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Abstract

In this work we develop the higher categorical language aiming to apply it in the foundations
of physics, following an approach based in works of Urs Schreiber, John Baez, Jacob Lurie, Daniel
Freed and many other, whose fundamental references are [182, 20, 124, 127, 125]. The text has
three parts. In Part I we introduce categorical language with special focus in algebraic topological
aspects, and we discuss that it is not abstract enough to give a full description for the foundations
of physics. In Part II we introduce the categorical process, which produce an abstract language
from a concrete language. Examples are given, again focused on Algebraic Topology. In Part III
we use the categorification process in order to construct arbitrarily abstract languages, the higher
categorical ones, including the cohesive ∞-topos. An emphasis on the formalization of abstract
stable homotopy theory is given. We discuss the reason why we should believe that cohesive
∞-topos are natural languages to use in order to attack Hilbert’s sixth problem.

Remark. The core of this text was written as lecture notes for minicourses, courses and a large
number of seminars given at UFLA and UFMG between the years 2016 and 2018.
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Resumo

Neste trabalho, desenvolvemos a linguagem categórica em altas dimensões visando aplicá-
la nos fundamentos da física, seguindo uma abordagem baseada em obras de Urs Schreiber,
John Baez, Jacob Lurie, Daniel Freed, e muitos outros, cujas referências fundamentais são
[182, 20, 124, 127, 125]. O texto possui três partes. Na Parte I, introduzimos a linguagem
categórica, com foco especial em aspectos algebro-topológicos, e discutimos que esta linguagem
não é abstrata o bastante para fornecer uma descrição completa dos fundamentos da física. Na
Parte II, introduzimos o processo de categorificação, o qual produz linguagens abstratas a par-
tir de linguagens concretas. Exemplos são dados, novamente focando na Topologia Algébrica.
Na Parte III, usamos o processo de categorificação para construir linguagens arbitrariamente
abstratas (as linguagens categóricas em altas dimensões), incluindo os ∞-topos coesivos. Um
enfoque na formalização da teoria da homotopia estável abstrata é dado. Discutimos a razão pela
qual se deveria acreditar que os ∞-topos coesivos são linguagens naturais a serem usadas para
atacar o sexto problema de Hilbert.

Remark. O núcleo deste texto foi escrito como notas de aula para minicursos, cursos e vários
seminários apresentados entre os anos 2016 e 2018 na UFLA e na UFMG.
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Introduction

There are two kinds of mathematics: naive (or intuitive) mathematics and axiomatic (or
rigorous) mathematics. In naive mathematics the fundamental objects are primitives, while in
axiomatic mathematics they are defined in terms of more elementary structures. For instance,
we have naive set theory and axiomatic set theory. In both cases (naive or axiomatic) we need a
background language (also called logic) in order to develop the theory, as in the diagram below.
In the context of set theory this background language is just classical logic.

naive
math

background language

19❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

%-❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘

axiomatic
math

Notice that, when a mathematician is working (for instance, when he is trying to prove some
new result in his area of research), at first he does not make use of completely rigorous arguments.
In fact, he first uses of his intuition, doing some scribbles in pieces of paper or in a blackboard and
usually considers many wrong strategies before finally discovering a good sequence of arguments
which can be used to prove (or disprove) the desired result. It is only in this later moment that
he tries to introduce rigor in his ideas, in order for his result to be communicated and accepted
by the other members of the academy.

Thus we can say that in the process of producing new mathematics, naive arguments come
before rigorous ones. More precisely, we can say that naive mathematics produces conjectures
and rigorous mathematics turns these conjectures into theorems. It happens that the same
conjecture generally can be proved (or disproved) in different ways, say by using different tools
or by considering different models. For example, as will be discussed in some moments in the
text, certain results can be proven using algebraic tools as well as geometric tools, reflecting the

8



CONTENTS 9

existence of a duality between algebra and geometry.

naive
math

model

��

produces +3 conjectures

geometry

��

algebra

��

background language

19❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

%-❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘

axiomatic
math produces

+3
theorems

(0.0.1)

When compared with mathematics, physics is a totally different discipline. Indeed, in physics
we have a restriction on the existence, meaning that we have a connection with ontology, which
is given by empiricism. More precisely, while math is a strictly logical discipline, physics is
logical and ontological. This restriction on existence produces many difficulties. For instance,
logical consistence is no longer sufficient in order to establish a given sentence as physically true:
ontological consistence is also needed. So, even though a sentence is logical consistent, in order
to be considered physically true it must be consistent with all possible experiments! This fact can
be expressed in terms of a commutative diagram:

phylosophy

��

+3 logic

mathematical
modelling��

ontology
empiricism

+3 physics

But now, recall that logic determines the validity of mathematical arguments, which was also
translated in terms of the commutative diagram (0.0.1). So, gluing the diagram of physics with
the diagram of math, we have a new commutative diagram:

conjectures +3 theorems

naive
math

KS

phylosophy

��

+3 logic

KS

��

+3 axiomatic
math

KS

ontology
empiricism

+3 physics

The most important fact concerning the relation between physics and mathematics is that,
in the above diagram, the arrow

logic +3 physics has an inverse physics +3 logic .
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This last is called physical insight. The composition of physical insight with axiomatic math
produces a new arrow, called mathematical physics.

logic +3 axiomatic
math

math. phys.
t| rrr

rr
rr
r

rr
rr
rr
rr

physics

insight

KS

Therefore, the full relation between physics and mathematics is given by the following diagram

conjectures +3 theorems

naive
math

KS

phylosophy

��

+3 logic

KS

KS

��

+3 axiomatic
math

KS

s{ ♦♦♦
♦♦♦

♦♦♦
♦

♦♦♦
♦♦♦

♦♦♦
♦

ontology
empiricism

+3 physics

leading us to the following conclusion:

Conclusion: we can use physical insight in order to do naive mathematics and, therefore, in
order to produce conjectures. These conjectures can eventually be proven, producing theorems!
Furthermore, with such theorems on hand we can create mathematical models for physics (math-
ematical physics).

Now, we can say in few words which is the fundamental objective of this text: to study some
examples of the following sequence:

physics ks +3 logic +3 naive
math

+3 conjectures +3 theorems

Hilbert’s Sixth Problem

More honestly, our focus will be on the axiomatization problem of physics1. In the year of
1900, David Hilbert published [95] a list containing 23 problems (usually known as the Hilbert’s
problems) which in his opinion would strongly influence the 20th century mathematics. The
sixth of these problems was about the axiomatization of the whole physics and, presently, it
remains partially unsolved. Our aim is to present an approach to this problem following works
of Schreiber, Freed, Baez, Lurie and many others.

1As will be discussed, there exists another different (but strictly related) problem: the unification of physics.
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The idea is the following. Recall that the existence of physical insight gives the “mathematical
physics” arrow, as below. An approach to Hilbert’s sixth problem can then be viewed as a way
to present mathematical physics as a surjective arrow.

axiomatic
math

mathematical

physics
+3 physics

Because axiomatic math is described by some logic, the starting point is to select a proper
background language. The selected background language determines directly the naive math, so
the next step is to analyze the following loops:

naive
math

�&❋
❋❋

❋❋
❋❋

❋❋

❋❋
❋❋

❋❋
❋❋

❋

background
language

6>tttttttttt

tttttttttt

physicsks

Then, selecting some model, we lift to axiomatic math, as in the first diagram below. The
final step is to verify if the corresponding “mathematical physics” arrow really is surjective. In
other words, we have to verify if the axiomatic concepts produced by the selected logic are general
enough to model all physical phenomena.

axiomatic
math

axiomatic
math

��

❉
❂

✼

✷

✳

✯

naive
math

 (❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

model

KS

naive
math

 (❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

model

KS

background
language

6>

4<qqqqqqqqqqqq

qqqqqqqqqqqq

physicsks background
language

6>

4<qqqqqqqqqqqq

qqqqqqqqqqqq

physicsks

Presently, physical theories can be divided into two classes: the classical theories and the
quantum theories, as below. They are empirically classified by their domain of validity: classical
theories describe those phenomena which involve the same scales of our everyday life, while
quantum theories are used to describe phenomena appearing in extremal scales.

classical
physics

��
physics quantum

physics
ks

Thus, there are essentially two ways to build a surjective “mathematical physics” arrow. Either
we build the arrow directly (as in the second diagram above), or we first build surjective arrows
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(a) and (b), which respectively axiomatize classical and quantum physics, and then another arrow
(c) linking these two axiomatizations, as in the diagram below.

axiomatic
math

(a)

%%❏
❏

❏
❏

❏
(b)

��

❳ ❱ ❙ P
▼
❏
❋
❇
❂
✾
✻
✸
✵

naive
math

 (❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

model

KS

classical
physics

(c)

$$��
brackground

language

6>

4<qqqqqqqqqqqq

qqqqqqqqqqqq

physicsks quantum
physics

ks

We emphasize the difference between the two approaches: in the first, all physical theories
are described by the same set of axioms, while in the second classical and quantum theories are
described by different axioms, but that are related by some process. This means that if we
choose the first approach we need to unify all physical theories.

There are some models to this unification arrow. One of them is given by string theory. It
is based on the assumption that the “building blocks” of nature are not particles, but indeed one
dimensional entities called strings. More precisely, what we call “string” is just a connected one-
dimensional manifold, which is diffeomorphic to some interval (when it has boundary or when it
is not compact) or to the circle (if it is boundaryless and compact). In the first case we say that
we have open strings, while in the second we say that we have closed strings.

From the mathematical viewpoint, string theory is a very fruitful idea. But we need to recall
that physics is not completely determined by the arrow logic ⇒ physics. Indeed, we also have
the ontological (i.e, empirical) branch. It happens that presently there is no empirical indicative
that strings (instead of particles) really are the most fundamental objects of nature2.

In this text, we will follow the second approach. Indeed, as we will see, if we start with
a sufficiently abstract (or powerful) background language, then we can effectively axiomatize
separately all interesting classical and quantum theories. In this context, the construction of
the quantization process linking classical and quantum theories is presently incomplete. In part
this comes from the fact that the underlying background language is itself under construction.
Even so, there is a very promising idea, which behaves very well for many interesting cases, known
as motivic/cohomological/pull-push quantization [182, 159].

Towards The Correct Language

As commented in the last subsection, independently of the approach used in order to attack
Hilbert’s sixth problem, the starting point is to select a proper background language. The most
obvious choice is the classical logic used to describe set theory. This logic produces, via the
arrow logic⇒ axiomatic math, not only set theory, but indeed all classical areas of math, such
as group theory, topology, differential geometry, etc! Therefore, for this choice of background

2Need reference.
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language, the different known areas of mathematics should be used in order to describe all classical
and all quantum physical phenomena.

Since 1900, when Hilbert published his list of problems, many classical and quantum theories
were formalized by means of these bye now well known areas of mathematics. Indeed, quantum
theories were observed to have more algebraic and probabilistic nature, while classical theories
were presumably more geometric in character.

For instance, a system in Quantum Mechanics (which is about quantum particles) was
formalized3 as a pair (H, Ĥ), where H is a complex (separable) Hilbert space and Ĥ : D(Ĥ)→H
is a self-adjoint operator defined in a (dense) subespace D(Ĥ) ⊆ H. We say that Ĥ is the
Hamiltonian of the system and the fundamental problem is to the determine its spectrum, which
is the set of all information about Ĥ that can be accessed experimentally. The dynamics of the
system from a instant t0 to a instant t1 is guided by the unitary operator U(t1; t0) = e

i
~
(t1−t0)Ĥ

operator associated to Ĥ or, equivalently, by the (time independent) Schrödinger equation i~dψdt =

Ĥψ. The probabilistic nature of Quantum Mechanics comes from the fact that the dynamics does
not determine the states of the particles, but only the time evolution of the probabilities associated
to them.

On the other hand, classical theories for particles are given by some action functional S :
X → R, defined in some “space of fields”. These fields generally involve paths γ : I → M in
a four dimensional M , which are interpreted as the trajectories of particles moving into some
“spacetime”. It happens that in the typical situations, the particle is generally subjected to
interactions, whose effects on the movement of the particle are measured by a corresponding
quantity called force.

The interactions may (or not) be intrinsic to the spacetime. For instance, since the develop-
ments of General Relativity in 1916, gravity is supposed to be a intrinsic force, meaning that it
will act on any particle. The presence of a intrinsic force is formalized by the assumption of a
certain additional geometric structure on the spacetime M . For example, gravity is modeled by a
Lorentzian metric g on M . Other intrinsic interactions are modeled by other types of geometric
structure. It happens that not all manifolds may carry a given geometric structure. This means
that not all manifolds can be used to model the spacetime. Indeed, each geometric structure
exists on a given manifold only if certain quantities, called “obstruction characteristic classes”
vanishe. For example, a compact manifold admits a Lorentzian metric iff its Euler characteristic
χ(M) vanishes, which implies that S4 cannot be used to model the universe4.

An important class of non-intrinsic interactions are given by the Yang-Mills fields. These
depend on a Lie group G, called the gauge group, and on a structure called a G-principal bundle
P → M over the spacetime M . The interaction is then modelled by a connection of P , which
is just an equivariant g-valued 1-form A : TP → g. We can think of A as the “potential” of
the interaction, so that the “force” is just the (exterior covariant) derivative dA of A. Here,
the standard example is electromagnetism, for which G is the abelian group U(1) and A is the
eletromagnetic vector potential. We can think of an arbitrary Yang-Mills interaction as some
kind of “nonabelian” version of electromanetism.

Remark. There is a very important difference between classical and quantum theories. Be-

3Need reference.
4For other examples of restrictions to the possible topologies of the universe, see [50, 139]
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cause quantum theories are probabilistic, we can only talk about the probability of a certain
event occurring in nature. Consequently, all possible configurations of a system can, in principle,
be accessed. At the energy level where the classical theories lives, on the other hand, a sur-
prising fact occurs: only the configurations which minimize the action functional S are observed
experimentally!

Now, let us return to focus on Hilbert’s sixth problem. It requires answering for questions
like these:

1. what is a classical theory?

2. what is a quantum theory?

3. what is quantization?

Notice that the previous discussion does not answer these questions. Indeed, it only reveals
some examples/aspects of the classical and quantum theories; it do notes say, axiomatically, what
they really are. This leads us to the following conclusion:

Conclusion: classical logic, regarded as a background language, is very nice in order to formulate
and study properties of a classical or quantum theory isolately. On the other hand, it does not
give tools to study more deeper questions as those required by Hilbert’s sixth problem.

The Role of Category Theory

The above conclusion shows that, in order to attack Hilbert’s sixth problem, we need to
replace classical logic by a more abstract background language. What kind of properties this new
language should have?

Recall that by making use of classical logic we learn that classical theories are generally de-
scribed by geometric notions, while quantum theories are described by algebraic and probabilistic
tools. Furthermore, the quantization process should be some kind of process linking classical
theories to quantum theories and, therefore, geometric areas to algebraic/probabilistic areas. So,
the idea is to search for a language which formalizes the notion of “area of mathematics” and the
notion of “map between two areas”.

This language actually exists: it is categorical language. In categorical language, an area of
mathematics is determined by specifying which are the objects of interest, which are the mappings
between these objects and which are the possible ways to compose two given mappings. We say
that this data defines a category. The link between two areas of mathematics, say described by
categories C and D, is formalized by the notion of functor. This is given by a rule F : C → D

assigning objects into objects and mappings into mappings in such a way that compositions are
preserved.

Notice that we have a category Set, describing set theory, whose fundamental objects are
sets, whose mappings are just functions between sets and whose composition laws are the usual
compositions between functions. That all classical areas of mathematics can be described by
categorical language comes from the the fact that in each of them the fundamental objects are
just sets endowed with some further structure, while the mappings are precisely the functions
between the underlying sets which preserve this additional structure. For instance, Linear Algebra
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is the area of mathematics which study vector spaces and linear transformations. But a vector
space is just a set endowed with a linear structure, while a linear transformation is just a function
preserving the linear structure.

Therefore, each classical area of math defines a category C equipped with a “inclusion functor”
ı : C →֒ Set which only forgets all additional structures (in the context of Linear Algebra, this
functor forgets the linear structure). The categories which can be included into Set are called
concretes. So, in order to recover classical logic from categorical language it is enough to restrict
to the class of concrete categories.

The fact that categorical language is really more abstract that classical logic comes from the
existence of non-concrete (also called abstract) categories. There are many of them. For instance,
given a natural number p, we can build a category Cobp+1 whose objects are p-dimensional
smooth manifolds and whose mappings Σ : M → N are cobordisms between them, i.e, (p + 1)-
manifolds Σ such that ∂Σ = M ⊔ N . The abstractness of this category is due to the fact that
the mappings are not functions satisfying some condition, but actually manifolds.

Example. If p = 0, the objects of Cob1 are just 0-manifolds: finite collection of points. The
cobordisms between them are 1-manifolds having these 0-manifolds as boundaries. In other words,
the morphisms are just disjoint unions of intervals, while the composition between intervals [t0; t1]
and [t1; t2] is the interval [t0; t1].

With categorical language on hand, let us try to attack Hilbert’s sixth problem. We start by
recalling that the dynamics of a system in Quantum Mechanics is guided by the time evolution
operators U(t1; t0) = e

i
~
(t1−t0)Ĥ . Notice that when varying t0 and t1, all corresponding operators

can be regarded as a unique functor U : Cob1 → VecC, where VecC denotes the category
delimiting complex linear algebra (i.e, it is the category of complex vector spaces and linear
transformations). Such a functor assigns to any instant t0 a complex vector space U(t) = Ht and
to any interval [t0; t1] an operator U(t1; t0) : H0 → H1.

At this point, the careful reader could do some remarks:

1. as commented previously, a system in Quantum Mechanics is defined by a pair (H, Ĥ),
where we have only one space H which does not depend on time, so that for any interval
[t0; t1] the time evolution operator U(t1; t0) is defined in the same space. On the other
hand, for a functor U : Cob1 → VecC we have a space Ht for each instant of time and,
therefore, for any interval the corresponding operators are defined on different spaces;

2. in Quantum Mechanics, the evolution is guided not by an arbitrary operator, but by a
unitary operator. Furthermore, in Quantum Mechanics the space H for systems describing
more than one (say k) particles decomposes as a tensor product H1 ⊗ ...⊗Hk. It happens
that both conditions are not contained in the data defining a functor U : Cob1 → VecC.

About the first remark, notice that if there is a interval [t0; t1] connecting two different time
instants t0 and t1, then there is a inverse interval [t0; t1]−1 such that, when composed (in Cob1)
with the original interval, we get precisely the trivial interval. In fact, the inverse is obtained
simply by flowing the time in the inverse direction. In more brief terms, any morphism in the
category Cob1 is indeed an isomorphism. But functors preserve isomorphisms, so that for any
internal [t0; t1] the corresponding spaces Ht0 = U(t0) and Ht1 = U(t1) are isomorphic. This
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means that the spaces Ht do not dependent on the time: up to isomorphisms they are all the
same.

On the second remark, let us say that there are good reasons to believe that the unitarity of
the time evolution does not should be required as a fundamental axiom of the true fundamental
physics, but instead it indeed should emerge as a consequence (or as an additional assumption)
of the correct axioms. For instance, in Quantum Mechanics itself the unitarity of U(t0; t1) can be
viewed as a consequence of the Schrödinger equation, because its solutions involve the exponential
of a hermitean operators which is automatically unitary5.

On the other hand, it is really true that an arbitrary functor U : Cob1 → VecC does not
take into account the fact that in a system with more that one particle the total space of states
decomposes as a tensor product of the state of spaces of each particle. In order to incorporate
this condition, notice that when we say that we have a system of two independent particles, we
are saying that time intervals corresponding to their time evolution are disjoint. So, we can
interpret the time evolution of a system with many particles as a disconnected one dimension
manifold, i.e as a disconnected morphism of Cob1. Consequently, the required condition on the
space of states can be obtained by imposing the properties

U(t ⊔ t′) ≃ U(t)⊗ U(t′) and U(∅) ≃ C,

where the second condition only means that a system with zero particles must have a trivial space
of states.

Now, notice that both categories Cob1 and VecC are equipped with operations (respectively
given by ⊔ and ⊗), which are associative and commutative up do isomorphisms, together with
distinguished objects (given by ∅ and C), which behaves as “neutral elements” for these opera-
tions. A category with this kind of structure is called a symmetric monoidal category. A functor
between monoidal categories which preserves the operations and the distinguished object is called
a monoidal functor. Therefore, this discussion leads us to the following conclusion:

Conclusion. A system in Quantum Mechanics is a special flavor of a monoidal functor from the
category Cob1 of 1-dimensional cobordisms to the category VecC of complex vector spaces.

Consequently, with our eyes on Hilbert’s sixth problem we can use the above characterization
in order to axiomatize a quantum theory of particles as being an arbitrary monoidal functor

U : (Cob1,⊔,∅)→ (C,⊗, 1)

taking values in some symmetric monoidal category. A natural question is on the viability of
using the same kind of argument in order to get an axiomatization of the classical theories of
particles. This really can be done, as we will outline.

We start by recalling that a classical theory of particles is given by an action functional
S : X → R, defined into some “space of fields”. Therefore, the first step is to axiomatize the
notion of “space of fields”. In order to do this, recall that it is generally composed by smooth
paths γ : I →M , representing the trajectories of the particle into some spacetime M , and by the
“interacting fields”, corresponding to configurations of some kind of geometric structure put in M .

5There are more fundamental reasons involving the possibility of topology change in quantum gravity. See [18]
for an interesting discussion.
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The canonical examples of “interacting fields” are metrics (describing gravitational interaction)
and connections over bundles (describing gauge interactions).

Now we ask: which properties smooth functions, metrics and connections have in common?
The answer is: locality. In fact, in order to conclude that a map γ : I → M is smooth, it is
enough to analyze it relative to a open cover Ui →֒ M given by coordinate charts ϕi : Ui → Rn.
Similarly, a metric g on M is totally determined by its local components gij . Finally, it can
also be shown that to give a connection A : TP → g is the same as giving a family of 1-forms
Ai : Ui → g fulfilling compatibility conditions at the intersections Ui ∩ Uj.

Therefore, we can say that a “space of fields” over a fixed spacetime M is some kind of set
Fields(M) of structures which are “local” in the sense that, for any cover Ui →֒M by coordinate
systems, we can reconstruct the total space Fields(M) from the subset of all si ∈ Fields(Ui) that
are compatible in the intersections Ui ∩ Uj.

Notice that we are searching for a notion of space of fields (without mention of any spacetime),
but up to this point we got a notion of space of fields over a fixed spacetime. So, the main idea
is to consider the rule M 7→ Fields(M) and the immediate hypothesis is to suppose that it is
functorial. Therefore, we can axiomatize a space of fields as a functor

Fields : Diffop → Set

assigning to any manifold a set of local structures. This kind of functor is called a sheaf on the
site of manifolds and coordinate coverings (or, more succinctly, a smooth sheaf ).

This is still not the correct notion of “space of fields”. Indeed, recall that in typical situations
the set Fields(M) contains geometric structures. It happens that when doing geometry we only
consider the entities up to their natural equivalences (their “congruences”). This means that for
a fixed space M we should take the quotient space

Fields(M)/congruences. (0.0.2)

In order to do calculations with a quotient space we have to select an element into each
equivalence class and then prove that the calculus does not depend of this choice. The problem
is that when we select a element we are automatically privileging it, but there is no physically
privileged element. So, in order to be physically correct we have to work with all elements of the
equivalent class simultaneously. This can be done by replacing the set (0.0.2) with the category
whose objects are elements of Fields(M) and such that there is a mapping between s, s′ iff they
are equivalent. In this category, all mappings are obviously isomorphisms, so that it is indeed
a groupoid. The sheaves on the site of manifolds which take values in Gpd are called smooth
stacks and they finally give the correct way of thinking about the “space of fields” for the case of
particles.

Therefore, in order to end the axiomatization of the classical theories for particles we need
to define what is the action functional. Given a spacetime M this should be some kind of map
between the space of fields Fields(M) to R. Notice that R is a set, but we had promoted the space
of fields to a groupoid. So, in order to define a map between these two entities we also need to
promote R to a groupoid. This is done defining a groupoid whose objects are real numbers and
having only trivial morphisms.

We then finally say that a classical theory of particles is given by a smooth stack Fields
(describing the space of fields) and by a rule S (describing the action functional) which assign to
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any manifold M a functor
SM : Fields(M)→ R.

The Need of Higher Category Theory

Up to this point we have seen that starting with categorical logic as background language we
can effectively axiomatize the notions of classical and quantum theories for particles. Indeed, a
quantum theory is just a monoidal functor U : Cob1 → VecC, while a classical theory is given
by a smooth stack Fields and by an action functional S(−) : Fields(−)→ R.

It happens that we do not know if particles are really the correct building blocks of nature, so
that we need a background language with allows us to axiomatize classical and quantum theories
not only for particles, but for objects of any dimension. In this regard, categorical logic fails as
background language. Indeed, we have at least the following problems:

• in quantum theories. Recall that for any p we have the category Cobp+1, so that we could
immediately extend the notion of quantum theory for particles by defining a quantum
theory for p-branes as a monoidal functor U : Cobp+1 → VecC. The problem is that
in this case we are only replacing the assumption that “particles are the correct building
blocks of nature” by the assumption that “p-branes are the correct building blocks of nature”.
Indeed, in both cases we can only talk about quantum theories for a specific kind of object,
while Hilbert’s sixth problem requires an absolute notion of quantum theory ;

• in classical theories. The motion of particles (which are 0-dimensional objects) on a
spacetime M was described by smooth paths ϕ : I → M , which are smooth maps defined
on a 1-dimensional manifold I. Therefore we can easily define the motion of p-branes
(which are p-dimensional objects) on M as smooth maps ϕ : Σ → M defined on a
(p+1)-dimensional manifold Σ. The problem is that in the “space of fields” of a classical
theory we have to consider not only the motions but indeed the interactions which act
on the object. For particles we can consider these interactions as modeled by connections
because the notion of connection is equivalent to the notion of parallel transport along
paths. Unhappily, there is no global notion of parallel transport along higher dimensional
manifolds, so that in principle the notion of connection (and, therefore, the description of
the interactions) cannot be extended to the context of strings and branes.

Summarizing,

Conclusion. in order to axiomatize the notions of classical and quantum theories for higher
dimensional objects we need to start with a language which is more abstract than categorical
language.

Therefore, the immediate idea is to try to build some kind of process which takes a language
and returns a more abstract language. Before discussing how this can be done, recall that for a
selected background language, the first step in solving Hilbert’s sixth problem is to consider a loop
involving naive math, the language itself and physics. So, having constructed a more abstract
language from a given one, we would like to consider loops for the new language as arising by
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extensions of the loop for the starting language, as in the diagram below.

naive
math

�&
❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋

language +3❴❴❴❴❴❴ ❴❴❴❴❴❴

+3

19
abstract
language

7?✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇

physicsks

This condition is very important, because it ensures that the physics axiomatized by the
initial language is contained in the physics axiomatized by the new language. So, this means that
when applying the process of “abstractification” we are getting languages that axiomatize more
and more physics. Consequently, this seems that the iterating the process and taking the limit
one hopes get a background language which is abstract enough in order to axiomatize the whole
physics.

naive
math

�%
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈

language

)1

19
+3❴❴❴❴❴❴ ❴❴❴❴❴❴ abstract
language

*2

08
+3❴❴❴❴❴❴ ❴❴❴❴❴❴

more
abstract
language

+3❴❴❴❴❴❴ ❴❴❴❴❴❴

,4

.6· · ·

<D
✂✂✂✂✂✂✂✂✂

✂✂✂✂✂✂✂✂✂
physicsks

Highering

We saw that category theory is useful to axiomatize particle physics, but not string physics,
so that we need to build some “abstractification process” which will be used to replace category
theory by other more abstract theory. Notice that categorical language is more abstract than
classical language, so that learning how to characterize the passage from classical logic to cate-
gorical logic would help to know how to iterate the construction, getting languages more abstract
than categorical language. In other words, the main approach to the “abstractification process”
is as some kind of “categorification process”.

In order to get some feeling on this categorification process, notice that a set contains less
information than a category. Indeed, sets are composed of a single type of information: their
elements. On the other hand, categories have three kinds of information: objects, morphisms and
compositions. Thus, we can understood the passage from set theory to category theory (and,
therefore, from classical logic to categorical logic) as the “addition of information layers” (see
[19] for an interesting discussion).

So, when iterating this process we expect to get a language describing entities containing
more information than usual categories. Indeed, we expect to have not only objects, morphisms
between objects and compositions between morphisms, but also morphisms between morphisms
(called 2-morphisms) and compositions of 2-morphisms. Thus, if we call such entities 2-categories,
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adding another information layer we get 3-categories, and so on. Taking the limit we then get
∞-categories, leading us to the following conclusion:

Conclusion. A natural candidate for a background language sufficient to solve Hilbert’s sixth
problem is ∞-categorical language.

With this conclusion in mind we need to build a math-language-physics loop for∞-categorical
language by extending the loop for categorical language. This can be done as follows:

• in quantum theories. Recall that the problem with the definition of quantum theories as
monoidal functors U : Cobp+1 → VecC involves the fact that such functors take into
account only p-branes for a fixed p, implying that we need to know previously which is
the correct building blocks of nature. Let us see that this problem can be avoided in the
∞-categorical context. Indeed, we can define a ∞-category Cob(∞) having 0-manifolds
as objects, 1-cobordisms (i.e cobordisms between 0-manifolds) as morphisms, 2-cobordisms
(i.e, cobordisms between 1-cobordisms) as 2-morphisms and so on. Notice that differently
from Cobp+1 (which contains only p-manifolds and cobordisms between them), the defined
∞-category Cob(∞) contains cobordisms of all orders and, therefore, describe p-branes for
every p simultaneously. So, we can define an absolute (or extended) quantum theory (as
required by Hilbert’s sixth problem) as some kind of ∞-functor U : Cob(∞) → ∞VecC,
where ∞VecC is a ∞-categorical version of VecC (i.e, is some ∞-category of ∞-vector
spaces). See [20, 124];

• in classical theories. The problem with the axiomatization of classical theories via categori-
cal language is that in the space of fields we have to consider interacting fields. For particles,
these fields are modeled by connections on bundles, which are equivalent to parallel trans-
port along paths. But, as commented, there is no canonical notion of transportation along
higher dimensional manifolds. Another way to see the problem is the following: in order to
define a connection A locally (i.e, in terms of data over an open covering Ui →֒M) we need
a family of 1-forms on Ai in Ui subjected to compatibility conditions at Ui ∩ Uj. The data
Ui and Ui ∩ Uj belong to an usual category Č(Ui), whose objects are elements xi ∈ Ui and
there is a morphism xi → xj iff xi, xj ∈ Ui ∩Uj (this is the Čech groupoid of the covering).
On the other hand, if we try to define higher transportation locally we need to take into
account data on Ui which is compatible not only at Ui ∩ Uj, but also at Ui ∩ Uj ∩ Uk,
at Ui ∩ Uj ∩ Uk ∩ Ul, and so on. Certainly, all this information cannot be put inside an
usual category, justifying the nonexistence of connections along higher dimensional mani-
folds. It happens that it can be put inside a ∞-category Č∞(Ui), the Čech ∞-groupoid)
meaning that we actually have a notion of ∞-connection when we consider ∞-categorical
language (see [24, 23, 179, 184]). More precisely, the initial problem is avoided if we define
the space of fields not as a smooth stack, but as a smooth ∞-stack : this is a ∞-functor
Fields : Diffop → ∞Gpd such that for any M the quantity Fields(M) is determined not
only by Fields(Ui) and Fields(Ui ∩ Uj), but also by6

Fields(Ui ∩ Uj ∩ Uk), Fields(Ui ∩ Uj ∩ Uk ∩ Ul) and so on.
6The suggestion that not only ∞-connections but indeed all interesting physical fields fits into a (super)smooth

∞-stack appears is [182]
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The Need of Synthetic Languages

All that we discussed up to this point is wrong! More precisely, all that was discussed is
incomplete. Indeed, notice that at all moment we assumed that the spacetime is modeled by
a manifold M , so that when fixed a local chart ϕ : U → Rn its structure becomes totally
described by the coordinate functions xi : U → R. They belong to the algebra C∞(U ;R) of
smooth real functions, which is a commutative algebra, meaning that the variables xi commutes,
i.e, xi · xj = xj · xi and, therefore, [xi, xj] = 0. Consequently, if a smooth function ϕ : Σ → M
describes the motion of a p-brane into M , then locally such a motion is also modeled by a totally
commutative set of variables ϕi.

It happens that, thanks to Spin-Statistics theorem, commutative variables only describe
bosons. In order to describe fermions, we should have anticommutative variables too. But
this would imply that that the object modelling the spacetime M is not a manifold, but indeed
some other kind of object that is locally described not only by commuting coordinates xi, but
also by anticommuting commuting ξa, in the sense they belong to some anticommutative, i.e,
ξa ∧ ξb = −ξb ∧ ξa. These objects are called supermanifolds.

This problem could appear only a mathematical whim. However, the Stern-Gerlach experi-
ment proves that fermionic objects actually exist in nature, being the electron an example. So, by
the ontological branch of physics we really have to replace our model for the spacetime of manifolds
by supermanifolds.

This conclusion has several consequences. For instance, recall that we described the inter-
action acting on a particle as a connection on a manifold. Therefore, if the spacetime is not
a manifold, but indeed a supermanifold, then we need to modify our understanding about the
notion of connection, lifting it from manifolds to supermanifolds. Fortunately, this can be done,
giving the concept of superconnection on a supermanifold.

Therefore, the problem above was only a scare. But it also gives an important learning: the
relation between physics and ontology makes Hilbert’s sixth problem very unstable. Indeed, even
if we develop a very powerful language be able to axiomatize every current physics, a future
experiment discovering new properties of the matter/energy/light will imply that all previous
work need to be reformulated. This means that:

Conclusion. if we are taking Hilbert’s sixth problem seriously we need to consider only languages
which does not depend of any explicit object (as a manifold), but which are totally build in terms
of abstract/axiomatic properties.

A language built only in terms of axiomatic properties is called synthetic. Therefore, we can
summarize the above discussion by saying that Hilbert’s sixth problem requires synthetic languages
because this class of languages give a “safety margin” respectively to new empirical discoverings.

Notice that working with synthetic languages imply to reformulate synthetically concrete
notions, such as the notion of “connection of a G-bundle over a manifold”, without any mention
of the manifold structure! It may seems very strange the existence of this kind of abstract
formulation, but it indeed exists. In the following we will try to convince the reader of this fact.

In order to reformulate the notion of “connection of a G-bundle over a manifold” let us first
see that the notion of “G-bundle” can be synthetically described. The concept of “G-bundle”
depends of a group structure G, so that we need to give a synthetic formulation for this notion
too. But this is easy. Indeed, a group is just a set endowed with an operation ∗ : G × G → G,
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a distinguished element e (playing the role of a neutral element, which can be identified with a
map 1→ G, where 1 is an unit set) and a rule inv : G→ G assigning to any element its inverse.
This data fits into the commutative diagrams below, where ∆(g) = (g, g) is the diagonal map.

G×G×G

id×∗
��

∗×id // G×G

∗
��

1×G

π1
%%❏❏

❏❏
❏❏

❏❏
❏❏

// G×G

∗
��

G× 1oo

π2
yyttt

tt
tt
tt
t

G

∆
��

// 1
e // G

G×G ∗
// G G G×G

id×inv
// G×G

∗

OO

Therefore, we can talk about “group-like objects” in any category in which these diagrams
makes sense, meaning that the notion of group can be synthetically presented by these diagram.
For instance, in Diff these diagrams reproduces precisely the concept of Lie group. We could also
use this diagrams to internalize the notion of group in the category of supermanifolds, getting
super Lie groups.

With a synthetic formulation of “group” we can try to get an abstract version of “G-bundles”.
Recall that, as discussed previously, a G-bundle over a space M is a “local entity” in the sense
that it becomes totally determined when given an open covering Ui →֒M fulfilling conditions at
the intersections Ui ∩ Uj . In other words, it is an example of smooth stack. As a smooth stack,
it can be proven that it is globally classified by a map f :M → BG, where BG is the delooping
groupoid of G, whose set of objects is a unit set and whose set of morphisms is G. Locally, in
turn, it is classified by a family of maps gi : Ui → G which, when restricted to the intersections
(where they pass to be denoted by gij), are required to satisfy the cocycle conditions

gij · gjk = gik and gii = e.

Notice that the delooping groupoid can be defined in any context in which the notion of group
makes sense. Therefore, if H is a category in which not only the notion of group, but also the
notion of “local entity” makes sense, then for any group-like object G and any object M we will be
able to define synthetically a “G-bundle over M ” as the “local entity” classified by a morphism f :
M → BG. In the usual sense, a “local entity” is one that becomes totally determined by data over
any covering Ui →֒ M fulfilling compatibility conditions at the intersections Ui ∩ Uj, Therefore,
in order to axiomatize “local entity” we only need to axiomatize “coverings” and “intersections”.

The fundamental property of the open coverings Ui →֒ M is that if f : N → M is any
continuous map, the preimages f−1(Ui) →֒ N give an open covering for N . These preimages
can be characterized as pullbacks, so that this last property only says that the open coverings
are stable under pullbacks. Indeed, a pullback is a categorical construction which take two maps
f : A→ X and g : B → X and return a space A×X B; the pre-image f−1(Ui) is just Ui ×M N .
It happens that the intersections Ui ∩ Uj can also be viewed as pullbacks Ui ×X Uj .

Consequently, we can talk of “local entities” in any category with pullbacks! A category H

with pullbacks in which a class J of coverings was fixed is called a site. An entity which is local
with respect to the data (H, J) is called a stack in the site (H, J), while the category of sites is
called a Grothendieck topos. So, we concluded that the notion of “G-bundles” can be synthetically
defined in any Grothendieck topos.
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Differential Cohesion

We are trying to show that the notion of “connection of a G-bundle over a manifold” can be
defined synthetically. Up to this moment we concluded that the concept of G-bundle makes sense
synthetically internal to any Grothendieck topos H. Recall that a connection on a smooth bundle
is a local object (i.e, a smooth stack), so that the idea is to verify if this abstract characterization
of the notion of connection also makes sense in an arbitrary Grothendieck topos H.

A connection on a G-bundle P → M was globally defined as an 1-form A : TP → g, but
locally (i.e, when given an open covering Ui →֒ M) it is determined by a family of 1-forms
Ai : TUi → g subjected to conditions at the intersections Ui ∩ Uj . Up to this point we have not
said which are these conditions. So, let us say that they are given by the gauge compatibility
condition:

gij · (Aj −Ai) · gij = dgij ,

where here gij : Ui ∩Uj → G are part of the local data that classifies the bundle P →M . In the
last expression we say that the local 1-forms Ai and Aj are related by a gauge transformation
with parameter gij .

In order to give an abstract (i.e, functorial) description of this data, let us start by considering
the functor BGconn, which to any manifold M assigns the groupoid BGconn(M), whose objects
are 1-forms ω : TM → g and whose morphisms between ω and ω′ are gauge transformations, i.e,
smooth functions g :M → G such that

g · (ω′ − ω) · g = dg.

With this functor on hand, we can see that a connection on a G-bundle classified by a
morphism f : M → BG is nothing but a lifting of f from BG to BGconn, as in the diagram
below. There, conn is the canonical projection.

BGconn

conn
��

M

A
::✈

✈
✈

✈
✈

f
// BG

So, we conclude that we can define connection on a bundle synthetically internal to any
Grothendieck topos in which the object BGconn can be constructed. Notice that the definition
of BGconn involves much more than only internal groups and intersections, as was required to
define bundles synthetically. Indeed, it involves the notion of “Lie algebra of a Lie group” and
the notion of “exterior differential of a 0-form”. Consequently, BGconn (and, therefore, the notion
of connection) can be internalized only in the Grothendieck topos in which we have well defined
Lie theory and de Rham theory.

Very surprisingly, as remarked by Schreiber, the Grothendieck topos satisfying an additional
property, called cohesion (firstly introduced by Lawvere), accomplish these desired conditions!
Indeed, in order to have a well defined Lie theory we need a special flavor of cohesion called differ-
ential cohesion. In few words we can explain this fact in the following way. Notice that “connec-
tion” is a notion of differential geometry. Cohesion is exactly the property of a Grothendieck
topos H that allows us to internalized “geometry” in it. In order to internalize differential
geometry we need differential cohesion.
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Conclusion. The notion of connection on a bundle can be synthetically defined in any (differ-
ential) cohesive Grothendieck topos.

There is a further detail to be considered here. Recall that “connection on a bundle” is the
notion which we used to axiomatize the interaction acting on particles. In order to axiomatize
interaction between strings or other objects were necessary to consider “higher connections”,
which are ∞-smooth stacks.

We recall that these ∞-smooth stacks are entities which are “higher local” in the sense that
when given a covering Ui →֒ M they are determined by local data on Ui fulfilling compatibility
conditions not only at the intersections Ui∩Uj , but also at Ui∩Uj ∩Uk, and so on. The notion of
“local object” (which depends only of conditions at Ui ∩Uj) could be defined in any site, because
the intersections are just pullbacks. The iterated intersections can be understood as “higher
pullbacks”, so that we can define a “higher local object” (i.e, a ∞-stack) not in a site, but indeed
in a ∞-site (C, J), which is a ∞-category C endowed with a rule J assigning to any object X a
collection J(x) of “higher coverings”, which are stable under “higher pullbacks”.

If a category of “local objects” in a site is a Grothendieck topos, a category of “higher local
objects” in a ∞-site is a Grothendieck ∞-topos. We can extend the notion of “cohesion” to the
higher case, so that we talk of differential cohesive Grothendieck ∞-topos, which is precisely the
language in which the notion of “∞-connection” can be synthetically defined.

Cohomological Interpretation

For any object X in any category C we can define a very simple and canonical functor

[−,X] : C→ Set,

which take any other Y and assigns to it the set of morphisms Y → X. This functor is usually
called the hom-functor (or the representable functor) defined by X. We also say that X is its
representing object. If instead of a category we now have a ∞-category, then we can define
analogue functors, but now they will take values not in Set, but indeed in the category of ∞-
categories.

On the other hand, in Algebraic Topology and Homological Algebra, many powerful invariants,
called cohomology theories, are build. It is a very remarkable fact that all these cohomology
theories are, indeed, representable functors in (the homotopy category of ) some ∞-topos! This
motivate us to think of the functor [−,X] in a ∞-topos as some kind of “abstract cohomology”
with coefficients in X.

Example (nonabelian cohomology). We have seen that, if G is a Lie group, then G-bundles over
a manifold M are totally classified by (homotopy classes of) maps M → BG. This means that
the space of bundles is equivalent to [M,BG], i.e, G-bundles are classified by abstract cohomology
with coefficients in BG. We say that this is the nonabelian cohomology of the group G.

Example (differential nonabelian cohomology). Similarly, we have seen that the connections of
G-bundles are classified by (homotopy) liftings from BG to BGconn. So, in other words, G-
connections are classified by abstract cohomology with coefficients in the refined object BGconn. It
is usually known as the differential (or the differential refinement of ) nonabelian cohomology .
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Now, notice that the “space of fields” of a classical theory is generally given by maps Σ→M ,
representing motions of branes into M , and ∞-connections over M , representing the interaction
acting on the branes. Therefore, in typical cases we have

Fields(Σ) = [Σ,M ]× [M ;BGconn],

so that the space of fields can be generally regarded as (the product of) some abstract cohomology
in a cohesive ∞-topos. This is a very important result, as will be explained in the next subsection.

Quantization

We have discussed that the notions of “classical theory” and of “quantum theory” can be
synthetically defined in any cohesive ∞-topos as, for instance, the ∞-topos of smooth ∞-stacks.
In other words, we have seen that the language of cohesive ∞-topos can be used in order to
produce the following diagram:

axiomatic
math

(a)

%%❏
❏

❏
❏

❏
(b)

��

❳ ❱ ❙ P
▼
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✻
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✵
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We notice, however, that this is not sufficient to get a complete solution of Hilbert’s sixth
problem. Indeed, recall that the problem requires not only an axiomatization for “classical theo-
ries” and “quantum theories”, but also the existence of a “quantization process” assigning to any
classical theory a corresponding quantum version of it.

In order to get some feeling on what the quantization should be, the immediate idea is to
select a concrete ∞-topos and look at particular/concrete constructions in them. In this level,
there are many approaches to the quantization process. The most known in the quantum field
theory literature is the “path integral quantization”. It relies on the existence of a hypothetical
notion of “integration” in the space of fields of any classical theory. With this “integration” on
hand, if SΣ : Fields(Σ) → R is an action funcional representing a classical theory, the quantum
theory assigned to it is given by7:

U(Σ) =

∫

Fields(Σ)
e

i
~
SΣ[ϕ,A]DϕDA.

The problem is that in general the space of fields has no “finite-dimensional structure”, meaning
that there is no canonical way to introduce the measure µ = DϕDA (respectively to which the
“path integral” would be defined as a Lebesgue integral). In view of this problem, the quantum

7Here, ~ is the (reduced) Plank’s constant, the fundamental constant of the quantum world
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field theorists of particles try to define the path integral perturbatively: they decompose the
action as a sum

S[ϕ,A] = Sfree[ϕ] + Sback[A] + Sint[ϕ,A]

and expand the exponential e
i
~
SΣ[ϕ,A] in Taylor’s series in order to get a perturbative series, which

is diagrammatically represented by the so-called Feynman diagrams. The mixture of fields ϕ and
A appearing in Sint[ϕ,A] are called vertexes and it is over the number of these vertex that the
expansion is made. Each diagram in the series give a contribution to what would be the result
of the integration, so that summing over them and taking the limit n → ∞ over the number of
vertexes we could, in principle, “calculate” the path integral without defining it!

It happens that there are theories for which the contributions of a “dense amount” of Feynman
diagrams is infinite, so that in this case the series is not well defined and, therefore, the pertur-
bative approach fails. These are called nonrenormalizable theories, of which General Relativity
is an example. We notice that this does not means that gravity cannot be quantized; this only
means that the perturbative method does not hold here.

Because of this “renormalization problem” it is natural to search for nonpertubative methods
of quantization. There is a traditional one, called geometric quantization (developed by Kirillov,
Kostant and Souriau), which can be applied when the space of fields has the structure of a (pos-
sibly infinite-dimensional) symplectic manifold. Unfortunately, this is a very strong restriction,
so that this approach only works for a small class of theories. On the other hand, more recently
Guillemin and others have been observed that geometric quantization can be understood as some
kind of operation in a cohomology theory called complex K-theory.

Now, recall that, as commented in the last subsection, in the language of cohesive∞-topos the
space of fields of any classical theory is given by some abstract cohomology theory. Therefore,
following the approach of Guillemin and company, we can try to define the quantum theory
assigned to a classical theory as some operation in the abstract cohomology that classifies the
given classical theory. This is the fundamental idea behind the cohomological/motivic quantization
recently developed by Freed, Schreiber and many others.

We will outline the construction. For S : Fields⇒ R an action functional describing a classical
theory in some cohesive∞-topos H, we need to define a corresponding quantum theory U , which
assign to any manifold Σ certain linear structure U(Σ) (which in general is some kind of “higher
vector space”) and to any cobordism Σ : Σ0 → Σ1 a corresponding “higher linear map”

U(Σ) : U(Σ0)→ U(Σ1).

So, given maps as in the first diagram below (representing a cobordism), applying Fields we
get the upper part of the second diagram, while the exponentiated action functional (which is the
object appearing in the path integral) defines the lozenge. The data assigned by the quantum
theory should be some kind of “higher module”. A structure of linear module depends of the
choice of a ring of coefficients, so that our starting point is the choice of a “higher ring” R internal
to H. From any usual ring R we can extract its group of units GL1(R): this is the group of all
elements r ∈ R which has a multiplicative inverse. Therefore, it is expected that, similarly, from
any “higher ring R” we can extract some “higher group” GL1(R) internal to H. The next step is
to select some morphism of higher groups ρ, as in the second diagram below. There, the dotted
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arrows χi are the composition of the unidentified arrows with ρ.

Fields(Σ)
Fields(ı1)

''◆◆
◆◆◆
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◆◆◆Fields(ı0)
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♣♣♣

♣♣♣
♣♣

Σ Fields(Σ0)
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##
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i
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SΣ +3
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◆◆◆

◆◆◆
◆◆◆

Fields(Σ1)

ww♣♣♣
♣♣♣

♣♣♣
♣♣

χ1

{{

Σ0

ı0

??��������
Σ1

ı1

__❃❃❃❃❃❃❃❃

BU(1)

ρ

��✤
✤
✤

BGL1(R)

Now, recall that in any ∞-topos we can talk of “G-bundles over an object X” and these are
classified by morphisms X → BG. Therefore, the choice of ρ give to us four GL1(R)-bundles: one
over Fields(Σ0), two over Fields(Σ) and one over Fields(Σ1), which will be respectively denoted

by E0, E, E′ and E1. Notice that the exponentiated action functional e
i
~
SΣ induces a morphism

between the maps classifying E and E′, so that E ≃ E′. Consequently, taking the global section
functor Γ we then get the following diagrams. Because the bundles are structured over GL1(R), it
is expected that each space of sections has, indeed, a structure of “higher R-module”, motivating
us to define U(Σ0) := Γ(E0).

Γ(E)
≃ // Γ(E) Γ(E)

≃ // Γ(E)
Γ(χ1)!

##❍
❍❍

❍❍
❍❍

❍❍

Γ(E0)

Γ(χ0)
;;✈✈✈✈✈✈✈✈✈

Γ(E1)

Γ(χ1)
cc❍❍❍❍❍❍❍❍❍

Γ(E0)
U(Σ)

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴

Γ(χ0)
;;✈✈✈✈✈✈✈✈✈

Γ(E1)

In order to end the construction we need to define the “higher linear map” between the “higher
modules” Γ(E0) and Γ(E1). If in the first diagram above the right-hand arrow has an adjoint
Γ(χ1)!, then we can build the desired map as the composition in the second diagram above. This
happens, for instance, if the bundle classified by χ1 is oriented in some sense. So, “orientation”
is a condition involved with the quantization problem.

Indeed, as discussed previously, a classical system may have symmetries. A priori, in the
process of quantizing the theory, the symmetries could not be preserved, which is an undesired
situation. In these cases we say that the theory has quantum anomalies. Thanks to works of
Freed, Witten, Kapustin and others, the orientation of the bundles appearing in the quantization
could be understood as a condition implying the cancelation of quantum anomalies. Therefore,
under the orientatibility hypothesis the symmetries survive to the (cohomological) quantization.

Summarizing

If questioned by an arbitrary people about the subject of this text we would say: have you
some time (maybe some days)? For a positive answer we would explain all that was discussed
in this Introduction. On the other hand, for a people with no time, we would only say that we
wrote a text with the following objectives:
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• to prepare the reader to more advanced books/texts/articles on algebraic topology, physics
and higher category theory;

• to convince the reader that physics and mathematics constitute a mutualistic symbiosis
system8.

• to convince the reader that by making use of more abstract languages we can axiomatize
more and more physical theories, but in order to axiomatize every theories/laws/concepts/ideas
of physics the correct approach seems to work synthetically;

• to convince the reader that a nice class of abstract background languages to axiomatize
physics are the differential cohesive∞-toposes. A model is given by the (∞, 1)-category
of ∞-stacks on the site of super-formal-smooth manifolds.

• to convince the reader that, even after more than 100 years, Hilbert’s sixth problem remains
partially unsolved, being a source of many important mathematical works.

Finally, for someone without any patience we could say simply that this text is about the
development of abstract stable homotopy theory aiming applications in the foundations of physics.

8In Biology, a mutualistic symbiosis system is composed by two or more individuals, in which each of them does
not survive without the others, at the same time that this interdependence is very fruitful to the whole system.



Part I

Categorical Language

29



Prologue

Recall that, as discussed in Introduction, in order to attack Hilbert’s sixth problem the first
step is to select a suitable background language and then analyze how the naive mathematics
described by it interact with the foundations of physics. More precisely, fixed some logic, first of
all we need to study the arrow logic⇒ physics, given by the following sequence:

abstract
language

+3 naive
math

+3 physics

Then, we have to make use of physical insight in order to get new mathematical felling, in the
sense of the arrow physics ⇒ logic. So, in few words, the first step to Hilbert’s sixth problem
is to build loops as below:

naive
math

"*◆
◆◆◆

◆◆◆
◆◆◆

◆◆◆
◆

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆

abstract
language

3;♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣

physicsks

In this part of the text we will build concretely each arrow in the diagram above for the
background language given by (higher) categorical language. More precisely, we begin in the
Chapter 1, where we present the fundamental aspects of category theory, meaning the arrow
(here our arrow take values in naive math because the definition of category that will be given
depends of the notion of “collection” which we assume primitive):

categorical
language

+3 naive
math

Then, in the Chapter 2 we argue that category theory really is a abstract theory, but not
abstract enough to build a nice arrow from naive math to physics. In order to solve the problem,
we conjecture the existence of a categorification process, which take a classical concept and give
a categorical version of it in such a way that by iteration we get a sequence

set theory
(classical logic)

+3 category theory
(categorical logic)

+3 2-category theory
(2-categorical logic)

+3 · · ·

We then discuss that when we categorify the language that describes p-branes we get a lan-
guage describing not only p-branes, but also (p + 1)-branes, meaning that the diagram below

30



31

should be commutative (as required by the “abstractification process” discussed in the Intro-
ducion). Specially, this will suggest that p-category theory is the natural language to describe
physical systems containing k-branes, for 0 ≤ k ≤ p.

naive
math

�&
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❋❋
❋

❋❋
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08
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;C⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧
physicsks

The part ends in the Chapter 3, where we discuss the implications of the existence of these
hypothetical higher categorical languages to the foundations of physics. In other words, we end
by realizing the following arrows

p-categorical
language

p-brane
physics

ks



Chapter 1

Categories

In this chapter we will discuss our first example of abstract background language: the cat-
egorical language. We start at the first section presenting the definition of category and giving
many examples. A category is essentially an area of mathematics, so that these examples reflect
the existence of different areas of math. They can be divided in two classes: the concrete areas
and the abstract areas.

The first class corresponds to the cases in which the fundamental objects of study are simply
sets endowed with some additional structure; we are as well interested on functions between the
underlying sets preserving the additional structures. The other examples are described by entities
which are more distant from intuition. The fundamental example is the area of mathematics
known as cobordism theory. There we are interested on manifolds that are related not by usual
smooth functions, but by other manifolds!

Still in the first section we show that there is a notion of mapping between categories, pro-
ducing a notion of mapping between different areas of mathematics. These are the functors.
Generally, in any area of mathematics we have a canonical way to identify two objects and we
are interested not on the object, but on its equivalence class. The fundamental property of the
functors is that they always maps equivalent objects into equivalent objects, allowing us to build
many powerful invariants. The second section is totally devoted to giving examples of invariants
that comes from functors.

The chapter ends in the third section, where we discuss three important principles that per-
meates the categorical language. These are the duality principle, the relativity principle and the
weakening principle. The first principle allow us to produce many dual theorems. The second
one gives a new viewpoint to mathematics and the third one teach us that any concept can be
abstracted.

1.1 Structure

Giving a category is just the same thing as specifying an area of mathematics. More precisely,
a category is an entity composed of three kinds of information: objects, mappings (also called
morphisms) between objects and an associative composition of mappings. We also require the
existence of identity morphisms. This means that a category theory is just the natural ambient
in which we can talk about commutative diagrams.

32



CHAPTER 1. CATEGORIES 33

Formally, a category C is defined giving the following data:

1. a collection of objects Ob(C);

2. for any two objects X and Y a correspondent collection MorC(X,Y ), whose elements are
called morphisms between X and Y , being represented by arrows f : X → Y ;

3. for any object a distinguished morphism idX : X → X called the identity of X;

4. for any three objects a composition law of morphisms, which is represented by a function

◦ : MorC(X,Y )×MorC(Y,Z)→ MorC(X,Z)

and that are required to be associative and unital in the sense that

idX ◦ f = f = f ◦ idX and (h ◦ g) ◦ f = h ◦ (g ◦ f)

wherever these compositions are defined.

Even though we have the previous concrete definition, we will try to think about a category as
being, effectively, an area of math. This will provide more intuition to our arguments. Following
this philosophy, let us try to give some examples of categories.

Example 1.1 (sets). Classical mathematics is developed using linear logic as background logic.
The most elementary area of mathematics that can be built over this logic is set theory. So, it is
expected the existence of a category Set describing set theory. Indeed, the fundamental objects
in set theory are just the sets and the canonical maps between them are precisely functions. The
composition of functions is naturally associative and we have the identity functions. Together,
this data defines the required category Set.

Example 1.2 (algebraic categories). We have many areas of math lying inside Algebra. For
instance, we have group theory, ring theory, R-module theory, linear algebra, and so on. Therefore
we can try to define algebraic categories describing each of these areas of Algebra. For every case,
the fundamental objects are sets with additional operations on the elements and the canonical
mappings between them are homomorphisms (i.e, functions between the underlying sets which
preserves the additional structures). The composition of such mappings is well defined and the
identity function is a homormorphism. Consequently, we have the category Grp of groups, the
category Rng of rings, the category ModR of R-modules, the category VecK of vectors spaces,
and son on.

Example 1.3 (topological categories). Topology is another area of math. Indeed, it is precisely
the area of math in which we can differentiate local properties from global properties. There, the
fundamental objects are the topological spaces and the fundamental mappings are continuous
functions. Composition is well defined and the identity function is clearly continuous. Therefore,
there is a category Top describing topology. There are other flavors of topological categories.
Indeed, in some cases it is more natural to work with topological spaces endowed with a distin-
guished point. The mappings are then continuous functions preserving this distinguished point.
More precisely, we can define a category Top∗ whose objects are pairs (X,x), with x ∈ X and
X ∈ Top, and whose morphisms are maps f : X → Y such that f(x) = y.
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Example 1.4 (analytic categories). We also expect to have categories describing areas of Anal-
ysis. For instance, the canonical ambient in which we can do analysis are the finite dimensional
euclidean spaces Rn or hermitian spaces Cn. There are many natural maps that can be considered
and for each of them we will have a different category. Indeed, we can consider the morphisms
as being linear maps, adjoint maps, unitary maps, smooth maps, and so on. But analysis on Rn

or Cn is very limited and in several situations we need to consider more general theories. We list
some approaches:

1. finite dimensional manifolds. we can abstract the analysis on Rn or Cn by considering
spaces which are “modeled over Rn or Cn” in the sense that they are only locally equivalent
to Rn or Cn. This approach will produce the categories Diff of smooth real manifolds
with smooth maps and DiffC of complex manifolds with holomorphic maps. We can also
fix some natural n and build the categories Diffn and Diffn

C which are obtained from the
previous ones by considering only manifolds with real or complex dimension n;

2. functional analysis. on the other hand, we can abstract analysis on Rn by considering spaces
which are not necessarily finite dimensional. This is the domain of functional analysis. Here
there two classes of canonical objects to be considered:

(a) Banach spaces. These are simply normed linear spaces which are topologically com-
plete in the metric induced by the norm. We have many types of morphisms, each of
them producing a different category. For instance, we can consider the category BanC

of complex Banach spaces and linear maps. But Banach spaces are not only vector
spaces; they have an additional structure, the norm. It happens that linear maps only
preserve the linear structure, so that it is more natural to consider the continuous (or,
equivalently, the bounded) linear maps, which preserve not only the linear structure,
but also the norm. This defines a category BBanC;

(b) Hilbert spaces. They are vector spaces which have a complete inner product instead
of only a complete norm. We have the full subcategory VecC having Hilbert spaces
as objects and linear maps as morphisms. But, as for Banach spaces, this is not the
most natural category to be considered, because linear maps do not preserve the inner
product. So, the main idea is to consider maps which also preserve the inner product.
There are some candidates. Indeed, we can consider unitary embeddings or self-adjoint
maps. These are respectively linear maps T : H → H′ and A : H → H such that

〈v,w〉 = 〈T (v), T (w)〉′ or 〈A(v), w〉 = 〈v,A(w)〉

for each v,w ∈ H. Here we observe that the nondegeneracy of the inner product
requires the injectivity of the unitary embeddings. Furthermore, a self-adjoint operator
is only defined from some space to itself. The correspondent categories of Hilbert spaces
and each of those classes of maps will be denoted by HilbC and AdjC.

3. infinite dimensional manifolds. in a third approach we can mix both previous cases by
considering entities which are locally modeled over Banach spaces or over Hilbert spaces
in the same way that a manifold is locally modeled over Rn or Cn. These are the Banach
manifolds and the Hilbert manifolds. There are many types of morphisms between them.
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For instance, we can consider smooth maps with bounded derivative or smooth maps whose
derivative is self-adjoint, etc. The correspondent categories will not be used directly in this
text, so that we will not give a special name to them. Even so, they are important in
physics appearing, for example, in hydrodynamics and in geometric quantization (see [??]).

Subcategories

Similarly to what happens in Algebra, Topology or Analysis, where we have the notion of
substructure, we can also talk about subcategories. We say that D is a subcategory of C (writing
D ⊂ C to indicate this fact) when its objects and morphisms are also objects and morphisms of
C and its compositions and identities coincide which those of C. Thus, if a category defines an
area of math, then any of its subcategories determines a correspondent subarea.

For instance, a subarea of Algebra is Commutative Algebra, so that we have categories de-
scribing abelian group theory, commutative ring theory, and so on. Similarly, in some cases we
need to work with topological spaces with some extra condition (say compactness, separability,
etc). The study of each of these classes of topological spaces determines an subarea of Topology
and, therefore, a subcategory of Top.

Both examples of subareas of Algebra and Topology have a common characteristic: the map-
pings between objects on the subarea are just the morphisms between the objects viewed in the
global area. For instance, a mapping between abelian groups is just a homomorphism between
the underlying groups. Similarly, a map between compact topological spaces is just a continuous
function. In terms of subcategories D ⊂ C this means that for any objects X,Y ∈ D we have

MorD(X;Y ) = MorC(X;Y ).

A subcategory satisfying such condition is called full. For instance, the previous examples
of subcategories are full and BanC is also a full subcategory of VecC. On the other hand, in
the analytical context, the important categories BBanC, HilbC and AdjC are subcategories of
VecC which are not full. Indeed, its morphisms are respectively continuous linear maps, unitary
embeddings and self-adjoint maps, which are linear maps satisfying additional conditions. But we
usually consider full subcategories of each of these non-full subcategories. Indeed, we generally
have interest in the special class of the so called separable Banach and Hilbert spaces. They are
the natural ambient in which quantum mechanical systems (and quantum field theories in its
algebraic approach) are described.

In the algebraic context we also have important examples of non-full subcategories. For
instance, given a commutative ring R we can consider the subarea of R-module theory which
describes G-graded R-modules for some abelian group G. There, the fundamental objects are
R-modules M which admit a direct sum decomposition parametrized by the elements of the
given group G. More precisely, we say that M is G-graded when for any g ∈ G there is another
R-module Mg such that M =

⊕

GMg. A mapping between two graded modules M and N is not
only a homomorphism of modules, but indeed a homomorphism f :M → N which preserves the
grading in the sense that if m ∈Mg then f(m) ∈ Ng. Therefore, we have a non-full subcategory
GGradR ⊂ModR describing the theory of G-graded R-modules.

On the other hand, we could considered the full subcategory of ModR given by the G-
graded R-modules. The difference is that here we are not supposing that a morphism f : M →
N between two graded modules preserves the grading. We will use GModR to denote the
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corresponding category. The interesting fact is that this full subcategory is completely described
by certain non-full pieces. Indeed, we observe that there are some special classes of morphisms
f :M → N : those for which we have an element deg(f) ∈ G such that f maps Mg into Ng+deg(f)

for any g. We call deg(f) the degree of f . For instance, the morphisms with degree equal to
zero are just the morphisms preserving the grading (i.e, the morphisms of the non-full category
GGradR). Clearly, not every morphism have a degree. On the other hand, it can be verified that
any morphism can be written as a direct sum of morphisms which have degree. This means that
the fundamental category of graded modules is those whose morphisms are required to preserve
the grading.

In some useful situations we are more interested in the graded modules M which come
equipped with a distinguished endomorphism ∂ : M → M , called differential operator. These
modules are the differential G-graded R-modules (if ∂ has degree we say it is also the degree
of M). Now we have an additional structure (the differential operator), so that we generally
suppose that the morphisms between this new objects preserve not only the grading, but also the
differential structure. This means that a morphism f between differential graded modules (M,∂)
and (N, d), say with deg(∂) = α = deg(d), is a family of R-module homorphisms fg : Mg → Ng

such that the diagram below is commutative.

· · · //Mg−α

fg−α

��

∂ //Mg

fg
��

∂ //Mg+α

fg+α

��

∂ // · · ·

· · · // Ng−α
d

// Ng
d

// Ng+α
// · · ·

Therefore, for any given α ∈ G we have another non-full subcategory GDGradαR ⊂ GGradR
of differential G-graded R-modules whose differential operator has degree α. Summarizing, for
any ring R we have a chain of non-full subcategories

GDGradαR ⊂ GGradR ⊂ModR.

Remark. As will become clear in the next section, there is further interest in the case G = Z

with deg(∂) = ±1 and in which the differential operator ∂ satisfy ∂ ◦ ∂ = 0. In this situation, a
Z-graded module M is identified with a collection (Mn) of modules, while a differential Z-graded
with degree deg(∂) = 1 or deg(∂) = −1 is identified with a sequence of homomorphisms

∂n :Mn →Mn+1 or ∂n :Mn →Mn−1

and the condition ∂ ◦ ∂ = 0 writes

∂n+1 ◦ ∂n = 0 or ∂n ◦ ∂n+1 = 0.

In the topological context we also have very important examples of non-full subcategories of
Top. Maybe the most important is given by the subcategory of cell complexes. These are the
topological version of N-graded modules with degree α = 1. Indeed, as remarked above, anyone
of these modules can be identified with a sequence Mn of modules linked by homomorphisms
Mn →Mn+1. This identification is obtained by considering the limiting space limn→∞An, where

An =M0 ⊕M1 ⊕ ...⊕Mn.
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Similarly, a cell complex is a topological space obtained as a limiting process. We start with
a sequence of topological spaces Xn, called the n-skeletons of the construction. Then, fixing
continuous maps Xn → Xn+1, called linking maps, we take the limiting space which will be
our cell complex. Recall that the morphisms between graded modules are not only module
homomorphisms, but indeed the homomorphisms which preserve the grading. Similarly, in the
present topological context, the mappings between cell complex are not only continuous maps
X → Y , but indeed continuous functions which preserve the cell decomposition. This means that
they can be identified with sequences fn : Xn → Yn commuting with the linking maps. Thus we
really have a non full subcategory Cell ⊂ Top.

Now, in the same way as there is special interest in the Z-graded modules for which ∂ ◦∂ = 0,
we also have a special class of cell complexes which defines a full subcategory CW ⊂ Cell.
Indeed, it is the class of the so called CW-complexes. These are cell complexes for which Xn

is obtained from Xn−1 by attaching n-cells. More precisely, starting from the (n − 1)-skeleton
Xn−1 we consider a family of attaching maps fn1 , ..., f

n
k : Sn−1 → Xn−1 and then we glue disks Dn

into Xn−1 along their boundaries ∂Dn = Sn−1 using each of these maps. In a CW-complex, the
resulting space is precisely the n-skeleton Xn. So, a CW-complex is totally determined by its 0-
skeleton and by the attaching maps. Notice that this condition is just the topological analogue of
the condition An =M0⊕M1⊕...⊕Mn valid for N-graded modules. The interest in CW-complexes
will become clear later.

Concreteness

We observe that all the previous examples of categories were built following a certain recipe:

1. considering as objects sets endowed with additional structure;

2. taking morphisms between objects as being simply functions between the underlying sets
which preserve the additional structure;

3. fixing compositions as the composition of the underlying functions and the identities as
being the identity functions.

A category built in this way is usually called concrete. So, in other words, a concrete category
is simply a subcategory of Set. We observe, on the other hand, that there are very important
categories which are not concrete. In the following, we will present some of them.

Example 1.5 (cobordism category). Generally the mappings between two n-manifolds are the
smooth maps. But given two n-manifolds M0 and M1 we can think of them as being the initial
and the final configuration of a system evolving in time. In this perspective, a morphism between
M0 and M1 is an (n+ 1)-dimensional manifold M such that ∂M = M0 ⊔M1. For instance, the
trivial dynamics is that given by considering any intermediate state (including the final state)
as equal to the initial state. The morphism is this case is simply the cylinder M0 × [0, 1]. Now
we can try to define a non-concrete category Cobn whose objects are n-manifolds, as in Diffn,
but whose morphisms are time evolutions, also called cobordisms, instead of smooth maps. The
identity idM will be the cylinder, of course. In order to define a genuine categorical structure we
need an associative and unital composition. A composition between cobordisms M : M0 → M1

and M ′ : M1 → M ′
0 needs to be a cobordism M ′ ◦M : M0 → M ′

0. So, starting from a manifold
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with boundary M0 ⊔ M1 and a manifold with boundary M1 ⊔ M
′
0 we need to build another

manifold with boundary M0 ⊔M
′
0. So, the main idea is to define M ′ ◦M as being the entity

obtained by identifying (i.e, gluing) the components M1 of the boundaries of M andM ′. However,
this construction is not well defined because in principle there is no canonical way to select the
attaching maps. But even if we obtain canonical attaching maps the gluing will be defined only
up to diffeomorphisms. This shows that we need to redefine the notion of cobordism. Indeed, a
cobordism between M0 andM1 is correctly defined as manifoldM with two boundary components,
endowed with a labelling map p : ∂M → {0, 1} that labels each component of the boundary, as
well as with diffeomorphisms θi from each labeled component to Mi. Two cobordisms M and
M ′ are called diffeomorphic when there is a diffeomorphism f : M → M ′ which commutes with
the labelling maps and with the boundary diffeomorphisms θi. So finally we can define a genuine
category Cobn by considering cobordisms as objects, diffeomorphism classes of cobordisms as
morphisms, gluings as compositions and cylinders as identities.

Example 1.6 (homotopy categories). In Topology we have the notion of homotopy between
continuous maps f, g : X → Y . This is simply another continuous map H : X × I → Y such
that H(x, 0) = f(x) and H(x, 1) = g(x). For a suitable class of spaces this is equivalently a
continuous path H : I → Map(X;Y ) linking f and g. So we can think of a homotopy as being a
way to deform f continuously into g. The homotopy relation is, indeed, an equivalence relation
and some results in Topology hold equally well replacing a map by their homotopy class. The
study of topological spaces linked by homotopy classes of maps determines, therefore, an area
of math: homotopy theory. The corresponding category, denoted by Ho(Top) is clearly non-
concrete. We also have the notion of homotopy between based functions. Indeed, if f, g : X → Y
are morphisms preserving some base point x ∈ X, then a homotopy between then is simply a
classical homotopy H such that Ht : X → Y also preserves x for any t ∈ I. Consequently we
also have a non-concrete category Ho(Top∗).

The previous example is a particular case of a more general construction which always pro-
duces a non-concrete category. Indeed, starting with an arbitrary category C, let us suppose
that we have a function ≃ establishing an equivalence relation ≃XY in any set of morphisms
MorC(X,Y ), which preserve the compositions. Then we can define a new category C/ ≃, called
quotient category, whose objects are just the objects of C, but whose morphisms are the equiva-
lence classes of morphisms of C. More precisely,

Ob(C/ ≃) := Ob(C) and MorC/≃(X,Y ) := MorC(X,Y )/ ≃XY .

The compositions are the compositions of C after passing to the quotient (which is well
defined by hypothesis). The identities are evidently the equivalence classes of the identities of
C. In the previous example, ≃ is simply the rule assigning to any pair of topological spaces the
correspondent homotopy relation on the maps between them.

Example 1.7 (categories of bundles). In topology we frequently work with spaces X such that in
any point x ∈ X we have a certain additional structure Ex. We then can joint all these structures
into a unique object E = ⊔XEx for which we have a canonical projection π : E → X mapping any
Ex into x. The continuity of this map says that the structures Ex change continuously when the
points x vary. We usually say that this process defines a bundle over the space X. The structure
Ex is called the fiber on x. We can define a notion of mapping between bundles π : E → X and
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π′ : E′ → X. These are given by continuous maps g : E → E′ which preserve the fiber structure
i.e, such that if ex ∈ Ex, then g(ex) ∈ E′

x. Equivalently, this means that π′ ◦ g = π. This defines
a non-concrete category BunX describing the part of topology which deals with bundles over X.
But, this category is too huge to be analyzed (corresponding to the fact that in this general case
the structures Ex are not subjected to any relation). So, generally we are interested in certain
subcategories of BunX . Important examples are the following:

• bundes with typical fiber. The most simple way to relate the fibers of a bundle π : E → X
is by requiring that they have a model. This means that for any x ∈ X the structure Ex
is equivalent to some fixed structure F . In this case, we say that the bundle has a typical
fiber given by F . Now, notice that the requirement of a typical fiber does not correspond
to the introduction of some additional structure (we are only adding a canonical model to
the fibers). Therefore, it is natural to consider a morphism between two bundles with a
same typical fiber F as being simply a morphism between the underlying bundles, defining
a full subcategory of BunX .

• G-structured bundles. In many situations there is a group G acting on each fiber of a
bundle. So, we can produce a notion of compatibility between the fibers by requiring some
compatibility between the corresponding actions. For instance, we can require that the
actions G×Bp → Bp vary continuously when p vary. One way to make precise this idea is
assigning to any point p a neighbourhood Ui in which we have a continuous map ti : Ui → G,
called coordinates of the bundle (in analogy to the coordinates of a manifold), such that ti
and tj are compatible in the intersection Uij = Ui ∩ Uj . Generally we require the cocycle
conditions tij = tik · tkj and tii = 1. A bundle with such structure is called structured by
the group G. Differently from the case of bundles with typical fibers, a G-structured bundle
is a bundle endowed with an additional structure: the action on the fibers. Therefore, the
natural morphisms between them are the morphisms between the underlying bundles which
preserve these actions (i.e that are equivariant when restricted to each fiber). This defines
a non full subcategory of BunX .

• principal bundles. The most important bundles having typical fiber and structural group
are, surprisingly, the most simple of them. Indeed, it is the class of the G-principal bundles,
which have G as typical fiber and whose action G×G→ G is given by left translation (the
category of G-principal bundles will be denoted by GPrincX). They constitute the most
important class because they determines any other class of structured bundles. Indeed, no-
tice that if E → X is a G-bundle, say with typical fiber F , then the action G×F → F can
be equivalently viewed as a representation of G into the automorphism group Aut(F ) of
F . Therefore, the coordinates ti : Ui → G induce, by composition with the representation,
coordinates ti : Ui → Aut(F ), showing that we can enlarge the structure group by consid-
ering it as the automorphism group of F . Now, we can build an Aut(F )-principal bundle,
called the associated frame bundle of E. This is the bundle Fr(E) whose fiber Fr(E)x on
x ∈ X is simply the set of isomorphisms Iso(Ex;F ). The action

Aut(F )× Fr(E)x → Fr(E)x (1.1.1)

is by composition. The coordinates are the same coordinates ti. This bundle is principal
because we have Iso(Ex;F ) ≃ Aut(F ) and with this identification the action (1.1.1) is
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simply the action by left translation. Therefore, any G-bundle with fiber F induces a
principal bundle. Reciprocally, if P → X is a G-principal bundle, then for any action
G×F → F we have a representation and this representation induces new coordinates ti as
above, producing a bundle with fiber F .

• vector bundles. A particular interesting class of bundles are rank n vector bundles. These
are bundles with typical fiber Rn that are structured over GL(n) = Aut(Rn) with respect
to the canonical action. A classical example is the tangent bundle of a manifold M , whose
fiber on p ∈M is the tangent space TMp. From the mathematical viewpoint, vector bundles
are interesting because we can do linear algebra with them. More precisely, any continuous
operation that can be done on the fibers extends to the whole bundle. In technical terms this
means that any functor1 on the category VecR of vector spaces have an analogue on the
category VecX of vector bundles over X (for a proof see e.g [50]). So, for instance, we can
talk about the direct sum and the tensor product between two vector bundles E and E′

over X. These will be bundles E⊕E and E⊗E′ over X whose fibers at each x are exactly
the direct sum Ex ⊕E

′
x and the tensor product Ex⊗E′

x. From the physical viewpoint, the
class of vector bundles are interesting because the configurations of many physical systems
are given by sections of this type of bundles, as will be discussed in the chapters 11-13.

Functors

Now, in order to see that categorical language really is the natural language to talk about
connections between different areas of mathematics, we notice that the action “to specify an area of
math” defines itself an area of mathematics! This means that we can talk about mappings between
different categories (and therefore, between different areas of mathematics). These mappings are
called functors. In other words, there is a category Cat, whose objects are categories and whose
morphisms are functors. The area of math delimited by Cat is just category theory.

But, what is a functor? To define it, remember that in general a mapping is a kind of rule
that preserve all structures. A category is an entity with objects, morphisms, compositions and
identities. So, a functor between C and D is just a rule F : C → D that take objects and
morphisms of C and return objects and morphisms of D. Furthermore, F must satisfy

F (g ◦ f) = F (g) ◦ F (f) and F (idX) = idF (X). (1.1.2)

Example 1.8 (canonical functors). There are functors which can be build in any category,
meaning that they are not special features of certain theories nor nontrivial ways to connect
distinct areas of mathematics, but simply part of the general categorical language. One example
is the inclusion functor ı : D → C of a subcategory into the larger category. It acts on objects
and on morphisms as inclusion functions. We also have the projection functor  : C→ C/ ≃ of a
category into some of its quotients. At objects it act as the identity function and at morphisms
as quotient maps. For any given object X ∈ C we can build two functors hX and hX from C to
Set, called the hom-functors of X, defined as follows: at objects they assign to any Y the set of
morphisms Y → X and the set of morphisms X → Y , respectively. In other words,

hX(Y ) := MorC(Y ;X) and hX(Y ) := MorC(X;Y ).

1Indeed, any continuous functor.
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At morphisms, on the other hand, they act by composition on the left and on the right, respec-
tively.

To explain the relevance of functors, recall that in the most diverse areas of math we consider
entities only up to certain notion of equivalence. For example, in set theory we consider only sets
up to bijections and in topology we are interested in topological spaces only up to homeomor-
phisms. In both cases, an isomorphism between two of these objects is a morphism f : X → Y
which admits an inverse, in the sense that there is another morphism g : Y → X satisfying
g ◦ f = idX and f ◦ g = idY . We observe that this notion makes sense not only in Set and Top,
but indeed in any category, so that in any area of math we have a natural notion of isomorphism
and there are no interest in the objects itself, but only in their classs of isomorphisms.

Example 1.9 (isomorphisms). In algebraic categories the previous notion of isomorphism co-
incides with the classical notion of linear isomorphism between groups, rings, modules, vector
spaces, and so on. Clearly, in topological categories, two topological spaces are isomorphic iff
they are homeomorphic. In Cell two cell-complexes are isomorphic precisely when there are
homeomorphisms which preserve the cellular structure. In HilbC two Hilbert spaces are isomor-
phic when they are unitarily equivalent in the sense that there are linear isomorphisms between
the underlying spaces which (and its inverses) are unitary operators. In Diff two manifolds are
isomorphic iff they are diffeomorphic.

The fundamental fact concerning functors is that the properties (1.1.2) automatically imply
that any functor maps isomorphic objects of a certain category into isomorphic objects in another
category. Therefore, in order to show that two objects X,Y ∈ C are not isomorphic, it is enough
to give a functor F : C → D such that F (X) and F (Y ) are not isomorphic. In other words,
functors are very natural sources of invariants !

Example 1.10 (automorphism functor). We define the set of automorphisms of an object X ∈ C

as the collection of all isomorphisms X → X. This set is clearly a group with the operation
of composition of morphisms (the neutral element is just the identity idX). As can be easily
verified this construction extends to a functor Aut : C → Grp. Therefore, each category has
a canonical algebraic invariant. It happens that this invariant in general is very difficult to
compute! For instance, when C = Top the correspondent invariant is the homeomorphism
group of a topological space and presently it is an open problem to determine even the complete
structure of Homeo(Rn)! This shows that simply building functors is not sufficient. Indeed, we
need to search for functors whose correspondent invariant can be easily calculated.

1.2 Invariants

In this subsection we will analyze some useful examples of invariants which are defined by
functors and for which we have good strategies of computation. They will be important for
future discussion, specially as motivation to very abstract constructions (we are of the opinion
that categorical language becomes much more clear when we have some examples in mind).

The immediate question is: where we can find this class of functors? We notice that the
classification problem for algebraic structures is in general more simpler than the classification
problem for topological structures. Indeed, a homormorphism between algebraic entities in a
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isomorphism precisely when it is bijective, what is clearly not valid in the topological context.
Really, there exists functions which are continuous and bijective but whose inverse is not contin-
uous. The classical example is the complex exponentiation map ei : R → S1 restricted to some
interval as [0, 2π).

Therefore, with the classification problem in mind, the functors F : Top → Alg are very
natural. The area of mathematics that attempt to build and study these functors is the Algebraic
Topology. The most known (and also the most important) examples of these functors are described
by some hom-functors and the invariants associated to them are different flavors of homotopy
and cohomology theories, for which we have nice computational strategies. It is exactly these
invariant that will be discussed here.

Remark. The present section can be understood as a crash course on Algebraic Topology (for
complete references on the subject see [141, 199, 200, 57] and the references therein. A more
analytic approach is presented in [32]).

Homotopy Groups

We start with the homotopy groups. They are invariants of pointed topological spaces defined
as follows: fix in the sphere Sn the canonical base point. Then, for any X ∈ Top∗ with base
point x ∈ X, define its nth homotopy group based on x as being the set

πn(X,x) := MorHo(Top∗)
(Sn,X) ≡ [Sn,X].

The rules πn : Ho(Top∗)→ Set are clearly functorial and, for n ≥ 2, they indeed takes values in
the category AbGrp of abelian groups, as will become clear later.

Let us expend some time analyzing this example in more detail. With the homotopy groups
in hand, we can ask: what can be done with them? We can, for instance, build a more softer
homotopy theory. This is done analyzing the similarities between two spaces by comparing their
homotopy groups. More precisely, we define a new category Top∗[W

−1], usually called the
topological derived category, whose objects are just topological spaces but whose isomorphisms
are the weak homotopy equivalences: continuous functions f : X → Y which induces isomorphism
between πn(X,x) and πn(Y, y) for any n.

We have the following analogy: if we think of Top∗ as being the set of smooth real functions,
then the nth homotopy group based on x is the analogue of the nth derivative at x. Given a
smooth function we can consider its Taylor expansion around a certain point. Similarly, given a
space we can consider its sequence of homotopy groups based on a point. In this analogy, weak
homotopic spaces corresponds to smooth functions having the same Taylor expansion.

In principle, a smooth function can or cannot be represented by its Taylor series. The analytic
functions are those that can be represented. So, we can ask: is there a weak homotopical notion
analogue to that analytic function? More precisely, is there some class of topological spaces
in which two spaces are homotopically equivalent iff they have the same homotopy groups? A
classical result in homotopy theory, called Whitehead’s Theorem, says that such class of spaces
really exist: it is the class of CW-complexes introduced in the last section.

Now, we notice that there are few analytic functions in comparison to smooth functions.
More precisely, the space of smooth functions that fail to be analytic in each point is dense
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(when considered in the space of continuous functions, with the canonical C0-topology). Up to
this point we considered analytical facts and searched for analogues in homotopy theory. So,
following such philosophy, it is expected that there are few CW-complexes in comparison to
arbitrary topological spaces. But, surprisingly, this is not the case: it can be shown that any
topological space is weakly homotopic to a CW-complex ! This shows that the weak homotopy
theory produced by the homotopy groups is very well behaved.

weak homotopy theory real analysis

topological space X C∞ function X : R→ R

nth homotopy group πn(X,x) nth derivative DnXx

topological derived category smooth functions and Taylor series
weak homotopic (w.h.) spaces smooth functions having the same Taylor expansion

CW-complexes analytic functions
every space is w.h. to a CW-complex ???

Table 1.1: weak homotopy theory vs real analysis

The lesson from the previous discussion is the following:

Conclusion. Generally, an arbitrary category C is too complex. Functors F : C → D (or,
more generally, sequences of functors Fn : C → D) can then be used in order to produce a
mathematical theory which is softer than the theory described by C. In this new theory, two
objects X,Y ∈ C are distinguished by comparison of the invariants Fn(X) and Fn(Y ). More
precisely, the functors Fn select a distinguished class W of morphisms in C: the maps f : X → Y
such that Fn(f) : F (X) → F (Y ) is an isomorphism for each n. We then build the derived
category C[W−1] with respect to this distinguished class, in which any f ∈ W turns to be an
isomorphism. We can make an analogy between this new theory and smooth maps as was done
for the homotopy groups. This new more softer version of C may or not be well behaved in the
sense that the two final lines of the previous table may or not holds for Fn.

Now, we can return to giving examples of invariants which are defined by functors. We will
discuss many flavors of cohomology theories, starting by the nonabelian cohomology.

Nonabelian Cohomology

For a given topological group G we can build a space BG, called the universal space for G.
There are many ways to do this. In the following construction, the obtained space will be a
CW-complex but in general it is only weakly homotopic to one (recall the previous discussion).

We start by considering products Gn = G× ...×G and thinking of them as being a space of
n-cells. In order to glue the cells, we need attaching maps Gn−1 → Gn. For each n we have n− 1
of them: those that for each sequence of n− 1 elements assign a sequence with these elements in
the same order plus the neutral element e ∈ G in the ith position:

(g1, ..., gn−1) 7→ (g1, ..., gi−1, e, gi, ..., gn−1).

Gluing the cells with such attaching maps and taking the limit as n → ∞ we get the sapce
BG (this is the geometric realization process, which will be discussed in a more general context
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later). Now we can consider the hom-functor [−, BG] on Ho(Top) represented by BG.
The invariant associated to it is called the nonabelian cohomology with coefficients on G.

The classification theorem of bundles states precisely that such invariant computes the isomor-
phic classes of G-principal bundles. More precisely, for a suitable space X (paracompactness is
enough), let IsoG(X) be the space of isomorphism classes of G-bundles over X. Then we have
natural bijections

IsoG(X) ≃ [X,BG], (1.2.1)

which means that (up to equivalences) to give a G-bundle P → X is just the same as giving a
continuous function X → BG!

The equivalence (1.2.1) is given by the pullback construction. More precisely, there is a
canonical bundle EG → BG (with EG weakly equivalent to the trivial space) and for any
continuous f : X → BG we can build a bundle f∗EG → X, called the pullback of EG by f ,
together with maps π1 and π2, which are characterized as being the universal data that turns
commutative the following diagram:

f∗EG
π1 //

π2
��

EG

��
X

f
// BG

This construction is such that if g ≃ f , then the bundles f∗EG and g∗EG are isomorphic,
which theefore produces a map [X,BG] → IsoG(X). The classification theorem says precisely
that this map is bijective.

Generalized Cohomology

Other invariants obtained in Algebraic Topology are the generalized cohomology theories. They
can be understood as being the complete dualization of the homotopy groups. In order to make
this precise, notice that we can obtain Sn recursively as being ΣSn−1 ≃ Sn, where here Σ is the
reduced suspension2. A sequence of pointed spaces E = (En) together equivalences ΣEn ≃ En+1

is called a suspension spectrum. So, the homotopy groups of a space X are defined precisely by
the suspension spectrum En = Sn:

πn(X,xo) = [En,X].

It happens that Σ has a dual operation Ω (the loop space operation3) in the sense that for
any X and Y we have bijections [ΣX,Y ] ≃ [X,ΩY ]. Therefore, we can talk about spectrum
(or Ω-spectrum). These are sequences A = (An) of spaces such that An ≃ ΩAn+1. The total
dualization of homotopy groups are then the sets defined by

Hn(X,A) := [X,An],

2We recall that ΣX is the pointed space obtained by collapsing the top and the base of the cilinder X × I and
then considering the base point given by the equivalence class of the base point of X.

3As will be proved later, for large class of spaces, the loop space ΩX is precisely the set of all continuous maps
f : S1

→ X endowed with the compact-open topology, justifying the name “loop space”. In other words, we will
see that the loop space of X is just the space of loops into X.
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each called the nth reduced generalized cohomology group of X with coefficients in A. Important
examples to have in mind includes the following.

Example 1.11 (singular cohomology). Let G be an abelian topological group. The Eilenberg-
Mac Lane spaces for G are some sequence of spaces K(G,n) satisfying

πi(K(G,n)) ≃

{

G, i = n

0, i 6= n.

Note that such sequence of spaces is unique only up to weak homotopy equivalences. Indeed, by
definition we are constraining all homotopy groups. For instance, when the group G is discrete
(as the additive groups Z or Q), we have K(G,n) ≃ BnG, where BnG = B...(B(BG)) and
BG is the classifying space of G. We notice that in the general case the sequence K(G,n) is a
Ω-spectrum: the Eilenberg-Mac Lane spectrum. Indeed,

πi(ΩK(G,n + 1)) ≃ πi+1(K(G,n + 1))

which is nontrivial only for i = n. Therefore, the Eilenberg-Mac Lane spaces being determined
up to weak equivalences, we will have

ΩK(G,n+ 1) ≃ K(G,n),

showing that they really define a spectrum. The correspondent cohomology is the reduced singular
cohomology with coefficients in G. For G = Z it is also called the standard cohomology or the
ordinary cohomology and the cohomology groups are generally denoted by Hn

sing(X).

Example 1.12 (complex K-theory). Let BU be the space obtained taking the limit n→∞ over
the classifying space BU(n) of the unitary group U(n). Similarly, let U be limU(n). We assert
that the sequence (KU)n = ΩnBU is a spectrum (usually called the Bott spectrum). First of all,
as will be proven later, for any group G we have4 ΩBG ≃ G . Therefore,

ΩBU = [S1;BU ]

= [S1; limBU(n)]

≃ lim[S1;BU(n)]

= limΩBU(n)

≃ limU(n) = U,

where we used that hom-functors preserve limits, which will become clear later. On the other
hand, the Bott periodicity theorem states that Ω2BU ≃ BU × Z. Therefore,

Ω3BU ≃ Ω(BU × Z)

≃ ΩBU × ΩZ

≃ U × [S1,K(Z, 0)].

≃ U ×H0(S1;Z)

≃ U × pt ≃ U,

4Thanks to this fact we also say that the classifying space of a group is its delooping space.
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where we used that hom-functors preserve products. Thus, we have Ω3BU ≃ ΩBU showing that
the sequence (KU)n is periodic and, therefore, that KU really is a spectrum. The corresponding
cohomology is the complex topological K-theory and the only nonequivalent cohomology groups
are denoted by KU(X) and KU1(X). Textbooks on (complex) K-theory include [11, 109, 164].

Some remarks on K-theory.

1. comparison to nonabelian cohomology. Notice that, for G a Lie group, the nonabelian
cohomology with values in G classify G-bundles. This flavor of cohomology is given by the
hom-functor represented by the classified space BG. So, for a fixed n, the space BU(n)
classify all U(n)-bundles (i.e, all n-dimensional complex vector bundles). Thanks to the
periodicity, the spectrum of K-theory is composed only by two distinguished spaces: KU0 =
BU and KU1 = ΩBU . Notice that BU = limBU(n), which take into account U(n) for all
n. Therefore, while nonabelian cohomology classify bundles with fixed dimension, the 0th
cohomology group [−, BU ] of K-theory classify complex bundles of arbitrary dimension .
This suggest thatK-theory can be obtained as some “completion” of nonabelian cohomology,
which is really the case.

2. comparison to ordinary cohomology. Above we compared K-theory (a generalized coho-
mology theory) with nonabelian cohomology (which is not a generalized cohomology). In
order to compare K-theory with another ordinary cohomology (which is also a generalized
cohomology theory), notice that

Hn
sing(S

2) = [S2,K(n;Z)]

≃ [Σ2S0,K(n;Z)]

≃ [S0,Ω2K(n;Z)]

≃ [S0,K(n− 2;Z)]

≃ π0(K(n− 2;Z)),

which is nontrivial (and equal to Z) only for n = 2. Particularly, H0
sing(S

2) is trivial, but

KU(S2) = [S2, BU ]

= [Σ2S0, BU ]

≃ [S0,Ω2BU ]

≃ [S0, BU ]

≃ π0(BU) ≃ Z,

where the first isomorphism is given by the Bott periodicity. This is a crucial differ-
ence. Indeed, thanks to a result of John Milnor [153], all generalized cohomology satisfying
H0(X,A) ≃ 0 over path connected CW-complexes are isomorphic, so that they describe the
same invariant (see also [115]). The fact KU(S2) ≃ Z then reveals that K-theory really
give a new invariant.

3. real K-theory. Up to this point we introduced only complex K-theory. On the other
hand, we could also considered real K-theory. The construction would be very similar,
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only replacing the unitary group U(n) by the orthogonal group O(n). Indeed, in this case
we would define

O = limO(n) and BO = limBO(n),

but, instead of periodicity of degree two we would have periodicity of degree eight, i.e,
Ω8BO ≃ BO. This would imply that (KO)n = ΩnBO really is a spectrum whose nonequiv-
alent cohomology groups are

KO(X), KO1(X), ..., KO8(X).

4. Bott periodicity and Clifford algebras. Notice that the procedure applied above in order to
get flavors of K-theory relies in the following steps:

(a) selecting a subgroup G(n) ⊂ GL(n) for each n;

(b) considering their stabilization G = limO(n);

(c) showing that the sequence ΩkBG is periodic.

