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Resumo

Projetos de código aberto são importantes componentes do desenvolvimento de software
moderno. Devido ao surgimento de plataformas inovadoras (como o GitHub e o Git-
Lab) para desenvolver e manter código público, milhares de projetos de código aberto
têm sido criados. Consequentemente, um número significativo de projetos também
estão enfrentando problemas de manutenção. Para mitigar esse problema, reporta-se
nesta tese um conjunto de estudos quantitativos e qualitativos para ajudar desen-
volvedores a manterem seus projetos. Primeiro, foi perguntado para proprietários de
projetos de código aberto abandonados, as razões que os motivaram a interromper a
manutenção de seus sistemas. Como resultado, foi obtida uma lista de nove razões
que os motivaram a parar de dar manutenção em seus projetos. Segundo, foi apli-
cado um questionário com desenvolvedores que recentemente se tornaram importantes
contribuidores de projetos GitHub populares. Foram reveladas suas motivações para
contributir para esses projetos, as características dos projetos que mais os ajudaram a
contributir e as principais barreiras enfrentadas por eles. Os principais resultados desse
estudo revelam que os desenvolvedores contribuíam porque eles usavam esses sistemas
e precisavam de novas funcionalidades. Os participantes também responderam que a
falta de tempo dos líderes dos projetos foi a principal barreira enfrentada por eles.
Por último, no terceiro estudo, foi criado um modelo de aprendizado de máquina para
identificar projetos GitHub sem manutenção. O modelo foi treinado utilizando um con-
junto de métricas de atividades de projeto, como commits, forks, issues, etc. O modelo
proposto alcançou uma precisão de 80%, segundo respostas de um questionário com os
principais desenvolvedores de 129 projetos GitHub e um recall de 96%. Foi mostrado
também que o modelo pode ser usado para identificar sistemas sem manutenção, sem a
necessidade de esperar por um ano de inatividade, como comumente é feito em outros
estudos. Finalmente, foram apresentadas evidências da aplicabilidade desse modelo,
investigando seu uso em 2.927 projetos ativos.

Palavras-chave: Manutenção de Software, GitHub, Software de Código Aberto.
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Abstract

Open source projects are key components of modern software development. Due to
the appearance of novel platforms (e.g., GitHub and GitLab) for developing public
code, developers has created thousands of open source projects. As a consequence,
a significant number of open source projects is also unmaintained. To tackle this
problem, in this thesis, we reported a set of quantitative and qualitative studies to
help developers to maintain their open source projects. First, we surveyed the owners
of open source projects that are no longer actively maintained, aiming to reveal the
reasons for stop the maintenance of their projects. As result, we provide a set of
nine reasons that motivated them to abandon their projects. Second, we conducted
a survey with developers who recently became core contributors of popular GitHub
projects. We reveal their motivations to contribute to these projects, the projects
characteristics that mostly helped to contribute, and the barriers faced by them. Our
key results show that the surveyed developers contributed to the projects because they
are using them and need some improvements. The participants also answered that the
lack of time of the project leaders was the principal barrier faced by them. Finally, the
project characteristic which mostly helped them to contribute was the existence of a
friendly community. Finally, in our third study, we propose a quantitative and data-
driven model to identify GitHub projects that are not actively maintained. We train
the model using a set of 13 features about project activity (e.g., commits, forks, and
issues). The model achieved a precision of 80%, based on the feedback of 129 real open
source developers and a recall of 96%. We also showed that the model can be used to
identify unmaintained projects early, without having to wait for one year of inactivity,
as commonly proposed in the literature. Finally, we defined a metric, called Level of
Maintenance Activity (LMA), to assess the risks of projects become unmaintained. We
provided evidence on the applicability of this metric, by investigating its usage in 2,927
active projects.

Palavras-chave: Unmaintained Projects, GitHub, Open Source Software.
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Chapter 1

Introduction

In this chapter, we state our problem and motivation (Section 1.1). Next, we dis-
cuss the objectives and intended contributions of this thesis (Section 1.2). After that,
we describe the research questions addressed in this thesis (Section 1.3). Then, we
list our publications (Section 1.4). Finally, we present the outline of this document
(Section 1.5).

1.1 Problem and Motivation

Although open source has its origins in the eighties (or even earlier) [Raymond, 1999],
the movement is experiencing a renaissance period [Lerner and Tirole, 2002]. One of
the key reasons is the appearance of modern platforms for developing and maintaining
open source projects [Eghbal, 2016]. The most famous example is GitHub, but other
platforms are also relevant, such as Bitbucket1 and GitLab2. These platforms deeply
changed the collaboration mechanisms in open source software development [Söderberg,
2015; Kalliamvakou et al., 2015; Vasilescu et al., 2015]. Instead of exchanging e-mails
with patches, developers contribute to a project by forking it, working and improving
the code locally, and then submitting a pull request to the project’s leaders [Jiang
et al., 2017].

Today over 80% of the software produced in several applications is composed by
open source code and this trend is growing.3 In a recent investigation conducted by
Sonatype4, they report that downloads of npm packages reached 10 billion per week

1https:// bitbucket.org/
2https:// about.gitlab.com/
3https://www.linuxfoundation.org/ blog/ chaoss-project-creates-tools-to-analyze-software-

development-and-measure-open-source-community-health
4https://www.sonatype.com/2019ssc

1

https://bitbucket.org/
https://about.gitlab.com/
https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health
https://www.linuxfoundation.org/blog/chaoss-project-creates-tools-to-analyze-software-development-and-measure-open-source-community-health
https://www.sonatype.com/2019ssc


2 Chapter 1. Introduction

and 21,448 new open source components are releases per day. Today, open source
code is used by government, major software companies, startups, and individuals to
build software [Goldman and Gabriel, 2005]. For this reason, open source code can
be viewed as the backbone of the digital infrastructure that runs our society [Eghbal,
2016]. Furthermore, over the years, open source also contributed to reduction in the
costs of building and deploying software [Qiu et al., 2019]. A large number of open
source systems is created and maintained by developers and offered to the users for
free. On the other side, organizations often rely on open source code to support their
basic software infrastructures, including operating systems, databases, web servers, etc.
Finally, most software produced nowadays depends on public libraries and frameworks,
which are used for example to abstract out the implementation of code related to se-
curity, authentication, user interfaces, execution on mobile devices, etc. For example,
in a recent survey—conducted by Black Duck Software—86% of the surveyed organi-
zations report the use of open source in their daily development.5 Just to mention an
example, Instagram—the popular photo-sharing social network—has a special section
of its site to acknowledge the importance of public code to the company.6 In this page,
they thank the open source community for their contributions and explicitly list 28
open source libraries and frameworks used by the social network.

More specifically, modern source code hosting platforms (e.g., GitHub7, Bit-
bucket8, and GitLab9) are changing the way that developers contribute to Open Source
Software (OSS) projects. Due to the facilities brought by these services for developing,
maintaining, and sharing code, OSS projects are now facing a high exposure, leading to
an increasing number of contributors. This fast growing puts additional strain on the
developers who maintain this infrastructure. Most OSS communities are composed by
a small number of core developers and a substantial number of peripheral ones [Avelino
et al., 2016, 2019; Joblin et al., 2017]. The core developers are those developers who
are involved with the OSS project for a long time and who make the contributions
that guide the development and evolution of the project [Joblin et al., 2017; Mockus
et al., 2002]. Peripheral developers are those who sporadically contribute to the project
(e.g., via bug reports or fixing documentation issues) [Pinto et al., 2016; Steinmacher
et al., 2016; Setia et al., 2012; Lee et al., 2017].

As a result, developers has created thousands of open source projects. For ex-

5https:// pt.slideshare.net/ blackducksoftware/ you-cant-live-without-open-source-results-from-
the-open-source-360-survey

6https://www.instagram.com/about/ legal/ libraries
7https:// github.com
8https:// bitbucket.org
9https:// gitlab.com

https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
https://www.instagram.com/about/legal/libraries
https://github.com
https://bitbucket.org
https://gitlab.com
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ample, today GitHub has more than 31 million developers and 100 million repositories
(without excluding forks). In face of this fast growth, the costs of not supporting this
infrastructure efficiently are critical [Eghbal, 2016]. For example, a recent study con-
ducted by Avelino et al. [2016] shows that 87 systems (65%) out of 133 most actively
used GitHub projects, across programming languages, have only one or two developers
responsible to their evolution. Therefore, to keep the growth success of OSS com-
munities, we should provide an adequate infrastructure and support for developers to
maintain their projects [Fogel, 2005].

By contrast, a significant number of open source projects is also becom-
ing unmaintained. Despite this fact, we have few studies that investigate the rea-
sons that motivate developers to stop the maintenance of their projects [Androutsellis-
Theotokis et al., 2011]. We only found similar studies for commercial software projects.
For example, by means of a survey with developers and project managers, Cerpa and
Verner [2009] study the motivation for discontinuation of 70 commercial software proj-
ects. They report that the most common reasons are due to unrealistic delivery dates,
underestimated project size, risks not re-assessed through the project, and when the
staff is not rewarded for working long hours. However, these findings do not apply to
open source projects, which are developed without rigid schedules and requirements,
by groups of unpaid developers [Kalliamvakou et al., 2015]. The Standish Group’s
CHAOS report is another study frequently mentioned by practitioners and consul-
tants [Standish Group, 1994]. The 2007 report mentions that 46% of software projects
have cost and schedule problems and that 19% are outright failures. Besides possi-
ble methodological problems, as pointed by Jørgensen and Moløkken-Østvold [2006],
this report does not target open source. Therefore, a deep understanding of the
reasons for the discontinuation of open source projects and the proposal of
metrics about their level of maintenance activity can contribute to the long
term sustainability of such projects.

1.2 Objectives

The main goal of this thesis is to characterize the risks faced by the discon-
tinuation of open source software projects. By identifying projects facing
such risks, we intend to reveal the principal reasons that motivate devel-
opers to stop the maintenance of their projects. We also plan to propose
models and metrics to measure the level of maintenance activity of open
source projects.
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We propose three specific objectives to achieve this main goal, as described next:

1. Motivated by the lack of studies in the literature, we intend to reveal the reasons
that motivate developers to stop the maintenance of popular GitHub projects.
By means of a survey with maintainers of these projects, we intent to reveal their
motivations to abandon their projects. We also intend to assess the importance
of following (or not) a set of best open source maintenance practices, which
are widely recommended when hosting projects on GitHub. Finally, we intend
to discuss and reveal the principal strategies attempted by the maintainers of
open source projects to overcome (without success) the discontinuation of their
projects.

2. We also intend to reveal the motivations of recent core developers to contribute
to open source projects. By means of a survey with these developers, we aim to
reveal (i) the motivations that led recent core developers to contribute to OSS
projects, (ii) the project characteristics and practices that helped them in this
process, and (iii) the barriers faced by such core developers.

3. Finally, we intend to propose a quantitative and data-driven model to identify
unmaintained GitHub projects. By means of this model, we expect to identify
unmaintained projects without having to wait for one year of inactivity, as com-
monly proposed in the literature [Khondhu et al., 2013; Chengalur-Smith and
Sidorova, 2003; Valiev et al., 2018]. Furthermore, we intend to provide informa-
tion about the level of maintenance activity of open source projects.

1.3 Proposed Thesis

In this thesis, we propose to investigate three overarching questions related to the
sustainability of open source software projects. We start by investigating the reasons
for the discontinuation of modern open source projects, including a discussion about
the results of a survey with the maintainers of 104 open source projects which became
unmaintained, aiming to reveal the developer’s reasons to stop the maintenance
of such projects (Q1). Next, to complement the principal reasons that motivate
developers to stop the maintenance of their projects—such as lack of time (17%) and
lack of interest (17%) of the main contributor—we reveal the motivations of core
developers to assume a key role in OSS projects. This information is relevant for
maintainers that are looking out for new developers to take up ownership of their
projects (Q2). Finally, we propose a data-driven approach to measure the level of
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maintenance activity of GitHub projects, i.e., a quantitative metric that reveals how
actively a project is being maintained (Q3). We argue this metric can help users and
developers in two ways. First, by alerting users about the risks of using unmaintained
projects. Second, as criteria to select an OSS project to contribute to, i.e., by helping
volunteers to choose projects that need help in their maintenance.

Q1. Why do modern open source software projects become unmaintained?

OSS communities have grown in scale and importance. For example, today GitHub
has more 100 million repositories and 31 million developers from nearly every country,
providing across 1.1 billion contributions.10 As already discussed in Section 1.1, OSS
is an essential and fundamental part of software produced by users and organizations.
In fact, it is common nowadays to rely on open source libraries and frameworks when
building and evolving proprietary software. However, a significant number of open
source projects are also becoming unmaintained or abandoned by their maintainers.
Despite this fact, we have very few studies that investigate the developer’s motivations
to stop the maintenance of such projects. Therefore, with this first question our goal
is to reveal the reasons that motivate developers of modern open source projects to stop
the maintenance of their projects.

Q2. What are the key motivations to contribute to open source projects?

In the previous question (Q1), we investigated the reasons that motivate developers
of OSS projects to stop the maintenance of their projects. As result, we found that
the third and fourth reasons are the lack of time (17%) and lack of interest (17%) of
the main contributor. In this second question, we intend to investigate an opposite
situation, i.e., developers who became core contributors of OSS projects. We reported
the main reasons that led them to contribute, the project characteristics and practices
that motivated them to engage and the barriers they faced. Our results show the
surveyed developers contributed to the projects because they are using them and
were demanding some improvements. The participants also answered that the lack of
time of the project leaders was the principal barrier they faced. Finally, the project
characteristic that mostly helped them was the existence of a friendly community.

Q3. How to identify unmaintained GitHub projects? How to measure the
level of maintenance activity of open source projects?

Currently, GitHub does not provide precise information about the level of main-

10https:// github.blog/ 2018-11-08-100m-repos/

https://github.blog/2018-11-08-100m-repos/
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tenance activity of their projects. The lack of this information generates two problems.
First, projects are becoming unmaintained by the lack of new contributors. Second,
users have to judge by themselves whether a project is under maintenance or not (and
therefore whether it is worth to use it) only based on popularity metrics, such as num-
ber of stars, forks, and watchers [Meirelles et al., 2010; Borges et al., 2016b; Borges
and Valente, 2018].

In order to help on the two aforementioned problems, in this final question we
propose and evaluate a machine learning approach to identify unmaintained GitHub
projects and to assess the level of maintenance activity of such projects. By alert-
ing users about the risks of depending on unmaintained GitHub projects, this metric
can motivate contributors to assume the maintenance of projects facing the risks of
discontinuation.

1.4 Publications

The work described in this thesis includes material from the following publications:

• Jailton Coelho and Marco Tulio Valente. Why Modern Open Source Projects
Fail. In 11th Symposium on The Foundations of Software Engineering (FSE),
pages 186–196, 2017.

• Jailton Coelho and Marco Tulio Valente and Luciana L. Silva and Andre Hora.
Why We Engage in FLOSS: Answers from Core Developers. In 11th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE),
pages 114–121, 2018.

• Jailton Coelho and Marco Tulio Valente and Luciana L. Silva and Emad Shihab.
Identifying Unmaintained Projects in GitHub. In 12th International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 1–10, 2018.

1.5 Outline of the Thesis

The studies that comprise the core of this thesis were published in a set of software
engineering conferences and workshops. Furthermore, the last study (Chapter 4) has
an extension currently submitted to a journal. Therefore, the thesis’ chapters preserve
most of the structure of these manuscripts in order to facilitate their independent
reading. Due to this decision, although all chapters have particular contributions,



1.5. Outline of the Thesis 7

some redundancy can be found in the sections about procedures and methodologies.
We organize the remainder of this work as follows:

• Chapter 2 presents the results of a survey with the maintainers of open source
projects that have failed, aiming to reveal the reasons for such failures. We con-
sider that a project has failed when the documentation explicitly mentions that
it is deprecated or the project is no longer under maintenance according to their
owner. We provide a set of nine reasons for the failure of these projects. We also
show that there is an important difference between the failed projects and the
most popular and active projects on GitHub, in terms of following a set of best
open source maintenance practices (e.g., the availability of contribution guide-
lines, issue template, code of conduct, license, etc.). Particularly, this difference is
more important regarding the availability of contribution guidelines and the use
of continuous integration. Furthermore, the failed projects have a non-negligible
number of opened issues and pull requests. Finally, we describe three strategies
attempted by maintainers to overcome the failure of their projects.

• Chapter 3 reports the results of a survey with developers who recently became
core contributors of popular GitHub projects. We reveal their motivations to
contribute to OSS projects, the project characteristics that mostly helped them
in this process, and the barriers faced by these new core developers. We also
compare our results with related studies regarding of other kinds of open source
contributors, e.g., casual contributors [Pinto et al., 2016; Lee et al., 2017], and
newcomers [Steinmacher et al., 2016]. Our results show the surveyed developers
contributed to the projects because they are using them and need some improve-
ments. The participants also answered the lack of time of the project leaders was
the principal barrier they faced. Finally, the project characteristic that mostly
helped them to contributed was the existence of a friendly community.

• Chapter 4 presents a machine learning model to identify GitHub projects that
are not actively maintained. We also train machine learning models to com-
pute a metric to express the level of maintenance activity of GitHub projects,
based on a set of features about project activity (e.g., commits, forks, issues,
etc.). We empirically validated the model with the best performance with the
principal developers of 129 GitHub projects. The model achieved a precision of
80% and a recall of 96%. We also showed that the proposed model can identify
unmaintained projects early, without having to wait for one year of inactivity, as
commonly proposed in the literature. Finally, we proposed a metric, called Level
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of Maintenance Activity (LMA), to assess the risks of projects become unmain-
tained. We provide evidences on the applicability of this metric by investigating
its usage in 2,927 projects. Finally, we implemented a public Chrome extension
to indicate the level of maintenance activity of GitHub projects.

• Chapter 5 concludes this thesis and outlines future work ideas.



Chapter 2

Why Modern Open Source Projects
Fail

Open source projects are key elements of the digital infrastructure that runs our so-
ciety today. Moreover, open source is experiencing a renaissance period, due to the
appearance of modern platforms and workflows for developing and maintaining public
code. As a result, developers has created thousands of open source projects. As a con-
sequence, a significant number of open source projects is also failing. We consider that
a project has failed when the documentation explicitly mentions that it is deprecated or
the project is no longer under maintenance according to their owner. To better under-
stand the reasons that lead to the failure of modern open source projects. This chapter
describes the results of a survey study with the maintainers of 104 popular GitHub sys-
tems that have been deprecated. We provide a set of nine reasons for the failure of open
source projects. We also show that some maintenance practices—specially the adoption
of contributing guidelines and continuous integration—have an important association
with a project failure or success. Finally, we discuss and reveal the principal strategies
developers have tried (without success) to overcome the failure of the studied projects.

2.1 Introduction

In this chapter we present an investigation with the maintainers of open source proj-
ects that have failed, aiming to reveal the reasons for such failures, the maintenance
practices that distinguish failed projects from successful ones, the impact of failures
on clients, and the strategies tried by maintainers to overcome the failure of their
projects. This investigation addresses the following research questions:

9
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RQ1: Why do open source projects fail? To answer this first RQ, we select 542
popular GitHub projects without any commits in the last year. We complemented this
selection with 76 systems whose documentation explicitly mentions that the project is
abandoned. We asked the developers of these systems to describe the reasons of the
projects’ failure. Finally, we categorize their responses into nine major reasons.

