IDENTIFYING AND CHARACTERIZING

UNMAINTAINED PROJECTS IN GITHUB

JAILTON JUNIOR DE SOUSA COELHO

IDENTIFYING AND CHARACTERIZING

UNMAINTAINED PROJECTS IN GITHUB

Tese apresentada ao Programa de Pos-
-Graduacao em Ciéncia da Computacao do
Instituto de Ciéncias Exatas da Universi-
dade Federal de Minas Gerais como re-
quisito parcial para a obten¢ao do grau de
Doutor em Ciéncia da Computagao.

ORIENTADOR: MARCO TULIO DE OLIVEIRA VALENTE

Belo Horizonte

Agosto de 2019

JAILTON JUNIOR DE SOUSA COELHO

IDENTIFYING AND CHARACTERIZING

UNMAINTAINED PROJECTS IN GITHUB

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Doctor
in Computer Science.

ADVISOR: MARCO TULIO DE OLIVEIRA VALENTE

Belo Horizonte

August 2019

©

2019, Jailton Junior de Sousa Coelho.
Todos os direitos reservados.

C672i

Coelho, Jailton Junior de Sousa

Identifying and Characterizing Unmaintained
Projects in GitHub / Jailton Junior de Sousa Coelho.
— Belo Horizonte, 2019

xxiii, 108 f. : il. ; 29c¢m

Tese (doutorado) - Universidade Federal de Minas
Gerais — Departamento de Ciéncia da Computacao.
Orientador: Marco Tilio de Oliveira Valente

1. Computacao — Teses. 2. Engenharia de software —
Teses. 3. Software — Manutencao — Teses. 4. Software
gratuito — Teses. I. Orientador. II. Titulo.

CDU 519.6*32(043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS-GRADUAGCAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO
Identifying and Characterizing Unmaintained Projects in GitHub

JAILTON JUNIOR DE SOUSA COELHO

Tese defendida e aprovada pela banca examinadora constituida pelos Senhores:

a

IRA VALENTE - Orientador
da Computacio - UFMG

0 LAGES %XGUEIREDO

Departamento de Cxencxa da Computagio - UFMG
AM ci/u'@ml \'{G\»\

PrOF. ANDRE CAVALCANTE HORA
Departamento de Ciéncia da Computagao - UFMG
Q)/"

ProF. RicarDo NunEes BUENO VILLELA
Departamento de Ciéngj FLA

OR/FABIO STEINMACHER
ampe Mourio - UTFPR

Belo Horizonte, 30 de Agosto de 2019.

“If you want to go fast, go alone. If you want to go far, go together.”
(African Proverb)

1X

Acknowledgments

I thank to everyone who helped me scientifically and emotionally along this doctoral

degree. Especially, I would like to thank to:

God. I thank God for protecting and blessing me much more than I deserve.

My Parents. A special thanks to my mom Luzinete and my dad Jailton, who gave

me the emotional support to get through the obstacles in making this happen.

My Wife. Most importantly, I wish to thank my beloved wife Natalia. I would like
to express my deepest gratitude for your unconditional love and care. Thank you for

being the reason I smile.

My advisor. I would like to express my sincere gratitude to my advisor Prof. Marco
Tulio Valente for the lessons, attention, availability, and patience. I could not have

imagined having a better advisor and mentor.

ASERG research group. I also thank the members of the ASERG research group
for the friendship, talks, jokes, cakes and technical collaboration. I would like to thank

especially Luciana Silva for their collaboration on the papers and discussions.

Members of my Ph.D. committee. I thank the remaining members of my
Ph.D. committee for reviewing this thesis and your insightful comments: Prof. Igor

Steinmacher, Prof. Eduardo Figueiredo, Prof. André Hora, and Prof. Ricardo Terra.

DCC - UFMG. I thank the Department of Computer Science at UFMG for its

constant support.

Supporting institutions. I thank the research funding agencies FAPEMIG, CAPES,
and CNPq for their financial support.