The fact that this strategy works for O(n) and U(n) is intimately related with periodic
properties of algebras over R and C. Indeed, each of these groups is defined by looking at
the matrices which preserve certain nongenerated bilinear form on Rn and Cn, respectively
(they are just the canonical inner product and the canonical hermitean inner product). It
happens that any K-vector space V endowed with a quadratic form q defines a corresponding
algebra Cℓ(V, q), called the Clifford algebra of the given pair (V, q). If we write Cℓn(R) and
Cℓn(C) in order to denote the Clifford algebras of Rn and Cn with the quadratic forms
induced by the canonical inner/hermitean product, then the classification theorem of real
and complex Clifford algebras [119] gives5

Cℓn+8(R) ≃ Cℓn(R)⊗R Cℓ8(R) and Cℓn+2(C) ≃ Cℓn(C)⊗C Cℓ2(C).

We say that two K-algebras A and A′ are Morita equivalent (writing A ≃M A′) when they
are isomorphic up to the tensor product with another K-algebra. So, the classification of
Clifford algebras states precisely that for any n we have

Cℓn+8(R) ≃M Cℓn(R) and Cℓn+2(C) ≃M Cℓn(C),

which is an algebraic version of the Bott periodicity for O(n) and U(n). Indeed, we can
effectively prove the Bott periodicity from this algebraic version. This was first done by
Atiyah, Bott and Shapiro in [13] (see also [119]) for the case of X = ∗. More precisely,
there they proved that KUn+2(∗) ≃ KUn(∗) and KOn+8(∗) ≃ KO8(∗) as a consequence
of the above Morita equivalences. A completely algebraic prove of the Bott periodicity in
the general case can be founded in [12, 108, 94, 109].

5The Clifford algebras are very important in physics. They appear, for instance, when we need to describe
physical objects with internal degrees of freedom as the spin. This will be discussed in Chapter 11.
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Twisted Cohomology

Another class of invariants arising from functors are the twisted generalized cohomology theo-
ries. When compared with generalized cohomology theories, they are “twisted” in the same sense
in which a nontrivial bundle is “twisted” when compared with a trivial bundle.

More precisely, recall that generalized cohomology are sequences of functors Hn = [−, An] for
a certain spectrum A. On the other hand, let π : P → X be a bundle. Its space of sections is
the collection Γ(P ) of all left inverses of π (i.e, of all maps s : X → P such that π ◦ s = idX). It
can be considered as a topological space of maps and, therefore, we can take its homotopy class,
which will be represented by the same notation.

Now, for a trivial bundle X ×F → X the space of sections is just the space of maps X → F .
In other words, Γ(X × F ) ≃ [X;F ], which means that generalized cohomology functors Hn with
coefficients on A are just the global sections functor Γ of trivial bundles with typical fiber An.
This motivates us to consider global sections functors for not necessarily trivial bundles whose
typical fiber is An. These functors are called the twisted generalized cohomology with coefficients
on A.

When the spectrum is a ring spectrum (in a sense that will be introduced in Section 5.3),
there is a canonical way to build twisted cohomology theories from ordinary cohomology theories.
For instance, each of the three flavors of generalized presented in the last subsection are, indeed,
induced by ring spectra. The notion of “twisted cohomology” is important in the quantization
process, as will be discussed in Section 9.4. At this moment we will give only one example (see
[14, 104, 145]):

Example 1.13 (twisted K-theory). Let H be a separable complex Hilbert space. We say that a
linear operator T : H → H is Fredholm when it is continuous and has finite dimensional kernel
and cokernel6. The collection Fred(H) of such operators is a subset of the space B(H) of all
bounded linear operators and, therefore, has an induced topology. Surprisingly, the obtained
topological space is weakly equivalent to KU0 = BU ! This reveals an important relation between
complex K-theory and functional analysis. Such relation culminates in the Atiyah-Singer index
theorem, which generalizes many classical results as, for instance, the Gauss-Bonnet theorem of
differential geometry and the Riemann-Roch theorem of complex analysis. Now, let AutHilbC

(H)
be the automorphism group ofH, which coincides with the group U(H) of unitary operators onH.
Such group acts on the space Fred(H) by conjugation. But observe that if we multiply an unitary
operator by a phase (i.e,by an element of the form eiθ) then the result is also unitary. Therefore,
we can consider the projective group PU(H) = U(H)/U(1) which also acts by conjugation on
Fred(H). By the previous relation between K-theory and functional analysis we then have an
action

PU(H)×KU0 → KU0.

Consequently, any PU(H)-principal bundle π : P → X induces an PU(H)-bundle over X with
typical fiber KU0. Its space of sections is the so called twisted K-theory of X with twisting π.

In the last example we concluded that any PU(H)-principal bundle produces a twisted version
of complex K-theory. A natural question is then about the existence of nontrivial bundles. We

6Recall that the kernel of a linear operator T is the subespace kerT of all vectors ψ ∈ H such that T (ψ) = 0,
while their cokernel is the quotient space coker(T ) of H by the image of T .
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will would like to do a brief remark concerning this question (see [14]).

Remark. It can be show that the topological group U(H) is contractible for any infinite-
dimensional7 H. Furthermore, the action of U(1) × U(H) → U(H) is free. Consequently, the
unitary group is a model to EU(1), so that the quotient U(H)/U(1) is a model to BU(1). But
this quotient is just the projective group. Therefore, bundles structured by PU(H) are the same
as bundles structured by BU(1). It happens that this classifying space models the Eilenberg-
MacLane space K(Z, 2). Indeed,

πn(BU(1)) = [Sn, BU(1)]

≃ [ΣSn−1, BU(1)]

≃ [Sn−1,ΩBU(1)]

≃ [Sn−1, U(1)]

≃ [Sn−1,S1]

= πn−1(S
1)

which is nontrivial and equal to Z only when n = 2. Therefore, by the classification theorem of
bundles and by the previous identifications we have

IsoPU(H)(X) ≃ [X,BPU(H)]

≃ [X,BK(Z, 2)]

≃ [X,K(Z, 3)]

≃ H3(X;Z),

showing that any singular cohomology class of degree 3 on X defines a different twisted K-theory
over X. Because of this, we usually say that complex K-theory receives twisting from the singular
cohomology.

Algebraic Cohomology

All the previous examples of invariants were obtained directly from methods of Algebraic
Topology meaning that the underlying functors were always defined in some topological category.
Now will give an example of an invariant that can be produced by different (but similar) methods.
It is the algebraic cohomology.

Recall that a Z-graded R-module M with degree z ≥ 0 can be viewed as a sequence of R-
modules Mn together with connecting maps ∂n : Mn → Mn+z. Our problem here is to find the
relation between the structures of Mn and its neighbors. For instance, the kernel of ∂n is on Mn

and its image is on Mn+z, so that we can use these submodules to compare the structure of the
whole module. Particularly, for any n we have that both ker(∂n+z) and img(∂n) are contained in
the same module, so that the quotient

Hn(M ;R) := ker(∂n+z)/img(∂n) (1.2.2)

7We observe that the result is false in the finite dimensional case. For instance, if we consider H = C (an
unidimensional space), then U(H) ≃ U(1) ≃ S1 which clearly is not contractible.
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says, in a certain sense, which elements of Mn+z are not totally determined by elements of Mn,
which is a very nice information in the context of our problem! But observe that such quotient
makes sense only if img(∂n) ⊆ ker(∂n+z) which is true iff ∂n+z ◦∂z = 0. In this case, the quotient
module (1.2.2) is called the nth cohomology group of the graded module M .

The previous discussion clarifies the interest in those Z-graded modules of degree z ≥ 0 where
we always have ∂ ◦ ∂ = 0. These are called the cochain complexes of degree z and for them the
algebraic cohomology groups can always be constructed. We could similarly talk about chain
complexes of degree z, with z ≤ 0. In this case would have a dual construction, corresponding to
the homology groups, which would be defined by

Hn(M ;R) := img(∂n)/ ker(∂n+z).

We notice that the cohomology and homology group constructions extend to functors Hn

and Hn, respectively defined on the full subcategories CChzR and ChzR of cochain complex and
chain complex of degree z. We usually consider z = ±1, writing CChR and ChR to denote the
correspondent categories. The area of mathematics determined by such categories is homological
algebra.

Remark. In some cases it is more interesting to work with cochain and chain complexes that
are bounded, meaning that they are graded over N (instead of Z) or, equivalently, that they are
trivial in negative n. The correspondent categories will be denoted by CCh+

R and Ch+
R.

As discussed in the context of homotopy groups, the sequence of functors Hn determines a
distinguished class of morphisms: the so called quasi-isomorphisms f : M → N , which induce
an isomorphism Hn(f) : Hn(M ;R)→ Hn(N ;R) between the nth cohomology group, for any n.
With them in hand we define the algebraic derived category CChR[W

−1] as a first approximation
to the category of cochain complexes. We then ask if this approximation is really good in the
sense that we can build a table for the Hn analogous to the Table 1.1. Surprisingly, the answer is
yes! Indeed, restricting ourselves to the subcategory of bounded complexes over N we can build at
least two dual copies of this table in the algebraic context. This means that there are two good
models to the homotopy theory defined by the algebraic cohomology groups.

In the first, the analogue of the CW-complexes are the cochain complexes of projective modules
and in the second model the analogue are the cochain complexes of injective modules. Because
of this we say that we have the projective model and the injective model to homotopy theory
described by the algebraic one. For instance, the last line of Table 1.1 applied to each of these
models says that any cochain complex is quasi-isomorphic to a projective complex and to an
injective complex.

The similarity between homological algebra and classical homotopy theory is even more in-
teresting. Indeed, recall that the homotopy groups πn are defined on the homotopy category
Ho(Top∗). Such category is obtained from Top∗ by defining an equivalence relation on each set
of morphisms. Furthermore, by the Whitehead’s theorem the CW-complexes are precisely the
category of topological spaces for which the isomorphic classes of Ho(Top∗) is equivalent to the
isomorphic classes of the derived category Top∗[W

−1].
It happens that in homological algebra we have totally analogous facts! More precisely, we can

also define the notion of algebraic homotopy between cochain maps which induces equivalence re-
lations in each set of morphisms of CChR, allowing us to define the quotient category Ho(CChR).
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In the context of bounded cochain complexes an algebraic version of Whitehead’s theorem also
holds: for projective or injective complexes, the class of quasi-isomorphisms is equivalent to the
class of algebraic homotopy equivalences, meaning that two projective or injective cochain com-
plexes are quasi-isomorphic iff they are algebraically homotopic (for details, see any nice text of
Homological Algebra, e.g [78], or any text on model category theory, e.g [100, 96, 146]).

This similarity between homological algebra and classical homotopy will be explored later.

Quantum Field Theories

Other important invariants are those coming from functors defined on the category Cobn of
cobordisms and taking values in some algebraic category. From the mathematical viewpoint, they
are relevant because they help us identify when two given manifolds are not cobordant. From
the physical viewpoint, such functors are essentially the structure that describes quantum field
theories, as will be discussed in the chapter 14.

We observe that although they have not been defined by the methods of Algebraic Topology,
it is expected that quantum field theories can somehow be classified by a spectrum and, therefore,
by a genuine cohomology theory! We will try to motivate this fact here. We start by noticing
that any functor U : Cobn → Alg maps cobordism classes into isomorphism classes of algebraic
structures. So, in classifying these cobordism classes we are essentially classifying the functors.
The fundamental fact (due to René Thom) is that the cobordism classes are determined by a
suspension spectrum.

To be more precise, let V → X be a vector bundle associated to some O(n)-principal bundle
over X. So we have an inner product gx on each fiber Vx which varies continuously with the point
x (this will be discussed in more details in the sections 5.3 and 11.3). With such a metric in hand
we can define two new bundles: the disk bundle D(V ) → X and the sphere bundle S(V ) → X.
Its fiber at each x ∈ X is respectively given by the vectors v ∈ Vx such that ‖v‖ ≤ 1 and ‖v‖ = 1,
where the norm is that defined by gx. The quotient D(V )/S(V ) is the Thom space of the bundle
V , denoted by T (V ).

Now, recall that we have an universal O(n)-principal bundle EO(n) → BO(n) as well as a
canonical action O(n)×Rn → Rn, so that we also have a canonical vector bundle V (n)→ BO(n).
Applying the previous construction to it we get the Thom space MOn := T (V (n)). We assert
that the sequence of these spaces is a suspension spectrum: the Thom spectrum MO. Indeed,

ΣMOn = ΣT (V (n))

≃ T (V (n)⊕ R)

≃ T (V (n+ 1)) = MOn+1,

where the first equivalence is a particular case of the general homeomorphism T (V ⊕ Rn) ≃
ΣnT (V ) as well and the second equivalence comes from fundamental relations between the clas-
sifying spaces BO(n) and BO(n+ 1). More precisely,

The Thom theorem states that the spectrum MOn determines the set of isomorphism classes
of the cobordism categories, in the sense that for each n we have a natural bijection

Iso(Cobn) ≃ lim
k
πn+k(MOk), (1.2.3)
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where the left-hand side is the set of isomorphic classes of cobordism between n-manifolds. We
notice that Iso(Cobn) has the structure of an abelian group induced by the disjoint union of
manifolds and, indeed, a structure of N-graded ring given by the cartesian product of manifolds.
On the other hand, the Thom spectrum is a special spectrum, called ring spectrum, so that
summing over n the right-hand side is also a N-graded ring. So, being more precise, the Thom
theorem state that the previous bijection is an isomorphism of graded rings.

Remark. The Thom theorem can be generalized in many directions. For instance, it can be
generalized by replacing O(n) by some other group Ok(n), obtained from O(n) by killing their first
s homotopy groups and maintaining the others. In other words, by a group weakly homotopically
characterized by8

πi(O
s(n)) ≃

{

0, i < s

πi(O(n)), i ≥ s,

As an example, O0(n) ≃ O(n) and O1(n) ≃ SO(n). The case O2(n) corresponds to the so-called
spin group Spin(n), which will be discussed in Section ??. The next nonequivalent Os(n) is for
s = 8. It can be show that the sequence of the Thom spaces of the universal vector bundles
with structural group Os(n) define a suspension spectrum MOs. We say that a manifold M
has Os(n)-structure when their frame bundle F (M) is structured by Os(n). We can define the
category Cobsn of Os(n)-cobordisms. In this case (see [114, 175]), Thom’s theorem generalizes as
isomorphism of graded rings

Iso(Cobsn) ≃ lim
k
πn+k(MOs

k).

If we take s =∞, then O∞(k) ≃ ∗, so that we are working with manifolds whose frame bundle is
trivial: these are the framed manifolds. The Thom spaces are just spheres MO∞

k ≃ Sk, meaning
that the Thom spectrum in the framed case is precisely the sphere spectrum (which define the
homotopy groups). So, in this situation that the Thom theorem reduces to the so called Thom-
Pontryagin theorem:

Iso(Cobfram
n ) ≃ lim

k
πn+k(S

k).

In a totally similar way we can define complex cobordisms for complex manifolds, giving a complex
Thom spectrum MU, for which we have a corresponding Thom theorem.

Remark. For each of these cobordism theories (say for a group G, which can be O(n)s, U(n) or
some other thing) the underlying spectrum is a ring spectrum, so that taking the isomorphisms
classes we get a graded ring ΩG∗.

1.3 Principles

Ending our brief discussion on categories and categorical invariants, we will see that category
theory relies at three very important principles. The first of them can be used to get a “dual
version” of many results. This principle is usually known as the duality principle. The others are
the relativity principle and the weakening principle.

8This is precisely the definition of the sth step in the Whitead tower of O(n), as will be discussed in the section
8.3.
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The relativity principle is the strategy of analysing an object X in a category C by looking
to its interaction with the other objects of C. It is Grothendieck’s relative viewpoint used in
his formulation of the categorical foundations of algebraic geometry (see [??]). Manifestations of
this principle are the use of hom-functors to define invariants and the study of a space by the
properties of the bundles over it.

The weakening principle says that every categorical definition/result defined/obtained using
only commutative diagrams of functors can be extended to a more general and powerful version.

Duality

The duality principle relies on the following fact: a category is essentially an ambient in
which we can talk about commutative diagrams. So, by reverting the orientations of each of the
arrows of a commutative diagram we get a different diagram (called dual to the first) which is
also commutative. Therefore, we have the

Duality Principle: if a result can be proved using only commutative diagrams, then a totally
dual result is also valid, whose proof is obtained simply considering the dual diagrams.

The formalization of this idea comes from the existence of a functor (−)op : Cat→ Cat, which
takes any category C and gives a new category Cop (called the opposite category) having the
same objects as C, but whose morphisms f op : Y → X are precisely the morphisms f : X → Y .
Furthermore, to any F : C→ D we get a new functor F op : Cop → Dop such that

F op(X) = F (X) and F op(f op) = F (f)op.

A functor defined in the opposite category is usually called a contravariant functor. For
instance, the functors which define cohomology theory are all contravariant. On the other hand,
the functors defining the homotopy groups are covariant. This emphasizes the duality between
homotopy groups and cohomology groups.

Relativity

In set theory (i.e in classical logic) we analyze an object by looking at its elements. With
the development of categorical logic we can try a different approach. Indeed, when we define a
category we are saying which are the important objects and which are the important mappings
between them. We can think about these mappings as ways to introduce some relation between
two objects. So we can try to study an object not by looking at it, but by looking at the relations
(i.e at the mappings) between it and other objects. This is precisely what the relativity principle
tells us.

Relativity Principle: in order to study a given object we can look to the space of morphisms
between this object and other objects.

The formalization of this fact comes from the existence of a functor Arr : Cat → Cat that
assigns to any category C another category Arr(C), called the arrow categoy, whose objects are
the morphisms of C. So, this functor changes the focus on objects replacing it with a focus on
the morphisms. A morphism h : f ⇒ g in the arrow category (say between maps f : X → X ′
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and g : Y → Y ′) is a commutative square between f and g, as in the following diagram. Such
commutative squares can be identified with pairs (h, h′) such that h′ ◦f = g ◦h. The composition
is given by pasting diagrams.

X
h //

f
��

Y

g
��

X
h //

f ��❅
❅❅

❅❅
❅❅

❅ Y

g
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X ′

h′
// Y ′ A

Some particular subcategories of Arr(C) are specially interesting. For example, given an
object A ∈ C we can focus our attention only on the arrows having A as the target space. This
define a subcategory C/A, called the over category. Its morphisms are commutative squares
(h, idA) and, therefore, can be identified with commutative triangles having A at the vertex,
as above. By the duality principle we have a dual category A/C, the under category. The
functoriality of Arr induces functors C/ and /C from C to Cat.

Natural Transformations

The next step is to discuss the weakening principle in category theory. It relies on the existence
of a notion of “mappings between two functors”, called natural transformations, such that for any
two given categories C and D we can form a new category Func(C;D) whose objects are functors
from C to D and whose morphisms are these natural transformations.

Remark. Recall that any functor define a invariant, so that the existence of a natural transfor-
mation between two given functors imply the existence of a connection between the underlying
invariants. In other words, functors that are connected by a transformation will produce non-
independent invariants.

In formal terms, a natural transformation between two functors F,G : C → D is simply a
rule ξ : F ⇒ G which assigns to any object X ∈ C a morphism ξX : F (X) → G(X) such that
for any mapping f : X → Y the following diagram commutes:

F (X)

ξX
��

F (f) // F (Y )

ξY
��

G(X)
G(f)

// G(Y )

There is a result, called Yoneda lemma, which identify the collection of all natural transforma-
tions between two functors when at least one of then is a hom-functor. Indeed, if F : Cop → Set

is any contravariant or covariant F : C→ Set functor, then for a fixed X ∈ C the Yoneda lemma
gives

Nat(hX , F ) ≃ F (X) or Nat(hX , F ) ≃ F (X).

Remark. Maybe this seems only a technical result, but it is one of the more important results
in categorical language and in the approach to Hilbert’s sixth problem which we are developing
here. A proof and the intuitive meaning of Yoneda lemma will be discussed in the next chapter



CHAPTER 1. CATEGORIES 55

by making use of some results developed in Appendix A. Its fundamental role will become clear
in the development of the text.

Before presenting the universality principle, let us try to understand the concept of natural
transformation by studying the examples below. All of them arise naturally in the context of
algebraic topology and play an important role in the axiomatization of physics. So, if the last
section could be understood as a crash course on algebraic topology, the next examples can be
understood as a second part of this crash course.

Example 1.14 (characteristic classes and cohomology operations). Recall that the different fla-
vors of cohomology theories are hom-functors, so that the natural transformations betweem them
and any other functor can be characterized via Yoneda lemma. Indeed, if Ak is an object rep-
resenting some cohomology group and F : Ho(Top∗) → Set is any contravariant functor, then
the transformations ξ : F ⇒ H(−;Ak) are in bijection with the elements of F (Ak). The most
interesting situations are when F is another cohomology theory (say represented by Bl), because
in them the transformations ξ : H(−, Bl) ⇒ H(−;Ak) are totally characterized by morphisms
Bl → Ak between the underlying representing objects. Two cases are further special.

• characteristic classes. These happen when F is nonabelian G-cohomology and Ak is part
of a spetrum A representing a generalized cohomology theory. Thus, F is a hom-functor
represented by BG and the natural transformations ξ : [−, BG]⇒ Hn

A are in bijection with
maps BG → An. These transformations are called characteristic classes. In other words,
characteristic classes are maps from nonabelian cohomology to generalized cohomology. We
notice that, by the classification theorem of bundles we have [−, BG] ≃ IsoG, so that char-
acteristic classes can also be understood as transformations IsoG ⇒ Hn

A. In this perspective,
they are rules assigning to any topological space X a morphism ξX : IsoG(X)→ Hn(X,A)
that associate cohomology classes of X to bundles over X. Therefore, characteristic class
are natural source of bundle invariants.

• cohomology operations. These correspond to the case in which F is a cohomology theory of
the same flavor that those classified by Ak. More precisely, if Ak is part of a spectrum A, we
then consider F as the cohomology group Hn

E represented by another spectrum E. In this
situation, we have transformations ξ : Hn

E ⇒ Hk
A which correspond bijectively with maps

En → Ak. On the other hand, if Ak = BG is the classifying space of some group, then we
take F as the nonabelian cohomology for some group H, so that we have transformations
ξ : [−, BH]⇒ [−, BG] which are classified by morphisms BH → BG. In any situation we
say that the natural transformations in question are cohomology operations.

Concrete examples of characteristic classes and cohomology operations are the following:

1. Stiefel-Whitney and Chern classes. There are fundamental morphisms

ci : BU(n)→ K(i,Z) and wi : BO(n)→ K(i,Z2),

respectively called Chern morphisms and Stiefel-Whitney morphisms. They define charac-
teristic classes for rank n complex/real bundles. They are fundamental because any other
class α : BU(n) → K(k,Z) can be written in terms of c1, ..., ck (similar condition holds
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for the Stiefel-Whitney classes). In order to be more precise, recall that, as commented in
the last section, the Thom spectrum is special because it is an ring spectrum, which will
mean that its cohomology groups acquires a structure of graded ring. Here, similarly, if R
is a ring, then the Eilenberg-Mac Lane spectrum K(n,R) becomes a ring spectrum and,
therefore, the sum H(X;R) of the cohomology groups Hn(X;R) is a ring, meaning that we
know how to multiply cohomology classes. It can be show that we have ring isomorphisms

H(BU(n);Z) ≃ Z[c1, ..., cn] and H(BO(n);Z2) ≃ Z2[w1, ..., wn].

2. Chern character. As commented, the fundamental characteristic classes for complex bundles
are the Chern classes, meaning that any other class can always be built in terms of them.
An important example is the Chern character. In order to build it we will make use of the
presentation of complex K-theory by vector bundles. So, given a space, let G(VectX) ≃
[X,BU ×Z] be the Grothendieck ring completion of isomorphism classes of vector bundles
over X. A fundamental result in K-theory is the splitting principle, which says that any
bundle can be pulled back to a decomposition into line bundles in such a way that both
K-theory and singular cohomology of the initial bundle are embedded into the K-theory
and singular cohomology of the decomposed bundle (see [11, 109]). More precisely, for any
bundle E → X over X there is a map p : F (E)→ X such that p∗E decomposes as a direct
sum L1 ⊕ ...⊕ Ln of line bundles Li → F (E) at the same time as the induced maps

p∗ : KU(X)→ KU(F (E)) and p∗ : Hsing(X;Z)→ Hsing(F (E);Z)

are embeddings. Now, following [141, 119], let us make use of the splitting principle in
order to build a morphism9 f̂ : KU(X) → Hsing(X;R) starting from any formal sum
f(t) =

∑

ait
i defined in an arbitrary ring extension R of Z. The Chern character will then

be obtained as a particular case for R = Q and f(t) =
∑

ti/i!. Let E → X be a complex
bundle representing a class in the K-theory KU(X) of X. By the splitting principle this
class has a representative that decomposes as a sum of line bundles L1 ⊕ ... ⊕ Ln, so that
it is enough to define f̂(E) ∈ Hsing(X;R) in this situation. Indeed, we put

f̂(E) =

n
∑

i=1

∑

ajf(c1(Li))
j .

3. Steenrod’s operations. The examples above were about characteristic classes. Now, let us
give examples of cohomology operations. There are operations Sqi : K(n,Z2) → K(n +
i,Z2), which are totally characterized by some properties, being called the Steenrod “square”
operations. The name comes from one of these characterizing properties. Indeed, for any
space X the morphisms

SqiX : Hn(X;Z2)→ Hn+i(X;Z2) are such that SqiX(x) =

{

x2, if i = n

0, otherwise

9Notice that this morphism is between the whole K-theory ring and the whole singular cohomology ring.
Therefore, this should not be a characteristic class as the Chern and the Stiefel-Whitney class, but indeed a
genuine “morphism of spectra” between KU and the Eilenberg-Mac Lane spectrum of R.
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The other characterizing properties are Sq0X(x) = x and the usually called Cartan product
formula:

SqkX(x · y) =
∑

i+j=k

SqiX(x) · Sq
j
X(y).

These square operations are “the fundamental operations” in the same sense as the Chern
classes are the fundamental classes. More precisely, we have an embedding

H(K(2,Z2);Z2) →֒ Z2[Sq
0, Sq1, ...],

so that any cohomology operation of degree 2 in Z2-cohomology can be written as a poly-
nomial into the Steenrod operations. For the construction and applications of Steenrod’s
operations, see [151].

4. Adam’s operations. A fundamental problem in topology is to determined if the tangent
bundle TM of a given n-manifold is trivial or not (in the affirmative case we say that
the manifold is paralellizable). This is equivalent to asking if M admits precisely n linearly
independent vector fields. It is easy to verify that any Lie group is paralellizable, so that the
spheres S1 ≃ U(1) and S3 ≃ SU(2) are parallelizable. A natural problem is to determine
if the other spheres Sn, for n 6= 1, 3 also are parallelizable. When we have a counting
problem like this, the main idea is to make use of axiomatic properties of operations in some
cohomology theory. We could try to use Steenrod’s operations, but exactly because they are
“squared” they only give information on the even dimensional spheres. A manifestation
of this fact is the Poincaré-Hopf theorem, which can be stated by making use of the singular
cohomology Betti numbers (the cohomology in which Steenrod’s operations live). Indeed,
by Poincaré-Hopf any vector field in an even dimensional sphere has a singularity, so that
Sn, with n even, is not parallelizable. Thanks to Milnor’s uniqueness theorem, all ordinary
cohomology has the same Betti-numbers and, therefore, will led us to the same conclusion.
So, in order to study the above problem for odd-dimensional spheres we have to consider
cohomology operations in non-ordinary cohomology. The natural candidate are operations
in K-theory, of which there are Adam’s operations. It can be shown that these operations
are sufficient to solve the problem: only for n = 1, 3, 7 the sphere S7 is parallelizable. This is
a classical result, usually known as the Adam-Athiyah theorem. The proof will be sketched
in Section 4.3.

5. J-homomorphism. Up to this point we given examples of characteristic classes (i.e, maps
from nonabelian cohomology to generalized cohomology) and of cohomology operations in
generalized cohomology. Now we will give an important example of cohomology operation
in nonabelian cohomology. The idea is the following. A fundamental step in the proof
of the Adam-Atiyah theorem is the Hopf construction. This construction take any map
f : X × Y → Z and return another map hf : X ∗ Y → ΣZ, where there X ∗ Y is the join
between X and Y (this is certain “homotopical version” of the product X × Y ). This join
has the property that Sn ∗ Sm ≃ Sn+m−1. Now, notice that any element of the orthogonal
group O(n) induces a continuous map Sn−1 → Sn−1. So, for any fixed k a continuous
function f : Sk → O(n) can be regarded as a map f̂ : Sk × Sn−1 → Sn−1. Applying the
Hopf construction we then get a map hf̂ : Sk+n → Sn, where we used Sk ∗Sn−1 ≃ Sk+n and

ΣSn−1 ≃ Sn. The starting map f represents a class in the homotopy group πk(O(n)), while
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the final map hf̂ represents a class in πn+k(Sn). It can be proven that the Hopf construction
preserve the composition and the identities, so that we just build a homomorphism

Jk : πk(O(n))→ πn+k(S
n),

called kth J-homomorphism. Taking the limit n→∞ we then get homomorphisms

Jk : πk(O)→ πk(Ω
∞S∞).

Recall that the homotopy groups of a space determines the whole structure of this space
in the topological derived category. Therefore, all the above homomorphisms refines to a
map J : O → Ω∞S∞ in the derived category. But both spaces are, indeed, groups in the
derived category, so that applying B we get a map BJ : BO → BΩ∞S∞ between the
corresponding classifying spaces and, therefore, a cohomology operation in the underlying
nonabelian cohomologies.

Universality

With the notion of natural transformation clear in our mind, we can finally introduce the
universality principle. It is about the possibility of weakening any categorical concept defined
using only commutative diagrams. Indeed, recall that the commutativity of a diagram internal
to some category C corresponds, in the end, to the equality between two morphisms of C.
Particularly, commutative diagrams in Cat correspond to equality between functors (say F = G).
But we have the notion of mappings between functors. So, instead of requiring such equality, we
could require only the existence of a mapping ξ between F and G. In other words, we could
require that the given diagram of functors commutes only up to natural transformations.

Let us give a more playful interpretation. In order to do this, suppose that the equality F = G
describes the validity of some property. So, the existence of a natural transformation ξ between
F and G can be understood as an approximation to the equality and, therefore, to the validity of
the desired property. But we may have morphisms ξ : F ⇒ G from F to G as well as morphisms
ϕ : G ⇒ F from G to F , so that we can take approximations in two different directions. The
first will correspond to a left approximation and the second to a right approximation.

On the other hand, there may exist many such approximations. So, in order to add more
rigidity we can look only to certain “good” approximations. Here, being good means that the
approximations satisfy some additional condition, which can be described in terms of a com-
mutative diagram involving ξ and ϕ. Therefore, in the end, we are replacing the requirement of
equality between functors by the equality between natural transformations. This is the weakening
principle.

Weakening Principle: any concept defined using only commutative diagrams of functors can
be weakened by requiring that such diagrams commutes only up to certain well behaved natural
transformations.

Remark. We notice some similarity with homotopy theory: there (as introduced in the last
section) we have the notion of homotopy between continuous functions, so that we can replace
equality between two maps by the existence of a homotopy between them. Consequently, we can
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talk about diagrams which are “commutative up to homotopy”, allowing us to define “homotopical
versions” of many classical concepts. We will return to explore such similarities in future chapters.

There are many conditions that can be required on the natural transformations. For instance,
we could require that ξ : F ⇒ G and ϕ : G⇒ F satisfy the commutative conditions ϕ ◦ ξ = idF
and ϕ ◦ ξ = idG, which means simply that ξ is an isomorphism in Func(C;D) between F and G,
whose inverse is ϕ. In this case, ξ is called a natural isomorphism between such functors.

On the other hand, we could require that ξ and ϕ be the “best approximations possible” in the
sense that any other approximation factors uniquely into ξ and ϕ. More precisely, if ξ′ : F ⇒ G
and ϕ′ : G ⇒ F are other left and right approximations, then there is a unique u such that
ξ′ = u ◦ ξ and a unique v such that ϕ′ = ϕ ◦ v). In this case, we say that ξ and ϕ are universal
or that they satisfy universality conditions.

Example 1.15 (equivalences and adjunctions). Being a category, Cat has an internal notion
of isomorphism: two categories C and D are isomorphic when there are functors F : C → D

and G : D → C such that G ◦ F = idC and F ◦ G = idD. By the Weakening Principle, we
can define new concepts by weakening the previous equality by supposing only the existence of
transformations ξ : G ◦ F ⇒ idC and ϕ : F ◦ G ⇒ idD satisfying additional conditions. Each
new concept will give a different way to say that the categories C and D are indiscernible. For
instance, if ξ and ϕ are natural isomorphisms, then C and D are called equivalent. If, on the
other hand, they satisfy the commutative condition present in the diagram below, we say that
the categories are adjoint. We also say that the functors F and G are adjoints, writing F ⇌ G.

F

idF !)❏
❏❏

❏❏
❏❏

❏❏
❏

❏❏
❏❏

❏❏
❏❏

❏❏
F◦ϕ +3 F ◦G ◦ F

ϕ◦F

��

G

idG !)❏
❏❏

❏❏
❏❏

❏❏
❏

❏❏
❏❏

❏❏
❏❏

❏❏
ξ◦G +3 G ◦ F ◦G

G◦ϕ

��
F G

It can be verified that two functors F : C→ D and G : D→ C are adjoints iff for any X,Y we
have the following bijections, which are supposed to extend to natural isomorphisms:

MorD(F (X);Y ) ≃ MorC(X;G(Y )).

Example 1.16 (suspension, loop spaces and bundles). Recall that, as discussed in the last section,
in the category of base topological spaces we have two functors Σ and Ω which play a dual role
in homotopy theory. We introduced this duality as the existence of bijections [ΣX,Y ] ≃ [X,ΩY ].
Now we understand that they actually means that Σ and Ω are adjoint functors. Similarly, in the
example ?? was presented a dual relation between principal bundles and vector bundles. More
precisely, recall that we have a rule Frn assigning to any rank n vector bundle its frame bundle:
a Aut(Rn)-principal bundle. Reciprocally, given any Aut(Rn)-principal bundle we can build a
vector bundle of rank n: those associated to the canonical action Aut(Rn) × Rn → Aut(Rn).
This dual relation is the manifestation of the existence of an adjunction between the category of
principal bundles and the category of vector bundles.

Example 1.17 (free objects). Another very occurring example is a left adjoint L : D → C to
the inclusion functor ı : D →֒ C of a subcategory D ⊂ C. If this adjoint exists we say that the
category D is freely generated by C. Particularly, if X ∈ D is such that X = L(B) for some
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B ∈ C we say that X is a free object with basis B. This generally occurs when C = Set and
D is some algebraic category. Indeed, in this case the existence of the adjunction corresponds to
the existence of natural bijections

MorSet(B; ı(Y )) ≃ MorD(L(B);Y ).

It means that an object X is free with basis B iff any function B → Y extend uniquely to a
linear homomorphism X → Y . In other words, X has basis B iff any morphism X → Y becomes
totally determined in B. But this is exactly the condition that defines basis of vector spaces, free
modules, free algebras, free groups, and so on.

Remark

We started the chapter giving a “definition” of category. Recall that a category was formally
defined as being composed of a collection of objects and for any two objects a collection of
morphisms which are linked by associative operations having neutral elements. We then presented
many examples of entities which we expect to satisfy this definition. We would like to end the
present chapter saying, on the other hand, that the given definition of category actually is not
good in order to incorporate these examples.

Let us be more precise. Clearly, the given definition of category depends on the notion
of collection. When doing naive mathematics we immediately think of a collection as being
synonymous to a set, which itself is considered as being a primitive concept. Therefore, in this
naive approach, there is no problem. On the other hand, if we are trying to do axiomatic
mathematics, then we need to fix some definition of set. We then say that we are fixing a
presentation of the notion of set and, therefore, of the notion of category, as below.

definition of
collection

+3 definition of
category

The canonical presentation is that given by the Zermelo-Fraenkel formulation. Assuming such
formulation, we could try to do axiomatic category theory by defining collection as before: as
being a synonymous of set. But in this case we would meet with “Russell’s-like” paradox. For
instance, the category Set would be composed of the set of all sets and of the set of all
functions, which does not makes sense in the Zermelo-Fraenkel formulation. This means that
this formulation produces a definition of category that is rigorous but not useful, so that in order
to incorporate axiomatically many intuitive examples we need to work in another formulation.
Particularly, we need a formulation in which we can define a collection as being something for
which the “collection of all sets” really makes sense.

Generally it is fixed the von Neumann–Bernays–Gödel formulation, in which we have the
notion of class of all sets. Then, setting collection as synonymous of class, our definition of
category becomes rigorous and useful. This shows that the concept of category admits at least
one good presentation. However, almost all the time we will prefer to work in the naive approach
instead of in some concrete presentation. By the discussion at the introduction, this means that
we will produce conjectures, which can be turned into theorems when some presentation is fixed.



Chapter 2

Unification

In the previous chapter we constructed our first example of abstract background language: the
categorical language. Now we can analyze the relation between the logic underlying this language
and the description of the fundamental laws of Physics. As discussed at the Introduction, this
relation is a double lane. This means that the logic has a direct influence in the description of
the physical laws as well as the physical insight can be used to produce new logic, what can be
represented in a diagram:

categorical
logic

modelling +3 physical
lawsinsight

ks

In this chapter we are interested in the possible influences of categorical language in the
modelling of physical laws. In other words, this chapter is primarily about the arrow logic⇒
physics. We are particularly interested in the unification problem of Physics, so that in the
first section we show that the categorical logic really is an abstract logic in the sense that many
different mathematical concepts can be unified into a unique universal categorical concept: the
Kan extensions. We also show that this concept is coherent: arbitrary Kan extensions can be
totally described knowing few of them.

Having showed that category theory is an abstract language it is natural to ask what categories
realize such abstraction. In other words, it is natural to ask about the existence of Kan extensions
in arbitrary categories. In the second section we discuss that there are many categories which
have fell properties and, therefore, that are not good models to describe physics. But we show
that any poor category can be embedded into a category having all Kan extensions. This reveals
that category theory is a language that allows us to abstract any poor area of mathematics in
order to produce a new very rich area.

In the third section, on the other hand, we will see that, despite being very abstract, the
categorical language is not sufficiently abstract to produce a complete axiomatization of all laws
of Physics. We give examples suggesting that more general languages really must exist. We then
conjecture the existence of these more abstract languages by giving an idea of how they can be
constructed: following a naive process called categorification.

Finally, in the fourth section we discuss some direct consequences of the hypothetical cate-
gorification process in the description of the foundations of Physics. Particularly, we will see that
categorifying the concept of particle physics we get the concept of string physics! We then study
corollaries of this fact on the classical and quantum approaches to physics.

61
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2.1 Unifying

In the last chapter we developed a good logic: the categorical logic. Let us now see that
it is really very abstract in the sense that it can be used to unify many apparently different
mathematical concepts. More precisely we will see that many concepts are indeed particular
cases of a unique idea: the Kan extension. In typical cases, Kan extensions are simply ways to
“weakly enlarge” the domain of definition of certain functors.

Let C be a category and let F : A → D be some functor defined on a subcategory A ⊂ C.
An extension of F from A to C is another functor F : C → D which coincides with F when
restricted to A. This means precisely that F ◦ ı = F , where ı : A →֒ C is the inclusion. But
this is an equality between functors. Therefore, by the Weakening Principle, we can get different
notions of “weak extensions” by replacing such equality by the existence of natural transformations
satisfying additional conditions.

With this in mind, we define the left Kan extension of a functor F : A→ D with respect to
ı : A → C as being the left universal approximation to some extension of F from A to C. In
explicit terms this means that it is a functor L : C→ D together with a natural transformation
ξ : F ⇒ L ◦ ı which is universal in the sense that, if ξ′ : F ⇒ L′ ◦ ı is any other transformation,
then there is a unique u : L ⇒ L′ such that the first diagram below is commutative. Similarly,
a right Kan extension of F with respect to ı is a functor R together with an universal natural
transformation ϕ : R ◦ ı ⇒ F . That is, such that if ϕ′ : R′ ◦ ı ⇒ F is any other transformation,
then there is a unique u : R′ ⇒ R making commutative the second diagram below (notice that
left and right Kan extensions are related precisely by second order duality).

L′ ◦ ı R ◦ ı

ϕ

��
F

ξ′
8@③③③③③③③③

③③③③③③③③

ξ
+3 L ◦ ı

u◦ı

KS✤
✤
✤

✤
✤
✤

R′ ◦ ı

u◦i
6>✈

✈
✈

✈

✈
✈

✈
✈

ϕ′

+3 F

Now, in order to see that Kan extensions really generalize many mathematical concepts, let
us consider the most simple case: extensions to the trivial category C = 1 with a unique object ∗
and a unique morphism. In this case, right and left Kan extensions of F : A→ D are respectively
called limit of F and colimit of F . Note that in this situation, the right and left Kan extensions
are functors R,L : 1 → D and, therefore, they can be identified with their respective images
R(∗) ∈ D and L(∗) ∈ D, which are usually denoted by limF and colimF . Furthermore, the
natural transformations ϕ : R ◦ ı⇒ F and ξ : F ⇒ L ◦ ı in this case are simply rules that assign
to any object X ∈ A a morphism ϕX : limF → F (X) or ξX : F (X) → colimF such that the
respective diagrams below are commutative.

F (X)

F (f)

��

F (X)

F (f)

��

ξX

��
limF

ϕX
77

ϕY ((

colimF

F (Y ) F (Y )
ξY

@@

(2.1.1)
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The previous diagrams are usually called the cone with vertex limF and the cocone with vertex
colimF . The universality required in the definition of right Kan extensions means precisely that
any other cone (with vertex in any other object A) collapses in the cone with vertex limF , in
the sense that there exists a unique u : A→ limF making commutative the first diagram below.
Dual analysis holds, of course, for the universality of left Kan extensions, producing the second
diagram below.

F (X)

F (f)

��

F (X)

F (f)

��

ξX

�� !!
A

//

//

u //❴❴❴ limF

ϕX
77

ϕY ((

colimF
u //❴❴❴ A

F (Y ) F (Y )
ξY

@@ ==

Analyzing the previous conditions for functors F defined on different categories A we will get
different mathematical concepts, which are particular examples of limits/colimits and, therefore,
of Kan extensions. In the next subsection we will specialize this discussion to some concrete
functors F , defined on some special categories A. Varying these categories we will get different
types/shapes/flavors of limits/colimits.

Examples

In order to pass from abstract Kan extensions to limits/colimits we considered previously the
most simple situation: those in which C = 1. Here we will consider another very simple situation:
those in which A is a category generated by some quiver.

A quiver is simply an oriented graph. We have the category Quiv of quivers and an obvious
inclusion functor ı : Cat →֒ Quiv. Indeed, we can see any category as being a quiver whose
vertices are given by the objects and whose arrows linking the vertices are the morphisms between
the objects. It happens that this functor has an adjoint P , so that we can talk about the category
freely generated by a quiver.

In the following we will look to functors F : P (Q)→ D defined on categories P (Q) generated
by very simple quivers Q (these functors are in bijection with copies of the quiver Q internal
to D). Even so, the correspondent notions of limits/colimit will be very abstract. Indeed, they
will incorporate many important concepts as, for instance, kernels and cokernels of linear maps,
gluing of topological spaces, cartesian product of manifolds, direct sum of modules, quotient of
groups, orbit spaces of actions, etc.

Example 2.1 (products and coproducts). The trivial quiver is composed by a unique vertex
and no arrows. Therefore, the most simple nontrivial quiver is one having two vertices (say
1 and 2) and no arrow linking them. Let P (Q) be the category generated by them. So, a
functor F : P (Q) → D is represented simply by two objects of D labelled by the vertex of Q.
Consequently, a cone for F is simply an object A with maps πi : A → Xi. A limit for F is
an universal cone. Universality means that for any other cone π′i : A

′ → Xi there is a unique
u : A′ → A such that πi ◦ u = π′i (see the first diagram below). The universal vertex is called the
binary product between the objects X1 and X2, denoted by X1×X2 instead of lim F . The maps
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πi are called the canonical projections.

X1 X1
ı1

��

ı′1

!!
A′

π′
1

..

π′
2

00

u //❴❴❴ X1 ×X2

π1
55

π2 ))

X1 ⊕X2
u //❴❴❴ A′

X2 X2

ξY

AA ==

A similar discussion shows that the colimit of any functor F : P (Q)→ D is totally characterized
by the second diagram above. The vertex is called the binary coproduct, as well as the maps
ıi are the canonical inclusions. Furthermore, the given characterization is analogously obtained
when P is a quiver with an arbitrary set of vertex and, again, no arrows linking them. Concrete
examples to have in mind are the following:

• products. When D is the category Set we can effectively build an universal binary product
cone for any two given sets X1 and X2: the vertex X1×X2 is simply the cartesian product
and the canonical projections πi are the projections pri in each variable. More generally,
we can build the product between an arbitrary family of sets. A similar construction holds
in concrete categories D ⊂ Set. Indeed, in this case the idea is to define the binary
product as being the cartesian product endowed with the natural structure that turns the
projections pri into morphisms of D. For instance, in Top the most natural topology in
X1 × X2 making the projections continuous is the product topology: those generated by
the set of all products U × V , where U ⊂ X1 and V ⊂ X2 are open sets. In algebraic
categories, on the other hand, the most natural linear structure that turns the projections
into homomorphisms are those defined componentwise. This corresponds, for instance, to
the concept of direct product of groups, direct product of rings, product of modules, etc.
Similar analysis shows that Diff and the other categories of analysis also have products.

• coproducts. Dually, the category of sets and any concrete category D freely generated
by sets admits binary coproducts. Indeed, the binary coproduct of two sets is simply their
disjoint union X1⊔X2 and the canonical inclusions are just inclusion maps. In any concrete
category D, the coproduct X1⊕X2 is the object freely generated by X1⊔X2. For instance,
in Top this corresponds to the topological sum. In groups/rings this is the free product of
groups/rings, which in the abelian case is simply the direct sum. We observe that Diff is
not generated by Set but it also has coproducts, given by the disjoint union of manifolds.

Example 2.2 (equalizers and coequalizers). Now, let us consider the case of a quiver with two
vertices and two arrows linking them. A cone for a functor is then an object A together with
maps a and b turning commutative the first diagram below. This commutativity means simply
that f ◦ a = a ◦ g. So, we can equivalently express a cone by the second diagram supplemented
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with this condition.

X1

f

��

g

��

A

a
22

b ,,

A
a // X1

f
//

g //
X2

X2

Therefore, a cone is universal when, for every other cone a′ : A′ → X1 satisfying f ◦ a′ = a′ ◦ g
there is a unique u : A′ → Xo such that u ◦ a = a′. The universal vertex is called the equalizer
between f and g, being denoted by eq(f, g).

A′ u //❴❴❴❴❴❴

a′

66A
a // X1

f
//

g //
X2

Simply reverting the arrows we define the colimit of a functor defined on such quiver. The
universal vertex is then called the coequalizer between f and g, and it is represented by coeq(f, q).
Now, let us present some concrete examples:

• equalisers. We start by observing that in Set we can always build the equalizer between
two given functions f, g : X → Y : it is the smallest subset (possibly empty) in which
such functions coincide. The map a : eq(f, g) → X is simply the inclusion map. In Top

we have a similar construction: given two continuous functions we consider the equalizer
between then in Set and give to it the subspace topology. This strategy also works for
algebraic categories. Indeed, in general the set MorAlg(X;Y ) has a group structure, so
that we can take the difference f − g. Therefore, the smallest subset in which f, g coincides
is actually the subset in which the difference f − g equals to the zero map. But this is just
the kernel of f − g, which has a canonical induced linear structure. This shows that: in a
category whose sets of morphisms are groups and in which we have the notion of kernel we
can take the equalizer between any two morphisms f, g by defining eq(f, g) := ker(f − g).
This clarifies why in the literature (specially in the literature about homological algebra)
the name difference kernel is taken as a synonymous of equalizer. Particularly, notice that
the equalizer between f and 0 is simply the ker(f).

• coequaliser. Similarly, in Set we can always take the coequalizer between f, g : X → Y .
It is the quotient of Y by the relation f(x) ∼ g(x) and the map a : Y → coeq(f, g) is
the projection map. Using this, in Top we can build the coequalizer between two maps
by considering the coequalizer in Set and taking the universal topology which makes the
projection map continuous: this is the quotient topology. For algebraic categories the
condition f(x) ∼ g(x) is valid iff f − g ∼ 0, so that the coequalizer can be identified with
the cokernel of the difference f − g. Therefore, in a category whose sets of morphisms are
groups and in which we have the notion of cokernel we can take the coequalizer between any
two morphisms f, g by defining coeq(f, g) := coker(f − g). In particular, the cokernel of a
linear map is simply the coequalizer between it and the trivial map. As a special case, the
cokernel of the inclusion A→ X of a subespace is the quotient X/A.
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Completeness

Having shown some examples of limits and colimits we can ask if they are totally independent
or if there are some of them that can be built in terms of the others. For instance, in the previous
subsection we discussed separately products and equalisers (as well as its dual versions) in some
categories. We can ask if the simultaneous existence of such limits/colimits implies the existence
of other limits/colimits. The following examples give an affirmative answer.

Example 2.3 (pullbacks and pushouts). Let D be a category in which we have products X × Y
as well as equalisers between any two morphisms. So, given any two morphisms f : X → Z and
g : Y → Z we can consider the equalizer between f ◦π1 ≡ f1 and g ◦π2 ≡ g2. Looking to the first
diagram bellow we see that this equalizer is a way to forcing the commutativity of the square (see
the second and the third diagrams). Specially, the universality of products and equalizers imply
that the obtained square is also universal in the sense that for any other morphisms a1 : A→ X
and a2 : A → Y turning commutative the fourth diagram, there exists a unique dotted arrow u
for which the whole diagram remains commutative.

eq(f1, g2)

a

%%▲▲
▲▲

▲▲▲
▲▲

▲

%%

$$

A

$$

""

u

##❍
❍

❍
❍

❍

X × Y

π1
��

π2 // Y

g

��

X × Y

π1
��

π2 // Y

g

��

eq(f1, g2)

π1◦a

��

π2◦a // Y

g

��

eq(f1, g2)

��

// Y

g

��
X

f
// Z X

f
// Z X

f
// Z X

f
// Z

Now, notice that a pair of arrows f : X → Z and g : Y → Z determines a quiver inside D and,
therefore, a functor F : P (Q) → D defined on the category generated by the abstract quiver Q
with three vertices and two arrows 1 → 3 and 2 → 3. A moment of reflection reveals that the
third diagram is, indeed, a cone for this functor, so that the fourth diagram is a manifestation of
the universality. In other words, eq(f1, g2) = limF . The limit of F is usually called the pullback
between f and g, being denoted by pb(f, g). So, our discussion shows that: if a category have
binary products and equalizers, then it also have pullbacks. The colimit of a functor as F is called
the pushout and denoted by ps(f, g). By second order duality we conclude a dual statement: if a
category have binary coproducts and coequalizers, then it also have pushouts. Let us discuss some
specific examples of this construction.

• pullbacks. Let A ⊂ X be a subset and f : Y → X be any function. Then the pullback
between f and the inclusion map ı : A → X is the collection of all pairs (a, y) ∈ A × Y
such that ı(a) = f(y). For a fixed a there exists one such y iff y ∈ f−1(a). Therefore, the
pullback is nothing more than the preimage f−1(A). Similar construction holds for Top and
algebraic categories. Particularly we observe that if π : E → X is a bundle and f : Y → X
is any continuous function, then we can take their pullback in Top. The result will be a
space pb(f, g) together with maps π1 : pb(f, g) → Y and π2 : pb(f, g) → E. The first of
them is also a bundle and coincides with the canonical construction f∗E of the pullback
bundle. The second map is the identity when restricted to each fibers, which characterizes
the fact that the fibers of the pullback bundle are homeomorphic to the bundle which was
pulled-back.
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• pushouts. Let A ⊂ X be a subset and f : A → Y be any function. The pushout between
f and the inclusion map is given by the quotient space of the disjoint union X ⊔ Y under
the relation ı(a) ≃ f(a). This means that we are gluing X into Y by identifying X with
f(A). Therefore, the identical construction in Top reproduces the canonical notion of
gluing between topological spaces. On the other hand, for any action ∗ : G×X → X (say
of a group on a set or of a topological group on a topological space) we can consider the
pushout between them and the projection π2 : G×X → X. The result is identified with the
orbit space X/G. A concrete example of pushout in Top is the construction of the reduced
suspension ΣX of given based space (which were used in order to discuss suspension spectra
in the section 1.2). Indeed, there are at least two ways to build:

1. or we take the cylinder X × [0, 1] and collapses X × 0 and X × 1 simultaneously;

2. or we consider two copies of the cylinder, collapses X × 0 in one and X × 1 in the
other (getting two cones) and them glue these cones in them at their boundaries.

Each of these constructions is presented as consecutive pushouts as in the diagrams below.

ΣX psoo ∗oo❴ ❴ ❴ ❴ ΣX psoo ∗oo❴ ❴ ❴ ❴

X × I

OO✤
✤
✤

Xoo

OO

ps

OO

X × Ioo❴ ❴ ❴

OO✤
✤
✤

Xoo

OO

∗

OO

Xoo

OO

∗

OO✤
✤
✤

Xoo

OO

The last example reveals that pullbacks can be built from products and equalizers. The
surprising fact is that we could extend this list of examples in order to include all limits! More
precisely, it can be proved that if a category D has arbitrary products and equalizers, then any
functor F : A → D, defined on any category A, has limit. This is really surprising because in
principle the category A can be very huge! The situation is even more interesting. Indeed, it can
be proved that products and equalizers determine not only all limits, but all Kan extensions!

These results are not difficult to prove, but in order to maintain the focus on our primary
objective we prefer to discuss them in the Appendix A. Here we will only say that if a category
D has products and equalizers, then for any functor F : A → D, its right Kan extension with
respect to an arbitrary ı : A → C is given by the equalizer between the arrows a, b on the
following diagram:

Hy(s(f), s(f))
Hy(id,f) // Hy(s(f), t(f))

ΠXHy(X,X)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯ b
//❴❴❴❴❴❴

a //❴❴❴❴❴❴

πs(f)

OO

πt(f)

��

ΠfHy(s(f), t(f))

πf

OO

πf

��

with Hy(X,Z) = ΠMorD(Y ;ı(X))F (Z)

Hy(s(f), s(f))
Hy(f,id)

// Hy(t(f), s(f))
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By the duality principle, a totally dual construction produces any left Kan extension of F
when we have coproducts and coequalizers. These right and left Kan extensions are usually
represented by the following “integral operator notation”

R(Y ) =

∫

X
Hy(X,X) and L(Y ) =

∫ X

Hy(X,X),

so that we can take double integrals and argue about the existence of some “Fubini theorem” for
these entities. Such result really exists and together with the “integral operator notation” it will
also be discussed in Appendix A.

Now, let us make two remarks about the previous result (each of them reflecting a different
way of understanding it):

1. completeness. A category D is called complete (resp. cocomplete) when any F : A → D

has a right (resp. left) Kan extension with respect to each ı : A → C. Therefore, the
previous can be stated in terms of completeness: it says that a category is complete (resp.
cocomplete) iff it has all products and equalizers (resp. all coproducts and coequalizers).

2. coherence. Given a category D, consider the following problem: to determine if F : A→ D

has right and left Kan extensions with respect to each ı : A → C. In principle, solving
this problem could be impracticable, because for any fixed F (which actually depends
of an arbitrary category A) we would need to know if it has or not Kan extensions with
respect to each ı (which is itself arbitrary and depends of another arbitrary category C).
Therefore, the number of sentences to be considered is, in principle, parametrized over the
collection of all categories and all functors. On the other hand, the previous result says that
the collection of independent sentences is very small, allowing us to effectively study the
problem. Therefore, the previous result is not only about completeness. In fact, it is much
more fundamental: it is also about the coherence of the Kan extension concept. Coherence
conditions will also be very important in future chapters (at the definition of weak higher
categories) as well as in Appendix B (in the proof of the Cobordism Hypothesis).

Gluing

We end this section by noticing that pullbacks and pushouts satisfy an additional properties
which is very useful in order to do calculations. Indeed, recall that if we have two commuta-
tive diagrams with a common arrow, then gluing then at the common arrow we get another
commutative diagram. The fundamental fact is that when gluing pullback/pushout squares, the
resulting diagram is also a pullback/pushout square! More precisely, if the first two diagrams
below are pullback squares, then the last two (which were obtained by gluing) are pullbacks too.
The condition for pushouts is analogue.

pb //❴❴❴

��✤
✤
✤
✤
✤
✤
✤

X ′

��
pb //❴❴❴

��✤
✤
✤

X ′

��

pb //❴❴❴

��✤
✤
✤

Y

��

pb

��✤
✤
✤

//❴❴❴❴❴❴❴ Y

��

Y

��
X // Y Y // Z X // Y // Z Y // Z
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In the last subsection we have seen that the reduced suspension ΣX can be built at least in
two different ways. As an application of the gluing law for pushouts, let us see that in general
ΣX can be built indeed in infinitely many ways. The idea is the following: above we have seen
that ΣX can be understood as the gluing of two cones. Here we will see that any map f : X → Y
induces a notion of “cone” Cf and that the collapsing of Y into this cone is model of ΣX.

We start by noticing that the in the construction of ΣX by cones, each cone corresponds
precisely to the pushout below, where ıj : X → X×I is the inclusion of X as X× j with j = 0, 1.
We then define the cone Cf of f : X → Y as the result of the consecutive pushout below. Notice
that it is just like the construction of ΣX by gluing cones, but with one of the collapsing maps
X → ∗ replaced by f .

Cf psoo Yoo❴ ❴ ❴ ❴

ps X × Ioo❴ ❴ ❴ ps

OO

X × Ioo❴ ❴ ❴

OO✤
✤
✤

Xı1
oo

f

OO

ps′ ∗oo o/ o/ o/

∗

OO✤
✤
✤

Xoo

ıj

OO

∗

OO✤
✤
✤

Xoo

ı0

OO

ps

OO
O�
O�
O�

Y

OO✤
✤
✤

oo❴ ❴ ❴

Notice that the cone of X → ∗ is precisely ΣX, so that in order to build ΣX from Cf the idea
is to replace f by this terminal map. This can be done as follows. Despite the pushouts defining
Cf we also have the last pushout above (in it ps is the pushout between f and ı1). Gluing it
with the diagram of Cf we get another commutative diagram which (by the gluing property of
pushouts) is also a pushout: just the quotient Cf/Y . It happens that, as explained below, this
resulting diagram is exactly the diagram defining ΣX, so that Cf/Y ≃ ΣX by uniqueness.

Cf/Y ∗oo ΣX psoo ∗oo

Cf/Y ∗oo

=

Cf

OO

psoo Y

OO✤
✤
✤

oo❴ ❴ ❴ ❴

=

Cf

OO

psoo Y

OO✤
✤
✤

oo❴ ❴ ❴ ps

OO

X × Ioo❴ ❴ ❴ ❴

OO✤
✤
✤

Xı1
oo

f

OO

ps

OO

X × Ioo❴ ❴ ❴

OO✤
✤
✤
✤
✤
✤
✤

Xı1
oo

OO

∗

OO✤
✤
✤

Xoo

ı0

OO

∗

OO✤
✤
✤

Xoo

ı0

OO

Remark. Recall that, as discussed in the last chapter, it is not enough to build invariants: we
need to have tools to do calculations with them. When the invariants are given by abelian groups
the fundamental tools are exact sequences. They allow us to reconstruct the invariant of a term
in the sequence when we known the invariants associated to the other terms. Here we would like
to explain that generalized cohomology theories are very useful invariants because for them we
have many of exact sequences. This is a direct consequence of the presentation of ΣX by the
cone of any function (and, therefore, a direct consequence of the gluing property of pushouts).
Indeed, from the previous construction we see that any map f induces a canonical sequence as
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below. We usually say that it is the fiber sequence of f .

X
f // Y // Cf // ΣX

Iterating the fiber sequence by making use of the functor Σ we get the following long sequence,
called fibration sequence (or Barratt-Puppe sequence) of f :

X
f // Y // Cf // ΣX

−Σf // ΣY // ΣCf // Σ2X // · · · (2.1.2)

Now, If E is some spectrum representing a cohomology theory, then applying the 0th-cohomology
functor H0

E = [−, E0] to the fibration sequence of f : X → Y , making use that Σ and Ω are
adjoints and that E is a Ω-spectrum (i.e, En ≃ ΩEn+1) we get a long sequence of abelian groups
containing the E-cohomology groups of X. But, why this sequence is exact? Well, as will be brief
discussed in the next section, this come from a very special property of the objects appearing in
the Barratt-Puppe sequence: they are all invariant by homotopy equivalences.

· · · // Hn(X,E) // Hn(Y,E) // Hn(Cf ,E) // Hn−1(X,E) // · · ·

2.2 Embedding

We proved that Set, Top and the standard algebraic categories have products and equalizers,
as well as coproducts and coequalizers. Thanks to the result discussed in the last subsections we
can now affirm that such categories have all limits/colimits and, more generally, all Kan extensions
with respect any to other functor. Now, we can ask if this property of being complete/cocomplete
is generic in the collection of all categories.

For instance, recall that the construction of products and equalizers for Top (and, similarly,
for the algebraic categories) was obtained using the concreteness of Top and the existence of such
limits in Set. More precisely, to build the product between two topological spaces (X, τ) and
(X ′, τ ′) we first consider the product X ×X ′ between the underlying sets and then we introduce
the canonical topology in which the projections become continuous. Similarly, the equalizer
between two continuous functions f, g : (X, τ) → (X ′, τ ′) is constructed from the equalizer
eq(f, g) between the underlying functions f, g : X → X ′ by introducing the canonical topology
in which the inclusion map ı : eq(f, g)→ X becomes continuous.

Now, we are tempted to do a similar analysis in any concrete category concluding that each
of them is complete/cocomplete. Indeed, if D ⊂ Set is concrete, then it is natural to consider
the product X × Y (resp. the equalizer between f and g) as being simply the product (resp. the
equalizer) between the underlying sets (resp. functions) endowed with the canonical structure
that turns the projections (resp. inclusions) into morphisms of D. But in order to apply such a
strategy we need first to show that this canonical structure exists in any situation. The following
example clarifies that there are concrete categories in which this canonical structure does not
exists, so that being complete/cocomplete is not a generic property of the concrete categories.

Example 2.4 (Diff is incomplete). Consider the smooth function x 7→ x2 between R and R,
viewed as smooth manifolds with the trivial atlas. Now, considering this map in Set we can
compute the pullback presented in the first diagram below. The result is the set of all (x, y) such
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that x2 = y2 that looks like the letter “X”, which cannot admit any smooth structure1. Similarly,
viewing the point as a trivial zero dimensional manifold we can consider the pushout presented in
the third diagram in Set. The result is obtaining by attaching two copies of R along a common
point (say the origin), so that it is also equivalent to an “X” and, therefore, cannot admit any
smooth structure.

pb

��✤
✤
✤

//❴❴❴ R

≃x2

�� ✽✽
✽✽

✽✽
✽✽

✽

✝✝
✝✝
✝✝
✝✝
✝

ps

≃

Roo❴ ❴ ❴

R
y2

// R R

OO✤
✤
✤

∗oo

OO

Now we can ask if the problem appears exactly because we are working with concrete cate-
gories. More precisely, we can ask if completeness is a generic property of non-concrete categories.
The following example shows that the answer remains negative.

Example 2.5 (Ho(Top) is incomplete). Suppose, for a moment, that pullbacks exist in the
homotopy category of topological spaces. Then for any two morphisms a : X → Z and b : Y → Z
we can take the pullback between them. But recall that Ho(Top) is the quotient category of Top
by the homotopy equivalence, so that a and b are indeed homotopy classes of continuous maps.
So, fixing a representative for a and b the pullback between them can be computed as in the
category of topological spaces, but it must be independent of the choice of representatives, in the
sense that the pullback of two different representatives must produce homotopic spaces. Now,
consider the pullback in Top presented in the first diagram, whose result is simply the product
Sn−1 × Dn. We ask if it is also a pullback in the quotient category Ho(Top). We affirm that
this is not the case. Indeed, being Dn contractible, id : Dn → Dn is homotopic to a constant c
map, say taking values in Sn−1. But when we compute the second pullback below we get a space
homeomorphic to a point, therefore not homotopic to Sn−1 × Dn. Similarly, the third and the
fourth diagrams below reveals that arbitrary pushouts cannot exist in Ho(Top). See Section 20.1
of [199].

pb

��

// Dn

id
��

pb′

��

// Dn

c

��

ps Dnoo ps ∗oo

Sn−1
ı

// Dn Sn−1
ı

// Dn ∗

OO

Sn−1oo

ı

OO

∗

OO

Sn−1oo

OO

We end this subsection with a remark.

Remark. In the last example, in order to prove that Ho(Top) is not complete/cocomplete we
used the argument that the usual limits/colimits of Top are not homotopy invariants. It happens
that it is always possible to modify a limit in order to turn it homotopy invariant! Indeed, this
is done by replacing any continuous map and any object in the usual limit by entities which
are more well behaved with respect to homotopies. More precisely, we need to replace any map
by another which satisfy some homotopy liftings/extension property. These are the so called
fibrations/cofibrations. So, in other words, we can move from a “bad behaved limit/colimit” to a
“homotopy limit/colimit” by replacing any by a fibration/cofibration. Concretely this is done by

1Indeed, as a consequence of the invariance of domain theorem, this set cannot admit any topological manifold
structure.



CHAPTER 2. UNIFICATION 72

replacing X by the first diagram below (if are trying to get a homotopy limit) or by the second
diagram below (if we are trying to get a homotopy colimit). Here ıj are the canonical inclusions
of X into X × I as X × j, while πj are the canonical projections of the space of paths [I,X] in
X by πj(γ) = γ(j).

X X × I X
ı1oo

X [I,X]π0
oo

π1

OO

X

ı0

OO

So, for instance, applying the rule above we see that ΣX is just the homotopy version of the
cokernel of X → ∗, as below. In other words, the reduced suspension is a natural homotopical
object. The same hold with the cone Cf , so that the Barratt-Puppe sequence is homotopically
well behaved, because it was constructed by making use only of homotopy colimits.

ΣX psoo ∗oo❴ ❴ ❴ ❴ ΣX psoo ∗oo❴ ❴ ❴ ❴

ps ∗oo❴ ❴ ❴

=>

X × I

OO✤
✤
✤

Xoo

OO

=
ps

OO

X × Ioo❴ ❴ ❴

OO✤
✤
✤

Xoo

OO

∗

OO✤
✤
✤

Xoo

OO

∗

OO

Xoo

OO

∗

OO✤
✤
✤

Xoo

OO

Now, recall that representable contravariants functors map usual colimits into limits. The coho-
mology functors are contravariant, so that they map colimits into limits. The problem is that the
cohomology functors are generally defined in Ho(Top) which is incomplete and, therefore, has
few colimits. Happily, the representable functors in a homotopy category preserve not only the
usual functors, but also the homotopy colimits! It is exactly by this reason that when applying
H0

E in the Barratt-Puppe sequence we get an exact long sequence on cohomology. For details,
see [141, 199, 100].

Yoneda Embedding

In the last subsection we concluded that incomplete categories are common. But the discussion
of the previous sections shows that the most interesting constructions are given by limits and
colimits. Consequently, incomplete categories are lack of good properties. Given an incomplete
category D we can remedy its shortage of properties following one of the strategies below:

1. specifying. The first idea is to search for subcategories C ⊂ D with more limits/colimits and,
therefore, with more properties. This is the canonical approach in differential geometry:
the category Diff (over which differential geometry is generally developed) is incomplete.
This means, for instance, that we cannot take arbitrary pullbacks and pushouts between
smooth maps. On the other hand, if we restrict to the subcategory C ⊂ Diff of smooth
manifolds and submersions (instead of only smooth maps), then this category has pull-
backs2. Similarly, if we restrict our attention to Lie groups acting properly discontinuously

2Indeed, it is easy to see that the pullback between two smooth maps intersecting transversally is a genuine
smooth manifold. Particularly, the pullback between submersions always exists in Diff .
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on manifolds, then the orbit space (which is a pushout) is also a manifold3.

2. generalizing. We can also try to do the opposite. Thinking about the non existence of limits
as a consequence of the rigidity of D, we expect that “relaxing” the category D we can get
more limits. More precisely, this strategy consists in the search for embeddings ı : D →֒ D′

into some other category with more limits.

3. weakening. Instead of modifying the category D we can try to weak the notion of limit:
the limits are given by universal commutative diagrams. We can, for instance, define “weak
limits” by requiring “weak commutativity” and/or “weak universality”.

Now we need to analyze the applicability of such strategies. The first is the most obvious
but at the same time impracticable. Indeed, following this strategy, every time that we need
to incorporate a limit in some theory (say described by D) we must search for special classes
of objects/morphisms (characterizing a subcategory of D) in which this limit exists. But to get
these conditions may be very difficult and, in some cases, impossible. More precisely, there is no
way to secure the existence of the subcategory with arbitrary limits/colimits.

The third strategy is very promising. We notice, on the other hand, that it cannot be applied
in arbitrary categories. Indeed, recall that the notion of limit/colimit is given by commutative
diagrams in D. So, the main idea is to apply the Weakening Principle, which says that any
concept defined using only commutative diagrams can be weakened, right? But the Weakening
Principle holds only for diagrams in Cat! More precisely, recall that the Weakening Principle
is based on the fact that we have a notion of mapping between functors (given by the concept
of natural transformation). A commutative diagram of functors corresponds to equality between
functors and we can replace this equality by the existence of a natural transformation between
them. On the other hand, a commutative diagram in D involves equality of morphisms in D and
a priori there is no notion of mapping between such morphisms.

Even so, in some categories this strategy can be effectively applied. For instance, the notion of
homotopy between continuous maps can be interpreted as certain “mapping between continuous
functions”, so that any commutative diagram in Top can be weakened by replacing the equality of
functions with the existence of a homotopy between them. Particularly, the notion of “weak limits”
obtained in this way corresponds precisely to the notion of homotopy limits/colimits presented
in the last subsection (see [199, 96, 146, 140]). This is a more interesting similarity between
homotopy theory and category theory which will be very important later.

After the previous discussion, it seems that the only remaining strategy (the second one) is
the most canonical. This really is the case. In fact, as we will explain now, any category can
be embedded into a complete and cocomplete category. This means that any area of math can
be enlarged in order to be very well behaved, in the sense that any categorical construction can
be done internal to it. More precisely, recall that any object X in a category C determines a
canonical functor hX : Cop → Set which assign to any Y the set of morphisms from Y to X. It
happens that this assignment is itself functorial, so that we have a functor

h− : C→ Fun(Cop;Set). (2.2.1)

3Indeed, it is very clear that if the total space E of a covering space (i.e a locally trivial bundle whose fibers are
discrete spaces) π : E → X is a manifold, then there exists a unique smooth structure in X turning the projection
π a local diffeomorphism. It happens that, for a given smooth action of a Lie group G on a manifold M , the
quotient map M →M/G is a covering space iff the action is properly discontinuous.
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Now, there are two fundamental facts which will provide a formalization of the previous
assertion that any mathematical theory can be enlarged to be well behaved:

1. the category at the right-hand side of (2.2.1) is complete and cocomplete . This follows
from the fact that Set is complete and cocomplete. Indeed, it can be shown that any
category of functors that takes values in a complete/cocomplete category is, itself, com-
plete/cocomplete.

2. the functor (2.2.1) is, indeed, an embedding . In other words, the category C is equivalent
to its image hC by h−. Equivalently, h− is injective at morphisms and injective up to
isomorphisms at objects (which happens, particularly, when the functor is bijective at
morphisms). In fact, note that the diagram computing Kan extensions in terms of products
and equalisers makes sense for any bifunctor H : Dop×D→ Set, not only for the Hy used
there (see Appendix A for details). Particularly, given two functors F,G : D→ Set we can
compute this diagram for the bifunctor defined as

H(X,Y ) = MorSet(F (X);G(Y )),

producing the set of natural transformations ξ : F ⇒ G as a result. On the other hand,
repeating the process for F = hZ we see that the diagram computes F (Z). Consequently,
we have

MorFunc(Dop;Set)(hZ , G) ≃ G(Z),

which is known as the Yoneda lemma4. Now, taking F = hX we see that the set of
morphisms between the objects X and Z is in bijection with the set of morphisms between
the functors hX and hY , meaning that h− is bijective on morphisms and, therefore, that it
is a full embedding.

Locality

We have seen that, thanks to Yoneda embedding, any category C can be embedded into a
complete and cocomplete category. Under this embedding, the objects X ∈ C are viewed as
functors F : Cop → Set fulfilling additional conditions. We notice that these “additional
conditions” are very important in order to describe all properties of X. For instance, if X is
a smooth manifold, then their structure is totally determined when we give coordinate systems
ϕi : Ui → Rn, but this local property is not described by any functor F : Diffop → Set. In other
words, under the Yoneda embedding, a manifold should be described by some kind of functor
which also satisfy local conditions.

But what we mean with “local functor”? Observe that a manifold X is local object precisely
because in order to describe the whole entity it is necessary and enough to study certain data
(the coordinate systems ϕi) defined on some open covering Ui →֒ X which are compatible at
the intersections Ui ∩ Uj (here meaning that the transition functions ϕj ◦ ϕ

−1
i are smooth). So,

if we think of functor F : Diffop → Set as a rule that assign to any manifold X some data
F (X), this functor will be “local” precisely if there is some class of open coverings Ui →֒ X such
that the global data F (X) can be recovered from the local data F (Ui) subjected to compatibility

4Recall that the Yoneda lemma was used in the last chapter at the section 1.2 in order to classify characteristic
classes and cohomology operations.
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conditions at the intersections F (Ui ∩ Uj). Formally, F is local if for any X we have a class of
coverings Ui →֒ X such that the canonical diagram below is an equalizer.

F (X) // ∏
i F (Ui)

//
//
∏

i,j F (Ui ∩ Uj)

In the literature a functor F : Diffop → Set which is “local” in the above sense is usually
called a smooth sheaf . So, what we are saying is that under the Yoneda embedding a smooth
manifold is not an arbitrary functor, but indeed a smooth sheaf. We notice that the notion of
“smooth sheaf” is totally characterized by the last diagram. It happens that in order to build
this diagram we used only two properties of the category Diff :

1. for each object X we have a notion of covering given by certain smooth maps Ui →֒ X;

2. for any of these coverings the intersection Ui ∩ Uj is well defined.

Therefore we can talk of sheaves (or local functors) not only in Diff , but indeed in any
category in which the two properties above makes sense. For instance, we can talk of sheaves in
Top if we consider the notion of “covering” as the usual notion of “open covering”, because for
them the intersection is obviously defined. Note that the intersections Ui ∩ Uj are just pullback
betweem Ui →֒ X and Uj →֒ X, so that the concept of “intersection” can be axiomatized in any
category with pullbacks. This means that if we start with category H with pullbacks, then any
notion of “coverings” in it will induce a corresponding notion of “sheaves in H”.

The fundamental property of the open coverings is that they are stable under pullbacks. More
precisely, if πi : Ui → X is an open covering of a topological space X, then for any continuous
map f : Y → X the preimages f−1(Ui) fits into an open covering for Y . Notice that these
preimages are simply pullbacks between f and each πi, so that the notion of covering can also be
formalized in any category with pullbacks. Indeed, if H has pullbacks we define a Grothendieck
topology in it as a rule J assigning to any object X a family J(X) of morphisms π : U → X
which contains any isomorphism of X and which is stable under pullbacks, i.e, if f : Y → X is
any morphism and π : U → X belongs to J(X), then pb(f, π) belongs to J(Y ).

A pair (H, J), where H has pullbacks and J is a Grothendieck topology is called a site. So,
summarizing, we can talk of sheaves in any site. This is just a functor F : Hop → Set such that
for any X and any covering πi : Ui → X in J(X) the diagram below is an equalizer.

F (X) // ∏
i F (Ui)

//
//
∏

i,j F (Ui ×X Uj)

The notion of “local functor” can be generalized even more. Indeed, notice that the above
diagram (as an equalizer) makes sense if we replace Set by any other category with binary
products and equalizer. Particularly, it makes sense in any complete category D. This allows us
to define D-valued sheaves in any site (H, J). These are functors F : Hop → D such that for any
X and any π : U → X in J(X) the above diagram (as a diagram in D) is an equalizer. Because
sheaves are special flavors of functors, we have a full subcategory

ShvD(H, J) ⊂ Func(Hop;D).

This category of sheaves is called a Grothendieck topos. It can be proven that the inclusion
functor has a left-adjoint L , which assign to any functor F their sheafication L F . In other
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words, the category of functors from Hop to D is freely generated by the D-valued sheaves in
(H, J) for any Grothendieck topology J (i.e, the category of functors is freely generatered by any
Grothedieck topos). Because L is a left-adjoint it preserve colimits. It can be shown, on the
other hand, that it also preserve finite limits. Indeed, the functor L totally characterize the
category of sheaves in the sense that any subcategory C of Func(Hop;D) for which the inclusion
has a left adjoint preserving finite-limits is a Grothendieck topos. Thanks to this equivalence we
can also show that a category C is Grothendieck topos (i.e, it can be geometrically embedded
into the category of functors) iff it satisfy the following Giraud’s axioms:

1. there is a set S of morphisms (called generating set) such that two parallel arrows f, g :
X → Y are equal iff they satisfy f ◦s = g ◦s for any s ∈ S for which the composition makes
sense;

2. it is finitely complete (i.e, it has finite limits);

3. it is cocomplete;

4. colimits commute with pullbacks;

5. given two objects X and Y , the pullback between the canonical inclusion of them into X⊕Y
is the terminal object ∗.

The axioms 2-5 imply that any Grothendieck topos has many of the fundamental properties
of the category of sets like as the existence of object classifiers (which are essentially the objects
which allows us to decide if a given sentence is true or not), the cartesian-closed property (which
corresponds to the notion of power of a set by another arbitrary set) and analogue versions of the
axiom of choice and the construction (by Peano’s axioms) of the natural numbers (for details on
this discussion, see [107, 132, 81, 147]). So, we have the following

Conclusion. Starting from any category H (possibly with few limits/colimits) we can build a
large number of very well categories (toposes) which behave much like as the category Set of sets
and which can be used to replace it in the foundations of mathematics.

The conclusion above is just one more manifestation of the abstractness of the categorical
language. Indeed, it says that categorical language is a factory of set-type background languages.

2.3 Abstracting

In the last section we concluded that categorical logical is a very interesting logic. More
precisely, we have seen that it is sufficiently abstract to unify many distinct mathematical concepts
into the very natural notion of Kan extensions. We have also seen that this natural notion is
coherent in the sense that the existence of few many Kan extensions are sufficient to ensure the
existence of all the others. Finally we proved that categories with few properties can always
be embedded into more well behaved categories, meaning that categorical language allows us to
enlarge poor mathematical theories, turning them richer in properties.

Therefore, it is natural to expect that categorical logic can be used to unify different laws of
Physics. Indeed, as will be discussed later, classical mechanics, quantum mechanics and many
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quantum field theories can be described by making use of this language. For instance, recall that
(as commented in the first chapter and as will be discussed in detail in Chapter 14) a quantum
field theory can be defined as a certain kind of functor from the category of cobordism into some
algebraic category.

It happens that in many physical theories (specially for gauge aspects of string theory, as will
be discussed still in this chapter in more details in chapters 11-13), the categorical logic is not
sufficiently abstract in order to describes all phenomena. So, we need to look for more abstract
languages. The first question is, naturally, about existence: can there exist languages which are
more abstract than categorical language? The following example suggests an affirmative answer.

Example 2.6 (homological algebra and classical homotopy theory). Homological algebra and
homotopy theory are different areas of math, described (using categorical language) by different
categories: the category Ch+

R of bounded cochain complex describes homological algebra and the
category CW∗ of CW-complexes with distinguished base points describes homotopy theory. On
the other hand, such theories are very similar! Some of those similarities are the following (see
also the Table 2.1):

1. structure of the objects. The objects in Ch+
R can be identified with increasing sequences

(Xn) of R-modules entities linked by certain coboundary operators. Equivalently, we can
see such objects as being N-graded R-modules entities X ∈ Ab which are the limit of a
process: X = lim⊕nXn. Similarly, the objects of CW∗ are also limiting spaces of increasing
sequences (the skeleton sequence) in which Xn was obtained from Xn−1 by attaching n-cells.

2. structure of the morphisms. In both categories, the morphisms f : X → Y are families of
morphisms fn : Xn → Yn preserving the decomposition: for cochain complexes, this means
that fn commutes with the coboundary operators, as well as for CW-complexes each fn
must commute with the attaching maps.

3. existence of homotopy category. In both categories we also have a canonical notion of
homotopy, so that we can build the homotopy categories Ho(CW∗) and Ho(Ch+

R).

4. canonical homotopy invariants. Additionally, there are canonical functors defined in both
categories: they are the homotopy groups πn and the cohomology functors Hn. In each
case such functors respect homotopies in the sense that it passes from the original category
to the corresponding homotopy category.

5. well behaved derived category. In each theory we have a distinguished class of morphisms,
both given by the morphisms that are mapped into isomorphisms by each canonical functor.
Indeed, on one hand we have the weak homotopy equivalences and on the other we have the
quasi-isomorphisms. Localizing with respect to each of these classes we get the correspond-
ing derived categories CW∗[W

−1] and Ch+
R[W

−1]. The weak homotopy theory described
by them are both well behaved in the sense that we have versions of the Whitehead theorem
for each of them.
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classical homotopy theory homological algebra

CW-complex cochain complex
cellular map cochain map

classical homotopy category algebraic homotopy category
homotopy groups cohomology groups

weak homotopy equivalences quasi-isomorphisms
topological derived category algebraic derived category

Whitehead theorem algebraic Whitehead theorem

Table 2.1: Homotopy theory of cell complex vs homotopy theory of cochain complex

The previous example clearly suggests the existence of a more abstract language, say describ-
ing abstract homotopy theory, of which classical homotopy theory and homological algebra
are only particular examples. But now, the careful reader could say that despite the previous sur-
prising similarities between homological algebra and homotopy theory, there are some differences
between them:

1. cochain complexes can be defined more generally as being sequences parametrized by the
integers Z, but CW-complex are sequences parametrized only over the naturals N;

2. cochain complexes are stable entities, but CW-complex generally are not. More precisely,
we have functors Σ,Ω : dAb → dAb which are the homological analogues of suspension
and loop functors. We can see that they are simply shifts: for any complex X, we have
(ΣX)n = Xn+1 and (ΩX)n = Xn−1. Consequently, Σ and Ω are inverses one of the other
and there are homotopy equivalences X ≃ ΣX. These facts are not valid for CW-complexes;

3. the category of cochain complexes is additive. This means that the set of morphisms between
two chain complexes (i.e, the set of cochain maps) is not only a set, but it have a natural
structure of abelian group. Furthermore, the composition of chain maps is bilinear with
respect to such group structure. Additionally, the algebraic cohomology functors Hn are
also additive in the sense that they preserve the sum of cochain maps. Consequently, this
induce a natural additive structure in the derived category ChR[W

−1]. On the other hand,
there is no natural operation between weak homotopy equivalences to turn CW∗[W

−1] into
an additive category.

There are even more differences. For instance, the algebraic derived category satisfies certain
conditions that turn it into a triangulated category, which not happens in the topological case.
So, we can ask if there exists some other class of topological entities that satisfy the conditions
in Table 2.1, but for which the previous differences disappear.

The required class of spaces must be given by a family of based topological spaces X = (Xn),
indexed over Z, together with homotopy equivalences σn : ΣXn → Xn+1 and, therefore, together
with equivalences ΩXn+1 ≃ Xn. This looks very similar to the notion of Ω-spectrum used to
define a generalized cohomology theory in the Section 1.2. The only difference is that the Ω-
spectra used there are indexed over N, but a priori there is no reason to restrict to such cases.
Because of this, the extended sequences also will be called spectra. Therefore, the main idea is to
repeat the construction done with CW-complexes replacing them with spectra.
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For instance, in order to maintain the similarity with the cochain maps we define a morphism
between two spectra X and Y as being a spectrum map, i.e a sequence of continuous maps
fn : Xn → Yn commuting with the equivalences σn : ΣXn → Xn+1 and δn : ΣYn → Yn+1, in the
sense that fn+1 ◦ σn = δn ◦Σfn. The corresponding category will be denoted by Spec. Now, we
can define functors

πSn : Spec→ Set by πSn (X) = lim
k
πn+k(Xk),

which assign to each spectrum its nth stable homotopy group. Therefore, here we also have
distinguished morphisms: the stable weak equivalences, given by the morphisms between spectra
that induce a isomorphism in each stable homotopy groups. Localizing with respect to this
distinguished class we have the stable derived category Spec[W−1] and the corresponding weak
homotopy theory is also well behaved, evidently stable and, indeed, additive. Therefore, it is
expected the existence of an abstract language describing stable abstract homotopy theory
which unifies unbounded homological algebra and stable homotopy theory.

Highering

In the last section we concluded that there are good reasons to believe that there are back-
ground languages more abstract than categorical language. Now, the central question is: how to
build them? Recall that set theory is simpler than category theory, which means that classical
logic is less abstract than categorical logic. Thus, formalizing the passage from set theory to
category theory we can iterate such categorification process to get languages which are more and
more abstract, as presented in the following diagram:

set theory
(classical logic)

+3 category theory
(categorical logic)

+3 more abstract theory
(more abstract logic)

+3 · · · .

In order to get some feeling about this categorification process, notice that a set contains less
information than a category. Sets are composed of a unique type of information: its elements.
Categories, on the other hand, have three kinds of information: objects, morphisms and composi-
tions. Thus, the passage from set theory to category theory can be characterized by the “addition
of information layers”. Therefore, it is expect that the passage from category theory to another
more general theory can also be characterized by the addition of information layers.

In other words, it is expected that the entities described by this more abstract theory will be
composed not only by objects, morphisms and one composition, but also by morphisms between
morphisms which can be composed in two different ways. Thus, if we call such entities of 2-
categories, adding another layer of information we get 3-categories, and so on. So, the previous
diagram can be translated as

set theory
(classical logic)

+3 category theory
(categorical logic)

+3 2-category theory
(2-categorical logic)

+3 · · ·

We will try to formalize the categorification process in the next chapters. After we do this,
we can ask if the theory obtained by categorifying category theory really is more abstract. More
precisely, we can ask if such “higher category theory” admits the very abstract notion of “higher
Kan extensions”, generalizing the usual Kan extensions and, therefore, generalizing the usual
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notions of limits and colimits, which includes pullbacks and pushouts, products and coproducts,
equalizers and coequalizers, and so on.

Recall that the notion of Kan extensions was obtained by applying the Weakening Principle.
Therefore, in order to define higher Kan extensions we need first of all to develop some “Abstract
Weakening Principle”. But the classical Weakening Principle relies precisely on the fact that
we have a notion of “mapping between functors”. In the higher categorical language this means
precisely that Cat is indeed a 2-category! But in an 2-category we have a notion of mapping
between morphisms, so there is expected to exist a similar principle. More generally, we expect
to get the following

Abstract Weakening Principle: any concept internal to an n-category defined using only
commutative diagrams of k-morphisms can be weakened by requiring that such diagrams commutes
only up to (k + 1)-morphisms.

Such principle allows us to define, for instance, the notion of “weak limit” in any 2-category.
Recall that limits in C corresponds to commutative diagrams of morphisms, so that if we have
the notion of 2-morphisms we can replace such commutativity by the existence of a 2-morphisms
between the underlying morphisms. But what we are trying to get is not only a notion of “weak
limit”, but a notion of “higher Kan extension”. For the classical Kan extensions we need a 2-
categorical structure in Cat. We have an intuitive notion of n-functor between n-categories: it is
a rule preserving not only objects and morphisms, but also each k-morphism, with 1 ≤ k ≤ n. So,
we can build a usual category nCat of all n-categories. These “higher Kan extensions” should be
diagrams of n-functors commuting up to some higher morphism. Therefore, showing that nCat

is indeed a (n+ 1)-category we can then apply the Abstract Weakening Principle to commutative
diagrams of n-functors, producing the required notions of higher Kan extension.

2.4 Modelling

Many times in this text we said that more abstract background languages tend to help us in
the axiomatization problem of Physics. In the last section, on the other hand, we presented an
intuitive process that transforms any mathematics in a more abstract version of it: the categori-
fication process. So we can ask if such process has a real effect in the axiomatization problem. In
the present subsection we will try to convince the reader that such an effect does indeed exists.
In fact we will show that in categorifying a theory of particles we get a theory describing not only
particles, but also strings.

Warning. Up to this moment we do not have a full formalization of the categorification process,
so that what will be done here is only to give motivations to the introduction of higher categorical
methods in Physics.

We start by observing that in the modern abstract viewpoint, there are two kind of physical
theories: classical theories and quantum theories. Both are based on the notion of abstract motion
of a certain collection of p-dimensional objects, generically called p-branes. Such motion is given
by a manifold of dimension p + 1 which is interpreted as the time evolution of the system of
p-branes. The number of connected components of this manifold describes the number of branes
existing in the system.
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In the most general view, a classical theory deals with possible ways to materialize the abstract
motion Σ in some ambient M . This materialization is given by distinguished smooth maps
ϕ : Σ → M , called configurations of the system. The choice of these distinguished maps is
generally made by giving a functional S : Map(Σ;M) → R, called the action functional, and
looking for the configurations that minimizes it. On the other hand, quantum theories can be
understood as ways to represent the abstract motions in terms of linear data (as vector spaces and
linear transformations). In other words, they are ways to do representation theory of manifolds.

We will discuss classical and quantum theories in more details later. At this moment, we will
focus on the abstract motions. So, let us examine some cases in more detail.

Example 2.7 (motion of particles). When p = 0, p-branes are particles. In such case, the
abstract motion Σ of a particle system is a one dimensional manifold usually called worldline.
Such manifolds may or may not have boundary. In both cases, each connected component of Σ
(say Σi) is determined by the classification of one dimensional manifolds. Indeed, if a component
is compact, then it must be S1 or [0, 1], while if it is not compact then it must be R or some
interval as (0, 1] or [0, 1). The interpretation in each situation is:

• a component diffeomorphic to S1 corresponds to an abstract periodic motion. The corre-
sponding configurations (which are maps ϕ : S1 →M) are just loops on M ;

• a component diffeomorphic to R describes an abstract eternal motion. The corresponding
configurations are paths on M ;

• for a component diffeomorphic to some interval we have particles moving for s certain finite
time inerval. The corresponding configurations are also paths.

Now we observe that, for p > 1, there is no complete classification of (p + 1)-manifolds
up to diffeomorphism, so that we cannot do a similar analysis. Nevertheless, there is a natural
class of abstract motions Σ for each p: the (p + 1)-manifolds Σ which are cobordisms between
p-manifolds. There are many reasons to consider this class of abstract motions. We list some of
them:

1. every worldline is a cobordism . By the discussion in the previous example, each worldline is
a collection of circle and intervals (finite or not) which, in turn, can be seen as cobordisms:
[0, 1] is a cobordism between 0 and 1, as well as (0, 1] is a cobordism from ∅ to 1 and, finally,
the circle S1 can be seen as a cobordism between empty set manifolds. This indicates that
looking at motions of p-branes given by cobordisms is the natural extension of motions of
particles;

2. boundary conditions. As briefly commented, classical theories are generally given by the
action functional S, which assign to any configuration a real number. From the classi-
cal viewpoint, not all of these configurations can be observed in nature, only those which
minimize S. Minimization problems can be usually considered by some variational calculus
approach, so that the extremization condition is described by a system of partial differential
equations. In order to solve these equations it is natural to require some boundary condi-
tions, which implies that the whole abstract motion has a boundary and, therefore, can be
naturally regarded as a cobordism. Such boundary conditions are often of Dirichlet type,
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so that when working with p-branes, the boundaries (or eventually its image under some
configuration ϕ : Σ → M , which are exactly where the boundary conditions are satisfied)
are usually called D-branes (“D” of Dirichlet);

3. holography. There is another reason, more speculative, for using cobordisms in physical
theories. Presently there are examples (such as AdS/CFT correspondence) suggesting the
existence of a duality, called the holographic principle, which asserts that a physical theory
in some domain is determined on the boundary of this domain by another theory. We will
discuss this in more details in the next chapter and in other parts of the text.

There is also a purely mathematical motivation to the use of cobordisms instead of arbitrary
manifolds: it is the classification problem of manifolds. As commented above there is no complete
classification of smooth p-manifolds up to diffeomorphism for p > 1. On the other hand, as
discussed in the first chapter, the Thom theorem give us a complete classification of manifolds
up to cobordisms. Indeed, recall that there is a spectrum MO (the Thom spectrum) for which
we have an isomorphism

πSn (MO) ≃ Iso(Cobn). (2.4.1)

The left-hand side is simply the nth stable homotopy group of the Thom spectrum, while the
right-hand side is the set of cobordism classes between n-manifolds. But the Thom theorem is a
depper result. Recall that both sides of the expression (1.2.3) have an N-graded abelian group
and there are graded products that turn them into graded rings. Let Iso(Cob) be the graded
ring obtained from the cobordism categories. It is natural to ask if there is some more general
category Cob whose set of isomorphisms classes are precisely the graded ring Iso(Cob). Because
Iso(Cobp+1) ⊂ Iso(Cob), certainly this category must contain cobordisms between manifolds of
arbitrary dimension.

