
RECONHECIMENTO DE ENTIDADES

NOMEADAS NA WEB

JOÃO MATEUS DE FREITAS VENEROSO

RECONHECIMENTO DE ENTIDADES

NOMEADAS NA WEB

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Berthier Ribeiro-Neto de Araújo

Belo Horizonte

Agosto de 2019

JOÃO MATEUS DE FREITAS VENEROSO

NAMED ENTITY RECOGNITION ON THE WEB

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais – Depar-
tamento de Ciência da Computação in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Berthier Ribeiro-Neto de Araújo

Belo Horizonte

August 2019

c© 2019, João Mateus de Freitas Veneroso.
Todos os direitos reservados.

Veneroso, João Mateus de Freitas

V456g Named entity recognition on the Web / João Mateus
de Freitas Veneroso. — Belo Horizonte, 2019

xvi, 101 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais – Departamento de Ciência da
Computação

Orientador: Berthier Ribeiro-Neto de Araújo

1. Computação – Teses. 2. Recuperação da
informação. 3. Aprendizado do computador.
4. Resolução de entidades. 5. Sites da Web. I. Título.

CDU 519.6*73(043)

Acknowledgments

I am extremely grateful to Berthier for his valuable advice and encouragement during
the course of my master’s. His guidance was important not only in the intellectual
pursuit that led to this dissertation, but in a general sense. His insightful observa-
tions about questions that go far beyond Computer Science are an enduring source of
inspiration.

I would like to extend my gratitude to Alberto Ueda, for his extraordinarily
detailed review that contributed quite a lot to the quality of this work. I also thank
him, Filipe, Gabriel, Fabricio, Alef, Amir, and all the lab fellows from LATIN and
PENSI for their friendship and support during the whole process. My life has changed
forever for the better by getting to know this awesome group of people.

Many thanks to Nivio for his support in the laboratory and for his relentless
enthusiasm in promoting science and technology that is a great source of inspiration.
Also, many thanks to Adriano for introducing me to the field of Machine Learning and
for his very helpful research advices. I also extend my sincere thanks to all professors
in the department that inspired me during lessons and day to day conversations.

I would like to gratefully acknowledge the assistance provided by Sonia Borges
during my many visits to the postgraduate office. Also, I would like to thank our
representatives, Evellyn and Evelin, for their determined struggle to improve the well-
being of the other students, many times at the expense of their own welfare.

I am extremely grateful to my mother, my father and my brother for their support
in every aspect of life. My mother taught me to value education and to seek knowledge
everywhere. My father taught me to work hard to achieve my goals and make a
difference. My brother taught me to think big and to think differently. But, above all
else, they made me who I am today.

Lastly, I thank all the friends and family that were not directly involved in the
process of writing this dissertation but were always present in my life.

vi

Resumo

Métodos tradicionais de extração de informação na web normalmente utilizam regras
rígidas para extrair dados relevantes de páginas da internet. Estes métodos são ade-
quados para resolver tarefas de extração dentro de um mesmo website, mas eles são
bem menos eficientes quando a tarefa compreende um conjunto heterogêneo de web-
sites. Por outro lado, modelos de Reconhecimento de Entidades Nomeadas (NER)
baseados em aprendizado de máquina oferecem uma alternativa mais flexível para re-
solver o problema. No entanto, na maior parte das vezes, páginas HTML tem uma
organização substancialmente diferente do texto em prosa, porque as frases são muito
curtas, o que piora o desempenho dos modelos tradicionais de NER. Em contrapartida,
a estrutura do HTML contém informação valiosa que pode ser utilizada para melhorar
o desempenho dos modelos de NER. Nós propomos duas formas de utilizar esta infor-
mação: a estratégia de auto-treinamento para Hidden Markov Models e o mecanismo
de atenção para a Bi-LSTM-CRF, um tipo de rede neural. Além disso, nesta disser-
tação, nós avaliamos o desempenho de diversos métodos de NER na tarefa de extração
de informação na web. Em particular, introduzimos um dataset novo que consiste em
páginas de departamentos de pesquisa extraídas dos sites de múltiplas universidades
ao redor do mundo e testamos os modelos de NER na tarefa de extração de nomes
de pesquisadores. Uma arquitetura de redes neurais que combina uma Bi-LSTM-CRF
com representações de caracteres baseadas em LSTMs e o mecanismo rígido de atenção
tem um desempenho superior aos demais métodos, alcançando um F1 de 90,2 na tarefa.
Contudo, por meio da aplicação de estratégias como o auto-treinamento, conseguimos
obter um modelo muito mais simples, o Hidden Markov Model de segunda ordem, que
alcança um F1 de 87,9 na mesma tarefa.

Palavras-chave: Reconhecimento de Entidades Nomeadas, Extração de Informação
na Web, Extração de Nomes de Pesquisadores.

vii

Abstract

Web Data Extraction methods often rely on hand-coded rules to identify and extract
data from webpages. These methods are suited for extracting information from pages
within the same website, however they perform poorly on extraction tasks across dif-
ferent websites. Alternatively, statistical and machine-learning-based Named Entity
Recognition (NER) methods provide a more flexible approach to Web Data Extraction.
This is important, because sentences in HTML pages are often too short to provide
adequate context for conventional NER methods to work properly. Nonetheless, the
HTML structure also encodes useful information that can be used by NER models to
achieve a better performance. We propose two methods to use this information: the
self-training strategy for Hidden Markov Models and the hard attention mechanism
for Bi-LSTM-CRFs, a type of neural network. Also, in this dissertation we evaluate
the performance of different methods of NER in the task of Web Data Extraction. In
particular, we introduce a novel dataset consisting of faculty listings from university
webpages across the world in multiple languages and test different NER models in the
task of extracting researcher names from these listings. We found that a neural network
architecture that combines a bidirectional LSTM with a Conditional Random Fields
output layer, LSTM-based character representations and a Hard Attention mechanism
for HTML features outperforms other methods achieving 90.7 F1-score in the task.
But, with the aid of clever strategies such as self-training, we can get a much simpler
model, the second-order Hidden Markov Model, to achieve a 87.9 F1-score.

Palavras-chave: Named Entity Recognition, Web Data Extraction, Researcher Name
Extraction.

viii

List of Figures

2.1 Named Entity Recognition as a sequence labeling task. The "O" stands for
a token Outside a named entity. 10

2.2 Example of a faculty webpage. 12

4.1 Finite state machine for a Markov Chain. 24
4.2 Finite state machine for a Hidden Markov Model. 27
4.3 Example of a webpage snippet with labels attributed by a HMM. 32
4.4 RNN for NER . 39
4.5 RNN with a long term memory cell c. 40
4.6 LSTM Cell . 41
4.7 Bidirectional LSTM-CRF . 42
4.8 CNN-based character representations for the word "jaguar". 45
4.9 LSTM-based character representations for the word "jaguar". 46

5.1 Word frequencies plot for the CoNLL-2003 dataset and the RNE dataset. 55

6.1 Performance of the Naive Bayes classifier and Hidden Markov Models with
no features besides the current word on the test set of the RNE dataset. . 61

6.2 Hidden Markov Models trained with the features in Group A and Group B. 63
6.3 HMMs trained with the features in Group A and HMMs trained with fea-

tures from Group A and self-trained with features from Group C. 64
6.4 Performance of the Logistic Classifier, second-order HMM and CRF with

no features besides the current word on the test set of the RNE dataset. . 65
6.5 CRFs trained with the features from Group A and Group B and the HMM-

2 trained with features from Group A and self-trained with features from
Group C. 66

6.6 Performance of the Bi-LSTM-CRF with only GloVe embeddings in com-
parison to the HMM-2 (Group A) with self-training and the CRF (Group
B). 68

ix

7.1 Attention mechanism for the Bi-LSTM-CRF model. 74
7.2 Building HTML representations by climbing the DOM tree. 76
7.3 Results for the Bi-LSTM-CRF + LSTMc that optimized the expected Fα-

score function. A larger α means preference for recall rather than precision. 81

x

List of Tables

3.1 Model performances in the CoNLL-2003 English test set. 19

4.1 Statistics of pre-trained word embeddings. 43

5.1 Description of the data files in the RNE dataset. 49
5.2 Description of the CoNLL-2003 English dataset 50
5.3 DBLP dictionary coverage in each data file of the RNE dataset, when an

exact dictionary matching strategy is used. 52
5.4 Performance of three classifiers trained with the CoNLL-2003 training set

and tested in the CoNLL-2003 and RNE test sets. 53
5.5 Ten most frequent words for the CoNLL-2003 and the RNE datasets. . . . 55
5.6 Number of documents per country for the ten most frequent countries in

the RNE dataset and the number of universities in each country according
to the Universities Worldwide Database. 56

6.1 Naive Bayes and Logistic Classifier results for the researcher name extrac-
tion task using only the current word as a feature. 59

6.2 Unknown tokens in the RNE dataset. 60
6.3 Performance of the Naive Bayes classifier and Hidden Markov Models with

no features besides the current word on the validation and test sets of the
RNE dataset. 60

6.4 Features used in the RNE dataset. Feature 10 is the token’s enclosing
HTML tag and its parent tag concatenated. 62

6.5 Performance on the validation and test sets for Hidden Markov Models
trained with the features in Group A and Group B. 63

6.6 HMMs trained with the features in Group A and HMMs trained with fea-
tures from Group A and self-trained with features from Group C. 64

xi

6.7 Performance of the Logistic Classifier, second-order HMM and CRF with
no features besides the current word on the validation and test sets of the
RNE dataset. 65

6.8 Conditional Random Fields using features from Group A and Group B. . . 66
6.9 Results for the HMM using features from Group A and self-training, the

CRF with features from Group B and the Plain Bi-LSTM-CRF. 67
6.10 Bi-LSTM-CRF with Character Representations. 69
6.11 Bi-LSTM-CRF with LSTM characters and different sets of word embeddings. 69
6.12 Overview of the best models for the name extraction task in the RNE dataset. 71

7.1 Relationship between positive and negative matches. 78
7.2 Hard and Soft Attention . 80
7.3 Bi-LSTM-CRF with LSTM character embeddings and F-score optimization

objective. 82
7.4 Overview of the best models for the name extraction task in the RNE test

set after the filtering strategy. 83
7.5 Overview of the subjective complexity and training times of the best models

for the RNE task. 84

A.1 Precision (P), Recall (R) and F1 for Hidden Markov Models and Naive
Bayes in the RNE task using five fold cross validation (CV). 99

A.2 Precision (P), Recall (R) and F1 for CRFs and Logistic Classifier in the
RNE task using five fold cross validation (CV). 100

A.3 Precision(P), Recall (R) and F1 for Bi-LSTM-CRF variations in the RNE
task using five fold cross validation (CV). All the models used GloVe-300
embeddings except if stated otherwise. 101

A.4 Precision(P), Recall (R) and F1 for Bi-LSTM-CRF variations optimizing
the F-α objective in the RNE task using five fold cross validation (CV). . . 101

xii

Glossary

CNN Convolutional Neural Networks.

CRF Conditional Random Fields.

HMM Hidden Markov Models.

IE Information Extraction.

LSTM Long Short-Term Memory Networks.

NER Named Entity Recognition.

NLP Natural Language Processing.

POS Part-of-Speech.

RNE Researcher Name Extraction.

RNN Recurrent Neural Networks.

WDE Web Data Extraction.

xiii

Contents

Acknowledgments vi

Resumo vii

Abstract viii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Motivation . 3
1.2 Objective . 4
1.3 Contributions . 4
1.4 Dissertation Outline . 5

2 Problem Definition 6
2.1 Information Extraction . 7
2.2 Named Entity Recognition . 9
2.3 Researcher Name Extraction . 11
2.4 Summary . 13

3 Related Work 14
3.1 Web Data Extraction . 14
3.2 Named Entity Recognition . 17
3.3 Summary . 19

4 Techniques for Sequence Labeling 20
4.1 Hidden Markov Models . 21

4.1.1 Smoothing . 28

xiv

4.1.2 Predicting sequences . 28
4.1.3 Self-Training . 29
4.1.4 Experimental Considerations . 32

4.2 Conditional Random Fields . 32
4.2.1 Experimental Considerations . 37

4.3 Neural Networks . 38
4.3.1 BI-LSTM-CRF . 41
4.3.2 Word Embeddings . 42
4.3.3 Character Representations . 44

5 Researcher Name Extraction Dataset 47
5.1 Data Description . 48
5.2 Evaluation . 50
5.3 Dictionary . 51
5.4 Comparison with CoNLL-2003 . 52
5.5 Dataset Size . 54

6 Experiments 57
6.1 Simple Baseline . 58
6.2 Hidden Markov Models . 59

6.2.1 HMM order . 60
6.2.2 Feature selection . 61
6.2.3 Self-training strategy . 63

6.3 Conditional Random Fields . 64
6.3.1 Only the Current Word Feature 65
6.3.2 Feature Selection . 66

6.4 Neural Networks . 67
6.4.1 Bi-LSTM-CRF . 67
6.4.2 Character Representations . 68
6.4.3 Word Embeddings . 69
6.4.4 Technical Details for Neural Networks 70

6.5 What is the best model? . 70

7 Improvements to Neural Networks 73
7.1 Attentions Models . 73

7.1.1 Hard Attention Function . 75
7.1.2 Soft Attention Function . 75
7.1.3 Dataset Split and Experimental Considerations 76

xv

7.2 F-score Optimization . 77
7.3 Experiments . 79

7.3.1 Attention Mechanisms . 79
7.3.2 F-score Optimization . 80
7.3.3 Filtering False Positives . 82

8 Conclusions and Future Work 85
8.1 Summary of Conclusions . 85
8.2 Future Work . 86
8.3 Final Remarks . 87

Bibliography 88

Appendix A Cross Validation 97
A.1 Hidden Markov Models . 98
A.2 Conditional Random Fields . 99
A.3 Neural Networks . 99

A.3.1 F-score Optimization . 100

xvi

Chapter 1

Introduction

The amount of data generated in almost every imaginable human endeavor is increasing
at an accelerating pace, and the astonishing growth of the Web is perhaps the most
important manifestation of this movement. The recurrent appearance of terms such
as Big Data and Artificial Intelligence in mass media testify to the growing attention
devoted to this topic. People, companies and academia are all interested in taming the
colossal flood of data, each for their own reasons. Despite all this interest, meaningful
information in the Web gets frequently lost over torrents of unimportant data. As
a result, to extract structured information from this haystack we need sophisticated
solutions.

Web Data Extraction (WDE) methods are often employed when there is the
need to extract massive amounts of structured information from webpages. WDE is
basically the task of extracting useful information from unstructured Web sources. In
this sense, it is a specific setting of the more general problem of Information Extraction
(IE), that regards extraction tasks in any type of document. Some examples of such
tasks are the extraction of product descriptions and their prices from online shops, or
the extraction of house locations and number of bedrooms from real estate portals.
Web documents however, most often lie in between the structured/unstructured data
paradigm. This means that they are not structured in the same sense that a relational
database is structured, neither are they unstructured in the same sense that plain text is
unstructured. That is, the way that elements are organized and displayed in a webpage
contribute to their meaning. For example, an entry in a list is more meaningful than an
isolated entry, because the entry’s meaning becomes evident once we know the listed
category. Yet we cannot expect that such organizational patterns will be completely
constrained by an underlying set of rules. Patterns tend to follow some guidelines but
they are in no way subject to strict rules.

1

1. Introduction 2

Traditional WDE methods often relied on the identification of webpage patterns
such as listings and tables to build wrappers, simple programs aimed at extracting
relevant entities from text by identifying their common boundaries. These programs
were somewhat prone to failure when the webpage changed, and for this reason they
demanded constant maintenance. Some improvements were made with the invention
of automatic wrapper generators such as WIEN [Kushmerick, 2000], Soft Mealy [Hsu
and Dung, 1998] and STALKER [Muslea et al., 1999], that aimed to reduce the cost of
wrapper maintenance. However, wrappers generated by these systems only worked well
on webpages with a very similar structure (e.g. product listings from Amazon). In fact,
the problem of data extraction across different websites has not yet been solved effec-
tively, even though some remarkable improvement was made with tools that build upon
the tradition of wrapper generators such as ObjectRunner [Abdessalem et al., 2010],
Automatic Wrapper Adaptation [Ferrara and Baumgartner, 2011], AMBER [Furche
et al., 2012], and AutoRM [Shi et al., 2015], among others.

Comparatively, statistical machine learning provides more robust and flexible
methods to WDE. In recent years, we saw amazing progress in the field of Natural
Language Processing (NLP) that is extremely relevant to the WDE community, par-
ticularly with the introduction of Deep Neural Networks for Sequence Labeling by Col-
lobert et al. [2011], but these advancements were not widely incorporated by WDE
systems. Also, most of the attention of the NLP community regarding this topic is
devoted to solving IE tasks in plain text, such as the identification of people and orga-
nizations in news texts. However, the difference between some types of webpages and
plain text is significant, so IE systems trained in plain text datasets tend to perform
poorly when confronted with some Web extraction tasks, as we have confirmed in this
dissertation.

A concrete example of a WDE problem that demands the type of flexible solution
provided by statistical machine learning methods is the extraction of researcher names
from faculty directories. Automatically extracting researcher information from uni-
versity websites is important, for example, to construct researcher affiliation databases
and compare the academic impact of research groups using bibliographic indices [Ribas
et al., 2015; Hirsch, 2005]. The problem of Researcher Name Extraction (RNE) can be
solved with machine learning methods of Named Entity Recognition (NER), the task
of finding entities such as people, organizations, and locations in a text.

Many IE tasks in the Web share a common factor with the RNE task. That is,
they need to extract similar entities from different webpages or they need to extract
entities from short snippets of text instead of complete sentences. Some examples
would be comment extraction from blog posts and NER in tweets. Because of the lack

1. Introduction 3

of context in tweets, NER methods trained in conventional plain text corpora tend to
perform badly for more or less the same reasons they perform badly in other WDE
tasks.

In this dissertation, we compare different machine learning approaches to NER
on the Web by evaluating their performance in the RNE task. With this purpose in
mind, we introduce a novel NER dataset with labeled entities, consisting of faculty
directories from universities across the world. We compare the models in terms of their
precision, recall, F-scores and their overall complexity. That is, even if a model has a
slightly worse performance in terms of the objective evaluation metrics in comparison
to other approaches, it may still be useful if it is considerably simpler and faster to
train. The tested models were the Hidden Markov Models (HMM) up to third order,
Conditional Random Fields (CRF), and a range of Deep Learning architectures based
on Bidirectional Long Short-Term Memory Networks (LSTM). We also introduce three
strategies that can boost the performance of sequence labeling methods for HTML. The
self-training strategy for HMM, the Self-Attention layer with HTML features for Neural
Networks, and the direct F-score optimization, also for Neural Networks.

The usability of the evaluated models is not limited to the particular problem of
RNE. By reliably detecting named entities on the Web, we can boost the performance of
existing WDE approaches or even construct an end-to-end architecture that solves the
problem of data extraction across different websites with improved robustness. Also,
the researcher affiliation database constructed with the application of these methods
can be used later on bibliometric studies.

1.1 Motivation

Web Data Extraction emerges in the context of many Web projects. It consists of
extracting structured information from unstructured web pages to build a knowledge
base. Wrapper-based methods are effective for extracting regular data from similar
webpages, for example, when extracting prices from a web catalog. However, when
a particular extraction task requires more flexibility, such as in the cases where the
website layout varies significantly between different sources, extraction systems based
on machine learning usually perform better. In the cases where these machine learning
systems need to handle complex entities such as person or organization names, NER
comes forward as an essential subtask. Nevertheless, most of the research concerning
NER only handles extraction tasks in plain text, which can be quite different from
HTML webpages. HTML webpages may contain plain text, however they usually have

1. Introduction 4

a smaller average sentence size and a considerable amount of boilerplate text that may
hurt the performance of regular NER models trained to solve extraction tasks in plain
text. Also, the webpage layout contains useful information that is typically not present
in plain text.

A good example of a Web Data Extraction task that requires the type of flexi-
ble approach discussed above is the task of acquiring affiliation data from university
websites to build a researcher affiliation database or complement existing ones. One
way to complete this task is to crawl university websites, find faculty directories for
each department, extract the researcher names and link these names to their public
profiles or create new ones if they do not already exist. Acquiring this data manually
is tedious and impractical because of the sheer number of universities and researchers
in the world1, so we must resort to automatic methods.

The crawling stage is relatively simple once we have a somewhat reliable way
of detecting faculty webpages, but the researcher name extraction stage is trickier.
Faculty listings vary widely between different universities, and they are not always
available in English, so we need an extraction system that can handle the possible
variations without needing to be trained again for each website.

The problem of RNE provides a good study case to attest the performance of
different NER systems on the Web, because the named entities concerning this problem
are complex, the faculty directories are usually very different from plain text and the
documents vary widely between different university websites.

1.2 Objective

The main objective of this dissertation is to find the best NER methods for the Web in
terms of their precision, recall, and F-scores in the RNE task, considering their overall
complexity and flexibility, taking into consideration that there is a trade-off between
model complexity and objective performance. Therefore, to accomplish this goal we
need to perform both a quantitative and qualitative assessment of different methods.

1.3 Contributions

The main contributions of this dissertation are:
1The field of Computer Science alone has more than 2,200,000 researchers listed on DBLP:

https://dblp.uni-trier.de/.

1. Introduction 5

1. Labeled RNE dataset: we introduce a labeled NER dataset specific for the task of
extracting researcher names from faculty directories in different languages across
42 countries with the aim of comparing different extraction systems.

2. Comparison of models for NER on the Web: we compare the performance of
HMMs, CRFs and state-of-the-art Neural Networks for NER on the Web, describ-
ing their relative advantages and disadvantages in terms of quantitative measures
such as the F-score and qualitative aspects such as complexity and difficulty of
training.

3. Self-training strategy for Hidden Markov Models: we propose a self-training strat-
egy to improve the performance of HMMs on HTML NER.

4. Attention mechanism for Neural Network sequence taggers: we propose an at-
tention mechanism for improving the performance of Neural Networks on HTML
NER.

5. F-score optimization for Neural Networks: We propose an optimization objective
based on the F-score to control how much a Neural Network values recall over
precision.

1.4 Dissertation Outline

The organization of this dissertation is as follows: Chapter 2 (Problem Definition)
defines the problem of RNE and discusses how it relates to the broader problems of
IE and NER. Chapter 3 (Related Work) describes the literature concerning WDE and
NER that is related to the models explored in this dissertation. Chapter 4 (Tech-
niques for Sequence Labeling) describes HMMs, CRFs and Deep Neural Networks for
performing NER. Chapter 5 (Researcher Name Extraction Dataset) presents the RNE
Dataset that concerns the NER on HTML task of extracting research names from fac-
ulty directories. Chapter 6 (Experiments) presents the results of multiple experiments
with the models from Chapter 4 in the RNE dataset introduced in Chapter 5. Chap-
ter 7 (Improvements to Neural Networks) describes variations and improvements to
the neural networks described in Chapter 4 and presents some additional experiments.
Chapter 8 (Conclusion) discusses the conclusions to the research questions that guided
the experiments and proposes future work to be done in the field.

Chapter 2

Problem Definition

WDE is the task of extracting relevant information from Web documents. Traditional
methods of WDE were mainly concerned with the extraction of entities described by a
simple ontology from webpages generated with the same template (e.g. collecting house
prices and addresses from real estate portals). This case could be solved with rigid tools
employing hard coded rules. For example, a simple pattern matching strategy can yield
close to perfect results in a price extraction task, since there is not a lot of variation in
the way prices are presented in a webpage. However, the extraction of complex entities
from many sources presents a different class of problems. These problems demand
more flexible approaches since the extraction tools are required to deal with a greater
variety of page arrangements and with entities that are ambiguously defined. In many
aspects, the flexible extraction of entities from webpages is more similar to the tasks
of NER in plain text than to the tasks that concerned early WDE methods.