x1

Resumo

Projetos de codigo aberto sao importantes componentes do desenvolvimento de software
moderno. Devido ao surgimento de plataformas inovadoras (como o GitHub e o Git-
Lab) para desenvolver e manter codigo publico, milhares de projetos de codigo aberto
tém sido criados. Consequentemente, um nimero significativo de projetos também
estao enfrentando problemas de manutencao. Para mitigar esse problema, reporta-se
nesta tese um conjunto de estudos quantitativos e qualitativos para ajudar desen-
volvedores a manterem seus projetos. Primeiro, foi perguntado para proprietarios de
projetos de codigo aberto abandonados, as razoes que os motivaram a interromper a
manutencao de seus sistemas. Como resultado, foi obtida uma lista de nove razoes
que os motivaram a parar de dar manutencao em seus projetos. Segundo, foi apli-
cado um questionério com desenvolvedores que recentemente se tornaram importantes
contribuidores de projetos GitHub populares. Foram reveladas suas motiva¢oes para
contributir para esses projetos, as caracteristicas dos projetos que mais os ajudaram a
contributir e as principais barreiras enfrentadas por eles. Os principais resultados desse
estudo revelam que os desenvolvedores contribuiam porque eles usavam esses sistemas
e precisavam de novas funcionalidades. Os participantes também responderam que a
falta de tempo dos lideres dos projetos foi a principal barreira enfrentada por eles.
Por tltimo, no terceiro estudo, foi criado um modelo de aprendizado de méquina para
identificar projetos GitHub sem manutenc¢ao. O modelo foi treinado utilizando um con-
junto de métricas de atividades de projeto, como commits, forks, issues, etc. O modelo
proposto alcancou uma precisao de 80%, segundo respostas de um questionario com os
principais desenvolvedores de 129 projetos GitHub e um recall de 96%. Foi mostrado
também que o modelo pode ser usado para identificar sistemas sem manutencao, sem a
necessidade de esperar por um ano de inatividade, como comumente é feito em outros
estudos. Finalmente, foram apresentadas evidéncias da aplicabilidade desse modelo,

investigando seu uso em 2.927 projetos ativos.

Palavras-chave: Manutengao de Software, GitHub, Software de Codigo Aberto.

xlil

Abstract

Open source projects are key components of modern software development. Due to
the appearance of novel platforms (e.g., GitHub and GitLab) for developing public
code, developers has created thousands of open source projects. As a consequence,
a significant number of open source projects is also unmaintained. To tackle this
problem, in this thesis, we reported a set of quantitative and qualitative studies to
help developers to maintain their open source projects. First, we surveyed the owners
of open source projects that are no longer actively maintained, aiming to reveal the
reasons for stop the maintenance of their projects. As result, we provide a set of
nine reasons that motivated them to abandon their projects. Second, we conducted
a survey with developers who recently became core contributors of popular GitHub
projects. We reveal their motivations to contribute to these projects, the projects
characteristics that mostly helped to contribute, and the barriers faced by them. Our
key results show that the surveyed developers contributed to the projects because they
are using them and need some improvements. The participants also answered that the
lack of time of the project leaders was the principal barrier faced by them. Finally, the
project characteristic which mostly helped them to contribute was the existence of a
friendly community. Finally, in our third study, we propose a quantitative and data-
driven model to identify GitHub projects that are not actively maintained. We train
the model using a set of 13 features about project activity (e.g., commits, forks, and
issues). The model achieved a precision of 80%, based on the feedback of 129 real open
source developers and a recall of 96%. We also showed that the model can be used to
identify unmaintained projects early, without having to wait for one year of inactivity,
as commonly proposed in the literature. Finally, we defined a metric, called Level of
Maintenance Activity (LMA), to assess the risks of projects become unmaintained. We
provided evidence on the applicability of this metric, by investigating its usage in 2,927

active projects.

Palavras-chave: Unmaintained Projects, GitHub, Open Source Software.

XV

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4
3.5

4.1

4.2
4.3
4.4

Distribution of the projects by (a) age, (b) contributors, (c) commits, and
(d) stars, without outliers.
Distribution of the (a) Opened issues and (b) Opened pull requests, without
outliers
Distribution of the (a) number of forks of the studied projects and (b) num-
ber of stars of the fork with the highest number of stars, for each studied

project, both violin plots without outliers

Distribution of the (a) age, (b) contributors, (c¢) commits, and (d) stars of
the selected projects, without outliers.
(a) Total percentage of commits by the selected core teams, (b) number of
core developers per project, and (c) percentage of commits by the selected
core developers. Outliers are omitted in these plots.
Set A= core developers computed considering the complete commit history;
Set B= core developers computed considering the commits until the year
before the study; New Core Developers = Set A- Set B
Email sent to new core developers.,
Results grouped by project categories (Small-to-Medium, Medium-to-Large,

Individual, and Organizational)

Distribution of the (a) age, (b) forks, (¢) commits, and (d) stars, without
outliers. e
Number of projects owned by a person or by an organization.
Feature collection during 24 months in 3-month intervals.
Correlation analysis for the 104 data points collected for the features in
scenario 8 (24 months, 3-month interval). 78 data points (75%) are removed
in this case, due to correlations with other data points, and therefore do

not appear in this final clustering.

4.5 Survey answers about projects’ status. L.
4.6 Days since last commit for projects classified as unmaintained (considering
the date of November, 2017, when the proposed model was computed).
4.7 Survival probability of GitHub projects classified as unmaintained by clas-
sification model.o
4.8 Survival analysis by (a) account type, (b) programming language, and
(c) application domain.
4.9 Level of maintenance activity (LMA).
4.10 Comparing number of commits, issues, pull request, and forks over time
of ten projects with maximal LMA (green lines) and ten projects with the
lowest LMA in our dataset (red lines). Metrics are collected in intervals of
3months (Xx-axis).
4.11 Correlating LMA with (a) stars, (b) contributors, (c) core contributors, and
(d) size. Spearman’s p is also presented.
4.12 Number of new unmaintained projects over time.
4.13 LMA values over time.
4.14 Historical LMA values by programming language.
4.15 Historical LMA values by application domain.
4.16 Example of the icons (a) green, (b) yellow, (c) orange, and (d) gray.
4.17 Example of a GitHub page using the LMA plugin (on the right side).

