irregularities and soil type can affect the speed dynamics of the robot, as well
as changes in mass with the inclusion of extra loads in delivery tasks. These disturbances may
cause serious control problems to ensure the robot’s mobility. In Ferreira et al. [2018] a control
system was developed to a UGV based on a kinematic model, which does not address these
effects, and it was noted that in some terrains, the controller cannot follow the reference speeds.

This thesis is associated with the research project "APIAR: robot development for crop

inspection" (APQ-03433-15 - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
(FAPEMIG)) which aims to build a four-wheeled electric robotic platform, to perform the
task of exploring and collecting data from an area of agricultural cultivation. Therefore, the
main problem to be addressed in this dissertation is the development of a small car-like UGV
platform, equipped with sensors and a control system, that minimize the effects of adverse
agricultural terrain conditions in a payload delivery task with longitudinal trajectories. These
adverse conditions are associated with slopes on the ground, soil friction, and mass changes.
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1.3 Related Works
This section presents some recent and important works related to trajectories tracking in

UGVs and control strategies. Linked to extensive employment of mobile autonomous agents
in several tasks, many papers concerning autonomous (or semi-autonomous) four-wheeled
normal-size and small-size vehicles have been presented in the literature.

In Jo et al. [2015] an autonomous system is implemented in a distributed way for a
passenger car. The system is composed by localization, perception, trajectory planning and
vehicle control algorithms, which have been implemented to drive in a track that simulates daily
traffic. The system must detect traffic lights, overtaking, school zone and sudden obstacle, among
others.

Wit et al. [2004] presents a path tracking technique called “vector pursuit”, which
generates the desired vehicle turning radius based on the vehicle’s current position and orientation,
relative to the position of a point ahead on the planned path and the desired orientation along the
path at that point. The authors performed experiments using a four-wheeled normal-size vehicle
to analysis the performance, but only in lower speeds.

For small-size vehicles, Dos Santos et al. [2016] presents a simultaneous localization
and mapping (SLAM) method for robot localization in monitoring tasks on vineyards. Robot
localization is estimate by a sensor fusion. The method was validated by experiments in a small
platform AGROB V14 equipped with a laser, camera, Inertial Measurement Unit (IMU), Global
Positioning System (GPS) and an encoder.

Following agricultural applications, Ruiz-Larrea et al. [2016] presentes a four-wheeled
UGV robot platform, equipped with infrared temperature and moisture sensors, for measuring
the ground properties of the greenhouses. The Navigation system of the robot is composed by
perception (with an extended Kalman filter), localization, path planning, and control systems.
From real experiments, the data collected by temperature and humidity sensors in a controlled
greenhouse is presented.

In addition, many other papers concerning modeling and control strategies have been
proposed to address such platforms [Amer et al., 2017; Attia et al., 2014]. When addressing on-
the-ground tasks, terrain conditions play an important rule on the robot’s navigation, especially
at higher speeds. Since most applications in outdoor scenarios occur under non-structured
conditions, robust control techniques have been increasingly employed for a variety of robotic
and automation tasks [Bahadorian et al., 2011; Bennis et al., 2008; Du et al., 2011].

1.3.1 UGV Control Strategies

The general problem of trajectory tracking for wheeled robots has a wide range of
solutions. In Thanok and Parnichkun [2015] is presented a longitudinal control for a passenger car,
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model Mitsubishi Galant produced in 1989. The car has been modified to perform autonomous
tasks, equipped with on-board sensors such as Lidars and encoders. The model used is simplified,
neglecting ground terms such as slopes and friction. The throttle control is by means of a Sliding
Mode Control (SMC) approach, whereas the brake control relies on a Mamdani fuzzy controller.
The SMC parameters were adjusted by a stochastic optimization technique, based on outdoor
experiments on a plane pavement road.

In Cariou et al. [2009], the authors provide an adaptive and predictive control algorithm
for an autonomous tractor, to executing straight line and curve path tracking on slippery and
sloped terrains. Although considered road inclinations in the problem, only kinematic parameters
are used in the model, making the strategy susceptible to dynamics issues. Similarly, in Kong
et al. [2015], is presented a Model Predictive Control (MPC) to control an autonomous vehicle.
In that paper, a kinematic model was used to design the control system and experiments show
that at higher speeds the system is subject to dynamic issues that affect the performance of the
controller.

An issue generally associated with predictive control is computational cost. Although
robust, nonlinear and adaptive variations of MPC can properly address many challenges, on-
board computers of robots must be relatively powerful to solve optimization problems at higher
rates in real-time. Therefore, more expensive embedded computers with higher requirements of
energy and payload must be employed.

Concerning more classical approaches, in Dias et al. [2015] the authors present model
identification and speed control based on the longitudinal dynamics of car-like vehicles. Environ-
ment characteristics such as inclination, viscous friction, and aerodynamic resistance have also
been considered, however, stability was ensured by two PI (proportional-integral) controllers,
without robustness guarantees. In Foster et al. [2005], the Proportional-Integral-Derivative (PID)
controller has been implemented for the velocity control of a windrow, an agricultural machine
used for hay and forage preparation, crop harvesting, and crop residue processing. A first-order
model with time delay was developed for the speed control, whose parameters were estimated
by using a modified recursive-least-squares algorithm. The design follow a pole allocation for
the nominal model, without robustness guarantees. In Oliveira et al. [2018], is presented the
development of a small UGV platform for agricultural tasks. In the control system, a pure
proportional controller based has been used in the velocity and orientation error. However, a
kinematic model was used for the vehicle and the real experiments performed in a controlled
ambient with a plane pavement, not validating for uneven terrain.

Some works can be found in the literature proposing the usage of the Linear Matrix
Inequality (LMI) machinery to design controllers for trajectory tracking for car-like robots. In
Alcala et al. [2018] a trajectory tracking is proposed using a Lyapunov control technique with a
Linear Quadratic Regulator (LQR)-LMI tuning. The controller was tested in an Electric Tazzari
Zero passenger car. However, a kinematic model was used for the vehicle and the experiments
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performed on a plane pavement road, not checking the robustness to changes in the terrain.

It is possible to observe that many works in the literature present control strategies only
based on kinematic parameters of the vehicles, leaving aside other important characteristics such
as weight, friction and drag forces, and other terrain features.

1.3.2 Robust Control

As mentioned in the previous section, some parameters can have a considerable influence
on the system. In this context, some papers relate to robust controllers to these influences. The
authors of Gat et al. [2016] present a steering control algorithm for a car-like mobile robot
connected to an overhead guide in greenhouse applications. A robust control law (at low speeds)
was designed and the asymptotic stability verified and demonstrated with simulated and real-
world experiments. However, assumptions such as constant and known ground slope and flat soil
are not too realistic, even in enclosed places. The friction in the fork-to-rail connection was also
disregarded, but its inclusion in the control design can be helpful to improve the results.

Kayacan et al. [2016] presents a robust trajectory tracking predictive control for UGVs.
In this paper, a tractor-trailer system was modeled and controlled over linear and curvilinear
target paths. Small tracking errors have been reported, but only experiments in kinematic “ideal”
circumstances have been illustrated. Trailer’s mass and friction would certainly be problems to
be considered in more realistic scenarios.

A robust MPC have been proposed in Gray et al. [2013] in order to enforce safety
constraints to control a semiautonomous UGV to follow a path, avoiding obstacles. Uncertainties
have been added to the input of the model and robust control laws designed to compute the
smallest corrective steering action to keep the drive safe in the trajectories. Despite considering
uncertainties in the model, it were performed only simulated results.

In Du et al. [2011] a robust controller design by an LMI approach is proposed to control
the yaw moment of a vehicle, considering uncertainties in the cornering stiffness and tire-road
conditions. The state feedback controller have been designed by solving LMIs to obtain the gain
matrix to stabilization. Despite the good results, only simulated experiments were performed. In
addition, the full state feedback control method requires measurement of all states, making a
practical project more complex and expensive.

1.3.3 Backstepping Control

In Low and Wang [2005] a Backstepping robust controller is presented to control an
Ackerman vehicle. The robust design treats the longitudinal speed in a kinematics model. Despite
treating the longitudinal speed uncertainty, only simulations experiments is presented with a
kinematics model, not investigating the dynamic effects influenced by the terrain.
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A variant of a SMC that combines backstepping and fuzzy sliding mode controller
is adopted in Wu et al. [2019], for the speed control of a differential platform. The robot
developed by the authors was tested indoors, navigating on a smooth flat surface. Although
adaptive/intelligent controllers may promise a robust solution, the process of designing and
developing each controller can be time-consuming and specific for each application [Amer et al.,
2017, Sec. 3.4].

In Salierno and Raffo [2017] it is proposed a controller to a quadrotor UAV with six
degrees of freedom dynamics (6DOF). The presented control law is based in the backstepping
method with an integral action, to guarantee convergence for a time-varying trajectory reference.
The controller is based on full state feedback that controls all 6DOF freedom degree, translation
and orientation. Simulated results shown the controller performance and the improvements of
integral action.

Fang and Gao [2011] presents an adaptive method to robustify a backstepping design.
The authors use a backstepping with integral action to control attitude, altitude and horizontal
position of a quadrotor UAV with a 6DOF freedom degree model. The adaptive design is for
compensate model uncertainties, but the estimation of this disturbance is online, increasing
computational and implementation costs. Simulated results for small variations in the mass of
the robot and including external disturbances are shown.

In Zhou and Liu [2010], a cascade control, based on a sliding-mode and backstepping
approach to control the tire yaw of a vehicle, was proposed. It was considered that the longitudinal
forces acting on the vehicle are unknown disturbances and the control law calculated step by
step using backstepping and sliding-mode approach. The analysis of the controller performance
is based on simulated experiments, but changes in the terrain were not considered.

1.4 Objectives
The main goal of this work is to solve a longitudinal trajectory tracking problem of UGVs

in adverse situations, considering a dynamic model with the influence of external disturbances
and uncertain parameters.

The specific objectives are:

1 Design a PID controller to perform a longitudinal trajectory tracking and to be robust to
uncertain parameters and external disturbances, using an LMI approach;

2 Design an Integral Backstepping nonlinear control to perform a longitudinal trajectory
tracking, minimizing the influence of disturbances;

3 Develop a real UGV platform that allows doing tasks in irregular terrains, following a
longitudinal trajectory, using the developed controllers;
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4 Compare the control strategies in simulated and real-world experiments, evaluating their
performances.