Recent advancements in sequence modelling for natural language (i.e. modelling
text as a sequence of words or characters) led to important breakthroughs in appli-
cations such as language modelling [Peters et al., 2018; Devlin et al., 2018], machine
translation [Bahdanau et al., 2015; Vaswani et al., 2017], and sequence labeling [Col-
lobert et al., 2011; Lample et al., 2016; Ma and Hovy, 2016] (which concerns us more
directly). In fact, if we treat all sentences in a webpage as sequences extracted from
an underlying presentation graph (i.e. the DOM tree), the problem of WDE can be, in
many cases, solved with the consecutive application of three NLP techniques: sentence
segmentation, named entity recognition, and relationship extraction. First, we need to
segment the relevant grouping structures (e.g. sentences, rows in a table, items in a
list). Then, we must identify relevant named entities (e.g. person names, companies,
locations). And finally, we need to discover the relationships between these named
entities (e.g. person X works in company Y). This last step is optional depending on

6

2. Problem Definition 7

the task at hand. The work flow is the same for plain text and webpages, but there
are important differences chiefly related to the structure of the data or rather the lack
of structure.

In this dissertation, we investigate the best methods for sequence labeling on
HTML. To evaluate these methods, we assess their performance on the task of RNE
from faculty directories of universities across the world. We will be mainly concerned
with NER, but a brief discussion of the challenges involved in the task of sentence
segmentation for HTML will be provided in Chapter 5. The task of relationship ex-
traction, however, is not relevant to the problem of RNE because we only consider one
type of named entity (researchers) and we are only concerned with mapping relations
between researchers and universities (affiliations) that are obvious since we know which
university website produced each faculty listing.

The remainder of this chapter will describe in more depth the subject of this dis-
sertation. Section 2.1 discusses the problem of IE. Section 2.2 discusses the importance
of NER for WDE. Finally, Section 2.3 describes the specific problem of RNE.

2.1 Information Extraction

IE consists of mapping unstructured or poorly structured data to a semantically well
defined structure. It “is the process of filling the fields and records of a database from
unstructured or loosely formatted text” [McCallum, 2005]. Usually, the input consists
of a corpus containing useful entities that are scattered in the text and the IE system is
responsible for finding these entities and organizing them according to a rigid hierarchy,
such as the one defined by the schema of a relational database. It must be stated that
it is somewhat misleading to refer to plain text as unstructured data, since prose has
a loosely defined structure that ultimately renders it comprehensible. However, in the
context of IE, we refer to unstructured data in contraposition to tabular data (e.g.
XML, SQL tables, etc.), which are in most cases easier to work with than plain text.

IE is a multifaceted research topic that spans communities of researchers in the
fields of Text Mining, Information Retrieval, and Natural Language Processing. That
is:

• Text mining is the search of patterns in unstructured text. This may involve
document clustering, document summarization, IE, and other subtasks.

• Information Retrieval is typically concerned with the parsing, indexing and re-
trieval of documents. In this case, IE methods can help giving a more precise
answer to the user’s information needs.

2. Problem Definition 8

• NLP is a field of Computer Science concerned with how computers process and
understand natural language of which two subtasks, namely NER and Relation-
ship Extraction, are of special importance to IE.

A popular application of IE is the identification of entities such as people, or-
ganizations, or events in news sources and the determination of their relations. For
example, one could be interested in determining who is the CEO of a company that was
mentioned in the news or which politicians support a bill that is being considered by
Congress. Another interesting news-related application of IE is tracking disease out-
breaks through the extraction of disease names and locations from news sources and
determining their relation to outline the geographical area affected by an epidemy [Gr-
ishman et al., 2002].

The field of bio-informatics has also found important applications for IE. The
first BioCreative challenge dealt with the “extraction of gene or protein names from
text, and their mapping into standardized gene identifiers for three model organ-
ism databases” [Hirschman et al., 2005]. In the BioCreative/OHNLP Challenge
2018 [Rastegar-Mojarad et al., 2018], researchers were required to investigate meth-
ods of IE for acquiring family history data, given that family history is a critical piece
of information in the decision process for diagnosis and treatment of diseases. The dif-
ficulty lies in the fact that the main sources of data are unstructured electronic health
records. The task was divided in two subtasks: 1) entity recognition such as family
members and disease names; and 2) relation extraction such as the relation between
family members and corresponding observations.

An application of IE that concerns this dissertation specifically is the extraction
of information from research papers to populate citation databases and bibliography
search engines such as Citeseer [Lawrence et al., 1999], DBLP 1, Semantic Scholar 2,
and Google Scholar 3. The vast amount of scientific knowledge produced daily demands
automatic methods to extract bibliometric information such as authors, titles, affilia-
tions, references, venues and the year of publication from research papers and academic
websites. This application is especially important to the evaluation and bibliometrics
research communities, that are concerned with the measure of academic impact and
researcher productivity through the usage of quantitative indices of academic impact
such as raw citation counts, the H-index [Hirsch, 2005] and P-score [Ribas et al., 2015].

WDE is the task of IE on webpages. It works differently from IE in plain text
because HTML documents frequently have more structured content with less context

1http://dblp.uni-trier.de/
2https://www.semanticscholar.org
3https://scholar.google.com/

2. Problem Definition 9

than plain text. In HTML, relevant entities may occur inside tables, lists, or other
types of visual elements that provide little to no contextual information that could give
hints about an entity’s category. That is, sentences in HTML tables or lists are very
short and provide little textual information. Contrastingly, in plain text, entities are
usually preceded and succeeded by discourse that may provide textual evidence about
an entity (e.g. John is a man, Mary is a woman). Webpages have a two dimensional
tabular structure that is usually more similar to a spreadsheet than to text from news
corpora or literary works. For this reason, features extracted from the DOM hierarchy
such as element disposition, CSS classes, and nesting structure can provide valuable
information in identifying entities and extracting their attributes.

Most existing WDE methods are tailored to extract data from webpages gener-
ated from the same template, producing different compromises between efficacy and
degree of human supervision. Usually, these methods work in two steps. In the record
segmentation step, we seek to cluster visually and structurally similar webpage regions
and identify repeating data records. In the attribute labeling stage, we seek to identify
the correct attributes for each data record, maybe resorting to regular expressions or
simple dictionary matching strategies depending on the task at hand. The outcome of
each step can aid one another. The inner patterns of data records can help identifying
attributes in other data records. Also, by properly identifying attributes, it becomes
easier to determine boundaries and perform record segmentation correctly.

Some tasks can likely be solved by a rather inflexible system that operates mainly
with hard coded rules and simple regular expressions, especially if we only consider
pages with a very similar template (e.g. Amazon product listings). Traditional wrapper
generators are well suited for this type of task. However, when we need to identify more
complex entities such as researcher names, we might be better off with a more flexible
approach. The task of NER aims to identify named entities (e.g. people, organizations,
etc.) usually in plain text, but we will see that the sequence models that work well in
plain text can also be employed successfully in WDE, sometimes with a few alterations.

This section gave a brief introduction to IE, but there are many applications
that were not discussed here. A more detailed view of the field is given in the survey
by Sarawagi [2008].

2.2 Named Entity Recognition

NER is a task in NLP that aims to identify named entities in a text. The NER prob-
lem definition first appeared as a subtask of IE in the context of Third the Message

2. Problem Definition 10

Understanding Conference (MUC-3) promoted by the American Naval Ocean Systems
Center in 1991. In MUC-3 [Sundheim, 1991], the task involved extracting information
on terrorist incidents (incident type, date, location, perpetrator, target, instrument,
outcome, etc.) from messages disseminated by the Foreign Broadcast Information Ser-
vice of the U.S. Government. In MUC-6 [Grishman and Sundheim, 1996], the named
entity task was created with the goal of identifying the names of people, organizations,
and geographic locations from articles of the Wall Street Journal. In MUC-7, the task
was expanded to handle multilingual evaluation and Named Entities (NE) were defined
as proper names and quantities of interest. Person, organization, and location names
were marked as well as dates, times, percentages, and monetary amounts according
to Chinchor [1998]. The shared-task at the Conference on Computational Natural
Language Learning in 2003, CoNLL-2003 [Tjong Kim Sang and De Meulder, 2003],
concerned language-independent NER and was especially important because it estab-
lished an enduring data format for NER. Further, it introduced a dataset of articles
extracted from news sources that is commonly used to evaluate the quality of NER
systems.

NER is essentially a sequence labeling task. That is, given a sequence of tokens,
we want to attribute labels to each token, classifying them into one of a limited set
of predefined classes. Figure 2.1 shows how to attribute named entity labels to a
sentence according to the format defined in CoNLL-2003. Regular entities such as dates

Julian Assange, the founder of Wikileaks, was arrested Thursday at the Ecuadorean Embassy in London.

I-PER I-PER O O O OI-ORG O I-DATE O I-ORG I-ORG O I-LOCO

Figure 2.1. Named Entity Recognition as a sequence labeling task. The "O"
stands for a token Outside a named entity.

and prices can be extracted with almost perfect accuracy using regular expressions,
which are search patterns that describe a regular language and that can be easily
implemented in most programming languages. Entities that belong to a limited set,
such as the names of states in a country, can also be easily extracted with simple
dictionary matching. However, other types of entities, such as the ones investigated in
the CoNLL-2003 challenge, require more sophisticated methods for sequence labeling.

Some traditional statistical methods that can label complex entities with good
accuracy are Hidden Markov Models [Bikel et al., 1999], Maximum Entropy Markov
Models [McCallum et al., 2000], and Conditional Random Fields [Lafferty et al., 2001].
These statistical approaches have been frequently employed to sequence labeling tasks

2. Problem Definition 11

and still provide fairly good solutions because of their simplicity, speed and accuracy.
However, they are rapidly being replaced by Deep Neural Networks.

Recent research in deep learning has brought great advancements to NER. Some
examples are the LSTM-CRF [Huang et al., 2015] and neural character representa-
tions [Lample et al., 2016; Ma and Hovy, 2016]. Deep learning differs from classical
machine learning in regard to the levels of abstraction learned by the classifiers. Deep
learning techniques combine feature extraction and classification in a single system.
While a conventional feed-forward neural network may perform classification by learn-
ing the weights of a single hidden layer through backpropagation, a deep learning model
is usually composed of multiple hidden layers that handle different levels of abstrac-
tions. In text related tasks, the first level of abstraction usually consists of a word
embedding layer, where words are mapped to a continuous vectorial space with re-
duced dimensionality, and the next layer usually consists of a multi-layered recurrent
neural network or a convolutional neural network.

Essentially all the best scoring models to date at the CoNLL-2003 task employ
some form of deep learning, and most often LSTMs. When combined with pre-trained
word embeddings, neural networks provide a powerful method of sequence labeling
without any feature engineering or dictionary matching. However, these models have
become quite complex, contrasting with earlier approaches that only required the es-
timation of a comparatively small number of weights. The training time required by
these deep models is many orders of magnitude longer than that of traditional ap-
proaches, and if we take into consideration the training of word embeddings such as
Word2Vec’s skip gram model in a billion token corpus [Mikolov et al., 2013], the dif-
ference gets even more substantial. Additionally, deep learning models usually require
expensive hardware for training to become practical options.

In summary, the aforementioned sequence labeling models are exactly what we
are looking for in the RNE task. By labeling tokens in a webpage with machine learning
models, we can extract researcher names with more flexibility than that provided by
traditional tools for WDE.

2.3 Researcher Name Extraction

The objective of this dissertation is to find the best sequence models for NER on the
Web by assessing their performance in the RNE task. This task consists of extracting
researchers names from university faculty listings across the world with the purpose
of discovering their affiliations and linking their profiles to public databases such as

2. Problem Definition 12

Figure 2.2. Example of a faculty webpage.

DBLP or Google Scholar 4. Public researcher databases only have sparse information
about author affiliation and, even in fields for which the information is more easily
available, such as Computer Science, only a small fraction of the records have reliable
affiliation information, as we have verified in our preliminary studies. To acknowledge
the complexity of this task, take for example a snippet extracted from the staff page for
the intelligent robotics laboratory from Osaka University shown in Figure 2.2. There is
some pattern to the way member profiles are arranged, but the organization is rather
flexible. There are different character encodings in the page, there is some variation
to the presentation style of each researcher data record (some are links, some are text,
the font varies, etc.), and also, even the laboratory’s android makes an appearance in a
way that could be easily confused with a researcher. Other pages, even from the same
website, can show very different patterns, ranging from tables and lists to free form.
Researcher names can appear inside plain text, similar to the case of NER in news
texts or in a more tabular structure. Names may also be part of larger sentences such
as in "Michael Johnson Chair" and "John Doe Avenue" yielding false positives. Or
they can be composed of common words, e.g. Summer Hall, yielding false negatives.

4 This is useful, for instance, if one needs to compare the research output of departments in a
country, or study international publication patterns.

2. Problem Definition 13

There is no extraction rule that can fit all cases, so we need flexible solutions.
State-of-the-art NER models trained on news datasets do not perform well at this

task, because in many webpages, textual information alone is insufficient to indicate the
semantic category of a word. The absence of context demands extraction systems to
rely on information from sources outside the text, being them features extracted from
unlabeled corpora obtained through unsupervised pre-training, dictionaries containing
instances of the relevant entities, HTML structural features, or other clever solutions.
That is, a key problem in the task of entity name extraction is accounting for every
possible name combination. Since there is no database with all possible named entity
combinations, we need holistic statistical methods that can handle unknown tokens
with relative efficacy. In Chapter 5, we introduce the RNE dataset to evaluate the
performance of different sequence models in the RNE task.

Lastly, another important related task in the context of RNE is performing named
entity disambiguation, which consists of linking the extracted named entities to a
unique profile in a database. This task is called Named Entity Linking. In preliminary
studies, we verified that roughly half the records found in faculty webpages can be
linked to the respective records in public databases with the aid of string matching
techniques. For the other half, we may need to employ more complex systems or
perform manual classification. This task is also important, but it will not be covered
in the present study.

2.4 Summary

This chapter discussed the broad problem of IE in Section 2.1, presenting its challenges
and relations to different fields of Computer Science, and showing how it encompasses
the problem of WDE. Despite being a specific setting of IE, WDE has specificities that
demand solutions that are different from those used for plain text. In Section 2.2, we
discussed the related task of NER, which is very useful to IE both in plain text and Web
extraction tasks. Recent developments in NER can help WDE systems become more
flexible, handling extraction tasks across many website formats. Lastly, in Section 2.3,
we discussed the problem of RNE, which is the main topic of this dissertation, showing
how it can be challenging and why traditional solutions to WDE and NER may have
difficulty handling this specific setting. In fact, by combining the valuable knowledge
from both fields of study, we can get a more robust approach to RNE.

Chapter 3

Related Work

The RNE task is a problem in WDE that we proposed to solve with the application of
machine learning methods of NER. This chapter presents the related research in the
fields of WDE in Section 3.1 and NER in Section 3.2.

3.1 Web Data Extraction

Since the early 1990s, the astonishing growth of public information in the Web has led
to the development of a number of different approaches to the problem of WDE. Tra-
ditionally, the task was solved by designing special purpose programs called wrappers
to recognize relevant data and store records in a structured format. These early tools
varied wildly relative to their degree of automation.

It was readily perceived that manual wrapper generation was a rather tedious
and error prone process, unsuited for large scale operations. Wrappers tend to break
frequently because they rely on webpage features that can change often. So, in the late
nineties, several authors advocated for wrapper induction, a technique that consists
of automatically constructing wrappers from a small set of examples by identifying
delimiters or context tokens that single out the desired attributes. Some remarkable
wrapper induction methods are WIEN [Kushmerick, 2000], Soft Mealy [Hsu and Dung,
1998] and STALKER [Muslea et al., 1999].

Despite being better than constructing wrappers manually, wrapper induction
methods still suffered from a lack of expressive power and flexibility. These methods
had trouble handling records with missing attributes or unusual structures because
patterns could only be identified if they happened at least once in the examples.

Other approaches such as NoDoSE [Adelberg, 1998] and Debye [Laender et al.,
2002a] brought greater flexibility to wrapper induction methods by requiring a greater

14

3. Related Work 15

level of human interaction through graphical user interfaces. WDE techniques often
require some sort of assistance from human experts to boost accuracy. One of the main
challenges in the field lies in determining an adequate trade-off between the degree of
automation and the precision and recall of the data extraction tool.

To automate the task of WDE completely some approaches, such as Road Run-
ner [Crescenzi et al., 2001], removed entirely the need for data examples. Road Runner
parses documents belonging to a same class (e.g. books in Amazon) and generates
wrappers based on their similarities and differences, yielding comparable results to
those obtained by wrapper induction methods. However, like previous approaches, it
was unsuited for cross site extraction tasks because the learned rules were not general
enough.

Early NLP-based approaches aimed at extracting more general rules that could
possibly be employed over multiple websites. RAPIER [Califf and Mooney, 1999] is
a method of rule extraction that uses information such as part-of-speech tags and
semantic classes from a lexicon to derive patterns from a set of training examples.
This approach is more flexible than the wrapper induction methods, however it achieves
much lower rates of precision and recall.

In 2002, a survey [Laender et al., 2002b] made a thorough classification of the early
approaches with a taxonomy based on their main technology, being them: languages
for wrapper development, HTML-aware tools, NLP-based tools, Wrapper Induction
Tools, Modeling-based tools and Ontology-based tools. Some noteworthy examples
from this era are:

• TSIMMIS [Hammer et al., 1997] and WebOQL [Arocena and Mendelzon, 1998],
which are special purpose languages for building wrappers.

• Road Runner [Crescenzi et al., 2001], XWRAP [Liu et al., 2000] and
W4F [Sahuguet and Azavant, 1999], which are HTML-aware tools that infer
meaningful patterns from the HTML structure.

• RAPIER [Califf and Mooney, 1999], SRV [Freitag, 1998], WHISK [Soderland,
1999], which are NLP-based tools.

• WIEN [Kushmerick, 2000], Soft Mealy [Hsu and Dung, 1998] and
STALKER [Muslea et al., 1999] which are wrapper induction methods.

• NoDoSE [Adelberg, 1998] and Debye [Laender et al., 2002a], which are semi-
supervised tools that require some interaction with the user by means of a graph-
ical user interface.

3. Related Work 16

Chang et al. [2006] complemented the previous surveys with semi-supervised tech-
nologies such as Thresher [Hogue and Karger, 2005], IEPAD [Chang et al., 2001] and
OLERA [Chang and Kuo, 2004]. They differed from supervised and unsupervised
methods because they either needed only a rough description of data from users for
extraction rule generation or some level of post processing that needed user attention.

Most of the early WDE systems were rule-based with either manual rule de-
scription or automatic rule learning from examples, thus they suffered from a lack of
flexibility when dealing with noisy and unstructured data. Huge progress in the field of
statistical learning led to the development of models that tried to solve this problem.

Sarawagi [2008] introduced a classification that segmented wrappers in rule-based
methods, statistical methods and hybrid models, bringing together the fields of NER,
Relationship Extraction and WDE. The rule based methods encompass most of the
previous models. While the statistical methods convert the extraction task into a token
labeling task, solved with NER and Relationship Extractions methods. Traditionally,
these subtasks were solved with generative models based on HMMs or discriminative
models based on the Maximum Entropy principle, but recently these have been largely
superseded by Deep Neural Networks. Different from automatic wrapper generators,
statistical methods are suitable for a large variety of tasks, especially when we want
the system to handle cross website information extraction and plain text information
extraction. That is why this class of methods is of special interest to our application.
The progress of statistical models will be discussed in Section 3.2.

Surveys by Ferrara et al. [2014], Schulz et al. [2016] and Varlamov and Tur-
dakov [2016] updated the previous surveys on Information Extraction methods with
some interesting innovations. Some examples are: the Visual Box Model [Krüpl et al.,
2005], a data extraction system that produces a visualization of the webpage to exploit
visual cues to identify records presented in a tabular form; automatic wrapper adap-
tation [Ferrara and Baumgartner, 2011], a technique that tries to reduce the cost of
wrapper maintenance by measuring the similarity of HTML trees and adapting wrap-
pers to the new page structure; AutoRM [Shi et al., 2015], a method to mine records
from a single webpage by identifying similar data regions through DOM tree analysis;
and Knowledge Vault [Dong et al., 2014], a method that combines different extraction
approaches to feed a probabilistic knowledge base.

Most data extraction systems focus on extracting information from single websites
and are therefore unsuited for cross website extraction tasks. Even unsupervised ap-
proaches that are application domain independent, such as RoadRunner and EXALG,
only work well when extracting data from pages generated from a same template.

A statistical approach to unsupervised domain independent WDE was described

3. Related Work 17

by Zhu et al. [2005]. The 2D CRF model takes a webpage segmented into data blocks
and employs a two dimensional CRF model to perform attribute labeling. The model
was further improved in Zhu et al. [2006] to model record segmentation and attribute
labeling as a joint task. Some of the limitations of early unsupervised methods were also
addressed by ObjectRunner [Abdessalem et al., 2010] and AMBER [Furche et al., 2012].
These methods work by annotating webpages automatically with regular expressions,
gazetteers and knowledge bases. They can rectify low quality annotations and even
improve the annotators by exploring regular structures in the DOM during the record
segmentation phase.

WDE methods have undoubtedly improved extraordinarily, but as pointed by
Schulz et al. [2016], it is difficult to compare the results achieved by competing tools.
Also, many tools seem to rely excessively on heuristic methods. The recent advance-
ments in sequence taggers may provide more robust and flexible techniques to address
this problem.

3.2 Named Entity Recognition

NER is an important subtask in IE. The NER task was defined in the Third Message
Understanding Conference (MUC-3) [Sundheim, 1991], where researchers were asked
to extract entities from a news corpus about terrorist incidents. However, it was the
language-independent NER shared task at the Conference on Computational Natural
Language Learning in 2003 (CoNLL-2003) [Tjong Kim Sang and De Meulder, 2003],
that established an enduring labeled dataset constructed with news texts from Reuters.
Despite its reduced size and the limited variability of its documents, the CoNLL-
2003 dataset is still used to compare the performance of NER systems in English and
German.

Sequence labeling for NER and Part-of-Speech (POS) tagging (labeling nouns,
verbs, pronouns, etc.) is very similar, so, many times, research articles that propose
new methods for NER also report results for the POS Tagging task. And frequently,
the best methods for POS Tagging are also the best methods for NER.

Traditionally, the NER task was solved with generative models based on HMMs.
The first appearance of HMMs in the field of NLP occurred in the mid-seventies and
was primarily focused on the problem of Speech Recognition. But in the late nineties,
HMMs also found important applications in IE and NER as in the works by Bikel et al.
[1999], Freitag and Mccallum [1999], and Freitag and McCallum [2000].

The problem with HMMs is that they model the joint probability between se-

3. Related Work 18

quences of observations and labels P (X, Y), a harder problem than modelling the corre-
sponding conditional probability P (Y |X). They assume conditional independence for
the observations X, and therefore, they cannot handle overlapping features. This lack
of flexibility led to the development of discriminative approaches to sequence labeling
based on the Maximum Entropy principle.

Some early examples are Maximum Entropy Taggers for NER [Borthwick et al.,
1998] and POS Tagging [Ratnaparkhi, 1998]. The Maximum Entropy Markov
Model [McCallum et al., 2000] was developed just a while later, building up on the
intuition of HMMs combined with the flexibility of discriminative approaches. How-
ever, because of the label bias problem, this model was superseded by CRFs [Lafferty
et al., 2001; McCallum and Li, 2003]. At this time, the best performing systems almost
always resorted to external gazetteers and hand-chosen features, as is the case for the
CoNLL-2003 winning model [Florian et al., 2003].

With the advancement of Machine Learning in recent years, we saw the rise
of Neural Networks applied to sequence labeling. In 2011, Collobert et al. [2011]
introduced Neural Networks free of feature engineering to sequence labeling tasks, using
Convolutional Neural Networks (CNN) over word embeddings with a CRF output layer
to tackle the problems of POS tagging, Chunking, Semantic Role Labeling, and NER.
A similar architecture proposed in 2015 by Huang et al. [2015], the Bi-LSTM-CRF,
replaced the CNN in Collobert et al. [2011] with a bidirectional LSTM, achieving better
results.

