
UM MÉTODO GERAL PARA GERAÇÃO

AUTOMÁTICA DE PLAYLISTS DE MÚSICA

MARCOS ALVES DE ALMEIDA

UM MÉTODO GERAL PARA GERAÇÃO

AUTOMÁTICA DE PLAYLISTS DE MÚSICA

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Renato Martins Assunção
Coorientador: Pedro O. S. Vaz de Melo

Belo Horizonte

Abril de 2019

MARCOS ALVES DE ALMEIDA

A GENERAL METHOD TO AUTOMATICALLY

GENERATE MUSIC PLAYLISTS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Renato Martins Assunção
Co-Advisor: Pedro O. S. Vaz de Melo

Belo Horizonte

April 2019

© 2019, Marcos Alves de Almeida

 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Almeida, Marcos Alves de.

A447g A General method to automatically generate music
 playlists / Marcos Alves de Almeida — Belo Horizonte,
 2019.
 xxiv, 77 f. il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de
 Minas Gerais – Departamento de Ciência da
 Computação.

 Orientador: Renato Martins Assunção
 Coorientador: Pedro Olmo Stancioli Vaz de Melo

 1. Computação – Teses. 2. Recuperação da

 Informação. 3. Sistemas de informação musical. 4. Lista
de reprodução - música. I. Orientador. II. Coorientador.
III. Título.

CDU 519.6*73(043)

To my dad, my mom, my sister and my Godparents.

ix

Acknowledgments

I’d like to thanks my dad, Antônio Eustáquio, for all the support and help to achieve
my dreams. Without him, I wouldn’t be completing this work. I also thank my mom,
Sônia Maria, for teaching me the importance of the study, and my sister, Mariana, for
being an example of dedication to studies. I feel grateful for having them as my family.

A special dedication is given to my Godparents, Marcio Chula and Maria Apare-
cida Chula, for all the love they have for me. A love that I always fell it’s impossible to
reciprocate. I will always love and be grateful for all the affection I receive from them.

I also want to thank all the friends I made during this journey. Friends I made
in my hometown Divinópolis, friends from the Computational Mathematics course,
friends from other courses of the university, friends I made during the Master degree,
friends I made practicing Kung Fu. Friends that were and I know will always be there
when I need. Friends that gave me the strength to keep fighting for my dreams. Friends
that, when I was far from home, became my family. Friends I will take with me for
the rest of my life. It’s impossible to cite all the names here since all of them deserve
a special thanks. But I would like all of them to feel grateful.

Last, but not least, I want to thanks my advisor, professor Renato Martins As-
sunção, and my co-advisor, professor Pedro Olmo Stancioli Vaz de Melo, for helping
and guiding me during this work. I learned a lot with them, and will always be grateful
for the knowledge they have transmitted to me. A knowledge that I will take with me
for the rest of my life.

A lot of people went through my life, helping and supporting me to achieve my
goals. Words are not enough to express my gratitude for all of them. Therefore, I leave
here my simple thanks for all of them.

Thank you.

xi

“If I have seen further it is by standing on the shoulders of Giants.”
(Isaac Newton)

xiii

Resumo

Música é uma das formas de entretenimento mais utilizadas por pessoas do mundo
todo. Diferente de outros tipos de entreterimento como filmes e teatro, música é con-
sumida por meio de playlists, isto é, várias músicas são agrupadas antes que sejam
escutadas. Organizar as músicas em uma sequência é uma tarefa que demanda tempo,
e pode requerer conhecimentos específicos de quem está criando as playlists. O obje-
tivo deste trabalho é propor um método geral para gerar automaticamente playlists de
música satisfazendo objetivos conflitantes. Inicialmente, nós iremos analisar playlists
de música de usuários com o objetivo de entender suas características e gêneros mu-
sicais. Em seguida, iremos propor formas de calcular a similaridade entre músicas
utilizando características acústicas e metadados. As funções de similaridade propostas
serão utilizadas para mapear as músicas em um espaço de músicas onde músicas simi-
lares estão próximas uma das outras. Então iremos propor um método geral para gerar
automaticamente uma playlist aleatória de música conectando duas músicas definidas
pelo usuário. Baseado no método geral, iremos construir dois algoritmos para gerar
playlists de música, chamados de ROPE e STRAW, e aplicá-los nos espaços de música
construídos. Com os experimentos realizados, nós mostramos que os algoritmos pro-
postos conseguem gerar playlists aleatórias de músicas heterogêneas com transições
suaves entre as músicas. Finalmente, um protótipo online é desenvolvido para permitir
usuários testarem o método proposto.

Palavras-chave: Recuperação de Informações Musicais, Mapeamento de Músicas,
Gerador de Playlists.

xv

Abstract

Music is one of the most used forms of entertainment, being consumed by people all
over the world. Different from other types of entertainment such as movies and plays,
music is consumed in playlists, that is, several tracks are grouped together before the
users listen to them. Arranging the songs in a sequence is a time-consuming task, and
may require specific knowledge from the playlist creator. The objective of this work
is to propose a general method to automatically generate music playlists satisfying
conflicting goals. First, we will analyze users’ playlists in order to understand their
characteristics and music genres. Next, we will propose methods to calculate the
similarity between songs using acoustic characteristics and metadata. The proposed
similarity functions will be used to embed the songs in a music space, where similar
songs are close to each other. Then, we will propose a general method to automatically
generate a random playlist of songs connecting two anchor songs defined by the user.
Based on the general method, we will construct two algorithms to generate music
playlists, named ROPE and STRAW, and apply them to the constructed music spaces.
With the experiments carried out, we showed the proposed algorithms are able to
generate random heterogeneous music playlists with smooth transitions between songs.
Finally, an online prototype is developed to allow users to test the proposed method.

Keywords: Music Information Retrieval, Music Embedding, Playlist Generator.

xvii

List of Figures

3.1 CDF of the songs’ release year on Billboard dataset 16

3.2 CDFs of Playlists’ length and Number of Playlists per User on Spotify Dataset 18

3.3 Number of songs covered given top k tags (log base 10) 19

3.4 CDF of Playlists’ length after intersection of Spotify and Billboard datasets
(log base 10) . 19

4.1 CDFs of Playlists and Users’ total number of tags 22

4.2 Heterogeneity of a playlist equally distributed over k tags 23

4.3 Genre distribution of two users . 23

4.4 CDFs of Playlists and Users’ Heterogeneity 24

4.5 Theil index of tags . 26

4.6 Proportion of Theil index of tags with biggest and smallest Between inequality 27

4.7 Users Clustering Dendrogram . 28

4.8 Bar Plot of clusters genres . 30

4.9 Bar Plot of clusters genres . 31

5.1 Billboard Music Space . 35

5.2 Boxplot of distance between songs on Billboard music space given number
of cooccurrence in AotM dataset . 36

5.3 Boxplot of distance between songs on Billboard music space given number
of cooccurrence in Spotify dataset . 36

5.4 Boxplot of distance between songs on Word2vec music space given number
of cooccurrence in AotM dataset . 39

5.5 Boxplot of distance between songs on Word2vec music space given number
of cooccurrence in Spotify dataset . 40

5.6 Boxplot of distance between songs on SVD music space given number of
cooccurrence in AotM dataset . 42

xix

5.7 Boxplot of distance between songs on SVD music space given number of
cooccurrence in Spotify dataset . 43

6.1 Illustration of ROPE algorithm . 48

7.1 ST1 of playlists in the Billboard music space 61
7.2 ST2 of playlists in the Billboard music space 61
7.3 HC of playlists in the Billboard music space 62
7.4 RC of playlists in the Billboard music space 62
7.5 RC of playlists in the Billboard music space without Flexer 62
7.6 ST1 of playlists in the Word2vec music space 63
7.7 ST1 of playlists in the Word2vec music space without Random 63
7.8 ST2 of playlists in the Word2vec music space 64
7.9 HC of playlists in the Word2vec music space 64
7.10 RC of playlists in the Word2vec music space 64
7.11 ST1 of playlists in the SVD music space 65
7.12 ST2 of playlists in the SVD music space 65
7.13 HC of playlists in the SVD music space . 65
7.14 RC of playlists in the SVD music space . 65
7.15 Precision of playlists in the Word2vec music space and SVD music space . 67
7.16 Prototype interface . 68
7.17 Playlist generated using the prototype . 69

xx

List of Tables

3.1 Summary statistics of the Billboard dataset, Spotify dataset and their in-
tersection . 19

3.2 Summary statistics of the AOTM dataset after intersection with the Bill-
board dataset and Spotify dataset . 20

5.1 Correlation between songs co-occurrence and log of distance on music spaces. 43

7.1 Precision values of playlists in the Word2vec music space 66
7.2 Precision values of playlists in the SVD music space 67

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Organization . 4

2 Literature Review 7
2.1 Characterizing Songs . 7

2.1.1 Content-based Characteristics 8
2.1.2 Context-based Characteristics 8

2.2 Playlist Generator Qualities . 9
2.3 Song Similarity . 10
2.4 Playlist Generation . 12

3 Datasets 15
3.1 Billboard Dataset . 15
3.2 Spotify Dataset . 17
3.3 The Art of the Mix Dataset . 20

4 Users Characterization 21

xxiii

4.1 Playlists and Users Representation . 21
4.2 Playlists and Users Heterogeneity . 22
4.3 Genres Distribution Inequality . 24
4.4 User Clustering . 27

5 Song Similarity and Music Spaces 33
5.1 Similarity Using Content-based Characteristics 33
5.2 Similarity Using Context-based Characteristics 37

5.2.1 Similarity Between Songs Based on Co-occurrence 37
5.2.2 Similarity between songs based on artists’ tags 41

6 Playlists Generators 45
6.1 General Method to Generate Playlists 45
6.2 Algorithms to Generate Music Playlists 47

6.2.1 ROPE . 47
6.2.2 STRAW . 51

6.3 Application of the Algorithms . 52
6.3.1 Application of ROPE . 52
6.3.2 Application of STRAW . 53

7 Metrics and Experiments 57
7.1 Evaluation Metrics . 57
7.2 Baseline Algorithms . 59
7.3 Experiments . 60

7.3.1 The Billboard Music Space . 60
7.3.2 The Word2vec Music Space . 63
7.3.3 The SVD Music Space . 65
7.3.4 Comparing Word2vec and SVD music space 66

7.4 Experimental Conclusions . 67
7.5 Prototype . 68

8 Conclusions and Future Works 71

Bibliography 73

A Keywords list 77

xxiv

Chapter 1

Introduction

Music has been present in our lives for a long time, found in every known civilization.
It’s difficult to determine the origin of music, but it probably began at the stone age
as a form of culture expression. Although there are some divergence about the oldest
music instrument[Diedrich, 2015], flutes made from bird bones dated around 40000
years ago are believed to be produced by Homo sapiens 1. Music has been evolving
through the time, going through the Medieval, Renaissance, Baroque, Classical and
Romantic periods, being considered a piece of art together with words, as in songs,
and with physical movements, as in dance.

The way we listen to music has also changed over ages. If in the past it was
necessary to go to orchestras or concerts, with the advance of technology we started
listening to music through other methods. At the beginning of the twentieth century,
Thomas Edson developed the phonograph cylinder, an equipment able to record and
reproduce sounds. Through time, other technologies have arisen, like the gramophone,
vinyl LP, cassette tape, compact disc, and MP3 players. Today, with the growing of
music streaming services such as Spotify or Pandora, we can listen to music on our
phones, computer, tablet or smart TVs anywhere and at any moment.

Music is not only art but also an entertainment and has many other benefits,
such as educational and therapeutic (as in music therapy, which uses music to prevent
and support mental problems). It is present in almost every moment of our lives, as
we listen to music at bars, restaurants, while driving, working out, or even resting at
home. Music can also impact our psychosocial development [Miranda, 2013] and has
the ability to influence our emotions and bring memories back. Just listening to a song
we used to listen to when we were young brings back to our mind event and feeling of
that time.

1https://www.bbc.com/news/science-environment-18196349

1

2 Chapter 1. Introduction

1.1 Motivation

With the arrival of digital music and advance of music stream services like Spotify
and Groove Music, millions of songs are available to anyone, and any user can listen
to their favorite almost instantly. Spotify, for example, provides more than 30 million
songs to its users2. This digitalization and ease of access to a huge collection of songs
come with many other problems, such as music organization, automatic music genre
classification and music recommendation, and solving them has been demanded to a
better iteration with such media. For instance, automatically classifying songs by its
genre makes it easy to organize and retrieve similar songs, and recommending songs to
users helps them discover new songs they may enjoy[Kamehkhosh et al., 2018].

Another problem we face with this large amount of available songs is creating
an enjoyable playlist. Manually selecting the songs to add to the playlist demands
time, and may require advanced knowledge from the creator. Jannach et al. [2014], for
example, showed that, on users’ created playlists, the tracks of the second halves seem
to be slightly less carefully selected than those of the first halves. Because of that,
methods to automatically generate music playlists have become essential to aid users
in the task of selecting the appropriate songs to add to the playlist.

The problem of music recommendation is tied to automatic playlist generation,
but they should be treated separately. When recommending songs to a user, it is
done in form of playlists, as the consumption of music is faster than other media like
movies. But the playlists generated should follow specific criteria. While some users
have a well-defined music taste, others have an eclectic one and enjoy songs of several
different genres. Recommending playlists to them is a challenge since users generally
don’t enjoy abrupt transitions between songs on a playlist. We should not recommend
a classic song right after a rock one, for instance. Users also like to listen to songs by
different artists and genres, so they can discover new artists they may enjoy. In this
case, recommending a heterogeneous playlist is ideal.

According to Shao et al. [2009], the key to a successful music recommendation
is to develop a good measurement of how similar two pieces of songs are and use
it as an effective recommendation method. In other words, if we have an accurate
similarity function between songs, we can use it to retrieve songs similar to the ones
a user enjoys, as described by Ben-Elazar et al. [2017]. Another importance of a good
similarity function between songs is discussed by Pohle et al. [2005], who proposed to
reorder the songs in a playlist in an attempt to group similar songs and avoid abrupt
transitions between tracks.

2https://www.digitaltrends.com/music/apple-music-vs-spotify/

1.2. Objectives 3

Collaborative-filtering and context-based recommendations are two approaches
also widely used for music recommendation tasks [Shao et al., 2009]. The idea behind
these approaches is that if two items are consumed together, they may be similar
to each other. Although achieving good results in practice [Barrington et al., 2009],
such techniques face some problems. One of them is that they can overestimate the
similarity of popular songs since they have a higher probability of appearing in playlists
[Goussevskaia et al., 2008]. Another problem faced by these methods is the cold start
problem, that is, when we have a new item (or user), we need to wait for it to be
consumed by (or consume) other items before performing a recommendation.

1.2 Objectives

The objective of this work is to propose a general method to automatically generate
music playlists comprising different songs. First, we will study users’ playlists with the
aim to understand the different music styles they have. With this analysis, we want
to determine if users have an eclectic taste, enjoying songs of various genres, or if they
are focused on few genres. We will represent a playlist by the genres it contains, and
study the distribution of such representation. Then we will identify the music genres
that are present in almost all playlist, and the rare ones, present in only a few playlists.

After the users’ playlists analysis, we will study forms to calculate the similarity
between songs: one using acoustic characteristics of the songs such as timbre and har-
mony, and another using metadata song characteristics like the artists’ genres and their
co-occurrence in users’ playlists. These similarity functions will be used to construct
a music space with a well-defined distance between them. This music space should be
coherent, that is, close points on it should represent songs that are similar.

We will then propose a general method to automatically generate music playlists
by walking through a music space. The proposed method should generate random
playlists, so the user obtains a different one every time he/she uses it with the same
input. Also, it should be able to generate playlists with a smooth transition between
songs, at the same time the playlist may contain songs with diverse genres, satisfy-
ing the users’ taste. Based on the general method we will propose two algorithms,
named ROPE and STRAW, that connect seed songs defined by a user. These playlists
generators should be fast, independently of the size of the playlist and the database.

4 Chapter 1. Introduction

1.3 Contributions

The main contributions of this dissertation are:

1. An analysis of user’s music playlists, and the characterization of their listening
profiles. This characterization allows us to better understand how different users
listen to music, and how to better generate and recommend personalized music
playlists to them.