Xvili

List of Tables

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8
4.9

Sentences documenting deprecated projects. 11
Application domain of the selected projects 13
Why open source projects fail?o 19

Percentage of projects following practices recommended when maintaining
GitHub repositories. The effect size reflects the extent of the difference

between the repositories in a given group (Top, Bottom, or Random) and

the failed projects 22
What motivated you to contribute? 0L 44
What project characteristics/practices helped you? 45
What were the barriers you faced to contribute? 47
Comparison of our findings with related studies. 51
Topics used to discard projects. 58
Features used to identify unmaintained projects. 61

Scenarios used to collect features and train the machine learning models
(length and intervals are in months; data points is the total number of data
points collected for each scenario). 62
Total number and percentage of data points removed in each scenario, after
correlation analysis.o Lo 63
Prediction results (mean of 100 iterations, using 5-cross validation); best
results are in bold.o 64
Comparison of the proposed machine learning model with baseline #1 (all

projects are predicted as unmaintained) and baseline #2 (random predictions). 65

Top-5 most relevant features, by Mean Decrease Accuracy (MDA).. 65
Sentences documenting unmaintained projects 68
List of GitHub maintenance practices. 72

Xix

4.10 Percentage of projects following recommended practices when maintaining
GitHub repositories. The effect size reflects the extent of the difference
between the unmaintained and active projects.

4.11 Levels of maintenance activity as considered by the implemented Chrome

eXEEeNSION.

XX

Contents

Acknowledgments xi
Resumo xiii
Abstract XV
List of Figures xvii
List of Tables Xix
1 Introduction 1
1.1 Problem and Motivation, 1
1.2 Objectives 3
1.3 Proposed Thesis 4
1.4 Publications 6
1.5 Outline of the Thesis 6
2 Why Modern Open Source Projects Fail
2.1 Introduction
2.2 Dataset 11
2.3 Why do open source projects fail? 14
2.3.1 Survey Designo 14
2.3.2 Survey Results 15
2.3.3 Combining the Survey Answers 18
2.4 What is the importance of open source maintenance practices? 20
24.1 Methodology 20
242 Results. 21
2.5 What is the Impact of Failures? 22
2.5.1 Methodology 22

poel

2.6 How do developers try to overcome the projects failure? 25
2.6.1 Methodology 25
2.6.2 Results. 25
2.6.3 Complementary Investigation: Forks 27

2.7 Discussion 28

2.8 Threats To Validity L 30

2.9 Related Work 31

2.10 Conclusion 33

Why We Engage in FLOSS: Answers from Developers 35

3.1 Imtroduction 35

3.2 Study Design 37
3.2.1 Core Developer Identification 39
3.2.2 Survey Design 39

3.3 Survey Results 42
3.3.1 DMotivations 42
3.3.2 Project Characteristics and Practices 44
3.3.3 Barriers 46

3.4 Analysis by Project Categories 47

3.5 Threats To Validity oL 49

3.6 Related Work 50

3.7 Implications 52

3.8 Conclusion 53

Identifying Unmaintained Projects in GitHub 55

4.1 Introduction 55

4.2 Machine Learning Model o8
4.2.1 Experimental Design 0. 58
4.2.2 Experimental Results 64

4.3 Empirical Validation 65
4.3.1 Methodology 66
432 Results. 69

4.4 Characteristics of Unmaintained Projects 71
4.4.1 Methodology 73
442 Results. 73

4.5 Level of Maintenance Activity 77

4.5.1 Definition 77

452 Results. 78

4.5.3 Validation with False Negative Projects 80

4.5.4 Historical Analysis 80

4.5.5 Chrome Extension 84

4.6 Threats to Validity o 86
4.7 Related Work 87
4.8 Conclusion 89

5 Conclusion 91
5.1 Summary . .o oL 91
5.2 Contributions 93
5.3 Key Findings and Discussiono 94
5.4 Future Work 95
Bibliography 99

xxiii

Chapter 1

Introduction

In this chapter, we state our problem and motivation (Section 1.1). Next, we dis-
cuss the objectives and intended contributions of this thesis (Section 1.2). After that,
we describe the research questions addressed in this thesis (Section 1.3). Then, we
list our publications (Section 1.4). Finally, we present the outline of this document
(Section 1.5).

1.1 Problem and Motivation

Although open source has its origins in the eighties (or even earlier) [Raymond, 1999],
the movement is experiencing a renaissance period [Lerner and Tirole, 2002]. One of
the key reasons is the appearance of modern platforms for developing and maintaining
open source projects [Eghbal, 2016]. The most famous example is GitHub, but other
platforms are also relevant, such as Bitbucket! and GitLab?. These platforms deeply
changed the collaboration mechanisms in open source software development [Soderberg,
2015; Kalliamvakou et al., 2015; Vasilescu et al., 2015]. Instead of exchanging e-mails
with patches, developers contribute to a project by forking it, working and improving
the code locally, and then submitting a pull request to the project’s leaders [Jiang
et al., 2017].