RQ2: What is the importance of following a set of best open source maintenance
practices? In this second research question, we check whether the failed projects used
a set of best open source maintenance practices, including practices to attract users
and to automate maintenance tasks (e.g., the availability of contribution guidelines,
code of conduct, license, the use of continuous integration, etc.).

RQ3: What is the impact of the project failures? To measure this impact, we
counted the number of opened issues and pull requests of the failed projects and
also the number of projects that depend on them. The goal is to measure the im-
pact of the studied failures, in terms of affected users, contributors, and client projects.

RQ4: How do developers try to overcome the projects failure? In this last research
question, we manually analyze the issues of the failed projects to collect strategies and
procedures tried by their maintainers to avoid the failures.

We make the following contributions in this study:

• We provide a list of nine reasons for failures in open source projects. By provid-
ing these reasons, using data from real failures, we intend to help developers to
assess and control the risks faced by open source projects.

• We reinforce the importance of a set of best open source maintenance practices,
by comparing their usage by the failed projects and also by the most and least
popular systems in a sample of 5,000 GitHub projects.

• We document three strategies attempted by the maintainers of open source proj-
ects to overcome (without success) the failure of their projects.

The remainder of this chapter is organized as follows. Section 2.2 presents the
dataset we use to search for failed projects. Section 2.3 to Section 2.6 presents answers
to each of the four research questions proposed in the study. Section 2.7 discusses and
puts our findings in a wider context. Section 2.8 presents threats to validity; Section 2.9
presents related work; and Section 2.10 concludes this study.
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2.2 Dataset

The dataset used in this study was created by first considering the top-5,000 most pop-
ular projects on GitHub (on September, 2016). We use the number of stars as a proxy
for popularity because it reveals how many people manifested interest or appreciation
to the project [Borges et al., 2016b]. We limit the study to 5,000 repositories to focus
on the maintenance challenges faced by highly popular projects.

We use two strategies to select systems that are no longer under maintenance
in this initial list of 5,000 projects. First, we select 628 repositories (13%) with-
out commits in the last year. As examples, we have nvie/gitflow1 (16,392 stars),
mozilla/BrowserQuest2 (6,702 stars), and twitter/typeahead.js3 (3,750 stars). Sec-
ond, we search in the README4 of the remaining repositories for terms described on
Table 2.1.

Table 2.1: Sentences documenting deprecated projects.

dead project, deprecated, unmaintained, no longer being actively maintained,
no longer maintained, no longer under development, no longer supported,
not maintained anymore, not under active development, is not supported,
is not maintained, is not under development

We found such terms in the READMEs of 207 projects (4%). We then manually
inspected these files to assure that the messages indeed denote inactive projects and
to remove false positives. After this inspection, we concluded that 76 repositories
(37%) are true positives. As an example, we have google/gxui5 whose README has
this comment:

Unfortunately due to a shortage of hours in a day, GXUI is no longer maintained.

As an example of false positive, we have twitter/labella.js.6 In its README,
the following message initially led us to suspect that the project is abandoned:

The API has changed. force.start() and . . . are deprecated.

1https:// github.com/nvie/ gitflow
2https:// github.com/mozilla/BrowserQuest
3https:// github.com/ twitter/ typeahead.js
4READMEs are the first file a visitor is presented to when visiting a GitHub repository. They

include information on what the project does, why the project is useful, and eventually the project
status (if it is active or not).

5https:// github.com/ google/ gxui
6https:// github.com/ twitter/ labella.js

https://github.com/nvie/gitflow
https://github.com/mozilla/BrowserQuest
https://github.com/twitter/typeahead.js
https://github.com/google/gxui
https://github.com/twitter/labella.js
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However, in this case, deprecated refers to API elements and not to the project’s
status. In a final cleaning step, we manually inspected the selected 704 repositores
(628 + 76). We removed repositories that are not software projects (51 repositories,
e.g., books, tutorials, and awesome lists), repositories whose native language is not
English (24 repositories), that were moved to another repository (7 repositories), and
that are empty (4 repositories, which received their stars before being cleaned). We
ended up with a list of 618 projects (542 projects without commits in the last year and
76 projects with an explicit deprecation message in the README). We only inspected
the README because we had to verify manually all of them to discard false positives.
Therefore, we do not search explicit deprecation message on commits or issues.

Figure 2.1 shows violin plots with the distribution of age (in months), number
of contributors, number of commits, and number of stars of the selected repositories.
We provide plots for all 5,000 systems (labeled as all) and for the 618 systems (12%)
considered in this study (labeled as selected). The selected systems are older than the
top-5,000 systems (52 vs 40 months, median measures); but they have less contributors
(11 vs 23), less commits (137 vs 346), and less stars (2,345 vs 2,538). Indeed, the
distributions are statistically different, according to the one-tailed variant of the Mann-
Whitney U test (p-value ≤ 5%). To show the effect size of this difference, we compute
Cliff’s delta (or d). We found that the effect is small for age and commits, medium for
contributors, and negligible for stars.

GitHub repositories can be owned by a person (e.g., torvalds/linux) or by
an organization (e.g., mozilla/pdf.js). In our dataset, 170 repositories (28%) are
owed by organizations and 448 repositories (72%) by users. JavaScript is the most
popular language (219 repositories, 36%), followed by Objective-C (98 repositories,
16%), and Java (75 repositories, 12%). In total, the dataset includes systems spanning
26 programming languages. We manually classified the application domain of the
systems in the dataset, as showed in Table 2.2. There is a concentration on libraries
and frameworks (502 projects, 81%), which essentially reproduces a concentration also
happening in the initial list of 5,000 projects.7

Dataset limitations: The proposed dataset is restricted to popular open source proj-
ects on GitHub. We acknowledge that there are popular projects in other platforms,
like Bitbucket, GitLab or that have their own version control installations. Also, the
dataset does not include projects that failed before attracting the attention of devel-
opers and users. We consider less important to study such projects since their failures

7For another research, we classified the domain of the top-5,000 GitHub projects; 59% are libraries
and frameworks.
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Figure 2.1: Distribution of the projects by (a) age, (b) contributors, (c) commits, and
(d) stars, without outliers.

Table 2.2: Application domain of the selected projects

Application Domain Projects

Libraries and frameworks 502
Application software (e.g., text editors) 63
Software tools (e.g., compilers) 31
System software (e.g., databases) 22

did not have much impact. Instead, we focus on projects that succeeded to attract
attention, users, and contributors, but then failed, possibly impairing other projects.
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2.3 Why do open source projects fail?

To answer the first research question, we conducted a survey with the developers of
open source projects with evidences of no longer being under maintenance.

2.3.1 Survey Design

The survey questionnaire has three open-ended questions: (1) Why did you stop main-
taining the project? (2) Did you receive any funding to maintain the project? (3) Do
you have plans to reactivate the project? We avoid asking the developers directly
about the reasons for the project failures, because this question can lead to multiple
interpretations. For example, an abandoned project could have been an outstanding
learning experience to its developers. Therefore, they might not consider that it has
failed. In Section 2.3.3, we detail the criteria we followed to define that a project has
failed based on the answers to the survey questions.

Specifically to the developers of the 542 repositories without commits in the last
year, we added a first survey question, asking them to confirm that the projects are no
longer being maintained. We also instructed them to only answer the remaining ques-
tions if they agree with this fact. We sent the questionnaire to the repositories’ owners
or to the project’s main contributor, in the case of repositories owned by organizations.
Using this criterion, we were able to find a public e-mail address of 425 developers on
GitHub. However, 9 developers are the owners—or the main contributors—of two or
more projects. In this case, we only sent one email to these developers, referring to their
first project in number of stars, to avoid a perception of our mails as spam messages.

We sent the questionnaire to 414 developers. After a period of 20 days, we
obtained 118 responses and 6 mails returned due to the delivery problems, resulting in
a response rate of 29%, which is 118/(414−6). To preserve the respondents’ anonymity,
we use labels D1 to D118 to identify them. Furthermore, when quoting their answers
we replace mentions to repositories and owners by @[Project-Name] and @[Project-
Owner]. This is important because some answers include critical comments about
developers or organizations.

Finally, for some projects, we found answers to the first survey question (“Why
did you stop maintaining the project?”) when inspecting their READMEs. This
happened with 36 projects, identified by R1 to R36. As an example, we have the
following README:

Unfortunately, I haven’t been able to find the time that I would like to dedicate to this
project. (R6)
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Therefore, for the first survey question, we collected 154 answers (118 answers by
e-mail and 36 answers from the projects’ README). We analyzed these answers using
thematic analysis [Cruzes and Dyba, 2011; Silva et al., 2016], a technique for identi-
fying and recording “themes” (i.e., patterns) in textual documents. Thematic analysis
involves the following steps: (1) initial reading of the answers, (2) generating a first
code for each answer, (3) searching for themes among the proposed codes, (4) reviewing
the themes to find opportunities for merging, and (5) defining and naming the final
themes. After this, a sequence of meetings was held to resolve conflicts and to assign
the final themes (step 5).

2.3.2 Survey Results

This section presents the answers to the survey questions. For the 118 developers of
systems with no commits in the last year, the survey included an opening question
asking if he/she agrees that the project is no longer under maintenance. A num-
ber of 101 developers (86%) confirmed this project condition, as in the following answer:

Yes, I surely have abandoned the project. (D20)

By contrast, 17 developers (14%) did not agree with the project status. For
example, two developers mentioned work being performed out of the main GitHub
repository:

One current issue that does need to be resolved is that the entire site is served over
https, but you wouldn’t see that change in the repo. (D18)

It is under maintenance. It’s just not a lot of people are using it, and I am working
on a new breaking version and thus didn’t want to commit on the master branch. (D30)

Next, we present the reasons that emerged after analysing the answers received
for the first survey question (“Why did you stop maintaining the project?”). We
discuss each reason and give examples of answers associated to them.

Lack of time: According to 27 developers, they do not have free time to maintain
the projects, as in the following answers:

It was conceived during extended vacation. When I got back to working I simply didn’t
have time. Building something like @[Project-Name] requires 5-6 hours of work per
day. (D15)
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I was the only maintainer and there was a lot of feature requests and I didn’t have
enough time. (D115)

Lack of interest: 30 developers answered they lost interest on the projects, including
when they started to work on other projects or domains, changed jobs, or were fired.8

As examples, we have:

My interest began to wane; I moved to other projects. (D67)

I’m not working in the CMS space at the moment. (D77)

It became less professionally relevant/interesting. (D80)

I was fired by the company that owns the project. (D65)

Project is completed: 17 developers consider that their projects are finished and
do not need more features (just few and sporadic bug fixes). As an example, we have
the following answers:

Sometimes, you build something, and sometimes, it’s done. Like if you built a building,
at some point in time it is finished, it achieved its goals. For @[Project-Name] — it
achieved all its goals, and it’s done. . . .The misconception is that people may mistake
an open source project with news. Sometimes there are just no more features to add,
no more news — because the project is complete. (D28)

I felt it was done. I think the dominant idea is that you have to constantly update
every open source project, but in my opinion, this thing works great and needs no
updates for any reason, and won’t for many, many years, since it’s built on extremely
stable APIs (namely git and Unix utilities). (D69)

Usurped by competitor: 30 developers answered they abandoned the project
because a stronger competitor appeared in the market, as in the case of these projects:

Google released ActionBarCompat whose goal was the same as @[Project-Name] but
maintained by them. (D2)

The project no longer makes sense. Apple has built technical and legal alternatives
which I believe are satisfactory. (D71)

8Consequently, these developers do not have more time to work on their projects; however, we
reserve the lack of time theme to the cases where the developers still have interest on the projects,
but not the required time to maintain them.
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It’s not been maintained for well over half a year and is formally discontinued. There
are better alternatives now, such as SearchView and FloatingSearchView. (R42)

Specifically, 12 projects explicitly declare in their READMEs that they are
no longer maintained due to the appearance of a strong competitor. In all cases,
the update date of the project status as unmaintained occurred after competitor
appeared. For example, node-js-libs/node.io was declared unmaintained four years
after its competitor appeared. We also found this statement in its README: I wrote
node.io when node.js was still in its infancy.

Project is obsolete: According to 21 developers, the projects are not useful anymore,
i.e., their features are not more required or applicable.9 As examples, we have the
answers:

This was only meant as a stopgap to support older OSes. As we dropped that, we
didn’t need it anymore. (D11)

I do not have an app myself anymore using that code. (D36)

I personally have no use for it in my work anymore. (D38)

Project is based on outdated technologies: This reason, mentioned by 16
respondents, refer to discontinuation due to outdated, deprecated or suboptimal
technologies, including programming languages, APIs, libraries, frameworks, etc. As
examples, we have the following answers:

Due to Apple’s abandonment of the Objective-C Garbage Collector which @[Project-
Name] relied heavily on, future development of @[Project-Name] is on an indefinite
hiatus. (R20)

The core team is now building @[Project-Name] in Dart instead of Ruby, and will
no longer be maintaining the Ruby implementation unless a maintainer steps up to
help. (R34)

Low maintainability: This reason, as indicated by 7 developers, refers to maintain-
ability problems. As examples, we have:

It is difficult to maintain a browser technology like JavaScript because browsers have
very different quirks and implementations. (D28)

9The theme does not include projects that are obsolete due to outdated technologies, which have
a specific theme.
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The project reached an unmaintainable state due to architectural decisions made early
in the project’s life. (D30)

Conflicts among developers: This reason, indicated by three developers, denotes
conflicts among developers or between developers and project owners, as in this answer:

The project was previously an official plugin—so the @[Project-Owner] team worked
with me to support it. However, they decided would not longer have the concept of
plugins—and they ended the support on their side. (D73)

The remaining reasons include acquisition by a company, which created a private
version of the project (two answers), legal problems (two answers), lack of expertise of
the principal developer in the technologies used by the project (one answer), and high
demand of users, mostly in the form of trivial and meaningless issues (one answer).
Finally, in five cases, it was not possible to infer a clear reason after reading the
participant’s answers. Thus, we classified these cases under an unclear answer theme.
An example is the following answer: I am not so sure, but you can probably check the
last commit details in GitHub. (D95)

We also asked the participants a second question: did you receive any funding to
maintain the project? 82 out of 118 answers (69%) were negative. The positive answers
mention funding from the company employing the respondent (12 answers), non-profit
organizations (three answers; e.g., European Union), and other private companies (two
answers). Finally, we asked a third question: do you have plans to reactivate the
project? Only 18 participants (15%) answered positively to this question.

2.3.3 Combining the Survey Answers

In our study, we consider that a project has failed when at least one of the following
conditions hold:

1. The project is no longer under maintenance according to the surveyed developers
and they do not have plans to reactivate the project (question #3) and the project
is not considered completed (question #1).

2. The project documentation explicitly mentions that it is deprecated (without
considering it completed).

Among the considered answers, 76 projects attend condition (1) and 32 projects
attend condition (2). The reasons for the failure of these projects are the ones presented
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in Section 2.3.2, except when the themes are lack of interest or lack of time. For
these themes and when the answer comes from the top-developer of a project owned
by an organization, we made a final check on his/her number of commits. We only
accepted the reasons suggested by developers that are responsible for at least 50% of
the projects’ commits. For example, D85 answered he stopped maintaining his project
due to a lack of time. The project is owned by an organization and D85—although
the top-maintainer of the project—is responsible for 30% of the commits. Therefore,
in this case, we assumed that it would be possible to other developers to take over the
tasks and issues handled by D85. By applying this exclusion criterion, we removed
four projects from the list of projects. The final list, which includes reasons for failures
according to relevant top-developers or project owners, has 104 projects. In this study,
we call them failed projects.

Table 2.3 presents the reasons for the failure of these projects. The most common
reasons are project was usurped by competitor (27 projects), project is obsolete (20
projects), lack of time of the main contributor (18 projects), lack of interest of the main
contributor (18 projects), and project is based on outdated technologies (14 projects). It
is also important to note that projects can fail due to multiple reasons, which happened
in the case of 6 projects. Thus, the sum of the projects in Table 2.3 is 110 (and not
104 projects).10

Table 2.3: Why open source projects fail?

Reasons Group Projects

Usurped by competitor Environment 27
Obsolete Project 20
Lack of time Team 18
Lack of interest Team 18
Outdated technologies Project 14
Low maintainability Project 7
Conflicts among developers Team 3
Legal problems Environment 2
Acquisition Environment 1

As presented in Table 2.3, we classified the reasons for failures in three groups:
(1) reasons related to the development team (including lack of time, lack of interest,
and conflicts among developers); (2) reasons related to project characteristics (includ-
ing project is obsolete, project is based on outdated technologies, and low project

10The values in Table 2.3 are not exactly the ones presented in Section 2.3.2 due to the inclusion
and exclusion criteria defined in this section.
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maintainability); (3) reasons related to the environment where the project and the
development team are placed (including usurpation by competition, acquisition by a
company, and legal issues).

Summary: Modern open source projects fail due to reasons related to project char-
acteristics (41 projects; e.g., low maintainability), followed by reasons related to the
project team (39 projects; e.g., lack of time or interest of the main contributor); and
due to environment reasons (30 projects; e.g., project was usurped by a competidor
or legal issues).

2.4 What is the importance of open source

maintenance practices?

In this second question, we investigate whether the failed projects followed (or not) a
set of best open source maintenance practices, which are recommended when hosting
projects on GitHub.11 Section 2.4.1 describes the methodology we followed to answer
the research question and Section 2.4.2 presents the results and findings.

2.4.1 Methodology

We analyzed four groups of projects: the 104 projects that have failed, as described
in Section 2.3.3 (Failed), the top-104 and the bottom-104 projects by number of stars
(Top and Bottom, respectively), and a random sample of 104 projects (Random). Top,
Bottom, and Random are selected from the initial sample of top-5,000 projects, de-
scribed in Section 2.2, and after applying the same cleaning steps defined in that
section. The rationale is to compare the Failed projects with the most popular proj-
ects in our dataset, which presumably should follow most practices; and also with the
least popular projects and with a random sample of projects.

For each project in the aforementioned groups of projects we collected the follow-
ing information:12 (1) presence of a README file (which is the landing page of GitHub
repositories); (2) presence of a separate file with the project’s license; (3) availability of
a dedicated site and URL to promote the project, including examples, documentation,
list of principal users, etc.; (4) use of a continuous integration service (we check whether

11https:// opensource.guide
12Five of these maintenance practices are explicitly recommended at: https:// help.github.com/

articles/ helping-people-contribute-to-your-project

https://opensource.guide
https://help.github.com/articles/helping-people-contribute-to-your-project
https://help.github.com/articles/helping-people-contribute-to-your-project
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the projects use Travis CI, which is the most popular CI service on GitHub, used by
more than 90% of the projects that enable CI, according to a recent study [Hilton
et al., 2016]); (5) presence of a specific file with guidelines for repository contributors;
(6) presence of an issue template (to instruct developers to write issues according to
the repository’s guidelines); (7) presence of a specific file with a code of conduct (which
is a document that establishes expectations for the behavior of the project’s partici-
pants [Tourani et al., 2017]); and (8) presence of a pull request template (which is a
document to instruct developers to submit pull requests according to the repository’s
guidelines).