2. The proposal of methods to measure how similar two songs are. This similarity
function is important to cluster similar songs, recommend songs to users based
on other songs they enjoy, and to generate playlists with smooth transitions.

3. The proposal of a general method to generate music playlists to users, whether
their tastes are homogeneous or heterogeneous, and two algorithms based on the
general method. These algorithms are important to satisfy all kind of users,
including those that enjoy distinct music genres, and to satisfy a group of users
with diverse tastes that share the same ambient at a given moment.

With the results obtained during this research, the following papers were pub-
lished:

The Fast and Winding Roads that Lead to The Doors: Generating Heterogeneous
Music Playlists, published in ACM Proceedings of the 23rd Brazillian Symposium
on Multimedia and the Web in 2017 by the authors Marcos A. de Almeida,
Carolina C. Vieira, Pedro O.S. Vaz de Melo, Renato M. Assunção.

Random Playlists Smoothly Commuting Between Styles, published in Transac-
tions on Multimedia Computing Communications and Applications in 2019 by
the authors Marcos A. de Almeida, Carolina C. Vieira, Pedro O.S. Vaz de Melo,
Renato M. Assunção.

We also created an online prototype of one of our proposed algorithms to allow
users to test and generate music playlists. The prototype receives as input from the
user two anchor songs and the desired number of songs in the playlist, and allow the
user to save and listen to the generated playlist on Spotify system.

1.4 Organization

The rest of this work is organized as followed: in chapter 2 we describe some of the
song characteristics most used for calculate music similarity and generate playlist, and

1.4. Organization 5

review some of the most relevant related works. In chapter 3 we are going to present
the datasets we will use through this work. The study and characterization of the
users will be presented in chapter 4. In chapter 5 we will describe ways to calculate
the similarity between songs. These similarity functions will be used on the playlist
generation algorithms that will be described in chapter 6. In chapter 7 we will present
the experiments performed with the proposed algorithms and present the prototype
implemented, followed by the conclusions and future works in chapter 8.

Chapter 2

Literature Review

We can find in the literature many works about music information retrieval, such as
how to extract characteristics from audio and automatically classify songs according
to the genre. In this chapter, we are going to review works related to the problem
of music similarity and automatic playlist generation. Before diving into the related
works, we will outline some qualities a playlist generator algorithm should satisfy. Then
we are going to review the approaches most used to compute the similarity between
songs based on the audio characteristics and metadata which is important to generate
coherent playlists, and satisfying the users’ taste. Finally, the most relevant proposed
algorithms to generate music playlists will be explored.

2.1 Characterizing Songs

To quantify and characterize a sound is not a simple task. Analyzing the digital
representation of a song and extracting representative features of the audio requires
specific algorithms and possibly music theory knowledge. In physics, sound is defined
as a vibration that typically propagates as an audible wave of pressure. In psychology,
the term sound has a different meaning, referring to how the brain perceives it. Based
on those definitions, there are some measures used to describe and analyze a sound,
such as frequency, amplitude, pitch, and loudness. These characteristics are classified
as content-based features. Besides acoustic characteristics, songs can be characterized
by context-based features such as the genre of the song and the year and country it was
composed. Some authors use the term metadata to refer to context-based features.

7

8 Chapter 2. Literature Review

2.1.1 Content-based Characteristics

In the music theory field, there are characteristics used to describe the sound and how
we perceive it. These characteristics are used to inform the differences and similarities
between pieces of songs. Although they are mostly qualitative, there are algorithms
that try to quantify them by analyzing the music audios’ wave.

According to Knees and Schedl [2013], the idea behind content-based approaches
is to extract information directly from the audio signal of the music using signal pro-
cessing techniques. When it comes to content-based characteristics, the most used in
the literature is the Mel Frequency Cepstral Coefficients (MFCCs)1, since, as described
by Muda et al. [2010], are based on how human ear perceives the sound. MFCCs are
spectral-domain audio features for the description of timbre (a characteristic that al-
lows us to differentiate music instruments) and are routinely used in speech recognition
and Music Information Retrieval (MIR) tasks [Mauch et al., 2015].

Another form of representing the acoustic characteristics of a song is using the
chroma features. Chroma features is a representation for music audio in which the
entire spectrum is projected onto 12 bins representing the 12 distinct semitones (pitch
classes) of the musical octave, and can characterize music harmony 2.

2.1.2 Context-based Characteristics

Besides acoustic characteristics, songs can be characterized by metadata features. Dif-
ferent from the content-based characteristics, these features describe general informa-
tion about the audio, such as the rhythm and music instruments present on it. Some
of the context-based characteristics presented in literature are:

• Genre of the song: this feature can describe acoustic characteristics such as
the beats, the pace of the song, and the instruments that may or may not be
present. For example, a Hip Hop song may imply fast beats, while a blues song
may have the absence of drums.

• Year of release: This feature informs the freshness of the song. It can indicate
some characteristics of the audio since even specific genres (e.g. rock) changes
over time. For example, when listening to a rock song from The Beatles we
observe some differences when compared to a rock song from Guns N’ Roses.

1https://medium.com/prathena/the-dummys-guide-to-mfcc-aceab2450fd
2https://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

2.2. Playlist Generator Qualities 9

• Country of origin: Since music is sometimes described as cultural expression,
different cultures produce songs with different characteristics. Knowing the coun-
try of origin can indicate some audio characteristics of the sound. Sometimes,
these characteristics are described in the genre of the song, such as Brazilian rock.

• Text description: we can describe a songs by its lyric or using a text description.
For example, we can use the biography of an artist, or his/her information on a
web page such as Wikipedia to describe the pieces of music he/she produces. This
description may cover information described by the other content-based features,
such as the music genre or the country of origin.

2.2 Playlist Generator Qualities

When creating playlists, different users desire different characteristics of their playlists
depending on the situation they are going to listen to it. For example, some users
may enjoy a surprising playlist, containing songs he doesn’t know, while others may
wish a heterogeneous playlist containing a wide variety of different music genres. Sev-
eral authors have proposed characteristics a playlist generator algorithm should have.
One of the characteristics pointed by authors is how users interact with the playlist
generator. There are two main forms of interaction found in the literature. One is
automatic, where the system creates the entire playlist based on some desired charac-
teristics specified by the user. The other form is assisted, where the user continually
interacts with the system selecting the songs to be added to the playlist given a list
of suggested ones. Although some users may enjoy manually creating a playlist [Ka-
malzadeh et al., 2012], Kamehkhosh et al. [2018] showed that recommending songs to
be added to a playlist may cause the task to be more difficult, besides requiring from
the user constant interaction with the system, which can be time consuming.

The transitions and coherence of the playlists is also an important characteristic
to be considered. Jannach et al. [2014] studied the adjacent songs of a playlist and
showed that some users tend to group tracks from the same artist. One explanation
for this behavior is that users attempt to keep smooth transitions between the songs.
Even though it is important to generate playlists where adjacent songs are similar to
each other, creating a playlist with heterogeneous songs may be required by users. As
argued by Dias et al. [2017], a balance between homogeneity and diversity is important
to satisfy listeners.

Another characteristic considered by authors is the popularity of the songs added
to the playlist. Although some authors indicate users prefer to listen to familiar songs

10 Chapter 2. Literature Review

[Dias et al., 2017], Kamalzadeh et al. [2012] showed in some situations serendipity may
be an important factor. Lastly, the proposed method should be fast, independently of
the size of the playlists and the database. Although one may argue the playlist can
be generated while the user listens to the first song, it is desirable to know beforehand
the songs that will be played, so the user can change some of them or create another
playlist in the case he doesn’t enjoy the generated one.

Based on the desired characteristics outlined by previews authors, we indicate
five qualities a playlist generator method should have in order to satisfy some of the
users need. These qualities are:

• interaction: it should be simple and easy to the user interact with the system and
define what playlist he wants to listen to. In other words, the generator should
require only a few parameters as input.

• smooth transition: the generator should be able to create playlists where consec-
utive songs are similar to each other, in order to keep smooth transition between
tracks.

• heterogeneity : the generated playlist should be as heterogeneous as the user de-
sires, going through diverse genres.

• novelty : the generator should be random, being able to generate different playlists
given the same input.

• scalability : the generator should be fast and scale with the size of the playlist
and the database.

Proposing an automatic playlist generator that satisfy these five quality con-
straints is a challenging task since some of the objectives are conflicting. For example,
promoting the smooth transition quality may generate homogeneous playlists.

2.3 Song Similarity

To compute the similarity between songs is not a simple task, and many authors have
proposed several approaches to solve this problem using both content-based and on
context-based characteristics. As described by Knees and Schedl [2013], on one hand,
computing the similarity between songs using content-based information extracted di-
rectly from the audio gives a more precise similarity measure, but it requires the audio
file of the song and also music theory knowledge to correctly understand the features.

2.3. Song Similarity 11

On another hand, context-based features don’t require the audio file but may contain
some redundant or incorrect information. For instance. when an artist produces a song
with a rhythm different from his/her style (in a duet, for example), assigning to the
song the tags of the artist may cause wrong information.

When it comes to content-based characteristics, authors have proposed several
acoustic features to describe a piece of music [Casey et al., 2008]. Even though this
variety of features exists, most of the authors use the MFCC since it has shown good
performance in practice. Logan and Salomon [2001], for example, proposed to use
K-means clustering on histograms of MFCC to characterize songs, and compared the
characterization using Earth Mover’s Distance. Aucouturier and Pachet [2002a] de-
cided to model the MFCCs using Gaussian Mixture Model (GMM) instead of K-means
clustering and pointed out possible applications of this method, including playlist gen-
eration. Pampalk et al. [2005b] proposed to combine MFCC features with three other
information based on Fluctuation Patterns, showing the additional information im-
proves the performance on the problem of genre classification.

Using context-based characteristics to calculate the similarity between songs is
also widely used by authors since there is no need to have access to the audio files to
extract these features. Knees and Schedl [2013] separated this set of characteristics
in three groups: text-based, co-occurrence and user rating. Text-based approaches
concern with genre tags, web pages, and song lyrics. One of the proposed methods
using this group of features is the work of Platt et al. [2002], who used songs’ tags such
as genre, style, and mood to compute the similarity between songs using a Gaussian
Process regression. Other approaches use web-text data, as proposed by Knees et al.
[2004], where they used a search engine to retrieve web pages about the artists and
represent them by a variant of the TF-IDF. Based on this representation, the similarity
between artists was computed using the cosine similarity measure. Similarly, Pampalk
et al. [2005a] proposed to use the content of web pages ranked by Google to hierarchi-
cally organize artists. Another approach to represent song and artists using text is the
work by Logan et al. [2004], who proposed to calculate the similarity between artists
using the lyrics of the songs, showing it can be used to discover genre clusters, but
concluded it is less useful than using acoustic information.

Measuring the similarity between songs based on the number of times they some-
how co-occur together is another method found in the literature. Co-occurrence sim-
ilarity is based on an idea where if two items appear very often in the same context,
that’s evidence they are similar to each other [Knees and Schedl, 2013]. In the context
of music similarity, when two songs co-occur in many users’ playlists, lists of favorite
songs, or appear several times in sequence on music radio stations, we can probably

12 Chapter 2. Literature Review

recommend them together. For example, in the work of Pachet et al. [2001], the au-
thors used the sequence of songs played in a French radio station to represent songs
by a vector of its co-occurrence with other songs and calculated the similarity between
songs using the correlation between the vectors. Pontello et al. [2017] proposed to
calculate the similarity between songs using their co-occurrence on top-most listened
songs of Last.fm3 users. The similarity between songs were calculated using the cosine
similarity, that is, cos(i, j) = coocc(i, j)/

�
occ(i)occ(j), where coocc(i, j) is the number

of times two songs co-occurred on users top songs, and occ(i) is the number of times
item i appeared individually.

An interesting method used to calculate the similarity between songs is utilizing
word2vec on users playlists. Word2vec is a model from natural language processing
that uses a neural network to create a vector space word embedding from a text corpus
where similar words (having the same context) are close to one another. The idea of
using word2vec on a recommendation scenario was proposed by Grbovic et al. [2015],
calling the approach as prod2vec. When applying this model to MIR field, each playlist
is treated as a document, and each song is a word of the document. Then word2vec is
used to create a music embedding on a vector space where similar songs are close to
each other. Wang et al. [2016] used a similar approach to recommend music to users by
modeling their preferences based on their playing records. Vasile et al. [2016] proposed
to enhance the prod2vec model using metadata at training time, showing improvements
when applying to 30Music dataset. Latter, Caselles-Dupré et al. [2018] studied the
importance of word2vec hyperparameters in recommendation tasks by testing it on
several different datasets, concluding the best values differ depending on the dataset.

2.4 Playlist Generation

The qualities a playlist should have to be considered enjoyable is widely discussed
by authors when proposing playlist generator algorithms. Dias et al. [2017] reviewed
some methods to generate playlists, and pointed out the most desired characteristics
a playlist should satisfy. Some of them are the balance between homogeneity with
song diversity and coherent transitions. These characteristics should be taken into
consideration when proposing new algorithms to generate music playlists.

Authors have substantially studied how to automatically generate music playlists,
proposing diverse methods to solve the problem. Some approaches iteratively select the
songs to add to the playlist, while others use a set of predefined songs and define the

3https://www.last.fm

2.4. Playlist Generation 13

order they will be played. Bonnin and Jannach [2015] have done an extensive review
of the methods most used in the literature. When talking about creating playlists, a
discussion of its definition raises. Some authors define a playlist as an ordered sequence
of tracks, while others consider it only as a set of songs, ignoring the order the user
will listen to them. Since in this work we are worried about the transition between
songs, we will take into consideration the order of the tracks in the playlist and use the
playlist generation definition proposed by Bonnin and Jannach [2015].

Definition. Playlist Generation: Given (1) a pool of tracks, (2) a background knowl-
edge database, and (3) some target characteristics of the playlist, create a sequence of
tracks fulfilling the target characteristics in the best possible way.

In this definition, the pool of tracks are all the available tracks that can be in-
cluded in the playlist. The background knowledge database consists of the information
of the songs of the database, such as its acoustic characteristics. And finally, the target
characteristics are the properties the playlists must satisfy to be considered enjoyable
by a specific user or group of users. Depending on these items, some proposed algo-
rithm may become unfeasible. For example, if we have a large pool of tracks, or define
complicated target characteristics, selecting the appropriate track to add the playlist
can be computationally expensive.

One algorithm that attempts to create music playlists maximizing the similar-
ity between consecutive tracks is proposed by Pohle et al. [2005], where he used the
Traveling Salesman Algorithm to define the order the tracks will be played. One dis-
advantage of this method is that the set of tracks of the playlist must be previously
defined, requiring the user to select them before running the algorithm, decreasing the
interaction. Another problem this method faces is the time consumed to compute the
optimal sequence since TSP is known to be NP-Hard. Aucouturier and Pachet [2002b]
proposed to generate an initial random playlist and iteratively change the songs of the
playlist in order to satisfy a list of constraints. He showed his algorithm is linear with
the size of the database, which can cause it to be unfeasible, since most of today music
datasets contain millions of available songs. Similarly, Pauws et al. [2008] proposed to
use a simulated annealing algorithm to iteratively perform modifications in the playlist
and avoid local optimum. Both these methods require the playlists’ constraints to be
optimized, leaving to the users the effort to define them.

Other approaches generate a playlist with songs similar to a set of seed songs.
Maillet et al. [2009] proposed a method that, given a seed song and a tag cloud created
by the user, iteratively selects the next song to be added to the playlist. To use
this algorithm the user needs to define the tag cloud, and it always produces the

14 Chapter 2. Literature Review

same playlist given the same input, not satisfying the novelty criteria. A method to
generate music playlists based on radio playlists is proposed by Ragno et al. [2005]. He
constructed a Markov Chain based on the transition between songs on radio streams
and proposed to, given a seed song, generate a playlist by performing a random walk
based on the estimated probabilities. Ben-Elazar et al. [2017] proposed a Bayesian
Network based to model artists’ genre and sub-genre and used it to recommend songs
to be added to a playlist, also given a seed song.

