
DETECÇÃO DE EXCEÇÕES EM BASES DE

DADOS MASSIVAS USANDO GPUS

FERNANDO AUGUSTO FREITAS DA SILVA DA NOVA MUSSEL

DETECÇÃO DE EXCEÇÕES EM BASES DE

DADOS MASSIVAS USANDO GPUS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Wagner Meira Júnior

Belo Horizonte

Março de 2017

FERNANDO AUGUSTO FREITAS DA SILVA DA NOVA MUSSEL

TOWARDS TERABYTE-SCALE OUTLIER

DETECTION USING GPUS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Wagner Meira Júnior

Belo Horizonte

March 2017

© 2017, Fernando Augusto Freitas da Silva da Nova Mussel.
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx -
UFMG

 Mussel, Fernando Augusto Freitas da Silva da Nova

M989t Towards terabyte-scale outlier detection using
 GPUs / Fernando Augusto Freitas da Silva da Nova
 Mussel. — Belo Horizonte, 2017.
 xxii, 98 f.:il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal

 de Minas Gerais – Departamento de Ciência da
 Computação.

 Orientador: Wagner Meira Júnior.

 1. Computação – Teses. 2. Mineração de dados
 (Computação) - Teses. 3. Detecção de anomalias
 (Computação) - Teses. I. Orientador. II. Título.

CDU 519.6*73(043)

vii

Acknowledgments

These last two years have been an intense period of my life but they also allowed me to
grow both professionally and personally. Now, I would like to take the time to express
my gratitude towards those who supported me through this though period and helped
me make today possible.

Thank you, Professor Wagner, for all the support, encouragement and guidance
through my research. A major thank you to Carlos, whose assistance and experience
was instrumental for my work. You spent countless hours discussing and troubleshoot-
ing with me, the issues that arose along the way. You deserve the highest praises for
the help you gave me. I will be forever in your debt.

I would like to thank my family for supporting. My parents Wancleber and
Iolanda, and my brother, Valner, always provided the encouragement and assistance
through the years of study and self improvement. I also would to thank my good friend
Giovander for the conversations and advices in times of need. My beloved dog, Liz, who
always knew how to cheer me up, making tough days more bearable and the good ones
even better. Finally, thank you Barbara. You listened, patiently, to me complaining
about all sorts of problems I encountered during my research. You also took care of
various minor issues and obligations I had during this time, allowing me to fully focus
on my work. Your love and attention were paramount to help me go through the tough
moments.

Thank you god for providing me with this learning experience and for putting
such incredible people in my life, who helped me accomplish so much.

Finally, this work was partially supported by CNPq, CAPES, and FAPEMIG.

xi

Resumo

Detecção de exceções é um importante método de mineração de dados, utilizado para

encontrar registros inesperados em bases de dados. Essas anomalias comumente car-

regam informações úteis e podem ser utilizadas em diversas aplicações, tais como de-

tecção de intrusões em rede, detecção de fraudes em bases de cartões de crédito e

seguro, dentre outras.

Existem diversos desa�os associados com detecção de exceções e o principal é o

custo computacional. Muita pesquisa foi feita para melhorar a complexidade temporal

de tais métodos, por meio de particionamento de dados, ordenação e regras de poda.

Mesmo assim, o estado-da-arte só é capaz de detectar, em tempo hábil, uma pequena

quantidade das top-n exceções. Recentemente, implementações para GPU foram pro-

postas a�m de contornar o custo computacional do problema. Os resultados obtidos

foram promissores, porém, no melhor do nosso conhecimento, os algoritmos para GPU

propostos até o momento estão restritos a processar bases de dados carregados na

memória da GPU. Consequentemente, estes métodos têm aplicabilidade limitada pois

não podem ser utilizados nos casos onde a GPU seria mais útil: bases de dados de

larga escala.

O objetivo deste trabalho é utilizar GPUs para acelerar o processo de detecção

de exceções em bases de dados de larga escala, residentes em disco. Dessa forma,

desenvolvemos algoritmos e estratégias para minimizar a redução do throughput de

computação causado por acessos ao disco. Este trabalho possui duas contribuições

principais. Primeiro, nós desenvolvemos um conjunto de ferramentas e abstrações que

facilitam a implementação algoritmos, para GPUs, de detecção de exceções em bases

de dados armazenadas em disco. Entre tais abstrações temos uma nova estratégia de

paralelização; algoritmos e kernels para operações essenciais à detecção de exceções; e

um novo subsistema de I/O, capaz de reduzir o overhead de transferência de dados e

permitir a execução concorrente de computação e I/O. Nossa segunda contribuição é um

novo algoritmo, DROIDg, para a detecção de exceções, baseadas em distância, usando

GPUs. Ele utiliza uma nova heurística de ordenação, a qual propusemos, que melhora

xiii

a e�ciência de sua regra de poda, dessa forma reduzindo enormemente a quantidade

de computação necessária para realizar a detecção.

Nossa análise experimental focou em determinar a aceleração que GPUs podem

fornecer à detecção de exceções em bases de dados larga escala. Portanto, comparamos

DROIDg contra alguns dos melhores algoritmos sequenciais out-of-core disponíveis na

literatura: Orca, Diskaware e Dolphin. DROIDg alcançou speedups de 10X até 137X

sob o melhor algoritmo para CPUs. Além disso, ele demonstrou escalabilidade consid-

eravelmente maior com relação ao tamanho da base de dados e, também, do número

de exceções sendo detectadas. Estes resultados demonstram que GPUs permitem re-

alizar a detecção de exceções em escalas muito além do que, até mesmo, os algoritmos

estado-da-arte para CPU são capazes.

xiv

Abstract

Outlier detection is an important data mining task for �nding unusual data records

in datasets. These anomalies often carry useful information that can be employed

in a wide range of practical applications, such as network intrusion detection, fraud

discovery in credit card or insurance databases, among several others.

There are several challenges associated with the outlier detection problem and

its computational cost is a major one. Signi�cant research has been done to improve

these methods' runtime complexity through the use of data partitioning, ordering and

pruning rules. Though these advancements allow the outlier detection to be performed

in near-linear time, they are not enough to enable processing large-scale datasets in a

reasonable time. Even state-of-the-art methods are limited to processing small scale

datasets and/or limited to �nd just a tiny fraction of the true top-n outliers. Re-

cently, GPU-based implementations have emerged as an alternative to address the

computational bottleneck. They have shown promising results but, to the best of

our knowledge, all distance-based GPU algorithms currently available are designed for

in-memory detection: they require the dataset to �t and be loaded into the GPU's

memory. Consequently, their applicability is limited because they can not be used in

scenarios where the GPU's computational power would the most useful: to process

large scale datasets.

The goal of this work is to use GPUs to accelerate the outlier detection process in

terabyte-scale, disk-resident datasets. To achieve it, we have to develop algorithms and

strategies to overcome the massive reductions in the GPU's computation throughput

caused by disk accesses. We made two main contributions in this work. First, we

developed set of tools and abstractions for out-of-core distance-based outlier detection

in GPUs, such as an e�ective parallelization strategy; algorithms and high-performance

GPU kernels of essential operations for distance-based outlier detection; and an I/O

subsystem that reduces data transfer overhead while allowing I/O and computation

overlapping. The second main contributions is the development of a novel distance-

based outlier detection algorithm for GPUs, DROIDg, capable of processing large scale

xv

and disk-resident datasets in reasonable time. It leverages a new ranking heuristic,

proposed by ourselves, to improve the e�ciency of its pruning rule, thereby massively

reducing the amount of computation required by the detection.

Our experimental analysis focused on assessing the performance bene�ts of using

GPUs for outlier detection in large-scale datasets. Thus, we compared DROIDg against

some of the best out-of-core outlier detection algorithms available for CPUs: Orca,

Diskaware and Dolphin. DROIDg achieved speedups between 10X and 137X over the

best sequential algorithm. Moreover, it displayed far superior scalability with regards

to the dataset size and number of outliers being detected. These results showed that

GPUs enable the outlier detection to be performed at scales far beyond what even

state-of-the-art CPU algorithms are capable of.

xvi

List of Figures

3.1 kmin values for di�erent samples of the datasets 2MASS and WISE which

are used in the experiments. 26

4.1 Overview on the architecture characteristics of GPUs 33

5.1 Runtime, in seconds, for the n variation test, with y-axis is in log scale.

DROIDc is not shown for dataset WISE because it did not manage to �nish

any of the test runs within the 72 hour limit 62

5.2 Summary of results of the n variation test. 63

5.3 Runtime, in seconds, for the dataset size variation test, with the y-axis in

log scale. Neither Orca, Diskaware nor DROIDc completed any test runs

within 72 hours. 64

5.4 Results for the scalability test of the parameter k. The �gures in the �rst

row show the runtime, in seconds, of the algorithms with the y-axis in

log scale. The third �gure shows the speedup achieved by DROIDg in the

experiment. Neither Orca nor Diskaware completed any test runs within

72 hours. 66

5.5 GPU algorithms' scalability on dataset size 67

5.6 GPU algorithms' scalability on the number of outliers to be detected . . . 67

5.7 DROIDg speedup over Diskaware-GPU . 70

5.8 Ratio between the number of distance-pairs computed by DROIDg and

Diskaware-GPU . 71

5.9 Speedup achieved by using a Dk
M produced by Dolphin's estimation method

versus starting the detection with a threshold of 0 71

5.10 Ratio between the number of distance-pairs computed by DROIDg and

Diskaware-GPU . 73

xvii

A.1 TBiS splits the input into segments of length k = 2 and sorts them with

Bitonic Sort. They are merged pair-wise and, after each merge, trunca-

tion is applied: the half with the largest elements is discarded. 91

xviii

List of Tables

2.1 Notation . 9

3.1 Overview on the strengths and weaknesses of three out-of-core CPU al-

gorithms presented in this section. Lastly, DROIDg, our GPU algorithm

proposed in Section 4.6, has all the strengths of the other algorithms but

none of their drawbacks. 26

5.1 Source datasets after the pre-processing procedure 58

5.2 2MASS samples . 59

5.3 WISE samples . 59

5.4 150M 2MASS . 68

5.5 50M WISE . 68

5.6 Quality of the Dk
M estimates used for each test run of the n variation test

of both datasets. The column on the right shows which % of Dk
∗ these

estimates are. 68

5.7 Recall of outliers for WISE N variation test with k = 8 and n = 5K. The

estimates used for detection were generated using ks = 1 and the maximum

sample possible: ηmax ≈ 9M . η gives the required sample size; ks is the

value obtained by using ηmax; ρ̄ is outlier recall rate. 69

5.8 Average number of candidates saved and pruned per TPB for DROIDg and

Diskaware-GPU algorithms. For DROIDg, the averages are shown for each

Dk
M value used during the detection. The last column shows the average

increase in Q per TPB. 73

xix

5.9 Summary of the traversals made by DROIDg during phase 1. Pts. Proc is

the number of candidates classi�ed in the traversal; |Q| is the size of Q; ∆|Q|

is the number of points pruned using the new Dk
M ; Dk

M ' is the new value

of the threshold, after the traversal; t is the traversal duration; and tP is

the projected duration of the traversal if the points pruned were actually

classi�ed. 74

5.10 Summary of the traversals made by DROIDg during phase 2 75

5.11 Summary of the single traversal made by Diskaware-GPU's second phase . 75

xx

Contents

Acknowledgments xi

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 4

2 Outlier detection techniques 5

2.1 Statistical Methods . 5

2.2 Classi�cation-based Methods . 6

2.3 Clustering-based Methods . 7

2.4 Distance-based methods . 8

2.4.1 Notation . 9

2.4.2 Overview . 10

2.5 Discussion: Why use distance-based methods 11

3 Distance-based outlier detection 13

3.1 Canonical outlier detection algorithm 13

3.2 Optimizations strategies . 14

3.2.1 Approximate Nearest Neighbor Search (ANNS) 15

3.2.2 Pruning . 16

3.2.3 Ranking . 16

3.3 In-Memory Algorithms . 17

xxi

3.3.1 Ramasamy . 17

3.3.2 RBRP . 18

3.3.3 DIODE . 18

3.4 Out-of-Core Algorithms . 19

3.4.1 Orca . 19

3.4.2 Diskaware . 20

3.4.3 Dolphin . 21

3.5 Dk
M estimation methods . 23

3.5.1 Diskaware's estimation method 24

3.5.2 Dolphin's estimation method . 24

3.5.3 Practicallity of Dk
M estimation methods 25

3.6 A comparison between the out-of-core outlier detection algorithms . . . 26

4 GPU outlier detection 29

4.1 Background . 31

4.1.1 GPU Architecture . 31

4.1.2 OpenCL . 33

4.2 Extracting Parallelism from the Problem 35

4.3 KNN iteration . 36

4.3.1 KNN iteration algorithm . 36

4.3.2 Implementing the ANNS . 37

4.4 I/O subsystem for out-of-core GPU outlier detection 38

4.4.1 The cost of out-of-core execution on GPUs 38

4.4.2 Important design decisions . 39

4.4.3 I/O subsystem architecture . 41

4.5 Distance-based outlier detection algorithms for GPUs 42

4.5.1 Orca-GPU . 43

4.5.2 Diskaware-GPU . 44

4.6 DROIDg (Disk-Resident, OutlIer Detection using GPUs) 46

4.6.1 Phase 1 - knn search . 48

4.6.2 E�cient outlier candidate classi�cation 49

4.6.3 The algorithm . 50

4.7 Related work - GPU algorithms . 52

4.7.1 LOFCUDA . 52

4.7.2 GPU-SS . 53

4.7.3 Stream GPU outlier detection 53

4.8 Summary . 54

xxii

5 Experimental Evaluation 57

5.1 Datasets . 57

5.1.1 Pre-processing . 58

5.1.2 Dataset samples used . 58

5.2 Methodology . 59

5.2.1 Algorithms tested . 59

5.3 Parameter Scalability . 61

5.3.1 Number of outliers (n) . 61

5.3.2 Dataset size (N) . 63

5.3.3 Number of neighbors (k) . 65

5.3.4 Summary: CPU vs GPU algorithms 65

5.4 GPU algorithm analysis . 66

5.5 Poor initial Dk
M . 68

5.5.1 Alternative 1 - Using Dolphin estimation method with limited

sample size . 68

5.5.2 Alternative 2 - Using di�erent estimation methods 70

5.5.3 Alternative 3 - Using no initial threshold 71

5.5.4 Summary: robustness towards Dk
M quality 72

5.6 Analysis of DROIDg's performance . 72

5.6.1 DROIDg- Phase 1 . 73

5.6.2 DROIDg- Phase 2 . 75

6 Conclusion 77

6.1 Future Work . 79

Bibliography 81

Appendix A Implementation Details 85

A.1 Point storage layout . 85

A.2 Distance computation . 86

A.2.1 Implementation . 87

A.3 Sorting . 89

A.3.1 Bitonic Sort . 89

A.3.2 TBiS . 90

A.3.3 Implementation . 91

A.4 Pruning . 92

A.4.1 Map . 93

A.4.2 Scan . 93

xxiii

A.4.3 Scatter . 96

A.4.4 The pruning algorithm . 98

xxiv

Chapter 1

Introduction

Outlier Detection in an important data mining task for �nding unusual data records

and patterns in datasets. These anomalies often carry useful information that can be

employed in a wide range of practical applications, such as network intrusion detec-

tion; fraud discovery in credit card or insurance databases; as well as disease outbreak

detection based on the analysis of patient data records, among several others.

There are several challenges associated with the outlier detection problem. First,

many of the proposed methods, such as supervised and statistical methods, require

expertise on the application domain. Second, the notion of "normal" and "unusual"

behavior can vary widely depending on the usage context and it can even change over

time, such as in time-series datasets (Yankov et al. [2007]; Gupta et al. [2012]). Third,

outlier detection is a computationally demanding task, specially unsupervised and non-

parametric methods. With the ever increasing size (number of records) and complexity

(number of features) of datasets, the computational cost of outlier detection becomes

an ever greater issue to overcome.

There are a myriad of detection approaches, but distance-based methods have

stood out for their simplicity and good scalability on large and high dimensional

datasets. Moreover, they usually demand little knowledge about the application do-

main and, therefore, can be easily adapted and used in di�erent contexts. The basic

idea behind these methods is to project the dataset into an Rd space, such that data

records become points. Then, Nearest Neighbor (knn) searches are used to �nd the

neighbors1 of all dataset points p. If p is very far from its neighbors, then it is clas-

si�ed as an anomaly. In principle, these techniques have a O(N2 · log n) worst-case

runtime complexity, where N is the size of the dataset processed and n is the amount

of outliers requested. Signi�cant research has been done to improve these algorithms'

1Set of closest points to p. See De�nition 4

1

2 Chapter 1. Introduction

runtime complexity, through the use of data partitioning, ordering and pruning rules

(Knorr and Ng [1999]; Ramaswamy et al. [2000]; Bay and Schwabacher [2003]; Ghoting

et al. [2008]; Orair et al. [2010]). They successfully reduced the average-case complexity

to near-linear time, but it was not enough to allow processing terabyte-scale datasets

in reasonable time. Outlier detection remains a challenge even for state-of-the-art al-

gorithms, hence they are limited to processing smaller scale datasets. Additionally, the

vast majority of methods in the literature are limited to �nd just a tiny fraction of

the true top-n outliers of a dataset, typically less than 1000, which considerably limits

their usefulness. For instance, imagine a scenario where outlier detection is used to

clean a sensory data dataset. n = 1000 outliers equates to less than 0.00034% of the

smallest dataset used in our experimental analysis (300 million data points) and char-

acterizes an unreasonably small error rate in many practical applications. Therefore,

even state-of-the-art outlier detection algorithms for CPUs would not be �t for remov-

ing noise from datasets of this magnitude, which can be considered relatively small for

today standards. Therefore, addressing this computational challenge is paramount to

improve the applicability of outlier detection techniques and is the focus of this work.

Recently Graphical Processing Units (GPUs) have been widely used by the sci-

enti�c community to accelerate computational workloads, including outlier detection.

GPUs are embarrassingly parallel, with thousands of processing elements connected to

a high bandwidth memory hierarchy and capable of several TFlops2 of computation

throughput. However, to use this computation capability e�ectively, algorithms need

to take into consideration the GPU's architectural constraints, such as its SIMD3 de-

sign and relatively small memory bu�er. The outlier detection algorithms for GPU

currently available have successfully exploited the GPU's parallel hardware to address

the computational bottleneck. But, to the best of our knowledge, all of them are only

capable of in-memory detection, i.e. processing only datasets that are entirely loaded

in the GPU's memory. Such constraint limits the applicability of these algorithms,

since they can not be used in scenarios where the GPUs' computational power would

be the most useful: to process large scale datasets.

Therefore, the goal of this work is to develop a new distance-based outlier de-

tection algorithm for GPUs, that is capable of processing terabyte-scale, disk-resident,

datasets. The algorithm will exploit the problem's parallel nature and leverage the

GPU's architecture to signi�cantly reduce the detection time. The goal is to push the

boundaries and scale of outlier detection analyses that can be performed in reasonable

time, both in terms of the size of the dataset processed, as well as the amount of top-n

2One trillion �oating point operations per second.
3 Single Instruction Multiple Data

1.1. Contributions 3

outliers that can be detected. However, there are two main challenges to overcome.

First, the cost of loading data into the GPU's memory is higher than simply loading

data into RAM. Second, the penalties due to I/O bottleneck are much more severe for

GPU algorithms than for their CPU counter-parts. That is the case because GPUs

have far superior computation throughput than CPUs, thus the amount of computation

potential wasted per unit of idle time is equally as large. To overcome these challenges

and achieve our stated goals, our new GPU algorithm will have to: (i) achieve a good

trade-o� between reducing I/O and reducing computation; and (ii) extract enough

parallelism from the problem to fully leverage the GPU's highly parallel hardware.

Balancing these requirements is not a trivial task.

Our algorithm is designed to be used in Extract, Transform and Load (ETL)

workloads, as a pre-processing step for detecting outliers. In other words, it is not

suited for streaming applications but rather for use cases where the entire data is

available beforehand. Despite this restriction, it is still widely applicable and can used

in any practical application that requires the analysis of a large dataset.

1.1 Contributions

In this work, we remove a major barrier for wide-spread use of GPUs for outlier detec-

tion: dataset size. Our main contributions are the following:

• A new parallelization strategy that balances high computation throughput with

the use of pruning rules to reduce the overall amount of computation required for

outlier detection. Both absolute essential when dealing with large scale datasets.

• New core abstractions and I/O subsystem that signi�cantly reduces data transfer

latency and improves throughput by using two main optimization: (i) binary

encoded datasets and (ii) asynchronous data transfers.

• A novel outlier detection algorithm for GPUs, capable of processing large scale,

disk-resident, datasets. It uses a new outlier candidate4 sorting heuristic, that

allows the algorithm to better balance the reduction in computation and disk ac-

cesses. Consequently, our algorithm achieves better performance than competing

methods in a wider range of datasets and detection con�gurations.

• Performance evaluation of our proposed algorithm, comparing it to both CPU and

GPU algorithms. We showed that by using GPUs, the outlier detection process

can be accelerated by up to 137X, when compared to state-of-the-art sequential

4Points likely of being outliers. See De�nition 10

4 Chapter 1. Introduction

methods. Moreover, we showed that our algorithm has a more robust performance

and is less sensitive to the quality of the initial classi�cation threshold used.

This makes it more �exible and, currently, the only viable option for processing

very large datasets, using small k, where the classi�cation threshold can not be

estimated.

• In Appendix A we provide an in-depth explanation on how to implement, using

OpenCL, the low-level parallel primitives and computation functions necessary

to perform outlier detection.