For example, the most obvious approach to define Cob is by considering it as being the
category whose objects are arbitrary manifolds, whose morphisms are cobordisms and whose
compositions are gluing. Recall that cobordisms can be defined only between manifolds of the
same dimension. Therefore, in this attempt in defining Cob there will be morphisms between
two manifolds M and N only when they have equal dimension. In particular, we can compose
only cobordism of the same dimension. On the other hand, the empty set ∅ can be regarded
as a manifold of any dimension, so that any manifold can be considered as a cobordism ∅→ ∅.
This implies that for arbitrary manifolds M and N (even having different dimensions) we can
take the composition between M : ∅→ ∅ and N : ∅→ ∅, which is a contradiction.

The problem with this attempt in defining Cob is that the different manifold structures
that can be introduced on ∅ are set on the same categorical level. Now, recall the intuitive
notion of n-category presented in the last section. They are composed of objects, 1-morphisms,
2-morphisms, and so on, up to n-morphisms. This seems to be the natural language to place
manifolds of different dimensions on different levels. Indeed, let M be a cobordism between
(n − 1)-manifolds M0 and M1. The manifolds M0 and M1 can also be viewed as cobordisms
between (n−2)-manifolds, which in turn can be viewed as cobordisms between (n−3)-manifolds,
etc. This suggests that for each n we can build a n-category Cob(n) whose objects are just
0-manifolds, whose 1-morphisms are 1-manifolds that are cobordisms between 0-manifolds, and
so on, up to the n-morphisms which are cobordisms between (n− 1)-manifolds.
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The table below makes explicit the structure of the (n− 1)-category of cobordisms and of the
n-category of cobordisms. Looking at it we see that we can move from Cob(n−1) to Cob(n) by
adding one more layer of information. Therefore, this is a manifestation of the categorification
process discussed in the last section. But recall that a cobordism between p-manifolds is also
interpreted as a fundamental abstract motion of p-branes. This means that Cob(p) is a category
describing the abstract movements of each n-brane for n ≤ p. So, we conclude that in categorifying
a theory which describes n-branes, for n ≤ p, we get a theory describing n-branes, for n ≤ p+ 1.
Particularly, categorifying a theory of particles we get a theory describing not only particles, but
also strings!

Cob(n− 1) Cob(n)

0-manifolds 0-manifolds
1-cobordisms 1-cobordisms

...
...

(n− 2)-cobordisms (n− 2)-cobordisms
(n− 1)-cobordisms (n− 1)-cobordisms

???? n-cobordisms

Table 2.2: Categorifying cobordism category

Classical

The discussion above shows that string theories can be viewed as categorifications of particles
theories. Consequently, it is expected that the fundamental aspects of particle physics can be
categorified in order to produce fundamental aspects of string physics and, more generally, of
p-brane physics. But recall that there are two flavors of physics: classical and quantum. Cat-
egorification should preserve these flavors in the sense that fundamental aspects of classical or
quantum physics of particles are respectively categorified to classical or quantum aspects of string
physics.

Le us analyze first the implications of categorification in classical physics. The consequences
in quantum physics will be discussed in the next subsection. In the classical context, we have
the following dichotomies in particle physics which we then could try to categorify:

1. charge-force dichotomy. Recall that in the study of classical electromagnetism, two parti-
cles can interact electromagnetically only if they have electric charge. This is a mani-
festation of a general fact: to any fundamental force corresponds a fundamental charge and
two particles can interact iff the corresponding charge in non trivial.

2. force-field dichotomy. The electromagnetic force is mediated by a vector field: the electro-
magnetic field. More precisely, the electrically charged particles create an abstract entity
(the electromagnetic field) which permeates the whole space. This entity is sensitive only
to other electrically charged particles and, in the presence of one of them, both particles
make a perturbation (a wave) in the field, which travels from one particle to the other at
the speed of light. Such a perturbation carries information from one particle (say energy
and linear momentum) and when it arrives at the other the information carried by the
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wave is transferred to it. The electric force is precisely a measurement of the difference
between the initial and the final energy/momentum. This is indeed the manifestation of
another general fact: any charged particle is the source of a vector field and the force is just
a measurement of infinitesimal changes in the state of a test particle in the presence of such
field.

The first of those dichotomies clarifies when two particles can interact and the second says how
this interaction happens. They are the basis of particle physics and, together, they justify why
the Standard Model for particle physics (which is a theory describing three of the four interactions
that presently are supposed to be fundamental) is a gauge theory. This type of theory will be
discussed in detail in the chapters 11-13. However, let us say a few more words about them.

Electromagnetism is a classical theory and, therefore, as commented later, the configurations
of this system corresponds to embeddings Σ→M of a 1-dimensional manifold (the worldline of
a charged particle) into an ambient space. The second dichotomy above says that the interaction
between charged particles is mediated by a vector field (i.e, the section of some vector bundle)
defined on the whole space. This space is just the ambient space M in which the motion of
the charged particle is realized. Therefore, the electromagnetic interaction is described by a
vector bundle E over M . The force, on the other hand, can be measured by just embedding a
charged particle in M and by analysing the infinitesimal effect produced by the sections of E.
Mathematically, this infinitesimal effect can be described by the curvature of some connection
on the bundle E. A gauge theory is just a theory about connections on general bundles, so that
electromagnetism is an example of a gauge theory.

Having clarified this fundamental aspect of particle physics we can return to our discussion
about the role of categorification in physics. If gauge theories are the basis of particle physics,
it is expected that higher gauge theory (i.e categorified gauge theory) lies on the foundations of
p-brane physics. But gauge theory is about connections on bundles, so that higher gauge theory
must be about higher connections on higher bundles, as illustrated in the following table.

particle physics =⇒ p-brane physics

particle =⇒ p-brane
gauge theory =⇒ higher gauge theory

bundle =⇒ higher bundle
connection =⇒ higher connection
geometry =⇒ higher geometry

Table 2.3: Categorifying gauge theories of particles

Being “higher” versions, these concepts are supposed to be described not only by category
theory and geometry, but by higher category theory. So, particularly, it is expected that prob-
lems will occur when trying to describe gauge aspects of p-branes using only categorical language
and classical geometry. Furthermore, it is also expected that these problems can be solved by
considering categorified versions of the classical geometrical concepts.
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Quantum

Here we will analyze the effects of categorification in quantum physics. We recall that a
quantum field theory of p-branes is a functor U : Cobp+1 → VecC. In particular, a quantum
theory of particles is a functor U : Cob1 → VecC. In the categorification process, categories
lift to 2-categories and functors lift to 2-functors. On the other hand, as was discussed later,
categorifying Cob1 we get Cob(2), so that it is expected that the categorification of a quantum
theory of particles produces a 2-functor U : Cob(2) → 2VecC taking values in some 2-category
of vector spaces.

We observe that the resulting functor is not a quantum field theory of strings in the usual
sense. Indeed, such quantum theory is defined on Cob(2) instead of on Cob2. Therefore, it
is not only about strings, but also about particles (which is an usual effect of categorification).
Therefore, when we categorify a quantum field theory for particles we get an extended quantum
field theory for strings.

In the last subsection we concluded that we must use higher category theory in order to
describe the classical aspects of interacting string theory. On the other hand, it should be
observed that we can talk about quantum theories (a 1-categorical concept) of strings without
problem. These are simply the usual functors U : Cob2 → VecC. However, the categorification
process reveals that extended quantum field theories (a higher categorical concept) tends to be
a more natural object. So, we can ask: what is the correct notion of quantum theory? We present
some points in favor of the extended quantum theories:

1. quantization. As will be commented in the next chapter (specially in Section 3.2), it is
natural to expect the existence of a process, called quantization, which assigns to any
classical theory of p-branes a quantum theory (in the usual sense) of p-branes. The existence
of such a process will be discussed in chapters 15-16. There we will see that some examples
of quantized theories are, hiddenly, extended quantum theories;

2. coherence. Another fundamental question in physics is: what is the shape of the fundamental
objects of nature? this question is really difficult to answer, because in physics we cannot
use inductive arguments, as will commented in Section 3.1. Now, suppose that we are
studying the foundations of physics. When working in this problem with the canonical
1-categorical notion of quantum theory, certainly we need to know the answer to the above
question, because the usual quantum field theories are about p-branes for a fixed value of
p. On the other hand, an extended theory of p-branes is defined on Cob(p + 1), which
takes into account all k-branes with k ≤ p. Therefore, if we know an upper value of p
for which any l-brane, with l ≥ p, is not a fundamental object, then the theory defined
on Cob(p + 1) will describe the foundations of physics without necessity of answering the
above question. Concretely, there are many reasons to believe that p-branes, with p ≥ 2,
are not fundamental entities. Therefore, particles or strings are the only candidates for
fundamental objects of nature and the winner is determined answering the above question.
In the canonical approach to quantum theories we will then need to decide between those
defined on Cob1 or Cob2, but in the extended approach both are unified in a unique
category Cob(2), so that we do not need to decide between particles or strings.

3. invariants. In Section 1.2 we saw that functors are natural sources of invariants. Therefore,
being functors, the canonical quantum field theories of p-branes can be used to get invariants
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of p-manifolds, for a fixed p. On the other hand, an extended quantum field theory is
defined on Cob(p + 1) and, therefore, it can be used to get invariants for all k-manifolds,
with k ≤ p.

4. classification. Mathematically, the above point reveals that the extended theories are more
powerful. On the other hand, being more complex objects, it is natural to expect that
the extended field theories will be more difficult to build than canonical quantum field
theories. But surprisingly, such extended theories are generally much simpler to describe
than the usual theories! In fact, for any value of p, every extended quantum field theory
U : Cob(p+1)→ C is completely determined by its value on the trivial 0-manifold with a
unique point! This very interesting fact is usually known as the Cobordism Hypothesis and
was first conjectured by Baez and Dolan in [20]. A sketch of the prove in the general case was
given by Lurie in [124] and some clarifications was presented in [216]. A more concrete proof
of the p = 1 case was given by Schommer-Pries in [180]. Interesting reviews/expositions
are [74, 29, 191, 201, 76]. A rough idea of the Lurie’s proof is presented in Appendix B.

These points will become much more clear along the text. Indeed, in Chapter 14 we will insist
on working with the canonical 1-categorial concept of quantum theory, but the constructions and
the results obtained will admit a natural extension to the extended higher categorical context.



Chapter 3

Insight

In the previous chapters (specially in Section 2.3) we considered the consequences produced
in physics by changes in logic. More precisely, we analysed in some detail the arrow logic ⇒
physics. But recall that the relation between logic and physics is doubly directed, meaning
that we also have an arrow physics ⇒ logic, given by the physical insight. In this chapter
we will present some (almost) concrete examples of this influence of physics on the foundations
of mathematics. More precisely, we will look for situations in which physical insight can be
effectively used to do naive math and, therefore, to produce conjectures. Succinctly, we will
give some realizations of the following sequence:

physics
insight

physical +3 logic +3 naive
math

+3 conjectures . (3.0.1)

The present chapter is divided in three sections. This means that we will give three kinds
of realizations of the above sequence, each of them based on some physical principle coming
from the connection between physics and ontology. The first kind concerns certain dualities in
string theory and the physical insight corresponding to them will produce conjectures about the
existence of high nontrivial relations between different areas of mathematics.

The second kind of examples is based on the the fact that inductive arguments cannot be
used in order to do physics (i.e, in physics any inductive argument is falsifiable). If on one hand
this fact clarifies the complexity of physics, on the other it gives a strategy to build conjectures.
Indeed, because inductive arguments are always falsifiable we can only make use of incomplete
induction, which produces conjectures about the extension of a partially true sentence.

Recall that in the previous chapter we discussed that more abstract background languages
give more powerful tools to unify different physical laws. But we did not give any real reasons to
believe in the existence of some unifying theory. Here, as an application of incomplete induction
we will see that these reasons really exist. Especially, we will conjecture the existence of a theory
(called theory of everything) describing the whole physics and being connected to the other
known physical theories by only three mechanisms: as effective theories, by compactification and
by effective compactification. In this section, also by making use of incomplete induction we will
conjecture the existence of a quantization process, assigning to any classical theory a corresponding
quantum theory.

In the third section we give another example of conjecture, also coming from physical insight.
But, differently of the conjectures presented in the other two sections, immediately after stating

87
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it we prove it to be false! This conjecture is about the existence of a mathematical equivalence
between two different presentations of the notion of interaction between particles: the internal
interactions and the external interactions. Its failure have very nice consequences in mathematics,
as the existence of modern invariants computing exotic smooth structures. We end the chapter
extending these analyses to the context of p-branes and giving good reasons to believe that
p-branes with p ≥ 2 are not the correct building blocks of nature.

In a sense if Section 1.2 could be understood as a crash course on Algebraic Topology, the
present chapter can be understood as a crash course on String Theory (especially, in its conse-
quences for mathematics). Therefore, string theory can be seen as a machine producing interesting
mathematical conjectures.

Remark. The implications of String Theory in mathematics that will be presented here are
very abstract (or philosophical). There are, however, more concrete implications. Some of them
include: an easy proof of the Atiyah-Singer index theorem for the case of Dirac operators [5, 79,
80], construction of new quantum invariants for knots [213, 160] and the construction of higher
nontrivial examples of exotic manifolds [212, 189, 190] generalizing those given by Donaldson
[58, 75]. Notice that each of these concrete implications are about geometry. Therefore, they
appear at the geometric realization of sequence (3.1), as presented below. This is why they are
not discussed in the present chapter.

physics
insight

physical +3 logic +3 naive
math

+3 conjectures
realization +3 theorems .

3.1 Dualities

Recall that in the last chapter we presented a naive idea concerning a process (the cotegorifi-
cation process) which transforms any mathematical concept into a more abstract version of it.
We would like to reinforce it: the categorification process constructs new concepts. These new
concepts are only abstract definitions which must be realized by examples. Evidently, a given
concept can be realized by two different examples. On the other hand, there is no reason why
there should be some relation between two examples realizing the same categorified concept. In
fact, the only a priori relation between them is the fact that they realize the same definition.

For instance, let us consider the classical concept of monoid. This is just a set X endowed
with an associative operation ∗ : X×X → X and with a distinguished neutral element e ∈ X. The
categorification of this concept is obtained by adding one layer of information, which corresponds
to promoting sets to categories, functions to functors and distinguished elements to distinguished
objects.

So, the categorification of the concept of monoid produces a new concept (i.e, a new defini-
tion): the concept of strict monoidal category. This is a category C endowed with an associative
bifunctor ∗ : C ×C → C together with a distinguished object 1 ∈ C behaving as a “neutral el-
ement” for ∗. But notice that the associativity of an operation is described by a commutative
diagram, so that the associativity of the bifunctor ∗ in a strict monoidal category will correspond
to a commutative diagram in Cat. Now, recall that Cat is a 2-category, so that the Weaken-
ing Principle applies. This means that we can weaken the concept of strict monoidal category
by requiring associativity only up to natural isomorphisms. The result is the concept of weak
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monoidal category.
Let us search for examples realizing this new categorified concept of weak monoidal cate-

gory. The category Set of sets endowed with the cartesian product bifunctor ×, which assigns to
any pair of sets its cartesian product, and to any pair of functions f : X → Y and g : X ′ → Y ′ the
new function f×g : X×X ′ → Y ×Y ′, given by f×g(x, x′) = (f(x), f(x′)), is an example of weak
monoidal category (any unit set can be used as a distinguished object). Similarly, the category
VecR of real vector spaces is a weak monoidal category when endowed with the tensor product ⊗.
Notice that these realizations of the weak monoidal category concept are not equivalent. Indeed,
the equivalence between Set and VecR would imply, for instance, that the tensor product and
the cartesian product of two spaces are isomorphic, which actually is not the case: if V and W
are spaces of respective dimensions n and m, then V ×W has dimension n+m while V ⊗W has
dimension n ·m.

Recall that when categorifying a theory of p-branes we get a theory of (p + 1)-branes. In
particular, when we categorify a theory of particles we get a theory of strings. More precisely,
categorifying the concept of particle physics we recover the concept of string physics. Therefore,
as was the case with the categorified concept of weak monoidal category, it is natural to expect
that the categorified concept of string theory could be realized by many examples, each of them
possibly lying in a different area of mathematics, which a priori need not be related. On the other
hand, notice that each of these realizations for string theory will describe the same kind of physics.
But physics is connected with ontology, so that two theories cannot be physically distinguished
when both reproduce the same correct empirical results. In our context, this means that if there
are two realizations of the string theory concept reproducing the same correct empirical results,
then they must be equivalent in some sense! This allow us to enunciate the following:

Conjecture: different physically coherent realizations of the abstract concept of string theory
(and, therefore, the different areas of math described by them) should be related in a nontrivial
way.

Now, natural questions concern the existence of such physically coherent string theories and
the validity of the above conjecture for them. As will be discussed with more detail in chapters
11-13, there are at least five such nice string theories, called Type I, Type II A, Type II B,
SO(32) Heterotic and E8 × E8 Heterotic string theory. Surprisingly, such theories are indeed
related by nontrivial isomorphisms called T -duality and S-duality, as presented in the diagram
below (the dotted arrows correspond to indirect relations, obtained composing the other arrows).
Furthermore, there are good reasons to believe that these are the unique coherent string theories.
For instance, they are the only ones for which we have quantum anomalies cancellations, as will
be discussed in chapters 11-13 and 14-16. For details, see also [??,??].

E8 × E8−Heterotic
indirect +3❴❴❴❴❴❴ ❴❴❴❴❴❴

✤JT

T−dualiy

✤
�

Type II A
✤JT

T−dualiy

✤
�

Type I

S−duality $,◗
◗◗◗

◗◗◗
◗◗◗

◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

indirect
2:♠♠♠♠♠♠

♠♠♠♠♠♠

SO(32)−Heterotic
S−dualiy

+3 Type II B

(3.1.1)
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Holography

Because of the connection between physics and ontology, we cannot use inductive arguments
to conclude that some sentence is true. Indeed, There is no a enumerable set of “fundamental
experiments” under with we can apply induction, getting information on all experiments, because
there exists nonenumerable independent physical variables which could be analysed. In other
words, in physics every inductive argument is falsifiable. This reveals the complexity underlying
the empiric nature of physics. For instance, we cannot use the veracity of particular cases to
conclude the validity of the general case: even if a certain sentence agree with one million of
experiments, this does not means that it will agree with all existing experiments. But in order to
discard a sentence it is enough to build one experiment for which the prediction of the sentence
is not correct.

We notice, on the other hand, that if a sentence agrees with many reliable experiments,
then we can say that it is effectively true in a certain domain: the domain contemplated by the
experiments correctly described by the sentence. If this domain is sufficiently dense, then it is
natural to conjecture the possibility of extending it, as presented in the following diagram:

logic

certain
domain

true
assertion

2:♥♥♥♥♥♥♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥♥♥

inclusion
+3 whole
physics

incomplete
induction

KS✤
✤
✤

✤
✤
✤

In other words, in physics we cannot get theorems using induction. Therefore, using (in-
complete) induction we will get conjectures. So, incomplete induction is a source of concrete
realizations for the sequence (3.1). Consequently, in order to get mathematical conjectures we
must search for partially true physical facts.

Example 3.1 (source at the boundary). As commented later, the physical systems are generally
described by fields defined on a (p+1)-manifold Σ with boundary (a cobordism). The manifold Σ
is the abstract motion of a p-brane and the fields correspond to the existence of some interaction.
Many of these systems have a peculiar behavior: when restricted to the boundary ∂Σ, they are
totally determined by certain source. Some examples to have in mind are the following:

1. gauge theory. When analysed together, the charge-force and the force-field dichotomies
imply that any gauge theory (for particles) has the required behavior. Indeed, charge-force
dichotomy says that a particle can interact iff it is charged. On the other hand, the force-
field dichotomy says that such interaction is determined by the background field, which
itself is generated by the charged particle. In other words, the interaction have a source:
the charged particles (which lie at the boundary of the abstract motion Σ);

2. black holes. As will be discussed in more details in chapters 11-13 gravitational theories
(as, for instance, General Relativity) are generally described by considering a Lorentzian
4-manifold (Σ, g), called spacetime, which is supposed to satisfy certain conditions on the
curvature (for instance, the Einstein’s equation). In any Lorentzian manifold we have three
kinds of geodesics γ: those for which g(γ′, γ′) is positive, zero or negative, being respectively
called time-like, null-like and space-like geodesics. Black holes are special gravitational
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systems characterized by having a region H ⊂ Σ such that any null-like geodesic crossing the
boundary ∂H will remain inside H forever1. The boundary ∂H is called the event horizon
of the black hole. But many fundamental aspects of the black hole, say its thermodynamic
aspects, are determined simply by the area of its event horizon. This means that the black
hole system is partially described by another system at the boundary: its event horizon.

Thanks to the previous example, the sentence “any physical theory defined on Σ is determined
on the boundary ∂Σ by another theory” is true in some domain. We usually say that the theory
on Σ is the bulk theory and that the theory in ∂Σ is the source theory. We also say that they are
holographically dual. Therefore, applying incomplete induction, we get the following conjecture,
called holographic duality principle:

Conjecture: any physical theory of p-branes (and, therefore, any area of mathematics describing
it) developed over a manifold Σ has some holographically dual theory of (p − 1)-branes lying at
the boundary ∂Σ.

Many important realizations of this conjecture are given by examples of AdS-CFT correspon-
dence. Such examples involve certain “compactification process” and “effective limits”, as will be
briefly explained in the next section.

3.2 Limiting

In the last section we concluded that to any partially true physical sentence we can associate
(via incomplete induction) a mathematical conjecture. But this correspondence is not stable in
the sense that if we make an experiment (outside of the initial domain of the sentence, of course)
which does not agree with the predictions of the sentence, then incomplete induction immediately
fails and the corresponding conjecture tends to fail too.

We can consider, for instance, a partially defined physical theory (i.e, one that is defined
only for certain abstract motions Σ) as presenting a partially true physical sentence. In this
case, saying that the domain of veracity of the sentence cannot be enlarged corresponds to saying
that the domain of definition of the theory cannot be enlarged. There are several examples of
physical theories in this situation. For instance, newtonian mechanics describes very nicely the
phenomena in the everyday. On the other hand, the classical experiments in the beginning of the
20th century reveals that newtonian mechanics does not hold when considering particles whose
mass is very small. One way to get an insight into this fact is by recalling Newton’s second law,
which says that the total force acting on a particle is given by F = m · a, where m is the mass.
Then, in the limit m → 0 there is no effective contribution of any force and the Newton’s law
breakdowns. Therefore, incomplete induction fail for newtonian mechanics and, consequently, to
the corresponding mathematical conjecture associated to it.

But if a physical theory is correct in a certain domain D, then it is natural to expect that
any other theory replacing it must reproduce the initial theory in some limit converging to D.
Indeed, in that limit both theories will describe the same physical phenomena and, therefore,
following an argument used later, it is expected that they must be equivalent. More precisely,

1Null geodesics are generally interpreted as being light rays. Therefore, a black hole solution is characterized
by having a region where light never scapes, meaning that they really are “black”.
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if the new theory has domain D′, we expect that there is a one parameter family Σµ ∈ D
′, say

with µ ∈ R, such that D′ → D when µ→ 0.
As will be discussed now, there are at least three ways to realize these limits: as effective

theories, by effective compatifications and by compatictifications of the ambient space.

Effective Theories

If the initial theory is about p-branes, let is suppose that the enlarged theory is also about
p-branes. The parameter µ then can be consider as being a certain “fundamental scale” of the
abstract world of p-branes. It can be, for instance, the energy scale. We say that the oldest
theory is an effective theory of the newest. Concrete examples to have in mind are the following:

Example 3.2 (quantum mechanics). As discussed above, incomplete induction for newtonian
mechanics fails in the limit m → 0. Quantum mechanics, on the other hand, is a new theory
which behaves very well in this limit. Both theories are about particles, so it is expected that
newtonian mechanics be an effective theory of quantum mechanics. Indeed, the fundamental
parameter in quantum physics is the reduced Planck constant ~ and in the limit ~→ 0 we recover
newtonian mechanics.

Example 3.3 (relativistic theories). In classical electrodynamics, any massive charged particle
moving in some electromagnetic ambient space cannot reach the speed of light. This is a theoreti-
cal fact that agrees very well with the experiments. On the other hand, newtonian mechanics does
not predict such phenomena, so that this theory also fail in another limit: when the particles are
moving very rapidly, i.e when v → c, where c is the speed of light predicted by electrodynamics.
This reveals that there should exist another theory describing classical electrodynamics and hav-
ing newtonian mechanics as an effective theory. This is the particle relativistic field theory, which
has the velocity of light c as an internal parameter. In the limit c → ∞ we recover newtonian
physics.

Example 3.4 (quantum field theories). Both quantum mechanics and relativistic field theory
have newtonian mechanics as an effective theory. But these theories describe different types
of phenomena (quantum mechanics applies to particles with very small mass while relativistic
theories to very fast particles). Therefore, it is expected that both theories fail in the description of
particles which are simultaneously small and fast. Indeed, presently there are particle accelerator
experiments (as those given by the Large Hadron Collider, also known as LHC) that do not
agree with the quantum mechanics nor with the relativistic field theory predictions. Therefore,
there should exist another theory having both quantum mechanics and relativistic field theory as
effective theories. Particularly, it is expected that the theory should be some kind of “quantum
relativistic field theory” and simultaneously a “relativistic quantum theory”, meaning that the
diagram below is commutative. This type of theory is what is canonically called a quantum field
theory. One important example is the Standard Model for particle physics which agrees very
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well2 with the LHC experiments.

particle quantum
field theory

c→∞

��

~→0 +3 particle relativistic
field theory

c→∞

��
quantum
mechanics ~→0

+3 newtonian
mechanics

(3.2.1)

Example 3.5 (beyond Standard Model). The standard model, on the other hand, predicts that
certain particles (called neutrinos) are massless, which do not coincide with actual experiments.
Therefore, it is expected that there exist extended theories having the Standard Model as an
effective theory. They describe the so-called “particle physics beyond the Standard Model”. There
are several models for such theories as, for instance, the Standard-Model Extension theory of
Kostelecky and Samuel (see, for instance, [??]);

Example 3.6 (gravity). In the above examples, gravity has not appeared. This is why gravity is
considered as being a fundamental force which is not described by the Standard Model. Indeed,
presently there is no a complete approach to “quantum particle theory of gravity” for a reason
that will become more clear in Section 3.3. But from viewpoint of classical theories we can
study gravity perfectly. Particularly, the most tested and accepted model is given by General
Relativity (or some of its gauge extensions), which is a relativistic field theory having an additional
internal scale G (the Newton’s gravitational constant). In the limit G → 0 the gravitational
interaction is decoupled from the other forces, meaning that we have the additional arrow below.
Its composition with the limit c→∞ is the so called newtonian limit and it is the canonical way
to recover Newton’s universal law of gravitation from General Relativity.

particle
gravity

newtonian limit

/7
G→0 +3 particle relativistic

field theory

c→∞ +3 newtonian
mechanics

Example 3.7 (string theory). The abstract motions of string theory are generally cobordisms
between one dimensional manifolds and, therefore, are cobordisms between intervals or circles.
When looking only at the first case (i.e, when the shape of the fundamental strings are supposed
to be intervals) we say that we are doing open string theory ; in the second case we say that we are
doing closed string theory. When both cases are considered simultaneously we say that we have
an open-closed string theory. It is expected that any string theory becomes equipped with an
internal parameter α′, called Regge slope parameter, and that any model including closed strings
describes some gravity theory in the limit α′ → 0. In other words, it is supposed that any closed
and open/closed string theory has a theory of gravity as an effective theory. Indeed, each of
the five models of string theory commented later actually describes closed strings, so that it is
expected to have at least five good models of string gravity. We observe that, in principle, such
models are different of those discussed in the last example: the effective theory obtained taking
α′ → 0 is about strings while the theory of the last example is about particles. On the other

2for certain experiments this agreement is of the order of nine decimal cases! See [??].
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hand, as will be discussed in the next section, they have “under the surface” the same flavor.

closed string
theory

α′→0 +3 string
gravity

Effective Compactification

In this approach, if the initial theory is about p-branes, then the extended theory must be
about (p+1)-branes. A theory of (p+1)-branes has (p+2)-cobordisms between (p+1)-manifolds
as abstract motions. Some of these cobordisms Σ : Σ0 → Σ1 are between manifolds of the form
Σi ≃ Θi × Xi, where Θi is a 1-manifold and Xi is a p-manifold. Therefore, Θi is either an
interval or a circle, so that we can assign to it a parameter ℓp+1 (taking the role of µ), called
the (p + 1)-brane scale, which captures the “length” of Θi: if it is an interval, then ℓp+1 can be
regardered as its measure, while if it is a circle, then ℓp+1 is its radius.

Observe that in the limit ℓp+1 → 0 the manifold Θi collapses to a point, so that Σi collapses
to the manifold Xi and the cobordism Σ collapses to a cobordism between p-manifolds. This
reveals that in the limit we recover the initial theory of p-branes having as abstract motions some
of the collapsed cobordisms. We then say that the p-brane theory was obtained from effective
compactification (or compactification of the worldvolume) of the (p + 1)-brane theory. In our
context, the most important example is the following:

Example 3.8 (from strings to particles). Applying the above procedure to a theory of strings we
get a theory of particles. But by the examples discussed in the previous section, string theories
also have gravity theories as effective theories. Therefore, it is natural to expect that the diagram
(3.2) can be enlarged to the following diagram (the segmented arrows corresponds to effective
compactification limits):

string
theory

ℓs→0 !)❏
❏

❏
❏

❏

❏
❏

❏
❏

❏

α′
s→0 +3 string

gravity

ℓs→0 +3❴❴❴❴❴ ❴❴❴❴❴ particle
gravity

G→0
��

string
theory

ℓs→0
��
✤
✤
✤

✤
✤
✤

ℓs→0 +3❴❴❴❴❴ ❴❴❴❴❴ particle
gravity

G→0
��

quantum
field theory

c→∞

��

~→0 +3 relativistic
field theory

c→∞

��

quantum
field theory

c→∞

��

~→0 +3 relativistic
field theory

c→∞

��
quantum
mechanics ~→0

+3 newtonian
mechanics

quantum
mechanics ~→0

+3 newtonian
mechanics

(3.2.2)

But now, an important fact is that the fundamental string length ℓs is related to the Regge
slope parameter α′ by ℓ2s = α′, so that taking the effective limit α′ → 0 we are automatically taking
the effective compactification limit ℓs → 0, clarifying that the first diagram above collapses to the
second. This fact has a very intuitive meaning: in the limit α′ → 0 when the energy of the strings
come down, the strings themselves behaves like particles and, therefore, the classical theories of
gravity for particles (like General Relativity) appear naturally. In other words, differently from
what happens with the Standard Model, the models for string theory describe not only quantum
theory of particles but also gravity!
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Compactification

There is a third approach that can be used in order to connect an enlarged theory with the
smaller theory in a limiting way. It differs from the other approaches in the following point: while
the others are constructed independently of the ambient space, here this dependence is explicit.
The fundamental aspects of string theory are obtained by making use of this new approach, so
this is a good reason to say that string theory is a background dependent theory.

Our starting point is a theory of p-branes moving inside some compact ambient space M ,
say of dimension n. This means that we are considering certain configurations ϕ : Σ → M .
Each such configuration induces a theory on ϕ(Σ). Now, suppose we are given another theory
on the product M × ϕ(Σ). If µ is the volume of M (which is well defined because the manifold
is assumed compact), in the limit µ → 0 we have that M becomes trivial and the theory on
M × ϕ(Σ) reproduces the theory induced on ϕ(Σ) from the initial theory of p-branes. We then
say that the p-brane theory arises from the theory defined on M × ϕ(Σ) as a compactification on
M .

Generally this compactification is modeled by the so called Kaluza-Klein mechanism. It
applies when the theory on the product M × ϕ(Σ) is some flavor of gravity. The resultant
theory on ϕ(Σ) is gravity coupled with a gauge theory and with a scalar field called dilaton.
This will be discussed in more details in chapters 11-13. At this moment, let us see how such
compactification process, together with effective limits and effective compactifications, allow us to
produce a concrete version (called AdS5−CFT4 duality) of the holographic principle conjectured
in the section 3.1.

Example 3.9 (AdS5−CFT4). We start by considering a gauge theory of open-closed strings with
configurations ϕ : Σ→M , defined on some cobordism Σ and taking values in a ten-dimensional
ambient space M . Then we have the image ϕ(∂Σ) which we we assume ends in some D3-brane
S (which actually is a 4-brane). The gauge theory on the ambient spaces induces a theory on
the D3-brane. The string theory has the Rugge slope parameter α′ and in the low energy limit
α′ → 0 it becomes a gravity theory in ten dimensions. So, in this limit we have the gauge theory
of the 4-brane and the ten dimension gravity theory on the ambient space. Such gravity theory is
generally a black brane theory, which in the near-horizon limit has geometry AdS5 × S5. In this
limit, the D3-brane stays at the asymptotic boundary of AdS5. Kaluza-Klein compactification
on the five sphere S5 then gives a gravitational theory on AdS5 which must reproduce the initial
gauge theory on the D3-brane. This means that the gravitational system AdS5 is determined
by a four dimensional gauge theory at its boundary, which is a manifestation of the holographic
principle.

As an additional example of the role of compactification in string theory, recall that in Section
3.1 it was predicted the existence of dualities between different realizations of the abstract notion
of string theory. We commented that there are at least five such realizations which actually are
related by the so-called S-duality and T-duality. Now we can say with little more detail what
T-duality is about:

Example 3.10 (T-duality). We start by observing that, as presented in diagram (3.2), T-duality
appears only between string theories of the “same flavor”: we have T-duality only between Type II
A and Type II B string theories, as well as between SO(32)-Heterotic and E8×E8-Heterotic string
theories. The reason is the following: Type II and the Heterotic flavors are about oriented strings,
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meaning that the worldsheet covered by these strings are oriented 2-manifolds. The two different
orientations of produces theories about the same string with different symmetries, justifying
the existence of two kinds of Type II theories and two kinds of Heterotic theories. T-duality is
precisely about the equivalence of the theories of the same string with different orientations
when compactified on some torus (thus, T-duality can also be called Toroidal Duality). More
precisely, starting with Type II A string theory on an ambient space M × TkR, where TkR =
S1R1
× ...×S1Rk

is the k-torus with radius R1, ..., Rk, taking the low energy limit α′ → 0 and finally
compactifying the resulting effective theory on the k-torus we get a certain theory of gravity on
M coupled to a gauge theory. On the other hand, starting with Type II B string theory on the
ambient space M ×Tk1/R and doing the same process, we get another gravity theory on M . Now,
T-duality states that both theories are the same.

Theory of Everything

From the beginning of this text we have been talking about the unification/axiomatization
problems of physics. We discussed, for instance, that the development of more and more abstract
background languages gives more and more powerful tools to work in these problems. But up to
this point we have not looked at the following very natural questions:

1. Are there reasons to believe that the problems have some solution?

2. If this solution really exists, in which sense the unified theory describes the actual physical
laws which agree very well with many classes of experiments?

Now,notice that the examples discussed in the previous subsections reveals that the sentence
“any physical theory has a limiting extension” is partially true. Consequently, by the arguments of
the last section, incomplete induction produces a corresponding mathematical conjecture which
gives an answer to both questions above:

Conjecture. There exists a maximal theory (described by a very abstract mathematical language)
of which any other known physical theory can be obtained by compactification methods or as an
effective theory.

Such a hypothetical physical theory is called theory of everything. The example 3.8 reveals that
string theory unifies gravity and the Standard Model, so that it unifies all forces that presently
are considered as being really fundamental. Furthermore, by the discussion at Section 2.3, string
theory must be described by a Higher Category Theory, meaning that (as suggested by the above
conjecture) the background language used to describe it is very abstract. Therefore, string theory
seems a very nice candidate to a theory of everything.

On the other hand, there is a strong reason to believe that string theory is not the correct
model to the everything theory. Indeed, there are at least five coherent models of string theory
and we would like to have a unique coherent model to the theory of everything. Evidently, if
such a model really exists, then starting from it and doing effective limits and compactifications
we need to recover each string theory model.

The most immediate strategy is to try to consider it as being some coherent theory having
2-branes (instead of strings, which are 1-branes) as fundamental objects. Such theories arise from
categorification of the string theories and, therefore, are described by abstract languages, making
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it clear that they really are canonical candidates. On the other hand, as will be discussed in the
next section, there are reasons to believe that a such coherent theory of 2-branes does not exist.

If 2-brane theories are not the solution, how to proceed? Recall that the coherent models to
string theory are connected by dualities. Some of these dualities are indirect in the sense that
they are obtained by composition of other dualities. So, we can try to search for a theory which
turns such indirect dualities into direct dualities. One of such a hypothetical model to the theory
of everything is called M-theory.

Quantization

Recall the concept of effective theories: we say that a theory with domain D is an effective
theory of some other theory with domain D′ when there is a parameterized family of abstract
motions Σµ ∈ D′ such that D′ → D when µ → 0. So, the effective theories are produced
starting with a theory and looking for a new theory which reproduces the initial theory in some
limit. Previously were given many realizations of this idea. In some of them, the parameter µ
were precisely the reduced Planck’s constant ~. They include the newtonian mechanics as an
effective theory of quantum mechanics and particle relativistic field theory asan effective theory
of particle quantum field theory.

Newtonian mechanics and relativistic field theory can be seen as classical theories in the sense
that they are determined by selecting certain embeddings ϕ : Σ → M . On the other hand,
quantum mechanics and particle quantum field theory really are quantum theories, meaning that
they are defined by some functor Cob1 → VecC. Therefore, these examples reveals that the
sentence “for any classical physical theory corresponds a quantum physical theory which have
the initial theory as an effective theory on the Planck’s constant” is partially true. Incomplete
induction then gives the following conjecture:

Conjecture. There exists a process assigning to each classical theory a quantum theory param-
eterized over ~, in such a way that the classical theory can be recovered in the limit ~→ 0.

This hypothetical process is called a quantization process. Its existence/uniqueness will be
analysed in chapters 15-16. At this moment we will only comment on the mathematical interest
in int. Let us start by recalling that, being functors defined on cobordism categories, quantum
theories are natural sources of invariants. On the other hand, classical theories have a very
geometrical nature and, consequently, are very easy to build. Therefore, this quantization process
will allow us to produce powerful invariants from easily constructed classical theories. In other
words, from a mathematical viewpoint, quantization is a “machine” producing invariants for
smooth manifolds.

3.3 Interactions

In Section 2.4 we discussed some important aspects of particle physics. We saw, for instance,
that to any fundamental interaction corresponds a certain fundamental charge and two particles
can interact iff they have non-zero charge. But now we observe that given a charged particle,
there are two kinds of interactions that can be considered: internal interactions and external
interactions. Indeed, assuming that the given particle is interacting with another particle, we
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can build two types of systems: one in which both particles are included and other in which
the particles are analysed separately. In the first case we say that the interaction between the
particles is internal to the system. In the second we say that each particle is subjected to an
external interaction determined by the other particle.

In other words, recalling that charged particles can be viewed as the sources of the interactions,
a system has internal interactions when it contains the sources of the interaction, while it has
external interactions when it does not contain the sources of the interaction.

We commented that the canonical way to model physical systems is by considering abstract
motions: these are (p + 1)-manifolds Σ (generally cobordisms) representing a possible time evo-
lution of a p-brane. Certainly, this model contemplates the external interaction. Indeed, by the
force-field dichotomy, having realized Σ into some ambient space M by a map ϕ : Σ → M , we
can model the interaction of the particle with worldvolume ϕ(Σ) as being mediated by a section
of a certain bundle E → M . The interaction is external because it is not a property of the
abstract motion Σ, but of the environment M .

Now we would like to observe that at least for particles the previous model for physical
systems does not contemplate internal interactions. In fact, being internal, such interactions
should be totally described by the abstract motion Σ (which up to this moment was assumed to
be a 1-manifold). Typical examples of internal interactions between particles are the scatterings,
which include, for example, collisions. But the worldline underlying this kind of interaction has
a vertex (the point at which the particles scatter). Closely to the vertex, the worldline is like
an “X” and, therefore, it cannot be a manifold (recall that Diff is poor of limits and colimits)
contradicting the supposed smooth structure of the abstract motions.

The paragraph above clarifies that in order to model systems of particles with internal
interactions we need to work with a different approach, i.e., we must allow that the abstract
motions of a system of interacting particles can be objects that are more general than smooth
manifolds. But, what kind of objects? This will depend on the model chosen to describe the
internal interactions. One useful model is the following:3

1. first we consider two systems describing the particles separately. In them, each particle
follows an abstract motion (say Σ1 and Σ2) which is supposed to be a genuine 1-manifold,
as before. This means that Σi can be circles, lines or intervals. In our model, such abstract
motions are called the propagators of the particles;

2. we then select a distinguished point in each Σi, corresponding to the point at which the
interaction between the particles will occur. More precisely, instead of working with smooth
1-manifolds, we assume that Σ1 and Σ2 are based 1-manifolds. A fundamental interaction
between a particle with abstract motion Σ1 and other particle with abstract motion Σ2 can
be described by gluing such manifolds at the distinguished point. The result generally is
not a manifold, but a pointed space with a smooth singularity, here called the fundamental
vertex (or first order interaction). Notice that in principle we can glue Σ1 into itself, which
characterizes a theory describing particles with self interactions;

3. finally, we build a new system, now including both particles, whose abstract motion Σ
is given by fundamental vertexes, fundamental vertexes glued onto fundamental vertexes

3We will assume that we are trying to describe a system in which two particles interact, because the abstraction
to the case of systems containing more than two particles will be immediate.
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(called second order interactions), and so on. Examples of possible worldlines are presented
below. The first picture corresponds to a first order interaction, the second and the third
to a second order interaction and the fourth to a third order interaction.

Figure 3.3.1: Some internal interactions

Note that in each of the above pictures we have a unique type of line (a continuous line).
This is because we pictured interactions between two particles with the same properties. When
considering interaction between particles with different properties, the propagator of each of
them is usually represented by different lines (say one continuous and the other dotted, as in the
diagram below), emphasizing that the particles interacting have different properties.

Figure 3.3.2: Particles with different properties interacting

Now, we ask: in this model of internal interactions, what kind of structure the abstract
motions have? They cannot be manifolds, of course, but at first glance we can try to consider
them as one dimensional orbifolds (i.e, as objects Σ modeled over some quotient space R/G
by a finite group G), which are the natural generalizations of manifolds to incorporate smooth
singularities (the singularities live precisely at the fixed points of the G-action on R). However,
this does not work, because in principle we may have interactions of arbitrary orders (instead of
up to a fixed finite order), as below.

   ...

...

...

...

Figure 3.3.3: Particles with different properties interacting
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Therefore the next strategy is trying to characterize the worldlines as being entities modeled
over quotients R/G by groups that are not necessarily finite. In some situations this can be
effectively done, as in the case of gauge theories. Indeed, in them we have a distinguished group:
the gauge group. The propagators are then labelled by representations of such groups over a
finite complex space and the fundamental vertex are intertwiners between representations (see,
for instance, [27, 17]).

On the other hand, in the general case there is no way to do this. But there are no obstructions
to consider each abstract motion as being a graph, called the Feynman graph of the interaction.
If the initial abstract motions Σ1 and Σ2 are assumed to be oriented 1-manifolds, then the
resultant graph is indeed an oriented graph (a diagram) and in such cases we talk about Feynman
diagrams.

A theory of interacting particles that can be described by the external perspective is usually
called full or (non perturbative) and a theory described by the internal perspective is called
perturbative. So, we conclude that Feynman diagrams model perturbative theories of interacting
particles.

But now, notice that independently of the model that is fixed, in principle we can move
from a system with internal interaction to a system with external interaction by simply isolat-
ing the particles. Reciprocally, if we are in a system with external interaction we can turn it
into a system with internal interaction by enlarging the system to include the sources of the
interactions. This suggests that both perspectives are physically equivalent and, therefore, this
also suggests a underlying equivalence between the mathematical models describing external and
internal interactions, motivating us to enunciate the following conjecture:

Conjecture. In any model, full and perturbative theories of particles are mathematically equiv-
alent.

Topological Defects

Let us analyse the last conjecture. In order to do this, recall that our model of full theories is
about theories with external interaction. This means that the theory does not contain the source
of the interaction, so that it is a property of the ambient space in which the abstract motions will
be realized. Furthermore, the possible realizations ϕ : Σ→M (which in the last instance will give
the possible interactions) are those that minimize a certain action functional S : Map(Σ;M)→ R.
More precisely, this minimization process produces a partial differential equation whose solutions
are the physically interesting configurations (i.e, the physically interesting ways to realize the
external interaction).

On the other hand, the selected model of perturbative theory involve internal interactions.
This means that the theory contains the sources of the interaction, so that they are totally
described by the abstract motions (i.e, before the realization in some ambient space). In special,
the discussion in the last subsection reveals that in this approach the abstract motions cannot
be assumed to be 1-manifolds: generally they are only graphs. These graphs have fundamental
pieces: the propagators and the vertex. The graphs describing the possible abstract motions are
exactly those obtained by gluing the fundamental pieces, which allows us to organize them into
an increasing sequence parametrized by the order of the interaction. This sequence is called the
perturbation sequence.
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We notice that (in the above models) any full theory really induces a perturbative theory.
More precisely, any full theory (represented by some action functional) induces a canonical per-
turbation sequence. Indeed, let S be an action representing a full theory. Generally it can be
written in the form S = S0 + Sint, where the first term is the theory of the particle without the
external interaction (called the free theory) while the second part is the external interaction. We
usually introduce a parameter λ in Sint (called coupling parameter) quantifying the power of the
interaction. Therefore, we can define a family of full theories Sλ = Sfree + λSint, so that in the
limit λ → 0 we recover the theory without interaction. This means that the free theory can be
seen as an effective theory of the interacting theory.

Now, consider eSλ as a function of λ. Expanding it on Taylor’s series around λ = 0 we get an
expression like

Sfree + λSint +
λ2

2!
S2
int +O(λ

3), (3.3.1)

called the perturbative expansion of S, suggesting that the construction of a perturbation sequence
is one in which the nth order interactions should be built from the terms involving nth power
of the coupling parameter λ. Particularly, the propagators and the fundamental vertexes of the
corresponding perturbative theory should be respectively determined by Sfree and by Sint. Such
a correspondence really exists and is given by the Feynman rules [207, 148, 215], which can be
summarized in the following diagram:

full theory
(external interaction)

Feynman rules +3 perturbative theory
(internal interaction)

In order to test the conjecture described in the last subsection we must ask if the above
arrow may has an inverse. More precisely, we must ask if the perturbative expansion of a given
action S by (3.3.1) can describe all configurations ϕ : Σ → M minimizing S (corresponding to
the surjectivity of the above arrow) and if the action is uniquely determined by its perturbative
expansion (meaning that the arrow is injective). However, observe that if instead of S we consider
another perturbed action

S := S +
1

λ
Sdef = Sfree + λSint +

1

λ
Sdef ,

then both S and S will have the same perturbative expansion and, therefore, they will define the
same pertubation theory. Since in the limit λ → 0 the function e

1
λ and each of its derivatives

goes to zero, we conclude that the arrow in the previous diagram cannot be injective.
We assert that this arrow also cannot be surjective. Indeed, in order to prove this, we first

observe that the term Sdef is generally constructed in the following way. Let C be the space of
all configurations minimizing S. It can be endowed with a canonical topology, so that we have a
notion of proximity between two configurations. There are some minimizing configurations that
are special: those which also minimize the interacting part Sint (these are the so called vacuum
configurations). Let Cvac ⊂ C be the subspace of these vacuum configurations. In many cases
Cvac is not contractible, so that there are “topologically disconnected vacuums”, meaning that
πn(Cvac) 6= 0 for some n. Generally we also have a distinguished trivial vacuum solution ϕo. The
other vacuum solutions topologically disconnected to ϕo are the topological defects. With this in
mind we can consider Sdef as being simply Sint restricted to these defects. Usual situations are



CHAPTER 3. INSIGHT 102

those given by gauge theories with spontaneous symmetry breaking in which important examples
of topological defects are given by the magnetic monopoles in classical electromagnetism [??]
and instantons in nonabelian Yang-Mills theory [??]. Now, it is clear that not all configurations
minimizing S have to minimize S. Indeed, the vacuum solutions connected to ϕo minimize Sint
but not Sdef . But both actions have the same perturbation expansion, so the arrow in the previous
diagram really cannot be surjective.

Conclusion. The discussion above reveals that, at least for the mathematical models describing
full and perturbative theories developed here, the conjecture presented in the last subsection is
wrong!

In this chapter we discussed many examples of mathematical conjectures arising from physical
insight. Every one of them (except the last) is believed to be true. So, we can ask: which is
the impact in mathematics given by the failure of the last conjecture? Surprisingly, the impact
is very nice! Indeed, in some interesting cases the moduli space Cdef of topological defects is
smaller enough in order to accommodate a finite-dimensional smooth structure, whose homol-
ogy/cohomology classes provides powerful invariants for smooth manifolds, which can be used,
for instance, to produce nontrivial examples of exotic manifolds4. In the context of nonabelian
Yang-Mills theory, we have the instantons and its moduli space originates the Donaldson’s in-
variants, for which Donaldson got his Fields Medal [58, 75]. On the other hand, in the context
of super Yang-Mills theory we have even more powerful invariants: the Seiberg-Witten invari-
ants (the original articles of Seiberg and Witten are [212, 189, 190]. For nice expositions see
[136, 149, 150, 177, 157] and for a relation with the called Gromov-Witten invariants (which arise
in symplectic topology) see [204]).

Renormalizability

In the last subsection we learned that full theories of particles really contain more math-
ematical information than perturbative theories. We would like to generalize this conclusion for
theories of p-branes. This is not immediate, because in principle we only developed a model for
internal interactions between particles. So, our starting point is to define what is a perturbative
theory of p-branes.

Recalling that string physics can be seen as being a categorification of particle physics, it is
natural to define the perturbative theories of strings as being the categorification of the model
for perturbative theories of particles. Iterating this process we will them get a model for the
perturbative theories of arbitrary p-branes. As discussed, in a system of particles with internal
interactions, the abstract motions generally do not have the structure of manifolds, but are gen-
erally graphs obtained following a certain recipe. So, we can get a model to internal interactions
between strings by categorifying this recipe, as presented below:

1. we start by considering two systems describing the strings separately. Each string follows
an abstract motion (say Σ1 and Σ2) which is assumed to be cobordisms between genuine
1-manifolds, here called the propagators of the strings;

2. we then select arbitrary boundary components in each Σi, corresponding to regions in which

4A general perspective in the construction of these invariants can be seen in [205] around the pages 13-23.
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the interaction will occur. The first order interactions are obtained by gluing the cobordisms
Σi at the distinguished boundaries. We may have self interactions, as happened previously
in the case of particles;

3. finally, we build a new system whose abstract motions Σ are those given by first order
interactions, second order interactions, and so on.

Therefore, the situation for strings seems very similar to the situation for particles. For
instance, we can also organize these “higher-dimensional Feynman diagrams” in a perturbation
sequence, where the number of loops is replaced by the number of holes (the genus) of the abstract
motion Σ, as pictured below. The first is an example of diagram for closed string theory. The
second is for open string theory and the third is about open/closed string theory.

Figure 3.3.4: Feynman diagrams for strings

Now, recall that our model of full theories applies not only to particles, but equally well
to strings. This means that a full theory of strings is represented by an action functional S
defined in some configurations ϕ : Σ→M , where Σ is a 2-cobordism. The physically interesting
configurations are the critical points of S, meaning that they are solutions of a system of
partial differential equations obtained from variational calculus applied to S. Such equations
also admit topological defects, so that the conjecture present in the last subsection also fail in
the string context. Therefore, full theories of strings contain more mathematical information
than perturbative theories.

We notice, on the other hand, that in order to solve a system of partial differential equations we
generally require some boundary conditions, as Dirichlet/Neumann conditions. These conditions
are constraints to the possible submanifolds S ⊂M containing the boundaries ϕ(∂Σ). But these
submanifolds give information on the ambient space and, therefore, are special features of the
external interaction. Thus, it as happened for the topological defects, such data is not captured
by the perturbation sequence. But for Dirichlet boundary conditions this data describes precisely
D-branes! This reveals that D-branes (and, therefore, black branes) also are non-perturbative
effects.

Despite the similarities between full/perturbative aspects of particle and string physics, we
observe that there is a crucial difference between them. Indeed, while particles interact at a vertex
(which is a smooth singularity of the abstract motion), strings interact by gluing at boundaries,
which is a well defined smooth process.

On the other hand, when working with open and open/closed strings, the Feynman diagrams
have a kind of singularity not appearing in the diagrams for particles. Indeed, the abstract motions
of strings are cobordisms between 1-manifolds and when we have open strings or open/closed
strings we need to consider cobordisms between intervals or between intervals and circles. These
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have smooth singularities as presented, for instance, in the last picture. So, this fundamental
difference between perturbative theory of particles and strings can be summarized in the following
table:

singularities type⇒
fundamental objects ⇓

cobordism interactions

particle – ×

closed strings – –
open strings × –
open/closed strings × –

Table 3.1: Smooth singularties of particles vs strings

We concluded that both perturbative theories for particles and for strings have smooth sin-
gularities, but of different origins. We can then ask: what is the effect of such singularities in
the physical theories? Recall that in the last section we conjectured the existence of a quanti-
zation process assigning to any full classical theory a corresponding quantum theory. As will be
discussed in Chapter 15, we can try to realize this quantization process by first passing to the
perturbative theory as in the following diagram:

full
theory

perturbative

expansion
+3 perturbative

theory

quantization +3 quantum
theory

The idea is the following: given an action S we build a perturbative sequence of Feynman di-
agrams. We then define the corresponding quantum theory by “summing” over all such diagrams.
The quantum theory is well defined when each term of the sum is finite (the series itself need
not converge. Actually, the presence of topological defects and other nonperturbative effects, as
D-branes, implies that such series must diverge [60]). It happens that generally the smooth sin-
gularities in the diagrams (specially those arising from loops) give infinite contributions, meaning
that the term at the sum corresponding to a diagram with smooth singularities is infinity and,
therefore, quantization cannot be applied to it.

On the other hand, many of these infinities coming from smooth singularities can be absorbed
by redefining the parameters of the theory. A theory in which all infinities coming from singular-
ities can be absorbed is called fully renormalizable. In every theory we have only a finite quantity
of parameters, so that a given theory is fully renormalizable only if each of its Feynman diagrams
contains a finite amount of smooth singularities. As shown in the last table, these singularities
appear in two types: on the vertex of interactions between particles and on cobordisms between
open or open/closed strings. So, when working with particles, we need to analyse only the first
kind of singularities. On the other hand, when working with strings we need to analyse only the
second kind.

As discussed in previous subsections, a general Feynman diagram for particles may have
arbitrary smooth singularities when λ → ∞. This does not mean that each particle theory is
nonrenormalizable, but it is only a clue about the existence of this kind of theories. A similar
situation happens with a general Feynman diagram between open strings: in each diagram
we have a finite number of cobordism singularities (see the last pictures), but we are gluing
singular cobordism into singular cobordisms, so that such singularities propagate and when λ→
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∞ they can grow arbitrarily. Therefore, we cannot say that every theory of open strings is
nonrenormalizable; we can only believe in the existence of a theory with this property.

In closed string theories, on the other hand, the propagators are well defined cobordisms and
the interactions are given by gluing these cobordisms, so that there are no smooth singularities.
This suggests that this kind of theory is fully renormalizable. The classical theories of gravity,
considered as particle theories, generally are nonrenormalizable. This means that particle theory
does not give a nice way to talk about “quantization of gravity”. But, as commented later, closed
strings generally describe theories of gravity and, by the above discussion, they tends to be fully
renormalizable. Therefore, string theory is a nice approach to quantization of gravity.

Now, let us analyse what happens in open/closed string theories. As in the case of open strings,
the Feynman diagrams for such theories only have cobordism-type singularities. But there is a
difference: an open/closed string theory admits cobordisms between open and closed strings. This
means that a general propagator in such a theory is given by a cobordism between an interval
and a circle. These cobordisms always have an uncountable amount of smooth singularities,
so that the Feynman diagrams for such theories also have uncountable singularities (see the last
picture). Therefore, a general open/closed string theory is nonrenormalizable. Notice that this
not mean that every open/closed string theory is nonrenormalizable. Indeed, the uncountable
smooth singularities appear exactly when open strings are interacting with closed strings. So,
if we consider open/closed string theories in which we only have interactions open-open and
closed-closed strings, the uncountable singularities disappear. In other words, the well-behaved
open/closed string theories are those that can be divided into two sectors: the open string sector
and the closed string sector.

Finally, similar analyses can be done for theories of p-branes. In them, the propagators are
p-cobordisms with a distinguished boundary, the interactions are given by gluing p-cobordisms at
the distinguished boundary, and so on. Therefore, as for strings, we only have smooth singularities
of cobordism type. But here we do not have a complete classification of the possible boundaries,
so that there is no satisfactory way to divide general theories into open p-brane theories, closed
p-brane theories and open/closed p-brane theories. Even so, we still have a good notion of open
p-branes: they are those diffemorphic to the cartesian product I1 × ... × Ip between p intervals,
being a direct analogy to the string (i.e, p = 1) case. Therefore we can talk about open p-brane
theories: those in which the propagators are cobordisms between products I1 × ... × Ip with a
distinguished boundary, the interactions are given by gluing, and so on.

For p = 1, the open brane I is perfectly smooth. For p = 2, the open brane I1 × I2 looks
like a rectangle and, therefore, have finite (four, indeed) singularities lying at its vertexes. On
the other hand, for p = 3 (and similarly for p > 3) the open branes are cubes and not only its
vertexes, but each point in its edges is a smooth singularity. This reveals that any theory of
open p-branes, with p ≥ 3, is nonrenormalizable. Now recall that the propagators in a theory of
branes are cobordisms. So, for a given open p-brane I1 × ... × Ip we have the trivial cobordism
I1× ...× Ip× [0, 1]. But this trivial cobordism is an open (p+1)-brane. In particular, the trivial
cobordism associated to an open 2-brane is an open 3-brane. Consequently, any theory of open
2-branes containing trivial propagators is nonrenormalizable. This discussion can be summarized
in the following table:
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singularity type singularities behavior nonrenormalizable?

interactions infinite when λ→∞ ???
closed 1-cobordisms — no

open p-cobordisms
infinite for p ≤ 1and λ→∞

uncountable for p > 1
??? for p≤1
yes for p>1

open/closed 1-cobordisms uncountable yes

Table 3.2: Nonrenormalizability of (p > 1)-branes

In the last section (at the discussion about everything theories) we commented that there are
good reasons to believe that p-branes, with p ≥ 2, are not the correct “building blocks” of nature.
One of the reasons is the nonrenormalizability criterion discussed here...
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Prologue

Recall that our approach to Hilbert’s sixth problem is based in five steps. After selected a
background language, the first of them is to study the relation between the naive mathematics
produced by the language and the foundations of physics, as schematized in the following diagram.

naive
math

�&
❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋

abstract
language

7?✇✇✇✇✇✇✇✇✇

✇✇✇✇✇✇✇✇✇

physicsks

The next step is to lift from naive mathematics to axiomatic mathematics by making use of
some model, as below.
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In the first part of the text we discussed that categorical language is a very interesting lan-
guage, but it is not abstract enough in order to axiomatize every physical law. On the other
hand, we saw that under the presence of a hypothetical “categorification process”, categorical
language can be replaced by another language as abstract as we like, suggesting the existence of
the required unifying language.
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This part of the text is devoted to formalize this “categorification process”. We start in
Chapter 4 by categorifying the very simple concept of “monoid” (a set endowed with an associative
operation and with a distinguished “neutral element”). In Chapter 5 we categorify a little more
complex concept: “monoids fulfilling additional conditions”, as commutativity. Finally, in Chapter
6 we test the full power of the categofication process by effectively categorifying the categorical
language.

One time formalized the “categorification process”, in the next part we will be able to build a
lifting from “naive math” to “axiomatic math” in each step of the diagram above.



Chapter 4

Monoids

In very few words, this chapter is about categorification of the classical concept monoid.
We start at the first section by discussing strategies to formalize what is a “categorification
process”. We give two approaches based in other two process: the internalization process and the
enrichment process. In each of them, categorification is something as “internalization in Cat” or
“enrichment over Cat”.

Categorifying the concept of monoid by internalization in Cat we get the notion of monoidal
category which was used at Section 3.1 in order to conjecture the existence of nontrivial isomor-
phism between the mathematical areas describing different models to string theory. On the other
hand, categorifying monoid by enrichement we get an abstract notion of “monoid object”.

The second section is purely devoted to examples. Our main objective there is to clarify that
the categorification process is really very powerful, in the sense that the categorification of a very
simple concept (as the monoid concept) produces a new notion that can be used to unify many
different ideas/results. For instance, there we see that rings, algebras, superalgebras, Lie groups,
and son on, are only different flavors of monoid objects. We also see that the Künneth theorem in
homological algebra can be understood as the assertion that algebraic cohomology is an example
of categorified morphism between monoids.

This chapter ends in the third section, where we outline the proof of the Adam’s theorem,
which says that the unique spheres admitting monoid object structure up to homotopy are S0,
S1, S3 and S7, realized as the space of normalized vectors of the normed algebras R, C, H and
O, respectively. A direct consequence is the classical result that these are the only parallelizable
spheres. The result also imply that only S0 ≃ Z2, S1 ≃ U(1) and S3 ≃ SU(2) can be regarded as
a Lie group.

4.1 Categorifying

In the last chapters we concluded that in order to attack Hilbert’s sixth problem we need to
get more and more abstract languages. Furthermore, we commented that in order to get very
abstract languages it is enough to develop a categorification process, allowing us to pass from
classical concepts to categorical concepts. Ideologically, this process consists in the “addition of
layers of information”. In the present section we will try to formalize this idea. There are at least
two ways to do this, as will be briefly discussed here. They are the following:

110
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1. categorification by internalization;

2. categorification by enrichment.

Internalization and enrichment are themselves processes that attempt to abstract a given
concept. Not all concepts can be abstracted by making use of internalization or enrichment: they
apply only to concepts which can be totally characterized by a collection of commutative diagrams.
The difference between them is what they do with the commutative diagrams in order to return
a new concept.

In more precise terms, the internalization process consists of two steps:

1. characterization of a given concept P in terms of purely categorical structures (objects,
morphisms, limits, colimits, etc), which satisfy certain commutativity conditions;

2. definition of an analogue in any category H that has such structures. We say that the
result is a version of the concept P internalized in H (called the ambient of internalization).

Enrichment is slightly different. Indeed, we can say that enrichment is a certain kind of partial
internalization (or a certain kind of internalization of diagrams). More precisely, enrichment is
also composed of two steps:

1. categorical characterization of the concept P to be enriched (exactly as in the internalization
process);

2. definition of an analogue of P in any category H, here called the enrichment ambient, in
which the commutative conditions make sense.

Remark. Notice that we can internalize a concept only in a category which has the same
categorical properties characterizing the given concept. On the other hand, in principle we can
enrich a concept over a category which does not have these properties.

The process of internalization in Cat and enrichment over Cat corresponds to what were
called above, in the beginning of the section, categorification by internalization and categorifica-
tion by enrichment.

Monoids

The process of internalization and enrichment (and the difference between them) will be clear
after working through an example. So, for instance, let us consider P as being the classical
concept of monoid: a set X endowed with a binary operation ∗ : X×X → X and a distinguished
element e ∈ X such that

(x ∗ y) ∗ z = x ∗ (y ∗ z) and x ∗ e = x = e ∗ x (4.1.1)

for any elements x, y, z ∈ X. Recall that, in order to internalize or enrich some concept, the first
step is always to characterize it in terms of purely categorical information. The binary operation
is a morphism defined in a binary product of Set, so that ∗ admits a categorical characterization.
The distinguished element is the same as a function 1 → X, where 1 is any set with a unique
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element. But 1 is a terminal object in Set, so that the e ∈ X also admits a categorical character-
ization. Finally, the conditions (4.1.1) can be translated into the commutativity of the following
diagrams:

X × (X ×X)

id×∗
��

≃ // (X ×X)×X
∗×id // X ×X

∗

��

1×X

≃
%%❏❏

❏❏
❏❏

❏❏
❏❏

❏
// X ×X

∗

��

X × 1oo

≃
yyttt

tt
tt
tt
tt

X ×X ∗
// X X

. (4.1.2)

Therefore, the concept of monoid can be seen as a collection of categorical information (ob-
jects, morphisms, binary product and terminal object) subjected to certain commutativity con-
ditions, so that the internalization and the enrichment processes applies. Let us analyze each of
them separately.

• Internalization. We only can internalize “monoid” in a category with binary products and
terminal objects (because these are the categorical data used to define the classical concept
of monoid). So, let H be a category with these properties. A monoid internal to H is an
object X ∈ H endowed with a morphism ∗ : X ×X → X from the binary product X ×X
to X and with a morphism 1 → X defined on a terminal object 1 ∈ H, such that the
commutativity conditions (4.2) are satisfied.

• Enrichment. In order to enrich a monoid in H, the category does not need to have binary
products and a terminal object. Indeed, we only need that diagrams (4.2) make sense in
H. This happens when H has some notion of associative product X ⊗ Y (not necessarily
given by the binary product) and some distinguished object I satisfying I⊗X ≃ I ≃ X ⊗ I

(not necessarily a terminal object). Let H be some category with these structures (say with
product ⊗ and distinguished object I). A monoid enriched over H (also called a monoid
object on H) is an object X ∈ H endowed with morphisms ∗ : X ⊗ X → X and I → X
such that the following analogues of diagrams (4.2) hold:

X ⊗ (X ⊗X)

id⊗∗
��

≃ // (X ⊗X)⊗X
∗⊗id // X ⊗X

∗

��

I⊗X

≃
%%❏❏

❏❏
❏❏

❏❏
❏❏

❏
// X ⊗X

∗

��

X ⊗ Ioo

≃
zzttt

tt
tt
tt
tt

X ⊗X ∗
// X X

.

(4.1.3)

For example, the category Cat has binary products and terminal objects. Therefore, the clas-
sical concept of monoid can be internalized in Cat (i.e, the concept of monoid can be categorified
by internalization). The result is called a monoidal category. It is just a category C endowed
with a bifunctor ⊗ : C×C→ C and a distinguished object I ∈ C such that diagrams (4.3) holds.
In other words, a category is monoidal when it has a product (which is associative up to natural
isomorphisms) and a distinguished object behaving as a neutral element up to isomorphisms with
respect to this product (a naive version of this notion was used in Section 3.1).

Now, notice that, by the previous discussion, the concept of monoid can be enriched over any
category with associative product and distinguished object. But these categories are just the
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monoidal categories! Therefore, the concept of monoid can be enriched over any monoidal cate-
gory. This is a manifestation of another principle in category theory: the microcosm principle:

Microcosm Principle: a suitable concept can be enriched over any of its categorifications by
internalization.

The interested reader can read more about this in [21, 125]). We end with two remarks:

1. when defining a monoidal category, the natural isomorphisms

axyz : (X ⊗ Y )⊗ Z ≃ X ⊗ (Y ⊗ Z), xu : X ⊗ 1 ≃ X and ux : X ≃ 1⊗X,

usually called associators and unitors, are part of the definition. This means that in
order to know the whole monoidal structure we need to know explicitly the formula for the
associators and unitors (i.e, it is not sufficient to ensure their existence);

2. generally we work with monoidal categories whose associators and unitors satisfy certain
additional properties, called coherence conditions, which can be translated in terms of the
commutativity of the diagrams below. Maybe the relevance of these conditions will not be
transparent in this chapter, but certainly the reader will be convinced of their relevance at
Section 6.3.

((W ⊗X)⊗ Y )⊗ Z

awxy⊗idz
��

a(w⊗x)yz // (W ⊗X)⊗ (Y ⊗ Z)
awx(y⊗z) //W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z aw(x⊗y)z

//W ⊗ ((X ⊗ Y )⊗ Z)

idw⊗axyz

OO

(X ⊗ I)⊗ Y

xu⊗idy ''◆◆
◆◆◆

◆◆◆
◆◆◆

axiy // X ⊗ (I⊗ Y )

idx⊗uyww♣♣♣
♣♣♣

♣♣♣
♣♣

X ⊗ Y

Morphisms

As the concept of monoid, the notion of homomorphism between monoids also admit a purely
categorical characterization and, thus, can also be enriched and internalized. Indeed, a homor-
phism between a monoid X, say with multiplication ∗ and neutral element e, and other monoid
X ′, say with multiplication ∗′ and neutral element e′, is simply a function f : X → X ′ such
that f(x ∗ y) = f(x) ∗′ f(y) and f(e) = e′. As can be rapidly checked, these conditions can be
translated in terms of the following commutative diagrams, so that the notion of homomorphism
of monoid can be internalized/enriched in/over the same ambient in which the concept of monoid
can be internalized/enriched.

X ×X

∗
��

f×f // X ′ ×X ′

∗′

��

1

e

����
��
��
�� e′

��❄
❄❄

❄❄
❄❄

X
f

// X ′ X
f

// X ′

(4.1.4)
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In the same way that in internalizing the concept of monoid in Cat we get the notion of
monoidal category, when internalizing the notion of homomorphism between monoids in Cat we
get the concept of monoidal functor between monoidal categories. These are functors F : C→ C′

between the underlying categories together with natural isomorphisms1

Fxy : F (X ⊗ Y ) ≃ F (X) ⊗′ F (Y ) and F1 : F (1) ≃ 1′ (4.1.5)

commuting with associators and unitors. By “commuting with associators” here we mean that the
following diagram must be commutative (similar diagram describes commutativity with unitors):

F ((X ⊗ Y )⊗ Z))

F(x⊗y)z

��

F (axyz) // F (X ⊗ (Y ⊗ Z))
Fx(y⊗z) // F (X)⊗′ F (Y ⊗ Z)

id⊗′Fxy

��
F (X ⊗ Y )⊗′ F (Z)

Fxy⊗′id
// (F (X) ⊗′ F (Y ))⊗′ F (Z)

a′
F (x)F (y)F (z)

// F (X)⊗′ (F (Y )⊗′ F (Z))

On the other hand, exactly as the concept of monoid can be enriched in any monoidal category
(producing monoid objects), the same can be done with the notion of homomorphism between
monoids, producing morphisms between monoid objects, whose definition is very suggestive and
characterized by the following diagrams totally analogous to (4.4).

X ⊗X

∗
��

f⊗f // X ′ ⊗X ′

∗′

��

1

e

����
��
��
�� e′

��❄
❄❄

❄❄
❄❄

X
f

// X ′ X
f

// X ′

Therefore, we can build the subcategory Mon ⊂ Cat of all monoidal categories and, for any
monoidal category C ∈ Mon, a corresponding category Mon(C,⊗) of their monoid objects. It
can be show, by a purely diagram chasing, that any monoidal functor F : C→ D maps monoid
objects into monoid objects, so that it induces a functor

FM : Mon(C,⊗)→ Mon(D,⊗′).

4.2 Examples

In this section we give concrete examples of monoids internalized on Cat (i.e monoidal cate-
gories) and monoids enriched over them (i.e monoid objects). Some useful examples of monoidal
functors and morphisms between monoid objects also will be presented.

Example 4.1 (classical monoids). The canonical example of monoidal category is Set endowed
with the cartesian product bifunctor and whose distinguished object is some unit set. The asso-
ciators axyz are given simply by the map assigning to any ((x, y), z) the corresponding (x, (y, z)).
The unitors are the projections (x, 1) 7→ x and (1, x) 7→ x. The monoids enriched over such
monoidal structure are, of course, the classical monoids.

1Instead of requiring the existence of natural isomorphisms, we could required only the existence of natural
transformations. In this case, we would obtain the notion of lax monoidal functors.
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Example 4.2 (topological and smooth monoids). Similarly, we can endow Top and Diff with the
monoidal structure given by product of topological spaces and smooth manifolds. The associators
and unitors are exactly those of the previous examples, except that in the present context they
become continuous/smooth. A monoid object in Top is just a topological monoid : a topological
space X with a structure of monoid such that the operation X×X → X is continuous. Similarly,
the monoid objects in Diff are the smooth monoids: smooth manifolds which also are monoids
with a smooth operation.

The examples above can be generalized: any category C with binary products X × Y and
a terminal object (say 1 ∈ C) has a canonical monoidal category structure, called cartesian
monoidal structure, whose product is given by the binary product bifunctor × : C × C → C

and whose distinguished object is the terminal object. The associativity of × up to natural iso-
morphisms follows from the universality of binary products. Similarly, the natural isomorphisms
1×X ≃ X and X ≃ 1×X also come from universality.

Other examples of cartesian monoidal structure include:

Example 4.3 (categorical monoids). Notice that, Cat being complete, it has a cartesian monoidal
structure. As can be easily verified, the corresponding monoid objects are just the strict monoidal
categories! In other words, the monoidal categories for which the associators and unitors are not
isomorphisms, but indeed equalities.

Example 4.4 (monoid of functors). Recall that if D is a category with some limit, then for any
other category C the corresponding functor category Func(D;C) also has this limit. Specially,
if D becomes endowed with a cartesian monoidal structure, then it induces a cartesian monoidal
structure in each Func(D;C). The monoid objects in this case are functors F together with
natural transformations ∗ : F × F ⇒ F and e : 1⇒ F fulfilling monoid-like diagrams.

Example 4.5 (loop space). We introduced the loop space ΩX as the adjoint to the reduced
suspension functor ΣX. As will be proved still in this section, if this adjoint exists, then for a
large class of spaces it is just the space of loops S1 → X endowed with a very standard topology.
Under this identification, we have canonical continuous applications

# : ΩX × ΩX → ΩX and cst : ∗ → ΩX,

respectively given by concatenation of loops and by the constant loop at the base point of X.
More precisely, for f, g : S1 → X two loops in X, we define

f#g =

{

f(2t), 0 ≤ t < 1/2

g(1 − 2t), 1/2 ≤ t ≤ 1

where here we are taking S1 ≃ [0, 1]/∂[0, 1]. Furthermore, if xo is the base point of X, then
cst(∗) : S1 → X is the constant function at xo. These operations does not give a structure of
topological monoid for ΩX. Indeed, # it is not associative, nor the neutral element property is
satisfied by cst. On the other hand, they are fulfilled up to homotopy. This means that, after
passing to the homotopy category Ho(Top∗), the above operations make ΩX a monoid object
respectively to the cartesian monoidal structure. In other words, ΩX is an example of H-monoid.
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Note that a monoidal functor between cartesian monoidal categories is just a functor preserv-
ing products and terminal objects. Particularly, for any Y ∈ C the hom-functor hY is monoidal,
because covariant representable functors preserve all limits. Therefore, if X ∈ C is a monoid ob-
ject, then for any Y we have that MorC(Y,X) is a monoid in Set. We assert that the reciprocal
is also valid.

Indeed, suppose that X is such that each hom-set MorC(Y,X) has the structure of monoid,
say with multiplication ∗Y and with neutral element eY . Then the rules Y 7→ mY and Y 7→ eY
define natural transformations

m : hX × hX ⇒ hX and e : 1X ⇒ hX

fulfilling monoid-like diagrams, so that hX is a monoid object in the functor category Func(D;Set).
It happens that, by Yoneda lemma (and by the fact that hX ×hX ≃ hX×X), these natural trans-
formations are induced by maps

m : X ×X → X and e : 1→ X

fulfilling the same commutativity conditions. Therefore, they actually define a monoid object
structure in X, as required. Summarizing we have been given a complete characterization of the
monoid objects into a cartasian monoidal category: an object X ∈ C is a monoid iff for any Y
the set of morphisms MorC(Y ;X) is a monoid.

Non-Cartesian Examples

Up to this point we worked out only with cartesian monoidal categories. The next examples,
on the other hand, clarify that there many other classes of monoidal structures.

Example 4.6 (algebraic monoids). Let R be a commutative ring and let ModR be the category
of R-modules. As discussed in Chapter 2, it is a complete category, so that it has binary products
and terminal objects. Therefore, it can be endowed with the corresponding cartesian monoidal
struture. It happens that there is another notion of product between R-modules: the tensor
product. It naturally extends to a bifunctor ⊗ (recall that we have a notion of tensor product
between R-homomorphisms) which is associative up to isomorphisms. Furthermore, for any R-
module X we have R ⊗X ≃ X ≃ X ⊗ R in a natural way, so that ModR becomes a monoidal
category when endowed with (⊗, R). The corresponding monoids are R-modules X together with
R-linear maps X ⊗ X → X and R → X satisfying monoid-like diagrams. Now, recall that we
have an isomorphism

HomR(X ⊗ Y,Z) ≃ BilR(X × Y,Z),

so that a R-linear map defined on a tensor product is the same as a bilinear map. Therefore, a
map X ⊗X → X is precisely a bilinear operation on X. On the other hand, the map R → X
is determined by its action on the unit 1 ∈ R. Concluding, a monoid object on (ModR,⊗) is
equivalently a unital and associative R-algebra.

Remark. The last example reveals that the same category may admit two non isomorphic
monoidal structures. Indeed, we introduced the cartesian monoidal structure and the tensor
product structure on ModR. We would like to observe that this fact is important, but it is
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not a special feature of monoidal category theory. For instance, recall that analogous situa-
tions appear in other areas of math: the same set may have two non-homeomorphic topological
structures, non-isomorphic group structures, etc. On the other hand, monoidal category theory
has a peculiarity. In fact, recall that the associators/unitors also are part of the definition of
a monoidal category. Therefore, the same category may have two different monoidal structures
with the same product, but with different associators/unitors. This property (actually, a
similar property) is fundamental in the study of supersymmetry, as will be discussed in the next
chapter.

The next example generalizes the previous ones.

Example 4.7 (graded monoids). A very similar monoidal structure can be introduced in the
more general category GGradR of G-graded R-modules. Indeed in this case the tensor product
bifunctor is defined on objects and on morphisms by

(X ⊗ Y )g =
⊕

h+h′=g

Xh ⊗ Yh′ and (f ⊗ g)(xh ⊗ yh′) = f(xh)⊗ f(yh′), (4.2.1)

and the distinguished object 1 ∈ GGradR satisfying 1 ⊗ X ≃ X ≃ X ⊗ 1 is just the image
of the free module R under the canonical inclusion2 δ : ModR →֒ GGradR, which assigns to
any module X the trivial G-graded module X condensated at X, i.e such that X0 = X and
Xg = 0 for g 6= 0. If on one hand the monoids on ModR are just associative R-algebras, on
the other the monoids on GGradR correspond to the well known notion of G-graded R-algebras.
There is special interest in the Z2-graded algebras, which are called superalgebras. For instance,
any Z-graded algebra3 induces a corresponding Z2-graded algebra by rewriting its direct sum
decomposition into only two pieces: the odd and the even pieces. For our purposes, a fundamental
example is the following:

• cohomology of ring spectrum. Recall that a generalized cohomology theory is a sequence
of hom-functors in Ho(Top∗) defined by a Ω-spectrum E = (En). In the next subsection
we will prove that the cohomology groups Hk(X;E) are indeed groups, while in Section
5.1 it will be seen that these are not only groups, but indeed abelian groups, so that the
sum H(X;E) = ⊕kH

k(X;E) is a graded abelian group. On the other hand, in Sections
1.2 and 1.3 we used the fact that for some cohomology theories (as ordinary cohomology,
K-theory and cobordism) we can multiply cohomology classes of different degrees, meaning
that H(X;E) is a ring. Exactly as in ModR, where we have a canonical non-cartesian
monoidal structure given by the tensor product ⊗, in Ho(Top∗) we can also introduce
a non-cartesian structure given by the smash product ∧, as will be discussed still in this
section. As discussed in Section 2.3, spectra are the topological version of graded modules,
so that it is expected that ∧ induces a monoidal structure into Ho(Spec) analogously as
⊗ induces a monoidal structure into GGradR. This is really the case, as we will show in
Section 5.3. A monoid into (Ho(Spec),⊗) is called a ring spectrum. The fundamental fact

2We have the following analogy: thinking of a R-module as being a real number and a G-graded module as
being the limit of a sequence of real functions, then the functor δ acts like the rule assigning to any number x ∈ R

the Dirac delta δx centered at x.
3Identical argument holds for N-graded algebras.
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is that for any space X, the functor

[X,−] : (Ho(Spec),∧)→ (ZGradZ,⊗)

which assign to any spectrum E the corresponding graded abelian cohomology group H(X;E)
of X maps ring spectrum into Z-graded Z-algebras. In other words, the cohomology of a
ring spectrum is always a Z-graded algebra and, therefore, a superalgebra. This justify why
we know how to multiply classes in ordinary cohomology, K-theory and cobordism: the
underlying spectra are ring spectra.

Recall that we can consider other graded versions of ModR rather than GGradR; we can
consider the full subcategory GModR ⊂ ModR (in which the morphisms does not need to
preserve the grading, i.e does not need to have degree equal to zero) and the category GDGradαR
of differential graded modules with a given degree α. In both cases, the previous construction can
be effectively done, as will be explained below. More precisely, in each case we can also define a
tensor product bifunctor having a “neutral element”.

Example 4.8 (full case). Let us analyze GModR first. We start by observing that this category
has the same objects as GGradR, while its morphisms differ by the fact that here they are
arbitrary homomorphisms. Therefore, we can define ⊗ identically on objects. In order to define
it on morphisms, recall that arbitrary morphisms between graded modules can be written as a
linear combination of morphisms having degree, so that we can look only to this class of generating
morphism. Therefore, what we need to do is to enlarge the definition of f ⊗ g given above in
order to incorporate morphisms with arbitrary degree. This can be done picking some symmetric
morphism 〈·, ·〉 : G⊗G→ Z2, called a fundamental pairing, putting

(f ⊗ g)(xh ⊗ yh′) = (−1)〈deg(f),deg(g)〉f(xh)⊗ g(yh′) (4.2.2)

and extending it by linearity. For instance, in the case G = Z we can consider the pairing as
being simply the rule taking two integers z, z′ and forming the mod 2 class of z · z′. The monoid
objects of this new monoidal structure are very similar to the G-graded R-algebras, being usually
called by the same name.

Example 4.9 (differential case). Now, let us consider the differential graded situation. We will
work only with chain/cochain complexes, which is the most interesting case for our objectives.
We leave the general case to the reader. So, let (X∗, d) and (X ′

∗, d
′) be two chain complexes of

R-modules. These differ from the Z-graded R-modules by the existence of a map d : X∗ → X∗ of
degree -1 such that d2 = 0. So, the main idea is to define the tensor product (X∗, d)⊗ (X ′

∗, d
′) is

as some mixing of the last two examples: as the usual tensor product of modules (4.2.1) endowed
with the tensor product (4.2.2) of maps d⊗ d′. However, this does not produce a chain complex,
because

deg(d⊗ d′) = deg(d) + deg(d′) = (−1) + (−1) = −2.

Notice that the most simple way to get a morphism of degree -1 by making use of d, d’ and ⊗
is by considering the combination d⊗ id+ id⊗ d′, because the identity map has degree zero. Its



CHAPTER 4. MONOIDS 119

square is zero:

(d⊗ id+ id⊗ d′)2 = (d⊗ id)2 + (d⊗ id) ◦ (id⊗ d′) + (id⊗ d′) ◦ (d⊗ id) + (id ⊗ d′)2

= (d2 ⊗ id) + (d⊗ d′) + (d′ ⊗ d) + (id⊗ d′2)

= (d⊗ d′) + (d′ ⊗ d)

= (d⊗ d′)− (d⊗ d′) = 0,

so that this actually defines a chain complex. The morphisms f : (X∗, d) → (X ′
∗, d

′) between
chain complexes are just morphisms between the underlying Z-graded modules which commute
with the differentials, i.e, such that f ◦ d = d′ ◦ f . It can be seen that the tensor product of two
morphisms of graded modules commuting with differentials d and d′ commutes d ⊗ 1 + 1 ⊗ d′.
Therefore, the tensor product is well defined for chain maps, giving a monoidal structure to
ChR. Analogous construction produces a monoidal structure on the category CChR of cochain
complexes (the unique difference is that now the maps have degree +1 instead of -1). In both
cases the monoid objects are called differential graded algebras. Explicitly, this is a Z-graded
algebra A, say with product ∗ : A⊗A→ A, endowed with a map d : A→ A of degree -1 (or +1,
depending if we are working with chain or cochain complexes) such that d2 = 0 and satisfying
the graded Leibniz rule:

d(x ∗ y) = dx ∗ y + (−1)kx ∗ dy,

where k is degree of y. Examples to keep in mind are the following:

1. de Rham cohomology. The exterior algebra ⊕iΛi(M) of any manifold M has a canonical
differential structure given the exterior derivative of differential forms. Consequently, de
Rham cohomology is not only a graded algebra (as the cohomology defined by a ring
spectrum), but indeed a differential graded algebra.

2. Chevalley-Eilenberg algebra. Recall that a Lie algebra g is a vector space endowed with a
bilinear map [−,−] : g × g → g (the Lie bracket of the algebra) which is anticommutative
and satisfy the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [x, z]] = 0, (4.2.3)

measuring the non-associativity of the bracket. We have a contravariant functor (−)∗ :
VecK → VecK which assigns to any vector space V its dual V ∗ and to any k-linear map a
corresponding dual. So, the bracket induces a dual bilinear operation

[−,−]∗ : g∗ → g∗ × g∗,

here denoted d1, which can be understood as a linear map from4 Λ1(g) to Λ2(g) fulfilling
an additional condition: the Jacobi identity. It happens that the operation

[−, [−,−]] + [−, [−,−]] + [−, [−,−]] : g× g× g→ g (4.2.4)

is itself trilinear and anticommutative, so that its dual defines a map from Λ1(g) to Λ3(g). In
this perspective, the Jacobi identity only says that this map is the null map. The operation

4If the reader is do not know the Grasmann algebra (also called the exterior algebra) of a vector space, see
Example 5.5 for a review.
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above involves a combination of “compositions of the bracket [−,−]”, suggesting that the
dual of (4.2.4) is also a combination of “compositions of d1”. So, there are good reasons to
conjecture the existence of a differential graded algebra structure into the exterior algebra
Λ(g) of g whose differential d is obtained as an extension of d1 and whose condition d2◦d1 = 0
is just the Jacobi identity. Such an algebra really exists: it is the Chevalley-Eilenberg algebra
of g, usually denoted by CE(g).

Example 4.10 (Künneth theorem). Recall that for any ring R we can build the category CChR
of cochain complexes over R. We have a sequence of functors Hk : CChR →ModR, the algebraic
cohomology functors, which can be simultaneously described by a unique functor H : CChR →
ZModR. By the last examples, this is a functor between monoidal categories whose products
are both given by flavors of the tensor product. So, we can search for conditions under which H
becomes a monoidal functor. This means that if X∗ and Y∗ are cochain complexes, then

H(X∗ ⊗ Y∗) ≃ H(X∗)⊗H(Y∗)

and, therefore, the cohomology of the tensor product of the complexes can be known from the
cohomology of the underlying complexes. A fundamental result on homological algebra, usually
called the Künneth theorem, states that this is the case when each Hk(Y∗) is a free R-module,
which happens, for instance, when R is a field. So, the algebraic cohomology functors with
coefficients on a field are monoidal functors.

We end this subsection with a more abstract example.

Example 4.11 (span structures). From a category C with pullbacks we can build another in-
teresting category Span(C). Its objects are just the objects of C, while a morphism between X
and Y is another object Z, called a span, endowed with morphisms X ← Z → Y in C. The
composition between two spans is obtained by the composition of the segmented arrows in the
first diagram below, where the upper segmented arrows comes from the pushout of the contin-
uous lines. We notice that, when defined in this way, Span(C) is not a category, because the
composition is not associative. Indeed, the composition is obtained from pullbacks, but pullbacks
are defined only up to isomorphisms. The problem can be remedied if we consider the morphisms
as equivalence classes of spans, where two spans are considered equivalent when there is the
segmented arrow turning commutative the second diagram below.

Pb

~~⑥
⑥
⑥
⑥

!!❇
❇

❇
❇ Z

��✤
✤
✤
✤
✤
✤
✤

  ❆
❆❆

❆❆
❆❆

❆

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Z

��⑦
⑦
⑦
⑦

  ❆
❆❆

❆❆
❆❆

❆ Z ′

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

  ❇
❇

❇
❇ X Y

X Y X ′ Z ′

>>⑦⑦⑦⑦⑦⑦⑦⑦

``❆❆❆❆❆❆❆❆

Now, recall that, as discussed in Section 2.1, a category have pullbacks when it has binary products
and equalizers. In this case, we can simultaneously build Span(C) and endow C with the cartesian
monoidal structure. We observe that this cartesian structure induces a (non-cartesian) monoidal
structure on Span(C). Indeed, the product bifunctor ⊗ acts on objects exactly as the binary
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product. On the other hand, on morphisms (i.e on spans) X ← Z → Y and X ′ ← Z ′ → Y ′

it acts as shown in the first diagram below, where the arrows defining the product span were
obtained from the universality of products, as in the second diagram (the distinguished arrows
on the first diagram come from universality applied to the corresponding distinguished arrows on
the second diagram).

Z × Z ′

{{{{①
①
①
①
①

####●
●

●
●

●

Z × Z ′

yys s
s
s
s

%%

Z

��⑧
⑧
⑧
⑧

##

Z ′

{{✇
✇
✇
✇
✇

  
X ×X ′ Y × Y ′ X Y X ′ Y ′

Remark. The last example may seems only an abstract construction without any physical appli-
cation, but it is very important in the description of the pull-push approach to the quantization
process [183, 159].

Comonoids

We introduced previously two different monoidal structures on the category of R-modules:
the cartesian monoidal structure and the tensor monoidal structure. The next example clarifies
that there is also a third structure that can be considered there.

Example 4.12 (cocartesian algebraic monoids). The category ModR has another monoidal
structure whose product is given by the direct sum bifunctor ⊕ and whose distinguished object
is the trivial module. Recall that for any functor F : C→ D having limit and colimit there is a
canonical map limitF → colimitF obtained by gluing the diagrams (2.1). In ModR (and more
generally in any abelian category) the morphism connecting finite products to finite coproducts
is indeed an isomorphism. In particular, initial and terminal objects are isomorphic and X⊕Y ≃
X × Y for any X,Y . Consequently, this new monoidal structure on ModR is equivalent to the
cartesian monoidal structure. For instance, this means that both monoidal structure induces the
same notion of monoid objects.

The last example can be generalized: any category with binary coproducts and an initial
object has a canonical monoidal structure, called cocartesian structure, whose product is the
binary coproduct bifunctor and whose distinguished object is precisely the initial object. So, we
have cocartesian structures in Set, Top, Diff etc.

It happens that in any case, the monoid objects in a cocartesian structure are trivial. Indeed,
if ∅ is a terminal object, then (from the definition of terminal object) for any object X we have
a unique map ∅ → X, meaning that there is at most one monoid structure on each X. Such a
structure actually exists and it is given by the codiagonal map5 X ⊕X → X. Furthermore, this
construction extends to a functor F : C → Mon(C;⊕) which is an equivalence between C and

5We recall that the codiagonal map is the dual version of the diagonal map X → X ×X. Indeed, recall that,
by the universality of coproducts, if Z is an object for which we have morphisms X → Z and Y → Z, then there
exists a unique X ⊕ Y → Z factoring the given morphisms. The codiagonal map is that universal map obtained
from the canonical inclusions ı0 : X → X ⊕X and ı1 : X → X ⊕X.
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the category of monoid objects into the cocartesian structure. This means that the cocartesian

structure does not admit any interesting monoid !

Remark. The last paragraph, together with Example 4.12 allows us to conclude that there is
no interesting monoid objects even in the cartesian structure of ModR. This fact can be used
to give another proof that the cartesian structure and the structure given by the tensor product
are not equivalent: if they were, then they would induce the same notion of monoid object. But
this is not the case: the cartesian structure has only trivial monoids, while the monoid objects of
the tensor product structure are the associative algebras.

The problem with searching monoid objects into cocartesian monoidal structures is clear:
monoids are covariant objects, while the cocartesian structure is defined by coproducts, which
are contravariant. This suggests that in order to get nontrivial entities into cocartesian struc-
tures we need to consider some dual version of the notion of monoid objects. Notice that the
concept of “monoid object” into an arbitrary monoidal category C is given by an object X to-
gether with morphisms X ⊗ X → X and 1 → X, called multiplication and unity, which are
required to satisfy the commutativity conditions (4.3). Thanks to the duality principle, this data
can be dualized producing the notion of comonoid. This is an object X together with morphisms
X → X ⊗X and X → 1, called comultiplication and counit, satisfying commutativy conditions
obtained from (4.3) by reverting the arrows. We can define a complete analogous notion of
morphism between comonoids, which fits into a category CoMon(C,⊗).

As can be verified in concrete examples, a cocartesian structure really contains nontrivial
comonoid objects. On the other hand, following the above philosophy, it is expected that cartesian
structures admit only trivial comonoids. Indeed, any X has a unique comonoid object structure,
whose comultiplication is the diagonal map X → X ×X and whose counity is the unique map
X → 1 (recall that in the cartesian structure 1 is a terminal object). This fact can be translated
in terms of an equivalence CoMon(C,×) ≃ C.

Summarizing, a cartesian monoidal structures have only trivial comonoids and, dually,
that cocartesian structures have only trivial monoids.