1.5 Publications
This dissertation contributed to the following publications:

• [Ferreira et al., 2018] Ferreira, E., Miranda, V.R.F.; Silva Junior, M., Mozelli, L. A., Alves
Neto, A. Aplicação de plataforma android no controle de robôs móveis para inspeção de
lavouras. Congresso Brasileiro de Automática - CBA 2018. João Pessoa - PB.

– This paper proposed an embedded navigation system to control UGVs, using an
Android smartphone. The control system operates on the smartphone and, using
an application, it was possible to define a set of waypoints that should be visited
by the robot. The controllers were based on a kinematic model of the robot and,
using the GPS and IMU data provided by the smartphone, it was possible to control
their position, orientation and speed. This was the first prototype of this work, being
adopted for the purposes of modeling and concept proof.

• [Miranda et al., 2018] Miranda, V.R.F., Alves Neto, A., Mozelli, L.A. Estudo sobre
estratégias de controle longitudinal para robôs terrestres em terrenos irregulares com
inclinação. Congresso Brasileiro de Automática - CBA 2018. João Pessoa - PB.

– In this paper, it was proposed the model of the longitudinal dynamics of a car-like
UGV, considering the irregularities and inclinations in off-road terrains. The objective
was to control this system to track longitudinal trajectories in a payload delivery
task in agricultural environments. Therefore, two methodologies are employed: a
robust PID controller, tuned by an LMI approach, and a non-linear Backstepping
controller. To the robust PID tuning, parametric uncertainties have been considered
in the system, related to the uneven terrain and the changing in the mass. Simulation
results were made to compare both techniques performances.

Others publications accepted for publication:

• Miranda, V.R.F., Alves Neto, A., Mozelli, L.A. Longitudinal Trajectory Tracking for
UGVs on Agricultural Terrains. Simpósio Brasileiro de Automação Inteligente - SBAI
2019.

– This paper presents the development of a low cost small car-like semi-autonomous
vehicle platform (Fig. 1.5) to perform tasks in agricultural terrains. Based on the
nonlinear dynamics of such vehicles, a Backstepping controller with an integral
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part was developed to execute these tasks in longitudinal trajectories. Real-world
experiments were present comparing the performance of the controller developed in
this paper with the others in Miranda et al. [2018].

In addition, it contributed to the development of a semi-autonomous UGV platform for
experiments in irregular terrains (Fig. 1.5).

Figure 1.5 – Simulation results of Table 4.4: position and speed trajectory.

1.6 Dissertation Structure
The dissertation is structured as follows: Chapter 2 present a literature review of tech-

niques used in the strategy to control the robot; Chapter 3 formalizes the approached problem
with the modeling of vehicle longitudinal dynamics and the design of control strategies proposed;
In Chapter 4 are presented simulation and real-world experiments to validate the strategies used,
as well as a description of the platform developed to the experiments; Finally, Chapter 5 offers
the conclusion and future perspectives of the research.
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CHAPTER

2
PRELIMINARY CONCEPTS

This chapter is dedicated to a literature review about the control techniques employed
throughout this dissertation and some concepts associated with them.

2.1 Lyapunov Stability
Stability of linear systems in state space form is usually associated with the eigenvalues

of the coefficient matrix or, in case of transfer functions, associated with the location of the poles
[Chen, 1998]. This analysis can be generalized to nonlinear systems by the Lyapunov Stability
Theory.

The state-space description models a dynamic system by means of a set of coupled first-
order differential equations. Each equation is related to an internal variable, called state variable.
The concept of state of a system refers to the minimum set of variables that fully describe the
system and its response to external variables, the input variables. This set of variables is not
unique, but the number of state variables n must remain the same, nonetheless. The scalar n

is called the order of a systems. Alternatively, the state-space can be regarded as an Euclidean
space, of dimension n, whose coordinates are the state variables, a state is a given vector within
this space and the system dynamic is represented by a vector field.

Following the theory in Krstic et al. [1995] and Khalil and Grizzle [2002], consider an
autonomous2 system, devoided of inputs:

ẋ = f(x), (2.1)

where f is piecewise continuous in t, locally Lipschitz in x∈Rn and x = 0 is an equilibrium point.
The function f is stable in the Lyapunov sense at the origin if for a candidate function (Lyapunov
2 In this thesis, autonomous system is regarded as a dynamic system described by ordinary differential equation

which does not explicitly depend on the independent variable. When this variable is time, it can be also called a
time-invariant system.
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function), continuously differentiable, V : D→ Rn, such that D is a domain containing x = 0,

V(0) = 0, V(x)> 0 in D−{0}, (2.2)

V̇(x)≤ 0 in D. (2.3)

Also, (2.1) is asymptotically stable in the origin if

V̇(x)< 0 in D−{0}, (2.4)

and globally asymptotically stable if

V(0) = 0, V(x)> 0, ∀x 6= 0, (2.5)

||x|| → ∞⇒ V(x)→ ∞, (2.6)

V̇(x)< 0, ∀x 6= 0. (2.7)

In the case of time-varying systems, piecewise continuous in t and locally Lipschitz in x,
as

ẋ = f (t,x), (2.8)

it will be uniformly stable in the Lyapunov sense at the origin if for a candidate continuously
differentiable function V : [0,∞]xD→ Rn, such that D is a domain containing x = 0 and

W1(x)≤ V(t,x)≤W2(x), (2.9)

∂V
∂ t

+
∂V
∂x

f (t,x)≤ 0, ∀t ≥ 0 and ∀x ∈ D, (2.10)

where W1(x) and W2(x) are continuous positive definite on D.

As in autonomous case, it can be extended to a uniformly asymptotically stable if the
assumptions (2.9), (2.10) and (2.11) are satisfied, for a W3(x) continuous positive definite on D.
Moreover, the system (2.8) is globally uniformly asymptotically stable if the same conditions
are satisfied with a radially unbounded V(t,x).

∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x), ∀t ≥ 0 and ∀x ∈ D (2.11)

In a linear case, the system is asymptotically stable by root locus analysis if it poles are
in the left half plane or if all real parts of eigenvalues of the coefficient matrix are less than zero,
that is, if the system is Hurwitz. This can be investigated by the following Lyapunov’s method,
as in Chen [1998] and Khalil and Grizzle [2002]. Consider the system:

~̇x = A~x, (2.12)

and the quadratic Lyapunov function candidate

V(x) =~xT P~x, (2.13)
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where P = PT . From the Lyapunov theory, the system is asymptotically stable if V(x)> 0 and
V̇(x)< 0, then

V(x) =~xT P~x > 0→ P > 0,∀~x 6= 0 (2.14)

and

V̇(x) =~xT P~̇x+~̇xT P~x < 0 (2.15)

V̇(x) =~xT (PA+AT P)~x < 0 (2.16)

PA+AT P < 0 (2.17)

This particular inequality can be solved as a linear equation if exist a Q = QT > 0 such
that

PA+AT P =−Q, (2.18)

PA+AT P+Q = 0. (2.19)

2.1.1 Control Lyapunov Function

In control design, Control Lyapunov Function (CLF) are regarded as an extension of
the Lyapunov function to stability analysis of systems with control inputs. Following the CLF
formulation in Krstic et al. [1995], consider the system

~̇x = f(~x,u), ~x ∈ Rn, u ∈ R, f (0,0) = 0, (2.20)

and a Lyapunov function V(x) smooth, positive definite and radially unbounded. This Lyapunov
function will be a CLF for (2.20) if there is a control law u and W(x)> 0 such that

∂V
∂~x

f (~x,u)≤−W(x)< 0, ∀~x ∈ Rn (2.21)

According to Krstic et al. [1995], the existence of a CLF for a given u in (2.20) is a
necessary and sufficient condition for the global asymptotic stability of the system.

In case of a system affine in the control,

~̇x = f(~x)+g(x)u, f(0) = 0, (2.22)

the inequality (2.21) becomes

∂V
∂~x

f(~x)+
∂V
∂~x

g(~x)u≤−W(x)< 0. (2.23)

2.2 Robust Control
Systems can be represented by an equation or a set of them. In dynamic systems, these

equations carry information about the behavior of these systems over time. However, it is very
difficult to obtain a set of equations that includes the true physical [Zhou and Doyle, 1998].
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The equations that model the system are essential for analysis and control design. How-
ever, even with a model that is faithful to the behavior of the system, in some situations, the
system parameters embedded in the equations may change with time, or it is not possible to
determine them correctly. This uncertainty in the parameters can affect the performance of the
controller, which has been tuned to a model with fixed parameters.

In feedback control, the main goal is to maintain the overall stability and system per-
formance despite uncertainties in the plant. A controller designed for a nominal process model
generally works fine for the nominal plant model but may fail for even a nearby plant model.

Robust control deals with this imperfectly process model and aims at designing a fixed
(non-adaptive) controller such that some defined level of performance of the controlled system
is guaranteed, irrespective of changes in plant dynamics within a predefined class [Herzog and
Keller, 2011].

In control systems, these uncertainties in the models are classified into two categories:
disturbance signals, caused by external stochastic inputs which are not under control (noises in
the sensors and actuators), and perturbations in the plant dynamics, caused by changes in the
plant parameters and unmodeled dynamics.

There are some robust control techniques that include these uncertainties into the con-
troller design. To achieve this, it is necessary to have a mathematical description of model
uncertainty. In the case of a time-invariant external disturbance, for example, which can be
represented as a transfer function4(s), it is commonly included this disturbance as shown in
Fig. 2.1, where4(s) is an additive perturbation of the nominal plant G0(s) and

G(s) = G0(s)+4(s) (2.24)

Figure 2.1 – Additive uncertainty

In the case of perturbations in the plant dynamics, that is, uncertain parameters in the
model, it is commonly represent the system as a polytope in state space. Consider the uncertain
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linear system:
~̇x = A(α)~x, (2.25)

where A(α) is a coefficient matrix with uncertainty, and

A(α) ∈A ,

where A is a polytope describe as:

A =

{
A(α) : A(α) =

N

∑
i=1

αiAi;
N

∑
i=1

αi = 1; αi ≥ 0

}
, (2.26)

where Ai are known vertices formed by N extreme values (maximum and minimum) of k
uncertainties, with N = 2k.