In 2016, further advancement to the NER models was achieved by incorporating
character representations at the bottom of the Bi-LSTM-CRF architecture to extract
morphological features from words automatically. The model by Lample et al. [2016]
uses a bidirectional LSTM over character embeddings and the model by Ma and Hovy
[2016] uses a one dimensional CNN with max pooling over character embeddings. Both
models also made use of pre-trained GloVe word embeddings, created by Pennington
et al. [2014].

Small improvements to NER systems have been made since then, primarily due to
the introduction of new word embeddings on variations of the Bi-LSTM-CRF architec-
ture. From this group, we can mention ELMo [Peters et al., 2018], BERT [Devlin et al.,
2018], and Flair [Akbik et al., 2018]. All of them were introduced in 2018 and they
differ primarily in how to construct contextual embeddings from the internal states of
a language modelling neural network.

To our knowledge, the best NER system up to this date (considering the per-
formance in the CoNLL-2003 dataset) is the bidirectional transformer model proposed
by Baevski et al. [2019] that uses a stack of self-attention modules and ELMo embed-

3. Related Work 19

dings. Table 3.1 shows a comparison of the history of reported F1 scores in the English
test set of the CoNLL-2003 dataset for the NER systems that were mentioned in this
section. Each of the mentioned systems held the record for the task at a given time.

Model Test F1

Florian et al. [2003] (CoNLL-2003 Winner) 88.76
Collobert et al. [2011] 89.59
Huang et al. [2015] 90.10
Lample et al. [2016] 90.94
Ma and Hovy [2016] 91.21
Peters et al. [2018] 92.22
Devlin et al. [2018] 92.80
Akbik et al. [2018] 93.09
Baevski et al. [2019] 93.50

Table 3.1. Model performances in the CoNLL-2003 English test set.

3.3 Summary

In this chapter, we discussed the related work in WDE and NER. The models discussed
in this dissertation and employed in the experiments section are methods for NER that
were each deemed the best machine learning techniques for solving the problem at a
given time. However, the RNE task is essentially a WDE task, so some ideas from this
field are extremely useful, such as using HTML structural features, as we did in the
Self-Training strategy for HMMs and the attention models for Neural Networks, that
will be introduced in later chapters. Also, NER is a subtask that is mostly useful when
we think of it in the context of a larger task, such as a specific setting of WDE. Because,
NER approaches may be more or less effective depending on the objective extraction
task. For example, we will see in the experiments section that, despite the significant
improvements brought by ELMo embeddings to NER in plain text (as attested by the
results reported in the CoNLL-2003 English dataset), their performance is far from
great when we consider the RNE task, being surpassed by much simpler methods.

Chapter 4

Techniques for Sequence Labeling

Many tasks in NLP, such as POS Tagging and NER, can be solved by attributing
labels to sequences of words. While in NER, we want to classify words into a set of
predefined labels, any sequence labeling task in NLP can be modeled generically by
considering that X = {X1, X2, . . . , Xn} is a sequence of random variables representing
words from a finite vocabulary V = {a, aardvark, . . . , zebra}, and Y = {Y1, Y2, . . . , Yn}
is a sequence of random variables representing labels attributed to these words that
take values from a finite set L = {B-PER, I-PER, ...,O}, with both sequences generated
by an unknown probability distribution. Considering that we observe the sequence of
words x but we do not observe the sequence of labels y, then the goal for our classifier
is to find:

y∗ = arg max
y

P (Y = y|X = x) (4.1)

That is, the sequence of labels y∗ that maximizes the conditional probability of y once
we have observed the sequence of words x.

Estimating P (Y |X) naively from the relative frequencies in a labeled corpus is
usually inadequate due to the exponential increase in the number of word and label
combinations that needs to be considered as we increase the sequence size n. As n
becomes large, label combinations will become increasingly uncommon in the dataset,
what makes probability estimation less reliable. For example, if the vocabulary size
consists of 1,000 words and there are three possible labels for each word, then there
are already 27 billion combinations for sequences of only three words and labels. Also,
sequences that were not seen during training will always have zero probability. That
is problematic, because proper names are often unique or very infrequent in a corpus,
so many word sequences that we care about will belong to this category.

Ultimately, the difference between statistical sequence labelling models lies in the

20

4. Techniques for Sequence Labeling 21

assumptions that we make about the distribution P (Y |X). For practical reason, most
statistical models of natural language make simplistic assumptions about the language
structure. For example, a common assumption that is shared to some extent by all
the models presented in this chapter is the Markov Assumption, that will be discussed
thoroughly in Section 4.1. Stated simply, it assumes that by looking at a limited history
in the sequence, for example the two previous words, we have sufficient information to
make accurate predictions about the current word’s label.

The related task in NLP called Language Modelling consists of predicting the
next word in a sequence by looking at the tokens that precede it. Using the Markov
Assumption, a language model that looks at the two previous words is called a bigram
model and a model that looks at the three previous words is called a trigram model.

For anyone from a linguistics background, the idea that we would choose
to use a model of language structure which predicts the next word simply
by examining the previous two words - with no reference to the structure
of the sentence - seems almost preposterous. But, actually, the lexical co-
occurrence, semantic, and basic syntactic relationships that appear in this
very local context are a good predictor of the next word, and such systems
work surprisingly well. Indeed, it is difficult to beat a trigram model on
the purely linear task of predicting the next word [Manning and Schütze,
1999].

Considering this, we do not usually evaluate the quality of statistical natural language
models by how reasonable their assumptions are, but by how instrumentally effective
the models are for solving objective tasks. The epistemological implications of this
view are important, but in this work we will consider it to be valid.

In this chapter, we discuss several machine learning methods for NER. In Sec-
tion 4.1, we discuss Hidden Markov Models, in Section 4.2 we discuss Conditional
Random Fields, and in Section 4.3 we discuss Neural Networks.

4.1 Hidden Markov Models

In this section, we derive a supervised HMM approach for NER. The HMM is an ex-
panded Markov Chain where the sequence of observed states depends on an underlying
sequence of hidden states. In the context of NER, we can think that the states of a
Markov Chain correspond to the set of possible labels or classes (e.g. PER, ORG,
LOC, etc.). First, we consider a standalone Markov Chain and then we proceed to
discuss HMMs.

4. Techniques for Sequence Labeling 22

A Markov Chain is a stochastic model for describing sequences when the de-
scribed sequences have the Markov Property. That is, consider a sequence of random
variables Y = {Y1, Y2, . . . , Yn} taking values from a restricted set of possible states
L = {L1, L2, . . . , Lm}. Sequence Y only satisfies the Markov Property if:

P (Yi = Lk|Yi−1) = P (Yi = Lk|Yi−1, Yi−2, . . . , Y1) (4.2)

The probability of observing state Yi = Lk depends only on the previous state. What
the Markov Assumption implies is that, at any position in the sequence, the entire
history of observed states is encoded in the previous state. So, by knowing the previous
state, we can make as accurate predictions about the future as we would make by
knowing all the history. Conditioned on this previous state, the future and past states
are independent.

When we consider two or three previous states instead of a single previous
state, the Markov Chain is said to be of second order and third order, respectively.
Any Markov Chain of higher order can be converted into an equivalent first order
Markov Chain. For example, a Markov Chain of second order with two states {A,B}
can be transformed into an equivalent Markov Chain of first order with four states
{AA,AB,BA,BB}. Therefore, from now on, we will proceed with the analysis of first
order Markov Chains without loss of generality regarding higher order Markov Chains.

A Markov Chain can represent a wide range of phenomena such as daily temper-
atures in a region, closing prices of a stock in the financial market, yearly demographic
growth, or words in a text. However, in all these cases, the model is a simplification of
reality that makes sequences mathematically treatable. The extent to which this sim-
plification will hurt our predictions depends on the nature of the studied phenomena.

To see why assuming the Markov property may introduce a problem on text
related tasks, consider the following labeled sentence:

"[Jon Snow]PER is [Ned]PER ’s son. Snow is piling up over [Winterfell]LOC ,
but [Snow]PER is not bothered."

Snow is a very uncommon name, so a statistical model may have difficulty labeling the
last mention of Snow correctly, but it would certainly be helpful if it could refer to the
first mention in the beginning of the sentence, where the named entity label is more
obvious. To do this we would need to keep track of distant relationships in the text
that would not be captured by a Markov Model of second or third order. While we
could consider employing a Markov Model of higher order to overcome this limitation,
considering more than three or four states at any time makes parameter estimation

4. Techniques for Sequence Labeling 23

unreliable because each combination of states becomes increasingly uncommon in the
training set. Also, when the considered number of states increases, the cost for pre-
dicting the optimal sequence of states quickly becomes prohibitively high. There are
some Markov Chain variations that try to address this problem, as well as the other
models presented later in this chapter. However, HMMs up to third-order can work
well if we add independent features to make up for the lack of a longer context.

Furthermore, besides the Markov Assumption, we make the Time Invariance
Assumption:

P (Yi+1 = Lb|Yi = La) = P (Yi = Lb|Yi−1 = La) (4.3)

That is, given the observed states La and Lb, the probability of going from La to Lb
in position i is the same as in any other position in the sequence. We refer to "time"
invariance eventhough the correct name for this assumption in the context of sequence
labeling would be positional invariance, because this is the usual name adopted in the
literature. Everytime we refer to time or timesteps in the text, we mean the position
of a token or label in the sequence.

With this, we can calculate the probability of observing sequence
Y = {Y1, Y2, ..., Yn} as:

P (Y) =
n∏
i=1

P (Yi|Yi−1) (4.4)

With the Time Invariance Assumption, all transition probabilities in our model can be
described by a |L| × |L| transition matrix θ where each element θa,b with row a and
column b holds the probability of going from state La to Lb and |L| is the number of
possible labels. Naturally, the probabilities of row θa,∗ must sum up to one since they
represent the entire scope of transition possibilities starting from state La. For example,
consider the finite state-machine in Figure 4.1 that describes a Time Invariant Markov
Chain with only two states (Name, Word), that models a sequence of words that can
be either names or common words. The edges in this graph represent the transition
probabilities between states and the transition matrix for this Markov Chain takes the
form:

θ =

0.3 0.7

0.4 0.6

If we know the transition matrix θ for a Markov Chain, we can easily calculate the
probabilities of being in each state at time t. If ρt is a vector of size m with the
probabilities for each state at time t. Then:

ρt = ρ0 · θt (4.5)

4. Techniques for Sequence Labeling 24

Name Word

0.3

0.7

0.4

0.6

Figure 4.1. Finite state machine for a Markov Chain.

Where ρ0 is the vector of starting probabilities for each state. We assume that we
have no knowledge about the initial probabilities of our Markov Chain, so we simply
attribute the same probability to every state at time t = 0. For the Markov Chain
described in Figure 4.1, this assumption would make ρ0 = (0.5, 0.5). For convenience,
consider that P (Y1|Y0) is the probability of Y1 given the initial vector of uniform state
probabilities ρ0.

Now we know how to calculate the state probabilities for a Markov Chain at any
position in the sequence provided that we know the transition matrix. In the context
of sequence labeling, we want to obtain the transition matrix θ from our training
data. The most usual choice is to obtain θ such that it maximizes the probability of
reproducing our labeled dataset with Maximum Likelihood Estimation. More formalliy,
the likelihood of our model is given by:

L(θ) =
n∏
i=1

θyi,yi−1
(4.6)

Where yi is the correct label at position i. By defining ηa,b to be the count of transitions
from state a to b in the dataset, where a and b are states from a finite set of states
L = {L1, L2, . . . , Lk}. Instead, we can write the likelihood as:

L(θ) =
∏

a,b ∈ L

θ
ηa,b
a,b (4.7)

where the product is calculated over all possible transitions from a to b. The logarithm
function is monotone increasing, so we can maximize the log-likelihood instead of the
likelihood for ease of calculation. With the log-likelihood, the product over transition
probabilities becomes a sum of logarithms. The log-likelihood is defined by:

l(θ) =
∑
a,b ∈ L

ηa,b · log(θa,b) (4.8)

4. Techniques for Sequence Labeling 25

Then, the maximum likelihood estimator becomes:

θ̂ = arg max
θ

l(θ) (4.9)

However, if we try to optimize this function as it is, we will find that θ̂a,b = ∞. This
happens because we did not take into account the degrees of freedom of our model.
Every row in the transition matrix must sum up to one, so the parameters for the
last row are defined by the preceding rows. The degrees of freedom for the model are
actually |L|(|L|− 1) and not |L|2 as we were inadvertently considering before. That is,
we have a set of constraints: ∑

b ∈ L

θa,b = 1, ∀ a ∈ L (4.10)

With the aid of Lagrange Multipliers, we can incorporate this set of constraints into
our optimization objective and optimize the Lagrangian:

Λ(θ, λ) = l(θ)−
∑
a ∈ L

λa ·

(∑
b ∈ L

θa,b − 1

)
(4.11)

Setting ∂Λ(θ,λ)
∂λa

= 0 simply yields the initial set of constraints, but by setting the partial
derivatives ∂Λ(θ,λ)

∂θa,b
= 0, we get:

∂Λ(θ, λ)

∂θa,b
=

ηa,b
θa,b
− λa = 0 (4.12)

θa,b =
ηa,b
λa

(4.13)

Finally, using the initial constraint equations, we find that:∑
b ∈ L

ηa,b
λa

= 1 (4.14)

λa =
∑
b ∈ L

ηa,b (4.15)

θ̂a,b =
ηa,b∑

b′ ∈ L ηa,b′
(4.16)

yielding a closed form expression for the maximum likelihood transition matrix. What
is really convenient, since this is the average number of transitions from state a to state
b in the dataset. A value that can be easily calculated.

So far, we have assumed that all states/labels are observable, but in NER, only

4. Techniques for Sequence Labeling 26

the words are observed, while the named entity labels associated with these words
are not. That is why we need another layer of complexity. The HMM differs from
the Markov Chain in that it does not observe the states Y directly, but rather a
probabilistic function of these states. In Markov Chains, only the labels were being
considered without mention of the accompanying words. With the HMM, we want to
estimate the probabilities of a sequence of labels Y = {Y1, Y2, ..., Yn} (i.e. the Markov
Chain) from a sequence of observed states X = {X1, X2, ..., Xn} (i.e. the words in a
text, or a feature vectors with independent features). Now, to calculate the conditional
probability for a sequence of labels we employ Bayes Theorem:

P (Y |X) =
P (X|Y)P (Y)

P (X)
(4.17)

Also, since P (X) is invariant for every sequence of labels Y , to find the most likely
sequence of labels, we can simply optimize in terms of the joint probability:

P (Y |X) ∝ P (X|Y)P (Y) = P (X, Y) (4.18)

The procedure to obtain the P (Y) probabilities has already been described for the
standalone Markov Chains and it is the same for HMMs. But, to obtain the P (X|Y)

probabilities, we must make another assumption. That is:

P (Xi = xi|Yi = yi, Yi−1 = yi−1, Xi−1 = xi−1, ...) = P (Xi = xi|Yi = yi) (4.19)

the probability of observing word xi depends only on the current label yi, the hidden
state (e.g. B-PER, I-PER, O, etc.). With this assumption, we are stating that once we
know a token’s assigned label, then we can reliably predict what is the probability that
this token takes any value from a limited vocabulary. Conditioned on the assigned label,
the current word is independent of the other words in the sequence. This assumption
is problematic when we want to use observations from other positions in the sequence
to predict labels at the current position, because these observations are likely to be
correlated. For this reason, other models such as CRFs (explored in the next section)
try to overcome this issue by taking different assumptions.

Now we can finally calculate the probability of a sequence Y given a sequence of
observations X:

P (Y |X) ∝
n∏
i=1

P (Xi|Yi)P (Yi|Yi−1) (4.20)

This is the main equation for the HMM. To model the emission probability distributions

4. Techniques for Sequence Labeling 27

Name Word

John Hall

0.3

0.7

0.9
0.1

0.4

0.6

0.2

0.8

Figure 4.2. Finite state machine for a Hidden Markov Model.

P (Xi|Yi), we assume that the probabilities are time invariant and thatXi takes its value
from a fixed vocabulary with size |V |. Similar to the transition matrix θ, we introduce
a |V | × |L| emission matrix µ, where |L| is the number of possible labels and each cell
µa,b represents the probability that, given label a, we will observe word b. For example,
consider the finite state-machine in Figure 4.2 that extends our previous example and
defines a HMM with two states (Name, Word), and a vocabulary of two words (John,
Hall). The edges between the hidden states and the words represent the emission
probabilities, and the emission matrix for this HMM takes the form:

µ =

0.9 0.1

0.2 0.8

Now the log-likelihood for the HMM is defined as:

l(θ, µ) =
∑

a ∈ L,b ∈ L

ηa,b · log(θa,b) +
∑

c ∈ L,d ∈ V

η′c,d · log(µc,d) (4.21)

where η′c,d is a function that counts the number of emissions from state c to word
d. The matrices θ and µ are independent, so we can optimize for the transition and
emission matrices separately, therefore the procedure to find θ̂ is still the one described
in Equation 4.16. Also, notice that if we do the same procedure with Lagrangian
Multipliers that we employed to find the MLE for Markov Chains, but this time we
take the partial derivatives relative to µc,d and set the constraints such that each line

4. Techniques for Sequence Labeling 28

in the emission matrix must sum up to one, we will find that:

µ̂c,d =
η′c,d∑

d′ ∈ V η
′
c,d′

(4.22)

This is the expected number of times that we observed word d when we were at the
hidden state c in the training set. A closed form expression that is easy to calculate
from the training data. With that, we conclude the maximum likelihood parameter
estimation for the HMM. This procedure is only usable when we have access to labeled
data, since we need to observe the correct labels to estimate θ̂ and µ̂. If we only have
unlabeled data or partially labeled data, we can do the parameter estimation with the
Baum-Welch Algorithm by Baum et al. [1970], though the results for NER become
much less reliable.

4.1.1 Smoothing

The problem with the Maximum Likelihood Estimator derived above is that the emis-
sion probability for words that were not observed in the training set will always be
zero. Considering that we only have a small dataset and even if it were much bigger we
would still observe new words when running predictions for unseen data, this problem
needs to be addressed. We use Laplace smoothing [Manning and Schütze, 1999] to
change the estimates for θ and µ attributing some probability mass to unseen tokens:

θ̂a,b =
ηa,b + 1∑

b′ ∈ L ηa,b′ + |L|
(4.23)

µ̂c,d =
η′c,d + 1∑

d′ ∈ V η
′
c,d′ + |V |

(4.24)

where |L| is the number of labels and |V | is the size of the vocabulary. If we consider
other smoothing methods we will get different estimators, but this already properly en-
sures that unobserved words will not receive a zero probability. The main shortcoming
with Laplace Smoothing is that it gives too much probability mass to unseen words
relative to other smoothing methods.

4.1.2 Predicting sequences

The last task that needs to be done is to calculate the most likely sequence of labels
given a sequence of observations. With estimates for transition and emission matrices
we can easily calculate the conditional probability P (Y = y|X = x) of each label se-

4. Techniques for Sequence Labeling 29

quence y, given the observed sequence x. But, instead of computing probabilities for
each possible label configuration and taking the one with maximum probability, we
can obtain the label sequence with maximum probability with the Viterbi algorithm
by Forney [1973], which is a dynamic programming algorithm that calculates the prob-
abilities for sequences with the Markov Property exactly and efficiently. As we increase
the order of our HMM, this computation becomes exponentially more expensive, but
we found experimentally that for HMMs up to third order, the Viterbi algorithm is
still viable. For larger windows, a beam-search strategy can be used.

4.1.3 Self-Training

The self-training strategy is a semi-supervised machine learning technique to improve
the performance of HMMs in web sequence labeling tasks. A HMM for the sequence
labeling task has the form:

P (y|x) ∝
n∏
i=1

P (xi|yi)P (yi|yi−1) (4.25)

where x is a sequence of words and y is a sequence of labels, both with size n,
and the initial probabilities P (y1|y0) follow a uniform distribution across all label
assignments. Also, to simplify the notation, we omit the random variables, that is,
P (Y = y|X = x) ≡ P (y|x). To construct this model from the data, we need to esti-
mate the following probabilities:

• P (xi|yi): the emission probability of word xi given label yi.

• P (yi|yi−1): the transition probability of going from label yi−1 to label yi.

We may consider xi to be a vector of binary features, i.e. xi = {fi,1, fi,2, ..., fi,k} as
long as all the feature distributions are independent, conditioned on yi. That is:

P (xi|yi) = P (fi,1, fi,2, ..., fi,k|yi) =
k∏
j=1

P (fi,j|yi) (4.26)

Also, due to the time invariance assumption, the P (fi,j|yi) probabilities are independent
of the timestep i. Therefore, for each binary feature fj we need only estimate the
parameters P̂ (fj|y), relative to each possible assignment of y. The maximum likelihood
estimators for these feature parameters can be obtained from their relative frequencies,
just as we did in Section 4.1 for single words (Equation 4.22). For example, consider
a binary feature FC that indicates if a word is capitalized and label Y which takes a

4. Techniques for Sequence Labeling 30

value from the set {PER,O} indicating if the current word is a person name (PER)
or something else (O), then we can get the feature estimator with the expression:

P̂ (FC = 1|Y = PER) =
Count(fC = 1, y = PER)

Count(fC = 0, y = PER) + Count(fC = 1, y = PER)
(4.27)

where Count(fC = A, y = B) is a function that counts the number of times feature fC
took value A at the same time that label y took value B in the training set.

This approach yields good experimental results for textual features such as the
capitalization of a word, but if we try to use HTML structural features such as the
HTML tags, we will find that they are not very useful, contradicting our intuition. The
problem is that there is not much similarity between the HTML structure in different
webpages. For example, only because a named entity label occurs more often inside
<div> tags in a page, this does not mean that will be the case for most webpages.
Consider for example a faculty webpage that shows researcher names in a table (<td>
tags) in contrast to a webpage that organizes researcher names in a list (tags). If
there are many cases like the former page in our training set, and we use the HTML tag
feature in a model that assigns labels to the latter page in our test set, we will probably
get many wrong predictions. Nonetheless, the HTML features are not useless. Inside
a single webpage, the HTML tag is a good predictor of the correct labels. Words with
a similar HTML context tend to have similar labels. For example, words that happen
together in a list have very similar HTML contexts and are very likely to belong to the
same category. The question is how to obtain better parameter estimators for HTML
features.

Consider a set T of m textual features unrelated to the HTML structure:

T = {fT1 , fT2 , ..., fTm}

And a set H of k HTML features that are related to the HTML structure:

H = {fH1 , fH2 , ..., fHk }

Given a HMM trained with only the first set of features T , we can use this model to
predict the labels for an unlabeled document. Consider an HTML binary feature Ftd
representing if a token’s parent tag is <td>, then the estimator for this HTML feature
probability becomes:

P̂ (Ftd = 1|Y = PER) =
Count(ftd = 1, ỹ = PER)

Count(ftd = 0, ỹ = PER) + Count(ftd = 1, ỹ = PER)
(4.28)

4. Techniques for Sequence Labeling 31

Where ỹ is the label predicted by the HMM trained with only textual features and ftd
is the feature value in the training set. We use this formulation to calculate feature
probabilities for only the HTML features. Next, we incorporate the estimators for the
HTML feature probabilities in the original HMM and predict the final labels with the
whole set of features T ∪ H. This process could be repeated multiple times. If the
predictions are becoming more accurate with each iteration, then the estimates are also
likely to improve.

In a simpler explanation, the self-training strategy can be divided into the fol-
lowing steps:

• Train the HMM without any HTML features.

• Compute labels for a website with the trained HMM.

• Use the computed labels as a proxy for the actual labels in the website and
estimate HTML feature frequencies for this website alone.

• Recompute the labels now using the HTML feature probabilities.