Today over 80% of the software produced in several applications is composed by
open source code and this trend is growing.® In a recent investigation conducted by

Sonatype?, they report that downloads of npm packages reached 10 billion per week

Lhttps: // bitbucket.org/

2https: // about.gitlab.com/

3hittps: // www.linuzfoundation.org/ blog/ chaoss-project- creates-tools-to-analyze-software-
development-and-measure- open-source-community-health

Ahttps: // www.sonatype.com,/ 2019ssc

https://bitbucket.org/
https://about.gitlab.com/
https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health
https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health
https://www.sonatype.com/2019ssc

2 CHAPTER 1. INTRODUCTION

and 21,448 new open source components are releases per day. Today, open source
code is used by government, major software companies, startups, and individuals to
build software [Goldman and Gabriel, 2005]. For this reason, open source code can
be viewed as the backbone of the digital infrastructure that runs our society [Eghbal,
2016]. Furthermore, over the years, open source also contributed to reduction in the
costs of building and deploying software [Qiu et al., 2019|. A large number of open
source systems is created and maintained by developers and offered to the users for
free. On the other side, organizations often rely on open source code to support their
basic software infrastructures, including operating systems, databases, web servers, etc.
Finally, most software produced nowadays depends on public libraries and frameworks,
which are used for example to abstract out the implementation of code related to se-
curity, authentication, user interfaces, execution on mobile devices, etc. For example,
in a recent survey—conducted by Black Duck Software—86% of the surveyed organi-
zations report the use of open source in their daily development.® Just to mention an
example, Instagram—the popular photo-sharing social network—has a special section
of its site to acknowledge the importance of public code to the company.® In this page,
they thank the open source community for their contributions and explicitly list 28

open source libraries and frameworks used by the social network.

More specifically, modern source code hosting platforms (e.g., GitHub’, Bit-
bucket®, and GitLab®) are changing the way that developers contribute to Open Source
Software (OSS) projects. Due to the facilities brought by these services for developing,
maintaining, and sharing code, OSS projects are now facing a high exposure, leading to
an increasing number of contributors. This fast growing puts additional strain on the
developers who maintain this infrastructure. Most OSS communities are composed by
a small number of core developers and a substantial number of peripheral ones [Avelino
et al., 2016, 2019; Joblin et al., 2017]. The core developers are those developers who
are involved with the OSS project for a long time and who make the contributions
that guide the development and evolution of the project [Joblin et al., 2017; Mockus
et al., 2002|. Peripheral developers are those who sporadically contribute to the project
(e.g., via bug reports or fixing documentation issues) [Pinto et al., 2016; Steinmacher

et al., 2016; Setia et al., 2012; Lee et al., 2017].

As a result, developers has created thousands of open source projects. For ex-

Shittps: // pt.slideshare.net/ blackducksoftware / you- cant-live-without- open-source-results- from-
the-open-source- 360-survey

Shttps: // www.instagram.com/ about/ legal / libraries

"https: // github.com

8 https: // bitbucket.org

Shttps: // gitlab.com

https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
https://www.instagram.com/about/legal/libraries
https://github.com
https://bitbucket.org
https://gitlab.com

1.2. OBJECTIVES 3

ample, today GitHub has more than 31 million developers and 100 million repositories
(without excluding forks). In face of this fast growth, the costs of not supporting this
infrastructure efficiently are critical [Eghbal, 2016]. For example, a recent study con-
ducted by Avelino et al. [2016] shows that 87 systems (65%) out of 133 most actively
used GitHub projects, across programming languages, have only one or two developers
responsible to their evolution. Therefore, to keep the growth success of OSS com-
munities, we should provide an adequate infrastructure and support for developers to
maintain their projects [Fogel, 2005].

By contrast, a significant number of open source projects is also becom-
ing unmaintained. Despite this fact, we have few studies that investigate the rea-
sons that motivate developers to stop the maintenance of their projects [Androutsellis-
Theotokis et al., 2011]. We only found similar studies for commercial software projects.
For example, by means of a survey with developers and project managers, Cerpa and
Verner [2009] study the motivation for discontinuation of 70 commercial software proj-
ects. They report that the most common reasons are due to unrealistic delivery dates,
underestimated project size, risks not re-assessed through the project, and when the
staff is not rewarded for working long hours. However, these findings do not apply to
open source projects, which are developed without rigid schedules and requirements,
by groups of unpaid developers |[Kalliamvakou et al., 2015]. The Standish Group’s
CHAOS report is another study frequently mentioned by practitioners and consul-
tants [Standish Group, 1994]. The 2007 report mentions that 46% of software projects
have cost and schedule problems and that 19% are outright failures. Besides possi-
ble methodological problems, as pointed by Jgrgensen and Molgkken-Ostvold [2006],
this report does not target open source. Therefore, a deep understanding of the
reasons for the discontinuation of open source projects and the proposal of
metrics about their level of maintenance activity can contribute to the long

term sustainability of such projects.