There are some feedback control methods that address these problems. Some of them use
an output feedback approach, while others use state feedback. The following section compares
these approaches.

2.3 Output Feedback and State Feedback
The states of a system are variables that describe the behavior of the system. In the

control design, the deal is positioning the system closed-loop eigenvalues in the desired location,
where, in most cases, it is chosen to make the system stable. This is usually done with the
feedback of the states.

In a full state feedback controller, it is possible to control the system by using the
information of all variables that influence it. Even if the objective is to control just one interest
variable, the possibility of collect information from all states of the system gives us greater
control over the behavior of all system.

Consider a linear system, the state feedback control law can be describes as in Fig. 2.2
and by the following equation [Chen, 1998; Franklin et al., 2014]:

~u =−K~x, (2.27)

where~u is the input vector,~x the measured states vector and K the control gain.

Figure 2.2 – State Feedback
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At many times, despite having a model that satisfactorily describes the dynamics that
influence a system, it is not always possible to measure (collect information) a particular state in
practice. In this case, where the interest state can be measured and other states cannot, the output
feedback controller can be an alternative.

The output feedback control law can be described as in Fig. 2.3 and by the following
equation

~u =−K~y, (2.28)

where~u is the input vector,~y the measured output and K the control gain.

Figure 2.3 – Output Feedback

With output feedback there is no need to measure all states of the system to design a
feedback controller, which can be an advantage. Another advantage is the low cost in practical
implementations, due to the number of sensors needed. However, the state feedback, generally,
has a better performance controlling all the variables that affect the system.

Another case occurs when the interest state cannot be measured. In this case, it may
possibly use a state observer to estimate the state value. This methodology will not be addressed
in this text and can be seen in Franklin et al. [2014] and Chen [1998].

2.4 Linear Control
A system is called linear if the superposition property holds and nonlinear if does not

[Chen, 1998]. The mathematical model is one of the main ways to represent the behavior of a
system, be it linear or nonlinear.

The nonlinearities in the systems can be represented in their mathematical nonlinear
model. Sometimes, it is difficult analyzing nonlinear models. Therefore, linearization techniques
were developed that make it possible to approximate a nonlinear model of a system to a linear
representation, as in Chen [1998].

From these linear mathematical representations for systems, several controller’s design
methods have appeared over the years. The goal is to design a system to control the behavior of
another system based on their mathematical model.

This section presents linear control methods that will be addressed throughout the
dissertation.
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2.4.1 Proportional-Integral-Derivative (PID) Controller

The PID controller is one of the most popular controllers in the industrial sector. Despite
being an almost centenary method, its simplicity made it present in more than 90% of process
control applications, as we can see in Mozelli and Souza [2016]. This controller is based on
three-terms tuning, and has the following transfer function in the parallel form:

C(s) = Kp +Ki
1
s
+Kds, (2.29)

where Kp, Ki, Kd , represent the proportional, integral and derivative gains, respectively.

Since the first PID controller tuning proposal to these gains was made by Ziegler and
Nichols [Ziegler and Nichols, 1942], several works were developed over the years to propose
other tuning methods, including works such as in Ang et al. [2005], Li and Li [2011] and Zhang
and Furusho [2000].

The PID controller is a technique more suitable to linear models, due to the tuning
methods used. Since non-linear dynamics are ubiquitous, approximation techniques to devise a
linear model are suitable for a control design.

2.4.2 Linear Matrix Inequalities (LMI)

According Boyd et al. [1994] and Mozelli [2008], an Linear Matrix Inequality (LMI)
has the form:

F(x) = F0 +
m

∑
i=1

~xiFi > 0, (2.30)

where~x ∈ Rm is the variable and the Fi = FT
i ∈ Rnxn, i = 0, ...,m, are given.

There is no distinction between a set of LMIs and a single LMI, that is, a set of LMIs
can be represented by a single LMI:

diag{F(1)(x), ...,F(p)(x)}> 0 := {F(1)(x)> 0, ...,F(p)(x)> 0} (2.31)

Some nonlinear inequalities can be converted to an LMI form using Schur complements.
According Zhang [2006] and Boyd et al. [1994], let Q(x) = Q(x)T ,R(x) = R(x)T > 0,S(x), the
inequality

Q(x)−S(x)R−1(x)ST (x)> 0, (2.32)

is equivalent to [
Q(x) S(x)
ST (x) R(x)

]
> 0. (2.33)

In particular, linear inequalities, convex quadratic matrix inequalities, matrix norm
inequalities, and constraints that arise in control theory, such as in Lyapunov, can all be described
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in the form of an LMI. Therefore, the inequality (2.17) from the Lyapunov Stability theory in
the section 2.1 is equivalent to an LMI.

The LMI problems are normally solved as a convex optimization problem, using numeri-
cal solvers with the LMIs constraints. The system stability can be analyzed by solving an LMI
problem. Consider an uncertain system at (2.25), as in Boyd et al. [1994] and Zhou and Doyle
[1998], the necessary and sufficient conditions to check the stability of the system (2.25) are:

• The vertices of A(α) need to be stable;

• There is a P = PT > 0, such that the following LMIs are satisfied:

PA(α)+A(α)T P < 0, (2.34)

PAi +AT
i P < 0, i = 1, ...,N. (2.35)

This is a Robust control problem (model uncertainties) that can be solved using MATLAB

optimization solvers as SeDumi [Sturm, 1999] and Mosek [Mosek, 2015] with a package that
make an interface to the LMI problem, as the Yalmip [Löfberg, 2004]. The next sections presents
some control problems that can be solved by an LMI approach.

2.4.3 Static Output Feedback (SOF) Control using LMIs

The Static Output Feedback (SOF) is a control method commonly used in problems
where is not necessary measure all states or when it is not possible to get information about all
the states present in the model (section 2.3). In this method, the input of the system is given by
the control law

~u(t) =−K~y(t), (2.36)

where~u(t) is the inputs vector,~y(t) the outputs vector and K is the control gains matrix.

The goal is to find K that stabilize the system. One way to do this is by using the
Lyapunov’s stability theory by LMIs, as in Cao et al. [1998]. Consider the system

~̇x(t) = A~x(t)+B~u(t)

~y(t) = C~x(t),
(2.37)

using the SOF control law in the closed loop and rewriting, we have

~̇x(t) = A f~x(t), A f = (A−BKC). (2.38)

Based on the theory described in sections 2.1 and 2.4.2, for the closed-loop system (2.38)
be considered stable, the follow inequalities must to be satisfied for a P = PT > 0:

PA f +AT
f P < 0, (2.39)

P(A−BKC)+(A−BKC)T P < 0, (2.40)

PA+AT P−PBKC−CT KT BT P < 0. (2.41)



Chapter 2. Preliminary Concepts 31

The inequality (2.41) is not an LMI and just by using the Schur complement is not
possible to convert to a LMI problem. These inequalities are called Bilinear Matrix Inequalities
(BMIs), which is a non-convex problem due to the nonlinearities involving the variable matrix P
and K [VanAntwerp and Braatz, 2000]. In case of the matrix B (or C) is square and invertible,
this problem can be transformed to an LMI problem by variable changes as follows:

PA+AT P−LC−CT LT < 0, (2.42)

where L = PBK and K = (PB)−1L.

However, in cases which it is not possible to make these changes, it is necessary a new
method to solve problems like this. Some methods are commonly used to solve BMIs problems,
an example is finding an initial matrix P = PT > 0 such that the system is stable in open loop
and then use this to find the matrix K that stabilize in the closed loop. Some papers as Cao et al.
[1998] and He and Wang [2006] proposed methods in this sense, which will be addressed over
of this dissertation.

2.4.4 Static Output Feedback (SOF) H∞ Control using LMIs

The H∞ system norm represents the highest energy gain of a system can offer to a noise
input signal, that is, how much a noise signal can affect the system. The H∞ based control
project is an optimization problem such that it is intended to minimize this gain effect in external
noisy signals by a closed loop control law, robustifying the system (section 2.2).

Consider the system

~̇x(t) = A~x(t)+Bw~w(t)

~z(t) = Cz~x(t)+Dwz~w(t), ~x(0) = 0, ~x(∞) = 0,
(2.43)

where~x(t) ∈ Rn is the states vector, ~w(t) ∈ Rnw the input noise vector,~z(t) ∈ Rnz the outputs,
and A,Bw,Cz,Dwz with appropriate dimensions. In a frequency domain representation:

Hwz(s) = Cz(sI−A)−1Bw +Dwz. (2.44)

The H∞ norm of (2.43) is
||Hwz(s)||∞ = maxw|H( jw)|, (2.45)

and, according Zhou et al. [1996] and Chang [2014], can be represented by∫
∞

0
~zT (t)~z(t)dt < γ

2
∫

∞

0
~wT (t)~w(t)dt, (2.46)

where γ is an upper limit to the norm. The norm value can be obtained by a convex optimization
problem to minimize γ , that is, can be treated as an LMI problem. From the Lyapunov’s function
V(x) =~xT (t)P~x(t), such that P = PT > 0 and

V̇(x)+~zT (t)~z(t)− γ
2~wT (t)~w(t)< 0, (2.47)
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following the Bounded Real Lemma [Boyd et al., 1994; Chang, 2014; Zhou et al., 1996]:

V̇(x)+~zT (t)~z(t)− γ
2~wT (t)~w(t) =

[
~x

~w

]T [
AT P+PA+CT

z Cz PBw +CT
z Dwz

BT
wP+DT

wzCz −γ2I+DT
wzDwz

][
~x

~w

]
< 0,

(2.48)
that results in solve

min γ
2 :


P > 0,[

AT P+PA+CT
z Cz PBw +CT

z Dwz

BT
wP+DT

wzCz −γ2I+DT
wzDwz

]
< 0,

(2.49)

that can be rewritten using Schur complement as

min γ :


P > 0, AT P+PA PBw +CT

z Dwz CT
z

BT
wP+DT

wzCz −γI DT
wz

Cz Dwz −γI

< 0.
(2.50)

Now, considering the following system

~̇x(t) = A~x(t)+Bu~u(t)+Bw~w(t)

~y(t) = Cy~x(t)+Dwy~w(t)

~z(t) = Cz~x(t)+Duz~u(t)+Dwz~w(t),

(2.51)

where ~x(t) ∈ Rn is the state vector, ~u(t) ∈ Rnu is the input vector, ~w(t) ∈ Rnw the external
input noise vector, ~y(t) ∈ Rny the measured outputs, ~z(t) ∈ Rnz is an computed output, and
A,Bw,Bu,Cz,Cy,Duz,Dwz,Dwy with appropriate dimensions. According Chang [2014] and Zhou
et al. [1996], in an SOF H∞ control design, the objective is to find an asymptotically stable SOF
controller, such that the following conditions are satisfied for the system (2.51) with the control
law~u(t) = K~y(t):

1 - The closed-loop system (2.52) is asymptotically stable when ~w(t) = 0;

2 - Under the zero initial condition, (2.46) is satisfied for any nonzero ~w(t) ∈L2[0,∞).