After collecting the data for each project in each group we compared the obtained
distributions. First, we analyzed the statistical significance of the difference between
the Top, Bottom, and Random groups vs the Failed group, by applying the Mann-
Whitney test at p-value = 0.05. To show the effect size of the difference, we used
Cliff’s delta. Following the guidelines of previous work [Grissom and Kim, 2005; Tian
et al., 2015b; Linares-Vásquez et al., 2013], we interpreted the effect size as small for
0.147 < d < 0.33, medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

2.4.2 Results

Table 2.4 shows the percentage of projects following each practice. Despite the group,
the most followed practices are the presence of a README file, the presence of a license
file, and the availability of a project home page. For example, for the Failed projects the
percentage of projects following these practices are 99%, 61%, and 58%, respectively.
For the Top projects, the same values are 100%, 88%, and 87%, respectively. The least
followed practices are issue templates, code of conduct, and pull request templates. We
did not find a single project following these practices in the Failed group. By contrast,
15%, 13%, and 3% of the Top projects have these three kind of documents, respectively.
In general, we observe the following order among the groups of projects regarding the
adoption of the eight considered practices: Top > Random > Failed ≡ Bottom. In
other words, there is a relevant adoption of most practices by the Top projects. By
contrast, the 104 projects that failed are more similar to the Bottom projects. This
fact is reinforced by the analysis of Cliff’s delta coefficient. There is a large effect
size between the adoption of contributing guidelines by the Top (72%) and the Failed
projects (16%), and a medium difference in the case of continuous integration services
(68% vs 27%). For licenses, home pages, and issue templates, the difference is small.
For the remaining practices, the difference is negligible or does not exist in statistical
terms. In the case of the Bottom projects, there is no statistical difference for the
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Table 2.4: Percentage of projects following practices recommended when maintaining
GitHub repositories. The effect size reflects the extent of the difference between the
repositories in a given group (Top, Bottom, or Random) and the failed projects

Maintaince Practice Failed Top Effect Bottom Effect Random Effect

README 99 100 - 100 - 100 -
License 61 88 small 60 - 73 -
Home Page 58 87 small 52 - 60 -
Continuous Integration 27 68 medium 41 - 45 small
Contributing 16 72 large 13 - 32 small
Issue Template 0 15 small 2 - 5 -
Code of Conduct 0 13 - 0 - 2 -
Pull Request Template 0 3 - 0 - 0 -

eight considered documents. Finally, for Random, there is a small difference when we
consider the use of continuous integration and contributing guidelines.

Summary: Regarding the adoption of best open source maintenance practices, the
failed projects are more similar to the least popular projects than to the most popular
ones. Therefore, these practices seem to have an effect on the success or failure of
open source projects. The practices with the most relevant effects are contributing
guidelines (large), continuous integration (medium), and licences, home pages, and
issue templates (small).

2.5 What is the Impact of Failures?

With this third research question, we intend to assess the impact of the failure of the
studied projects, both to end-users and to the developers of client systems. First, we
present the approach we used to answer the question (Section 2.5.1). Then, we present
the results (Section 2.5.2).

2.5.1 Methodology

To answer the question, we collected data on (a) the number of issues and pull requests
of the failed projects; and (b) the number of systems that depend on these projects,
according to data provided by GitHub and by a popular JavaScript package manager.
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2.5.2 Results

Issues and Pull Requests: We collected the number of opened issues and opened
pull requests for each failed project (in the case of issues, we excluded 15 projects
that do not use GitHub to handle issues). Our rationale is that one of the negative
impacts of an abandoned project is a list of bugs and enhancements (issues) that will
not be considered and a list of source code modifications (pull requests) that will
not be implemented. Pending issues impact the projects’ users, who need to keep
using a project with bugs or a frozen set of features, or who will have to migrate to
other projects. Pending pull requests contribute to the frustration of the projects’
contributors, who will not have their effort appreciated.

Dependencies: We also collected data on projects that depend on the failed projects
and that therefore are using unmaintained systems. To collect dependencies data,
we first rely on a GitHub service that reports the number of client repositories that
depend on a given repository.13 Unfortunately, this feature is available only to Ruby
systems. To cover more projects, we also consider dependency data provided by npm,
a popular package manager for JavaScript. As result, we analysed the dependencies of
38 projects, including 10 Ruby projects and 28 JavaScript ones.

Issues and Pull Requests: Figure 2.2 shows violin plots with the distributions
of opened issues and pull requests. Considering the 89 failed projects with issues
on GitHub, the median number of opened issues is 18 and the median number of
pending pull requests is 5. The top-3 failed projects with the highest number of
pending issues have 230, 173, and 160 issues. The top-3 failed projects with the
highest number of pending pull requests have 54, 45, and 38 pull requests. The figure
also shows the number of opened issues and pull requests grouped by failure reasons.
The median number of issues associated to project characteristics, development team,
and environment reasons are 21, 43, and 12 issues, respectively. For pull requests,
the median measures for the same groups of reasons are 4, 11, and 4 pull requests,
respectively. By applying Kruskal-Wallis test to compare multiple samples, we find
that these distributions are not different.

Dependencies: A total of 6 (out of 10) Ruby repositories do not have dependent
projects. However, we also found projects with 2,460, 270, 36, and 18 dependents.
Regarding the JavaScript systems, 10 (out of 28) projects do not have an entry on
npm (although npm is very popular, systems can use other package managers or do

13https:// github.com/ blog/ 2300-visualize-your-project-s-community

https://github.com/blog/2300-visualize-your-project-s-community
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Figure 2.2: Distribution of the (a) Opened issues and (b) Opened pull requests, without
outliers

not use a package manager at all). A total of 15 projects have five or less dependents
and three systems have respectively 158, 37, and 13 dependents.

Summary: The failed projects have 18 opened issues and 5 opened pull requests
(median measures). 55% of the Ruby and JavaScript projects have less than five
dependents, which suggests that most clients have also abandoned these projects.
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2.6 How do developers try to overcome the

projects failure?

In this fourth research question, we qualitatively investigate attempts to overcome the
failure of the studied projects.

2.6.1 Methodology

We read the 20 most recent opened issues and the 20 most recent closed issues of each
of the 104 failed projects (in a total of 1,654 issues). As a result, he collected 32 issues,
which the developers question the status of the projects and/or discuss alternatives to
restart the development. The issues, which are identified by I1 to I32, cover 32 projects
in the list of failed projects. Examples of titles of selected issues are: Is this project
dead? (I18), Is this project maintained? (I1), and Is development of this ongoing? (I7).
After this first step, we extracted a set of recurrent strategies (or “themes”) suggested
by developers to overcome the failure of the projects the issues refer to. The proposed
themes were validated in a last step.

2.6.2 Results

After analyzing the issues, we found three strategies attempted by owners or collabo-
rators to overcome the unmaintained status of the projects. Next, we describe these
strategies.

Moving to an organization account: This strategy, mentioned in five issues,
refers to the creation of an organization account with a name similar to the project’s
name. The hope is that with this kind of account it would be easier to attract new
maintainers and to manage permissions. As examples, we have these comments:

Would creating a @[Project-Name] repo in a @[Project-Name] org be something people
would want? (I31)

I am totally cool with setting up an org and transferring control... Just let me know
what you need. (I3)

Transfer the project to new maintainers: This strategy, discussed for three
projects, consists in a complete transfer of the project’s maintainership to other
developers (but keeping the project’s name), as discussed in these issues:
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Who want to take over this project will be appreciated. We will watch the project
together for a while and I will grant every permission. (I10)

In two projects, a new developer was found and assumed the project, as
documented in this issue:

I have started working on @[Project-Name]. @[Project-Owner] transferred the reposi-
tory to my account. (I7)

We tracked the activity of the new maintainers, until February, 2017. They did
not perform significant contributions to the projects, despite minor commits. In one
project, we found the following complaint about the new maintainer:

@[Owner-Name] gave this repo to someone who has never been active on GitHub, so
this repo is basically dead. (I11)

Accepting new core developers: In five cases, to overcome the low activity on the
repositories, volunteers offered to help with the maintenance, as core developers. For
example, we have this issue:

@[Project-Name] Would you be open to adding more collaborators to this repo? (I17)

In all cases, the proposals were not answered or accepted. As an example, we
have this project owner, who requested a detailed maintenance plan before accepting
the maintainer:

I’d be willing to do this if the collaborators provided a roadmap of what they’d like to
accomplish with the library. (I17)

Although it is not exactly an overcome strategy, in 19 cases owners suggested
the developers to start collaborating on another project, as in this issue:

I’d suggest you look at @[Project-Name]. It’s very active and modern. I’m trying to
find time to switch over myself. (I9)

Finally, although the presented strategies were not able to restart the develop-
ment of the studied projects, they should not be considered as completely failed ones.
To illustrate this fact, we selected 348 projects that almost failed in the year before the
study (they have five or less commits). 182 projects (52%) indeed failed in the next
year (the studied one). However, 35 projects show evidences of recovering (they have
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more than the first quartile of commits/year in the studied year, i.e., 15 commits).
After inspecting the documentation and issues of these 35 projects, we found that 14
projects attracted new core developers (third strategy), two were transferred to new
maintainers (second strategy), and two projects moved to an organization account
(first strategy).

Summary: Developers attempted three strategies to overcome the failure of their
projects: (a) moving to an organization account; (b) transfer the project to new
maintainers; and (c) accepting new core developers.

2.6.3 Complementary Investigation: Forks

Forks are used on GitHub to create copies of repositories. The mechanism allows devel-
opers to make changes to a project (e.g., fixing bugs or implementing new features) and
submit the modified code back to the original repository, by means of pull requests.
Alternatively, forks can become independent projects, with their own community of
developers. Therefore, forks can be used to overcome the failure of projects, by boot-
strapping a new project from the codebase of an abandoned one. For this reason, we
decided to complement the investigation of RQ4 with an analysis of the forks of the
failed projects.

Figure 2.3a shows the distribution of the number of forks of the failed projects.
They usually have a relevant number of forks since it is very simple to fork projects
on GitHub. The first, median, and third quartile measures are 244, 400, and 638
forks, respectively. The violin plot in Figure 2.3b aims to reveal the relevance of
these forks. For each project, we computed the fork with the highest number of stars.
The violin plot shows the distribution of the number of stars of these most successful
forks. As we can see, most forks are not popular. They are probably only used to
submit pull requests or to create a copy of a repository, for backup purposes [Jiang
et al., 2016]. For example, the third quartile measure is 13 stars. However, there are
two systems with an outlier behavior. The first one is an audio player, whose fork
has 1,080 stars. In our survey, the developer of the original project answered that he
abandoned the project due to other interests. However, his code was used to fork a
new project, whose README acknowledges that this version “is a substantial rewrite
of the fantastic work done in version 1.0 by [Projet-Owner] and others”. Besides
1,080 stars, the forked project has 70 contributors (as February, 2017). The second
outlier is a dependency injector for Android, whose fork was made by Google and has
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6,178 stars. The forked project’s README mentions that it “is currently in active
development, primarily internally at Google, with regular pushes to the open source
community".

Summary: Forks are rarely used on GitHub to continue the development of open
source projects that have failed.

2.7 Discussion

In this section, we discuss the main findings of our study.

Completed projects and first Law of Software Evolution: An interesting
finding of the survey with developers is the category of completed projects (17
systems, 11%), which are considered feature-completed by their developers. They do
not plan to evolve these systems, because “adding more features would just obfuscate
the original intent” (D55) of the projects. Moreover, they also think the projects will
not need adaptive maintenance, as in this answer:

I just stopped working on it because what I have works very well, and will continue
working very well until Unix stops being the foundation of most Web development,
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which basically means until the end of the human race . . .Most projects don’t build on
similarly solid foundations so they probably need to change more often. (D56)

Someone can argue that these projects contradict the first Law of Software
Evolution, which prescribes that “programs are never completed” [Lehman, 1980].
However, Lehman’s Laws only apply to E-type systems, where the “E” stands for
evolutionary.14 In these systems, the environment around the program changes
and hence the requirements and the program specification [Herraiz et al., 2013].
Therefore, Lehman opens the possibility to have completed programs, when they
target an environment controlled by the developers or that is very stable (e.g., the
Unix ecosystem, as mentioned by Developer D56).

Competition in open source markets: The study reveals an important compe-
tition between open source projects. The most common reason for project failures
is the appearance of a stronger open source competitor (27 projects). Usually, this
competitor is the major organization responsible for the ecosystem the project is
inserted on, specifically Google (Android ecosystem, 7 projects) and Apple (iOS
ecosystem, 5 projects). Therefore, open source developers should be aware of the risks
of starting a project that may attract the attention of major players, particularly when
the projects have a tight integration and dependency with established platforms, like
Android and iOS. Clients should also evaluate the risks of using these “non-official”
projects. They should evaluate if it is worth to accept the opportunity costs of delaying
the use of a system until it is provided as a built-in service. Alternatively, they can
conclude that the costs of delaying the adoption further exceeds the additional benefits
of providing earlier a service to end-users. Other competitors mentioned in the survey
are d3/d3 (a visualization library for JavaScript) and MVC frameworks, also for
JavaScript, such as facebook/react. For example, one developer mentioned that
“high-end front-end development seems to be moving away from jQuery plugins” (D18).
This result confirms that web development is a competitive domain, where the risks
of failures are considerable, even for highly popular projects.

Practical implications: This study provides insights to the definition of lightweight
“maturity models” to open source projects. By lightweight, we mean that such models
should be less complex and detailed than equivalent models for commercial software
projects, like CMMI [Chrissis et al., 2003]. But at least they can prescribe that open
source projects should manage and constantly assess the risk factors that emerged from

14The first law (Continuing Changing) is as follows: “An E-type system must be continually
adapted, else it becomes progressively less satisfactory in use.” [Lehman et al., 1997]
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our empirical investigation. We shed light on three particular factors: (a) risks asso-
ciated to development teams (for example, projects than depend on a small number
of core developers may fail due to the lack of time or lack of interest of these develop-
ers, after a time working in the project); (b) risks associated to the environment the
projects are immersed (which seems to be particularly relevant in the case of projects
with a tight integration with mobile operating systems or in the case of web libraries
and frameworks); (c) risks associated to project characteristics and decisions, such as
the use of outdated technologies. Furthermore, we also showed the importance of prac-
tices normally recommended to open source development on GitHub. We show that
successful projects provide documents like README, contributing guidelines, usage
license declarations, and issue templates. They also include a separate home page, to
promote the projects among end-users. Finally, we showed evidences on the benefits
provided by continuous integration, in terms of automation of tasks like compilation,
building, and testing.

2.8 Threats To Validity

The threats to validity of this work are as follows:

External Validity: Threats to external validity were partially discussed when
presenting the dataset limitations (Section 2.2). We complement this discussion as
follows. First, when investigating the use of continuous integration by the failed, top,
bottom, and random projects (RQ2, Section 2.4), we only consider the use of Travis
CI. However, Travis is the most popular CI service on GitHub, used by more than
90% of the repositories that enable CI [Hilton et al., 2016]. Second, the investigation
of dependent projects (RQ3, Section 2.5) only considered systems implemented in
Ruby and JavaScript. For JavaScript, we only analyzed dependency data provided by
a single package manager system (npm).

Internal Validity: The first threat relates to the selection of the survey participants.
We surveyed the project owner, in the case of repositories owned by individuals,
or the developer with the highest number of commits, in the case of repositories
owned by organizations. Although experts on their projects, it is possible that some
participants omitted in their answers the real reasons for the project failures. To
mitigate this threat, we avoid asking the participants directly about the causes of the
project failures. A second threat relates to the themes denoting reasons for project
failures (RQ1) and strategies on how to overcome them (RQ4). We acknowledge that
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the choice of these themes is to some extent subjective. For example, it is possible
that different researchers reach a different set of reasons, than the ones proposed in
Section 2.3.2. To mitigate this threat, the initial selection of themes in RQ1 was
performed independently by the collaborators of this study. After this initial proposal,
daily meetings were performed during a whole week to refine and improve the initial
selection. A third internal validity threat might appear when interpreting the results
of RQ2. In this case, it is important to consider that association does not imply in
causation. For example, by just providing contributing guidelines or codes of conduct,
a project does not necessarily will succeed.

Construct Validity: A first construct validity threat relates to thresholds and param-
eters used to define the survey sample. We consider as unmaintained the projects that
did not have a single commit in the last year (Section 2.2). We recognize a threat in the
selection of this threshold and time frame. However, to mitigate this threat, we included
in the survey 36 projects whose README explicitly declares that the project is un-
maintained or deprecated. The second threat concerns the data about the maintenance
practices used to answer RQ2 (Section 2.4). This data was collected automatically, by
means of scripts that rely on regular expressions to match different names and exten-
sions used by the documents of interest (e.g., license.md and license.txt). However,
we cannot guarantee that the implemented expressions match all possible variations
of file names. Moreover, we did not investigate and check the quality of the retrieved
documents. For example, we consider that a project has contributing guidelines when
this document exists in the repository and it is not empty.

2.9 Related Work

Capiluppi et al. [2003] analyze 406 projects from FreshMeat (a deprecated open source
repository). For each project, they compute a set of measures along four main dimen-
sions: community of developers, community of users, modularity and documentation,
and software evolution. They report that most projects (57%) have one or two devel-
opers and that only a few (15%) can be considered active, i.e., continuing improving
their popularity and number of users and developers. However, they do not investi-
gate the reasons for the project failures. Khondhu et al. [2013] discuss the attributes
and characteristics of inactive projects on SourceForge. They report that more than
10,000 projects are inactive (as November, 2012). They also compare the maintain-
ability of inactive projects with other project categories (active and dormant), using
the maintainability index (MI) [Oman and Hagemeister, 1992]. They conclude that the
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majority of inactive systems are abandoned with a similar or increased maintainability,
in comparison to their initial status. However, there are serious concerns on using MI
as a maintainability predictor [Bijlsma et al., 2012].

Tourani et al. [2017] investigate the role, scope and influence of codes of conduct in
open source projects. They report that seven codes are used by most projects, usually
aiming to provide a safe and inclusive community, as well as dealing with diversity
issues. After surveying the literature on empirical studies aiming to validate Lehman’s
Laws, Fernandez-Ramil et al. [2008] report that most works conclude that the first law
(Continuing Change) applies to mature open source projects. However, in this work we
found 17 completed projects, according to their developers. These projects deal with
stable requirements and environments and therefore do not need constant updates or
modifications.

Ye and Kishida [2003] describe a study to understand what motivates developers
to engage in open source development. Using as case study the GIMP project (GNU
Image Manipulation Program) they argue that learning is the major driving force that
motivates people to get involved in open source projects. Eghbal [2016] reports on the
risks and challenges to maintain modern open source projects. She argues that open
source plays a key role in the digital infrastructure that sustain our society today. But
unlike physical infrastructure, like bridges and roads, open source still lacks a reliable
and sustainable source of funding. Avelino et al. [2016] concluded that nearly two-
thirds of a sample of 133 popular GitHub projects depend on one or two developers to
survive.

Humphrey [2005] presents 12 reasons for project failures, but in the context of
commercial software and to justify the adoption of maturity models, like CMMI [Chris-
sis et al., 2003]. The reasons are presented and explained in the form of questions
concerning why large software projects are hard to manage, the kinds of management
systems needed, and the actions required to implement such systems. Lavallée and
Robillard [2015] weekly observed during ten months the development of software proj-
ects in a large telecomunnication company. They show that organization factors, e.g.,
structure and culture, have a major impact on the success or failure of software proj-
ects. However, in our study these factors did not appear with the same importance.
For example, only three projects failed due to conflicts among developers. We hypoth-
esise this is due to the decentralized and community-centric characteristics of open
source code. Jr et al. [2016] analyse 155 postmortems published on the gaming site
Gamasutra.com. They report the best practices and common challenges faced in game
development and provide a list of factors that impact project outcomes. For example,
they found that the creativity of the development team is often a relevant factor in
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the success or failure of a game. As a practical recommendation, they mention that
projects should practice good risk management techniques. We argue that the failure
factors elicited in this study are a start point to include such practices in open source
development, i.e., to control the risks we need first to known them.