To understand why this strategy could help labeling named entities on the Web, con-
sider the example shown in Figure 4.3. This example shows a snippet from a webpage
and how a naive HMM would probably attribute labels to each word. Despite being
rather uncommon, North West is an actual person name, what becomes obvious in
this case once we know the HTML context where it happens (inside a list with other
person names), but this is not so obvious if we consider the sentence in isolation. The
naive HMM could be improved if we calculated feature probabilities for the parent tags
using proxies for the correct labels. We would find that four times in a total of six
occurrences, the correct label for a word that happened inside a tag was I-PER.
By incorporating this knowledge in the model using the self-training strategy, we would
improve the probability that words North and West were labeled correctly as a person
name in this case.

The self-training strategy must be employed individually over each webpage. This
means that, for each webpage, we discard the previously calculated HTML feature
probabilities and calculate new ones. The reason for this is that the webpage layouts
vary significantly between different sources, so general feature probabilities are likely
to introduce too much noise in the model. In the above mentioned example, we cannot
assume that only because tokens inside a tag are more likely to be names in
the context of that particular webpage, this will also be the case for other webpages.
HTML feature probabilities cannot be generalized because of the great variation in

4. Techniques for Sequence Labeling 32

Figure 4.3. Example of a webpage snippet with labels attributed by a HMM.

webpage layout. For example, another webpage may be formatted in such a way that
named entities never occur inside a list, and all the tokens inside tables are named
entities. Therefore, HTML feature probabilities calculated outside the scope of the
webpage are likely to lead to bad predictions.

The self-training strategy could possibly be incorporated in the Baum-Welch
algorithm to provide a more statistically solid argument for its effectiveness, but this
heuristic already yields a consistent improvement to sequence labeling on the Web.
In theory, this strategy could be used with any sequence tagger, however retraining a
classifier with new features can become prohibitively expensive in the case of CRFs or
Neural Networks. In HMMs, retraining the features is fast, because we assume feature
independence and the maximum likelihood estimator can be obtained with a simple
closed form expression.

4.1.4 Experimental Considerations

HMM based taggers have been successfully applied in many NLP and WDE tasks such
as in the works by Rabiner [1990], and Freitag and McCallum [2000]. The closed-form
parameter estimation makes them incredibly fast to train, also their parameters are
very interpretable (because the model is simple), making them a good choice for a first
approximation to NER. However, as we will discuss in the experiments section, these
models are highly dependent on the right selection of features, what may outweigh the
benefit of a small training cost.

4.2 Conditional Random Fields

With HMMs, we tried to model the joint probability between words and labels P (X, Y)

and derive the conditional probability P (Y |X) with Bayes Theorem. However, this is
a waste of modelling effort, since we need to assume the shape of the prior distribu-
tion P (Y), but we only really care about the conditional problem. Thus, modelling
P (Y |X) instead of the joint distribution would presumably be a more direct and simple

4. Techniques for Sequence Labeling 33

approach. Also, to assure that the computation of P (X, Y) was feasible, we needed
to assume feature independence, what inhibits the use of overlapping features that
could potentially be useful in addition to words. Maximum Entropy models for se-
quence labeling were created to address these issues and, among them, Linear Chain
CRFs [Lafferty et al., 2001] stand out as the discriminative analogue to HMMs. CRFs
estimate the conditional probability while HMMs, being generative models, estimate
the joint probability. In this section, we derive the Maximum Entropy Classifier and
the Linear Chain CRF from basic principles.

The concept of Information Entropy established by Shannon [1948] quantifies
the amount of information expressed in a statistical distribution. The entropy H of a
random variable Z with a probability mass function P is given by:

H(Z) =
∑
z ∈ Z

P (z) · log
(

1

P (z)

)
(4.29)

The logarithm in the entropy function can be taken in any base. The change of base
will only provide a linear scaling of the same entropy function. When using base two,
H(Z) is essentially the expected number of bits necessary to encode the value of a
random outcome drawn from Z, that is E

[
log
(

1
P (Z)

)]
. The more bits we need to use

to encode the possible outcomes of a probability mass function, the more uncertain we
are about the underlying distribution. For example, if an event has only one possible
outcome, we always know the value of a random sample, therefore H(Z) = 0 and the
entropy is minimum. On the other end, if the probability distribution is uniform, all
outcomes have the same probability, and therefore we are as uncertain as we can be
and the entropy is maximum.

The principle of maximum entropy set forward by Jaynes [1957] states that,
when we do not know exactly what probability distribution generated a sample, the
best estimate for the parameters of this probability distribution is the one that makes
the least assumptions, or the one with maximum entropy. This is the distribution that
is closest to the uniform distribution. A similar argument can be made to limit the
number of free parameters in the model. That is, when comparing two models with
similar predictive power, the one with the least degrees of freedom should be preferred.

The principle of maximum entropy is similar to a principle in the philosophy of
science called Occam’s Razor 1, that states that, when there are two explanations for an
outcome, the one that makes the least number of assumptions is the best. Which is a

1 This idea is attributed to the English scholar William of Ockham that lived in the thirteenth
century.

4. Techniques for Sequence Labeling 34

good rule of thumb for science in general, even though, ultimately, nothing guarantees
that simpler models will be better.

The task of labeling word sequences can be thought of as a multinomial classifi-
cation task where each label Y is predicted according to its context X. The random
variable Y takes values from a finite set of labels L = {L1, L2, . . . , Lk} and the random
variable X takes a value from a finite set of possible contexts C. These contexts are
defined by a vector of observations expressing features (useful pieces of evidence) such
as: the last word is an honorific, the current word is capitalized, the current word is
"that", etc. Also, we define k binary feature functions fj ∀j ∈ [1, k] such that:

fj(x, y) =

1 if y = La and the feature is present in x

0 otherwise
(4.30)

Where the feature function is only true when the observed label is La and the feature
occurs in context x. So, at any position in the sequence, the truth statement of the
feature functions can be determined in terms of the predicted label y and the context
x. At this moment, we treat the task of attributing labels to tokens at each position
independently, so we consider that the context xi and label yi for a token at position i
can simply be represented generically by x and y.

Now, the Maximum Entropy framework provides a compelling way for estimating
the probability of a label given its linguistic context, that is P (Y |X). In the sequence
labeling problem, we actually want to maximize the conditional entropy:

H(Y |X) = −
∑

x ∈ C,y ∈ L

P (X = x, Y = y) · log (P (Y = y|X = x)) (4.31)

It is usual to approximate P (X = x, Y = y) with P (Y = y|X = x)P̃ (X = x) [Rat-
naparkhi, 1998], because the model probability P (X = x) is hard to obtain since its
probability space is the entire range of context configurations, which is usually very big.
However, the observed probability P̃ (X = x) is defined over a fixed training sample, so
we only need to calculate probabilities for context configurations that actually occur
in this sample.

If we maximize H(Y |X) subject to no restrictions, we will find that the Maximum
Entropy estimator will yield an uniform distribution, meaning that we are no better
than simply predicting labels at random. So, it becomes necessary to establish some
constraints for the optimization problem.

The choice is more or less arbitrary, but under the Maximum Entropy frame-

4. Techniques for Sequence Labeling 35

work, there is a strong motivation for setting the constraints in a way that makes the
Maximum Entropy estimator equivalent to the Maximum Likelihood estimator for our
model. By doing it, we can make sure that the model fits the data as tightly as possi-
ble (Maximum Likelihood), while making as few assumptions as it needs to (Maximum
Entropy). We can get this estimator by setting the constraints such that, given the k
binary feature functions that we determined earlier, there are also k constraints such
that:

EP [fi] = EP̃ [fi] ∀ i ∈ [1, k] (4.32)

where EP [fi] is the model expectation of fi and EP̃ [fi] is the empirical expectation of
fi. Or more clearly:

EP [fi] =
∑

x ∈ C,y ∈ L

P̃ (x)P (y|x)fi(x, y)

EP̃ [fi] =
∑

x ∈ C,y ∈ L

P̃ (x, y)fi(x, y)

From this point forward, assume that, when the random variable is omitted, P (x) ≡
P (X = x). Additionally, we need to make sure that the probabilities sum up to one,
so: ∑

y ∈ L

P (y|x) = 1 ∀ x ∈ C (4.33)

We can optimize the conditional entropy subject to these constraints with Lagrangian
Multipliers by defining the Lagrangian:

Λ(P, λ, β) = H(Y |X) +
k∑
i=1

λi(EP [fi]− EP̃ [fi]) +
∑
x ∈ C

βx

(∑
y ∈ L

P (y|x)− 1

)
(4.34)

and solving the unconstrained optimization problem to obtain the maximum entropy
distribution:

P ∗ = arg max
P

Λ(P, λ, β) (4.35)

The derivatives relative to λi and βx yield the initial constraints, but setting the
derivative relative to P (y|x) to zero, we get:

∂Λ

∂P (y|x)
= −P̃ (X)− P̃ (X) · log P (y|x) + βx + P̃ (X)

k∑
i=1

λifi(x, y) = 0 (4.36)

4. Techniques for Sequence Labeling 36

P (y|x) = exp

(
βx

P̃ (x)
− 1

)
· exp

(
n∑
i=1

λifi(x, y)

)
(4.37)

By replacing P (y|x) in our initial probability constraints defined in Equation 4.33, we
get: ∑

y

exp

(
βx

P̃ (x)
− 1

)
· exp

(
n∑
i=1

λifi(x, y)

)
= 1 (4.38)

exp

(
βx

P̃ (x)
− 1

)
=

1∑
y exp (

∑n
i=1 λifi(x, y))

(4.39)

By replacing the Equation 4.39 in Equation 4.37 we finally get:

P (y|x) =
1

Z(x)
· exp

(
n∑
i

λifi(x, y)

)
(4.40)

Z(x) ≡
∑
y

exp

(
n∑
i=1

λifi(x, y)

)
(4.41)

This defines a family of exponential functions with parameters λ. To obtain the param-
eters that maximize the entropy of our model subject to the initial set of constraints,
we can replace this definition back in the Lagrangian Λ and optimize in terms of λ.
This yields the following optimization problem:

Λ(λ) =
k∑
i=1

λiE[fi(x, y)]−
∑
x

P̃ (x) · log Z(x) (4.42)

which is identical to the log-likelihood:

l(P) =
∑
x,y

P̃ (x, y) · log P (y|x) (4.43)

With this, we conclude that a model with the parametric form defined in Equation 4.40
has identical maximum likelihood and maximum entropy estimators. Also, it can be
proven that this model is unique and its optimization function is concave [Brown,
1986]. The classifier based on this model is known as a Logistic Classifier or Maximum
Entropy Classifier. There is no closed-form expression for finding the optimal set of
parameters, but we can obtain this optimal set with numerical optimization methods
such as Stochastic Gradient Descent. Normally, this is achieved by minimizing the
cross-entropy for the exponential model, which is identical to maximizing the likelihood.

4. Techniques for Sequence Labeling 37

For the particular case of sequence labeling, the simplest conceivable classifier
inside the Maximum Entropy Framework would be a multinomial logistic regression
that decodes each label independently. That is, given a context x, the classifier would
predict a label y without taking in consideration any of the previous or forward la-
bels. This would be the discriminative analogue to the Naive Bayes model. However,
the independence assumption is too restrictive for some language related tasks, as we
attested in the experiments for this dissertation.

Linear Chain CRFs 2 relax this assumption by jointly decoding the entire sequence
of labels. That is, they normalize the probabilities over the entire sequence of labels
and the feature functions also take the previous label in consideration. The CRF
equation is very similar to the generic maximum entropy equation derived earlier.
The only difference being the assumptions about the feature functions and the joint
decoding of label sequences. For a sequence of contexts x = {x1, x2, . . . , xn} and labels
y = {y1, y2, . . . , yn} with size n, and k feature functions, the Linear Chain CRF is
defined by:

P (Y = y|X = x) =
1

Z(x)

n∏
i=1

exp

(
k∑
j=1

θjfj(yi−1, yi, xi)

)
(4.44)

Z(x) =
∑
y′

n∏
i=1

exp

(
k∑
j=1

θjfj(yi−1, yi, xi)

)
(4.45)

Where y′ is the set of all possible label combinations with size n. This is a huge
combinatorial space with |L|n combinations, where |L| is the number of possible labels.
But this quantity can be calculated efficiently with the sum-product algorithm, because
of the assumptions regarding the feature functions. The most likely label sequence can
be calculated with the Viterbi algorithm, as was the case for HMMs.

Our analysis only discussed Linear Chain CRFs. For a thorough analysis of
Conditional Random Fields that is not restricted to Linear Chains, consult Sutton and
McCallum [2012].

4.2.1 Experimental Considerations

CRFs are more general than HMMs, because the transitions from yi−1 to yi can depend
on the context xi and the feature functions may be correlated. This flexibility of feature

2 When we talk about CRFs in other contexts, unless stated otherwise, we will be talking about
Linear Chains CRFs.

4. Techniques for Sequence Labeling 38

functions, and the fact that CRFs model the conditional probability instead of the joint
probability allows for a wider range of possibilities. In general, CRFs have performed
better than HMMs in sequence labeling problems, but recently, pure CRF models have
been largely replaced by neural networks. However, CRFs are still employed as the
output layer of complex neural architectures and the maximum entropy framework is
of great relevance to Neural Networks.

4.3 Neural Networks

The recent upsurge in the popularity of neural networks owes to the increasing com-
putational capacity brought by Graphical Processing Units and discoveries such as
the fast learning algorithm for Deep Belief Networks [Hinton et al., 2006], Convolu-
tional Neural Networks [LeCun et al., 1989], Long Short-Term Memory [Hochreiter
and Schmidhuber, 1997], and Word Embeddings [Bengio et al., 2003] which helped
overcome the limitations of earlier neural architectures.

Neural networks are a family of classification algorithms that were vaguely in-
spired in the functioning of the human brain. They consist of a weighted graph of
artificial neurons, which are functions that receive an input from other neurons or from
an input vector and produce an output according to their activations. Neural networks
are a general framework that can encompass other machine learning approaches. For
example, as proven by Cox [1958], a single layer neural network with a Softmax acti-
vation function (a Perceptron) is equivalent to the multinomial logistic classifier, that
we already explored in the previous section. For a thorough view of the topic of neural
networks, consult Bengio [2009].

An extension of the logistic classifier to a neural network with multiple layers
can still be trained by minimizing the cross entropy function. However, once we add
multiple layers on top of the logistic classifier, the optimization problem no longer
retains its convexity. This means that numerical optimization methods can get trapped
on local minima and miss the best set of parameters. For a long time, this limitation
hindered the development of neural architectures. Nonetheless, in many practical cases,
the rugged shape of the cost function does not prevent the optimization algorithm from
finding a good set of parameters, as long as we make use of clever optimization strategies
to avoid local minima, such as the strategy of adding momentum to gradients [Sutskever
et al., 2013].

In contrast to earlier probabilistic models that were more statistically oriented,
many improvements to neural networks derive from empirical results obtained in spe-

4. Techniques for Sequence Labeling 39

cific applications. In the probabilistic modelling of text, we are especially interested
in the subclass of Recurrent Neural Networks (RNN). RNNs have been successfully
employed on numerous NLP tasks such as language modelling, POS tagging, speech
recognition and NER. In RNNs, some of the neural layer activations become inputs
to the same layer at the next timestep. Additionally, different from feed-forward neu-
ral networks, RNNs can retain information in their internal state. This characteristic
can function as a memory cell, preserving long distance relationships across the chain,
and making them more suitable for processing sequences, and consequently for solving
text related tasks. Figure 4.4 describes a RNN for sequence labeling unrolled through
multiple timesteps.

Figure 4.4. RNN for NER

At each timestep, the neural network computes a hidden state ht using an in-
put vector xt and the previous hidden state ht−1, that retains information from past
iterations. The input vector xt for the RNN could consist, for example, of word fea-
tures indicating if the word is an honorific, if it is the word "that", if it is capitalized,
etc. However, pretrained word embeddings usually provide better input vectors for
language related tasks, as we will discuss in Section 4.3.2. Finally, the RNN produces
an output vector yt representing the label for that timestep. A common definition for
an RNN cell is given by the equations:

ht = tanh(Wxxt +Whht−1)

yt = softmax(Wyht)

where Wx, Wh and Wy are weight matrices that can be trained with the Backpropaga-
tion Through Time (BPTT) algorithm [Werbos, 1990]. On a sequence labeling task,Wy

is a |H|×|Y | weight matrix where H is the size of the hidden layer, defined experimen-
tally according to the task, and Y is the number of classification labels for our problem.
With the Softmax activation, the RNN will generate a probability distribution across
the range of possible labels and we can simply select the most probable label at each

4. Techniques for Sequence Labeling 40

timestep, assuming independence between labels. Theoretically, RNNs are capable of
learning and retaining long term dependencies with their internal state ht. However,
in practice, it becomes difficult due to the vanishing gradient problem [Bengio et al.,
1994], as we will now discuss.

The vanishing/exploding gradient problem is one example of an empirical problem
that constrains theoretically sound network designs. When training neural networks,
the weight updates are obtained from the partial derivatives of a loss function. As
these derivatives are propagated with the chain rule to distant layers, their values tend
to get vanishingly small or explode exponentially, what makes training less effective.
This problem is particularly critical for RNNs, because there is the need to propagate
weights over a substantial number of timesteps. LSTMs were created by Hochreiter
and Schmidhuber [1997] with this problem in mind and they have been popularized
because of their effectiveness. LSTMs incorporate a long term memory cell in the form
of a vector c in addition to the hidden state already present in the conventional RNN.
This new memory is preserved or updated conditionally based on the observed input.
A generic description of this architecture is given in Figure 4.5.

Figure 4.5. RNN with a long term memory cell c.

The LSTM has three gates to control the flow of information that comes in and
out of the memory cell c. The input gate Γi controls the amount of new information
that will flow into the memory cell, the forget gate Γf controls the amount of previous
information that will be retained in the memory cell (despite the misleading name),
and the output gate Γo controls the amount of information stored in the memory
cell that will be used to compute the output activation of the LSTM unit. LSTM
implementations vary slightly in the literature. A visual description of our LSTM unit
is provided in Figure 4.6.

Consider that the vector [xt, ht−1] is formed by concatenating the current input
vector xt and the hidden vector from a previous timestep ht−1. Also, consider that ∗

4. Techniques for Sequence Labeling 41

Figure 4.6. LSTM Cell

represents the Hadamard Product (element-wise multiplication) of two matrices with
the same dimensions. That is:a11 a12

a21 a22

 ∗
b11 b12

b21 b22

 =

a11b11 a12b12

a21b21 a22b22

Then, the equations for the LSTM unit are:

Γi = σ(Wi · [xt, ht−1] + bi)

Γf = σ(Wf · [xt, ht−1] + bf)

Γo = σ(Wo · [xt, ht−1] + bo)

ct = Γf ∗ ct−1 + Γi ∗ tanh(Wc · [xt, ht−1] + bc)

ht = Γo ∗ tanh(ct)

where σ is the logistic sigmoid function. Γi, Γf , and Γo are the input, forget and
output gates, respectively, and Wi, Wf , Wo are the weight matrices corresponding to
each gate. ct is the cell state at time t and ht is the hidden state at time t.

4.3.1 BI-LSTM-CRF

On NER tasks, knowing both past and future words could be important to attribute
a label at time t 3. For example, in the sentences "Summer Smith is a lawyer" and
"Summer came early this year", at the first timestep, it might be useful to know the
words after Summer to correctly label the sequences. When jointly decoding label

3 The timesteps in the context of LSTMs for sequence labeling refer to positions in a sequence. So
future words are words that come later in the sequence and past words are words that happen earlier
in the sequence.

4. Techniques for Sequence Labeling 42

sequences with the Viterbi algorithm in HMMs or CRFs, these codependencies are
taken into account, however a regular LSTM network only takes past hidden states
into consideration.

A bidirectional LSTM solves this problem by stacking two regular LSTMs, and
feeding them with observations in opposite directions. The first LSTM receives forward
states and the second LSTM receives backward states. The hidden states from both
networks can then be concatenated at each timestep to produce output labels. With
this architecture, LSTM units may use information from past and future timesteps
to decide the label at time t. However, labels are still decoded individually at each
timestep, because we are looking at past and future information encoded in the LSTM
state but not the actual label predictions.

Huang et al. [2015] proposed a bidirectional LSTM with a CRF4 layer (BI-LSTM-
CRF) on the output to overcome this obstacle. The main benefit of adding a CRF
layer in the neural sequence model is that the labels are jointly decoded for a whole
sentence instead of being predicted individually. Some predicted labels should be highly
correlated in a NER task (e.g. I-PER is very likely to happen after B-PER), so it is
desirable to predict sequences conjointly. The BI-LSTM-CRF is described in Figure 4.7.

Figure 4.7. Bidirectional LSTM-CRF

4.3.2 Word Embeddings

In language-related tasks such as sequence labeling, training data is usually scarce.
Because of the huge number of word combinations that may occur in natural language,
most combinations will never be observed in the training data. For this reason, it is
useful to know to which extent two words are related. For example, if the sentence
"John is a person" occurs multiple times in the training data, but the sentence "Joe
is a person" never occurs, it may be useful to know that the words "John" and "Joe"

4 The definition for the Linear-Chain Conditional Random Fields (CRF) layer was given in Sec-
tion 4.2.

4. Techniques for Sequence Labeling 43

are somewhat related when predicting labels for this new sentence. This is one of
the motivations for using word embeddings as input vectors for the recurrent neural
network architectures presented earlier in this chapter.

Word embeddings are lower-dimensional representations of words in continuous
space. That is, each word is represented by a vector of continuous features, typically
50 to 300 dimensions, containing Ad Hoc variables whose values are determined with
unsupervised clustering methods for words in large corpora. Word embeddings are
lower-dimensional in comparison with the size of the vocabulary, which usually consists
of a few hundred thousand words. If we were to use binary features to signal the
occurrence of a word (one-hot vectors), we would need one feature for each word,
making network training ineffective and the comparison of similarity between different
words impossible. With word embeddings, the number of parameters in the sequence
model is dramatically reduced. Also, the mapping of words into feature vectors makes
possible the comparison of different words according to their shared features (usually
using cosine similarity). And lastly, word embeddings can be pre-trained without
supervision on large corpora and be used on tasks for which there is little labeled data.

Pre-trained word embeddings are a powerful form of transfer learning. Transfer
learning is a group of techniques concerned with bootstrapping the learning of model
parameters by obtaining information from another dataset not directly related to the
problem. This is especially useful in NER, because named entities that belong to the
same class tend to have similar word embeddings. Thus, with good word embeddings,
a neural network might predict the correct label for a word that was never seen during
training because this label is similar to other words that occurred in the training set.

There are multiple methods to produce word embeddings, and most of the official
implementations also provide pre-trained word embeddings for the English language.
In this work, we explored three sets of pre-trained embeddings: Word2Vec [Mikolov
et al., 2013], GloVe [Pennington et al., 2014] and ELMo [Peters et al., 2018]. The
characteristics of each set of embeddings is given in Table 4.1.

Model Dimensions Training Set Tokens (billions) Vocab.

Word2Vec 300 Google News 100 3M
GloVe 300 Gigaword5 + Wikipedia 42 400K
ELMo 512 Wikipedia 5.5 -

Table 4.1. Statistics of pre-trained word embeddings.

Most breakthroughs in sequence labeling in the past few years came with the in-

4. Techniques for Sequence Labeling 44

troduction of novel methods for constructing word embeddings, as was the case for the
three methods mentioned earlier. Different from earlier methods such as Word2Vec and
GloVe that produced static vectorial representations of words, more recent approaches
such as ELMo produce context dependent embeddings for a specific dataset with a
neural network pre-trained on a language modelling task. Also, the word representa-
tions in ELMo are entirely character based, therefore there are no out-of-vocabulary
words.