Recall that the monoids in a cartesian structure admits a complete characterization: X is
a monoid objects iff for any Y the hom-set MorC(Y ;X) is a monoid. This was proven by
making use of the covariant version of the Yoneda lemma and the preservation of limits from
representable functors. We have a totally dual version of these results, allowing us to get a
complete characterization of comonoid objects into cocartesian structure: X is comonoid iff for
any Y the hom-set MorC(X;Y ) is a monoid. A consequence of this characterization is the
following:

Example 4.13 (reduced suspension). Let F ⇋ G be a pair of adjoint functors from C to itself,
so that for any two objects X,Y ∈ C we have a natural bijection

MorC(F (X);Y ) ≃ MorC(X;G(Y )).

Suppose that C has both cartesian and cocartesian monoidal structures (which happens, for
instance, if C is finitely complete and cocomplete). In this case, as a direct consequence of
the characterization of monoids/comonoids into cartesian/cocartesian structures we see that the
following assertion are equivalent:
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1. for any Y the object G(Y ) is a monoid in the cartesian structure;

2. for any X the object F (X) is a comonoid in the cocartesian structure.

An example of this data is for C given by the homotopy category Ho(Top∗) and F ⇋ G given
by the adjunction Σ ⇋ Ω between the reduced suspension and the loop space functors6. From
Example 4.5 we known that ΩX is always a monoid object into the cartesian structure. Conse-
quently, we conclude that for any X its reduced suspension ΣX is a H-comonoid, i.e, a comonoid
object into the cocartesian structure. In particular, because Sn ≃ ΣSn−1 we conclude that each
sphere Sn, with n > 0, is a H-comonoid.

Remark. If (En) is a sequence of CW-complexes defining a suspension spectrum, then we
have En+1 ≃ ΣEn and the same argument used in the last example reveals that each En, with
n > 0, is a H-comonoid. As a consequence, all the homotopy groups πn(X), with n > 0, have the
structure of monoid. On the other hand, if (En) defines a Ω-spectrum, then En ≃ ΩEn+1 and
therefore each En (even E0) is a H-monoid. Consequently, every generalized cohomology group
is, indeed, a monoid. The existence of these algebraic structures was firstly commented in Section
2.1. There were also commented that, for n ≥ 2, both homotopy groups and cohomology groups
are, indeed, abelian monoids. This more stronger fact will be proved in the next chapter, where
we will discuss the notion of “abelian monoids” and “abelian comonoids” into certain “symmetric
monoidal categories”.

He have been show that comonoid objects in cartesian monoidal structures are trivial, while
in cocartesian structures they can be totally classified. Now, let us explore some examples of
comonoids into monoidal structures which are not cartesian/cocartesian.

Example 4.14 (coalgebras). While monoids into (ModR,⊗) are R-algebras, the comonoids
correspond to the well known concept of R-coalgebras. These are R-modules X endowed with
a comultiplication map X → X ⊗X and a counit map R→ X fulfilling comonoid-like diagrams.
For instance, in the same way that any set is a trivial comonoid with the diagonal map and with
the counit given by the constant map X → ∗, we can always give a trivial coalgebra structure to
any vector space. Indeed, exactly as in the context of cartesian structures, its comultiplication
is also a diagonal map X → X ⊗X, given by x 7→ x⊗ x, and its counit is also a constant map
X → R, now such that x 7→ 1, where 1 ∈ R is the multiplicative unity of R. Difference: in
Set (or, more generally, in any cartesian monoidal category) the set ∗ is a terminal object, so
that this trivial comonoid structure is the only one that can be given. On the other hand, R is
not a terminal object for ModR, so that we may have nontrivial comonoids (i.e, there may exist
nontrivial coalgebras). Similarly, comonoids into the category of G-graded modules (GGradR,⊗)
are usually known as G-graded coalgebras, and so on.

Example 4.15 (cospan structures). If C is a category with pushouts, then we can dualize the
construction in Example 4.11 in order to produce the category CoSpan(C) of cospans. Particu-
larly, if C has binary coproducts and an initial object (instead of products and terminal object
as assumed in Example 4.11), then its cocartesian structure induces a corresponding monoidal
structure on CoSpan(C) in a totally analogous way. For example, Diff has binary coproducts

6Recall that the homotopy category is very poor of limits/colimits, but arbitrary products and coproducts exist
there, being given by the homotopy class of the underlying products and coproducts in Top∗.
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(given by the disjoint union) and an initial object (given by the empty manifold), but it does
not have pushouts, as discussed in Example 2.4. Therefore, a priori we cannot build the cat-
egory of “cospans manifolds”. On the other hand, recall that the gluing along boundaries is a
well defined smooth process. Therefore, if Cn ⊂ ∂Diffn is the subcategory whose objects are
smooth n-manifolds with boundary and whose morphisms are just inclusions of the boundaries,
then pushouts exist on Cn, allowing us to build the category CoSpan(Cn), which is (up to some
details) just Cobn. This is a way to understand that the category of cobordism has a canonical
monoidal structure whose product bifunctor is the disjoint union.

Remark. In many moments we saw that quantum theories of p-branes are certain types of
functors Cobp+1 → VecC. Thanks to the last example we have a canonical monoidal structure
on any category of cobordisms. Now we can say that a topological quantum theory of p-branes
is precisely a monoidal functor (Cobp+1,⊔) → (VecC,⊗). A motivation to this definition was
given in the Introduction and will be more detailed explored in Section 14.1. There we will see
that the functorial and the monoidal properties are very natural generalizations of the standard
axioms for quantum mechanics.

We end this subsection with the following remark.

Remark. Recall that the duality principle relies on the existence of a functor (−)op : Cat→ Cat

relating any categorical construction on a category C with a corresponding construction on the
opposite category Cop. We have seen that comonoids are the dual notion of monoids. So, it is
natural to expect that this dual relation are obtained from the duality principle. Indeed, given
a monoidal category (C,⊗), the duality principle immediately says that the dual category Cop

has an induced monoidal structure whose product is just ⊗op . We can then easily verify that the
monoids on Cop are exactly the comonoids on C. More precisely, there is a canonical isomorphism

Mon(Cop,⊗op)op ≃ CoMon(C,⊗). (4.2.5)

Smash

Now, after the previous digression, let us return to discuss examples of noncartesian monoidal
structures. We start by presenting an “almost monoidal structure”.

Example 4.16 (smash structure). The category Top∗ has both cartesian and cocartesian struc-
tures, but there is also another monoidal structure that can be introduced. The idea is to consider
the new product as being something between the product X×Y and the coproduct X ∨Y . More
precisely, given based spaces (X,xo) and (Y, yo) we define their smash product X ∧ Y as the
quotient space X×Y/X ∨Y endowed with the canonical base point: the equivalence class xo∧yo
of the pair (xo, yo). Because the morphisms of Top∗ are required to preserve the base points,
the smash product acts naturally on any pair f : X → Y and f ′ : X ′ → Y ′ producing a new
morphism

f ′ ∧ f : X ′ ∧X → Y ′ ∧ Y, given by (f ′ ∧ f)(x′ ∧ x) = f ′(x′) ∧ f(x).

Therefore, ∧ extends to a bifunctor. As can be easily verified, it has a canonical neutral element
object: the sphere S0 ≃ ∗ ⊔ ∗ (i.e, the trivial space ∗ viewed as a based space). Consequently, in
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order to conclude that ∧ induces a monoidal structure on Top∗ it is enough to verify that it is
associative up to homeomorphism. It happens that this is not possible. Indeed, there exist spaces
X,Y,Z for which there is no homeomorphism (X ∧ Y )∧Z ≃ X ∧ (Y ∧Z)! Counterexamples are
given in the Introduction of [145]. For instance, there it is proved that for X = N = Y with the
discrete topology and Z = R with the usual topology the required homeomorphism really cannot
exist.

We notice that the smash product construction generalizes. Indeed, recall that X ∧ Y was
obtained from the product X × Y by collapsing X ∨ Y into a point. On the other hand, by
construction, the coproduct X ∨ Y of Top∗ is obtained from the coproduct X ⊔ Y in Top by
gluing xo into yo (i.e, by gluing the based points). Therefore we can see X ∧ Y equivalently as
obtained from X × Y by collapsing X × xo ⊔ Y × yo. But collapsing is just a pushout, so that
we can do a similar construction in any monoidal category C with pushouts, coproducts and
terminal objects, getting a bifunctor ∧ : C∗ ×C∗ → C∗.

More precisely, for any X,Y ∈ C∗ (i.e for any pair of maps ∗ → X,Y where ∗ ∈ C is a terminal
object) we define X∧Y as the pushout presented in the first diagram below. If f, f ′ ∈ C∗ are two
morphisms we define f ′∧f as the morphism obtained from universality of pushouts, as presented
in the second diagram below.

Y ′ ∧ Y Y ′ ⊗ Yoo

X ∧ Y X ⊗ Yoo ∗

OO

X ′ ∧X
f ′∧f

ee❑
❑
❑
❑
❑

X ′ ⊗Xoo

f ′⊗f
kk

∗

OO

(X ⊗ ∗)⊕ (Y ⊗ ∗)oo

OO

∗

OO^^

(X ′ ⊗ ∗)⊕ (X ⊗ ∗)oo

OO

In the topological context the smash product has S0 ≃ ∗ ⊔ ∗ as neutral object. In the
general context the smash product also has a neutral object, given analogously by S0 := ∗ ⊕ ∗.
On the other hand, as the last example shows, associativity generally fails and, consequently,
in the general case the smash product do not defines a monoidal structure. Even so, it is a very
natural candidate for a monoidal structure and, therefore, it is interesting to search for conditions
under which the smash product becomes associative and consequently defines a genuine monoidal
structure.

The idea is the following: observe that the definition of X ∧ Y is a pushout involving the
product X⊗Y , the terminal object ∗ and coproducts in C. We know that colimit functors (being
representable) preserve other colimits. Particularly, coproducts preserve pushouts and, therefore,
preserve the smash product. So, if for any Y the functor − ⊗ Y : C → C also preserve colimits
(and, therefore the smash product construction), then the following diagram, obtained from the
definition of X ∧ Y in the case X = X1 ∧X2, will be commutative7.

(X1 ∧X2) ∧ Y (X1 ∧X2)⊗ Yoo (X1 ⊗X2)⊗ Yoo

∗

OO

(X1 ∧X2)⊕ Yoo

OO

(X1 ⊕X2)⊕ Yoo

OO

7Here we used an abuse of notation writing X ⊕ Y instead of (X ⊗ ∗)⊕ (Y ⊗ ∗).
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But now, recall that both ⊗ and ⊕ are associative up to isomorphism, so that the above
diagram induces the diagram below. But this diagram is exactly that defining X1∧ (X2∧Y )! So,
by uniqueness of pushouts we have (X1 ∧X2) ∧ Y ≃ X1 ∧ (X2 ∧ Y ). In conclusion, when −⊗ Y
preserves (finite) colimits for any Y , then the smash product is associative up to isomorphism
and, therefore, defines a genuine monoidal structure on C∗.

(X1 ∧X2) ∧ Y X1 ⊗ (X2 ⊗ Y )oo

∗

OO

X1 ⊕ (X2 ⊕ Y )oo

OO

A way to ensure that a functor preserves colimits is requiring that it has an adjoint. Therefore,
by requiring the existence of an adjoint [Y,−] for each − ⊗ Y we are ensuring that the smash
product ∧ really defines a monoidal structure. A monoidal category for which these adjoints exist
is called closed (the object [Y,Z] ∈ C is called the internal hom-object between Y and Z). So,
in other words, (C,⊗) is closed precisely when we have natural bijections

MorC(X ⊗ Y,Z) ≃ MorC(X, [Y ;Z]).

We would like to observe that, when a monoidal category is closed, not only the smash product
defines a monoidal structure on C∗, but this new structure is itself closed. This means that for
any pointed object Y the functor − ∧ Y also has a left adjoint [Y,−]∗, which is given by the
following pullback (see construction 4.19 of [63] and Construction 3.3.14 of [172]):

[Y,Z]∗

��

// [∗, Z]

��
∗ // [Y,Z]

Now, after the above discussion we can return to the last example and ask: what is the
problem with the smash product on Top∗? The following example clarifies that in this case the
non-associativity of ∧ has a purely topological nature.

Example 4.17 (Set is cartesian closed). For any three given sets we have natural bijections

α : MorSet(X,MorSet(Y,Z)) ≃ MorSet(X × Y,Z) (4.2.6)

defined by α(f)(x, y) = f(x)(y). Therefore, when endowed with the cartesian monoidal structure,
the category of sets is closed. Particularly, the internal hom-object [X,Y ] is just the usual hom-set
MorSet(X,Y ). Consequently, the corresponding smash product makes Set∗ a genuine monoidal
category. So, forgetting the topology, the smash product on Top∗ becomes associative.

On the other hand, we observe that for any two given topological spaces X and Y there is a
canonical topology that can be put in the set MorTop(X,Y ) of continuous maps between them:
the compact-open topology. This is the topology whose fundamental neighborhoods are the sets
V (K,U), where K ⊂ X is compact and U ⊂ X is open, of all continuous functions f : X → Y
that maps K into U , i.e, such that f(K) ⊂ U . Let Map(X,Y ) be the corresponding topological
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space. Example 4.16 shows that Top is not cartesian closed, so that the space Map(X,Y ) cannot
be the internal hom-object in Top, but the last example reveals that it should be.

So, we can search for subcategories C ⊂ Top such that Map(Y,Z) ∈ C and such that
restricted to it the functor Map(Y,−) becomes the left adjoint to − × Y and, therefore, for
which the smash product defines a monoidal structure on C∗. As discussed in Section 2.1, Top is
complete and cocomplete, so that we also would like to search for subcategories C preserving these
good properties. On the other hand, from the homotopy theory viewpoint, the most important
class of topological spaces are the CW-complexes, so that it is naturalto restrict our search for
subcategories C containing CW-complexes. A subcategory satisfying all these requirements is
called a convenient category of topological spaces. Surprisingly, these very nice subcategories
really exist! Indeed, as proven by Ronnie Brown and Steenrod in [33, 34, 196], the category of
Hausdorff and compactly generated topological spaces is convenient. See Chapter 8 of [88] and
Chapter 5 of [141].

Warning. From this point on, we will work only with convenient spaces. Therefore, “topological
space” will be synonymous of “compactly generated Hausdorff space”.

In order to motivate the mistrusting reader, let us give a more concrete consequence of working
with a convenient category of topological spaces. Indeed, up to this point we have used the fact
that the reduced suspension functor Σ has an adjoint Ω. But we have not given a explicit
form for ΩX. When working with convenient spaces this can be done. More precisely, in some
moments we assumed that “the loop space is just the space of loops”. Now we are read to
prove this assertion. In fact, as can be easily verified, we have that ΣX ≃ X ∧ S1. Therefore,
Σ ≃ −∧S1. But −∧S1 (and therefore Σ) has adjoint Map∗(S

1,−). By the uniqueness of adjoints
up to isomorphisms we conclude effectively that the loop space is the space of loops.

We end this subsection with the next example, which clarifies that the notion of closed
monoidal structure is independent of the construction of smash products. Indeed, it is inter-
esting by itself, because it ensures very nice properties to the product −⊗Y as, for instance, the
preservation of colimits.

Example 4.18 (tensor product). Recall that, when R is commutative, we have a canonical R-
module structure on the hom-set MorModR

(X,Y ) between two R-modules. Let HomR(X,Y ) be
the corresponding module. The set of bilinear maps X × Y → Z also has a canonical R-module
structure, which we will denote by BilR(X×Y,Z). Now, notice that the bijections (4.2.6) preserve
these linear structures, so that we have natural isomorphisms

HomR(X,HomR(Y,Z)) ≃ BilR(X × Y,Z) ≃ HomR(X ⊗ Y,Z),

where the second isomorphism comes from the universal property of the tensor product. There-
fore, when endowed with the tensor product monoidal structure, ModR is closed and the internal
hom-object is just HomR(Y,Z) (i.e, the usual hom-set considered as R-module with the canoni-
cal structure). A similar result is also valid for the category of G-graded R-modules and for the
category of differential G-graded R-modules. Particularly, it is valid for superalgebras and for
chain/cochain complexes.
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4.3 H-Spheres

In the last section we concluded that ΣX is always a H-cospace. As an immediate consequence,
each sphere Sn have the structure of H-cospace, because Sn ≃ ΣSn−1 for each n > 0. A very
natural question is: which spheres are H-monoids? We observe that this question is deeper
than it is natural. Indeed, as will be clear in the next chapter, the H-monoid structure introduces
many cohomological constraints. For instance, we will see that the cohomology groups of a H-
monoid must have the structure of a Hopf algebra, meaning that they have compatible nontrivial
structures of algebra and coalgebra.

It is easy to see that for n = 0, 1, 3 the sphere Sn is a H-monoid. In fact, in these cases
we can embed Sn respectively as the unitary vectors of the real division algebras R, C and H,
respectively given by real numbers, complex numbers and quaternions. Each of these algebras
are associative and have unity, so that restricting their products to the corresponding sphere we
get the required H-monoid structure8.

There is another canonical division algebra over R: the algebra O of octonions, which is
8-dimensional. Unfortunately, this algebra is not associative, so that S7 (considered as its set
of unitary vectors) does not have an induced H-monoid structure. But the octonions algebra
is unital, so that S7 can be endowed with an non-associative operation having neutral element
up to homotopy. In other words, this sphere is an “almost H-monoid” in the sense that only
associativity up to homotopy fails. These “almost H-monoids” are also called H-spaces. Therefore
we conclude that for n = 0, 1, 3, 7 the corresponding sphere Sn has a canonical H-space structure.
The nontrivial fact is that there is no other value of n for which the corresponding sphere can be
endowed with a H-space structure. This result is one of the jewels of complex K-theory9.

This theorem has several consequences. For instance, it imply that only for n = 0, 1, 3, 7
the sphere Sn is paralellizable10 (i.e, its tangent bundle TSn is trivial or, equivalently, there are
exactly n vector fields that are l.i. in each point)11. We cannot miss the opportunity to outline
the proof of this very classical and beautiful result. It is based on the following four steps, which
will be schematically presented each in the following (for more details, see the original reference
[3] or any textbook covering K-theory and its applications, like as [141, 200, 11, 109]):

8We observe that in these cases the spheres are not only H-monoids, but actually Lie groups.
9The result was firstly proven by Adam in [1] by making use of (secondary) operations in ordinary cohomology,

so that this result is not necessarily about K-theory. It happens that the K-theoretic background clarify many
ideas and simplify drastically the proof, now given by primary operations on K-theory: the Adam’s operations.
This version is due to Adam and Atiyah in [3]. On the other hand, K-theory gives a more accurate result, stating
exactly the maximal number of l.i. vector fields existing in Sn in terms of n. This is also due to Adams in [2].

10This is an early result, proven independently by Kervaire in [111] and by Bott-Milnor in [31]. Hovewer, we we
notice that, despite being proved without Adam’s operations, both works make use of a version of Bott-periodicity,
which is the fundamental result in K-theory.

11In order to conclude that the parallelizability of the canonical spheres imply a structure of H-space we make
explicit use of the ambient space in which they are embedded and of the fact that they are exactly the set of
unitary vectors. Since the works [154, 155, 112] of Milnor and Kervaire we known that there exist exotic structures
in S7, i.e, there are spaces Σ7 which are homeomorphic to the canonical sphere without being diffeomorphic to it.
We could ask if these exotic spheres also are H-spaces. The answer is affirmative. Indeed, it can be shown that a
homotopy sphere (i.e, any space Σn weakly homotopic to the canonical sphere Sn) is parallelizable iff n = 0, 1, 3, 7
and in this case the parallel structure also induce a H-space structure (see [192]). Based in this fact, the reader
could ask if the correspondence between parallelizability and existence of H-space structure is valid in the context
arbitrary manifolds instead of only spheres. The answer is no: in [??] it is given examples of parallelizable
manifolds which cannot be endowed with any H-space structure.
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1. any map f : S2n−1 → Sn defines a numerical invariant h(f), the Hopf invariant of f ,
obtained by making use of ordinary cohomology;

2. starting with a H-space structure on Sn−1, a certain construction, called Hopf construction,
produces a map with Hopf invariant equal to one;

3. using Chern character we transfer the above steps from ordinary cohomology to K-theory;

4. calculations with Adam’s operations on K-theory reveals that a map f : S2n−1 → Sn has
odd Hopf invariant iff n = 2, 4, 8.

Hopf Invariant

Recall that, thanks to the gluing law for pushouts discussed in Section 2.1, we can build the
reduced suspension of a based space X by making use of any continuous map f : X → Y . Indeed,
we first take the cone Cf for which we have a canonical inclusion ı : Y →֒ Cf . Then, collapsing
ı(Y ) into a point we get ΣX. The sequence

X
f // Y

ı // Cf
π // ΣX

is precisely the homotopy fiber sequence of f . So, particularly, given a map f : S2n−1 → Sn

between spheres we have a corresponding homotopy fiber sequence

S2n−1 f // Sn
ı // Cf

π // ΣS2n−1 ≃ S2n. (4.3.1)

We notice that using the given map f : S2n−1 → Sn we can also build a CW-complex C(f)
with one 0-cell, one n-cell and one 2n-cell. Indeed, because we have only one zero cell, the starting
space C(f)0 is a point. Therefore, there is exactly one map Sn → C(f)0 which we use to glue the
n-cell into C(f)0, producing C(f)n. On the other hand, we can use the given map f to glue a
2n-cell into C(f)n, ending the construction of C(f). Thanks to the fact that the cone is invariant
by homotopy we have that C(f) and Cf are homotopic.

We would like to calculate the ordinary cohomology groups of the cone Cf . The last homotopy
equivalence says that it is enough to compute the cohomology of the CW-complex C(f). Because
we have only one nontrivial n-cell and only one nontrivial 2n-cell, we conclude that the ordinary
cohomology of X with coefficients in an abelian group G is given by

Hk(C(f), G) := [C(f),K(k;G)] ≃

{

G, k = n or k = 2n

0, otherwise.
(4.3.2)

As will be discussed in the next chapter, we can introduce a monoidal structure in the category
of spectrum, so that we can talk of ring spectrum: the monoid objects in this monoidal structure.
When a generalized cohomology comes from a ring spectrum E, the operation on the spectrum
determines operations between the cohomology groups. As we will see, the Eilenberg-Mac Lane
spectrum is a ring spectrum, so that we have products in ordinary cohomology. Let ∪ denote
this product. Thanks to the structure of the cohomology groups (4.3.2) the unique nontrivial
multiplication is

∪ : Hn(C(f), G)×Hn(C(f), G)→ H2n(C(f), G).
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We will be interested only in the G = Z case. In this situation, the whole cohomology of
C(f) is determined by two integers: α and β which are generators for Hn(C(f),Z) ≃ Z and
H2n(C(f),Z) ≃ Z, respectively. Therefore, the product ∪ is determined by the unique integer
h(f) satisfying α ∪ α = h(f) · β. This is the Hopf invariant of f .

Hopf Construction

Recall that in order to build the reduced suspension ΣX we start with the product X × I, for
which we have two canonical inclusions ı0 : X →֒ X × I and ı1 : X → X × I. We then take the
pushout of each of them with the collapsing map X → ∗. For instance, replacing one of these
collapsing maps by an arbitrary map f : X → Y we get the cone Cf .

Now, observe that there is also another analogous constructions that can be applied when X
is a product space X = A×B. Indeed, in this case we replace each collapsing maps X → ∗ by the
canonical projections A×B → A and A×B → B. The resultant space is called the join between
A and B and is denoted by A ∗ B. Given a map ϕ : A × B → Z and selected a pair (ao, bo)
we can build evaluation maps evbo : A → Z and evao : B → Z such that evbo(a) = ϕ(a, bo) and
evao(b) = ϕ(ao, b). The universality of pushouts defining A ∗B and ΣZ then gives a map

H(ϕ) : A ∗B → ΣZ,

called the Hopf construction for ϕ with respect to the pair (ao, bo).
Let us suppose that ϕ : Sn−1×Sn−1 → Sn−1 is the multiplication giving a structure of H-space

on Sn−1 with neutral element e. Then we can use this distinguished element e to do the Hopf
construction for ϕ with respect to the pair (e, e). The result is a map Hϕ : S2n−1 → Sn, where
we used the identifications Sk ∗ Sl ≃ Sk+l+1 and ΣSk ≃ Sk+1. Therefore, we can calculate the
Hopf invariant h(Hϕ), which is +1 or −1.

Chern Character

The classical Adam’s argument [1] dealt with secondary cohomology operations on ordinary
cohomology. Doing an intricate computation, he showed that a map f : S2n−1 → Sn admits
an odd Hopf invariant only if n = 0, 2, 4, 8. Therefore, the Hopf-construction implies that only
for these values of n can Sn−1 be endowed with a H-space structure. With the development of
K-theoreric methods by Atiyah and Adam, a new proof of this obstruction could be obtained
using much more simple computations .

Recall that the Hopf invariant was defined on ordinary cohomology, so that in order to use
K-theoretical methods we need some process connecting these two cohomology theories. Let
us explain how this can be done. Recall that, as discussed in Section 1.3, we have a canonical
characteristic class chX : KU(X)→ H(X,Q), the Chern character, connecting complex K-theory
and ordinary cohomology with rational coefficients. Both spectra underlying these cohomologies
are ring spectra, so that both cohomologies have products, which are preserved by chX .

Now, for a given map f : S2n−1 → Sn let us consider the first diagram below, whose upper and
lower rows were obtained applying K-theory and rational/integer ordinary cohomology functors
on the fiber homotopy sequence of f (recall that cohomology functors are contravariant, so that
the directions of the arrows must be reversed). The non-identified vertical arrows are the canonical
natural transformation H(−;Z) → H(−;Q) induced by the inclusion Z →֒ Q (recall that this
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inclusion induces a morphism BZ → BQ between the corresponding classifying spaces and,
therefore, between the Eilenberg-Mac Lane spacesK(k,Z)→ K(k,Q); the natural transformation
is then obtained from the Yoneda lemma). This diagram is commutative, because the Chern
character is also a natural transformation.

KU(S2n)

ch
��

// KU(Cf )

ch
��

// KU(Sn)

ch
��

Z

ch

��

// Z⊕ Z

ch

��

// Z

ch

��
H(S2n,Q) // H(Cf ,Q) // H(Sn,Q) Q // Q⊕Q // Q

H(S2n,Z) //

OO

H(Cf ,Z) //

OO

H(Sn,Z)

OO

Z

OO

// Z⊕ Z

OO

// Z

OO

When n is odd, the Hopf invariant h(f) is always equal to zero, so that we assume n even, say
equal to 2m. In this case, Bott-periodicity says that KU(S2m) ≃ KU(S2) ≃ Z. Now, recall that
for any abelian group G, the only nontrivial ordinary cohomology group is Hk(Sk, G) ≃ G. On
the other hand, each of the left horizontal arrows in the first diagram above is injective and each of
the right horizontal is surjective. Together, these facts imply that the first diagram is equivalent
to the second. The Hopf invariant h(f) is precisely on the lower Z ⊕ Z term, corresponding
to ordinary cohomology. But the commutativity of the diagram and the fact that the Chern
character preserves products allow us to lift h(f) to the upper Z ⊕ Z term which is given by
K-theory, meaning that we can move from ordinary cohomology to K-theory, as required.

Adam’s Operations

Recall that in ordinary cohomology we have canonical operations Sqk : Hn
sing ⇒ Hn+k

sing , the
Steenrod square operations, which can be totally characterized by a list of properties. In complex
K-theory we also have internal operations ψk : KU ⇒ KU , called Adam’s operations, which are
uniquely characterized by the following properties:

1. ψkX are ring homomorphisms;

2. ψkX · ψ
l
X = ψklX = ψlX · ψ

k
X ;

3. ψkX(x) = xk, if x ∈ KU(X) is the class of a line bundle;

4. ψkX(x) ≡ x
k mod k, if k is prime;

5. ψk
S2n

(x) = knx for any class of the sphere S2n.

We will not give the construction of these operations here. Instead we will show that these
axiomatic properties imply that a map f : S2n−1 → Sn has odd Hopf invariant only if n = 2, 4, 8,
ending the proof that only S0, S1, S3 and S7 admit a H-space structure. This is a purely arithmetic
calculation, whose essence we extracted from p. 327-329 of [9] and p. 212 of [141]. Indeed, let
us supposed that h(f) is odd. In this case, as discussed previously, n must be even, so that we
write n = 2m.

From the last diagram, h(f) is the relation between the image β of a class b2n ∈ KU(S2n)
by π∗ and the preimage α of a class bn ∈ KU(Sn) by ı∗. From property (5.) above we have
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ψk(b2n) = k2mb2n and ψk(bn) = kmbn. So, by the naturality of Adam’s operations we get
ψk(β) = k2mβ and

ı∗(ψk(α)) = ψk(ı∗(α)) = ψk(bn) = kmbn = kmı∗(α) = ı∗(kmα),

so that
ı∗(ψk(α)− kmα) = 0, and, therefore, ψk(α) = kmα+ σ(k)β (4.3.3)

for some σ(k) ∈ Z. On the other hand, from property (4.) we have ψ2(α) ≡ α2 mod2. By
definition of h(f), it is the number such that α2 = h(f)β. Therefore, ψ2(α) − h(f)β is even.
From (4.3.3) applied to k = 2 we then conclude that σ(2) and h(f) must have the same parity,
so that σ(2) is odd. For any odd k, by the linearity of Adam’s operations,

ψk(ψ2(α)) = ψk(2mα+ σ(2)β)

= 2mψk(α) + σ(2)ψk(β)

= 2mkmα+ (σ(k) + σ(2)k2m)β

and, analogously,
ψ2(ψk(α)) = 2mkmα+ (σ(2) + σ(k)22m)β.

Therefore, by property (.2), the equality of the β coefficients imply

σ(k) + σ(2)k2m = σ(2) + σ(k)22m, i.e, 2m(2m − 1)σ(k) = km(km − 1)σ(2).

Consequently, because σ(2) is odd, 2m divides km − 1 for every k. Taking k = 3 we see that the
unique solutions are m = 1, 2, 4 and, therefore, n = 2m = 2, 4, 8, ending the proof.



Chapter 5

Commutative Monoids

In order to get more abstract and powerful concepts, in the present chapter we continue
applying the categorification process in both of its incarnations: as internalization into Cat and
as enrichment over Cat. More specifically, if the last chapter was about categorification of the
classical concept of monoid, this chapter is about categorification of monoids fulfilling additional
conditions, as commutativity and existence of inverses.

We start in the first section by internalizing these entities on Cat, getting the notion of
symmetric monoidal category. By the microcosm principle, the obtained structures defines exactly
the context in which we can talk of commutative monoid objects. After defining them, we present
some concrete examples.

In the same way as associators and unitors are part of the data defining “monoidal category”,
in order to define a symmetric monoidal category we need to specify certain braidings. As an
example of this fact, we show that the category of superalgebras endowed with the monoidal
structure given by the tensor product admits two different symmetric structures, allowing us to
talk about commutative superalgebras and graded-commutative superalgebras. We then discuss
that this difference lies at the heart of supersymmetry and that it gives one more reason to work
with extended quantum field theories instead of with the usual quantum field theories given by
functors on cobordism categories.

Ending the first section we show that in the presence of braidings, the category of monoid
objects acquires a natural monoidal structure, allowing us to talk of “monoid objects into the
category of monoid objects”. The Eckmann-Hilton duality shows that both they are equivalent
to commutative monoid objects. Using this fact we justify why the homotopy groups πn(X) have
abelian group structure only for n ≥ 2, while the cohomology groups Hn(X;E) with coefficients
in any spectra E have abelian group structure for every n.

In Section 5.2 we study the “comonoid objects into the category of monoid objects” and
the “monoid objects into the category of comonoid objects”. These are the so called bimonoids.
Special classes are given by the Hopf monoids, which can be understood as “categorified groups”.
We discuss many examples which are important in mathematics and in physics. Indeed, from
the mathematical viewpoint we discuss Hopf algebras, which have cohomology groups of H-
spaces and Steenrod operations as examples. From the physical viewpoint we try to justify why
supersymmetry is the most general kind of symmetry that can be considered in a system of
particles, which will be proven in Section 8.4.

133
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We start Section 5.3 by noticing many similarities between the category Spec of spectra
and the category CChR of cochain complexes, leading us to think of a spectra as a “graded
topological space” in the same way as a cochain complex is a special kind of graded module.
Both categories ModR and Top∗ have closed symmetric monoidal structures, respectively given
by the tensor product ⊗R and by the smash product. The product ⊗R extends to a symmetric
monoidal structure on CChR, so that, following the above analogy, it is natural to expect that
Spec also becomes a symmetric monoidal category in a similar fashion. We prove a theorem,
due to Lewis [123], which states that such a structure does not exist! On the other hand, we
see that ∧ induce a well defined symmetric monoidal structure in the stable homotopy category
Ho(Spec). The corresponding monoid and commutative monoid objects are called ring spectrum
and commutative ring spectrum.

We end the chapter by giving a proof that the cohomology groups Hk(X;E) with coefficients
in a commutative ring spectrum fits into a graded-commutative superalgebra, meaning that we
know how to multiply cohomology classes.

5.1 Braidings

In the last chapter we categorified the concept of monoid. In this section we would like to
categorify the notion of commutative monoid. Recall that this is just a monoid X for which we
have x ∗ y = y ∗x for any x, y ∈ X. This condition can be characterized by the commutativity of
the following diagram, where b(x, y) = (y, x):

X ×X

∗
##●

●●
●●

●●
●●

b // X ×X

∗
{{✇✇
✇✇
✇✇
✇✇
✇

X

As can be easily verified, exactly as happens for usual monoids, the commutative monoids
really can be internalized in any category H having binary products and a terminal object, so
that they can be internalized into Cat (i.e, they really can be categorified by internalization).
The result is what is known as a symmetric monoidal category1. This is just a monoidal category
C whose product ⊗ : C × C → C is commutative up to isomorphisms. This means that a
symmetric monoidal category has not only associators axyz and unitors xu and ux, but also
braidings bxy : X ⊗ Y ≃ Y ⊗X.

Remark. In Secion 4.1 we commented that we generally work with monoidal categories whose
associators and unitors satisfy additional commutative conditions: the coherence conditions. In
the context of symmetric monoidal categories, some coherence conditions are also usually re-
quired. The most common are those given by the following commutative diagram together with
an analogous version of it, obtained by replacing the associators axyz by its inverses a−1

xyz and the
products bxy ⊗ id by id ⊗ bxy (the importance of these coherence condition will become clear in

1In the literature these categories are called braided monoidal categories. The name symmetric monoidal
category is reserved to braided monoidal categories whose braidings bxy satisfy the additional property bxy ◦ bxy =
id. Following this nomenclature, in the scope of this text, all important braided monoidal categories are symmetric,
but the property bxy ◦ bxy = id itself will not be relevant. This justifies our definition.
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Section 7.3):

(X ⊗ Y )⊗ Z

bxy⊗id

��

axyz // X ⊗ (Y ⊗ Z)
bx(y⊗z)// (Y ⊗ Z)⊗X

ayzx

��
(Y ⊗X)⊗ Z ayxz

// Y ⊗ (X ⊗ Z)
id⊗bxz

// Y ⊗ (Z ⊗X)

By the microcosm principle, we can enrich the notion of commutative monoid over any of its
categorification by internalization. In other words, we can talk of commutative monoid objects
into any symmetric monoidal category. By the duality principle, into any symmetric monoidal
category we can also define a dual notion of commutative comonoid object.

Finally, the notion of homomorphism between comonoids can be internalized into Cat, defin-
ing morphisms between symmetric monoidal categories and, therefore, a corresponding subcate-
gory SymMon ⊂Mon. These morphisms are simply monoidal functors between the underlying
monoidal categories which commute with the braidings. Similarly, the homomorphisms between
commutative comonoids enrich to a notion of morphism between commutative monoid/comonoid
objects into a fixed symmetric monoidal category C, producing categories

cMon(C,⊗) and cCoMon(C,⊗).

Examples

Now, in order to clarify the ideas, let us give some examples of symmetric monoidal categories
and commutative monoids/comonoids.

Example 5.1 (classical commutative monoids). Recall that Set has a canonical cartesian monoidal
structure whose product is given by the cartesian product bifunctor ×. We notice that this
structure becomes naturally symmetric with the braidings bxy : X × Y → Y × X, such that
bxy(x, y) = (y, x). As expected, the classical notion of commutative monoid is recovered as the
commutative monoids object into this symmetric monoidal structure. On the other hand, recall
that we have only trivial comonoids on (Set,×) in the sense that any set X can be endowed with
a unique comonoid structure. The multiplication is given by the diagonal map ∆ : X → X ×X,
which actually commutes with the braiding bxx. Therefore, this trivial comonoid structure is a
commutative comonoid structure. A totally analogous discussion holds if we consider on Set the
cocartesian monoidal structure given by the disjoint union bifuctor ⊔. In fact, this structure is
also symmetric for some canonical braidings bxy : X ⊔Y → Y ⊔X, but now the nontrivial objects
are the commutative comonoids instead of the commutative monoids.

Example 5.2 (cartesian/cocartesian commutative monoids/comonoids). We notice that the
braidings bxy : X × Y → Y × X and b′xy : X ⊔ Y → Y ⊔ X discussed in the last example
are obtained from universality of binary products and binary coproducts, so that they can be
defined into any cartesian/cocartesian monoidal structure. This means that the above discussion
generalizes to this more ample context.

Example 5.3 (smash). Recall that for a closed monoidal category C, the corresponding based
category C∗ inherits a canonical closed monoidal structure given by the smash product ∧. Here
we would like to observe that, if C is symmetric, then the induced structure into C∗ is also
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symmetric. Recalling that the smash product is defined by a pushout, the main idea is to
consider the braidings bxy into C∗ as coming from the braidings bxy of C by universality of
pushouts. This is really the case, as shown in the diagram below. In it, the left and the right
squares are respectively the pushout squares defining the smash products X ∧ Y and Y ∧ X.
Using the segmented arrows and the universality of X ∧ Y we get the map bxy. This map is
indeed an isomorphism. Its inverse b−1

xy is obtained from the dotted arrows and the universality
of Y ∧X.

X ∧ Y

bxy

**❤ ❢ ❡ ❝ ❜ ❵ ❴ ❫ ❭ ❬ ❨ ❳ ❱
X ⊗ Yoo

bxy //❴❴❴❴❴❴
Y ⊗X

b−1
xy

oo // Y ∧X

∗

OO

X ⊕ Y

OO

oo
≃ //❴❴❴❴❴❴

Y ⊕X

OO

≃
oo // ∗

OO

Example 5.4 (commutative algebras/coalgebras). The tensor product X⊗Y between R-modules
is commutative up to isomorphisms. Indeed, the rule x ⊗ y → y ⊗ x extends linearly to an
isomorphism. It happens that the bifunctor ⊗ defines a monoidal structure on ModR, so that if
we take the above isomorphisms as the braidings, then this monoidal structure will be symmetric.
While the monoid/comonoid objects on (ModR,⊗) are (associative) algebras/coalgebras, the
commutative monoids/comonoids are (associative and) commutative algebras/coalgebras.

A monoidal structure is defined not only by the product bifunctor and by the neutral object,
but also by the associators and unitors. This means that a priori we can introduce two different
monoidal structures into the same category, which have the same product and the same neutral
object, but differing on the associators and unitors. Similarly, the braidings are part of the data
defining “symmetric monoidal structure”, so that a priori we can introduce two different symmetric
structures into the same monoidal category, differing only on the braidings. As a consequence, a
priori we may have monoid objects which are commutative relatively to a symmetric structure
but which are not relatively to some other. The next example is a manifestation of these facts.

Example 5.5 (commutative superalgebras). Given a abelian group G, we have the corresponding
category GGradR ofG-graded R-modules, whose morphisms are required to preserve the grading.
The tensor product can be naturally defined in this category by the rule (4.2.1), producing a
monoidal structure. For two given graded modules X = ⊕Xh and Y = ⊕Yh′, we get isomorphisms

bxy : X ⊗ Y → Y ⊗X by putting bxy(xh ⊗ yh′) = yh′ ⊗ xh,

so that the monoidal structure is symmetric when endowed with the braidings bxy. The commuta-
tive monoids/comonoids are called commutive G-graded algebras/coalgebras. On the other hand,
recall that when selected a fundamental pairing 〈·, ·〉 : G ×G→ Z2 we can extend the bifunctor
⊗ from GGradR to GModR (where the morphisms are arbitrary R-module homomorphisms)
by adding a term like (−1)〈deg(f),deg(g)〉 in the action of ⊗ on morphisms, as presented in (4.2.2).
Instead of adding this term on morphisms, we could added it on objects, using this fact to get
a different braiding for GGradR. More precisely, with a fundamental pairing on hands we can
define new isomorphisms

b′xy : X ⊗ Y → Y ⊗X by b′xy(xh ⊗ yh′) = (−1)〈h,h
′〉yh′ ⊗ xh
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and, therefore, a new symmetric monoidal structure on GGradR whose underlying monoidal
structure is exactly that given by the tensor product. The commutative monoids/comonoids in
this new symmetric structure are known as the graded-commutative G-graded algebras/coalgebras.
So, for instance, a graded-commutative G-graded R-algebra can be identified with a G-graded
R-module X = ⊕Xh endowed with a associative and unit multiplication

m : X ⊗X → X such that m(xh ⊗ x
′
h′) = (−1)〈h,h

′〉x′h′ ⊗ xh.

Recall that Z2-graded algebras are superalgebras, so that graded-commutative Z2-graded R-
algebras are usually called graded-commutative superalgebras over R. The standard examples to
have in mind are the following (their physical relevance will be discussed in the sequence):

1. Symmetric and Grassman algebras. Let X be a R-module. Taking its tensor powers we
can build a N-graded module T (X) such that T (X)n = X⊗n , which becomes a graded
algebra (the tensor algebra of X) when endowed with the tensor This graded algebra is not
commutive nor graded-commutative. In other words, T (X) is a monoid into (NGradR,⊗)
which is not necessarily a commutative monoid with respect to both bradings bxy and b′xy
introduced above. This happens exactly because the equalities

x⊗ y = y ⊗ x and x⊗ y = (−1)n·my ⊗ x

are not valid for arbitrarily given elements x ∈ X⊗n and y ∈ X⊗m , with n,m ∈ N.
On the other hand, it is easy to see that the elements satisfying some of the last con-
ditions defines graded subalgebras of T (X), respectively denoted by Sym(X) and Λ(X).
These are the symmetric algebra and the Grassman (or exterior) algebra of X. By con-
struction, they are respectively commutative and graded-commutative. Both algebras are
N-graded so that by splitting them into even-odd pieces we get Z2-graded algebras. In other
words, the symmetric algebra is a commutative superalgebra, while the Grassman algebra
is a graded-commutative superalgebra. The product Super(X) = Sym(X) ⊗ Λ(X) is also
graded-commutative, being called the superalgebra of X. As particular cases, we see that
both de Rham algebra of a manifold and Chevalley-Eilenberg algebra of a Lie algebra (in-
troduced in Example 4.9) are graded-commutative. Indeed, both are flavors of Grasmann
algebras.

2. Clifford algebras (a non-example). Recall that, as discussed in the remarks on Example 1.12,
to any vector space V endowed with a non-degenerated quadratic form q we can associate
an algebra Cℓ(V, q), called the Clifford algebra. As will be seen in Section 11.1, such an
algebra becomes equipped with a canonical Z2-grading Cℓ(V, q) ≃ Cℓ(V, q)0⊕Cℓ(V, q)1 and,
therefore, it is a superalgebra. On the other hand, there is no symmetric structure in
Z2GradK, for K = R,C, turning Cℓ(V, q), with 1 < dimV < ∞, commutative. This is
due to the classification of real/complex Clifford algebras (sketched in Section 11.1) and
to the classification of symmetric structures that can be introduced in the category of
superalgebras (proved in Section.

3. Cohomology rings. As briefly discussed in Example 4.7 (and as will be more concretely
discussed in Section 5.3), the smash product should induce a monoidal structure into the
homotopy category Ho(Spec) of spectra and the cohomology groups with coefficients in
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a monoid object (i.e, in a “ring spectrum”) should fit into a superalgebra. Now, because
the smash product is symmetric, it is natural to expect that the induced smash product on
spectra is also symmetric, allowing us to talk of “commutative ring spectrum”. Furthermore,
it is also natural to expect that the functors

[X,−] : (Ho(Spec),∧)→ (ZGradZ,⊗) (5.1.1)

becomes not only monoidal, but indeed symmetric monoidal, meaning that the cohomology
of a “commutative ring spectrum” is a “commutative super algebra”. It happens that such
an assertion depends of the symmetric extension of the monoidal structure (ZGradZ,⊗).
As discussed above, there are at least two of these extensions. So, we can ask: what is the
correct braidings that turn 5.1.1 into a symmetric monoidal functor. As a consequence of
the “minus” signal appearing into the Barrat-Puppe sequence (2.2), if the superalgebra has
a “commutative product”, then it must be graded-commutative.

We end this subsection by presenting some remarks which explain the physical importance of
the last examples.

1. bosons together with fermions imply a superalgebra of states. Recall that a quantum theory
for particles is a monoidal functor (Cob1,⊔)→ (VecC,⊗). Therefore, the quantum states
of a system composed by a single particle is described by a vector space H and a system
with n identical particles is described by H⊗n . More generally, a system with an arbitrary
number of particles should be described by the tensor algebra T (H). On the other hand, if
the reader have some knowledge of quantum mechanics he certainly knows that quantum
particles have additional degrees of freedom. One example is the spin, which allows us
to classify the particles as bosons (having integer spin) or fermions (having half-integer
spin). But the states of arbitrary particles are described by T (H), so that it is expected
that bosons and fermions define different subalgebras of T (H). This is really the case.
Indeed, Pauli’s exclusion principle states that in a system with many electrons, two of
them cannot be in the same nontrivial state. This can be formalized in the following way: if
x = x1⊗ x2⊗ .... is a state of a system in which the ith and the jth particles are electrons,
then the condition xi = xj imply x = 0. In our context, this is the same as requiring

x1 ⊗ x2 ⊗ ...⊗ xi ⊗ ...⊗ xj ⊗ ... = (−1) · (x1 ⊗ x2 ⊗ ...⊗ xj ⊗ ...⊗ xi ⊗ ...),

allowing us to rewrite Pauli’s principle in the following way: the states of a system of
electrons are vectors of the Grassman algebra Λ(H). Electrons are examples of fermions.
An extension of this principle to other fermions is given by the spin-statistics theorem ([207,
148, 215]). Systems of bosons, on the other hand, can have degenerated states, meaning that
the states of a system of bosons are vectors of the symmetric algebra Sym(H). Therefore,
a general quantum system, containing both bosons and fermions, should be described by the
superalgebra Super(H).

2. Clifford superalgebra of internal degrees of freedom. We discussed above that the existence of
internal degrees of freedom for the quantum particle imply that the algebra of states must
be a superalgebra. It happens that quantum theories generally come from classical theories
by quantization, so that we need to have a description of “internal degrees of freedom” for
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classical particles too. As will be discussed in Chapter 11, this is done by requiring that
the spacetime M in which the classical particle moves has a spin-structure, meaning that
the frame bundle FM is structure over the universal cover Spin(n) of SO(n). For instance,
in the 3-dimensional case, we have Spin(3) = SU(2), which is the usual group associated
with the spin in quantum mechanics. We know that (at least over manifolds) the universal
cover always exist, but in principle there is no canonical way to build it. In our present
context, thanks to Clifford superalgebra structure, we have a concrete presentation for the
group of internal degrees of freedom Spin(n).

3. cohomology superalgebras as supersymmetric field theories. The usual definition of topolog-
ical quantum field theory as a monoidal functor (Cobp+1,⊔) → (VecC,⊗) predicts that
any system of particles is described by the tensor algebra T (H). On the other hand, if the
particles are supposed to have spin, then standard results on quantum mechanics (Pauli’s
exclusion principle and the spin-statistics theorem) imply that the quantum system should
be described by the sub-superalgebra Super(H) ⊆ T (H). This is another problem with
the given 1-categorical definition of topological quantum theories. It relies on the fact
that we are considering cobordisms between manifolds. But manifolds are objects modeled
over commutative variables, while we need commutative and anticommutative variables,
i.e, we need to work with supermanifolds. We could try to define “supercobordism be-
tween supermanifolds”, getting a category SuperCobp|s and then consider “super quantum
field theories” as functors SuperCobp|s → Z2GradC from supercobordisms to super-vector
spaces. This is done in [43, 198], where the authors show that the (1|1) theory is classified
by the superalgebra of K-theory (a generalized cohomology theory). They also conjecture
that the (2|1) theories are also classified by another generalized cohomology theory called
topological modular theory.

Eckmann-Hilton

In Section 4.2 we proved that the homotopy groups πn(X), with n > 0, and every generalized
cohomology group Hn(X;E) are monoids. Here we will see that the cohomology groups and are,
indeed, abelian monoids. We will also prove that, for arbitrary spaces, the homotopy groups
are abelian only for n ≥ 2, but in the case of topological groups (or, more generally, H-monoids),
the fundamental group π1(X) is abelian too. All these facts can be justified by the same simple
result: commutative monoids are precisely monoids in the category of monoids.

We start by recalling that for any monoidal category C we can build the corresponding
category Mon(C,⊗) of monoid objects. We would like to observe that, if C is symmetric, then
the category Mon(C,⊗) carries a natural monoidal structure. Indeed, the product bifunctor ⊗
extends to another bifunctor

⊗M : Mon(C,⊗)×Mon(C,⊗)→ Mon(C,⊗)

which takes two monoid objects (say X and Y , with products ∗ : X⊗X → X and ∗′ : Y ⊗Y → Y ,
as well as with unities 1→ X and 1→ Y ) and returns a monoid object structure on the product
X ⊗ Y , whose multiplication is given by the map

(X ⊗ Y )⊗ (X ⊗ Y )
≃ // (X ⊗X)⊗ (Y ⊗ Y )

∗⊗∗′ // X ⊗ Y
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and whose neutral element is given by the map

1
≃ // 1⊗ 1 // X ⊗ Y ,

where the symmetry of C was used to define the first of these maps. The neutral object in this
monoidal structure is just the monoid object 1 of C, endowed with the trivial monoid object
structure, whose multiplication is the unitor 1⊗ 1 ≃ 1 and whose neutral element is the identity
map id1 : 1→ 1.

Now, there are two kinds of entities that can be considered. Being C a symmetric monoidal
category, we can consider the commutative monoid objects into it, while being Mon(C,⊗) a
monoidal category, we can consider the monoid objects into it. The surprising fact is that
both notions are the same! More precisely, for any symmetric monoidal category C we have an
equivalence

Mon(Mon(C,⊗),⊗M ) ≃ cMon(C,⊗).

This is the content of the so called Eckmann-Hilton argument, which will be briefly explained
now. Details can be founded in [61, 19, 8]. First of all, recall that a monoid object in Mon(C,⊗)
is just a monoid object (X, ∗, e) in C, where ∗ is the multiplication and e is the unity, together
with morphisms of monoid objects

m : (X, ∗, e) ⊗M (X, ∗, e) → (X, ∗, e) and u : (1,≃, id1)→ (X, ∗, e)

making commutative certain “monoid-like” diagrams. So, a monoid object on Mon(C,⊗) is just
a monoid object on C with additional commutative conditions on certain diagrams. We can see
that these additional conditions say precisely that the underlying monoid is commutative.

Remark. Thanks to relation (4.2.5) we can use the duality principle to get a totally analogous
version of the Eckmann-Hilton argument for comonoids, meaning that there is the following
isomorphism (the reader is invited to verify the details):

CoMon(CoMon(C,⊗),⊗M ) ≃c CoMon(C,⊗).

Now we can explain what was promised: the additional structures in the sets defining the
homotopy groups and the generalized cohomology groups. Both cases can be justified by noting
that, for any X,Y ∈ Top∗

1. [Σ2X,Y ] is a commutative monoid. Indeed, recall that ΣZ is a comonoid into (Ho(Top∗),∨)
for any Z, so that [ΣZ, Y ] is always a monoid into (Set,×). Particularly, for Z = ΣX we
conclude that [Σ2X,Y ] is a monoid into Mon(Set,×) and, therefore, a commutative monoid
by the Eckmann-Hilton argument. Therefore, if E is a suspension spectra of CW-complexes,
then En ≃ Σ2En−2 for any n ≥ 2, so that [En, Y ] is always a commutative monoid. In
particular, πn≥2(X) is a commutative monoid;

2. [X,Ω2Y ] is a commutative monoid. This follows directly from the adjuntion between the
loop space funtor Ω and the reduced suspension functor Σ, together with the last result.
So, if E is now a Ω-spectrum, then En ≃ Ω2En+2 for any n, so that the corresponding
cohomology groups Hn(X,E) = [X,En] are commutative monoids for arbitrary n.
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5.2 Hopf

In a monoidal category C we can talk about monoid and comonoid objects. In special, if C
is symmetric, then the corresponding categories Mon(C,⊗) and CoMon(C,⊗) of monoids and
comonoids have induced monoidal structures. Therefore, in these cases we can consider monoids
into the category of monoids and comonoids into the category of comonoids. The Eckmann-Hilton
argument gives isomorphisms

Mon(Mon(C,⊗),⊗M ) ≃ cMon(C,⊗) and CoMon(CoMon(C,⊗),⊗M ) ≃ cCoMon(C,⊗),

clarifying that these iterated entities are nothing else than the initial entity (say monoids or
comonoids) in its commutative version.

But we could also considered monoid objects into the category of comonoids and comonoids
into the category of monoids. In this case both would be the same as an object X ∈ C endowed
with compatible structures of monoid and comonoid. Such a entity is called a bimonoid on (C,⊗)
and, supposing that (X,m, u) and (X,w, v) are the underlying monoid and comonoid structures,
the compatibility between them can be formally described by the following requirement: if

m : X ⊗X → X and u : 1→ X

are the multiplication and the unit giving to X the structure of monoid object, then we require
that these morphisms are indeed morphisms between comonoids, where here we are consider-
ing X with the comonoid structure (X,w, v), the product X ⊗ X with the comonoid structure
(X,w, v) ⊗M (X,w, v) and 1 with the trivial comonoid structure.

The most interesting bimonoids are those for which we have a morphism inv : X → X such
that the first diagram below is commutative (we also assume the commutativity of a totally
analogous diagram, obtaining replacing id ⊗ inv by inv ⊗ id). These are the Hopf monoids. For
instance, recall that endowing Set with the cartesian monoidal structure (i.e, whose product is
the binary product and whose neutral object is a unit set), any object becomes a comonoid in
a trivial way, so that any monoid is indeed a bimonoid. Therefore, a Hopf monoid for (Set,×)
is just a monoid X endowed with a map inv : X → X making commutative the second diagram
below and its analogous. But these commutativity conditions only means that

m(x, inv(x)) = e = m(inv(x), x)

for any x, i.e that each x has an inverse inv(x). Therefore, a Hopf monoid into (Set,×) is just
a classical group!

X

w
��

v // 1
u // X X

∆
��

v // 1
u // X

X ⊗X
id⊗inv

// X ⊗X

m

OO

X ×X
id×inv

// X ×X

m

OO

Remark. In the last chapter the notion of “monoid object into a monoidal category” was obtained
as the categorification by enrichment of the usual concept of monoid. Similarly, at the beginning
of this chapter, the concept of commutative monoid into a symmetric monoidal category” was
obtained as the categorification of “commutative monoid”. Notice that when looking to the
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monoid objects and commutative monoid objects into (Set,×) we recovered precisely the starting
notions of “monoid” and “commutative monoid”. The last paragraph shows that Hopf monoids
into (Set,×) are just groups. Therefore, this suggest that the notion of “Hopf monoid” is simply
the categorification of the usual notion of “group”.

Remark. Any monoidal functor maps monoid objects into monoid objects and comonoid objects
into comonoid objects2. However, it is not true that any monoidal functor maps Hopf monoids
into Hopf monoids. The reason is intuitively clear: in order to define Hopf monoids we need
a structure of symmetric monoidal category, but an arbitrary monoidal functor need not to
preserve this symmetric structure. With the same argument it is easy to be convinced that a
symmetric monoidal functor really maps Hopf monoids into Hopf monoids.

Examples in Mathematics

Let us see some examples of Hopf monoids.

Example 5.6 (cartesian/cocartesian Hopf monoids). The discussion presented above for Hopf
monoids into (Set,×) extends trivially to any cartesian monoidal category and, by duality, to any
cocartesian monoidal category. Indeed, let C be a cartesian monoidal category. Then any object
has a trivial structure of comonoid, so that any monoid becomes a bimonoid in a trivial way.
Therefore, a Hopf monoid is just a monoid X together with a morphism inv : X → X behaving as
a map that “gives inverses to each element of X”. Observe that this only an analogy, because
if C is not concrete, then its objects are not sets and, therefore, we lose the notion of “elements”.
However, in the context of concrete categories this works perfectly well. For instance, a Hopf
monoid on Top or Diff is respectively a topological group or a Lie group. The Hopf monoids on
(Ho(Top∗),×) are called H-groups, while the Hopf monoids on (Ho(Top∗),∨) are the H-cogroups.

Example 5.7 (bicartesian Hopf monoids). What happens if a category C has biproducts? Well,
in this case both cartesian and cocartesian structures are equivalent, so that any given object
has a trivial structure of monoid/comonoid and, therefore, a trivial structure of bimonoid, whose
multiplication/comultplication is given by the codiagonal/diagonal. There is a unique morphism
inv : X → X simultaneously compatible with both ∆ and ∇: the identity idX . Therefore, in
a category with biproducts, any object becomes trivially a Hopf monoid. This is the case, for
instance, of the category ModR.

Example 5.8 (Hopf algebras and graded Hopf algebras). On the other hand, as discussed previ-
ously, the category ModR has a nontrivial closed symmetric monoidal structure given by tensor
product ⊗. The monoids are the R-algebras and the comonoids are the R-coalgebras. The bi-
monoids are then R-modules with compatible structures of algebra and coalgebra. These are the
R-bialgebras. The corresponding Hopf monoid are R-bialgebras whose multiplication is “invert-
ible” in the sense of the last diagrams. A totally analogous situation holds in the more general

2Here we have to say that this fact is a consequence of the definition of “monoidal functor” that we given.
Indeed, recall that for us a monoidal functor satisfy F (X ⊗ Y ) ≃ F (X)⊗ F (Y ) and F (1) ≃ 1. If instead we have
only transformations F (X ⊗ Y ) → F (X) ⊗ F (Y ) and F (1) → 1 we say that it is lax monoidal, while if there are
natural transformations in the opposite direction we say that it is oplax monoidal. The general result is that any
lax (resp. oplax) monoidal functor maps monoid (resp. comonoid) objects into monoid (res. comonoid) objects.
See, for instance, Proposition 3.29 of [8].
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monoidal category GGradR of G-graded R-modules. The corresponding Hopf monoids are the
G-graded Hopf algebras. Concrete examples to have in mind are the following:

1. cohomology of H-spaces. Some generalized cohomology theories have presentations in terms
of the algebraic cohomology of (bounded) cochain complexes. More precisely, for some
spectra E defining a cohomology theory HE : Ho(Top∗) → ZGradR there is a functor E
such that the following diagram commutes.

Ho(Top∗)

HE

33
E // Ho(Ch+

R)
H // ZGradR

Thanks to Künneth formula, when R is a field, the algebraic cohomology functor H :
Ho(Ch+

R) → ZModR becomes monoidal, as argued in Example 4.10. So, if E is also
monoidal, then HE itself is monoidal and, therefore, it maps Hopf monoids into Hopf
monoids. In other words, it maps H-groups into Z-graded Hopf algebras. When E is a
ring spectra, much more is true: the cohomology group of any connected H-space (not
necessarily an H-group) is a graded Hopf algebra. Indeed, notice that under the hypothesis
HE take values into the category of Z-graded algebras, as discussed in Example 4.7. Now,
being every Hk

E representable and contravariant, they map monoid objects into comonoid
objects, so that if X is an H-space, the comodule structure of each Hk(X;E) couple to the
graded algebra structure of H(X;E) producing a structure of graded bialgebra. Because X
is connected, we have H0(X;E) ≃ K. A Z-graded K-algebra A = ⊕iAi such that A0 ≃ K

is also called connected, so that we have been proved that the cohomology of a H-space fits
into a connected bialgebra. It happens that every connected graded bialgebra has an unique
extension to a Hopf algebra structure, so that if X is a H-space and E a ring spectrum, then
H(X;E) is indeed a Hopf algebra. A typical situation occurs when E is the Eilenberg-Mac
Lane spectrum of a field K (i.e, when Hk

E is the ordinary cohomology with coefficients on K).
In this case, the functors E giving the cochain complex presentation is simply that assigns
to any topological space X its corresponding singular cocomplex and its monoidal property
is given by the so called Eilenberg-Zilber theorem. We notice that, by Milnor’s uniqueness
theorem, this then holds to any generalized cohomology theory satisfying H(∗,E) ≃ K.

2. Steenrod operations. Despite the generalized cohomology groups of a H-monoid, there is
another example of Hopf algebra arising from Algebraic Topology: the algebra of Steenrod
operations. This is due to the work [152] of John Milnor. This result and the fact that
the cohomology of certain spaces (as the classifying spaces MO, BO and BU) has a Hopf
algebra structure allow us to use the theory of Hopf algebra in order to give much more
concrete/clear/short proof of important results as Thom theorem on cobordisms and Bott-
periodicty. This is the content of the (very well written) Chapter 21 of [146].

3. tensor algebra. Now, let us a give a more concrete examples. We start by recalling that,
for a commutative R, the tensor algebra T (X) of any R-module X is a N-graded algebra.
We assert that this algebra has an unique natural extension to a Hopf algebra structure.
In order to get a coalgebra structure, we need to define the comultiplication w : T (X) →
T (X)⊗ T (X) and the counit v : T (X)→ R. We notice that T (X)0 ≃ R at the same time
that ⊕i≥1T (X)i is freely generated by X. Therefore, it is enough to define w on elements
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x ∈ X and on the unity 1 ∈ R. The map w must preserve the degree, so that degw(x) = 1
and degw(1) = 0, implying

w(x) = x⊗ 1 + 1⊗ x and w(1) = 1⊗ 1.

On the other hand, recall that R = R ⊕ 0 ⊕ 0... is the neutral object of the monoidal
structure (NGradR,⊗), so that there is an unique graded morphism v : T (X) → R given
by v(x) = 0 and v(1) = 1. A direct computation shows that w and v makes the tensor
algebra T (X) a connected graded bialgebra and, therefore, a Hopf algebra.

4. universal enveloping algebra. A Lie algebra g is, by definition, non-associative. Given
an associative algebra A, say with multiplication ∗, we can always deform ∗ by defining
[x, y] := x ∗ y − y ∗ x in order to get a Lie algebra structure. In concise terms, we have a
canonical functor

L : Mon(VecK;⊗)→ LieAlgK.

Not every Lie algebra comes from the deformation of an associative algebra, meaning that
F is not essentially surjective and, therefore, the lifting problem below does not admit any
solution.

Mon(VecK;⊗)

L
��

L ◦ U ′

LieAlgK

U
77♥♥♥♥♥♥

id
// LieAlgK id

ξ
+3

ξ′
8@②②②②②②②②②

②②②②②②②②②
L ◦ U

L◦u

KS✤
✤
✤

✤
✤
✤

Now, recall from the discussion in Sections 1.3 and 2.1, when a lifting problem of functors
does not have solution, we can always consider the best left/right approximation, which are
the Kan lifts. Indeed, these are given by a pair (U, ξ), where

U : LieAlg→ Mon(VecK;⊗) and ξ : id⇒ L ◦ U,

such that for any other pair (U ′, ξ′) there exists a unique u : U ⇒ U ′ such that the second
diagram above commutes. We say that U(g) is the universal enveloping algebra of the Lie
algebra g. It is always a Hopf algebra. Indeed, a model to U(g) is given by the quotient of
the tensor algebra T (g) by the ideal I generated by all elements

x⊗ y − y ⊗ x− [x, y].

It happens that this ideal is, in some sense, invariant by the comultiplication w of T (g), so
that the quotient U(g) = T (g)/I has an induced structure of connected graded bialgebra
and, therefore, of Hopf algebra.

5. Grassman Algebra. In Example 5.5 we introduced the Grassman algebra of a R-module
as the subalgebra Λ(X) of the tensor algebra T (X) which is generated by the graded-
commutative elements. By the isomorphism theorem of algebras, we can identify Λ(X) as
the quotient of T (X) by the ideal generated by all elements x ⊗ y − (−1)n·my ⊗ x . It
happens that this ideal is also invariant by the comultiplication w of T (X), so that the
Grassman algebra also have an induced Hopf algebra structure.
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Examples on Physics

In the last subsection we presented some examples of Hopf monoids which are specially
interesting when studying pure mathematics. But we would like to observe that Hopf monoid
objects are not important only for abstract mathematics. Indeed, they are also very important
in physics, as clarified by the next examples.

Example 5.9 (Connes-Kreimer approach to renormalization). Recall that in Section 3.3 we dis-
cussed that there are two ways to describe the interactions between particles: internally and
externally. In the internal approach the abstract motions are described by certain singular man-
ifolds (the Feynman graphs). At the singularities some physical quantities can acquire infinity
values, so that the Feynman graphs can be divided into two classes: those which have physical
meaning and those which do not have. So, in principle, a physical theory describing non-physical
graphs cannot be used in order to get predictions. But it is expected that some infinities are
not exactly infinities, but only bad definitions of the parameters of the theory. A process that
identifies the graphs with “false infinities” and that redefines the parameters in order to get
a well defined theory is called a renormalization scheme. One approach, due to Connes and
Kreimer [46, 47, 48], characterizes the renormalization as given precisely by a Hopf algebra (for
an overview, see [165]). This will be briefly discussed in Chapter 15. The construction is extended
by making use of abstract Hopf monoid in the final chapter of [8].

Example 5.10 (3d topological quantum field theories). As commented previously, quantum the-
ories are monoidal functors U : Cobp+1 → VecC. These functors are natural sources of smooth
invariants, so that we are interested in strategies to build them. There is a construction, called
Reshetikhin-Turaev construction, which builds these functors for n = 3 starting with some mod-
ular tensor category. But the standard examples of these categories arises as the representation
theory of quantum groups. These quantum groups, on the other hand, are certain parametrized
family of Hopf algebras (see [25, 68]). This will be discussed in Chapter 14.

There is also a third example clarifying the role of Hopf algebras in physics which we would
like to explain in more detail. We start by recalling that, as discussed in the last section, the
quantum particles have internal degrees of freedom, which allows us to classify them as as bosons
or fermions. Furthermore, a system describing both bononic and fermionic particles is generally
described by the superalgebra Super(H) = Sym(H)⊗Λ(H) of some Hilbert space H. Therefore,
such a system may have two kinds of infinitesimal symmetry: those acting on bosons/fermions
separately or those acting on both simultaneously.

More precisely, in the canonical context of quantum field theory of particles, as will be dis-
cussed in more details in Chapter 14, the functor U : Cob1 → VecC is always induced by a
distinguished operator Ĥ : H → H, called the Hamiltonian operator. Symmetries are then in-
terpreted as other operators commuting with Ĥ. So, it is natural to suppose that, under the
presence of internal degrees of freedom, the symmetries are also described by operators Ô act-
ing on Super(H) commuting with the Hamiltonian operator. In this context, the two kinds of
symmetries are respectively described by operators Ô which are tensor products Ôbos ⊗ Ôferm of
operators

Ôbos : Sym(H)→ Sym(H) and Ôferm : Λ(H)→ Λ(H),

and by those that cannot be written as such products. This second kind of operators generally
mixes the bosonic and fermionic sectors, meaning that they map bosonic/fermionic states into
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fermionic/bosonic states. The symmetries of the first kind are called usual symmetries while
those of the second kind are called supersymmetries. Now, natural questions are the following:

1. why consider systems of particles exhibiting supersymmetry rather than usual symmetries?

2. what are the most general kind of symmetries that can be considered in particle physics?

As discussed in Example 3.5, the Standard Model does not predict certain experimental results
and, therefore, it need to be considered as an effective theory. The extended theory must have
“extended symmetry”, meaning that it should have all the symmetries of the Standard Model and
(possibly) many others. The symmetries of the Standard Model are described by Lie groups and,
therefore, by their Lie algebras. There are essentially two classes of symmetries: those given by
Poincaré algebra and those associated with the gauge group of the interaction, meaning that the
algebra of symmetries is of the form Pnc(4) ⊕ g.

One of the fundamental objects in perturbative quantum field theory is the S-matrix [207,
148, 215], which we can think as the sum over the Feynman diagrams of the theory. The Feynman
diagrams (and, therefore, the S-matrix) comes from the Lagrangian, so that they also are invariant
by Pnc(4) ⊕ g. Because we are trying to do new fundamental physics, the idea is to search for
extensions of the algebra Pnc(4) ⊕ g which also make invariant the S-matrix and which cannot
be decomposed as Pnc(4) ⊕ h for some Lie algebra h. Coleman-Mandula theorem [45] says that
such a Lie algebra extension does not exist.

A possible way to avoid to the Coleman-Mandula theorem is to search for superalgebra
extensions of Pnc(4) ⊕ g (instead of usual algebra extensions). The very impressive is that this
is not only a possible solution, but it is indeed the unique solution! This assertion is motivated
by Deligne’s theorem on tensor categories [54, 55, 163]. Indeed, recall that a system of quantum
particles is described by a superalgebra Super(H) and, therefore, by an object of the symmetric
monoidal category (Z2GradC,⊗). Deligne’s theorem imply that there exist a Hopf superalgebra
G whose category of representations on Z2GradC is equivalent to Z2GradC. So, the whole
system of quantum particles (including the possible symmetries) is described by representation
theory of a superalgebra. Consequently, supersymmetry is the most general kind of symmetry
that can be considered.

For a very clear discussion on this topic, see [186].

Remark. Deligne’s theorem can be understood as a high generalization of the classical Wigner’s
theorem [208] dating 1930’s, which states that a system of quantum particles with group of
symmetries G and whose space of states is a Hilbert space H, is totally classified by the irreducible
unitary/anti-unitary representations of G into H.

Remark. The previous fact (that supersymmetry is the most general kind o symmetry that
can be considered in a system of particles) could be formalized without Deligne’s theorem.
The idea is the following: by the previous discussion, it is natural to suppose that a system
of bosonic/fermionic particles is described by a superalgebra Super(H) = Sym(H)⊗Λ(H), which
is a monoid on (Z2GradC,⊗). Therefore, the collection of symmetries on a such system should
have the structure of “group internal to Z2GradC”, i.e of Hopf monoid on this monoidal category.
But the notion of Hopf monoid depends of the symmetric monoidal structure and, therefore, of a
choice of braidings. So, the different braidings on (Z2GradC,⊗) will produce the different flavors
of symmetries that can be considered into a system of bosonic/fermionic particles. In Example 5.5
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we showed that there are at least two of these braidings: one trivial, describing usual symmetries,
and other nontrivial, whose Hopf monoids are the Hopf superalgebras, describing supersymmetry.
The fundamental fact is that these are the unique braidings ! This follows from a homotopical
calculation on a topological space associated to the monoidal category (Z2GradC,⊗), as will be
done in Chapter 8. We would like to observe, on the other hand, that Deligne’s theorem is more
general at least in two aspects:

1. it holds not only for the category of Z2-graded complex modules, but for a large class of
tensor category;

2. it not only classify the possible symmetries of a system of particles, but also the space of
states.

Frobenius

We end this section by recalling that a Hopf monoid is an object that has monoid and comonoid
structures which are compatible in certain sense. These compatibility conditions are motivated
by the usual group structure, but in principle we could considered other different conditions,
getting different enriched objects. Another example of usual compatibility conditions are those
given by the diagrams below, whose corresponding enriched objects are called Frobenius objects.

(X ⊗X)⊗X

axxx

��

X ⊗X

m

��

w⊗idoo id⊗w // X ⊗ (X ⊗X)

a−1
xxx

��

X

w

��
X ⊗ (X ⊗X)

id⊗m
// X ⊗X (X ⊗X)⊗X

m⊗id
oo

These kind of objects are also very important in physics. Indeed, as will be discussed in
Chapter 14, the sphere S1 is a Frobenius object in the category Cob2 of 2-cobordism. Not only
this: we will also show that the whole monoidal structure of Cob2 is generated by S1, considered
as a Frobenius object! Consequently, giving a monoidal functor U : Cob2 → VecC is the same
as giving a Frobenius object into VecC. In other words, a topological quantum field theory for
strings is exactly the same as a (commutative and finite dimensional) Frobenius algebra.

5.3 Spectrum

Since Section 2.3 we have been observed that spetra and (unbounded) cochain complexes
are very similar entities. Indeed, both are composed by a sequence of objects Xn connected by
structural maps σn : Xn → Xn+1 fulfilling some additional condition. Furthermore, in both cases
the morphisms between the entities are sequences fn : Xn → X ′

n commuting with the structural
maps, i.e, such that σ′n ◦fn = fn+1 ◦σn. In other words, while cochain complex are “graded linear
spaces” and cochain maps are “linear maps preserving the grading”, we can think of a spectrum
as some kind of “graded topological space” whose morphisms are “continuous maps preserving the
grading”.
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The similarities does not stop here. Indeed, the condition imposed to the structural maps
of the cochain complex allows us to define certain invariants: the algebraic cohomology groups
Hk(X∗). Similarly, for spectra we have the stable homotopy groups πSk (X). In both cases, the
class W of morphisms inducing isomorphisms into each invariant can be used in order to localize
the original theory, producing a well behaved homotopy theory.

Here we would like to observe that it is natural to expect the existence of another similarity
between the categories CChR and Spec. Indeed, as commented above, CChR is some “graded
version” of ModR. In the category of R-modules we have a canonical noncartesian monoidal
structure given by the tensor product ⊗R, whose neutral object is R. This structure is symmetric
and closed. Similarly, recall that Spec is a “graded version” of Top∗. It happens that this category
(or at least a convenient subcategory of topological spaces) also has a canonical noncartesian
monoidal structure: the smash product ∧, of which the sphere S0 is the neutral object. This
structure is also symmetric and closed.

As explained in Example 4.7 and Example 4.9, ⊗R induces a corresponding monoidal structure
into CChR whose product is R, trivially regarded as a cochain complex. Furthermore, the
obtained structure is closed and symmetric at least in two different ways. So, it is natural to
expect that, in a totally analogous way, the smash product ∧ also induce a closed symmetric
monoidal structure into Spec whose neutral object is the sphere S0, trivially regarded as a
spectrum. The natural way to regard a space X as a spectrum is by considering its suspension
spectrum Σ∞X, whose nth term is ΣnX and whose structural maps are the maps ΣnX → Σn+1X
obtained by applying Σn to the canonical embedding X → ΣX. Note that Σ∞S0 is precisely the
sphere spectrum S = (Sn). Therefore, summarizing, it is natural to expect the existence of closed
symmetric smash product on spectra whose neutral object is the sphere spectrum.

Recall that at level of cochain complexes, the tensor product was defined (as detailed discussed
in Example 4.9) by

(X∗ ⊗X
′
∗)k =

⊕

i+j=k

Xi ⊗X
′
j , with differential D = d⊗ id+ id⊗ d′.

We notice that ⊕ is the coproduct of ModR. Therefore, the immediate idea is to mimic this
construction, defining the smash product between two spectra X and Y as

(X ∧ Y)k :=
∨

i+j=k

Xi ∧ Yj, (5.3.1)

where ∨ is the wedge sum (i.e, the coproduct of Top∗). In order to turn this into a genuine
spectrum we have to give maps

σk : Σ(X ∧ Y)k → (X ∧ Y)k+1, i.e, σk :
∨

i+j=k

Σ(Xi ∧ Yj)→
∨

i+j=k+1

Xi ∧ Yj, (5.3.2)

where we used that Σ preserve colimits (because it has an adjoint Ω). Notice that the expression

D = d⊗ id+ id⊗ d′

was fixed (up to trivial ambiguities) by the necessity that deg(D) = −1, meaning that the tensor
product X∗ ⊗X

′
∗ has canonical structural maps turning it a cochain complex. This is not the

case of the product (5.3.1) with respect to the structural maps (5.3.2).
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Indeed, in order to fix (5.3.2) we have to led with many non-trivial ambiguities. First of all,
noticing that ΣX ≃ S1 ∧X and that the smash product is commutative up to homeomorphisms
(because it defines a symmetric monoidal structure in Top∗), then the term

Σ(Xi ∧ Yj) can be considered as (Xi ∧ S1) ∧ Yj or as Xi ∧ (S1 ∧ Yj).

In principle, this could be seem only a “first order ambiguity”, but notice that it propagates,
because the maps σl, with l < k, also depends of choices like this, revealing that σk has not
only an ambiguity given by Σ2 (the permutation group of two elements), but indeed by Σk (the
permutation group of k-elements), which has k! elements. Therefore, the number of ambiguities
to be considered grown very fast when k →∞.

There are essentially two ways to avoid these ambiguities, as we pass to discuss:

1. insisting in the definition of spectra as a sequence of spaces, as will be done in the next
subsection;

2. giving a more well behaved notion of spectra. Indeed, instead insisting with the notion of
“spectrum” as a sequence of spaces with maps, we could redefine them in order to incorporate
all possible ambiguities appearing in (5.3.2). There are many approaches and the most
known are called symmetric spectra, orthogonal spectra and S-modules. We refer the reader
to [187, 101, 64, 142]. A very well written survey is [65]. See also [67, 143]

Lewis’s Obstruction

Let us insist in the usual definition of spectra. In this case, in order to get a smash product
on Spec, instead of considering X ∧ Y as in (5.3.1) we could consider a more simple expression,
involving not a coproduct of many terms, but a single term. For instance, we could take

(X ∧ Y)k := Xi ∧ Yk−i (5.3.3)

for an arbitrary i. In this case, notice that the ambiguities disappear, because one times fixed
Σ(X ∧ Y ) ≃ (ΣX) ∧ Y we have canonical maps

σk : Σ(X ∧ Y)k → (X ∧ Y)k+1, given by σk = σXk ∧ idYk−i
.

This is not the only possibility. Indeed, we could also define

(X ∧ Y)k :=

{

Xn ∧ Yn, k = 2n

Xn ∧ ΣYn, k = 2n+ 1,
(5.3.4)

with structural maps

σ2k : (ΣXn) ∧ Yn → Xn ∧ (ΣYn) and σ2k+1 : (ΣXn) ∧ (ΣYn)→ Xn+1 ∧ Yn+1,

respectively given by the canonical isomorphism

σ2k : (ΣXn) ∧ Yn ≃ Σ(Xn ∧ Yn) ≃ Xn ∧ (ΣYn) and by σ2k+1 = σXn ∧ σ
Y
n .
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We notice, however, that both definitions of “smash product of spectra” given above produce
a well defined (and equivalent) monoidal structure only on the homotopy category of spectra
Ho(Spec). Indeed, in order to be genuine monoidal structure in Spec the smash product should
satisfy

(X ∧Y) ∧ Z ≃ X ∧ (Y ∧ Z) and S ∧ X ≃ X ≃ X ∧ S

for any spectra. In particular, we would have

(S ∧ S) ∧ S ≃ S ∧ (S ∧ S) and S ∧ S ≃ S ≃ S ∧ S. (5.3.5)

Now, remember that the structural maps of the sphere spectrum are given by the homeo-
morphisms σk : ΣSk ≃ Sk+1, so that the isomorphism (5.3.5) should be obtained from the limit
k, l,m→∞ of the first commutative diagram below, where ϕkl : Sk ∧ Sl ≃ Sk+l. It happens that
this diagram is not commutative! For instance, if k, l,m = 0 both constructions produce S0 with
different base points. On the other hand, it is commutative up to homotopy, because the final
maps of the diagram have the same degree3.

(Sk ∧ Sl) ∧ Sm

ϕkl∧id
��

≃ // Sk ∧ (Sl ∧ Sm)

id∧ϕlm

��

Sk ∧ Sl

ϕkl

��

bkl // Sl ∧ Sk

ϕlk

��
Sk+l ∧ Sm ϕ(k+l)m

// Sk+l+m Sk ∧ Sl+mϕk(l+m)

oo Sk+l
(−1)kl

// Sl+k

(5.3.6)

The situation here is very similar to the problem with the concatenation of loops. Indeed,
recall that, as discussed in Example 4.5, for any X its loop space ΩX becomes equipped with
a canonical product # : ΩX × ΩX → ΩX defined in Top∗, which does not define a monoid
structure on X, because the product is associative only up to homotopy, but it defines in the
homotopy category Ho(Top∗).

We would have the same problem if we try to make ∧ a symmetric monoidal product.
Indeed, the existence of braidings bxy : X ∧ Y ≃ Y ∧ X would imply, in particular, the existence
of braidings b : S ∧ S ≃ S ∧ S, which should be obtained taking the limit k, l → ∞ at maps
(−1)kl : Sk+l → Sl+k given by reverting the coordinates, meaning that the second diagram above
should be commutative. But it is commutative only up to homotopy.

Remark. A complete prove that the above products really introduce equivalent symmetric
monoidal structure Ho(Spec) is long and boring. Details can be founded in part III of [4] and in
Section 2.2 of [137]. See also Section 2.2 of [214] and Chapter 8 of [200]. An important consequence
is that the homotopy category of spectra is additive, meaning that for any two spectra X and

3Let X and Y be spaces such that Hn(X;Z) ≃ Z ≃ Hn(Y ;Z) for some n. Let 1x and 1y be the respective
generators of the cohomology groups under these isomorphisms. Recall that the nth degree of a map f : X → Y is
the number deg(f) such that f∗(1y) = deg(f) ·1x. It is clearly a homotopy invariant, i.e, homotopic maps have the
same nth degree. Hopf theorem asserts the reciprocal when Y = Sn and X is (homotopic to) a compact oriented
manifold. The original article is [98]. For expositions, see [??,??]. We notice that the result can be understood as
a direct consequence of the Thom-Pontryagin theorem for cobordisms with framing. The fundamental step of ......
In other words,

[M, Sn] ≃ Iso(Cob
fram
0 ) ≃ πS

0 (S) = lim
k→∞

πk(S
k) ≃ lim

k→∞
Z ≃ Z,

where the integer corresponding to a homotopy class [f ] is just its degree.
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Y, the set of morphisms MorHo(Spec)(X;Y) has a structure of abelian group. Furthermore, the
smash product is bilinear with respect to these structures.

We could think of the non-definition of a genuine monoidal structure in Spec as pathologies
of the products (5.3.3) and (5.3.4), and then asking: is there some symmetric monoidal structure
in Spec whose neutral object is S? By a result usually called as Lewis’s obstruction theorem,
such a monoidal structure (fulfilling some very natural condition) does not exist!

In order to state Lewis’s theorem in a more precise formulation, we notice that in general the
functors Σ and Ω are not monoidal with respect to the smash product of spaces, because we have

Σ(X ∧ Y ) ≃ (ΣX) ∧ Y instead of Σ(X ∧ Y ) ≃ (ΣX) ∧ (ΣY ),

and similarly for Ω. On the other hand, recall that for any Y we have a canonical maps Y → ΣY
and ΩY → Y . Therefore, composing these maps with the equivalences above we get maps

Σ(X ∧ Y )→ (ΣX) ∧ (ΣY ) and (ΩX) ∧ (ΩY )→ Ω(X ∧ Y ),

revealing that Σ and Ω are, respectively, lax monoidal and colax monoidal. Iterating Σ and Ω
and taking the limit n → ∞ we then expect to get lax/oplax monoidal functors in the category
of spectra. In other words, it is natural to expect that the correct “smash product of spectra”
becomes equipped with lax/oplax monoidal functors

Σ∞ : (Top∗,∧)→ (Spec,∧) and Ω∞ : (Spec,∧)→ (Top∗,∧).

With this in mind we can state Lewis’s theorem [123]4:

Theorem 5.1 (Lewis’s obstruction theorem). There is no subcategory S of Spec in which the
following conditions hold simultaneously:

1. it becomes endowed with a closed symmetric monoidal structure;

2. whose neutral element object is the sphere spectrum S;

3. for which we have a lax/oplax adjunction Σ∞
⇋ Ω∞;

4. such that Ω∞Σ∞X ≃ colimΩnΣnX for any space X .

This theorem could be seen very surprisingly, but it is indeed very natural. In fact, notice
that the homotopy commutativity of diagrams (5.7) is not a property of any “smash product of
spectra”, but indeed of the spheres (and, therefore, of the sphere spectrum). It happens that,
together the conditions (3.) and (4.) above imply that, if (S,∧,S) is the the symmetric monoidal
structure ensured by conditions (1.) and (2.), then the action of ∧ on S must be given by the
limit of the diagrams (5.7), which are commutative only up to homotopy. Following [123], let us
give a formal proof. For a discussion on the consequences of the theorem, see [66].

4We enunciate the result somewhat differently from the one presented in the original article.
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Proof. Suppose that such a category exists. Then S = Σ∞S0 is a commutative monoid object
into this structure. As a consequence, Ω∞S should be a commutative topological monoid. It is a
classical result of Topology that any path connected commutative topological monoid is weakly
homotopy equivalent to a product of Eilenberg-Mac Lan spaces. Therefore, the path component
P of the identity in Ω∞Σ∞S0 should be equivalent to a product of Eilenberg-Mac Lane spaces,
which is false. Indeed, because by (.4)

πk≥1(X) ≃ πk(Ω
∞Σ∞S0)

≃ πk(colimΩnΣnS0)

≃ colimπk(Ω
nSn)

≃ πSk (S),

i.e, the homotopy groups of P are the stable homotopy groups of spheres, which generally have
different structure for different values of k. On the other hand, if ΠiK(Gi, i) is a product of
Eilenberg-Mac Lane spaces, then

πk(ΠiK(Gi, i)) ≃ Πiπk(K(Gi, i))

≃ ΠiGi

is a product of the same abelian monoids for any k.

Multiplicative Cohomology

Despite the nonexistence of a nice smash product on Spec, we have a well defined symmetric
monoidal structure on Ho(Spec), so that we can study monoid objects there. They are called
ring spectra, while their commutative version are called commutative ring spectra.

Therefore, intrinsically a (commutative) ring spectrum is a spectrum E endowed with spectra
morphisms m : E ∧ E → E and u : S → E fulfilling (commutative) monoid-like diagrams up
to homotopy. But, in order to explicit this definition, we need to select a model to the smash
product ∧ in Ho(Spec). For instance, if we select the model (5.3.3), then a ring spectrum is
represented by maps

mk : Ei ∧ Ek−i → Ek, and uk : S
k → Ek

for some i, fulfilling the homotopy-commutativity conditions. On the other hand, if we choose
the model (5.3.4), then a ring spectrum pass to be represented by the following maps, satisfying
the required commutativity conditions:

{

mk : En ∧ En → Ek, if k = 2n

mk : En ∧ ΣEn → Ek, if k = 2n+ 1
and uk : S

k → Ek.

Let us see some examples.

Example 5.11 (sphere). The sphere spectrum is, by construction, the fundamental example of
commutative ring spectrum. The multiplication mk : Si ∧ Sk−i → Sk is the canonical homeo-
morphism Si ∧ Sk−i ≃ Sk and the unit uk : Sk → Sk is the identity map. The commutative
conditions up to homotopy are given by diagrams (5.7). More concisely, the sphere spectrum is
a commutative ring spectrum because it is the neutral object of a symmetric monoidal category.
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Example 5.12 (Eilenberg-Mac Lane). Let G be a discrete abelian group. Then we have the
corresponding Eilenberg-Mac Lane spectrum K(G,n) ≃ BnG, introduced in Example 1.11. This
spectrum is a ring spectrum. Indeed, we have canonical maps

mk+l : K(G, k) ∧K(G, l)→ K(G, k + l) and uk : S
k → K(G, k).

In order to get the first, recall that B preserve products and that we have a projection map
π : G → BG (and, therefore, a projection map πk : G → BkG), so that ∗ : G ×G → G induces
the diagram below.

BkG×BlG
Bkπl×B

lπk // Bk(BlG)×Bl(BkG)
≃ // Bk+l(G×G)

Bk+l∗ // Bk+lG

We notice that the projection π × π : G×G→ BG×BG maps each par (e, g) or (g, e) into the
same point, so that it pass to the quotient, being defined on G∧G. Consequently, the composition
above becomes defined on BkG ∧ BlG, giving the required map mk+l. The second map uk, on
the other hand, comes from the image of the constant map at the neutral element e ∈ G from
the following isomorphism:

[Sk;K(G, k)] ≃ [S0; ΩkBkG] ≃ [S0;G].

Example 5.13 (Bott). Recall the complex K-theory spectrum KU, given by (KU)n ≃ ΩnBU .
We assert that this spectrum is a ring spectrum. Indeed, recall the Bott periodicity, which states
that this spectrum is periodic of period equal to 2. Consequently, the only nonequivalent terms
are (KU)0 ≃ BU × Z and (KU)1 ≃ U , so that by making use of the model (5.3.3) we have to
build maps

m : (BU × Z) ∧ (BU × Z) → BU × Z (5.3.7)

m′ : (BU × Z) ∧ U → BU × Z

m′′ : U ∧ U → BU × Z,

corresponding to the multiplication, and maps

u0 : S
0 → BU × Z and u1 : S

1 → U,

describing the unit. Recall that KU1(S1) ≃ Z and, by Bott periodicity,

[S0;BU × Z] ≃ [S2;BU × Z] = KU0(S2) ≃ Z,

so that we can define u1 and u0 as the maps arising from the unit of Z from these isomorphisms.
We outline the construction of (5.3.7). We start by noticing that we have canonical applications
αkl : U(k) × U(l) → U(kl), given by the tensor product of matrices. Applying B, taking the
colimit and −× Z, we get

(BU × Z)× (BU × Z)→ BU × Z,

which pass to the quotient, defining the map m. In order to define m′′ we proceed similarly:
taking the colimit of αkl we get U × U → U ; composing with the projecting map U → BU and
with BU →֒ BU × Z we obtain m′′.
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Example 5.14 (Thom). As introduced at the last subsection of Section 1.2, we another very
usual spectrum, the Thom spectrum. We recall that MOn is the Thom space T (V (n)) of the
canonical n-vector bundle V (n). Let us see that it is a ring spectrum. We need to build maps

mk+l : MOk ∧MOl →MOk+l and uk : S
k →MOk.

The multiplications can be obtained from the direct sum of matrices

O(k)×O(l)→ O(k + l)

by noticing that this induce a corresponding bundle morphism is b : V (k)⊕ V (l)→ V (k+ l) and
that the Thom space construction maps direct sum into smash product:

T (V (k)) ∧ T (V (l))
≃ // T (V (k)⊕ V (l))

T (b) // T (V (k + l))

In order to define uk, recall that we can define Thom spectrum for other sequence of groups
rather than O(k). For instance, we can do this for the sequence in which all groups are trivial,
whose corresponding corresponding Thom spectrum is just the sphere spectrum, i.e, (M∗)k ≃ Sk.
It happens that, because we have a canonical map ∗ → O(k) for each k, we get an induced map
between the corresponding Thom spectra, which we identify with uk : Sk →MOk.

In some parts of the text we used that singular cohomology, complex K-theory and cobordism
are graded rings, meaning that we know how to multiply classes in these cohomology theories.
Now we can explain why this happens: it is exactly because the underlying spectra, as described
in the examples above, are given by ring spectra. Indeed, we have the following:

Proposition 5.1. The cohomology theory represented by a Ω-spectrum E is such that H(X;E)
has a graded ring structure natural in X iff E is a ring spectrum. Furthermore, the graded ring
is graded commutative iff E is commutative.

Proof. Given a space X and a natural k ∈ N, let Σ∞−kX be the k-reduced suspension spectrum
of X, defined by

(Σ∞−kX)n =

{

Σn−kX, if n ≥ k

∗, otherwise,

with the obvious structural maps. Notice that if X is given by Ek ≃ ΣkΩ∞E for some spectrum
E, then Σ∞−kX ≃ Ek. This rule rule is actually a functor Σ∞−k : Ho(Top∗)→ Ho(Spec). Given
spaces X,Y and maps f : X → Ek and g : Y → El we get the following morphism

αklxy : [X,Ek]× [Y,El]→ [X×Y ;Ek∧El], with αklxy(f, g) = Σk+l(Ω∞(f∞−k∧f∞−l)). (5.3.8)

Because E is a Ω-spectrum, its cohomology groups are abelian, meaning that each set above,
appearing in the domain and in the codomain of αxy, is an abelian group. Recall that, despite we
have not discussed here, the homotopy category of spectra is additive, i.e, the space of morphisms
between any two spectra is an abelian group, and the smash product is bilinear. Therefore, we see
from (5.3.8) that αxy is bilinear, so that it extends to a linear map defined on the tensor product.
Now, let us suppose that E is a ring spectrum with multiplication m : E ∧ E → E. So, for any
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given space X, by making use of (5.3.3), from mk+l and αklxx the diagonal map ∆ : X ×X → X
we get induced bilinear maps

[X,Ek]⊗ [X,El] // [X ×X,Ek ∧ El] // [X ×X,Ek+l] // [X,Ek+l],

which gives the structure of graded ring to H(X;E). Certainly, if E is commutative, then the
corresponding graded ring is graded commutative. The multiplicative neutral element comes
from the unit u : S → E of E. Indeed, because S is ring spectrum, H(X;S) is a graded ring
and u induces a graded morphism u∗ : H(X;S) → H(X;E). Therefore, the multiplicative unit
of H(X;E) is just the image under this morphism of the unit of H(X;S) = ⊕i[X,S

i], which is
given by c ⊕ 0 ⊕ ... ⊕ 0, where c ∈ [X,S0] is the class of the constant map at base point of S0.
This proves that the cohomology of ring Ω-spectrum has the structure of graded unital ring. The
reciprocal is a consequence of the so called Brown representability theorem. See [??].