Recent research on open source has focused on the organization of successful open
source projects [Mockus et al., 2002], on how to attract and retain newcomers [Zhou
and Mockus, 2015; Steinmacher et al., 2016; Lee et al., 2017; Pinto et al., 2016; Canfora
et al., 2012], and on specific features provided by GitHub, such as pull requests [Gousios
et al., 2014, 2015, 2016], forks [Jiang et al., 2016], and stars [Borges et al., 2016b,a].

2.10 Conclusion

In this study, we showed that the top-5 most common reasons for the failure of open
source projects are: project was usurped by competitor (27 projects), project became
functionally obsolete (20 projects), lack of time of the main contributor (18 projects),
lack of interest of the main contributor (18 projects), and project based on outdated
technologies (14 projects). We also showed that there is an important difference be-
tween the failed projects and the most popular and active projects on GitHub, in terms
of following best open source maintenance practices. This difference is more important
regarding the availability of contribution guidelines and the use of continuous integra-
tion. Furthermore, the failed projects have a non-negligible number of opened issues
and pull requests. Finally, we described three strategies attempted by maintainers to
overcome the failure of their projects.





Chapter 3

Why We Engage in FLOSS:
Answers from Developers

The maintenance and evolution of Free/Libre Open Source Software (FLOSS) projects
demand the constant attraction of core developers. In this chapter, we report the results
of a survey with 52 developers, who recently became core contributors of popular GitHub
projects. We reveal their motivations to assume a key role in FLOSS projects (e.g., im-
proving the projects because they are also using it), the project characteristics that most
helped in their engagement process (e.g., a friendly community), and the barriers faced
by the surveyed core developers (e.g., lack of time of the project leaders). We also
compare our results with related studies about others kinds of open source contributors
(casual and newcomers).

3.1 Introduction

Free/Libre and Open Source Software (FLOSS) projects have an increasing impact on
our daily lives [Kon et al., 2011]. For example, many companies depend nowadays on
open source operating systems, databases, and web servers to run their basic opera-
tions. Similarly, most commercial software produced today depend on a variety of open
source libraries and frameworks. However, there is a growing concern on the long term
sustainability of FLOSS projects [Eghbal, 2016; Hata et al., 2015]. For example, in a
recent study, Avelino et al. [2016] looked at a sample of 133 popular GitHub projects
and concluded that nearly two-thirds depend on just one or two developers to sur-
vive. For this reason, FLOSS projects must continuously attract new core developers
to mitigate the risks of failing.

Core developers are the ones responsible for the design, implementation, and
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maintenance of the most important features in a project. They are also responsible to
manage the project and to plan and drive its evolution [Mockus et al., 2002; Joblin
et al., 2017; Robles et al., 2009]. By contrast, peripheral contributors are those who
occasionally contribute to the projects, mostly by fixing bugs [Lee et al., 2017; Pinto
et al., 2016; Steinmacher et al., 2016]. Usually, core developers represent just a small
fraction of the project contributors. For example, d3/d3—a very popular JavaScript
visualization library, with over 73K stars on GitHub—has 121 contributors. However,
the system is maintained and evolved by just one core developer [Avelino et al., 2016].

Since core developers are the heart and brain of FLOSS projects, we report in
this chapter a survey with 52 developers who, in the last year, contributed to popular
GitHub systems to the point of becoming core developers in these projects. By survey-
ing these developers, our goal is to reveal their motivations for joining an open source
project. We also asked them about the project characteristics that most helped in this
process and about the main barriers they faced. The survey results can help FLOSS
developers to improve some of the management practices followed in their projects,
aiming to possibly expand the base of core developers.

We make the following contributions in this chapter:

• We provide a list of motivations that led recent core developers to contribute to
open source projects. We found that 60% of the survey participants contribute
because they are also using the projects.

• We reveal a list of projects characteristics and practices that helped recent core
developers to contribute a FLOSS project. We found they are most attracted
by non-technical characteristics, especially the ones related to a friendly and
available FLOSS community.

• We provide a list of the main barriers faced by recent core contributors that led
them to contribute. We found that non-technical barriers are the most relevant
impediment they face to contribute, as the lack of time of the project leaders.

We organize the remainder of the chapter as follows. Section 3.2 presents the
study design, how we selected the studied projects and the heuristic we used to iden-
tify core developers. Section 3.3 discusses the main findings of the survey. Section 3.4
presents a segmented analysis of the survey answers. Section 3.5 discuss threats to
validity and Section 3.6 presents related work. Section 3.7 presents the main impli-
cations of our study, including implications to practitioners and researchers. Finally,
Section 3.8 concludes the chapter.



3.2. Study Design 37

3.2 Study Design

We start by considering the top-5,000 most popular GitHub projects, ranked by number
of stars. Stars are similar to likes in popular social networks and therefore are a common
measure of the popularity of GitHub projects [Borges et al., 2016b]. Then, we apply
four strategies to discard projects from this initial selection, as follows:

1. Non-Software Projects : We discarded 61 repositories that are not software proj-
ects, including books (e.g., vhf/free-programming-books and getify/You-Dont-
Know-JS) and awesome-lists (e.g., sindresorhus/awesome). To remove these proj-
ects, we relied on their GitHub topics. Specifically, we discarded projects with
the topics book or awesome-list.1

2. Projects with no lines of code in a set of programming languages : First, we used
the tool AlDanial/cloc2 to compute the size of the projects, in lines of code (LOC).
We configured this tool to only consider code in the top-100 most popular pro-
gramming languages in the TIOBE list.3 As a result, we discarded 397 projects,
which are implemented in languages like HTML, CSS, and Markdown (i.e., in
non-programming languages). For these projects, the size in LOC (counting only
source code implemented in major programming languages) is equal to zero. As
examples, we removed the following projects: github/gitignore (which is a collec-
tion of textual .gitignore templates), jlevy/the-art-of-command-line (a selection
of notes and tips on using Linux command-line tools), and necolas/normalize.css
(a collection of HTML element and attribute style-normalization).

3. Inactive projects : We are interested in projects under active development. There-
fore, we discarded 830 repositories without commits in the last six months.

4. Non-mature projects : Our central goal is to survey recent core developers of
mature FLOSS projects. Particularly, it is important the projects have a minimal
age in order to provide enough development time to compute new core developers.
For this reason, we discarded 1,450 repositories with less than three years.

We ended up with 2,262 open source systems, including well-known projects, like
facebook/react, angular/angular, and rails/rails. Figure 3.1 shows violin plots with
the distribution of age (in months), number of contributors, number of commits, and

1This step represents just a first attempt to remove non-software repositories; step (2) is also used
to this purpose.

2https:// github.com/AlDanial/ cloc
3https://www.tiobe.com/ tiobe-index

https://github.com/AlDanial/cloc
https://www.tiobe.com/tiobe-index
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Figure 3.1: Distribution of the (a) age, (b) contributors, (c) commits, and (d) stars of
the selected projects, without outliers.

number of stars of the selected projects, without considering outliers. The median
measures are 59 months, 50 contributors, 826 commits, and 3.1K stars. 1,256 projects
(55%) are owned by organizations and 1,006 repositories (45%) by individual users.
These projects are mainly implemented in JavaScript (696 projects, 31%), followed by
Ruby (232 projects, 10%), and Python (230 projects, 10%).
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3.2.1 Core Developer Identification

To identify the core developers of each project, we use a Commit-Based Heuristic,
which is commonly adopted in other works [Mockus et al., 2002; Robles et al., 2009;
Trong and Bieman, 2005; Koch and Schneider, 2002]. This heuristic is centered on the
number of commits by the project contributors, which usually follows a heavy-tailed
distribution [Mockus et al., 2002; Koch and Schneider, 2002], i.e., a minority of de-
velopers accounts for most contributions. According to this heuristic, the core team
are those who produce 80% of the overall amount of commits in a project. However,
as usually defined, this heuristic accepts developers with few contributions, regarding
the total number of commits. For this reason, we customized the heuristic after some
initial experiments to require core developers to have at least 5% of the total num-
ber of commits; candidates who have fewer commits are excluded. For example, to
achieve 80% of the commits in moment/moment, the core team initially identified by
the heuristic consists of 41 contributors. However, 38 contributors have less than 5%
of the overall amount of commits. Thus, only three developers are classified as core by
our customized heuristic. These developers represent 35%, 25% and 7% of the project’s
commits, respectively. In favor of using this second threshold, the literature reports
that even in complex projects, the core team is no bigger than 10-15 developers [Mockus
et al., 2002].

Despite the adoption of this second threshold, we can observe in Figure 3.2a that
the median percentage of commits by the selected core teams is 81%. Figure 3.2b
shows the core team size per project considering the minimal threshold of 5%. We can
see that more than half of the selected projects have only one or two core developers.
Finally, as presented in Figure 3.2c, the median percentage of commits by the selected
core developers is 19%, in contrast to 0.5% using the original strategy.

Finally, we follow three steps to select developers who became core contributors
in the last year of each project (see an illustration in Figure 3.3): (a) we apply the
proposed heuristic on all commits of the project (set A); (b) we remove the last year
of commits and recalculate the core team (set B); and (c) the selected set of core
developers is formed by developers in the set A, but who are not in set B. In other
words, this group includes developers who entered in the core team in the last year.
We ended up with a list of 380 core developers, distributed over 331 projects.

3.2.2 Survey Design

To some extent, our survey can be seen as a firehouse study, i.e., one that is conducted
right after the event of interest has happened [Silva et al., 2016; Brito et al., 2018].
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Figure 3.2: (a) Total percentage of commits by the selected core teams, (b) number
of core developers per project, and (c) percentage of commits by the selected core
developers. Outliers are omitted in these plots.

Essentially, we surveyed recent core developers, to reveal their motivations to engage in
FLOSS projects and the main barriers they faced during this process. After removing
the core developers who do not have a public email address on GitHub, we obtained
a list of 151 potential survey participants. We sent a email to these participants with
two parts, as showed in Figure 3.4. First, we include the developer’s name and data
on his/her percentage of commits in the project. Then, the second part includes three
open-ended questions about his/her contributions to the project: (1) What motivated
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Years

1 yearSet B

Set A

Figure 3.3: Set A= core developers computed considering the complete commit history;
Set B= core developers computed considering the commits until the year before the
study; New Core Developers = Set A - Set B

you to contribute to this project? (2) What project characteristics and practices helped
you to contribute? (3) What were the main barriers you faced to contribute?

Dear <Name>,

I found that you have become one of the main developers of <Project Name>, with
<x>% of the project’s commits.

Could you please answer three questions about your contributions to this project?

1. What motivated you to contribute to this project?

2. What project characteristics and practices helped you to contribute?

3. What were the main barriers you faced to contribute?

Figure 3.4: Email sent to new core developers.

We received 52 answers (covering distinct projects), which corresponds to a re-
sponse rate of 34% (and a confidence interval of 11.04 for a confidence level of 95%).
Finally, we use Thematic Analysis [Cruzes and Dyba, 2011] to interpret the survey
answers. This technique is used for identifying and recording themes (i.e., patterns)
in textual documents. Thematic Analysis consists of: (1) identifying themes from
the answers, (2) reviewing the themes to find patterns for merging, and (3) defining
and naming the final themes. The initial theme identification and merge steps were
performed independently by the collaborators of this chapter. Then, we had several
meetings to resolve conflicts and define the final themes. In the first question, we
suggested semantically equivalent themes for 32 answers (62%). These themes were
then rephrased and standardized to compose the final theme set. As the remaining
20 answers had divergent themes, they were discussed by the collaborators to reach a
consensus. For the last two questions, an initial agreement was reached in 36 (69%)
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and 38 (73%) answers, respectively.

3.3 Survey Results

The presentation and discussion of the survey results is organized around the sur-
vey questions. To preserve the respondents’ anonymity, we use labels D1 to D52
to identify them. Furthermore, when quoting their answers we replace mentions to
GitHub repositories, owners, and organizations by [Project-Name], [Project-Owner],
and [Organization-Name], respectively. This is important because some answers in-
clude sensitive comments about developers or organizations. It is also important to
note that a question could have received two or more themes during the thematic
analysis process.

3.3.1 Motivations

In the next paragraphs, we present the reasons that emerged for the first survey
question (What motivated you to contribute?) We discuss each reason and also give
examples of answers.

To improve the project because I am using it: According to 31 new core
developers, they increased their contributions primarily to fulfill their own needs. As
examples, we have the following answers:

I started using it, I ran into minor issues or opportunities to improve, or things that
were blocking me from making progress. Since it was an open source project, I was able
to contribute improvements and make the project better for my needs, and everyone
else’s. (D50)

First, I was a very active user of this project at the time. However, I felt that this
software could be better. I believed I had enough experience to contribute, so I stepped
in. (D15)

I was using [Project-Name] for my startup in our internal dashboards and I needed a
couple of features. (D43)

To have a volunteer work: 10 developers answered they contributed to take part
in an open source community. As examples, we have the following answers:

I wanted to give back to the community in some small way... (D27)
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I’m also in love with the idea of people sharing tools for free in order to help build a
better world and promote scientific development and improving people’s lives. (D48)

I think that the fact that I was helping a lot of people, immediate feedback, motivated
me to contribute more at the difficult time. (D15)

I have interest or expertise on the project domain: According to seven
respondents, they were motivated by their interest or expertise on the project domain
or programming language. As examples, we have these answers:

I’ve always had an interest in optimizing things, which I definitely did a lot of in this
case. (D06)

I’m well acquainted with the Ruby open source world... (D10)

I am a paid developer: Five new core developers mentioned they were paid to
contribute, as in the following answer:

To be honest I’m paid for contributing to [Project-Name]... (D23)

To contribute to a widely used or relevant project: According to four
developers, they were motivated by the fact the project is widely used or supported
by well-known organizations. As examples, we have the following answer:

Working on a project as large as [Project-Name], and knowing that any work I
contribute may be used by thousands of developers, was a pretty good motivator. (D06)

The remaining motivations are as follows: because I know the maintainer (3 an-
swers), to improve my programming skills (2 answers), to improve my CV (2 answers),
because the project has a nice design and implementation (1 answer), and to train
developers to contribute to FLOSS (1 answer).

Table 3.1 summarizes the motivations reported by the participants for the first
question. Among the 10 motivations mentioned by the developers, only two can be
viewed as technical ones (e.g., because I have interest or expertise on the project domain
and because the project has a nice design and implementation). The other motivations
are non-technical and related to the interests of the developers or the community and
the environment of the project.
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Table 3.1: What motivated you to contribute?

Motivations Developers

To improve the project because I am using it 31
The pleasure of having a volunteer work 10
I have interest or expertise on the project domain 7
I am a paid developer 5
To contribute to a widely used or relevant project 4
Other motivations (≤ three answers each) 9

3.3.2 Project Characteristics and Practices

In the next paragraphs, we present the themes that emerged for the second survey
question (What project characteristics and practices helped you to contribute?). We
describe each reason and also provide examples of answers.

Friendly community: According to 13 developers, they decide to increase their
contributions due to the friendly community of project maintainers, who helped with
issues and provided detailed feedback when revising pull requests. As examples, we
have the following answers:

The main thing that helped me contribute was the friendliness of maintainers and the
instructions they’ve left in the issues they answered. (D48)

The [Project-Name] community gave very detailed feedback during pull requests
(sometimes quite strict feedback!) which I found really helpful, and learned a lot about
Git in the process. (D27)

Availability of the project leaders: According to 11 developers, the availability of
the project leaders helped them to contribute, as in the following example:

In order for people to become contributors, in any kind of open source project, the most
important thing is communication and availability of the owner/maintainer. (D07)

Unit tests: According to 9 respondents, the presence of unit tests helped them to
increase the number of contributions. As example, we have the following answer:

Unit tests also helped a lot, allowed me to make changes freely with the comfort that I
most likely haven’t broken anything. (D25)

Documentation: This characteristic, as indicated by eight developers, refers to a



3.3. Survey Results 45

Table 3.2: What project characteristics/practices helped you?

Type Characteristics/Practices Developers

Technical

Unit tests 9
Documentation 8
Well-structured design 4
Code review 3
Continuous integration 3
Programming language 3
Open source license 3
Small project 3
Coding guidelines 2
Clear code 2
Contribution guidelines 2
Other technical characteristics 13

Non-Technical

Friendly community 13
Availability of the project leaders 11
Financial support by a company 1
Open and meritocratic culture 1
Small number of core developers 1

clear and complete documentation. As examples, we have:

Extended documentation that helped to keep an idea of what it was all about: which
things belongs to the project and which do not. (D26)

Documentation for the whole code, especially documentation for setting up development
environments of the project, I would really have struggled without that. (D25)

Table 3.2 summarizes the answers for the second question. In addition to the
previously mentioned characteristics, we received answers citing well-structured design
(4 answers), code review (3 answers), continuous integration (3 answers), programming
language (3 answers), open source license (3 answers), small project (3 answers), coding
guidelines (2 answers), clear code (2 answers), contribution guidelines (2 answers),
financial support by private company (1 answer), large scale tests (1 answer), and small
number of core developers (1 answer). In Table 3.2, we also provide a classification of the
developers answers in two major groups: technical and non-technical characteristics.
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3.3.3 Barriers

In this section, we present and discuss the themes that emerged for the third survey
question (What were the main barriers you faced to contribute?).

Lack of time of the project leaders: According to eight developers, the main bar-
rier was the absence of the project leaders. As examples, we have the following answers:

Sometimes there were very slow replies to Issues/PRs as there were very few project
leaders who could merge them. (D20)

The original developer basically stopped working on it years ago. Many of us were
still using the plugin, but bug reports and pull requests built up for years without
attention. (D38)

Large and complex project: Seven developers answered that project complexity and
size were the main barriers they faced to increase their contributions, as in the example:

The project as a whole is complex and requires specialized knowledge or skill sets that
I don’t always have. (D45)

Non-clear, complex or buggy codebase: According to five respondents, the main
barrier concerns a non-clear, complex, or buggy codebase. As example, we have the
following answer:

The code was plagued with race conditions, code smells, bad practices and ugly
workarounds. This made it very hard for me to quickly make changes. (D41)

Inappropriate design or architecture: This barrier, mentioned by four respon-
dents, refers to inappropriate design or architecture. As example, we have the following
answer:

Less than optimal project structure or release structures. (D07)

Table 3.3 summarizes the responses for the third question. In addition to the pre-
viously mentioned barriers, we received answers citing inexperience of the own contrib-
utor (3 answers), lack of time of the own contributor (3 answers), lack or incompleted
documentation (3 answers), programming language (3 answers), lack of tests (3 an-
swers), and conflicts among developers (3 answers). Furthermore, English language,
decisions must be approved by a committee, old coding styles, hostile attitudes, lack of
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Table 3.3: What were the barriers you faced to contribute?

Type Barriers Developers

Technical

Large and complex project 7
Non-clear, complex or buggy codebase 5
Inappropriate design or architecture 4
Lack or incompleted documentation 3
Programming language 3
Lack of tests 3
Other technical barriers 8

Non-Technical

Lack of time of the project leaders 8
Lack of time of the own contributor 4
Conflicts among developers 3
Inexperience of the own contributor 3
Hostile attitude 1
Unpaid work 1
Other non-technical barriers 7

build tools, project requires specialized knowledge are other mentioned barriers, all of
them with a single answer. Finally, six (11%) participants answered they faced no bar-
riers. As we can see, there is in this case a balance between technical and non-technical
barriers, which received 33 and 27 answers, respectively.