~̇x(t) = (A+BuKCy)~x(t)+(Bw +BuKDwy)~w(t)

~y(t) = Cy~x(t)+Dwy~w(t)

~z(t) = (Cz +DuzKCy)~x(t)+(Dwz +DuzKDwy)~w(t),

(2.52)

Following the same approach seen earlier, these are sufficient conditions to satisfy the
LMI problem (2.50) for the closed loop (2.52). Therefore, the tuning of K in an SOF H∞ control
problem is obtained by solving the following BMI problem using an iterative method as was
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proposed by Cao et al. [1998], He and Wang [2006] and Chaibet et al. [2005]:

min γ :


P > 0,AT

clP+PAcl PBcl CT
cl

BT
clP −γI DT

cl

Ccl Dcl −γI

< 0,
(2.53)

where

Acl = A+BuKCy,

Bcl = Bw +BuKDwy,

Ccl = Cz +DuzKCy,

Dcl = Dwz +DuzKDwy.

This control method can be extended to a robust SOF H∞ controller when assuming a
system with model uncertainties. The procedures are the same as demonstrated in the previous
section, but using the BMI problem (2.53).

2.5 Nonlinear Control
Most systems present in nature have nonlinearities which often have a influence on their

behavior. Control methodologies have been arisen over time in order to control these systems.
Mathematical models take into consideration these nonlinearities and are the basis of the control
projects.

Next subsections presents a classical nonlinear control method called Backstepping.

2.5.1 Standard Backstepping

In this section, we will describe the Backstepping control technique for nonlinear systems.
This technique is an approach to stabilize the origin of systems by a full states feedback control
law design based on the Lyapunov Stability Theory (section 2.1).

As seen in Khalil and Grizzle [2002] and Krstic et al. [1995], this methodology uses
virtual control inputs as the feedback control laws to stabilize subsystems obtained from the
objective system. These virtual control laws are inserted to the subsystems by the change of
variables between the original states of the system. These stabilizing virtual control laws are
selected step by step for each subsystem seeking stability in a recursively form until the last
subsystem, where the control law of the objective system begins to act, determining a stabilizing
control law for the original system.

This controller design method can be advantageous because of the simplification in the
analysis of high order systems by reducing them to smaller subsystems and, finally, obtaining a
stabilizing control law for the original system.
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The design flexibility of the method, due to its recursive use of the Lyapunov Function, it
is an advantage with respect to other nonlinear methods. This flexibility makes the method less
restrictive than others. For example, relaxing the matching condition imposed as in the SMC
[Khalil and Grizzle, 2002].

In theory, the Backstepping method can compensate exactly the uncertainties present in
the state variables. However, it is not always necessary to cancel all nonlinear dynamics.

In general, as in this work, mechanical systems have triangular characteristics, which
facilitates the application of this design method.

2.5.2 Backstepping Design Procedure

The Backstepping control strategy is applicable to systems which have a structure in a
lower-triangular form as

η̇ = f (η)+g(η)ξ

ξ̇ = u,
(2.54)

where η ∈ R and ξ ∈ R are the states, f (η) : D→ R and g(η) : D→ R are known nonlinear
functions and u ∈ R is the control input. Therefore, before start the procedure, it is important
rewritten the system to this structure. The next formulation is based on Krstic et al. [1995] and
Khalil and Grizzle [2002].

Consider the second order system

η̇ = f (η)+g(η)ξ

ξ̇ = fa(η ,ξ )+ga(η ,ξ )u,
(2.55)

where fa and ga are smooth. It is possible rewrite the system in an lower-triangular form as in
(2.54) by a feedback linearization method. If ga(η ,ξ ) 6= 0, the input transformation

u =
1

ga(η ,ξ )
[ua− fa(η ,ξ )], (2.56)

will reduce the system (2.55) to the follow lower-triangular form

η̇ = f (η)+g(η)ξ

ξ̇ = ua.
(2.57)

Starting from the structure (2.57), the Backstepping control procedure seeks a stabilizing
virtual control law for the subsystem

η̇ = f (η)+g(η)ξ , (2.58)

choosing the state ξ as a virtual control input φ(η), where φ(0) = 0, that stabilize the dynamic
of η by a CLF such that

V̇ (η)≤−W (η)− k1η
2 < 0, ∀η 6= 0, W (η)> 0, k1 > 0, (2.59)
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achieving closed-loop asymptotic stability to the subsystem. In sequence, the method can be
applied recursively to obtain the control input ua in the last subsystem, such that the system will
be asymptotically stability by a CLF where:

V̇ (η ,ξ )≤−W (η ,ξ )− k1η
2− k2ξ

2 < 0, ∀η 6= 0, ∀ξ 6= 0, W (η ,ξ )> 0, k1,k2 > 0. (2.60)

Therefore, following the theory in Krstic et al. [1995] and Khalil and Grizzle [2002], if
all subsystems were globally asymptotically stable, by replacing ua in (2.56), the original system
will be globally asymptotically stable.
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CHAPTER

3
METHODOLOGY

This chapter presents the methodology used to design a control system for longitudinal
dynamics of vehicles, with the purpose of tracking a trajectory.

As mentioned in the previous chapter, the equation model that contains information about
a given system is very important for the execution of control projects. Section 3.1 of this chapter
presents the modeling for longitudinal displacement of a vehicle to obtain a set of equations for
the system.

Two control methodologies will be discussed in section 3.2 for tracking a longitudinal
trajectory, the Robust PID control method and the Backstepping with an integral part.

3.1 Longitudinal Dynamic Model
The longitudinal dynamic model of the vehicles is based on Newton’s Laws. Analyzing

the dynamic forces acting on the vehicle at Fig. 3.1, it is possible to determine the inertial force
and, consequently, the acceleration along the x-axis by the summation of these forces in (3.1).

Figure 3.1 – Longitudinal forces acting on the platform navigation.
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~Finertial = ~Ftorque +~Fdrag +~Ffriction +~Fweight (3.1)

The drag (~Fdrag) and friction (~Ffriction) forces absorb movement energy and, therefore,
have always negative signs. The torque (~Ftorque) and weight (~Fweight) forces can absorb or give
energy to the movement, so their signs it will depend of the road inclination and the torque
direction applied to the motor. According Rajamani [2011] and Zheng et al. [2016], the forces
can be written as

~Fdrag =
1
2

ρCD(v− vwind)
2,

~Ffriction = µm|~g|cosθ ,

~Fweight = m|~g|sinθ ,

~Ftorque =
η

r
Tm.

(3.2)

We can then rewrite (3.1) as

ma =
η

r
Tm−

1
2

ρCD|v− vwind|(v+ vwind)− sgn(v)µm|~g|cosθ −m|~g|sinθ , (3.3)

where m is the mass of vehicle, ρ is the air density, CD is the aerodynamic drag coefficient, v is
the longitudinal velocity, vwind is the wind velocity, sgn(·) is the sign function, |~g| is the modulus
of gravity vector, θ is the road inclination, η is the motor efficiency, r is the wheel radius, and
Tm is the torque on tires.

The tire friction coefficient µ in (3.3) is given by Pacejka and Bakker [1992] and Pacejka
[2005] as:

µ = δ sin
(

ρ tan−1
(
ξ κ− ε

[
ξ κ− tan−1(ξ κ)

]))
, (3.4)

where δ , ρ , ξ , κ and ε are coefficients given by the road and tires physical characteristics. The
equation in (3.4) is called "the magic formula" and give us a better approximation of the friction
coefficient model, as represented in Fig. 3.2, basing on the pure longitudinal slip, which include
the side and longitudinal forces, and the aligning torque.

To obtain a more complete model for the longitudinal dynamics of the vehicle it is
interesting to include the transmission dynamics for the electric motor of the vehicle. That model,
although simplified, relates the motor torque applied with the torque at the wheels, including the
energy loss due to mechanics transmissions. According to Zheng et al. [2016], it can be formally
written as:

ζ Ṫm =
Tu

β
−Tm, (3.5)

where ζ is the inertial constant, β is the transmission ratio and Tu is the motor torque.

The longitudinal model of the vehicle dynamics which will be used in future analysis
takes into account some assumptions [Rajamani, 2011; Zheng et al., 2016]: i) there is no wind
action, ii) the vehicle is a rigid and symmetrical body, iii) there are no yaw and roll movements,
iv) there is a direct transmission from the motor to the wheels (β = 1). Besides that, the use of the
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Figure 3.2 – Magic formula for ξ = 0.714, ρ = 1.40, δ = 1.00 and ε =−0.20. Source: http://simracingpaddock.com

function sgn(·) in (3.3) aims to evaluate the tire friction only for v 6= 0, that is, when the vehicle
starts its movement, bringing the model closer to reality. However, sgn(·) is discontinuous around
zero and the use of a continuous approximation throughout the domain may avoid numerical
problems. Then, sgn(v) was replaced as

sgn(v) =
(1− e−v)

(1+ e−v)
(3.6)

Rewriting equations (3.3) and (3.5) in a state space form and including these assumptions,
we have the nonlinear system:

~̇x1 =~x2

~̇x2 =
1
m

(
η

r
~x3−

1
2

ρCD|~x2|~x2−m|~g|sinθ − 1− e−x2

1+ e−x2
mµ|~g|cosθ

)
~̇x3 =

1
ζ
(u−~x3)

, (3.7)

where~x1 is the longitudinal position,~x2 is the longitudinal velocity,~x3 is the torque and u = Tu

is the torque command.

Section 3.2 demonstrates the strategies to design controllers based on the model described
in this section.