Chapter 6

Abstract Categories

In the last two chapters we applied the enrichment/internalization process to very simple con-
cepts (as the concepts of monoid and commutative monoid) and we concluded that the resulting
notions are very abstract and useful, meaning that different classical concepts are now unified into
a unique categorified concept. The present chapter is about categorification of languages. More
precisely, in the first section we apply enrichment and internalization to the notion of category,
producing the concepts of enriched categories and internal categories defined on some ambient
H. We will also enrich/internalize functors, getting enriched functors and internal functors.
Together, both notions fit into categories Cat(H) and CatH describing H-enriched categorical
language and H-internal categorical language.

Recall that the categorification process was naively introduced in Section 2.3 as some kind of
way to pass from classical logic to categorical logic, so that iterating the process we would get
more and more abstract languages. Observe that this is an inductive process and, by the above
discussion, we have two ways to do the “induction step”: by internalizing and by enriching. So,
we can ask: which is the “correct” step?

The requirement of new abstract languages comes from the axiomatization problem of physics,
so that by “correct language” we mean that they can be applied to this problem. With this in
mind, in Section 6.3 we show that enriched category theory is the correct background language.
Indeed, we start by showing that many classical results are no longer generalized in the inter-
nalization context. More precisely, we show that the axiom of choice admits a purely categorical
characterization, so that we can analyze its validity in any category H. The fact is that it gen-
erally fails and, consequently, no results proven using it can be directly internalized on H. On
the other hand, we show that the failure of the axiom of choice does not affect the enriched
categorical language, at the same time that the notions of limit, Kan extensions, etc, admit a
natural enriched version.

Second 6.2 clarify that, despite the above assertion, internal language is also useful in physics.
Indeed, there we see that internal language plays a central role in the description of the con-
figuration space of classical theories of particles. We also discuss that configurations spaces of
gauge theories for strings cannot be described by internal language, but it could be by “higher
internal language”. More precisely, we give a more concrete justification to the naive idea that
“string theory” is “categorified particle theory”, presented in Section 2.4. We also conjecture the
existence of some kind of “categorified Lie theory” and we present two examples of what could be

156
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their role in physics.

6.1 Categorifying

In this section we will talk about categorification of the concept of category. As in the previous
chapters, we start by applying the internalization process. The first step is then to give a totally
categorical characterization of the concept of category. Indeed, as will be explained now, the
notion of category admits two of these characterizations.

We start by observing that a category can be understood as a “monoid with many objects”.
More precisely, if C is a category with only one object ∗, then its set of morphisms MorC(∗, ∗)
has a structure of monoid whose multiplication is just the composition operation and whose
neutral element is determined by the identity map id∗ : ∗ → ∗. Reciprocally, for any given
monoid X we can define a corresponding category BX which has only one object ∗ and whose
set of morphisms MorC(∗, ∗) is just X. Evidently, this correspondence extends to an equivalence
Mon ≃ ∗Cat between the category Mon of monoids and the category ∗Cat of all categories with
only one object.

Therefore an arbitrary category really can be understood as a “monoid with many objects”.
But monoids admit a totally categorical characterization, so that it is expected the same for
arbitrary categories. It happens that there are two ways to see a category as a “monoid with
many objects”, which will imply the existence of two categorical characterizations to the concept
of category.

The idea is the following: in the equivalence Mon ≃ ∗Cat we have only one object, so that
all morphisms necessarily belong to the same set. In other words, when we have only one object
we do not need to specify the source and the target of morphisms. But when we have arbitrary
objects, source/target information is relevant and we need to incorporate it. This can be done in
two different ways: dividing the morphisms into sets MorC(X;Y ) parametrized by their source
and target (as done in our formal definition of categories at the beginning of Chapter 1), or
combining all morphisms into a single set Mor(C) and adding new functions s and t responsible
for specifies the source and target of each morphism.

In order to distinguish these situations, we will say that in the first case we have a category
with hom-sets, while in the second we have a category with source/target. Both approaches
will produce a complete categorical characterization of the notion of category which reproduce
the characterization of the monoids in the “one object limit”. This will allow us to internalize
and enrich the notion of category into other categories, producing abstract notions as internal
categories and enriched categories.

Remark. Exactly as associators/unitors/braidings are part of the data defining a monoidal
structure, the choice of a categorical characterization is part of the data defining internaliza-
tion/enrichment. This means that the same concept having different categorical characteriza-
tions can be categorified in different ways, producing different abstract concepts. As we have
been discussing, the concept of category admits two different characterizations, so that it is natu-
ral to expect that each of them will produce different categorified concepts. This is really the case,
as will become clear in the next subsections.
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Categories With Hom-Sets

Let us start by analyzing the first approach, i.e, let us apply internalization/enrichment into
the concept of “category with hom-sets”. In order to get the categorical characterization, notice
that a category with hom-sets is composed by the following data: a set Ob(C) of objects, for any
two objects a corresponding set of morphisms, for any three objects an associative composition
◦xyz and for any object X a distinguished morphism idX : X → X satisfying idX ◦ f = f
and g ◦ idX = g. The associativity of compositions can be translated in terms of commutative
diagrams involving binary products in Set, as presented below1.

(X,Y )× ((Y,Z)× (Z,W ))

id×◦yzw
��

≃ // ((X,Y )× (Y,Z))× (Z,W )
◦xyz×id // (X,Z)× (Z,W )

◦xzw
��

(X,Y )× (Y,W ) ◦xyw
// (X,W )

On the other hand, the identities (which are distinguished endomorphisms) can be under-
stood as functions idX : 1 → MorC(X,X), where 1 is a terminal object in Set, satisfying the
commutativity conditions presented below.

1× (X,Y )

≃
**❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚

idX×id // (X,X) × (X,Y )

◦xxy

��

(X,Y )× (Y, Y )

◦xyy

��

(X,Y )× 1
id×idYoo

≃
tt❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥

(X,Y ) (X,Y )

So, any category with hom-sets really can be characterized by categorical information (objects,
morphisms, binary products and terminal object) satisfying additional commutativity conditions
and, therefore, internalization and enrichment applies.

• internalization. By definition, we can internalize a concept in any category having the
same categorical information used to characterizes it. So, it seems that we can internalize
the notion of category with hom-sets in any category with binary products and terminal
object. We would like to observe that this is not the case. Indeed, when listing the
defining data of a category with hom-sets we have to consider entities parametrized by the
set of objects. In fact, we have to consider “for any two objects a set of morphisms”, “for any
three objects a notion of composition”, and so on. Therefore, the concept of element is also
part of the data characterizing categories with hom-sets. Consequently, to internalize them
into a category H, such a category really needs to have binary products and terminal object,
but we also need that its objects belong to a set (possibly endowed with further structure,
of course). In other words, the notion of category with hom-sets can be internalized only
into the concrete categories with binary products and terminal objects. Therefore, internal
categories with hom-sets are not very abstract objects, but only usual categories with some
further properties. It is for this reason that this notion is not useful in the literature.

• enrichment. Observe, on the other hand, that the set of objects does not appear explicitly
in the previous diagram, so that when applying the enrichment process2 to the notion of

1For simplicity, we have written (X,Y ) instead of MorC(X,Y ).
2Indeed, recall that enrichment is about internalization of diagrams.
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category with hom-sets we will not find the problems described above. Specially, we can
enrich the notion of category with hom-sets over any monoidal category. In explicit terms,
if (H,⊗, 1) is monoidal, then a category with hom-sets enriched over H is an entity C given
by the following data:

1. a set of objects Ob(C);

2. for any two elements of Ob(C) a corresponding object HC(X,Y ) of H;

3. for any three elements a morphism in H abstracting the compositions

◦xyz : HC(X,Y )⊗HC(Y,Z)→ HC(X,Z);

4. for any element a morphism idx : 1 → HC(X,X) presenting the identities, such that
the following analogues of the previous diagrams are commutative3:

(X,Y )⊗ ((Y,Z)⊗ (Z,W ))

id⊗◦yzw
��

≃ // ((X,Y )⊗ (Y,Z))⊗ (Z,W )
◦xyz⊗id // (X,Z)⊗ (Z,W )

◦xzw
��

(X,Y )⊗ (Y,W ) ◦xyw
// (X,W )

1⊗ (X,Y )

≃
**❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚

idX⊗id // (X,X) ⊗ (X,Y )

◦xxy

��

(X,Y )⊗ (Y, Y )

◦xyy

��

(X,Y )⊗ 1
id⊗idYoo

≃
tt❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥

(X,Y ) (X,Y )

Remark. Notice that when H is a concrete category with binary products and terminal objects,
then the concept of “category internalized into H” almost coincides with the concept of “category
enriched over the cartesian monoidal category (H,×, 1)”, explaining why for categories with hom-
sets the enrichment process is much more fruitful.

Now, exactly as in Section 4.1 “homomorphism between monoids” could be enriched giving
the notion of “morphisms between monoid objects into a monoidal category”, we can give a totally
categorical characterization to the usual notion of “functor between categories with hom-sets” in
such a way that it can be enriched producing the concept of “enriched functor between enriched
categories”. Indeed, if C and D are categories with hom-sets enriched over the same monoidal
category (H,⊗, 1), then a enriched functor between them is a rule F : C → D given by the
following data:

1. a function F : Ob(C)→ Ob(D);

2. for any two objects X and Y , a morphism of H

Fxy : HC(X,Y )→ HD(F (X), F (Y )),

3Again we have written (X,Y ) instead of HC(X,Y ). Furthermore, the equivalences ≃ in the first/second
diagram are given by associators/unitors of the monoidal category H.
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such that the following diagrams4 (describing the preservation of compositions and identities) are
commutative.

(X,Y )⊗ (Y,Z)

Fxy⊗Fyz

��

◦xyz // (X,Z)

Fxz

��

1

idx

||③③
③③
③③
③③
③

idF (x)

%%❑❑
❑❑❑

❑❑❑
❑❑❑

❑

(F (X), F (Y ))⊗ (F (Y ), F (Z)) ◦F (x)F (y)F (z)

// (F (X), F (Z)) (X,X)
Fxx

// (F (X), F (X))

For any monoidal category H we can then define the corresponding category Cat(H) of
categories with hom-sets enriched over H and enriched functors between them. Recall that any
category defines an area of math. If Cat describes category theory, then Cat(H) describes H-
enriched category theory. We may ask if this new theory is really abstract. For instance, we can
ask if the very powerful categorical notions of natural transformations, limits, ends, etc., also
have enriched versions. Fortunately, thanks to the works of Kelly, Eilengerg, Day and others, all
these concepts actually can be enriched, making enriched categorical language a very abstract
language! This fact will become more clear is the next section. See [52, 62, 59, 110, 172].

Categories With Source/Target

Now, let us analyze the other characterization of the notion of category, given by cate-
gories with source/target. Here, instead of using families of hom-sets, compositions and identities
parametrized by the set of objects, the idea is to consider a single set Mor(C) of all morphisms,
a single function ◦ representing all compositions (in the sense that ◦(f, g) = f ◦ g) and a single
function id representing all identities (i.e, such that id(X) = idX), together with two functions
s, t : Mor(C)→ Ob(C) assigning to any morphism f corresponding objects s(f) and t(f) which
will be interpreted as their source and target. For instance, it is assumed that

s(id(X)) = X = t(id(X)), s(g ◦ f) = s(f) and t(g ◦ f) = t(g). (6.1.1)

However, when working with this approach we have to be careful. In fact, surely the
composition map ◦(f, g) = f ◦ g takes values in the set of morphisms, but which is their do-
main? Maybe the reader would assume that the the composition map is defined on the product
Mor(C) ×Mor(C). This is not generally true. Indeed, if it would be so, then the composition
between any two given morphisms should be well defined, but this is not the case: the composi-
tion g ◦ f can be done only if the source of g coincides with the target of f . In other words, only
if s(g) = t(f). Therefore, ◦ is actually defined on the subset of the product Mor(C)×Mor(C) in
which s(π1(f, g)) = t(π2(f, g)). But this is just the pullback between s and t!

Finally, we notice that the associativity of the compositions and the “neutral element property”
of the identities correspond to the commutativity of the diagrams below, where the segmented
arrows come from the universality of pullbacks. On the other hand, it is easy to see that conditions
(6.1.1) also correspond to commutative diagrams.

pb(pb(s, t), s)

��✤
✤
✤

≃ //❴❴❴ pb(pb(s, t), t) //❴❴❴ pb(s, t)

◦

��

pb(s ◦ id, t)

π1 &&◆◆
◆◆◆

◆◆◆
◆◆◆

//❴❴❴ pb(s, t)

◦

��

pb(s, t ◦ id)oo❴ ❴ ❴

π2xx♣♣♣
♣♣♣

♣♣♣
♣♣

pb(s, t) ◦
// Mor(C) Mor(C)

4As usually we have written (X,Y ) instead of HC(X,Y ).
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The discussion above reveals that categories with source/target also have a characterization
in terms of purely categorical data (objects, morphisms and pullbacks) satisfying commutativity
conditions. Consequently, internalization and enrichment apply.

• internalization. If H has pullbacks, then a category with source/target internal to H is an
entity C defined by the following data:

1. objects Ob(C) and Mor(C) of H, also respectively denoted by C0 and C1;

2. source and target maps, represented by morphisms s, t : C1 → C0 in H;

3. morphisms id : C0 → C1 and ◦ : pb(s, t)→ C1 representing the identity maps and the
compositions, which are compatible with the source/target maps in the sense that the
diagrams below (corresponding to the conditions (6.1.1)) are commutative. We also
require the associativity of ◦ and the neutral element property of id by postulating
the commutativity of a analogous version of the last diagrams.

pb(s, t)

id

%%❑❑
❑❑❑

❑❑❑
❑❑

◦

$$

◦

%%

Ob(C)

id %%❑❑
❑❑

❑❑
❑❑

❑
id // Mor(C)

s

��
t
��

pb(s, t)

��

// Mor(C)

t
��

Ob(C) Mor(C) s
// Ob(C)

• enrichment. Recall that enrichment is about “internalization of diagrams”. Therefore, we
can enrich a concept P in any category in which the diagrams constraining the categorical
information of P make sense. This means that a priori we can enrich P over a category H

which does not has all the categorical information characterizing P, but only that appearing
in the commutative diagrams. This explains why the enrichment of a category with hom-
sets produces a entity in which Ob(C) remains a set instead of a object of H: this set does
not appear explicitly in the characterizing diagrams. On the other hand, in the context
of categories with source/target the situation changes. Indeed, looking at the previous
diagrams we see that Ob(C) appears explicitly on the description of conditions (6.1.1).
Therefore, after enrichment, the set Ob(C) will be an object of the enriching ambient. On
the other hand, in the same way as the binary product functor was replaced by an arbitrary
associative bifunctor in the enrichment of the concept of monoid (or in the enrichment of
categories with hom-sets), in the enrichment of categories with source/target we could try
to replace the pullback rule by another suitable rule P . Then, we could enrich the concept
of category with source/target in any pair (H, P ). Indeed, a “category with source/target
enriched over (H, P )” would be given by objects C0,C1 ∈ H and morphisms

s, t : C1 → C0, ◦ : P (s, t)→ C1 and id : C0 → C1

such that analogues of the previous diagrams, obtained replacing pb by P , holds. This
last requirement imposes many constraints on P , meaning that P should have the same
universal property as pb. But by the uniqueness of pullbacks up to isomorphisms, this
imply that P (f, g) ≃ pb(f, g) for any two morphisms. Therefore, we can enrich in any
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category H with pullbacks and the enriched concept is exactly the same that a category
with source/target internal to H.

Conclusion. In the context of categories with source/target, internalization and enrichment
produce the same abstract concept. This explains why the expression “enriched category with
source/target” is not usual in the literature.

For categories with hom-sets we have seen that the notion of functor admits a categorical
characaterization, allowing us to define “enriched functors between enriched categories with hom-
sets”, fitting into a category Cat(H) of categories and functors enriched over H. For categories
with source/target the situation is not different. Indeed, the notion of functor between categories
with source/target maps also has a purely categorical characterization, so that it can also be
internalized in any category H with pullbacks producing “internalized functors between internal
categories with source/target”.

More precisely, if C and D are categories with source/target internal to H, then a internal
functor between them is a rule determined by morphisms

F0 : C0 → D0 and F1 : C1 → D1

in H, describing the fact that functors map objects into objects and morphisms into morphisms,
such that the diagrams below are commutative. The first of them means that a functor preserves
the source and the target of any morphism, while the second and the third ones mean that
compositions and identities are also preserved.

C1

t
��

s

��

F1 // C1

s

��
t
��

C0

id
��

F0 // C0

id
��

pb(s, t)

◦

��

pb(F1,F1) // pb(s, t)

◦

��
C0

F0

// C0 C1
F1

// C1 C1
F1

// C1

The notion of internal functor between categories with source/target internal to H fits into a
category CatH, which describes H-internal category theory. So, we can ask if this new language
really is abstract (recall that, as commented, H-enriched category theory is abstract, so that it
is natural to ask if the same holds in the internalized case). The answer is no. Indeed, we expect
that a language abstracting classical mathematics admits the classical results as particular cases.
But, as will be discussed in Section 6.3, if we try to use CatH as a background language, then
many fundamental results are no longer valid.

For instance, in many internal contexts we lose the corresponding analogues of the axiom of
choice (and therefore, any of their several equivalent formulations). This has many important
implications. Indeed, this means that each classical theorem whose proof makes use of the axiom
of choice cannot be directly abstracted to the internal context.

Remark. In the discussion above we concluded that when trying to enrich the notion of category
with source/target over some category H, we discovered that it must be given by very similar data
to that defining a internal category with source/target on H. The unique different is that instead
of using the existence of pullbacks pb(s, t) in H we may use other suitable rules P (s, t) satisfying
the same universal conditions as pb(s, t). The uniqueness of pullbacks up to isomorphisms
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then forces P ≃ pb, meaning that in this context enrichment and internalization are equivalent.
On the other hand, recall that, as commented in the last subsection, for (H,⊗, 1) a suitable
monoidal category, the corresponding H-enriched category theory is abstract, meaning that we
can talk about H-limits and, specially, H-pullbacks. Particularly, in these cases we have a notion
of H-universality. Therefore, replacing universality by H-universality, we may have rules P
which are similar to pullbacks but that need not be equivalent to them. Consequently, for suitable
monoidal categories (H,⊗, 1) we really can do “theory of categories with source/target enriched
over H”. Many aspects of this theory were developed in Aguiar’s PhD Thesis [6].

Summarizing

Before presenting examples of internal/enriched categories, let us summarize the discussion
at the previous subsections. Indeed, there we have seen that:

1. the concept of category admits two different categorical characterization: as category with
hom-sets and as category with source/target ;

2. the internalization of categories with hom-sets is not useful. On the other hand, they can
be enriched over any monoidal category (H,⊗, 1), producing the category Cat(H) which
describes H-enriched category theory. For a large class of H, the corresponding theory is
very abstract and powerful, as will be explained in Section 6.3.

3. in the usual context, internalization and enrichment of categories with source/target are
equivalent and both can be applied on any category H with pullbacks. We have a corre-
sponding category CatH describing H-internal category theory. Such a theory is generally
poor in properties. For instance, it generally does not admits an “axiom of choice”, as will
be discussed in Section 6.3.

Warning. Thanks to the above points, there is no interest on internal category with hom-sets and
on enriched category with source/target, Therefore, from this moment on, by “enriched category”
we will mean “enriched category with hom-sets”. Similarly, by “internal category” we will mean
“internal category with source/target”.

Remark. In many parts of the text we mentioned that category theory itself is not abstract
enough to axiomatize all laws of physics. So, we are searching for higher abstract languages. The
discussion above reveals that internal category theory is not useful as a background language to
attack Hilbert’s sixth problem, because generally it is not abstract enough. On the other hand,
thanks to its abstractness, enriched category theory seems a very natural language to attack
Hilbert’s problem. For instance, recall that in Section 2.3 we predicted that categorification
produces notions of “n-categories” which was used in Section 2.4 in order to get many insights
in physics. In the next section we will see that categorification by enrichment of the concept of
category reproduces precisely the conjectured 2-categories. Then, iterating the process we will
get higher category theory, which by construction will be very abstract.

Warking. The last remark cannot be used to conclude that internalization is not useful in
physics. Indeed, it only means that internal category theory is not useful as a fundamental
background language. The difference will be clear in the next section.
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Remark. Recall that a groupoid is a category in which any morphism is an isomorphism. This
additional condition can be easily written in terms of the commutativity of a diagram, so that
we can enrich and internalize the notion of “groupoid” into the same ambient in which the notion
of “category” could be internalized/enriched. In other words, we can talk of “groupoid internal
to any category with pullbacks” and of “groupoid enriched over any monoidal category”. For
instance, if H has pullbacks, then a groupoid internal to H is just a category C internal to H

endowed with a morphism inv : C1 → C1 such that the diagrams below commute. We also need
a diagrams analogous to the first of them, obtained replacing id× inv with inv × id.

C1

s

��

// pb(t, t)
id×inv// pb(t, s)

◦

��

C1

s

��
t
��

inv // C1

t
xx♣♣♣

♣♣♣
♣♣♣

♣♣♣
♣

s

xx♣♣♣
♣♣♣

♣♣♣
♣♣♣

♣

C0
id

// C1 C0

Remark. Notice that to any category C internal to H we can associate a diagram into H, as
below. The same holds for internal groupoids, but we need to add the morphism inv : C1 → C1

into the diagram.

pb(s, t)
◦ // C1

t
//

s //
C0

id // C1

6.2 Examples

Let us finally give some simple examples of enriched/internal categories. We will also talk
of “internal sheaves”, giving an idea about their role in the unification problem of physics. More
specific examples will be discussed in the other parts of the text.

Enriched Categories

We start by presenting examples of enriched categories.

Example 6.1 (additive and abelian categories). For a given commutative ring R, we have the
corresponding monoidal category (ModR,⊗) of R-modules, so that we can consider categories
enriched over it, which are called R-categories. By definition, they are entities C defined by
giving a set Ob(C) of objects, for any two objects a R-module HomR(X,Y ) of morphisms, for
any three objects a linear composition

◦ : HomR(X,Y )⊗HomR(Y,Z)→ HomR(X,Z)

and for any object a linear map R → HomR(X,X), which is determined by their image of the
unity 1 ∈ R. Therefore, a R-category can be identified with an usual category whose hom-sets
become endowed with a R-module structure such that the composition maps are bilinear. There
is special interest in those enriched categories for which finite limits/colimits exist. These are the
R-additive categories. For instance, in additive categories products and coproducts are always
isomorphic. Because additive categories are assumed to have finite limits/colimits, any morphism
f : X → Y has kernel/cokernel. The universality of pullbacks and pushouts then gives a canonical
morphism

f∗ : ker(coker (f))→ coker(ker(f)).
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There is further interest in the additive categories, usually called abelian categories, in which any
induced morphism f∗ is an isomorphism. The standard example of abelian category is ModR
itself. In it, the domain of f∗ is simply the quotient X/ ker(f), while their codomain is the image
f(X). Therefore, in this case saying that f∗ is an isomorphism is the same as saying that the first
isomorphism theorem holds. So, in the abstract context we can say that a abelian category is a
additive category in which we have a first isomorphism theorem. Notice that, in order to define
“chain complexes” and “cochain complexes” (as done in Section 1.11) all we need is the notion
of “null map” (for d2 = 0 makes sense), while in order to build the homology and cohomology
groups we need the notions of kernel and cokernel. Therefore, we can try to develop Homological
Algebra in any additive category. The fundamental results of classical Homological Algebra can
be obtained in this abstract context when the additive category is indeed an abelian category.
So, we can also think of abelian category as an abstract ambient to develop Homological Algebra.
This approach was firstly developed by Grothendieck in his famous “Tôhoku paper” [90].

Example 6.2 (differential graded categories). Instead of enriching over (ModR,⊗, R) we could
considered categories enriched over the monoidal category (GGradR,⊗) of G-graded R-modules
or over the monoidal category (CChR,⊗) of chain/cochain complexes. In the first case, the
corresponding enriched categories are called G-graded R-categories, while in the second they are
called differential graded R-categories. Recall that the topological (or nonlinear) analogue of
a cochain complex is given by a spectrum. We have some models of the symmetric monoidal
category (Spec,∧,S) of spectra, as discussed in Section 5.3. A category enriched over them is
called a spectral category. It can be understood as a “nonlinear version” of the differential graded
category.

Example 6.3 (closed monoidal structure). We notice that the standard examples of categories
enriched over ModR, GGradR or CChR are precisely these categories themselves. This happens
because in these cases the enrichment ambient (H,⊗, 1) is a closed monoidal category. Indeed,
any closed monoidal category can be trivially enriched over itself by considering the hom-objects
H(X,Y ) as being simply the internal hom-object [X,Y ]. So, not only the previous categories
are enriched over themselves, but also any convenient category of topological spaces C ⊂ Top is
topologically enriched, because it is cartesian closed. Additionally, C∗ can be enriched over itself
with respect to the closed monoidal structure given by the smash product.

Internal Categories

We now give examples of internal categories.

Example 6.4 (linear categories). Recall that ModR is complete, so that it has pullbacks and,
therefore, we can talk of categories internal to ModR. These are usually known as the R-
linear categories. In the context of vector spaces (i.e, when R is a field K), these are called
2-vector spaces5. So, explicitly, a 2-vector space is given by a vector space C0 of objects, a
vector space C1 of morphisms, linear source/target maps s, t : C1 → C0, linear composition

5The reader must pay attention here, sinse there is no universal notion of “2-vector space” in the literature. The
definition used here corresponds to what some authors calls Baez-Crans 2-vector spaces. On [124], for instance, a
2-vector space is defined as a category enriched over VecK (which for us are K-categories), while in [19, 20] it is
used the same definition adopted here.
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◦ : Pb(s, t) → C1 and a linear identity map id : C0 → C1 satisfying all the compatibility
conditions described previously6. The interesting fact is that this set of data is overdetermined :
together, the source/target and the identity maps determine the composition (see Lemma 6, p.
9-11, [22]).

Example 6.5 (2-groups and crossed modules). The category Grp of groups also has pullbacks,
so that we can also consider categories internal to Grp. These are called 2-groups analogously
as internal categories to VecK are 2-vector spaces. Certainly, any Z-linear category is a 2-group,
because a Z-module is the same as an abelian group. Explicitly, a 2-group is given by a group
of objects C0, a group of morphisms C1, source/target group homorphisms s, t : C1 → C0,
composition homomorphism ◦ : Pb(s, t)→ C1 and identity id : C0 → C1. As in linear case, the
data defining a 2-group is overdetermined, meaning that we only need to know the source/target
and the identity maps. The standard ways to get 2-groups are the following (for details about
them, see [26] and the final chapter of [131]):

1. categorical groups. Recall that (Cat,×,1) is a symmetric monoidal category, so that we can
consider its Hopf monoids (i.e, the group objects into Cat). These are monoidal categories
(C,⊗, 1) with inversion functor inv : C → C. Notice that viewing C as a category with
source/target, the actions of ⊗ and inv on objects/morphisms induce group structures on
C0 and C1. The functoriality of ⊗ means that the composition and the source/target maps
are indeed group homomorphisms, so that we have exactly a 2-group structure. Reversing
the process we see that any 2-group can be obtained in this way, so that we have an
equivalence

CatHopf(Set) ≃ Hopf(Cat).

2. crossed modules. A R-module can be understood as an action R × G → G of a ring R
onto an abelian group G, which preserves multiplications and units. More generally, given
an arbitrary (not necessarily commutative) group H we can define H-modules as b actions
α : H ×G→ G onto another arbitrary group. A special case is that in which H = Aut(G)
is the automorphism group of G. We then have an action by evaluation (f, x) 7→ f(x).
This case is special because we also have a canonical embedding δ : G → H, assigning
to each element x the left translation δ(x) = ℓx, which is compatible with the action and
with the multiplication, in the sense that α(δ(x), y) = x ∗ y and δ(α(f, x)) = f ◦ δ(x), as
described by the diagrams below. Note that these conditions only means ℓx(y) = x ∗ y and
ℓf(x) = f ◦ ℓx. A H-module α : H × G → G which becomes endowed with a morphism
δ : G → H satisfying these commutative conditions is called a crossed H-module (we also
say that the module was twisted by δ).

G×G
δ×id //

∗
##❋

❋❋
❋❋

❋❋
❋❋

H ×G

α
{{✇✇
✇✇
✇✇
✇✇
✇

H ×G

id×δ
��

α // G

δ
��

G H ×H ◦
// H

Now, we notice that any crossed module (H,G,α, δ) defines a 2-groups C whose group of
objects is C0 = H and whose group of morphisms is the semi-direct product C1 = H ⋉G

6Notice the difference between the data defining R-categories and R-linear categories.
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induced by the action α. In other words, it is the set H × G with the group structure
given by (f, x) · (g, y) = (f ◦ g, x ∗ α(f, y)). The source and target maps s, t : C1 → C0 are
respectively given by the projection s = π1 on the first argument and by the composition
t = δ ◦ α. The fact that t really is a group homomorphism follows from the commutativity
of the second diagram above (note that t is precisely its diagonal). We observe that the
identity id : C0 → C1 is almost determined by this same diagram. Indeed, the condition
s(id(f)) = f means π1(id(f)) = f , so that id(f) = (f, x) for some x. On the other
hand, using the above diagram, the condition t(id(f)) = f implies x ∈ ker δ. Therefore, a
natural choice for the identity map is id(f) = (f, e), where e ∈ G is the neutral element.
Notice that, because the data defining a 2-groups is overdetermined, if a composition map
◦ : ps(s, t)→ C1 exists, then it must be by a explicitly expression. Now, the first diagram
above says precisely that this rule is a homomorphism and, therefore, this completes the
construction of the 2-group associated to the given crossed module. Reciprocally, if C is
some 2-group, we get a crossed module (H,G,α, δ) by considering H as the morphism object
C1 and G as the kernel of the source map s : C1 → C0. The δ : G → H map is simply
the restriction of the target map t to ker(s). Finally, as ker(s) ⊂ C1 is a normal subgroup,
it acts naturally on C1 by conjugation and we take α as this action. Such correspondence
between 2-groups and crossed modules extends to an equivalence CatGrp ≃ CrossMod.
For full details, see [167].

Remark. The first part of the last example can be generalized to any nice internalization
ambient. More precisely, let H be any category with pullbacks admitting a cartesian monoidal
structure (for instance, any category with finite limits). This structure automatically induces
a cartesian monoidal structure on CatH just as the cartesian products on Set induces binary
products on Cat. Therefore, we can consider Hopf monoids into CatH. On the other hand, notice
that the category Hopf(H) has the same limits as H, so that it has pullbacks and, therefore, it
is an internalization ambient7. The categories internal to Hopf(H) are called 2-groups internal
to H. Following identical steps applied in the first part of the last example we conclude that
categories internal to group objects are equivalent to group objects into internal categories:

CatHopf(H) ≃ Hopf(CatH).

Remark. In the last remark we used the fact that the cartesian monoidal structure on H induces
a corresponding cartesian structure on CatH, but much more is true. Indeed, as proved in [28],
if the internalization ambient has finite limits and is cartesian closed, then the same properties
holds in CatH.

Remark. The second part of the last example can also be generalized. Indeed, it is clear
that it makes perfectly in any cartesian monoidal category H, allowing us to build the category
CrossModH of crossed modules internal to H, such that

CrossModH ≃ CatHopf(H).

7In order to conclude that Hopf(H) has limits, recall that, as discussed in Section 4.2, for a cartesian monoidal
structure the group objects into H are in 1-1 correspondence with the objects X ∈ H such that MorH(X,Y ) is
a group for any Y . Now, if F : C → H is a functor such that each F (X) is a group object, then, thanks to the
cocompleteness of Grp,

MorH(limF, Y ) ≃ colimMorH(F (X), Y )

is also a group, so that limF is a group object.
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This is useful for categories like Diff and Top, whose cartesian monoidal structure has non-trivial
monoids. On the other hand, this is not useful for algebraic categories, because, as discussed in
Example 4.12, they generally have trivial monoid objects. So, it is natural to ask if the above
construction can be generalized to the algebraic context. In [106] the author shows that “crossed
modules” can be internalized in “semi-abelian categories” (and, therefore, in abelian categories),
producing the equivalence between the category of these internalized crossed modules and the
category of categories internal to H.

In Example 6.3 we showed that a closed monoidal category can be naturally enriched over
itself. We would like to observe, however, that the same does not hold for internalization. More
precisely, given a category H with pullbacks, there is no canonical way to internalize it into itself.
The reason for this discrepancy follows from the fact that in the enrichment process only the
hom-sets acquire new structure, but in the internalization process both the hom-sets and the
objects set acquire new structure8.

For instance, there is no canonical way to internalize VecK into itself, because there is no
canonical way to assign to the collection Ob(VecK) of all vector spaces a linear structure turning
the source and target maps linear. In other words, there is no canonical way to sum two vector
spaces and to multiply a vector space by an element of a ∈ K.9. Similarly, there is no canonical
topology which can be introduced on the collection Ob(Top) of all topological spaces, so that
there is no canonical way to internalize Top into itself.

On the other hand, the next example clarifies that any object X ∈ H of a category with
pullbacks can be considered a category internal to H in a canonical (and trivial) way.

Example 6.6 (canonical embedding). For any category H with pullbacks there is a canonical
embedding disc : H→ CatH. Indeed, any object X defines a H-internal category disc(X), called
the discrete category of X, whose diagrammatic representation is the following:

X
idX // X

idX //

idX
// X

idX // X

Evidently, any f : X → Y induces a corresponding internal functor disc(f) between disc(X) and
disc(Y ) which in objects and in morphisms is given by f , completing the definition of disc.

Internal Groupoids

Here we will give some examples of special internal categories: the internal groupoids.

Example 6.7 (canonical embedding). By the last example, any object X ∈ H of a category with
pullbacks can be naturally regarded as a trivial H-internal category. We notice that this internal
category is, indeed, an internal groupoid. In fact, recall that all structure maps (s, t, ◦ and id)
of disc(X) are given by the identity idX : X → X morphism. Therefore, the identity idX is itself
a rule that assigns to any morphism an inverse, turning disc(X) an internal groupoid.

8As will become clear in the next section, this is also the fundamental reason why internalized category theory
is not generally a high abstract language, while enriched category theory is.

9We can “sum” two vector spacesX and Y by considering its direct sumX⊕Y , but this operation is commutative
and associative only up to isomorphism. Furthermore, the operation ⊕ does not has a globally defined inverse ⊖.
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Example 6.8 (underlying groupoid). Every usual category C defines a groupoid Cpd by forget-
ting the morphisms which are not isomorphisms. Because functors preserve isomorphisms, this
automatically gives a functor (−)pd : Cat → Gpd. This construction can be directly extended
to the internal case, giving a functor (−)pd : CatH → GpdH. In practice, for any given internal
category H this functor only replaces the object of morphisms C1 by the corresponding object
of isomorphisms Ciso

1 . We leave the details to the reader.

Example 6.9 (Lie groupoids). The category Diff does no has arbitrary pullbacks, as explained
in Example 2.4. Consequently, we cannot consider categories/groupoids internal to Diff . But,
recall that pullbacks between transversal maps exist on Diff . So, the subcategory Diff sub ⊂ Diff

of smooth manifolds and submersions has pullbacks and, therefore, is an internalization ambient.
A groupoid internal to Diff sub is called a Lie groupoid. The category of Lie groupoids is usually
denoted by LieGpd. So, explicitly, a Lie groupoid is an entity given by a smooth manifold C0

of objects, a smooth manifold C1 of morphisms, together with smooth submersions

s, t : C1 → C0, ◦ : pb(s, t)→ C1, id : C0 → C1 and inv : C1 → C1 (6.2.1)

such that the groupoid-like diagrams are satisfied. Notice that in the one object limit (i.e, when
C0 is the trivial manifold with only one point) we recover the usual notion of Lie group.

Example 6.10 (internal 2-groups). In Example 6.5 we concluded that, for suitable internaliza-
tion ambient H, the categories internal to Hopf(H) (i.e 2-groups internal to H) are the same
as group objects on CatHopf(H). It happens that both groups into CatHopf(H) and categories
internal to Hopf(H) are automatically H-internal groupoids, so that we have equivalences

GpdHopf(H) ≃ CatHopf(H) ≃ Hopf(CatH) ≃ Hopf(GpdH),

which can be used in order to get many examples of internal groupoids. For instance, any 2-
group internal to Diff sub (i.e, any group object into LieGpd, here called a Lie 2-group) defines a
groupoid internal to the category of Lie groups. So, explicitly, a Lie 2-group is just a Lie groupoid
whose smooth manifolds of objects C0 and of morphisms C1 are Lie groups, and whose structure
maps (6.2.1) are morphisms of Lie groups.

Example 6.11 (deloopings). Any group (G, ∗, e, ı) internal to a cartesian monoidal category with
pullbacks can be delooped to a groupoid BG internal to H. Indeed, we define the object of objects
as BG0 = ∗ and the objects of morphisms as BG = G. The source/target s, t : BG1 → BG0 are
the unique map G→ 1 (recall that 1 is a terminal object). Therefore, pb(s, t) ≃ G×G and the
composition ◦ : G×G→ G can be taken as the multiplication ∗ of G. Similarly, the morphisms
id : BG0 → BG1 and inv : BG1 → BG1 are considered as the “neutral element” of G and the
“inverses” of G. Summarizing, the internal groupoid BG is that diagrammatically represented by

G×G
∗ // G //

//
1

e // G

Example 6.12 (Picard 2-group). From any monoidal category (H,⊗, 1) with pullbacks we can
a full subcategory Pic(H) ⊂ H by considering only the objects X ∈ H for which there is some
X−1 ∈ H and isomorphisms X⊗X−1 ≃ 1 ≃ X−1⊗X. With the same operations, (Pic(H),⊗, 1)
becomes a monoidal category, which fits into the structure of groupoid, called the Picard groupoid
of H. Notice that the set Pic(H)0 of objects acquires a group structure when endowed with ⊗
and 1. Similarly, ⊗ also give a group structure to the set of morphisms Pic(H)0, so that Pic(H)
is indeed a groupoid internal to the category of groups, i.e, a 2-group.
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Locality

Now, we recall the discussion on sheaves at the end of Section 2.2. There we concluded that
any category H can be embedded into a complete/cocomplete functor category by the Yoneda
embedding. But such a category of functors is not the most natural way to describe the objects
of H. For instance, as discussed later, when H = Diff these functors do not capture the “local
nature” of smooth manifolds. The solution was then obtained by constructing a Grothendieck
topology and looking to the functors (called sheaves) preserving it.

More precisely, we recall that such a Grothendieck topology J on H is simply a way to assign
to any object X a family of morphisms π : U → X, called covering families, which satisfy some
conditions, including stability under pullbacks. These conditions fits into the first diagram below,
called the Cech diagram of the cover and represented by Č(U). Taking the colimit of the Cech
diagram we get an arrow u : colimČ(U)→ X. A functor F : Hop → Set is sheaf precisely when,
for any object X and any cover U → X, the corresponding arrow F (u) is an isomorphism.

U ×X U ×X U // U ×X U //
//
U // U

π // X

Now, notice that the last diagram Č(U) is exactly the diagrammatic presentation of a groupoid
internal to H. This is the so called Cech groupoid of the cover. The theory of sheaves and
stacks10 is much more related with the theory of internal groupoids than only by the Cech
groupoid structure on the covertings. Indeed, we observe that any groupoid C internal to H

defines a stack in H with respect to any Grothendieck topology J , as follows. We have a functor
[−,C] : Hop → Gpd which assigns to each X ∈ H the groupoid [X,C] whose diagrammatic
representation is obtained by applying MorH(X,−) in the diagrammatic representation of C. On
the other hand, for a fixed topology J we have a left adjoint L to the inclusion

ı : Stack(H, J) →֒ Func(Hop;Grpd),

so that we can define the stack associated to C as the stackfication of [−,C] (i.e, as its image
under L ). The stacks which are equivalent to those defined by some H-internal groupoid are
called geometric H-stacks. Specially, the smooth stacks coming from Lie groupoids are called
differential stacks.

Remark. Surely, if two internal groupoids C and D are isomorphic (as objects of GpdH), then
they induce equivalent stacks. On the other hand, the reciprocal is no longer valid for a general
internalization ambient H. Indeed, it depends explicitly on the axiom of choice, which (as will be
discussed in the next section) may fail in H. This suggests that, when the axiom of choice fail,
the internal functors are not the correct morphisms between internal groupoids. Indeed, in the
next section we will see that in this context the correct morphisms are the Morita morphisms,
meaning that if two stacks coming from internal groups are equivalent, them the underlying
internal groups are Morita equivalent.

Geometric Stacks and Physics

Here we would like to explain the role of geometric stacks (specially differential stacks) in
physics. We start by recalling that a classical theory of physics is determined by the set of

10Recall that a stack is just a sheaf taking values into the category of groupoids.
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minimizing configurations of an action functional S : Fields(Σ) → R, defined on a set Fields(Σ)
which depends of the choice of an abstract motion. For instance, if we are interested only in free
motions inside a ambient space M , then Fields(Σ) is the space of smooth maps ϕ : Σ → M . In
this situation the rule Σ 7→ Fields(Σ) extends to the functor

Fields : Diffop → Set given by Fields(Σ) = MorDiff (Σ,M).

Because any set can be trivially regarded as a groupoid, this functor can be considered as
taking values in Gpd. We notice that the corresponding functor Fields : Diffop → Gpd is a
smooth stack: the smooth stack defined by M regarded as the discrete Lie groupoid disc(M).
Therefore, in this special case the space of configurations extends to a differential stack. Another
case in which we led to the same conclusion is when Fields is the functor assigning to any manifold
Σ the groupoid of G-bundles over Σ. By the classification theorem of G-bundles this functor is
precisely the smooth stack induced by the dellooped Lie groupoid BG. The surprising fact is that
this result extends to any interesting classical physical theory of particles. More precisely, as
will be proved in Chapter 11, each interesting configuration space for particles can be extended
to a differential stack Diffop → Gpd.

The last conclusion about the structure of classical theories for particles reveals that internal
categorical language (specially smooth categorical language) is very useful to describe physics11.
Now, we would like to explain why the internal language is not abstract enough to axiomatize all
physical laws (i.e, why it is not the correct background language to do physics).

We start by noticing that, the fact that configuration spaces for particles are given by smooth
stacks Fields : Diffop → Gpd means that, for any good cover Ui →֒ Σ, the corresponding
Fields(Σ) is totally determined by the collection of all Fields(Ui) subjected to some compatibility
conditions on the intersections Ui∩Uj . On the other hand, when doing gauge theory for strings we
meet geometrical structures on the ambient manifold M which are not determined by conditions
on Ui ∩ Uj. Indeed, we also need to take into account conditions on the “intersections between
intersections” Ui ∩ Uj ∩ Uk, and so on.

It happens that these kind of objects cannot be smooth stacks. Indeed, stacks are defined
on the Cech groupoid Č(Ui), which only consider elements xi ∈ Ui (as objects) and xij ∈ Ui ∩Uj
(as morphisms). So, these entities should be certain “higher smooth stacks”, defined on a “Cech
higher groupoid”, which do not stop on the morphisms, having xijk ∈ Ui∩Uj∩Uk as 2-morphisms,
and so on.

The standard examples of smooth stacks are those induced by Lie groupoids. Therefore, it is
natural to expect that these “higher smooth stacks” comes from “higher Lie groupoids”. In the
next sections we will see that enrichment is the natural abstract language to describe “higher
categories”, in which we will could internalize groupoids, getting these “higher Lie groupoids”
and, therefore, these “higher smooth stacks”. Thus, if on one hand internal category theory do
not axiomatize all physical laws, enriched category theory alone is also not the correct language.
What we need is internalization into higher enriched languages.

11Maybe this purely mathematical conclusion is very abstract to motivate the physicist reader. On the other
hand, we have to say that this characterization step is crucial. For instance, it is only for this kind of theories that
the pull-push approach to quantization can be applied.
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Categorified Lie Theory

Examples 6.9 and 6.11 suggest the existence of a “categorified Lie theory”. More precisely, we
obtained two different generalizations of the concept of Lie groups: Lie groupoids and Lie 2-groups.
So, we can ask if, in the same way as the geometric structure of a Lie group is captured by the
algebraic structure of its associated Lie algebra, the “higher geometric” structure of Lie groupoids
and Lie 2-groups can be described by some associated “Lie algebroid” and “Lie 2-algebra”. This
is really the case, as will be more generally discussed in Section 10.3.

Indeed, a Lie groupoid is a “many objects version” of a Lie group, so that the idea is to consider
a “Lie algebroid” as a certain kind of a “many objects version” of a Lie algebra. On the other
hand, a Lie 2-group is a group object into the category of categories internal to Diff , so that the
main idea is to consider a Lie 2-algebra as a “Lie algebra object” into the category of categories
internal to VecC (i.e, Lie algebra objects into the category of 2-vector spaces). Furthermore,
just as any Lie group G has an associated Lie algebra g, any Lie groupoid/Lie 2-group induces a
corresponding Lie algebroid/Lie 2-algebra. More precisely, the functor

L : LieGrp→ LieAlg

assigning to any Lie group its Lie algebra can be categorified in order to get functors

L : LieGpd→ LieAld and L : Lie2Grp→ Lie2Alg

assigning to each Lie groupoid its corresponding Lie algebroid and to any Lie 2-group the asso-
ciated Lie 2-algebra.

Recall that not every Lie algebra is the Lie algebra of a Lie group (in other words, not every
Lie algebra is integrable). Indeed, by the third Lie theorem, such a correspondence exists only in
the finite dimensional case. This condition means that the functor L is essentially surjective on
the subcategory FinLieAlg ⊂ LieAlg of finite dimensional Lie algebras. On the other hand, the
second Lie theorem states that for simply connected Lie groups, L is fully-faithful. Consequently,
we have an equivalence

SimplyLieGrp ≃ FinLieAlg

between the category of simply connected Lie groups and finite dimensional Lie algebras.
Certainly, the analogous conclusion will fail for the case of Lie groupoids and Lie 2-groups,

because in order to obtain the above isomorphism we used that a functor is an equivalence iff
it is fully-faithful and essentially surjective. It happens that this characterization is explicitly
dependent of the axiom of choice, which (as commented later and as will be discussed in detail
in the next section) is no longer valid in many internal categories. Even so, we can search for
integrability conditions under which a given Lie algebroid/Lie 2-algebra always comes from some
Lie groupoid/Lie 2-group. This situation has a strong physical appeal, as clarified by the following
examples:

1. higher gauge groups. As commented in the last subsection and as will become more clear
in Chapters 11-13, gauge theories of strings are described by “higher Lie groups”. So, it is
natural to search for conditions under which this higher group can actually be described by
their infinitesimal “higher Lie algebra”.
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2. geometric quantization of Poisson manifolds. As briefly commented in Section 3.3, there are
several approaches to the quantization process. Two of them are the geometric quantization
and the deformation quantization. The first applies to classical theories whose space of
configurations (i.e, the space where the action functional is defined) has the structure of
a symplectic manifold, while the second applies more generally to Poisson manifolds. So,
a natural question is about the existence of some “extended geometric quantization” in
the context of Poisson manifolds. How to proceed? Any Poisson manifold can be naturally
regarded as a Lie algebroid which in some good cases can be “integrated” in order to get a Lie
groupoid, which behaves much like a “many objects version of a symplectic manifold”, called
symplectic Lie groupoid. Therefore, the searched for “extended geometric quantization”
should be some kind of “higher geometric quantization”. As will be discussed in Chapter
16, this process can be realized by pull-push quantization in complex K-theory.

6.3 Abstractness

In the last section we applied the internalization and the enrichment process to the concept
of category. We have seen that if H is a category with pullbacks, then we can do H-internal
category theory, and if (H,⊗, 1) is monoidal, then we can do H-enriched category theory. The
main advertising for internalization/enrichment is the production of high abstract mathematics
from classical mathematics.

In this section we would like to analyze if internal/enriched category theory really are abstract.
We start by showing that generally internal category theory is not abstract. More precisely, we
will see that we can talk about the “axiom of choice” in any category and that it generally fails
in the internalization ambient H, producing pathological internal languages. In the sequence
we will see that this problem can be ignored if we replace internal functors by another class of
morphisms between internal categories: the anafunctors. We discuss that this replacement is at
the heart of homotopy theory.

On the other hand, we show that enriched category theory is naturally abstract and useful
in the sense that we can talk about enriched limits, enriched Kan extensions, and so on, at the
same time that the pathologies appearing in the H-internal language automatically disappear in
the enriched language.

Internalized Categories

Recall that when doing axiomatic set theory we usually assume the axiom of choice. In its
more familiar formulation it states that:

Axiom of Choice (classical version) If (Xi)i∈I if a family of sets parametrized over an arbitrary

set I of indexes, then it is possible to build a new set S by selecting an element xi in each Xi.

The above axiom has a purely categorical characterization. Notice that the family (Xi)i∈I
is, by definition, just the same as the disjoint union X = ⊔i∈IXi. This disjoint union can be
equivalently considered as a surjective function π : X → I whose fiber π−1(i) is Xi. Under this
equivalence, building a set S by selecting xi ∈ Xi is the same as giving a function s : I → X such
that π(s(i)) = i. Therefore, the axiom can be written in the following equivalent way:
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Axiom of Choice (intermediary version) In Set any surjective morphism has a section.

This new formulation seems purely categorical, except for the fact that the notion of “surjective
morphism” is not canonical. In Set, the surjective maps are just the same as epimorphisms:
functions f with the property that g ◦ f = h ◦ f imply g = h. This condition makes perfect sense
in any category, so that we could try to use epimorphisms as a model to the notion of “surjective
morphisms”.

In concrete categories C ⊂ Set the morphisms are functions satisfying additional properties.
Therefore, in this case it is expected that the correct model to “surjective morphisms” be given
simply by surjective maps satisfying the additional properties. But there are concrete categories
whose epimorphisms are not surjective maps satisfying properties, so that the notion of “epimor-
phism” is not the correct model to “surjective morphisms”. For instance, in the category Rng of
rings, the inclusion map Z →֒ Q is an epimorphism, but it is not a surjective function.

Therefore, we need another characterization of “surjectivity”. In order to get it, notice that
the surjective functions are just the coverings into the canonical Grothendieck topology of Set,
so that the axiom of choice can also be interpreted in the following way:

Axiom of Choice. (abstract version) In the site (Set, J) any covering has a section.

This abstract formulation is finally completely categorical, so that we can talk of the validity
of the “axiom of choice” in any site. For instance, in Top with the corresponding Grothendieck
topology given by continuous surjections, the corresponding axiom is no longer valid, because
there are continuous surjective maps without any global section. Indeed, for any topological
group G, a G-principle bundle π : P → X has a section iff it is trivial. The axiom also fails in
ModR with the Grothendieck topology of surjective homomorphisms, because in this case12 the
existence of a section for a surjective f : X → Y is equivalent to the existence of an isomorphism
X ≃ ker f ⊕ Y , which generally is not true. But this is true when R = K is field, because in this
case X ≃ ker f ⊕ img f , by the rank-nullity theorem.

We notice that in losing the axiom of choice we automatically lose any result whose proof
depends explicitly on this axiom. Specially, when doing category theory, the axiom of choice is
crucial in the proof that a given functor F : C→ D is an equivalence iff it is fully faithful13 and
essentially surjective14. More explicitly, the axiom of choice on (Set, J), where J is the canonical
topology, is equivalent to the statement that a Set-internal functor is an equivalence between
Set-internal categories iff it is fully-faithful and essentially surjective. Therefore, if the axiom
of choice fails in a site (H, J), then we cannot get a analogous characterization for H-internal
functors (i.e, we cannot conclude that an H-internal functor is an equivalence iff it is fully faithful
and essentially surjective).

Remark. The above paragraph makes sense. Notice that in order to ask if a fully-faithful and
essentially surjective internal functor is always an equivalence between internal categories
we need to have these internal notions. In other words, we need to verify if internalization applies

12This is consequence of the splitting lemma, a fundamental result in Homological Algebra. You can read about
this in any text on the subject, as [??,??].

13Recall that a functor is called full (resp. faithful) when it is surjective (resp. injective) on morphisms. Then,
a fully faithful functor is one which is bijective on morphisms.

14Recall that a functor is called essentially surjective if it is surjective up to isomorphisms on objects. More
precisely, if for any Y ∈ D0 there is X ∈ C0 such that F (X) ≃ Y .
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to the usual notions of fully-faithful functor and essentially surjective functors, producing the
corresponding internal versions. This is really the case, as explained below.

• fully faithful property. Recall that a usual functor F : C→ D is fully faithful precisely when
it is bijective on morphisms. In the source/target approach, this means that for any g ∈ D1

there is a unique f ∈ C1 such that F1(f) = g and whose source/target are respectively
F0(s(f)) and F0(t(f)). Equivalently, the first diagram below is a limiting diagram. Observe
that this limit diagram is indeed a sequence of pullback squares, so that it makes sense in
any internalization ambient H and, therefore, the notion of fully faithful functors extends
naturally to the internal context.

• essentially surjectivity. A usual functor is essentially surjective if it is surjective up to
isomorphisms on objects. There is no problem with the notion of “isomorphisms” in any
internalization ambient H, but in order to talk about “surjective maps” we need to make
a choice of Grothendieck topology J , so that what we actually define is “J-essentially
surjective internal functors”. Indeed, given a H-internal functor F : C → D, we say that
it is J-essentially surjective when the segmented arrow presented in the second diagram
below belongs to J . There, Diso

1 is the object discussed in Example 6.8. When H is Set

and J is the topology given by the surjective functions we recover the classical definition of
essentially surjective functor.

C1

s

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

F1

��

t

  ❆
❆❆

❆❆
❆❆

❆ C0 ×D0 D
iso
1

��yysss
ss
ss
ss
ss

%%❑
❑

❑❑
❑

❑

C0

F0

��

D1

s
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

t   ❇
❇❇

❇❇
❇❇

❇ C0

F0

��

C0

F0

��

Diso
1

s
yyrrr

rrr
rrr

rr

t
%%▲▲

▲▲▲
▲▲▲

▲▲▲
D0

id
��

D0 D0 D0 D0

Remark. The above conclusion that the failure of axiom of choice on H imply the loss of
the characterization of internal equivalences suggest that internal categorical language depends
strongly on the internalization ambient. This seems natural. Indeed, in order to pass from the
concept of category to the concept of H-internal category, all the set theoretic structure defining
the category is replaced by analogues in H, so it is natural to expect that the behavior of the
internalization ambient H will reflect much of the behavior of CatH. On the other hand, when
enriching a category, only the set of morphisms is replaced by an object of H, so that a enriched
category has one half of set theoretic structures and one half of enriched structures, meaning that
enriched categorical language is less sensible to the ambient than internal categorical language.
For instance, as will be discussed in the next subsection, this fact imply that we can always (even
in the absence of the axiom of choice) characterize an equivalence between enriched categories as
a fully faithful and essentially surjective enriched functor.

Now we would like to explain that, if in a internalization ambient H the axiom of choice fails,
we can modify the category CatH in order to get a new category in which any fully-faithful and
essentially surjective internal functors are equivalences between internal categories. This is done
by “adding formal inverses” to any internal functor with these properties. Indeed, fixed some
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Grothendieck topology J in H, if WJ is the class of fully-faithful and J-essentially surjective
internal functors, then, “localizing” CatH with respect to WJ we get the universal category in
which each element of WJ is an isomorphism.

Let us see that in good cases the localized category CatH[W−1
J ] has a very simple presentation.

We start by recalling that this “localization approach” was used in other parts of the text. Indeed,
when studying classical homotopy theory we have seen that Top∗ is very complex. Then we
passed to the homotopy category Ho(Top∗), but this is also very complex. It happens that in the
homotopical context we have natural invariants: the homotopy groups πn. With them on hand
we could define the class W of the weak homotopy equivalences, which are continuous functions
f such that each πn(f) is an isomorphism. Localizing with respect to them we got the derived
category Top∗[W

−1], which is much more tractable.
In this topological context, we also have a very special feature: there is a class of topological

spaces (the class of CW-complexes) for which Whitehead’s theorem holds, meaning that for
them being a homotopy equivalence and being a weak homotopy equivalence is exactly the same.
Furthermore, any topological space X is weak homotopically equivalent to a corresponding CW-
complex ΓX. These facts allow us to give a concrete construction of Top∗[W

−1] by replacing
each continuous based map f : X → Y by a pair (f̂ , r), where f̂ : ΓX → Y is a continuous
map and r : ΓX ≃ X is a weak homotopy equivalence. In other words, in this case the localized
category is equivalent to a category of special spans of CW-complexes, whose left leg belongs to
W , as in the first diagram below.

Z
W∋

~~ ~>
~>
~>
~>

��❅
❅❅

❅❅
❅❅

❅ E
WJ∋

�� �?
�?
�?
�?

  ❅
❅❅

❅❅
❅❅

❅

X Y C D

Returning to the H-internal context, it can be proven that, under some conditions over WJ

(satisfying the so called calculus of fractions), an analogous concrete construction can be done
with CatH[W−1

J ]. This means that it is equivalent to Ana(H,J), whose objects are internal
categories and whose morphisms are the spans (called anafunctors), presented in the second
diagram above. For details, see [173, 77].

Enriched Categories

In the previous subsections we concluded that we can do some kind of “well behaved homotopy
theory” with internal categories, but H-internal category theory itself is not a source of new
abstract concepts. Indeed, we have no direct and useful notions of “internal limit”, “internal Kan
extension”, “internal end”, and so on. Furthermore, the internal language is generally problematic
when used as background language, because if the axiom of choice fails in the internalization
ambient, we immediately lose many very useful conditions as, for instance, the assertion that “a
functor is an equivalence iff it is fully faithful and essentially surjective”.

Here we will show that for enriched category theory the situation is totally different. Indeed,
we will show that enriched category theory not only is very abstract (in the sense that we have
very natural notions of “enriched limit”, “enriched Kan extension”, etc), but it is also a nice
background language, meaning that the sentence “a functor is an equivalência iff it is fully faithful
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and essentially surjective” holds in any internalization ambient H (even if the axiom of choice
fails into H).

Remark. As commented later and as will become clear in the next paragraphs, this difference
between the behavior of internal category theory and enriched category theory comes from a
ingenuous fact: in internal categories all information resided in the internalization ambient, while
in enriched categories only one half is about the enrichment ambient.

Let us see that the usual characterization of equivalences as “essentially surjective” and “fully-
faithful” functors also holds in the enriched context. We start by noticing that both notions can
be enriched without any problem. Indeed, for a monoidal category (H,⊗, 1), because the objects
any H-enriched category belongs to a set, we can define a essentially surjective enriched functor
F : C→ D between H-enriched categories as a usual enriched functor such that

F0 : Ob(C)→ Ob(D)

is surjective up to isomorphisms. Similarly, we say that it is fully-faithful when, for any two
objects X,Y ∈ C the corresponding morphism

Fxy : HC(X,Y )→ HD(F (X), F (Y ))

is an isomorphism of H. Now, notice that, because Fxy are assumed isomorphisms, they have
inverse, so that in order to prove that an enriched functor is an equivalence iff it is essentially
surjective and fully faithful we only need to build an inverse for F0.

In the non-enriched context, this is done by making use of the axiom of choice, but this
immediately applies here into the enriched context, because on objects any enriched functor acts
as a usual function between sets! Therefore, even if the axiom of choice fails into the enrichment
ambient H, the required result is valid.

The fact that the objects of an enriched category fit into a set was crucial in order to conclude
that the failure of the axiom of choice into H does not affect H-enriched category theory. Let us see
that this fact also allow us to prove that enriched categorical language is a very abstract language.
More precisely, let us see that the notions of natural transformation, Kan extensions and limits
can be naturally enriched over any monoidal category. We refer the reader to [110, 59, 172] for
more details.

Recall that a natural transformation ξ : F ⇒ G between usual functors F : C → D is a
family of morphisms ξX : F (X) → G(X) parametrized by the set of objects of C, such that
the diagram below is commutative for any element f ∈ MorC(X;Y ) of the set of morphisms
from X to Y .

F (X)

ξX
��

F (f) // F (Y )

ξY
��

G(X)
G(f)

// G(Y )

When defined in this way, the notion of natural transformation cannot be directly enriched
over any monoidal category H because, in principle, despite we have a set of objects in any
enriched category, generally we only have an object HC(X,Y ) of morphisms (which is not a set



CHAPTER 6. ABSTRACT CATEGORIES 178

if H is not concrete). However, this problem can be easily avoided by noticing that a morphism
f : X → Y can be equivalently described by a function 1→ MorC(X,Y ), where 1 is a unit set.

In this new characterization, the notion of “natural transformation” really can be enriched,
producing the notion of enriched natural transformation between enriched functors. Indeed, given
H-enriched functors F,G : C → D, we define an enriched transformation between them as a
family ξX : 1 → HD(F (X), G(X)), parametrized by the set of objects of C, such that the
diagram below15 is commutative for any f : 1→ HC(X,Y ).

C(X,Y )

≃

��

≃ // 1⊗C(X,Y )
ξX⊗Gx,y // D(F (X), G(X)) ⊗D(G(X), G(Y ))

◦F (x)G(x)G(y)

��
C(X,Y )⊗ 1

Fxy⊗ξY
// D(F (X), F (Y ))⊗D(F (Y ), G(Y )) ◦F (x)F (y)G(y)

// D(F (X), G(Y ))

Now, recall that (as introduced in Section 2.1) given two usual functors F : A → D and
ı : A → C, the left Kan extension of F with respect to ı is the universal left approximation to
the extension problem below. In other words, it is a pair (L, ξ), where L : C → D is a functor
and ξ : F ⇒ L ◦ ı is a natural transformation which is universal in the sense that for any other
pair (L′, ξ′) there exists a unique u : L′ ⇒ L such that the second diagram below commutes.

D L′ ◦ ı

A

F

>>⑦⑦⑦⑦⑦⑦⑦⑦

ı
// C

L

OO

F

ξ′
8@②②②②②②②②

②②②②②②②②

ξ
+3 L ◦ ı

u◦ı

KS✤
✤
✤

✤
✤
✤

We notice that this concept (and its dual version) can be immediately enriched over any
monoidal category (H,⊗, 1), giving the notions of “left/right enriched Kan extension” of a H-
enriched functor respectively to other. So, enriched categorical language is abstractly enough to
abstract the very general notion of Kan extensions and, therefore, of limits and colimits.

15We have been written C(X,Y ) in order to abbreviate HC(X,Y ).



Part III

Higher Categorical Language
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Prologue

In order to attack Hilbert’s sixth problem we have to fix a background language and study
the relation between the corresponding naive mathematics and the foundations of physics. In
the first part we discussed that the correct background language should be obtained by iterating
certain “categorification process”, as in the following diagram:

naive
math

�&
❋❋

❋❋
❋❋

❋❋
❋

❋❋
❋❋

❋❋
❋❋

❋

classical
language

)1

08
+3❴❴❴❴❴❴ ❴❴❴❴❴❴ categorical

language

*2

08
+3❴❴❴❴❴❴ ❴❴❴❴❴❴ 2-categorical

language
+3❴❴❴❴❴❴ ❴❴❴❴❴❴

,4

.6· · ·

;C⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧
physicsks

In the second part we formalized this “categorification process”, so that now we can search
a lifting from “naive mathematics” to “axiomatic mathematics”, as below. This is what will be
done in this part.

axiomatic
math

naive
math

model

KS

 (❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏

abstract
language

7?

✔✔✓✓
✑✑
✎✎
✌✌
☛☛
✟✟
✆✆
✂✂
⑧⑧
⑤⑤
②②

5=sssssssssss

sssssssssss

physicsks

Indeed, recall that in the last chapter we concluded that there are two ways to categorify the
concept of “category”: by internalization and by enrichment, which give, respectively, “internalized
category theory” and “enriched category theory”. While the first produce a language that has no
good properties (as the abstract axiom of choice), the second seems to be promised. With this in
mind, in Chapter 7 we iterate the process of “categorification by enrichment”, getting∞-category
theory.

In the other chapters we show that ∞-categorical language (also called higher categorical
language) really is a very nice abstract background language, in the sense that any interesting
classical concept admits a “higher categorical analogue”, i.e, it can be internalized into some class
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of∞-categories. More precisely, in Chapter 8 we study ∞-category theory properly and we show
that the class of (∞, 1)-categories is a natural context in which we can internalize homotopy
theory. In Chapter 9 we see that stable homotopy theory can also be internalized in such class
of (∞, 1)-categories. Finally, in Chapter 10 we study the geometric ∞-topos, which constitute a
very general ambient to internalize (differential) geometry.

Having developed a very nice abstract background language, we can effectively attack Hilbert’s
sixth problem. This will be done in Parts IV and V. Indeed, in Part IV we will show that the
concept of “classical physics” can be internalized into any geometric ∞-topos and in Part V we
will discuss that the same is valid for “quantum physics”. Furthermore, we will study a process
that attempt to connect both axiomatizations of classical and quantum physics, meaning that we
will complete the “Hilbert’s sixth problem diagram”.

axiomatic
math

%%❏
❏

❏
❏

❏

��

❳ ❱ ❙ P
▼
❏
❋
❇
❂
✾
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❏❏
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❏❏
❏❏

model

KS

classical
physics

$$��
brackground

language

6>

4<qqqqqqqqqqqq

qqqqqqqqqqqq

physicsks quantum
physics

ks

Warning. This will be the most abstract part of the text. The reader who survive to it will not
encounter any difficulty in the remaining parts.



Chapter 7

Construction

In the last chapter we concluded that “enriched categorical language” generalizes classical
categorical language, as required by Hilbert’s sixth problem. Motivated by this fact, in the
present chapter we will iterate the enrichment process with the objective to build a very abstract
class of languages.

Indeed, we start Section 7.1 by showing that for any monoidal category (H,⊗, 1) the associ-
ated category Cat(H) of all H-enriched categories and all enriched functors is itself a monoidal
category, allowing us to consider ”categories enriched over Cat(H)”, which will be the base case of
our induction process. The resultant entities are composed not only by objects and 1-morphisms,
but also for any two 1-morphisms a corresponding “space of morphisms between 1-morphisms”,
called 2-morphisms. These “categories enriched over categories” are also known as 2-categories.
We discuss that the standard way to build a 2-category is when we have an “homotopy cate-
gory” associated to some category. In this case, the 2-morphisms are just (isomorphic classes of)
homotopies between 1-morphisms.

With the base case on hand, we show that we also have the induction step, allowing us to
define n-categories for each value of n. They fit into a category nCat(H) and we prove that
varying n we get an inductive system internal to Cat. Thanks to the cocompleteness of Cat this
system has colimit, which we call the category of ∞-categories enriched over H. We also see that
for each n the category nCat(H) is itself an (n+ 1)-category and we use this fact to give a vast
generalization of the Weakening Principle, implying that the obtained ∞-categorical language is
very abstract, as desired.

On the other hand, in Section 7.2 we discuss that, despite the the abstractness of this new
language, many intuitive examples which should be ∞-category are not. The problem is that,
while in the definition of ∞-category the compositions are assumed strictly associative, in the
examples they are only associative up to higher morphisms. We then modify our definition in
order to incorporate the examples, but we conclude that the obtained definition is impracticable!
This reveals that we need a more careful examination of the higher categorical notions, leading to
many realizations (also called presentations) of them. Unfortunately, they will not be discussed
here. We refer the reader to [127] for the standard of those approaches.
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7.1 Iterating

Recall that the notion of “category” (as category with hom-sets) can be enriched over any
monoidal category (H,⊗, 1), producing the concept of “H-enriched category”. As discussed in
Section 6.1, this is an entity C composed by a set Ob(C) of objects, for any two objects X,Y an
object HC(X,Y ) ∈ H of morphisms, for three objects a composition-morphism

◦xyz : HC(X,Y )⊗HC(Y,Z)→ HC(X,Z),

which fulfill “associativity-type” diagrams, and for any X a distinguished idx : 1 → HC(X,X)
satisfying commutative diagrams which translate the “neutral element” property.

The notion of “functor between categories” can also be enriched over H, giving “enriched
functors between H-enriched categories”. Indeed, if C and D are H-enriched categories, then an
enriched functor between them is specified by a function

F0 : Ob(C)→ Ob(D),

mapping objects into objects, and for any two objects a corresponding morphism

Fxy : HC(X,Y )→ HD(F0(X), F0(Y )),

in such a way that the compositions ◦xyz and the identity morphisms idx are preserved. This
means that H-enriched categories and enriched functors fits into a category Cat(H).

Here we would like to notice that, if (H,⊗, 1) is a concrete category freely generated by sets
(i.e, if there is a forgetful functor ı : H → Set which admits a left adjoint  : Set → H), then
its monoidal structure (⊗, 1) induce a monoidal structure (⊗H,1H) on Cat(H). Indeed, for two
given H-enriched categories C and D we define C ⊗H D as the H-enriched category whose set
of objects is the product

(Ob(C))⊗ (Ob(D)),

regarded as a set, whose objects of “morphisms between products” are given by “products between
morphisms”, i.e,

HC⊗HD(X ⊗ Y,X ′ ⊗ Y ′) := HC(X,X
′)⊗HD(Y, Y ′),

and whose compositions and identities are defined analogously. The neutral object of Cat(H)
respectively to this new product is the trivial H-enriched category 1H, whose set of objects is
1 (regarded as a set), whose object of morphisms also is 1, whose identity morphism is just the
identity map 1→ 1 and whose composition is the canonical isomorphism 1⊗ 1 ≃ 1.

Because (Cat(H),⊗H,1H) is monoidal, we can now consider categories enriched over it! In
other words, for a fixed monoidal category (H,⊗, 1) we can consider categories enriched over the
category of all H-enriched categories! These are very abstract entities C composed by a set of
objects Ob(C), for any two objects a corresponding H-enriched category of morphisms

Cat(H)C(X,Y ) ∈ Cat(H), (7.1.1)

for any three objects an enriched functor

◦xyz : Cat(H)C(X,Y )⊗H Cat(H)C(Y,Z)→ Cat(H)C(X,Z) (7.1.2)
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and for any object a identity functor

idx : 1H → Cat(H)C(X,X), (7.1.3)

such that every usual associativity-type and neutral element type diagram are satisfied. More
explicitly, such a entity is determined by the following data:

1. a set of objects;

2. for any two objects a set, whose elements we call of 1-morphisms between X and Y . In the
sequence we will write simply 1MorC(X,Y ) in order to denote this set;

3. for any two 1-morphisms f, g : X → Y between two fixed objects a corresponding object of
“morphisms between 1-morphisms”, which will be denoted by 2Hxy(f, g);

4. for any three 1-morphisms between two fixed objects a composition of “morphisms between
1-morphisms” (which we call of 2-morphisms) given by a morphism

•fgh : 2Hxy(f, g)⊗ 2Hxy(g, h)→ 2Hxy(f, h);

5. for any three objects a notion of “composition between 1-morphisms” given by a function

◦xyz : 1MorC(X,Y )⊗ 1MorC(X,Y )→ 1MorC(X,Y );

6. for any three morphisms between different objects another “composition of 2-morphisms”,
presented by a morphism

◦fgh : 2Hxy(f, g)⊗ 2Hyz(g, h) → 2Hxz(f, h)

7. for each object and for each 1-morphism between objects a function and a morphism

idx : 1→ 1MorC(X,X) and idf : 1→ 2H(f, f),

which together satisfy many compatibility conditions, associativity-type and neutral element-type
diagrams. Notice that in this correspondence the data (2.), (.3) and (4.) correspond to (7.1.1),
while (5.) and (6.) correspond to (7.1.2) and (6.) corresponds to (7.1.3). The “compatibility
conditions” referred above are those describe the functoriality of the rules (7.1.2) and (7.1.3). So,
for instance, they imply

(a •fgh b) ◦fgh (a
′ •fgh b

′) = (a ◦fgh a
′) •fgh (b ◦fgh b

′),

meaning that the two composition laws for 2-morphisms are, in some sense, compatible.
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Examples

Before proceeding to the full abstraction, attempting to illustrate the last concept, let us
present some concrete examples.

Example 7.1 (bimodules). Let Rng be the category of rings with unity. To any object R we
can associate two other categories LModR and RModR, of left and right R-modules. Let us see
that, putting together all these categories, we can define a 2-category 2Rng. Its objects will be
rings, a 1-morphism X : R → S between two rings will be a (R,S)-bimodule RXS (i.e, a left
R-module X which is also right S-module in such way that the two sctructures are compatible)
and its 2-morphisms ξ : RXS →R′ X ′

S′ will be morphisms of bimodules (i.e, abelian groups
homomomorphisms ξ : X → X ′ which preserve simultaneously both left and right actions in the
sense that ξ(r · x · s) = r · ξ(x) · s). In order to complete the definition of this 2-category we need
to define compositions between 1-morphisms and between 2-morphisms, as well as identity maps.
So, starting with three objects R,S, T and given bimodules RXS and SYT describing 1-morphisms
X : R → S and Y : S → T , the main idea is to define a third 1-morphism Y ◦rst X : R → T
as the tensor bimodule (RXS)⊗S (SYT ). It happens that the compositions must be associative,
but the tensor product is associative only up to isomorphisms, so that we actually have to define
Y ◦rst X : R → T as the isomorphism class of the tensor bimodule (RXS) ⊗S (SYT ). Given
a ring R, its identity idr : R → R is just R regarded as a (R,R)-bimodule. Furthermore, if
ξ : RXS ⇒R YS and ζ : RYS ⇒R ZS are two 2-morphisms between 1-morphisms parametrized by
the same objects, we define their composition ζ◦xyz ξ as the bimodule morphism whose underlying
abelian group homomorphism is precisely the composition ζ ◦ ξ of the underlying abelian group
homomorphisms. It is clearly associative. On the other hand, if were now given 2-morphisms
ξ : RXS ⇒S YT and ζ : SYT ⇒S ZT for consecutive objects, we define its composition ζ •xyz ξ as
the product ζ ⊗ ξ. It is associative because we are working with isomorphism classes of tensor
products. The identity 2-morphism of a 1-morphism X : R → S is the bimodule morphism
idx :R XS ⇒R XS whose underlying abelian group homomorphism is the identity map.

Two remarks on the last example:

1. we proved that 2Ring is a 2-category enriched over the cartesian (Set,×, 1). We notice,
however, that it is indeed enriched over (Ab,⊗,Z). In fact, for any two given 1-morphisms,
say X : R→ S and X ′ : R′ → S′, the corresponding set of 2-morphisms 2Morrs2Ring(X;Y ),
which is the set of bimodule morphism, is naturally an abelian group with the operation of
sum of morphisms;

2. the example can be generalized. Observe that Ring is the category of monoid objects of
the monoidal category (Ab,⊗,Z). We can reproduce the example if we consider other
ambient symmetric monoidal category (H,⊗, 1). Indeed, if R,S ∈ Mon(H,⊗) is a monoid
object, we have the notion of (R,S)-bimodule object and the notion of morphism between
bimodules, so that we can build a category BiMod(R,S)(H,⊗). Because H was assumed
symmetric, its monoidal structure (⊗, 1) induce a corresponding monoidal structure (⊗M , 1)
in Mon(H,⊗), as discussed in Section 5.1. This structure induce, in turn, bifunctors

⊗B : BiMod(R,S)(H,⊗)× BiMod(S,T )(H,⊗)→ BiMod(R,T )(H,⊗)
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for any three given monoid objects. We can then define a 2-category 2H analogously as
we defined 2Ring: by considering the set of objects as the set of monoid objects, the set
of 1-morphisms between two monoid objects as the set of (isomorphic classes of) bimodule
objects over them, and 2-morphisms as morphisms of bimodule objects. The composition of
1-morphisms is the action of the product ⊗B in objects. The composition of 2-morphisms
is the action of ⊗B in morphisms.

Example 7.2 (homotopy category). Let C ⊂ Top be a convenient category of topological spaces.
As discussed in Section 4.2, this category is cartesian closed, so that by Example 6.3 it is enriched
over itself. Consequently, by considering the quotient topology, the homotopy category Ho(C )
also becomes enriched over Top. We can join the categories C and Ho(C ) in order to obtain a 2-
category 2Top fully enriched over (Top,×, ∗). Indeed, we consider topological spaces as objects,
continuous maps as 1-morphisms and hotomopies between continuous maps as 2-morphisms. The
composition of 1-morphisms are the usual composition of functions. Therefore, the identity of
each space X is just the identity map idx. We can think of a homotopy between two functions
as a continuous path Ht connecting them1. So, given three morphisms f, g, h : X → Y and two
homotopies H : f ⇒ g and H ′ : g ⇒ h we define its composition H ′ •xyzH as that corresponding
to the concatenation of paths H ′

t#Ht, as defined in Example 4.5. Explicitly,

(H ′ •fgh H)(t, x) =

{

H(2t, x), 0 ≤ t ≤ 1/2

H ′(2t− 1, x), 1/2 < t ≤ 1.

Furthermore, given homotopies H : f ⇒ g and H ′ : g ⇒ h, where f , g and h are functions
between consecutive spaces, we define its composition

H ′ ◦fgh H : g ◦xyz f ⇒ h ◦yzw g as (H ′ ◦fgh H)(t, x) = H ′(t,H(t, x)).

The identity of a 1-morphism f should be the trivial homotopy, induced by the constant path
at f . But, we have a problem: the concatenation of paths is not associative at time that the
constant path is not a neutral element for this operations. Indeed, we only have associativity and
neutral element property up to path homotopies. Therefore, in order to get a 2-category we have
to consider homotopy class of homotopies as 2-morphisms. Now, that 2Top is a 2-category is
clear. Let us explain why it is fully enriched over Top. Putting the compact-open topology in the
sets of 1-morphisms they become naturally topological spaces in such a way that the composition
of 1-morphisms are continuous. Therefore, as a 1-category, 2Top is enriched over Top. In order
to get the enrichment also in the 2-categorical context, recall that the sets of 2-morphisms are
quotient spaces of sets of homotopies. But homotopies are, itself, continuous maps. So, we can
first take the compact-open topology and then the quotient topology.

Example 7.3 (algebraic homotopy category). Recall that, as discussed in Section 1.2, we have
a homotopy theory for chain complexes which is very similar to the homotopy theory for CW-
complexes. On the other hand, by definition, CW-complexes belong to any convenient category
of topological spaces. The last example shows that a convenient category of topological spaces C

(and, in particular, the subcategory of CW-complexes) define a 2-category 2Top enriched over

1This makes perfect sense in the compact-open topology, because we are working in the category of convenient
topological spaces.
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Top by putting together C and Ho(C ). Therefore, it is natural to expect that for any ring
R we also have a 2-category 2ChR obtained putting together ChR and its homotopy category
Ho(ChR). This is really the case. Indeed, we consider chain complexes as objects, chain maps as
1-morphisms and algebraic homotopies as 2-morphisms. The composition of 1-morphisms is just
the usual composition (the identity of a cochain complex is the identity chain map). In order
to define the compositions between 2-morphisms we recall that a chain homotopy H : f ⇒ g
between chain maps f, g : X∗ → Y∗ is a sequence of homomorphisms Hn : Xn → Yn+1 such that

fn − gn = ∂Yn ◦Hn +Hn−1 ◦ ∂
X
n−1.

In the topological case, we defined the composition of homotopies by first considering a topology
in the set of morphisms, showing that homotopies can be regarded as paths in the space of maps
and then taking the composition as concatenation of paths. So, the idea is to try the same here.
Because the monoidal category (ChR,⊗, R) is closed, it follows that ChR is enriched over itself,
so that for the set of chain maps between two cochain complexes can be naturally regarded as
cochain complex. The next step is to define “path in a cochain complex”. A path between two
points x and y of topological space X is simply a continuous function γ : I → X, where here I
is the internal [0, 1], such that γ(0) = x and γ(1) = y. This last conditions correspond precisely
to the commutativity of the following diagram:

I

γ
��

∗

0
??⑧⑧⑧⑧⑧⑧⑧⑧

x
// X ∗y

oo

1
__❄❄❄❄❄❄❄❄

Therefore, introducing the notion of “internal object” in ChR we could define an algebraic path
in X∗ as a chain map I∗ → X∗. One can see [0, 1] as a CW-complex with two 0-cells (the points
0 and 1) and one 1-cell connecting them. The algebraic analogue of this data is as below, where
R⊕R is in degree zero.

· · · // 0 // 0 // · · · // R
id⊕(−id) // R⊕R // 0 // 0 // · · ·

It can be directly verified that giving a chain homotopy H : f ⇒ g, with f, g : X∗ → Y∗, is the
same as giving an algebraic path H : I∗ → ChR(X∗, Y∗) connecting f and g, in the sense that
the diagram below commutes.

I∗

H
��

R

0

99ssssssssssss
f

// ChR(X∗, Y∗) Rg
oo

1

ee❑❑❑❑❑❑❑❑❑❑❑❑

So, in order to conclude that 2ChR actually is a 2-category we have to prove that the notion of
“concatenation of paths” can be abstracted to the algebraic context. But this can be easily done,
because the concatenation of paths γ : x → y and λ : y → z is characterized as the path γ#λ
making commutative the diagram below and this diagram has an evident algebraic analogue.
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As in the topological case, the concatenation is associative only up to homotopy, so that replac-
ing the space of algebraic homotopies by the space of algebraic homotopy classes of algebraic
homotopies we finally get the desired 2-category structure. It is enriched over ChR because the
space of homotopies can be regarded as a chain complex and this additional structure passes to
the quotient.

Example 7.4 (categories with path objects). We can imitate the last examples in order to build
a 2-category 2H starting with a monoidal category (H,⊗, 1) enriched over itself in which we have
the notion of “path in an object X” corresponding to a class of morphisms γ : I → X, where
I some kind of “interval object”, and the notion of “concatenation of paths”. Indeed, with the
notion of “paths” we consider the “space of paths” of any object X, denoted by Path(X), which
can be regarded as an object of H (because H is assumed enriched over itself). We then define a
homotopy between two morphisms f, g : X → Y as a path in the object of morphisms H(X;Y ).
The homotopy relation is an equivalence relation, so that we can define the “homotopy category”
Ho(H) of H as the category whose objects are objects of H and whose morphisms are homotopy
classes of morphisms of H. Finally, we define the desired 2-category 2H by putting together
the structures of H and Ho(H). Indeed, it is the entity whose objects are objects of H, whose
1-morphisms are morphisms of H and whose 2-morphisms are homotopy classes of homotopies
between 1-morphisms in the sense above. The composition of 1-morphisms is the composition of
H and the non-obvious composition of 2-morphisms are that induced by the assumed notion of
“concatenation of paths”. For instance, as a particular example of this very general situation, we
obtain that not only Top and ChR, but also the category Spec of sequencial spectra induces a
2-category 2Spec.

n-Categories

Here we notice that not only the notion of category, but also the concept of “functor between
categories” can be enriched over the monoidal category (Cat(H),⊗H,1H). Indeed, given two
Cat(H)-enriched categories C and D, a enriched functor between them is explicitly determined
by the following data:

1. a function F0 mapping objects into objects;

2. for any two objects a function Fxy mapping 1-morphisms into 1-morphisms;

3. for any two 1-morphisms a corresponding morphism Ffg mapping “morphisms between
1-morphisms” into “morphisms between 1-morphisms”;

such that each composition law (of 1-morphisms or of “morphisms between 1-morphisms”) and
each identity is preserved. Therefore, we have the category Cat(Cat(H)) of categories enriched
over Cat(H), which we denote by 2Cat(H).

It becomes monoidal by applying the same process used to build a monoidal structure on
the category of all H-enriched categories from the monoidal structure of H. Therefore, we can
now consider categories enriched over 2Cat(H)! These are entities defined by a set of objects, a
set of 1-morphisms between objects, a set of 2-morphisms and an object of “morphisms between
2-morphisms”, which we call of 3-morphisms. In addition, we have one composition law for 1-
morphisms, two composition laws for 2-morphisms and three composition laws for 3-morphisms,
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which are compatible and associative. Finally, to each 1-morphism, 2-morphism and 3-morphism
we also have a corresponding identity morphism that fulfill the neutral element property. The
reader is invited to explicit the data (and the commutative diagrams satisfied by them) defining
this kind of entity in same way as we done for categories enriched over Cat(H).

The notion of “functor” also enriches over 2Cat(H), defining a category

Cat(2Cat(H)) = Cat(Cat(Cat(H))),

which we denote by 3Cat(H). This category is itself monoidal, so that in it the notions of
“category” and “functor” can be internalized, producing 4Cat(H), and so on. In other words, by
induction we can define

nCat(H) = Cat(Cat(Cat(...Cat(H))))

for every n! An object of this category is an entity containing a set of objects, a set of 1-
morphisms, and so on, up to a set of (n−1)-morphisms, together with an object of n-morphisms.
For each 1 ≤ k ≤ n we have exactly k different composition laws for k-morphisms, which are
associative and mutually compatible in a functorial sense. Additionally, to each object and to
each k-morphisms we have an identity morphism fulfilling the neutral element property.

An enriched functor between two of these entities is just a sequence of rules, mapping objects
into objects and k-morphisms into k-morphisms in such a way that every composition and every
identity is preserved.

Remark. Because the data defining it, we usually say that an (n− 1)Cat(H)-enriched category
is an H-enriched n-category. Therefore, by an H-enriched n-category we mean an entity that
has k-morphisms, for 0 ≤ k ≤ n, where here “0-morphisms” means “objects”. Furthermore, for
k = 0, ..., n−1 the data belongs to Set (i.e, we have a set of objects, a set of 1-morphisms, a set
of 2-morphisms, and so on, up to (n− 1)-morphisms) and for k = n it belongs to H (i.e, we have
a object of n-morphisms). In the special case in that (H,⊗, 1) is (Set,×, 1), every information
belongs to Set and we say simply that we have an n-category.

∞-Categories

For a given (concrete and freely generated) monoidal category (H,⊗, 1), in the last subsection
we obtained the notion of “n-category enriched over H” by iterating the enrichment process. We
notice that each of these n-categories can be trivially regarded as a (n+1)-category by adding a
trivial object of (n+ 1)-morphisms.

More precisely, for a given n-category C enriched over H we define a corresponding (n+ 1)-
category ınC, whose set of objects is the set of objects of C, whose sets of 1-morphisms are
also the sets of 1-morphisms of C, and so on, up to sets of (n − 1)-morphisms. The sets of
n-morphisms of ınC are the objects of n-morphisms of C, regarded as sets (i.e, are their images
under the inclusion functor ı : H →֒ Set). Finally, the objects of (n+1)-morphisms of ınC are all
given by the neutral object 1, all composition laws for n-morphisms are 1⊗1 ≃ 1 and all identity
morphisms are equal to id1 : 1 → 1. The construction extends to enriched functors, defining a
functor

ın : nCat(H)→ (n+ 1)Cat(H).
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Therefore, we can build the sequence below. It is a sequence internal to Cat, which is a
cocomplete category. Consequently, this sequence has a colimit, meaning that we can define
the notion of H-enriched ∞-categories! More precisely, the colimit is a category ∞Cat(H)
whose objects we call of ∞-categories enriched over H and whose morphisms we call enriched
∞-functors.

0Cat(H) // 1Cat(H) // 2Cat(H) // 3Cat(H) // · · · (7.1.4)

So, concretely, an H-enriched ∞-category C is composed by the following data:

1. a set Ob(C) of objects;

2. for any two fixed objects X and Y , a set 1MorC(X;Y ) of 1-morphisms f : X → Y between
them;

3. for any two 1-morphisms f, g : X → Y , a set 2MorxyC (f ; g) of 2-morphisms ξ : f ⇒ g
between them;

4. for any two 2-morphisms ξ, ζ : f ⇒ g between the same 1-morphisms f, g : X → Y , a
corresponding set 3Mor

fgxy
C (ξ; ζ) of 3-morphisms ϕ : ξ ⇛ ζ between them;

5. and so on;

6. for any three fixed objects a function (where here the sets of 1-morphisms are first considered
as freely generated objects of H, so that the product ⊗ can be done, and in the sequence
the result is regarded as a set)

◦xyz : 1MorC(X;Y )⊗ 1MorC(Y ;Z)→ 1MorC(X;Z)

fulfilling associativity-type diagrams;

7. for any three 1-morphisms between the same objects, a function (in the same sense as
above)

◦fgh : 2MorxyC (f ; g)⊗ 2MorxyC (g;h)→ 2MorxyC (f ;h)

satisfying associativity-type diagrams;

8. for any three 1-morphisms between consecutive objects a function

•fgh : 2MorxyC (f ; g)⊗ 2MorxyC (g;h)→ 2MorxyC (f ;h)

fulfilling associativity-type diagrams and which is compatible with ◦fgh in a functorial way;

9. for three 2-morphisms between the same 1-morphisms, which in turn are defined between
the same objects, a function

◦ξζη : 3Mor
fgxy
C (ξ; ζ)⊗ 3Mor

fgxy
C (ζ; η)→ 3Mor

fgxy
C (ξ; η),

satisfying associativity-type diagrams;
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10. for three 2-morphisms between consecutive 1-morphisms defined between the same objects,
a function

•ξζη : 3Mor
fgxy
C (ξ; ζ)⊗ 3Mor

ghxy
C (ζ; η)→ 3Mor

fhxy
C (ξ; η),

fulfilling associativity-type diagrams and being compatible with ◦ξζη in a functorial way;

11. for three 2-morphisms between consecutive 1-morphisms defined between consecutive ob-
jects, a function

⋆ξζη : 3Mor
fgxy
C (ξ; ζ)⊗ 3Mor

ghyz
C (ζ; η)→ 3MorfhxzC (ξ; η),

satisfying associativity-type diagrams and being compatible with •ξζη (and, therefore, with
◦ξζη) in a functorial way;

12. and so on;

13. for any object, any 1-morphism, any 2-morphism, etc., a corresponding map

idx : 1→ 1MorC(X;X), idf : 1→ 2MorxyC (f ; f), idξ : 1→ 3Mor
fgxy
C (ξ; ξ),

and so on, satisfying neutral element-type diagrams respectively to the previous composition
laws.

Remark. In the data defining a H-enriched n-category only that about n-morphisms belongs
to H; each other data (say about objects, 1-morphism, etc.) belongs to Set. Therefore, when
taking the (co)limit n → ∞, we get an entity defined by data belonging exclusively to Set, as
above. We notice, however, that all this data could be considered internal to H. Indeed, we
have the functor  : Set →֒ H, allowing us to replace each set by the object freely generated by
it. Therefore, we can think of a H-enriched ∞-category as an entity with a set of objects, and
objects of k-morphisms, for each k > 0, such that the composition laws and the identity maps
are indeed morphisms of H.

Recall that in order to get the notion of ∞-category we started by building a functor

ın : nCat(H)→ (n+ 1)Cat(H),

which assigns to each enriched n-category C a corresponding enriched (n + 1)-category ınC,
and then we considered the colimit of the sequence internal to Cat defined by it. This functor
was build by making use of the inclusion ı : H →֒ Set. It happens that the inclusion has the
left adjoint  : Set → H, so that it is natural to expect a dual construction of the notion of
“H-enriched ∞-category”. More precisely it is natural to expect the existence of functors

n : (n+ 1)Cat(H)→ nCat(H),

induced by , which will define the sequence below in such a way that its limit is a category
equivalent to ∞Cat(H).

· · · // 2Cat(H) // 1Cat(H) // 0Cat(H) (7.1.5)
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We assert that the left adjoint  really induce functors n (that the limit of the sequence
defined by them reproduces or not the notion of enriched ∞-category will be discussed later).
Indeed, if C is a (n + 1)-category enriched over H, we define a corresponding n-category nC
by considering the same set of objects that C, the same sets of 1-morphisms, and so on, up to
(n− 1)-morphisms. The objects of n-morphisms of nC are the objects of H freely generated by
the sets of n-morphisms of C.

Furthermore, following the same strategy, if F : C → D is a enriched functor between two
(n + 1)-categories enriched over H we can build a functornF between the corresponding n-
categories nC and nD. It can be directly verified that this rule is functorial, so that it defines
a functor n. This means that the sequence (7.1.5) can be defined and, because Cat is complete,
its limit exists. The question is: is this limit the same as the colimit of (7.1.4)?

This will be the case if the functors n and ın, defining the corresponding sequences, are
adjoints. It happens that in the general situation they are not: given an (n + 1)-category C

and an n-category D, an enriched functor F : nC → D is given by a rule F0 mapping objects
into objects, for any two objects a function mapping 1-morphisms between the given objects into
1-morphisms, and so on, up to (n− 1)-morphisms. For any two (n− 1)-morphisms ϕ,ψ we also
have a morphism

nHnC(ϕ,ψ) → nHD(F (ϕ), F (ψ))

between the corresponding objects of n-morphisms. Here we recall that, by definition, the object
of n-morphisms of nC is that freely generated by the set of n-morphisms of C. In other words,
the morphism above is indeed of the form

(nHC(ϕ,ψ))→ nHD(F (ϕ), F (ψ)). (7.1.6)

On the other hand, an enriched functor G : C → ınD is determined by a function between
objects, a function between 1-morphisms, and so on, up to (n− 1)-morphisms. Additionally, for
any two (n− 1)-morphisms ξ, ζ we have a map

nHC(ξ, ζ)→ nHınD(G(ξ), G(ζ)) (7.1.7)

between the sets of n-morphisms and, for any two n-morphisms ϕ,ψ, a morphism

(n + 1)HC(ξ, ζ)→ (n+ 1)HınD(G(ξ), G(ζ)) (7.1.8)

between the corresponding objects of (n + 1)-morphisms. By definition, the set of n-morphisms
of ınD is obtained by forgetting the additional structure of the object of n-morphisms of D, while
the object of (n + 1)-morphisms is given by the neutral element object 1. Therefore, (7.1.7) is
explicitly given by

nHC(ξ, ζ)→ ı(nHD(G(ξ), G(ζ))) (7.1.9)

while (7.1.8) is indeed given by
(n+ 1)HC(ξ, ζ)→ 1. (7.1.10)

When comparing the data defining enriched functors nC → D and C → ınD we see that
they coincide for objects, for 1-morphisms, and so on, up to (n − 1)-morphisms. Furthermore,
thanks to the adjunction  ⇋ ı, the functions (7.1.6) and (7.1.9) are in bijections, so that the
data coincides for n-morphisms too. We notice that this data completely defines nC → D, but
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in order to define C → ınD we need to consider the morphisms (7.1.10) between the objects of
(n+ 1)-morphisms.