1.2 Organization

This work has four more chapters and an appendix. Chapter 2 presents basic concepts

pertaining to outlier detection and discusses the most commonly used detection strate-

gies. Chapter 3 explains in more detail the fundamentals of distance-based outlier

detection methods and the main algorithms available in the literature. Chapter 4 has

four main parts. First, it discusses basic concepts about the GPU's architecture, exe-

cution and programming model. Then, it presents part of our GPU outlier detection

framework, discussing the parallelization strategy, basic functions and I/O optimiza-

tion. Next, it shows how to use such framework, to port to the GPU, well known

out-of-core outlier detection algorithms. Finally, it presents our novel and more robust

out-of-core algorithm for GPUs. Chapter 5 contains a thorough experimental analysis

of both CPU and GPU algorithms discussed. First, it shows how much the GPUs are

capable of accelerating the detection in large scale datasets. Second, it analyses the

performance characteristics of the GPU algorithms implemented and shows that our

algorithm is more robust. Appendix A discusses in detail how to e�ciently implement

the crucial operations for distance-based outlier detection: norm computation, distance

computation and k-selection.

Chapter 2

Outlier detection techniques

This chapter provides a review of the main outlier detection techniques available, dis-

cussing their rationale, assumptions, advantages and disadvantages. Next, we de�ne

three terms that will be used extensively in work.

De�nition 1 (Outliers) Outliers, also referred to as anomalies, are data points and

patterns that do not abide to a de�nition of "normal behavior".

Note that the notion of normal behavior and the exact de�nition of an outlier are

application dependent.

De�nition 2 (Inliers) Inliers are points that follow the expected/normal behavior of

a dataset. Non-outliers.

De�nition 3 (Test point) Synonym of Test instance. Point that will be classi�ed

by the algorithm as either an outlier or not.

2.1 Statistical Methods

Statistical methods for outlier detection rely on the following basic assumption:

Assumption 1 Normal instances occur in high probability regions of the stochastic

model while anomalies occur in the low probability regions. (Chandola et al. [2009])

These methods �t probability models to the data and use statistical inference tests

to determine how likely it is that unseen data instances were generated or not by the

�tted model. The unlikely ones are classi�ed as outliers.

5

6 Chapter 2. Outlier detection techniques

Statistical methods can be broadly divided into two types: Parametric and Non-

parametric techniques. The parametric techniques assume the data have a speci�c

underlying distribution model and they estimate the parameters of said model. These

techniques usually work in one of two ways. In the �rst approach, each test instance

is assigned an anomaly score inversely proportional to the probability of it being gen-

erated by the assumed model. Those instances with an anomaly score above a certain

threshold are considered outliers. In the second approach, outliers are detected using

hypothesis tests where the null hypothesis (H0) is that instance p was generated by the

assumed model. If H0 is rejected, p is regarded as an outlier. For example, methods

using variations of the Grubb's test (Chandola et al. [2009]) were used for outlier de-

tection in high dimensional datasets (Aggarwal and Yu [2001]) and in graph structured

data (Shekhar et al. [2001]).

Non-parametric statistical methods do not assume any knowledge of the data's

underlying generative model and instead they build a model directly from the data

themselves. For instance, a very common type of non-parametric detection method

uses attribute-wise histograms to segregate the data. Given a data point p, each of

its attributes is assigned an anomaly score equal to the inverse of the attribute's bin

frequency. p's �nal anomaly score is computed as an aggregate of its per-attribute

anomaly scores. This basic technique was used in many applications such as structural

damage detection (Worden et al. [2000]); web-based attack detection (Kruegel and

Vigna [2003]); network intrusion detection (Yamanishi et al. [2004]).

Statistical-based methods have limited applicability beyond low dimensional

datasets. Their assumption that the data is generated by a speci�c distribution is

rarely true for real multivariate datasets. Moreover, in the case of the non-parametric

histogram-based methods, they fail to detect rare but important inter-attribute inter-

actions (Chandola et al. [2009]).

2.2 Classi�cation-based Methods

Classi�cation-based methods can be used to detect outliers when the following assump-

tion holds:

Assumption 2 A model can be learnt to distinguish between normal and anomalous

classes, given a feature space.

Such methods divide the detection into two phases. During the training phase, the

classi�er chosen learns a model from the labeled training instances. Then, in the

2.3. Clustering-based Methods 7

test phase, the trained classi�er is used to classify test instances as either normal or

anomalies.

There are two di�erent application scenarios for classi�cation-based techniques.

In an one-class classi�cation setting, all training data are normal instances and the

classi�er learns a classi�cation boundary around them. Test instances that fall outside

such boundary are considered anomalies. For example, Manevitz and Yousef [2001]

used an one-class SVM to classify documents, whereas Roth [2004] proposed an outlier

detection method using one-class Kernel Fisher Discriminants. Alternatively, in a

multi-class classi�cation scenario, multiple normal classes exist and the classi�er builds

one model per class. During the test phase, the outliers are those instances that are

not classi�ed as normal by any of the classi�ers.

Many di�erent types of classi�ers were proposed for use in outlier detection,

such as Neural networks (Augusteijn and Folkert [2002]; Diaz and Hollmén [2002]);

SVMs (Davy and Godsill [2002]; Heller et al. [2003]). These methods have two main

disadvantages. First, their output consists of just the classi�cation label, but many

applications require anomaly scores for ranking and other purposes. Second, these

methods need labeled datasets, which may be hard or impossible to obtain, specially

if multiple normal classes exist.

2.3 Clustering-based Methods

Clustering-based methods rely mainly on the clustering of data instances for detection.

Simpler methods rely solely on the instances' cluster assignment itself, whereas the

more sophisticated ones use anomaly scores. These are assigned to data points and

computed based on metrics pertaining to the point itself and the cluster that it belongs

to.

These types of methods can be broadly divided into three types. The �rst type is

the simplest and it detects anomalies as by products of the clustering operation. They

work based on the following assumption:

Assumption 3 Normal data instances belong to a cluster, while anomalies do not

belong to any. (Chandola et al. [2009])

These methods cluster the dataset using a clustering algorithm that does not force

every data point to belong to a cluster, e.g., DBSCAN (Ester et al. [1996]) and SNN

(Ertöz et al. [2003]); and the points assigned to no cluster are classi�ed as outliers.

A second type of cluster-based methods make the following assumption

8 Chapter 2. Outlier detection techniques

Assumption 4 Normal data lie close to their cluster centroid, while anomalies are

located in the outskirts of the cluster.

For these methods, the distance from a point p and the centroid of its cluster is inter-

preted as p's anomaly score and those points with a score larger than a given threshold

are considered outliers. The advantage these methods have over the previous type is

the lack of restrictions on the clustering algorithm to be used. Moreover, their output

is not binary, i.e., Normal or Outlier, as they may provide a rank of points according

to their anomaly score. However, the main drawback of these methods is their inability

to detect anomalies that form clusters themselves.

The third and last type of clustering-based methods is the most sophisticated

and relies on the following assumption:

Assumption 5 Normal data belongs to large and dense clusters, where as anomalies

belong to small and sparse clusters.

These algorithms can combine multiple metrics, e.g., size, density and distance from

point p to the clusters' centroid, to compute the anomaly score of p. Consequently,

the quality of the detection is superior to that of the other methods. Examples of such

methods are the FindCBLOF algorithm (He et al. [2003]), which uses both distance to

centroid and cluster size; and Pires and Santos-Pereira [2005] whose method's anomaly

score considers both the size of the cluster and the Mahalanobis distance between the

data point and every cluster found.

The main disadvantage of these techniques is that anomalies are just by products

of the clustering itself. Thus, these methods depend on the clustering algorithm cor-

rectly capturing the cluster structure of the normal data, such that the outliers can be

single out among the other points. Another issue with clustering-based outlier detec-

tion is the computational cost of �nding the clusters, specially if quadratic algorithms

are used.

2.4 Distance-based methods

As we explain later in Section 2.5, our GPU algorithms will use a distance-based

outlier detection approach. Consequently, we will discuss this type of technique in

much greater detail and the discussion will be divided into two parts. In this section

we will provide an overview on this type of method, discussing the speci�c outlier

de�nitions used, assumptions and rationale behind distance-based algorithms. Then,

in Chapter 3 we provide a thorough literature review on the topic.

2.4. Distance-based methods 9

2.4.1 Notation

Before giving an overview on distance-based outlier detection techniques, we introduce

essential notation (Table 2.1) and de�nitions that will be used throughout this work.

D dataset

N number of points in the dataset

d number of features in test instances

Np neighborhood of p

σp anomaly score of test instance p

Dk
p distance from p to its current k-th closest neighbor

Dk
M classi�cation threshold. Score of the top-n anomaly

Dk
∗ optimal classi�cation/pruning threshold.

Table 2.1: Notation

De�nition 4 (Neighborhood) Given a test point p, the neighborhood of p (Np) is the

set of k points that are the closest to it. Any point q ∈ Np is referred to as a neighbor

of p.

De�nition 5 (Neighbor candidate) Given a test point p, a neighbor candidate is

any point that will be checked as a neighbor of p.

De�nition 6 (Neighbor comparison) Given a test point p, a neighbor comparison

is the set of operations performed during the knn search to assess whether a neighbor

candidate is an actual neighbor of p.

De�nition 7 (Anomaly Score - σ) Anomaly score is a metric that quanti�es how

anomalous a test instance p is. It is usually computed based on features of p's neigh-

borhood.

De�nition 8 (k-th neighbor distance - Dk
p) Given a test point p, Dk

p is the distance

between p and the k-th closest neighbor found so far.

De�nition 9 (Optimal classi�cation threshold - Dk
∗) is the largest threshold that

still allows the detection of n outliers. Given a dataset D, k and n; Dk
∗ will be the

anomaly score of the n-th top outlier in D.

De�nition 10 (Outlier Candidate) are points determined to have a higher likelihood

of being outliers

10 Chapter 2. Outlier detection techniques

2.4.2 Overview

Distance-based methods, as the name suggests, require a distance/similarity metric

between data instances, e.g., Euclidean distance for contiguous data and Matching

coe�cients for categorical data (Chandola et al. [2009]). Given a distance metric,

these methods work according to the following assumption:

Assumption 6 Normal data instances are located very closely to their neighbors,

whereas anomalies are distant to even their closest neighbors.

Broadly speaking, these methods work by computing the anomaly score of each

test instance and then using a threshold to classify the instance as an outlier or not.

To compute σp, most algorithms use some variation of the k-nearest neighbor (knn)

search to �nd p's neighborhood, i.e., the set of points closest to p. Then, the score is

computed based on some characteristic of the neighborhood, such as the sum or the

average (Chandola et al. [2009]) of the distances between p and its neighbors; but the

most common metric used is the distance between p and its k-th closest neighbor in

the whole dataset.

The process by which test instances are classi�ed as outliers depends on the spe-

ci�c outlier de�nition being used. Next we will present the two most popular de�nitions

from the literature.

De�nition 11 Outliers are the n points with the largest distance to their k-th closest

neighbor.

This de�nition allows algorithms to �nd the top-n outliers of a given dataset and the

score of the n-th top anomaly, Dk
M , is used as the classi�cation threshold. If σp ≥ Dk

M ,

then p is an anomaly. Moreover, with this outlier de�nition the classi�cation threshold

may increase during the detection, as we explain in greater detail in the next chapter.

Lastly, note that despite this de�nition speci�cally using Dk
p as the anomaly score, it

can be easily generalized to use any other metric.

Another commonly used outlier de�nition was proposed by Knorr and Ng [1999].

De�nition 12 p is an outlier if it has fewer than k points within a distance R

One possible interpretation of this de�nition is as follows: the anomaly score of p is the

number of points within the hypersphere of radius R centered in p; and the classi�cation

threshold is k. However, in this work we favor a di�erent interpretation. Instead, the

anomaly score metric is Dk
p and the classi�cation threshold has a value of R, �xed

throughout the detection. The interpretation is valid because if p is an outlier, it has

2.5. Discussion: Why use distance-based methods 11

fewer than k points closer than R, which is the case iif Dk
p is larger than the threshold

R. Lastly, the parameter R must be provided by the user. In the next chapter we will

discuss how to �nd such parameter, as well as, the advantages and disadvantages of

using each of these outlier de�nitions for our application context.

Advantages

Distance-based techniques are advantageous for several reasons. First, they are unsu-

pervised and thus very useful when labeled data is not available for some reason or

when it is hard to model anomalous behavior. Second, these methods can be easily

adapted to di�erent application domains, only requiring tailoring the distance metric

to each context. Lastly, depending on the distance metric chosen, these methods can

scale very well for high dimensional data.

2.5 Discussion: Why use distance-based methods

All of the outlier detection approaches described have important shortcomings that

need to be addressed. But, apart from distance-based methods, all other approaches'

�aws are di�cult to overcome in practice. For instance, statistical methods are only

applicable to datasets with very few attributes and generated from a single underlying

data distribution, which is not the case for real-world datasets. Classi�cation-based

methods are supervised, thus requiring labeled data which might be hard or impossible

to obtain. Finally, clustering-based methods have an extremely costly training phase,

requiring multiple passes over the data and thus not being suitable for disk-resident

datasets. Moreover, these types of methods are not designed for outlier detection.

Distance-based methods also have their �aws such as their, often, simplistic score

metric, distance computation cost and worst-case quadratic runtime complexity. How-

ever, they can be easily addressed. Moreover, a distance-based approach o�ers unique

advantages for implementing out-of-core outlier detection algorithms for GPUs. First,

it was already shown that euclidean distances can be computed incredibly e�ciently

on GPUs (Garcia et al. [2008]). Second, these methods have great potential for paral-

lelization, e.g., the independent knn searches (Section 4.2). Third, they can perform

the detection while performing only two passes over the dataset (Section 3.4), thus

making them well suited for out-of-core execution. Therefore, we decided to use a

distance-based approach to implement our GPU algorithm.

Chapter 3

Distance-based outlier detection

In this chapter we provide a more thorough review of distance-based outlier detection

techniques. We will start by explaining the canonical distance-based outlier detection

algorithm, and then we will discuss various optimization strategies proposed to improve

its performance. Next, we review the best outlier detection algorithms in the literature,

analyzing their optimizations and shortcomings. Finally, we will discuss methods used

for producing good initial classi�cation thresholds with the goal of accelerating the

detection process.

3.1 Canonical outlier detection algorithm

The canonical algorithm is the basis of the majority of the algorithms that will be

discussed in this section. It uses De�nition 11 for outliers and Dk
p as the anomaly score

metric. Algorithm 1 shows in detail how it works. The algorithm has a nested-loop

design and it uses the MinHeap O to save the top-n anomalies found so far. In the outer

loop, it selects the reference point p whose anomaly score needs to be computed. In

the inner loop, the algorithm performs p's knn search. Its distance to the other points

in the dataset is computed and a MaxHeap is used to store the k smallest ones, i.e., the

distances between p and its neighbors (Line 7). After every neighbor comparison, the

algorithm applies the ANNS rule (Line 9) and discards p if its score became smaller

than the classi�cation threshold. The rationale behind the ANNS will be explained in

the next section. Finally, If p is not pruned by the end of its knn search, it is added

to O as a top-n outlier (Line 14).

The canonical algorithm has many shortcomings. First, it has a worst-case

quadratic runtime complexity on the size of the dataset, O(N2 ·N log k). Though the

ANNS improves the average case, the algorithm is still unsuitable for large datasets.

13

14 Chapter 3. Distance-based outlier detection

Algorithm 1: Canonical algorithm for distance-based outlier detection

1 Function CanonicalOutlierDetection (D, k, p)
2 O ← MinHeap ()

3 Dk
M ← 0

4 forall p ∈ D do

5 Np ← MaxHeap ()

// Run knn search of q
6 forall q ∈ D do

// Keep only the k smallest distances

7 Np.PushReplace (δp,q, k)

8 Dk
p ← Np.top() // p's anomaly score

// ANNS rule

9 if Dk
p < Dk

M then

10 break

11 end

12 end

13 if Dk
p ≥ Dk

M then

// Keep only the top-n probable outliers

14 O.PushReplace ({Dk
p , p}, n)

15 end

16 end

17 return O

Moreover, it would also perform poorly in an out-of-core scenario, since it performs

N passes through the dataset, one per point. Nevertheless, in the next sections we

will discuss optimization strategies that build upon the canonical algorithm and help

address both of its drawbacks.

3.2 Optimizations strategies

In this section we will build a framework for discussing optimizations to distance-based

outlier detection algorithms. The discussion will focus on the optimizations' strategy,

insights and rationale, rather than on their implementation. The strategies will be

categorized as either pruning or ranking ones and will be assigned acronyms. This

framework will simplify the analysis of optimizations in general, by decoupling their

overall strategy from their speci�c implementation. The framework will be used exten-

sively throughout this work to explain outlier detection algorithms from the literature,

as well as the GPU algorithms we implemented (Chapter 4).

3.2. Optimizations strategies 15

3.2.1 Approximate Nearest Neighbor Search (ANNS)

ANNS is a simple yet powerful pruning rule introduced by Ramaswamy et al. [2000],

that allows the detection algorithm to stop the knn search of an instance p as soon

as it �nds out that p can not be an outlier. This pruning rule is capable of drastically

reducing the amount of distance computation required for detection and thus it is

used by the majority of distance-based outlier detection algorithms in the literature.

Due to its importance, we elected to explain it separately from the other optimization

strategies.

Detection Insights

Before explaining how the ANNS works, we need to understand two phenomenon that

occur during the outlier detection with the canonical algorithm.

• Dk
p is an upper-bound of σp: During the knn search of instance p, the detection

algorithm uses a MaxHeap to keep track of the k closest neighbors of p processed

so far. As closer points are found and added to p's neighborhood, the distance

between p and its k-th closest neighbor, Dk
p , decreases. σp will be equal to Dk

p

at the end of the knn search thus, before the search ends, Dk
p represents the

maximum possible anomaly score p can have.

• Dk
M is a lower-bound of Dk

∗ : A similar argument can be used to explain this

statement. The detection algorithm uses a MinHeap to keep track of the top-n

outliers found so far. As the detection progresses, if a new point has an anomaly

score equal to or larger than the score of the current n-th outlier1 then: (i) this

point will be added to the set of outliers; (ii) the current n-th anomaly will be

discarded and (iii) Dk
M will either remain the same or increase. At the end of the

detection, Dk
M will be equal to Dk

∗ .

The ANNS' rationale is simple. If during the knn search of p, Dk
p becomes

smaller than the current Dk
M , then it is impossible for p to be an outlier. Therefore,

its knn search can be terminated and the algorithm can start analyzing the next

data instance. The ANNS' e�ciency may be expressed by how much computation it

prevented or, alternatively, how soon into p's knn search p was pruned. This e�ciency

depends on two factors. First, on how small Dk
p is, i.e. how many close neighbors were

found. Second, on how close Dk
M is to its optimal value: Dk

∗ .

1Equal to or larger than Dk
M

16 Chapter 3. Distance-based outlier detection

As we discuss next, the majority of the optimizations in the literature focus in

improving the ANNS e�ciency and do so by speeding up the convergence rate of either

Dk
M or Dk

p .

3.2.2 Pruning

Pruning strategies are widely used to accelerate the detection. They allow the algorithm

to employ domain knowledge to prune the detection search space, e.g. the ANNS

leverages the Dk
p and Dk

M insights outlined previously to prune the knn search space.

Next we will discuss two classes of pruning strategies, one for reducing the number of

points to be classi�ed and the other to reduce the number of neighbors to be processed

during the knn search. We should stress that all pruning strategies mentioned here

will require data partitioning.

Pruning Partition during Search of Neighbors (PPSN)

The main idea of these strategies is to avoid, during the knn search, processing parti-

tions too far away from point p to contain any of p's closest neighbors. During the knn

search, before starting to look for neighbors in partition P , the algorithm computes

the minimal distance between p and any point in partition P , i.e. MinDist. If Dk
p <

MinDist, P is too far away to contain any neighbors of p, thus the entire partition can

be pruned.

Pruning Partition during Search for Outliers

The goal of this pruning strategy is to prune entire partitions that can not have out-

liers. There are slightly di�erent implementations of this strategy in the literature

(Ramaswamy et al. [2000]; Orair et al. [2010]), but in general they work very similarly.

Given a partition P with more than k instances, if the maximum distance, MaxDist,

between any of its two points is smaller than Dk
M , then it is impossible that P contains

any outliers. It is easy to see why this statement is true:

∀p ∈ P, Dk
p ≤ MaxDist ≤ Dk

M (3.1)

3.2.3 Ranking

The goal of ranking optimizations is to accelerate either the increase of Dk
M or decrease

of Dk
p , by changing the evaluation order of dataset points.

3.3. In-Memory Algorithms 17

Ranking Objects Candidates for Neighbors (ROCN)

This strategy changes the evaluation order of neighbors in the knn search of p, such

that the closest ones are examined �rst. The goal is to decrease Dk
p faster and allow

the ANNS to be more e�ective and halt p's knn search earlier. Algorithms that have

a partitioning pre-processing step can use ROCN in two levels. At the inter-partition

level, the algorithm sorts the partitions according to their distance to p. The knn

search starts at p's partition and then continues to the next closest partition until the

ANNS prunes p or until the end of the dataset. The rationale is that closer partitions

are more likely to contain the nearest neighbors of p. A less common and more complex

way to use ROCN is at the intra-partition level, which involves changing the evaluation

order of points within a given partition.

Ranking Objects Candidates for Outlier (ROCO)

The goal of this type of ranking is to make Dk
M grow faster, by classifying �rst points

likely to have large anomaly scores. In an ideal scenario, the �rst n points classi�ed

would be the actual top-n outliers. The Dk
M would converge to its real value only after

n classi�cations, thus making the ANNS rule extremely e�ective. However, even if just

a mix of outliers and points with large anomaly scores are classi�ed �rst, it is enough

to raise Dk
M su�ciently to prune the majority of inliers very quickly.

3.3 In-Memory Algorithms

In this section we provide a review of the main distance-based outlier detection algo-

rithms from the literature, which are designed to process datasets stored in memory.