3.4 Analysis by Project Categories

In this section, we provide results grouped by the following categories of projects:
small-to-medium vs medium-to-large projects and individual vs organizational projects.

Project Categories: We classify the 52 projects according to their size, considering
the distribution of LOC of the 2,262 projects. The projects in the first and second
quartiles are classified as Small-to-Medium projects (LOC ≤ 4,894); the ones in the
third and fourth quartiles are named Medium-to-Large projects (LOC > 4,894). We
ended up with a list of 17 Small-to-Medium and 35 Medium-to-Large projects.

We also group the 52 projects considering the type of the account on GitHub:
18 projects are developed using individual accounts (e.g., javan/whenever) and 34
projects using an organizational account (e.g., google/guava).

Results: Figure 3.5a shows the results for project characteristics and practices. The
figure shows the percentage of technical, non-technical, and both technical and non-
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Figure 3.5: Results grouped by project categories (Small-to-Medium, Medium-to-
Large, Individual, and Organizational)

technical characteristics. For example, developers contributed to individual projects
exclusively due to their technical (24%), non-technical (38%), and both technical and
non-technical characteristics (38%). According to the results in Figure 3.5a, techni-
cal characteristics are the most important factor in small-to-medium projects (63%).
By contrast, they are exclusively responsible to the engagement of core developers in
only 26.7% of the medium-to-large projects. In these projects, most answers include a
combination of technical and non-technical factors (43%). Finally, there is no major
difference in the results for individual and organizational projects. For example, tech-
nical factors are the only factors responsible by the engagement of core developers in
38.5% of the individual projects and 35.7% of the organizational ones.

Figure 3.5b shows the breakdown results for the barriers faced by the surveyed
developers. First, the percentage of projects presenting no barrier ranges from 10%
(organizational projects) to 20% (individual projects). The most common barriers in
small-to-medium projects are exclusively non-technical ones (57.1%). In other words,
in small-to-medium projects, developers are attracted by their technical characteris-
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tics, but often face non-technical barriers. As example, we have this answer from a
core developer about the technical characteristics and practices of a small-to-medium
project:

Proper coding guidelines and documentations do help a lot. (D05)

But he also complained about non-technical barriers:

Not all contributors have a consistent and equivalent share of time to invest in the
project. This sometimes stalls the progress . . . (D05)

Regarding medium-to-large projects, we found a balance among technical barri-
ers (32%), non-technical barriers (29%), and both types of barriers (26%). As in the
case of project characteristics, there is no major difference in the results for individual
and organizational projects.

In summary, we found that core developers engaged in small-to-medium proj-
ects mostly due to their technical characteristics (e.g., unit tests), but often face non-
technical barriers (e.g., lack of time of the project leaders). In medium-to-large proj-
ects, the surveyed core developers increased their contributions due to a combination
of both technical and non-technical characteristics; they also faced both technical and
non-technical barriers. Finally, we found that there is no major difference between
individual and organizational projects, regarding their characteristics and offered bar-
riers.

3.5 Threats To Validity

The threats to validity of this work are as follows:

External Validity: The dataset used in this study is restricted to popular open
source projects on GitHub. We acknowledge that there are popular projects in other
platforms (e.g., Bitbucket and GitLab) or projects that have their own version control
infrastructure.

Internal Validity: This threat relates to the themes denoting the survey answers.
We acknowledge that the selection of these themes is to some extent subjective. For
example, it is possible that different researchers reach a different set of motivations,
practices and barriers, than the ones proposed in Section 3.3. To mitigate this threat,
the initial theme selection was performed independently by the collaborators of this
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study. After this initial proposal, several meetings were performed to refine and
improve the initial selection.

Construct Validity: A construct validity threat relates to the commit-based heuristic
for core developer identification. However, we decided to use a traditional heuristic
to this purpose, widely used in other studies [Trong and Bieman, 2005; Koch and
Schneider, 2002; Mockus et al., 2002]. Furthermore, we customized this heuristic to
exclude developers with few commits (less than 5% of the total number of commits).

3.6 Related Work

In this section, we first compare our results with related studies which focused on three
profiles of open source contributors:

• Casual Contributors are those that performed at most one commit to a software
project and who do not want to become active project members. Pinto et al.
[2016] conduct surveys with (1) casual contributors to understand what motivates
them to contribute and (2) with project maintainers to understand how they
perceive casual contributions.

• One-Time Code Contributors (OTC) are developers who have exactly one ac-
cepted patch. OTCs are a subset of the casual contributors. Lee et al. [2017]
conduct a survey with OTCs to comprehend their impressions, motivations, and
barriers, when contributing to FLOSS.

• Newcomers are those contributors who attempted to conclude their first contri-
bution to an open source project. Steinmacher et al. [2016] elicit 58 barriers that
may hinder newcomers onboarding to open source projects.

Table 3.4 contrasts our results with the aforementioned studies. The most com-
mon motivation for OTCs and casual contributors is bug fixing because it can affect
their work. In contrast, the most common motivation for core developers engagement,
as revealed in our survey, is improving the project because I am using it. Therefore,
their motivation include not only bug fixing tasks, but also adding new features. Lee
et al. [2017] investigate impressions that increase the chances of a potential developer
to contribute to a project. The most common positive impression reported by OTCs
is the presence of skilled, friendly, and helpful project members. Similarly, we found
that core developers are also attracted by a friendly community and by the availability
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Table 3.4: Comparison of our findings with related studies.

Topic Our study Lee
et al. [2017]

Pinto
et al. [2016]

Steinmacher
et al. [2016]

Contributors Core developers One-Time code
Contributors

Casual
contributors Newcomers

Motivations

To improve the
project because I
am using it

To the pleasure
of having a vol-
unteer work

Because I have
interest or exper-
tise on the proj-
ect domain

To fix bugs

The desire to
give back to the
community

I am a paid de-
veloper

To fix bugs

To improve doc-
umentation

To add new fea-
tures

x

Project
characteristics

Friendly commu-
nity

Availability of
the project
leaders

Unit tests

Skilled project
members

Friendly project
members

Helpful project
members

x x

Barriers

Lack of time of
the project lead-
ers

Large and com-
plex project

Non-clear, com-
plex or buggy
codebase

Lack of time of
the own contrib-
utor

Complex submis-
sion process

Complex project

Lack of time of
the own contrib-
utor

Limited skills or
knowledge

Complex project

Technical barri-
ers

Lack of contribu-
tion guidelines

Lack of docu-
mentation

of the project leaders. However, the third characteristic cited by core developers is the
presence of unit tests, while on the case of OTCs are helpful project members. The
most common barrier faced by OTCs and casual contributors is lack of time of the
own contributor. By contrast, only three core developers reported this fact as a main
impediment.

In a previous work (Chapter 2), we conduct an investigation with maintainers of
104 open source projects that failed to understand the reasons of such failures. The
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most common reasons are projects that were usurped by competitors (27 projects),
obsolete projects (20 projects), lack of time of the main contributors (18 projects), and
lack of interest of the main contributors (17 projects). Robles et al. [2014] describe a
curated dataset with data from over 2,000 FLOSS contributors. Among the collected
data, this dataset includes the contributors motivations for joining FLOSS. However,
these answers can be seen as general motivations; in our survey, we decided to ask
specific developers (core developers) about their motivations for recently joining well-
defined open source projects.

In a recent survey promoted by GitHub with thousands of open source develop-
ers, documentation was indicated as a pervasive problem when contributing to open
source, according to 93% of the respondents (see http:// opensourcesurvey.org/ 2017 ).
However, in our survey, restricted to core developers, documentation is mentioned as
barrier by only three participants.

Eghbal [2016] reports on the risks and challenges to maintain open source proj-
ects. Ye and Kishida [2003] describe a study to understand what motivates developers
to engage in open source development. Other studies on open source have focused on
how to attract and retain contributors [Zhou and Mockus, 2015; Canfora et al., 2012;
Bosu et al., 2014]. Gousios et al. [2015, 2016, 2014] provide insights on the pull-based
development model as implemented in GitHub from the integrator and contributors’
perspective. Mirhosseini and Parnin [2017] investigate the use of pull request notifi-
cations in GitHub projects. Jiang et al. [2016] examine why and how developers fork
repositories on GitHub. They found that developers fork repositories to submit pull
requests, fix bugs, add new features, and keep copies. Joblin et al. [2017] categorized
core and peripheral developers based on social and technical perspectives.

3.7 Implications

Our study has implications both to practitioners and researchers, as follows:

Implications to Practitioners: First, core contributors should strive to provide
an interesting and high-quality software product, which can attract a large base of
users. Then, some of these users will decide to improve the product to fulfill their
own needs. Finally, they will share the improvements with the project community,
which can trigger a new cycle of improvements. Second, two non-technical practices
are important to engage core developers in open source projects: nurturing a friendly
community and being always available. However, technical factors—specially, the
availability of unit tests and documentation—are also important. Third and last, the

http://opensourcesurvey.org/2017


3.8. Conclusion 53

main barrier faced by new core contributors is also non-technical, the lack of time of
project leaders, followed by two technical ones: project complexity and low quality
code.

Implications to Researchers: First, open source projects are increasingly impor-
tant elements of the digital infrastructure that supports our modern societies [Eghbal,
2016]. We also know that these projects depend on a small number of core develop-
ers [Mockus et al., 2002; Avelino et al., 2016]. Thus, researchers should continue to
investigate strategies to improve open source practices and communities. Particularly,
our findings might contribute to current efforts to develop health and analytics mod-
els and tools to open source projects, as proposed for example by the CHAOSS4 and
SECOHealth projects [Mens et al., 2017]. Second, we also showed the importance of
requiring a minimal percentage of commits when identifying core developers. When
this threshold is not applied, the traditional heuristic can select core developers with
very few commits, which are included just to reach the total amount of 80% of the
commits of a system.

3.8 Conclusion

In this chapter, we reported the results of a survey with 52 developers, who recently
became core contributors of popular GitHub projects. We revealed their motivations
to assume a key role in FLOSS projects (e.g., improving the projects because they are
also using it), the project characteristics that most helped in their engagement process
(e.g., a friendly community), and the barriers faced by the surveyed core developers
(e.g., lack of time of the project leaders). We also compared our results with related
studies about others kinds of open source contributors (casual and newcomers).

4https:// chaoss.community/

https://chaoss.community/




Chapter 4

Identifying Unmaintained Projects
in GitHub

GitHub hosts an impressive number of high-quality OSS projects. However, selecting
“the right tool for the job” is a challenging task because we do not have precise informa-
tion about those high-quality projects. In this study, we propose a data-driven approach
to measure the level of maintenance activity of GitHub projects. Our goal is to alert
users about the risks of using unmaintained projects and possibly motivate other devel-
opers to assume the maintenance of such projects. We train machine learning models to
define a metric to express the level of maintenance activity of GitHub projects. Next,
we analyze the historical evolution of 2,927 active projects in the time frame of one
year. From 2,927 active projects, 16% become unmaintained in the interval of one
year. We also found that Objective-C projects tend to have lower maintenance activity
than projects implemented in other languages. Finally, software tools—such as com-
pilers and editors—have the highest maintenance activity over time. A metric about
the level of maintenance activity of GitHub projects can help developers to select open
source projects.

4.1 Introduction

Open source projects have an increasing relevance in modern software develop-
ment [Eghbal, 2016], powering applications in practically every domain. In fact, it
is common nowadays to rely on open source libraries and frameworks when building
and evolving proprietary software. For example, in a recent survey—conducted by
Black Duck Software—86% of the surveyed organizations report the use of open source
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in their daily development.1 Furthermore, the emergence of world-wide code sharing
platforms—such as GitHub—is contributing to transform open source development in
a competitive market. Indeed, in a recent survey with maintainers we found that the
most common reason for the failure of open source projects is the appearance of a
stronger competitor in GitHub (Chapter 2).

However, GitHub does not include objective data about project’s maintenance
activity. Users can access historical data about commits or repository popularity met-
rics, like number of stars, forks, and watchers. However, based on the values of these
metrics, they should judge by themselves whether a project is under maintenance or
not (and therefore whether it is worth to use it). In order to help on this decision, in
this study, we propose and evaluate a machine learning approach to measure the level
of maintenance activity of GitHub projects. Our goal is to provide a simple and effec-
tive metric to alert users about the risks of depending on a given GitHub project. This
information can also contribute to attract new maintainers to a project. For example,
users of libraries facing the risks of discontinuation can be motivated to assume their
maintenance.

Previous work in this area relies on the last commit activity to classify projects as
unmaintained or in a similar status. For example, Khondhu et al. [2013] use an one-year
inactivity threshold to classify dormant projects on SourceForge. The same threshold
is used in works by Mens et al. [2014], Izquierdo et al. [2017], and in our previous work
about the motivations for the failure of open source projects (Chapter 2). However, in
this study, we do not rely on such thresholds when investigating unmaintained projects
due to three reasons. First, because setting a threshold to characterize unmaintained
projects is not trivial. For example, in the mentioned works, this decision is arbitrary
and it is not empirically validated. Second, our intention is to detect unmaintained
projects as soon as possible; preferably, without having to wait for one year of inactivity
(or another threshold). Third, our definition of unmaintained projects does not require
a complete absence of commits during a given period; instead, a project is considered
unmaintained even when sporadic and few commits happen in a time interval. Stated
otherwise, in our view, unmaintained projects do not necessarily need to be dead,
deprecated, or archived.

In this chapter, we first train ten machine learning models to identify unmain-
tained projects, using as standard metrics provided by GitHub about a project’s
maintenance activity, e.g., number of commits, forks, issues, and pull requests. Then,
we select the model with the best performance and validate it by means of a survey

1https:// pt.slideshare.net/ blackducksoftware/ you-cant-live-without-open-source-results-from-
the-open-source-360-survey

https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
https://pt.slideshare.net/blackducksoftware/you-cant-live-without-open-source-results-from-the-open-source-360-survey
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with the owners of projects classified as unmaintained and also with a set of deprecated
GitHub projects. Particularly, we ask five research questions about properties of this
model:

RQ1: What is the precision of the proposed machine learning model according to
GitHub developers? The intention was to check precision in the field, by collecting to
the feedback provided by the principal developers of popular GitHub projects.

RQ2: What is the recall of the proposed machine learning model when identifying
unmaintained projects? Recall is more difficult to compute in the field because it
requires the identification of all unmaintained projects in GitHub. To circumvent this
problem, we compute recall considering only projects that declare in their README
they are not under maintenance. To answer this question, we construct a ground truth
with projects that are no longer being maintained.

RQ3: How early does the proposed machine learning model identify unmaintained
projects? As mentioned, the proposed model does not depend on an inactivity interval
to classify a project as unmaintained. Therefore, in this third question, we investigate
how early we are able to identify unmaintained projects, e.g., without having to wait
for a full year of commit inactivity.

RQ4: How long does a GitHub project survive before become unmaintained? The
goal is to investigate the survival probability over time of the projects classified as
unmaintained by the proposed machine learning model. Moreover, we analyze the
survival probability of these projects under different perspectives (e.g., organizational
or individual account, programming language, and application domain).

RQ5: How often unmaintained projects follow best OSS maintenance practices? We
investigate whether projects classified as unmaintained follow a set of best open source
maintenance practices, recommended by GitHub, such as presence of contributing
guidelines, presence of project’s license, and use of a continuous integration service.

Our contributions are twofold: (1) we propose a machine learning approach to
identify unmaintained (or sporadically maintained) projects in GitHub, which achieved
a precision of 80% and a recall of 96% when validated with real open source developers
and projects; and (2) we propose a metric to reveal the maintenance activity level of
GitHub projects.

This chapter is organized as follows. In Section 4.2, we present and evaluate a
machine learning model to identify unmaintained projects. Section 4.3 validates this
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model with GitHub developers and projects that are documented as deprecated. In
Section 4.4, we assess the characteristics of projects classified as unmaintained by our
model. Section 4.5 defines and discusses the Level of Maintenance Activity (LMA)
metric. Section 4.6 lists threats to validity and Section 4.7 discusses related work.
Section 4.8 concludes the chapter and outlines further work.

4.2 Machine Learning Model

In this section, we describe our machine learning approach to identify projects that are
no longer under maintenance.

4.2.1 Experimental Design

Dataset. We start with a dataset containing the top-10,000 most starred projects
on GitHub (in November, 2017). Stars—GitHub’s equivalent for likes in other social
networks—is a common proxy for the popularity of GitHub projects [Borges et al.,
2016b; Borges and Valente, 2018]. Then, we follow three strategies to discard projects
from this initial selection. First, we remove 2,810 repositories that have less than two
years from the first to the last commit (because we need historical data to compute
the features used by the prediction models). Second, we remove 331 projects with
null size, measured in lines of code (typically, these projects are implemented in non-
programming languages, such as CSS, HTML, etc.). Finally, we remove 74 non-software
projects, which are identified by searching for the topics in Table 4.1. We end up with
a list of 6,785 projects.

Table 4.1: Topics used to discard projects.

project-based tutorials, project-based-learning, programming tutorials, tutorial,
books, awesome-lists, example, toy-project, documentation

Next, we define two subsets of systems: active and unmaintained. The active
(or under maintenance) group is composed by 754 projects that have at least one
release in the last month, including well-known projects, such as facebook/react,
d3/d3, and nodejs/node. We adopt this strategy because a release constitutes a fully
functional version of a software. Thus, we assume that these projects are active (under
maintenance). By contrast, the unmaintained group is composed by 248 projects,
including 104 projects that were explicitly declared by their principal developers as
unmaintained in our previous work (Chapter 2) and 144 archived projects. Archiving is
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Figure 4.1: Distribution of the (a) age, (b) forks, (c) commits, and (d) stars, without
outliers.

a feature provided by GitHub that allows developers to explicitly move their projects to
a read-only state. In this state, users cannot create issues, pull requests, or comments,
but can still fork or star the projects.

Figure 4.1 shows violin plots with the distribution of age (in months), number
of forks, number of commits, and number of stars of the selected repositories. We
provide plots for the 754 active projects and for the 248 unmaintained projects. As
we can check, unmaintained projects are older than the active ones (78 vs 62 months,
median measures); but they have less forks (299 vs 735), less commits (241 vs 2,136),
and less stars (1,714 vs 4,078). In our dataset, active projects are composed by 74% of
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organizational projects and 26% of user projects. By contrast, unmaintained projects
consists of 37% and 63% of organizational and user projects, respectively (Figure 4.2).
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Figure 4.2: Number of projects owned by a person or by an organization.

Features. Our hypothesis is that a machine learning classifier can identify unmain-
tained projects by considering features about (1) projects, including number of forks,
issues, pull requests, and commits; (2) contributors, including number of new and
distinct contributors (the rationale is that maintenance activity might increase by
attracting new developers); (3) project owners, including number of projects he/she
owns and total number of commits in GitHub (the rationale is that maintenance
might be affected when project owners have many projects on GitHub). In total, we
consider 13 features, as described in Table 4.2. The feature values are collected using
GitHub’s official API. However, they do not refer to the whole history of a project,
but only to the last n months, counting from the last commit; moreover, we collect
each feature in intervals of m months. The goal is to derive temporal series of feature
values, which can be used by a machine learning algorithm to infer trends in the
project evolution, e.g., an increasing number of opened issues or a decreasing number
of commits. Figure 4.3 illustrates the feature collection process assuming that n is
24 months and that m is 3 months. In this case, for each feature, we collect 8 data
points, i.e., feature values. We call data points all the features calculated for each
considered interval.