1.2 Objectives

The main goal of this thesis is to characterize the risks faced by the discon-
tinuation of open source software projects. By identifying projects facing
such risks, we intend to reveal the principal reasons that motivate devel-
opers to stop the maintenance of their projects. We also plan to propose
models and metrics to measure the level of maintenance activity of open

source projects.

4 CHAPTER 1. INTRODUCTION

We propose three specific objectives to achieve this main goal, as described next:

1. Motivated by the lack of studies in the literature, we intend to reveal the reasons
that motivate developers to stop the maintenance of popular GitHub projects.
By means of a survey with maintainers of these projects, we intent to reveal their
motivations to abandon their projects. We also intend to assess the importance
of following (or not) a set of best open source maintenance practices, which
are widely recommended when hosting projects on GitHub. Finally, we intend
to discuss and reveal the principal strategies attempted by the maintainers of
open source projects to overcome (without success) the discontinuation of their

projects.

2. We also intend to reveal the motivations of recent core developers to contribute
to open source projects. By means of a survey with these developers, we aim to
reveal (i) the motivations that led recent core developers to contribute to OSS
projects, (ii) the project characteristics and practices that helped them in this

process, and (iii) the barriers faced by such core developers.

3. Finally, we intend to propose a quantitative and data-driven model to identify
unmaintained GitHub projects. By means of this model, we expect to identify
unmaintained projects without having to wait for one year of inactivity, as com-
monly proposed in the literature [Khondhu et al., 2013; Chengalur-Smith and
Sidorova, 2003; Valiev et al., 2018]. Furthermore, we intend to provide informa-

tion about the level of maintenance activity of open source projects.

1.3 Proposed Thesis

In this thesis, we propose to investigate three overarching questions related to the
sustainability of open source software projects. We start by investigating the reasons
for the discontinuation of modern open source projects, including a discussion about
the results of a survey with the maintainers of 104 open source projects which became
unmaintained, aiming to reveal the developer’s reasons to stop the maintenance
of such projects (Q1). Next, to complement the principal reasons that motivate
developers to stop the maintenance of their projects—such as lack of time (17%) and
lack of interest (17%) of the main contributor—we reveal the motivations of core
developers to assume a key role in OSS projects. This information is relevant for
maintainers that are looking out for new developers to take up ownership of their

projects (Q2). Finally, we propose a data-driven approach to measure the level of

1.3. PROPOSED THESIS 5

maintenance activity of GitHub projects, i.e., a quantitative metric that reveals how
actively a project is being maintained (Q3). We argue this metric can help users and
developers in two ways. First, by alerting users about the risks of using unmaintained
projects. Second, as criteria to select an OSS project to contribute to, i.e., by helping

volunteers to choose projects that need help in their maintenance.

Q1. Why do modern open source software projects become unmaintained?

OSS communities have grown in scale and importance. For example, today GitHub
has more 100 million repositories and 31 million developers from nearly every country,
providing across 1.1 billion contributions.!’ As already discussed in Section 1.1, OSS
is an essential and fundamental part of software produced by users and organizations.
In fact, it is common nowadays to rely on open source libraries and frameworks when
building and evolving proprietary software. However, a significant number of open
source projects are also becoming unmaintained or abandoned by their maintainers.
Despite this fact, we have very few studies that investigate the developer’s motivations
to stop the maintenance of such projects. Therefore, with this first question our goal
is to reveal the reasons that motivate developers of modern open source projects to stop

the maintenance of their projects.

Q2. What are the key motivations to contribute to open source projects?

In the previous question (Q1), we investigated the reasons that motivate developers
of OSS projects to stop the maintenance of their projects. As result, we found that
the third and fourth reasons are the lack of time (17%) and lack of interest (17%) of
the main contributor. In this second question, we intend to investigate an opposite
situation, i.e., developers who became core contributors of OSS projects. We reported
the main reasons that led them to contribute, the project characteristics and practices
that motivated them to engage and the barriers they faced. Our results show the
surveyed developers contributed to the projects because they are using them and
were demanding some improvements. The participants also answered that the lack of
time of the project leaders was the principal barrier they faced. Finally, the project

characteristic that mostly helped them was the existence of a friendly community:.

Q3. How to identify unmaintained GitHub projects? How to measure the

level of maintenance activity of open source projects?

Currently, GitHub does not provide precise information about the level of main-

Onttps: // github.blog/ 2018-11-08-100m-repos/

https://github.blog/2018-11-08-100m-repos/

6 CHAPTER 1. INTRODUCTION

tenance activity of their projects. The lack of this information generates two problems.
First, projects are becoming unmaintained by the lack of new contributors. Second,
users have to judge by themselves whether a project is under maintenance or not (and
therefore whether it is worth to use it) only based on popularity metrics, such as num-
ber of stars, forks, and watchers [Meirelles et al., 2010; Borges et al., 2016b; Borges
and Valente, 2018|.