4.3.3 Character Representations

When creating deep neural architectures, one of the objectives is to allow the neural
network to discover useful features by itself instead of feeding it with what we think
is relevant. In NER, morphological features are very useful to classify named entities.
For example, knowing that a word ends in "ing" means that it is probably a verb and
therefore it is unlikely to be a proper name. We can add a character representation
layer at the bottom of the Bi-LSTM-CRF to extract these morphological features
automatically. The character representations, which are fixed size vectors that encode
morphological features, are concatenated to word embeddings and fed to the LSTM.

In the next Subsection, we describe two methods to build character representa-
tions. Both of them receive character embeddings as inputs. Character embeddings are
fixed size dense vectors that work the same way as word embeddings, except that the
lookup function maps characters to embeddings instead of words to embeddings. This
means that each word generates a character embedding matrix with size |W | × |C|,
where |W | is the word length and |C| is the character embedding size (determined
experimentally). Also, the character embeddings are trained directly in the target
dataset, since the vocabulary size is much smaller than in the case of word embed-
dings.

4.3.3.1 CNN character representations

The CNN method proposed by Ma and Hovy [2016] uses a CNN layer at the bottom of
the Bi-LSTM-CRF architecture to encode character-level information. The CNN layer
is described visually in Figure 4.8. The CNN receives character embeddings as inputs.
For example, if the character embeddings have 50 dimensions, then the input matrix
representing word "jaguar" would be a 50×6 matrix. The one dimensional convolution
operation works by sliding fixed size kernels over the input matrix producing scalar
values at each position. These kernels, also called filters, try to detect morphological
patterns in the input matrix such as "ing" or "son". In this example, we define three

4. Techniques for Sequence Labeling 45

Figure 4.8. CNN-based character representations for the word "jaguar".

kernels with window size 3 (which is usually a good number for detecting useful prefixes
and suffixes), each kernel consists of a 50× 3 matrix. At each window position in the
word (i.e. "jag", "agu", "gua" and "uar"), we perform a convolution over each of the
50 channels (character embedding features) adding up the results to produce a scalar
value. This way, after running the three kernels over the input matrix, we get a 4× 3

matrix indicating at each window position the extent to which each filter was activated.
Finally, we perform a global max pooling operation that collapses the filter dimension
taking its maximum value over the 4 window positions, producing a vector with 3
dimensions that indicates for each filter, if it was triggered in that word. This means,
that when a filter gets a good match at any position in the sequence, the max pooling
layer output relative to that filter will be triggered, therefore this type of character
representation detects position invariant morphological features. For example, the
word "finger" would trigger a filter for "ing" the same way the word "writing" would
trigger this filter.

4.3.3.2 LSTM character representations

The LSTM method proposed by Lample et al. [2016] models character-level represen-
tations with a Bi-LSTM similar to the one described in Figure 4.7, however instead of
receiving words as inputs, it receives sequences of character embeddings. Also, instead
of producing an output at each timestep, we are only interested in obtained the hid-
den state at the first timestep for the backward LSTM and the hidden state for the
last timestep for the forward LSTM. The combined forward and backward states are

4. Techniques for Sequence Labeling 46

concatenated to form the character representation, as described visually in Figure 4.9.

Figure 4.9. LSTM-based character representations for the word "jaguar".

The forward state is expected to be a better representation of the suffix of a
token, and the backward state is expected to be a better representation of the prefix
of a token. This differentiates the architecture from the CNN method, because the
LSTM based representations are not positional invariant.

Chapter 5

Researcher Name Extraction
Dataset

This chapter describes the dataset used to evaluate the performance of sequence label-
ing models on the task of RNE. We call it the RNE dataset. We attested experimentally
that models trained in a popular NER dataset (the CoNLL-2003 English dataset) do
not perform well in the RNE task and this is likely due to the differences between plain
text and HTML. The lack of other NER datasets built for HTML name extraction
imposes the need to construct a dataset specific for RNE.

The RNE task consists of finding researcher names in faculty listings from uni-
versity webpages across the world, mainly from Computer Science departments. This
would be a necessary step when linking researcher profiles from university websites to
their entries in public databases. Unlike many WDE datasets, each webpage in the
RNE dataset comes from a different website, and therefore has a different format, what
makes many WDE approaches impractical. The idea is to explore systems that are gen-
eral enough to allow accurate entity extraction from different sources while requiring
no supervision between different websites.

We collected 145 Computer Science and Engineering faculty pages from 42 differ-
ent countries in multiple languages, although the English version was favored whenever
it was available. We gathered faculty webpages in proportion to the number of univer-
sities in each country1. The dataset size was limited to a number of pages that could be
viably labeled manually and that could still represent many different countries. Also,
university pages that contained corrupt HTML or JavaScript code that performed lazy
loading of data records were not included in this dataset.

1A detailed list of universities can be found in https://univ.cc/world.php

47

5. Researcher Name Extraction Dataset 48

This chapter is divided as follows. Section 5.1 describes the dataset format and
how it was split in three data files. Section 5.2 describes how the evaluation of results
in this dataset was carried on. Section 5.3 describes how we obtained a dictionary
of relevant named entities for this dataset, and discusses some baselines. Lastly, Sec-
tion 5.4 compares the characteristics of the RNE dataset with another popular NER
dataset, the CoNLL-2003 English NER dataset.

5.1 Data Description

Each of the 145 faculty pages was preprocessed and converted to the CoNLL-2003 data
format. That is, one word per line with empty lines representing sentence boundaries.
Sentence boundaries were determined by line break HTML tags (div, p, table, li, br,
etc.) in contrast to inline tags (span, em, a, td, etc.). For example, the HTML sentence:

<p>E. Smith is a professor.</p>

becomes:

E. Smith is a professor.

Sentences that were more than fifty tokens long were also split according to the punc-
tuation. Some algorithms have trouble handling very big sentences, so we verified
experimentally that fifty tokens provide a large enough context and allow efficient
training using a GPU. A few sentences in the dataset would be more than a thousand
tokens long if this step was not performed, what would make batch training for neural
networks less efficient.

A robust tool for HTML segmentation poses many challenges by itself, but the
simple approach adopted here has proved to be sufficient to perform RNE adequately.
Also, it is best to evaluate NERmodels without relying on any sophisticated data record
segmentation system. In many cases, entity annotation may precede the segmentation
phase on WDE methods. Also, depending on the task (as is the case for researcher
name extraction), a good annotator that is able to work with raw HTML provides a
good solution to the problem.

Finally, all tokens were tagged using the IOB scheme put forward by Ramshaw
and Marcus [1999] and used in CoNLL-2003, this is:

Words tagged with O are outside of named entities and the I-XXX tag is
used for words inside a named entity of type XXX. Whenever two entities
of type XXX are immediately next to each other, the first word of the

5. Researcher Name Extraction Dataset 49

second entity will be tagged B-XXX in order to show that it starts another
entity [Tjong Kim Sang and De Meulder, 2003].

The RNE dataset only has entities of type person PER, therefore a classifier has
to label each token with one of the labels: O, B-PER, or I-PER. The following example
sentence, obtained from the dataset, illustrates proper token labeling:

Token Correct Label

Kasper I-PER
Rasmussen I-PER
Associate O
Professor O
, O
Royal O
Society O
Research O
Fellow O

The RNE dataset was divided in a training, a validation and a test set, as de-
scribed in Table 5.1. The sizes of the data files were divided in approximately the same
proportion adopted in other sequence labeling datasets such as CoNLL-2003, that is
described in Table 5.2. Only the training set was used to fit model parameters. Models
that relied on numerical optimization methods such as neural networks were evaluated
successively on the validation set during training to avoid overfitting. That is, the
validation set was never observed during training, but it provided an unbiased evalua-
tion of model performance. We kept training parameters until the performance in the
validation set no longer improved. This is called the early stopping validation strategy.
The comparison of different models was conducted by comparing their performance in
the test set, which is never observed during training or used in the validation strategy.

Data file Documents Sentences Tokens Names

Training 85 24,728 110,269 5,822
Validation 30 8,743 36,757 1,788
Test 30 10,399 44,795 2,708

Total 145 43,870 191,821 10,318

Table 5.1. Description of the data files in the RNE dataset.

5. Researcher Name Extraction Dataset 50

Data file Documents Sentences Tokens LOC MISC ORG PER

Training 946 14,987 203,621 7,140 3,438 6,321 6,600
Validation 216 3,466 51,362 1,837 922 1,341 1,842
Test 231 3,684 46,435 1,668 702 1,661 1,617

Total 1,393 22,137 301,418 10,645 5,062 9,323 10,059

Table 5.2. Description of the CoNLL-2003 English dataset

Most webpages in this dataset are faculty directories with informative text in
small passages, even if long prose is not absent. Size and structure varies wildly, there-
fore some documents may contain up to a few hundred names whereas other documents
may contain only a dozen names. This difference in document size and characteristics
may be problematic when comparing different extraction systems, because a system
that performs well on some types of pages may perform poorly on other types. To
avoid this problem, we tried to keep the proportion between the number of tokens and
the number of documents roughly the same for all data files.

5.2 Evaluation

The performance of classifiers in the RNE dataset was evaluated according to their
precision (P), recall (R) and F-scores in the test set. The precision and recall measures
are defined in terms of the number of true positives, false negatives, and false positives
made by the classifier when extracting named entities. That is:

Precision =
TruePos

TruePos + FalsePos
Recall =

TruePos
TruePos + FalseNeg

Precision accounts for the proportion of named entities found by the model that
are correct relative to all predicted named entities. Recall is the proportion of named
entities correctly predicted by the model relative to all named entities in the dataset.
Precision measures Type I errors (false positives) and recall measures Type II errors
(false negatives). Partial matches are not considered, so a classification only counts as a
true positive if the entire named entity has been correctly extracted. Additionally, the
F-score, proposed by Rijsbergen [1979], is a composite measure that combines precision

5. Researcher Name Extraction Dataset 51

and recall, defined as:

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

(5.1)

The choice of β depends on the relative importance attributed to precision over
recall. This formula “measures the effectiveness of retrieval with respect to a user who
attaches β times as much importance to recall as precision” [Rijsbergen, 1979]. A
common choice for the value of β is 1, in which case the measure is called the F1-score
(F1). Whenever the F1-score is used, we attribute as much importance to recall as to
precision.

In our experiments, we measured the precision, recall and F1-scores over the entire
data files. Considering that each webpage has a different number of named entities,
this naturally privileges models that work well for pages with more named entities. A
different approach might be to consider the averaged precision, recall and F1-scores
per webpage, privileging systems that have more regularity between different websites.
However, this approach would also have negative implications. That is, the impact of
errors in pages with many named entities would diminish and the impact of errors in
pages with few named entities would increase. So, the former approach was preferred.

5.3 Dictionary

A dictionary of named entities can be a powerful aid to sequence labeling systems,
especially when considering traditional statistical methods. For the RNE task, we
extracted a list of 1,595,771 researcher names from the DBLP database and annotated
tokens in the RNE dataset with exact and partial match tags. That is, if a sequence
of tokens corresponded exactly to a name from the DBLP list, the entire sequence was
annotated as an exact match. Otherwise, if only some tokens in the sequence matched a
name from the DBLP list partially, the matching tokens were annotated with a partial
match tag. This dictionary was used by some of the models that will be discussed in
the experiments chapter, however it must be stated that one of the main advantages of
Deep Neural Networks relative to other approaches is the fact that they can perform
well even without the aid of a dictionary.

To understand how this dictionary can be useful for some models in the RNE, we
measured the precision, recall and F1-scores for an exact dictionary matching strategy
in each RNE data file. The results, shown in Table 5.3, provide a baseline with which
to compare other methods of sequence labeling. Any useful extraction method should
at least improve upon this approach. Recall is very low because the dictionary is

5. Researcher Name Extraction Dataset 52

Data file Precision Recall F1 Correct names

Training 0.7316 0.2303 0.3504 1,341 of 5,822
Validation 0.8474 0.2858 0.4274 511 of 1,788
Test 0.8717 0.3268 0.4754 890 of 2,723

Table 5.3. DBLP dictionary coverage in each data file of the RNE dataset,
when an exact dictionary matching strategy is used.

incomplete and precision falls short of top performing extraction methods. This last
result is surprising since we are only extracting exact matches. The reason for the
low precision is that exact dictionary matches may actually only correspond to partial
matches in the dataset. For example, if the dictionary has an entry for "Ann Smith",
it may partially overlap an entry in the dataset for "Mary Ann Smith", yielding a false
positive.

5.4 Comparison with CoNLL-2003

The CoNLL-2003 dataset was introduced in the NER shared-task in 2003 and is
frequently used to attest the performance of state-of-the-art sequence labeling sys-
tems [Huang et al., 2015; Lample et al., 2016; Ma and Hovy, 2016; Peters et al., 2018].
The English data, which is composed of news stories extracted from the Reuters Corpus,
provides annotations for four types of entities: people (PER), organizations (ORG),
locations (LOC), and miscellaneous (MISC), i.e., entities that cannot be classified in
one of the former groups. The statistics for the CoNLL-2003 dataset were already
described in Table 5.2.

If the CoNLL-2003 English dataset is used to both train and evaluate state-of-
the-art models, it is to be expected that models trained in this dataset will be able
to extract the same named entities in other documents with reasonable effectiveness.
However, this is hardly the case. This is because tabular HTML documents, such as
faculty listings, are very different from plain text. Using our labeled dataset for NER
on HTML, we can understand how different news stories written in free text format
and faculty listings in HTML format really are.

We trained three classifiers to perform the task of person name extraction using
the CoNLL-2003 training set. The CoNLL-2003 dataset was relabeled so that classifiers
only had to extract person entities (PER labels), thus other entity types (LOC, ORG,
and MISC) were relabeled as not an entity (O label). Next, we trained the classifiers

5. Researcher Name Extraction Dataset 53

with the relabeled CoNLL-2003 training set, and validated the results with the relabeled
validation set. The models were tested with the relabeled CoNLL-2003 test set and the
RNE test set. In Table 5.4, we present the results for a first order HMM, a Linear Chain
CRF, and a Bi-LSTM-CRF classifier with GloVe embeddings [Huang et al., 2015] in
the aforementioned experimental setting.

Model
CoNLL-2003 RNE

P R F1 P R F1

HMM 0.777 0.452 0.571 0.189 0.180 0.184
CRF 0.774 0.754 0.764 0.138 0.129 0.133
Bi-LSTM-CRF 0.969 0.931 0.950 0.282 0.258 0.269

Table 5.4. Performance of three classifiers trained with the CoNLL-2003 train-
ing set and tested in the CoNLL-2003 and RNE test sets.

The very low F1-score obtained by all models on the RNE test set is much lower
and even worse than the established dictionary baseline in Table 5.3. We cannot
use these results to properly compare the relative performances between the models
(this topic will be explored in the next chapter), but it is possible to conclude that
machine learning models trained on plain text do not necessarily perform well in HTML
extraction tasks. The Bi-LSTM-CRF model obtained a 0.269 F1-score in the RNE test
set, what is surprising considering that it is a very efficient approach to sequence
labeling in plain text. By looking at some of its mistakes we can shed some light on
this result. The Bi-LSTM-CRF model extracted "Dean Emeritus" and "14101 INF"
as names, and it missed the last names in "George E. Elliott" and "Carl J. Galligan".
These mistakes are representative of some of the major flaws with the systems trained
with the CoNLL-2003 training set. The names in the RNE dataset are usually longer
than in CoNLL-2003 and the word distributions are vastly different, what may account
for some of the mistakes of the Bi-LSTM-CRF model.

Let us examine some differences between both datasets. The number of docu-
ments in the RNE dataset is 145, which is much smaller than the 1,393 documents
in the ConLL-2003 dataset. However, the number of sentences in the RNE dataset is
higher, that is 43,870 sentences against 22,137 in the ConLL-2003 dataset. Also, the
number of tokens in the RNE dataset is roughly half the number present in the CoNLL-
2003 dataset. These numbers show that the HTML documents in the RNE dataset are
longer than news stories and, more importantly, they are composed of much shorter
sentences when compared to the text from news corpora. Indeed, there are 3.46 words

5. Researcher Name Extraction Dataset 54

per sentence in the RNE dataset against 13.62 words per sentence in the CoNLL-2003
dataset. Most faculty webpages have a lot of boilerplate text that contributes to their
size, while the news stories in CoNLL-2003 are usually rather short. These numbers
show that HTML provides far less context to named entity recognition by sequence
models. One key implication is that any good classifier needs to seek other sources of
evidence in addition to the text, such as dictionaries and the HTML structure.

Another property that is quite distinct among different NER datasets is their
word distributions. Word frequencies tend to vary considerably in documents with
different topics. Table 5.5 shows the ten most frequent words for each dataset, including
punctuation signs. Punctuation signs are frequently present in proper names, as in:
Mary B. Smith, Susan (Susie) Williams, John Al-Azzawi, etc. Also, punctuation signs
can be useful to detect boundaries between named entities. The CoNLL-2003 English
dataset contains a more generic selection of terms whereas the subject of the RNE
dataset becomes evident with words such as "professor" and "university" happening
with a high frequency in the corpus. Also, punctuation signs are much more frequent
in the RNE dataset.

Lastly, in Figure 5.1 we plot the word frequencies for the hundred most frequent
words in the CoNLL-2003 and the RNE datasets. In both plots we have a few very
frequent words and a long tail of infrequent words. Most named entities are located
in this long tail, and therefore, a good sequence labeling method needs to be able
to handle the labeling of infrequent tokens effectively. The probabilities attributed
to unseen tokens is another aspect where models vary significantly between different
datasets.

5.5 Dataset Size

The reduced size of the RNE dataset (only 145 webpages) may prevent us from drawing
conclusive judgements about the expected performance of different NER models in
the RNE task. The matter of sample size is difficult to address because there are
no alternative data sources to confirm the claim that the RNE dataset is in fact a
representative sample of faculty directories across the world. The number of tokens
in the RNE dataset is roughly half the number present in the CoNLL-2003 dataset,
a dataset that is often used to attest the performance of NER models in plain text.
However, the size of the CoNLL-2003 dataset is also small and presents an obstacle in
the effort of drawing general conclusions about model performance.

Some facts may contribute to ascertain the validity of the RNE dataset as a

5. Researcher Name Extraction Dataset 55

CoNLL-2003 RNE
Word Frequency Word Frequency

the 12310 , 10439
, 10876 - 8140
. 10874) 3655
of 5502 (3641
in 5405 : 3484
to 5129 of 3345
a 4731 and 2499
(4226 professor 2456
) 4225 university 1611
and 4223 research 1315

Table 5.5. Ten most frequent words for the CoNLL-2003 and the RNE datasets.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2
·104

Words (most to least frequent)

Fr
eq
ue
nc
y

Word frequencies

CoNLL-2003
RNE

Figure 5.1. Word frequencies plot for the CoNLL-2003 dataset and the RNE
dataset.

representative sample of faculty directories. The RNE dataset contains webpages from
145 universities from 42 countries. This amounts to approximately 1.5% of the total
number of universities listed in the Universities Worldwide Database.2 Each country
contributes to the RNE dataset roughly in proportion to the number of universities in
that country relative to the total number of universities in the world. In Table 5.6,

2https://univ.cc/world.php

5. Researcher Name Extraction Dataset 56

we present the number of documents from each country for the top ten countries with
most universities in the RNE dataset. For comparison, we also present the number of
universities from each country in the Universities Worldwide Database. This database
lists 9623 universities.

The geographical distribution of the documents in the RNE dataset is roughly
proportional to the number of universities in larger countries. One of the principal
limitations of the RNE dataset is that the documents from countries with few uni-
versities (below the top ten countries) represent only 29.66% of all documents in the
dataset, while these universities actually represent more than half of the universities
in the world (55.01%) according to the Universities Worldwide Database.

Despite the significant variation in university webpage layouts, the RNE dataset
contain a very diverse range of data representations and languages, therefore it is not
likely that many university faculty pages outside the RNE dataset will present content
in a way that deviates considerably from what is already present in the dataset. We
expect that the results obtained with the RNE dataset will remain stable when the
models are employed over larger samples.

Country RNE % # Universities %

USA 35 24.14% 2051 21.31%
Japan 11 7.59% 568 5.90%
Germany 11 7.59% 281 2.92%
China 10 6.90% 392 4.07%
UK 8 5.52% 165 1.71%
Canada 7 4.83% 145 1.51%
Australia 6 4.14% 50 0.52%
France 5 3.45% 265 2.75%
Italy 5 3.45% 92 0.96%
Russia 4 2.76% 320 3.33%
Other 43 29.66% 5294 55.01%

Total 145 100.00% 9623 100.00%

Table 5.6. Number of documents per country for the ten most frequent countries
in the RNE dataset and the number of universities in each country according to
the Universities Worldwide Database.

Chapter 6

Experiments

The main objective of this dissertation is to find the best methods for performing NER
on the Web considering the RNE task. The value of a specific method is determined
not only by its accuracy, but also by the amount of feature engineering required, the
training time required, and the overall complexity of the model when we consider its
gains relative to simpler alternatives. With this objective in mind, we pose the following
research questions:

1. How effective are HMMs for solving the RNE task?

a) Does the order of the HMM influence its performance?

b) Can we improve a HMM by adding textual features?

c) Can we improve a HMM with the self-training strategy?

2. How effective are CRFs for solving the RNE task?

a) Are CRFs better than HMMs?

b) Can we improve the CRFs by adding textual features?

c) Are CRFs more resilient to bad features than HMMs?

3. How effective are Neural Networks for solving the RNE task?

a) How does a Bi-LSTM-CRF compare with HMMs and CRFs?

b) Can character representations boost the performance of the Bi-LSTM-CRF?

c) Does the selection of word embeddings influence the performance of the
Bi-LSTM-CRF?

4. All things considered what is the best model?

57

6. Experiments 58

a) What model has the best F1-score?

All models in this dissertation were trained and tested in the dataset described
in Chapter 5. When relevant, the technical specifications for the experiments will be
given in each section. Section 6.1 establishes a baseline in addition to the dictionary
matching baseline that was described in Chapter 5 for the RNE task. Section 6.2 dis-
cusses the experimental results that concern Research Question 1. Section 6.3 discusses
the experimental results that concern Research Question 2. Section 6.4 discusses the
experimental results that concern Research Question 3. Finally, Section 6.5 discusses
the experimental results that concern Research Question 4.

6.1 Simple Baseline

Amodel that works well despite the absence of a good feature selection is arguably more
valuable than a method that requires a lot of feature engineering or a big dictionary of
named entities, as long as its accuracy is sufficiently high for the intended purpose. For
this reason, we wanted to establish some baseline results in addition to the dictionary
matching results presented in Chapter 5. We trained a simple generative model and a
simple discriminative model to provide a measure of the expected difficulty of solving
this task. The simple generative model is a Naive Bayes classifier, which is essentially
a HMM, as presented in Section 4.1, with the only difference being that it assumes
label independence. That is, P (Yi|Yi−1) = P (Yi) for all timesteps i. The simple
discriminative model is a Logistic Classifier, as presented in Section 4.2.

The “Naive-Bayes and Logistic Classifiers form a generative-discriminative pair”,
as explained by Ng and Jordan [2001], in the sense that the essential difference between
the models is that the first estimates the joint probability between words and labels
P (X, Y) and the latter models the conditional probability P (Y |X). The same analogy
could be made for HMMs and CRFs. The Naive Bayes model and the Logistic Classifier
are very simple and fast to train, so they provide a good first approximation to a
solution for this task. Both models used only the current word as a feature. Table 6.1
shows a comparison between these models and the exact dictionary matching approach1

presented in Chapter 5. We show results for the models in the validation and test
sets of the RNE dataset. The difference between the validation and test sets is only
of significance when discussing neural networks, which are trained in the training set
until the F1-score in the validation set stops improving. For the other models, the data

1 That is, using a dictionary of researcher names extracted from DBLP, a sequence of tokens was
labeled as a name if it corresponded exactly to an entry in this dictionary.

6. Experiments 59

from the validation and test sets is never observed during training. When comparing
different models we will always consider results in the test set.