3.2 Trajectory Tracking Control
In Section 3.1 was presented a general longitudinal model for the vehicle studied, which

will be used in the controller design. In this section will be design a longitudinal control for
the vehicle, based on two strategies: a linear and a nonlinear. Both strategies aim to track a
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longitudinal reference trajectory, that is, the design of the controllers will be based on the error
between the position of the reference and the position of the car, trying to minimize the effect of
the uncertainties and disturbances in the model.

These controller designs will be compared by software simulation and real-world ex-
periments in a low-cost platform developed (Chapter 4), acting in adverse situations such as: a
sudden change in terrain type (changes in the friction coefficient), uneven terrains (changes in
slope) and addition of extra load to the vehicle (mass changes).

3.2.1 Robust PID Design

As seen in Chapter 2 the PID controller is one of the most used controllers in the industry
due to its simple architecture and several tuning methods [Ge et al., 2002]. Some of these tuning
methods seek to minimize the effects of uncertain parameters in the model, that is, make the
controller robust to these uncertainties.

It was seen that the use of LMIs with an optimization algorithm is an effective strategy
for stability analysis of high order dynamical systems with parametric uncertainties and/or
disturbances. For this reason, it is a method that will be treated in this section to tune a robust
PID to discontinuities and parametric uncertainties for the model described in Section 3.1.

The use of the LMIs method to PID tuning is not trivial and some alternatives can be used
to facilitate. An interesting alternative is to transform the PID problem into a SOF stabilization
problem and use interactive optimization algorithms to solve the LMIs subject to some project
restrictions [He and Wang, 2006; Zhang et al., 2012; Zheng et al., 2016].

As known, this method applies to linear systems and it is necessary to linearize the set
of equations (3.7) around an equilibrium point. An equilibrium point occurs when the system
dynamics are null (~̇x =~0) and, in this case, it will when:

θ

x2

x3

u

=


0
0
0
0

 . (3.8)

The H∞ suboptimal controller aims to minimize the effects of disturbance signals in
the system (section 2.4.4). The terrain inclination it will be considered as a norm-bounded
disturbance ω(t), such that the linearized system around the point (3.8) has the format:

~̇x(t) = A~x(t)+B2u(t)+B1ω(t)

~z(t) = C1~x(t)

~y(t) = C2~x(t)

, (3.9)
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where~z(t) and C1 are the computed output and weighting matrix, respectively, and:

A =

0 1 0
0 0 η

mr

0 0 − 1
ζ

 , B2 =

0
0
1
ζ

 , B1 =

 0
|~g|(µ−1)

0

 , C2 =
[
1 0 0

]
,

~x(t) =

~x1(t)

~x2(t)

~x3(t)

 , and ω(t) = θ(t).

3.2.1.1 Transformation of PID to SOF control

According to Zheng et al. [2002], it is possible to transform a PID control problem into a
SOF control problem by variable changes. Consider the linear time-invariant system:

~̇x = A~x+Bu, ~y = C~x, (3.10)

and the PID controller
u(t) = Kp~y+Ki

∫ t

0
~ydt +Kd~̇y, (3.11)

where Kp, Ki and Kd are the proportional, integral and derivative gains, respectively.

Let

~̄x(t) =

[
~x(t)∫ t
0~ydt

]
, ˙̄~x =

[
A 0
C2 0

]
~̄x, ~̄y(t) =

 C2~x(t)∫ t
0~ydt

C2A~x(t)

=

 C2 0
0 I

C2A 0

~̄x,
the controller in (3.11) reduces to

u(t) = Kpȳ1(t)+Kiȳ2(t)+Kd ȳ3(t)+KdC2B2u, (3.12)

and, if the Condition 1 is satisfied, a Proportional-Integral-Derivative Static Output Feedback
(SOF-PID) control law can be written as [Zheng et al., 2002]:

u(t) =
[
(I−KdC2B2)

−1Kp (I−KdC2B2)
−1Ki (I−KdC2B2)

−1Kd

]
~̄y(t),

u(t) =
[
K̄1 K̄2 K̄3

]
~̄y(t).

(3.13)

Condition 1. The matrix I−K3C2B2 is invertible.

In the case of the model studied (3.9), the new system it will be

˙̄~x(t) = Ā~̄x(t)+ B̄2u(t)+ B̄1ω(t)

~z(t) = C̄1~̄x(t)

~̄y(t) = C̄2~̄x(t)

(3.14)
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where

Ā =

[
A 0
C2 0

]
, B̄1 =

[
B1

0

]
, B̄2 =

[
B2

0

]
,

C̄2 =

 C2 0
0 I

C2A 0

 , C̄1 =
[
C1 0

]
,

and the control law (3.11) will be

u(t) = K̄~̄y(t) (3.15)

where

K̄ =
[
K̄1 K̄2 K̄3

]
, (3.16)

Kd = K̄3(I+C2B2K̄3)
−1, (3.17)

Ki = (I−KdC2B2)K̄2, e (3.18)

Kp = (I−KdC2B2)K̄1. (3.19)

Condition 1 is satisfied by Proposition 1, which proof is shown in Zheng et al. [2002].

Proposition 1. (Zheng, 2002). Matrix I−KdC2B2 is invertible if and only if I+C2B2K3 is
invertible, where Kd and K3 are related to each other by:

Kd = K3(I3 +C2B2K3)
−1.

The Condition 1 and Proposition 1 is always guaranteed when C2B2 = 0, because the
determinant will be different of zero (det[I−KdC2B2] 6= 0 and det[I+K3C2B2] 6= 0). Consider
the system give by (3.9), C2B2 = 0, then I+K3C2B2 and I−KdC2B2 are not singular. Therefore,
the Condition 1 and the Proposition 1 are satisfied.

In this way, it is possible to tune PID control gains from the analysis of a stability problem
SOF H∞ by an LMI approach. However, in addition to being robust to disturbances, the goal is
the controller to be robust to parametric uncertainties, so a strategy is needed to include them in
the analysis.

The uncertainties of the model to be considered, as presented previously, will be: changes
in the friction coefficient (µ) and mass changes (m). Analyzing the proposed linear model (3.9)
and its transformation for stability analysis (3.14), the inclusion of these uncertainties results in:

~̇x(t) = A(β )~x(t)+B2u(t)+B1(β )ω(t), (3.20)
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where β ∈ D in which β represents the uncertain parameters and D is a polytope of known
vertices Ai and B1,i:

D =

{
(A,B1)(β ) : (A,B1)(β ) =

k

∑
i=1

βi(A,B1)i;
k

∑
i=1

βi = 1;βi≥0

}
,

Ai =

[
Ai 0
C2 0

]
, Ai =


0 1 0
0 0 η

(m+4mi)r

0 0 − 1
ζ

 ,

Bi =

[
B1,i

0

]
, B1,i =

 0
|~g|(µ +4µi−1)

0

 ,
where4mi and4µi are the uncertain variations of the parameters.

Transforming the model into a form to obtain the PID gains per LMI solution, we simply
apply an optimization algorithm that determines these gains for model stability.

3.2.1.2 Robust PID H∞ Stabilization

The transformed model saw in the last section can be used to design a PID controller,
robust to disturbances and uncertain parameters, solving the SOF H∞ stabilization problem
using an LMI approach with an interactive optimization algorithm adapted from He and Wang
[2006] and Zheng et al. [2002].

From last section, considering the model (3.20) in closed loop as:

~̇x(t) = (Ai +B2KC2)~x(t)+B1,iω(t), ∀i = 1 . . .k, (3.21)

by the Lyapunov Stability Theory in section 2.1 and according Cao et al. [1998], Zheng et al.
[2002] and He and Wang [2006]:

Lemma 1. (Cao, 1998): The system (3.21) is stabilizable via static output feedback if and only
if there exist matrices P > 0 and K satisfying the following matrix inequality:

P(A+B2KC2)+(A+B2KC2)
T P < 0. (3.22)

As in Cao et al. [1998] it is possible place the eigenvalues of the system (3.21) to the left
of line α/2 in the complex plane, since exist a P > 0 and K satisfying the following inequality:

P(A+B2KC2)+(A+B2KC2)
T P−αP < 0. (3.23)

The H∞ suboptimal control, as already seen, aims to determine a control law that
minimizes an upper limit for the H∞ norm (section 2.4.4). In case of the SOF H∞ stabilization
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problem, it can be formally defined as finding the control law (3.15) such that the system (3.21)
fulfills ‖H(s)‖∞ < γ , for γ > 0, such that, according to Cao et al. [1998], also satisfies:PÃ+ÃT P−αP PB̃ C̃T

B̃T P −γI3 D̃T

C̃ D̃ −γI3

< 0, (3.24)

being Ã = (Ai+B2KC2), B̃ = B1,i, C̃ = C1, and D̃ = 0. The formulation (3.24) includes (3.23),
so the closed loop system will be stable if exist a matrix P = PT > 0, an α ≤ 0 (pole allocation
to the left of the complex plane) such that the constraint (3.24) is satisfied ∀i = 1 . . .k and for a
minimum γ .

The constraint (3.24) is a BMI and not an LMI since there is a multiplication of the
decision variables P,α and K. By setting an initial matrix P first, it is possible to solve this
constraint via an interactive LMI optimization solve the algorithm. Therefore, we have employed
two algorithms, adapted from He and Wang [2006], to solve this problem. The Algorithm 1
provides an initial matrix P, used in Algorithm 2 to calculate the SOF H∞ gains K.

Algorithm 1: Calculate P matrix
1: i← 1, P0, L0← I3
2: while True do
3: Derive Pi and Li by solving the optimization for Pi, Li, V1 = PB2K and V2 = KC2L:
4: Minimize trace(PiLi−1 +LiPi−1) subject to LMIs (3.27), (3.28) and (3.29)
5: if

(
trace(PiLi)−n

)
< τ1 then

6: P← Pi initial is found, break
7: end if
8: if

(
trace(PiLi) - trace(Pi−1Li−1)

)
< τ2 then

9: P initial may not be found, break
10: end if
11: i← i+1
12: end while

In Algorithm 1 the system (3.20) was considered free of disturbances (ω(t) = 0). Then,
to ensure the stability of the system we need to solve the BMI problem for a P = PT > 0:

P(Ai +B2KC2)+(Ai +B2KC2)
T P < 0. (3.25)

Following He and Wang [2006], it was applied a variable change to transform it into LMIs and
exclude the multiplication into K and P, such that V1 = PB2K, V2 = KC2L and L = P−1. Then{

PAi +AT

i P+V1C2 +CT
2VT

1 < 0

AiL+LAT

i +B2V2 +VT
2B2 < 0

, (3.26)

which can be rewritten as the LMIs: [
Pi I3

I3 Li

]
≥ 0, (3.27)
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Algorithm 2: Calculate K
1: i← 1, and Pi← P from Alg. 1.
2: while True do
3: Given Pi, solve optimization problem for K
4: Minimize αi = α subject to LMI (3.24)
5: if αi ≤ 0 then
6: K is the SOF H∞ stabilizing gain for γ , break
7: else
8: i← i+1
9: Solve optimization for Pi with K and αi previously found.