3.3.1 Ramasamy

Ramaswamy et al. [2000] were the �rst to use the de�nition of anomaly score and

outliers used in the canonical algorithm: Dk
p the distance to the k-th closest neighbor

of p. They proposed a two-phase, partition-based algorithm that used all three pruning

strategies discussed: ANNS, PPSO and PPSN. The �rst phase partitions the data

using the clustering algorithm BIRCH and builds a list of the candidate partitions,

i.e., partitions that may have outliers. To identify these partitions, the algorithm

needs to compute two types of bounds: (i) for every cluster C, compute the lower

and upper-bound of Dk
p that the points in C could have and (ii) the lower-bound

for the pruning threshold Dk
M . Any partition that has Dk

p upper-bound smaller than

18 Chapter 3. Distance-based outlier detection

the Dk
M lower-bound can not possibly have an outlier and thus is not included in

the candidate list (PPSO). In the second phase, the algorithm classi�es the points

belonging to the candidate partitions. To classify point p, the algorithm performs p's

knn search starting from its partition, C, and only examines points in partitions close

enough to C to have neighbors of p (PPSN). More speci�cally, only partitions whose

distance to C is smaller than C's lower-bound for Dk
p .

3.3.2 RBRP

RBRP (Ghoting et al. [2008]) uses the canonical de�nitions of outlier and anomaly

score and its focus is on improving the detection performance by applying the ROCN

optimization in two di�erent levels: inside and between data partitions. The algorithm

has two phases. In the �rst, it uses a divisive hierarchical algorithm to partition the

data into bins. Then, for each bin B, it reorders B's points by �nding the bin's Principal

Component (PC) and then projecting the points onto it. In the second phase, RBRP

detects the anomalies. The knn search of every point p starts with the point next to

it in its bin's PC. Once the search reaches the end of the bin, it wraps around to the

beginning of the bin and continues until all points were compared to p. The ordering

imposed by the PC characterizes the use of ROCN inside the partition. If the ANNS

is not able to prune p inside its own bin, then the knn search continues to the next

closest bin; ROCN between partitions. At the end of second phase, the n points with

the largest anomaly scores are the outliers.

3.3.3 DIODE

DIODE (Orair et al. [2010]) is one of the most optimized in-memory outlier detection

algorithm available and it implements all �ve optimization strategies discussed. It

divides the detection process into two phases. The �rst phase is very similar to RBRP's

�rst phase. It uses a divisive hierarchical clustering algorithm to partition the data

and, additionally, it computes bounds on the Dk
p values for each partition. Lastly,

DIODE uses a novel ROCO heuristic to rank partitions according to their likelihood of

containing outliers. The likelihood is approximated by the inverse of the density2 of a

partition P . The intuition is that anomalies occur in less dense regions/partitions.

In the second phase, DIODE classi�es the points similarly to RBRP. The detection

starts by the points more likely to be outliers, thanks to the ROCO optimization. In

the classi�cation of p, DIODE starts p's knn search by examining points in the same

2 |P |
R(P) , where R(P) is MBR diagonal length of P

3.4. Out-of-Core Algorithms 19

partition P (ROCN). If p is not pruned before all the points in P are examined, the

search continues to the closest partition P ′ not used yet, again another example of

ROCN. Before switching to C ′, DIODE applies the PPSN optimization: if the minimum

distance between p and C ′'s centroid is larger than Dk
p , than C

′ can not contain any

neighbors of p and is pruned. p's knn search continues until either p is pruned or

it reaches the end of the dataset. Once DIODE classi�es all the points of a particular

partition and has to move to the next one (PN), it applies a similar version of Ramasamy

algorithm's PPSO optimization: if PN 's D
k
p upper-bound is smaller than Dk

M , then PN

can not contain outliers and is thus pruned.

3.4 Out-of-Core Algorithms

In this section we will discuss in greater detail three of the main out-of-core outlier

detection algorithms in the literature, two of which will serve as baselines in the ex-

periments (Chapter 5).

3.4.1 Orca

Orca (Bay and Schwabacher [2003]) was one of the �rst out-of-core outlier detection

algorithms. It is heavily based on the canonical algorithm, sharing the nested loop

design, anomaly score de�nition (Dk
p) and outlier de�nition (top-n outliers). However,

it improves upon the canonical algorithm by introducing two new optimizations: (i) a

non-deterministic version of ROCN, which greatly improves the pruning e�ciency and

(ii) dividing the dataset into batches of b points and classifying them concurrently, in

order to reduce the overall number of dataset passes.

Algorithm 2 shows in detail how Orca works. Unlike the canonical algorithm,

Orca's outer loop (Line 4) selects the next batch, B, of points to be classi�ed, rather

than just one point. Moreover, the second and third loops (Lines 7 and 8) perform the

knn search of every point inside B concurrently: every neighbor candidate q loaded

from the dataset is compared to all test points in B, before loading the next neighbor

candidate from disk. Inside the third loop, the distance between q and p is computed,

Dk
p is updated (Line 9) and the ANNS rule is applied (Line 10). Any points left in B

after its knn search ends are considered outliers. They are used to update both the

MinHeap (O) containing the top-n outliers found so far and the Dk
M . Orca continues

this process until there are no more batches left to be classi�ed.

The optimizations introduced by Orca were extremely e�ective at improving the

detection performance. First, their ROCN implementation relies on the shu�ing of the

20 Chapter 3. Distance-based outlier detection

Algorithm 2: Orca algorithm

1 Function Orca (D, k, p)
2 Dk

M ← 0
3 O ← MinHeap()

4 while D.HasTestBatchLeft () do
5 B ← NextTestBatch (D)
6 N[p]← MaxHeap () ∀p ∈ B

// Run knn search of points in B

7 forall q ∈ D do

8 forall p ∈ B | p 6= q do
// Kepp only the k smallest distances

9 N[p].PushReplace (δp,q, k)

10 if N[p].size == k ∧ N[p].top () < Dk
M then

11 B.Remove (p) // Prune p

12 end

13 end

14 end

// Keep only the top n probable outliers

15 if ! B.Empty() then Dk
M ← O.SaveOutliers (B, N)

16 end

17 return O

dataset to induce a non-deterministic ranking of the neighbor candidates, accelerating

the convergence of Dk
p and improving the pruning. The authors showed that this

ranking strategy, in conjunction with the ANNS rule, was able to reduce the average

case runtime complexity of the detection from quadratic (canonical algorithm) to near-

linear time, for various real datasets. The second optimization proposed, batching, was

successful at reducing the number of dataset traversals. It allows the knn search of all

points in the batch to be run concurrently, reducing the upper-bound of the number

of dataset passes from N to at most N/b.

3.4.2 Diskaware

Yankov et al. [2008] proposed an algorithm, which we will refer to as Diskaware, for

detecting unusual time series in large scale datasets. It uses the De�nition 12 for

outliers and, as a result, it requires the user to supply the classi�cation threshold,

which will not change during the detection. Lastly, the algorithm only uses k = 1.

Diskaware's design is very di�erent from the canonical algorithm's and its deriva-

tives. It has two phases. In the �rst phase, the goal is to quickly identify outlier candi-

dates and segregate them from the inliers. The candidates are stored in a set Q and are

the only points that will actually undergo classi�cation. The second phase will classify

3.4. Out-of-Core Algorithms 21

Algorithm 3: Diskaware- Phase 1

1 Function CandidateSelection (D, k, Dk
M)

2 Q← ∅
3 forall q ∈ D do

4 isCandidate = true
5 forall p ∈ Q do

6 if δp,q < Dk
M then

// Neither p nor q can be outliers

7 Q.Remove (p)
8 isCandidate = false

9 end

10 end

11 if isCandidate then
12 Q.Add (q)
13 end

14 end

15 return Q

the candidates found. It runs the knn search for every point in Q concurrently, thus

requiring only one dataset traversal. In total, the algorithm only makes two passes in

the data, one for each phase.

Algorithm 3 shows how the �rst phase works. It starts by including just one point

in Q. Then, for every point q ∈ D it checks whether q has a neighbor p from Q that

is closer than Dk
M (Line 6). If yes, then neither p nor q can be outliers (ANNS) and

the algorithm removes p from the set of candidates. On the other hand, if q has no

neighbors from Q, q is added to Q as an outlier candidate. This method is equivalent to

perform a "restricted knn search" that only uses points in Q as neighbors candidates.

The authors showed that, given a good Dk
M value, this method produces few false

positives, which makes Q small and the knn searches quick.

The second phase (Algorithm 4) classi�es all the points in Q concurrently: for

every neighbor candidate q loaded from disk, the algorithm compares q to every point

p ∈ Q before loading the next neighbor (Lines 5 and 6). If q is too close to p, then

p can not be an outlier (ANNS). After the knn searches end, it is known that the

points remaining in Q do not have any neighbors closer than Dk
M . Therefore, they are

classi�ed as outliers.

3.4.3 Dolphin

The algorithm Dolphin (Angiulli and Fassetti [2009]) is conceptually very similar to

Diskaware. It uses the same de�nitions of anomaly score and outliers but without

22 Chapter 3. Distance-based outlier detection

Algorithm 4: Diskaware- Phase 2

1 Function CandidateRe�nement (D, Q, k, Dk
M)

// Initialize the candidates' anomaly score

2 forall p ∈ Q do

3 p.σ =∞
4 end

5 forall q ∈ D do

6 forall p ∈ Q do

7 if p 6= q and δp,q < Dk
M then

8 Q.Remove (p)
9 else

// Update p's anomaly score

10 p.σ ← min(p.σ, δp,q)

11 end

12 end

13 end

14 return Q

�xing k = 1. Consequently, it also requires the user to supply an initial classi�cation

threshold. Moreover, Dolphin also divides the detection process into two phases: (i)

phase one identi�es outlier candidates by using "restricted knn searches" and (ii) phase

two classi�es the candidates identi�ed, running all their knn searches concurrently.

However, Dolphin also introduces two important improvements over Diskaware: (i)

it uses ROCN and PPSN optimizations to speedup the knn searches and (ii) it keeps

some inliers in the group of outlier candidates to improve the e�ciency of the ANNS.

Dolphin's �rst phase is more sophisticated than Diskaware's. Rather than simply

building a set of outlier candidates, it builds an index structure that summarizes the

dataset points read so far. The index provides approximate range queries that, given a

point p and range R, return the superset of p's neighbors in the index3. These queries

are the basis of the knn searches performed during the �rst phase and employ the

ROCN and PPSN optimizations to speedup the queries. In addition to keep candidates

in the index, Dolphin also keeps a small fraction Pinliers of the inliers identi�ed. The

authors argue that, because inliers occur in dense regions, they are more likely to be

neighbors of other inliers. Therefore, by having a small fraction of them in the index,

it increases the chances that future knn searches will �nd enough neighbors of other

inliers to prune them, thus improving the e�ciency of the ANNS. Finally, at the end

of the �rst phase, the inliers kept in the index are discarded and only the actual outlier

candidates remain for the next phase.

The second phase (Algorithm 5) classi�es the candidates found. Similarly to

3The neighbors of p are the points in the index at a distance closer than R from p

3.5. Dk
M estimation methods 23

Algorithm 5: Dolphin- Phase 2

1 Function CandidateRe�nement (D, k, p)
2 forall q ∈ D do

3 NN = Index.RangeQuery (q, R)
4 forall p ∈ NN do

// Remove the false positives from the neighbor superset

5 forall r ∈ NN do

6 if δp,q,≤Dk
M then

// q and p are neighbors

7 p.nn++

8 if p.nn == k then
// Too many neighbors.Inlier

9 Index.Remove(p)

10 end

11 end

12 end

13 end

14 end

15 return Index

Diskaware, it also performs the knn search of all the candidates concurrently to ensure

only one dataset traversal is needed. For every point q read from the dataset, the

algorithm �nds the superset N of q's neighbors in the index (Line 3). Then, for every

actual neighbor p of q (Line 6), the algorithm increments p's count of neighbors by one

(Line 7). Any actual neighbor p whose neighbor count goes past k must be an inlier

and thus is pruned from Index (ANNS).

Dolphin o�ers two main advantages over Diskaware. Firstly, it uses an in-

dex structure that employs the ROCN and PPSN optimizations to speedup the knn

searches. Secondly, by keeping some inliers in the index, the algorithm is able to im-

prove the ANNS e�ciency, thus reducing the number of false positives that need to be

classi�ed during phase 2.

3.5 Dk
M estimation methods

Among the detection algorithms discussed in this chapter, only Diskaware and Dolphin

require an initial threshold larger than 0. However, all the algorithms can use an

initial threshold and their performance improves signi�cantly the closer Dk
M is to Dk

∗ .

Therefore, in this section we will present and analyze two methods for estimating

classi�cation thresholds for a particular detection instance, i.e. given a dataset D and

values for k and n.

24 Chapter 3. Distance-based outlier detection

3.5.1 Diskaware's estimation method

Yankov et al. [2008] proposed a three step method for estimating the classi�cation

threshold to use to detect the top-n outliers of a dataset. First, a uniformly random

sample S ′ is chosen. Then, a fast, memory-based, outlier detection algorithm is used

to detect the top-n anomalies within the sample. Lastly, the threshold estimate is set

to the score of the n-th top outlier.

There are several issues with this method but mainly, it uses an unproven, ad-hoc

approach. First, the authors do not provide any formal way of choosing the sample size.

For their experiments, they use a sample of size 103 for datasets with N < 106 and for

larger datasets they use samples of size 104. Second, there is no statistical guarantee

on quality or correctness4 of the estimates produced. Third, if an invalid estimate is

generated, the authors propose an ad-hoc approach for guessing new estimates based

on the the previous ones. This process could take as many as three attempts and with

each invalid estimate, another detection run is made. Finally, the method was only

tested with k = 1 and n = 10. Given the lack of proof in the correctness of this method,

we do not believe it would work for more meaningful values of k and n.

3.5.2 Dolphin's estimation method

Angiulli and Fassetti [2009] proposed a new estimation method that generalizes

Diskaware's method, allowing the use of any k and n value. First, let's introduce

some notation:

• η is the size of sample S

• ρ = n
N
the percentage of outliers to be detected

• % = k
N
, the percentage of neighbors to be considered during the knn search

• ns = ρ · η, number of outliers to be detected in S

• ks = % · η, number of neighbors to be considered during estimation

• σS
p , p's anomaly score using only neighbor candidates from a sample S

The method works as follows. First, it selects an uniformly random sample S of

size η. Second, it runs a fast, in-memory, outlier detection algorithm, e.g. Orca, to

detect the top-ns outliers in S, considering ks neighbors during the knn search. Then,

the estimate will be equal to the anomaly score of the ns-th outlier found: σS
p .

4The threshold estimate is smaller than Dk
∗ to allow at least n outliers to be detected

3.5. Dk
M estimation methods 25

This estimation method has a major issue. The required sample size, in some

cases, might be too big to �t in the GPU's memory. For the described method to work

properly, ks ≥ 1. The minimum sample size for which this restriction is satis�ed is

given by:

ηmin =
1

%
(3.2)

So, the smaller % is, i.e. small k and large N , the larger the sample has to be. This

restriction is a big issue for our outlier detection scenario. First, the values of k used

by most of the papers in the literature is in the range [1, 128], with most of them using

k ≤ 10. Secondly, our work targets outlier detection in large scale datasets, i.e. large

N . Both of these factors contribute to large samples. Finally, the GPU is memory

constrained, thus severely limiting the size of the samples that can be used.

Since processing large datasets using GPUs is the core proposal of this work, in

order to still use Dolphin's estimation method, we are limited to using larger k values.

Figure 3.1 shows the minimum k value that can be used for various dataset sizes, such

that S �ts in the memory of the GPU we used during the experiments. This solution

is far from ideal because in the case WISE dataset, about half of the range of common

k values can not be used (kmin = 62).

3.5.3 Practicallity of Dk
M estimation methods

In summary, Dolphin's estimation method can produce Dk
M values very close to Dk

∗ ,

allowing for very e�cient ANNS usage and enabling very fast detection times, specially

for Dolphin. However, for our use case scenario, very large scale datasets, the estima-

tion requires equally large samples. Thus, its applicability is limited. This highlights a

major �aw in both Diskaware and Dolphin algorithms, which will be discussed further

in the next section: They depend on a very good initial Dk
M value to perform well, but

it is not always possible to produce such Dk
∗ estimate. Therefore, we state that

a very important characteristic for a versitile out-of-core outlier detection

algorithms is to be able to perform well even when the initial Dk
M available

is very poor (i.e., far from Dk
∗) or even inexistent.

Due to the quality of the estimates generated by this method, we use it extensively

in our experimental analysis (Chapter 5), at the cost fo being limited in the values of

N and k we could use. Therefore, in our experiments we also analyse the alternatives

a user can choose from if a particular detection con�guration does not allow for the

use of this estimation method.

26 Chapter 3. Distance-based outlier detection

0
20

60
10

0

Dataset Size(N)

of

 N
ei

gh
bo

rs
(k

)

k = 12k = 6k = 4k = 3

150M 300M 600M

Minimum k value
Sample too large

2mass; d=30; Mem=6GB

(a) Dataset with d = 30 �oat attributes

0
20

60
10

0

Dataset Size(N)

of

 N
ei

gh
bo

rs
(k

)

k = 62

k = 31
k = 16

k = 4

50M 200M 400M 800M

Minimum k value
Sample too large

Wise; d=123; Mem=6GB

(b) Dataset with d = 123 attributes

Figure 3.1: kmin values for di�erent samples of the datasets 2MASS and WISE which
are used in the experiments.

Dk
M

Algorithm # db traversals Required Robust

Orca O(N/b) N N∗

Diskaware 2 Y N
Dolphin 2 Y N
DROIDg O(1) N Y

Table 3.1: Overview on the strengths and weaknesses of three out-of-core CPU al-
gorithms presented in this section. Lastly, DROIDg, our GPU algorithm proposed in
Section 4.6, has all the strengths of the other algorithms but none of their drawbacks.

3.6 A comparison between the out-of-core outlier

detection algorithms

The out-of-core algorithms presented in this chapter use di�erent outlier de�nitions

and strategies to e�ciently detect outliers in disk-resident datasets. In this section

we will compare their detection strategies on three main aspects and how these a�ect

performance:

1. Number of dataset traversals: When datasets are disk-resident it is

paramount to avoid traversing the dataset in order to reduce disk access.

2. Requires initial Dk
M value: As discussed in ?? it is not always possible to

estimate a good initial Dk
M . Thus, algorithms that require an initial Dk

M value

are less versitile.

3. Robustness on quality of initial Dk
M : Even in scenarios where it is possible

3.6. A comparison between the out-of-core outlier detection
algorithms 27

to estimate the Dk
M , there are certain factors that could reduce the quality of the

estimate, e.g., dataset with uniform data distribution. Algorithms robust to the

quality of the Dk
M o�er good performance on a wider range of scenarios and thus

are more versitile.

Table 3.1 provides a summary of the comparison.

The Orca algorithm uses the De�nition 11 of outliers and, as a result, it can

iteratively improve the Dk
M during the detection by �nding points with higher anomaly

scores and re�ning the list of top-n outliers. This approach has two main advantages.

First, Orca does not need an initial Dk
M estimate and can start the detection with

Dk
M = 0. Second and more importantly, its performance is robust to the quality of the

initial Dk
M value/estimate, speci�cally because it can be improved during the detection.

However, Orca's iterative detection strategy is also the cause of its main disadvantage

for out-of-core execution: excessive number of dataset traversals. Even though most

batches, B, of points being classi�ed will be quickly and fully pruned by the ANNS, if

at least one point in B has an anomaly score larger than the current Dk
M , such point

will not be pruned and Orca will have to traverse the entire dataset. In a random

dataset, this is expected to happen with O(N/b) batches and as our experiments show

(Chapter 5), this leads to prohibitively large I/O cost.

Diskaware is much better suited than Orca for out-of-core execution, because its

two phase design addresses Orca's main drawback: the excessive number of dataset

passes. However, because it uses a �xed Dk
M , its pruning e�ciency and thus perfor-

mance are entirely dependent on the quality of the initial Dk
M value. A low initial

Dk
M will mean the ANNS will perform poorly during the entire detection process. The

worst the Dk
M is, the closer Diskaware will perform to a brute-force algorithm. During

phase 1, a large number of false positive outlier candidates will be saved (Section 3.4.2).

Every new test point being analysed will have to be compared to an ever increasing

number of outlier candidates. Whereas in phase 2, every single saved candidate will

have to be classi�ed, causing an imense amount of distance-pair computations due to

and the poor e�ciency of the ANNS. In summary, Diskaware's performance is not

robust to bad initial Dk
M values, i.e., values far from Dk

∗ .

Lastly, Dolphin is very similar to Diskaware with regards to its overall design,

thus it shares the same fundamental advantages and disadvantages. But, due to its knn

search optimizations, namely ROCN and PPSN , Dolphin will be signi�cantly faster

than Diskaware under ideal conditions: when a good initial classi�cation threshold is

available. However, it still has the same limited aplicability to only scenarios where a

good initial Dk
M is available.

28 Chapter 3. Distance-based outlier detection

All the algorithms discussed here have drawbacks that can lead to signi�cant

decrease in performance on an out-of-core execution scenario. In Section 4.6 we propose

a new algorithm called DROIDg that combines Orca's Dk
M improvement strategy, which

has a higher I/O cost, to make it more robust to poor initial thresholds; with Diskaware

and Dolphin's two phase design, to keep the amount of dataset traversals extremely

low. The result is a more robust algorithm that provides a better balance between the

reduction of computation and I/O costs.

Chapter 4

GPU outlier detection

As we brie�y discussed during the introduction of this work (Chapter 1), the applica-

bility of outlier detection analysis is still very limited when dealing with terabyte-scale

datasets. Detection times are prohibitively high when detecting a reasonable percent-

age of anomalies, even in relatively small datasets and using state-of-the-art methods.