Model
Validation Test

P R F1 P R F1

Dictionary Matching 0.847 0.285 0.427 0.871 0.328 0.477
Naive Bayes 0.068 0.053 0.059 0.101 0.075 0.086
Logistic Classifier 0.952 0.171 0.122 0.116 0.156 0.133

Table 6.1. Naive Bayes and Logistic Classifier results for the researcher name
extraction task using only the current word as a feature.

The Logistic Classifier performs a little better than the Naive Bayes model in
this problem, but both models are rather ineffective. The problem is that these clas-
sifiers always assign an O tag to unknown tokens 2, what is understandable since the
proportion of O tags in the dataset is approximately 86% and each token is classified
independently. Table 6.2 shows the number of unknown tokens in the validation and
test sets, and the number of named entities that contain at least one unknown token.
Roughly four in every five named entities contain at least one unknown token, there-
fore, a classifier that only considers the current token as a feature and attributes labels
independently can obtain at best 20% recall. Also, the proportion of unknown tokens
in the validation set is higher than in the test set, what may account for the drop in
performance for both classifiers in the validation set relative to the test set.

The Naive Bayes and the Logistic Classifier performed significantly worse than the
dictionary matching approach. These models are not suited for sequence classification
problems and that is why we need approaches such as HMMs, CRFs, and Neural
Networks. However, these baselines provide a very useful insight. That is, the amount
of probability mass attributed to unknown observations is of great importance to the
performance of NER methods.

6.2 Hidden Markov Models

There are a couple of parameters that need to be considered when we employ Hidden
Markov Models to a sequence labeling task on the Web. First, the number of previ-

2 Unknown tokens are tokens that occur at least once in the validation or test sets but do not
occur in the training set.

6. Experiments 60

Tokens / Named Entities (NE) Valid % Test %

Unknown Tokens 12076 26.96% 8324 22.65%
Known Tokens 32719 73.04% 28433 77.35%
Total 44795 100.00% 36757 100.00%

NEs with Unknown Tokens 1446 80.87% 2205 80.98%
NEs without Unknown Tokens 342 19.13% 518 19.02%
Total 1788 100.00% 2723 100.00%

Table 6.2. Unknown tokens in the RNE dataset.

ous states (the order of the HMM), second, the features, and third, the self-training
strategy.

6.2.1 HMM order

We hypothesized that the performance of HMMs on sequence labeling tasks for NLP
can be improved by increasing the number of previous states checked at each timestep,
i.e., the order of the HMM. Figure 6.1 presents the performance of HMMs up to third
order in the test sets of the Researcher Name dataset, and Table 6.3 presents the same
results numerically. To allow comparison with the baselines, we also add the results
of a Naive Bayes classifier. The Naive Bayes classifier can be thought of as a HMM of
zeroth-order.

Model
Validation Test

P R F1 P R F1

Naive Bayes 0.068 0.053 0.059 0.101 0.075 0.086
HMM-1 0.693 0.581 0.632 0.637 0.458 0.533
HMM-2 0.703 0.630 0.665 0.653 0.527 0.583
HMM-3 0.616 0.618 0.617 0.551 0.468 0.506

Table 6.3. Performance of the Naive Bayes classifier and Hidden Markov Models
with no features besides the current word on the validation and test sets of the
RNE dataset.

Considering label dependencies over multiple timesteps increases the classifier
performance by a considerable margin relative to the Naive Bayes model even without
any additional features. The second order HMM (HMM-2) achieved a F1-score of 0.583
at the task, while the Naive Bayes classifier achieved a F1-score of only 0.086. All

6. Experiments 61

NB HMM-1 HMM-2 HMM-3
0

0.2

0.4

0.6

0.8

1
HMMs without Features

Precision
Recall
F1

Figure 6.1. Performance of the Naive Bayes classifier and Hidden Markov
Models with no features besides the current word on the test set of the RNE
dataset.

Hidden Markov Models are also better than the dictionary matching approach, which
only achieved an F1-score of 0.477. Nevertheless, we already observe a relative decline
in performance with the third order HMM (0.506 F1-score), suggesting that increasing
the number of previous timesteps is not always advantageous. As we increase the
window of previous labels at each timestep, the label combinations get less common in
the training set, and therefore, the probability estimates get less reliable.

6.2.2 Feature selection

Eleven discrete features were extracted from the dataset. These were selected from
a larger pool of features, considering their aid to the performance of the extraction
systems. Deep learning architectures can work incredibly well without any of these
features, however they are of critical importance to traditional approaches such as
HMMs and CRFs. The selected features are presented in Table 6.4.

The only features that demand further explanation are features 10 and 11. Fea-
ture 10 is the token’s enclosing HTML tag and its parent tag concatenated. Feature 11
is the CSS class for the token’s HTML tag. Both of these features are only useful in the
self-training strategy for HMMs and the attention architectures for Bi-LSTM-CRFs.
In other models, we use features 1 to 9.

HMMs can benefit considerably from a good feature selection, but too many
features can lead to a drop in performance because of the feature independence as-

6. Experiments 62

Feature Description Type

1 Unaccented lowercase token Categorical
2 Exact dictionary match Binary
3 Partial dictionary match Binary
4 Email Binary
5 Number Binary
6 Honorific (Mr., Mrs., Dr., etc.) Binary
7 Matches a URL Binary
8 Is capitalized Binary
9 Is a punctuation sign Binary
10 HTML tag + parent Categorical
11 CSS class Categorical

Table 6.4. Features used in the RNE dataset. Feature 10 is the token’s enclosing
HTML tag and its parent tag concatenated.

sumption. Correlated features may contribute more to the final prediction than should
be the case if the correlation was taken into consideration. For example, if two features
have complete correlation and both are introduced in the model, the effect is the same
as giving twice the weight to a single of these features. If too many features are corre-
lated, we can inadvertently give too much weight to bad features, what will introduce
noise in the predictions. To understand how a feature selection can help or hurt the
Hidden Markov Model performance we tested the model using three groups of features:

• Group A: Current word, Exact Match, Partial Match, URL, Capitalized

• Group B: All features except for the HTML Tag and the CSS Class

• Group C: The HTML Tag and the CSS Class

Group A is composed of a small selection of indicative features while Group B is
composed of all the textual features. Group C will only be used in the Self-Training
strategy.

Figure 6.2 compares the performance of HMMs using the features from Group A
and Group B. Table 6.5 presents the numerical results for the same models.

The Group A models were better overall showing that too many features can
hurt the performance of HMMs. However, when these features are carefully selected,
they can improve the performance of the HMM significantly (0.812 F1 for the HMM-2)

6. Experiments 63

HMM-1 HMM-2 HMM-3
0

0.2

0.4

0.6

0.8

1

Group A

HMM-1 HMM-2 HMM-3
0

0.2

0.4

0.6

0.8

1

Group B

Precision
Recall

F1

Figure 6.2. Hidden Markov Models trained with the features in Group A and
Group B.

Model
Validation Test

P R F1 P R F1

HMM-1 (Group A) 0.813 0.816 0.814 0.819 0.792 0.805
HMM-2 (Group A) 0.787 0.820 0.803 0.823 0.802 0.812
HMM-3 (Group A) 0.774 0.816 0.795 0.812 0.785 0.798
HMM-1 (Group B) 0.730 0.714 0.722 0.826 0.684 0.748
HMM-2 (Group B) 0.720 0.710 0.715 0.820 0.724 0.769
HMM-3 (Group B) 0.721 0.702 0.711 0.791 0.667 0.724

Table 6.5. Performance on the validation and test sets for Hidden Markov
Models trained with the features in Group A and Group B.

relative to the performance of the HMMs that used only the current word as a feature
(0.583 F1 for the HMM-2).

6.2.3 Self-training strategy

In the next experiment, we wanted to understand if the self-training strategy described
in Section 4.1.3 is effective for improving the performance of HMMs. Figure 6.3 com-
pares the performance of HMMs up to third order with features from Group A and
HMMs that were trained with Group A features and Self-Trained with Group C fea-
tures. The numerical results for the same models are presents in Table 6.6.

The self-trained models show a marked improvement in comparison to the models
with no self-training at the test set except for the third order HMM. With this, we
conclude that the best HMM for the name extraction task is a second-order HMM

6. Experiments 64

HMM-1 HMM-2 HMM-3
0

0.2

0.4

0.6

0.8

1

Group A

HMM-1 HMM-2 HMM-3
0

0.2

0.4

0.6

0.8

1

Self-Training Strategy

Precision
Recall

F1

Figure 6.3. HMMs trained with the features in Group A and HMMs trained
with features from Group A and self-trained with features from Group C.

Model
Validation Test

P R F1 P R F1

HMM-1 (Group A) + Self-Training 0.752 0.876 0.810 0.880 0.851 0.865
HMM-2 (Group A) + Self-Training 0.784 0.892 0.835 0.888 0.864 0.879
HMM-3 (Group A) + Self-Training 0.789 0.891 0.837 0.774 0.750 0.762
HMM-1 (Group B) + Self-Training 0.747 0.906 0.819 0.866 0.867 0.866
HMM-2 (Group B) + Self-Training 0.771 0.912 0.835 0.885 0.869 0.877
HMM-3 (Group B) + Self-Training 0.788 0.917 0.847 0.826 0.803 0.814

Table 6.6. HMMs trained with the features in Group A and HMMs trained
with features from Group A and self-trained with features from Group C.

using Group A features and the self-training strategy using Group C features. This
model achieves a F1 of 0.879.

6.3 Conditional Random Fields

When we compared a Logistic Classifier with a Naive Bayes model, we found that
the Logistic Classifier performed a little better. In this section we want to check
if CRFs are also better than HMMs when using only the current words as features.
Also, CRFs provide a much more flexible way to incorporate features in comparison
to HMMs. When considering the application of this class of models to the Researcher
Name Extraction task, we want to understand how the feature selection impacts the
performance of CRFs.

6. Experiments 65

6.3.1 Only the Current Word Feature

Figure 6.4 shows a comparison between the Logistic Classifier (that assumes label
independence), the best HMM with no features besides the current word (HMM-2)
and a CRF with no features besides the current word in the RNE task. Table 6.4
shows the numerical results for the same models.

Logistic HMM-2 CRF
0

0.2

0.4

0.6

0.8

1

CRF using only the current word as a feature

Precision
Recall
F1

Figure 6.4. Performance of the Logistic Classifier, second-order HMM and CRF
with no features besides the current word on the test set of the RNE dataset.

Model
Validation Test

P R F1 P R F1

Logistic Classifier 0.952 0.171 0.122 0.116 0.156 0.133
HMM-2i 0.703 0.630 0.665 0.653 0.527 0.583
CRF i 0.806 0.805 0.806 0.795 0.710 0.750

Table 6.7. Performance of the Logistic Classifier, second-order HMM and CRF
with no features besides the current word on the validation and test sets of the
RNE dataset.

The CRF shows a significant improvement in comparison to the other models
that used only the current word as a feature, achieving a F1-score of 0.750. Next, we
proceed to understand if the addition of textual features can improve this performance
further.

6. Experiments 66

6.3.2 Feature Selection

To allow comparison between the HMMs from the last section, we consider CRFs using
features from Group A and Group B. Figure 6.5 shows a comparison between the best
HMM and the CRFs using the features from Group A and Group B. Table 6.8 presents
the numerical results.

HMM-2+ST CRF (A) CRF (B)
0

0.2

0.4

0.6

0.8

1
CRF with Textual Features

Precision
Recall
F1

Figure 6.5. CRFs trained with the features from Group A and Group B and
the HMM-2 trained with features from Group A and self-trained with features
from Group C.

Model
Validation Test

P R F1 P R F1

HMM-2 (Group A) + Self-Training 0.784 0.892 0.835 0.888 0.864 0.879
CRF (Group A) 0.857 0.875 0.866 0.845 0.775 0.808
CRF (Group B) 0.881 0.903 0.892 0.870 0.786 0.826

Table 6.8. Conditional Random Fields using features from Group A and Group
B.

The CRF is more robust to variations in the feature selection. It performs similar
to the second-order HMM in Group A and slightly better in Group B when we consider
the HMMs without the self-training strategy. However, when we consider the self-
trained HMM-2, it still shows a better overall performance with an F1 score of 0.879.

6. Experiments 67

6.4 Neural Networks

A neural network architecture that has had remarkable success at solving sequence
labeling tasks is the Bi-LSTM-CRF described in Section 4.3.1. In Section 6.4.1, we
investigate how Bi-LSTM-CRFs compare to HMMs and CRFs in the RNE task. In
Section 6.4.2, we check if CNN-based or LSTM-based character representations can
boost the performance of Bi-LSTM-CRFs in the same task. Lastly, in Section 6.4.3,
we check if the choice of pre-trained word embeddings alters the results significantly.

Different from the previous models, that converged to an optimal set of parame-
ters, the neural networks must resort to numerical optimization methods over a rugged
optimization function, therefore they may get trapped in local minima and never find
the best set of parameters. The results for the models may vary between different runs.
Therefore we present the average results for each measure over five runs of each model
variation.

6.4.1 Bi-LSTM-CRF

One of the advantages of deep neural networks relative to earlier sequence labeling
methods is that they usually work without any feature engineering. Figure 6.6 compares
the performance of a BI-LSTM-CRF on the test set of the researcher name extraction
task with the best HMMs and CRFs. We only use GloVe-300 word embeddings as
inputs to the Bi-LSTM-CRF model. Table 6.9 presents the numerical results for the
same models.

Model
Validation Test

P R F1 P R F1

HMM-2 (Group A) + Self-Training 0.784 0.892 0.835 0.888 0.864 0.879
CRF (Group B) 0.881 0.903 0.892 0.870 0.786 0.826
Bi-LSTM-CRF 0.906 0.938 0.922 0.909 0.865 0.886

Table 6.9. Results for the HMM using features from Group A and self-training,
the CRF with features from Group B and the Plain Bi-LSTM-CRF.

The Bi-LSTM-CRF is better than the previous models, though the comparison
is not completely fair, since we fed the model with word embeddings. However, these
pre-trained embeddings are static and general to any language related task, so their
incorporation in the model does not require any substantial effort. Without feature
engineering, the Bi-LSTM-CRF model already achieves an 0.886 F1-score, surpassing

6. Experiments 68

HMM-2 CRF Bi-LSTM-CRF
0

0.2

0.4

0.6

0.8

1
Bi-LSTM-CRF

Precision
Recall
F1

Figure 6.6. Performance of the Bi-LSTM-CRF with only GloVe embeddings
in comparison to the HMM-2 (Group A) with self-training and the CRF (Group
B).

the best model discussed in the previous experiments (the HMM-2 with self-training,
which achieved 0.879 F1-score).

6.4.2 Character Representations

Morphological features can help identifying named entities. We presented in Sec-
tion 4.3.3 two methods for incorporating character representations in Recurrent Neural
Networks, the CNN-based method, and the LSTM-based method. In Table 6.10, we
compare the performance of CNN character representations (CNNc) and LSTM charac-
ter representations (LSTMc) with the plain Bi-LSTM-CRF. The character embeddings
had 50 weights, the CNN character representations used 50 filters with a window of
size 3 and the LSTM-character representations used a bi-LSTM with 25 hidden states
in each direction. Both techniques produced character representations with 50 weights.

The LSTM character representations improved the F1-score by 0.015 points
relative to the plain Bi-LSTM-CRF that only used GloVe-300 word embeddings. Also,
both the CNN-based and the LSTM-based representations have a similar performance,
yet the LSTM-based representations are slightly better, owing probably to the fact
that they can represent prefixes and suffixes while the CNN-based filters are positional
invariant.

6. Experiments 69

Model
Validation Test

P R F1 P R F1

Bi-LSTM-CRF 0.906 0.938 0.922 0.909 0.865 0.886
Bi-LSTM-CRF+CNNc 0.929 0.946 0.938 0.921 0.881 0.901
Bi-LSTM-CRF+LSTMc 0.928 0.950 0.939 0.920 0.886 0.902

Table 6.10. Bi-LSTM-CRF with Character Representations.

6.4.3 Word Embeddings

All neural architectures used in the experiments discussed in the previous Sections used
GloVe-300 pre-trained word embeddings. However, the choice of embeddings is of great
importance to the success of neural sequence models. In fact, most recent developments
in NER models come from the incorporation of better pre-trained word embeddings to
state-of-the-art models in many NLP tasks [Peters et al., 2018; Devlin et al., 2018]. We
considered three sets of pre-trained word embeddings in our experiments: GloVe-300,
Word2Vec-300 and ELMo. The characteristics of these word embeddings is described
in Table 4.1. Different from GloVe-300 and Word2Vec-300, which are static, ELMo
embeddings are context dependent and need to be recalculated for the specific dataset.
This adds significant overhead to the model training. While the Bi-LSTM-CRF with
LSTM character embeddings and GloVe-300 embeddings took approximately 4,412
seconds to train and run predictions, the same model with ELMo embeddings took
approximately 9,437 seconds. Table 6.11 compares the performance of Bi-LSTM-CRF
models with LSTM-based character representations using different sets of pre-trained
word embeddings.

Model
Validation Test

P R F1 P R F1

GloVe 0.928 0.950 0.939 0.920 0.886 0.902
Word2Vec 0.925 0.926 0.926 0.899 0.831 0.864
ELMo 0.917 0.953 0.937 0.876 0.810 0.842

Table 6.11. Bi-LSTM-CRF with LSTM characters and different sets of word
embeddings.

GloVe embeddings are superior to Word2Vec in our NER setting, agreeing
with the reported results for neural models in the CoNLL-2003 English dataset for

6. Experiments 70

NER [Huang et al., 2015; Lample et al., 2016; Ma and Hovy, 2016]. But, ELMo em-
beddings showed a very poor performance, contrasting with the results reported in the
CoNLL-2003 English dataset [Peters et al., 2018]. This is probably due to the fact
that, different from static embeddings, ELMo considers the context when generating
word representations. The neural language model that originates the embeddings was
trained by Peters et al. [2018] in text extracted from Wikipedia, so the contextual
representations generated by this language model are specifically tuned for plain text.
ELMo seems to be highly reliant on this contextual information, but the HTML sen-
tences in the RNE dataset provide very little context. Apparently, this specificity of
the RNE dataset contributes negatively to the quality of the word embeddings.

The results obtained with different sets of embeddings are important because
they show how the choice of word embeddings may influence the performance of a
sequence model considerably. In fact, if we used Word2Vec embeddings instead of
GloVe embeddings, the Bi-LSTM-CRF would actually lose to the self-trained HMM-2,
which reached a 0.879 F1-score. Also, we cannot trust that only because an embedding
shows superior performance in related tasks that it will also be effective in the present
task.

6.4.4 Technical Details for Neural Networks

All neural models were trained with the Adam Optimizer using a learning rate of 0.001
over 20 epochs on mini batches of size 10. We used early stopping [Caruana et al.,
2000] to select the best parameters, considering the F1 measure in the validation set.
All Bi-LSTM-CRF models contained a single LSTM layer with 100 weights. Dropout
layers with 0.5 dropout rates were added after the LSTM, the character representations,
and the attention matrix when applicable. The neural models were trained on Amazon
G3.4xlarge instances, which have NVIDIA Tesla M60 GPUs with 8GB internal memory.
The implementations were made entirely in Python using Google’s Tensorflow deep
learning library 3.

6.5 What is the best model?

We reach the point where we try to answer the main question of this dissertation. We
have experimented with multiple sequence labeling methods in the previous Sections
and now we provide an overview of the best variants of each category. In Table 6.12,

3https://www.tensorflow.org/.

6. Experiments 71

we compare the performance of the best HMMs, CRFs and Neural Networks for the
RNE dataset.

Model
Validation Test

P R F1 P R F1

HMM-2 (Group A) + Self-Training 0.784 0.892 0.835 0.888 0.864 0.879
CRF (Group B) 0.881 0.903 0.892 0.870 0.786 0.826
Bi-LSTM-CRF + LSTMc 0.928 0.950 0.939 0.920 0.886 0.902

Table 6.12. Overview of the best models for the name extraction task in the
RNE dataset.

Taking the F1-score as the comparison criterion, the Bi-LSTM-CRF model with
LSTM character representations, and Glove-300 embeddings is the winning model with
a F1 of 0.902.

Despite the superior performance of Neural Networks in this task, there remains
an important consideration to be made. As we increase the complexity and training
time required by our models, there is only a scant gain in terms of precision and recall.
For example, the Bi-LSTM-CRF achieved an 0.902 F1-score, while the HMM-2 using a
Self-Training strategy achieved a 0.879 F1-score. This is a 0.023 increase, which is not
insignificant, but it comes to mind if the additional complexity is entirely justifiable.

The Neural Network approach does not demand any feature engineering or self-
training strategy, contrasting with the HMM approach, which is highly reliant on the
right selection of features and the self-training strategy. However, the absence of human
engineering in Neural Network training is questionable to some degree since we need
to define many hyper parameters and many details about the neural architecture, such
as the number of LSTM layers and hidden weights, where to add dropout layers, which
word embeddings to use, etc. In summary, there are many choices to be made, none
of which have definitive theoretical justification, so the model variations need to be
tested empirically. This means many iterations between setting parameters, obtaining
results, and tuning parameters once again. Considering that each of these iterations
can take at least a couple of hours to finish, it is not clear if selecting features is really
a more arduous struggle.

To the best of our abilities, the Tensorflow implementation of the Bi-LSTM-
CRF + LSTM chars running on an AWS GPU instance took approximately 4,412
seconds to train and run predictions in the test set. While, the HMM-2 did the same
in approximately 64 seconds, running in a conventional CPU with unoptimized code.

6. Experiments 72

That is roughly seventy times faster. Finally, if we consider the intellectual cost of
understanding and implementing both models and the code maintainability of both
implementations, the difference is even more profound.

Then, what is the best model? It depends on the end goal. If the goal is to
achieve as much accuracy as possible, then definitely go for Deep Neural Architectures.
However, in most ordinary implementations, simpler models should probably be pre-
ferred. In both cases, models trained on publicly available sequence tagging datasets
will probably perform poorly, so most of the effort would certainly be better spent on
constructing task specific datasets with a high quality. This points to the necessity of
searching for good unsupervised approaches to sequence labeling. This way, we would
have models with better flexibility and good accuracy in many extraction tasks. Un-
fortunately, unsupervised and semi supervised approaches to this problem are still far
from serviceable.

Chapter 7

Improvements to Neural Networks

In the previous chapters, we discussed neural networks that can be generally employed
in a diverse range of NLP tasks. However, there are some specificities to the problem of
sequence labeling on the Web that can be explored to allow further improvement of our
models. Taking into consideration the success of the self-training strategy for HMMs,
which is a form of incorporating knowledge about the HTML structure in the model,
we propose two experimental methods to boost the performance of neural networks
when sequence labeling Web documents. In Section 7.1, we propose two attention
models to incorporate HTML structural information in our neural sequence taggers.
In Section 7.2, we propose a new optimization objective for neural networks trained
for sequence labeling tasks that can make them prioritize recall over precision, what
can be useful in a name extraction task on the Web. Lastly, in Section 7.3, we discuss
some experimental results for these strategies.

7.1 Attentions Models

The self-training strategy for HMMs demonstrates a way to incorporate HTML features
in sequence models, however it is not clear how to apply the same intuition to Neural
Networks. Ultimately, we want the model to consider the predictions that it made
for words in similar HTML contexts when constructing the neural representation for
the current word in a sequence. A natural way to incorporate this intuition into the
neural architectures described in Section 4.3 is with the use of attention mechanisms,
similar to the one proposed by Vaswani et al. [2017]. An attention mechanism is a way
to combine inputs from multiple timesteps in a sequence to perform an operation at
the current timestep. Originally, attention mechanisms in NLP were developed with
the goal of solving sentence alignment for neural machine translation [Bahdanau et al.,

73

7. Improvements to Neural Networks 74

2015], but, since then, they found other uses.
In a Bi-LSTM-CRF model, the bidirectional LSTM layer produces output rep-

resentations at each timestep, producing a T × H matrix, where T is the number of
timesteps in the sequence and H is the LSTM hidden layer size, which is defined exper-
imentally. This matrix constitutes a neural representation for a sentence with vectors
of size H representing words at each timestep. Also, if the sequence length in the
dataset varies, we can simply pad the short sentences with zero vectors.