10: Minimize trace(Pi) subject to LMI (3.24)
11: if ‖Pi−Pi−1‖

‖Pi‖ < τ3 then
12: SOF H∞ control problem can’t be solved for prescribed tolerance τ3
13: else
14: i← i+1 and Pi← Pi−1
15: end if
16: end if
17: end while

 Γi, j PiB1, j CT

1

BT

1, jPi −γI3 0
C1 0 −γI3


j=1...n

< 0, (3.28)

Ψi, j B1, j LiC
T

1

BT

1, j −γI3 0
C1Li 0 −γI3


j=1...n

< 0, (3.29)

where Γi, j = PiA j +AT

j Pi +V1C2, j +CT

2, jV
T
1 and Ψi, j = A jLi +LiA

T

j +B2V2 +VT
2BT

2. Using a
LMI solver, the initial value of P can be obtained from Algorithm 1 with stopping criteria being
minimum tolerances, τ1 and τ2, to the trace(PL), where PL = I3.

Algorithm 2 tries to solve the BMI problem (3.24) transforming it into an LMI by using
the P found in Algorithm 1, thus excluding the multiplication of unknown variables. In Algorithm
2 we use the LMI solver to search for a gain matrix K to the control law (3.15) for the smallest
value of γ , that minimize the H∞ norm and consequently the disturbance effects in the system,
with α < 0, forcing the allocation of the poles in the left complex plane for stability. This is also
an iterative algorithm, first using the P found in algorithm 1 to find a value of K that minimizes
α and, in case of the α > 0, use the founded K and α to find a new P and proceed in an iterative
form until finding α < 0.

Executing both algorithms we obtain the gain K and using equations (3.19) get the PID
controller gains Kp, Ki and Kd to the trajectory tracking. In Chapter 4 the results of the application
of this control method into the system are treated by simulation and real-world experiments.
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3.2.2 Integral Backstepping Design

This section presents a procedure design a controller via Backstepping technic with an
integral action to determine a control law to the system (3.7) such that the error between the
position of the robot and a virtual reference trajectory [x1(t)− xr(t)] converges to zero in steady
state.

Following the standard backstepping method as in Khalil and Grizzle [2002], it is
necessary to make a variable change in the system (3.7) to format it as a superior triangular
system. Let

u = ζ un + x3, (3.30)

then 
~̇x1 =~x2

~̇x2 =
1
m

(
η

r
~x3−

1
2

ρCD|~x2|~x2−m|~g|sinθ − 1− e−x2

1+ e−x2
mµ|~g|cosθ

)
~̇x3 = un

. (3.31)

Based in the procedure seen in Skjetne and Fossen [2004], Mian et al. [2008] and Rashad
et al. [2015] the integral backstepping controller is formulated to solve the tracking problem
limt→∞[x1(t)− xr(t)] = 0 in three steps as follow.

• First Step

In the first step is chosen the backstepping states transformation as: z1(t) = xr(t)− x1(t) and
ξ (t) =

∫ t
0 z1(τ)dτ , where z1(t) is the error of position and ξ (t) is the integral term of error. The

dynamics afeter this transformations is:

ξ̇ (t) = z1(t),

ż1(t) = ẋr(t)− x2(t).
(3.32)

The following Lyapunov function is proposed to guarantee the stability of the system in
(3.32)3:

V1(ξ ,z1) =
1
2

Kξ
2 +

1
2

z2
1, (3.33)

where K > 0 and, consequently, V1(ξ ,z1)> 0, ∀ [ξ z1] 6= 0.

To guarantee the asymptotic stability of the system, the derivative of Lyapunov function
needs to be negative definite, that is, it becomes a CLF, as seen in section 2.5.1. In this way, for

V̇1(ξ ,z1) = Kξ ξ̇ + z1ż1,

V̇1(ξ ,z1) = z1(Kξ + ẋr− x2),
(3.34)

3 From this point, the time dependence (t) will be suppressed.
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it is necessary to determine a state feedback virtual control law φ1 such that V1(ξ ,z1)≤ 0. In this
step, it is chosen φ1 = x2 and, to guarantee stability, φ1 = Kξ + ẋr +C1z1 with C1 > 0. Replacing
in (3.34):

V̇1(ξ ,z1) = z1(Kξ + ẋr−φ1),

V̇1(ξ ,z1) =−C1z2
1 < 0,

(3.35)

which is negative definite and guarantees the asymptotic stability of the system (3.32).

• Second Step

Adding and subtracting φ1 in the second equation of (3.32), we have:

ξ̇ = z1,

ż1 = ẋr−φ1 +(φ1− x2) =−Kξ −C1z1 +(φ1− x2).
(3.36)

Making a change of variables z2 = x2−φ1, a new system can be rewritten as:

ξ̇ = z1,

ż1 = ẋr−φ1 +(φ1− x2) =−Kξ −C1z1− z2,

ż2 =

(
η

mr
x3−

1
2

ρCD|x2|x2−|~g|sinθ − 1− e−x2

1+ e−x2
µ|~g|cosθ

)
− φ̇1,

(3.37)

where
φ̇1 = Kz1 + ẍr−C1(z2 +Kξ +C1z1). (3.38)

Consider a new Lyapunov function as

V2(ξ ,z1,z2) =V1(ξ ,z1)+
1
2

z2
2 > 0, ∀ [ξ z1 z2] 6= 0, (3.39)

which has the following derivative:

V̇2(ξ ,z1,z2) = Kξ ξ̇ + z1ż1 + z2ż2,

V̇2(ξ ,z1,z2) =−z1z2−C1z2
1 + z2

(
η

mr
x3−

1
2

ρCD|x2|x2−|~g|sinθ

−1− e−x2

1+ e−x2
µ|~g|cosθ − φ̇1

)
.

(3.40)

Then, to guarantees the asymptotic stability it is necessary a virtual control law φ2, in
this case will be x3, which makes V̇2(ξ ,z1,z2)< 0. Therefore,

φ2 =
mr
η

(
1
2

ρCD|x2|x2 + |~g|sinθ +
1− e−x2

1+ e−x2
µ|~g|cosθ + φ̇1 + z1−C2z2

)
(3.41)

and replacing in (3.40) we have V̇2 < 0 ∀ [z1 z2] since that C1 > 0 and C2 > 0:

V̇2(ξ ,z1,z2) =−C1z2
1−C2z2

2 < 0. (3.42)



Chapter 3. Methodology 47

• Third Step

Following the same approach used in the last step, a variable change is made as z3 =

x3−φ2 and a new system can be rewritten as:

ξ̇ = z1,

ż1 =−z2−Kξ −C1z1,

ż2 =
η

mr
z3 + z1−C2z2,

ż3 = un− φ̇2,

(3.43)

where

φ̇2 =
mr
η

[
ρCD|x2|x2 + |~g|sinθ +µ|~g|cosθ

2e−x2

(1+ e−x2)2 ẋ2 + ż1(K +1)

+
...x r−C1(ż2 +Kξ +C1z1)−C2ż2] .

(3.44)

A new Lyapunov function it is necessary to evaluate the system stability. Thus,

V3(ξ ,z1,z2,z3) =V2(ξ ,z1,z2)+
1
2

z2
3, (3.45)

where V3(ξ ,z1,z2,z3)> 0 ∀ [ξ z1 z2 z3] 6= 0.

To be asymptotically stable, the derivative of the Lyapunov function needs to be negative
definite. In this way, it is necessary a control law that guarantees V̇3 < 0. Being

V̇3(ξ ,z1,z2,z3) =−C1z2
1−C2z2

2 +
η

mr
z2z3 + z3(un− φ̇2), (3.46)

let choose
un = φ̇2−

η

mr
z2−C3z3 (3.47)

such that, by replacing (3.47) in (3.46),

V̇3(ξ ,z1,z2,z3) =−C1z2
1−C2z2

2−C3z2
3. (3.48)

Therefore, by inspection V̇3 < 0 ∀ [z1, z2, z3] 6= 0, since [C1C2C3]> 0. Then, according
the Lemma presents in Khalil and Grizzle [2002], Krstic et al. [1995] and as show in Skjetne
and Fossen [2004], Mian et al. [2008] and Rashad et al. [2015], replacing (3.47) into (3.30),
the system (3.7) will be globally asymptotically stable for a bounded reference input xr and
guarantees that limt→∞[x1(t)− xr(t)] = 0.

In Chapter 4, simulated and real-world experiments will be presented to evaluate the
proposed method.
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3.3 Platform Design
To realize experiments in a real-world scenarios, it was built a small robot over the Mad

Force Kruiser 2.0 1/8 Monster Truck platform show in Fig. 3.3. The platform was built with a
Raspberry Pi 3 computer with Ubuntu Mate 18.04 to process data and compute control actions
executing a framework designed into Robot Operating System (ROS)4 Kinetic, presented in
Fig. 3.4, with algorithms implemented in Python and C++ languages.

Figure 3.3 – Mad Force Kruiser 2.0 1/8 Monster Truck. Source: rc.kyosho.com

Figure 3.4 – Control architecture at the ROS.

The feedback information is provided by a digital incremental rotary encoder LPD3806-

360BM, coupled in an intermediate reduction between the motor’s shaft and the wheel. The used
encoder has a high resolution (360 pulses per revolution), therefore, it was necessary to put it
into a reduction of the motor to reduce the reading frequency and do not overload the system.
Moreover, for the same reason, an Arduino Nano micro-controller it is used, exclusively, to read
the encoder information, calculating the robot odometry and send it via serial communication to
the Raspberry, reducing the work done with this last. A sampling frequency of 20Hz is provided
by Arduino for encoder measurements. However, this frequency is limited to 10.0Hz by the
control node because of the delay required to change the motor rotation direction (foward and
reverse).