We experiment with different combinations of n and m; each one is called a
scenario, in this chapter. Table 4.3 describes the total number of data points extracted
for each scenario. This number ranges from 13 data points (scenario with features
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Table 4.2: Features used to identify unmaintained projects.

Dimension Feature Description

Project

Forks Forks created by developers

Open issues Issues opened by developers

Closed issues Issues closed by developers

Open pull requests Pull requests opened by developers

Closed pull requests Pull requests closed by developers

Merged pull requests Pull requests merged by developers

Commits Commits performed by developers

Max days without commits Maximum number of consecutive
days without commits

Max contributions by developer Commits of the developer with most
commits

Contributor

New contributors Contributors who made their first
commit

Distinct contributors Distinct contributors that committed

Owner

Projects created by the owner Projects created by a given owner

Number of commits of the owner Commits performed by a given owner

Months

Last commit

3 months

24 months

Figure 4.3: Feature collection during 24 months in 3-month intervals.

extracted in a single interval of 6 months) to 104 data points (scenario with features
extracted in intervals of 3 months during 24 months, as in Figure 4.3). We limited our
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Figure 4.4: Correlation analysis for the 104 data points collected for the features in
scenario 8 (24 months, 3-month interval). 78 data points (75%) are removed in this
case, due to correlations with other data points, and therefore do not appear in this
final clustering.

analysis in 24 months to avoid exclude a considerable number of projects.

Table 4.3: Scenarios used to collect features and train the machine learning models
(length and intervals are in months; data points is the total number of data points
collected for each scenario).

Scenario 1 2 3 4 5 6 7 8 9 10
Length 6 6 12 12 12 18 18 24 24 24
Intervals 3 6 3 6 12 3 6 3 6 12
Data points 26 13 52 26 13 78 39 104 52 26

Correlation Analysis. As usual in machine learning experiments, we remove corre-
lated features, following the process described by Bao et al. [2017]. To this purpose,
we use a clustering analysis—as implemented in a R package named Hmisc2—to
derive a hierarchical clustering of correlations among data points (extracted for the
features in each scenario). For sub-hierarchies with correlations larger than 0.7, we
select only one data point for inclusion in the respective machine learning model, as
common in other works [Bao et al., 2017; Tian et al., 2015c]. For example, Figure 4.4

2http:// cran.r-project.org/web/ packages/Hmisc/ index.html

http://cran.r-project.org/web/packages/Hmisc/index.html
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shows the final hierarchical clustering for the scenario with 24 months, considering a
3-month interval (scenario 8). The analysis in this scenario checks correlations among
104 data points (13 features × 8 data points per feature). As a result, 78 data points
are removed due to correlations with other points and therefore do not appear in the
dendogram presented in Figure 4.4. Finally, Table 4.4 shows the total number and
percentage of data points removed in each scenario, after correlation analysis. As we
can see, the percentage of removed points is relevant, ranging from 43% (scenario 7)
to 75% (scenario 8).

Table 4.4: Total number and percentage of data points removed in each scenario, after
correlation analysis.

Scenario 1 2 3 4 5 6 7 8 9 10
# 17 6 38 18 7 56 17 78 34 19
% 65 46 73 69 54 72 43 75 65 73

Machine Learning Classifier. We use the data points extracted in each scenario
to train and test models for predicting whether a project is unmaintained. In other
words, we train and test ten machine learning models, one for each scenario. After
that, we select the best model/scenario to continue with the chapter. Particularly, we
use the Random Forest algorithm [Breiman, 2001] to train the models because it has
several advantages, such as robustness to noise and outliers [Tian et al., 2015c]. In
addition, it is adopted in many other software engineering works [Menzies et al., 2013;
Peters et al., 2013; Provost and Fawcett, 2001; Hora et al., 2016]. We compare the
result of Random Forest with two baselines: baseline #1 (all projects are predicted
as unmaintained) and baseline #2 (random predictions). We use the Random Forest
implementation provided by randomForest’s R package3 and 5-fold stratified cross
validation to evaluate the models effectiveness. In 5-fold cross validation, we randomly
divide the dataset into five folds, where four folds are used to train a classifier
and the remaining fold is used to test its performance. Specifically, stratified cross
validation is a variant, where each fold has approximately the same proportion of
each class [Breiman, 2001]. We perform 100 rounds of experiments and report average
results.

Evaluation Metrics. When evaluating the projects in the test fold, each project
has four possible outcomes: (1) it is truly classified as unmaintained (True Positive);
(2) it is classified as unmaintained but it is actually an active project (False Posi-

3https:// cran.r-project.org/web/ packages/ randomForest/

https://cran.r-project.org/web/packages/randomForest/
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Table 4.5: Prediction results (mean of 100 iterations, using 5-cross validation); best
results are in bold.

Metrics 0.5 Year 1 Year 1.5 Years 2 Years
3 mos 6 mos 3 mos 6 mos 12 mos 3 mos 6 mos 3 mos 6 mos 12 mos

Accuracy 0.90 0.91 0.91 0.90 0.89 0.91 0.90 0.92 0.91 0.90
Precision 0.83 0.87 0.87 0.84 0.82 0.86 0.83 0.86 0.85 0.83
Recall 0.78 0.74 0.77 0.75 0.72 0.78 0.76 0.81 0.79 0.73
F-measure 0.80 0.79 0.81 0.79 0.77 0.82 0.79 0.83 0.82 0.78
Kappa 0.74 0.74 0.76 0.73 0.70 0.76 0.73 0.78 0.76 0.71
AUC 0.86 0.85 0.86 0.85 0.83 0.87 0.85 0.88 0.87 0.84

tive); (3) it is classified as an active project but it is actually an unmaintained one
(False Negative); and (4) it is truly classified as an active project (True Negative).
Considering these possible outcomes, we use six metrics to evaluate the performance
of a classifier: precision, recall, F-measure, accuracy, AUC (Area Under Curve), and
Kappa, which are commonly adopted in machine learning studies [Tian et al., 2015c,a;
da Costa et al., 2014; Lamkanfi et al., 2010; Lessmann et al., 2008]. Precision and recall
measure the correctness and completeness of the classifier, respectively. F-measure is
the harmonic mean of precision and recall. Accuracy measures how many projects are
classified correctly over the total number of projects. AUC refers to the area under
the Receiver Operating Characteristic (ROC) curve. Finally, kappa evaluates the rela-
tionship between the observed accuracy and the expected one [Ramasubramanian and
Singh, 2017], which is particularly relevant in imbalanced datasets, as the dataset used
to train the machine learning models (754 active projects vs 248 unmaintained ones).

4.2.2 Experimental Results

Table 4.5 shows the results for each scenario. As we can see, Random Forest has the
best results (in bold) when the features are collected during 2 years, in intervals of 3
months. In this scenario, precision is 86% and recall is 81%, leading to a F-measure of
83%. Kappa is 0.78—usually, kappa values greater than 0.60 are considered quite repre-
sentative [Landis and Koch, 1977]. Finally, AUC is 0.88, which is an excellent result in
the Software Engineering domain [Lessmann et al., 2008; Thung et al., 2012; Tian et al.,
2015c]. Table 4.6 compares the results of the best scenario/model with baseline #1
(all projects are predicted as unmaintained) and baseline #2 (random predictions).
Despite the baseline under comparison, there are major differences in all evaluation
metrics. For example, F-measure is 0.37 (baseline #1) and 0.30 (baseline #2), against
0.83 (proposed model).

Random Forest produces a measure of the importance of the predictor features.
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Table 4.6: Comparison of the proposed machine learning model with baseline #1 (all
projects are predicted as unmaintained) and baseline #2 (random predictions).

Metrics Model Baseline #1 Baseline #2

Accuracy 0.92 0.22 0.49
Precision 0.86 0.22 0.22
Recall 0.81 1.00 0.48
F-measure 0.83 0.37 0.30
Kappa 0.78 0.00 0.01
AUC 0.88 0.50 0.49

Table 4.7 shows the top-5 most important features by Mean Decrease Accuracy (MDA),
for the best model. Essentially, MDA measures the increase in prediction error (or
reduction in prediction accuracy) after randomly shifting the feature values [Calle and
Urrea, 2010; Louppe et al., 2013]. As we can see, the most important feature is the
number of commits in the last time interval (i.e., the interval delimited by months
22-24, T22,24), followed by the maximal number of days without commits in the same
interval and in the interval T10,2. As also presented in Table 4.7, the first four features
are related to commits; the first feature non-related with commits is the number of
issues closed in the first time interval (T1,3).

Table 4.7: Top-5 most relevant features, by Mean Decrease Accuracy (MDA).

Feature Period MDA

Commits T22,24 38.5
Max days without commits T22,24 28.6
Max days without commits T10,12 21.9
Max contributions by developer T16,18 21.1
Closed issues T1,3 18.0

4.3 Empirical Validation

In this section, we validate the proposed machine learning model by means of a
survey with the owners of projects classified as unmaintained and also with a set of
deprecated GitHub projects. Overall, our goal is to strengthen the confidence on the
practical value of the model proposed in this work. Particularly, in this section we
provide answers to first three research questions about this model:

RQ1: What is the precision according to GitHub developers?
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RQ2: What is the recall when identifying deprecated projects?

RQ3: How early does the model identify unmaintained projects?

4.3.1 Methodology

RQ1: To answer RQ1, we conduct a survey with GitHub developers. To select the
participants, we first apply the proposed machine learning model in all projects from
our dataset that were not used in the model’s construction, totaling 5,783 projects
(6,785 − 1,002 projects). Then, we select 2,856 projects classified as unmaintained by
the proposed model. From this sample, we remove 264 projects whose developers were
recently contacted in our previous surveys (Chapter 2 and 3). We make this decision
to not bother again these developers, with new emails and questions. Finally, we
remove 2,270 projects whose owners do not have a public email address on GitHub. As
a result, we obtain a list of 323 survey participants (2,856 − 2,270 − 264). However,
before emailing these participants, we inspected the main page of each project on
GitHub, to check whether it includes mentions to the project status, in terms of
maintenance. We found 21 projects whose documentation states they are no longer
maintained, by means of messages like this one:

This project is deprecated. It will not receive any future updates or bug fixes. If you
are using it, please migrate to another solution.

Therefore, we do not send emails to the project owners, in such cases; and
automatically consider these 21 projects as unmaintained.

Survey Period: The survey was performed in the first two weeks of May, 2018. It is
important to highlight that the machine learning model was constructed using data
collected on November, 2017. Therefore, the unmaintained predictions evaluated in
the survey refer to this date. We wait five months to ask the developers about the
status of their projects because it usually takes some time until developers actually
accept the unmaintained condition of their projects. In other words, this section is
based on predictions performed and available on November, 2017. However, these
predictions are validated five months later, on May, 2018.

Survey Pilot and Questions: Initially, we perform a pilot survey with 75 projects (≈
25%), randomly selected among the remaining 302 projects (323 − 21 projects). We
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email the principal developers of these projects with a single open question, asking
them to confirm (or not) if their projects are unmaintained. We received 23 answers,
which corresponds to a response ratio of 30.6%. Then,we analyzed the received an-
swers to derive a list of recurrent themes. As a result, the following three common
maintainability status were identified:4

1. My project is under maintenance and new features are under imple-
mentation (6 answers): As an example, we can mention the following answer:

[Project-Name] is still maintained. I maintain the infrastructure side of the
project myself (e.g., make sure it’s compatible with the latest Ruby version,
coordinate PRs and issues, emailing list, etc.) while community provides features
that are still missing. One such big feature is being developed as we speak and
will be the highlight of the next release. (P57)

2. My project is finished and I only plan to fix important bugs (13
answers): As an example, we mention the following answers:

It’s just complete, at least for now. I still fix bugs on the rare occasion they are
reported. (P10)

I view it as basically “done”. I don’t think it needs any new features for the
foreseeable future, and I don’t see any changes as urgent unless someone discovers
a major security vulnerability or something. I will probably continue to make
changes to it a couple times per year, but mostly bug fixes. (P68)

3. My project is deprecated and I do not plan to implement new features
or fix bugs (4 answers): As an example, we can mention the following answer:

The project is unmaintained and I’ll archive it. (P74)

After the pilot study, we proceed with the survey, by emailing the remaining 227
projects. However, instead of asking an open question—as in the pilot—we provide
an objective question to the survey participants, about the maintainability status of
their projects. In this objective question, we ask the participants to select one (out of
three) status identified in the pilot study, plus an other option. This fourth option also

4Project names are omitted, to preserve the respondent’s anonymity; survey participants are
identified by means of labels, in the format Pxx, where xx is an integer.



68 Chapter 4. Identifying Unmaintained Projects in GitHub

includes a text form for the participants detailing their answers, if desired. Essentially,
we change to an objective question format to make answering the survey easier, but
without limiting the respondents’ freedom to provide a different answer from the
listed ones. In this final survey, we received 89 answers, representing a response ratio
of 39.2%. When considering both phases (pilot and final survey), we sent 302 emails,
received 112 answers, representing an overall response ratio of 37.1%. After adding
the 21 projects that document their maintainability status, this empirical validation
is based on 133 projects.

RQ2: To answer this second question, we construct a ground truth with projects that
are no longer being maintained. First, we build a script to download the README (the
main page of GitHub’s projects) and search for a list of sentences that are commonly
used to declare the unmaintained state of GitHub projects. This list is reused from
our previous work (Chapter 2), where we study the motivations for the failure of open
source projects. It includes 32 sentences; in Table 4.8, we show a partial list, with 15
sentences.

Table 4.8: Sentences documenting unmaintained projects

no longer under development, no longer supported or updated,
deprecation notice, dead project, deprecated, unmaintained,
no longer being actively maintained, not maintained anymore,
not under active development, no longer supported
is not supported, is not more supported, no longer supported,
no new features should be expected, isn’t maintained anymore
no longer be shipping any updates, don’t want to maintain

We searched (in May, 2018) for these sentences in the README of 5,783
projects, which represent all 6,785 projects selected for this work minus 1,002 projects
used in Section 4.2. In 451 READMEs (7.8%), we found the mentioned sentences.
Then, we carefully inspected each README to confirm the sentences indeed refer to
the project’s status, in terms of maintenance. In the case of 112 projects (≈ 25%),
we confirmed this fact. Therefore, these projects are considered as a ground truth for
this investigation. Usually, the unconfirmed cases refer to the deprecation of specific
elements, e.g., methods or classes.

RQ3: To answer this third research question, we rely on projects whose unmaintained
status, as predicted by the proposed model, is confirmed by the participants of the
survey conducted in RQ1. Then, we compute the number of days between November
30, 2018 (when the machine learning model proposed in this study was built) and
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Figure 4.5: Survey answers about projects’ status.

the last commit of the mentioned projects. For projects where this interval is less
than one year, the proposed model is better than the strategy adopted in previous
work [Khondhu et al., 2013; Mens et al., 2014; Izquierdo et al., 2017; Coelho and
Valente, 2017], which requires one year of commit inactivity to identify unmaintained
projects.

4.3.2 Results

RQ1: Precision according to GitHub developers

Before presenting the precision results, Figure 4.5 shows the survey results,
including answers retrieved from the project’s documentation, answers received in
the pilot and answers received in the final survey. As we can see, the most common
status, with 54 answers (41%) refers to finished projects, i.e., cases where maintainers
see their projects as feature-completed and only plan to resume the maintenance
work if relevant bugs are reported.5 We also received 41 answers (31%) mentioning
the projects are deprecated and no further maintenance is planned, including the
implementation of new features and bug fixes. Finally, we received 18 answers in the
other option. In this case, four participants did not describe their answer or provide
unclear answers; furthermore, one participant mentioned his project is in a limbo state:

The status of [Project-Name] fits into a special category. Some of the tools its based
on are either deprecated or not powerful enough for the goal of the project. This is
part of the reason what’s keeping the project from being “done”. I would call this status

5In our previous work (Chapter 2), we also identified finished or completed open source projects.
However, we argued these projects do not contradict Lehman’s Laws [Lehman, 1980] about software
evolution because they usually deal with a very stable or controlled environment (whereas Lehman’s
Laws focus on E-type systems, where E stands for evolutionary).
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limbo. (P24)

Seven participants answered their projects are stalled, as in this answer:

It is under going a rewrite... but has been stalled based on my own priorities (P33)

To compute precision, we consider as true positive answers related to the following
status: finished (54 answers), deprecated (41 answers), stalled (7 answers), and limbo
(1 answer). The remaining answers are interpreted as false positives, including answers
mentioning that new features are being implemented (20 answers) and the answers
associated to the fourth option (other option), but without including a description or
with an unclear description (4 answers). By following this criteria, we received 103
true positive answers and 26 false positive ones, resulting in a precision of 80%.6

By validating the proposed model with 127 GitHub developers, we achieve a pre-
cision of 80%, which is a result very close to the one obtained when building the
model (86%).

RQ2: Recall considering deprecated projects

The proposed machine learning model classifies 108 (out of 112) projects of the
constructed ground truth as unmaintained, which represents a recall of 96%. This value
is significantly greater than the one computed when testing the model in Section 4.2.
Probably, this difference is explained by the fact that only projects that are completely
unmaintained expose this situation in their READMEs. Therefore, it is easier to detect
and identify this condition.

By validating the proposed model with projects that declare themselves as unmain-
tained, we achieve a recall of 96%.

RQ3: How early can we detect unmaintained projects?

A total of 77 (out of 103) projects classified as true positives by the surveyed
developers have commits after November, 2016. Therefore, these projects would not be
classified as unmaintained using the strategy followed in the literature, which requires

6This computation of precision assumes that finished projects are unmaintained. However, we
recognize that the risks of using finished projects might be lower than the ones faced when using
deprecated or stalled projects.
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one year of commit inactivity. In other words, in November, 2017, the proposed model
classified 77 projects as unmaintained, despite the existence of recent commits, with less
than one year. Figure 4.6 shows a violin plot with the age of such commits, considering
the date of November, 2017. The first, second, and third quartiles are 35, 81, and 195.
Interestingly, for two projects the last commit occurred exactly on November, 30, 2018.
Despite this fact, the proposed model classified these projects as unmaintained in the
same date. If we relied on the standard threshold of one year without commits, these
projects would have had to wait one year to receive this classification.

75% of the studied projects are classified as unmaintained despite having recent
commits, performed in the last year.

81

0 100 200 300
Days

Figure 4.6: Days since last commit for projects classified as unmaintained (considering
the date of November, 2017, when the proposed model was computed).

4.4 Characteristics of Unmaintained Projects

In this section, we assess the characteristics of 2,856 projects classified as unmaintained
by the proposed model. Although this model is not fully accurate, it showed a precision
of 86% in a dataset containing 754 active and 248 unmaintained projects (Section 4.2.2).
Moreover, it achieved a precision of 80%, when validated with the developers of 129
GitHub projects (Section 4.3.2). Therefore, this high precision measures—in different
contexts—stimulated us to rely on the model to shed light on the characteristics of a
large sample of unmaintained GitHub projects.

Particularly, we provide answers to two research questions:
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RQ4: How long does a GitHub project survive before become unmaintained? The goal
is to provide quantitative data about the lifetime of GitHub projects.

RQ5: How often unmaintained projects follow best OSS maintenance practices? With
this question, the goal is to check whether common maintenance practices contribute
to extend the lifetime of GitHub projects.

Table 4.9: List of GitHub maintenance practices.