In the original Bi-LSTM-CRF model without an attention layer, the neural rep-
resentations would be passed directly to the CRF decoder, but in the Self-Attended
Bi-LSTM-CRF, we add an attention mechanism between the LSTM output and the
CRF input as described in Figure 7.1.

Figure 7.1. Attention mechanism for the Bi-LSTM-CRF model.

Now we need to find a way to combine the vectors at each timestep in a way that
transforms the representations according to the similarity between HTML contexts.
Essentially, we want to compute a T × T attention matrix α where αi,j is the weight
attributed to the word representation hj at timestep i. In other words, αi,j is measuring
the amount of attention that we pay to each word j in a sentence at timestep i. With
the α matrix, we can calculate new representations h′i for each timestep by performing
a linear combination of the hidden states according to their attention values:

h′i =
∑
j

αi,jhj (7.1)

Also, consider a set of n context vectors ci that contain representations for the HTML
features at timestep i. This representation can be a binary feature vector, a dense

7. Improvements to Neural Networks 75

vector or even the hidden states hi. The attention matrix is then calculated as:

αi,j =
eA(ci,cj)∑
k e

A(ci,ck)
(7.2)

where A(ci, cj) is an attention function that computes the similarity between HTML
contexts at timesteps i and j and outputs a real number. The exponentials are a
Softmax normalization function to ensure that 1 ≥ αi,j ≥ 0 and

∑
j αi,j = 1. Next, we

propose two ways for defining the attention function A. The Hard Attention Function
and the Soft Attention Function.

7.1.1 Hard Attention Function

The hard attention function is a binary similarity function that either outputs one when
contexts are identical or zero when they are different. This definition only makes sense
when the contexts ci at timestep i are discrete feature vectors, because otherwise we
would need a softer comparability criterion. So, if ci = {fi,1, fi,2, ..., fi,m} is a context
vector where each feature fi,j assumes a definite value from a discrete set γj, we can
define the attention function:

A(ci, cj) =

1, if fi,k = fj,k ∀ k ∈ [1,m]

0, otherwise
(7.3)

The combination of features must be sufficiently restrictive so that the mixture of
hidden states does not introduce too much noise. We have determined experimentally
that considering the enclosing HTML tag, its parent tag, and the CSS class as features
is sufficient to allow a consistent comparison between similar HTML contexts. Ideally,
the choice of features could be performed automatically with the incorporation of a feed
forward neural network in the comparison function and a softer similarity criterion. A
possibility for doing this is the Soft Attention Function.

7.1.2 Soft Attention Function

Different from the Hard Attention Function, the Soft Attention Function outputs a real
number that represents the degree of similarity between HTML contexts. Now, instead
of considering discrete feature vectors we resort to dense vectorial representations for
the HTML context. We propose to extract HTML structural features with DOM path
representations. To do this, consider a DOM tree (which is an acyclic directed graph),
a word’s HTML context can be represented by the path we take in this graph starting

7. Improvements to Neural Networks 76

from the root element. If we consider the path for each word in our sequence, we can
create HTML dense representations by training a matrix of fixed size embeddings for
each HTML tag, then we construct HTML representations by averaging the embeddings
in a final vector representation. The process is described in Figure 7.2.

Figure 7.2. Building HTML representations by climbing the DOM tree.

Experimentally, we only considered the last two HTML embeddings, since the
HTML tag information gets less relevant as we get farther from the leaves. The vo-
cabulary of HTML tags is very small, so we can train HTML embeddings effectively in
the target dataset. We could also learn HTML representations with CNNs or LSTMs
as we did with character representations, instead of averaging the embeddings.

Now to measure the similarity between different HTML contexts, we resort to an
attention function similar to the scaled dot product proposed by Vaswani et al. [2017].
That is:

A(ci, cj) =
Wci ·Wcj√

n
(7.4)

where W is a weight matrix to be learned and
√
n is a normalization factor with n

being the size of the context vectors c. This function assumes a larger value when
the contexts are similar and a smaller value when they are different. With the soft
attention mechanism, our model can learn HTML context representations from the
training data and produce generalization patterns such as "words happening together
in a list probably belong to the same class".

7.1.3 Dataset Split and Experimental Considerations

In sequence labeling tasks, it is common to split the dataset in sentences and then train
them in independent steps. However, if we want to make use of attention mechanisms
to perform the comparison of words in different HTML contexts, we want to compare
labels attributed to words that share a similar context in different sentences. To allow

7. Improvements to Neural Networks 77

the comparison of words in different sentences, instead of splitting the dataset into
independent shuffled sentences, we combine multiple sentences in a single training
step and separate them with a segmentation token. Also, with the addition of many
parameters to the model, the risk of overfitting increases. To prevent this problem
from occurring, we added dropout layers with a 0.5 dropout rate before and after the
attention mechanism.

7.2 F-score Optimization

In the Bi-LSTM-CRF model, we estimate parameters by maximizing the log-likelihood.
The likelihood is intimately associated with the accuracy in a classification task, but in
NER tasks, models are usually evaluated according to their attained results in terms
of precision, recall, or the F-score. By maximizing the likelihood, we are essentially
increasing accuracy with the expectation that this will lead to an improvement of the
F-score, what is most often true. However, in extraction tasks there is usually a trade-
off between precision and recall, meaning that we can trade a little less precision for an
increase in recall and vice-versa. For example, if we want better precision, it may be
useful to throw away entities that were not classified with a high degree of confidence.
Contrarily, if we want better recall, we can relax the classification criterium and extract
entities that otherwise would be ignored.

In NER on the Web, we could argue that recall is slightly more important than
precision, because when parsing a huge amount of data, it is much easier to manually
filter false positives than to manually find false negatives that were ignored by the
classifier. This preference for recall could be expressed in the evaluation by setting the
F-score parameter β in a way that values recall twice as much as precision, for example.
However, when maximizing the accuracy of a classifier with the cross-entropy function,
we have no way to tell the optimizer to choose parameters that maximize the F-score
with a particular β. We could try to maximize the F-score directly, but:

While the F-score of a classifier evaluated on a single supervised instance
is well defined, the overall F-score on a larger dataset is not a function of
the F-score evaluated on each instance in the dataset. This is in contrast
to ordinary loss/utility, whose grand total (or average) on a dataset can be
computed by direct summation [Jansche, 2005].

This makes the usage of the F-score as an optimization objective impractical
for large datasets trained in batches. However, with a few simplifications, we can

7. Improvements to Neural Networks 78

replace our loss function and instead maximize the F-score in terms of a expected
utility function. We take the method proposed by Jansche [2005], that approximately
maximizes the F-score of a classifier based on a logistical regression model, and apply
it to our neural architectures. The F-score function can then be calculated in terms of
a triple (A,B,C), as follows:

Fα(A,B,C) =
A

A+ αB + (1− α)C
(7.5)

This is equivalent to the β-weighted harmonic mean defined in Equation 5.1.
Variable A is the number of true positives, B is the number of false negatives, and
C is the number of false positives. Table 7.1 describes the relationship between the
predictions and the actual labels.

Predicted
Total

pos neg

Actual
pos A B npos

neg C D nneg

Total mpos mneg n

Table 7.1. Relationship between positive and negative matches.

That is, npos is the number of positive examples in the dataset (true positives
plus missed positives) and mpos is the number of positive examples that were predicted
(true positives plus false positives). With this, we can rewrite Fα(A,B,C) as:

Fα(A, npos,mpos) =
A

αnpos + (1− α)mpos

(7.6)

With this expression in mind, Jansche [2005] proposes the following optimization ob-
jective for the expected F-score:

F̃α(z, y) =
Ã(z, y)

αñpos + (1− α)m̃pos(θ)
(7.7)

where y = {y1, y2, . . . , yn} is a vector of actual labels, z = {z1, z2, . . . , zn} is a vector of
predictions, and:

θi ≡ P̂ (zi = True) ∀i ∈ [1, n] (7.8)

is the model probability that label zi is a True label, assuming that we are dealing

7. Improvements to Neural Networks 79

with a binary classification problem with only True and False labels. Finally,

Ã(y, z) ≡
n∑
i=1

Iyi=zi=1 · θi

m̃pos ≡
n∑
i=1

θi

ñpos ≡
n∑
i=1

Iyi=1 − Ã(y, z)

where IC is an identity function that is equal to one when the clause C is true and zero
otherwise. With that, we have an optimization objective that can be optimized with
standard numerical optimization methods. As a simplification, we consider that each
label is independent and belongs to a different entity. Further work is needed to resolve
this simplification and to adapt this optimization function to multi-label classification
tasks. But, as we will see in the experiments section, this formulation is sufficient for
the RNE task.

7.3 Experiments

The techniques proposed in this chapter are still very experimental, but we will show
some preliminary results by posing some additional research questions:

1. Can the hard-attention and soft-attention mechanisms boost the performance of
the Bi-LSTM-CRF?

2. Can we control how much the Bi-LSTM-CRF values recall over precision?

3. Can we improve the results of the best models with a simple filtering strategy?

In Section 7.3.1, we discuss the experiments concerning Research Question 1, in Sec-
tion 7.3.1, we discuss the experiments concerning Research Question 2, and lastly, in
Section , we discuss the experiments concerning Research Question 3.

7.3.1 Attention Mechanisms

The Self-Training strategy for HMMs showed that there is a lot to gain from incor-
porating features related to the HTML structure in our models. The HMM-2 model
improved from a 0.805 F1-score to 0.879 F1-score with the self-training strategy. The

7. Improvements to Neural Networks 80

hard and soft attention mechanisms proposed in Section 7.1 are techniques for neu-
ral networks that attempt to bring improvements to the Bi-LSTM-CRF in a manner
similar to the self-training strategy for HMMs. In Table 7.2, we compare the perfor-
mance of the Bi-LSTM-CRF with LSTM-based character representations using a Hard
Attention layer and a Soft Attention layer.

Model
Validation Test

P R F1 P R F1

Bi-LSTM-CRF + LSTMc 0.928 0.950 0.939 0.920 0.886 0.902
+Hard Attention 0.944 0.961 0.952 0.925 0.890 0.907
+Soft Attention 0.894 0.961 0.926 0.884 0.849 0.866

Table 7.2. Hard and Soft Attention

The Hard Attention layer improved the original model by roughly 0.005 F1-score.
However, the Soft Attention layer actually decreased the performance, what demands
further explanation. The Hard Attention layer captures if the HTML context between
two tags is exactly the same, but it does not look at the context itself. What the Hard
Attention layer learns is essentially how much it can trust predictions made for other
words in the same HTML context, no matter what is the actual context. However,
the Soft Attention layer, also learns features about the HTML context, because it
transforms the contextual representations with a feed forward neural network and then
compares these neural representations. For example, the model could learn that tokens
happening inside a list are more likely to be names, but since each document comes
from a different website, this reasoning is unlikely to be correct for most cases. We
cannot trust specific HTML configurations to be meaningful outside the document
where they happen. This does not mean that the Soft Attention layer is useless, but
for it to grasp abstract structural patterns that could be generally useful, we would
need a much larger dataset. A possibility would be to pre-train unsupervised HTML
contextual embeddings to detect useful HTML patterns in a large collection and then
use this knowledge in a specific sequence labeling setting.

7.3.2 F-score Optimization

When training Deep Neural Networks for sequence labeling, we usually minimize the
cross entropy. However, what we ultimately care about is the F-score. In Section 7.2,
we proposed to change the optimization objective for Neural Networks and optimize

7. Improvements to Neural Networks 81

the expected F-score function to control how much our model prioritizes recall over
precision.

The results presented in Chapter 6 show that Neural Architectures tend to value
precision over recall in the name extraction task, however it is arguably better to
improve recall and lose a little precision in this case, since it is easier to filter out false
positives from the results than to find the false negatives manually.

Figure 7.3 presents the results on the test set for a Bi-LSTM-CRF model with
LSTM character representations trained with the expected F-score optimization ob-
jective and varying the F-score α. For example, α = 0.5 means that we value recall
as much as precision, α = 0.2 means that we value precision twice as much as recall,
and α = 0.8 means that we value recall twice as much as precision. Take note that
setting α = 0.5 does not mean that we are using the same model that minimizes the
cross-entropy, because the optimization objective is different. The exact formula for the
Fα-score was given in Equation 7.5. No attention layers were added to these models.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Alpha

F-score Optimization

Precision
Recall

F-score (α)

Figure 7.3. Results for the Bi-LSTM-CRF + LSTMc that optimized the
expected Fα-score function. A larger α means preference for recall rather than
precision.

This experiment shows that the capacity to control how much the model optimizes
for one measure over the other is limited. When giving more priority to precision
(α = 0.8), the model is still less precise than the variant that optimizes for the F1-score
(α = 0.5). Actually, the model that achieves top precision (0.864) and the second best
recall (0.922) is the one with α = 0.5. The model with α = 0.8 achieves the best recall

7. Improvements to Neural Networks 82

(0.923) and the best Fα (0.905), though it should theoretically prioritize precision.
A useful result is that all of the models that optimized the expected F-score func-

tion valued recall over precision, contrasting with the Neural models that minimized
the cross-entropy, which prioritized precision over recall. However, it is inconclusive if
the direct optimization of the F-score function will lead to an improvement of recall
over precision in other extraction tasks. The Bi-LSTM-CRF that optimized the ex-
pected F1-score obtained a recall of 0.922 in the test set without losing a lot of precision
(0.864), contrasting with the best model presented in the previous sections, the Hard-
Attention Bi-LSTM-CRF, that achieved a 0.890 recall and 0.925 precision. Table 7.3
shows the detailed results for the models discussed in this Subsection.

α
Validation Test

P R Fα P R Fα

0.1 0.879 0.925 0.884 0.831 0.838 0.832
0.2 0.876 0.939 0.888 0.844 0.858 0.847
0.3 0.881 0.935 0.896 0.851 0.864 0.855
0.4 0.873 0.962 0.907 0.860 0.893 0.873
0.5 0.823 0.970 0.890 0.864 0.922 0.892
0.6 0.839 0.976 0.916 0.844 0.907 0.881
0.7 0.810 0.975 0.919 0.818 0.904 0.877
0.8 0.814 0.980 0.942 0.840 0.923 0.905
0.9 0.680 0.900 0.871 0.636 0.752 0.738

Table 7.3. Bi-LSTM-CRF with LSTM character embeddings and F-score opti-
mization objective.

7.3.3 Filtering False Positives

In this dissertation, we argue that recall is more valuable than precision in NER tasks
on the Web. To verify this empirically, we consider the results of the best models
presented in Table 6.12, the Hard Attention Bi-LSTM-CRF and the Bi-LSTM-CRF +
LSTMc optimized for the F1-score, and apply a simple filter to the predicted labels in
the test set. Despite their variations, all models tend to commit some similar prediction
mistakes.

We tried a simple strategy to test how difficult it would be to filter out false
positives from the results. The filtering strategy consists of automatically relabeling

7. Improvements to Neural Networks 83

tokens that were labeled as a person ("B-PER" or "I-PER") to an outside ("O") label
if:

1. It was an honorific (Mr., Dr., P.hD., etc.).

2. It contained a number.

3. It was a punctuation sign just before or after a name (e.g. "- Mark" or "Emma ;").

4. It was an isolated name label.

5. It belonged to a name that was repeated at least three times.

The results of this simple filtering strategy is presented in Table 7.4. It improved
the precision of all models considerably, showing that filtering out all false positives
can probably be accomplished with only a small effort.

Model + Filter (F) Precision Recall F1

HMM-2 (Group A) + Self-Training + F 0.9240 0.8795 0.9012
CRF (Group B) + F 0.9236 0.7951 0.8545
Bi-LSTM-CRF + LSTMc + F 0.9387 0.8887 0.9130
Bi-LSTM-CRF + LSTMc + Hard Attention + F 0.9376 0.8997 0.9183
Bi-LSTM-CRF + LSTMc + F1 Optimization + F 0.9239 0.9409 0.9323

Table 7.4. Overview of the best models for the name extraction task in the RNE
test set after the filtering strategy.

Lastly, in Table 7.5 we present the training times and the subjective complexity
for the best models in the RNE task. The subjective complexity tries to describe
how much effort a researcher has to put in order to implement and run tests with
each model, considering our particular experience in running the experiments for this
dissertation. As we increase the model complexity, we can raise the F1 up to 0.9323
with the F1 optimized Bi-LSTM-CRF + LSTMc after filtering false positives, what
leaves small room for further improvement. However, with a much simpler model
(the self-trained HMM-2) we can get a 0.9012 F1 after filtering false positives, which
is not significantly lower. These results are somewhat comparable to what has been
happening with the reported results for the CoNLL-2003 English NER in the past few
years (already discussed in Chapter 3). That is, as model complexity increases, the
gains in terms of objective measures are not very substantial.

7. Improvements to Neural Networks 84

Model F1 F1 (after filter) Time (seconds) Complexity

HMM-2 (Group A) + Self-Training 0.879 0.9012 64 Easy
CRF (Group B) 0.826 0.8545 965 Medium
Bi-LSTM-CRF + LSTMc 0.902 0.9130 4412 Hard
+Hard Attention 0.907 0.9183 6075 Very Hard
+F1 Optimization 0.892 0.9323 8065 Very Hard

Table 7.5. Overview of the subjective complexity and training times of the best
models for the RNE task.

Chapter 8

Conclusions and Future Work

Existing WDE methods are useful for extracting simple entities from templated web-
pages, but they do not handle cross website extraction tasks so well. Some techniques
from machine learning such as NER are much more flexible, but the existing models
are usually concerned with extraction tasks in plain text, so there is an absence of
datasets for Web named entity extraction tasks. In this dissertation, we introduced a
novel dataset that handled the researcher name extraction task, the RNE dataset, and
discussed the applicability of different machine learning approaches to this problem.

We assessed the performance of different types of HMMs, CRFs and Neural Net-
works in the RNE task, considering their accuracy and complexity. We also proposed
the self-training strategy for HMMs and the attentions models for Bi-LSTM-CRFs,
inspired on WDE systems, to make use of HTML structural features and improve the
model performances on the Web. Lastly, we proposed to use a expected utility function
based on the F-score as an optimization objective for Neural Networks and prioritize
recall over precision.

A natural extension of this work is to test the accuracy of the proposed models
on other Web extraction tasks. Naturally, this would require access to labeled datasets
that concern these other tasks.

8.1 Summary of Conclusions

In this dissertation, we learned that machine learning methods for NER are useful
for solving some cross-website data extraction tasks and, particularly, the RNE task.
We discussed the relative advantages and disadvantages of HMMs, CRFs, and Neural
Networks. HMMs and CRFs can solve the RNE task with very good accuracy as long
as we feed them with the correct features. Contrastingly, Neural Networks demand no

85

8. Conclusions and Future Work 86

feature engineering and can obtain even better accuracy, however their complexity and
training time is not entirely justifiable since the gains are not very substantial. In fact,
Neural Networks cannot be considered entirely automatic, since we still have to tune
hyper parameters and choose the right set of word embeddings.

Additionally, both traditional methods and neural networks can profit from mak-
ing use of HTML structural features when used for sequence labeling in webpages.
We proposed the self-training strategy and the attention models to incorporate this
knowledge in HMMs and Neural Networks, respectively. And finally, we argued that
we should value recall a little more that precision in Web extraction tasks, because
filtering out false positives is easier than finding false negatives in the corpus. A way
to incorporate this intuition on Neural Network is through the optimization of the
expected F-score utility function. Also, we confirmed with the filtering strategy that
filtering false negatives in the RNE task was indeed uncomplicated.

8.2 Future Work

This dissertation left many open ideas that could be explored in future research:

• The self-training strategy was very useful for improving the performance of
HMMs, but variations of this strategy could also be incorporated in neural archi-
tectures. The hard-attention and soft-attention layers described in this disserta-
tion were an early approach for doing that, but they require further improvement.
To make soft-attention layers more reliable, we could pre-train HTML context
embeddings in a large collection and derive structural patterns that can be useful
in many sequence labeling tasks in HTML.

• Good unsupervised methods for WDE are necessary if we want to solve this
task definitively. NER methods trained in plain text become ineffective when they
are applied to documents of a different type, so we end up having to construct
new datasets for each extraction task. This effort is very time-consuming, so we
need more flexible and accurate approaches. The Baum-Welch algorithm is an
unsupervised method for training HMMs, but it is not effective in NER. If we
could devise an efficient way to train semi supervised neural networks especially
for Web extraction tasks, we could make an end-to-end system that solves NER,
relationship extraction and named entity linking in a single step.

8. Conclusions and Future Work 87

8.3 Final Remarks

The preliminary results of some of the Hidden Markov Models discussed in this disser-
tation were published in Veneroso and Ribeiro-Neto [2018], though the results in this
research article were not obtained with the exact same dataset. The other contributions
in this dissertation generated other two research articles that are still being reviewed.
The first article makes a comparison of the P-score measure and the H-index, that was
made possible by the collection of affiliation information from university websites. The
second article discusses the NER techniques proposed in this dissertation.

Bibliography

Abdessalem, T., Cautis, B., and Derouiche, N. (2010). ObjectRunner: Lightweight,
targeted extraction and querying of structured web data. Proc. VLDB Endow.,
3(1-2):1585--1588. ISSN 2150-8097.

Adelberg, B. (1998). NoDoSE—a tool for semi-automatically extracting structured and
semistructured data from text documents. ACM SIGMOD Record, 27(2):283--294.
ISSN 01635808.

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string embeddings for
sequence labeling. In Proceedings of the 27th International Conference on Compu-
tational Linguistics, pages 1638--1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Arocena, G. O. and Mendelzon, A. O. (1998). WebOQL: Restructuring documents,
databases, and webs. In Proceedings of the Fourteenth International Conference on
Data Engineering, ICDE ’98, pages 24--33, Washington, DC, USA. IEEE Computer
Society.

Baevski, A., Edunov, S., Liu, Y., Zettlemoyer, L., and Auli, M. (2019). Cloze-driven
pretraining of self-attention networks. Preprint arXiv:1903.07785.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The
Annals of Mathematical Statistics, 41(1):164--171.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1--127. ISSN 1935-8237.

88

Bibliography 89

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137--1155. ISSN 1532-4435.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning Long-term Dependencies with
Gradient Descent is Difficult. Trans. Neur. Netw., 5(2):157--166. ISSN 1045-9227.

Bikel, D. M., Schwartz, R., and Weischedel, R. M. (1999). An algorithm that learns
what’s in a name. Machine Learning, 34(1):211--231. ISSN 1573-0565.

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting diverse
knowledge sources via maximum entropy in named entity recognition. In Proceed-
ings of the Sixth Workshop on Very Large Corpora, pages 152--160. Association for
Computational Linguistics.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: With Applica-
tions in Statistical Decision Theory. Institute of Mathematical Statistics, Hayworth,
CA, USA. ISBN 0-940-60010-2.

Califf, M. E. and Mooney, R. J. (1999). Relational learning of pattern-match rules for
information extraction. Computational Linguistics, 4:9--15. ISSN 15324435.

Caruana, R., Lawrence, S., and Giles, L. (2000). Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Proceedings of the 13th In-
ternational Conference on Neural Information Processing Systems, NIPS’00, pages
381--387, Cambridge, MA, USA. MIT Press.

Chang, C., Chang, C., Lui, S., and Lui, S. (2001). IEPAD: information extraction
based on pattern discovery. Proceedings of the 10th international conference on
World Wide Web, pages 681--688.

Chang, C.-H., Kayed, M., Girgis, M. R., and Shaalan, K. F. (2006). A Survey of
Web Information Extraction Systems. IEEE Transactions on Knowledge and Data
Engineering, 18(10):1411--1428. ISSN 1041-4347.

Chang, C. H. and Kuo, S. C. (2004). OLERA: Semisupervised Web-data extraction
with visual support. IEEE Intelligent Systems, 19(6):56--64. ISSN 15411672.