The torque command is ensured by an Electronic Speed Controller (ESC), operated via
Pulse Width Modulation (PWM) inputs come from the embedded computer and pass through
4 www.ros.org/kinetic/
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an Adafruit PCA9685 motor driver, with 12 bits (0 - 4095) of resolution and 50 Hz, before it
reaches the ESC. As the control input used in the model is the torque applied to the motor (N.m)
and the control input of the robot, which influences the motor rotation, is PWM, it was necessary
a previous calibration to relate the two quantities.

The calibration was done using the least squares method to estimate a linear function that
relates the torque in the motor and the PWM value (bits) sent to the ESC. First, a data set was
generated by applying a sequence of bits (PWM) to the ESC and collecting the force (N) applied
to the wheel axis from a digital force sensor, which has been positioned in a lever with distance
L = 0.14 m from the wheel axis. Thus, by using the equation (Torque = Force x distance), it
was possible to collect five samples with 10 observations each in two sets, one computed in the
forward direction and another in the reverse. The number of observations was established by the
limitation of the measuring apparatus, the Tables 3.1 and 3.2 show these data sets considering
the calculation of the torque from the force measured and the lever distance L.

Considering a transmission ratio 7.8 : 1 from the motor axis to the wheel axis and using
the least squares method, the linear functions that relate PWM and Torque can be express as

PWM f orward = 379.02+4.21(Tf orward),

PWMreverse = 353.69−10.86(Treverse).
(3.49)

where T is the motor torque, PWM is the value sent to the ESC and the terms “forward” and
“reverse” reflect the direction of rotation.

Table 3.1 – Data set for calibration in the forward direction.

PWM Sample-1(N.m) Sample-2(N.m) Sample-3(N.m) Sample-4(N.m) Sample-5(N.m)
384 1.372 1.509 1.509 1.784 1.509
386 2.332 2.058 2.195 1.784 2.058
388 2.470 2.195 2.195 2.607 2.195
390 2.607 2.744 2.744 3.018 2.881
392 3.704 3.430 3.704 3.430 3.293
394 3.842 3.979 4.253 3.979 3.567
396 3.979 3.842 4.390 4.253 4.253
398 4.390 3.979 4.253 4.390 4.116
400 4.665 4.665 4.528 4.665 4.665
402 4.528 4.939 4.802 4.939 4.802
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Table 3.2 – Data set for calibration in the reverse direction.

PWM Sample-1(N.m) Sample-2(N.m) Sample-3(N.m) Sample-4(N.m) Sample-5(N.m)
344 0.823 0.823 0.823 0.823 0.823
342 0.823 0.960 0.960 0.960 0.823
340 1.372 1.098 1.235 1.098 0.960
338 1.509 1.372 1.372 1.372 1.235
336 1.784 1.646 1.784 1.646 1.646
334 2.058 1.921 2.058 1.921 1.921
332 1.921 2.058 1.921 2.058 1.921
330 2.058 2.058 1.921 2.058 2.058
328 2.195 2.058 2.058 2.058 2.195
326 2.195 2.195 2.332 2.195 2.332

The control of the robot is made using all of these devices boarded and a battery pack to
powering these (ESC-Motor power was provided by a secondary battery). Besides that, some
pieces were created in a 3D printer (Prusa I3) to connect these devices into the robot. Fig. 3.5
show a flowchart of the control operation with the employed devices.

Figure 3.5 – Flowchart of the control operation.
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CHAPTER

4
RESULTS

This chapter presents simulated and real-world results of the controllers presented in last
sections, applied to a longitudinal trajectory tracking problem with irregular terrains. The goal
is evaluate and compare both methods applying them to the model present in section 3.1 by a
simulation using the software MATLAB® and to a low-cost platform developed for experiments.
In both experiments were used the characteristics of the Mad Force Kruiser 2.0 1/8 Monster

Truck (vide Fig. 1.5 and Section 3.3), the table 4.1 describes all the parameters used.

Table 4.1 – Model parameters used in the simulator.

Parameter Value Unity Parameter Value Unity
Mass (m) 5.50 Kg Gravity (|~g|) 9.81 m/s2

Air density (ρ) 1.18 Kg/m3 Drag coeff. (CD) 0.10 [ ]
Wheel radius (r) 0.08 m Motor efficiency (η) 95.00 %
Road angle (θ ) 0.00 rad Torque inertia (ζ ) 0.10 [ ]

To evaluate the robustness of the controllers, it has also compiled some extreme values
of tire friction, concerning Eq. (3.4) and illustrated in Table 4.2, to compose the polytope of the
robust estimation. These friction values were based on data of the literature5 and the mass of the
robot measured with a weight balance.

Table 4.2 – Range of parameters uncertainties: vertices of the polytope.

Ground-type µ Vehicle’s mass m[kg]
dry tarmac 0.36 unloaded 5.50

uneven ground with tall grass 1.54 loaded 8.00

The purpose of the experiments is to evaluate the behavior of the robot following a virtual
reference trajectory with controllers action. The chosen reference trajectories will be planned
5 https://www.mathworks.com/help/physmod/sdl/ref/tireroadinteractionmagicformula.html
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as third-order polynomial functions and this planning method it will be shown in the following
section.

4.1 Reference Trajectory Planning
The set-point trajectory for the robot is based only on longitudinal movements. The basic

objective of this generation is to move the robot from an initial position to a final position. In
general, we can represent a trajectory as a polynomial time function which the order depends
on the number of constraints inserted in the planning. For the experiments that were performed,
third-order polynomial functions were used, considering the initial position, the goal position
and the time duration of the trajectory.

These polynomial trajectories are formed by an initial position x0, a final position x f and
the time t f spent to travel from x0 to x f . In this way we will have four obvious constraints come
from x0, x f and another two to the velocity at the start point and at the end:

x(0) = x0, x(t f ) = x f ,

ẋ(0) = 0, ẋ(t f ) = 0.
(4.1)

Following the method in Craig [2004], these four constraints can be satisfied by a third
order polynomial function as {

x(t) = a0 +a1t +a2t2 +a3t3

ẋ(t) = a1 +2a2t +3a3t2
, (4.2)

where a0 = x0, a1 = 0, a2 =
3
t2

f
(x f − x0) and a3 = − 2

t3
f
(x f − x0). The main advantage of using

smooth trajectories at this application is the avoiding of abrupt jerks in the vehicle’s engine.

A higher-order polynomial can be used if it were of interest to add constraints for initial
and final acceleration, for example. But for the experiments performed here the one presented in
(4.2) was sufficient.

4.2 Simulated Results
Firstly, the controllers gains were calculated using the methods seen in Chapter 3. In the

robust PID case, the algorithms developed in Section 3.2.1 were solved by using the MOSEK

solver6 in software MATLAB® and the uncertainties used as vertices of the polytope (3.20) were
those described in Table 4.2. In the Backstepping case, using the method in Section 3.2.2, the
control gains were chosen, respecting the presented stability constraints. The controllers gains
obtained are show in Table 4.3.
6 The MOSEK optimization software: https://www.mosek.com/.

https://www.mosek.com/
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Table 4.3 – Controllers gains.

Controller Gains
Robust PID Kp Ki Kd

14.20 13.90 5.01
Backstepping K C1 C2 C3

1.00 1.00 7.00 8.00

The simulations were made using a simulator implemented in Simulink/MatLab tool,
where the system dynamics (3.7) has been tested in a closed loop by applying the control law of
the developed controllers. Some scenarios have been tested to analyze the control systems in an
ideal condition and with disturbances. In the scenario called as an ideal, it is consider that the
system operates in a dry tarmac with a friction coefficient as in Table 4.2, without changes in the
parameters of Table 4.1, no disturbances in the inclination of the road (θ = 0) and with small
measurement noises. It was applied a polynomial trajectory to move the robot 40 m forward
and backward in 30 seconds each. Fig. 4.1 shows the comparative results of both controllers for
position and speed of the simulated vehicle in the ideal scenario.
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Figure 4.1 – Simulation results without uncertainties.

It is possible to see that both controllers correspond to the objective of tracking the
trajectory and reject the noise at the measured output. Analyzing the distance error between the
reference and the position output at Fig. 4.2, it is possible to note that the integral Backstepping
presents an error mean smaller than the robust PID, but both approaches zero.

To analyze the robustness of the controllers, other scenarios have been tested, applying
changes in the terrain conditions, varying the mass of the vehicle in a typical load transporta-
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Figure 4.2 – Simulation position error results without uncertainties.

tion mission and keeping the measurement noises. In the second simulation, the scenario of
uncertainties described in Table 4.4 was used.

Table 4.4 – Scenarios of simulation 2: mass m variation, slope θ , and friction µ .

Scenario m [kg] θ [◦] µ

S0 5.5 0 0.848
S1 5.5 28 1.543
S2 6.5 28 1.543
S3 7.5 −28 1.543
S4 7.5 0 0.848

Fig. 4.3 shows the results for position and speed of the simulated vehicle, respectively,
while Fig. 4.4 illustrates the tracking error and the torque applied by the controllers. It can be
seen that the robust PID controller minimizes the disturbances (ground slopes) and the parametric
uncertainties (mass variation and friction) better than the Backstepping controller. Although both
ensure null error in steady state, the robust PID converges faster and, analyzing Fig. 4.4, it is
noticed that the error between the reference and the measured displacement is almost null during
all trajectory, using the PID controller. Calculating the mean square error (MSE) in both cases,
we have 0.490 using the Backstepping controller and 0.067 for the PID, proving the previous
analysis.

Another simulation has been done using a different trajectory, now representing a bumpy
terrain. In this simulation, the terrain inclination was arbitrarily changed along the trajectory
within the interval [−30◦,30◦] (negative and positive slopes), and the friction was varied within
the range shown in Table 4.2. Also, the mass was changed by adding 1kg to the bodywork at
in each stop of the trajectory (exceeding the limit of 8kg used in the Robust PID controller
design). Figures 4.5 and 4.6 show the results of this third simulation. Once more, the trajectory
was satisfactorily tracked by both controllers, despite terrain conditions, and the error using
the robust PID controller was lower, as evidenced by the calculation of the MSE where it was
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obtained 0.244 for the Backstepping and 0.065 for the PID.