Maintenance Practice Description

License Presence of project’s license (e.g., Apache, GNU, MIT)

Home Page Availability of a dedicated homepage outside GitHub

Continuous Integration Use of a continuous integration service (i.e., we check
whether the projects use Travis CI, which is the most
popular CI service on GitHub [Hilton et al., 2016])

Contributing Guidelines Presence of contributing guidelines to help external de-
velopers make meaningful and useful contributions to
the project

Issue Template Presence of an issue template (to instruct developers to
write issues according to the repository’s guidelines)

Code of Conduct Presence of a specific file with a code of conduct, which
is a document that establishes expectations for behavior
of the project’s participants [Tourani et al., 2017]

Pull Request Template Presence of a pull request template, which is a document
to help developers to submit pull requests according to
the repositories guidelines

Support File Presence of a support file to direct contributors to spe-
cific support guidelines, such as community forums,
FAQ documents, or support channels

First-timer-only issues Presence of labels recommending issues to newcomers
(e.g., help wanted or good first issue)
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4.4.1 Methodology

RQ4: To answer this fourth research question, we apply a survival analysis algorithm
on 2,856 projects classified as unmaintained by our model. Survival analysis is a
well-known technique, which is used for example on medical sciences to compute
the probability of patients to stay alive for a certain number of days [Cox, 2018].
Moreover, survival analysis was successfully used in several software engineering
studies [Maldonado et al., 2017; Valiev et al., 2018; Samoladas et al., 2010; Lin et al.,
2017]. In this work, we use survival analysis considering the lifetime of GitHub
projects. In other words, we analyze the survival probability of a project over time.
To determine the lifetime of a GitHub project, we compute the time difference
between the first and last commit dates. Then, we use the Kaplan and Meier [1958]
non-parametric approximation to compute the survival curve, witch is the most widely
used curve for estimating survival probabilities.

RQ5: To answer this last research question, we investigate whether projects classified
as unmaintained follow (or not) a set of best open source maintenance practices, which
are recommended by GitHub.7 The rationale of this study is to compare the adoption
of these practices between active and unmaintained projects. For each project, we
collect the practices described in Table 4.9.8

4.4.2 Results

RQ4: How long does a GitHub project survive before become
unmaintained?

Figure 4.7 shows the survival plot of 2,856 unmaintained projects, as classified
by our model. As we only studied projects with at least 24 months, the survival curve
is constant during this initial time frame. By inspecting Figure 4.7, we observe that
the likelihood of an unmaintained project surviving for more than 50 months is close
to 50%. However, after 84 months (seven years) it declines to less than 10%. In other
words, 50% of the unmaintained projects considered in this study moved to this state
after 50 months (≈ 4 years) and only 10% remained active for more than 7 years.

We also generate specific survival plots for three projects features: account type,
programming language, and application domain. Figure 4.8a shows the survival plots
for projects owned by organizations and individual users. As we can see, projects

7https:// opensource.guide
8Seven of these maintenance practices are explicitly recommended at: https:// help.github.com/

articles/ helping-people-contribute-to-your-project

https://opensource.guide
https://help.github.com/articles/helping-people-contribute-to-your-project
https://help.github.com/articles/helping-people-contribute-to-your-project
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Figure 4.7: Survival probability of GitHub projects classified as unmaintained by clas-
sification model.

maintained by organizations have slightly greater survival probabilities than projects
whose owner is an individual GitHub user. For example, after four years, the survival
probabilities are 53% and 60%, for user and organization-owned projects, respectively.
The distributions are statistically different, according to the one-tailed variant of the
Mann-Whitney U test (p-value ≤ 0.05). However, we compute Cliff’s delta (or d) to
show the effect size of this difference and we found a negligible effect size.

Figure 4.8b shows the survival probabilities for the top-5 programming languages
with more projects in our set of unmaintained projects. By applying Kruskal-Wallis
test to compare multiple samples, we found that these distributions are different (p-
value ≤ 0.05). The greatest difference happens between projects implemented in Java
and Ruby. Particularly, projects implemented in Ruby tend to have higher survival
probabilities than in other languages. By contrast, Java projects show lower survival
probabilities. For example, after four years, the survival probabilities are 38% and
79%, for Java and Ruby projects, respectively.

Finally, Figure 4.8c shows survival plots by application domain. To this propose,
we manually classified the projects in five major application domains: Application soft-
ware, Non-web libraries and frameworks, Software tools, Systems software, and Web
libraries and frameworks. We reused these domains from a similar classification per-
formed by Borges et al. [Borges et al., 2016b; Borges and Valente, 2018]. The same
domains are used in others studies [Coelho and Valente, 2017; Borges et al., 2016a].
By applying Kruskal-Wallis, the highest statistical difference occurs between Non-web
and Web applications. For example, after four years, the survival probabilities are 50%
and 63%, for Non-web and Web projects, respectively. Therefore, Web libraries tend to
survive for more time than Non-web ones. Finally, we can also observe that Systems
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Figure 4.8: Survival analysis by (a) account type, (b) programming language, and
(c) application domain.

software have the highest survival probabilities. For example, after 8 years, the survival
probabilities is twice than in other domains.
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After characterizing the unmaintained projects, we found that there is a negli-
gible difference on the survival probabilities of projects owned by individual and
organizational accounts. Moreover, Ruby projects show higher probabilities of sur-
vival. Finally, System software is the application domain with the highest survival
probability.

RQ5: How often unmaintained projects follow best OSS main-
tenance practices?

In this last RQ, we compare the adoption of a set of well-known maintenance
practices between active and unmaintained projects. First, we analyze the statistical
significance of the difference in the usage of each practice between these groups of
projects, by applying the Mann-Whitney test at p-value = 0.05. To show the effect
size, we use Cliff’s delta. Following the guidelines of previous work [Grissom and Kim,
2005; Tian et al., 2015b; Linares-Vásquez et al., 2013], we interpret the effect size as
small for 0.147 < d < 0.33, medium for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

Table 4.10 shows the percentage of projects following each practice, considering
Active vs Unmaintained projects. We found a negligible effect size for all practices, with
the exception of continuous integration, contributing guidelines, and first-timers-only
issues, when the effect size is small.

The results presented reveal a slight difference on the adoption of best open source
maintenance practices between active and unmaintained projects. Therefore, we con-
clude that the main factors that are responsible for moving projects to an unmaintained
status are external ones. Indeed, in our previous work (Chapter 2), we surveyed the
maintainers of 104 failed open source projects to reveal the reasons for their failures.
Our findings show that the top-5 most common reasons are: project was usurped by
competitor (26%), project became functionally obsolete (19%), lack of time of the main
contributor (17%), lack of interest of the main contributor (17%), and project based
on outdated technologies (13%). In other words, the sustainability of GitHub projects
is not associated with the adoption of best open source maintenance practices, such as
the ones investigated in this RQ.

The maintenance practices with the most relevant effect are the use of continuous
integration services, followed by the adoption of contributing guidelines, and the
presence of labels recommending issues to newcomers, but with small effect size. For
the remaining practices, the difference is negligible or does not exist in statistical
terms.
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Table 4.10: Percentage of projects following recommended practices when maintaining
GitHub repositories. The effect size reflects the extent of the difference between the
unmaintained and active projects.

Maintenance Practice Active Unmaintained d Effect

License 0.83 0.73 0.10 negligible
Home Page 0.65 0.51 0.14 negligible
Continuous Integration 0.71 0.45 0.26 small
Contributing Guidelines 0.44 0.20 0.24 small
Issue Template 0.08 0.02 0.06 negligible
Code of Conduct 0.13 0.03 0.10 negligible
Pull Request Template 0.03 0.00 0.03 negligible
Support File 0.01 0.01 0.00 negligible
First-timers-only issues 0.53 0.31 0.22 small

4.5 Level of Maintenance Activity

In this section, we define a metric to express the level of maintenance activity of GitHub
projects, i.e., a metric that reveals how often a project is being maintained. The goal is
to alert users about projects that although classified as active by the proposed model
are indeed close to an unmaintained status.

4.5.1 Definition

The proposed machine learning model—generated by Random Forest—consists of mul-
tiple decision trees built randomly. Each tree in the ensemble determines a prediction
to a target instance and the most voted class is considered as the final output. One
possible prediction type of the Random Forest is the matrix of class probabilities. This
matrix represents the proportion of the trees’ votes. For example, projects predicted as
active have probability p ranging from 0.5 to 1.0. If p = 0.5, the project is very similar
to an unmaintained project; by contrast, p = 1.0 means the project is actively main-
tained. Using these probabilities, we define the level of maintenance activity (LMA) of
a GitHub project as follows:

LMA = 2 ∗ (p− 0.5) ∗ 100
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Figure 4.9: Level of maintenance activity (LMA).

This equation simply converts the probabilities p computed by Random Forest to a
range from 0 to 100; LMA equals to 0 means the project is very close to an unmaintained
classification (since p = 0.5); and LMA equals to 100 denotes a project that is actively
maintained (since p = 1.0).

4.5.2 Results

Figure 4.9 shows the LMA values for each project predicted as active (2,927 proj-
ects, after excluding the projects used to train and test the proposed model, in Sec-
tion 4.2). The first, second, and third quartiles are 48, 82, and 97, respectively. In other
words, most studied projects are under constant maintenance (median 82). Indeed,
171 projects (5.8%) have a maximal LMA, equal to 100. This list includes well-known
and popular projects such as twbs/bootstrap, meteor/meteor, rails/rails,
webpack/webpack, and elastic/elasticsearch.

Figure 4.10 compares a random sample of 10 projects with LMA equals to 100
(actively maintained, therefore) with ten projects with the lowest LMA (0 ≤ LMA ≤
0.4). These projects are compared using number of commits (Figure 4.10a), number of
issues (Figure 4.10b), number of pull requests (Figure 4.10c), and number of forks (Fig-
ure 4.10d), in the last 24 months. Each line represents the project’s metric values. The
figures reveal major differences among the projects, regarding these metrics. Usually,
the projects with high LMA present high values for the four considered metrics (com-
mits, issues, pull requests, and forks), when compared with projects with low LMA.
In other words, the figures suggest that LMA plays an aggregator role of maintenance
activity over time.

Figure 4.11 shows scatter plots correlating LMA and number of stars, contribu-



4.5. Level of Maintenance Activity 79

4

32

256

2048

1,3 4,6 7,9 10,12 13,15 16,18 19,21 22,24

C
om

m
its

(a) Commits

4

32

256

1,3 4,6 7,9 10,12 13,15 16,18 19,21 22,24

Is
su

es

(b) Issues

4

32

256

1,3 4,6 7,9 10,12 13,15 16,18 19,21 22,24

P
ul

l r
eq

ue
st

s

(c) Pull requests

4

32

256

1,3 4,6 7,9 10,12 13,15 16,18 19,21 22,24

F
or

ks

(d) Forks

Figure 4.10: Comparing number of commits, issues, pull request, and forks over time
of ten projects with maximal LMA (green lines) and ten projects with the lowest LMA
in our dataset (red lines). Metrics are collected in intervals of 3 months (x-axis).

tors, core contributors, and size (in LOC) of projects classified as active. To identify
core contributors, we use a common heuristic described in the literature: core contribu-
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tors are the ones responsible together for at least 80% of the commits in a project [Koch
and Schneider, 2002; Mockus et al., 2002; Robles et al., 2009]. To measure the size of
the projects, in lines of code, we used the tool AlDanial/cloc9, considering only
the programming languages in the TIOBE list.10 We also compute Spearman’s rank
correlation test for each figure. The correlation of stars and core contributors is very
weak (ρ = 0.10 and ρ = 0.15, respectively); with size, the correlation is weak (ρ =
0.38); and with contributors, it is moderate (ρ = 0.44); all p-values are less than 0.01.
Therefore, it is common to have highly popular projects, by number of stars, presenting
both low and high LMA values. For example, one project has 50,034 stars, but LMA
= 8. A similar effect happens with size. For example, one project has ≈2 MLOC, but
LMA = 10.8. The highest correlation is observed with contributors, i.e., projects with
more contributors tend to have higher levels of maintenance activity.

4.5.3 Validation with False Negative Projects

In Section 4.3, we found four projects that although declared by their develop-
ers as unmaintained are predicted by the proposed machine learning model as
active. Therefore, these projects are considered false negatives, when comput-
ing recall. Two of such projects have a very low LMA: nicklockwood/iRate

(LMA = 2) and gorangajic/react-icons (LMA = 12). Therefore, although
predicted as active, these projects are similar to projects classified as unmain-
tained, as suggested by their low LMA. A second project has an intermediate
LMA value: spotify/HubFramework (LMA = 39.2). Finally, one project
Homebrew/homebrew-php has a high LMA value (LMA = 99.2). However, this
project was migrated to another repository, when facing continuous maintenance. In
other words, in this case, the GitHub repository was deprecated, but not the project;
therefore, Homebrew/homebrew-php is a false, false negative (or a true negative).

4.5.4 Historical Analysis

In this section, we analyze the historical evolution of 2,927 active projects, as classified
by our model in November, 2017. To build a trend line, we compute new LMA values
for these projects in November, 2018, i.e., after one year. Our goal is to study how often
projects become unmaintained and whether the LMA values change significantly over
time. Particularly, we compute LMA values in intervals of 3 months during the period
of analysis, i.e., February 2018, May 2018, August 2018, and November 2018. We also

9https:// github.com/AlDanial/ cloc
10https://www.tiobe.com/ tiobe-index

https://github.com/AlDanial/cloc
https://www.tiobe.com/tiobe-index
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(a) LMA vs Stars (ρ = 0.10)

(b) LMA vs Contributors (ρ = 0.44)

(c) LMA vs Core contributors (ρ = 0.15)

(d) LMA vs LOC (ρ = 0.38)

Figure 4.11: Correlating LMA with (a) stars, (b) contributors, (c) core contributors,
and (d) size. Spearman’s ρ is also presented.
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evaluate LMA values under two perspectives: programming language and application
domain. Figure 4.12 shows the total number of projects classified as unmaintained in
each time interval. As we can see, the number of unmaintained projects is increasing
over time, moving from 117 projects (4%) in February 2018 to 468 projects (16%) in
November 2018.
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Figure 4.12: Number of new unmaintained projects over time.
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Figure 4.13: LMA values over time.

Figure 4.13 shows the distribution of the LMA values on each period. The me-
dian values are 87.2, 89.2, 86.4, and 87.2, respectively. By applying Kruskal-Wallis to
compare multiple samples, we found that these distributions are statistically different,
but the difference is negligible by Cliff’s delta. Although there is an increasing number
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Figure 4.14: Historical LMA values by programming language.

of unmaintained projects, there is also a significant number of projects with maximal
LMA values. In each interval, we found 215, 230, 208, and 197 projects with max-
imal LMA values, respectively. Some popular projects—such as rails/rails, mat-

plotlib/matplotlib, and numpy/numpy—have maximal LMA in all considered
time frames.

Figure 4.14 shows the LMA values by programming language over the studied
3-month time intervals. We consider only the top-5 languages by number of projects,
which are JavaScript (700), Python (360), Java (259), Ruby (216), and Objective-
C (179). For all languages, the LMA values remain stable throughout the studied
intervals, with the exception of Objective-C. These projects increased their LMA values
from 57.2 in February 2018 to 72.0 in May 2018, but then decreased to 61.0 in August
2018 and 52.0 in November 2018.

Finally, Figure 4.15 shows the historical LMA values by application domain. We
use the same domains from the survival analysis (Section 4.4). We found no significant
differences between the distributions in the analyzed time frames. However, Software
Tools have higher LMA values in all considered time intervals, which median measures
92.8, 94.4, 92.8, and 91.2, respectively.

From 2,927 active projects in November 2017, 468 projects (16%) moved to an
unmaintained state in the time interval of one year. We also found that Objective-
C projects have lower LMA values than projects implemented in other programming
languages. Finally, Software Tools have the highest LMA values over time.
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Figure 4.15: Historical LMA values by application domain.

4.5.5 Chrome Extension

We implemented a Chrome extension called isMaintained to indicate whether a GitHub
project is actively maintained or not.11 This extension is publicly available at the
Chrome Store.12 It only installs a small icon on the right side of a repository’s page.
This icon’s color is used to inform the maintenance level of a project. The projects
classified as unmaintained have a red icon. On the other hand, the level of maintenance
activity for active projects can be high, fair, or borderline. The projects with LMA
values in the fourth quartile of LMA values are labeled as high (green icon); projects in
the second and third quartiles are labeled as fair (yellow icon); and projects in the first
quartile are labeled as borderline (orange icon). Finally, the remaining repositories in
our dataset (e.g., books, tutorials, awesome-lists, etc.) receive a gray icon. Table 4.11
shows the levels of maintenance activity and their respectively color used to classify the
projects. Figure 4.16 shows an example for each icon used to represent the project’s
LMA.

(a) Green (b) Yellow (c) Orange (d) Gray
Figure 4.16: Example of the icons (a) green, (b) yellow, (c) orange, and (d) gray.

11This Chrome extension was implemented by Luciano Otoni Milen—he is a undergraduate student
at UFMG—under my orientation.

12https:// chrome.google.com/webstore/ search/ ismaintained

https://chrome.google.com/webstore/search/ismaintained


4.5. Level of Maintenance Activity 85

Table 4.11: Levels of maintenance activity as considered by the implemented Chrome
extension.

Level of activity Color LMA Quartile

High green 4th
Fair yellow 2nd and 3rd
Borderline orange 1st
Unmaintained red -
Not analysed grey -

Figure 4.17 shows an example of a GitHub page using the proposed Chrome
extension. In this example, we show the level of activity for facebook/react with
a green icon (high maintenance activity).

Figure 4.17: Example of a GitHub page using the LMA plugin (on the right side).

How it works: isMaintained relies on the proposed machine learning model (Chap-
ter 4) to show the maintenance status of a GitHub project. First, we use a Java script
to create a dataset with the top-10,000 most popular projects on GitHub. Second,
we remove those repositories that have less than two years between the first and the
last commit. Third, we define two subsets of systems: active and unmaintained. The
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active group is composed by those projects that have at least one release in the last
month. By contrast, the unmaintained group is composed by those projects that were
explicitly declared by their principal developers as unmaintained in our previous work
(Chapter 2) and archived projects. Then, we calculate the temporal series for each
feature considered in our previous study (Chapter 4) and remove correlated features.
Fourth, we use the Random Forest algorithm [Breiman, 2001] as implemented by a
R script to train the model and apply it in all projects from our dataset that were
not used in the model’s construction. Finally, the status for each project is stored in a
Firebase database.13 Firebase is built on Google infrastructure and have functionalities
such as analytics, databases, messaging and crash reporting. Thus, when a user visits
the main page of GitHub’s projects their status is searched on the Firebase dataset.

4.6 Threats to Validity

The threats to validity of this work are described as follows:

External Validity: Our work examines open source projects on GitHub. We recog-
nize that there are popular projects in other platforms (e.g., Bitbucket, SourceForge,
and GitLab) or projects that have their own version control installations. Thus, our
findings may not generalize to other open source or commercial systems. A second
threat relates to the features we have considered. By adding other features, we may
improve the prediction of unmaintained projects; however, given our high prediction
performance, we feel confident that our features are effective. Also, some of the
features we use may not be available in other projects, however, most of our features
are available in most code control repositories/ecosystems. In the future, we intend to
investigate additional projects and consider more features.