There are two main reasons. First, the cost of detection increases more than linearly

with the size of the dataset (Chapter 3). Second, the amount of distance-pair com-

putation required increases massively with n due to a loss in the ANNS' e�ciency

(Section 5.3). As n gets larger, Dk
∗ gets closer to the score of inliers, thus making it

harder to prune test points quickly or even to prune them at all. When combining large

datasets with reasonable values of n, the problem quickly becomes intractable using

conventional CPU algorithms. Consequently, the vast majority of papers in the litera-

ture limits their experimental analysis to tiny datasets of a few million points and/or

use small values of n, typically less than 1000 (Knorr and Ng [1999]; Ramaswamy et al.

[2000]; Bay and Schwabacher [2003]; Angiulli et al. [2006]; Ghoting et al. [2008]; Yankov

et al. [2008]; Orair et al. [2010]; Angiulli and Fassetti [2009]).

Why large N and large n are important

Enabling detection of meaningful percentages of outliers (n) in large scale datasets is

very relevant. First, the amount of data being currently generated and stored is, and

will continue, to increase rapidly. Faster and more e�cient anomaly detection methods

are needed to process these large datasets. Second, only detecting tiny percentages of

outliers limits the usefulness of outlier detection analysis. For instance, consider the

case where one wishes to remove noise from a sensory data dataset with 300M points,

the same size as the smallest dataset used in our experiments (Chapter 5). Being

29

30 Chapter 4. GPU outlier detection

able to only detect the top-1000 outliers would not be enough to clean the data in

many cases, because n = 1000 would represent just 0.00034% of the dataset size, an

unreasonably small error rate for many practical applications.

Consider another example. We have a dataset where the expected anomaly rate

is unknown, thus an exploratory analysis has to be conducted in order to determine

true amount of anomalies in the data. In this case, it would be necessary to compute as

many true anomaly scores as possible to plot the top-n anomaly score curve and study

its behavior in order to �nd a cuto� score Dk
∗ , above which every point is an anomaly.

Again, if the methods available can only �nd n = 1000 true scores in a reasonable time,

it is not feasible to perform such analysis for any signi�cantly sized dataset because

n would represent a vastly insigni�cant percentage of points and there would be too

few score to perform the analysis. Therefore, having methods that can perform outlier

detection in large scale datasets with large value of n is essential to making outlier

detection analysis widely applicable.

Our goal

The main goal of this work is to make viable the use of outlier detection analysis in ETL1

workloads dealing with terabyte-scale datasets. We aim to achieve it by drastically

reducing detection times through the use of GPUs. These chips are extremely parallel,

with thousands of processing elements, and are great for accelerating parallel workloads

with high arithmetic intensity. As we further discuss in Section 4.2, outlier detection

is such a workload.

However, to be able to accelerate outlier detection in terabyte-scale datasets using

GPUs, there are two important challenges that need to be overcome. Firstly, GPUs are

highly specialized and optimized to run linear, with high arithmetic intensity, SIMD

code. Anything that deviates from this, greatly reduces the maximum attainable com-

putation throughput, thus imposing great constraints in the design and implemen-

tation of high performance algorithms. For instance, the implementation of the ANNS

discussed so far is extremely ine�cient to run in GPUs. The second challenge pertains

to the size of datasets. We are targeting processing terabyte-scale data, but GPUs have

very limited memory bu�ers, usually less than 12GB. Thus, we will have to develop an

out-of-core GPU algorithm which, to the best of our knowledge, has never been done

before. E�ciently processing datasets in this fashion with GPUs is more challenging

than with CPUs, because the I/O penalty and I/O bottlenecks are far greater to the

1Extract, Load and Transform. The entire dataset is available beforehand, unlike the case with
streaming applications

4.1. Background 31

former, as we will discuss in Section 4.4.

Chapter summary

In this chapter we discuss the design aspects that address the two aforementioned

challenges and thus allow the development of outlier detection algorithms that e�ec-

tively exploit the GPU's computation power. First, we discuss preliminary concepts

about GPU architectures, their programming models and OpenCL. This is essential

to understand the design decisions made and the algorithms and optimization imple-

mented (Appendix A). Second, we propose a parallelization strategy that eases the

implementation of e�cient distance-based outlier detection algorithms for the GPU.

Third, we discuss the challenges of developing out-of-core algorithms for GPU and

provide a detailed design of a I/O subsystem that e�ciently performs asynchronous

data streaming to the GPU and enables overlapping computation and I/O. Fourth,

we introduce DROIDg, a novel GPU algorithm that combines Orca's Dk
M improvement

strategy with Dolphin's two phase algorithmic design for reduced I/O. It has robust

performance even when using an initial threshold of 0, thus addressing Dolphin's main

shortcoming. Lastly, we present other outlier detection algorithms for GPUs available

in the literature.

The discussion in this chapter is focused more in fundamental design decisions and

higher-level algorithms/strategies to enable high-performance out-of-core outlier detec-

tion using GPUs. Therefore, all the algorithms shown in this chapter are host-side

code (see next section). The functions that have the pre�x 'Gpu' are still host-side but

they do setup work for the execution of computation Kernels, i.e., functions that run

on the GPU. For an in-depth look on the design and implementation, using OpenCL,

of the kernels required by the algorithms shown in this chapter, see Appendix A.

Finally, it is important to highlight that our proposed algorithm, as well as all

outlier detection algorithms discussed in the past chapters, are suited only for ETL

workloads. Despite preventing the use of these algorithms in streaming applications,

ETL workloads are still incredibly popular and important.

4.1 Background

4.1.1 GPU Architecture

GPUs were originally designed for graphic processing workloads. Today, they are

fully programmable and are used in various �elds that require massive computational

32 Chapter 4. GPU outlier detection

power. Their main advantage over traditional CPUs is their embarrassingly parallel

hardware, with thousands of compute cores and capable of achieving several TFlops of

computation throughput. The architectural overview we provide in this section will use

the GTX 980 Ti GPU and the NVIDIA's Maxwell micro-architecture as a case-study,

but the basic concepts outlined here are applicable to other GPU models, even from

other vendors.

GPUs are massively parallel, with thousands of Processing Elements (PEs) for

performing arithmetic operations. To e�ciently manage the PEs and allow them to co-

operate, the GPUs have a highly organized and hierarchical architecture. For instance,

the GTX 980 Ti has 16 Compute Units (CU) called Stream Multiprocessors (SMMs),

each with 128 PEs, called CUDA cores, resulting in 2048 cores in total. Within each

SMM, the PEs are organized as four 32-wide Single Instruction Multiple Data (SIMD)

units, which are capable of executing instructions over vector data. The execution

model of the SMMs is called Single Instruction Multiple Threads (SIMT) and it uses

SIMD units to emulate multithreading on GPUs. Rather than exposing to program-

mers only �xed-length vector instructions (SIMD execution model), in the SIMT model

the programmer expresses the parallelism as scalar operations over contiguous sections

of memory (arbitrarily large vectors) and the hardware automatically generates the set

of SIMD instructions required. This provides more �exibility to the programmer.

In SIMT, warps, i.e., groups of 32 threads, execute in lock-step. This is essen-

tial for simplifying the execution control and thread scheduling across thousands of

available cores in the GPU. The downside, however, is expensive thread divergence.

Whenever threads take di�erent execution paths in a branch, all 32 threads have to

execute all diverging paths, ergo massively wasting GPU computing cycles.

To feed enough data to the thousands of compute cores, the SMXs are connected

to a high bandwidth memory hierarchy, with 2 main memory regions. Global Memory

is the largest region, with sizes between 4 and 12 GB. However, it is also the slowest,

with latency upward of 400 ns and a bandwidth of a few hundred GB/s. The second

region is the Shared Memory . It is visible to all threads running in the same SMX and

is often used for coordinating computation between threads. This memory space is

much smaller than global memory, around 64KB per SMX, but it is much closer to the

PEs and o�ers one order of magnitude lower latency and higher bandwidth. Therefore,

making sure to use shared memory instead of global memory whenever possible is one

of the optimization that yields the most performance bene�ts.

4.1. Background 33

GPU

Multicore 1Multicore 1 Multicore 1Multicore 2

Multicore 1Multicore 3 Multicore 1Multicore 4

Multicore 1Multicore 63 Multicore 1Multicore 64

Core 1Core 1

Core 1Core 1

CPU

(a) CPU vs GPU computing cores (b) GPU memory architecture

Figure 4.1: Overview on the architecture characteristics of GPUs

4.1.2 OpenCL

OpenCL (Open Computing Language) is an open standard for general purpose parallel

programming of many-core architectures2. It provides a framework for parallel com-

puting which includes, but not limited to, a cross-platform language for implementing

parallel algorithms and an API for managing their execution. To better explain the

concepts behind OpenCL and how OpenCL programs execute, we will discuss three of

the abstraction models introduced by the standard: OpenCL's Platform, Memory and

Execution Models.

4.1.2.1 Platform Model

An OpenCL-capable system has a Host device connected to one or more OpenCL de-

vices. OpenCL programs run in both types of devices and, like the platform, can be

divided into host-side and device-side kernel code. The device-side code consists of

parallel functions, called Kernels, required for performing the program's computation;

and they are written using OpenCL C, a cross-platform parallel programming language.

On the other hand, the host-side code, as the name implies, runs on the system's host

and manages the execution of the parallel work. It uses the OpenCL's framework API

to perform host-to-device and device-to-device data transfers. Additionally, the API al-

lows the host to schedule the execution of kernels across the available devices, allowing

it to map and to coordinate how the computation should be performed.

4.1.2.2 Execution Model

Command Queues are abstractions introduced by the OpenCL execution model to allow

the host to submit API calls to OpenCL devices. Each queue is associated with only

2CPUs, GPUs, FPGAs, etc

34 Chapter 4. GPU outlier detection

one device and it may be of two types: (i) Out-of-order, which allows commands to

be executed in any particular order, as soon as the required resource is available; (ii)

in-order that enforces commands to be executed in FIFO.

To run a kernel, the host code submits to a command queue the kernel, along

with Memory Objects, to serve as arguments; and two NDRange objects to describe

the execution's Index Space and specify the amount of parallelism to be used. The

kernel will be run by threads called work-items , which are mapped to the device's

processing elements, e.g., CUDA cores. OpenCL allows work-items to cooperate by

organizing them on work-groups, which are mapped to the device's compute units,

e.g., SMMs. Only work-items in the same work-group may cooperate through the use

of synchronization functions, such as barriers and memory fences, as well as collective

computation functions: reduction, broadcast, pre�x sum and predicate evaluation.

The index space speci�ed in the kernel execution maps the problem domain to the

execution domain, by specifying the number and addressing scheme of work-items . For

example, when performing the following matrix multiplication: Cmxn = Amxp · Bp xn,

the host code can map the multiplication into a 2D index space, where each work-item

is identi�ed by two ids, one per dimension, and computes one element of the output

matrix C. There will be a total of m · n work-items , with m sets of work-items in the

�rst dimension, one per row, and n sets of work-items in the second dimension, one

per column. In this con�guration, work-item wi,j
3 will compute the output element

ci,j. The ability to change the mapping of work-items and their grouping gives the

programmer freedom on how to expose the parallelism in the problem at hand.

4.1.2.3 Memory Model

Memory subsystems vary greatly between di�erent computing platforms. In order to

achieve code portability, OpenCL de�nes an abstract memory model that programmers

can code for, and that hardware vendors can map to their actual memory architectures.

In OpenCL, memory is divided into 4 di�erent memory spaces: Global, Constant,

Local, and Private. Global memory is visible by all compute units in a device and

it is usually the address space with the biggest capacity, but it also has the highest

latency. All the data transferred between host and OpenCL devices must be either

read from or written to global memory.

Constant memory is a sub-region of global memory dedicated to store data which does

not change during the execution of a work-item. It is the host's responsibility to setup

memory objects in this address space, and, in some hardware architectures, using con-

3Id i in �rst dimension and id j in the second dimension

4.2. Extracting Parallelism from the Problem 35

stant memory instead of global memory may yield some performance improvements.

Local memory is an address space restricted to individual compute units, i.e., only

work-items in the same work-group can share data using Local variables and arrays.

It is usually implemented as an on-chip memory e.g., in GPUs, and therefore it of-

ten provides much smaller latency and much higher bandwidth than global memory.

However, this address space is much smaller, with current high-end GPUs having be-

tween 16KB and 48KB of local memory per compute unit. Finally, private memory

is a memory restricted to each work-item. This is the default address space for kernel

arguments and variables and only supports static allocation. This memory space is

often mapped to registers, which may yield very low latency access, but it can hold

very little data and private arrays and spilled registers are usually mapped to global

memory. Therefore, it should be used with care to avoid registers spillage, which could

decrease kernel performance.

4.2 Extracting Parallelism from the Problem

To leverage the GPU's computational power, algorithms need to decompose the prob-

lem into dense and independent computations, as to provide enough parallel work to

keep the thousands of GPU PEs busy. Our parallelization strategy extracts parallelism

from the problem within and between knn searches.

The �rst level of parallelization occurs inside the knn search itself. To compute

the anomaly score of an instance p and classify it, the algorithm needs to �nd p's

k closest neighbors by (potentially) comparing p to all points in the dataset. And,

since these comparisons are independent, they can be performed in parallel. Therefore,

rather than comparing p to one point at a time, p is compared in parallel to a whole

batch of neighbor candidates at a time, which we refer to as Neighbor Candidate Batch

(NCB). Consequently, p's knn search is performed in iterations. p is compared to one

NCB at a time, until either it is pruned or until it is compared to all points in the

dataset, i.e., no more NCBs left. The same reasoning can be applied for the second

level of parallelization. To perform the detection in the dataset, all points need to

be classi�ed. But, since the knn searches are independent, they may also be done in

parallel. Therefore, we propose to divide the outlier detection into knn iterations. In

each iteration, a batch B of test points is compared to an entire NCB, in parallel. For

brevity, hereafter, we may also refer to a generic test batch B as a Test Point Batch

(TPB).

36 Chapter 4. GPU outlier detection

4.3 KNN iteration

Using the parallelization strategy outlined previously, the classi�cation process of each

TPB can be broken-down into a series of knn iterations. Given a TPB B, each iteration

executes a "step" in B's knn search 4 with the goal of improving Dk
p for every point

p ∈ B, by re�ning the their set of closest neighbors using neighbor candidates from a

given NCB.

knn iterations are at the core of all GPU outlier detection algorithms that we

implemented. In this section, we explain in greater detail which operations are needed

by the knn iteration and we will show the host-side algorithm that controls the com-

putation. All functions that start with the pre�x Gpu do setup work for computation

kernels to run on the GPU. For an in-depth look on how to implement the GPU kernels

needed by the knn iteration, see Appendix A.

4.3.1 KNN iteration algorithm

Algorithm 6 shows in detail the operations performed during a knn iteration. Given

a TPB B with b test points and a NCB with c neighbor candidates; the iteration

starts with the computation of all pair-wise distances between the points in B and

NCB. This results in an b× c distance matrix (∆), where row i contains the distances

between the i-th test point and all points in the NCB. Then, each row of ∆ is sorted in

ascending order such that the �rst k elements in each row will correspond to the test

points' closest neighbors in the NCB. Next, this b × k sub-matrix is used to update5

the partial knn result (pKnn), i.e., improve the current set of nearest neighbors of B

by including neighbors closer still, from the NCB. Consequently, tighter anomaly score

upper-bounds (vector S) may be computed for the points in B.

The last part of the iteration uses the updated anomaly scores to try to prune

test points. The pruning method is divided into two parts: (i) mapping, where the

GPU records the index of the test points which can still not be pruned by the ANNS;

and (ii) gather, in which the points not pruned are repacked in B, such that the pruned

ones are overwritten and thus e�ectively erased.

It should be noted that the knn iteration is actually a two-step process. The

�rst part is shown in Algorithm 6 and runs asynchronously on the GPU. In the second

part, the host needs to decide what to do next based on the iteration's result. There

are three possible outcomes:

4
knn search of a TPB should be understood as the knn search of every point within the batch

5The update process has three steps: (i) "concatenate" the matrices; (ii) sort their rows in as-
cending order ; (iii) truncate the rows, keeping in pKnn only the k closest neighbors

4.3. KNN iteration 37

Algorithm 6: Algorithm for knn iteration

1 Function GpuKnnIteration (B, NCB, k, Dk
M)

2 ∆← GpuComputeDistPair (B, NCB)
3 ∆← GpuKSortDistances (∆, k)

// Update outlier candidates' closest neighbors

4 B.pKnn ← GpuUpdateNearestNeighbors (B.pKnn, ∆)
5 B.S ← GpuUpdateAnomalyScore (B.pKnn)

6 ev ← GpuPruning (B, Dk
M , k)

7 return ev

1. B is empty: The ANNS pruned all the test instances. The host must end B's

knn search.

2. B is not empty and there are still NCBs to use: The host will continue

the search

3. B is not empty and there are no NCBs left: The knn search ended but

there are still test instances in B. The appropriate action will depend on the

meaning of the points remaining, which will be di�erent depending on algorithm

and context. Those points could be either outliers or outlier candidates.

4.3.2 Implementing the ANNS

E�ective pruning is essential for fast outlier detection, but, if not implemented properly,

it can impose a signi�cant overhead. Once the ANNS is applied, the GPU needs to

inform the CPU how many points there are left in the TPB and wait for further

instructions. However, due to the high latency of communicating through the PCI-

E bus, the GPU idles for a signi�cant amount of time, thus decreasing the overall

computation throughput of the algorithm.

We reduce the pruning cost of in two ways. First, it is implemented using the

stream compaction primitive, which is explained in Appendix A.4. Second, pruning is

used less frequently, in order to amortize the resulting idle time over large amounts

of computation. The knn iteration design presented divides the detection into large

blocks of computation, which can e�ectively use the GPU's hardware. Pruning is then

applied only at the end of each iteration, i.e., once per NCB rather than once per

neighbor candidate. Moreover, the ratio between pruning idle time and time spent on

computation can be regulated by choosing appropriate sizes for the TPBs and NCBs.

38 Chapter 4. GPU outlier detection

The downside of using the ANNS less frequently is reducing the pruning e�ciency.

The CPU algorithms, in general, apply the ANNS after every neighbor comparison,

allowing them to prune test points as soon as they are proven inliers. This is equivalent

of having an NCB of size 1. However, with our knn iteration design, the ANNS will be

only applied once all neighbors in the NCB are compared to the test points, resulting

in more computation performed overall. Nevertheless, as we show in the experiments

(Chapter 5), our approach provides a good balance between reducing pruning overhead

and allowing the ANNS to still be e�ective at avoiding unnecessary computation.

4.4 I/O subsystem for out-of-core GPU outlier

detection

Streaming data from disk to the GPU is extremely costly and thus posed a signi�cant

barrier to the development of out-of-core outlier detection algorithms. In this section,

we discuss the challenges of out-of-core execution in general; why it is specially costly

to GPU algorithms; and how we addressed these challenges.

4.4.1 The cost of out-of-core execution on GPUs

Out-of-core algorithms incur two main performance penalties when streaming data

from disk. First, the latency of ful�lling the data request. This is the time between

requesting a chunk of the dataset and it being available in RAM. It can be a�ected by

many factors such as disk latency, disk bandwidth and the degree of post-processing

that has to be applied to the chunk once it reaches memory, for instance, parsing the

data from text format into binary. The second performance penalty is idle time: not

performing any computation while waiting for data to reach RAM. These overheads af-

fect both CPU and GPU algorithms but they are far more severe for the latter. Sending

data to the GPU requires one extra data transfer, from RAM to the the GPU's global

memory, further increasing I/O latency and GPU idling time. Additionally, GPUs have

up to two orders of magnitude greater computation throughput than CPUs, meaning

the amount of computation not performed per unit of idle time is equally larger. This

puts an upper-bound on the computation throughput that can be achieved with the

GPU, negating the bene�t of using it over CPUs. Therefore, minimizing I/O overhead

and idle time is paramount to achieve any appreciable reduction in computation time

with GPUs.

4.4. I/O subsystem for out-of-core GPU outlier detection 39

4.4.2 Important design decisions

The primary concern when developing out-of-core algorithms should be to minimize

disk accesses altogether, by designing outlier detection algorithms that perform as few

dataset passes as possible, e.g., Diskaware and Dolphin. Only after the appropriate

algorithmic design is chosen, one should focus on addressing the I/O overhead. To

implement the GPU algorithms presented in Section 4.5, we used a common low-

level I/O subsystem that implements optimizations to reduce the I/O costs outlined

previously. The I/O subsystem implemented has three major design decisions: (i) Bulk

I/O, (ii) Binary datasets and (iii) Asynchronous I/O. Each of these will be explained

in more detail bellow.

Bulk I/O

Hard drives have a signi�cant access latency cost due to their mechanical nature. This

cost can be mainly broken into: (i) Seek time, the time taken by the head assembly to

move to a given position and (ii) Rotational Latency, the time it takes for the target

sector to rotate under the read head. Therefore, performing many small data reads,

e.g., reading one NCB at a time, is considerably less e�cient than performing a single

large read. For example, the hard drive used in the experiments (??) has an average

data read rate of 156MB/s, an average seek time of 8.5ms and an average rotational

latency of 4.2ms (Seagate [2011]). To transfer a single NCB with 8192 points6, each with

30 attributes7, it would take an average of 18ms, of which 68%, 12ms, is just latency.

However, if we transfer 20 NCBs at a time, as was done in the experiments, the latency

overhead can be reduced to just 7% of the I/O time. This example perfectly highlights

the importance of bulk I/O for improving data transfer e�ciency and reducing overall

I/O time.