The difference in the controller’s performance was evaluated using the Integral Absolute
Error (IAE), Integral Time Absolute Error (ITAE), Integral Square Error (ISE) and Integral Time
Square Error (ITSE) indexes. The Table 4.5 shows a mean of these indexes for each controller in
the simulations(excluding the ideal scenario), calculated by the equations:

IAE =
∫ T

0
|e(t)| dt; ITAE =

∫ T

0
t|e(t)| dt;

ISE =
∫ T

0
e(t)2 dt; IT SE =

∫ T

0
te(t)2 dt.

These indexes evaluate the performance of the controllers in converging to a proposed ref-
erence and the time spent in this convergence. Observing the indexes, it is possible to notice that
the Robust PID has the lowest values for them, what translate the better results of performance.

Table 4.5 – Average performance indices from the experiments for each controller.

Controller IAE ITAE ISE ITSE
Integral Backstepping 19.89 831.38 22.61 22.77

Robust PID 3.34 140.64 0.75 0.75
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Figure 4.3 – Simulation results of Table 4.4: position and speed trajectory.
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Figure 4.4 – Simulation results of Table 4.4: position error and torque.
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Figure 4.5 – Simulation results of Table 4.4: position and speed trajectory.
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Figure 4.6 – Simulation results of Table 4.4: position error and torque.

4.2.1 Backstepping Method Issues

The values of the Backstepping controller gains are not well defined by the method. The
choice of them (Table 4.3) was made based on experiments, respecting the criteria of the method
that, in this case, requires positive gains for asymptotic stability. The Fig. 4.7(a) and 4.7(b) show
experiments in the ideal scenario for some values of gains. The performance of the controller
was not as expected. The Fig. 4.8 shows another simulation using other gains and obtaining
better results tracking the reference, but with problems in the control signal and speed tracking.
It is possible to note that the controller is sensitive to the choice of the gains, despite respect the
stability criteria. This problem does not occur with the PID controller, since the gains are well
defined by the design.
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Figure 4.7 – Integral Backstepping simulation in an ideal scenario with gains: (a) [K,C1,C2,C3] = [10,5,1,1] and
(b) [K,C1,C2,C3] = [5,10,5,1]



Chapter 4. Results 58

0 10 20 30 40 50 60 70
0

20

40
D

is
ta

nc
e 

(m
) Reference

Integral Backstepping

0 10 20 30 40 50 60 70

Time (s)

-2

0

2

V
el

oc
ity

 (
m

/s
)

(a)

0 10 20 30 40 50 60 70

Time (s)

-2

-1

0

1

2

T
or

qu
e 

(N
.m

)

(b)

Figure 4.8 – Integral Backstepping simulation in an ideal scenario with [K,C1,C2,C3] = [2,1,1,2], where (a) is the
Distance and velocity response and (b) the control signal.

4.3 Real World Results
This section presents real-world results of the controllers of the chapter 3, applied to the

control system of the platform developed show in section 3.3. The results of the Robust PID and
the Integral Backstepping were compared with each other to evaluate the performance in the
execution of objective.

The purpose of the experiments is to reflect a typical mission of payload delivery in
uneven terrains. Thus, the robot must track a smooth longitudinal trajectory that promotes a
displacement in both directions (forward and backward), executed in terrains with different
configurations, ranging from soft-ground to tall grass in uneven soil, illustrated in Figures 4.9(a)
to 4.9(d), and with extra loads, represented by two dumbbells of 1 kg, added to the vehicle during
some stops. In these experiments, we seek to evaluate the effect of these adverse conditions on
the system and the performance of each controller. In this case, the torque (state x3 in the model
(3.7)) is not measured and it is considered that the PWM value send to ESC is equivalent to the
torque applied, obtained from calibration (3.49).

The realization of these experiments require a digital control system acting in the Rasp-
berry PI 3 used in the platform development (section 3.3). Therefore, it is used a bilinear
transform method to obtain a discrete-time representation from the continuous-time represen-
tation of developed Robust PID controller. This was possible due to the high sample rate in
reading position and velocity data, as presented in section 3.3. Table 4.6 shows gains obtained
after discretization using a frequency of 10.0Hz.

Table 4.6 – Discrete Controllers gains.

Controller Gains
Robust PID Kp Ki Kd

14.90 13.90 5.01
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(a) dirt road floor (b) grass

(c) soft-ground (d) bumpy terrain

Figure 4.9 – Experiments with the prototype in different fields.

Firstly, two missions have been tested, which are described in Table 4.7. All controllers
are tested in the same mission and the results are shown in Figures 4.10 and 4.11, which
represents the trajectory traveled and the speed employed in the mission 1 and 2, respectively.

Table 4.7 – Scenarios of missions: mass variation, slope profile and terrain type.

Scenario
m [kg]

(mission) slope ≈ 20◦ ground-type
1 2

S1 5.5 7.5 no slope plane stones
S2 5.5 7.5 climbing tall grass
S3 6.5 6.5 climbing tall grass
S4 7.5 5.5 descending tall grass
S5 7.5 5.5 no slope plane stones

Another experiment was performed in a bumpy dirt road, submitting the robot to a path
with holes and small obstacles like: sticks, stones, and leaves. The same trajectory was passed as
a reference to the controllers and the mission scenarios are described in Table 4.8. The exactly
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ground inclination present in these experiments is unknown, but it is known that is smaller
(almost zero) than the missions in Table 4.7. The results are shown in Figures 4.12 and 4.13.

Table 4.8 – Scenario description of the experiments on the bumpy road.

m [kg]
Scenario (mission 1) (mission 2)

S1 5.5 7.5
S2 6.5 6.5
S3 7.5 5.5

Analyzing the results, it is possible to notice that the robot follows the trajectory with
both controllers. In adverse situations, present in all missions of the experiment, it is possible to
notice that the Integral Backstepping controller have more difficulties to reject the disturbances
(ground slopes) and the uncertainties of the parameters (change of mass and soil type) than
the robust PID. It is clear that the PID was designed to be robust to these adversities, but the
Integral Backstepping takes on the nonlinearities of the system, different of the PID that uses
the linearized model. Therefore, even using a more complete model, the Integral Backstepping
controller demonstrates a worse performance.

This difference between the controllers is shown in Fig. 4.14, which shows the distance
error between the reference and the measurement of each controller. Note that the average of the
PID controller error is lower in all experiments.
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Figure 4.10 – Results of mission 1 (Table 4.7): position and speed of Reference and all tested controllers.
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Figure 4.11 – Results of mission 2 (Table 4.7): position and speed of Reference and all tested controllers.
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0 20 40 60

-0.5

0

0.5

1

D
is

ta
nc

e 
E

rr
or

 (
m

)

Robust PID
Integral Backstepping

0 20 40 60

-0.5

0

0.5

0 20 40 60

Time (s)

-1

0

1

D
is

ta
nc

e 
E

rr
or

 (
m

)

0 20 40 60

Time (s)

-0.5

0

0.5

S1 S2 S3
S4

S5

S1 S2 S3 S4 S5

(a)

(b)

(c)

(d)

Figure 4.14 – Results of distance error in (a) mission 1 (Table 4.7); (b) mission 2 (Table 4.7); (c) mission 1 (Table
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The difference of the controller’s performance was evaluated using the IAE, ITAE, ISE
and ITSE indexes. The Table 4.9 shows a mean of these indexes for each controller in all missions
of the experiments. Observing the indexes, it is possible to notice that the Robust PID has the
lowest values for them, what translate the better results of performance.

Table 4.9 – Average performance indices from the experiments for each controller.

Controller IAE ITAE ISE ITSE
Integral Backstepping 8.13 198.42 4.19 4.28

Robust PID 5.79 174.83 2.12 2.14
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CHAPTER

5
CONCLUSION

This work approached the problem of longitudinal trajectory tracking by a ground robot
semi autonomously in uneven terrains, typical of some applications in agricultural environments,
mining, exploration, among others. The solution involved the development of two controllers by
different methodologies: a Robust PID and an Integral Backstepping, which were compared in
simulated experiments and in real-world missions of payload delivery on longitudinal trajectories.
The realization of the real experiments involved the development of a four-wheeled platform
with an embedded system capable of executing the controllers developed in adverse situations as
that cited.

The experiments were designed to evaluate the performance of both controllers in the
presence of parametric uncertainties (mass and friction changes) and external disturbances
(terrain slopes). The results showed that both controllers are able to reduce the tracking error.
Therefore, even using a simplified linear model, the robust PID rejected better the disturbances
and the uncertainties with a simpler tuning method, especially when analyzing the behavior of
the speed employed during the experiments and the distance error. Performance indices also
demonstrate the superiority of the robust PID controller. We should emphasize that the Integral
Backstepping, in ideal conditions (parameter values do not change), obtained a better result in
the simulation.

Besides that, it can be concluded that the uncertainty in the parameters and the presence
of disturbances have a strong influence on the system. In addition, although the backstepping
integral controller is able to reduce the influence of these adverse operating conditions while
minimizing the tracking error, the robust PID tuning method uses a simpler model for the system
and an algorithm, making the system modelling and controller tuning easier.

The developed platform obtained a satisfactory performance in executing the control
systems during the experiments, showing robustness during the executions. In addition, the
platform structure can be generalized to any type of car-like four-wheeled electric vehicle, and
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the control system can be used to trajectory tracking.

5.1 Future Works
As future work, it would be interesting to study a method to robustify the integral

backstepping to some uncertainties. The Backstepping method is based on feedback cancellations
and, if we do not cancel some nonlinearities, it may help with the stability of the closed-loop
system.

Another extension would be to develop a method to the robust PID tuning without use an
iterative algorithm, transforming the BMI problem to an LMI by the use of some assumptions
and/or variable changes. Making the method simpler to solve through only one LMI problem.

A study is already being done in relation to the latero-directional dynamics of our robot
to provide a two-dimensional trajectory tracking to the system, in uneven terrain conditions.
With this, the platform must be improved with new sensors to estimate lateral displacements and
the orientation of the robot, as an IMU and a GPS. We may also incorporate a state estimation
filter to improve the measurement since encoders often introduce dead-reckoning errors in the
navigation.

Thinking about the platform, a method for detecting obstacles, using cameras, lasers and
other sensors, would be a future contribution to the project.

As the longitudinal model can be used for platforms with another architecture (differential,
for example), experiments in this direction will be considered in the future.

In the future, we intend to start a study related to multi-robot cooperation. Working with
multiple of these platforms to perform tasks in formation.
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