There are two approaches to generate music playlists we want to give special
attention. The first is proposed by Flexer et al. [2008], where a playlist is generated
given the desired number of songs in the playlist and two anchor songs: the start
and end song of the playlist. After defining these parameters, the algorithm creates a
playlist connecting the anchor songs. The method to complete the playlist consist of
selecting equal-spaced songs from a music space, where the distance is computed using
the Kullback-Leiber divergence of the Gaussian models using MFCCs of the songs. The
interesting thing about this algorithm is that by selecting two anchor songs, the user
can define different music styles he/she would like to listen to in the same playlists,
creating a heterogeneous playlist. And by defining the number of songs in the playlist,
it is possible to implicitly define the desired size of the steps given on the music space,
where a large number of songs implies small steps. One disadvantage of this method is
that it is deterministic, always generating the same playlist given the anchor songs and
the desired number of songs in the playlist. Another interesting approach is the work
of Pontello et al. [2017], where the similarity between songs is computed based on co-
occurrence on users’ favourite songs lists, and a directional navigation is performed on
the music space. Given a seed song, the method retrieves a set of K songs as candidates
to be the next song. By retrieving this set, the method can ensure a smooth transition
between songs of the playlist. The next song is randomly selected from this set, and
the user can skip songs he doesn’t like, guiding the navigation to songs he would enjoy
listening to. The method also allows the user to define a target destination where the
navigation should try to go, as proposed by Flexer et al. [2008]. Those works receive
particular attention because they are similar to the methods that will be proposed in
this work.

Chapter 3

Datasets

In this chapter, we will describe and present some basic statistics of the datasets used
in this work. We are going to use datasets from three different sources: Billboard,
Spotify and The Art of the Mix. The Billboard dataset contains mainly content-based
characteristics extracted from the songs’ audios. The other two datasets are composed
of playlists manually created by users on public platforms and artists’ music genres.
These datasets will be used to propose how we can calculate the similarity between
songs, create a music space, and generate music playlists.

3.1 Billboard Dataset

Billboard is an American magazine that weekly publishes charts with the songs and
albums popularity. The metrics used to evaluate the popularity includes album sales,
track downloads and streaming on Youtube and Spotify, for example. Mauch et al.
[2015] studied the songs that appeared on the Billboard Hot 100 from 1960 to 2009
and analyzed the evolution of popular music in the USA. The authors published the
dataset used in their studies, which consists of acoustic features and metadata of 17,094
songs. The characteristics were extracted from 30-seconds audio samples of each song.
After extracting pitch and MFCC features from the audios, the authors used a Latent
Dirichlet Allocation (LDA) to encode the songs as two probability distributions. The
first probability distribution is over eight timbral topics that capture particular timbres
(e.g. drums, aggressive, female voice), and the other is over eight harmonic topics that
capture classes of chord changes (e.g. ‘dominant-seventh chord changes’). Besides the
timbre and harmony topics, each song is also associated with its year of release and
with a subset of 140 genre tags, such as rock, pop, and soul. The value of the tag is 1
if the song is of that genre, and 0 otherwise, and a song may have more than one tag.

15

16 Chapter 3. Datasets

Since we already have the year of release as a feature, and the country may over
discriminate similar songs, we removed 19 genre tags associated with the decade and
the country of the music (e.g. 80s and UK). After removing these tags, all songs
that were not associated with any genre tag were excluded from the dataset, resulting
in 15,763 remaining songs, with 121 different tags. In order to put all features on
the same scale, we transformed each group into a probability distribution, which is
already the case for timbral and harmony features. For the genre group, we divided
the value of each tag gji , 1 ≤ j ≤ 121 by the number of tags associated with the song
si, that is

�121
j=1 g

j
i . For the freshness characteristics, since we know the range of the

years are between 1960 and 2009, we performed a unity-based normalization, that is,
y�i =

yi−1960
2009−1960

. Since we want each set of features to be a probability distribution, we
added another feature, which is y��i = 1− y�i, making the year to be represented by two
real numbers, that is, ŷi = (y�i, y

��
i). After this processing, each song is represented by

eight timbral topics, eight harmonic topics, 121 tags, and two freshness characteristics,
totaling 139 features.

To analyze the distribution of the songs’ years in the Billboard dataset, we plotted
a CDF of its values, which can be seen on Figure 3.1. We can observe approximately
60% of the songs have release date before 1985. This shows how old the songs of this
dataset are, which may be a problem when computing the similarity between songs
based on acoustic features, as some old track files contain noise that may pollute the
characteristics extracted from the audio.

Figure 3.1: CDF of the songs’ release year on Billboard dataset

3.2. Spotify Dataset 17

3.2 Spotify Dataset

Spotify is a music stream service created in 2008, containing today more than 30 million
songs available for its users to listen to and create music playlists. Spotify also has an
API that allows us to get some data from their system, which was used to get songs
characteristics, artists information and users’ public playlists. In this work we used only
users’ playlists and artists’ information. To get the data, we used the API to search for
playlists using some keywords that are listed in appendix A. For each playlist returned
we saved the ID of the user who created it, totaling more than 25,565 different users.
Then, for each user ID, we used the API to save all his/her public playlists, obtaining
a total of 330,931 playlists with more than 3 million different tracks and more than 300
thousand different artists. For each artist, we also saved the set of tags it is associated
with on Spotify system, which describes its genres such as axe, rock and progressive
metal. Some artists are not associated with any tag, and only approximately 100
thousand of them are associated with at least one tag. We called this set of data as
Spotify Dataset.

When analyzing the tracks of the playlists, we noted some of them have the same
artist ID and track name, but different track IDs. This probably happens due to songs
released in more than one album, such as singles or collections of the most popular
songs of an artist. When this happens, the same song is assigned to different IDs for
each of the albums it appears. To contour this problem, we created sets of tracks that
have the same artist ID and track name. Then, on the users’ playlists, we substituted
each track ID by the most popular ID of its set, where popularity here is measured by
the number of occurrence on users’ playlists. This decreased the number of different
track IDs in the playlists to approximately 2.4 million songs.

In Figure 3.2(a) we can see a CDF of the playlists’ size. Since there are a few
playlists size larger than 500 (some with thousands of songs), to better visualize the
graph, we filtered the playlists with length higher than 400, which correspond to less
than 1% of them. Analyzing the figure we can observe most of the playlists have length
lower than 100, which indicates the ideal size of a playlist. Figure 3.2(b) shows the
CDF of the number of playlists per user. Since Spotify limits each user to have up to
50 playlists, there is a small peak at number 50. We can observe most of the users
have less than 15 playlists. We are going to leave an analysis of the users’ playlists for
the next chapter.

Regarding the tags we obtained, since we want to use the data to analyze and
compare songs, we assigned to each track the tags of its artists. By analyzing the tags,
we observed some of them contain redundant and unnecessary information. Most are

18 Chapter 3. Datasets

(a) CDF of Playlists’ length (b) CDF of Number of Playlists per user

Figure 3.2: CDFs of Playlists’ length and Number of Playlists per User on Spotify
Dataset

composed of more than one word and could be broken into several tags or replaced by
only one word. Examples are dance pop (it could be divided into dance and pop), and
tropical house (it sounds almost the same as house). To correct this problem, we re-
placed each tag by its last word (for example, dance pop became pop and tropical house
became house). Because this process could create strange tags or loss of information
(transforming hip hop to hop and modern rock to rock), we listened to songs with some
specific tags, correcting the transformation performed when necessary. In the end, the
changes performed reduced to 1,295 the number of unique tags. As we still had a
large number of tags (more than a thousand tags), we decided to select only a subset
of them to describe the artists. To determine a good number of tags to describe an
artist, we computed the popularity of each tag (number of songs on the users’ playlists
containing it) and plotted the percentage of songs on the playlists covered given the
k most popular tags (on logarithm scale), which can be seen on Figure 3.3. We can
observe that 100 tags are enough to cover approximately 95% of the playlists’ songs.
Therefore, we decided to use only the 100 most popular tags.

In order to use the Spotify dataset to evaluate a music space created using the
Billboard dataset, we made an intersection of the Spotify playlists with the Billboard
dataset. For each track of the Spotify dataset we searched for a song in the Billboard
dataset with the same artist name and track name, mapping a total of 11,078 Spotify
track IDs to an IDs of the Billboard dataset. We then substituted in Spotify playlists
the track IDs by the IDs of the Billboard, discarding from the playlists the tracks
not found. At the end of the process, the playlists with less then 5 tracks were also
discarded. The CDF of the logarithm of playlists length of the intersection can be seen

3.2. Spotify Dataset 19

Figure 3.3: Number of songs covered
given top k tags (log base 10)

Figure 3.4: CDF of Playlists’ length af-
ter intersection of Spotify and Billboard
datasets (log base 10)

on Figure 3.4. We can observe there was a reduction in the number of tracks in the
playlists, as most of the tracks in Spotify dataset are not in the Billboard dataset.

We present in Table 3.1 some summary statistics of the Billboard dataset, Spotify
dataset, and their intersection. Since the Billboard dataset is only composed by tracks
and their acoustic characteristics, it doesn’t have playlists and users information. We
can observe after the intersection there was a drastic reduction in the total number
of playlists, but not in the number of users, indicating that most users create at least
one playlist with popular songs. There were also a reduction on the average playlist
length, since we are considering only the tracks that are on the Billboard dataset. We
can also observe that in the Spotify dataset the average number of artist per playlist
is less then half the average playlist length, which means that users tend to add to the
playlist more than one song of the same artist.

Billboard Spotify Spotify ∩ Billboard
Playlists - 330931 46471
Users - 25565 17957
Tracks 15765 2476180 11078
Average playlist length - 59.04 16.8
Artists 4846 306418 3073
Average No of artist per playlists - 27.31 12.39
Average No of playlists per user - 12.95 2.59

Table 3.1: Summary statistics of the Billboard dataset, Spotify dataset and their in-
tersection

20 Chapter 3. Datasets

3.3 The Art of the Mix Dataset

The Art of the Mix 1 (AOTM) is a warehouse for playlists integrated with iTunes,
where users can create and post their playlists. The playlists of this website were used
by McFee and Lanckriet [2012] who proposed an algorithm to automatically generate
music playlists by performing a random walk on a hypergraph, making the dataset
publicly available 2. This dataset contains a total of 101,343 manually created playlists
of 16,197 different users, having a total of more than 700 thousand different tracks.

This dataset will only be used in this work to asses the quality of the music
spaces that will be created in Chapter 5. Therefore we made an intersection of the
AOTM dataset with the Billboard dataset and Spotify dataset using the same process
used when intersecting the Spotify dataset with the Billboard dataset. In Table 3.2 we
present some summary statistics of the datasets intersection. We can observe that, since
Spotify dataset is bigger than Billboard dataset, the intersection of AOTM dataset with
Spotify dataset have more playlists and tracks. Also, observe that when intersecting
with the Billboard dataset, most of the users were discarded for having playlists with
less than 5 songs.

AOTM ∩ Billboard AOTM ∩ Spotify
Playlists 6480 95149
Users 2678 16172
Tracks 6556 294539
Average playlist length 6.83 15.54
Artists 2402 21302
Average No of artist per playlists 6.20 10.39
Average No of playlists per user 2.42 6.17

Table 3.2: Summary statistics of the AOTM dataset after intersection with the Bill-
board dataset and Spotify dataset

1http://www.artofthemix.org
2https://bmcfee.github.io/data/aotm2011.html

Chapter 4

Users Characterization

In this chapter, we will analyze the playlists of the Spotify dataset and characterize
the users by their music taste. First, we will use the Shannon entropy to measure
how heterogeneous are the playlists and users. Then, we will use the Theil index to
determine which genres are equally present in the playlists, and which are present in
only a few playlists. To perform this analysis, we will represent playlists and users
using only the tags of the artists we have available. Here, we will use the notation v i

to indicate the ith element of the vector v.

4.1 Playlists and Users Representation

As described in Chapter 3, the Spotify dataset contains users’ public playlists composed
of a list of tracks where each track is associated with its artists’ genre. Since we want
to describe a playlist by the music genres it contains, for each playlist we created a
vector of size 100, where each position of the vector stores the number of times each of
the 100 music genres appeared in that playlist. As not all tracks are associated with a
music genre, we obtained only 248,216 playlists (75% of them) with at least one tag.
We represented the users in the same way as the playlists, that is, by a vector with the
counts of the genres he/she added to all his/her playlists. In other words, the vector
representation of a user will be equal to the sum of all his/her playlists’ representation.
In Figure 4.1 we show the histogram of the total number of different tags each playlist
and user have, that is, the number of elements of their vectors representation that are
greater than 0. We can observe most of the playlists have a total number of tags lower
than 30, but most of the users have a total number of tags around 50, indicating users
tend to have an eclectic taste.

21

22 Chapter 4. Users Characterization

(a) Histogram of Playlists’ number of tags (b) Histogram of Users’ number of tags

Figure 4.1: CDFs of Playlists and Users’ total number of tags

4.2 Playlists and Users Heterogeneity

Since we want to determine if the users tend to be heterogeneous, we want to analyze
how diverse are the playlists they create. In order to put all vectors representation on
the same scale, we performed a normalization by dividing each vector by their sum.
Therefore, we can now consider each user and playlist is represented by a probability
distribution over the 100 music genres. That is, given a playlist pi, its vector represen-
tation will be pi = (p1i , p

2
i , . . . , p

100
i), where pji is the proportion of genre gj in playlist

pi,
�100

j=1 p
j
i = 1 and pji ≥ 0 ∀j. The same is valid for all users ui.

To perform an initial analysis of the users and playlists diversity, we will measure
their heterogeneity using the Shannon entropy, an uncertainty measure widely used
in information theory field. Given a discrete random variable X with possible values
{x1, x2, . . . , xn}, we can measure its entropy H(X) as:

H(X) =
n�

i=1

−p(xi) log2(p(xi))

It can be proven that if X is a uniform distribution, that is, all possible values
xi are equally likely, the entropy of X assumes its maximum value log2(n). On the
other hand, when one value xi has probability 1 and all xj �= xi has probability zero,
the entropy of X is equal to 0. If we calculate the entropy of a user or playlist vector
representation, we will have a measure of its heterogeneity. If the entropy is equal to
0, it will mean the playlist or user is composed of only one music genre (represent-
ing a restrict user), while if the entropy is equal to log2(100), all genres are equally
likely (representing an eclectic user). Since the entropy will be a value between 0 and

4.2. Playlists and Users Heterogeneity 23

log2(100), we normalized the values dividing them by its maximum value log2(100).
We will define then the heterogeneity of a playlist or user as its normalized entropy
value. In Figure 4.2 we show a curve of what would be the heterogeneity of a playlist
if it were equally distributed over only k different music genres. We can observe the
heterogeneity increases very fast, where for a value of k = 40, the heterogeneity would
be greater than 0.8.

Figure 4.2: Heterogeneity of a playlist equally distributed over k tags

To illustrate the heterogeneity value, let’s suppose we have two different users
with a vector representation as in Figure 4.3, with genre proportion equal to 0 for all
the other tags. Figure 4.3(a) represents a user that enjoys rock and metal songs and a
few pop songs. Figure 4.3(b) represents a more eclectic user, who enjoys pop songs, but
also listens to some rock, metal, dance and hip hop songs. The entropy of the first user
is equal to approximately 0.2, while the entropy of the second user is equal to 0.32, a
value higher than the first one.

(a) Genre distribution of user 1 (b) genre distribution of user 2

Figure 4.3: Genre distribution of two users

24 Chapter 4. Users Characterization

We ploted the CDF of all playlists and users heterogeneity of the Spotify dataset,
which can be seen in Figure 4.4. We can observe that while only approximately 40%
of the playlists have heterogeneity greater than 0.5 (which means equally distributed
over 10 music genres), more than 90% of the users have heterogeneity greater than this
value. This shows that although the playlists usually have only a few music genres,
users enjoy songs of several different styles.