To implement bulk data transfers, our I/O subsystem uses a LRU cache on the

GPU's global memory. The dataset is logically split into chunks, several point batches

in size, and each will be mapped to a cache page. When a NCB is requested, for

instance, the cache will �rst determine which chunk it belongs to and whether it is

already in cache. If that is the case, the request is ful�lled immediately, otherwise, the

target dataset chunk is loaded from disk into the GPU. Any further requests for data

within this chunk will hit the cache. Because the data access pattern of outlier detection

algorithms is sequential (Section 3.4), all the chunks' point batches will be requested

at least once. Thus, the latency cost of reading data from disk is paid only once and

6NCB size used in the experiments
7NCB of the 2MASS dataset

40 Chapter 4. GPU outlier detection

spread over all the point batches within a given chunk. This is crucial optimization to

reduce overall I/O cost, increasing the e�ective data transfer rate of the disk (in points

per second) and allowing the GPU to achieve higher computation throughput rates.

Binary datasets

Our I/O subsystem only supports datasets in binary format. This encoding is more

compact than text and in the datasets used in our experiments (??), for instances, it

reduced dataset sizes by around 60%. As a result, the e�ective streaming throughput

of the disk, in terms of data points per second, is increased by the same proportion

and, in turn, signi�cantly reducing data transfer times from disk to RAM. Additionally,

since the data is already in binary format once it reaches RAM, it does not need to be

parsed and can be sent immediately to the GPU. This results in a massive reduction

on the latency between requesting a data point batch and it being available on the

GPU. In summary, using datasets in binary format reduces point batch transfer times

through compression and eliminates the need for parsing, thus further reducing the

time data takes to reach the GPU.

Asynchronous I/O

Asynchronous I/O is implemented to allow overlapping data streaming with both work

scheduling and computation on the GPU. The main thread can make an asynchronous

request for a TPB, for instance, and then continue execution and enqueue all work to

be performed on that TPB, while the data transfer is taking place. The time taken to

enqueue and schedule work on the GPU8 will be overlapped by the I/O time, allowing

the computation to be executed immediately after the TPB reaches the GPU. As a

result, GPU idle time due to work scheduling is considerably reduced. Additionally,

data prefetch can be used to overlap I/O with computation. The main thread can

enqueue work to be performed on data already on the GPU's global memory and then

prefetch the next TPBs and NCBs, such that the GPU will remain busy while I/O is

taking place. As mentioned before, the algorithm's data access is sequential, thus the

pre-fetching can be used through the entire detection process, massively reducing GPU

idle time, thus reducing processing times.

8There is a signi�cant latency between sending commands to the GPU and those commands being
executed, due to PCI-E latency, enqueuing and scheduling costs. For more information Khronos
Group [2017]

4.4. I/O subsystem for out-of-core GPU outlier detection 41

4.4.3 I/O subsystem architecture

The I/O subsystem can be divided into two layers. The �rst one is the GPU layer

that o�ers fundamental abstractions to the outlier detection algorithms, such as data

points, TPBs and NCBs. The layer bellow is the Storage layer and it is responsible

for loading data from disk and then uploading it to speci�c bu�ers on the GPU, in an

asynchronous manner.

4.4.3.1 GPU Layer

The main component of the GPU layer is the cache discussed previously, which keeps

the most recently used dataset chunks in the GPU's global memory. The cache re-

ceives, from the GPU layers above, requests for speci�c point batches, e.g., an NCB,

to be copied to a given GPU bu�er supplied with the request. The cache then de-

termines which dataset chunk contains the NCB and checks if the target chunk is

already in cache. If that is the case, the cache will enqueue, using the OpenCL API, an

asynchronous copy of the requested NCB. The API will return a dependency event

object whose state is tied to the the status of the copy. This event is then returned to

the caller, which can then use it as dependency lock when enqueuing computation to

be made on the NCB. The OpenCL runtime will ensure the dependency is met, only

allowing the computation to be performed once the copy completed.

On the other hand, if the dataset chunk containing the requested NCB is not

in cache, the cache will have to request the Storage layer to upload it to the GPU.

In this scenario, the cache ful�lls the request in two steps. First, it asks the Storage

layer to fetch the target dataset chunk and upload it to a speci�c cache page, selected

through the LRU policy. The cache also creates and sends to the Storage layer a

dependency event to be tied to the status of the upload. In the second step, the

cache enqueues an asynchronous copy of the requested NCB, using the aforementioned

event as a dependency. The OpenCL API will return an event object for the NCB

copy, which will be then returned to the caller. As mentioned before, the caller will be

able to use this event as a dependency when enqueuing computation to be done on the

NCB.

This chain of dependencies, which is established in both scenarios between dataset

chunk upload, batch copy and computation; is enforced by the OpenCL runtime and

is the critical enabler of asynchronous I/O for both device and host-side code.

42 Chapter 4. GPU outlier detection

4.4.3.2 Storage Layer

The storage layer implements asynchronous host-side I/O by using a consumer-

producer architecture, which somewhat decouples the GPU computation rate from

the disks data streaming rate allowing the overlapping of I/O and computation.9

This layer is divided into three main components: DataSource, aWork queue and

ReadWorkers . The DataSource component receives, from the GPU layer, requests for

speci�c dataset chunks to be uploaded to a target cache page (i.e., GPU bu�er). Then,

it builds a ReadRequest object containing all the necessary information to read the

chunk o� the disk, asynchronously: chunk o�set, chunk size, host-side bu�er, callback

function and request id. The ReadWorkers are the entities that perform the data reads,

consuming ReadRequest objects from the Work queue, and are executed in separate

threads. Once a read is �nished, the ReadWorkers calls the callback function passing

the request id from the ReadRequest to notify the DataSource. The DataSource will

then enqueue an asynchronous copy of the just-read dataset chunk to the cache page

originally supplied. The dependency event originally received by the Storage layer

will be passed with the API call, so that the OpenCL runtime will tie the event's state

to the copy status, ensuring that the previously discussed dependency chain works10.

After the callback is �nished, the ReadWorker thread can return to consuming the

Work queue. Please note that the work performed during the callback is minimal, thus

the I/O thread spends the overwhelming majority of its time running the ReadWorker .

4.5 Distance-based outlier detection algorithms for

GPUs

In this section we will describe how to port Orca and Diskaware to the GPU, using

the knn iteration design proposed. Additionally, we will introduce our GPU algorithm

that is based on Diskaware but o�ers signi�cantly better performance when a poor

initial Dk
M is available. Lastly, Dolphin was not ported due to its index, which is hard

to implement in GPUs and it is still an open problem.

9The maximum computation throughput is still limited by two factors: arithmetic intensity and
disk bandwidth. The overlapping just allows the algorithm to get closer to the theoretical peak
compute rate.

10Dataset chunk upload, point batch copy and computation

4.5. Distance-based outlier detection algorithms for GPUs 43

Algorithm 7: Orca-GPU Algorithm

1 Function OutlierDetection (D, k, p)
2 O ← []

3 while D.HasTestBatchLeft () do
4 B ← NextTestBatch(D)

// Run knn search of B
5 while ! B.FinishedKnn () do
6 NCB ← NextNeighborBatch (D, B)

// Dispatch all GPU work

7 GpuKnnIteration (B, NCB)
8 if !FinishLastKnnIteration (B, O) then Break

9 end

10 end

11 return O

12 Function FinishLastKnnIteration (B, O)
// Ensure GPU finished the iteration

13 WaitLastKnnIteration (B)

14 if B.Empty () then
// Batch was fully pruned

15 return False

16 else if B.FinishedKnn () then
// New outliers found

17 Dk
M ← O.GpuSaveOutliers (B)

18 return False

19 else

20 return True // Continue processing B
21 end

4.5.1 Orca-GPU

A GPU version of the Orca algorithm (Algorithm 7) has a nested-loop design. The

outermost loop builds TPBs for classi�cation with test points from the dataset, whereas

the inner loop executes the knn search of the TPB. After requesting the GPU to load

the next NCB (Line 5), the host will schedule the knn iteration to be executed and

wait until the GPU uploads the number of points left in the TPB after the pruning

(Line 13). If the TPB was fully pruned, its knn search is halted (Line 8) and the

host schedules the classi�cation of a new one. Otherwise, the host schedule the next

iteration of the TPB's knn search (Line 5).

For some TPBs, their knn search will �nish but they will still have points not

pruned (Line 17). These remaining points will be classi�ed as outliers, in a process sim-

ilar to the pKnn update: (i) Insert points in the list; (ii) Sort them in descending order

according to anomaly score; (iii) Truncate the list, keeping only the top-n anomalies.

Lastly, Dk
M is updated using the anomaly score of the current n-th outlier. After all

44 Chapter 4. GPU outlier detection

TPBs are classi�ed, the detection algorithm returns the top-n outliers as the outliers

of the dataset (Line 11).

4.5.2 Diskaware-GPU

Before porting Diskaware to the GPU, two pre-requisites need to be met. First, develop

a data structure for storing outlier candidates, which is a key aspect of the algorithm.

Second, the knn iteration procedure presented needs to be extended to also re�ne the

nearest neighbor list (pKnn) of the NCBs used, i.e., batches of outlier candidates in this

case.

4.5.2.1 Storage of Candidates

The container for storing outlier candidates has a set of requirements that need to be

met. First, it needs to be able to not only store the candidate points themselves, but

also associated data needed for the knn iteration such as: (i) the points' norm; (ii)

pKnn and (iii) anomaly score. Second, the container needs to provide e�cient read,

update and removal operations. The read is necessary because every knn iteration

will need to read candidates from the container to server as neighbors. The removal is

required because candidates can be pruned during the iteration due to a Dk
p reduction.

Lastly, the update operation will be needed for updating the pKnn and score of the

candidates that were not pruned.

The candidate container was implemented using a Structure of Arrays (SoA)

layout (Oster [2008]) to ensure coalesced data access. The candidate data is divided

into four parallel arrays, one per data being stored: features, norm, pKnn and score.

For e�ciency reasons the arrays are implemented as circular bu�ers. Before a knn

iteration, the outlier candidates that will be part of the NCB are popped from the

front of the container, along with their associated data. Once the iteration ends and the

pruning is applied, the remaining candidates are re-inserted at the back of the container.

This procedure handles both the candidate removal operation due to pruning and the

pKnn and score update operation due to the re�nement of the closest neighbors list.

Since the bu�ers are circular, both removing from the front and appending at the back

have O(1) running time complexity.

4.5. Distance-based outlier detection algorithms for GPUs 45

Algorithm 8: Diskaware-GPU-knn iteration

1 Function GpuDiskawareKnnIteration (B, C, k, Dk
M)

2 ∆TPB ← GpuComputeDistPair (B, C.pts)
3 ∆NCB ← GpuTransposeMat (∆TPB)

// Run the knn iteration of each point batch

4 KnnIteration (B, C, ∆TPB , k, D
k
M)

5 ev ← KnnIteration (C, B, ∆NCB , k, D
k
M)

6 return ev

7 Function KnnIteration (B, C, ∆, k, Dk
M)

8 ∆← GpuKSortDistances (∆, k)

// Update outlier candidates' closest neighbors

9 B.pKnn ← GpuUpdateNearestNeighbors (B.pKnn, ∆)
10 B.S ← GpuUpdateAnomalyScore (B.pKnn)

// Decide which candidates to prune

11 ev ← GpuPruning (B, Dk
M , k)

12 return ev

4.5.2.2 knn iteration

During Diskaware-GPU's �rst phase, its knn iteration (Algorithm 8) re�nes the pKnn

of points in the TPB as well as those in the NCB11. It �rst computes the distance matrix

for the TPB's knn iteration (Line 2) and then transposes the matrix (Line 3) to obtain

the distances for the NCB's knn iteration. This optimization avoids computing the

same set of distances twice. Next, an overloaded version of the knn iteration algorithm,

which receives the distance matrix instead of computing it, is used to run both TPB

and the NCB's knn iterations.

4.5.2.3 The algorithm

Phase 1 Diskaware-GPU's �rst phase (Algorithm 9) traverses the dataset once and

runs a knn search for every TPB, using only the outlier candidates saved as the

neighbor candidates (Lines 9 and 11). After every knn iteration execution, the host

decides what to do next based on the result obtained (Line 13) and, �nally, the neighbor

candidates that were not pruned are re-inserted into Q with their updated pKnn and

scores (Line 14). After the knn search of a TPB ends and before the moving to process

the next one, the algorithm ensures that the outlier candidate storage is not empty. If

it is, the algorithm simply inserts a TPB into the storage (Line 5), such that the next

one o be processed has neighbor candidates to be compared to.

11In this case, the points in the NCB are sourced from the set of saved candidates

46 Chapter 4. GPU outlier detection

Algorithm 9: Diskaware-GPU- Phase 1

1 Function DiskawarePhase1 (D, O, Dk
M , k)

2 Q← ∅
3 while D.HasTestBatchesLeft () do
4 if Q.Empty () then

// Save some points as candidates to use them as neighbors

5 Q.Savebatch (NextTestBatch(D))
6 continue

7 end

8 B ← NextTestBatch (D)
9 SetKnnSearchLength (B, Q.size)

// Run B's knn search

10 while cont do
11 C ← Q.GetNextBatch ()
12 GpuDiskawareKnnIteration (B, C)

13 cont ← FinishLastKnnIteration (B, O)
// Save the candidates remaining with updated pKnn and score

14 Q.SaveBatch (C)

15 end

16 end

17 return Q

Phase 2 The second phase (Algorithm 10) is straightforward and uses the regular

knn iteration implementation (Algorithm 6), which sources neighbor candidates from

the dataset itself. The phase starts by building a list of TPBs, containing all the

candidates that were saved during the previous phase. Then, it runs the knn search

of all the TPBs in lock-step, such that each NCB is loaded from disk only once. If the

knn search any particular TPB �nishes, it is removed from the list of active TPBs and

the execution continues until there is none left (Line 4).

4.6 DROIDg (Disk-Resident, OutlIer Detection using

GPUs)

The outlier detection algorithms presented in Section 3.4 and their GPU counter-

parts, which we proposed in Section 4.5, all have one of these two major drawbacks:

either (i) they perform way too many dataset traversals or (ii) their performance is

entirely dependent on the quality of the initial Dk
M value, thus severely diminishing the

applicability of these algorithms as we discussed in Sections 3.5 and 3.6. Therefore,

in this section we introduce DROIDg, a new out-of-core outlier detection algorithm for

GPUs. It is high-performance and requires only a small and constant number of dataset

traversals. Additionally, it is very versatile, capable of providing fast detection times

4.6. DROIDg (Disk-Resident, OutlIer Detection using GPUs) 47

Algorithm 10: Diskaware-GPU- Phase 2

1 Function DiskawarePhase2 (D, Q, O, Dk
M , k)

2 tpbs ← ∅
// Build a list of TPBs with all candidates

3 while ! Q.Empty () do
4 tpbs.Append(Q.GetNextBatch())
5 end

6 ClassifyBatches (tpbs, D, O, Dk
M , k)

7 Function ClassifyBatches (tpbs, D, O, Dk
M , k)

8 while ! tpbs.Empty() do
// Run one, regular, knn iteration per TPB

9 forall B ∈ tpbs do
10 NCB ← NextNeighborBatch (D, B)
11 GpuKnnIteration (B, NCB)
12 if !FinishLastKnnIteration (B, O) then tpbs.Remove (B)

13 end

14 end

regardless of the quality of the initial Dk
M , even if it is equal to 0.

Our algorithm is based on the Diskaware's two phase design but, similarly to

Orca, it is able to improve the Dk
M during the detection. In other words, it trades extra

I/O cost, in the form of a small number of extra dataset traversals to classify more

outlier candidates, which improves the Dk
M and massively reduces the computation

costs. Thus it achieves a better balance between reducing I/O and computation costs

than any other algorithm discussed in this work.

Combining these approaches is not trivial and to understand why, let's �rst re-

examine the e�ects of a poor initial Dk
M on Diskaware (Section 3.6). Under such

scenario, the amount of candidates saved in Q grows signi�cantly, resulting in larger

runtime for both detection phases. In the �rst phase, there is a considerable increase

in the TPB's knn search cost because all the outlier candidates are used as neighbor

candidates. In the second phase, a much greater number of full knn searches will be

performed, one per candidate.

To achieve fast detection times when using a bad initial Dk
M , our algorithm will

have to avoid the runtime increases mentioned above while the Dk
M is being increased.

This process is slow because the ∆Dk
M per dataset pass is small. While this process

takes place, our algorithm is subject to the same side-e�ects of a large Q as Diskaware,

since the former is based on the latter. Therefore, in addition to enabling the Dk
M

improvement in Diskaware's two phase outlier detection design, our algorithm must

address the following issues:

48 Chapter 4. GPU outlier detection

1. Expedite the Dk
M improvement process to maintain the number of dataset passes

low and minimize the overhead caused by a large Q.

2. Decouple the cost of the knn search of TPBs from the number of outlier candi-

dates saved.

3. Lower the cost of classifying a large set of candidates. This will be relevant for

Dk
M improvement and the detection's second phase.

Next we explain how the key components of the algorithm work and how the

issues above are solved.

4.6.1 Phase 1 - knn search

Our algorithm's �rst phase uses a di�erent knn search algorithm from Diskaware,

which makes the search's cost independent from the size of Q while limiting the increase

in false positives among the candidates. This is accomplished by: (i) limiting the

number of candidates used per knn search and (ii) using Orca's ROCN strategy for

improving the pruning of test instances. The search is divided into two stages.

Stage 1 The goal of this stage is to decrease the outlier candidates' Dk
p and prune

those that can be proved inliers. It works similarly to Diskaware's knn search, except

it only compares the TPB to the �rst TNCBs from Q, instead of all of them. Note that

the NCBs will be built with outlier candidates selected in a Round-Robin fashion. This

is the case because the points are removed from the front of Q and, those not pruned,

are re-inserted at the back12. This ensure that eventually all candidates in Q will their

anomaly score upper-bounds improved. However, there is a downside to this approach.

By limiting the the number of candidates compared to each TPB, the algorithm also

slows down the Dk
p increase of the candidates, thus decreasing their pruning rate. The

second stage of the knn search mitigates this side-e�ect.

Stage 2 To counter the slower pruning rate of the outlier candidates, this stage seeks

to reduce the amount of points saved as candidates in the �rst place. This can be

achieved by employing Orca's ROCN strategy to improve the pruning of test points

(TPB). After the �rst knn search stage, the points remaining in the TPB are compared

to a random sample of the dataset. However, this stage needs to be implemented

carefully to avoid comparing points to the same neighbor candidates twice, which

would lead to incorrect results. Our ROCN implementation takes advantage of the

12See the description of the outlier candidate storage in Section 4.5.2.1

4.6. DROIDg (Disk-Resident, OutlIer Detection using GPUs) 49

Algorithm 11: Second stage of modi�ed knn search

1 Function KnnStage2 (D, B, Q, O, Dk
M , k)

2 SetKnnSearchLength (B, S)
3 SetKnnSearchStart (B, B.start + tpbsize)

4 while ! cont do
5 NCB ← NextNeighborBatch (D, B)
6 GpuKnnIteration (B, NCB)
7 cont = FinishLastKnnIteration (B, O)
8 end

// Put new candidates in a stagging buffer

9 StageBatch(R, Q, B)

10 Function StageBatch (R, Q, B)
11 if R.size ≥ S then

// Batch at the front of R completed stagging. Remove it

12 Q.SaveBatch (R.PopBatch())

13 end

14 R.PushBatch (B)

dataset randomization. The random sample used is comprised of the STPBs following

the TPB being currently processed. In this case, the double comparison issue can only

happen between newly added candidates and the points in its random sample, i.e., the

next STPBs. So, to prevent it, new candidates are place at a staging bu�er R during

the next S knn searches and not used for building NCBs.

Algorithm 11 shows in detail how this stage of the knn search works. Lines 2

and 3 set the knn search to use only SNCBs and to use get the NCBs starting from

the next TPB. The search proceeds normally, using the original knn iteration imple-

mentation and, at the end, the points remaining in B are added to the staging bu�er

R. While adding the new batch, the algorithm checks whether there are already S

batches in R (Line 11). If so, the one at the front completed its staging and can be

inserted into the candidate bu�er Q.

4.6.2 E�cient outlier candidate classi�cation

Classifying a large number of outlier candidates is costly, since it requires a full knn

search per candidate. But it is also wasteful. The majority of those candidates are

inliers that could be easily pruned had a better threshold been available. Therefore,

we introduce an algorithm for e�ciently identifying and discarding those inliers. It

prioritizes the classi�cation of candidates likely to have large σp, thus achieving larger

∆Dk
M per execution. Consequently, it can use the ANNS to discard a large amount of

candidates cheaply. This makes this algorithm invaluable for both improving the Dk
M

and the performance of the detection's second phase.

50 Chapter 4. GPU outlier detection

Algorithm 12: E�ciently reducing the size of Q

1 Function PruneCandidates (D, Q, O, Dk
M , k)

2 DkminImprovement (D, Q, O, Dk
M , k)

// Use new/higher Dk
M to discard as many inlier as possible from Q

3 PruneInliers (Q, Dk
M)

4 Function DkminImprovement (D, Q, O, Dk
M , k)

5 GpuSortCandidatesByDk (Q)
6 tpbs ← []

7 for i = 0 to H do

8 tbps.Append (Q.GetNextBatch())
9 end

10 ClassifyBatches (tpbs, D, O, Dk
M , k)

The outlier candidate classi�cation algorithm has two steps: (i) improve the Dk
M

and (ii) prune candidates using the new threshold. It increases the Dk
M as much as

possible by classifying a small subset of Q containing the candidates more likely to

have larger anomaly scores. Such subset is chosen using a novel ROCO heuristic based

on the following assumption:

Assumption 7 Candidates with larger Dk
p are more likely to have higher anomaly

scores

The algorithm (Algorithm 12) starts by sorting the candidates in Q in descending

order, according to their Dk
p . Then, it builds H TPBs using the candidates with higher

Dk
p and classi�es them using Diskaware's second phase batch classi�cation algorithm

(ClassifyBatches - Algorithm 10). The newly classi�ed outliers help re�ne the set

of top-n anomaly thus increasing the Dk
M . Finally, the ANNS is used to prune the

candidates remaining in Q using the new Dk
M (Line 3). It should be noted that newer

candidates tend to have larger Dk
p because they were used in less knn iterations.