In order to help on the two aforementioned problems, in this final question we
propose and evaluate a machine learning approach to identify unmaintained GitHub
projects and to assess the level of maintenance activity of such projects. By alert-
ing users about the risks of depending on unmaintained GitHub projects, this metric
can motivate contributors to assume the maintenance of projects facing the risks of

discontinuation.

1.4 Publications

The work described in this thesis includes material from the following publications:

e Jailton Coelho and Marco Tulio Valente. Why Modern Open Source Projects
Fail. In 11th Symposium on The Foundations of Software Engineering (FSE),
pages 186-196, 2017.

e Jailton Coelho and Marco Tulio Valente and Luciana L. Silva and Andre Hora.
Why We Engage in FLOSS: Answers from Core Developers. In 11th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),
pages 114-121, 2018.

e Jailton Coelho and Marco Tulio Valente and Luciana L. Silva and Emad Shihab.
Identifying Unmaintained Projects in GitHub. In 12th International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 1-10, 2018.

1.5 OQutline of the Thesis

The studies that comprise the core of this thesis were published in a set of software
engineering conferences and workshops. Furthermore, the last study (Chapter 4) has
an extension currently submitted to a journal. Therefore, the thesis’ chapters preserve
most of the structure of these manuscripts in order to facilitate their independent

reading. Due to this decision, although all chapters have particular contributions,

1.5. OUTLINE OF THE THESIS 7

some redundancy can be found in the sections about procedures and methodologies.

We organize the remainder of this work as follows:

e Chapter 2 presents the results of a survey with the maintainers of open source
projects that have failed, aiming to reveal the reasons for such failures. We con-
sider that a project has failed when the documentation explicitly mentions that
it is deprecated or the project is no longer under maintenance according to their
owner. We provide a set of nine reasons for the failure of these projects. We also
show that there is an important difference between the failed projects and the
most popular and active projects on GitHub, in terms of following a set of best
open source maintenance practices (e.g., the availability of contribution guide-
lines, issue template, code of conduct, license, etc.). Particularly, this difference is
more important regarding the availability of contribution guidelines and the use
of continuous integration. Furthermore, the failed projects have a non-negligible
number of opened issues and pull requests. Finally, we describe three strategies

attempted by maintainers to overcome the failure of their projects.

e Chapter 3 reports the results of a survey with developers who recently became
core contributors of popular GitHub projects. We reveal their motivations to
contribute to OSS projects, the project characteristics that mostly helped them
in this process, and the barriers faced by these new core developers. We also
compare our results with related studies regarding of other kinds of open source
contributors, e.g., casual contributors [Pinto et al., 2016; Lee et al., 2017|, and
newcomers [Steinmacher et al., 2016|. Our results show the surveyed developers
contributed to the projects because they are using them and need some improve-
ments. The participants also answered the lack of time of the project leaders was
the principal barrier they faced. Finally, the project characteristic that mostly

helped them to contributed was the existence of a friendly community.

e Chapter 4 presents a machine learning model to identify GitHub projects that
are not actively maintained. We also train machine learning models to com-
pute a metric to express the level of maintenance activity of GitHub projects,
based on a set of features about project activity (e.g., commits, forks, issues,
etc.). We empirically validated the model with the best performance with the
principal developers of 129 GitHub projects. The model achieved a precision of
80% and a recall of 96%. We also showed that the proposed model can identify
unmaintained projects early, without having to wait for one year of inactivity, as

commonly proposed in the literature. Finally, we proposed a metric, called Level

CHAPTER 1. INTRODUCTION

of Maintenance Activity (LMA), to assess the risks of projects become unmain-
tained. We provide evidences on the applicability of this metric by investigating
its usage in 2,927 projects. Finally, we implemented a public Chrome extension

to indicate the level of maintenance activity of GitHub projects.

e Chapter 5 concludes this thesis and outlines future work ideas.

Chapter 2

Why Modern Open Source Projects
Fail

Open source projects are key elements of the digital infrastructure that runs our so-
ciety today. Moreover, open source is experiencing a renaissance period, due to the
appearance of modern platforms and workflows for developing and maintaining public
code. As a result, developers has created thousands of open source projects. As a con-
sequence, a significant number of open source projects is also failing. We consider that
a project has failed when the documentation explicitly mentions that it is deprecated or
the project 1s no longer under maintenance according to their owner. To better under-
stand the reasons that lead to the failure of modern open source projects. This chapter
describes the results of a survey study with the maintainers of 104 popular GitHub sys-
tems that have been deprecated. We provide a set of nine reasons for the failure of open
source projects. We also show that some maintenance practices—specially the adoption
of contributing guidelines and continuous integration—have an important association
with a project failure or success. Finally, we discuss and reveal the principal strategies

developers have tried (without success) to overcome the failure of the studied projects.