(a) CDF of Playlists Heterogeneity (b) CDF of Users Heterogeneity

Figure 4.4: CDFs of Playlists and Users’ Heterogeneity

4.3 Genres Distribution Inequality

By calculating the entropy of playlists and users we can analyze how heterogeneous they
are, but we are not able to identify which music genres are less equally distributed over
the playlists than others. In this section, we are going to analyze each genre separately,
and compare them to determine which are more equally present in the playlists, and
which are rare to find in a randomly selected playlist. To perform this analysis we are
going to use the Theil index.

The Theil index is a statistics mainly used to measure the inequality in economic
scenarios [Theil, 1967]. It uses the same principle of entropy in information theory to
measure the inequality of the income distribution over a population. To exemplify it,
let us suppose a population of N individuals where each individual earns a non-negative
fraction yi of the total income of the population, and

�N
i=1 yi = 1. If we calculate the

entropy of the income distribution, we will have

H(y) =
N�

i=1

yi log

�
1

yi

�

4.3. Genres Distribution Inequality 25

where H(y) = 0 if a single individual earns all the income, and will be log(N) if every
individual earns the same amount of income. Based on these results, we can say H(y)

measures the income equality. Since H(y) is a value between 0 and log(N), we can
measure the income inequality by calculating

log(N)−H(y) =
N�

i=1

yi log

�
yi

1/N

�

We can observe the income inequality assumes values between 0 and log(N),
where the value of 0 means everyone receives the same share. Also, observe the income
inequality is the same as the Kullback-Leibler divergence between the income distri-
bution of y and a distribution where all individuals earn the same fraction of income
1
N

.

In this work, we are going to use the Theil index to measure the genre distribution
inequality over the playlists. To illustrate how it will be used, let’s consider only one
music genre gj. Given a playlist pi, pji is the proportion of the playlists’ songs that
have genre gj. In this scenario, we are going to say the total income of all playlists will
be Tj =

�N
k=1 p

j
k, where N is the number of playlists in our dataset. Given the total

income value, the income share of playlist pi with respect to gj is equal to pji
Tj

. Using
these definitions, we can calculate the Theil index of the genres distribution over the
playlists to determine which of them are equally present in all playlists, and which are
present in some few playlists while absent on the others.

In Figure 4.5(a) we can see the Theil index of the 10 genres with biggest inequality,
while Figure 4.5(b) shows the 10 genres with smallest inequality. We can observe genres
like pop, rock and mellow gold are present almost in every playlists (have a small
inequality) while genres like grupera (Mexican songs), christian and worship (religious
songs) are present in only few playlists. This result reflects the users behaviour, as
religious songs satisfy only a selective group of users. Based on this result, we can
conclude music genres such as christian and grupera should not be recommended to
all users (as only a few ones may enjoy it), while genres as pop and mellow gold can
be recommended to most users, as they are likely to enjoy them.

We could also use Theil index to compute the inequality of the tags distribution
among the users. Instead of that, we will use the fact that the total Theil index can
be split in two parts, where one of them measures the inequality between groups of
individuals, and the other measures the inequality within the individuals of the same
group. Consider again a population with N individuals now divided in G groups, where
each individual belongs to exactly one group, and Sg are the individuals of group g

26 Chapter 4. Users Characterization

(a) Theil index of tags with biggest inequality (b) Theil index of tags with smallest inequality

Figure 4.5: Theil index of tags

with Ng individuals (
�G

g=1 Ng = N). Also, let Yg the total share group g receives
(
�G

g=1 Yg = 1).It can be shown that the Theil index of the population is equal to:

N�

i=1

yi log
yi

1/N
=

G�

g=1

Yg log
Yg

Ng/N
+

G�

g=1

Yg


�

i∈Sg

yi
Yg

log
yi/Yg

1/Ng


 (4.1)

We can observe that the first term on the right-hand of the equation is equal to
the KL divergence between the income distribution over the groups and the distribution
where each group receives a share equal to Ng

N
, which is the proportion of its population

Ng compared with the total population N . This term is called Between inequality, as it
measures the inequality of the share distribution among the groups. The second part
of the right-hand is the Within inequality, which measures the inequality within each
group, that is, how the total income of each group is distributed over its individuals.

In our problem, we treated each playlist as an individual, and each user as a
group of individuals, where the playlists of each user are the individuals of the group.
We then calculated, for each tag, the percentage of its total Theil index that is the
Between inequality (some users create playlists containing specific music genres, while
other users don’t) and the percentage that is the Within inequality (given a specific
user, some of his playlists contain only songs of a specific genre, while the other playlists
don’t have that genre). The proportion of the tags with biggest and smallest Between
inequality can be seen in Figure 4.6. We can observe only a few users listen to grupera
or christian songs, and almost all their playlists contain these genres. On the other
hand, almost all users enjoy rock and dance songs, but they tend to create specific
playlists for these music genres. This reinforces the conclusions of figure 4.5.

4.4. User Clustering 27

(a) Proportion of Theil index for tags with biggest
Between inequality

(b) Proportion of Theil index for tags with small-
est Between inequality

Figure 4.6: Proportion of Theil index of tags with biggest and smallest Between in-
equality

4.4 User Clustering

With the previews analysis, although we could observe some music genres such as rock
are enjoyed by almost all users, someone may not enjoy such genres and prefer to listen
to jazz or classic songs. In order to group users by their music taste (where users
that enjoy similar songs are in the same group), we are going to cluster them using
their representation. Since representing each user by a probability distribution over
100 tags may cause redundancy (as some music genres may be related to each other),
we performed a dimensionality reduction using Singular-Value Decomposition (SVD).
SVD is a method that allows us to represent a matrix by the multiplication of three
other matrices and ease the elimination of less important parts of the original matrix
Leskovec et al. [2014]. Given a m× n matrix M with rank r, we can write M as:

M = UΣV T

where U is a m× r matrix, V a n× r matrix and Σ is a r× r diagonal matrix, holding
the singular values of M in the diagonal. By analyzing the matrix Σ, we can hold the
largest k singular values, zeroing the (r− k) smallest ones. This allows us to represent
each song by the first k columns of U . The number of selected columns k is chosen
to represent at least 95% of the original matrix M , that is, the sum of squares of the
retained singular values should be at least 95% of the sum of squares of all the singular
values, as in the formula

28 Chapter 4. Users Characterization

Figure 4.7: Users Clustering Dendrogram

�k
i=1 σ

2
i�r

i=1 σ
2
i

≥ 0.95

where σi is the ith singular value of M . Here, we used 5000 randomly selected users
and constructed a matrix M where each row represents a user and each column repre-
sents one of the 100 tags. In other words, each row of matrix M is a user’s probability
distribution over the tags. In our experiments, the value k = 26 was enough to repre-
sent 95% of the original matrix M . Therefore, we represented each user by the first 26
columns of the matrix U . Using the new users’ representation and the cosine distance
between the users, we used a hierarchical clustering algorithm using Ward’s method
that, at each step, merges the pair of clusters that minimizes the within-cluster vari-
ance. The dendrogram of the hierarchical clustering can be seen in Figure 4.7, in which
we decided to create 12 users’ clusters.

To better visualize the genres each group of users enjoys, we plotted a bar plot
for each cluster showing how likely a genre will be enjoyed by a user of that group.
First, we calculated the mean of the users’ probability distribution, that is:

ū =
1

|U |
�

ui∈U
ui

where U is the set of all users. ū represents the probability distribution over

4.4. User Clustering 29

the 100 tags for all users. In other words, ūi is the probability a user enjoys music
genre gi. Then, for each cluster Ci, we calculated the mean of all its user’s probability
distribution, that is, its probability distribution will be:

c̄i =
1

|Ci|
�

ui∈Ci

ui

For each cluster Ci we calculated the difference ci = c̄i − ū. This difference
represents how the clusters enjoy each genre compared with the average user. If the
value cji is positive, it means the cluster Ci enjoys genre gj more than the average user,
and if cji is negative, cluster Ci rejects genre gj.

Figure 4.8 and 4.9 show the bar plots of the clusters we found. We plotted only
10 genres for each cluster, where the five bars on the left are the most rejected genres,
and the five bars on the right are the most appreciated genres for that cluster. We can
observe that the clusters represents groups of users with specific tastes. For example,
Figure 4.9(b) represents a group of users that enjoys mpb, pagode and bossa nova songs.
Figure 4.8(a) represents a group that also enjoys mpb songs, but prefers sertanejo than
pagode, and rejects rock songs. Cluster represented on Figure 4.8(c), on the other side,
enjoys rock, metal and punk songs, and rejects sertanejo. Figure 4.9(f) represents a
group that enjoys pop, dance and house songs, but doesn’t like mpb and pagode. We
can also observe some clusters enjoy similar music genres, but differ on the genres they
reject. For example, both clusters represented in figures 4.8(a) and 4.9(a) enjoy mpb
songs. But while the first one enjoys sertanejo songs, the second one dislikes it. The
same thing happens on clusters represented on figures 4.8(c) and 4.9(c). Both enjoys
rock songs, but the first one doesn’t like pop songs while the second one does. This
results can help us understand users behaviour when listening to music, and also gives
us an idea of which song we should recommend to a user. For example, if we know a
user belongs to cluster represented in figure 4.8(a), we know we shouldn’t recommend
rock or rap songs to him /her.

30 Chapter 4. Users Characterization

(a) Bar Plot of Cluster 1 (b) Bar Plot of Cluster 2

(c) Bar Plot of Cluster 3 (d) Bar Plot of Cluster 4

(e) Bar Plot of Cluster 5 (f) Bar Plot of Cluster 6

Figure 4.8: Bar Plot of clusters genres

4.4. User Clustering 31

(a) Bar Plot of Cluster 7 (b) Bar Plot of Cluster 8

(c) Bar Plot of Cluster 9 (d) Bar Plot of Cluster 10

(e) Bar Plot of Cluster 11 (f) Bar Plot of Cluster 12

Figure 4.9: Bar Plot of clusters genres

Chapter 5

Song Similarity and Music Spaces

As described before, many algorithms have been proposed to calculate the similarity
between songs. Some of them use content-based features, while others use context-
based characteristics. In this chapter, we are going to describe how we used the data
presented in chapter 3 to calculate the similarity (or distance) between songs. The
first proposed similarity function will use the content-based characteristics of the Bill-
board dataset. The second will calculate the similarity between songs based on the
co-occurrence on users’ playlists, and a third similarity function will use the artists’
genres. The proposed functions will be used to construct a music space. Here, we
define a music space as a pair (S, d), where S is a set of N songs S = {si, i = 1, . . . , N}
and d : S × S → R+ is a distance function between two songs. The music spaces
constructed will be used to create music playlists by walking through it.

To simplify the description of the similarity functions, we will first establish some
notations. Let us define S as the set of songs of the dataset and si as a specific song.
Each song si will be characterized by a feature vector xi. The feature vector of the
songs will represent different characteristics depending on the dataset used. For the
Spotify dataset, P will be the set of playlists, with pi ∈ P a playlist composed of a list
of songs.

5.1 Similarity Using Content-based Characteristics

The similarity between songs using content-based characteristics will be calculated
using the features of the Billboard dataset. As described in chapter 3, the Billboard
dataset was used to analyze the evolution of songs in the USA from 1960 to 2009.
After a preprocessing, the dataset is composed of 15,763 songs, where each song si

is represented by four probability distributions xi = (hi, ti, ĝi, ŷi), where hi is eight

33

34 Chapter 5. Song Similarity and Music Spaces

harmonic topics, ti is eight timbral topics, ĝi represents the genres of the songs, and
ŷi is the year of release represented by two numbers. Each set of features has sum 1.
Given this song representation, we could use any distance function between the feature
vectors, such as the Euclidean distance, the cosine distance or the KL divergence
distance. In order to avoid the curse of dimensionality, we reduced the dimensionality
of the data using an embedding algorithm. There are several embedding algorithms
proposed in the literature, such as PCA, MDS, and Isomap. For this task, we decided
to use t-SNE algorithm, the same used by Ben-Elazar et al. [2017] to visualize some
artists’ parameters.

T-SNE [Maaten and Hinton, 2008] is a dimensionality reduction algorithm with
the objective to better preserve the distance between the data in the original space.
After reducing the dimensionality of the data (in this work, we used PCA as the starting
embedding) t-SNE uses a gradient descent algorithm to minimize the differences in the
distances between songs in the original space and on the reduced space. Formally, given
two songs si and sj, let dij be the distance between the songs in the original music
space, and d̂ij the distance between the songs in the reduced music space, t-SNE tries
to minimize the difference |dij − d̂ij|. When using t-SNE to reduce the dimensionality
of the data to a 2D Euclidean space, songs that are close in this new space are also
similar in the original space, i.e. they should be acoustically similar.

Figure 5.1 shows the music space generated by using t-SNE on the feature vectors
xi of the Billboard dataset. Each point represents a song and its color denote an
associated genre on the Billboard dataset. The associated genre was selected as the less
popular genre among those that have non-zero gi and are among the 8 most popular
genres in database (which covered approximately 85% of the songs). The reason to
select the less popular rather than the most popular one is that, if we selected the
latter one, the map in Figure 5.1 would have practically a single color. As we can
observe, songs were coherently grouped according to their genres and similar genres
are located near each other. For instance, a path from rock to hip-hop shall pass
through pop and dance songs. However, songs from the same genre do not have to
form a single cluster. In these cases, timbral and harmony features play an important
role in selecting the appropriate location. Isolated islands were created with songs that
are similar to each other but different from the remaining songs. For example, the two
islands located on the West and South borders are composed mainly of oldies and soul
songs, respectively, while the island located on the East are mainly Country songs.
The horizontal axis is highly correlated with the freshness of the song. Older songs
are located more on the left-hand side of the space, while new songs, like those from
hip-hop, are more on the right-hand side. Based on these observations, we define the

5.1. Similarity Using Content-based Characteristics 35

Figure 5.1: Billboard Music Space

Billboard music space as the set of songs of the Billboard dataset and the distance
between songs as the Euclidean distance in the reduced music space.

To assess the quality of the generated music space, we compared the distance
between songs in our space with their co-occurrences in the playlists of the intersection
of Billboard dataset with AOTM dataset and the Spotify dataset. For each validation
dataset we calculated the number of times each pair of songs co-occured in the same
playlist and their Euclidean distance in our music space. In figures 5.2 and 5.3 we
show the boxplots of the distances grouped by the number of co-occurrences for each
dataset. Observe that the median distance decreases as the number of co-occurrences
increases. This suggests that our music space is able to group similar songs together,
as songs close in the music space tend to co-occur on users playlists.

To test if the model is coherent, we performed a qualitative evaluation by selecting
three seed songs and searching for the most similar songs according to the model. The
seed songs are Sweet Child O’ Mine by Guns N’ Roses, How Deep Is Your Love by Bee
Gees and Makes Me Wonder by Maroon 5. The returned songs can be seen below.

Songs similar to Sweet Child O’ Mine by Guns N’ Roses :
Be Good To Yourself by Journey
Stand Up by David Lee Roth
Angel by Aerosmith
Sing Me Away by Night Ranger
Reason To Live by Kiss

36 Chapter 5. Song Similarity and Music Spaces

Figure 5.2: Boxplot of distance between songs on Billboard music space given number
of cooccurrence in AotM dataset

Figure 5.3: Boxplot of distance between songs on Billboard music space given number
of cooccurrence in Spotify dataset

Songs similar to How Deep Is Your Love by Bee Gees :
A Fifth Of Beethoven by Walter Murphy
Lo Que Son Las Cosas by Anais
Missing You by Brandy Tamia Gladys Knight & Chaka Khan
Sitting Home by Total
Turning To You by Charlie

Songs similar to Makes Me Wonder by Maroon 5 :
If I Never See Your Face Again by Maroon 5
Thunder by Boys Like Girls
Devil’s Haircut by Beck
Better Than Me by Hinder
How Far We’ve Come by Matchbox Twenty

Observing the lists, we can see that the retrieved songs are similar to the seed
songs. For example, the song Sweet Child O’ Mine by Guns N’ Roses retrieved songs
by Journey and Aerosmith, which are rock songs, while a Maroon 5 song retrieved
other songs from Maroon 5 and a song by Boys Like Girls, which is a pop artist.

5.2. Similarity Using Context-based Characteristics 37

It is important to point out that we could have reduced the dimensionality of the
data to a larger dimensional space. The data were reduced to a 2D Euclidean space to
make it visually appealing and ease the explanation of the proposed algorithms.