Internal Validity: The first threat relates to the selection of the survey participants.
We surveyed the project owner, in the case of repositories owned by individuals, or
the developer with the highest number of commits, in the case of repositories owned
by organizations. We believe the developers who replied to our survey are the most
relevant given their level of activity in the project. It is also possible that most
missing answers are from developers of unmaintained projects. As with any human
activity, the derived themes may be subject to bias and different researchers might
reach different observations. However, to mitigate this threat, a first choice of themes
was conducted in parallel by others researchers. Also, they attended several meetings

13https:// firebase.google.com

https://firebase.google.com
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during a whole week to improve the initial selected themes. A third threat relates to
the parameters used to perform our experiment. We set the number of trees to 100 to
train our classifier. To attenuate the bias of our results, we run 5-fold cross-validation
and use the average performance for 100 rounds. A forth threat is related to how the
accuracy of our machine learning approach was evaluated. We relied on developer
replies about their projects to evaluate the performance of our machine learning
classifier. In some cases, the developer replies (or developers who did not reply) may
impact our results. That said, our survey had a response rate of 37.1%, which is very
high for a software engineering study, giving us confidence in the reported performance
results.

Construct Validity: A first threat relates to the definition of active projects.
We consider as active projects those with at least one release in the last month
(Section 4.2). We acknowledge a threat in the definition of the time frame. To
mitigate this threat, we inspected each selected project to look for deprecated projects
(21 projects declare they are no longer being maintained) and we conduct a survey
with 112 developers to confirm our findings. A second threat is related to the projects
we studied. Our dataset is composed of the most starred projects (and additional
filtering). Although the starred projects may not be representative of all open source
projects, we did carefully select such projects to ensure that our study is conducted
on real (and not toy) projects. Finally, a third threat is related to the number of forks
of the projects used in the machine learning model. We only considered the creation
date of the fork. Therefore, abandoned forks may have been considered.

4.7 Related Work

Machine Learning. Recently, the application of machine learning in software
engineering contexts has gained much attention. Several researchers have used
machine learning to accurately predict defects (e.g., Peters et al. [2013]), improve
issue integration (e.g., Alencar da Costa et al. [2014]), enhance software maintenance
(e.g., Gousios et al. [2014]), and examine developer turnover (e.g., Bao et al. [2017]).
For example, Gousios et al. [2014] investigate the use of machine learning to predict
whether a pull request will be merged. They extract 12 features organized into three
dimensions: pull request, project, and developer. They conduct their study using six
algorithms (Logistic Regression, Naive Bayes, Decision Trees, AdaBoost with Decision
Trees, and Random Forest). Bao et al. [2017] build a model to predict developer



88 Chapter 4. Identifying Unmaintained Projects in GitHub

turnover, i.e., whether a developer will leave the company after a period of time.
They collect several features based on developers monthly report from two companies.
We evaluate the performance of five classifiers (KNN, Naive Bayes, SVM, Decision
Trees, and Random Forest). In both studies, Random Forest outperforms the results
of other algorithms. In another study, Martin et al. [2016] train a Bayesian model to
support app developers on causal impact analysis of releases. They mine time-series
data about Google Play app over a period of 12 months and survey developers of
significant releases to check their results. Tian et al. [2015c] use Random Forest
to predict whether an app will be high-rated. They extract 28 factors from eight
dimensions, such as app size and library quality. Their findings show that external
factors (e.g., number of promotional images) are the most influential factors. Our
study also uses machine learning techniques, however, our main goal is to detect
projects that are not going to be actively maintained. Moreover, our study extracts
project, contributor and owner features that we input to the machine learning models.

Open source projects maintainability. In previous work (Chapter 2), we survey
maintainers of 104 failed open source projects to understand the rationale for such
failures. Their findings revealed that projects fail due to reasons associated with proj-
ect properties (e.g., low maintainability), project team (e.g., lack of time of the main
contributor), and to environment reasons (e.g., project was usurped by a competitor).
Later, we report results of a survey with 52 developers who recently became core con-
tributors on popular GitHub projects (Chapter 3). Our results show the developer’s
motivations to assume an important role in FLOSS projects (e.g., to improve the proj-
ects because they use them), the project characteristics (e.g., a friendly community),
and the obstacles they faced (e.g., lack of time of the project leaders).

Also related is the work by Yamashita et al. [2014], which adapts two population
migration metrics in the context of open source projects. Their analysis enables the
detection of projects that may become obsolete. Khondhu et al. [2013] report that
more than 10,000 projects are inactive on SourceForge. They use the maintainability
index (MI) [Oman and Hagemeister, 1992] to compare the maintainability between
inactive projects and projects with different statuses (active and dormant). Their
results reveal that the majority of inactive systems are abandoned with a similar or
increased maintainability, when compared to their initial status. Nonetheless, there
are critical concerns on using MI as a predictor of maintainability [Bijlsma et al.,
2012]. Eghbal [2016] reports risks and challenges to maintain modern open source
projects. She argues that open source plays a key role in the digital infrastructure of
our society today. Opposed to physical infrastructure (e.g., bridges and roads), open
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source projects still lack a reliable and sustainable source of funding.
Liu et al. [2018] present a learning-to-rank model to recommend open source

projects for developers. Rastogi et al. [2018] investigate 70,000+ pull requests from 17
countries to model the relationship between the geographical location of developers
and pull request acceptance decision. Steinmacher et al. [2018] conducted surveys with
quasi-contributors to understand their perceptions for pull-request non-acceptance.
Their results show that non-acceptance discourage developers to submit new pull-
requests. Barcomb et al. [2019] show five factors that affect retention of episodic
volunteers in FLOSS communities. Other recent research on open source has focused
on the organization of successful open source projects [Mockus et al., 2002] and on
how to attract and retain contributors [Zhou and Mockus, 2015; Steinmacher et al.,
2016; Lee et al., 2017; Pinto et al., 2016; Canfora et al., 2012].

Survival analysis. Survival analysis was first used in the medical domain and then
applied to other domains including software engineering. For example, Maldonado
et al. [2017] use survival analysis to determine how long self-admitted technical debt
lives in a project before it is actually removed. Lin et al. [2017] applied survival analysis
on five open source projects to understand the impact of several factors on developers
leaving a project. Valiev et al. [2018] use survival analysis on a large set of PyPI
projects hosted on GitHub. Samoladas et al. [2010] proposed a framework for assessing
the survival probability of a FLOSS project and evaluate the benefits of adding more
committers in a project. Businge et al. [2012] investigate the survival of 467 third-
party Eclipse plug-ins. Different from this works, we use survival analysis to reveal
the survivability probability of a large scale of open source projects under different
perspectives (e.g., organizational or individual account, programming language, and
application domain).

4.8 Conclusion

In this chapter, we proposed a machine learning model to identify unmaintained GitHub
projects and to measure the level of maintenance activity (LMA) of active GitHub
projects. By our definition, the unmaintained status includes three types of projects:
finished projects, deprecated projects, and stalled projects. We validated the pro-
posed model with the principal developers of 127 projects, achieving a precision of 80%
(RQ1). Then, we used the model with 112 deprecated projects—as explicitly men-
tioned in their GitHub page. In this case, we achieved a recall of 96% (RQ2). We
also showed that the proposed model can identify unmaintained projects early, with-
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out having to wait for one year of inactivity, as commonly proposed in the literature
(RQ3). We assessed the survival probability of unmaintained projects under three
perspectives: organizational or individual account, programming language, and appli-
cation domain (RQ4). We found a negligible difference on the survival probabilities of
projects owned by individual and organizational accounts. Moreover, Ruby projects
have higher probabilities of survival. Regarding the analysis by application domain,
we found that System Software is the domain with the highest survival probability.
Finally, we investigate whether unmaintained projects follow (or not) a set of best
open source maintenance practices (RQ5). Our results show that the practices with
the highest effect are continuous integration, followed by the adoption of contributing
guidelines, and the presence of labels to recommend issues to newcomers. However,
the effect size is small, which suggests that external factors are the ones responsible to
turn projects unmaintained.

Finally, we defined a metric, called Level of Maintenance Activity (LMA), to
assess the risks of projects become unmaintained. We provided evidence on the ap-
plicability of this metric by investigating its usage in 2,927 projects classified as ac-
tive in our dataset. We evaluate the LMA of these projects in the time frame of
one year under two different perspectives: programming language and application
domain. We found that 16% become unmaintained over this time. We also re-
ported that Objective-C projects have lower LMA values than projects implemented
in other languages. Software tools have the highest LMA values over time. Finally,
we implemented a public Chrome extension called isMaintained to show the level of
maintenance activity of a GitHub project. This extension is publicly available at:
https:// chrome.google.com/webstore/ search/ ismaintained .

The dataset used in this chapter is available at: https:// zenodo.org/ record/
1313637 .

https://chrome.google.com/webstore/search/ismaintained
https://zenodo.org/record/1313637
https://zenodo.org/record/1313637


Chapter 5

Conclusion

In this chapter, we present our closing points and arguments. In Section 5.1, we
revisit each question introduced in Chapter 1. In Section 5.2, we review our main
contributions. In Section 5.3, we discuss our main results. Finally, in Section 5.4, we
outline possible ideas for future work.

5.1 Summary

This thesis explored, through a set of quantitative and qualitative studies, a list with
the main reasons for the discontinuation of modern open source software projects.
Through the thesis we proposed a machine learning model, conducted empirical
investigations, and surveyed systems developers. This study was guided by the
following questions:

Q1. Why do modern open source software projects become unmaintained?

To address this question, in Chapter 2, we conducted a survey with the maintain-
ers of 104 GitHub projects that are no longer under maintenance. We revealed a set of
nine reasons that motivated them to stop the maintenance of their projects. We also
showed that there is a relevant difference between unmaintained and active projects,
in terms of following best open source maintenance practices. Furthermore, we showed
that unmaintained projects have a non-negligible number of opened issues and pull
requests. Finally, we described three strategies attempted by maintainers to overcome
the unmaintained state of their projects. The main contributions of this study are:
(i) a list with nine reasons that led modern open source software projects to become
unmaintained; (ii) a comparison of the usage of a set of best maintenance practices
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by unmaintained projects and also by the most and least popular systems in a sample
of 5,000 GitHub projects; and (iii) we documented three strategies attempted by the
maintainers of open source projects to overcome (without success) the unmaintained
state of their projects.

Q2. What are the key motivations to contribute to open source projects?

To address this question, in Chapter 3, we reported reasons that led recent
core developers to contribute to open source projects. We also revealed the most
common project characteristics and practices that motivated them to contribute and
the barriers they faced. In summary, our contributions are: (i) a list with motivations
that led recent core developers of open source projects to engage in such projects;
(ii) a list with technical and non-technical project characteristics that helped recent
core developers to contribute; and (iii) a list with the main barriers that recent core
developers faced when contributing to open source projects.

Q3. How to identify unmaintained GitHub projects? How to measure the
level of maintenance activity of open source projects?

To address these questions, in Chapter 4, we proposed a machine learning model
to measure the level of maintenance activity of GitHub projects, based on a set of
features about project activity. We validated the model calculating its precision and
recall. By means of a survey with developers of 129 GitHub projects, the model achiev-
ing a precision of 80%. By validating the proposed model with projects that declare
themselves as unmaintained, we achieved a recall of 96%. We also demonstrated that
the proposed model can identify unmaintained projects early, without having to wait
for one year of inactivity, as commonly proposed in the literature. We defined a metric,
called Level of Maintenance Activity (LMA), to measure the level of maintenance ac-
tivity of GitHub projects. We provided evidence on the applicability of this metric by
investigating its usage in 2,927 active projects in the time frame of one year. Finally,
we implemented a public Chrome extension called isMaintained to show the level of
maintenance activity of a GitHub project. In summary, our contributions are: (i) a
machine learning approach to identify unmaintained projects in GitHub; (ii) a metric
to reveal the maintenance activity level of GitHub projects; and (iii) a public Chrome
extension to inform the maintenance level of a particular GitHub project.
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5.2 Contributions

We summarize our contributions as follows:

• In Chapter 2, we provide a list of nine reasons of developer’s motivations to stop
the maintenance of their open source projects. The top-5 most common reasons
are: project was usurped by competitor (27 projects), project became functionally
obsolete (20 projects), lack of time of the main contributor (18 projects), lack
of interest of the main contributor (18 projects), and project based on outdated
technologies (14 projects).

• In Chapter 2, we also reinforce the importance of a set of best open source main-
tenance practices, by comparing their usage by the unmaintained projects and
also by the most and least popular systems in a sample of 5,000 GitHub proj-
ects. The difference is more important regarding the availability of contribution
guidelines and the use of continuous integration.

• In Chapter 2, we also document three strategies attempted by the maintainers of
open source projects to overcome (without success) the failure of their projects.
We found that 14 projects attracted new core developers (third strategy), two
were transferred to new maintainers (second strategy), and other two projects
were moved to an organization account (first strategy).

• In Chapter 3, we provide a list of motivations that led recent core developers
to contribute to open source projects. We found that 60% of such developers
decided to contribute because they use the projects.

• In Chapter 3, we also reveal a list of projects characteristics and practices that
helped recent core developers to contribute to open source projects. We found
they are most attracted by non-technical characteristics, especially the ones re-
lated to a friendly and available open source community.

• In Chapter 3, we also provide a list of the main barriers faced by recent core
developers to contribute to open source projects. We found that non-technical
barriers are the most relevant impediment they face to contribute (e.g., the lack
of time of the project leaders).

• In Chapter 4, we propose a machine learning approach to identify unmaintained
(or sporadically maintained) projects in GitHub, which achieved a precision of
80% and a recall of 96% when validated with real open source developers and
projects.
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• In Chapter 4, we also propose a metric, called Level of Maintenance Activity
(LMA), to assess the risks of projects become unmaintained. We provided evi-
dence on the applicability of this metric by investigating its usage in 2,927 proj-
ects.

5.3 Key Findings and Discussion

In this section, we discuss and put our findings in perspective.

Reasons to stop the maintenance of open source projects: In Chapter 2, we
report a list of nine reasons of open source developers to stop the maintenance of their
projects. The study reveals an important competition between open source projects.
The most common reason for projects become unmaintained is the appearance of a
stronger open source competitor (27 projects). Usually, this competitor is a major
organization responsible for the ecosystem where the project is inserted in, specifically
Google (Android ecosystem, 7 projects) and Apple (iOS ecosystem, 5 projects). There-
fore, open source developers should be aware of the risks of starting to built a project
that may attract the attention of major players, particularly when the projects have
a tight integration and dependency with established platforms, such as Android and
iOS.

The third and fourth reasons are the lack of time and lack of interest of the main
maintainer. These reasons reinforce the importance of projects providing continuous
feature enhancements to attract new contributors, mitigating the risks of become
unmaintained [Ye and Kishida, 2003; Pinto et al., 2016; Steinmacher et al., 2016]. For
example, clients of libraries facing the risks of discontinuation can be motivated to
assume the project’s maintenance.

Importance of following a set of best open source maintenance practices:
In Chapter 2, we also showed that there is an important difference between the
unmaintained projects and the most popular and active projects on GitHub, in terms
of following best open source maintenance practices. However, in this case, it is
important to consider that association does not imply in causation. For example, by
just providing contributing guidelines or license, a project does not necessarily will
succeed. However, we showed that successful projects include almost all documents,
guidelines, and templates. Finally, we showed evidences on the benefits provided by
continuous integration, in terms of automation of tasks like compilation, building, and
testing. In this context, we emphasize the importance of adopting these practices by
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maintainers of open source projects.

Motivations and barriers faced by recent core developers: In Chapter 3,
we reported the results of a survey with 52 developers, who recently became core
contributors of popular GitHub projects. We reveal their motivations to contribute to
an open source project (e.g., improving the projects because they are also using it), the
project characteristics that most helped to contribute (e.g., a friendly community), and
the barriers faced by them (e.g., lack of time of the project leaders). This knowledge
may help maintainers of open source projects to improve the base of contributors of
their projects. For example, our results show that maintainers should be whenever
possible friendly and available with external contributors. Finally, our findings might
contribute to current efforts targeting the development of health and analytics models
and tools to open source projects [Jansen, 2014; Head, 2016; Steinmacher et al., 2016;
Mens et al., 2017].

Assessing the risks of projects become unmaintained: In Chapter 4, we define
a metric to express the level of maintenance activity of GitHub projects, i.e., a met-
ric that reveals how often a project is being maintained. We analyze the historical
evolution of 2,927 active projects, as classified by our model. Therefore, although de-
velopers has created thousands of open source projects (e.g., today GitHub has more
than 100 million repositories), we show a considerable percentage of projects become
unmaintained in the time frame of one year. Therefore, the proposed LMA metric may
help users on selecting libraries that are not facing discontinuation risks. On the other
hand, this information can also contribute to attract new maintainers to the project.
For example, clients of libraries facing the risks of discontinuation can be motivated to
assume their maintenance.

5.4 Future Work

Improvement of our dataset. To address Q1, Q2, and Q3, we used datasets
created with open source projects, collected from GitHub. Although we selected
a large sample of important and representative projects, our findings cannot be
generalized to other ecosystems. Therefore, future research should investigate to
which extent our results are applicable to other ecosystems (e.g., Bitbucket, GitLab,
Android, etc.).

Propose strategies to prevent the discontinuation of OSS projects. We
also recommend investigation on proactive strategies to prevent the discontinuation
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of projects, for example by identifying and recommending new maintainers with the
required expertise to work in projects under threats of being deprecated.

Propose guidelines and practices for maintaining OSS projects: We showed
that there is an important difference between the unmaintained projects and the most
popular and active projects on GitHub, in terms of use of contributing guidelines,
continuous integration, use of licenses, availability of home pages, and issue templates
(Chapter 2). As future work, we plan to explore these findings to propose and validate
a set of guidelines and practices for maintaining open source projects and attracting
new contributors. We also plan to publish these guidelines in a public web site to
facilitate their verification and adoption by practitioners.

Improvement of our machine learning model. To address Q3, we consider
a total of 13 metrics provided by GitHub about a project’s maintenance activity,
e.g., number of commits, forks, issues, and pull requests. Future work may attempt
to improve the performance of the proposed machine learning model by adding other
features (e.g., number of dependents1, average time to close an issue, average time to
close a pull request, etc.).

Improvement of our Chrome extension. The goal of this improvement is to
add visualizations, actionable dashboards, and analytics for extension. The idea is to
automate the collection and continuous tracking of the proposed metrics. We expect
that this tool could facilitate the analysis and visualization of the level of maintenance
activity of GitHub projects, aiming to assess and mitigate the risks of discontinuation.

LMA for unmaintained projects. The goal of this work would be improve the
LMA metric to also consider unmaintained projects.

Study of GitHub projects development process. We plan to compare the
projects that become abandoned by development process. We expect to reveal whether
the projects that become abandoned followed or not a given software development
process (e.g., agile, waterfall, or spiral model).

Exploring the motivation to abandon a open source project. We plan to
investigate other motivations for developers abandon a project, e.g., they might have
decided to work in a different project.

Build models using other machine leaning algorithms. We plan to create other
machine learning models using other algorithms, such as Support Vector Machine

1https:// help.github.com/ en/ articles/ listing-the-projects-that-depend-on-a-repository

https://help.github.com/en/articles/listing-the-projects-that-depend-on-a-repository
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(SVM) [Cortes and Vapnik, 1995], XGBoost [Chen and Guestrin, 2016], and Naive
Bayes [Patil et al., 2013].

Analyze feature completed projects. We plan to build a machine learning model
to identify feature completed projects. These projects deal with stable requirements
and environments and therefore do not need constant updates or modifications. There-
fore, we plan to remove these projects from our unmaintained list and label them as
completed. We also plan to consider the usage of source code features to improve the
model.
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