However, as the experiments show (Section 5.6.1), this heuristic is still very e�ective.

4.6.3 The algorithm

In this section, we discuss how our algorithm incorporates the two changes discussed

previously: (i) the new knn search algorithm and (ii) candidate pruning method.

Phase 1 Our algorithm's �rst phase (Algorithm 13) is very similar to Diskaware's,

but it incorporates two improvements. First, it uses the two stage knn algorithm

we discussed previously, which keeps the search cost low, regardless of the number

of candidates saved. The downside is the reduced pruning rate of outlier candidates,

4.6. DROIDg (Disk-Resident, OutlIer Detection using GPUs) 51

Algorithm 13: DROIDg

1 Function DROIDgPhase1 (D, O, Dk
M , k)

2 Q← ∅
3 while D.HasTestBatchesLeft () do
4 if Q.Empty () then

// Save some points as candidates to use them as neighbors

5 Q.Savebatch (NextTestBatch(D))
6 continue

7 else if Q.IsAlmostFull() then
// Free space in the candidate buffer

8 PruneCandidates (D, Q, O, Dk
M , k)

9 continue

10 B ← NextTestBatch (D)
// Run B's knn search

11 KnnStage1 (B, Q, O, Dk
M , k)

12 KnnStage2 (B, D, O, Dk
M , k)

13 end

14 return Q

15 Function DROIDgPhase2 (D, Q, O, Dk
M , k)

16 tpbs ← ∅
17 PruneCandidates (D, Q, O, Dk

M , k)
18 while ! Q.Empty() do
19 tpbs.Append (Q.GetNextBatch ())
20 end

21 ClassifyBatches (tpbs, D, O, Dk
M , k)

which is only partially o�set by the knn search's second stage. As a result, Q can

become full during the detection on a large enough dataset. The second improvement

addresses this issue. If Q is close to get full, the candidate pruning algorithm will be

executed to e�ciently free space in Q and allow the �rst phase to continue. Moreover,

with the improved Dk
M , the ANNS will become more e�cient, further slowing down the

growth of Q and signi�cantly reducing the chances of the bu�er becoming full again.

Phase 2 The second phase of our algorithm can e�ciently classify a large number

of candidates, even when the classi�cation threshold is poor. It starts by using the

candidate pruning algorithm (Algorithm 12) to e�ciently discard the majority of inliers

among the candidates in Q. Then, only the fewer remaining candidates will undergo

classi�cation (Algorithm 13).

It should be noted that even if the basic premise of a poor threshold does not hold,

our algorithm still has a performance similar to Diskaware's, as the experiments show

(Section 5.4). During the �rst phase, there will be no extra dataset traversals, since

ANNS will be very e�cient and Q will not become full. Moreover, the cost of the second

52 Chapter 4. GPU outlier detection

stage of the knn search will be minor. The second phase of our algorithm can be slightly

longer. If the number of candidates saved is bigger than H, the algorithm will perform

an extra dataset traversal to, unnecessarily, improve the Dk
M . But, again, the extra

cost will be minor. On the other hand, if the initial threshold is not good or is even 0,

our algorithm will perform considerably better than Diskaware. Our new knn search

algorithm for the detection's �rst phase allows the algorithm to handle a large number

of candidates without degrading performance. This is critical. The proposed outlier

candidate classi�cation algorithm is equally as important. By leveraging our novel

ROCO heuristic, it substantially increases the ∆Dk
M per dataset pass. Consequently,

the overall number of traversals is kept low and the amount of candidates pruned per

traversal is increased. As the experiments show (Section 5.6.2), the latter is crucial to

curb the cost of the detection's second phase.

4.7 Related work - GPU algorithms

In this section we review three of the main outlier detection algorithms for GPU from

the literature. However, none of them is suitable for our usage context: disk-resident,

large scale datasets. Hence, why they will not be used in our experimental analysis.

They are included here for sake of completeness.

4.7.1 LOFCUDA

Alshawabkeh et al. [2010] were one of the �rst to propose the use GPUs for outlier

detection. Their method is based on the LOF algorithm. It assigns to each point p

a Local Outlier Factor 13, which quanti�es how di�erent is the density of the region

around p in comparison to the surroundings of its k closest neighbors. The points

with the largest LOF scores are considered the outliers. Though LOF score produces

high quality outlier detections, their algorithm is unsuitable for processing large scale,

disk-resident, datasets. First, their algorithm has a quadratic runtime complexity on

N . Second, their implementation performs the knn search of all the dataset points

concurrently, thus it has to store a N ×N distance matrix in the GPU memory. This

makes its space complexity also quadratic on N , severely limiting the size of datasets

that can be processed. For instance, for N = 65K points, their algorithm would need

more than 15GB of video memory, which is considerably more memory than most

consumer GPUs have available nowadays.

13LOF: an anomaly score.

4.7. Related work - GPU algorithms 53

4.7.2 GPU-SS

More recently, Angiulli et al. [2016] implemented a family of GPU algorithms based

on the approximate algorithm SolvingSet (Angiulli et al. [2006]). The SolvingSet is

also a distance-based detection algorithm and uses Dk
p as the anomaly score metric.

Moreover, points may have one of three labels: (i) candidates are the ones with the

highest likelihood of been outliers but have not been classi�ed yet; (ii) inactive, for the

ones already classi�ed as non-outliers; (ii) active are the remainder of the points, with

Dk
p larger than the classi�cation threshold, but not large enough to qualify them as

candidates.

The GPU algorithm proposed, like the original SolvingSet, performs multiple

passes through the dataset. At iteration j, it compares the current set of candidates,

Cj, to all points in the dataset, regardless of label. At the end the iteration, σp of

the candidates will have been computed14 and Dk
p of the active points will have been

improved. Candidates whose anomaly score is above Dk
M are classi�ed as outliers and

their scores are used to update the threshold. The remainder of the candidates are

classi�ed as non-outliers and are removed from Cj. Similarly, active points whose Dk
p

fell bellow the pruning threshold are labeled inactive. Finally, the next candidate set

Cj+1 is built by selecting the m active points with the highest Dk
p . This process is

repeated until there are no active points left.

As their experiments show, this iterative approach is incredibly successful at re-

ducing the amount of computation necessary for detection, reducing the number of

point comparisons to below 3% for most of the dataset. Consequently, they reported

that their GPU implementation achieved a 45X speedup over its CPU counter-part.

However, its necessary to highlight some shortcomings of their study. Their experi-

ments were conducted using only small datasets with the largest one comprising just

1.6M 3d points. Moreover, whistle their algorithm is e�ective at reducing computation,

it requires multiple passes through the dataset, making their solution ill suited for our

desired out-of-core execution scenario.

4.7.3 Stream GPU outlier detection

HewaNadungodage et al. [2016] proposed a GPU algorithm detecting anomalies in

data streams. The anomaly score metric used was the inverse of the density around

a point and it was computed using density estimation kernels. Their method splits

the input stream into non-overlapping batches of points and by combining summary

14They were compared to all points in the dataset

54 Chapter 4. GPU outlier detection

statistics from batches already processed with data form the current window, it is

capable of classifying data more accurately than GPU_SS, while performing just one

pass through the dataset.

To generate the summary statistics, it partitions each of the d data dimensions

into k bins with a user-speci�ed width of δ, totaling kd bins. The points of the stream

are mapped to one bin, according to their attribute values, and for each bin Bj the

method stores: (i) Cj, the number of points in it so far and (ii) the aggregate mean

value of all the points mapped to Bj. Moreover, their method also computes global

statistics such as the mean (µ) and standard deviation (Σ) of the whole dataset. These

statistics are then used to estimate the density ps(X) around the point X considering

all the data seen so far. To compute the anomaly score of the point X, their method

combines, through a weighted sum, ps(X) and the density around X considering just

the points in the current window.

The authors compared the GPU and CPU implementations of their algorithm.

They used two datasets Kddcup and Covertype, with 3.8M and 405k points respectively

and their CPU versions was executed using 16 threads. They showed that the GPU

version was up to 20X faster than the CPU counter-part, for both datasets.

This algorithm only requires a small amount of data to be in memory to perform

the detection: (i) the summary statistics and (ii) one batch of points. Therefore, it

can process arbitrarily large datasets. Furthermore, its ability to perform the detection

while requiring only one pass through the data makes it well suited for processing disk-

resident dataset and a competing method to our GPU algorithm. However, the authors'

study and algorithm has important shortcomings. First, the authors only reported their

algorithm's performance on very small datasets. Second, the algorithm took between 16

and 32 seconds to process batches of just 60.000 points on low dimensionality datasets

and despite using a very powerful GPU: GTX Titan. This indicates that while their

method is very e�cient with regards to I/O, it is much more computationally intensive

than distance-based methods. Unfortunately, we did not have access to their code

and were unable to include their algorithm in our experimental analysis to test our

hypothesis.

4.8 Summary

In this chapter we presented an entire set of algorithms and abstractions designed for

high-performance outlier detection in GPUs. The proposed parallelizations strategy

balances high computation throughput with pruning for much better overall perfor-

4.8. Summary 55

mance. We also talked in length on how to reduce the performance impact caused

by disk accesses, through the use of improved data encoding and asynchronous I/O.

Finally, we presented a new and robust distance-based outlier detection algorithm that

o�ers good performance regardless of the quality of the initial Dk
M . The robustness

is accomplished through two main improvements over Diskaware-GPU. First, a mod-

i�ed knn search algorithm that still re�nes the set of saved candidates but that can

handle an arbitrarily large Q without degrading performance. Second, our algorithm

uses a clever candidate classi�cation method to speedup the Dk
M improvement during

the search and to signi�cantly reduce the amount of candidates that must be classi�ed

during the second detection phase. Our novel ROCO heuristic is the crucial enabler of

this classi�cation method. In the next chapter we will compare our algorithm against

Diskaware under varying Dk
M quality scenarios, and will also thoroughly analyze the

impact of the both improvements implemented in our algorithm.

Chapter 5

Experimental Evaluation

In this section, we analyze the performance the GPU outlier detection algorithms

in two parts. First, we compare DROIDg to three out-of-core algorithms for CPUs,

using scalability tests for the parameters N , n and k. The goal is to assess by how

much GPUs can accelerate the outlier detection process. In the second part of the

experiments, we compare the GPU algorithms among themselves and analyze how

much their performance is in�uenced by the quality of the initial Dk
M .

5.1 Datasets

Two datasets were used for the experimental analysis. The �rst1 was produced by

the Two Micron All Sky Survey (2MASS) mission (Skrutskie et al. [2006]), which used

ground-based telescopes to survey the sky on three near-infrared wavelengths, from

the year of 1997 to 2001. The speci�c dataset used, hereafter 2MASS, is a Point Source

Catalogue (PSC) containing 127 position and photometry data features on more than

470 million objects. The second dataset used is the Source Catalogue obtained from

the ALLWISE data release2 of the Wide-�eld Infrared Survey Explorer (WISE) mission

(Mainzer et al. [2011]). It used an unmanned satellite, equipped with an infrared-

sensitive telescope, to survey the entire celestial sphere in four bands of the infrared

spectrum, during the years of 2010 and 2011. The dataset itself, hereafter WISE, con-

tains 298 astrometry and photometry data features on more than 747 million objects.

1http://www.ipac.caltech.edu/2mass/releases/allsky/
2http://irsa.ipac.caltech.edu/data/download/wise-allwise/

57

58 Chapter 5. Experimental Evaluation

d N

2MASS 30 303M
WISE 123 678M

Table 5.1: Source datasets after the pre-processing procedure

5.1.1 Pre-processing

Neither of the datasets were �t for our use in their original form since, among other

things, they contained non-numeric features as well as missing values. Therefore, both

datasets underwent the following pre-processing procedure.

1. Discard non-numeric features

2. Remove all the features with more than 5% of missing values

3. Discard any data instance with missing �elds

4. Normalize the dataset using the Z-score normalization and truncate the features

in the value range [−5, 5]

5. Shu�e the dataset and save it a binary format

This procedure generated two source datasets and their basic characteristics are

summarized in Table 5.1.

5.1.2 Dataset samples used

The experiments conducted were designed to highlight the GPU's superior performance

for outlier detection. Because speedups can potentially be as large as two orders of

magnitude, using the full source datasets would lead to unreasonably long runtimes for

the CPU algorithms in some tests. Therefore, multiple random samples, of increasing

sizes, were created from each dataset and used accordingly during the experiments.

Furthermore, since the goal is to test the out-of-core performance of the algorithms,

the smallest sample produced has to be larger than the memory available in the test

system (16GB). This ensures that dataset traversals will be expensive and impact

performance, since no dataset can be loaded entirely into the OS' I/O cache. Tables 5.2

and 5.3 summarize the samples generated.

5.2. Methodology 59

Sample N (106) Text (GB) Binary (GB)

150M 150 43 16.7
200M 200 56 22.4
300M 300 85 33.5

Table 5.2: 2MASS samples

Sample N (106) Text (GB) Binary (GB)

50M 50 57 23
100M 100 114 46
200M 200 227 92
400M 400 456 183
678M 678 776 311

Table 5.3: WISE samples

5.2 Methodology

All experiments were run in a single machine, with a Xenon E3-1241 @ 3.5 GHz proces-

sor, 16GB of DDR3 and a GTX 980 Ti with 6 GB of VRAM. The datasets were stored

in a Seagate Barracuda hard drive, model ST3000DM001, with 156MB/s average data

rate and a maximum read seek latency of 8.5 ms(Seagate [2011]). The operating system

used was Ubuntu 14.04 LTS and the programs were compiled using GCC 4.8.4 with

the -O3 �ag. �ag.

It should be noted that the swap area of the testing machine had to be disabled

because it was causing performance inconsistencies. During the execution of the GPU

algorithms, there was little free memory in the system because of the OS' I/O cache and

the amount of memory used by the algorithm. We believe this led the virtual memory

to evict pages from RAM to the swap, thus reducing the disk bandwidth available and

impacting the algorithms' performance. By disabling the swap, the results' consistency

was much improved between test runs.

All the experiments, except when explicitly stated otherwise, use an initial thresh-

old estimate produced by Dolphin's estimation method (Section 3.5.2). Five estimates

are produced per test run and the median value is selected for use. Lastly, before every

run, the OS' I/O cache is emptied to avoid having parts of the dataset already in RAM.

5.2.1 Algorithms tested

In total, �ve algorithms were tested and compared to DROIDg: four CPU algorithms

and one GPU algorithm. Our selection was restricted to the best out-of-core algorithms

in the literature, to better understand DROIDg's advantages in an out-of-core scenario

when compared to what is already available.

Even though the algorithms chosen may use di�erent approaches for detection

and even have di�erent outlier de�nitions, all of them can be, and were, con�gured to

return the same set of outliers. Additionally, there is no ground-truth for the datasets

chosen nor it is our intention to determine the quality of the set of outliers returned by

60 Chapter 5. Experimental Evaluation

these algorithms. There is already extensive research done on distance-based techniques

which shows that they can achieve good detection quality in wide range of applications.

As a result, in these experiments we focus solely on the performance aspect of the

algorithms and do conduct any analysis on the quality of the set of outliers returned.

5.2.1.1 CPU algorithms

We had access to and used four out-of-core algorithms for CPU as baselines in the

experiments, namely: Orca, Diskaware, Dolphin and DROIDc the sequential version

of our proposed algorithm. In order to better assess the algorithms' performance, we

instrumented the �rst two algorithms to retrieve the number of distance computations

performed, number of disk accesses made and I/O time. This was not done with

Dolphin because we only had access to its binary, which was provided by the �rst

author of the original paper (Angiulli and Fassetti [2009]). Consequently, we lacked

proper instrumentation to explain some of the results involving Dolphin and had to

put forth some hypothesis instead. Lastly, the original Diskaware algorithm does not

allow the user to change the value of k to be used, which is set to 1. We did not remove

this restriction for the CPU algorithm, thus in all the results reported for Diskaware,

k was equal to 1.

5.2.1.2 GPU algorithms

From all the outlier detection for GPUs discussed in this work, only two were used in the

experiments: DROIDg and Diskaware-GPU. Orca-GPU, despite been implemented, was

not included in the tests because it su�ers from the same issue as the algorithm from

which it is based: I/O bottleneck (Section 5.3). Additionally, none of the algorithms

in Section 4.7 were used. The �rst two, LOFCUDA and GPU-SS, were not used

simply because they were not designed for out-of-core execution. Thus, they would

do considerably more dataset passes than Orca-GPU and be even slower. Conversely,

the third algorithm was designed for processing data streams and, thus, was able to

perform the detection with one pass. Therefore, it would be interesting to include it

in our experiments. However, despite reaching out to the authors, we were not able to

get access to the its source code for testing.

Parameters Used DROIDg and Diskaware-GPU were both implemented using our

framework, thus they share most of their parameters. All of the parameter values were

chosen empirically for giving the best overall performance for our GPU. The batches

TPB and NCB were set to 4096 and 8192 points in size, respectively. The batch size of

5.3. Parameter Scalability 61

the GPU's cache was also set to 8192 points and each cache page was 30 batches big,

such that the page's I/O latency overhead was less than 10% of the total transfer time

(Section 4.4.2). Q was set to a size of 800K for DROIDg and 1.6M for Diskaware-GPU.

The larger Q for the latter algorithm is to prevent the bu�er from becoming full during

the experiments, since Diskaware-GPU is not able to empty Q like DROIDg does. DROIDg

also had some extra parameters. From its new knn search algorithm, both T and S

were set to 10 NCBs. From its outlier classi�cation method, parameter H, the number

TPBs with outlier candidates to be classi�ed, was set to 3.

5.3 Parameter Scalability

The goal of this section is to determine how e�ective GPUs are at accelerating the

detection process. We compared DROIDg against four out-of-core outlier detection al-

gorithms for cpu: Orca, Diskaware, Dolphin and DROIDc. Three sets of tests were

conducted, each testing the algorithms' scalability with regards to the main detection

parameters: (i) dataset size (N); number of neighbors (k); and (iii) number of outliers

to be detected (n). Each test was allowed to run for up 72 hours and in case it did not

�nish, the execution was halted. The halted executions are not shown.

5.3.1 Number of outliers (n)

Good scalability on the amount of outliers being detected is essential in outlier detection

algorithms. In most cases, the precise number of outliers in a dataset is unknown and

an exploratory analysis has to be conducted. A user will need to analyze the top-n

anomaly score curve to determine the number of outliers. A larger n gives a more

complete picture of the score distribution in question and allows the number of true

anomalies to be gauged with greater con�dence.

This experiment assesses the algorithms' scalability with regards to n. The tests

were performed using the smallest samples of the two datasets: 150M points for 2MASS

and 50M points for WISE. Moreover, the parameter n varied between 0.0002% and

0.04% of the dataset size.

For the 2MASS dataset, DROIDg achieved a maximum speedup of 29X over

Dolphin, the second fastest algorithm. The speedup achieved increased with n (Fig-

ure 5.2a), showing that DROIDg has better scalability. For instance, when going from

n = 300 to 30K, Dolphin's runtime increased over 250X while DROIDg's increased only

7X. In these tests, DROIDg did not improve the Dk
M during the detection, thus the

superior scalability is mainly due to the GPU. For small n values, the hardware was

62 Chapter 5. Experimental Evaluation

Number of outliers (n)

R
un

tim
e

(s
)

●●●

●

●

●

●
●

●
●

101

102

103

104

105

300 5000 15000 30000

●

●

CPU − Diskaware
CPU − Dolphin
GPU − DROIDg
CPU − Orca
CPU − DROIDcTime Limit: 72Hrs

(a) Runtime for 150M 2MASS, k = 8

Number of outliers (n)

R
un

tim
e

(s
)

●●● ●

●
●

●

101

102

103

104

105

150 5000 10000 20000

●

CPU − Dolphin
GPU − DROIDg
CPU − OrcaTime Limit: 72Hrs

(b) Runtime for 50M WISE, k = 8

Figure 5.1: Runtime, in seconds, for the n variation test, with y-axis is in log scale.
DROIDc is not shown for dataset WISE because it did not manage to �nish any of the
test runs within the 72 hour limit

underutilized. But, as the detection cost increased with larger n, DROIDg was able to

leverage more of the GPU's parallel computing power.

The performance gap between CPU and GPU algorithms was even more pro-

nounced for the WISE dataset. DROIDg achieved a maximum speedup of 137X (Fig-

ure 5.2a), allowing a staggering reduction in detection time for n = 20K, from 49 hours

to only 21 minutes. The GPU algorithm showed, again, better scalability. Increasing

n from 150 to 20K raised DROIDg's detection time by less than 6X, whereas Dolphin's

increased 96X. The reason for the larger performance gap in this dataset can not be

determined precisely, since we lack proper instrumentation from Dolphin. However,

we believe the gap can be explained by the higher dimensionality of WISE. With four

times as many features, the cost of distance computation is increased considerably.

But, DROIDg is able to scale better due to its highly e�cient and parallel distance

computation implementation (Appendix A.2).

Diskaware, Orca and DROIDc performed poorly due to the computation cost and,

in the case of Orca, also I/O cost. As mentioned before, Orca's main �aw is its propen-

sity to perform a large amount of dataset traversals during detection (Section 3.6). The

experiments performed con�rm this assertion. While all other algorithms performed

only two traversals for all n values, Orca's number of dataset passes, and thus I/O time,

increased sharply with n (Figure 5.2b), e.g., over 1000 passes for 2MASS and n = 1500.

Consequently, it was I/O bound in all test runs and its detection time surpassed the

72 hour limit for very small n values in both datasets.