5.2 Similarity Using Context-based Characteristics

As described before, the Spotify dataset contains users’ manually created playlists,
and for each artist, we have a set of tags describing his music genres. These features
were used to propose two methods to measure the similarity between songs based on
context-based characteristics. The first method will compute the similarity between
songs based on the co-occurrence of tracks on users’ playlist, and the second method
will be based on their tags.

Since the music spaces created here will be used to generate playlists, and we will
use some users’ playlists in our experiments, we decided to divide the set of playlists in
two parts. The test set will contain playlists of 1000 users, leaving 304023 playlists to
be the training set. When necessary, we will separate from the training set the playlists
of 1000 users to be a validation set.

5.2.1 Similarity Between Songs Based on Co-occurrence

There are many proposed algorithms to compute the similarity between items based on
co-occurrence. An example is the work of Goussevskaia et al. [2008], where the similar-
ity between two songs are calculated based on the number of times they co-appear in
users most favourite songs. Another approach is collaborative filtering [Sarwar et al.,
2001], an algorithm widely used in recommendation systems [Linden et al., 2003]. The
premise of collaborative filtering is that items that are mutually consumed by users are
similar and can be recommended together. In this work, the similarity between songs
based on their co-occurrence on users’ playlists will be calculated using the word2vec
model. Word2vec is a neural network model proposed by Mikolov et al. [2013] to pro-
duce a word embedding. The model takes as input a corpus of texts and, for each word
of the corpus, creates a representation for it in a large dimension Euclidean vector
space. After the embedding, words that are similar in context (that is, they co-occur
in the same sentence many times) are mapped to similar vectors, where similarity is
computed using cosine similarity. There are two approaches used to create the word em-
bedding: Continuous bag of words (CBOW) and Skip-gram. The difference between
the approaches is that while CBOW attempts to predict a word given the context,
Skip-gram tries to predict the words of the context given a specific word.

38 Chapter 5. Song Similarity and Music Spaces

Using word2vec to calculate the similarity between songs has already been studied
by other authors, such as [Wang et al., 2016] and Caselles-Dupré et al. [2018]. To adapt
our problem to the word2vec model, we treated each playlist as a text of the corpus, and
each song as a word. This way, songs having a high co-occurrence on users’ playlists
will be considered to be in the same "context", and therefore will be mapped to close
vectors on the embedding space. As discussed by Caselles-Dupré et al. [2018], word2vec
has several hyperparameters, and most of them are already tuned to perform well in
NLP tasks. When using it to other scenarios, the optimal hyperparameters can assume
different values. To test what are the best parameters, we need a metric to asses the
quality of a model. To calculate this metric, we selected from the training set 1000
users, and separated their playlists, constructing the validation set V . Given a playlist
pi of the validation set, we can calculate its consistency on a model m as

Cm(pi) =
1�|pi|
2

�
�

si∈pi

�

sj∈pi
sj �=si

simm(si, sj)

where sim(si, sj) is the cosine similarity between songs si and sj and
�|pi|

2

�
is the bino-

mial coefficient (number of different pairs of songs in the playlist pi). If the constructed
model is able to correctly identify similar songs, the playlists’ consistency should be
close to 1, that is, the songs that co-occur on a users’ playlist should be considered
similar to each other. We can evaluate a model mi by calculating the mean of the
playlists consistency

C(mi) =
1

|V |
�

pi∈V
Cmi

(pi) (5.1)

and the higher this metric is, the better is the constructed model.
In our problem, we will use the Skip-gram approach, since we want to predict

what songs are in the same “context” of a seed song, that is, what songs are similar
to a specific song. When training the models, we used a min count parameter equal
to 50. therefore a song must have appeared at least 50 times on the playlist to be
considered part of the model. By setting this value, we discarded the less popular songs
and created a music embedding for the 46606 most popular ones. When computing
the consistency, we removed from the playlists the songs that were not embedded
by the model. Using this value of min count we run experiments with the objective
of finding the best parameters of word2vec to our dataset. Using as reference the
experiments of Caselles-Dupré et al. [2018], we created models varying the following
hyperparameters: number of negative samples NS (5 and 20), window size W (100

5.2. Similarity Using Context-based Characteristics 39

and 300), negative sampling distribution parameter α (-1.0 and 1.0), learning rate
(0.0025 and 0.25) and embedding size S (100 and 300). For each configuration, we
computed the consistency of the constructed model mi using the formula 5.1. We
choose only two levels for each parameter so we could perform a 2k factorial experiment
that informs which factors have a higher impact on the response variable, that in our
case is C(mi). With the factorial experiment we found the learning rate and α are
the variables most significant for the model (explaining approximately 82% and 2% of
the response variable, respectively). Since those parameters are the most important in
our application, we performed another experiment, fixing NS in 20, window size W

in 100, and embedding size S in 100, and varying α (from −1.5 to 1.25 with a step
of 0.25) and learning rate (with values 0.001, 0.0025, 0.025 and 0.25). Based on the
experiment results, the best parameters found were α = −1.5 and learning rate 0.001,
creating a model mi with C(mi) ≈ 0.86. Using this model, we define the Word2vec
music space as the set of songs of the word2vec model, where each song is represented
by a vector in a 100-dimensional Euclidean space and the distances between songs are
computed using the cosine distance between their vectors representation, which is the
same distance used to compute the similarity between words in a word2vec embedding.

We also compared the distance between songs in the Word2vec music space with
their co-occurrences in users’ playlists. We used here the playlists of the AOTM dataset
and the playlists in the test set of the Spotify dataset. We also filtered the playlists
that have less than five songs of the Word2vec music space, as those playlists would not
be considered relevant for the analysis. The boxplots are in figures 5.4 and 5.5. Again,
we can observe that the median distance decreases as the number of co-occurrences
increases, suggesting the Word2vec music space is also able to group similar songs
together.

Figure 5.4: Boxplot of distance between songs on Word2vec music space given number
of cooccurrence in AotM dataset

40 Chapter 5. Song Similarity and Music Spaces

Figure 5.5: Boxplot of distance between songs on Word2vec music space given number
of cooccurrence in Spotify dataset

Performing a qualitative evaluation on the Word2vec music space using the same
seed songs used to evaluate the Billboard music space, the songs returned by each seed
song can be seen below.

Songs similar to Sweet Child O’ Mine by Guns N’ Roses :
Livin’ On A Prayer by Bon Jovi
Paradise City by Guns N’ Roses
Welcome To The Jungle by Guns N’ Roses
You Give Love A Bad Name by Bon Jovi
Knockin’ On Heaven’s Door by Guns N’ Roses

Songs similar to How Deep Is Your Love by Bee Gees :
How Deep Is Your Love (2007 Remastered Saturday Night Fever) by Bee Gees
Mandy by Barry Manilow
Skyline Pigeon - Piano Version by Elton John
I Started A Joke by Bee Gees
Three Times A Lady by Commodores

Songs similar to Makes Me Wonder by Maroon 5 :
Wake Up Call by Maroon 5
Sober by P!nk
Please Don’t Leave Me by P!nk
Funhouse by P!nk
Harder To Breathe by Maroon 5

Again, we can observe the model is coherent and tend to retrieve songs similar
to the seed songs. A song by Guns N’ Roses retrieved rock songs, while a song by
Maroon 5 retrieved other songs of the same artist.

5.2. Similarity Using Context-based Characteristics 41

5.2.2 Similarity between songs based on artists’ tags

Here we are going to describe how we used the artists’ tags to compute the similarity
between songs. Since we are using only the 100 most popular tags, each song si

is represented by a vector si = (s1i , s
2
i , ..., s

100
i) where sji = 1 if song si has the jth

tag. Initially, each song is described with the tags of its artist. Since the artists are
represented by a small set of tags, creating a sparse representation for the songs, we
enriched the songs representation with the tags of the songs it co-occurs on users’
playlists. Given the songs’ vectors si, the new representation of song si will be:

xi =
�

pi∈P :si∈pi

�

sj∈pi
sj �=si

sj

In other words, for each song si, we will represent it as the sum of the songs’ vectors
it co-occurred with. Therefore, each song will be represented by a vector containing
the counts of how many times each tag appeared in the playlists it occurred. In order
to represent each song by a probability distribution over the tags, we divided each
vector xi by its sum. We also discarded the songs that didn’t receive any tag, since
for those songs we don’t have any information about it. This process resulted in a set
of approximately 2.2 million songs represented by a probability distribution over 100
tags.

Again, we could use any distance function between the tag vectors to compute
the similarity between songs. Since representing the songs by 100 genres may cause
redundancy, we used SVD to reduce the dimensionality of the vectors using the same
procedure we used to reduce the dimensionality of the user’s representation on chapter
4. Here, we constructed a matrix M where each row represents a song of our dataset,
and each column represents one of the 100 tags. By analyzing the matrix’s singular
values, we found k = 5 was enough to represent 95% of the constructed matrix. There-
fore, we represented each song by the first 5 columns of the matrix U . Here we define
the SVD music space as the set of songs represented by the SVD, where each song is
represented by a vector in a 5-dimensional Euclidean space and the distance between
songs are also computed using the cosine distance.

Comparing the distance between songs in the SVD music space with their co-
occurrence in users playlists using the same playlists used to asses the quality of the
Word2vec music space, we obtained the boxplots in figures 5.6 and 5.7. Observing the
boxplots we can take the same conclusions as before, that is, when the co-occurrence
of the songs on the playlists increases, their distance on the music space decreases.

42 Chapter 5. Song Similarity and Music Spaces

We also performed a qualitative evaluation using the same three seed songs used
before and searched for most similar songs. Before performing the evaluation we re-
moved from the SVD music space the songs that did not appeared at least 50 times on
users’ playlists (the same min count used on word2vec model). This resulted in a set
of 46594 songs. The 5 most similar songs returned can be seen below.

Songs similar to Sweet Child O’ Mine by Guns N’ Roses :
November Rain by Guns N’ Roses
Janie’s Got A Gun - Single Version by Aerosmith
Pour Some Sugar On Me (2012) by Def Leppard
Patience by Guns N’ Roses
Lie To Me by Bon Jovi

Songs similar to How Deep Is Your Love by Bee Gees :
You Should Be Dancing - Edit by Bee Gees
The Air That I Breathe by Simply Red
More Than A Woman (2007 Remastered Saturday Night Fever) by Bee Gees
How Deep Is Your Love (2007 Remastered Saturday Night Fever) by Bee Gees
Stuck On You by Lionel Richie

Songs similar to Makes Me Wonder by Maroon 5 :
This Time Around by Hanson
All The Things She Said by t.A.T.u.
Big City Life by Mattafix
Complicated by Avril Lavigne
Good Girl by Carrie Underwood

Analyzing the list of similar songs, we can observe the model is coherent and tend
to retrieve songs similar to the seed song. For example, the songs similar to Guns N’
Roses are rock songs, and a song by Bee Gees returned songs that was popular on 70’.

Figure 5.6: Boxplot of distance between songs on SVD music space given number of
cooccurrence in AotM dataset

5.2. Similarity Using Context-based Characteristics 43

Figure 5.7: Boxplot of distance between songs on SVD music space given number of
cooccurrence in Spotify dataset

For each music space we plotted the boxplot of the distance between pairs of
songs given their co-occurrence on users playlists and observed, in all music spaces,
the distance between the songs decreases as the number of co-occurrence increases,
indicating all music spaces are able to group similar songs together. In order to compare
the music spaces and determine which better model users behaviour (that is, group
songs that users tend to be listened to in the same playlist) we computed the Pearson
correlation between the number of co-occurrence and the log of the distance between
the songs, since we observed an exponential decay (which is expected, since the distance
between songs can not be negative). We can observe, in table 5.1, that the Billboard
Music Space better grout songs that co-occur on the Art of the Mix playlists while the
Word2vec Music space better groups songs co-occurring in the Spotify Playlists.

To better compare the SVD music space and the Word2vec music space, we
removed from the Word2vec music space the songs that was not represented by the
SVD model, that is, the songs that didn’t receive any tag (which are only 12 songs).
Therefore, both models will have 46594 songs.

We end this chapter with the definition of three music spaces: the Billboard music
space, the SVD music space and the Word2vec music space. Using these music spaces
we will propose a general method to automatically generate music playlists that satisfy
the quality constraints described in chapter 2.

AotM Playlists Spotify Playlists
Billboard Music Space -0.3587 -0.1595
Word2vec Music Space -0.1733 -0.2840

SVD Music Space -0.2556 -0.2257

Table 5.1: Correlation between songs co-occurrence and log of distance on music spaces.

Chapter 6

Playlists Generators

In this chapter, we are going to propose a general method to automatically generate
music playlists. First, we will describe the inputs of the method and how it generates
playlists satisfying the qualities presented in Chapter 2. Then, based on the general
method, we will propose two algorithms, named ROPE and STRAW, and describe how
to use them to generate playlists on the music spaces defined on Chapter 5.

6.1 General Method to Generate Playlists

In this work, we aim to propose a general method to automatically generate music
playlists satisfying users’ taste. As discussed before, we want to construct an algorithm
to generate music playlists satisfying the following five quality constraints: interaction,
smooth transition, heterogeneity, novelty, and scalability. The objective of a general
method satisfying these qualities is that it can be used as a model to propose different
algorithms that can be applied in any music space, where the algorithms derived from
it will also satisfy the five qualities constraints.

Here, we will create the general method in steps, where at each step we will
point out how the method satisfies one of the desired qualities. In order to satisfy
the interaction criteria, we would like to require the minimum input from the user as
possible. Therefore, the method will receive as input only the region of the music space
the user enjoys, and the time he/she wants to spend listening to the playlist. Since
the user may enjoy several different styles (desiring a heterogeneous playlist), he/she
should be able to define more than one region of the music space. We will first describe
a method that receives from the user only two regions, defined as anchor songs. Since
a user may want to define more than two anchor songs, at the end of this chapter, we
will show how we can extend the algorithms to receive an arbitrary number of regions,

45

46 Chapter 6. Playlists Generators

making it possible to create playlists containing several music styles. To control the
time the user will spend listening to the playlist we will require the number of songs
he/she wants to listen, which implicitly controls the time duration of the playlist. Given
these inputs, the method should be able to generate a playlist connecting the anchor
songs selected by the user using the specified number of songs. From now on, we will
define S as the set of available songs, s0 as the first anchor song (or seed song), sd as
the second anchor song (or the destination song), and k as the desired length of the
playlist. It is important to point out the anchor songs represents regions of the music
space and can be replaced by other parameters, such as an artist or a music genre.
In case the user specifies a music genre, we can retrieve all songs of that genre and
represent it as the mean of the songs vector representation, for example.

Even though a user may enjoy music genres that are, at first, very different, it is
annoying to switch suddenly from one genre to another, violating the smooth transition
criteria. Thus, the process of selecting songs from s0 to sd will be done recursively,
where a new song si+1 is added to the playlist if it is similar to the current song si.
This ensures adjacent songs in the playlist will be similar, avoiding abrupt transitions.
Since we want the method to be stochastic (in order to satisfy novelty criteria), the new
song to be added to the playlist must be randomly selected from a given set of songs.
To satisfy these specifications, the general method will be based on two functions:

1. F (si): This function receives as a parameter a seed song si and returns a set
of eligible songs considered similar to si. The size of the set can be fixed and
defined beforehand, or it can be defined at the algorithm execution and limited
by a constant. Let 2S be the image of F , that is, all possible sets that can be
returned by this function.

2. c(F (si), si, sd): This function randomly selects a song from the set F (si) ∈ 2S

satisfying d(si, sd) > d(si+1, st), i.e. the selected song must be closer to the
destination song sd than song si.

Using these two functions, the method to generate a music playlist can be con-
structed as described in Algorithm 1. At each step, the algorithm uses F (.) to retrieve
a set of eligible songs P , and randomly selects the next song to be added to the playlist
using function c(.). By analyzing the algorithm, the complexity of the proposed method
is k × (O(F) +O(c)). If we limit F (.) to retrieve a constant number of eligible nodes,
then the complexity of c(.) is constant, or O(1). Therefore, if we have an efficient
algorithm to retrieve songs similar to a seed song, the complexity of the algorithm will
be small, satisfying the scalability property.