Chinchor, N. (1998). Overview of MUC-7. In Proceedings of the Seventh Message
Understanding Conference, MUC-7.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.
(2011). Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12:2493--2537. ISSN 1532-4435.

Bibliography 90

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 20(2):215--242. ISSN 00359246.

Crescenzi, V., Mecca, G., and Merialdo, P. (2001). Roadrunner: Towards automatic
data extraction from large web sites. Proceedings of the 27th International Conference
on Very Large Data Bases, pages 109--118. ISSN 10477349.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-
training of deep bidirectional transformers for language understanding. Preprint
arXiv:1810.04805.

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., and Zhang, W. (2014). Knowledge Vault: a web-scale approach to
probabilistic knowledge fusion. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’14, pages 601--610.
ISSN 0893-6080.

Ferrara, E. and Baumgartner, R. (2011). Automatic wrapper adaptation by tree edit
distance matching. Smart Innovation, Systems and Technologies, 8:41--54. ISSN
21903018.

Ferrara, E., De Meo, P., Fiumara, G., and Baumgartner, R. (2014). Web data extrac-
tion, applications and techniques: A survey. Knowledge-Based Systems, 70:301--323.
ISSN 09507051.

Florian, R., Ittycheriah, A., Jing, H., and Zhang, T. (2003). Named entity recognition
through classifier combination. In Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 168--171.

Forney, G. D. (1973). The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.
ISSN 0018-9219.

Freitag, D. (1998). Information Extraction from HTML: Application of a General
Machine Learning Approach. In Proceedings of the Fifteenth National/Tenth Con-
ference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,
AAAI ’98/IAAI ’98, pages 517--523, Menlo Park, CA, USA. American Association
for Artificial Intelligence.

Freitag, D. and McCallum, A. (2000). Information Extraction with HMM Structures
Learned by Stochastic Optimization. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innovative Applica-
tions of Artificial Intelligence, pages 584--589. AAAI Press.

Bibliography 91

Freitag, D. and Mccallum, A. K. (1999). Information Extraction with HMMs and
Shrinkage. In Proceedings of the AAAI-99 Workshop on Machine Learning for In-
formation Extraction, pages 31--36. AAAI Press.

Furche, T., Gottlob, G., Grasso, G., Orsi, G., Schallhart, C., and Wang, C.
(2012). AMBER: Automatic Supervision for Multi-Attribute Extraction. Preprint
arXiv:1210.5984.

Grishman, R., Huttunen, S., and Yangarber, R. (2002). Information extraction for
enhanced access to disease outbreak reports. Journal of Biomedical Informatics,
35(4):236 – 246. ISSN 1532-0464.

Grishman, R. and Sundheim, B. (1996). Message understanding conference-6: A brief
history. In Proceedings of the 16th Conference on Computational Linguistics - Volume
1, COLING ’96, pages 466--471, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Hammer, J., McHugh, J., and Garcia-Molin, H. (1997). Semistructured Data: The
TSIMMIS Experience. In Proceedings of the First East-European Conference on
Advances in Databases and Information Systems, ADBIS’97, pages 22--22, Swindon,
UK. BCS Learning & Development Ltd.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18(7):1527--1554. ISSN 0899-7667.

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences, 102(46):16569--16572.

Hirschman, L., Yeh, A. S., Blaschke, C., and Valencia, A. (2005). Overview of BioCre-
AtIvE: critical assessment of information extraction for biology. BMC Bioinformat-
ics, 6:S1.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Compu-
tation, 9(8):1735--1780. ISSN 0899-7667.

Hogue, A. and Karger, D. (2005). Thresher: Automating the Unwrapping of Seman-
tic Content from the World Wide Web. In Proceedings of the 14th International
Conference on World Wide Web, WWW ’05, pages 86--95, New York, NY, USA.
ACM.

Bibliography 92

Hsu, C. N. and Dung, M. T. (1998). Generating finite-state transducers for semi-
structured data extraction from the Web. Information Systems, 23(8):521--538. ISSN
03064379.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional LSTM-CRF models for sequence
tagging. CoRR, abs/1508.01991.

Jansche, M. (2005). Maximum Expected F-measure Training of Logistic Regression
Models. In Proceedings of the Conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing, HLT ’05, pages 692--699, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review,
106:620--630.

Krüpl, B., Herzog, M., and Gatterbauer, W. (2005). Using visual cues for extraction
of tabular data from arbitrary HTML documents. Special interest tracks and posters
of the 14th international conference on World Wide Web - WWW ’05, pages 1000--
--1001.

Kushmerick, N. (2000). Wrapper induction: efficiency and expressiveness. Artificial
Intelligence, 118(1-2):15--68. ISSN 00043702.

Laender, A. H. F., Ribeiro-Neto, B., and da Silva, A. S. (2002a). DEByE - Date
extraction by example. Data Knowledge Engineering, 40(2):121--154. ISSN 0169-
023X.

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., and Teixeira, J. S. (2002b).
A brief survey of web data extraction tools. SIGMOD Record, 31(2):84--93. ISSN
0163-5808.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
the Eighteenth International Conference on Machine Learning, ICML ’01, pages 282-
-289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016).
Neural architectures for named entity recognition. CoRR, abs/1603.01360.

Lawrence, S., Lee Giles, C., and Bollacker, K. (1999). Digital libraries and autonomous
citation indexing. Computer, 32(6):67–71.

Bibliography 93

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Comput., 1(4):541--551. ISSN 0899-7667.

Liu, L., Pu, C., and Han, W. (2000). XWRAP: an XML-enabled wrapper construction
system for Web information sources. Proceedings of 16th International Conference
on Data Engineering, pages 611--621. ISSN 1063-6382.

Ma, X. and Hovy, E. (2016). End-to-end sequence labeling via bi-directional LSTM-
CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1064--1074, Berlin, Germany.
Association for Computational Linguistics.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, USA. ISBN 0-262-13360-1.

McCallum, A. (2005). Information extraction: Distilling structured data from unstruc-
tured text. Queue, 3(9):4:48--4:57. ISSN 1542-7730.

McCallum, A., Freitag, D., and Pereira, F. C. N. (2000). Maximum entropy markov
models for information extraction and segmentation. In Proceedings of the Seven-
teenth International Conference on Machine Learning, ICML ’00, pages 591--598,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

McCallum, A. and Li, W. (2003). Early results for named entity recognition with
conditional random fields, feature induction and web-enhanced lexicons. In Proceed-
ings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003
- Volume 4, CONLL ’03, pages 188--191, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111--3119, USA. Curran Associates Inc.

Muslea, I., Minton, S., and Knoblock, C. (1999). A Hierarchical Approach to Wrapper
Induction. In Proceedings of the Third Annual Conference on Autonomous Agents,
AGENTS ’99, pages 190--197, New York, NY, USA. ACM.

Ng, A. Y. and Jordan, M. I. (2001). On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. In Proceedings of the 14th Interna-

Bibliography 94

tional Conference on Neural Information Processing Systems: Natural and Synthetic,
NIPS’01, pages 841--848, Cambridge, MA, USA. MIT Press.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532--1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227--
2237, New Orleans, Louisiana. Association for Computational Linguistics.

Rabiner, L. R. (1990). Readings in Speech Recognition. Chapter: A Tutorial on Hidden
Markov Models and Selected Applications in Speech Recognition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA. ISBN 1-55860-124-4.

Ramshaw, L. A. and Marcus, M. P. (1999). Text Chunking Using Transformation-Based
Learning, pages 157--176. Springer Netherlands, Dordrecht.

Rastegar-Mojarad, M., Liu, S., Wang, Y., Afzal, N., Wang, L., Shen, F., Fu, S., and
Liu, H. (2018). Biocreative/ohnlp challenge 2018. In Proceedings of the 2018 ACM
International Conference on Bioinformatics, Computational Biology, and Health In-
formatics, BCB ’18, pages 575--575, New York, NY, USA. ACM.

Ratnaparkhi, A. (1998). Maximum Entropy Models for Natural Language Ambiguity
Resolution. PhD thesis, Philadelphia, PA, USA. AAI9840230.

Ribas, S., Ribeiro-Neto, B., de Souza e Silva, E., Ueda, A. H., and Ziviani, N. (2015).
Using reference groups to assess academic productivity in computer science. In
Proceedings of the 24th International Conference on World Wide Web, WWW ’15
Companion, pages 603--608, New York, NY, USA. ACM.

Rijsbergen, C. J. V. (1979). Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition. ISBN 0408709294.

Sahuguet, A. and Azavant, F. (1999). Building Light-Weight Wrappers for Legacy
Web Data-Sources Using W4F. In Proceedings of the 25th International Conference
on Very Large Data Bases, VLDB ’99, pages 738--741, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Bibliography 95

Sarawagi, S. (2008). Information extraction. Foundations and Trends in Databases,
1(3):261--377. ISSN 1931-7883.

Schulz, A., Lässig, J., and Gaedke, M. (2016). Practical web data extraction: Are we
there yet? — A short survey. IEEE/WIC/ACM International Conference on Web
Intelligence (WI), 2016, pages 562----567.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379--423.

Shi, S., Liu, C., Shen, Y., Yuan, C., and Huang, Y. (2015). AutoRM: An effective
approach for automatic Web data record mining. Knowledge-Based Systems, 89:314-
-331. ISSN 09507051.

Soderland, S. (1999). Learning Information Extraction Rules for Semi-Structured and
Free Text. Machine Learning, 34(1):233--272. ISSN 0885-6125.

Sundheim, B. M. (1991). Overview of the third message understanding evaluation and
conference. In Proceedings of the 3rd Conference on Message Understanding, MUC3
’91, pages 3--16, Stroudsburg, PA, USA. Association for Computational Linguistics.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In Proceedings of the 30th Interna-
tional Conference on International Conference on Machine Learning - Volume 28,
ICML’13, pages 1139--1147. JMLR.org.

Sutton, C. and McCallum, A. (2012). An Introduction to Conditional Random Fields.
Foundations and Trends in Machine Learning, 4(4):267--373. ISSN 1935-8237.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the CoNLL-2003
Shared Task: Language-independent Named Entity Recognition. In Proceedings of
the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Vol-
ume 4, CONLL ’03, pages 142--147, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Varlamov, M. I. and Turdakov, D. Y. (2016). A survey of methods for the extraction of
information from Web resources. Programming and Computer Software, 42(5):279--
291. ISSN 0361-7688.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural
Information Processing Systems 30, pages 5998--6008. Curran Associates, Inc.

Bibliography 96

Veneroso, J. M. F. and Ribeiro-Neto, B. (2018). Entity name extraction from faculty
directories. In Proceedings of the 18th ACM/IEEE on Joint Conference on Digital
Libraries, JCDL ’18, pages 389--390, New York, NY, USA. ACM.

Werbos, P. (1990). Backpropagation through time: what does it do and how to do it.
In Proceedings of IEEE, volume 78, pages 1550--1560.

Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y. (2005). 2D Conditional Random
Fields for Web Information Extraction. In Proceedings of the 22Nd International
Conference on Machine Learning, ICML ’05, pages 1044--1051, New York, NY, USA.
ACM.

Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y. (2006). Simultaneous Record
Detection and Attribute Labeling in Web Data Extraction. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, pages 494--503, New York, NY, USA. ACM.

Appendix A

Cross Validation

Considering the reduced size of the RNE dataset, we must acknowledge the limitations
concerning generalizations about the relative performance of the models studied in
this dissertation. The naive division of the labeled data into three static data files
(training, validation and test) may harm the validity of our analysis if the data files
were randomly selected in a way that favors a model in place of others due to the
natural volatility in the process of parameter estimation.

When training a machine learning model for a particular prediction task, the
model is expected to fit the training data as closely as possible as the training pro-
gresses. If the training is kept going indefinitely, the model will probably learn spurious
patterns (i.e. overfitting the training data), what will lead to poor generalizations.
That is why the expected performance of a predictive model over unseen data must be
checked with the aid of an independent sample drawn from the same population as the
training data, which we called the test set in previous chapters. In addition to the test
set, we also separated a validation data file. The validation data file is never observed
directly by the models. Rather, its purpose is to prevent overfitting by monitoring
the model performance in the validation dataset and stop the training when a given
statistic, in this case the F1-score, decreases over several epochs. This is called the
early stopping strategy [Caruana et al., 2000].

The problem with splitting the dataset in three files is that the independent
sample used to test the models may not be a faithful representation of the complete
population. This problem is less likely to lead to wrong conclusions if the dataset is
sizable, but in the case of the RNE dataset, the risk of incorrect results increases due
to the diminished size of the dataset. We can mitigate this problem by employing
the strategy of K-fold cross-validation. K-fold cross-validation consists in splitting the
complete dataset into K folds, where (K − 1) folds are used to train the model and

97

A. Cross Validation 98

one fold is used to test it. The test fold is rotated K times until we have trained K
variants of the same model and tested it in each fold separately. The averaged statistics
obtained in this process will be more trustworthy than the results obtained with the
static split since each model variation will have been tested against all data points.

In this appendix, we discuss the results for the models presented in the preceding
chapters by performing five fold cross validation in a combination of the training,
validation and test data files of the RNE dataset and discussing the results. The
results for HMMs are presented in Section A.1, the results for CRFs are presented in
Section A.2 and the results for Neural Networks are presented in Section A.3.

A.1 Hidden Markov Models

Table A.1 presents the results for all HMM variations when performing five fold cross
validation in the RNE dataset. The F1 obtained only in the test set is also presented
for ease of comparison. The F1 (test set) is the same one presented in the earlier
chapters. Each cell shows the precision, recall and F1 statistics averaged over five folds
and their standard deviations inside parenthesis.

The results for the models that employed only the current word as a feature did
not change dramatically, except for the HMM-3, which had a much better average
result in the cross validation runs. An important aspect revealed by cross validation
is that most tested HMMs showed a significant F1 standard deviation. For example,
the HMM-2 with the self-training strategy showed a 0.099 standard deviation in the
F1 across five folds. This important information poses some doubt over some earlier
conclusions. In fact, models that employed Group B features1 performed better than
models with Group A features2 contrasting with the results for the models tested
using only the test datafile. Because of the high standard deviation, it is difficult to
ascertain the relative superiority of different feature selections and different types of
HMMs. But, it is possible to notice that the addition of more features contributes
a lot to the reduction of the standard deviations since models trained with features
from Group B presented consistently less variation in performance. The self-training
strategy was still useful in improving all models with a substantial margin. Overall,
the best HMMs were able to achieve an F1 around 0.8 in the RNE dataset.

1 All features except for the HTML Tag and the CSS Class.
2 Current word, Exact Match, Partial Match, URL, Capitalized

A. Cross Validation 99

Model P R F1 (CV) F1 (Test)

NB 0.082 (0.006) 0.072 (0.004) 0.077 (0.005) 0.086
HMM-1 0.631 (0.066) 0.516 (0.097) 0.566 (0.083) 0.533
HMM-2 0.606 (0.141) 0.552 (0.114) 0.577 (0.126) 0.583
HMM-3 0.599 (0.111) 0.609 (0.114) 0.603 (0.105) 0.506
HMM-1 (Group A) 0.773 (0.094) 0.729 (0.055) 0.750 (0.073) 0.805
HMM-2 (Group A) 0.762 (0.085) 0.749 (0.057) 0.754 (0.062) 0.812
HMM-3 (Group A) 0.777 (0.073) 0.763 (0.061) 0.769 (0.065) 0.798
HMM-1 (Group B) 0.811 (0.048) 0.793 (0.030) 0.801 (0.032) 0.748
HMM-2 (Group B) 0.779 (0.042) 0.781 (0.082) 0.779 (0.055) 0.769
HMM-3 (Group B) 0.771 (0.075) 0.787 (0.042) 0.778 (0.055) 0.724
HMM-1 (Group A) + ST 0.745 (0.060) 0.787 (0.093) 0.764 (0.069) 0.865
HMM-2 (Group A) + ST 0.771 (0.123) 0.816 (0.082) 0.791 (0.099) 0.879
HMM-3 (Group A) + ST 0.772 (0.098) 0.802 (0.072) 0.786 (0.085) 0.762
HMM-1 (Group B) + ST 0.812 (0.041) 0.828 (0.028) 0.819 (0.018) 0.866
HMM-2 (Group B) + ST 0.783 (0.081) 0.836 (0.033) 0.807 (0.052) 0.877
HMM-3 (Group B) + ST 0.774 (0.073) 0.821 (0.044) 0.796 (0.053) 0.814

Table A.1. Precision (P), Recall (R) and F1 for Hidden Markov Models and
Naive Bayes in the RNE task using five fold cross validation (CV).

A.2 Conditional Random Fields

Table A.2 presents the results for all CRF variations when performing five fold cross
validation in the RNE dataset. Each cell shows the precision, recall and F1 statistics
averaged over five folds and their standard deviations in parenthesis.

All CRF variations performed worse when considering the average results across
five folds in comparison to the models tested using only the test set. The variant using
Group B features still achieved the top performance between the three variants. As
was the case for the HMMs, CRFs show a significant standard deviation, what prevents
us from drawing strong conclusions about the relative performances of different model
variations.

A.3 Neural Networks

Table A.3 presents the results for all Neural Network variations when performing five
fold cross validation in the RNE dataset. Each cell shows the precision, recall and F1

A. Cross Validation 100

Model P R F1 (CV) F1 (Test)

Logistic Classifier 0.095 (0.027) 0.122 (0.027) 0.104 (0.018) 0.133
CRF 0.685 (0.086) 0.680 (0.071) 0.677 (0.031) 0.750
CRF (Group A) 0.794 (0.074) 0.742 (0.081) 0.767 (0.075) 0.808
CRF (Group B) 0.802 (0.068) 0.753 (0.074) 0.776 (0.067) 0.826

Table A.2. Precision (P), Recall (R) and F1 for CRFs and Logistic Classifier in
the RNE task using five fold cross validation (CV).

statistics averaged over five folds and their standard deviations. All neural networks
were trained over ten epochs in each fold. No early stopping strategy was used.

Almost all neural network variations showed about the same average performance
using either only the test set or cross validation. However, it is noteworthy to mention
that the choice of the test set hindered the performance of ELMo embeddings quite
significantly. Overall, ELMo embeddings showed better performance than Word2Vec
embeddings but despite adding a lot of complexity to the models, they still performed
suboptimally when compared to static GloVe embeddings.

The Hard Attention model had the best average F1 among all neural network
variations either in the test set or the cross validation runs. The soft attention layer
was detrimental to the performance of the Bi-LSTM-CRF with LSTM characters on
both experiments.

When compared to simpler statistical models, neural networks show a lower stan-
dard deviation. Still, when considering these ranges of variation, the introduction of
Neural Networks in the RNE task does not provide a massive gain in performance.
However, this gain is more significant than previously stated when we compared only
the performances in the test set. It could be argued that the main benefits of employ-
ing Bi-LSTM-CRFs in this task, are the improved predictability provided by a smaller
standard deviation and a better overall performance.

A.3.1 F-score Optimization

In Table A.4, we present the cross-validation results for the Bi-LSTM-CRF with an
F-α optimization objective, where α ranges from 0.1 to 0.9. The previous F-α scores
obtained using only the test set are also presented in the table.

The cross validation results for the Bi-LSTM-CRFs that optimized the F-α ob-
jective did not change tremendously when compared to the results using only the test
set. All variants privileged recall over precision and the change in the value of α did

A. Cross Validation 101

Model P R F1 (CV) F1 (Test)

Bi-LSTM-CRF 0.866 (0.036) 0.844 (0.043) 0.855 (0.036) 0.886
+CNNc 0.885 (0.050) 0.925 (0.023) 0.904 (0.034) 0.901
+LSTMc 0.889 (0.051) 0.924 (0.029) 0.906 (0.036) 0.902
+LSTMc (Word2Vec) 0.870 (0.056) 0.898 (0.047) 0.883 (0.044) 0.864
+LSTMc (Elmo) 0.911 (0.044) 0.891 (0.036) 0.901 (0.038) 0.841
+Hard Attention 0.905 (0.032) 0.912 (0.032) 0.908 (0.019) 0.907
+Soft Attention 0.875 (0.051) 0.924 (0.039) 0.899 (0.044) 0.865

Table A.3. Precision(P), Recall (R) and F1 for Bi-LSTM-CRF variations in the
RNE task using five fold cross validation (CV). All the models used GloVe-300
embeddings except if stated otherwise.

not impact the end result significantly. The best F-score (α) was achieved by the vari-
ant that optimized the F-score with α = 0.3 in contrast with the runs in the test set,
where the best model was the network that optimized the F1-score. It is noteworthy to
mention that, different from the results obtained using only the test set, most Neural
Network variants showed a preference for Recall over Precision in the cross validation
results even when optimizing the regular cross entropy function, what weakens the case
for a custom optimization objective such as the F-score utility function.

α P R F-α (CV) F-α (Test)

0.1 0.832 (0.055) 0.871 (0.048) 0.867 (0.048) 0.832
0.2 0.837 (0.047) 0.901 (0.052) 0.887 (0.048) 0.863
0.3 0.842 (0.049) 0.911 (0.053) 0.888 (0.039) 0.873
0.4 0.836 (0.068) 0.929 (0.037) 0.887 (0.023) 0.881
0.5 0.807 (0.033) 0.904 (0.036) 0.853 (0.031) 0.881
0.6 0.818 (0.050) 0.926 (0.065) 0.857 (0.053) 0.855
0.7 0.798 (0.090) 0.900 (0.037) 0.825 (0.077) 0.877
0.8 0.821 (0.044) 0.926 (0.029) 0.840 (0.041) 0.850
0.9 0.644 (0.320) 0.808 (0.254) 0.655 (0.321) 0.734

Table A.4. Precision(P), Recall (R) and F1 for Bi-LSTM-CRF variations opti-
mizing the F-α objective in the RNE task using five fold cross validation (CV).

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Contributions
	1.4 Dissertation Outline

	2 Problem Definition
	2.1 Information Extraction
	2.2 Named Entity Recognition
	2.3 Researcher Name Extraction
	2.4 Summary

	3 Related Work
	3.1 Web Data Extraction
	3.2 Named Entity Recognition
	3.3 Summary

	4 Techniques for Sequence Labeling
	4.1 Hidden Markov Models
	4.1.1 Smoothing
	4.1.2 Predicting sequences
	4.1.3 Self-Training
	4.1.4 Experimental Considerations

	4.2 Conditional Random Fields
	4.2.1 Experimental Considerations

	4.3 Neural Networks
	4.3.1 BI-LSTM-CRF
	4.3.2 Word Embeddings
	4.3.3 Character Representations

	5 Researcher Name Extraction Dataset
	5.1 Data Description
	5.2 Evaluation
	5.3 Dictionary
	5.4 Comparison with CoNLL-2003
	5.5 Dataset Size

	6 Experiments
	6.1 Simple Baseline
	6.2 Hidden Markov Models
	6.2.1 HMM order
	6.2.2 Feature selection
	6.2.3 Self-training strategy

	6.3 Conditional Random Fields
	6.3.1 Only the Current Word Feature
	6.3.2 Feature Selection

	6.4 Neural Networks
	6.4.1 Bi-LSTM-CRF
	6.4.2 Character Representations
	6.4.3 Word Embeddings
	6.4.4 Technical Details for Neural Networks

	6.5 What is the best model?

	7 Improvements to Neural Networks
	7.1 Attentions Models
	7.1.1 Hard Attention Function
	7.1.2 Soft Attention Function
	7.1.3 Dataset Split and Experimental Considerations

	7.2 F-score Optimization
	7.3 Experiments
	7.3.1 Attention Mechanisms
	7.3.2 F-score Optimization
	7.3.3 Filtering False Positives

	8 Conclusions and Future Work
	8.1 Summary of Conclusions
	8.2 Future Work
	8.3 Final Remarks

	Bibliography
	A Cross Validation
	A.1 Hidden Markov Models
	A.2 Conditional Random Fields
	A.3 Neural Networks
	A.3.1 F-score Optimization