2.1 Introduction

In this chapter we present an investigation with the maintainers of open source proj-
ects that have failed, aiming to reveal the reasons for such failures, the maintenance
practices that distinguish failed projects from successful ones, the impact of failures
on clients, and the strategies tried by maintainers to overcome the failure of their

projects. This investigation addresses the following research questions:

10 CHAPTER 2. WHY MODERN OPEN SOURCE PROJECTS FAIL

RQ1: Why do open source projects fail? To answer this first RQ, we select 542
popular GitHub projects without any commits in the last year. We complemented this
selection with 76 systems whose documentation explicitly mentions that the project is
abandoned. We asked the developers of these systems to describe the reasons of the

projects’ failure. Finally, we categorize their responses into nine major reasons.

RQ2: What 1is the importance of following a set of best open source maintenance
practices? In this second research question, we check whether the failed projects used
a set of best open source maintenance practices, including practices to attract users
and to automate maintenance tasks (e.g., the availability of contribution guidelines,

code of conduct, license, the use of continuous integration, etc.).

RQ3: What is the impact of the project failures? To measure this impact, we
counted the number of opened issues and pull requests of the failed projects and
also the number of projects that depend on them. The goal is to measure the im-

pact of the studied failures, in terms of affected users, contributors, and client projects.

RQ4: How do developers try to overcome the projects failure? In this last research
question, we manually analyze the issues of the failed projects to collect strategies and

procedures tried by their maintainers to avoid the failures.
We make the following contributions in this study:

e We provide a list of nine reasons for failures in open source projects. By provid-
ing these reasons, using data from real failures, we intend to help developers to

assess and control the risks faced by open source projects.

e We reinforce the importance of a set of best open source maintenance practices,
by comparing their usage by the failed projects and also by the most and least
popular systems in a sample of 5,000 GitHub projects.

e We document three strategies attempted by the maintainers of open source proj-

ects to overcome (without success) the failure of their projects.

The remainder of this chapter is organized as follows. Section 2.2 presents the
dataset we use to search for failed projects. Section 2.3 to Section 2.6 presents answers
to each of the four research questions proposed in the study. Section 2.7 discusses and
puts our findings in a wider context. Section 2.8 presents threats to validity; Section 2.9

presents related work; and Section 2.10 concludes this study.

2.2. DATASET 11

2.2 Dataset

The dataset used in this study was created by first considering the top-5,000 most pop-
ular projects on GitHub (on September, 2016). We use the number of stars as a proxy
for popularity because it reveals how many people manifested interest or appreciation
to the project [Borges et al., 2016b|. We limit the study to 5,000 repositories to focus
on the maintenance challenges faced by highly popular projects.

We use two strategies to select systems that are no longer under maintenance
in this initial list of 5,000 projects. First, we select 628 repositories (13%) with-
out commits in the last year. As examples, we have Nvie/gitflow! (16,392 stars),
Mozilla/BrowserQuest? (6,702 stars), and Twitter/typeahead.js® (3,750 stars). Sec-
ond, we search in the README?* of the remaining repositories for terms described on
Table 2.1.

Table 2.1: Sentences documenting deprecated projects.

dead project, deprecated, unmaintained, no longer being actively maintained,
no longer maintained, no longer under development, no longer supported,
not maintained anymore, not under active development, is not supported,

s not maintained, is not under development

We found such terms in the READMESs of 207 projects (4%). We then manually
inspected these files to assure that the messages indeed denote inactive projects and
to remove false positives. After this inspection, we concluded that 76 repositories
(37%) are true positives. As an example, we have Google/gxui® whose README has

this comment:
Unfortunately due to a shortage of hours in a day, GXUI is no longer maintained.

As an example of false positive, we have Twitter/labella.js. In its README,

the following message initially led us to suspect that the project is abandoned:

The API has changed. force.start() and ... are deprecated.

Lhttps: // github.com,/ nvie/ gitflow

Zhttps: // github.com/mozilla/ BrowserQuest

3https: // github.com/ twitter/ typeahead.js

4READMEs are the first file a visitor is presented to when visiting a GitHub repository. They
include information on what the project does, why the project is useful, and eventually the project
status (if it is active or not).

Shitps: // github.com,/ google/ grui

Shttps: // github.com/ twitter/ labella.js

https://github.com/nvie/gitflow
https://github.com/mozilla/BrowserQuest
https://github.com/twitter/typeahead.js
https://github.com/google/gxui
https://github.com/twitter/labella.js

12 CHAPTER 2. WHY MODERN OPEN SOURCE PROJECTS FAIL

However, in this case, deprecated refers to API elements and not to the project’s
status. In a final cleaning step, we manually inspected the selected 704 repositores
(628 + 76). We removed repositories that are not software projects (51 repositories,
e.g., books, tutorials, and awesome lists), repositories whose native language is not
English (24 repositories), that were moved to another repository (7 repositories), and
that are empty (4 repositories, which received their stars before being cleaned). We
ended up with a list of 618 projects (542 projects without commits in the last year and
76 projects with an explicit deprecation message in the README). We only inspected
the README because we had to verify manually all of them to discard false positives.
Therefore, we do not search explicit deprecation message on commits or issues.