6.2. Algorithms to Generate Music Playlists 47

Algorithm 1 Generates a music playlist
1: procedure GeneratePlaylist(S, s0, sd, k) � a heterogeneous playlist with k songs
2: playlist ← array(k) � The playlist will be an array with k songs
3: playlist[0] ← s0 � First song of the playlist
4: i ← 0
5: while i < k − 1 do
6: si ← playlist[i] � Last song added to the playlist
7: P ← F (si) � set of eligible songs
8: playlist[i+ 1] ← c(P, si, sd) � add a new song to the playlist
9: i ← i+ 1

return playlist

6.2 Algorithms to Generate Music Playlists

In this section, we are going to describe two algorithms to generate music playlists
constructed based on the general method described in Algorithm 1. The first algorithm,
named ROPE, generates a Brownian path that connects the two anchor songs defined
by the user. The second one, named STRAW, performs a steered random walk on a
music similarity graph constructed using a music space.

6.2.1 ROPE

The first proposed algorithm to generate a music playlist based on the general method
is called Brownian Path Generator (ROPE). Given an initial song s0, a final song sd,
and the desired number of songs in the playlist k, ROPE generates a random path in
the music space from s0 to sd with k − 2 intermediate points connected by a sequence
of k− 1 line segments. Then, for each of the path’s intermediate points, ROPE selects
the closest song of the music space and allocates it to that position, creating a playlist
with exactly k songs. To generate the playlist, ROPE uses a d-dimensional Euclidean
space where each song is represented by a point in this space.

To generate the random path, ROPE uses a standard Brownian motion process
(also called Wiener process) with discrete steps [Durrett, 2010]. The Wiener process is a
stochastic process W (t) : t ∈ R+ such that all its realizations are continuous functions,
with W (0) = 0 with probability 1, and with independent increments (W (t+u)−W (t)

is independent of W (s) for 0 < s < t) which are Gaussian (W (t+u)−W (t) ∼ N (0, σ)).
Here, we create a discrete Wiener process in a (d-1)-dimensional Euclidean space with
k − 1 steps, where W (0) = (0, 0, . . . , 0)(d−1), and W (t + 1) −W (t) ∼ N (µ,Σ), where
µ = (0, 0, ..., 0)d−1 is the mean and Σ is the covariance matrix of the multidimensional
normal distribution. Although the songs are in a d-dimensional Euclidean space, we
generate the Wiener process in a (d-1)-dimensional space because we use the discrete
time t as the first coordinate of the points in the d-dimensional space, forcing the path to
go to a specific direction. This process results in a sequence of k points p0, p1, . . . , pk−1

48 Chapter 6. Playlists Generators

representing a random path in a d-dimensional Euclidean space connecting the points
p0 and pk−1. After generating the path, we just need to transform it in order to make
it connect the songs s0 and sd.

The transformation of the path p0, p1, . . . , pn−1 in a path p̂0, p̂1, . . . , p̂k−1, where
p̂0 = s0 and p̂k−1 = sd, will be done in three steps: a sequence of rotations, followed by
a scale and translation operation. To better explain how ROPE generates the playlists,
first we will explain how it works in a 2-dimensional Euclidean space, that is, each point
pi and each song si is represented by two coordinates (x, y). Let’s define a point pi of the
path as pi = (pxi , p

y
i) and a song si of the music space as si = (sxi , s

y
i). The first step of

the transformation, which are rotations, will be done to make (pk−1− p0) = α(sd− s0),
that is, the vector connecting p0 to pk−1 will have the same direction of the vector
connecting s0 and sd. Since we are on a 2-dimensional Euclidean space, we will only
need to perform one rotation, applying to each point the transformation matrix

M =

�
cos(θ) -sin(θ)
sin(θ) cos(θ)

�

where θ is the angle of rotation

θ = arctan

�
syd − sy0
sxd − sx0

�
− arctan

�
pyk−1 − py0
pxk−1 − px0

�

After the rotation, we perform a scale operation (in order to make (pk−1 − p0) =

(sd − s0)) followed by a translation operation, creating a path p̂0, p̂1, . . . , p̂k−1, where
p̂0 = s0 and p̂k−1 = sd. Figure 6.1 illustrates how ROPE performs these operations.

Figure 6.1: Illustration of ROPE algorithm

6.2. Algorithms to Generate Music Playlists 49

In order to adapt ROPE to generate a playlist in a d-dimensional Euclidean
space, after generating the random path p0, p1, . . . , pk−1, we need to perform d − 1

rotations to make (pk−1 − p0) = α(sd − s0). Let’s suppose pi = (p0i , p
1
i , . . . , p

d−1
i) and

si = (s0i , s
1
i , . . . , s

d−1
i). If (pk−1 − p0) = α(sd − s0), then (pjk−1 − pj0) = α(sjd − sj0) ∀ j. If

we fix the coordinates s00, s0d, p00 and p0k−1, than we must have α = (p0k−1−p00)/(s
0
d−s00).

Therefore, we will make d− 1 rotations where the jth rotation will make

sjd − sj0
s0d − s00

=
pjk−1 − pj0
p0k−1 − p00

The jth rotation will be performed by applying the the points pi the rotation
matrix Mj where

Mj =

0 1 . . . j . . . d− 1





cos(θj) 0 . . . − sin(θj) . . . 0 0

0 1 . . . 0 . . . 0 1

0 0 . . . 0 . . . 0
...

sin(θj) 0 . . . cos(θj) . . . 0 j

0 0 . . . 0 . . . 0
...

0 0 . . . 0 . . . 1 d− 1

where θj is the angle of rotation

θj = arctan

�
sjd − sj0
s0d − s00

�
− arctan

�
pjk−1 − pj0
p0k−1 − p00

�

There are two important observations to make about the rotation operations.
The first is that since the first point p0 is the origin of the Euclidean space (p0 =

(0, 0, . . . , 0)), the rotations never change it. The second observation is that after the
jth rotation, the value of p0k−1 will be modified. Let (pi)j be the value of pj after the
jth rotation. We have that

(p0k−1)j = cos(θj) · (p0k−1)j−1 − sin(θj) · (pjk−1)j−1

Since we modified the value of p0k−1, the equality (sld − sl0)/(s
0
d − s00) = (plk−1 −

pl0)/(p
0
k−1 − p00) for l < j will not be satisfied anymore. To bypass this problem, after

the jth rotation, we calculate the ratio

rj =
(p0k−1)j

(p0k−1)j−1

50 Chapter 6. Playlists Generators

and multiply pli for all i and l = 1, . . . , j − 1 by rj, ensuring the equalities will be
satisfied. In other words, we transform the points using the following matrix:

Sj =

0 1 2 . . . j − 1 j . . . d− 1





1 0 0 . . . 0 0 . . . 0 0

0 rj 0 . . . 0 0 . . . 0 1

0 0 rj . . . 0 0 . . . 0 2

0 0 0
. . . 0 0 . . . 0

...
0 0 0 . . . rj 0 . . . 0 j − 1

0 0 0 . . . 0 1 . . . 0 j

0 0 0 . . . 0 0
. . . 0

...
0 0 0 . . . 0 0 . . . 1 d− 1

After these d−1 rotations, we only need to perform a scale transformation followed
by a translation, as we did in the 2-dimensional Euclidean space, generating a sequence
of k points p̂0, p̂1, . . . , p̂k−1 where p̂0 = s0 and p̂k−1 = sd.

With a random path connecting songs s0 and sd, for each of the k−2 intermediate
points we just need to search in the music space for the song closest to point pi and
add it to the playlist at that position. After replacing each intermediate point by a
song of the music space, we will have a playlist connecting songs s0 and sd.

ROPE works as described in algorithm 1, with some slight differences. We first
randomly generate k−2 intermediate points, and then use c(.) to select the songs closest
to them. However, the point pi+1 depends on the point pi, since pi+1 = pi +N (0,Σ).
Function c(.) can simply go through all the songs of the music space to select the song
closest to the specified point. However, since the dataset may contain a large number
of songs, this may cause the method to be slow. To solve this problem, we can use a
k-d tree to store the songs and perform nearest neighbor searches on it, which has an
average complexity of O(log(N)).

Note the randomness of the algorithm is controlled by the covariance matrix Σ.
If we increase the variance of the coordinates, the method will be able to generate
more diverse playlists. If we set the variances to 0, the method will be deterministic,
becoming similar to the algorithm proposed by Flexer et al. [2008], which selects equally
spaced songs to be added to the playlist.

6.2. Algorithms to Generate Music Playlists 51

6.2.2 STRAW

The second proposed algorithm to generate music playlists is the Steered Random
Walker (STRAW). Although ROPE is able to generate directed random paths from s0

to sd with exactly k − 1 steps, it is not topology-aware, that is, it doesn’t know the
structure of the music space. Because of that, ROPE may generate a path crossing
a sparse or even empty region between s0 and sd in the music space (S, d), possibly
populating the playlist with harsh transitions. This is the motivation behind STRAW,
a topology-aware heterogeneous playlist generator based on similarity graphs.

STRAW is an algorithm that uses a music similarity graph, where the nodes
represent songs in our dataset and the edges connect songs with a certain degree of
similarity. There are several forms to construct this graph. For example, one can
construct a graph where songs are connected if they co-appeared on users’ playlists a
minimum number of times, or connect songs with a distance lower than a threshold in a
music space. Given the similarity graph, the seed song s0, the destination song sd and
the desired number of songs k, STRAW performs a directed random walk in the graph
from s0 toward sd. Starting from song s0, STRAW randomly selects the next song of
the playlist from the neighbors of the current song. We call this walk directed because
at each step STRAW gives higher probabilities to visit songs closer to the destination.

Differently from ROPE, STRAW cannot guarantee the song sd will be reached in
exactly k steps. Nevertheless, it guarantees that the playlist will have exactly k songs
and that sd is on it. If song sd is reached before k steps, then a random walk on the
graph from node sd is initiated until the playlist length equals k. The random walk
simply selects a random song from the neighbors of the current song to be the next
song of the playlist. If sd is not reached with k steps from s0, the directed random walk
proceeds until sd is reached, generating a playlist p� with k� > k songs. After that,
we remove from p� k� − k songs, creating a playlist with the desired number of songs.
Selecting the songs to be removed from the playlist can be defined by the implementer
and may depend on the desired qualities of the playlist.

Given the similarity graph G(V,E), STRAW works as described in Algorithm
1. Since the navigation structure is a graph, retrieving the set of songs that could be
added after song si using F (si) is straightforward. F (si) simply outputs the set P of
songs that are connected to the correspondent node si in G. If we limit the degree
of the nodes by an upper bound, the complexity of F (.) is O(1). The function c(.)

needs to randomly select a song from the set of songs retrieved by F (.), giving higher
probability to songs closer to the destination song sd. The function c(.) can be defined
by the implementer and may depend on the music space the algorithm is being applied.

52 Chapter 6. Playlists Generators

6.3 Application of the Algorithms

Here we will detail the implementation of the proposed algorithms to generate music
playlists on the music spaces constructed in Chapter 5. First, we will explain the
application of ROPE and detail how it was used to generate playlists on the music
spaces where the distance between songs are calculated using the cosine similarity.
Then, we will present how we constructed a music similarity graph using the music
spaces ans used STRAW to generate a music playlist.

6.3.1 Application of ROPE

When applying ROPE on a music space, if the distance function between songs is com-
puted using the Euclidean distance, the application of the algorithm is straightforward,
since we only need to generate a Wiener process and transform it to connect the songs
s0 and st defined by a user. This is the case for the Billboard music space, where the
songs are embedded in a 2D Euclidean space. In other words, for this music space, we
only need to generate a Wiener process and perform a rotation followed by a scalar
and translation transformation as described before.

For the Word2vec and SVD music spaces, ROPE may not be suitable, since
the distances between songs are computed using the cosine distance instead of the
Euclidean distance. If we have two vectors �a and �b where �a = α�b for α �= 1, although
the cosine distance is equal to 0 (which means the songs are similar), their Euclidean
distance may inform they are very different. One thing we can do to bypass this
problem is to embed the songs in a Euclidean space using an embedding algorithm like
MDS or t-SNE. Instead of that, we will normalize the songs vector representation and
show that, if two vectors have the same norm, the square of the Euclidean distance
between them will be proportional to the cosine distance.

First, note that given two vectors �a and �b, if we multiply one of them by a scalar
α, the cosine of the angle between them will not change, that is:

< �a,α�b >

||�a||||α�b||
=

α < �a,�b >

α||�a||||�b||
=

< �a,�b >

||�a||||�b||
Now let’s suppose we want to calculate the distance between two points repre-

sented by the vector �a and �b. The square of the distance is equal to:

||�b− �a||2 = ||�a||2 + ||�b||2 − 2||�a||||�b||cosθ

6.3. Application of the Algorithms 53

where θ is the angle between the two vectors. If we scale both vectors to have
norm equal to 1√

2
, we will have:

||�b− �a||2 =
�

1√
2

�2

+

�
1√
2

�2

− 2

�
1√
2

��
1√
2

�
cosθ

||�b− �a||2 = 1− cosθ

in other words, if we scale all the vectors to have a length equal to 1√
2
, the

Euclidean distance between the songs will be equal to the cosine distance.
One important observation to make is that when we scale all songs to have norm

equal to 1√
2
, they become points of a hypersphere on a Euclidean space with its center

in the origin. In such music space, generating a playlist becomes the same as randomly
walking in the spherical shell. Therefore, given a point pi from the random path, before
searching for its nearest song, we also scaled it to have norm equal to 1√

2
.

To complete the explanation of ROPE application, in our experiments, when
generating the Wiener process, we set Σ as the identity matrix, that is, a multivariate
normal distribution where the variables are not correlated and have variance 1.

6.3.2 Application of STRAW

As described before, STRAW generates a playlist by performing a random walk on a
music similarity graph. Before explaining the application of STRAW, we will describe
how we constructed a graph based on the music spaces constructed on Chapter 5. For
all the three music spaces, we can calculate the distance between each pair of songs.
On the Billboard music space, the distance can be computed using the Euclidean
distance between their representation, while on the Word2vec and SVD music spaces,
the distance can be computed using the cosine distance (1 − cos(θ)). We can then
create a song similarity graph by connecting the most similar songs of the music space.

The process of constructing the similarity graph is as follow. We start with
a complete weighted graph G� = (V,E) where all pair of songs are connected and
the weight of the edge connecting si and sj is the distance d(si, sj) between them.
Using this graph, we create a minimum spanning tree (MST) represented by a graph
MST1(V,E1). We then remove from the original complete graph G� all edges E1 and
generate a second MST MST2(V,E2) with the remaining sub-graph G� = (V,E\E1).
We keep the process of removing the edges Ei from G� and creating MSTs until we
have κ MSTs MSTi(V,Ei), 1 ≤ i ≤ κ. We then define the music similarity graph G

as the union of the MSTs, that is, G = (V,
�κ

i=1 Ei). This graph has a guaranty that

54 Chapter 6. Playlists Generators

every song is adjacent to at least κ other songs. After this process, since many pairs of
similar songs may be out of E, we select from Eκ the edge with the maximum weight
τ . We then create a sorted list le = (e1, e2, . . .) containing all edges with weight lower
than or equal to τ and iteratively, starting from e1, add edge ei = (u, v) to the graph G

if nodes u or v have degree smaller than Ld. After this process, every song is connected
to at least Ld.

Given the graph G, we only need to define how the function c(.) selects a song
from the set F (si). As described before, the function c(.) needs to randomly select
a song satisfying d(si, sd) > d(si+1, sd). Here we propose two methods to satisfy this
restriction. The first one uses the songs vector representation, and filter the set of songs
returned by F (si) selecting only the ones that are closer to song sd than the current
song si, creating a set of eligible songs P . Thus, function c(.) only needs to select a
random song from P . Since we want to generate a playlist with k− 1 steps, we should
give higher probabilities to nodes that do not advance too much or too little in the
path. Therefore, we define the desired step size δ̂ in a playlist with k− 1 steps from s0

to sd as δ̂ = d(s0, sd)/(k − 1).