These results highlight the acceleration GPUs can provide to outlier detection,

but the performance gains shown are even more impressive when considering the per-

5.3. Parameter Scalability 63

0
50

10
0

15
0

20
0

Number of Outliers (%)

S
pe

ed
up

●
●

●

●

●

●

1 × 10−3 5 × 10−3 1 × 10−2 1.5 × 10−2 2 × 10−2

●

2MASS
WISE

(a) Speedup achieved by DROIDg over

Dolphin

2 × 10−6 6 × 10−6 1 × 10−5

Number of outliers (%)

N
um

be
r

of
 T

ra
ve

rs
al

s

0
20

0
60

0
10

00

2MASS
WISE

(b) Number of dataset traversals performed

by Orca

Figure 5.2: Summary of results of the n variation test.

centage of outliers detected. The values of n used represent a tiny percentage of the

total number of points in the dataset samples processed, and these samples were them-

selves a small fraction of the size of their respective source datasets (50% and 7%).

Considering DROIDg's superior scalability, had the full datasets being used, the perfor-

mance delta between CPU and GPU algorithms would have been even larger.

5.3.1.1 DROIDc's performance

As �g. 5.1 showed, DROIDc was the slowest algorithm tested. In order to make DROIDg

both I/O e�cient and extremely parallel, certain trade-o�s were made, namely batch-

ing (NCB and TPBs) and deferring probable outlier candidate classi�cation (set Q
Section 4.6.2). Both of these optimization methods have the downside of increasing

signi�cantly the amount of distance computations that have to be performed during

outlier detection. For DROIDg the trade-o� of more computation for better /io e�ciency

and scalability more than pays o�. But, for DROIDc that is not the case. Without the

GPU's superior parallelism, it incurs the downsides of the optimization methods with

none of their bene�ts. In summary, the optimizations employed in DROIDg make sense

only for algorithms running on GPUs.

5.3.2 Dataset size (N)

This experiment tests the algorithms' scalability on the size of the dataset processed,

thus all dataset samples created were used (Tables 5.2 and 5.3). The choice of k value

was limited by the Dk
M estimation method. Since the same k was used for all dataset

sizes, it had to be chosen such that even for the largest dataset the sample for Dk
M

estimation would �t into the GPU's memory (Section 3.5.2). k was set to 12 for the

64 Chapter 5. Experimental Evaluation

Dataset size

R
un

tim
e

(s
)

●
●

●

101

102

103

104

105

150M 200M 300M

●

CPU − Dolphin
GPU − DROIDgTime Limit: 72Hrs

(a) Runtime for 2MASS, k = 12, n = 15K

Dataset size

R
un

tim
e

(s
)

●

●

●

●

●

101

102

103

104

105

50M 200M 400M 678M

●

CPU − Dolphin
GPU − DROIDgTime Limit: 72Hrs

(b) Runtime for WISE, k = 80, n = 5K

Figure 5.3: Runtime, in seconds, for the dataset size variation test, with the y-axis
in log scale. Neither Orca, Diskaware nor DROIDc completed any test runs within 72
hours.

2MASS samples and to 80 for the WISE samples. Similarly, the value of n had to be

chosen carefully due to its large impact on the detection time. For the 2MASS datasets,

n was set to 15K. But for WISE, n had to be set to just 5K, otherwise not even Dolphin

would have been able to process, within the time limit, samples larger than 50M points.

In other words, n was set to such a small value, 0.01% of the smallest sample, to allow

a performance comparison to be made against DROIDg.

The only CPU algorithm able to perform the tests within the time limit was

Dolphin. For the 2MASS datasets, DROIDg achieved a 9X speedup for the 300M sample.

But it showed a slightly worse scalability, with its detection time increasing 2.1X when

increasing the number of points from 150M to 300M, versus a 1.9X increase for Dolphin.

Similar to the n variation test, DROIDg's performance improvement was considerably

better for the WISE datasets, likely for the same reasons. Since Dolphin could not

�nish detection for the two largest samples, DROIDg's maximum speedup was 79X

for 200M points. The scalability of both algorithms was similar with detection times

increasing around 4X when increasing the dataset size from 50M to 200M. performance

improvements were achieved for n smaller than 0.01% of the dataset size. Had we

used larger and more meaningful values, the speedup would be between two and three

orders of magnitude. This perfectly depicts how GPUs can enable outlier detection to

be performed at a scale that is far beyond the capability of even state-of-the-art CPU

algorithms.

5.3. Parameter Scalability 65

5.3.3 Number of neighbors (k)

For this experiment we varied the parameter k from 8 to 128. This range was chosen

because it spans the values most commonly used by the outlier detection research in

the literature. The other two important parameters, i.e. dataset size and n, were set

as to allow at least Dolphin to complete the experiments. Thus, the smallest sample

of each dataset was used and n was set to just 0.01% of the dataset size.

DROIDg was, again, up to two orders of magnitude faster than Dolphin but the

latter showed slightly better scalability. That is because Dolphin leveraged its index

to perform less neighbor comparisons during the knn search, whereas DROIDg used a

brute-force approach, which is better suited for the GPU. Therefore, as k increased,

the cost of the knn search increased faster for DROIDg, thus decreasing its speedup

(Figure 5.4c). For 2MASS, the speedup decreased 45% from a maximum of 11X for

k = 8, to 6X for k = 128. For WISE, the results were substantially better. The speedup

decrease was only 16%, from a maximum of 87X for k = 8, to 73X for k = 128.

This experiment showed a small downside of outlier detection algorithms for

GPUs in general: the lack of an indexed knn search hurts their scalability with regards

to k. However, this is a minor issue. First, because the superior GPU computation

throughput o�sets some of the extra cost. Second, DROIDg was still signi�cantly faster

for the range of k values commonly used.

5.3.4 Summary: CPU vs GPU algorithms

These experiments perfectly highlight how GPUs can push the boundaries of the kind

of outlier detection analysis that can be made in a reasonable time. DROIDg was up to

two orders of magnitude faster, despite the experiments being conducted in the best

case scenario for the CPUs:

1. Only small n values were used: up to 0.04% of the smallest dataset sample

2. More importantly, all the tests were run using excellent initial Dk
M values: more

than 90% of their optimal value (Section 5.5).

If any of the points above were not true, the computational cost of the detection would

be considerably higher. In this scenario, the DROIDg's speedup would be even larger

because the GPU would be able to scale better than the CPUs, due to its superior

computation throughput.

Given the magnitude of the speedups achieved, using GPUs is also considerably

more cost e�ective for large scale outlier detection. Assuming Dolphin had a perfect

66 Chapter 5. Experimental Evaluation

Number of neighbors (k)

R
un

tim
e

(s
)

● ● ● ●
●

101

102

103

104

105

8 32 64 128

●

CPU − Dolphin
GPU − DROIDg
CPU − DROIDcTime Limit: 72Hrs

(a) Runtime for 150M 2MASS, n = 15K

Number of neighbors (k)

R
un

tim
e

(s
)

● ● ● ●
●

101

102

103

104

105

8 32 64 128

●

CPU − Dolphin
GPU − DROIDgTime Limit: 72Hrs

(b) Runtime for 50M WISE, n = 5K

0
50

10
0

20
0

Number of Neighbors (k)

S
pe

ed
up

●

● ●
●

●

8 32 64 128

●

2MASS
WISE

11X 6X

87X
73X

(c) DROIDg speedup

Figure 5.4: Results for the scalability test of the parameter k. The �gures in the �rst
row show the runtime, in seconds, of the algorithms with the y-axis in log scale. The
third �gure shows the speedup achieved by DROIDg in the experiment. Neither Orca
nor Diskaware completed any test runs within 72 hours.

scaling, which is highly unlikely, it would need up to 137 threads to the beat DROIDg's

best results. Moreover, assuming the best thread/$ CPU on the market was being

used, the Ryzen 1700 CPU; it would take 9 CPUs to achieve 137 threads. In processors

alone, it would cost $2700 (Amazon [2017]), more than seven times the cost of the GTX

980 GPU used in the experiments. In summary, using GPUs for outlier detection is not

only considerably more cost e�ective, but it also enables the detection to be performed

at scales far beyond the capabilities of even state-of-the-art CPU algorithms.

5.4 GPU algorithm analysis

Now that we have shown how much potential the GPU has for accelerating the outlier

detection process, we will compare two of the out-of-core algorithms for GPU that

we implemented: Diskaware-GPU and DROIDg. Orca-GPU was not be included in the

5.4. GPU algorithm analysis 67

analysis because it is not be able to compete with the other algorithms. It is based on

Orca and, as the previous section show, it is heavily I/O bottlenecked.

0

1000

2000

3000

4000

Dataset Size

R
un

tim
e

(s
)

●

●

●

150M 200M 300M

●

Diskaware−GPU
DROIDg

(a) Runtime for 2MASS, k = 12, n = 15K

0

5000

10000

15000

Dataset Size

R
un

tim
e

(s
)

●

●

●

●

●

50M 200M 400M 678M

●

Diskaware−GPU
DROIDg

(b) Runtime for WISE, k = 80, n = 5K

Figure 5.5: GPU algorithms' scalability on dataset size

For the �rst set of tests (Figure 5.5), we evaluated the algorithm's scalability on

the dataset size. We ran the detection on the same samples of 2MASS and WISE used in

Section 5.3.2. Diskaware-GPU and DROIDg scale linearly with the dataset size and also

have similar detection times, with Diskaware-GPU being less than 20% faster. For the

dataset WISE (Figure 5.5b), the results were similar. Therefore, despite the changes

implemented in DROIDg being designed to improve performance under a poor initial

threshold scenario, they also work well when a good threshold is available.

0

500

1000

1500

2000

2500

3000

Number of outliers (n)

R
un

tim
e

(s
)

●●●

●

●

●

●

300 10000 30000

●

Diskaware−GPU
DROIDg

(a) Runtime for 150M 2MASS, k = 12

0

200

400

600

800

1000

1200

Number of outliers (n)

R
un

tim
e

(s
)

●●● ●

●

●

●

150 5000 10000 20000

●

Diskaware−GPU
DROIDg

(b) Runtime for 50M WISE, k = 80

Figure 5.6: GPU algorithms' scalability on the number of outliers to be detected

In the second set of tests (Figure 5.6) we evaluate the algorithms' scalability on

the number of outliers to be detected. We used the same dataset samples and n values

as in Section 5.3.1. The results are similar to the ones in the previous test: Diskaware

is less than 10% faster than DROIDg for all n values.

68 Chapter 5. Experimental Evaluation

Estimate %

900 95.4
1500 96.0
5000 96.3
10000 97.6
15000 97.8

Table 5.4: 150M 2MASS

Estimate %

500 99.2
1000 99.0
5000 98.7
10000 98.3
20000 98.4

Table 5.5: 50M WISE

Table 5.6: Quality of the Dk
M estimates used for each test run of the n variation test

of both datasets. The column on the right shows which % of Dk
∗ these estimates are.

Diskaware-GPU and DROIDg performed so similarly because the initial thresholds

used were close to their optimal value, as Table 5.6 shows. However, as discussed in

Section 3.5.2, it is not always possible to get estimates this good. For detections in large

scale datasets using small k, the samples required by Dolphin's estimation method are

too big. For instance, we had to use k > 62 in tests that included the WISE 678M

dataset in order for the estimation sample to �t in the GPU's memory. Therefore,

the next section will evaluate the algorithms in scenarios where Dolphin's estimation

method can not be used and, thus, the Dk
M quality is far inferior.

5.5 Poor initial Dk
M

When faced with a situation where the sample required for Dk
M estimation is too

large (small k and large N), the user has three alternatives. It could use Dolphin's

estimation method anyway but limit the sample size to the maximum that �ts the

GPU's memory. Alternatively, it could use a di�erent estimation approach which does

not have the same sample size and k limitation issues; but which will certainly o�er

worse quality estimates. Lastly, it could perform the detection using an initial Dk
M of

0, if the algorithm supports it. Next, we will analyze each one of these scenarios.

5.5.1 Alternative 1 - Using Dolphin estimation method with

limited sample size

Using a sample size smaller than η is not advised. It will produce an overestimate,

resulting in an outlier recall rate smaller than 1. Let M be the amount of memory

available to the GPU and consider that each point has d attributes of type float. The

5.5. Poor initial Dk
M 69

maximum sample size that can be used is given by:

ηmax =
M

4 · d (5.1)

When using a sample of size ηmax < η, the necessary ks to perform the estimation

is smaller than one. From the ks de�nition (Section 3.5.2):

ks = % · ηmax and % · η = 1

ks = % · ηmax < % · η
ks = % · ηmax < 1

ks < 1

(5.2)

Since it is impossible to use ks < 1, it has to be �xed at 1. Consequently, σS of

the points in the sample will not be decreased enough by the ks "correction method"

(Section 3.5.2). Considering p the top-ns anomaly in the sample, it will be very likely

that σS
p > Dk

∗ . By De�nition 9, less than n outliers will be detected.

To illustrate the outlier recall issue, we re-ran the dataset size variation test for

WISE, with k = 8 and using estimation samples of at most ηmax points. For the WISE

dataset, ηmax ≈ 9M. As Table 5.7 shows, for all datasets where η > ηmax both the

ks and, consequently, the recall are smaller than 1. Additionally, the recall is directly

proportional to ks. Such trend agrees with our analysis: the closer ks is to 0, the greater

the overestimation of Dk
M . Therefore, the approach of using the estimation method

with samples smaller than η is inadequate, since it is incapable of �nding the desired

percentage of outliers.

η ks ρ̄

50M 7M 1.3 1.00
100M 14M 0.7 0.77
200M 29M 0.3 0.48
400M 57M 0.2 0.23

Table 5.7: Recall of outliers for WISE N variation test with k = 8 and n = 5K. The
estimates used for detection were generated using ks = 1 and the maximum sample
possible: ηmax ≈ 9M . η gives the required sample size; ks is the value obtained by
using ηmax; ρ̄ is outlier recall rate.

70 Chapter 5. Experimental Evaluation

5.5.2 Alternative 2 - Using di�erent estimation methods

The preferred approach is to use a di�erent method for estimating Dk
M . Since,

Dolphin's method uses σS to increase the estimate as much as possible, it is certain

that any other method will produce worst estimates. Under this scenario, algorithms

that are robust to the quality of the initial Dk
M are more desirable. Therefore, in the

following experiments we analyze their robustness to this parameter.

0

2

4

6

8

10

12

Number of outliers (n)

S
pe

ed
up

●●● ●
●

●

●

300 10000 30000

●

DM
k = 90%

DM
k = 70%

DM
k = 50%

(a) 150M 2MASS

0

5

10

15

Number of outliers (n)

S
pe

ed
up

●●● ●
●

●

●

150 5000 10000 20000

●

DM
k = 90%

DM
k = 70%

DM
k = 50%

(b) 50M WISE

Figure 5.7: DROIDg speedup over Diskaware-GPU

We re-ran the scalability test for parameter n three times with progressively

worse thresholds. For each value of n, the initial threshold will be set to 90%, 70%

and 50% of Dk
∗ . Figure 5.7 shows that DROIDg is more robust to poor initial thresholds

than Diskaware-GPU. For Dk
M < 70% of the Dk

∗ , Diskaware-GPU's performance su�ers

considerably in both datasets. For instance, in the WISE dataset DROIDg was up to 12X

faster with Dk
M = 50% and n = 20K. Moreover, in the 2MASS dataset, it was up to 8X

faster for n = 15K. It should be noted however, that the trend in Figure 5.7a suggests

that DROIDg would be even faster for n = 30K. However, this could not be con�rmed

because Diskaware-GPU was not able to �nish the detection for such value of n. It

saved too many candidates in Q (more than 1.6M) and ran out of memory.

The fundamental reason for DROIDg's much faster detection times is that it per-

forms considerably less distance computations than Diskaware-GPU. For instance, in

the 2MASS dataset with Dk
M = 50% and n = 15K (Figure 5.8a), it performed 8.2X less

computation. Whereas for n = 20K in the WISE dataset DROIDg performed 12X less

computation. It is interesting to note the correlation between the distance computation

ratio and the speedup achieved by DROIDg.

In Section 5.6 we will perform a thorough analysis of both phases of DROIDg, to

assess how each improvement proposed and implemented contributes to the algorithm's

5.5. Poor initial Dk
M 71

Number of outliers (n)

D
is

t.
C

al
c.

 R
at

io

0

2

4

6

8

30
0

90
0

15
00

50
00

10
00

0

15
00

0

30
00

0

(a) 150M 2MASS, Dk
M = 50%

Number of outliers (n)

D
is

t.
C

al
c.

 R
at

io

0

2

4

6

8

10

12

15
0

30
0

50
0

10
00

50
00

10
00

0

20
00

0

(b) 50M WISE, Dk
M = 50%

Figure 5.8: Ratio between the number of distance-pairs computed by DROIDg and
Diskaware-GPU

robustness to poor initial thresholds.

5.5.3 Alternative 3 - Using no initial threshold

The third alternative is to start the detection withDk
M = 0 but, in this scenario, DROIDg

is the only algorithm the can perform the detection reasonably fast. Diskaware-GPU

is not capable of improving the Dk
M , thus it would use Dk

M = 0 throughout the whole

detection. Its second phase would be equivalent to a brute-force detection, since all

points would be considered outlier candidates. Additionally, its �rst phase would per-

form half as much computation as the second phase. In other words, Diskaware-GPU

would be too slow for any reasonably large dataset. Therefore, in this section will focus

in testing just DROIDg's performance.

S
pe

ed
up

0

1

2

3

4

150M 200M 300M

(a) 2MASS, k = 12, n = 15K

S
pe

ed
up

0

1

2

3

4

50M 100M 200M 400M 678M

(b) WISE, k = 80, n = 5K

Figure 5.9: Speedup achieved by using aDk
M produced by Dolphin's estimation method

versus starting the detection with a threshold of 0

72 Chapter 5. Experimental Evaluation

We re-ran the dataset size variation test for both 2MASS and WISE datasets, and

compared DROIDg's performance with and without an initial Dk
M value. Figure 5.9

shows that the performance decrease is relatively indi�erent to D size. For the 2MASS

dataset, DROIDg was about 3X slower when using no initial threshold, whereas the

slowdown was about 10X for WISE dataset. For WISE, the slowdown for the 50M was

considerably smaller than for the other ones, probably due to the small dataset size.

Despite the substantial performance penalty, the longest detection, WISE 400M, only

took 6.5 hours. For comparison, Dolphin, despite using an estimate close to its optimal

value, was not able to �nd n = 5K outliers in the 50M dataset within the 72 hours

time limit. This experiment shows that DROIDg can o�er excellent performance even

without any initial threshold.

5.5.4 Summary: robustness towards Dk
M quality

As Section 3.5.2 shows, there is a sizable range of detection parameters for which

Dolphin's estimation method can not be used. The larger the dataset to be processed,

the larger kmin is and, eventually, it would be completely outside of the range of

most commonly used k values. This is a real issue for our usage context, because

we speci�cally deal with large scale datasets. There are two viable alternatives to

increasing k, but both require the detection algorithms to use initial Dk
M values much

worse than those provided by Dolphin's method. Hence, there is a real need for

algorithms that can o�er good performance regardless of the quality of the initial Dk
M

used, such as DROIDg. As the experiments in this section showed, under this common

scenario, DROIDg was up to 12X faster than Diskaware-GPU. Furthermore, it was even

able to perform the detection reasonably fast while starting with Dk
M = 0.

5.6 Analysis of DROIDg's performance

In this section we will perform a more in-depth analysis of DROIDg's performance when a

bad initial Dk
M is used. The goal is to assess the impact of each individual improvement

implemented in the algorithm and how they contribute to DROIDg's robustness to poor

initial thresholds. The analysis will be made using the data from the n variation test

for the WISE 50M sample, with Dk
M = 50%, whose results were shown in Figures 5.7

and 5.8.

5.6. Analysis of DROIDg's performance 73

Avg. Cand. Save Avg. Cand. Pruning Q∆

DROIDg- Initial 933 337 596
DROIDg- After Trav. 1 561 407 154
DROIDg- After Trav. 2 350 320 30

Diskaware-GPU 2751 2645 106

Table 5.8: Average number of candidates saved and pruned per TPB for DROIDg and
Diskaware-GPU algorithms. For DROIDg, the averages are shown for each Dk

M value
used during the detection. The last column shows the average increase in Q per TPB.

5.6.1 DROIDg- Phase 1

The two improvements made to DROIDg's �rst phase were: (i) new knn search that

scales better with |Q| and (ii) Dk
M improvement. We will analyze their impact individ-

ually.

0 2000 6000 10000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

TPB id

T
P

B
 R

un
tim

e(
s)

MyAlg
Diskaware−GPU

(a) Growth of the outlier candidate bu�er Q
during detection. 50M WISE, Dk

M = 50%

0 2000 6000 10000

TPB id

1e+03

5e+05

1e+06

1e+06

2e+06

|Q
|

MyAlg
Diskaware−GPU

(b) Growth of the outlier candidate bu�er Q
during detection. 50M WISE, Dk

M = 50%

Figure 5.10: Ratio between the number of distance-pairs computed by DROIDg and
Diskaware-GPU

Figure 5.10a shows how the cost of processing TPBs evolves during the detec-

tion, as Q increases. We can clearly see a substantial increase in processing time for

Diskaware-GPU, 92X, whereas DROIDg's TPB's processing time increases mildly, 2.5X.