Figure 2.1 shows violin plots with the distribution of age (in months), number
of contributors, number of commits, and number of stars of the selected repositories.
We provide plots for all 5,000 systems (labeled as all) and for the 618 systems (12%)
considered in this study (labeled as selected). The selected systems are older than the
top-5,000 systems (52 vs 40 months, median measures); but they have less contributors
(11 vs 23), less commits (137 vs 346), and less stars (2,345 vs 2,538). Indeed, the
distributions are statistically different, according to the one-tailed variant of the Mann-
Whitney U test (p-value < 5%). To show the effect size of this difference, we compute
Cliff’s delta (or d). We found that the effect is small for age and commits, medium for
contributors, and negligible for stars.

GitHub repositories can be owned by a person (e.g., TORVALDS/LINUX) or by
an organization (e.g., MOZILLA/PDF.JS). In our dataset, 170 repositories (28%) are
owed by organizations and 448 repositories (72%) by users. JavaScript is the most
popular language (219 repositories, 36%), followed by Objective-C (98 repositories,
16%), and Java (75 repositories, 12%). In total, the dataset includes systems spanning
26 programming languages. We manually classified the application domain of the
systems in the dataset, as showed in Table 2.2. There is a concentration on libraries
and frameworks (502 projects, 81%), which essentially reproduces a concentration also

happening in the initial list of 5,000 projects.”

Dataset limitations: The proposed dataset is restricted to popular open source proj-
ects on GitHub. We acknowledge that there are popular projects in other platforms,
like Bitbucket, GitLab or that have their own version control installations. Also, the
dataset does not include projects that failed before attracting the attention of devel-

opers and users. We consider less important to study such projects since their failures

"For another research, we classified the domain of the top-5,000 GitHub projects; 59% are libraries
and frameworks.

2.2. DATASET 13

100 150
.75
7 0100
2 S
o >
£ 50 =
® S
< O 50
25 [
0 0
all selected all selected
(a) Age (b) Contributors
3000 8000
20001 6000
1]
= 7]
= g
8 94000
1000
2000
O,
all selected all selected
(¢) Commits (d) Stars

Figure 2.1: Distribution of the projects by (a) age, (b) contributors, (¢) commits, and
(d) stars, without outliers.

Table 2.2: Application domain of the selected projects

Application Domain Projects
Libraries and frameworks 502
Application software (e.g., text editors) 63 &
Software tools (e.g., compilers) 31 1
System software (e.g., databases) 22

did not have much impact. Instead, we focus on projects that succeeded to attract

attention, users, and contributors, but then failed, possibly impairing other projects.

14 CHAPTER 2. WHY MODERN OPEN SOURCE PROJECTS FAIL

2.3 Why do open source projects fail?

To answer the first research question, we conducted a survey with the developers of

open source projects with evidences of no longer being under maintenance.

2.3.1 Survey Design

The survey questionnaire has three open-ended questions: (1) Why did you stop main-
taining the project? (2) Did you receive any funding to maintain the project? (3) Do
you have plans to reactivate the project? We avoid asking the developers directly
about the reasons for the project failures, because this question can lead to multiple
interpretations. For example, an abandoned project could have been an outstanding
learning experience to its developers. Therefore, they might not consider that it has
failed. In Section 2.3.3, we detail the criteria we followed to define that a project has
failed based on the answers to the survey questions.

Specifically to the developers of the 542 repositories without commits in the last
year, we added a first survey question, asking them to confirm that the projects are no
longer being maintained. We also instructed them to only answer the remaining ques-
tions if they agree with this fact. We sent the questionnaire to the repositories’ owners
or to the project’s main contributor, in the case of repositories owned by organizations.
Using this criterion, we were able to find a public e-mail address of 425 developers on
GitHub. However, 9 developers are the owners—or the main contributors—of two or
more projects. In this case, we only sent one email to these developers, referring to their
first project in number of stars, to avoid a perception of our mails as spam messages.

We sent the questionnaire to 414 developers. After a period of 20 days, we
obtained 118 responses and 6 mails returned due to the delivery problems, resulting in
a response rate of 29%, which is 118/(414—6). To preserve the respondents’ anonymity,
we use labels D1 to D118 to identify them. Furthermore, when quoting their answers
we replace mentions to repositories and owners by @[Project-Name/ and @[Project-
Owner/. This is important because some answers include critical comments about
developers or organizations.

Finally, for some projects, we found answers to the first survey question (“Why
did you stop maintaining the project?”) when inspecting their READMEs. This
happened with 36 projects, identified by R1 to R36. As an example, we have the
following README:

Unfortunately, I haven’t been able to find the time that I would like to dedicate to this
project. (R6)