For each node v ∈ P , we calculate the step size δv that will be given toward sd if
v is selected: δv = d(si, sd) − d(v, sd). We can give to each node v a likelihood Θv of
being selected by c(.), which is Θv = (1 + |δv − δ̂|)−1. Θv is proportional to how close
the step δv is to the desired step δ̂. With that, the probability of selecting node v ∈ P
is given by:

P (v) =
Θv�
u∈P Θu

Thus, function c(.) selects the next song to be added to the playlist by drawing a
random song from P , where node v ∈ P has probability P (v) of being selected. Since
even defining these probabilities we can not guarantee to reach song sd in exactly k−1

steps, we still need to perform a random walk or remove songs from the playlist as
described before. We will simply call this method of selecting songs based on the step
size as Straw.

Another form to satisfy the restriction d(si, sd) > d(si+1, sd) is to not consider
the vector representation of the songs, and use only the similarity graph. In this case,
the distance between two songs is the length of the shortest path connecting them,
considering all edges of the similarity graph having weight 1. When selecting the next
song to be added to the playlist, we can filter the songs returned by F (si) in which the
distance to song sd is lower than the distance from si to to song sd. This ensures the
set P will contain only songs closer to the destination song. Given this set of songs,

6.3. Application of the Algorithms 55

we can assign equal probability to each of them, and randomly select a song to be the
next song added to the playlist. To do not need to compute at each step the length of
the shortest path from each adjacent song to song sd, we can pre-compute the shortest
path of all songs to sd by simply running a Breadth First Search (BFS) from sd. From
now on we will call this method as StrawBFS.

In our experiments, to generate the similarity graph we used a value of κ = 5

and Ld = 20, that is, we first represented the graph as the union of 5 MSTs, and then
added edges to the graph until all vertices have degree at least 20.

All the algorithms presented in this chapter receives as input from the user only
two regions of the music space: the start song s0 and the destination song sd. As we
discussed before, some users may want to specify more than two anchor songs to create
a more heterogeneous playlist. For example, one may want to start listening classic
songs, going towards pop, and finally listens to rock songs. A simple form to adapt
our algorithms for this situation is, when receiving n anchor songs s0, . . . , sn−1, create
n − 1 playlists, connecting s0 to s1, s1 to s2, . . . , sn−2 to sn−1. After generating the
playlists we can concatenate them to form the final playlist.

We can construct another variant of the algorithm requiring only the seed songs
s0. This way, the user does not need to input the destination song sd. In this variant,
the function c(.) only needs to return a random song from the set F (si), not having a
destination region of the music space. This approach still guarantee smooth transitions
(since function F (si) returns songs similar to si), but may head to a region of the music
space not enjoyed by the user.

In this chapter we proposed a general method to automatically generate music
playlists, designed two algorithms based on this method, and illustrated their applica-
tion on the music spaces created on Chapter 5. On next chapter we will present the
experiments performed to asses the qualities of the algorithms, and verify how well the
algorithms satisfy the quality metrics presented in Chapter 2.

Chapter 7

Metrics and Experiments

In this chapter, we are going to describe the experiments performed to evaluate the
proposed algorithms ROPE and STRAW. In Chapter 2 we presented five qualities a
playlist generator algorithm should satisfy: interaction, smooth transition, heterogene-
ity, novelty, and scalability. To evaluate the algorithms, first, we will propose evaluation
metrics to asses the qualities of a playlist regarding these desired characteristics. Then
we are going to describe the baseline algorithms that were implemented to be com-
pared with our methods, and finally, use the proposed metrics to compare the playlists
generated by the implemented algorithms.

7.1 Evaluation Metrics

The evaluation of music similarity and playlists qualities are not well established in
the literature, since there is no ground truth to compare, and a measure of how similar
two songs are can be subjective and vary depending on the user. Some authors use
a subjective evaluation by analyzing the retrieved songs given a seed song [Zadel and
Fujinaga, 2004]. Logan and Salomon [2001] computed the average number of the top k

songs that are from the same artist, album or genre of the seed song. When evaluating
playlists, some authors implement an online system to let users evaluate the created
playlists [Barrington et al., 2009; Cardoso et al., 2016].

In Chapter 6, when we described the application of the general method to generate
playlists, we have shown our method requires only a few inputs from the user, and also
scales with the size of the music dataset, satisfying scalability, and interaction criteria.
In this section, we are going to propose four metrics to measure the effectiveness of the
algorithms with respect to smooth transition, heterogeneity, and novelty.

57

58 Chapter 7. Metrics and Experiments

When generating a playlist, we desire consecutive songs to be similar to each
other, satisfying the smooth transition criteria. To measure the transition between the
songs of the playlist, we proposed two metrics. The first metric, called ST1 (smooth
transition 1) measures the mean distance between consecutive songs. That is, given a
playlist p = {s0, s1, . . . , sk−1} of size k, ST1 is calculated as:

ST1 =

�k−2
i=0 d(si, si+1)

k − 1

The second metric to measure the smooth transition, called ST2 (smooth tran-
sition 2) measures the most abrupt transition between songs, calculated as:

ST2 = max
0≤i≤k−2

d(si, si+1)

For both ST1 and ST2 metrics, the smaller the returned value the smooth is the
transition between the songs of the playlist.

To measure the heterogeneity of a playlist, we proposed a metric called HC (het-
erogeneous coefficient) that measures the longest distance the playlist traveled in the
music space and is calculated as the maximum distance between any two songs in the
playlist, that is

HC = max
0≤i≤k−2
i<j≤k−1

d(si, sj)

where the higher the value of HC, the more heterogeneous is the generated
playlist.

And finally, to measure the novelty of a playlist generator method, we proposed
a metric called RC (repetition coefficient) that compares two playlists generated using
the same input parameters, that is, the same start song s0, end song sd, and the same
playlist size k. To compare the playlists, we used the Jaccard similarity coefficient.
Given two playlists p = {s0, . . . , sk−1} and p̂ = {ŝ0, . . . , ŝk−1}, we created a set with
their songs S = {si : si ∈ p} and Ŝ = {si : si ∈ p̂}, removed from the sets the songs s0

and sd (since they were used as input to the method and therefore are in both playlists),
and calculated RC as

RC =
S ∩ Ŝ

S ∪ Ŝ

Since we want a method that is able to generate different playlists for the same
input, lower values of RC is desired.

7.2. Baseline Algorithms 59

Using the metrics ST1, ST2, HC and RC we are able asses the qualities of the
playlists generated and compare the proposed methods between then and with the
methods proposed on literature.

7.2 Baseline Algorithms

To compare the proposed algorithms with former methods, we implemented two algo-
rithms found in the literature. The first is the one proposed by Flexer et al. [2008],
that generates a music playlists given the start and end song, similar to the general
method proposed in this work. The implementation of this method works as follows:
first, we connected the first and end song of the playlist with a straight line in the
music space. Then we selected k − 2 equally spaced intermediate points of this line,
and for each point searched for the nearest song in the music space using a k-d tree,
creating a playlist of size k. We will call this method as Flexer.

The second algorithm implemented is the one proposed by Pontello et al. [2017],
which is an algorithm to navigate large media collections, in our case a music space.
In this method, starting at song s0, at each step, a set K of the songs most similar
to the current song si is retrieved. Then, given a target direction vector �V , a song is
randomly selected from this set, where the probabilities of selecting a song sj is inversely
proportional to the angle between the vector sj − si and �V . After selecting a song, the
direction vector �V is updated before used to select the next song. In this method, we
defined a destination song sd which is also used to update the direction vector �V . In our
implementation, given the input s0, sd and k, we used the same graph constructed for
STRAW to retrieve the set of similar songs and used the destination song sd to guide
the navigation. We kept the process of selecting the next song, and after reaching
song s0, we randomly removed songs or performed a random walk so the generated
playlist will have k songs. Therefore, the implementation of this algorithm is similar
to STRAW, where the difference is only on the probabilities assigned to the songs in
the set of similar songs K. It’s important to point ou that in the original algorithm
proposed by Pontello et. al. the user constantly interacting with the system and can
give feedback about the songs being recommended and reject the ones he doesn’t like.
In our implementation, we are considering the user will accept all recommended songs.
From now on, we will call this method as Pontello.

Besides these two methods, we implemented two other approaches to generate
playlists. One is a random walk on the music similarity graph starting from song s0,
as proposed by Maillet et al. [2009] and Ragno et al. [2005]. The difference from the

60 Chapter 7. Metrics and Experiments

previews implementations is that this method does not require to reach the destination
song sd. Since it uses the similarity graph (and therefore keeps smooth transitions be-
tween songs), it will be able to show the effect of the large steps required by ROPE and
STRAW to reach song sd. We will call this method as RWalk. The other implemented
method is a completely random playlist, where each of the k− 2 songs between s0 and
sd is uniformly selected from the set of available songs S. This method will be called
Random, and will give us an idea of the step size that can be taken on the music space.

Finally, in all the algorithms implemented, we didn’t allow a song that has already
been added to the playlist to be selected again. Using this restriction we ensured all
the songs of the playlist are different from one another.

7.3 Experiments

In this section, we are going to describe the experiments performed to compare the
implemented algorithms. As described in Chapter 5, we constructed three music spaces:
the Billboard music space, the Word2vec music space, and the SVD music space. Since
each of them were constructed using different features, we are going to evaluate them
separately. In all the experiments, we created playlists of size k = {25, 50, 75, 100}.

7.3.1 The Billboard Music Space

The first experiments we are going to describe uses the Billboard music space. As
described, the Billboard music space was constructed using acoustic characteristics
extracted from the audio files. To perform the experiments, we randomly selected 1000
pairs of songs to be used as input to the algorithms. Since our goal is to generate
heterogeneous playlists, we required that the distance between the first and last song
of the playlist to be high. Since the diameter (the distance between the two furthest
songs) in the Billboard music space is approximately 18, in our experiments we forced
that the distance between s0 and sd to be at least 6, which is one-third of the diameter.
After generating all playlists, for each algorithm and each playlist size we calculated
the mean of the metrics found for all playlists.

Figure 7.1 shows the ST1 of the playlists generated. As expected, Random ob-
tained the maximum values of ST1, since the method randomly selects songs from the
dataset, without worrying about the transition between songs. Since StrawBFS finds
the "shortest" path to the destination song sd and then performs a random walk to
complete the playlist, its results are similar to RWalk. Our implementation of Pontello
uses the similarity graph to generate the playlist and therefore has a result similar to

7.3. Experiments 61

Figure 7.1: ST1 of playlists in the Bill-
board music space

Figure 7.2: ST2 of playlists in the Bill-
board music space

STRAW. Flexer and Rope obtained the best results since both of then only give steps
of size enough to arrive at the destination point. With respect to ST2, we can see on
figure 7.2 Random also obtained the worst results, while Flexer and Rope showed to
perform better.

In Figure 7.3 we can see the HC metric for the playlists. Since Random selects
at each step a random song to be added to the playlist, it obtained the best values
of HC. StrawBFS and RWalk also obtained similar results for HC, as they tend to
randomly walk on the similarity graph and therefore goes to regions distant from the
start song s0. Since Rope and Flexer tend to select songs in the middle of the start and
end songs, their HC tend to be the distance from the start and end song, obtaining
equal values.

When calculating RC we can observe in Figure 7.4, as expected, that Flexer
obtained a value of 1, since it is deterministic. To better visualize the results of the
other algorithms, we plotted another graph without Flexer results, that can be seen in
Figure 7.5. We can observe Random obtained the best results, as expected, and that
RWalk also obtained results better than the proposed algorithms. Straw and Pontello
tend to increase the RC of the playlists when increasing the size of the playlist, while
StrawBFS decreases it. This probably happens because when StrawBFS reaches the
destination song, it starts a random walk, creating a different playlist. Rope, on the
other hand, increases fast when increasing the size of the playlist. When generating a
random path connecting the start and end song with many intermediate points, most
of the points fall in the same region of the music space, and therefore the algorithm
selects the same songs selected in the previous iteration.

Summarizing the results obtained for the Billboard music space, Pontello per-
formed similar to Straw, as it uses the same music similarity graph. Rope and Flexer

62 Chapter 7. Metrics and Experiments

Figure 7.3: HC of playlists in the Bill-
board music space

Figure 7.4: RC of playlists in the Bill-
board music space

Figure 7.5: RC of playlists in the Billboard music space without Flexer

obtained the best values of ST1 and ST2, but a small value of HC. Besides that,
Flexer is deterministic and obtained a value of RC equal to 1. Although StrawBFS
and RWalk obtained similar results, StrawBFS receives as input a destination song, al-
lowing the user to have a better control over the playlist generated. Random obtained
the best values of HC and RC, but the worst values of ST1 and ST2. Based on these
results, if the user prefers a playlist with smooth transition, it’s recommended to use
ROPE algorithm. But if he desires a more heterogeneous playlist, it’s recommended
to use Straw, StrawBFS, or Pontello.

7.3. Experiments 63

Figure 7.6: ST1 of playlists in the
Word2vec music space

Figure 7.7: ST1 of playlists in the
Word2vec music space without Random

7.3.2 The Word2vec Music Space

Here we are going to describe the experiments using the Word2vec Music Space. For
this music space and the SVD music space, we used the users of the test set to run the
experiments. For each user u, we created a set of songs Su containing all songs from
his/her playlists and selected the 500 users with the highest values of |Su|. For each
selected user u, we extracted 20 random songs from the set Su and grouped the songs
in pairs, where one song was used as s0, and the other as sd. Therefore, for each user
u, we generated 10 pairs of songs to use as input to the algorithms, totaling 5000 pairs
of songs. As we did for the Billboard dataset, for each algorithm and each playlist size
we calculated the mean of the metrics found for all playlists.

In Figure 7.6 we can see the mean of ST1 metric of the playlists generated.
Again, as expected, Random obtained the highest values. To better compare the
other algorithms, we plotted a new graph without the results of Random algorithm,
which can be seen on figure 7.7. As we can observe, RWalk, Pontello and Straw
obtained the smallest values, Although Rope obtained ST1 values small compared
with Random algorithm, it obtained the worst results among the proposed algorithms.
We can observe that restricting the songs to be adjacent on the similarity graph forces
the playlists to have smooth transition between songs, and selecting songs using a
random path connecting the start and end song trying to can cause abrupt transitions.

In Figure 7.8 we can see the ST2 metric for the generated playlists. We can
see that on the Word2vec music space Rope obtained values better than Flexer and,
unlike the Billboard music space, it obtained ST2 values greater than Straw, StrawBFS,
Pontello and RWalk. Again, Pontello obtained ST2 values similar to Straw. For the
HC metric, we can see on figure 7.9 Rope was able to obtain results similar to Flexer,
but not as good as Straw, StrawBFS and Pontello.

64 Chapter 7. Metrics and Experiments

Figure 7.8: ST2 of playlists in the
Word2vec music space

Figure 7.9: HC of playlists in the
Word2vec music space

Figure 7.10: RC of playlists in the Word2vec music space

Figure 7.10 shows the mean of RC metric of the playlists. Since Flexer always
obtain an RC value equal to 1, we didn’t plot its results. As we can observe, ROPE
obtained the worst values between the proposed algorithms, increasing RC value with
the size of the playlist as in the Billboard music space. All the other algorithms obtained
RC values small compared with ROPE and Flexer. Straw generated playlists with RC

values close to Pontello, and StrawBFS obtained values greater than RWalk.

Summarizing the results of the Word2vec music space, among the proposed algo-
rithms, Straw, StrawBFS and Pontello obtained the best results, with small values of
ST1, ST2 and RC, and a high value of HC.

7.3. Experiments 65

7.3.3 The SVD Music Space

The last music space used in our experiments were the SVD music space. To perform
the experiments we used the same inputs used on the Word2vec music space, that is,
we generated 10 playlists for each of the 500 different users selected from the test set.
Analysing Figures 7.11, 7.12, 7.13 and 7.14 we can observe the results are very similar
to those found on the Word2vec music space. This happens because in both music
spaces, the songs are represented as vectors of size 1√

2
and the distance between the

songs are the as the cosine distance. We can therefore conclude again that among
the proposed algorithms, Straw and StrawBFS are the best option to generate music
playlists, as it is able to create playlists with high values of HC, but low values of ST1,
ST2 and RC.