Therefore, they are precisely these morphisms that make different the data defining functors
nC→ D and C→ ınD. In other words, they are precisely these additional morphisms that imply
the nonexistence of an adjunction n ⇋ ın. But, if 1 ∈ H is indeed a terminal object, then the
data encoded into the morphisms (7.1.10) is trivial, so that in this case the adjunction n ⇋ ın
actually exists.

Conclusion. In general both dual ways to define “∞-categories enriched over (H,⊗, 1)” does
not coincide. But, if 1 ∈ H is a terminal object (which happens, for instance, when the monoidal
structure in question is cartesian), then such dual definitions coincide. In particular, the notion
of ∞-category can be defined by two dual ways.

Warning. Due to the conclusion above, from this point we will work only with ∞-categories
enriched over monoidal categories (H,⊗, ∗), where ∗ ∈ H is a terminal object. The fundamental
example will be H = Set with its cartesian structure, meaning that our canonical objects of
study will be simply ∞-categories and ∞-functors between them.

Remark. In the following we will write nSCat (instead of nCat(Set)) to denote the category
of n-categories and ∞SCat to denote the category of ∞-categories (i.e, the limit or colimit of
the sequence of nSCat). Here, “S” reads strict and its meaning will become clear in the next
section.

Higher Kan Extensions

Starting with a monoidal category (H,⊗, ∗), in the last subsections, by iterating the enriche-
ment process and then taking its limit/colimit, we constructed a language of “∞-categories”. It
seems natural to believe that this new language is very abstract and powerful. If this is the case,
then any useful concept of classical mathematics will have a higher version internal to∞Cat(H).
Many classical concepts can be obtained as Kan extensions, so that a good “test” is to verify if
the notion of “Kan extensions” admits a higher version in the language of ∞-categories. Let us
see that such a “higher Kan extensions” really exists.

Recall that, as discussed in Section 6.3 the notion of “Kan extensions” makes sense in any
category in which we have the notion of Kan extension can be enriched over any monoidal
category (H,⊗, 1), giving the notion of H-enriched Kan extensions of enriched functors between
H-enriched categories. Indeed, this is due to the fact that the notion of “natural transformation”
can itself be enriched over H and in order to define “Kan extension” we only need the notion of
“natural transformation”.

When iterating the enrichement process we will get not only the usual notion of “enriched
natural transformation”, but also the notion of “higher enriched natural transformation”, which
will be used to define the desired “higher enriched Kan extensions”. Indeed, because we have “H-
enriched natural transformations”, the category Cat(H) is enriched over itself, i.e, the category
of all H-enriched categories is indeed a H-enriched 2-category. So, replacing H with Cat(H) we
conclude that

2Cat(H) = Cat(Cat(H))
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is enriched over itself, i.e, the category os all H-enriched 2-categories is a H-enriched 3-category.
Inductively, we then get that nCat(H) is indeed a (n+ 1)-category and, taking the limit (or the
colimit), that ∞Cat(H) is an enriched ∞-category.

In Section 1.3 we saw that one of the fundamental principles of categorical language is the
“Weakening Principle”. It is based on the existence of the notion of “natural transformation”. We
recall its contents:

Weakening Principle: Any concept/result defined/obtained by making use only of commutative
diagrams of functors can be abstracted/weakened by replacing the commutativity condition by
commutativity up to natural transformations.

It was by applying this principle to the concept of “extension” that we obtained the notion of
“Kan extensions”. Similarly, because we have “enriched natural transformations” we can enrich
the Weakening principle, getting an “enriched Weakening Principle”. We can understood the
usual “enriched Kan extensions” as arising from the application of this enriched principle to the
notion of “extensions”.

When saying that 2Cat(H) is a enriched 3-category we are saying that we have objects (the
enriched categories), morphisms (enriched functors), 2-morphisms (enriched natural transforma-
tions) and, in addition, 3-morphisms (which we call 2-natural transformations). This means that
if now we have a diagram of enriched natural transformations we can replaced commutativity by
commutativity up to 2-natural transformations. Repeating this idea and taking the limit we then
conclude that in enriched ∞-categorical language we have the following principle:

Higher Enriched Weaking Principle: Any concept/result defined/obtained by making use only
of commutative diagrams of k-morphisms into an enriched∞-category can be abstracted/weakened
by replacing the commutativity condition by commutativity up to (k + 1)-morphisms.

By applying this principle to the notion of “extension” we then get the desired “higher enriched
Kan extensions”. More precisely, recall that if F : A → D is a enriched functors between
enriched categories, then a enriched left Kan extension of F respectively to other enriched functor
ı : A → C is a pair (L, ξ) given by an enriched functor L : C → D and an enriched natural
transformation ξ : F ⇒ L ◦ ı, which is universal, in the sense that the second diagram below
commutes.

D L′ ◦ ı

A

F

>>⑦⑦⑦⑦⑦⑦⑦⑦

ı
// C

L

OO

F

ξ′
8@②②②②②②②②

②②②②②②②②

ξ
+3 L ◦ ı

u◦ı

KS✤
✤
✤

✤
✤
✤

If now all data belongs to 2Cat(H), by the Higher Weakening Principle we can abstract
this concept by replacing the commutativity of the second diagram with commutativity up to 2-
natural transformations fulfilling additional universality conditions. These additional conditions,
in turn, are given by analogous new commutative diagram of 2-natural transformations. But,
if we are in 3Cat(H) then we would be able to apply the Higher Weaking Principle one more
time, replacing the commutativity with commutativity up to 3-natural transformations satisfying
universal conditions, and so on.

Therefore, given two enriched ∞-functors F : A→ D and ı : A→ C we can formally define
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the higher enriched left Kan extension of F with respect to ı as a pair (L, ξ), where L : C→ D

is a enriched ∞-functor, ξ : F ⇒ L ◦ ı such that for any other (L′, ξ′) there exists a unique pair
(u, ϕ), where u : L′ ⇒ L is an enriched transformations and ϕ : ξ′ ⇛ (u ◦ ı) ◦ ξ is a 2-natural
transformation, such that if (u′, ϕ′) is another pair, there there exists a one more pair (v, α), with
v : u′ ⇛ u, etc.

Intuition

In order to get some feeling on the notion of “k-transformation”, let us explicit it in the case in
which the enrichment ambient (H,⊗, 1) is just (Set,×, ∗). In other words, let us to say explicitly
what is a higher natural transformations between ∞-functors.

Before extrapolating to this higher categorical context, we start by trying to understand more
concretely the role of the natural transformations in the usual 1-categorical language.

When interested in the enrichment process, we work with the concept of category as “category
with hom-sets”. Recall, however, that we have the equivalent characterization as “category with
source and target maps”. In the following, it will be more interesting to think of a category in
this second approach.

So, given an arbitrary category C, let us denote its set of objects by C0 and its set of
morphisms by C1. All that we can define in usual 1-category theory must involve such sets and
some relations between them. There are essentially four ways to relate them:

1. by functions a00 : C0 → C0 (that maps objects into objects);

2. by functions a01 : C0 → C1 (that maps objects into morphisms);

3. by functions a11 : C1 → C1 (mapping morphisms into morphisms);

4. by functions a10 : C1 → C0 (mapping morphisms into objects)

But recall that in order to describe the structure of C we have to take into account the source
and target maps, which are functions s, t : C1 → C0, meaning that in the list above the data
(4.) should be discarded. So, we ask: which kind of concept the remaining functions describe in
category theory?

By definition, a functor between 1-categories is given by a rule that maps objects into objects
and morphisms into morphisms satisfying certain coherence conditions. Therefore, the functions
a00 : C0 → C0 and a11 : C1 → C1 corresponds together to the concept of functor. On the other
hand, a natural transformation is a rule assigning morphisms to objects in a coherent way, so
that the functions a01 : C0 → C1 correspond to the concept of natural transformation.

We can codify this conclusion by considering the matrix (aij), with 0 ≤ i, j ≤ 1. Indeed,
diagonal describes the concept of functor, the lower triangular part corresponds to source and
target maps and the upper triangular part describes the notion of natural transformation. It
happens that this characterization of natural transformation can be directly extended to the
context of ∞-categories!

More precisely, notice that when applying the enrichment process and taking the limit n→∞,
we get the notion of ∞-category in the “hom-sets” perspective (recall the data defining a ∞-
category presented in the last subsections). But, in the same way as a 1-category, we can also
describe a ∞-category in the “source-target” approach. In it we have the set C0 of objects and
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all k-morphisms (for k > 0) between different (k − 1)-morphisms are grouped into the same set
of k-morphisms Ck. In order to identify the domain and codomain of each k-morphisms we
need functions sk, tk : Ck → Ck+1. The composition laws are defined in some pullback of these
functions and we also have the identity maps, all this satisfying some commutative diagrams
which describe, for instance, that the compositions are associative and that the identities are
“neutral elements”.

Following the same discussion for the case of 1-categories we see that any construction in
the theory of n-categories (and consequently in the theory of ∞-categories by taking the limit
n → ∞) is described by making use of functions aij : Ci → Cj, with 0 ≤ i, j ≤ n. Similarly to
the 1-categorical case, the diagonal of the matrix (aij), i.e, the data composed by functions akk
which maps objects into objects and k-morphisms into k-morphisms, correspond to the concept
of n-functor between n-categories. Furthermore, the lower triangular part are compositions of
source and target maps. So, it seems natural to use each element aij of the upper triangular part
to define the desired higher transformations between n-functors.

We notice, however, that if this were the case, then there would exist n2/2−n = n(n/2−1) dif-
ferent notions of “transformations between n-functors”. More precisely, we would have usual nat-
ural transformations, and then natural transformations between natural transformations, which
we call 2-natural transformations, and so on up to n(n/2 − 1)-natural transformations. In par-
ticular, this would imply that nSCat is a (n(n/2− 1) + 1)-category. But, by the very discussion
in the last subsection, we known that such a category is indeed a (n+1)-category. This suggests
that not all terms in the upper triangular part are really fundamental, but only n of them.

One way to select the n fundamental is as follows. Notice that a rule between C1 and C3 can
be regarded as the composition of a rule C1 → C2 with a rule C2 → C3. By generalizing this we
see that any term in the upper triangular part can be decomposed as a compositions of terms in
the upper diagonal. This means that we can consider the n terms of the upper diagonal as the
fundamental. In this perspective, k-transformations should be rules ξ : Ck−1 → Ck assigning
k-morphisms to (k − 1)-morphisms.

On the other hand, the terms of the upper diagonal (and, therefore, every term in the upper
triangular part) is pulled back to the first line a0i, with 0 < i ≤ n. Indeed, Notice that a given
Ck → Cl can be replaced by C0 → Cl after composition with C0 → Ck. Here, a k-transformation
is then a rule ξ : C0 → Ck assigning k-morphisms to objects.

7.2 Rigidness

As discussed in Example 1.4, we usually define a n-manifold as a topological which locally
looks like the euclidean space Rn. But this definition is rigid: there are some entities which
intuitively should be n-manifolds but that do not are in the sense above. For instance, this is
the case of the disc Dn. Indeed, the disc cannot be modeled over the euclidean space because
Rn has a single flavor of open sets, while Dn has two flavors: those intersecting the boundary
∂Dn = Sn−1 and those which are totally contained in the open ball B1(0).

In order to incorporate these intuitive examples, the standard approach is to redefine the
notion of manifold by replacing the canonical model over with the objects are modeled. Doing
this we get the concept of manifold with boundary, which is as interesting as the starting concept
of manifold, but abstract enough in order to incorporate examples as the disc Dn.
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It happens that there are other examples that intuitively should be manifolds but which do
not are manifolds nor manifolds with boundary. They are the entities which have not only two
kinds of open sets, but indeed three (or four, five, or even a finite amount of them). For example,
these kind of entities appear as the objects modeling (some kinds of) Feynman diagrams, as
discussed in Section 3.3. Another time we are forced to redefine the notion of “manifold” in order
to incorporate these new examples. This really can be done, obtaining orbifolds.

The above discussion is a manifestation of the following very general idea: assume that we
are trying to model some phenomena/idea that we have very clear in our mind but which a priori
is not so clear mathematically. We start by giving a first attempt of definition, having some
examples in mind. So, whenever given an object which intuitively should satisfy our definition
we verify if it is really satisfied. In the failure, we need to rethink the starting definition in order
to incorporate the desired example.

In the last subsections, by iterating the enrichement process and then taking the limit (or
colimit) n → ∞, we obtained the notion of “∞-category enriched over a monoidal category
(H,⊗, 1)”. Furthermore, we saw that this ∞-categorical language is much more abstract that
usual categorical language, in the sense that the concept of “Kan extension” (and all other notions
that derive from it) lifts to the concept of “higher Kan extension”.

Now, it is time to analyze if this obtained powerful notion of “∞-category” really is the “correct
model” for that concept. Indeed, we have a very clear idea of what should be a “∞-category” in
our mind and, thinking in examples which sgould satisfy this idea, we will verify if they actually
satisfy the present definition of ∞-category.

Example 7.5 (cobordism). Given p ∈ N, in Example 1.5 we introduced the category Cobp+1,
whose objects are compact p-manifolds and whose morphisms are cobordisms between them. It
happens that any manifold can be regarded as a cobordism ∅→ ∅, meaning that any object of
Cobp+1 can be regarded as a morphism of Cobp. This motivate us to unify both categories into
the same entity, having (p − 1)-manifolds as objects, p-cobordisms as morphisms and (p + 1)-
cobordisms as 2-morphisms. Recursively, this leads us to imagine an entity Cob(p + 1), which
intuitively should be a (p + 1)-category, whose objects are 0-manifolds, whose 1-morphisms are
1-cobordisms between 0-manifolds, and so on, up to (p+1)-cobordisms between p-manifolds. The
physical interest in this hypothetical entity was discussed in Section 2.4.

Example 7.6 (homotopy categories). In Example 7.2 we saw that joining Top and its homotopy
category Ho(Top) we get a 2-category 2Top enriched over Top. We recall that it has topological
spaces as objects, continuous maps as 1-morphisms and homotopy classes of continuous maps
as 2-morphisms. Now, notice that homotopies are itself continuous functions, so that we can
talk of “homotopies between homotopies”, also called 2-homotopies. Indeed, if f, g : X → Y are
continuous functions and H,H ′ : X × I → Y are homotopies between them, then a homotopy
between H and H ′ is simply a continuous function ξ : (X × I)× I → Y satisfying

ξ(x, t, 0) = H(x, t) and ξ(x, t, 1) = H ′(x, t).

Therefore, it is natural to imagine an entity 3Top, which intuitively should be a 3-category
enriched over Top, whose objects are topological spaces, whose 1-morphisms are continuous
maps, whose 2-morphisms are homotopies and whose 3-morphisms are homotopy classes of 2-
homotopies. But 2-homotopies are itself continuous functions, so that we can take homotopies
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between them, which we call 3-homotopies, allowing us to imagine a 4-category 4Top. So,
inductively we expect the existence of a n-category nTop and, taking the limit n → ∞, of a
∞-category ∞Top.

Example 7.7 (fundamental groupoid). Recall that we have a functor π1 : Ho(Top∗) → Grp

assigning to any base topological space (X,x) its fundamental group. Such invariant depends
explicitly of the base point x. We can try to collect all invariants π1(X,x), for x ∈ X, into a
single entity independent of base points. Indeed, the idea is to define an entity Π(X) which has
elements x ∈ X as objects and elements of π1(X,x) as morphisms x→ x. Recall that an element
[γ] ∈ π1(X,x) is a homotopy class of loops γ : S1 → X. These loops can be identified with paths
γ : I → X such that γ(0) = x = γ(1). Therefore, this lead us to define a category Π(X) whose
objects are the base points of X and whose morphisms x → y are homotopy classes of paths
linking these two points (the composition is given by concatenation of paths and the identity of x
is the constante path, such that γ(t) = x for all t). It happens that, as discussed in the previous
examples, homotopy is a continuous map, so that we can take homotopies between homotopies,
and so on. So, it is natural to imagine that Π(X) regarded as a ∞-category.

Example 7.8 (monoidal categories). As discussed in Section 6.1, in any category C, the as-
sociativity of the composition and the existence of identity maps imply that for each object X
the set MorC(X;X) endomorphisms is, indeed, a monoid. Therefore, if the category C has a
single object, say ∗, then it is totally characterized by the monoid MorC(∗, ∗). This means that
monoids are just the same as categories with only one object. But now recall that 2-categories are,
by definition, categorification of the concept of category, at the same time as monoidal categories
are categorification of the concept of monoid. So, it is expected that monoidal categories are the
same as 2-categories with only one object.

After presented these very natural and examples, we need to verify if our current definition
of n-category (as iterated enrichment of the concept of category) and of ∞-category (as the
limit/colimit of the definition of n-category) is large enough in order to incorporate them.

Let us start by analyzing Example 7.5. More precisely, let us verify if the entity 3Top defined
there is (or not) a 3-category in the current sense. The objects of this hypothetical 3-category are
topological spaces, the 1-morphisms are continuous maps, the 2-morphisms are homotopies and
the 3-morphisms are homotopy classes of 2-homotopies. Compare this data with that defining
2Top, which is a genuine 2-category: objects are topological spaces, 1-morphisms are continuous
maps and 2-morphisms are homotopy classes of homotopies.

Notice the difference: in 3Top the 2-morphisms are homotopies, while in 2Top we consider
homotopy classes of them. This may seems only a technical conditions, but it is really crucical.
Indeed, in both entities it is assumed that the compositions are given by usual compositions
of homotopies. It happens that these compositions are generally not associative; they are only
associative up homotopies between homotopies! Similarly, it is assumed that the identities are the
trivial homotopies, but these satisfy the neutral element property only up to homotopies between
homotopies. Therefore, while 2Top is genuine enriched 2-category, 3Top is not a 3-category.

Notice that (homotopy classes of) homotopies between homotopies (i.e, 2-homotopies) are
supposed to be the 3-morphisms of 3Top. So, the explicit problem with this example is the fol-
lowing: compositions of 2-morphisms are associative only up to 3-morphisms and the 2-identities
satisfy the neutral element property up to 3-morphisms. It can be checked that the same kind of
problem appears in each of the previous examples!



CHAPTER 7. CONSTRUCTION 199

For instance, a monoidal category is not the same as a 2-category with a single object ∗,
because in our definition of 2-categories the compositions of 2-morphisms are strictly associative.
On the other hand, by definition, a monoidal category is endowed with a product ⊗ : C×C→ C

which is not strictly associative, but only associative up to natural isomorphisms.
Despite all these counterexamples, here is one example in the current sense:

Example 7.9 (arrow category). For any category C we can associate a corresponding∞-category
∞Sq(C), as follows. Its objects 1-morphisms are just the objects and morphisms of C. Given
morphisms f : X → Y and f ′ : X ′ → Y ′, the 2-morphisms ξ : f ⇒ f ′ are commutative squares,
as below.

X

��
ξ
��

f // Y

��
X ′

f ′
// Y ′

Notice that a square has two dimensions: vertical and horizontal, which will correspond to the
two compositions of 2-morphisms. Indeed, if f, g, h : X → Y , we compose 2-morphisms ξ : f ⇒ g
and ζ : g ⇒ h “horizontally”, as in the following diagram:

X

��
ξ
��

f // Y

��

X

��

f //

ξ′◦ξ

��

Y

��

X

��
ξ′

��

g // Y

��
X

h
// Y X

h
// Y

However, if given consecutive 1-morphisms f : X → Y , g : Y → Z and h : Z → W , we compose
ξ and η “vertically”, as below.

X

ξ
��

f //

��

Y

ξ′

����

g // Z

��

X

��

g◦f //

ξ′•ξ

��

Z

��
Y g

// Z
h

//W Y
h◦g

//W

It is clear that both compositions are strictly associative and that the identity of f : X → Y is the
trivial square idf : f ⇒ f whose vertical arrows are idX and idY . The 3-morphisms ϕ : ξ ⇛ ξ′

between two squares ξ : f ⇒ g and ξ′ : f ′ ⇒ g′ are cubes whose upper face is ξ and whose lower
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face is ξ′, as below.

X

��

!!❇
❇❇

❇❇
❇❇

❇
f //

ξ

�$
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇ Y

��

!!❈
❈❈

❈❈
❈❈

❈

Z

��

g
//W

��

X ′ f ′ //

  ❇
❇❇

❇❇
❇❇

❇
ξ′

�$
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆ Y ′

!!❈
❈❈

❈❈
❈❈

❈

Z ′

g′
//W ′

Now we have three dimensions, which will be used to define three different composition laws
between cubes. Inductively we define an n-category nSq(C) whose k-morphisms are k-squares in
C. Here, a 0-square is an object, a 1-square is a morphism, a 2-square is a commutative square
of morphisms, a 3-square is a commutative cube of morphisms, and so on. Finally, taking the
limit n → ∞ we then get the desired ∞-category. We notice that the k-morphisms of ∞Sq(C)
are commutative diagrams of morphisms of C. Functors preserve commutative diagrams, so that
any C→ D extends to a corresponding ∞-functor ∞Sq(C)→∞Sq(D), giving a functor

∞Sq : Cat→∞SCat.

This functor is actually an embedding, so that the ∞-square construction is a way to embed
categorical language into ∞-categorical language.

Redefining

The previous examples shows that the notion of enriched ∞-category is rigid. Following
the philosophy of the last subsection we need to redefine the concept of ∞-category in order to
incorporate these very natural examples. Each of them fail to be a ∞-category in the current
sense exactly because the composition laws of k-morphisms and the identity k-morphisms do not
satisfy associativity and neutral element property strictly, but only up to (k + 1)-morphisms.

Therefore, the solutions seems pretty simple: in order to incorporate them as “∞-categories”
we only need to redefine ∞-category by replacing the requirement of strict commutativity of the
associativity-type and neutral element-type diagrams by the requirement of weak commutativity
(i.e, commutativity up to higher morphisms). In other words, we need to work with weak ∞-
categories.

Remark. This explain why we used a “S” in ∞SCat to denote the category of all ∞-categories:
because they are strict ∞-categories in the sense that associativity and neutral element property
are strictly satisfied.

Let us try to formalize this desired notion of “weak ∞-category”. Recall that we obtained the
concept of strict ∞-category by first defining 2-category explicitly, n-category by induction and
∞-category by the limit n → ∞. Therefore, in the weak context the idea is to follow the same
strategy, so that we start by defining “weak 2-category” explicitly.
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For a given monoidal category (H,⊗, 1), tecall that a H-enriched 2-category (as was defined
previously ) is just as a usual category C, but whose set of morphisms between any two objects
replaced by a category enriched over H, whose composition laws replaced by enriched bifunctors

◦xyz : Cat(H)C(X,Y )⊗H Cat(H)C(Y,Z)→ Cat(H)C(X,Z)

and whose identity maps also are replaced by enriched funtors

idx : 1H → Cat(H)C(X,Y ),

such that “associativity-type” and “neutral element-type” diagrams are strictly satisfied. More
explicitly, the associativity is described by the following diagram2:

(X,Y )⊗ ((Y,Z)⊗ (Z,W ))

id⊗◦xzw
��

≃ // ((X,Y )⊗ (Y,Z))⊗ (Z,W )
◦xyz⊗id // (X,Z)⊗ (Z,W )

◦xzw
��

(X,Y )⊗ (Y,W ) ◦xyw
// (X,W ),

while the neutral element property is described by the following diagrams:

1H ⊗ (X,Y )

≃
**❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯

idx⊗id // (X,X) ⊗ (X,Y )

◦xxy

��

(X,Y )⊗ (Y, Y )

◦xyy

��

(X,Y )⊗ 1H
id⊗idyoo

≃
tt✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐

(X,Y ) (X,Y )

Therefore, the associativity of compositions and the “neutral element property” of the iden-
tities are described by commutative diagrams of enriched functors. This means that, by the
Enriched Weakening Principle, the concept of 2-category can be weakened by replacing these
commutative diagrams by the existence of enriched natural transformations satisfying, itself, cer-
tain commutativity conditions. Indeed, the strict associativity is now replaced by the existence
of enriched transformations

ξxyzw : (◦xzw) ◦ (◦xyz ⊗ id)⇒ (◦xyw) ◦ (id⊗ ◦yzw),

while the strict “neutral element property” is replaced by the existence of enriched transformations

ϕxy : (◦xxy) ◦ (idx ⊗ id)⇒ id and φxy : id⇒ (◦xyy) ◦ (id⊗ idy).

There are many possibilities for the additional commutativity conditions required to be sat-
isfied by the transformations above. For each of them we will obtain a different concept of “weak
2-category”. For instance, we could require simply that they are enriched natural isomorphisms,
giving the following:

Definition 7.1 (weak 2-categories - first version). A weak 2-category enriched over a monoidal
category (H,⊗, 1) is an entity C composed of the following data:

2We used (X,Y ) as an abbreviation for Cat(H)C(X,Y ) .
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1. a set of objects;

2. for any two objects a H-enriched category of morphisms;

3. for any object a distinguished functor idx;

4. for any three objects a enriched bifunctor ◦xyz,

in such way that there are enriched natural isomorphisms ξxyzw, ϕxy and φxy as present above.

With the concept of enriched weak 2-category on hand we define enriched weak n-categories
inductively and, by taking the limit/colimit n → ∞, we get enriched ∞-categories. A priori, it
seems that the problem with the initial notion of strict ∞-categories was finally solved. Indeed,
it seems that each of the previous examples are, in fact, ∞-categories in this new sense. But this
is not the case, as will be discussed in the next subsection.

Coherence

In the last subsection we reformulated the notion of n-category in order to incorporate the
desired examples discussed previously. However, the given new definition remains problematic,
as will be discussed here.

We start by observing that when we think of associativity of an operation ∗ in a set X
(and similarly of the neutral elements of such an operation) we have in mind the “removal of all
brackets” of expressions with arbitrary number of elements of X, as the following:

((x ∗ y) ∗ z) ∗ w, (x ∗ (y ∗ z)) ∗ ((w ∗ a) ∗ b), etc. (7.2.1)

That the brackets of a given expression really can be removed is translated in terms of the
commutativity of a certain diagram. So, in principle, when we think of associativity we have in
mind that a huge amount of diagrams commute.

On the other hand, when we say that an operation is associative we only require that brackets
of expressions involving three elements, as (x ∗ y) ∗ z and x ∗ (y ∗ z), can be effectively removed.
So, the definition of associativity require the commutativity of a single diagram. However,
there is no contradiction between what we think and what we do: the strict commutativity
of the diagram involving exactly three elements implies the strict commutativity of each diagram
involving arbitrary number of elements.

Now, the problem with the definition of enriched weak∞-category obtained in the last subsec-
tion is clear. Indeed, similar to the strict case, when we think of a weak category we have in mind
the removal (up to higher morphisms) of brackets in any expression, such as (7.2.1). Therefore
we have in mind the weak commutativity of a huge number of diagrams. On the other hand, in
the given definition we only required that brackets in expressions with three k-morphisms can
be removed, which is translated in the weak commutativity of only one diagram. But, unlike
the strict case, here there is no obvious relation between what we think and what we do: weak
commutativity of this single diagram does not imply the weak commutativity of diagrams with
arbitrary number of k-morphisms.

Therefore, we conclude that if on the one hand the starting definition of strict ∞-category
is too rigid, on the other the definition of weak ∞-category obtained in the last subsection is
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too weak. So, in order to correct this new problem, we can try to redefine the concept of weak
2-category (and, consequently, of weak n-category and of weak∞-category) in the following way:

Definition 7.2 (weak 2-categories - second version). A weak 2-category enriched over a monoidal
category (H,⊗, 1) is an entity C composed of the following data:

1. a set of objects;

2. for any two objects an H-enriched category of morphisms;

3. for any object a distinguished functor idx;

4. for any three objects an enriched bifunctor ◦xyz,

in such a way that every “associativity-type” diagram and each “neutral element-type” diagram,
involving any number of objects, commutes up to enriched natural isomorphisms.

The new notion of weak ∞-category induced from the above definition of weak 2-category
certainly fixes the problem presented by the initial definition. We notice however, that a new
problem is created: suppose that we are trying to prove that one of the motivating examples for
the notion of enriched weak ∞-category is, indeed, a weak ∞-category in the sense of the last
definition. So, we have to verify, one by one, that each “associativity-type” and each “neutral
element-type” diagram of k-morphisms commutes up to (k + 1)-morphisms, for every k.

Notice that the amount of “associativity-type” diagrams of 1-morphims are parametrized by
(arbitrary products of) the set of objects. More generally, the “associativity-type” diagrams of
k-morphisms are parametrized by products of the set of l-morphisms, for every l < k. So, we
really have to verify a very huge amount of conditions! In order to be more explicit, let us
assume that we are trying to prove that certain entity is a weak 2-category, say with set of
objects, 1-morphisms and 2-morphisms respectively given by C0, C1 and C2. Then, the number
“associativity-type” conditions to be verified has at least the order of the set

∏

C0
C1, and this

number grows very fast for n > 2. Indeed, for n = 3 it has at least the order of
∏

∏
C0

C1

C2.

Therefore, if at least one of the set of k-morphisms is uncountable, then we number of condi-
tions to be verified is also uncountable! This means that, although formal, the last definition of
enriched weak ∞-category is impracticable!

This motivate us to look at values of n for which the concept of weak n-category is coher-
ent. This means that there are few associativity-type and neutral element-type diagrams of
k-morphisms, with 0 ≤ k ≤ n, which are really fundamental, in the sense that the weak com-
mutativity of one of them does not imply the weak commutativity of the others. By “few” we
mean that they constitute a space which is weakly contractible in some nontrivial topology. If n
is coherent, we say that the fundamental diagrams describe coherence conditions.

It can be show that for n = 2, 3, 4 the concept of weak n-category (in the sense of the last
definition) is coherent. For instance, for n = 2, it is a classical result that there are only two
fundamental associative type and only two fundamental neutral element type diagrams of 2-
morphisms. It is due to Power in [168], based in a particular case proved by Mac Lane (see [131]
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for an exposition and [133] for the classical reference). The case n = 3 is due to Gordon, Power
and Street [83], while the case n = 4 is due to Trimble [206].

Remark. Recall that, after introduced the notion of “monoidal category” in Section 3.1 we saw
that in the literature it is usual to work with coherent monoidal categories, which are assumed
to satisfy some additional commutativity conditions. commutativity conditions are precisely the
coherence conditions appearing in the Mac Lane theorem for weak 2-categories, allowing us to
conclude that a coherent monoidal category is precisely a weak 2-category with only one object.

Remark. Another situation where the notion of “coherence” appears is in the study of Kan
extensions: as discussed in Section 2.1, in order to prove that a category C is complete or
cocomplete, a priori we need to verify the existence of Kan extensions which are parametrized by
the collection of functors taking values in C. This collection is very huge, because in principle
the functors could have arbitrary domain. But, thanks to existence theorem of limits and the
reconstruction of Kan extensions by ends, it is enough to analyze the collection of functors defined
in two different categories, corresponding to products and equalizers.

As commented in [20], the definition of weak 3-category, including the coherence conditions,
takes 6-pages and the definition of equivalence of such entities takes more 16-pages! The data
needed to explicit a weak 4-category is also more extensive! Indeed, the original manuscripts
[206] of Trimble in which the full data defining a weak 4-category takes incredible 51-pages!

This shows that the number of coherence conditions becomes fully impracticable when n
grows, suggesting that there are values of n for which the corresponding notion of weak n-
category is not coherent. So, although we have a very lucid idea of what a n-weak category should
be, or large values of n we do not have a canonical definition which is at the same time rigorous
and practicable.

We end with a remark.

Remark. Besides the problem of determining if a given value of n is or not “coherent” we can also
ask if it is “strictficable”. This is a very strong condition. Indeed, we say that n is strictficable (or
rectificable) if it is coherent and any weak n-category is equivalent to a strict n-category. There is
a classical theorem of Mac Lane which states that any coherent monoidal category is equivalent to
a strict one, which means that any weak 2-category with only one object is equivalent to a strict
2-category with only one object (see [131] and [??]). The result extends to the case of arbitrary
weak 2-categories [??], so that n = 2 is strictficable. It is known that n > 2 is not strictificable
(see [193]). On the other hand, it is an open conjecture of Simpson that every coherent n is
“semi-strictificable” in the sense that any weak ∞-category is equivalent to a weak ∞-category
whose “neutral element-type” diagrams are the only which hold weakly. See [195].

7.3 Presentations

Recall that at this moment we have a very lucid idea of the concept of weak category, but
unfortunately we do not know how to write this idea in precise and practicable mathematical
terms. In order to be more precise, we defined weak n-categories in satisfactory rigorous terms
but we concluded that the given definition is impracticable in the sense that there are values of
n for which the correspondent concept of n-category is not coherent. So, the question is: how to
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proceed?
In order to get some felling, we observe an analogy between higher category theory and the

theory of ordinary differential equations (ODE). We start by recalling that the standard problem
in ODE’s is to study the solutions of the system defined by a smooth vector field X :M → TM
(here we recall that an integral curve for X is simply a path x : I →M such that x′(t) = X(x(t))
for any t ∈ I). This problem really makes sense: we have a unique solution of the ODE defined
by X starting in every given point xo ∈M .

Although we have existence and uniqueness of solutions, the theorem does not say how to
explicit the function x(t) defining them. This led us to divide the vector fields in two categories:
those (called integrable) whose integral curves can be written explicitly, and the others, whose
integral curves cannot be written explicitly.

We can try to estimate the integrability of a system by looking at its number of degrees of
freedom. In order to define this number, we notice that many ODE’s arise as equations of motions
of N particles moving into some n-dimensional ambient space M . In these cases, the vector field
X can be interpreted as the force acting on the particles. The system may have conservation
laws. For instance, if the force is conservative (i.e, if it is a gradient-like vector field), then we
have the conservation of mechanical energy and the conservation of linear momentum in each
direction. The number of degrees of freedom of the system is the difference d = N.n − l, where
l is the number of “independent” conservation laws. We know that if d ≤ 1, then the system is
always integrable. Furthermore, when d grows, the system becomes non-integrable.

As an example, let us consider a system with k particles p1, ..., pk subjected to the gravitational
force. As discussed in the Chapter 3, this problem can be analyzed by two different perspectives:
the internal and the external perspective. In the external perspective we start by fixing one of
the k particles (say p1). It is then embedded into some ambient space M , in the sense that we
take paths ϕ : I →M) and we consider an action S defined on such embeds. This action should
contains information about the interaction between the distinguished particle p1 and the other
k − 1 particles. The physically interesting configurations are exactly those minimize S, which
means that they satisfy a system of differential equations: the equations of motion.

When the ambient space is Rn and when the gravitational interaction is modeled by the
newtonian gravity, then the equations of motion are just Newton’s second law “F = m ·a” for the
particle p1 subjected to the force given Newton’s law for gravitation. In other words, they are

d2xa1
dt2

= −G

k−1
∑

i=2

mi

|r0 − ri|2
, with a = 1, ..., n,

where x1(t) = (x11(t), ..., x
n
1 (t)) are the coordinates of the particle p1 and ri(t) = ‖xi‖ is the

distance from the ith particle to the origin. This is a decoupled system second order ordinary
differential equations. The equations are certainly nonlinear, but they are quasilinear. This
means that order reduction applies and by defining vj1 = dxj1/dt we get a new system of 2n
equations of first order totally equivalent to the previous one. Therefore, the existence theorem
can be applied, so that solutions exist for any initial data.

We ask about the integrability of the system. We considered a single particle p1 moving into
Rn subjected to a conservative force given by the gravitational interaction of the other particles.
Due to this conservative property, we have many conservations laws, as energy conservation, linear
momentum conservation in each axe of Rn and angular momentum convervation around each axe.
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Therefore, we have d = 1 ·n−(1+n+n) = −n−1 degrees of freedom and the system is integrable
in all dimension n, because for any n we will have d ≤ 1.

On the other hand, what happens if we need to describe the movement of the k particles
simultaneously? In this case the equations of motions are given by the following system of
coupled second order equations:

d2xaj
dt

= −G
k

∑

ij=1,ij 6=j

mij

|rj − rij |
2
, with a = 1, ..., n and j = 1, ..., k.

We have the same number of conservation laws, but now we are considering all the k particles
interacting mutually. Therefore, the number of degrees of freedom of the system writes d =
k · n − (1 + n+ n) = n(k − 2) − 1 and we can analyze in which conditions we have integrability
by requiring d ≤ 1, which implies (k− 2)n ≤ 2. The canonical physical situations are of particles
moving into R3, so that let us look to the case n = 3. In this situation the system will be integrable
iff 3k ≤ 8 and, therefore, iff k < 3. In other words, a system of particles mutually interacting
gravitationally in R3 is integrable iff the number of particles is less than three. Particularly, a
system with three particles in non-integrable. This a very shocking example, usually known as
the three body problem. It says, for example, that we cannot known explicitly the function that
determines the time evolution of the solar system!

Returning to the analogy between higher category theory and ODE, the notion of weak n-
category corresponds to the integral curves of a vector field whose system has d = n degrees of
freedom. Indeed, for any n we have a precise definition of weak n-category and, similarly, we have
the existence and uniqueness of solutions. Furthermore, there are values of n for which the notion
of n-category is coherent (meaning in the analogy that the system is integrable), as well as there
are other values for which the notion of weak n-category cannot be written explicit (meaning, in
the analogy, that the system is non-integrable). The known examples of coherent n-categories
happens for small n (corresponding to small degrees of freedom) and we lose coherence when n
grows (exactly which happens with the integrability of a system when the number of degrees of
freedom grows).

Established the relation between higher category theory and the theory of ODE’s, in order to
get some direction in order to answer our previous question, we can look at its analogue in the
domain of ODE’s. So, let us ask: how to proceed in order to study a non-integrable system? The
answer is given by the qualitative theory of ODE’s, which study the solutions of a system without
knowing them explicitly. Therefore, the main idea is to proceed doing some kind of qualitative
theory of higher categories.

The first step in the qualitative theory of ODE’s is to replace the attention from the smooth
vector field X to the foliation induced in M by its integral curves (the so called phase space).
This replacement is very interesting because there are properties of the phase space which are
intrinsic to the manifold and, therefore, must be satisfied by any vector field. For instance, the
Poincaré-Hopf theorem states that the local behavior of any vector field near isolated singularities
is determined by the Euler characteristic χ(M) of M .

Consequently, following the analogy, the approach to qualitative higher category theory should
be replacing the attention from the precise definition of weak n-category to the lucid intuitive
idea that we have about it, and searching for intrinsic properties of the notion of weak category,
which must be satisfied by any precise definition that can be build. The next step is then to build
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definitions (also called presentations to the concept of weak category) satisfying the intuitive
properties.

dynamical system higher category theory

system with d degrees of freedom weak d-category definition
integrable systems coherent categories

phase space intuitive idea of weak categories
intrinsic properties intuitive properties

smooth vector field realizing intrinsic properties presentation to weak category

Table 7.1: Higher Category Theory vs. ODE’s

There are many different presentations to the notion of weak ∞-category, most of them
based in combinatorial and homotopical aspects of the intuitive notion of weak ∞-category.
Unfortunately, none of them will be discussed here. For a discussion on (and comparison between)
them, see [42, 120, 121].



Chapter 8

Abstract Theory

In the last chapter we concluded that there is a natural and canonical way to build a formal
language of weak n-categories, for 0 ≤ n ≤ ∞, but unfortunately this language is not coherent
for large n. We then discussed strategies to get presentations of the concept of ∞-category.
Each of these presentations produce a different “model” to Higher Category Theory, meaning
that one time fixed a presentation, the corresponding definitions, theorems, etc, will be explicitly
dependent of this choice.

In the present chapter (and in the remaining parts of the text), instead working in a fixed
presentation we will use our intuition behind the notion of weak ∞-category in order to develop
Higher Category Theory intrinsically (i.e, independently of the any presentation)1. This means
that we will do naive mathematics, so that all results which will be presented here must be
formally understood as conjectures. In order to turn them into theorems we need to select a
presentation and show that the naive proof makes sense there. We are, however, in a comfortable
situation. Indeed, in the last years, thank to works of Jabob Lurie and others, all that will be
discussed here were formalized in at least one presentation.

In the first two sections we discuss how usual 1-category theory can be abstracted to the
context of ∞-categories. More precisely, we discuss that the notions of functors, natural trans-
formations, limits, and so on, admit a ∞-categorical version. In special, we see that exactly as
category theory, which is based in three principles (the duality principle, the relativity principle
and the weakening principle), ∞-category theory can also be developed in higher analogues of
them. By making use of the ∞-version of the weakening principle we will be able to discuss a∞-
version of the categorification process, allowing us to talk of monoidal ∞-categories, ∞-monoid
objects, and so on. We will also see that the notion of ∞-category can itself be ∞-enriched and
∞-internalized in certain abstract ambient ∞-category. As a consequence, we will be able to
define ∞-sites and ∞-stacks. We then discuss that the ∞-stacks in (Diff sub, J) are the “higher
stacks” required in Section 6.2 in order to describe the space of fields in string physics.

There is special interest in the (∞, 1)-categories. These are∞-categories whose k-morphisms,
with k > 1, are invertible up to (k + 1)-morphisms. These “invertibility” condition imply that,
if C is a (∞, 1)-category, then it can be “truncated” in each level k > 1, allowing us to study
every 1-morphism f : X → Y by its sequence of truncations τkf , with k = 2, 3, ... In special, by

1Similar “almost naive” approach was also considered, for instance, in the first part of the HoTT book [??] and
in [35].
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analyzing the truncations of X → ∗ and ∗ → X, where here ∗ is a terminal object, we will get
information about X. These “reconstructive processes” correspond to the Postnikov tower and
to the Whitehead tower of X, which we study in the first part of Section 8.3.

As will become clear, the theory of (∞, 1)-categories in much closely to homotopy theory.
Thinking in this way, we will end this chapter presenting a hypothesis (which in a presentation
becomes a theorem) asserting that the homotopy theory of∞-groupoids is just the homotopy theory
of Top. In other words, the (∞, 1)-categories ∞Gpd and Top are equivalents! We will then try
to convince the reader that this hypothesis affects deeply the foundations of math and of physics in
the same proportion as the axiom of choice. Indeed, we will prove that the Homotopy Hypothesis
imply the classical and seminal result of Thom on oriented cobordism theory, which was discussed
in Section 1.2. We will also prove that it also imply that the monoidal category (Z2Grad,⊗)
has exactly two braidings, which means (as discussed in Section 5.2) that supersymmetry is the
most general kind of symmetry which can be considered in a quantum physical system.

Remark. The fundamental definitions/results presented here are formalized in Lurie’s works
[127, 125, 130] and in the second part of Schreiber’s work [182]. The prove that the (Z2Grad,⊗)
has exactly two braidings was based in the first part of [182] and in Kapranov’s works [??,??].

8.1 General

A ∞-category C has objects, morphisms, 2-morphisms, and so on. The n-morphisms can be
composed in n-different ways, which are associative up to (n + 1)-morphisms. A ∞-functor be-
tween∞-categories is a rule F : C→ D mapping objects into objects, morphisms into morphisms
and so on, in such a way that each composition of n-morphisms is preserved. A n-category is a
∞-category whose k > n morphisms are only identities. We have the (n + 1)-category nCat of
all n-categories and a ∞-category ∞Cat of all ∞-categories, i.e, the categories of n categories is
enriched over itself. A 2-morphism in ∞Cat (i.e, a map between ∞-functor) is called a natural
∞-transformation, while a 3-morphism is called a 2-natural ∞-transformation, and so on.

We say that C is a sub ∞-category of another ∞-category D when each object and each
k-morphism of C is also in D. The most important examples of ∞-categories to have in mind
are those presented in Section 7.2. Some of these examples include ∞-categories for which each
k-morphism ξ : f ⇒ g has an inverse η : g ⇒ f up to (k + 1)-morphisms. They are called
∞-groupoids.

Recall that, as discussed in Chapter 1, the tradicional categorical language is based in three
principles: the duality principle, the relativity principle and the weakening principle. In the
context of∞-categorical language the same holds. Indeed, we have a∞-duality principle, meaning
that there is a ∞-functor

(−)op :∞Cat→∞Cat

assigning to any ∞-category the corresponding entity with the same objects but with inverted
morphisms, 2-morphisms, etc. We also have the ∞-relativity principle, which gives ∞-functorial
∞-slice categories in the sense that for any C we have ∞-functors C/ and /C from C to ∞Cat.
Finally, we have a ∞-weakening principle under which any concept defined on a ∞-category
using only commutative diagrams can be weakened by replacing equality of k-morphisms by the
existence of (k + 1)-morphisms between them, satisfying some universality condition.
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For instance, in Chapter 1 we used the weakening principle in order to define equivalence
between categories, adjunctions between functors, etc. Here, analogously, we can make use of the
∞-weakening principle in order to define ∞-equivalence between ∞-categories and adjunctions
between ∞-functors. Indeed, recall that two 1-categories C and D are equivalent when there
exist functors F : C→ D and G : D→ C together with natural isomorphisms G ◦ F ≃ idC and
F ◦G ≃ idD. In other words, when there exist natural transformations

ξ : G ◦ F ⇒ idC, ξ′ : idC ⇒ G ◦ F, η : idD ⇒ F ◦G and η′ : F ◦G⇒ idD,

such that ξ′ ◦ ξ = idF and η ◦ η′ = idG. If C and D are 2-categories, then we have the notion
of natural 2-transformation, so that we can replace the last equalities by the existence of natural
2-isomorphisms, i.e, natural 2-transformations

α : ξ′ ◦ ξ ⇛ idF , α′′ : idF ⇛ ξ′ ◦ ξ, β : idG ⇛ η ◦ η′ and β′′ : η ◦ η′ ⇛ idG

fulfilling some equalities. Similarly, if the underlying categories are 3-categories these equalities
could be replaced by the existence of natural 3-isomorphisms, and so on. With the notion of
equivalence between ∞-category on hand we can define adjunction between ∞-functors. In fact,
we say that F and G are∞-adjoint when there exist natural equivalence between the∞-categories

∞CatD(F (X);Y ) ≃ ∞CatC(X;G(Y )).

The ∞-weakening principle also allow us to talk of weak ∞-limits and, by the ∞-duallity
principle, about weak ∞-colimits. These are something as limits of 1-morphisms but whose
diagrams are commutative only up to 2-morphisms fulfilling universality conditions expressed in
terms of diagrams which are commutative up to 3-morphisms, and so on. By the requirement of
universality, ∞-limits are unique up to ∞-isomorphisms.

For instance, given two 1-morphisms f and g we can talk about their weak ∞-pullbacks (and,
by the ∞-duallity principle, about weak ∞-pushouts). It is given by a square as in the first
diagram below which is commutative up to a 2-morphism (in the sense that there is ξ : f ◦ π1 ⇒
g ◦ π2) and universal, meaning that for any other square commuting up to a 2-morphism ξ′

(as in the second diagram), there is a unique 1-morphism u : pb′ → pb such that the whole
diagram commutes up to 2-morphisms (third diagram) satisfying some condition involving ξ′ up
to 3-morphisms, and so on.
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We say that a ∞-category is weak ∞-complete/∞-cocomplete (or simply ∞-complete/∞-
cocomplete) when it has all weak ∞-limits/∞-colimits. For instance, any category which is
complete and cocomplete can be trivially regarded as a ∞-category weak complete/cocomplete.
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Remark. In Section 2.1 we have seen that arbitrary limits can be reconstructed from prod-
ucts and equalizers. Dually, we can build arbitrary colimits from coproducts and coequalizers.
Much more than only existence results, these facts give to us a concrete way to compute any
limit/colimit. This computability is a problem with our naive approach to higher categories.
Indeed, in almost all time we will not need to compute ∞-limits and∞-colimits, but in some few
moments these computations will be important. In them, we need to breakdown our model-free
approach by making use of a fixed presentation of higher categories in order to effectively compute
∞-limits and ∞-colimits.

Weak Categorification, I

In the same way as we can enrich and internalize concepts in usual categories we can enrich
and internalize concepts in ∞-categories. In other words, in the previous chapters we studied
enrichment/internalization whose ambient of enrichment/internalization was an usual 1-category
H. Now we can study the case in which H is, indeed, an ∞-category. The difference is that here
we have the ∞-weakening principle, which allow us to weak the obtained enriched/internalized
notions, as summarized in the following diagram. More precisely, the result of weak categorifica-
tion will be just the concept obtained from usual categorification, but with commutative diagrams
replaced by diagrams which commute up to 2-morphisms satisfying conditions up to 3-morphisms,
and so on.

classical
concept

weak categorification

08

internalization

enrichment
+3 abstract
concept

∞−weakening

principle
+3
abstract
weakened
concept

So, for example, as discussed in the previous chapters, the classical concept of monoid can be
internalized into Cat, giving the notion of monoidal category. It is a category C endowed with a
bifunctor ⊗ : C×C→ C and with a distinguished object 1 ∈ C such that ⊗ is associative up to
isomorphisms and 1 behaves as a “neutral element”. Furthermore, this concept of “monoidal cat-
egory” is coherent in the sense that the additional hypothesis of some few commutative diagrams
(up to isomorphisms) imply the commutativity (up to isomorphisms) of every associativity-type
and every neutral element-type diagrams.

Similarly, we can internalize the concept of monoid into the ∞-category ∞Cat. The result
will be a ∞-category C endowed with a ∞-functor ⊗ : C × C → C and with a distinguished
object 1 ∈ C such that identical diagrams of “coherent monoidal category” hold. Now we can
apply the∞-weakening principle, getting the notion of∞-monoidal ∞-category. Indeed, observe
that in the usual monoidal category the coherence conditions are diagrams of functors which
commute up to natural isomorphisms. This commutativity “up to natural isomorphisms” is
translated in the commutativity of diagrams of natural transformations. But, in the context of
monoidal∞-categories we require that these diagrams are commutative only up to higher natural
transformations, and so on.

On the other hand, as discussed in the Chapter 6, the concept of monoid can be enriched
precisely over any monoidal category. This fact was a manifestation of the microcosm principle,
which states that a suitable classical concept can be enriched over any of its categorification by
internalization. Here, in the higher categorical context, it is expected something similar. Indeed,
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we expect some “∞-microcosm principle”, meaning that any nice classical concept can be weakly

enriched over any of its weak categorifications. For instance, the concept of monoid should
be enriched over any ∞-monoidal category C. The result would be like a usual monoid object
(X, ∗, e) in a monoidal category, but now the product ∗ : X ⊗ X → X would no longer be
strictly associative, but indeed associative up to higher morphisms, motivating us to call them
as ∞-monoid objects.

Furthermore, similar discussion should be valid for commutative monoids, allowing us to
talk of ∞-symmetric monoidal categories and commutative ∞-monoid objects into them. The
∞-duality principle should then give the notions of ∞-comonoid objects and commutative ∞-
comonoid objects. The next step should be build a ∞-monoidal structure into the category
∞Mon(C,⊗) of ∞-monoid objects, getting something as a ∞-Eckmann-Hilton duality

∞Mon(∞Mon(C,⊗),⊗M ) ≃ ∞cMon(C,⊗) (8.1.1)

and a dual version for∞-comonoids, meaning that iterating∞-monoids or∞-comonoids we would
get their commutative version. So, taking crossed terms (i.e, ∞-comonoids into ∞-monoids and
vice versa) we would get isomorphisms

∞Mon(∞CoMon(C,⊗),⊗M ) ≃ ∞CoMon(∞Mon(C,⊗),⊗M ),

producing the notion of ∞-bimonoid objects. Then we could study ∞-Hopf objects into a sym-
metric monoidal category, which would fit into a∞-category∞Hopf(C,⊗). All these facts really
are valid in a usual presentation for ∞-categories, as can be seen in Chapter 3 of [125] and in
[21].

Example 8.1 (A∞-spaces and E∞-spaces). Recall that the products of the category Top passes
to the homotopy context, becoming defined in Ho(Top). This suggest that the cartesian monoidal
structure on Top (viewed as a usual 1-category) refines to a cartesian∞-monoidal structure. This
is really the case. The corresponding ∞-monoid/commutative ∞-monoid objects are usually
known as A∞-spaces/E∞-spaces. The standard examples are the following:

1. looping spaces and suspensions. As discussed in Section 4.2, for any based topological space
X, its loop space ΩX has aH-monoid structure (i.e, it is a monoid in the cartesian monoidal
structure of Ho(Top∗)). The multiplication m : ΩX×ΩX → ΩX is given by the hotomopy
class of concatenation of loops. Notice that this operation is more generally defined on
Top∗. However, in this level it is not associative/unital, but only associative and unital up
to homotopy. So, if we take homotopies into account (i.e, viewing Top∗ as a ∞-category),
then the concatenation of loops induces a genuine ∞-monoid object structure into the loop
space. In other words, for any X the corresponding ΩX is a A∞-space. Similarly, the
coproducts of Top∗ refine to a monoidal ∞-structure in such a way that ΣX becomes a
∞-comonoid object;

2. iterated looping spaces and suspensions. For any X the double looping space Ω2X = Ω(ΩX)
is a H-space in the category of H-spaces and, therefore, by the Eckmann-Hilton argument,
it is a commutative H-space. Similarly, the double suspension Σ2X is a commutative H-
cospace. Thanks to the ∞-version (8.1.1) of the Eckmann-Hilton argument, it follows that
Ω2X and Σ2X are indeed E∞-spaces and E∞-cospaces.
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Example 8.2 (Künneth theorem). Künneth theorem is valid at the level of homology/cohomology,
but the Eilenberg-Zilber maps is defined at the level of cochain complexes, but there it is commu-
tative only up to homotopies. This means that the Künneth theorem is indeed a higher categorical
phenomena.

Example 8.3 (E∞-ring spectrum). In Section 5.3 we discussed that, restricting to a convenient
category of topological spaces, the smash product ∧ induces a smash product on the homotopy
category of spectra Ho(Spec), allowing us to of about ring spectrum, which are the representing
objects for multiplicative generalized cohomology theories. Lewis’s obstruction theorem says that
the smash product cannot be lifted to a symmetric monoidal structure on Spec fulfilling some
natural properties. But, notice that, because cohomology theories are homotopical invariants, in
order to get a multiplicative structure, we only need a ring structure holding up to homotopy,
so that we only need a structure of ∞-monoidal ∞-category on Spec. As will be discussed in
the next chapter, the smash product actually refines to such a ∞-monoidal structure on Spec,
whose ∞-monoid objects will be called E∞-ring spectrum.

We end this subsection with the following remark.

Remark. We defined above a symmetric monoidal n-category as a monoidal n-category whose
product n-functor ⊗ : C × C → C is commutative up to higher morphisms. We can ask if
there is some characterization of this commutative structure in the spirit of the Eckmann-Hilton
argument. More precisely, notice that, thanks to the Eckmann-Hilton argument, we can define
a commutative monoid as an object X endowed with an operation ∗ : X ⊗ X → X satisfying
symmetry conditions or as an object X endowed with two operations ∗1, ∗2 : X ⊗ X → X
satisfying compatibility condition. So, we can ask: can we define a symmetric monoidal n-
category as a n-category endowed with certain number of compatible monoidal n-structures? As
conjectured in [19, 20] and fully proved in [125], k = n + 2 compatible monoidal structures
are enough. More precisely, in [19, 20] it is presented a category nCatk of k-tuply monoidal
n-category, which is some kind of n-category C endowed with k operations ⊗1, ...,⊗k : C×C→
C satisfying compatibility conditions, and whose morphisms are functors preserving all the k
operations. Notice that for k′ ≥ k we have a forgetful functor ı : nCatk′ →֒ nCatk given by
forgetting the additional operations ⊗k′+1, ....,⊗k. The authors discuss that when k grows (for a
fixed n) the underlying structure will becoming more commutative, meaning that the inclusion
ı itself will becoming more and more fully-faithful, and they conjecture that for k ≥ n + 2 the
inclusion is completely fully-faithful and, therefore, an equivalence. The conjecture was known
as the Stabilization Hypothesis. It imply, for instance, that a symmetric monoidal 1-category is
a monoidal category with k ≥ 1+2 compatible operations. If we have only k = 1+1 compatible
operations, we get a braided monoidal structure, which is “almost” symmetric.

Weak Categorification, II

Have been analyzed the weak categorification of usual concepts as monoids, commutative
monoids and groups, the next step is to study the weak categorification of their “many object
versions”, i.e, categories and groupoids. In the usual categorification context (developed in the
previous chapters), we started by giving two different categorical characterizations to the concept
of category (and, similarly, to the concept of groupoid): as categories with hom-sets and as
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categories with source/target. We then concluded that enrichment is useful only for categories
with hom-sets, while internalization is useful only for categories with source/target. Specially,
we have seen that categories with hom-sets can be enriched over any monoidal category and
categories with source/target can be internalized into any category with pullbacks.

Consequently, categories with hom-sets can be particularly enriched over ∞-monoidal cate-
gories, while categories with source/target can be internalized on∞-categories with∞-pullbacks.
In this case, we can apply the∞-weakening principle in order to get more abstract concepts, which
we will call simply as H-enriched and H-internal categories, for H a ∞-monoidal ∞-category or
a ∞-category with ∞-pullbacks, respectively. These will be exactly the same as usual categories
enriched over monoidal categories or internalized into categories with pullbacks. The only differ-
ence is that strictly commutative diagrams are now replaced by diagrams which commute up to
2-morphisms satisfying some conditions up to 3-morphisms, and so on.

Explicitly, if (H,⊗, 1) is a ∞-monoidal category, then a category enriched over H is defined
by the following data:

1. a collection Ob(C) of objects;

2. for any two elements of Ob(C) a corresponding object HC(X,Y ) of H;

3. for any three elements a 1-morphism in H abstracting the compositions

◦xyz : HC(X,Y )⊗HC(Y,Z)→ HC(X,Z)

4. for any element a 1-morphism idx : 1 → HC(X,X), such that the diagrams below (which
characterizes the usual enriched categories) are no longer commutative, but there are

(a) for any four elements of Ob(C) a corresponding 2-morphism

αxyzw : (◦xzw) ◦ (◦xyz ⊗ id) ◦ (≃)⇒ (◦xyw) ◦ (id⊗ ◦yzw)

(b) for any two elements other 2-morphisms

µxy : (◦xxy) ◦ (idx ⊗ id)⇒ (≃) and νxy : (◦xyy) ◦ (id⊗ idy)⇒ (≃)

satisfying analogous associativity-type and neutral element-type diagrams, which in
turn are not commutative, but there are 3-morphisms which also will satisfy some
diagrams up to 4-morphisms, and so on.

(X,Y )⊗ ((Y,Z)⊗ (Z,W ))

id⊗◦yzw
��

≃ // ((X,Y )⊗ (Y,Z))⊗ (Z,W )
◦xyz⊗id // (X,Z)⊗ (Z,W )

◦xzw
��

(X,Y )⊗ (Y,W ) ◦xyw
// (X,W )

1⊗ (X,Y )

≃
**❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚
❚❚

idX⊗id // (X,X) ⊗ (X,Y )

◦xxy

��

(X,Y )⊗ (Y, Y )

◦xyy

��

(X,Y )⊗ 1
id⊗idYoo

≃
tt❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥

(X,Y ) (X,Y )
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Similarly, when H is a ∞-category with weak ∞-pullbacks we can explicit the definition of
a category with source/target internal to H. Indeed, this will be an entity C determined by the
following data:

1. objects C0 and C1 of H, describing the objects and the morphisms of C;

2. 1-morphisms s, t : C1 → C0 of H representing the source and the target maps;

3. 1-morphisms id : C0 → C1 and ◦ : ∞pb(s, t) → C1 corresponding to the identities and
the composition maps, such that the following diagrams (which previously were used to
describe the associativity of the compositions and the neutral element property of the
identities are no longer commutative, but there are 2-morphisms between them, which
satisfy conditions up to 3-morphisms, and so on.

∞pb(∞pb(s, t), s)

��✤
✤
✤

//❴❴❴ ∞pb(∞pb(s, t), t) //❴❴❴ ∞pb(s, t)

◦

��
∞pb(s, t) ◦

// C1

∞pb(s ◦ id, t)

π1
((PP

PPP
PPP

PPP
PP

//❴❴❴ ∞pb(s, t)

◦

��

∞pb(s, t ◦ id)oo❴ ❴ ❴

π2
ww♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥

C1

Remark. In the definition of internal category to H, we also require the strict commutativity
of the diagrams below. So, in the context of internal ∞-categories we could required that these
diagrams commute only up to higher morphisms, as for the other diagrams, but this is unusual,
because these diagrams only say that the identity maps are automorphisms and that the source
and target of the compositions are well defined.

∞pb(s, t)

id

&&◆◆
◆◆◆

◆◆◆
◆◆◆

◦

$$

◦

((

C0

id   ❇
❇❇

❇❇
❇❇

❇
id // C1

s

��
t
��

∞pb(s, t)

��

// C1

t
��

C0 C1 s
// C0

Weak Categorification, III

Up to this point we enriched/internalized classical concepts into higher categories and we
used the higher structure of the ambient of enrichment/internalization in order to get more a
weak (i.e, more general) version of the resultant notions. Now, thanks to this higher structure of
the ambient we will be able to enrich and internalize more categorical entities. For instance, we
can now try to enrich/internalize the notions of ∞-category and ∞-groupoids.

As always, the starting point is to give a (higher) categorical characterization. Exactly as
the concept of 1-category, the notion of ∞-category admits two of such characterizations: as
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∞-categories with k-hom-sets and as ∞-categories with source/target. In the first case, we think
of a ∞-category C as being composed by

1. a collection Ob(C) of objects;

2. for any two objects X,Y a collection 1Mor(X,Y ) of 1-morphisms;

3. for any two morphisms f, g : X → Y between the same objects a collection 2Mor(f, g) of
2-morphisms, and so on;

4. for any three 1-morphisms a composition law which is associative up to 2-morphisms;

5. for any three 2-morphisms, two different composition laws, which are at the same time
compatible and associative up to 3-morphisms, and so on;

6. for any object X a distinguished 1-morphism idX : X → X (equivalently, a distinguished
map 1→ 1Mor(X,X)) which satisfy the neutral element property up to 2-morphisms;

7. for any 1-morphism f a distinguished map idf : 1→ 2Mor(f, f) satisfying neutral element
property up to 3-morphisms, and so on.

Notice that, in this perspective, because we have composition laws for every k-morphism, for
each k the corresponding collection of k-morphisms appears in the diagrams describing associa-
tivity and the neutral element property. Enrichment is about categorification of diagrams, so that
in order to enrich the above data over an ambient (H,⊗, 1) we need to replace each collection
of k-morphisms by an object of H. On the other hand, the collections of k-morphisms of C

also appear as parameters for the compositions and for the identities, so that after enrichment
they must remain having elements and, therefore, they must remain being collections, but now
with some further additional structure. Summarizing: we can enrich the notion of ∞-category
with k-hom-sets over any concrete monoidal ∞-category. Explicitly, if (H,⊗, 1) is a concrete
monoidal ∞-category, then a ∞-category enriched over H is an entity composed by

1. a collection Ob(C) of objects of C;

2. for any two X,Y ∈ Ob(C) an object 1H(X,Y ) of H, meaning the “1-morphisms of C”;

3. for any two f, g an object 2H(f, g) of H, describing the “2-morphisms of C”, and so on;

4. for any three objects X,Y,Z of C a presentation of the “composition law for 1-morphisms
of C” by a 1-morphism

◦XY Z : 1H(X,Y )⊗ 1H(Y,Z)→ 1H(X,Z),

of H, which is associative up to higher morphisms of H;

5. for any three f, g, h “1-morphisms of C” two composition laws presented by two 1-morphisms
of H, which satisfy associativity up to higher morphisms of H, and so on;

6. for any object X ∈ Ob(C) a distinguished 1-morphism idX : 1 → 1H(X,X) of H which
satisfy the neutral element property up to higher morphisms of H;
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7. for any “1-morphism f of C” a 1-morphism idf : 1 → 2H(f, f) of H satisfying neutral
element property up to higher morphisms of H, and so on.

Remark. Exactly as any usual category is trivially enriched over (Set,×, 1), any ∞-category is
enriched over the cartesian monoidal ∞-category (∞Cat,×,1).

Now, let us analyze the second perspective. In it, a ∞-category is supposed to have “source
and target maps” for any k-morphisms, so that no one collection of k-morphism is used as a
parameter2. More precisely, is this characterization a ∞-category C is given by:

1. a sequence C0,C1,C2.... of collections of objects, 1-morphisms, 2-morphisms, and so on;

2. for any k source and target maps sk, tk : Ck → Ck−1;

3. for any k a sequence ◦ik, with i = 1, ..., k, of composition maps defined in some pullback
between the source and target maps, which is associative up to higher morphisms;

4. for any k identity maps idk : Ck → Ck+1 which satisfy the neutral element property up to
higher morphisms;

5. a list of compatibility conditions between the compositions/identities and the source and
target maps, meaning that the source and target of compositions and identities are well
defined. For instance, we require that sk+1 ◦ idk = tk+1 ◦ idk be the identity function.

The above data can be internalized in any ambient H with pullbacks. Indeed, this data
can be understood as a huge diagram in Set, such that the only categorical structure used is
the pullback appearing in the domain of the composition maps. Therefore, by the ∞-weakening
principle, the notion of ∞-category with source/target can be internalized into any ∞-category
with ∞-pullbacks. Explicitly, an internal ∞-category into H is a huge diagram in H composed
by

1. a sequence C0,C1, ... of objects of H, representing the “object of objects of C”, the “object
of 1-morphisms of C”, and so on;

2. for each k corresponding 1-morphisms sk, tk : Ck → Ck−1 of H describing the “source and
target maps”;

3. for each k a sequence of 1-morphisms ◦ik of H, with i = 1, ..., k, representing the “composition
maps”, which are defined in the ∞-pullback between the source/target maps and which are
associative up to higher morphisms;

4. for each k, 1-morphisms idk : Ck → Ck+1 of H, describing the “identity maps”, which
satisfy the neutral element property up to higher morphisms;

5. a list of compatibility conditions between the compositions/identities and the source/target
maps.

2Recall that, as discussed in the end of the last chapter, this naive characterization is the main idea used to
build presentations for the notion of ∞-category.
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Remark. The same discussion above holds for the concept of ∞-groupoid. Indeed, it also admit
two characterizations. The first can also be enriched over any concrete monoidal ∞-category,
while the second can also be internalized in any ∞-category with ∞-pullbacks. For instance,
the internal ∞-groupoid will be a huge internal diagram exactly as a ∞-category, but with some
additional arrows invk : Ck → Ck describing the rules that assign to any k-morphism its inverse.

Remark. We can also apply the discussion above to the concept of ∞-functor between ∞-
categories, producing the notion of∞-functors between H-enriched/H-internal categories, which
fits into categories ∞Cat(H) and ∞CatH. Furthermore, the notions of higher natural transfor-
mations also can be internalized/enriched, giving ∞-structures to these categories. We will write
∞Gpd(H) and ∞GpdH to the corresponding full sub ∞-category of H-enriched/H-internal
∞-groupoids.

Examples

Here we will discuss some examples of internal ∞-categories/∞-groupoids. They are essen-
tially the higher categorical version of the examples of internal 1-categories/1-groupoids presented
in Section 6.2.

Example 8.4 (canonical embedding). Let H be a∞-category. Any objectX ∈ H can be regarded
as a ∞-category internal to H in a trivial way: by considering all objects of k-morphism equal
to X and all the structural 1-morphisms (i.e, all source/target 1-morphisms tk, sk, all identity
1-morphisms idk and all compositions ◦ik) equal to the identity map idX ∈ H. This construction
extends naturally to an embedding∞disc : H →֒ ∞CatH. Notice that the∞-category associated
to X is, indeed, a internal ∞-groupoid whose inversion maps invk are all equal to idX . As a huge
diagram, disc(X) is given as below, where all arrows are identities.

· · ·
//

//

//
//
// X

//

//
//
//
X //

//
// X //

//
X // X,

Example 8.5 (underlying ∞-groupoid). Recall that any H-internal category C admits a canon-
ical underlying internal groupoid Cpd obtained by forgetting all morphisms which are not iso-
morphisms. Analogously, each ∞-category C has a underlying ∞-groupoid Cpd obtained by
forgetting the k-morphisms which have not inverses up to (k + 1)-morphisms.

Example 8.6 (internal ∞-groups). As discussed in Example 6.5, for a cartesian monoidal cat-
egory (H,×) with pullbacks, the corresponding category GpdH of H-groupoids has a inhering
cartesian monoidal structure and the category Hopf(H) of group objects into H has at last the
same limits as H. Therefore, we can talk of group objects into GpdH and of groupoids internal
to Hopf(H). The fundamental fact is that these two notions coincide, meaning that we have a
canonical isomorphism

Hopf(GpdH) ≃ GpdHopf(H). (8.1.2)

The same is valid in the higher categorical context. More precisely, if H is a∞-category with∞-
pullbacks, binary ∞-products and a terminal object, then the underlying cartesian ∞-monoidal
structure induces a cartesian ∞-monoidal structure on ∞GpdH and ∞Hopf(H) get the sane
∞-limits which are in H. Furthermore, the above isomorphism refines to a ∞-equivalence

∞Hopf(∞GpdH) ≃ ∞Gpd∞Hopf(H). (8.1.3)
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Recall that the objects of the categories appearing in the isomorphism (8.1.2) were called 2-
groups internal to H, which motivate us to call the objects in (8.1.3) of ∞-groups internal to H.
The ∞-groups internal to Set (trivially regarded as a discrete ∞-category) are called ∞-groups.
Concrete examples to have in mind are the following:

1. automorphism∞-group: given a∞-category C, any objectX defines a∞-groupoid Aut(X),
whose objects are the automorphisms of X (i.e, 1-morphisms X → X invertible up to 2-
morphisms), whose 1-morphisms are automorphisms ξ : f ⇒ f of automorphisms f : X →
X, and so on. The operation giving the structure of ∞-group is just the composition of
morphisms. This construction extends to a ∞-functor

Aut : C→∞Hopf(∞Gpd).

Indeed, notice that the ∞-groupoid Aut(X) can be viewed as a full sub ∞-category of
Cpd with only one object X. It happens that both rules (−)pd and “taking the one object
version” are functorial, so that Aut is the composition of two functors and, therefore, is
functorial;

2. Lie ∞-groups: the 2-groups internal to Diff sub were called Lie 2-grops. Analogously, re-
garding these categories as ∞-categories, the ∞-groups internal to them are called Lie
∞-groups. Explicitly, a Lie ∞-group is a sequence of Lie groups G0, G1, ..., endowed with
smooth submersions sk, tk, ◦ik and idk, fulfilling the previous diagram.

3. Picard ∞-group: recall that to any monoidal category (H,⊗, 1) we can associate a groupoid
Pic(H), the Picard groupoid of H, obtained by forgetting the objects X ∈ H which have no
inverse with respect to ⊗, i.e, for which there is no Y such that X ⊗ Y ≃ 1 ≃ Y ⊗X. This
internal groupoid is indeed a 2-group, whose Hopf monoid structure is given simply by ⊗.
In the higher categorical context, we have a direct analogous result. In fact, if (H,⊗, 1) is
now a ∞-monoidal ∞-category, then it defines a ∞-groupoid ∞Pic(H), which becomes a
∞-group when endowed with the product ⊗. This is the Picard ∞-group of H. If H is an
n-category, then ∞Pic(H) is an n-group.

Example 8.7 (Internal nerve). In Example 8.4 we saw that any object in a ∞-category H can
be naturally regarded as a ∞-category internal to H. Here we will see that this is indeed a
particular case of a more general construction which assign to any 1-category C internal to H a
corresponding internal ∞-category N(C), called the internal nerve of C. More precisely, we will
build a functor N : CatH → ∞CatH such that ∞disc = N ◦ disc, where disc : H → CatH is
the usual canonical embedding, introduced in Example 6.7. The construction is pretty simple.
Indeed, we put the object of objects N(C)0 as C0, the object of 1-morphisms N(C)1 as C1, the
object of 2-morphisms N(C)2 as C1 ×C0 C1 (i.e, as the pullback between the source and target
maps s, t : C1 → C0), the object of 3-morphisms as the iterated pullback C1 ×C0 C1 ×C0 C1,
and so on. All the source/target sk, tk, all identities idk and all composition laws ◦ik comes from
universality of pullbacks. As a huge diagram, the nerve of C is represented by

· · ·
//

//
//
//
C1 ×C0 C1 ×C0 C1 //

//
// C1 ×C0 C1 //

//
C0

// C1,

A concrete example to have in mind is the following:
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• Nerve of delloped ∞-group. Recall the discussion on nonabelian cohomology in Section 1.2.
There we assigned to any topological group G a corresponding topological space BG, the
classifying space of G, which was the representing object for nonabelian cohomology with
coefficients in G. The construction of BG has two steps. In the first we consider sequences
of products Gn = G× ...×G linked by arrows Gn → Gn−1, while in the second these arrows
are used in order to glue each Gn, producing the desired CW-complex BG. We notice
that to any G we can assign an internal groupoid BG, called the delloping of G, such that
BG0 = ∗ and BG1 = G. Observe that G×G is just BG1 ×BG0 BG1, so that the first step
in the building of BG is to take the nerve of the delloped groupoid BG. This construction
applies more generally to any internal ∞-group.

We end with the following remark. It will be fundamental in the proof (in Section 8.3) that
supersymmetry is the most general kind of symmetry which can be considered in a system of
quantum particles.

Remark. As introduced in Example 8.6, a∞-group G is a Hopf∞-monoid object in the cartesian
monoidal ∞-category of ∞-groupoids. So, it is particularly a ∞-monoid in the category of all
∞-categories and, therefore, a∞-monoidal∞-category. We say that G is a braided/symmetric∞-
group when it is braided/symmetric as a monoidal ∞-category. By the Stabilization Hypothesis,
this is equivalent to say that G has two/three compatible ∞-monoidal ∞-structures. Notice
that G has two compatible monoidal ∞-structures iff BG the ∞-groupoid is indeed a ∞-group,
meaning that B(BG) ≡ B2G is well defined. Similarly, G has three monoidal structures iff
B2G is also a ∞-group and, therefore, B3G is well defined. In other words, a ∞-group is
braided/symmetric iff it has double/triple delooping.

8.2 Locality

As an application of the existence of this new kind of weak categorification process, here we
will see that the notion of Grothendieck topology also extends to the higher categorical context,
allowing us to talk of ∞-stacks and ∞-geometric stacks. Indeed, recall that a Grothendieck
topology in a usual category C with pullbacks was defined as a rule J assigning to any object
X ∈ C a family J(x) of morphisms π : U → X, called coverings of X, which contains all
isomorphisms and which are stable under pullbacks.

So, similarly, we can define a∞-Grothendieck topology on a∞-category H by simply replacing
“pullbacks” by “weak ∞-pullbacks”, i.e, as a rule J assigning to any object X a family J(x) of
1-morphisms π : U → X, also called coverings of X, such that all isomorphism Y ≃ X belongs
to J(x) and such that if π : U → X is a covering and f : Y → X is any 1-morphism, then the
weak ∞-pullback f∗U → U is a covering. The pair (H, J) is called a ∞-site.

With the notion of ∞-site on hand, the new step is to define ∞-sheaves. In order to do
this, recall that for a usual site (H, J), a sheaf with values into a category C is simply a functor
F : Hop → C such that for any cover U → X the corresponding internal Cech groupoid Č(U) is
such that the canonical morphism

F (X)→ limF (Č(U))
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is an isomorphism. We notice that this morphism can be obtained by making use of the Yoneda
embedding/Yoneda lemma and of the fact that colimits are converted into limits by contravariant
representable functors. More precisely, we start by applying the Yoneda embedding h− : H →
Func(Hop;C) to the canonical morphism colim Č(U) → X. On the other hand, by the Yoneda
lemma an by the fact that contravariant hom-functors maps colimits into limits we get the required
morphism:

F (X) ≃ Nat(X,F ) // Nat(colim Č(U), F ) ≃ limNat(Č(U), F ) ≃ limF (Č(U))

We already know that ∞-presentable functor preserve ∞-limits. The Yoneda lemma and,
consequently, the Yoneda embedding also generalize to this higher. Indeed, by the discussion in
Section 6.3 we have Yoneda lemma for enriched categories. By induction it is valid for strict
∞-category. The fact that it is also valid for weak∞-categories can be seen in [127]. So, in order
to define ∞-sheaves we only need to replace the Cech groupoid by a more abstract ∞-groupoid.
Recall that the Cech groupoid of a covering π : U → X is simply that given by the diagram

U ×X U ×X U // U ×X U //
//
U // U

where U ×X U is the pullback between π and π. Therefore, given a ∞-covering π : U → X,
the main idea in order to define its Cech ∞-groupoid is to take the internal ∞-groupoid Č∞(U)
defined by the following iterated ∞-pullbacks, which is just the internal nerve N(Č(U)).

· · ·
//

//

//
//
// U ×X U ×X U ×X U

//

//
//
//
U ×X U ×X U //

//
// U ×X U //

//
U // U,

With all that we need on hand we can finally define ∞-sheaves. In fact, if (H, J) is a ∞-site,
then a ∞-sheaf in a ∞-category C internal to H is an internal ∞-functor F : Hop → C such
that for any object X and cover π : U → X in J(x), the morphism represented below is an
isomorphism.

F (X) ≃ Nat(F,X) // Nat(F, colim Č∞(U)) ≃ limNat(F, Č∞(U)) ≃ limF (Č∞(U))

In the 1-categorical context, a sheaf with values in the category of (internal) groupoids was
called a stack. Here, analogously, a ∞-sheaf with coefficients into ∞Gpd (resp. ∞GpdH) is
called a ∞-stack (resp. an internal ∞-stack). We have seen that any H-internal groupoid G
induces a canonical internal stack F : Hop → GpdH by applying the internal hom functor into
the diagram defining G. The stacks that can be obtained in this way were called H-geometric
stacks. Similarly, any ∞-groupoid internal to a ∞-category H defines a ∞-stack in H, called
H-geometric ∞-stacks.

In the special case in which H is Diff sub or, trivially regarded as a ∞-site, the ∞-stacks are
called smooth ∞-stacks and the geometric ∞-stacks are called differentiable ∞-stacks. The fact
that they are “geometrical” here means that they are determined by some ∞-Lie groupoid.

∞-Topos

If (H, J) is a ∞-site, then we can form the ∞-category ∞Stack(H, J) of ∞-stacks. Such
an ∞-category is usually called a ∞-topos (or Grothendieck ∞-topos or even Grothendieck-Rezk-
Lurie ∞-topos) analogously as the category of sheaves on a site is called a Grothendieck topos.
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Recall that, as discussed in Section 2.2, the usual Grothendieck topos on a site (H, J) can be
regarded as a localization of the category of functors Func(Hop,Set) at the class of the Cech
diagrams, meaning that the inclusion

ı : Shv(H, J) →֒ Func(Hop,Set) has an adjoint L : Func(Hop,Set)→ Shv(H, J),

which assign to any functor F its corresponding sheafication L (F ), such that finite limits are
preserved. For ∞-stacks, analogous condition holds. Indeed, the ∞-category of ∞-stacks can be
understood ∞Stack(H, J) as a localization of the category of ∞-functors ∞Func(Hop;∞Gpd)
at Cech nerves. The adjoint L∞ of the inclusion ı is now called the ∞-stackfication.

In this ∞-categorical context we also have analogous Giraud’s characterization axioms. In-
deed, as can be seen in Section 6.1.5 of [127], a ∞-category is a Grothendieck ∞-topos iff it
satisfy the following properties:

1. it is ∞-cocomplete and there is a collection S of objects which generates all the others, i.e,
any X ∈ C can be written as a ∞-colimit indexed in S (this condition imply the existence
of ∞-limits);

2. for any 1-morphism f : X → Y , the induced morphism f/C : X/C → Y/C between the
over categories preserves all colimits;

3. for any two objects X and Y , the ∞-pullback between the inclusions X →֒ X ⊕ Y ←֓ Y is
equivalent to the initial object;

4. not only ∞-groups internal to H has deelooping, but all ∞-groupoid internal to H.

Let us explore some examples to keep in mind.

Example 8.8 (∞-groupoids and topological spaces). By the characterization above we conclude
that both∞Gpd and Top are indeed∞-topos. On the other hand, this could be verified directly
by exhibiting a explicit ∞-site (H, J) such that ∞Stack(H, J) ≃ ∞Gpd, and similarly for Top.
Indeed, let us consider the trivial category 1 with only one object ∗ and whose morphisms and
higher morphisms are only identities. It is a ∞-site with the trivial Grothendieck topology J
whose coverings are just the identities. In this topology, any ∞-functor F : 1op → ∞Gpd is
immediately an ∞-stack. But such a functor is totally determined by the ∞-groupoid F (∗).
Consequently, in order to give a ∞-stack on the ∞-site (1, J) is just the same as giving a
∞-groupoid. In other words, ∞Stack(1, J) ≃ ∞Gpd. As will discussed later, we have an
equivalence ∞Gpd ≃ Top, so that the same trivial ∞-site can be used in order to give a
∞-topos structure on the ∞-category of topological spaces.

Example 8.9 (slice ∞-topos). If H is a ∞-topos, then for any A the slice ∞-category H/A
is also a ∞-topos. We can get this result by observing that the “higher Giraud’s axioms” are
satisfied (see Section 6.3.5 of [127]). On the other hand, let us give a ∞-site presentation to
this fact. More precisely, let (C, J) be some ∞-site such that H ≃ ∞Stack(C, J). Let  be the
Yoneda embedding and suppose that the ∞-site J is such that (X) is a ∞-stack relatively to J
(in this case, we say that J is subcanonical). We will prove that

∞Stack(C, J)/(X) ≃ ∞Stack(C/X, J/X) for any X ∈ C, (8.2.1)
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where here J/X is the∞-site in C/X, induced from the∞-site J in X, whose coverings π : u⇒ f
of each f ∈ C/X are such that π : U → X belongs to J(x), as in the diagram below. We notice
that this condition immediately imply that u : U → A belongs to J(a). For instance, when
C = Top, the commutativity condition u = π ◦ f means that u is the pre-image of a covering
by a continuous function and, therefore, it also is a covering. The ∞-site J/A is that under the
projection π : C/A→ C we recover the initial ∞-site J .

U

u ��❅
❅❅

❅❅
❅❅

❅
π // X

f~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

A

In order to get (8.2.1), recall that for any ∞-site the corresponding category of ∞-stacks can be
understood of a localization of the category of ∞-functors at the coverings, so that we have the
adjunctions presented in the diagram below by the continuous arrows. Now, suppose that we
have an equivalence given by upper segmented arrows. So, we get the lower dotted arrows, which
constitute the desired equivalence.

∞Func(Cop;∞Gpd)/(X)

L∞/(X)

��

F //❴❴❴❴❴❴
∞Func(C/Xop;∞Gpd)

L∞

��

oo❴ ❴ ❴ ❴ ❴ ❴

∞Stack(C, J)/(X)

ı/(X)

OO

//
∞Stack(C/X, J/X)

ı

OO

oo

(8.2.2)

We assert that there exist a unique upper equivalences, so that we really have (8.2.1). Indeed, for
a fixed X we have two canonical maps, as presented below by continuous arrows: X is just the
Yoneda embedding for the∞-category C/X, while  is defined by (X → Y ) = (X)→ (Y ). By
Corollary 5.1.6.12 of [127], if a ∞-functor F as in (8.2.2) preserve ∞-colimits and is an extension
(as in diagram below), then it is automatically an equivalence. But, notice that if F is an
extension, then it must satisfy F ◦  = . Because Yoneda embedding is full, this actually totally
characterize F . But, the Yoneda embedding is limit-preserving, so that F preserve colimits,
ending the proof.

Physics

In the end of Section 6.2 we commented that the space of configurations of particle physics
is totally axiomatized by (super)differential stacks, but in order to axiomatize the space of fields
of string physics “higher stacks” would be needed. These “higher stacks” are just the geometric
∞-stacks introduced above. It happens that a classical theory of physics is not determined only
by its space of fields: we also have to consider an action functional SΣ : Fields(Σ) → R. Notice
that, being a Lie group, R induces a Lie ∞-groupoid BR which determines a geometric ∞-stack.
As will be discussed in Chapters 12 and 13, any interesting action, say defined in the space of
fields described by a ∞-stack Fields : Diff

op
sub → ∞Gpd, is just a lifting of Fields from ∞Gpd

to ∞Gpd/BR, as presented in the first diagram below. This lifting assigns to any manifold Σ a
corresponding∞-functor SΣ : Fields(Σ)→ BR, so that it can also be understood as a∞-natural
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transformation between Fields and the ∞-functor constant in BR, as in the second diagram.

Diff
op
sub

cstBR

��

Fields

��

∞Gpd/BR

R

��

S
=⇒

Diff
op
sub

S
88qqqqqq

Fields
//∞Gpd ∞Gpd

Therefore, it seems that the language determined by the ∞-topos of smooth ∞-stacks is
sufficiently abstract in order to give a complete axiomatization of classical physics. There exists,
however, a further detail which we can be taken into account. In fact, as commented in Section
2.4 and also in Chapter 3, it is a general postulate of classical physics that, in this lower level of
energy, not all configurations occur in the nature, but only that minimize the action functional.
Therefore, in order to identify the observable configurations we need to analyze the critical locus
dS = 0. But, in order to do this, we need a notion of “derivative” of the action functional.

The ∞-topos of smooth-∞-stacks is very well behaved, characterizing it as a cohesive ∞-
topos. It happens that in general there is no canonical way to define the “derivative” of an
arbitrary object into a cohesive ∞-topos, so that dS is generally not defined. Fortunately, as will
be discussed in Chapter 10, any cohesive ∞-topos can be embedded into a differential cohesive
∞-topos, in which the abstract notion of derivative always exists. For the ∞-topos of smooth
∞-stacks, this embedding can be obtained by replacing manifolds by formal manifolds, meaning
that a very natural candidate to a unifying language to classical physics is that described by the
∞-topos of formal-smooth ∞-stacks.

Remark. We take the moment to explain another thing. As commented above, the action
functional is generally a∞-transformation S : Fields⇒ ctsBR. The terminal object of∞GpdDiff

is the∞-groupoid 1 whose space of objects, morphisms and higher morphisms are all given by the
trivial manifold ∗. Therefore, because R is contractible3, we have that BR ≃ 1 and, consequently,
the space of action functionals defined on any space of configurations is homotopically trivial.

Remark. In the process of quantization we generally make use of the exponentiated action

functional e
i
~
SΣ ∈ S1, where here eit : R → S1, with S1 ≃ U(1), is the complex exponentiation

and ~ is the Plank’s constant (introduced in Section 3.2), which is the effective parameter of
quantum theories. Differently of BR, the ∞-groupoid BU(1) is not homotopically trivial. This
means that, if we replace R by U(1) in the discussion of the last remark, we will conclude that
the space of transformations Fields ⇒ ctsBU(1) is not trivial. This suggest that the fundamental
physical notion (or at least the more mathematically interesting notion) is of “exponentiated action
functional” instead of “action functional”.

3Formally, here we need to use also the Homotopy Hypothesis, which will be sketched in the next section.
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8.3 Homotopy

In this section we will focus on the ∞-categories C for which there is some n such that every
k-morphism µ : f ⇒ g, with k > n, is an isomorphism up to (k + 1)-morphisms, i.e, there
exists another k-morphism ν : g ⇒ f together with (k + 1)-isomorphisms α : ν ◦ µ ⇒ idf and
β : idg ⇒ µ ◦ ν. These are called (∞, n)-categories. For instance, for n = 0 this is exactly the
notion of ∞-groupoid.

We notice that if C is a (∞, n + 1)-category, then forgetting its objects and considering the
entity composed only by its 1-morphisms, 2-morphisms and so on, we get a (∞, n)-category. In
the language of weak enrichment this means that a (∞, n + 1)-category C can be understood
as a usual category weakly enriched over the ∞-monoidal ∞-category (∞, n)Cat of all (∞, n)-
categories, considered as a full sub-∞-category of ∞Cat.

If C is an ∞-category we get a k-category by forgetting each l-morphism for l > k. In other
words, for any k there is a trivial forgetful functor∞Cat→ kCat. Part of the interest in (∞, n)-
category is due to the fact that in such cases we have nontrivial functors τ≤k : (∞, n)Cat →
kCat, called truncation functors, for each k ≥ n.

Indeed, by definition in a (∞, n)-category each k-morphism, with k > l, in invertible. This
means that the relation “two k-morphisms are equivalent if there is a (k + 1)-morphism between
them” is symmetric when k ≥ n. It is also transitive because the composition of k-morphisms is
associative up to (k + 1)-morphisms and it is reflexive because the identity k-morphisms satisfy
the “neutral element property” up to (k+1)-morphisms. Therefore, in a (∞, n)-category we have
an equivalence relation ≃k in each set of k-morphisms, allowing us to define quotient categories
C/ ≃k, here denoted by Ck, for which we have the projection functor C → Ck. More precisely,
we define Ck as the k-category which has the same objects, 1-morphisms, 2-morphisms, and so on
up to (k−1)-morphisms than C, but we replace the set of k-morphism with its quotient space by
≃k. So, the category Ck is some kind of “truncation at level k” of C. This construction extends
to ∞-functors between (∞, n)-categories, giving the required τ≤k.

The main interest in the existence of these truncations is the possibility of study inductively a
k-morphism ξ : f ⇒ g, with k ≥ n, by its truncated versions. With this in mind, we see that there
is further interest in (∞, 1)-categories, because for them this approach can be applied in every
k-morphism, for any k. In special, if the (∞, 1)-category has a terminal object ∗, the strategy
above can be applied into two dual cases: for 1-morphisms ∗ → X and X → ∗, giving information
on the object X. These strategies are known as Postnikov/Whitehead approximations of X.

Remark. By the paragraphs above, the interest in (∞, 1)-categories is evident. However, there
are some examples of (∞, n)-categories, with n 6= 1, which are also relevant in this approach to
Hilbert’s sixth problem. They include:

1. cobordisms. In the end of Section 2.4, we introduced the p + 1-category Cob(p + 1)
whose objects are 0-manifolds, whose 1-morphisms are cobordisms, whose 2-morphisms
are cobordisms between cobordisms, and so on up to cobordisms between p-manifolds.
We notice that this entity admits a natural refinement to a (∞, p + 1)-category. Indeed,
the (p + 1)-morphisms of Cob(p + 1) are (p + 1)-manifolds, so that we define the collec-
tion of (p+ 2)-morphisms between two (p+ 1)-morphisms as the space of diffeomorphisms
between the underlying manifolds. Furthermore, the (p + 3)-morphisms between diffeo-
morphisms are defined as smooth isotopies, while higher morphisms are isotopies between
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isotopies, and so on. In order to motivate the relevance of this additional structure, recall
that an extended quantum theory of dimension p was defined as a monoidal ∞-functor
U : (Cob(p + 1),⊔) → (C,⊗). Baez and Dolan conjectured in [20] the Cobordism Hy-
pothesis (which classify all these quantum theories) for this class of objects, without the
additional categorical structure in Cob(p + 1), but Lurie’s proof [124] makes explicit use
of the existence of this additional data;

2. higher spans. As discussed in Example 4.11, for any category C we can assign a category
Span(C) of spans in C. Recall that the first attempt to define this category is by taking
objects of C as objects and spans as morphisms, but this does not defines a category,
because the composition of spans is well defined only up to isomorphisms of C. In order
to avoid this problem, we redefined the morphisms of Span(C) as equivalence classes of
spans: two spans X ← Z → Y and X ← Z ′ → Y are were considered equivalent when
there exist some span Z ← Q → Z ′ making commutative the first diagram below. So,
in the present higher categorical language, it seems more natural to regard Span(C) as
a 2-category, whose objects are objects of C, whose morphisms are spans and whose 2-
morphisms between spans are diagrams as below. Now, as can be verified, the diagram
below is a span in the 1-category spans, so that as a 2-category, Span(C) has objects of C
as objects, spans as 1-morphisms and spans in the category of spans (here called 2-spans)
as 2-morphisms. So, if C is not only a 1-category, but indeed a ∞-category, then we can
try to define a (∞, n)-category Spann(C) inductively, whose k-morphisms, with k ≤ n, are
k-spans. This definition was sketched in [124] (around the page 59) and fully formalized
in [92]. This kind of (∞, n)-categories will be important in the construction of a general
version of pull-push quantization in Chapter 17.

Postnikov

Let C be an (∞, 1)-category and suppose that it has a terminal object ∗. Then we can apply
the idea discussed in the last subsection to the (unique) morphism X → ∗, giving a inductive way
to study X. More precisely, in this case the inductive approach consists in searching a decreasing
sequence of 1-morphisms Xi → Xi−1 of C, such that:

1. it starts at X, i.e, there is an equivalence ∞colimXi ≃ X;

2. the object Xi belongs to the i-th truncation of X, meaning Xi ≃ τ≤i(X);

3. the sequence ends at ∗, i.e, X0 ≃ ∗.

We call such a sequence a Postnikov presentation (or Postnikov tower or even Postnikov
system) for X. In order to clarify the ideas, let us see how this tower behaves in Top.

Example 8.10 (classical Postnikov towers). In the (∞, 1)-category of topological spaces, the
higher morphisms are homotopies between homotopies, and so on, so that the k-th truncation
τ≤k : Top→ Topk is the functor which assign to any space X its kth homotopy type. Note that
the starting point of the Postnikov tower is a space equivalent to X and the ending point is a
space equivalent to ∗ (i.e, a contractible space). Without loss of generality we can work with
CW-complexes. This is very interesting, because (by Whitehead’s theorem) the kth homotopy
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type of a CW-complex X can be identified with a space Xk such that πk(Xi) ≃ πk(X) for
k ≤ i. Therefore, a way to present the Postnikov tower of a space X is to start by taking its
CW-replacement and then searching for a decreasing sequence of continuous maps (which can be
replaced by fibrations) Xi → Xi−1 obtained by “killing” the homotopy groups from the left to
the right, meaning

πk(Xi) ≃

{

πk(X), k ≤ i

0, k > i.

For instance, for i = 1 the only nontrivial homotopy groups of X1 are π0 and π1, which coincide
with the homotopy groups of X. So, if X is assumed path connected, then π0(X) ≃ 0 and
the only nontrivial homotopy group of X1 is π1(X1) ≃ π1(X). In other words, we have been
determined X1 as the Eilenberg-Mac Lane space K(π1(X), 1)! Consequently, any map Y → X1

gives a cocycle in H1(Y, π1(X)). In the general case (i.e, for k > 1), we can show that the first
∞-pullback below is equivalent to the Eilenberg-Mac Lane space K(πi(X), i). Notice that for
i = 1 we recover the above equivalence, as in the second diagram.

∞pb

��

// ∗

��

∞pb

≃

��

// ∗

��
Xi

// Xi−1 X1
// ∗

Let us spend some words on the last example. By universality of pullbacks, for each i we
get a sequence of maps, as presented below. By the equivalence ∞pb ≃ K(πi(X), i) these maps
corresponds to cohomology classes κ(i, j) ∈ H i(Xi+j , πi(X)), which are called the Postnikov
classes of the tower and, in some sense, contain all that we need to know about the tower.

· · · // Xi+2 44
((//

,,

Xi+1
//❴❴❴

&&▲▲
▲▲▲

▲▲
▲▲▲

▲
))K(πi(X), i)

��

// ∗

��
Xi

// Xi−1
// · · ·

It happens that these Postnikov classes depend of the intermediate objects Xk. Following the
section 4.3 of [91] we would like to explain that there is some special situation in which the whole
tower can be explicitly reconstructed (up to equivalences) exclusively in terms of invariants of X.

As will be introduced in Section 9.3 (and as was implicitly used in Section in order to build
the Barrat-Puppe sequence (2.2)), a∞-pullback diagram as below is called a fiber sequence, while
the result is called the homotopy fiber of f (in other words, the homotopy fiber is something as the
∞-kernel of f). Notice that, given a fiber sequence∞pb→ X → Y , by universality of pullbacks,
the canonical map ΩX → X lifts to the homotopy fiber.

A fiber sequence is principal when there is another fiber sequence∞pb′ → Y ′ → X ′, together
with vertical weak equivalences, as in the second diagram below. In this case, by universality of
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∞-pullbacks, the third diagram is also a pullback square.

∞pb

��

// ∗

��

∞pb

≃
��

// X

≃
��

f // Y

≃
��

X
f

// Y ΩX ′ //∞pb′ // X ′

f ′
// Y ′

By the last example, for any spaceX, its Postnikov tower induces a sequence of fiber sequences.
Let us suppose that all of them are principal (by the theorem 4.69 of [91] this happens iff π1(X)
act trivially in each πn(X) and, in particular, if X is simply connected). Therefore, because
the Eilenberg-Maclane space constitute a Ω-spectrum, the first vertical equivalence imply that
X ′ ≃ K(πi(X), i+1). Consequently, each Xi is equivalent to the homotopys fiber of the map f ′.
In special, now we have more canonical classes, defined by maps

K(πi(X), i)→ K(πi(X), i + 1)

obtained as the composition of the dotted arrows below, which are called the fundamental Post-
nikov invariants of X.

K(πi(X), i)

��

// ∗

��

K(πi(X), i)

≃
��

//❴❴❴❴ Xi

≃
��

//❴❴❴❴ Xi−1

≃
��✤
✤
✤

Xi
// Xi−1 ΩX ′ //∞pb′ // X ′ // Y ′

Remark. As will be discussed in the next subsections, this relation between Postnikov towers
and cohomology classes refines to the general case of (∞, 1)-categories and it is the fundamental
step in the study of Obstruction Theory, which leads with question as “under which conditions a
given morphism admits a nontrivial extension/lifting? ”

Whitehead

In the last subsection we used the structure of (∞, 1)-category in order to study inductively a
given object X by the sequence of its truncations that start at X and end at ∗. In other words,
we applied the inductive method of truncations to the 1-morphism X → ∗. We could try to do
the dual situation. More precisely, we could apply the truncation method in order to study X by
1-morphisms ∗ → X. This imply searching an increasing sequence Xi → Xi−1 such that

1. it starts at ∗, i.e, we have an equivalence ∞colimXi ≃ ∗;

2. the object Xi belongs to the i-th truncation of ∗, meaning Xi ≃ τ≤i(∗);

3. it ends at X, i.e, X0 ≃ X.

Such a sequence is called a Whitehead presentation (Whitehead tower or Whitehead system)
for the object X. Let us see that in the (∞, 1)-category Top we have (as for Postnikov towers)
a natural way to work/build Whitehead presentations.
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Example 8.11 (Classical Whitehead). We start exactly as in the Postnikov case: by assuming
that we are working with fibrations and CW-complexes. So, the i-th truncation of ∗ is given
by a space Xi such that πk(Xi) ≃ 0 when i ≤ k. Because the sequence now ends at X, we fix
the homotopy type of Xi by requiring πk(Xi) ≃ πk(X) if i > k. In other words, the idea is to
build each Xi by “killing” homotopy groups from the right to the left. More precisely, the idea
is to build the spaces Xi in the “reverse” order: knowing the homotopy groups of X we build
X1 by killing π1(X), and then we build X2 by killing π2(X), and so on. For instance, X1 need
to be simply connected, but πi(X1) ≃ πi(X) for i > 1. We are searching for cases in which
the map X1 → X is a fibration (whose standard examples are projections of fiber bundles).
Under mild conditions4 there is a bundle X1 → X with these desired homotopical properties:
the universal covering space of X. So, we can think of the other maps Xn → X as “n-connected
universal covers” of X. Because the spaces Xi should constitute some kind of “dual Postnikov
tower”, we could try to use the Postnikov tower of X in order to build Xi. Indeed, recall that the
0-connected coverings Y → X of a space X are classified by (the conjugacy classes of) π1(X).
So, we expect to get these n-connected covers Xn → X by analyzing each πi(X) with i ≤ n+ 1,
i.e, by analyzing the (n+ 1)th homotopy type of X, which can be modeled by the term Xn+1 in
the Postnikov tower of X. It can be shown that the map Xn+1 → X really can be obtained as
the homotopy fiber of X → Xn+1, as presented in the diagram below (this diagram will be called
the Whitehead-Postnikov diagram of X). See [??] for further details.

8.4 Hypothesis

In many moments of this chapter (and in some other parts of the text) we said that there is
an equivalence between the (∞, 1)-categories Top and ∞Gpd. This equivalence is known as the
Grothendieck Homotopy Hypothesis. A formal proof that Top ≃ ∞Gpd depends explicitly of the
presentation selected to model the notions of “∞-groupoids” and “(∞, 1)-categories”. Even so,
we would like to give (in our present naive context) a rough idea of how this equivalence behave.

We start by recalling that, as discussed in Example ??, to any topological space X we can
assign its fundamental ∞-groupoid Π(X). This is the ∞-groupoid whose objects are points of
X, whose 1-morphisms x → y are paths γ : I → X such that γ(0) = x and γ(1) = y, whose
2-morphisms ξ : γ ⇒ γ′ are homotopies preserving the base points, and so on. This defined the
rule Π on objects. We notice that it extends to a ∞-functor Π : Top→∞Gpd.

Indeed, if f : X → Y is a continuous function (i.e, a 1-morphism in the ∞-category Top)
then we get a ∞-functor Π(f) : Π(X)→ Π(Y ) between ∞-groupoids (which are the 1-morphism
in the ∞-category ∞Gpd) given by Π(f)(x) = f(x) on objects, Π(f)(γ) = f ◦ γ on morphisms,
and so on, so that Π really maps 1-morphisms into 1-morphisms. In the same way, given a
homotopy h : f ⇒ g between functions f, g : X → Y (i.e a 2-morphism in Top) we define a
∞-natural transformation Π(h) : Π(f) ⇒ Π(g) as the rule that to any object x ∈ Π(X) assigns
the 1-morphism Π(h)x (i.e, the path) between Π(f)(x) = f(x) and Π(g)(x) = g(x) given by
Π(h)x(t) = ht(f(x)), and also a 2-morphism (i.e, a homotopy between paths), and so on, all done
in a natural way.

The statement of Homotopy Hypothesis is that the fundamental ∞-groupoid functor Π has

4Such as being locally path connected and locally simply connected, which happens for instance the space is
locally contractible.
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an inverse. In order to motivate the existence of this inverse, let us see that the ∞-groupoid
Π(X) contains all (homotopical) information about the topological space X. More precisely, we
will see that Π(X) contains the homotopy groups πn(X,x) for any n ≥ 0 and for any base point
x, so that if X is a CW-complex, then its homotopy type is totally described by Π(X).

The idea is the following: because we are working with ∞-groupoids (which are the same as
(∞, 0)-categories), we have the truncations functors τk : ∞Gpd → kGpd for any k ≥ 0, where
0Gpd is just Set. In particular, we can define τxk as τk, but retaining information only about
the object x. On the other hand, for any x we have the functor hx : Catk → Catk−1 assigning
to any other object y the (k − 1)-category of morphism x → y. Repeating the process k times
we get a functor kh

x : Catk → Set assigning to any object x the set of k-morphisms between
(k − 1)-morphisms, between (k − 2)-morphisms, and so on up to 1-morphisms between x and
other object.

We assert that, for any x ∈ X and any k we have khx(τ
x
k (Π(X))) = πk(X,x). This assertion

can be formally obtained from finite induction, but in order to explain what are happening, let
us analyze some particular cases for small k. Indeed, if k = 1, then for any x ∈ X the 1-groupoid
τx1 (Π(X)) is such that the only object is x and whose morphisms are homotopy classes of maps
γ : I → X, satisfying γ(0) = x = γ(1). The functor khx retains only the set of these morphisms
which is just π1(X,x). Indeed, such a path is the same as a map γ : I → X such that γ(∂I) = x,
which is equivalently a based map γ : I/∂I → (X,x). But I/∂I ≃ S1.

For k = 2, we have the 2-groupoid τx2 (Π(X)), with only one object x, whose morphisms are
paths γ : I → X on x and whose 2-morphisms are homotopy classes of homotopies between
these paths, preserving the base point. So, they are equivalently homotopy classes of bases maps
h : I × I/∂(I × I) → (X,x), i.e hotomopy classes of based functions S2 → (X,x). The functor

2h
x retains the set of these classes, which is precisely the second homotopy group π2(X,x). Now,

the general induction argument becomes evident and we prefer to omit it.
Convinced that the fundamental ∞-groupoid construction retains the homotopical informa-

tion of any topological space, let us see that the∞-functor Π has an inverse | · | :∞Gpd→ Top,
which assign to any ∞-groupoid C a corresponding space |C|, called the geometric realization
of C, such that |Π(X)| ≃ X or, without loss of generality, that πk(|Π(X)|) ≃ πk(X) for every
k ≥ 0.

We start by recalling that any ∞-category C (in particular any ∞-groupoid) can be under-
stood in the “source/target perspective” as a huge diagram into Set. This diagram is composed
by a sequence of sets C0,C1, ... (corresponding to the collections of objects, 1-morphisms, and so
on) connected by source/target arrows Ci+1 → Ci, together with arrows Ci → Ci+1 describing
the identities and other arrows describing compositions, which are supposed to satisfy some addi-
tional commutative conditions. So, the most natural way to get functors ∞Gpd→ Top is first
search for ways to turn any∞-groupoid a diagram internal to Top (i.e a topological∞-groupoid)
and then define the geometric realization as the colimit of this new diagram. In other words, the
idea is to build some special funtor ı :∞Gpd→∞GpdTop and define |C| as colim ı(C).

There is a trivial way to do this: putting into each Ci the discrete topology, for which
the source/target maps, etc, becomes immediately continuous. However, we notice that this is
strategy does not produce an inverse for Π. Indeed, supposing the opposite, we need to have
πk(F (Π(X))) ≃ πk(X) for every X. It happens that, for each groupoid C the resultant space
F (C) = colimCi is discrete and, therefore, πk(F (C)) = 0 for k > 0. But, if X is not discrete,
then we may have πk(X) = πk(F (Π(X))) 6= 0 for k > 0, contradicting the hypothesis.
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This show that seeing each Ci as a trivial topological space is not a good idea. Instead of this
we could see them as parameters of certain homotopically trivial spaces. More precisely, the new
idea is to chose a sequence of homotopically trivial topological spaces Dn and define ı :∞Gpd→
∞GpdTop as the assignment that to any C associate the topological ∞-groupoid ı(C) whose
space of k-morphisms is ı(C)k = Ck ×Dk, where Ck is endowed with the discrete topology and,
therefore, the product Ck × Dk is understood as a family of copies of Dk parametrized by the
set Ck. Because each Dn is homotopically trivial, we have canonical maps Dn → Dn−1 and
Dn → Dn+1 which are used to build ı(C)k → ı(C)k+1 and ı(C)k → ı(C)k−1.

For instance, we could consider Dn = I × ... × I, Dn = ∆n or even Dn = Dn. For this
last choice, the ∞-topological groupoid ı(C) is simply a sequence of k-cells parametrized by the
set of k-morphisms Ck and then the colimit colim ı(C) simply glue all these cells, producing a
CW-complex.

The above construction seems a natural candidate to an inverse to Π (i.e, to the geometric
realization process) and it really is.

Example 8.12 (classifying spaces). Recall that in Section 1.2, at the discussion on nonabelian
cohomology, we have been commented that for any topological group G we can associate a
topological space BG, called the classifying space of G. Such a space is just |BG|, i.e, the
geometric realization of the delloped groupoid.

Remark. Note that Π(X) is defined for any topological space (not only for CW-complexes).
Similarly, we can define |C| for arbitrary ∞-category (not only for ∞-groupoids). On the other
hand, it is only after restricting to CW-complexes and ∞-groupoids that | · | ⇋ Π becomes one
the inverse of the other.

Properties

Here we will discuss some important properties of the geometric realization functor | · |.
Directly from the definition we see that it preserve finite limits. In particular, it is cartesian
∞-monoidal, so that it maps ∞-monoid objects of ∞Cat into ∞-monoid objects of Top. In
other words, it maps ∞-monoidal ∞-categories into A∞-spaces. Similarly, it maps symmetric
∞-monoidal∞-categories (i.e, commutative ∞-monoid objects of∞Cat) into E∞-spaces (which
are the commutative ∞-monoids of Top).

Furthermore, as any symmetric monoidal functor, the geometric realization | · | also maps
∞-Hopf objects of ∞Cat (i.e, ∞-groups) into ∞-Hopf objects of Top (i.e, ∞-loop spaces, as
discussed in Example 8.1.3). We can ask if there is some other class of symmetric ∞-monoidal
∞-categories, less restrictive than∞-groups, such that it is mapped under | · | into∞-loop spaces.
The answer is affirmative. The idea is the following: recall that a topological space X is a ∞-
loop space iff π0(X) is a group. So, due to the Homotopy Hypothesis, for a given symmetric
∞-monoidal ∞-category C, the corresponding |C| is a ∞-loop space iff

π0(|C|) ≃ Iso0(C) = τ0(C) is a group.

Notice that this is immediately satisfied when C is a∞-group, because in this case the collec-
tion of objects has, itself, a group structure. However, this group structure in C0 is not necessary
in order to get a group structure into Iso0(C). Indeed, because C is assumed a symmetric ∞-
monoidal∞-category, the product ⊗ and the neutral object 1 induce an abelian monoid structure
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into Iso0(C), so that what we need is an inverse for each object X ∈ C. These should be given
by an object X−1 endowed with morphisms

µ : X ⊗X−1 → 1 and ν : 1→ X−1 ⊗X

which becomes isomorphisms into the truncated category. This means that there should exist
2-morphisms

α : ν ◦ µ⇒ idX⊗X−1 β : id1 ⇒ µ ◦ ν (8.4.1)

fulfilling conditions up to 3-morphisms, and so on. In the case of ∞-groups, the morphisms µ
and ν are actually isomorphisms, so that α, β and the higher morphisms between them are all
identities.

We could, however, work with other conditions on the 2-morphisms (8.4.1) and as well as
on the higher morphisms. For instance, we could require some adjoint relation up to higher
morphisms. More precisely, we could require that the diagrams below are commutative up to
2-morphisms (replacing the α and β above), which in turn fulfill conditions up to 3-morphisms,
and so on.

X

id
&&▼▼

▼▼▼
▼▼▼

▼▼▼
▼▼
id⊗ν // X ⊗X−1 ⊗X

µ⊗id
��

X−1

id
''PP

PPP
PPP

PPP
PPP
ν⊗id // X−1 ⊗X ⊗X−1

id⊗µ
��

X X

An object X for which there exists µ and ν as above is called dualizable; we say that X−1 is
a dual for X. If a ∞-monoidal ∞-category is such that every object is dualizable, we say that
is has dual objects. So, we have been concluded that the geometric realization of a ∞-monoidal
∞-category with dual objects is a ∞-loop space. See Section 2.3 of [124] and the commentary
before Theorem 2.5.10, p. 51 of the same reference.

Remark. The class of monoidal categories with dual objects really is more large than the class
of ∞-groups. Indeed, in the monoidal category (VecK,⊗), an object is dualizable iff is finite-
dimensional and, in this case, the dual X−1 of X is just its linear dual X∗. Therefore, the
subcategory of finite dimensional K-vector spaces has dual objects, but it is not a 2-group, as
commented in Section 6.2.

Implications

The “proof” of the Homotopy Hypothesis given in the last subsections is merely formal. Indeed,
recall that in order to turn it into a real “proof” we need to make a choice of some presentation of
∞-categories and then show that the argument used here makes sense in this presentation. On
the other hand, here we would like to convince the reader that there are good reasons to believe
that the Homotopy Hypothesis is correct independently of the presentation selected.

More precisely, we will show that the Homotopy Hypothesis affects deeply both mathematics
and physics in such a way that it can be compared with the axiom of choice. This is the reason of
the qualification “hypothesis”: it is a too deep assertion that it is expect that any good presentation
of higher category theory should be such that we have an equivalence ∞Gpd ≃ Top.

The situation is similar to what happens in physics with the “energy conservation law”. In-
deed, in any known physical theory it is a theorem and, one time created some new model to a
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certain physical phenomena, the immediate step is to verify if we have conservation of energy. In
this perspective, while “energy conservation” is a filter to new physical theories, the Homotopy
Hypothesis enter as a filter to new presentation of higher category theory.

• Mathematical Implication (recovering Thom-Pontryagin theorem on cobordism). Here
we will show that the Homotopy Hypothesis imply that the classical result (discussed in the
end Section 1.2), that there is a spectrum E such that, for any n, the set of cobordism classes
of oriented n-manifolds is just the nth stable homotopy groups of E. In fact, let Cob(∞) =
colimn→∞Cob(n) be the ∞-category whose objects are 0-manifolds, whose 1-morphisms
are 1-cobordisms, whose n-morphisms are n-cobordisms, and so on. Let Cobor(∞) be the
sub∞-category of Cob(∞) obtained retaining only the oriented manifolds. This entity is
indeed an ∞-groupoid: each n-morphism Σ : M → N is an oriented cobordism between
oriented manifolds. Its inverse is just the cobordism obtained by reverting the orientations.
By the Homotopy Hypothesis, this ∞-groupoid is equivalent to a topological space X: the
geometric realization of Cobor(∞), which actually is a CW-complex and, therefore, has the
homotopy type determined by its homotopy groups. Each category Cob(n) is symmetric
monoidal and has duals, so that (by the discussion in the last subsection) X is actually a
∞-loop space. Therefore, there is a spectrum E such that X = Ω∞E∞. Thus, because the
homotopy groups preserve inductive colimits, we get the desired result:

Ison(Cobor(∞)) ≃ πn(X)

≃ πn(Ω
∞E∞)

≃ πn(limkΩ
kEk)

≃ lim
k
πn+k(Ek) = πSn (E)

• Physical Implication (supersymmetry is the most general kind of symmetry). As an-
other implication of the Homotopy Hypothesis we will show that the monoidal category
(Z2GradC,⊗) of complex super vector spaces admits precisely two braidings: the commu-
tative and the graded-commutative. By the discussion in Section 5.2, this fact has a very
physical appealing: it imply that in a quantum theory of particles describing both bosons
and fermions, the most general kind of symmetry that can be introduced is supersymmetry.
This will be done in two steps. In the first we will discuss the problem in the general context
and we will show that it can be replaced by a purely homotopical question. In the second
step we will attack the homotopical problem in the specific case (Z2GradC,⊗).

1. rewriting the problem. Let us start by considering any monoidal category (C,⊗, 1).
As discussed in Examples 6.12 and 8.6.3, we have the corresponding Picard 2-group
Pic(C,⊗), which is a 2-group and, therefore, a group object in the category of 1-
groupoids. By the Homotopy Hypothesis, we have a corresponding 1-homotopy type
X = |Pic(C)| (which can be understood as a CW-complex whose only nontrivial ho-
motopy groups are π0 and π1) with a group structure, meaning that it has a delooping
BX. Two isomorphic monoidal structures on C have isomorphic Picard 1-groupoids
and, therefore, their corresponding homotopy 1-types are equivalent. So, determining
the homotopy type of X we are determining the maximal number of non-isomorphic
monoidal structures on C. This is not exactly which we are interested. Indeed, we
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are interested in the isomorphic classes of symmetric monoidal structures on C. The
fundamental remark is that if (C,⊗, 1) is endowed with a symmetric structure, the
Stabilization Hypothesis imply that Pic(C,⊗) is a 4-group, so that by the Homotopy
Hypothesis X = |Pic(C)| is now a 3-homotopy type (i.e, space with πi(X) = 0 for
i > 3), which has deloopings B3X. Therefore, determining the homotopy structure
of this 3-homotopy type (or of its delooping B3X) we are determining the possible
symmetric monoidal structures that can be introduced on C. But this can be done
by looking to the Postnikov tower of B3X, which in turn is determined by the funda-
mental Postnikov invariants.

2. attacking the problem. Returning to our concrete problem, following the discussion
of the last topic, we need to determine the Postnikov invariants of B3X for X =
|Pic(Z2GradC,⊗)|, i.e, we need to compute the homotopy classes of maps

K(πi(B
3X); i)→ K(πi(B

3X); i + 1). (8.4.2)

We notice that it is enough to do the computations for only one i. Indeed, let us
suppose that we have been done the computations for certain i. Then, for any j ≤ i,

πi(B
3X) = [Si;B3X] ≃ [Σi−jSj;B3X] ≃ [Sj; Ωi−jB3X] = πj(Ω

i−jB3X).

On the other hand, because the Eilenberg-Mac Lane constitute a Ω-spectrum, by
applying Ωj, any map as (8.4.2) induce a corresponding

K(πj(Ω
i−jB3X); i − j)→ K(πj(Ω

i−jB3X); i − j + 1).

Now, recall that if ρ : G → H is a group homomorphism, it induce morphisms be-
tween the corresponding Eilenberg-Mac Lane spaces K(G; k) → K(H; k) for every k.
Therefore, the canonical Ωi−jB3X → B3X induce maps

K(πj(B
3X); i − j)→ K(πj(B

3X); i − j + 1)

representing Postnikov invariants of degree i−j. For j > i we proceed in a similar way.
So, let us work with i = 3. In this case, we have5 π3(B

3X) ≃ π0(X) ≃ Z2, so that
we have to compute [K(Z2; 3),K(Z2; 4)]. We assert that this space is contained in Z2,
implying that there are at most two distinct symmetric structures on Pic(Z2GradC)
and, therefore, on Z2GradC. This can be proved of different ways. For instance, by
the Yoneda lemma, the above maps corresponds bijectively to natural transformations
between H3(−,Z2) and H4(−,Z2). In other words, they are operations in ordinary
cohomology with coefficients on Z2 and, therefore, are determined by the Steenrod
operations Sq1. So, by making us of the axiomatic properties of these operations (as
done in Section 4.3, where we used the axiomatic properties of Adam’s operations in
order to proof the Adam-Atiyah theorem) we could infer the required result. We will

5The second equivalence comes from the definition of the Picard groupoid. Indeed, it is the set of Z2-graded
vector spaces V = V0 ⊕ V1 such that there is W =W0 ⊕W1 for which V ⊗W ≃ K⊕ 0. By dimension analysis we
conclude that, up to isomorphism, there are only two possible configurations satisfying this condition: V ≃ K⊕ 0
and V ≃ 0⊕K.
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take a shortcut. Indeed, if there is a map K(Z2; 3) → K(Z2; 4) then there is also a
map Ω3K(Z2; 3) → Ω3K(Z2; 4) and, consequently, because the Eilenberg-Mac Lane
spaces are a Ω-spectrum, a map Z2 → K(Z2; 1). Applying the loop space functor one
more time we get ΩZ2 → Z2. It happens that ΩZ2 ≃ Z2 and, because we are working
with based maps, there are only two possible Z2 → Z2.

Remark. In the mathematical motivation, we concluded that the Homotopy Hypothesis imply
that the oriented cobordism classes are the stable homotopy of some spectrum E. But the
Thom-Pontryagin theorem says more: it specify the spectrum as the sphere spectrum E = S.
The central question is: could we recover the whole theorem using only the Homotopy Hypothesis?
Notice that Cob(∞) was defined as the limit colimn→∞Cob(n) and, because the geometric
realization functor preserve ∞-colimits (recall that it has an ∞-adjoint) we have

|Cobor(∞)| = colimn→∞|Cobor(n)|,

so that in order to determine explicitly the spectrum, we need to calculate explicitly the n-
homotopy types |Cobor(n)|, which is an information that cannot be accessed only by the Ho-
motopy Hypothesis, meaning that we need something more. This “something more” is precisely
the Cobordism Hypothesis (firstly commented in Section 2.4 and which will be sketched in Ap-
pendix B). It states that the ∞-category Cobor(n) is freely generated by only one object: the
trivial manifold ∗. Thus, because |Cobor(∞)| is a∞-loop space, we conclude that the underlying
spectrum is generated by the point ∗. But this is just the sphere spectrum! Summarizing:

Homotopy
Hypothesis

+ Cobordism
Hypothesis

+3 Thom’s
Work



Chapter 9

Stable Theory

In Section 2.3, in order to convince the reader that there must exist languages which are more
abstract that categorical language, we presented many similarities between Spec and CChR,
suggesting the existence of some “abstract stable homotopy theory” of which both categories are
only particular examples. In the last two chapters we developed the basic structures of higher
category theory and we showed that the language of (∞, 1)-categories is sufficiently abstract in
order to incorporate abstract homotopy theory. For instance, we discussed that we can talk of
“n-truncations” of a object in the same way as we can talk of the “n-th homotopy type” of a
topological space. In the present chapter we will see that this (∞, 1)-categorical context is also
abstract enough to develop the conjectured abstract stable homotopy theory.

Recall that, despite the similarities between Spec and CChR, in Section 5.3 we showed
that they have a deep difference: while the tensor product ⊗ of ModR induces a symmetric
monoidal structure in CChR, the smash product in Top∗ induce a symmetric monoidal structure
in the homotopy category Ho(Spec). Furthermore, Lewis’s obstruction theorem states that this
structure cannot be lifted to a symmetric monoidal structure in Spec. In few words, the main
objective of Sections 9.1 and 9.2 is to proof that, when passing to the higher categorical context,
this difference disappear: we actually have a canonical notion of “smash product” in Spec, now
considered as a (∞, 1)-category.

More precisely, we start in Section 9.1 by presenting the notion of stable ∞-category which
incorporate the fundamental common properties of Spec and CChR. We then show that to any
(∞, 1)-category C we can associate a corresponding stable∞-category Stab(C), in a very similar
way as Spec is obtained from Top∗. Concretely, will see that the notion of Ω-spectrum makes
sense internal to any ∞-category and that they fit into a stable ∞-category.

The section 9.2 is on the functoriality of the stabilization rule C 7→ Stab(C). Indeed, as
will be discussed there, this rule is generally not functorial. The problem is that there is no
canonical way to assign to any ∞-functor F : C→ D a corresponding Stab(C)→ Stab(D) such
that compositions are preserved. On the other hand, it is always possible approximate F by a
functor P1F for which Stab becomes functorial. So, the problem of determining the functoriality
of Stab can be attacked by searching for conditions under which F ≃ P1F . Furthermore, if a
functor F does not satisfy the desired conditions (and, therefore, we do not have F ≃ P1F ), we
can study the iterated (excisive) approximation P2F = P1(P1F ), and so on, giving the diagram
below. When its colimit converges to F (i.e, when colimnPnF ≃ F ), we recover the functoriality

236
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of the stabilization rule.

· · · // Pn+1
// Pn // Pn−1

// · · · // P1
// F

We can think of the approximation PnF as the n-th derivative Dnf of a smooth function, so
that the sequence above is the higher categorical analogue of Taylor’s series and then the problem
of determining the functoriality of Stab becomes similar to the problem of determining if a given
smooth map is or not analytic. This analogy is in the heart of the Goodwillie calculus. For our
purposes, the fundamental application of this calculus is the proof that any colimit preserving
monoidal structure ⊗ on C induces an essentially unique monoidal structure ∧⊗ on spectra
Stab(C). Particularly, this imply that the smash product on spaces actually induce an unique
monoidal structure into the (∞, 1)-category of Ω-spectra, as desired.

Recall that, as explored in Section 1.2, Ω-spectra are the representing objects for generalized
cohomology theories, which are one of the most prominent invariants of (stable) homotopy theory.
Therefore, because the notion of Ω-spectra makes sense in any (∞, 1)-category, it is natural to
expect that the notion of “generalized cohomology theory” can also be internalized into the ∞-
categorical context. In fact, in Section 9.3 we see that there exists a notion of abstract cohomology
theory internal to any (∞, 1)-category, which abstract not only the generalized cohomology theo-
ries, but all examples of cohomology theories discussed Section 1.2! In special, for G a ∞-group
internal to ∞-category H we can talk of its abstract nonabelian cohomology, whose cocycles can
be used to define G-principal ∞-bundles in H.

Finally, in Section 9.4, we discuss obstruction theory in the higher categorical context. There
we see that the concept of orientation of a bundle with respect to some generalized cohomology
theory can be extended to a notion of orientation of∞-bundles with respect to abstract cohomology
theories. We then comment that the “orientability condition” is a fundamental step in order to
build a (pull-push) quantization scheme.

Remark. The fundamental references for Sections 9.1 and 9.2 are [125, 129, 126, 10]. A good
discussion in the spirit of Section 9.3 is in Section 3.6.9 of [182] and in [126]. Section 9.4 was
based in [145, 143, 10].

Warning. The theory of orientation for A∞-ring objects is also in construction (see the recent
papers [??,??]), so that some results discussed here maybe are not valid in this level of generality.
They are valid, however, for E∞-ring objects, as formalized in [??]. As far as our acknowledgement
goes, the role of the commutativity condition (i.e, the necessity of working with E∞-rings instead
of with A∞-rings) in the construction of a quantization scheme presently is not understood.

9.1 Stabilization

Recall that, as discussed in Section 1.2, the categories CW∗ and CCh+
R have very similar

homotopical properties. On the other hand, there is a primary difference between them: while
in both we have canonical reduced suspension functor Σ and loop space functor Ω, the cochain
complex are “stable” under these functors while CW-complexes are not. This could be fixed
by replacing CW-complexes by spectra or Ω-spectra, which are objects naturally stable under
suspensions or loopings. This motivate us to conjecture the existence of a more general abstract
“stable homotopy theory” for which the homotopy theory of spectra and of unbounded cochain
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complexes are particular cases. In this subsection we will outline the construction of such a
theory.

The starting point is to build Σ and Ω axiomatically. Indeed, given any (∞, 1)-category C

with null object ∗ and finite ∞-limits/∞-colimits we define the reduced suspension ΣX and the
loop space object ΩX of an object X ∈ C as the ∞-pullback/∞-pushout presented below. We
say that C is stable when for any X the canonical maps ΩX → X and X → ΣX, here obtained
from universality, are ∞-isomorphism.

ΩX

��

// ∗

��

ΣX ∗oo

∗ // X ∗

OO

Xoo

OO

This requirement has several consequences. We list some of them:

1. loop and suspension are dual equivalances . It immediately imply that the ∞-functors Σ,Ω
are equivalences, being one the the inverse of the other.

2. every object is deloopable. As discussed in Example 8.7, any ∞-group internal to a ∞-
category C is deloopable. If C is additionally a ∞-topos, then one of the higher Giraud’s
axioms ensures that not only ∞-groups, but indeed every ∞-groupoid internal to C can
be deloopable. If C is now a stable ∞-category, then any object X ∈ C has a delooping,
which is given by the suspension ΣX.

3. triangulated homotopy category. As will be discussed in Section 9.3, internal to any (∞, 1)-
category we have an abstract notion of cohomology, which can be computed by making use of
certain fiber sequences. The homotopy category of stable categories are triangulated, which
means that the fiber sequences are simple and, therefore, the computation of cohomology
is more easy.

Spectrum

Here we would like to explain that we can always associate to any (∞, 1)-category C a corre-
sponding stable (∞, 1)-category Stab(C). More precisely, we will see that in any (∞, 1)-category
we have the notion of sequencial spectrum object which fits into a stable ∞-category. This will
be very useful. Indeed, recall that the spectra in Top∗ are the representing objects of general-
ized cohomology theories. Therefore, abstracting the notion of “spectrum” we are immediately
abstracting the notion “generalized cohomology theories”.

So, let C be a ∞-category. We define a sequencial prespectrum object in C as an increasing
sequence X = (Xn) of objects together with structural 1-morphisms ΣXn → Xn+1. We say
that the sequencial prespectrum is a suspension spectrum (or a Σ-spectrum) if the structural
1-morphisms are∞-isomorphisms. Similarly, we say that they are loop spectrum (or Ω-spectrum)
if the adjoint structural maps Xn+1 → ΩXn are ∞-isomorphism. A 1-morphism f : X → Y

between two sequencial prespectra X and Y in C is a sequence of 1-morphisms fn : Xn → Yn of
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C such that each square below is commutative up to 2-morphisms of C.

ΣXn

Σ(fn)

��

// Xn+1

fn+1

��
ΣYn // Yn+1

Similarly, we define a 2-morphism h : f ⇒ g between two 1-morphisms f, g : X → Y as a
sequence of 2-morphisms hn in C such that each analogous higher square is commutative up
to 3-morphisms of C, and so on. Inductively we get a (∞, 1)-category Spec(C) of prespectra,
of which we have two sub-∞-categories ΩSpec(C) and ΣSpec(C) of loop spectrum objects and
suspension spectrum objects.

Alternatively (and more formally), following [126, 125] we can define the ∞-category of pre-
spectra in C as the∞-category of∞-functors1 X : Z×Z→ C such that X(n,m) ≃ ∗ if n 6= m (we
write X(n) instead of X(n, n)). Indeed, notice that this condition means that each of these functors
are equivalent to a sequence of weakly commutative squares (presented below) and by universality
of ∞-pullbacks/∞-pushouts such diagrams induce adjoint 1-morphisms µn : ΣX(n)→ X(n + 1)
and νn+1 : X(n) → ΩX(n + 1), as in the second diagram below. So, in this perspective the
∞-categories of Ω-spectra and Σ-spectra in C are just the subcategories of ∞Func(Z × Z;C)
such that the corresponding maps νn+1 and µn are, respectively, ∞-isomorphisms.

X(n)

((

""

νn+1

%%❑
❑

❑
❑

❑

X(n, n)

��

// X(n, n+ 1) ≃ ∗

��

ΩX(n+ 1)

��

// ∗

��
∗ ≃ X(n+ 1, n) // X(n+ 1, n + 1) ∗ // X(n+ 1)

Recall that a category of ∞-functors between ∞-categories C′ and C has the same ∞-limits
and ∞-colimits as C. Therefore, in this new perspective to the notion of prespectrum object, we
conclude that Spec(C) has at least the ∞-limits/∞-colimits existing in C. In particular, for any
prespectrum X, we can build its reduced suspension and its loop space, which will be denoted
by ΣX and ΩX. Despite the endofunctors Σ and Ω, there are also ∞-functors Σ∞ and Ω∞,
respectively defined by Σ∞(X)(n) = ΣnX and Ω∞(X) = X(0), getting the weakly commutative
diagram below.

C

Σ

��

Σ∞

//
Spec(C)

Σ

��

Ω∞
oo

C

Ω

OO

Σ∞
// Spec(C)

Ω

OO

Ω∞

oo

1Here we are considering Z as the ∞-category trivially produced by the 1-category given by the poset (Z,≤),
where ≤ is the usual order in the set of integer numbers. More precisely, Z has integer numbers as objects, there
is a 1-morphism n→ m iff n ≤ m and all higher morphisms are trivial.
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The weak commutativity follows from the fact that the functor Σ stabilizes when restricted
to the full sub-∞-category of suspension spectrum objects, while Ω stabilizes at loop spectrum
objects. On the other hand, it is not clear if both ∞-functors stabilizes over all prespectra. In
other words, it is not expected that Spec(C) becomes a stable ∞-category.

In order to get a complete stable structure the immediate idea is restrict the attention on the
suspension spectra or into loop spectra after showing that one of them can always be generated
by the other. In fact, it can be show that every prespectrum induces a canonical loop spectrum, so
that the correct stable category associated to C will be ΩSpec(C). More precisely, the category of
Ω-spectrum objects can be understood as a localization of the category of prespectrum objects,
meaning that the inclusion we have an adjunction ı : ΩSpec(C) ⇋ Spec(C) : L , where L

preserve finite ∞-limits.
This result could be obtained abstractly (i.e, as a purely existence theorem, without specifying

who L is). On the other hand, under the mild assumptions over C, say when it is a ∞-topos,
we can do a explicitly construction2. Indeed, the functor L is such that for any prespectrum X

it assign the Ω-spectrum L (X)(n) = colimkΩ
kX(n+k) whose structural morphisms ΩL (X)(n+

1) ≃ L (X)(n) is induced by

ΩL (X)(n + 1) = ΩlimkΩ
kX((n+ 1) + k)

≃ limkΩ
k+1X(n+ (k + 1))

≃ L (X)(n).

We usually say that L (X) is the spectrification of X (see Section 8 of [126] for details on the
proof that L really is a left-adjoint to ı). With this adjunction on hand, the above diagram can
be completed in order to get the diagram below.

C

Σ

��

Σ∞
//
Spec(C)

Σ

��

Ω∞
oo

L //
ΩSpec(C)

Σ

��

_?ı
oo

C

Ω

OO

Σ∞
// Spec(C)

Ω

OO

Ω∞
oo

L
// ΩSpec(C)

Ω

OO

? _ıoo

Now, let us prove that ΩSpec(C) really is a stable∞-category. It is clear that any Ω-spectrum
object X is invariant by Ω. So, we need prove that it is also invariant by Σ. Indeed, for any Y
we have

MorΩSpec(C)(Y,ΣX) ≃ MorΩSpec(C)(ΩY,X) ≃ MorΩSpec(C)(Y,X),

implying ΣX ≃ X by the∞-Yoneda lemma (more precisely, the result follows from the uniqueness
of the representing object of a representable ∞-functor). Summarizing, we have been obtained
the following conclusion.

Conclusion. To any ∞-topos C with finite ∞-limits/∞-colimits and a null object we can asso-
ciate a stable ∞-category: the category of Ω-spectrum objects of C. Furthermore, for any C we

2When C is a ∞-topos as above, it is also usual to write TC instead of ΩSpec(C). In this case, TC is also a
∞-topos, called the tangent ∞-topos of C. See Section 4.1 of [182].
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have an ∞-adjunction between it and its stabilization, given by the functors ı ◦Ω∞ and Σ∞ ◦L ,
which will be denoted by Ω

∞
and Σ

∞
.

Remark. Due to the conclusion above we will use Stab(C) to denote the stable ∞-category
associated to C.

9.2 Functoriality

A natural question is on the functoriality of the previous construction. Indeed, we can ask if
the the rule assigning to any (∞, 1)-category the corresponding stable∞-category of Ω-spectrum
objects admits an extension to a ∞-functor

Stab :∞Cat→∞Stab,

where ∞Stab ⊆ ∞Cat is the full sub∞-category of stable (∞, 1)-categories. Here we would like
to explain that in the general case the answer is negative. Indeed, in order to define the above
functor we need to build some map assigning to any ∞-functor F : C → D a corresponding
∞-functor

Stab(F ) : ΩStab(C)→ Stab(D)

so that compositions and identities are preserved up to natural ∞-isomorphisms. The canonical
idea is to define Stab(F ) by making use of the adjoint ∞-functors Ω

∞
and Σ

∞
, as in the first

diagram below.

C

F

��

Stab(C)

Stab(F )
��✤
✤
✤

Ω
∞

oo C

F

��

Stab(C)

Stab(F )
��✤
✤
✤

Ω
∞

oo C

F

��

Σ
∞

// Stab(C)

Stab(F )
��✤
✤
✤

D
Σ

∞
// Stab(D) D Stab(D)

Ω
∞

oo D
Σ

∞
// Stab(D)

Identities are certainly preserved by this rule. The problem is that arbitrary compositions
are not preserved, because there is no canonical way to split Stab(G ◦ F ) into two pieces. On
the other hand, there two special situation in which this problem does not appear:

1. restricting to the subcategory∞Catlim of∞-functors which commute with finite∞-limits;

2. restricting to the subcategory∞Catcolim∞-functors which commute with finite∞-colimits.

Indeed, in the first case the functors will commute with Σ
∞

, while in the second it will
commute with Ω

∞
, so that in each case we can define Stab(F ) respectively as the dotted map in

the second and third diagrams above. In the general case (i.e without restricting to some very
particular subcategory), however, the problem remains and the stabilization is not functorial.

Notice that the problem with functoriality involves the existence of a morphism Stab(F )
which are required to satisfy strict commutativity condition. Thanks to the ∞-weakening prin-
ciple, instead of attacking the problem directly, we can consider approximate solutions and, in
particular, we can look for the “best approximate solution”. So, for any ∞-functor F : C → D
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we are looking for a pair (Stab(F ), ϕ), where Stab(F ) is a ∞-functor between the corresponding
categories of Ω-spectra and

ϕ : F ◦Ω
∞
⇒ Ω

∞
◦ Stab(F )

is a∞-natural transformation, which is universal in the sense that, for any other pair (Stab′(F ), ϕ′)
there is a unique u : Stab(F ) ⇒ Stab′(F ) such that the diagram below commutes up to higher
morphisms.

Ω ◦ Stab′(F )

F ◦ Ω

ϕ′
4<qqqqqqqqqq

qqqqqqqqqq

ϕ
+3 Ω ◦ Stab(F )

Ω◦u

KS✤
✤
✤

✤
✤
✤

Now we can search for conditions under which this best approximation exists. As can be seen
in Section 6.2.1 of [125], this is the case of ∞-functors between ∞-topos3 preserving few colimits
(say inductive ∞-colimits). In Section 6.2.2 is then proved that under these hypothesis, the rule
F 7→ Stab(F ) really becomes functorial4, generalizing the situations discussed previously, where
to get functoriality we had to require preservation of all ∞-colimits.

Remark. By the adjunction between Σ
∞

and Ω
∞

we could be defined such a best approximation
in a dual (and equivalent) way by making use of the infinity suspension functor instead of the
infinity loop space functor.

We could attack the problem of the existence of the best “spectral approximation” for F
without any explicit mention of spectra! Indeed, following some kind of “inverse strategy” we can
try to identify ∞-functors between categories of spectra as ∞-functors between usual categories
satisfying additional conditions. So, under this identification, we expect to get a more concrete
analysis of the functoriality of Stab.

Indeed, above we used Σ
∞

and Ω
∞

in order to produce functors between spectra from functors
between ∞-categories. Let us do the opposite: by making of the adjunction Σ

∞
⇋ Ω

∞
we get

functors between categories from functors between the corresponding spectra. More precisely,
given S : Stab(C)→ Stab(D) we associate to it a ∞-functor

Dstab(S) : C→ D defined as Dstab(S) = Ω
∞
◦ S ◦ Σ

∞
.

Restricting to the ∞-functors on spectra that preserve ∞-colimits (meaning that we can
commute them with the infinity suspension functor) this rule extends itself to a ∞-functor

Dstab :∞Funccolim(Stab(C); Stab(D))→∞Func(C;D),

which is fully-faithful in the context of ∞-topos. Therefore, the functor DStab is an equivalence
over its image, meaning that we can replace any ∞-functor on spectra by a ∞-functor between

3More precisely, this is valid for which [125] calls differentiable ∞-categories.
4The proof of this result is based on a relation between functors of spectra and excisive functors, as will be

discussed below.
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the underlying categories satisfying some additional conditions.

∞Funccolim(Stab(C); Stab(D))

++❲❲❲❲❲❲❲❲❲❲❲
Dstab //∞Func(C;D)

∞Exc(C;D)
?�

OO

In more details, notice that for any S the corresponding ∞-functor Dstab(S) maps ∞-
pushouts into ∞-pullbacks. This is due essentially because in a stable ∞-category being a ∞-
pushout square is the as being a∞-pullback square, and because S and Σ

∞
preserve∞-colimits,

while Ω
∞

preserve ∞-limits. A ∞-functor satisfying this property (of mapping ∞-pushouts into
∞-pullbacks) is called excisive. Therefore, the functor Dstab factors as in the diagram above,
where ∞Exc(C;D) is the category of excisive ∞-functors.

Reciprocally, it can be show that any excisive ∞-functor F : C → D preserving some addi-
tional colimits (say null objects and inductive ∞-colimits) is induced by some functor S between
spectra, so that we have an equivalence

∞Funccolim(Stab(C); Stab(D)) ≃ ∞Exc∗(C;D), (9.2.1)

where the right hand-side is the full sub-∞-category of excisive functors which preserve the
additional colimits. Therefore, given F : C→ D, in order to get its best “spectral approximation”,
instead of searching for a universal pair (Stab(F ), ϕ), as presented previously, we can now look for
an universal pair (P1F, ξ), where P1F is an excisive functor (preserving the additional colimits)
and ξ : F ⇒ P1F is a natural transformation.

The advantage of this new approach is that there is a canonical way to assign to any F a
corresponding pair (P1F, ξF ), so that the final work is to verify if this pair really is universal (i.e,
if the corresponding approximation really is the best possible). Indeed, this follows from the fact
that not only the image of Dstab is generated by excisive functors, but the whole category of
∞-functors. More precisely, the inclusion

ı :∞Exc(C;D) →֒ ∞Func(C;D) has an adjoint P1 :∞Func(C;D)→∞Exc(C;D),

so that for any F we define P1F as its image by P1 and the transformation ξF as the counit of
the adjunction at F .

We commented previously that in Section 6.2.2 of [125] it is proved that, if D is well behaved
(say a ∞-topos), then, when restricted to a very large class of functors, the rule F 7→ Stab(F )
becomes functorial. Before the discussion above we can finally say that in Section 6.2.2 Lurie
actually prove that, under these hypothesis, the canonical pair (P1F, ξF ) really is universal.

Remark. The relation between functors preserving colimits and excisive functors preserving
the terminal object is more stronger than that given by the equivalence 9.2.1. Indeed, it can
be show that if D is stable (in particular, if it is the category of Ω-spectrum objects of another
∞-category) then for any C (not necessarily stable) we have an equivalence

∞Funccolim(C;D) ≃ ∞Exc∗(C;D). (9.2.2)

Following Sections 9 and 10 of [126], let us see that this fact has an interesting consequence,
which allows us to get information on the stable homotopy theory of an arbitrary ∞-category by
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studying the stable homotopy theory of topological spaces. In fact, let Topfin
∗ ⊂ Top∗ be the

smallest full sub-∞-category which is closed under finite ∞-colimits. In other words, this is the
category such that for any other ∞-category D with null object we have an equivalence

∞Funccolim(Top
fin
∗ ;D) ≃ D

given by evaluation at the point ∗. Therefore, thanks to (9.2.2) we conclude that

Stab(D) ≃ ∞Funccolim(Top
fin
∗ ; Stable(D))

≃ ∞Exc∗(Top
fin
∗ ; Stable(D))

≃ ∞Exc∗(Top
fin
∗ ;D), (9.2.3)

where the last equivalence is obtained by composition with the functor Ω
∞

. So, for any D its
stabilization is equivalent to some category of functors from topological spaces to D.

Goodwillie Calculus

In the last subsection we studied the relation between the functoriality of the stabilization Stab
and the properties of the approximation of a ∞-functor F by its canonical excisive ∞-functor
P1F . More precisely, we have seen that if this excisive approximation is the best possible for
any F , then Stab is functorial. We discussed some conditions under which this actually happens.
But, a question remains: what can we do if such conditions are not satisfied?

Notice that in this case the excisive approximation P1F is not the best possible, so that
the main idea is to search for some refinement of P1F . Here we will give a very brief outline
of the fact any ∞-functor F admits not only the excisive approximation P1F , but indeed a
sequence PnF of more refined excisive approximations which become equipped with canonical
natural transformations ξnF : PnF → Pn−1F . So, if there is some n such that the corresponding
n-excisive approaximation is universal, then each PmF collapses into PnF (because PnF is now
the best approximation) and the stabilization process becomes functorial.

The idea is the following: if P1F is about excisive functors, then PnF should be about
n-excisive functors. But the excisive ∞-functors are, by definition, those mapping ∞-pushout
squares into∞-pullback squares. Therefore, n-excisive functors should map∞-pushout n-squares
into ∞-pullback n-squares. Finally, because we obtained ξF : P1F ⇒ F as the counit of a
canonical adjunction, it is natural to build ξnF following an analogous process. Together, all these
insights will give the required sequence of excisive approximations, as can be seen in [82, 129, 125].
For instance, let us see how to formalize the notion of n-excisive functors.

We start by recalling that, as commented in Example ??, to any 1-category C we can assign
a strict ∞-category ∞Sq(C) whose k-morphisms are commutative k-squares of morphism of
C. Now, if C is actually a ∞-category, then we can make use of the ∞-weakening principle and
define a weak version of the ∞-category ∞Sq(C). This is done by working with k-squares of
1-morphisms of C which are commutative up to 2-morphisms of C, which in turn satisfy some
condition up to 3-morphisms, and so on.

Notice that a ∞-pullback square is something of a terminal object of ∞Sq(C), while the
∞-pushout squares behave as initial objects. For every n ∈ N we define another ∞-category
∞Sqn(C), obtained from ∞Sq(C) by forgetting the (n + 1)-category of objects, 1-morphisms,
and so on up to (n − 1)-morphisms. In other words, ∞Sqn(C) is the ∞-category whose objects
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are weak commutative n-squares in C, whose 1-morphisms are (n + 1)-squares, and so on. A
∞-pullback/∞-pushout n-square is a terminal object/initial object in ∞Sqn(C).

We then define the category Excn(C;D) of n-excisive ∞-functors as the full sub ∞-category
of those ∞-functors F : C → D which map ∞-pushout n-squares into ∞-pullback n-squares.
The fundamental fact is that the inclusion of this category into the ∞-category of all ∞-functors
has an adjoint

Pn :∞Func(C;D)→ Excn(C;D),

so that the counit of this adjunction gives a canonical transformation ϕnF : PnF → F . It happens
that, by construction, every n-excisive functor is also m-excisive for any m ≥ n (essentially
because any m-square can be build by gluing n-squares), so that the transformation ϕnF factors
by a transformation ξnF : PnF → Pn−1F which is that giving the n-excisive approximation of F .

Remark. Recall that homotopy theory and differential calculus have many similarities, as pre-
sented in Section 1.2. The above disscussion on n-excisive functors can be understood as an
extension of this analogy to the context of abstract stable homotopy theory. Indeed, the first
excisive approximation P1F is usually called the categorical derivative of F , so that PnF is some
kind of nth derivative and the sequence

· · · // Pn+1
// Pn // Pn−1

// · · · // P1
// F

is the “higher categorical Taylor series of F ”. Because of this analogy the study of the n-excisive
approximations is usually known as the Goodwillie calculus of functors. See [??] for the original
references in the context of classical stable homotopy theory, [??] for the higher categorical
approach discussed above and [??] for more one the analogy with differential calculus.

Smash

Up to this point we worked with ∞-monoidal ∞-categories or with stable ∞-categories.
Now it is time of mix these two classes of objects: we will pass to discuss stable ∞-monoidal
∞-categories. These are just ∞-categories which are simultaneously stable and ∞-monoidal
(without any compatibility condition between both structures). Our main objective here is to
give an outline of the following result, which appear in a slightly different version as Theorem ??
in [??]:

• If (C,⊗, 1) is ∞-monoidal ∞-category whose product ⊗ preserve ∞-colimits, then, up to
∞-equivalences, its stabilization Stab(C) has a unique (symmetric) ∞-monoidal structure
whose neutral object is the free spectrum Σ

∞
1. Therefore, it becomes a stable∞-monoidal

∞-category in a canonical way.

Before sketching this result, let us digress on its mathematical meaning. We start by recalling
that (as discussed in Section 4.2) the cartesian monoidal structure on any convenient category
C ⊂ Top of topological space induces a symmetric monoidal structure in category C∗ given by
the smash product ∧. In Section 5.3, on the other hand, we showed that ∧ induces a natural
symmetric monoidal structure onto the homotopy category of spectra Ho(Spec), given by the
smash product of spectra ∧S, whose neutral element is the homotopy class of the sphere spectrum
S: the suspension spectrum generated by the point ∗.
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Then, many reasons led us to ask if this monoidal structure given by the “smash product of
spectra” can be lifted to the actual category of spectra Spec. The answer was given by the Lewis
obstruction theorem: this lifting cannot be done. But, notice that in the previous chapters we
have been regarded C∗ and Spec as 1-categories. The result above imply that, if now we regard
Spec as the (∞, 1)-category given by the stabilization of C∗, then the smash product actually
can lifted to spectra in a unique way! As a motivation, recall that Lewis’s obstruction theorem
is based on the fact that the smash product fulfill nice properties only up to homotopy, so that
it is natural to expect the obstructions disappear in the higher categorical context, where all
homotopies are taken into account.

Summarizing, the previous result together with Lewis’s obstruction theorem give the following
assertion:

Theorem 9.1. For any monoidal ∞-category (C,⊗, 1) whose product preserve ∞-colimits, the
corresponding category of spectra has a canonical smash product. Furthermore, in the general case
this induced ∞-monoidal structure does not gives a 1-monoidal structure.

Sketch of the proof. The second affirmative is a direct consequence of Lewis’s theorem. The idea
of the first affirmative is pretty simple. Indeed, recall that, as discussed in the last subsection,
if F : C → D preserve ∞-colimits, then the stabilization Stab(F ) is well defined. The same is
valid in the context of ∞-functors with many variables (see Section 6.1.3 of [125]). So, under the
hypothesis the derivative of the product ⊗ : C×C→ C exists. By definition, it is a ∞-functor

∧⊗ : Stab(C)× Stab(C)→ Stab(C)

satisfying some universal property, which ensures its uniqueness. In order to see that it really
defines a monoidal structure, notice that, as discussed in Section 4.2, if (C,⊗, ∗) is any monoidal
category, the preservation of colimits by ⊗ imply the associativity of the smash product in C∗.
Here, in an analogous way, the preservation of∞-colimits by ⊗ imply that the “smash product on
spectra” ∧⊗ is associative up to higher morphisms. Finally, let us prove that the free spectrum
S1 = Σ

∞
1 satisfy the neutral element property up to equivalences. So, given any spectrum object

we need to verify that X ∧⊗ S1 ≃ X. The case in which X = Σ
∞
X for some X is immediate: by

the relation between ∧⊗ and ⊗, we have

X ∧⊗ S1 ≃ (Σ
∞
X) ∧⊗ (Σ

∞
1) ≃ Σ

∞
(X ⊗ 1) ≃ Σ

∞
X = X.

In Sections 1.4.3 and 6.2.4 of [125], the general case makes explicit use of the relation between
the category of spectrum objects in C and the category of excisive functors C∗ → C, obtained in
(9.2.3). Here we will give an alternative approach. Indeed, notice that the neutral object 1 ∈ C

is the same as a ∞-functor e : 1 → C whose image is 1, where 1 is the ∞-category with only
one object and whose k-morphisms are identities. This functor has derivative because it preserve
∞-colimits. Therefore, there is Stab(e) : Stab(1) → Stab(C) such that Σ

∞
C ◦ e ≃ Stab(e) ◦ Σ

∞
1 ,

so that Stab(e) is the same as the spectrum object Σ
∞
C 1. The neutral element property follows

from the functoriality of the stabilization.

We end with some technical remarks:

Remark. In the definition of stable monoidal ∞-category we do not require any compatibility
between the monoidal and the stable structures. For instance, it would be natural to require
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that both Σ and Ω becomes ∞-monoidal∞-functors, but this condition does not appear in the
previous definition. We notice that such a compatibility is indeed a consequence of the stable
properties of Σ and Ω. In fact, by the stability we have Σ1 ≃ 1 and Ω1 ≃ 1, meaning that the
units are preserved. Furthermore,

Σ(X ⊗ Y ) ≃ X ⊗ Y ≃ (ΣX)⊗ (ΣY )

and similarly for the loop space∞-functor, so that both Σ and Ω are monoidal∞-functors. Analo-
gous argument allows us to conclude that if the underlying monoidal structure is braided/symmetric
then these ∞-functors are also braided/symmetric.

Remark. In the topological context C = C∗, the ∞-monoid objects into the symmetric ∞-
monoidal structure on spectra Spec given by the smash product ∧S are usually called A∞-ring
spaces, while the commutative ∞-monoid objects are called E∞-ring spaces. In the abstract
context (i.e for (C,⊗, 1) an arbitrary monoidal ∞-category in the hypothesis of the last theo-
rem), we adopt a similar nomenclature: the ∞-monoid objects and the commutative ∞-monoid
objects into (Stab(C),∧⊗,S1) are respectively called A∞-ring objects and E∞-ring objects. The
corresponding categories will be denoted by

A∞Ring(C,⊗) and E∞Ring(C,⊗)

instead of by the more complicated notations (independently, the notation for the unit S1 is
maintained, being called the sphere spectrum)

∞Mon(Stab(C),∧⊗,S1) and ∞Monc(Stab(C),∧⊗,S1).

Remark. Recall that for any ∞-monoid object R in a ∞-monoidal ∞-category (C,⊗, 1) we
have the corresponding ∞-category ∞ModR(C,⊗) of ∞-module objects over R. If the structure
(C,⊗, 1) is symmetric, then it induces monoidal structure ⊗R in ∞ModR(C,⊗). So, in partic-
ular, for a given A∞-ring object A in a symmetric ∞-monoidal ∞-category in the hypothesis of
Theorem 9.1, we have a corresponding ∞-monoidal structure in the ∞-category of ∞-module
spectrum over A. We usually say that (∧⊗)A is the derived smash product with respect to A

and we write ∧A when the ∞-monoidal structure (⊗, 1) of C can be omitted without loss of
understanding.

9.3 Cohomology

In Section 1.2 we discussed many examples of invariants arising from functors. Most of
them were flavors of cohomology theories. Indeed, there we discussed nonabelian cohomology,
generalized cohomology, twisted cohomology algebraic cohomology, abelian sheaf cohomology,
algebraic K-theory, etc. We note that for some of these cohomology theories, the functor defining
them is simply a hom-functor on the (homotopy category of) some (∞, 1)-category. For instance,

1. nonabelian cohomology with coefficients in a continuous group G is given by [−, BG], defined
on the homotopy category of Top;

2. generalized cohomology (as ordinary cohomology, complex K-theory and oriented cobor-
dism) with coefficients into a Ω-spectrum E = (En) is given by [−, En], defined on the
homotopy category of Top∗.
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Other cohomology theories, on the other hand, despite have been defined on the homotopy
category of some (∞, 1)-category, they are given by functors which seems much less natural than
hom-functors. Indeed,

1. twisted generalized cohomology is given by functors Γn, defined on the homotopy category
of Top∗, which assigns to any topological space X the space of sections of some bundle
over X whose fiber belongs to some Ω-spectra E;

2. abelian sheaf cohomology of a space X was defined as the (derived functor of the) global
sections functor Γ(X,−), assigning to any sheaf F on X the object F (X);

3. algebraic cohomology was defined on the homotopy category of (unbounded) cochain com-
plexes CChR as the functor Hk that assigns to any cochain complex (X∗, d) the corre-
sponding quotient ker(dk+1)/img(dk).

In addition we have the fact that the name “cohomology groups” is unnatural, because the
different cohomology theories take values in different categories, not necessarily in the category
of groups. For instance, if G is not abelian, then the nonabelian cohomology with coefficients in
G is not a group, but only a set. On the other hand, as discussed in Section 5.1, independently
of the Ω-spectrum E, the generalized cohomology functors of E take values in Ab; if E is a
ring spectrum, then the theory take values into the category of graded rings, as discussed in
Section 5.3. Furthermore, for a given ring R, the algebraic cohomology always take values into
the category of R-modules.

Summarizing, up to this point there is a “zoo” of many different cohomology theories, defined
by different classes of functors and taking values into different algebraic categories. Here we
would like to explain that this “zoo” has indeed only one “cage”. In other words, as we will see,
there is a very simple (and, therefore, very abstract) notion of cohomology of which all examples
above are only particular cases. By making use of this new abstract definition of cohomology new
interesting examples will appear, giving new powerful invariants.

Warning. Let (∞, 1)Cat be the category of all (∞, 1)-category. As discussed in Section 8.3,
for any k ≥ 1 we have the k-truncation functor τ≤k, which assigns to any (∞, 1)-category C

the k-category τ≤kC. For k = 1, the 1-category τ≤1C is obtained by replacing the ∞-groupoids
of morphisms between two objects X and Y by the set of equivalence classes of 1-morphisms
f, g : X → Y by relation f ≃ g iff there exist some 2-morphism h : f ⇒ g. For the purposes
of the next subsections, we will say that τ≤1C is the homotopy category of C, writing Ho(C) to
denote it. We will also write π0 instead of τ≤1 in order to denote the projection functor.

Unification

Let H be a (∞, 1)-category which we will assume ∞-complete and ∞-cocomplete. Following
something as Section 3.6.9 of [182], for any two given objects X,A ∈ H we define the abstract
cohomology group (or the abstract 0th cohomology group) of X with coefficients on A as the set
of equivalence classes

H0(X;A) := π0(∞Gpd(X,A)).

This immediately gives a representable functor

H0(−;A) : Ho(H)→ Set,
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which we call the abstract cohomology theory (or the abstract 0th cohomology theory) with coef-
ficients on A. So, in more explicit terms, H0(−;A) is just the representable functor of Ho(H)
classified by A. Or, in other words, it is just the image of A under the Yoneda embedding.

Depending of the characteristics of the coefficient object A, the abstract cohomology theory
defined by it will acquire new properties/structures. For instance, if A is a ∞-monoid, com-
mutative ∞-monoid or a ∞-group object in the cartesian ∞-monoidal structure of H, then for
any X the corresponding 0-th cohomology groups H0(X,A) will have induced monoid, com-
mutive monoid or group structures. Furthermore, if A has iterated deloopings BkA, say for
k = 0, 1, ..., n, then we can define not only the 0-th cohomology group with coefficient in A, but
also k-th cohomology groups for i = 0, 1, ..., n. Indeed, we put

Hk(X;A) := H0(X;BkA) := π0(∞Gpd(X,BkA)).

In particular, if BkA exists for any k, then A is ∞-loop space object, meaning that there is
a spectrum object A = (An) of Stab(H) such that A = Ω

∞
A and, therefore, that BkA ≃ Ak. In

other words, we have
Hk(X;A) ≃ H0(X;Ak)

and in this case each kth abstract cohomology group is automatically an abelian group. Addi-
tionally, if it happens that A be a A∞-ring object or a E∞-ring object, then (exactly as done in
Section 5.3 for ring spectra and commutative ring spectra) we get products

Hk(X;A) ×H l(X;A)→ Hk+l(X;A)

giving to the abstract cohomology groups a structure of graded ring. In this case we say that
we have a multiplicative abstract cohomology theory with coefficients in A (or in the underlying
spectrum object A).

Now it is easy to understand how the very different flavors of cohomology theories discussed
in Section 1.2 (and listed in the last subsection) are only particular cases of abstract cohomology,
as defined above. Indeed,

1. nonabelian cohomology. As commented in Example 8.12, if G is a topological group, its
classifying space BG is modeled by the geometric realization |BG| of the delooped ∞-
groupoid. This means that under the homotopy hypothesis we can regard the classified
space BG as BG, so that usual nonabelian cohomology with coefficients in G is just 1th
abstract cohomology H1(X;G) = [X;BG] for H the ∞-topos ∞Gpd.

2. generalized cohomology. Similarly, if E is a topological spectrum, then usual generalized
cohomology defined by it is just abstract cohomology for H the ∞-topos Top∗ ≃ ∞Gpd∗

with coefficients in the ∞-loop space Ω∞E and its deloopings.

3. twisted generalized cohomology. In an arbitrary category C, giving a section s : Y → X for
a morphism f : X → Y is just the same as giving a morphism s : idY → f in the slice
category C/Y . This fact can be used in order to recover twisted generalized cohomology
of X with coefficients into some spectrum E as abstract cohomology in the slice ∞-topos
∞Gpd∗/X.
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4. algebraic cohomology: We start by recalling that the categories Ch+
R and CCh+

R are stable,
meaning that any object has all deloopings, given by the suspension functor, which in this
case is just the shifting functor: the unique difference from chain complexes to cochain
complexes is the direction that we are shifting. For any k, let BkR be the chain complex
whose only nontrivial term is the kth, being R. In other words, it is the kth delooping of
R. Equivalently, it is the chain complex such that

Hi(B
kR) ≃

{

R, i = k

0, i 6= k.

Notice that BkR is some “algebraic analogue” of the Eilenberg-Mac Lane spaces with co-
efficients in R. Now, a direct computation shows that, for any cochain complex X∗, the
chain maps X∗ → BkR from the dual chain complex to the Eilenberg-Mac lane complex is
in bijection with the elements of ker dk+1, while the chain homotopies are in bijection with
the elements of img dk. Therefore,

π0(∞GpdChR
(X∗,BkR)) ≃ ker dk+1/img dk = Hk(X∗),

showing that algebraic cohomology is just abstract cohomology in the (∞, 1)-category of
chain complexes.

Abstraction

In the following we will see that the notions of cocycles and characteristic classes makes
sense in any abstract cohomology theory. We will also see that we can talk of objects classified
by cocycles, generalizing how nonabelian cohomology classifies principal bundles.

We start by recalling that in algebraic cohomology (say with coefficients in a ring R) a cocycle
of a cochain complex X∗ is an element x ∈ Xk such that dx = 0. In other words, a cocycle
is precisely an element that descends to a class of the cohomology group Hk

R. In nonabelian
cohomology, a cocycle is given by a family of functions gij : Ui∩Uj → G satisfying the conditions
gij ·gjk = gik and gii = e. In other words, as discussed in Section 6.2, it is a functor Č(Ui)→ BG
which, indeed, represent a morphism X → BG and, therefore, a function X → BG. This, in
turn, induces an element of the cohomology group [X,BG]. Therefore, in both cases, the cocycles
are just elements of the cohomology groups. Motivated by this fact, given objects X,A ∈ H in
any (∞, 1)-category, we define a cocycle of X with coefficients in A as just an element of the
abstract cohomology H0(X;A).

As discussed in Section 1.3, if E is a Ω-spectrum representing a generalized cohomology
theory, then a universal characteristic class with coefficients in E is a natural transformation
ξ : BunG ⇒ Hn

E , where BunG is the functor assigning to any space X the isomorphism class of
G-principal bundles over X. By the classication theorem of G-bundles, BunG ≃ [−, BG] and
we see that a characteristic class is just a map from nonabelian cohomology to some generalized
cohomology. By the Yoneda lemma, these transformations are into 1-1 correspondence with the
morphisms BG→ En between the representing objects.

So, motivated by the last situation, for A,B ∈ H objects in a (∞, 1)-category, we define
a characteristic class between the corresponding abstract cohomology theories H0(−;A) and
H0(−;B) as a morphism ξ : A→ B (or, equivalently, by the ∞-Yoneda lemma, as a ∞-natural
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transformation between the cohomology functors). In other words, a characteristic class is a
morphism between abstract cohomology theories.

Recall that the equivalence [−, BG] ≃ BunG is obtained by the pullback construction over
some universal G-bundle. More precisely, it is given by associating to any function f : X → BG
the first pullback presented below, where EG → BG is some G-bundle whose total space is
weakly contractible (i.e all homotopy groups are trivial). The construction need to be homotopy
invariant, so that the pulback is indeed a ∞-pullback. This means that EG can be replaced by
the trivial space ∗ and, therefore, we see that the equivalence [−, BG] ≃ BunG is given by taking
the homotopy fiber (i.e, the ∞-kernel) of f , as in the ∞-pullback below. In other words, any
cocycle f : X → BG in nonabelian cohomology classifies a G-bundle and this classification is
obtained by taking the homotopy fiber of f .

P

��

// EG

��

∞pb

��

// ∗

��
X // BG X // BG

Now, notice that the∞-pullback above makes sense for any cocycle f : X → A in any abstract
cohomology theory, motivation us to define the object classified by f as being its homotopy fiber.
This allow us to define “higher bundles”, as in the following example:

Example 9.1 (∞-bundle). If G is a ∞-group object in a (∞, 1)-category H (or, more generally,
if it is a ∞-groupoid in a ∞-topos), then the delooping BG exists and the object classified by a
cocycle X → BG in nonabelian abstract cohomology is called a G-principal ∞-bundle over X.
If G is a topological group trivially regarded as a ∞-group and X is a topological space regarded
as a discrete∞-groupoid, then a G-principal ∞-bundle over X is the same as a usual G-principal
bundle over X.

Associated Bundles

In the last subsection we showed that the usual notions of cocycles and characteristic classes
refine to analogous notions in abstract cohomology theory. We then used this new notions in
order to define principal ∞-bundles. Here we will see that the process of constructing associated
bundles can also be refined to associated ∞-bundles. This will be used in the next section in
order to show that the Thom isomorphism and the Poincaré duality, which are classical results
in usual cohomology, can be lifted to the context of abstract cohomology.

The strategy is to give a purely category characterization of the associated bundle construction
in such a way that all concepts can be naturally abstracted. So, we start by recalling the
construction, which was sketched in Example 1.7. Let G be a group acting into a space F .
By an action we mean a map ρ : G × F → F fulfilling the usual conditions or, equivalently, a
group homomorphism ρ : G → Aut(F ), which induces a map ρ : BG → BAut(F ). Therefore,
given a G-bundle, say classified by f : X → BG, the obvious idea to get a G-bundle over X with
fiber F is to consider the bundle classified by the composition f ◦ρ, as in the first diagram below.

∞pb

��

// ∗

��
X

f
// BG

ρ
// BAut(F )
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We have, however, at least two problems with this construction:

1. if the action is not effective, i.e, if ρ : G→ Aut(F ) is not injective, then the obtained bundle
is not structured over G as desired, but only over Aut(F );

2. the typical fiber of the obtained bundle is the automorphism group Aut(F ) and not F itself.

The first problem imply that we need to replace ρ in the diagram below, while the second
problem imply that the map ∗ → BAut(F ) should also be replaced. So, the next tentative is to
consider the∞-pullback below, where F//ρ is some space depending on F and ρ, which becomes
endowed with a canonical projection onto BG.

∞pb

��

// F//ρ

��
X // BG

In order to get some felling on what this space should be, notice that if we consider the simple
case in which F = G and ρ : G→ Aut(G) is the action by left multiplication g 7→ ℓg, we expect
to recover the starting G-bundle. So, we need to build a space G//ρ, depending both of G and
ρ, which becomes equipped with a canonical projection onto BG and such that G//ρ ≃ ∗. The
obvious choice is to consider G//ρ as the quotient space of G by the action ρ. This really give a
trivial space, but it does not be endowed with a canonical projection onto BG. We can get this
projection by adding a new variable, i.e, by considering G//ρ as the quotient of G × G by the
relation (g, h) ∼ (g′, h′) iff g′ = g and h′ = Lg(h).

Physics

In Section 6.2 we commented that the configuration space (i.e, the space of fields) of any
interesting classical theory of particles can be regarded as a smooth stack : a functor Fields :
Diff

op
sub → Gpd such that for any manifold Σ and any open covering Ui →֒ Σ the corresponding

“space of fields on Σ” satisfy compatibility conditions in the intersections Ui ∩ Uj which allow us
to study it by studying “the space of fields along Ui”.

We also commented that in the case of strings (or higher dimensional objects) there are
interesting classical theories which make use of fields having the property that, in order to recover
them when given a covering Ui →֒ Σ, we need compatibility conditions not only in the immediate
intersections Ui ∩ Uj , but also in the secondary intersections Ui ∩ Uj ∩ Uk. This means that,
in order to incorporate them into an unified axiomatic language, we need to have the notion of
“higher stacks”. These “higher stacks” were then formalized in Section 8.2, being given by smooth
∞-stacks Fields : Diff

op
sub →∞Gpd.

Now, with the language of abstract cohomology on hand we can give a cohomological inter-
pretation to the facts above. Indeed, recall that in the Sctions 6.2 and 8.2 we emphasized that the
smooth ∞-stacks describing classical physical theories are geometric, which means that they
are always induced by some ∞-Lie groupoid. In other words, we always have

Fields = Mor∞Stack(Diff)(−,Fields)
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for some Fields ∈ ∞GpdDiff . Consequently, composing with the first order truncation functor
π0 we see that any classical field theory can be understood as an abstract cohomology theory in
the ∞-topos ∞Stack(Diff sub, J).

Recall that, as commented in Section 2.4, it is expected that gauge theory of strings should
be described by some geometry of “higher bundles”, defined on “higher groups”. Let us see that
the above interpretation led us to give a precise meaning to this fact. Indeed, for a geometric
smooth ∞-stack Fields representing a classical physical theory, every cocycle [f ] : Σ → Fields

in the corresponding abstract cohomology classifies, by Example 9.1, precisely Fields-principal
∞-bundles over Σ.

9.4 Obstruction

As an application of the abstract notions of abstract cohomology and characteristic classes,
let us study lifting/extension problems in an arbitrary (∞, 1)-category. We start by recalling that
when H is a usual 1-category, we say a 1-morphism f : X → Y can be lifted with respect to other
1-morphism π : P → Y when there exists some f̂ making commutative the first diagram below.
In this case we say that it is a lifting of f with respect to π. Similarly, we say that f : A→ Y can
be extended with respect to ı : A→ X when there exists f̃ such that the second diagram below
is commutative and in this case this map is called an extension of f with respect to ı.

P

π
��

Y

X

f̂
>>⑥

⑥
⑥

⑥

f
// Y A

f
>>⑦⑦⑦⑦⑦⑦⑦⑦

ı
// X

f̃

OO✤
✤
✤

Now, let us suppose that the ambient category H is not only a 1-category, but indeed a
∞-category. So, by the ∞-weakening principle the lifting/extension problems can be weakened
by replacing strictly commutative diagrams by diagrams commutative up to higher morphisms.
More precisely, in this context we say that the 1-morphism f : X → Y has a ∞-lifting with
respect to π : P → Y when there is f̂ such that the first diagram above is commutative up to
higher morphisms, i.e, we have some 2-isomorphism ξ : f ≃ f̂ ◦π satisfying some condition up to
3-morphisms, and so on. In a totally dual fashion we define ∞-extensions of 1-morphisms.

Here we would like to explain that the problems of existence of ∞-liftings and ∞-extensions
have a purely cohomological nature. More precisely, we will see that a given 1-morphism f can
be ∞-lifted/∞-extended only if some cocycle associated to it is trivial. We usually say that the
triviality of this cocycle is an obstruction to the existence of the ∞-lifting/∞-extension. In this
sense, what we will develop here is some kind of obstruction theory.

Remark. In Section 2.1 we studied the extension problem in the 2-category Cat, getting
the notions of Kan extension. Consequently, we can apply obstruction theory in order to get
obstructions to the existence of Kan extensions. In other words, to determine if a category is
complete/cocomplete is a cohomological problem.

Notice that the ∞-lifting problem and the ∞-extension problem are dual, so that studying
some of them we can get analogous results by applying the ∞-duality principle. Because of
this, we will analyze only the ∞-lifting problem. So, let f : X → Y be a 1-morphism and let
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π : P → Y be some 1-morphism respectively to which we are searching for a lifting, as in the
first diagram below. The idea is pretty simple: in the classical situations where lifting problems
are considered, P is some bundle (say a G-principal bundle). But G-bundles are classified by
nonabelian cohomology with coefficients in G. This means that in the typical cases P is the fiber
of some other map c : Y → Y ′, as in the second diagram below. Because ∗ is a terminal object,
there is a unique morphism 0 : X → ∗. So, by the universality of ∞-pullbacks, the ∞-lifting f̂
exists iff the exterior diagram is ∞-commutative (meaning c ◦ f ≃ 0) as in the third diagram.

P

π
��

P

π
��

// ∗

��

P

π
��

// ∗

��
X

f
// Y X

f
// Y c

// Y ′ X

0

&&

f̂
>>⑦

⑦
⑦

⑦

f
// Y c

// Y ′

Now, let us interpret this conclusion in terms of the cohomological language introduced in
the last subsection. Indeed, the 1-morphism f induces a cocycle [f ] in the abstract cohomology
group H0(X;Y ). By the∞-Yoneda lemma, the morphism c : Y → Y ′ corresponds to an universal
characteristic class c : H0(−;Y ) → H0(−;Y ′), so that the c ◦ f corresponds to the evaluated
class c([f ]). Therefore, c ◦ f ≃ 0 means precisely that the cocycle c([f ]) is trivial.

Conclusion. Let H be a ∞-category with finite ∞-limits/∞-colimits. If a morphism π : P → Y
is part of a fiber sequence, say with c : Y → Y ′, then a given f : X → Y has a ∞-lifting with
respect to π if, and only if, the characteristic class c([f ]) is trivial.

Example

An interesting situation in which obstruction theory can be concretely applied is in the
Whitehead tower of an object X. Indeed, recall that, as discussed in Section 8.3, if H is an
(∞, 1)-category (say ∞-complete and ∞-cocomplete, with terminal object ∗), we can use the
truncation τ≤n in order to study any object X by analyzing the iterated truncations of the
maps X → ∗ and ∗ → X. The obtained sequences are respectively called Postnikov tower and
Whitehead tower for X.

In Examples 8.11 and 8.12 we saw that, for the ∞-topos Top, these towers have a very
concrete meaning. Indeed, the respective nth term in the Postnikov and in the Whitehead towers
are spaces Xn and Xn whose weak homotopy type is determined by the conditions

πi(Xn) ≃

{

πi(X), i ≤ n

0, i > n
and πi(X

n) ≃

{

0, i ≤ n

πi(X), i > n
.

This characterization was then used to reconstruct the Whitehead tower is terms of the
Postnikov tower. Indeed, we commented that the nth term Xn is exactly the fiber of the
canonical map X → Xn in the Postnikov tower, meaning that for any n the first diagram below
is a∞-pullback. So, given a continuous map f : A→ X we can study the problem of lifting from
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Y to Y n by making use of obstruction theory, as in the third diagram below.

Xn

��

// ∗

��

Xn−1

�� =

Xn

��

// ∗

��

Xn

��

// ∗

��...

��

X // Xn A
f

//

0
''

f̂

??�
�

�
�

�
X // Xn

X // · · · // Xn+1
// Xn

The situation will be more clear when working with a concrete example.

Example 9.2 (O(n)-bundles). Let us take X = BO(n), where O(n) is the group of orthogonal
n× n real matrices. Thus

π1(X) ≃ [S1, BO(n)]

≃ [ΣS0, BO(n)]

≃ [S0,ΩBO(n)]

≃ π0(O(n)) ≃ Z2

and, therefore, X1 ≃ K(Z2, 1). A map c : BO(n)→ K(Z2, 1) represent a class in H1(BO(n);Z2),
which is totally determined by the Stiefel-Whitney class w1. On the other hand, each f : X →
BO(n) is a cocycle in nonabelian cohomology with coefficients on O(n), which classify O(n)-
bundles (i.e, rank n real vector bundles) over X. Finally, by a direct computation we have
X1 ≃ BSO(n), so that a lifting of f from X to X1 corresponds to lifting from a O(n)-structure
to a SO(n)-structure. But a SO(n)-bundle is precisely a orientable rank n bundle. Therefore,
given a O(n)-bundle over X, say classified by a map f , it is orientable iff its first Stiefel-Whitney
class w1(f) vanishes.

Remark. We could do a analogous analysis for X equal to BU(n) instead of equal to BO(n),
where here U(n) is the group of unitary n×n complex matrices. Despite the similarities between
the definitions of O(n) and U(n), the final conclusion would be totally different. This comes
from the fact that U(n) is connected, while O(n) is not. Consequently,

π1(BU(n)) ≃ π0(U(n)) ≃ 0,

so that in this case X1 ≃ K(0, 1) is the trivial space, meaning that the cohomology group
H0(−,X1) has only trivial cocycles. Particularly, any c : BU(n) → X1 is necessarily trivial
and, therefore, there is no obstructions to lift a given f : X → BU(n) to Y 1 ≃ BSU(n). In
other words, given a U(n)-bundle, it is always possible to replace its structural group by SU(n).
Summarizing: while a real bundle is orientable iff w1(f) = 0, any complex bundle is orientable.
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Orientation

Here, following [10, 145], we will see that the concept of orientation of vector bundles presented
in Section 5.3 can be vastly abstracted to the the context of∞-bundles. This new abstract notion
of orientation has a very physical meaning, as will be discussed later. Indeed, the orientatibility
condition of ∞-bundles can be identified with quantum anomaly cancelations and, therefore, as
a necessary condition to build a (pull-push) quantization scheme.

We start by noticing that, if Rng is the usual category of (associative and unital) rings, then
we have a canonical functor GL1 : Rng → Grp which assigns to any ring R its group GL1(R)
of units (i.e, the group elements which have multiplicative inverse). For instance, if R is a field
K, then GL1(K) = K− 0, while if R is the ring M(n,K) of n× n matrices with coefficients into
a field K, then GL1(M(n,K)) = GL1(n,K) is just the group of invertible matrices. There two
fundamental remarks on the functor GL1:

1. for any ring R we have a canonical inclusion morphism GL1(R) →֒ R, which indeed fits
into natural transformation ξ : GL1 ⇒ idRng;

2. it has an adjoint Z[−] : Grp → Rng, which assigns to any group G the group-ring Z[G]
with coefficients in Z.

Le us see that the structures above refine to the context of abstract stable homotopy theory.
More precisely, let (H,⊗, 1) be a symmetric monoidal ∞-category. As discussed in Section 9.2, if
the product ⊗ preserves∞-colimits in both arguments, then the corresponding category Stab(H)
of Ω-spectrum objects acquires a canonical symmetric monoidal ∞-structure given by the smash
product ∧⊗ on spectra and whose neutral object is the sphere spectrum S1 = Σ

∞
1. We assert

that in the case when H is concrete, we have analogous adjunction

A∞Ring(H,⊗, 1)
GL∞

1 //
∞Hopf(H,⊗, 1).

S1[−]
oo

We will construct GL∞
1 and outline the existence of the adjunction. For details see [10]. Recall

that for any spectrum A in Stab(H) we can associate an object Ω
∞
A ∈ H and, truncating at the

first level (i.e, by passing to the homotopy category), we get another object π0(Ω
∞
A) ∈ Ho(H).

By construction, Ω
∞
A is a ∞-loop object and, therefore, a commutative ∞-Hopf object in the

cartesian structure (i.e, an abelian ∞-group object). Consequently, π0(Ω
∞
A) is a an abelian

group object in the homotopy category.
Now, if A is indeed a A∞-ring object, then, independently of the previous structures, Ω

∞
A is

an A∞-space and, consequently, π0(Ω
∞
A) is a monoid object. Therefore, joining both structures

we see that Ω
∞
A is a ∞-ring object, so that π0(Ω

∞
A) is a ring object in Ho(H). Because H is

concrete, this structure then forgets to a usual ring. This allow us to apply GL1. Particularly, we
can build the∞-pullback below which we define as GL∞

1 (A). Because each entity in the pullback
is a ∞-group, the result is also a ∞-group. Finally, the construction is functorial because each
step is functorial.

∞pb

��

// Ω
∞
A

��
GL1(π0(Ω

∞
A)) // π0(Ω

∞
A)

(9.4.1)
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With the ∞-functor GL∞
1 on hand we are ready to introduce the notion of orientation in

abstract generalized cohomology theory. Indeed, let A be a A∞-ring object, representing the
coefficients of an abstract generalized cohomology theory in H, and let GL∞

1 (A) be the internal
∞-group constructed above. Applying Σ

∞
we then get a ∞-group on the stable ∞-category

Stab(H), so that the delooping BΣ
∞
GL∞

1 (A) is well defined. From Example 9.1, the morphisms

f : X→ BΣ
∞
GL∞

1 (A)

for a given Ω-spectrum X classify ∞-principal Σ
∞
GL∞

1 (A)-bundles over X.
We have a canonical action of GL∞

1 (A) on Ω
∞
A, in the same way as GL1(R) acts naturally

into the underlying ring R. By the adjunction between Ω
∞

and Σ
∞

, this action induces an action
of Σ

∞
GL∞

1 (A) over A. Consequently, by the discussion in the subsection “Associated Bundles”,
for any bundle classified by a morphism ζ as above, we have an associated ∞-line bundle Xζ

whose fiber is A. This is called the A-Thom spectrum of f , denoted by MAf .
Now, let us consider the above construction for the case A = S1. Recall that S1 is an initial

object in A∞Ring(C), so that for any A∞-ring A, we have a canonical c : S → A. Therefore,
each f induces a corresponding morphism

X

fA

22
f // BΣ

∞
GL∞

1 (S)
c // BΣ

∞
GL∞

1 (A),

which classifies a GL∞
1 (A) ∞-bundle and, by the previous construction, a A-line ∞-bundle. We

say that fA is orientable (or that the Thom bundle Mf is A-orientable) when the induced A-line
bundle is trivial. In this case, a choice of trivialization is called an A-orientation of Mf . By our
discussion on obstruction theory, MfA is trivial iff if fA ≃ 0, i.e, iff c([f ]) = 0. This identify the
space of orientations as the space of liftings in the diagram below, which is equivalently the space
of sections of MfA.

∞pb

��

// ∗

��
X

99s
s

s
s

s
s

0

((

fA

22
f // BΣ

∞
GL∞

1 (S)
c // BΣ

∞
GL∞

1 (A)

It happens that this space of liftings is equivalent to the space of morphisms Mf → A, as can
be seen in the Corollary 2.12 at page 8 of [10]. This is the generalization of a classical result of
May, Quinn, Ray and Tornehave presented in [142].

Conclusion. if Mf is A-orientable then we have the following equivalence which we call the
generalized Thom isomorphism:

MorA∞Ring(C,⊗)(Mf,A) ≃ Γ(MfA) ≃MorStab(C,⊗)(X;A). (9.4.2)

We end this subsection noticing that the above abstract notion of orientation really contains
as particular case the usual concept of orientation of vector bundles discussed in Section 5.3.
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Recall that, for a given ring spectrum A describing a multiplicative cohomology theory, a rank
n bundle E → X is called A-orientable when the A-cohomology of the Thom space Th(E) is
equivalent to the A-cohomology of the base space X, i.e, when for each k we have a canonical
isomorphism [X,Ak] ≃ [Th(E), Ak+n], called Thom isomorphism.

A choice of this isomorphism corresponds to an A-orientation of E. In order to motivate the
connection between this concrete picture and the previous abstract picture, we notice that the
Thom isomorphisms can be condensate into a unique isomorphism in π0Stab(C∗):

Morπ0Stab(C∗)(Σ
∞−n

Th(E),A) ≃ Morπ0Stab(C∗)(Σ
∞
X,A), (9.4.3)

which is much similar to (9.4.2). So, in order to get the desired conclusion we need to prove that
any vector bundle E → X induce a corresponding map

µ : Σ
∞
X → BΣ

∞
GL∞

1 (S) (9.4.4)

whose Thom spectrum Mf coincides with the spectrum Σ
∞−n

Th(E) generated by the Thom
space. This will be done into two steps:

1. showing that any bundle induces a map as in (9.4.4). We start by noticing that, from the
adjunction between Ω

∞
and Σ

∞
, in order to give as as in (9.4.4) it is enough to give a dual

map µ : X → BGL∞
1 (S). Let O be the colimit colimnO(n). As discussed in Example 1.14,

we have a canonical map J∞ : O → Ω
∞
S induced from the Jn-homomorphisms. So, from

the universality of ∞-pullbacks of GL∞
1 (S) we then get a map J : O → GL∞

1 (S). Now,
recalling that a vector bundle is classified by a map f : X → BO(n), we can define µ as
the composition below.

X

µ

22
f // BO(n)

colim // BO
BJ // BGL∞

1 (S)

2. proving that the Thom spectrum of the induced map coincides with the spectra of the Thom
space. We will give only an indicatives that this should really happens. A formal proof can
be seen in [??]. See also [??]. Recall that the Thom space of E → X is obtained as the
quotient space D(E)/S(E) of the disk bundle by the sphere bundle of E relatively to some
riemmanian metric in the fibers. Th(E) is indeed the total space of a bundle over X (the
Thom bundle) whose fibers are quotients D(Ex)/S(Ex) and, therefore, are n-spheres. So,
the Thom space construction takes a n-plane bundle over X and gives a Sn-bundle over X.
Notice that the bundle classified by µ has fiber Sn, so that the the process of taking the
compositions in the diagram below and then considering the induced bundle has essentially
the same effect over the starting bundle as the Thom space construction.

Duality

In the last subsection we saw that the notion of orientability in abstract cohomology allow us
to build an abstract version of the Thom spectrum and, consequently, of the Thom isomorphism.
Despite the Thom isomorphism, there is another isomorphism in classical cohomology which is a
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central tool in Algebraic Topology: the Poincaré duality. Here we would like to discuss that this
result can also be abstracted to the general context of abstract cohomology theories.

We recall that the standard context in which we have a Poincaré duality is for singular
cohomology of compact manifolds. Indeed, if M is a compact oriented n-dimensional manifold,
then the classical Poincaré duality states that for every k there is a canonical isomorphism

Hk(M ;R) ≃ Hn−k(M ;R), (9.4.5)

where the left-hand side is singular cohomology, while the right-hand side singular homology. So,
in order to produce a Poincaré duality, the first step is to have not only a cohomology theory, but
also a dual homology theory.

We generally study singular homology by making use of the existence of a cochain complex
presentation for singular cohomology , allowing us to consider the dual chain complex, as com-
mented in Example 5.8.1. We notice, however, that singular homology can also be formulated in
terms of purely spectrum data, without the necessity of a cochain complex presentation. Indeed,
while real singular cohomology is the cohomology of the Eilenberg-Mac Lane spectrum K(R, n),
singular homology of a space X can be regarded as (see [??])

Hk(X;R) ≃ lim
n→∞

πk(X ∧K(R, n+ k)). (9.4.6)

In other words, the singular homology groups of X are the stable homotopy groups of the
induced spectrum X ∧K(R, n). In order to better understand the Poincaré duality (9.4.5) in the
language of spectra, we notice that both singular cohomogy and homology can be understood as
functors on the category Spec. Indeed, regarding a space X as a free spectrum Σ

∞
X, we have

[Σ
∞
X,Σ

k
HR] ≃ [X,Ω

∞
Σ
k
HR] ≃ [X,HRk] = [X,K(R, k)] = Hk(X;R),

where HR is the real Eilenberg-Mac Lane spectrum. Similarly, by making use of (9.4.6) we get

[Σ
k
S,Σ

∞
X ∧HR] ≃ Hk(X;R).

Therefore, in the language of spectra, the classical Poincaré duality (9.4.5) establishes that
for any compact oriented manifold M there are isomorphisms

[Σ
∞
M,Σ

k
HR] ≃ [Σ

n−k
S,Σ

∞
M ∧HR]. (9.4.7)

With eyes in an abstract version of the Poincaré duality, let us add to the spectrum character-
ization above the Atiyah duality theorem. In order to state it, notice that, because the manifold
M is assumed orientable, we have a Thom isomorphism (9.4.3), so that

[Σ
∞−n

Th(TM),Σ
k
HR] ≃ [Σ

n−k
S,Σ

∞
M ∧HR]. (9.4.8)

≃ [S,Σ
∞−n+k

M ∧HR] (9.4.9)

≃ [S,Σ
∞−n

M ∧ Σ
k
HR] (9.4.10)

As discussed in Section 8.4, in any monoidal category (C,⊗, 1) we have the notion of dualizable
object. Indeed, we say that X is dualizable when there exists X∗ together with 1-morphisms
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µ : 1 → X ⊗X∗ and ν : X∗ ⊗X → 1 fulfilling adjoint-type diagrams up to higher morphisms.
Equivalently, if for any other A we have the following isomorphisms induced from µ and ν:

MorC(X,A) ≃ MorC(1, A ⊗X∗) and MorC(X
∗, A) ≃ MorC(1,X ⊗A).