Figure 7.11: ST1 of playlists in the SVD
music space

Figure 7.12: ST2 of playlists in the SVD
music space

Figure 7.13: HC of playlists in the SVD
music space

Figure 7.14: RC of playlists in the SVD
music space

66 Chapter 7. Metrics and Experiments

7.3.4 Comparing Word2vec and SVD music space

It is desirable that when generating a playlist for a user, it will be enjoyed by him/her.
Since both Word2vec and SVD were constructed using the Spotify dataset, we will
compare the music spaces by comparing the generated playlists with the playlists of
the user from who we extract the anchor songs. As described before, we generated
10 playlists for each of the 500 selected users using as input to the algorithms songs
extracted from the set Su. To assess the quality of the playlists, for each playlist pi

generated for user u we calculated the proportion of songs in pi (excluding the anchor
songs s0 and sd) that are in the set Su. If this proportion is high, it means the
algorithm is able to generate playlists with songs the user would enjoy to listen to in
his/her playlist. This metric is similar to precision in recommendation systems, which
are the fraction of retrieved items that are relevant to the user. Therefore, we will call
this metric as P (precision). Given a playlist p = {s0, s1, . . . , sk−1} of size k generated
for user u, we compute P as:

P =
1

k

k−1�

i=0

1[si ∈ Su]

We calculated the mean of P for each algorithm and playlist size, which can
be seen in Table 7.1 and Table 7.2. To better visualize the values, we plotted the
Figure 7.15. We can observe Word2vec music space generates playlists with high val-
ues of P and therefore is better suitable to generate playlists that would be enjoyable
by users. This happens because Word2vec music space was constructed using the
playlists from Spotify and therefore could better model users taste. We can also ob-
serve Flexer obtained the best values of P , thus it is a good algorithm to generate
enjoyable playlists, although it is deterministic and may generate playlists with abrupt
transitions, as shown before. When comparing Straw, StrawBFS and Pontello, we can
observe StrawBFS obtained better values of P .

Algorithm
Length Rope Straw StrawBFS Flexer Pontello RWalk Random

25 0.066 0.071 0.072 0.097 0.070 0.057 0.013
50 0.069 0.061 0.069 0.095 0.059 0.047 0.013
75 0.071 0.053 0.064 0.092 0.052 0.042 0.013
100 0.07 0.048 0.059 0.089 0.047 0.038 0.013

Table 7.1: Precision values of playlists in the Word2vec music space

7.4. Experimental Conclusions 67

Algorithm
Length Rope Straw StrawBFS Flexer Pontello RWalk Random

25 0.175 0.098 0.128 0.178 0.097 0.080 0.013
50 0.159 0.079 0.113 0.159 0.079 0.061 0.013
75 0.149 0.067 0.098 0.146 0.066 0.053 0.013
100 0.137 0.059 0.084 0.136 0.059 0.047 0.013

Table 7.2: Precision values of playlists in the SVD music space

Figure 7.15: Precision of playlists in the Word2vec music space and SVD music space

7.4 Experimental Conclusions

In this chapter, we performed experiments to compare the proposed algorithms with
other baseline algorithms. From the experiments, we can conclude the approaches
using a similarity graph were the ones that created playlists with smoother transitions
between the songs, in special the algorithms Straw and Pontelo. This happens because
the graph can guarantee the maximum step we can give. But different from the SVD
and Word2vec music spaces, on the Billboard music space both Pontelo and Straw
didn’t obtain small values of ST1 compared with Rope and Flexer. This probably
happened due to the construction of the graph, which was very dense. This is illustrated
by the result of the RWalk on the same music space. The ST1 values of the RWalk
on the Billboard music space (which we can consider as the average of the distance
between connected songs) is higher than Pontello and Straw values.

With respect to heterogeneity, Straw, StrawBFS, and Pontello obtained the best
results. Although these algorithms obtained the best values of HC, it is important to
point out that, in our implementation, when the algorithm reaches song sd, it starts a
random walk in the similarity graph. Although this causes the playlist to have a higher
value of heterogeneity (illustrated by the graphics, as the values of HC increases when
increasing the size of the playlist), the algorithm may get distant from song sd, going

68 Chapter 7. Metrics and Experiments

to a region of the music space not enjoyed by the user. But, analyzing figure 7.15,
we can observe the precision values decreases as we increase the size of the playlist,
indicating a random walk can generate playlists with songs the user enjoys.

Finally, except Rope and Flexer, all the implemented algorithms obtained small
values of RC, showing they are able to generate random playlists and surprise the user.

7.5 Prototype

In order to make the algorithm publicly available to be used by users, we implemented
an online prototype to generate music playlists, that can be accessed at https://

homepages.dcc.ufmg.br/~marcos.almeida/playlistgenerator. In this prototype,
we implemented StrawBFS as it obtained AD values higher than Straw, and used the
Word2vec music space, since it obtained AD values higher than SVD music space. To
use the system, the user only needs to input the start and end song of the playlist,
and the desired number of songs. Figure 7.16 shows the interface of the system. After
generating the playlist, the user can also connect to his Spotify account and save the
generated playlist in his library. Figure 7.17 shows a playlist generated using as anchor
songs How Deep Is Your Love by Bee Gees and Sweet Child O’ Mine by Guns N’
Roses.

Figure 7.16: Prototype interface

7.5. Prototype 69

Figure 7.17: Playlist generated using the prototype

Chapter 8

Conclusions and Future Works

In this work, we studied the problem of automatic generation of music playlists. In
our experiments, we used three different datasets. The first one contains acoustic
characteristics of songs that appeared on the Billboard between 1960 and 2010. The
second dataset is composed of users’ playlists and artists tags extracted from Spotify.
The third one contains users’ playlists of the Art of the Mix website.

Analyzing the users’ playlists from Spotify dataset we showed that, although most
users create playlists with only a few different genres, several users enjoy listening to
several different music genres, having an eclectic taste. Using the entropy to measure
the heterogeneity of the users and playlists we could take the same conclusion. We
also determined which music genres are present in almost all playlists, and which are
present in only a few ones. Also, we clustered the users using as their representation
the music genres they listen to and showed the songs most listened in each cluster, and
the ones least listened.

After analyzing the users, we proposed three different forms to calculate the sim-
ilarity between songs using the datasets. One using the songs acoustic characteristics,
other using the co-occurrence of songs on users playlists and the third using artists tags.
Using the similarity function between songs, we constructed three music spaces, where
each music is mapped to a point in the Euclidean Space, and the distance between the
songs can be computed using the Euclidean distance. We showed all music spaces are
able to group tracks of the same genre and, given a seed song, retrieve similar songs.

Using the music spaces, we proposed a general method to automatically gen-
erate music playlists satisfying the following qualities: usability, smooth transition,
heterogeneity, novelty, and scalability. Based on the general method, we proposed
two algorithms to generate playlists. The first algorithm, named ROPE, is based on a
Brownian motion on the music space. The second algorithm, named STRAW, performs

71

72 Chapter 8. Conclusions and Future Works

a random walk on a music similarity graph. Both proposed algorithm requires the user
only three inputs and scales with the size of the dataset, satisfying the usability and
scalability criteria.

We performed experiments to evaluate the proposed algorithms with respect to
smooth transitions, heterogeneity, and novelty. Based on our experiments, we con-
cluded the proposed algorithms are able to satisfy the proposed qualities constraints.
Among the proposed algorithms, we showed Straw obtained the best results in all the
three constructed music spaces, outperforming other algorithms of the literature. We
also showed Word2vec music space is best suitable to generate playlists that would
be enjoyable by users since the playlists generated on this music space tend to con-
tain songs similar to the anchor songs and that would be added to the playlist by
the users. We also implemented the StrawBFS algorithm on an online system where
users can use it to generate music playlists and listen to them on Spotify, available at
https://homepages.dcc.ufmg.br/~marcos.almeida/playlistgenerator.

For future work, we would propose to use other songs characteristics to calculate
the similarity between songs. Spotify API allows us to extract some acoustic char-
acteristics of the tracks, such as danceability, energy, loudness, and valence. Other
characteristics that can be retrieved using the Spotify API are the timbre and pitch
values through the songs. Those characteristics can provide important information
about the similarity between songs, improving the music spaces. We also propose to
perform a user evaluation of the proposed algorithms, in order to receive direct feedback
of the generated playlists are enjoyable.

Bibliography

Aucouturier, J.-J. and Pachet, F. (2002a). Finding songs that sound the same. In Proc.
of IEEE Benelux Workshop on Model based Processing and Coding of Audio, pages
1--8.

Aucouturier, J.-J. and Pachet, F. (2002b). Scaling up music playlist generation. In
Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE International Con-
ference on, volume 1, pages 105--108. IEEE.

Barrington, L., Oda, R., and Lanckriet, G. R. (2009). Smarter than genius? human
evaluation of music recommender systems. In ISMIR, volume 9, pages 357--362.
Citeseer.

Ben-Elazar, S., Lavee, G., Koenigstein, N., Barkan, O., Berezin, H., Paquet, U., and
Zaccai, T. (2017). Groove radio: A bayesian hierarchical model for personalized
playlist generation. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pages 445--453. ACM.

Bonnin, G. and Jannach, D. (2015). Automated generation of music playlists: Survey
and experiments. ACM Computing Surveys (CSUR), 47(2):26.

Cardoso, J. P. V., Pontello, L. F., Holanda, P. H., Guilherme, B., Goussevskaia, O.,
and da Silva, A. P. C. (2016). Mixtape: Direction-based navigation in large media
collections. In ISMIR, pages 454--460.

Caselles-Dupré, H., Lesaint, F., and Royo-Letelier, J. (2018). Word2vec applied to
recommendation: Hyperparameters matter. arXiv preprint arXiv:1804.04212.

Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., and Slaney, M. (2008).
Content-based music information retrieval: Current directions and future challenges.
Proceedings of the IEEE, 96(4):668--696.

73

74 Bibliography

Dias, R., Gonçalves, D., and Fonseca, M. J. (2017). From manual to assisted playlist
creation: a survey. Multimedia Tools and Applications, 76(12):14375--14403.

Diedrich, C. G. (2015). ‘neanderthal bone flutes’: simply products of ice age spotted
hyena scavenging activities on cave bear cubs in european cave bear dens. Royal
Society open science, 2(4):140022.

Durrett, R. (2010). Probability: theory and examples. Cambridge university press.

Flexer, A., Schnitzer, D., Gasser, M., and Widmer, G. (2008). Playlist generation using
start and end songs. In ISMIR, volume 8, pages 173--178.

Goussevskaia, O., Kuhn, M., Lorenzi, M., and Wattenhofer, R. (2008). From web to
map: Exploring the world of music. In Web Intelligence and Intelligent Agent Tech-
nology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 1,
pages 242--248. IEEE.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V.,
and Sharp, D. (2015). E-commerce in your inbox: Product recommendations at scale.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1809--1818. ACM.

Jannach, D., Kamehkhosh, I., and Bonnin, G. (2014). Analyzing the characteristics of
shared playlists for music recommendation. In RSWeb@ RecSys.

Kamalzadeh, M., Baur, D., and Möller, T. (2012). A survey on music listening and
management behaviours.

Kamehkhosh, I., Jannach, D., and Bonnin, G. (2018). How automated recommenda-
tions affect the playlist creation behavior of users.

Knees, P., Pampalk, E., and Widmer, G. (2004). Artist classification with web-based
data. In ISMIR.

Knees, P. and Schedl, M. (2013). A survey of music similarity and recommendation from
music context data. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 10(1):2.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of massive datasets.
Cambridge university press.

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-
item collaborative filtering. IEEE Internet computing, (1):76--80.

Bibliography 75

Logan, B., Kositsky, A., and Moreno, P. (2004). Semantic analysis of song lyrics.
In Multimedia and Expo, 2004. ICME’04. 2004 IEEE International Conference on,
volume 2, pages 827--830. IEEE.

Logan, B. and Salomon, A. (2001). A music similarity function based on signal analysis.
In null, page 190. IEEE.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579--2605.

Maillet, F., Eck, D., Desjardins, G., Lamere, P., et al. (2009). Steerable playlist
generation by learning song similarity from radio station playlists. In ISMIR, pages
345--350.

Mauch, M., MacCallum, R. M., Levy, M., and Leroi, A. M. (2015). The evolution of
popular music: Usa 1960–2010. Royal Society open science, 2(5):150081.

McFee, B. and Lanckriet, G. R. (2012). Hypergraph models of playlist dialects. In
ISMIR, volume 12, pages 343--348. Citeseer.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111--3119.

Miranda, D. (2013). The role of music in adolescent development: much more than
the same old song. International Journal of Adolescence and Youth, 18(1):5--22.

Muda, L., Begam, M., and Elamvazuthi, I. (2010). Voice recognition algorithms using
mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques.
arXiv preprint arXiv:1003.4083.

Pachet, F., Westermann, G., and Laigre, D. (2001). Musical data mining for electronic
music distribution. In Web Delivering of Music, 2001. Proceedings. First Interna-
tional Conference on, pages 101--106. IEEE.

Pampalk, E., Flexer, A., and Widmer, G. (2005a). Hierarchical organization and
description of music collections at the artist level. In International Conference on
Theory and Practice of Digital Libraries, pages 37--48. Springer.

Pampalk, E., Flexer, A., Widmer, G., et al. (2005b). Improvements of audio-based
music similarity and genre classificaton. In ISMIR, volume 5, pages 634--637. London,
UK.

76 Bibliography

Pauws, S., Verhaegh, W., and Vossen, M. (2008). Music playlist generation by adapted
simulated annealing. Information Sciences, 178(3):647--662.

Platt, J. C., Burges, C. J., Swenson, S., Weare, C., and Zheng, A. (2002). Learning a
gaussian process prior for automatically generating music playlists. In Advances in
neural information processing systems, pages 1425--1432.

Pohle, T., Pampalk, E., and Widmer, G. (2005). Generating similarity-based playlists
using traveling salesman algorithms. In Proceedings of the 8th International Confer-
ence on Digital Audio Effects (DAFx-05), pages 220--225. Citeseer.

Pontello, L. F., Holanda, P. H., Guilherme, B., Cardoso, J. P. V., Goussevskaia, O., and
Silva, A. P. C. D. (2017). Mixtape: Using real-time user feedback to navigate large
media collections. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 13(4):50.

Ragno, R., Burges, C. J., and Herley, C. (2005). Inferring similarity between music ob-
jects with application to playlist generation. In Proceedings of the 7th ACM SIGMM
international workshop on Multimedia information retrieval, pages 73--80. ACM.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285--295. ACM.

Shao, B., Wang, D., Li, T., and Ogihara, M. (2009). Music recommendation based
on acoustic features and user access patterns. IEEE Transactions on Audio, Speech,
and Language Processing, 17(8):1602--1611.

Theil, H. (1967). Economics and information theory. Technical report.

Vasile, F., Smirnova, E., and Conneau, A. (2016). Meta-prod2vec: Product embed-
dings using side-information for recommendation. In Proceedings of the 10th ACM
Conference on Recommender Systems, pages 225--232. ACM.

Wang, D., Deng, S., Zhang, X., and Xu, G. (2016). Learning music embedding with
metadata for context aware recommendation. In Proceedings of the 2016 ACM on
International Conference on Multimedia Retrieval, pages 249--253. ACM.

Zadel, M. and Fujinaga, I. (2004). Web services for music information retrieval. In
ISMIR. Citeseer.

Appendix A

Keywords list

The list of keywords used to search for the playlists on Spotify system are:

"anos 60", "anos 70", "anos 80", "anos 90", "anos 2000", "anos 2010", "years
60", "years 70", "years 80", "years 90", "years 2000", "years 2010", "rock", "pop",
"soul", "funk", "party", "festa", "country", "old musics", "antigas", "mpb", "fa-
vorites", "favoritas", "hiphop", "oldies", "rap", "rnb", "viagem", "travel", "wedding",
"gym", "academia", "casamento", "samba", "folk", "forro", "jazz", "blues", "ser-
tanejo", "bossa nova", "classic", "classica"

77