In particular, we can study dualizable objects in the homotopy category of spectra with the
canonical monoidal structure given by the smash product. In this case, a spectrum X is dualizable
when there exists X∗ and spectrum morphisms S → X ∧ X∗ and X∗ ∧ X → S such that for any
other spectrum A we have induced isomorphisms

[X,A] ≃ [S,A ∧ X∗] and [X∗,A] ≃ [S,X ∧A].

Now, looking at the second of these isomorphisms and comparing it with the characterization
(9.4.8) of the Poincaré duality, it seems that Σ

∞−n
M is dualizable and with dual given by

Σ
∞−n

Th(TM). The Atiyah duality theorem asserts that this is really the case. Notice that
reverting the steps of the explanation above we conclude that Athiyah duality together with Thom
isomorphism imply the classical Poincaré duality. Summarizing,

monoidal duality
+

orientability

+3
Poincaré duality

This is all we need to give a completely abstract version of Poincaré duality. Indeed, let A be
a A∞-ring object of the stable ∞-category Stab(C) of some ∞-monoidal ∞-category (C,⊗, 1).
We say that a Ω-spectrum object X is a A-Poincaré object of degree n where there exists some

f : X→ BΣ
∞
GL∞

1 (S)

such that the corresponding Thom bundle Mf is A-orientable and dualizable, with dual given by
Ω
n
X. In this case, we have

[X; Σ
k
A] ≃ [Mf ; Σ

k
A]

≃ [S,Ω
n
X ∧ Σ

k
A]

≃ [S,Ω
n−k

X ∧ A]

≃ [Σ
n−k

S,X ∧ A],

which is a direct abstraction of (9.4.7). Notice that the starting term is precisely the kth abstract
cohomology of X with coefficients in A. Therefore, if we define the kth abstract homology group

Hk(X;A) of X with respect to A as [Σ
k
S,X∧A], the last equivalences translate into the following

Proposition 9.1 (abstract Poincaré duality). If X is an A-Poincaré object of degree n, then for
any k ≤ n we have a canonical isomorphism

Hk(X;A) ≃ Hn−k(X;A).
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Remark. The primary interest in this abstract version of Poincaré duality is that it gives a direct
approach to get fiber integration in abstract cohomology. More precisely, because cohomology is
contravariant, for any morphism f : X → Y , when applying the cohomology functors we obtain
induced morphisms in the opposite direction f∗ : Hk(Y ;A) → Hk(X;A). A fiber integration
process for A-cohomology is some kind of process that take f : X → Y and return a map in the
unnatural direction f! : H

k(X;A) → Hk+l(X;A), possibly with a shifting on the degree. The
subscript “ !” appears in the literature in order to emphasize the fact that it is a great surprise
when the map f! exists. Other usual names for f! are Gysin map and Umkehr map. Now, let us see
how Poincaré duality imply the existence of fiber integration. Let f : X → Y be a map between
spectrum objects and suppose that both X and Y are A-Poincaré objects of the same degree n.
Then, for any k we define f! as the composition below, where the isomorphisms correspond to
the Poincaré duality for each object and f∗ is the induced morphism in homology.

Hk(X;A)

f!

22
≃ // Hn−k(X;A)

f∗ // Hn−k(Y;A)
≃ // Hk(Y;A)

Physics

As discussed in the Introduction, the natural approach to Hilbert’s sixth problem is based in
the axiomatization of classical/quantum physics and in the building of some link between them,
corresponding to the a notion of quantization.

Up to this point we commented that a quantum theory of p-branes can be axiomatized as a
monoidal functor U : (Cobp+1,⊔)→ (D,⊗) from the category of p-cobordisms to some monoidal
category and that a classical theory can be axiomatized as a pair (Fields, eiS), given by a geometric
smooth ∞-stack Fields : Diffop →∞Gpd and by a lifting to ∞Gpd/BU(1). The quantization
process can be axiomatized (as quantization by pull-push) at least over the class of all orientable
and dualizable classical theories (see [159] and the Part 6 of [182]).

Span(∞Gpd/BU(1))

U(1)

��
Cobp+1

eiSp
44✐✐✐✐✐✐✐✐✐

Fieldsp
// Span(∞Gpd)

The idea is cute. Indeed, a quantization scheme should be some kind of rule Q assigning to any
suitable classical theory (Fields, eiS) a corresponding quantum theory QS : (Cobp,⊔)→ (D,⊗).
A cobordism Σ : Σ0 → Σ1 between p-manifolds can be understood as a cospan5, so that each
pair (Fields, eiS) induces a functor Fieldsp and a lifting eiSp , as above. Concretely, the lifting eiSp

5Recall the definitions of span and cospan given in Examples ?? and ??.
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assigns to any cobordism Σ : Σ0 → Σ1 a span in ∞Gpd/BU(1) as schematized below.

Σ
eiSp +3❴❴❴❴❴❴❴❴❴ ❴❴❴❴❴❴❴❴❴

Fields(Σ)
Fields(ı1)

''◆◆
◆◆◆

◆◆◆
◆◆◆Fields(ı0)

ww♣♣♣
♣♣♣

♣♣♣
♣♣

Σ0

/�

ı0

??��������
Σ1

/ O

ı1

__❃❃❃❃❃❃❃❃

Fields(Σ0)

χ0 ''◆◆
◆◆◆

◆◆◆
◆◆◆

eiS +3 Fields(Σ1)

χ1ww♣♣♣
♣♣♣

♣♣♣
♣♣

BU(1)

Because Fields is representable, Fieldsp and eiS are monoidal. Therefore, given any monoidal
functor (which in physics plays the role of the path integral, as will be discussed in Chapter 16)

∫

: Span(∞Gpd/BU(1))→ D,

the composition
∫

eiSp : Cobp+1 → D yields another monoidal functor and, consequently, a
quantum theory of p-branes. It happens that generally there is no canonical choice of

∫

, but
this distinguished path integral exists when the classical space of fields Fields is orientable and
dualizable with respect to some abstract generalized cohomology theory represented by a E∞-
spectrum E. More precisely, notice that any morphism of ∞-groups ρ : U(1)→ GL∞

1 (E) induces
a morphism ρ between the corresponding delooped groupoids and, by composition, we have the
dotted arrows in the diagram below6.

Fields(Σ)

0

++

1

ss

ı1

''❖❖
❖❖❖

❖❖❖
❖❖❖ı0

ww♦♦♦
♦♦♦

♦♦♦
♦♦

Fields(Σ0)

ρ◦χ0

##

✻
✽
❀
❃

❆
❉

χ0 ''❖❖
❖❖❖

❖❖❖
❖❖❖

e
i
~
S

+3 Fields(Σ1)

χ1ww♦♦♦
♦♦♦

♦♦♦
♦♦

ρ◦χ1

{{

✟
✝

✄
�

⑥
③

BU(1)

ρ

��
BGL∞

1 (E)

Now, applying Σ
∞

in each of these maps, we get morphisms taking values into BΣ
∞
GL∞

1 (E),
which in turn give (by the discussion of the last two subsections) E-line ∞-bundles. Let us write
Ej (resp. Ej) to denote the ∞-bundles induced by ıj (resp. τ j). Therefore, the diagram above
provides the first diagram below. Applying the section functor Γ we then get the second diagram,
which belongs to the ∞-category

∞ModE(Stab(∞Stack(Diff sub, J))) (9.4.11)

of smooth spectra which are E-modules respectively to the derived smash product ∧E. We notice
that the dotted isomorphism in the first (and, consequently, in the second) diagram comes from

6We are writing τj , with j = 0, 1, in order to denote the compositions ρ ◦ χj ◦ Fields(ıj).
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the existence of a 2-morphism ξ : 0 ⇒ 1 which is given essentially by ρ ◦ eiS .

E0

��

ı0 // E0 ≃ E1

�� ��

E1
ı1oo

��

Fields(Σ)

ı0 &&◆◆
◆◆◆

◆◆◆
◆◆◆

ı1xx♣♣♣
♣♣♣

♣♣♣
♣♣

Γ(E0)
Γ(ı0) // Γ(E0) ≃ Γ(E1)

Γ(ı1)!

66❚ ❨ ❴ ❡ ❥
Γ(E1)

Γ(ı1)oo

Fields(Σ0) Fields(Σ1)

Finally, if Γ(ı1) is dualizable as a 1-morphism in the∞-monoidal category (9.4.11) and Γ(E1)
is self-dual7, then the dotted arrow in the second diagram above actually exists and a choice of
it allow us to define the quantum theory associated to (Fields, eiS) as the following rule:

(

Σ0
Σ // Σ1

)

✤
∫
eiS //

(

Γ(E0)
Γ(ı1)!◦Γ(ı0) // Γ(E1)

)

From the last subsection, this dualizability conditions can be obtained when Fields(Σ1) and
Fields(Σ) are E-Poincaré objects with respect to the maps 1 and ρ ◦ ı1. In this case, the classical
theory is called orientable and dualizable.

Conclusion. For any orientable and dualizable classical theory we can assign a corresponding
quantum theory, which act on cobordisms as the space of sections of some line ∞-bundle.

Remark. At first glance it may seem strange described the states of a quantum object as sections
of a line bundle. But, this is a very natural fact. Indeed, for the reader knowing Quantum
Mechanics, recall that there the quantum states are given by wave functions ψ(x, t) subjected to
the Schrödinger equation. So, they are certain complex functions ψ : M → C satisfying some
regularity condition. It happens that these complex functions are just sections of the trivial
complex line bundle π :M × C→M .

7Recall the definitions in Section 8.4 and the discussion in the last subsection.



Chapter 10

Cohesive Theory

In the previous chapters we have seen that the theory of ∞-categories is a natural ambient to
develop homotopy theory and stable homotopy theory. In order to attack Hilbert sixth’s problem
we need a language in which not only homotopy theory, but also geometry can be internalized,
i.e, we need a background language which models homotopical geometry. The main objective of
this chapter is to present some candidates to these desired languages.

Up to this point, the most prominent ∞-categories that we worked are the ∞-topos. On
the other hand, classical geometry is developed internal to sub-∞-categories of ∞Gpd, as Diff .
Therefore, it is natural to expect that homotopical geometry should be described in certain classes
of ∞-topos strongly related to ∞Gpd.

We start this chapter in Section 10.1 by discussing the notion of “relation between two ∞-
topos” and we show that any∞-topos can naturally related with∞Gpd. This notion of “relation”
is essentially given by an adjunction, so that we define a “strong relation” between ∞-topos as
an adjunction such that the functors have themselves other adjuncts. We then introduce three
classes of ∞-topos strongly related with ∞Gpd, called geometric ∞-topos, and we explore some
immediate examples. We also give a criterion to identify if a ∞-topos is geometric by looking
at properties satisfied by the underlying ∞-site. The standard example of geometric ∞-topos
fulfilling these properties is ∞Stack(Diff , J).

In Section 10.2 we try to convince the reader that the language of geometric∞-topos is really
a natural candidate to model homotopical geometry. There we see, for instance, that internal
to any ∞-topos H which is cohesive (in the sense that to every object X ∈ H we can associate
modalities or geometric homotopy types) we have a canonical way to build abstract Whitehead
towers from certain “geometric Postnikov tower” in the same way as we can obtain the classical
Whitehead tower of a topological space from the underlying classical Postinikov tower. This will
allow us to prove that if we start with a Lie group, then the nth stage in the Whitehead tower
will be a Lie n-group.

We also show that in a cohesive∞-topos every cohomology admits a “differential refinement”,
allowing us to discuss an abstract version of de Rham cohomology, which reduces to the classical
nth de Rham cohomology in the ∞-topos of smooth ∞-stacks, with coefficients in BnU(1). We
prove that if H is cohesive, then its stabilization Stab(H) is also cohesive and we show that any
Ω-spectrum object E fits in the middle of a “differential cohomology hexagon”, constituted by the
different modalities of E. It is also proved that if E is the spectrification of BnU(1), then we

264
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recover the ordinary differential cohomology hexagon given by the Deligne complex Dn+1.
The chapter ends in Section 10.3. There we discuss that “cohesion” is not enough to model

homotopical differential geometry. From the physical viewpoint this means that in an arbitrary
cohesive ∞-topos the notions of “Euler-Lagrange equation” and “space of minimal solutions” are
not well defined. From the mathematical viewpoint, we do not have, for instance, a canonical
notion of “∞-algebroid” associated to an internal∞-groupoid. In order to correct these problems
we introduce the class of differential cohesive ∞-topos.

10.1 Geometry

Recall that a∞-category H is a∞-topos if, and only if, it is the localization of some category
of ∞-functors. In other words, if, and only if, s there exists a ∞-category C together with an
adjunction

H
ı

//∞Func(C,∞Gpd),
L∞oo

such that ı is an embedding and L∞ preserves finite∞-limits. Notice that, following this charac-
terization , the entire category of ∞-functor can itself be regarded as a trivial ∞-topos for which
both L∞ and ı are the identity functors.

This motivates us to define a morphism between two ∞-topos H and H′ as a pair of adjoint
∞-functors F : H ⇋ H′ : G . When the ∞-functor G preserve finite ∞-limits, it is useful to
say that the morphism is geometric. If in addition ı is an embedding, we say that we have a
geometric embedding. Therefore, from the paragraph above, any∞-topos C can be geometrically
embedded into the trivial ∞-topos.

Remark. Because we are working in the context of ∞-topos, a ∞-functor H → H′ has a
left/right adjoint iff it preserves all ∞-limits/∞-colimits (Proposition ?? of [127]). Therefore, in
order to give a morphism F : H ⇋ H′ : G it is necessary and sufficient to specify some of the
following equivalent data:

1. a ∞-functor F : H→ H′ preserving ∞-limits;

2. a ∞-functor G : H′ → H preserving ∞-colimits.

Furthermore, given∞-functors F and G as above, they define the same morphism iff they become
equipped with canonical natural transformations G ◦F ⇒ idH and idH′ ⇒ F ◦ G fulfilling the
triangle identities up to higher morphisms.

We can now define a category∞Topos, whose objects are∞-topos and whose morphisms are
those characterized above. Important examples of morphisms to keep in mind are the following:

Example 10.1 (terminal geometric morphism). The (covariant) hom ∞-functors are the most
natural ∞-limit preserving∞-functors. So, for any object X in a∞-topos H we have a∞-topos
morphism MorC(X,−) : H ⇋∞Gpd : G . Following Proposition 2.2.5, p. 223 of [182] we assert
that, for X = ∗ (where ∗ is a terminal object, whose existence is ensured by the higher Giraud’s
axioms), the corresponding G is precisely the ∞-stacktification of the ∞-functor cst−, assigning
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to any ∞-groupoid G the ∞-functor cstG, constant at G. Indeed,

MorH(L∞(cstG);X) ≃ ∞Nat(cstG; ı(X))

(∗) ≃ ∞Nat(cstcolimG1; ı(X))

≃ ∞Nat(colimG cst1; ı(X))

≃ limG∞Nat(cst1; ı(X))

≃ limGMorH(L∞(cst1);X)

(∗∗) ≃ limGMorH(∗;X)

≃ limGMor∞Gpd(1;MorH(∗;X))

≃ Mor∞Gpd(colimG1;MorH(∗;X))

(∗ ∗ ∗) ≃ Mor∞Gpd(G;MorH(∗;X)),

where in (∗∗) we used that the ∞-stacktification colimits (in particular, terminal objects), while
in (∗) and (∗ ∗ ∗) we used that any ∞-groupoid G can be recovered as the ∞-colimit of the
∞-functor G→∞Gpd constant at the terminal object 1. A concrete case is the following:

1. global section functor. For a given topological space X, let us consider H as the 1-topos of
sheaves on the site (Open(X), J), whose objects are open sets U ⊆ X and whose coverings
π : U → U are induced by usual open coverings Ui →֒ U . In this case, the terminal object
is just X, so that by Yoneda lemma the terminal object morphism is given by evaluation
at X. It happens that there is a canonical class of sheaves on (Open(X), J): the sheaves of
sections of bundles E → X over X. For them, “evaluating at X” is just the as considering
the set of global sections Γ(X;E) of the corresponding bundle E → X. With this in mind,
we also call the terminal object morphism of the “global section morphism”, writing Γ in
order to denote MorH(∗,−).

2. discrete topology functor. Let us consider H =∞Gpd. Any set X can be reconstructed as
the set of its elements, i.e, as the set of maps 1 → X, where 1 is a terminal object in Set.
Analogously, any ∞-groupoid G is equivalent to the ∞-groupoid of ∞-functors 1 → G,
so that Mor(1;G) ≃ G. Similarly we show that cstG ≃ G. Therefore, for the ∞-topos of
∞-groupoids the terminal object morphism is just the identity morphism. By making use
of the Homotopy Hypothesis we then identify the terminal object morphism for the case
H = Top: it is given by Π ⇋ | · |, where Π is the fundamental ∞-groupoid ∞-functor and
| · | is the geometric realization ∞-functor. Notice that if G is a usual 1-group, then, by the
definition of geometric realization, |G| is just G regarded as a discrete topological space.
Because of this, in the literature it is also usual to denote the ∞-stacktification L∞cst− of
the constant functor by Disc, saying that it is the discrete structure functor.

Example 10.2 (direct/inverse image). In the context of sheaves on a fixed space X there is
another important class of examples of geometric morphisms. Indeed, any open map f : X → Y
induces a pair of functors f∗ : Shv(Y ) ⇋ Shv(X) : f∗, respectively called inverse image and
direct image functors, defined by

f∗(G)(U) = G(f−1(U)) and f∗(F )(V ) = F (f(V )). (10.1.1)
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We assert that they are adjoint:

MorShv(X)(f
∗(F );G) ≃ MorShv(Y )(F ; f∗(G)), (10.1.2)

so that they really define a morphism between ∞-topos. Indeed, this follows from a direct
inspection: a transformation ξ : f∗(F ) ⇒ G is a rule assigning to any open V ⊂ X a map ξV :
F (f(V )) → G(V ), while a transformation ϕ : F ⇒ f∗(G) is a family ϕU : F (U) → G(f−1(U))
parametrized by open sets U ⊂ Y . Notice that for V = f−1(U) both data coincide. This means
that we have indeed an equality of sets instead only a bijection as required in (10.1.2)!

Remark. We have a morphism f∗ ⇋ f∗ even if f is not open, but an arbitrary continuous map.
In the construction above, we used that f is open in (10.1.1) in order to define f∗. Therefore, in
the general case f∗ need to be modified. Indeed, if f is only continuous, then for a given open set
V , its image f(V ) need not to be open, but even so it can be “approximated” by open sets. There
are two ways to do this approximation: by open sets U ⊂ f(V ) contained in f(V ) or by open
sets U ⊃ f(V ) containing f(V ). In the first case the “best” approximation would be obtained
taking the limit over U , while in the second it would be obtained from the colimit. Notice that
we are searching for a f∗ which is a left adjoint to f∗, so that it will appear in the first argument
of MorShv(X)(−,−), which is well behaved with respect to colimits. This motivates us to define

f∗(F )(V ) := colimUF (U).

A direct verification shows that in the general situation it really is a left adjoint for f∗.

Geometric ∞-Topos

In Example 10.1 above we have seen that any ∞-topos H becomes equipped with a nontrivial
geometric morphism with values in ∞Gpd (the terminal geometric morphism), meaning that
each ∞-topos is at least minimally related with ∞Gpd. Here we will study some classes of
∞-topos which are strongly related with ∞Gpd.

The reason of this interest is clear: the ∞-topos of ∞-groupoids constitute a very interesting
concrete language, because many concepts and results make sense internal to it. For instance,
from the Homotopy Hypothesis (discussed in Section 8.4), we have ∞Gpd ≃ Top, so that
in this ∞-topos there is a nice homotopy theory, in which the (weak) homotopy type can be
characterized by canonical invariants (the homotopy groups). Furthermore, it contains Diff

as a sub-∞-category, showing that we can do differential geometry internal to it. Therefore,
when studying ∞-topos H strongly related with ∞Gpd we expect to get a abstract powerful
language in which many concepts and results that make sense internal to ∞Gpd can be defined
synthetically in H.

So, a natural question is the following: how can we describe a “strong relation” between two
∞-topos H and H′? A relation between them is given by a (geometric) morphism, so that a
“strong relation” should be a (geometric) morphism fulfilling additional conditions. Indeed, we
say that a geometric morphism F : H ⇋ H′ : G is locally local when the functor F : H → H′

has not only a left adjoint G , but also a right adjoint G . Similarly, we say that it is locally
∞-connected when G has not only a right adjoint F , but also a right adjoint F , as below.

H F // H′
Goo

G

oo H′
G // H
Foo

F

oo
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A geometric morphism which is simultaneously locally local and locally ∞-connected is called
locally cohesive. This kind of relation between two ∞-topos is specially interesting because we
can glue the diagrams above, producing the first diagram below. So, we see that any locally
cohesive geometric morphism F : H ⇋ H′ : G induces three distinguished endomorphisms of H,
usually called modalities, which pass in H′ (see the second diagram below) meaning that they
can be used to internalize in H concepts which a priori make sense only in H′.

H F // H′
Goo

G

oo G // H
Foo

F

oo H G ◦F // H
G ◦Foo

G ◦F

oo

Remark. By the discussion in the last subsection, a morphism F : H ⇋ H′ : G is locally local
iff F preserves not only ∞-limits, but indeed ∞-colimits. Similarly, it is locally ∞-connected
when G preserve ∞-limits. So, it is locally cohesive when both ∞-functors F and G preserve
∞-limits and ∞-colimits.

For a given H, the definitions above can be particularized to the terminal geometric mor-
phism Γ : H ⇋ ∞Gpd : Disc, giving classes of ∞-topos strongly related with ∞Gpd, as
desired. Indeed, we say that H is locally local, locally ∞-connected or locally cohesive when the
corresponding terminal geometric morphism has these respective properties. In this case, we usu-
ally write coDisc and Π instead of Disc and Γ. We say that coDisc(G) is the codiscrete structure
of a ∞-groupoid and that Π(X) is the geometric fundamental ∞-groupoid of X ∈H.

In the case of a locally cohesive ∞-topos, the modalities of the terminal geometric morphism
also get new notations, as below, and new names: Π is the shape modality, ♭ is the flat modality
and ♯ is the sharp modality.

H Disc◦Γ // H
coDisc◦Γ

oo

Disc◦Πoo
H ♭ // H

♯
oo

Πoo

Let us present some examples.

Example 10.3 (trivial case). As discussed in Example 10.1.2, in the case H = ∞Gpd the
terminal object geometric morphism Γ ⇋ Disc is just the identity morphism, so that both Γ and
Disc have left/right adjoints, also given by the identity functor. Consequently, the ∞-topos of
∞-groupoids is trivially locally cohesive.

∞Gpd
id //

id //
∞Gpdidoo

id
oo

Example 10.4 (transitive structures). The “strong relation” is transitive. More precisely, if two
morphisms F : H ⇋ H′ : G and G : H′

⇋ H′′ : H are locally ∞-connected, locally local or
locally cohesive, then the composition between them is cohesive too. This can be verified directly
(as done in the diagram below for the case of cohesion) or indirectly (by making use of the last
remark). As a consequence, the classes of locally ∞-connected, locally local and locally cohesive
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∞-topos define subcategories of ∞Topos.

H
F //

F //
H′Goo

G

oo G //

G //
H′′Hoo

H

oo
H

G ◦F //

G ◦F //
H′′G ◦Hoo

G ◦H

oo

These subcategories are “stable under isomorphisms” in the sense that if a ∞-topos H is isomor-
phic (as a ∞-topos!) to a geometric ∞-topos H′, then it is geometric too. Indeed, if a morphism
F : H ⇋ H′ : G is an isomorphism in ∞Topos, then both F and G are equivalences in ∞Cat,
so that the starting morphism is indeed locally cohesive. The result then follows from the last
result, as explained in the diagram below. In particular, if F : H → H′ is an equivalence of
∞-categories and H′ is geometric, then H is too. Consequently, by the last example and by the
Homotopy Hypothesis it follows that the ∞-topos Top is locally cohesive.

H

G−1
//

F // H
′Goo

F−1
oo Γ //

Π //
∞GpdDiscoo

CoDisc
oo

H

Π◦G−1
//

Γ◦F //∞GpdG ◦Discoo

F−1◦CoDisc
oo

Example 10.5 (functor ∞-topos). Recall that, as discussed in Example ??, if a∞-category H is
an∞-topos, then for any other∞-category C (with initial object), the corresponding∞-category
∞Func(C;H) of ∞-functors is also a ∞-topos. Let us prove that if the starting category is in
addition geometric, then the category of∞-functors is geometric too. As a particular case, it will
follows that the stable ∞-category of a geometric ∞-topos is also a geometric ∞-topos. Let us
assume C not only with initial object ∅, but also with terminal object ∗. They can be identified
with ∞-functors ı : 1 → H and  : 1 → H, which are respectively the left and right adjoints to
the unique c : H→ 1. In turn, these functors induce ∞-functors

ı∗, ∗ :∞Func(C;H)→∞Func(1;H) ≃ H

which are left and right adjoints to the corresponding c∗. Because H is ∞-complete and ∞-
cocomplete, any ∞-functor F : A → H, defined in any ∞-category A, has both left and right
∞-Kan extensions respectively to any A→ D. Consequently, ı∗ and ∗ have both left and right
adjoints. This means that ∞Func(C;H) is locally cohesive respectively to H, as in the diagram
below1. Consequently, because H is locally cohesive, the result follows from the last example.

∞Func(C;H)

∗ //

ı∗ // H
c∗oo

ı∗
oo

Geometric ∞-Site

Remembering that a∞-topos H is a∞-category of∞-stacks over some∞-site (C, J), impos-
ing conditions on the ∞-site we expect to get ∞-topos with more properties. With this in mind
we can try to search for conditions under which the ∞-topos becomes geometric. This strategy
is fruitful, as exemplified by the proposition below.

1Here, ı∗ denotes the left adjoint of ı∗.
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Proposition 10.1. Let (C, J) be a ∞-site with finite coproducts and a terminal object. Given
any covering π : U → X in J(x), let us consider the following conditions on the corresponding
Cech ∞-groupoid:

1. for any k, the collection of k-morphisms can be written as a coproduct of (the image of)
representable functors;

2. the geometric realization of colim Č∞(U) is (weakly) contractible;

3. the geometric realization of the canonical morphism below is a (weak) homotopy equivalence:

MorH(∗, Č∞(U))→ MorH(∗,X).

Then, if (1.) is satisfied, the underlying∞-topos of∞-stacks is∞-local. Furthermore, if (2.) and
(3.) are satisfied we get a ∞-connected ∞-topos. Finally, if all conditions are satisfied together,
we obtain a cohesive ∞-topos.

Proof. This is essentially Propositions ??, ?? and ?? of [182]. There, the proof is given by
making use of the presentation of ∞-categories as quasi-categories, i.e, in the same spirit of
Lurie’s work.

Before giving examples of geometric ∞-topos that can be obtained from this proposition, let
us present two remarks:

1. the conditions (1.)-(3.) are not necessary in order to have a cohesive ∞-topos. Indeed, for
a given topological space X, let Shv(X) be topos of sheaves on X, trivially regarded as a∞-
topos. As reviewed in Example 10.1, it is the ∞-topos of sheaves on the site (Open(X), J),
whose objects are open sets U ⊆ X and whose coverings π : U → U are induced by
usual open coverings Ui →֒ U . The kth term in the Cech ∞-groupoid Č∞(Ui) is given by
coproducts of intersections ⊔i1,...,ikUi1 ∩ ...∩Uik . Each topological space Y can regarded as
the set of morphisms from the trivial space, i.e, Y ≃ MorTop(∗, Y ), so that the Cech ∞-
groupoid of any covering is degreewise the coproduct of representable objects. This means
that the condition (1.) of the last proposition is satisfied and, therefore, Shv(X) is a∞-local
∞-topos. Notice, however, that the conditions (2.) and (3.) are not satisfied by arbitrary
coverings, so that we cannot use Proposition 10.1 to conclude that Shv(X) is cohesive. But
we can verify directly that it really is cohesive. Indeed, the codiscrete functor coDisc, i.e,
the right adjoint to Γ, assign to any ∞-groupoid G the set of objects G0, regarded as a
codiscrete topological space. Furthermore, the geometric fundamental ∞-groupoid Π(X)
is the set π0(X) of path components of X, trivially regarded as a ∞-groupoid.

2. nerve theorem on good open coverings. On the other hand, if X is paracompact, then the∞-
site (Open(X), J) contains a sub-∞-site in which the conditions (2.) and (3.) are satisfied.
It is obtained by restricting to the full sub-∞-category Good(X) ⊂ Open(X) of contractible
open subsets, endowed with the topology J ′ ⊂ J induced by open coverings Ui →֒ U such
that each Ui and each intersection Ui1 ∩ ...∩Uik , for every k, is contractible (we usually say
these are good open coverings). Now, that (2.) and (3.) are satisfied follows directly from
the Nerve theorem (see Section 4.F of [91]), which states that, if Y is paracompact, then
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for any good open covering Ui →֒ Y we have a weak homotopy equivalence |Č∞(Ui)| ≃ Y .
Indeed, in order to get (2.) notice that, because we assumed X paracompact, each open
subset U ⊂ X is also paracompact. Therefore, for any π : Ui →֒ U in J ′(u) the Nerve
theorem applies. But U is contractible, so that |Č∞(Ui)| ≃ ∗. Condition (3.) comes from
analogous argument and from the fact that MorTop(∗, Y ) ≃ Y for any topological space Y .

Now, let us use Proposition 10.1 to get examples of geometric ∞-topos.

Example 10.6 (trivial cases). In the last subsection we proved that Top and∞Gpd are cohesive
∞-topos without appealing to the proposition. Let us see, on the other hand, that this proposition
could also be used to get the same conclusion. From Example 8.8, ∞Gpd can be regarded as
the ∞-category of ∞-stacks on the trivial ∞-site (1, J), where 1 is the ∞-category with only
one object and whose k-morphisms are identities. It immediately satisfy all conditions of the last
proposition, implying that∞Gpd is indeed a cohesive∞-topos. From the Homotopy hypothesis
(discussed in Section 8.4), we get that the ∞-topos of topological spaces, continuous maps, etc.,
is also cohesive.

Example 10.7 (∞-topos of smooth∞-stacks). Let∞Stack(Diff sub, J) be the∞-topos of smooth
∞-stacks. The coverings π : U → X in J(x) are the induced maps π : ⊔iUi → X for open covering
Ui →֒ X. Therefore, the kth term in the Cech ∞-groupoid Č∞(Ui) is given by coproducts of
intersections ⊔i1,...,ikUi1∩ ...∩Uik and, by argument analogous to that given in remark (1.) above,
the ∞-topos of smooth ∞-stacks is ∞-local. Furthermore, exactly as happened for Shv(X),
conditions (2.) and (3.) may not be satisfied by arbitrary coverings, so that we cannot use
directly Proposition 10.1 to conclude that ∞Stack(Diff sub, J) is cohesive. On the other hand, in
remark (2.) above we showed that we can obtain a sub-∞-site of (Open(X), J) in which (2.) and
(3.) are satisfied by restricting to the paracompact contractible objects U ∈ Open(X) and to
the good open coverings. Therefore, we get the same conclusion when restricting to paracompact
contractible manifolds and good open coverings. More precisely, from the Nerve theorem we
conclude that the ∞-topos ∞Stack(Diff con

sub, J
′), where Diff con

sub is the ∞-category of contractible
paracompact smooth manifolds and smooth submersions, and J ′ ⊂ J is the sub-∞-site of good
open coverings, is cohesive. Despite these similarities, there is a primary difference between
Diff sub and Open(X): here we are not working with arbitrary topological spaces, but indeed
with manifolds. It happens that smooth manifolds are locally equivalent to Rn, i.e, our starting
category Diff sub is generated by the particular dense subcategory CartSpsub ⊂ Diff con

sub whose
objects are cartesian spaces and whose morphisms are smooth submersions Rn → Rk. Therefore,

∞Stack(Diff sub, J) ≃ ∞Stack(Cartsub, J
′)

implying that the ∞-topos of smooth ∞-stacks is cohesive.

Physics

As commented in Section 8.2 (and as will be discussed with more details in the next chapters),
the ∞-topos ∞Stack(Diff sub, J) of smooth ∞-stacks produce a language which abstract enough
to axiomatize classical physics for bosonic objects. Furthermore, in Section 9.4 we sketched
how we can formulate a quantization process for systems described by pairs (Fields, e

i
~
S) in

∞Stack(Diff sub, J).
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Since the discovering of spinning particles, we need to describe physical systems containing
not only bosonic, but also fermionic degrees of freedom. As commented in Sections 5.1, 5.2
and 8.4, in the quantum level, we can distinguish bosons from fermions by making use of Spin
Statistics and Pauli’s exclusion principle, which state that bosonic states are totally symmetric
and fermionic states are totally antisymmetric. In other words, if ψ1, ..., ψn is a family of states,
then they describe bosons or fermions exactly when [ψi, ψj ] = 0 or [ψi, ψj ] = −[ψj , ψi].

It happens that, as will become more clear in the next part of the text, the ∞-topos of
smooth ∞-stacks is not abstract enough to describe the usual classical theories for fermions!
Therefore, we are led to a terrible conclusion: all our work in searching for a useful language to
attack Hilbert’s sixth problem was for nothing! Happily, this is not the case. Indeed, the essential
problem with smooth ∞-stacks is that they are build over manifolds, but locally manifolds are
described by coordinates (x1, ..., xn) in Rn, which totally commute (i.e, [xi, xj] = 0) and, therefore,
describe only bosonic systems. So, the immediate idea is to work with entities which are not
modelled over Rn, but over Rn ⊗ Λ(Rm), meaning that locally there are commuting coordinates
(x1, ..., xn) and anticommuting coordinates (θ1, ..., θm). These are the supermanifolds. We have
the ∞-topos

∞Stack(SuperDiff sub, J)

of super-smooth ∞-stacks and all that were discussed for smooth ∞-stacks remain valid in this
new context. Furthermore, as will be seen in the next chapters, every usual classical theories for
bosons and/or fermions can be described in this new ∞-topos.

If we are taking Hilbert’s sixth problem seriously, we should consider the scare we take above
as a warning: when choicing a proper language to axiomatize the physics we have to take into
account that new physical discovers will be obtained in future, which may impact directly the
choiced language, as the discovering of the spin have impacted the ∞-topos of smooth ∞-stacks.
So, we need to look for languages which produce a “stable” axiomatization for physics in the
sense that new physical discovers will not impact directly the axiomatization. This imply working
synthetically.

What are the natural class of languages internal to which the physical theories have a synthetic
axiomatization? Well, certainly it must contain the ∞-topos of (super) smooth ∞-stacks as a
particular example, because it axiomatize (fermionic and) bosonic classical physics and quantiza-
tion. On the other hand, this∞-topos is build over the∞-site (Diff sub, J) and, by the Homotopy
Hypothesis, Diff sub embeds into ∞Gpd. This suggest to consider languages given by ∞-topos
strongly related with ∞Gpd, as the classes of ∞-local, ∞-connected and cohesive ∞-topos.
From Example 10.4 we known that ∞Stack(Diff sub, J) is cohesive. Therefore, joining all these
facts we are led to conclude that the cohesive ∞-topos constitute a natural class of languages to
formulate a synthetic axiomatization of physics.

10.2 Applications

In the last section we introduced the classes of ∞-local, ∞-connected and cohesive ∞-topos
as models for ∞-topos “strongly related” with ∞Gpd, in the desire to get abstract languages in
which concepts proper of ∞Gpd acquire a synthetic formulation. This really can be done:

1. Whitehead towers. As discussed in Section 8.3, in Top we can build Whitehead towers
from Postnikov towers. This could be done thanks to the fact that the homotopy type
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of CW-complexes is determined by their homotopy groups. We will see that in any ∞-
connected ∞-topos H we can associate to every X a sequence of higher groupoids Πn(X),
taking the role of the fundamental n-groupoids of a topological space. This sequence fits
into a “geometric Postnikov tower of X” allowing us to build a Whitehead tower of X in
analogously as in Top.

2. de Rham cohomology. In the category Diff of smooth manifolds we have a canonical coho-
mology theory: the de Rham cohomology. We will prove that for any object A in a cohesive
∞-topos H induce another ♭dRA such that the abstract cohomology of X with coefficients
in ♭dRA behaves as “abstract de Rham cohomology” of X.

3. connections on ∞-bundles. Despite de Rham cohomology, there is a more refined cohomol-
ogy that can be considered in Diff : the Deligne cohomology. We will see that not only de
Rham, but also Deligne cohomology can be internalized into any cohesive ∞-topos. This
will allow us to give a synthetic formulation for the geometric notion of “connection on a
G-bundle”.

4. differential cohomology. Recall from the discussion in Section 1.2 that Deligne cohomology
is a model for ordinary differential cohomology. Therefore, it is natural to expect that the
synthetic formulation for “connection on G-bundle” gives rise to a synthetic formulation
for “differential cohomology”. We will show that this is really the case. More precisely, we
will show that that any Ω-spectrum object in a ohesive ∞-topos fits in the middle of a
hexagonal diagram analogous that characterizes ordinary differential cohomology.

For more details on these examples and for other structures arising in geometric ∞-topos, see
[182].

Whitehead Tower

Let H be a ∞-connected ∞-topos. By definition, this means that the discrete ∞-functor

Disc :∞Gpd→ H has a left adjoint Π :∞Gpd→ H,

allowing us to consider the shape modality
∫

: H → H, given by the composition Disc ◦ Π.
Furthermore, recall that we have the truncation functors

τk : (∞, 1)Cat→ kCat.

For a given object X, we define its geometric homotopy n-type X, denoted by Πn(X), as the
n-truncation of its shape. In other words,

Πn(X) := τnΠ(X) = τnDisc(Π(X)).

Notice that in the ∞-topos Top, the geometric fundamental ∞-groupoid is just the funda-
mental ∞-groupoid, while the discrete ∞-functor is the geometric realization, so that the shape
modality |Π(X)| is equivalent to X. Consequently, the geometric homotopy n-type Πn(X) is
given by the usual homotopy n-type, justifying the adopted nomenclature. The homotopy n-type
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of a topological space is determined by the homotopy groups πi(X), with i ≤ n. So, in the general
case, we can think of Πn(X) as containing some “geometric homotopy groups”.

Independently of the intuition behind Πn(X), they are exactly the intermediate steps in the
abstract Postnikov tower of ΠX → ∗, as below. Here we will see that it induce a Whitehead
tower for X in the same way as the classical Postnikov tower of a topological space induce a
corresponding Whitehead tower.

· · · // Π2(X) // Π1(X) // Π0(X)

Indeed, recall that, as commented in Example 8.11, for a given topological space X, we get
a model to its Whitehead tower by considering Xn as the homotopy fiber of the canonical map
X → Xn+1, where Xn+1 is the (n+ 1)th term of the Postnikov tower of X. So, the main idea is
to try to reproduce this construction in the abstract context: to define the nth term Xn of the
Whitehead tower of an object X ∈ H as the homotopy fiber of X → Πn+1X, as in the diagram
below.

Xn

��

// ∗

��

Xn

��

// ∗

��
X // Xn+1 X // Πn+1(X)

Here, however, we need to be careful: in the topological context, the map X → Xn+1 is
obtained from the fact that colimXn ≃ X, so that its existence depends explicit of the fact that
Xn+1 belongs to the Postnikov tower of X. It happens that in general the last diagram does not
define a Postnikov tower of X, because we may not have Πn(X) ≃ X, so that in the abstract
context there is no complete analogous of the map X → Xn+1. On the other hand, we have a
canonical X → Πk(X) for any k, arising from the counit of the adjunction Π ⇋ Disc, so that we
put Xn as the homotopy fiber of X → Πn+1(X), as in the diagram above.

Xn

��

��✤
✤
✤

// ∗

��
Xn−1

��

//∞pb

��

// ∗

��

Xn−1

��

//∞pb

��

// ∗

��
X // Πn(X) // Πn−1(X) X // Πn(X) // Πn−1(X)

The maps Xn → Xn−1 can be obtained from a direct analogy with the topological case:
by making use of the maps Πn(X) → Πn−1(X), together with pasting law of ∞-pullbacks and
universality. More precisely, notice that, by the pasting law of∞-pullbacks, we can write Xn−1 as
the∞-pullback in the first diagram above. Furthermore, Xn is identified with the upper pullback
in the second diagram, so that we get Xn → Xn−1 from universality.

In order to conclude that the obtained sequence Xn really gives a presentation for the abstract
Whitehead tower of X we need to prove that colimXn ≃ ∗ and that X0 ≃ X. The first condition
follows from the dual property of the Postnikov tower for Π(X). In order to get the second
condition we can indeed define X0 := X. Indeed, the construction above only defines Xn for
positive values, i.e, for n > 0.
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de Rham

Let us discuss now a synthetic version of de Rham cohomology. As previously, let H be a
∞-connected ∞-topos, so that we have the shape modality Π. For each X we have a canonical
morphism X → ΠX: the counit of the adjunction Π ⇋ Disc defining the modality.

In the last subsection we used homotopy fibers of (the truncations of) this morphism in
order to get a geometric presentation of the Whitehead tower. Very surprisingly, the synthetic
formulation of de Rham cohomology is obtained by making use of homotopy cofibers (instead of
homotopy fibers) of this morphism! Indeed, for a given X we define its de Rham refinement as
the homotopy cofiber below.

ΠdRX ∗oo ♭dRA

��

// ∗

��
ΠX

OO

Xoo

OO

♭A // A

For a fixed A ∈ H, the abstract de Rham cohomology of X with coefficients in X is just the
abstract cohomology of the de Rham refinement:

HdR(X;A) := H0(ΠdRX;A) = π0∞Gpd(ΠdRX,A). (10.2.1)

In view of justifying why this can be used as a synthetic presentation for de Rham cohomology,
recall that in a ∞-connected ∞-topos we have another modality besides Π: the flat modality ♭,
arising from the adjunction Disc ⇋ Γ (which actually exists in any ∞-topos). So, for any A ∈ H

we can define a corresponding ♭dRA as in the second diagram above.
Let us prove that the induced functors ΠdR and ♭dR are adjoints (at least in the homotopy

category), so that we could be defined “abstract de Rham cohomology of X with coefficients in A”
equivalently as abstract cohomology of X with coefficients in ♭dRA, meaning that the adjunction
ΠdR ⇋ ♭dR induce an isomorphism

HdR(X;A) ≃ H0(X, ♭dRA). (10.2.2)

In order to get the desired adjunction, let us see that to any given 1-morphism X → ♭dRA we
have a corresponding ΠdRX → A and, reciprocally, that any ΠdRX → A induce some morphism
X → ♭dRA in such a way that both processes become one the inverse of the other. Therefore,
let X → ♭dRA be a given 1-morphism. By composition with ♭dRA → ♭A we get X → ♭A, as
in the first diagram below. From the adjunction Π ⇋ ♭, this morphism corresponds to another
ΠX → A. Therefore, from universality of ∞-pushouts we get ΠdRX → A, as in the second
diagram below (there, the distinguished arrows are exactly the same distinguished arrows of the
first diagram).

A

♭dRA

��

// ∗

��
�O
�O
�O

ΠdRX

cc

∗oo

mm

d$e%
f&g'

g'h(
i)j*

j*k+l,
l,m-

X

<<③③③③③③③③
//❴❴❴ ♭A // A ΠX

SS

❂
✽

✸
✴
✱
✮

OO

Xoo

OO
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Starting with a morphism ΠdRX → A proceed in a totally dual fashion. Indeed, by composing
with ΠX → ΠdRX the given morphism induce a ΠX → A, as in the first diagram below. From
the adjunction Π ⇋ ♭ we then get X → ♭A. So, by making use of universality of ∞-pushouts as
in the second diagram below, we get the desired X → ♭dRA.

X

""

-m ,l +k +k *j )i (h (h 'g &f %e $d #c

  

✭
✰
✳
✷
✼
❁

""
ΠdRX

||①①
①①
①①
①①
①

∗oo ♭dRA

��

// ∗

��
A ΠXoo❴ ❴ ❴

OO

Xoo

OO
O�
O�
O�

♭A // A

That both constructions define an adjunction ΠdR ⇋ ♭dR comes directly from the fact that
they were obtained from universality and from the adjunction Π ⇋ ♭.

Following Section ?? of [182], let us finally justify why (10.2.1) can be regarded as a synthetic
formalization of de Rham cohomology. Given a Lie∞-groupG we can consider iterated deloopings
BnG and so the induced geometric smooth ∞-stacks. Let us analyze BnU(1). We would like to
calculate its de Rham refinement ♭dRBnU(1) explicitly.

Notice that, because U(1) is a 1-group, its deloopings only “shift” the starting structure.
More precisely, as a Lie ∞-group U(1) has manifold of objects given U(1), trivial manifold of
1-morphisms, trivial manifold of 2-morphisms, and so on. On the other hand, BU(1) has trivial
manifold of objects, U(1) as manifold of 1-morphisms, trivial manifold of 2-morphisms, and so on.
So, when applying B we are “shifting” U(1) from 0-morphisms to 1-morphisms. Consequently,
iterating B we are shifting U(1) even more. Diagrammatically we have the following picture,
where the right-hand side was obtained from the left one by repeated applications of B:

· · · //
//
//
// ∗

//
// ∗ // U(1) · · ·

//

//

//

//

//
//
// ∗

//

//

//
//
//
//

U(1)

//

//

//
//
// ∗ //

//
//

//
· · · //

//
∗ // ∗

The associated geometric ∞-stack, here denoted by ḂnU(1), is the ∞-stackfication of the
functor which assigns to any manifold X the∞-groupoid diagrammatically presented by applying
C∞(X,−) at the diagram above. By definition, its flat modality is given by

♭ḂnU(1) := Disc(Γ(ḂnU(1))).

From the remark on “flat modality” at the end of the last section it follows that ♭ḂnU(1) is
the ∞-stacktification of the constant functor at the ∞-groupoid BnU(1). In order to get the
desired de Rham refined, we need to compute the following ∞-pullback:

♭dRḂ
nU(1)

��

// ♭ḂnU(1)

��
∗ // BnU(1)



CHAPTER 10. COHESIVE THEORY 277

From the discussion above we see that such ∞-pullback is identified with

♭dRḂ
nU(1)

��

// · · ·

//

//

//

//

//
//
// ∗

//

//

//
//
//
//

U(1)

//

//

//
//
// ∗ //

//
//

//
· · ·

��

∗ // · · ·

//

//

//

//

//
//
// ∗

//

//

//
//
//
//

C∞(−, U(1))

//

//

//
//
// ∗ //

//
//

//
· · ·

In order to compute it, we recall the stable Dold-Kan correspondence

DK : (CChR,⊗R) ≃ ModHR(Spec,∧HR)

between the ∞-category of cochain complexes and the ∞-category of ∞-module objects in Spec

over the Eilenberg-Mac Lane spectrum HR, where R is a commutative ring. By composition, it
induces a ∞-functor

∞DK :∞Shv(Diff
op
sub;CChZ)→∞Shv(Diff

op
sub;Spec).

As will be proved below in (10.2.9) the right-hand side belongs to the stable ∞-category of
the cohesive ∞-topos of smooth ∞-stacks. Therefore, applying Ω

∞
we get a functor

∞Shv(Diff
op
sub;CChZ)→∞Stack(Diff sub, J).

Both Ω
∞

and ∞DK have left adjoints, so that they preserve ∞-limits. This means that if
we identify smooth ∞-sheaves of cochain complexes that are mapped by Ω

∞
◦ ∞DK onto the

objects defining the last∞-pullback, then we can calculate this ∞-pullback by first computing it
in the level of complexes. It happens that in the present case it is easy to identify the underlying
complexes: we only need to replace ∗ with 0. More precisely, the∞-pullback of sheaves of cochain
complexes which will give the desired ♭dRBnU(1) is:

∞pb

��

// (· · · // 0 // U(1)

��

// 0 // · · · )

(· · · // 0 // · · · ) // (· · · // 0 // C∞(−, U(1)) // 0 // · · · )

The final step is to notice that, because we are working with ∞-limits, we have the freedom
to replace each object in the diagram with other in the same homotopy class. The homotopy
category of cochain complexes is determined by the algebraic derived category, so that two objects
are homotopic exactly when there is an isomorphism between their cohomology groups. On the
other hand, recall that sheaves are local objects, so that the ∞-pullback above can is ultimately
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computed over good coverings of smooth manifolds. Therefore, by the Poincaré lemma the chain
morphism below is indeed a homotopy equivalence.

· · · // 0

��

// U(1)

��

// 0 //

��

0

��

// · · · // 0

��

// 0 //

��

· · ·

· · · // 0 // C∞(−, U(1))
d

// Λ1
d

// Λ2
d

// · · ·
d

// Λn
d

// 0 // · · · ,

so that we make this replacement in the last∞-pullback. Recall that (as discussed in Sections 7.3
and 8.1), in the projective model structure presentation of the (∞, 1)-category CChR of cochain
complexes, a morphism is a fibration precisely if it is degreewise an epimorphism. Furthermore,
CChR is proper, so that if at least one morphism in a ∞-pullback is a fibration, then the ∞-
pullback can be computed as a usual 1-pullback. The homotopy equivalence above is a fibration,
so that when using it in the last ∞-pullback we will be able do a explicit computation, giving as
result (see Proposition ?? of [182]):

· · · // 0 // Λ1 d // Λ2 d // · · ·
d // Λn

d // 0 // (10.2.3)

Therefore, the de Rham refinement of the smooth∞-stack BnU(1) is just the image, via Dold-
Kan correspondence, of the de Rham complex truncated at level n. But notice that this truncated
complex is the presentation of classical de Rham cohomology, for n > 1, in the language of sheave
cohomology. On the other hand, ♭dRBnU(1) is the representing object for nth abstract de Rham
cohomology. Consequently, in the cohesive ∞-topos of smooth∞-stacks, for any object X induced
by a manifold, abstract de Rham cohomology coincides with classical de Rham cohomology:

Hn
dR(X) ≃ HdR(X;BnU(1)).

Remark. In the presentation (10.2.3) it is usual to agree that Λn is in degree zero. This will be
important later.

Remark. We obtained a synthetic formulation for de Rham cohomology. We could ask if there
is also a synthetic presentation for the de Rham complex. An approach is as follows. In order to
talk of de Rham complex we need the notion of “closed form”. In the classical context, de Rham
cohomology is defined as the quotient of the space of closed forms, so that we have a universal
projection from closed forms to de Rham cohomology. In our abstract context, for a given A, with
the notion of de Rham cohomology on hand we can define the ∞-stack of A-valued closed as the
universal object Λcl(−;A) with trivial k-morphisms (meaning that it lie in the 0th truncation)
endowed with a morphism Λcl(−;A)→ ♭dRA such that for any X the corresponding map

Λcl(X;A)→ HdR(X;A)

is a projection. In order to get de Rham complex we need indeed closed forms of different
degrees, but with coefficients into a same object. This is easy to get from the case above by
considering A = BkG. Finally, we need an “exterior derivative” d realizing de Rham cohomology
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as a quotient of closed forms by the image of d. So, for a given ∞-group G we define an abstract
exterior derivative with coefficients in G as a sequence of morphisms

dk : ♭dRB
kG→ ♭dRB

k+1G

which lifts to morphisms between closed forms (in the sense of the first diagram below) and such
that for any X the pushout in the second diagram models Hk

dR(X;G).

Λkcl(−;G)

��

//❴❴❴ Λk+1
cl (−;G)

��

ps ∗oo

♭dRB
kG

dk
// ♭dRB

k+1G Λk+1
cl (X;G)

OO

Λkcl(X;G)oo❴ ❴ ❴

OO

Connections

For any object A in a∞-connected∞-topos H we can consider its de Rham refinement ♭dRA,
as discussed in the last subsection. It is the homotopy fiber of the unit ♭A → A and, therefore,
it becomes equipped with a canonical morphism ♭dRA→ ♭A. Let us now consider the homotopy
fiber of this new map. By the gluing property of ∞-pullbacks, this gives a model to the loop
space of A, which itself becomes equipped with a distinguished map ΩA→ ♭dRA, as below.

∞pb

��

// ∗

��

∞pb

��

// ∗

��

♭dRA

��

// ♭A

��

=

∗ // A ∗ // A

(10.2.4)

If A is now the delooping ∞-groupoid BG of a internal ∞-group G, then we have ΩBG ≃ G,
so that the construction above gives a canonical morphism θG : G→ ♭dRBG. In terms of abstract
cohomology, this defines a class in the first abstract de Rham cohology HdR(G; ♭dRBG).

Let us assume that G has a further delooping B2G. Let Λ2
cl(−; g) be a model for abstract G-

valued closed 2-forms, as discussed in the end of the last subsection. In this case, the∞-pullback
below is called the object of abstract G-connections.

BGconn

��

// Λ2
cl(−; g)

��
BG // ♭dRB

2G

In order to explain the interest in this kind of object, let us compute BU(1)conn explicitly.
The idea is to follow the same strategy used in the last subsection in order to show that abstract
de Rham cohomology is a synthetic formulation of classical de Rham cohomology. Indeed, as
observed in (10.2.3), ♭dRB2U(1) has a presentation as cochain complex. Furthermore, because
u(1) ≃ R, we see that the smooth∞-stack Λ2

cl(−, u(1)) can be presented by the cochain complexes
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concentrated in the usual sheaf of closed 2-forms. Therefore, a presentation for BU(1)conn as a
smooth∞-sheaf of complexes is given by the following∞-pullback, where we indicated the degree
of each term and the parenthesis [− and −] imply that from that point the complex is trivial.

∞pb

��

// [
−1
0 //

0

Λ2
cl

��

//
1
0]

[ 0
−3

// C∞(−, U(1))
−2

// 0
−1

] // [ 0
−2

d // Λ1

−1

d // Λ2

0

d // 0
1
]

(10.2.5)

In positive degrees the morphisms are epimorphisms, so that this∞-pullback can be computed
as a 1-pullback, giving (see Proposition 4.4.91, p. 518 of [182]):

· · · 0 //// C∞(−, U(1))
d // Λ1 d // // 0 // · · ·

But recall the definition of Deligne cohomology in (??). Indeed, for a given n, the Deligne
cohomology of a manifold X is the abelian sheaf cohomology of the sheaf of complexes Dk+1

below. Therefore, we see that the presentation of BU(1)conn by cochain complexes is given by the
Deligne complex D2.

· · · 0 // C∞(−, U(1))
d // Λ1 d // · · ·

d // Λk // 0 // · · ·

Having computed BU(1)conn explicitly, we can now say what is the theoretical interest in the
object BGconn. A G-bundle with connection ∇ over a manifold X, for G = U(1), is classified
precisely by cocycles in Deligne cohomology H2

Dl(X) and, therefore, in the abstract cohomology
H(X;BU(1)conn). So, for a ∞-group G in an arbitrary cohesive ∞-topos H, we can regard a
morphism X → BGconn as a synthetic formulation for the notion of “G-principal ∞-bundle with
connection over X”.

Remark. If a ∞-group G has n > 2 deloopings, then we can define not only the “object of G-
connections” BGconn, but also BkU(1)conn for every 1 ≤ k < n. Indeed, it is just the ∞-pullback
below. In this case, the cochain complex presentation would be given by Dk+1.

BkGconn

��

// Λk+1
cl (−; g)

��
Bk+1G // ♭dRB

k+1G

Differential Cohomology

We have seen that any abstract cohomology in a ∞-connected ∞-topos, with coefficients in
an arbitrary object A, admits a “differential refinement” which can be understood as an abstract
version of de Rham cohomology. IfA = Bk+1G for some∞-groupG, then the de Rham refinement
♭dRB

k+1G refines even more, defining BkGconn.



CHAPTER 10. COHESIVE THEORY 281

In the case G = U(1) this is modeled by Deligne complex of degree k+1. Deligne cohomology
Hk+1
Dl (X) is the classical model to ordinary differential cohomology, as discussed in Section 1.2.

Therefore, it seems natural to call the H0(X;BkGconn) of kth abstract differential nonabelian
cohomology of X with coefficients in G. But, since the works of Hopkins-Singer [99] and Simons-
Sullivan , any model to the notion of “differential cohomology” should sitting in the middle of a
“differential cohomology hexagon” of interlocking exact sequences.

Here we will show that, at least after stabilization, the groups H0(X;BkGconn) actually satisfy
this hexagon diagram. More precisely, following [35, 36, 183] we will show that any Ω-spectrum E

in a cohesive∞-topos H sits in the middle of a hexagon analogous to the “differential cohomology
hexagon”. We then sketch how to recover the diagram for Deligne cohomology from this abstract
picture.

We start by recalling that, from Example 10.5, the cohesive structure of H induces a cohesive
structure in Stab(H). So, we can consider ♭dRE. Recall that this is the homotopy fiber of the
morphism ♭E→ E. Consequently, we can analyze the associated abstract fibration sequence:

· · · // Ω♭E // ΩE // ♭dRE // ♭E // E

For instance, the first four terms are just the maps appearing in diagram (10.2.4) for the case
A = E. Applying the geometric fundamental ∞-groupoid∞-functor Π to the sequence above we
get the commutative diagram below, where the vertical arrows are the counit of the adjunction
Π ⇋ Disc defining Π.

· · · // Ω♭E

��

// ΩE

��

// ♭dRE

��

// ♭E

��

// E

��
· · · // ΠΩ♭E // ΠΩE // Π♭dRE // Π♭E // ΠE

From the stability of Stab(H) we have ΩX ≃ X for any X, so that the sequence above is
periodic. Let us look at its non-periodic part, presented below. The vertical distinguished arrow
is an equivalence, because in any cohesive ∞-topos we have ♭ ◦Π ≃ ♭. Consequently, the non-
periodic part reduces to a commutative square which is forced to be ∞-pullback square.

♭E

��✤
✤
✤

// E //

��

♭dRE

��
Π♭E // ΠE // Π♭dRE

(10.2.6)

Thanks to the stability of Stab(H), any X is infinitely deloopable and BX ≃ X. So, we can
identify the right upper horizontal arrow with the abstract Maurer-Cartan form of E. Therefore,
the diagram above collapses into the first diagram below. A totally dual argumentation will
produce the second diagram as a ∞-pullback.

E

��

θE // ♭dRE

��

ΠdR♭E //

��

ΠdRE

��
ΠE

Π(θE)
// Π♭dRE ♭E // E
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Gluing these two diagrams at the common vertex E we get the diagram below. We assert
that both upper and lower outer sequences are fibration sequences.

ΠdRE

""❉
❉

❉
❉

❉
// ♭dRE

$$■
■

■
■

■

ΠdR♭E

::t
t

t
t

t

%%

E

θE

==④
④

④
④

!!

Π♭dRE

♭E

<<

// ΠE

Π(θE)

::

(10.2.7)

Indeed, by rotating the second ∞-pullback square and using the fibration sequence (10.2.4)
together with its dual version, we get the following diagram, where each square is a ∞-pullback.
So, by gluing properties, the outer square is also a ∞-pullback square. Consequently, the distin-
guished sequences are fibrations sequences. But, by commutativity, these sequences are precisely
the distinguished sequences of the last diagram.

∗

""❊
❊

❊
❊

ΠdRE

;;①
①

①
①

①

""❊
❊❊

❊❊
❊❊

❊❊
ΠE

$$■
■

■
■

■

ΠdR♭E

99t
t

t
t

t

$$

E

==④④④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈ Π♭dRE

♭E

<<③③③③③③③③③

""

♭dRE

::

∗

<<

(10.2.8)

We end with a remark.

Remark. The construction of the abstract hexagon above was firstly done in [36] in the cohesive
∞-topos of smooth ∞-stacks. The general case is due to Schreiber [183]. We advert the reader
that in [36] the authors do not work explicitly with spectrum objects in the∞-topos of smooth∞-
stacks. Instead, they work with “smooth sheaves of spectra”, i.e, with∞-sheaves Diffop → Spec.
But both notions are equivalent:

∞Func(Diff op;Spec) ≃ ∞Func(Diffop;∞Func(Z× Z;∞Gpd))

≃ ∞Func(Diffop × (Z× Z);∞Gpd)

≃ ∞Func((Z× Z)×Diffop;∞Gpd)

≃ ∞Func(Z× Z;∞Func(Diffop;∞Gpd)). (10.2.9)

Deligne

One time built the abstract differential cohomology hexagon, let us show that we can recover
the canonical hexagon for the Deligne complex as a particular case. More precisely, we will obtain



CHAPTER 10. COHESIVE THEORY 283

a spectrum object E in the cohesive ∞-topos smooth ∞-stacks H such that the corresponding
abstract differential cohomology hexagon (10.2.6) is exactly that captured by Deligne cohomology.

Recalling the stable Dold-Kan correspondence, which establishes a ∞-monoidal equivalence

DK : (CChR,⊗R) ≃ ModHR(Spec,∧HR),

we get the functor

∞DK :∞Shv(Diff
op
sub;CChZ)→∞Shv(Diff

op
sub;Spec)

taking values into Stab(H), due to (10.2.9). Therefore, the Deligne complex Dn+1 is mapped
under ∞DK onto a Ω-spectrum, which is the obvious candidate to the desired E (notice that, as
obtained previously, the ∞-loop space of E is exactly BnU(1)conn).

Because ∞DK preserve ∞-limits, it is enough to do the calculations at the level of cochain
complexes. In other words, it is enough to compute each term in the diagram below

ΠdRD
n+1

%%❑❑
❑❑❑

❑❑❑
❑❑

// ♭dRD
n+1

&&◆◆
◆◆◆

◆◆◆
◆◆◆

ΠdR♭D
n+1

77♣♣♣♣♣♣♣♣♣♣♣

''❖❖
❖❖❖

❖❖❖
❖❖❖

Dn+1

99ttttttttt

%%❑❑
❑❑

❑❑❑
❑❑

❑ Π♭dRD
n+1

♭Dn+1

99rrrrrrrrrr
// ΠDn+1

77♣♣♣♣♣♣♣♣♣♣

(10.2.10)

showing that they produce the usual differential cohomology diagram:

Λn(X)/img(d)

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
// Λn+1

cl (X)

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖

Hn(X;R)

77♦♦♦♦♦♦♦♦♦♦♦♦

''PP
PPP

PPP
PPP

P
Hn+1
Dl (X)

88♣♣♣♣♣♣♣♣♣♣♣

''◆◆
◆◆◆

◆◆◆
◆◆◆

Hn+1(X;R)

Hn(X;U(1))

77♦♦♦♦♦♦♦♦♦♦♦♦
// Hn+1(X;Z)

77♦♦♦♦♦♦♦♦♦♦♦♦

(10.2.11)

We will indicate how the computations could be done in this particular case. We start by
analyzing the diagonal

♭Dn+1 // Dn+1 // ♭dRD
n+1. (10.2.12)

Recall that the flat modality ♭ takes a ∞-stack F and gives the ∞-stack ♭F constant and
equal to F (∗). Therefore, the flat version of Deligne complex Dn+1 is given by the constant
smooth ∞-sheaf of complexes

· · · // 0
−n−2

// U(1)
−n−1

// 0
−n

// · · · ,

which under∞DK is mapped precisely onto the (stabilization of the smooth∞-stack induced by)
the Eilenberg-Mac Lane space K(U(1), n). The term ♭dRD

n+1 is, by definition, the ∞-pullback

♭dRD
n+1

��

// ♭Dn+1

��
∗ // Dn+1.



CHAPTER 10. COHESIVE THEORY 284

It can be computed as a usual pullback by making use of Poincaré lemma in order to replace
the constant complex ♭Dn+1 as follows:

· · · // 0

��

// U(1)

��

// 0

��

// · · · // 0

��

// 0

��

// 0 //

��

· · ·

· · · // 0 // C∞(−, U(1)) // Λ1 // · · · // Λncl
// Λn+1

cl
// 0 // · · ·

A direct computation then reveals that ♭dRDn+1 is given by

· · · // 0 // Λn+1
cl

// 0 // · · · , (10.2.13)

so that under stable Dold-Kan correspondence the starting sequence (10.2.12) becomes

BnU(1) // BnU(1)conn // Λn+1
cl .

Let us now study the ∞-pullback square below.

Dn+1

��

// ♭dRD
n+1

��
ΠDn+1 // ΠdRD

n+1

(10.2.14)

It happens that we actually have a∞-pullback presentation for the Deligne complex, obtained
in (10.2.5), given by the following diagram.

Dn+1

��

// [
−1
0 //

0
Λncl

��

//
1
0]

[ 0
−n−2

// C∞(−, U(1))
−n−1

// 0
−n

] // [ 0
−n−1

// Λ1

−n
// · · · // Λn

0
// 0
1
]

Furthermore, from (10.2.13) the upper right term in the last diagram is exactly ♭dRD
n+1,

so that the lower arrow should be at least a pullback of ΠDn+1 → Π♭dRD
n+1. We assert that

the diagram below is the required presentation, leading us to identify the image under Dold-Kan
correspondence of ΠDn+1 → Π♭dRD

n+1 as Bn+1Z→ Bn+1R.

[
−n−2
0 //

−n−1

C∞(−, U(1))

��

//
−n
0 ] // [ 0

−n−1
// Λ1

−n
// · · ·

��

// Λn
0

// 0
1
]

[ 0
−n−3

// Z
−n−2

// 0
−n−1

] // [ 0
−n−3

// R
−n−2

// 0
−n−1

]

(10.2.15)
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First of all notice that we have an exact sequence

0 // Z // R // U(1) // 0,

which induces a quasi-isomorphism between the cochain complexes

· · · // 0 //

��

Z //

��

R //

��

0

��

// · · ·

· · · // 0 // 0 // U(1) // 0 // · · · ,

allowing us to replace the lower arrow in (10.2.15) with

[0] // [ 0
−n−2

// U(1)
−n−1

// 0
−n

],

which in turn, due to Poincaré lemma, can be replaced with

[0] // [ 0
−n−2

// C∞(−, U(1))
−n−1

// Λ1

−n
// · · · // Λncl

0

// 0
1
].

Doing these replacements, a direct computation shows that the diagram (10.2.15) really is a
∞-pullback square, meaning that under Dold-Kan correspondence the ∞-pullback (10.2.14) is
mapped onto

BnU(1)conn

��

// Λn+1
cl

��
Bn+1Z // Bn+1R

From (10.2.8) we see that ΠdR♭D
n+1 can be understood as the loop space of Π♭dRDn+1, so

that under Dold-Kan correspondence we have

∞DK(ΠdR♭D
n+1) ≃ ΩBn+1R ≃ BnR.

Finally, by making use of de Rham theorem and of the fact that the sequence

ΠdR♭D
n+1 // ΠdRD

n+1 // ♭dRD
n+1 // Π♭dRD

n+1

is a fibration sequence, we conclude that under ∞DK the term ΠdRD
n+1 is given by Λn/img(d).

Therefore, joining all these results we see that the abstract hexagon diagram (10.2.10) is mapped
by Dold-Kan correspondence onto

Λn/img(d)

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖
// Λn+1

cl

$$■■
■■

■■
■■

■

BnR

99ssssssssss

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑ BnU(1)conn

88qqqqqqqqqqq

&&▼▼
▼▼▼

▼▼▼
▼▼

Bn+1R

BnU(1)

77♦♦♦♦♦♦♦♦♦♦♦♦
// Bn+1Z

::tttttttttt

which really reproduces the concrete differential cohomology diagram (10.2.11) in the cohomology
level.



Bibliography

[1] Adams, J. F., On the nonexistence of elements of Hopf invariant one, Bull. Amer. Math.
Soc. Volume 64, Number 5 (1958), 279-282.

[2] Adams, J. F., Vector Fields on Spheres, Annals of Math., Vol. 75, No. 3, May, 1962.

[3] Adams, J. F., Atiyah, M. F., K-Theory and the Hopf Invariant, Quart. J. Math. Oxford
(2), 17 (1966), 31-38.

[4] Adams, J. F., Stable Homotopy and Generalised Homology, University Of Chicago Press,
1995.

[5] Alvarez-Gaumé, L., Supersymmetry and the Atiyah-Singer Index Theorem, Comm. Math.
Phys., 90, 161-173 (1983).

[6] Aguiar, M., Internal Categories and Quantum Groups, PhD thesis, Cornell University, 1997.

[7] Aguiar, M., Mahajan, S., Hopf Algebras and Tensor Categories, AMS, 2013.

[8] Aguiar, M., Mahajan, S., Monoidal Functors, Species and Hopf Algebras, AMS, 2010.

[9] Aguilar, M., Gitler, S., Prieto, C., Algebraic Topology from a Homotopical Viewpoint,
Springer, 2002.

[10] Ando, M., Blumberg, A. J., et al., Units of ring spectra and Thom spectra, arXiv:0810.4535.

[11] Atiyah, M., K-Theory, Westview Press, 1994.

[12] Atiyah, M., Singer, I. M., Index theory for skew-adjoint fredholm operators, Inst. Hautes
tudes Sci. Publ. Math. , (37):5–26, 1969.

[13] Atiyah, M., Bott, R., Shapiro, A., Raoul Bott, Clifford modules, Topology , 3(suppl.1):3–38,
1964.

[14] Atiyah, M., Segal, G., Twisted K-theory, arXiv:math/0407054.

[15] Ayala, D., Geometric Cobordism Categories, arXiv:0811.2280

[16] Ayala, D., Francis, J., The cobordism hypothesis, arXiv:1705.02240

[17] Baez, J. C., Lauda, A., A Prehistory of n-Categorical Physics, arXiv:0908.2469

286



BIBLIOGRAPHY 287

[18] Baez, J. C., Quantum Quandaries: a Category-Theoretic Perspective, arXiv:quant-
ph/0404040.

[19] Baez, J., Dolan, J., Categorification, arXiv:math/9802029

[20] Baez, J., Dolan, J., Higher Dimensional Algebra and Topological Quantum Field Theories.
arXiv:q-alg/9503002

[21] Baez, J., Dolan, J., Higher Algebra III: n-Categories and the Algebra of Opetopes, arXiv:q-
alg/9702014.

[22] Baez, J., Crans, A. S., Higher-Dimensional Algebra VI: Lie 2-Algebras, arXiv:math/0307263

[23] Baez, J., Schreiber, U., Higher Gauge Theory: 2-Connections on 2-Bundles, arXiv:hep-
th/0412325

[24] Baez, J. C., Schreiber, U., Higher Gauge Theory, arXiv:math/0511710

[25] Bakalov, B., Kirillov, A., Lectures on Tensor Categories and Modular Functors, AMS, 2000.

[26] -Barker, M. F., Group Objects and Internal Categories, arXiv:math/0212065.

[27] Bartlett, B. H., Categorical Aspects of Topological Quantum Field Theories,
arXiv:math/0512103.

[28] Bastiani A., Ehresmann, C., Categories of sketched structures, Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 13 no. 2 (1972), p. 104-214

[29] Bergner, J., Models for (∞, n)-Categories and the Cobordism Hypothesis, in Hisham Sati,
Urs Schreiber (eds.) Mathematical Foundations of Quantum Field and Perturbative String
Theory, AMS 2011

[30] Berline, N., Getzler, E., Vergne, M., Heat Kernels and Dirac Operators, Springer, 1996.

[31] Bott, R., Milnor, J. W., On the parallelizability of spheres, 1958.

[32] Bott, R., Tu, L. W., Differential Forms in Algebraic Topology, Springer, 1995

[33] Brown, R., Ten topologies for X × Y , Quart. J.Math. (2) 14 (1963), 303–319.

[34] Brown, R., Function spaces and product topologies, Quart. J. Math. (2) 15 (1964), 238–250.

[35] Bunke, U., Differential Cohomology, arXiv:1208.3961

[36] Bunke, U., Nikolaus, T., Völkl, M., Differential cohomology theories as sheaves of spectra,
arXiv:1311.3188

[37] Castellani, L., D’Auria, R., Fré, P., Supergravity and Superstrings - A Geometric Perspec-
tive, vol. 1,2,3, World Scientific, 1991

[38] Castellani, L., Catenacci, R., Grassi P. A, The Geometry of Supermanifolds and New Su-
persymmetric Actions, arXiv:1503.07886.



BIBLIOGRAPHY 288

[39] Castellani, L., Catenacci, R., Grassi P. A, Supergravity Actions with Integral Forms,
arXiv:1409.0192

[40] Castellani, L., Catenacci, R., Grassi P. A, Hodge Dualities on Supermanifolds,
arXiv:1507.01421

[41] Castellani, L., Catenacci, R., Grassi P. A, The Hodge Operator Revisited, arXiv:1511.05105.

[42] Cheng, E., Lauda, A., Higher Dimensional Categories: an illustrated guide book,

[43] Cheung, P., Supersymmetric field theories and cohomology, arXiv:0811.2267

[44] Choquet-Bruhat, Y., DeWitt-Morette, C., Analysis, Manifolds and Physics, Part II, North
Holland, 2000.

[45] Coleman, S., Mandula, J., All Possible Symmetries of the S-Matrix, Physical Review,
159(5), 1967, pp. 1251–1256.

[46] Connes, A., Kreimer, D., Hopf Algebras, Renormalization and Noncommutative Geometry,
arXiv:hep-th/9808042

[47] Connes, A., Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert
problem, arXiv:hep-th/9909126

[48] Connes, A., Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert
problem I: the Hopf algebra structure of graphs and the main theorem, arXiv:hep-th/9912092

[49] Costello, K., Gwilliam, O. , Factorization algebras in perturbative quantum field theory

[50] Dadam, F., Martins, Y. X., Topologia, Geometria e Buracos Negros, NEA, 2016.

[51] D’Auria, R., Fré, P., Geometric Supergravity in D=11 and its hidden supergroup, Nuclear
Physics B201 (1982) 101-140

[52] Day, B.J., Kelly, G.M. Enriched functor categories. In: Reports of the Midwest Category
Seminar III. Lecture Notes in Mathematics, vol 106. Springer, Berlin, Heidelberg, 1969.

[53] Deligne, P., Etingof, P., Freed, D. S., Jeffrey, L. C., Kazhdan D., Morgan, J. W., Morrison,
D. R., Witten, E., Quantum Fields and Strins: A Course for Mathematicians, vol. 1 and
2, AMS, 1999.

[54] Deligne, P., Catégorie Tensorielle, Moscow Math. Journal 2 (2002) no. 2, 227-248.

[55] Deligne, P., Milde, J., Tannakian categories, 2012.

[56] DeWitt, B., Supermanifolds, Cambridge Monographs on Mathematical Physics, 1984

[57] tom Dieck, T., Algebraic Topology, EMS, 2008

[58] Donaldson, S., An Application of Gauge Theory to Four Dimensional Topology, Journal of
Differential Geometry, 18 (2): 279–315, 1983.



BIBLIOGRAPHY 289

[59] Dubuc, E. J., Kan Extensions in Enriched Category Theory, Springer,

[60] Dyson, F., Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85,
631, 1952

[61] Eckmann, B., Hilton, P. J., Group-Like Structures in General Categories I: Multiplications
and Comultiplications, Math. Annalen, 142, p. 227-255, 1962.

[62] Eilenberg, S., Kelly, G. M., Closed categories. Proc. Conf. on Categorical Algebra (La Jolla
1965), (Springer-Verlag 1966), 421–562.

[63] Elmendorf, A., Mandell, M., Permutative categories, multicategories, and algebraic K-
theory, arXiv:0710.0082

[64] Elmendorf, A. D., Kriz, I., Mandell, M. A., May, J. P., Rings, modules, and algebras in stable
homotopy theory, with an appendix by M. Cole, Mathematical Surveys and Monographs,
47, AMS, Providence, RI (1997)

[65] Elmendorf, A. D., The Development of Structured Ring Spectra, in Structured Ring Spectra,
Cambridge Univesity Press, 2004.

[66] Elmendorf, A. D., Compromises forced by Lewis’s theorem, in Structured Ring Spectra,
Cambridge Univesity Press, 2004.

[67] Elmendorf, A. D., Kriz, I., May, J. P., Modern Foundations for Stable Homotopy Theory.

[68] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V., Tensor categories, AMS, 2015

[69] Fecko, M., Differential Geometry and Lie Groups for Physicists, Cambridge University
Press, 2006.

[70] Fedosov, B., Formal quantization, Some Topics of Modern Mathematics and their Applica-
tions to Problems of Mathematical Physics (in Russian), Moscow (1985), 129-136.

[71] Fedosov, B., Index theorem in the algebra of quantum observables, Sov. Phys. Dokl. 34
(1989), 318-321.

[72] Fedosov, B., A simple geometrical construction of deformation quantization, J. Differential
Geom. Volume 40, Number 2 (1994), 213-238.

[73] Freed, D. S., Dirac Charge Quantization and Generalized Differential Cohomology,
arXiv:hep-th/0011220.

[74] Freed, D. S., The cobordism hypothesis, arXiv:1210.5100.

[75] Freed, D. S.; Uhlenbeck, K. K., Instantons and four-manifolds, Springer, 1984.

[76] Feshbach, M., Voronov, A. A., A higher category of cobordisms and topological quantum
field theory, arXiv:1108.3349

[77] Gabriel, P., Zisman, M., Calculus of fractions and homotopy theory, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 35. Springer, New York (1967).



BIBLIOGRAPHY 290

[78] Gelfand, S. I., Manin, Y. I., Methods of Homological Algebra, Springer, 2003.

[79] Getzler, E., Pseudodifferential operators on supermanifolds and the Atiyah-Singer index
theorem, Comm. Math. Phys. Volume 92, Number 2 (1983), 163-178.

[80] Getzler, E., A short proof of the local Atiyah–Singer index theorem, Topology, 25: 111–117,
1988.

[81] Goldblatt, R., Topoi: The Categorical Analysis of Logic, Dover Publications, 2006.

[82] Goodwillie, T., The differential calculus of homotopy functors, ICM

[83] Gordon, Power, Street, Coherence for tricategories, Mem. Amer. Math Soc. 117 (1995) no
558

[84] Gotay, M. J., http://arxiv.org/abs/math-ph/9809011

[85] Gotay, M. J., Grabowski, J., Grundling, H. B., http://arxiv.org/abs/dg-ga/9706001

[86] Gotay, M. J., Grundling, H. B., http://arxiv.org/abs/dg-ga/9710024

[87] Gotay, M. J., Functorial Geometric Quantization and Van Hove’s Theorem, Int. J. Th. Ph.,
vol. 19, n. 2, 1980.

[88] Gray, B., Homotopy Theory, an Introduction to Algebraic Topology, Academic Press, 1975.

[89] Groenewold, H. J., On the Principles of elementary quantum mechanics, Physica 12, pp.
405-460, 1946

[90] Grothendieck, A., Sur quelques points d’algèbre homologique, Tôhoku Math. J. vol 9, n.2,
3, 1957, The Tohoku university, Sendai, Japan

[91] Hatcher, A., Algebraic Topology, Cambridge University Press, 2001.

[92] Haugseng, R., Iterated spans and "classical" topological field theories, arXiv:1409.0837

[93] Henriques, A., Lecture by Michael Hopkins: the string orientation of tmf, arXiv:0805.0743.

[94] Henriques, A., A proof of Bott periodicity via Clifford algebras, 2009

[95] Hilbert, D., Mathematical Problems, Bulletin of the American Mathematical Society, vol.
8, no. 10 (1902), pp. 437-479. Earlier publications (in the original German) appeared in
Göttinger Nachrichten, 1900, pp. 253-297, and Archiv der Mathematik und Physik, 3dser.,
vol. 1 (1901), pp. 44-63, 213-237.

[96] Hirschhorn, P. S., Model Categories and Their Localizations, AMS, 2009

[97] Hoffnung, A. E., Spans in 2-Categories: A monoidal tricategory, arXiv:1112.056

[98] Hopf, H., Abbildungsklassen n-dimensionalcr Mannigfaltigkeiten, Math. Annalen 96 (1926),
209-224.



BIBLIOGRAPHY 291

[99] Hopkins, M. J., Singer, I. M., Quadratic functions in geometry, topology and M-theory,
arXiv:math/0211216

[100] Hovey, M., Model Categories, AMS, 2007.

[101] Hovey, M., Shipley, B., Smith, J., Symmetric spectra, J. Amer. Math. Soc. 13, 1 (2000),
149–208

[102] Huerta, J., Division Algebras, Supersymmetry and Higher Gauge Theory, PhD thesis,
UCLA, Riverside, 2011.

[103] Hüsemoller, D., Fibre Bundles, Springer-Verlag, second edition

[104] Husemöller, D., Joachim, M., Jurco, B., Schottenloher M., Basic Bundle Theory and K-
Cohomology Invariants, Springer-Verlag, 2008.

[105] J.-Freyd, T., The formal path integral and quantum mechanics, arXiv:1004.430

[106] Janelidze G., Internal crossed modules, Georgian Mathematical Journal 10 (2003) pp 99-
114.

[107] Johnstone, P., Topos theory, London Math. Soc. Monographs 10, Acad. Press 1977,
xxiii+367 pp.

[108] Karoubi, M., Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. , 1(4):161–270,
1968.

[109] Karoubi, M, K-theory, Springer, 2008.

[110] Kelly, M., Basic Concepts of Enriched Category Theory, Cambridge University Press, 1982.
Republished in: Reprints in Theory and Applications of Categories, No. 10 (2005) pp. 1-136.

[111] Kervaire, M. A., Non-Parallelizability of the n-Sphere for n > 7, Proc Natl Acad Sci U S
A. 1958 Mar; 44(3): 280–283.

[112] Kervaire, M. A., Milnor, J. W., Groups of homotopy spheres: I, Annals of Mathematics.
Princeton University Press. 77 (3): 504–537

[113] Kobayashi, S., Nomizu, L., Foundations of Differential Geometry, Vol.1, Wiley Classics
Library, 1996.

[114] Kochman, S. O., Bordism, Stable Homotopy and Adams Spectral Sequences, AMS, 1996.

[115] Kono, A., Tamaki, D., Generalized Cohomology, AMS, 2006.

[116] Kontsevich, M., Deformation quantization of Poisson manifolds, I, arXiv:q-alg/9709040

[117] Labastida, J., Mariño, M., Topological Quantum Field Theory and Four Manifolds, Springer,
2005.

[118] Lang, S., Algebra, Springer-Verlag



BIBLIOGRAPHY 292

[119] Lawson, H. B., Michelsohn, M., Spin Geometry, Princeton University Press, 1989.

[120] Leinster, T., A Survey of Definitions of n-Categories, Theory and Applications of Cate-
gories, 10, 2002, 1-70.

[121] Leinster, T., Higher Operads, Higher Categories, Cambridge University Press

[122] Lemos, A., N., Convite à Física Matemática, Editora Livraria da Física, 2013

[123] Lewis, L. G. Jr, Is there a convenient category of spectra? Journal of Pure and Applied
Algebra 73 ( 1991) 233-2-M

[124] Lurie, J., On the Classification of Topological Field Theories, arXiv:0905.046.

[125] Lurie, J., Higher Algebra,

[126] Lurie, J., Stable Infinity Categories, arXiv:math/0608228

[127] Lurie, J., Higher Topos Theory, Princeton University Press, 2009

[128] Lurie, J., Derived Algebraic Geometry III: Commutative Algebra, arXiv:math/0703204

[129] Lurie, J., (∞, 2)-Categories and the Goodwillie Calculus I, arXiv:0905.0462

[130] Lurie, J., Ek-algebras .......

[131] Mac Lane, S., Categories for the Working Mathematician, Springer, 1998.

[132] Mac Lane, S., Moerdijk, I., Sheaves in Geometry and Logic, Springer, 1992.

[133] Mac Lane, S., Natural associativity and commutativity, Rice University Studies 49, 28-46
(1963)

[134] Malkiewich, C., The stable homotopy category.

[135] -Maluga, T. A., Brans, C., Exotic Smoothness and Physics, World Scientific, 2007.

[136] Marcolli, M, Seiberg-Witten Gauge Theory.

[137] Margolis, H. R., Spectra and the Steenrod Algebra, ELSEVIER SCIENCE PUBLISHERS
B.V, 1983.

[138] Mariño, M., Chern-Simons theory, matrix models and topological strings, Oxford University
Press, 2005.

[139] Martins, Y. X., Biezuner, R. J., On obstructions to the topology of the universe, in prepa-
ration.

[140] Martins, Y. X., Introdução à Teoria da Homotopia Abstrata, to appear.

[141] May, J. P., A Concise Course in Algebraic Topology, University of Chicago Press, 1999

[142] May, J. P., E∞-ring spaces and E∞-ring spectra, Springer-Verlag, Berlin, 1977.



BIBLIOGRAPHY 293

[143] May, J. P., What precisely are E∞-ring spaces and E∞-ring spectra?, Geometry and Topol-
ogy Monographs 16 (2009) 215–282

[144] May, J. P., Stable Algebraic Topology, 1945-1966.

[145] May, J. P., Sigurdsson, J., Parametrized Homotopy Theory, AMS 132, 2006.

[146] May, J. P., Ponto, K., More Concise Algebraic Topology: Localization, Completion, and
Model Categories, University Of Chicago Press, 2012

[147] McLarty, C., Elementary Categories, Elementary Toposes, Oxford Logic Guides, 1996.

[148] de Melo, W., de Faria, E., Mathematical Aspects of Quantum Field Theory, Cambridge
University Press, 2010.

[149] Moore, J. D., Lectures on Seiberg-Witten Invariants, Springer, 1991.

[150] Morgan, J. W., The Seiberg-Witten Equations and Applications to the Topology of Smooth
Four-Manifolds, Princeton University Press, 1996.

[151] Mosher, R. E., Tangora, M. C., Cohomology Opperations and Applications in Homotopy
Theory, Dover Publications, 2008.

[152] Milnor, J. W., The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150–171.

[153] Milnor, J. W., On Axiomatic Homology Theory, Pacific Journal of Mathematics, v. 12, n.1,
1962.

[154] Milnor, J. W., On manifolds homeomorphic to the 7-sphere, Annals of Mathematics, 64 (2):
399–405.

[155] Milnor, J. W., Differentiable structures on spheres, American Journal of Mathematics, 81
(4): 962–972

[156] Milnor, J., Moore, J., On the structure of Hopf algebras, Annals of Math. 81 (1965), 211-264.

[157] Nicolaescu, L. I., Notes on Seiberg-Witten Theory, AMS, 2000.

[158] Nicholson, W. K., A Short Proof of Weddernburn-Artin Theorem, New Zeland Journal of
Mathematics Volume 22 (1993), 83-86

[159] Nuiten, J., Cohomological quantization of local prequantum boundary field theory, MSc the-
sis, Utrecht, August 2013

[160] Ohtsuki, T., Quantum Invariants, World Scientific, 2002.

[161] Oliveira, C. R., Intermediate Spectral Theory and Quantum Dynamics, Birkhäuser, 2000

[162] Ortin, T., Gravity and Strings, Cambridge University Press, 2004.

[163] Ostrik, V., Tensor categories (after P. Deligne), arXiv:math/0401347



BIBLIOGRAPHY 294

[164] Park, E., Complex K-theory, Cambridge University Press, 2008.

[165] Paugam, F., Towards the Mathematics of Quantum Field Theory, Springer, 2014.

[166] Paul S. Aspinwall Bridgeland, T., Craw, A., Douglas, M. R., Gross, M., Kapustin, A.,
Moore, G. W., Segal, G., Szendr?i, B., Wilson, P. M. H., Dirichlet Branes and Mirror
Symmetry, AMS, 2009.

[167] Porst, S.-S, Strict 2-Groups are Crossed Modules, arXiv:0812.1464

[168] Power, A. J., A general coherence result, J. Pure Appl. Algebra 57 (1989), no. 2, 165–173.

[169] Rabin, J. M., Crane, L., Global Properties of Supermanifolds, Commun. Math. Phys. 100,
141-160 (1985)

[170] Reed, M., Simon, B., Functional Analysis, Academic Press, 1980

[171] Reed, M., Simon, B., Fourier Analysis, Self-Adjointness, Academic Press, 1975

[172] Riehl, E., Categorical Homotopy Theory, Cambridge University Press, 2014.

[173] Roberts, D. M., Internal categories, anafunctors and localisations, arXiv:1101.2363

[174] Rogers, A., Supermanifolds, Theory and Applications, World Scientific, 2007

[175] Rudyak, Y. B., On Thom Spectra, Orientability and Cobordism, Springer, 2008.

[176] Sachse, C., A Categorical Formulation of Superalgebra and Supergeometry, arXiv:0802.4067.

[177] Salamon, D., Spin Geometry and Seiberg-Witten Invariants, 1996.

[178] Sati, H., Schreiber, U. (editors), Mathematical Foundations of Quantum Field Theory and
Perturbative String Theory, AMS, 2010.

[179] Sati, H., Schreiber, U., Stacheff, J., L-infinity algebra connections and applications to String-
and Chern-Simons n-transport, arXiv:0801.3480

[180] Schommer-Pries, C. J., The Classification of Two-Dimensional Extended Topological Field
Theories, arXiv:1112.1000.

[181] Schreiber, U., What, and for what is Higher geometric quantization.

[182] Schreiber, U., Differential Cohomology in a Cohesive ∞-Topos, arXiv:1310.7930.

[183] Schreiber, U., Differential Cohomology in a Cohesive ∞-Topos, v.2.

[184] Schreiber, U., Konrad, W., Smooth Functors vs. Differential Forms, arXiv:0802.0663

[185] Schreiber, U., Konrad, W., Connections on Connections on Non-Abelian Gerbes and their
Holonomy, arXiv:0808.1923

[186] Schreiber, U., Why Supersymmetry? Because of Deligne’s theorem, 2016.
https://www.physicsforums.com/insights/supersymmetry-delignes-theorem/



BIBLIOGRAPHY 295

[187] Schwede, S., Symmetric Spectra.

[188] Segal, G., The definition of conformal field theory, Differential geometrical methods in
theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250,
Kluwer Acad. Publ., Dordrecht, (1988), 165-171

[189] Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement
in N=2 supersymmetric Yang-Mills theory, Nuclear Phys. B, 426 (1): 19–52, 1994.

[190] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N=2 super-
symmetric QCD, Nuclear Phys. B, 431 (3): 484–550, 1994.

[191] Sharma, A., Cobordism Hypothesis, 2014.

[192] Shiraiwa, K., A Note on Tangent Bundles, Nagoya Mathematical Journal, Volume 29 March
1967 , pp. 259-267.

[193] Shulman, M. A., Not every pseudoalgebra is equivalent to a strict one, arXiv:1005.1520

[194] Simons, J., Sullivan, D., Axiomatic Characterization of Ordinary Differential Cohomology,
Journal of Topology 1.1 (2008): 45-56.

[195] Simpson, C., Homotopy types of strict 3-groupoids, arXiv:math/9810059

[196] Steenrod, N., A convenient category of topological spaces, Michigan Math. Journal, 14, 1967.

[197] Sternberg, S., Lectures on Differential Geometry, Prentice-Hall, 1964.

[198] Stoltz, S., Teichner, P., Supersymmetric field theories and generalized cohomology,
arXiv:1108.0189

[199] Strom, J., Modern Classical Homotopy Theory, AMS, 2011.

[200] Switzer, R. M., Algebraic Topology: Homology and Homotopy, Springer-Verlag, 1975

[201] Teleman, C., Five Lectures on Topological Field Theory. In: Alvarez Consul L., Andersen J.,
Mundet i Riera I. (eds) Geometry and Quantization of Moduli Spaces. Advanced Courses
in Mathematics - CRM Barcelona. Birkhäuser, Cham

[202] Tuynman, G. M., Supermanifolds and Supergroups, Basic Theory, Kluwer Academic Pub-
lishers, 2004

[203] van Hove, L. , Mem. Acad. Roy. de Belgique, Classe des Sci. 26 (1951) No. 6.

[204] Taubes, C. H., Seiberg Witten and Gromov Invariants for Symplectic 4-Manifold, Interna-
tional Press, 2000.

[205] Taubes, C. H., Metrics, Connections and Gluing Theorems, AMS, 1996.

[206] Trimble T., Notes on Tetracategories, 1995. Available as
math.ucr.edu/home/baez/trimble/tetracategories.html.



BIBLIOGRAPHY 296

[207] Weinberg, S., The Quantum Theory of Fields, vol. 1, Cambridge University Press, 2005.

[208] Wigner, E., On unitary representations of the inhomogeneous Lorentz group, Annals of
Mathematics, 40 (1939) 149–204

[209] Witten, E., D-Branes And K-Theory, arXiv:hep-th/9810188.

[210] Witten, E., Topological quantum field theory, Comm. Math. Phys., Volume 117, Number 3
(1988), 353-386.

[211] Witten, E., Topological Sigma Models, Comm. Math. Phys., Volume 118, Number 3 (1988),
411-449.

[212] Witten, E., Monopoles and four-manifolds, Mathematical Research Letters, 1 (6), 769–796,
1994.

[213] Witten, E., Quantum Field Theory and the Jones Polynomial, Comm. Math. Phys., 121,
351-399 (1989)

[214] Yuli, B. R., On Thom Spectra, Orientability and Cobordism, Springer, 2008.

[215] Zee, A., Quantum Field Theory in a Nutshell, Princeton University Press, 2010

[216] Zhao, Y., Extended Topological Field Theories and the Cobordism Hypothesis, postdoctor
thesis


	Métodos Categóricos e Geométricos em Física
	47713ee2d455a95d044801d9a2bc74619e079385ecd6b14265996e467e1f22aa.pdf
	Métodos Categóricos e Geométricos em Física