This massive improvement is due to DROIDg's knn search limiting the amount of outlier

candidates used as neighbor candidates per search. However, this optimization has two

side-e�ects: (i) more test instances saved as candidates per TPB; and (ii) less candi-

dates pruned per TPB processed. The �rst issue is addressed by DROIDg's knn search

second stage. But the second issue is so severe that Q grows rapidly and becomes full

during the detection. Table 5.8 shows that, before any traversals, DROIDg saved on

average 933 new candidates per TPB, whereas Diskaware-GPU saved 2751 new candi-

74 Chapter 5. Experimental Evaluation

Pts. Proc |Q| ∆|Q| Dk
M Dk

M ' t (s) tP (s)

Pass 1 40960 809681 370892 3.39 4.26 458 4576
Pass 2 16384 805736 423120 4.26 5.16 188 4870

Table 5.9: Summary of the traversals made by DROIDg during phase 1. Pts. Proc is
the number of candidates classi�ed in the traversal; |Q| is the size of Q; ∆|Q| is the
number of points pruned using the new Dk

M ; Dk
M ' is the new value of the threshold,

after the traversal; t is the traversal duration; and tP is the projected duration of the
traversal if the points pruned were actually classi�ed.

dates. This 3X reduction is due to the ROCN optimization in the knn search second

stage. However, it was not enough to o�set the even higher decrease in the average

amount of candidates pruned per TPB: from 2645 for Diskaware-GPU, to only 337

for DROIDg. This lead to, on average, 600 new outlier candidates per TPB processed,

causing Q to become full twice during DROIDg's �rst phase, which is represented by the

spikes in Figure 5.10b.

Outlier candidate classi�cation method

To address the issue of Q becoming full, DROIDg uses the outlier candidate classi�cation

method (Section 4.6.2) to both: (i) free space in Q, to allow the detection to proceed

and (ii) improve the Dk
M , to improve the ANNS and slowdown Q's growth. Q became

full twice during the �rst phase, so two traversals were performed, leading to a 52%

increase in theDk
M (Table 5.9). As a result, the ANNS e�ciency increased dramatically,

reducing the average amount of candidates saved per TPB to 350 andQ's growth to just

30 points per TPB (Table 5.8). In other words, DROIDg's Q bu�er growth rate became

3X smaller than Diskaware-GPU's after the second traversal. The slower growth rate

of Q after each traversal can be seen in Figure 5.10b as the smaller line slopes after

each spike.

The outlier candidate classi�cation method was also able to, cost e�ectively, free

space in Q. The �rst traversal took 458 seconds to classify 40K candidates3. But, due

to the Dk
M improvement, an additional 370K candidates were pruned, thus halving the

number of points in Q (Table 5.9). If DROIDg were to classify all these 410K candidates,

it would have taken over 4500 seconds4. The second traversal performed even better.

3The traversal's purpose is to improve the Dk
M . So, the �rst traversal needs to process enough

candidates such that at the end, there are more than n candidates being considered outliers, so that
the Dk

M can be updated
4Assuming that the cost of classifying the pruned outlier candidates would be the same as the

cost of classi�cation of the 40K points

5.6. Analysis of DROIDg's performance 75

Pts. Proc |Q| ∆|Q| Dk
M Dk

M ' t (s) tP (s)

Pass 1 16384 611913 372636 5.16 6.19 189 7058
Pass 2 222893 222893 0 6.19 6.77 716 716

Table 5.10: Summary of the traversals made by DROIDg during phase 2

Pts. Proc |Q| ∆|Q| Dk
M Dk

M ' t (s) tP (s)

Pass 1 1305414 1305414 0 3.39 3.39 14134 14134

Table 5.11: Summary of the single traversal made by Diskaware-GPU's second phase

The algorithm took just 188 seconds to both improve the Dk
M over 20% and discard

more than 420K outlier candidates.

5.6.2 DROIDg- Phase 2

The outlier candidate pruning method is equally as important during the second phase,

for it allows the classi�cation of a large volume of outlier candidates to be done e�-

ciently. For instance, Table 5.10 shows that at the beginning of the second phase,

there were 600K outlier candidates saved. Regularly5 classifying all of them, even with

the improved Dk
M , would have taken almost 8K seconds6. But, by using the outlier

candidate pruning method we proposed, they were all classi�ed in less than 1K seconds

(Table 5.10). The classi�cation of these points was done in two dataset passes. In the

�rst, the algorithm classi�ed 16K candidates, improving the Dk
M by 20%. With the

higher threshold, it was able to prune 64% of the candidates in Q. In the second pass,

due to the higher Dk
M , the remaining 200K candidates were classi�ed rather quickly,

in just 716 seconds.

For sake of comparison, Table 5.11 summarizes Diskaware-GPU's second phase

for the same experiment. It took over 14K seconds to classify 1.3M outlier candidates

concurrently, using the original Dk
M . DROIDg on the other hand, when considering both

of its phases, classi�ed more than 1.46M candidates in just 1500 seconds; 9X faster

than Diskaware-GPU.

5One full knn search per candidate
6Sum of the projected times, column tP , in Table 5.10

Chapter 6

Conclusion

Outlier detection is an important data mining task, with a wide-range of practical

applications. There are several challenges associate with this task, but the main one is

its computational cost. A signi�cant amount of research was done on how to accelerate

the detection process, thus current state-of-the-art methods are able to perform it

in near-linear time on the average case. However, these improvements are still not

enough to allow large scale datasets to be processed in reasonable time. Therefore,

to �nally address the computational cost issue, the goal of this work was to develop

a new outlier detection algorithm for GPUs to accelerate the processing of terabyte-

scale, disk-resident, datasets. But, to allow the GPU to e�ciently process datasets in

disk, we had to overcome two challenges: (i) the extra latency of transferring data to

the GPU's memory; and (ii) the much more severe I/O bottleneck penalty incurred by

GPUs.

In this work we developed a set of algorithms, kernels and abstractions, designed

for out-of-core distance-based outlier detection, that allowed us to overcome the afore-

mentioned challenges. Among our contributions there is a new parallelization strategy

for anomaly detection algorithms; high-performance algorithms and GPU kernels for

essential operations required by distance-based methods; and a new I/O sub-system

that greatly reduces data transfers' overhead and their impact on the GPU's compu-

tation throughput. By leveraging all of these separate contributions, we were able to

develop a novel outlier detection algorithm for GPUs, with two key advantages over

the existing methods: (i) It is capable of processing disk-resident datasets; and (ii) It

is a robust algorithm, with good performance regardless of the quality of the initial

Dk
M used. It is based on Diskaware but it has two crucial improvements to achieve its

robust performance:

77

78 Chapter 6. Conclusion

1. The knn search cost was made independent of |Q|, without signi�cantly increas-
ing the amount of false positives among the candidates saved. This prevents the

algorithm's performance from degrading when Q becomes large, e.g., when Dk
M

is too low, a major issue for Diskaware.

2. An e�ective method to both improve theDk
M and prune saved candidates. It relies

on our novel ROCO heuristic that identi�es and prioritizes the classi�cation of

candidates likely to have large anomaly scores. As a result, it improves the Dk
M

much quicker, decreases the growth of Q and massively reduces the amount of

work performed during the detection.

To better analyze the performance of both CPU and GPU algorithms, we divided

the experimental analysis into two main parts. First, we compared the performance of

DROIDg against three state-of-the-art outlier detection algorithms for CPUs and also

against its sequential counterpart DROIDc. The goal was to assess by how much the

use of GPUs could accelerate the outlier detection in large scale datasets. Our analysis

used three scalability experiments, one for each of the main parameters of the outlier

detection problem: dataset size (N), number of outliers to be detected (n) and number

of neighbors to be considered (k). The main results of these experiments were:

• We showed that DROIDg was between one and two orders of magnitude faster

than the best sequential algorithm tested, Dolphin. These results were achieved

despite the experiment conditions representing the best case scenario for CPU

algorithms: relatively small N and n values were used; and, more importantly,

the initial Dk
M were above 90% of their optimal value.

• The experiments also showed that DROIDg had far superior scalability for both

N and n parameters, specially when processing the, high dimensionality, WISE

samples. This indicates that if larger datasets were used and/or more of the

top-n outliers were requested, the performance advantage provided by the GPU

would be even larger. Therefore, we concluded that GPUs allow GPUs the outlier

detection to be performed at scales far beyond of what current state-of-the-art

algorithms for CPUs are capable of.

• We showed that the optimization methods employed in DROIDg were speci�cally

chosen for GPU execution and actually degrade performance when used on se-

quential algorithms, such as DROIDc

• We also showed that using GPUs is also considerably more cost-e�ective. As-

suming Dolphin can achieve perfect scaling, it would cost at least 7X the price

6.1. Future Work 79

of the GPU used in the experiments, to buy enough processors to achieve the

number of CPU threads needed to beat DROIDg's best results.

The second part of the experiments we compared two GPU algorithms, DROIDg

and Diskaware-GPU, both implemented using our proposed framework. The goal was

to determine how their performance was a�ected by the quality of the initial threshold

used. The main results were:

• DROIDg showed similar performance to Diskaware-GPU when using initial thresh-

olds close to their optimal value, despite not being optimized for such scenario.

It was at most 20% slower than Diskaware-GPU for the N scalability test and

less than 10% slower in the n scalability test.

• We showed that the range of outlier detection con�gurations for which Dolphin's

estimation method can not be used, is not uncommon. Therefore, we concluded

that there is a real need for algorithms capable of o�ering good performance,

despite bad initial Dk
M values.

• When testing the algorithms' performance with bad thresholds, we used progres-

sively worse Dk
M : 90%, 70% and 50% of their optimal value. DROIDg was up

to 12X faster than Diskaware-GPU. We showed that this superior performance

was due to two factors: (i) knn search cost independent of the amount of candi-

dates saved; and (ii) ability to improve the Dk
M during the detection with a few

extra dataset passes, thereby massively decreasing the amount of computation

performed.

6.1 Future Work

We believe there are at least three research ideas that extend this work and are worth

pursuing. They are:

1. Choose a di�erent algorithm for selecting the k smallest distances. Since this

research stated and we chose the TBiS, at least two papers (Komarov et al.

[2014]; Tang et al. [2015]) have been published proposing new and, possibly,

more e�cient algorithms for this task. Since, the sorting was the bottleneck for

DROIDg in all the experiments, choosing a better algorithm and/or optimizing the

k-Selection kernel could yield substantial performance improvements.

2. Despite the GPU's massive computation throughput, DROIDg was substantially

faster when using a good initial Dk
M . Therefore, we believe it is worth while to

80 Chapter 6. Conclusion

develop and estimation method that does not have the same sample size limita-

tions that Dolphin's estimation method has. This would allow even analysis in

massive datasets with common k values, i.e., small, to be accelerated by a good

initial threshold.

3. Given that a close to optimal Dk
M is available, the best optimization strategy

to further improve the ANNS' pruning e�ciency is to increase the convergence

of Dk
p . This can be achieved by accelerating the knn search through indexing

structures, akin to the one used by Dolphin. We feel this is the most interesting

extension of our work, because it not only would yield a signi�cant performance

improvements, but also because indexed knn searches on GPUs have never been

done before.

Bibliography

Aggarwal, C. C. and Yu, P. S. (2001). Outlier detection for high dimensional data. In

ACM Sigmod Record, volume 30, pages 37--46. ACM.

Alshawabkeh, M., Jang, B., and Kaeli, D. (2010). Accelerating the local outlier fac-

tor algorithm on a gpu for intrusion detection systems. In Proceedings of the 3rd

Workshop on General-Purpose Computation on Graphics Processing Units, pages

104--110. ACM.

Amazon (2017). Ryzen 1700 cpu. https://www.amazon.com/

AMD-YD1700BBAEBOX-Processor-Wraith-Cooler/dp/B06WP5YCX6/ref=sr_1_

1?s=pc&ie=UTF8&qid=1489081328&sr=1-1&keywords=1700. Accessed: 2017-03-09.

Angiulli, F., Basta, S., Lodi, S., and Sartori, C. (2016). Gpu strategies for distance-

based outlier detection. IEEE Transactions on Parallel and Distributed Systems,

27(11):3256�3268. ISSN 1045-9219.

Angiulli, F., Basta, S., and Pizzuti, C. (2006). Distance-based detection and prediction

of outliers. IEEE transactions on knowledge and data engineering, 18(2):145--160.

Angiulli, F. and Fassetti, F. (2009). Dolphin: An e�cient algorithm for mining

distance-based outliers in very large datasets. ACM Transactions on Knowledge

Discovery from Data (TKDD), 3(1):4.

Augusteijn, M. and Folkert, B. (2002). Neural network classi�cation and novelty de-

tection. International Journal of Remote Sensing, 23(14):2891--2902.

Bay, S. D. and Schwabacher, M. (2003). Mining distance-based outliers in near linear

time with randomization and a simple pruning rule. In Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

29--38. ACM.

81

82 Bibliography

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15.

Davy, M. and Godsill, S. (2002). Detection of abrupt spectral changes using support

vector machines. an application to audio signal segmentation. In ICASSP, volume 2,

pages 1313--1316.

Diaz, I. and Hollmén, J. (2002). Residual generation and visualization for understand-

ing novel process conditions. In Neural Networks, 2002. IJCNN'02. Proceedings of

the 2002 International Joint Conference on, volume 3, pages 2070--2075. IEEE.

Ertöz, L., Steinbach, M., and Kumar, V. (2003). Finding clusters of di�erent sizes,

shapes, and densities in noisy, high dimensional data. In SDM, pages 47--58. SIAM.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd, volume 96,

pages 226--231.

Garcia, V., Debreuve, E., and Barlaud, M. (2008). Fast k nearest neighbor search using

gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08.

IEEE Computer Society Conference on, pages 1--6. IEEE.

Ghoting, A., Parthasarathy, S., and Otey, M. E. (2008). Fast mining of distance-

based outliers in high-dimensional datasets. Data Mining and Knowledge Discovery,

16(3):349--364.

Gupta, M., Gao, J., Sun, Y., and Han, J. (2012). Integrating community matching

and outlier detection for mining evolutionary community outliers. In Proceedings

of the 18th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD '12, pages 859--867, New York, NY, USA. ACM.

He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local outliers. Pattern

Recognition Letters, 24(9):1641--1650.

Heller, K. A., Svore, K. M., Keromytis, A. D., and Stolfo, S. J. (2003). One class

support vector machines for detecting anomalous windows registry accesses. In Proc.

of the workshop on Data Mining for Computer Security, volume 9.

HewaNadungodage, C., Xia, Y., and Lee, J. J. (2016). Gpu-accelerated outlier detection

for continuous data streams. In Parallel and Distributed Processing Symposium, 2016

IEEE International, pages 1133--1142. IEEE.

Bibliography 83

Khronos Group (2017). The OpenCL Speci�cation, Version: 2.2.

Knorr, E. M. and Ng, R. T. (1999). Finding intensional knowledge of distance-based

outliers. In VLDB, volume 99, pages 211--222.

Komarov, I., Dashti, A., and D'Souza, R. M. (2014). Fast k-nng construction with

gpu-based quick multi-select.

Kruegel, C. and Vigna, G. (2003). Anomaly detection of web-based attacks. In Pro-

ceedings of the 10th ACM conference on Computer and communications security,

pages 251--261. ACM.

Mainzer, A., Bauer, J., Grav, T., Masiero, J., Cutri, R., Dailey, J., Eisenhardt, P.,

McMillan, R., Wright, E., Walker, R., et al. (2011). Preliminary results from neowise:

An enhancement to the wide-�eld infrared survey explorer for solar system science.

The Astrophysical Journal, 731(1):53.

Manevitz, L. M. and Yousef, M. (2001). One-class svms for document classi�cation.

Journal of Machine Learning Research, 2(Dec):139--154.

NVidia (2008). Chapter 39. parallel pre�x sum (scan) with cuda. http://http.

developer.nvidia.com/GPUGems3/gpugems3_ch39.html. Accessed: 2017-03-07.

Orair, G. H., Teixeira, C. H., Meira Jr, W., Wang, Y., and Parthasarathy, S. (2010).

Distance-based outlier detection: consolidation and renewed bearing. Proceedings of

the VLDB Endowment, 3(1-2):1469--1480.

Oster, B. (2008). Advanced cuda, optimizing to get 20x performance.

https://www.nvidia.com/content/cudazone/download/Advanced_CUDA_

Training_NVISION08.pdf. Accessed: 2017-03-07.

Pires, A. and Santos-Pereira, C. (2005). Using clustering and robust estimators to

detect outliers in multivariate data. In Proceedings of the international conference

on robust statistics.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). E�cient algorithms for mining

outliers from large data sets. In ACM SIGMOD Record, volume 29, pages 427--438.

ACM.

Roth, V. (2004). Outlier detection with one-class kernel �sher discriminants. In Ad-

vances in Neural Information Processing Systems, pages 1169--1176.

84 Bibliography

Seagate (2011). Seagate barracuda hard drive data sheet. https://www.seagate.com/

staticfiles/docs/pdf/datasheet/disc/barracuda-ds1737-1-1111us.pdf.

Shekhar, S., Lu, C.-T., and Zhang, P. (2001). Detecting graph-based spatial outliers:

algorithms and applications (a summary of results). In Proceedings of the seventh

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 371--376. ACM.

Skrutskie, M., Cutri, R., Stiening, R., Weinberg, M., Schneider, S., Carpenter, J.,

Beichman, C., Capps, R., Chester, T., Elias, J., et al. (2006). The two micron all

sky survey (2mass). The Astronomical Journal, 131(2):1163.

Tang, X., Huang, Z., Eyers, D., Mills, S., and Guo, M. (2015). E�cient selection algo-

rithm for fast k-nn search on gpus. In Parallel and Distributed Processing Symposium

(IPDPS), 2015 IEEE International, pages 397--406. IEEE.

Worden, K., Manson, G., and Fieller, N. (2000). Damage detection using outlier

analysis. Journal of Sound and Vibration, 229(3):647--667.

Yamanishi, K., Takeuchi, J.-i., Williams, G., and Milne, P. (2004). On-line unsuper-

vised outlier detection using �nite mixtures with discounting learning algorithms.

Data Mining and Knowledge Discovery, 8(3):275--300. ISSN 1573-756X.

Yankov, D., Keogh, E., and Rebbapragada, U. (2007). Disk aware discord discovery:

Finding unusual time series in terabyte sized datasets. In Data Mining, 2007. ICDM

2007. Seventh IEEE International Conference on, pages 381�390. ISSN 1550-4786.

Yankov, D., Keogh, E., and Rebbapragada, U. (2008). Disk aware discord discovery:

�nding unusual time series in terabyte sized datasets. Knowledge and Information

Systems, 17(2):241--262.

Appendix A

Implementation Details

In this appendix we will getting into much greater detail on the GPU-centric design

decisions and algorithms discussed in Chapter 4 and showing how we implemented

them using OpenCL. First, we present the data layout we used in the dataset and

in the GPU memory and discuss why. Second, we show how to implement e�cient

distance computation using clBLAS to perform matrix multiplication and custom ker-

nels to perform the rest of the necessary steps. Third, we discuss how we e�ciently

implemented k-selection part of the knn search on the GPU by using sorting network

to perform a partial sort rather than a full sort of the distance matrix rows. Fourth,

we show how the pruning can be implemented to minimize thread divergence by using

a primitive called stream compaction.

A.1 Point storage layout

Matrices can be stored in two di�erent ways in memory: Row-major and Column-

major. They di�er on which dimension is stored in adjacent memory positions. While

column-major matrices store their columns continuously in memory, row-major matri-

ces store their rows in adjacent positions. In this work, all matrices and point batches

will be row-major.

Now consider a set A of b points with d attributes. These points can also be

stored in one of two ways in a matrix. Using a row-wise storage layout, each row of the

matrix would contain a point. So, to store A, it would required a matrix with b rows

and d columns. On the other hand, in a column-wise layout every point is stored in one

column. A matrix that stores A would have d rows and b columns. Each layout has

its advantages and the choice between them depends on the application requirements,

85

86 Appendix A. Implementation Details

e.g. access pattern and hardware-related memory constraints. Next we explain which

storage layout is used for di�erent parts of the application.

Dataset storage layout The dataset is stored in disk using a row-wise layout. This

choice is guided by the application's access pattern and by the fact that dataset must

remain disk-resident throught the exection. Our application reads sequential bacthes of

points from the dataset and a row-major layout translates these accesses into sequen-

tial reads from the disk. This is extremelly important to maximize the applicaion's

performance, since the dataset is never loaded entirely into memory and sequential disk

accesses provide the best read throughput.

Storage layout in point batches Because points are stored row-wise in the dataset,

they are initially read into memory with the same layout. But, internally, the points

are not necessarily used nor stored row-wise. While TPBs store points row-wise, NCBs

store them column-wise. The di�erent choice in layouts is determined by how frequent

they need to be created and how they are used in distance computations. But, the

storage of these batches also dictates how points are stored internally. Since a new

NCB needs to be created for every knn iteration, it is more e�ecient to store chunks of

the dataset internally column-wise. Once a chunk of points is read from disk, the whole

chunk is transposed once, which is more e�cient than multiple small transpositions.

To create a new NCB, the application simply needs to copy the desired points to a new

bu�er. To create a new TPB, it needs to transpose the requested points and then copy

them. Since TPBs are not created as frequently, the penalty of tranposing the points

is signi�canly less.

A.2 Distance computation

The algorithm used for computing the distance pairs is based on the work developed by

Garcia et al. [2008]. The authors showed that given two batch of points B andNCB, all

the distance pairs could be computed using matrix operations in the following manner:

∆ = NB +NNCB − 2 ·BT ·NCB (A.1)

Considering that B and NCB have b and c points, respectively, NB and NNCB are both

b×c matrices containing the norms from the points in B and NCB respectively. In NB,

all elements in row i contain the norm of the i-th point in B. Similarly, all elements

A.2. Distance computation 87

in column j of NNCB contain the norm of the j-th point in NCB. The arrangement of

these norm matrices mimicks the storage layout of the associated point batches.

As the authors show in their work, there are a few advantages to computing

distances on GPUs using matrix operations. First, the problem in matricial form

exposes more parallelism to the GPU, allowing better utilization of the hardware. In

Garcia et al. [2008], this resulted in up to 4X performance improvement over competing

methods. Second, a matricial problem formulation allows the use of highly optimized

linear algebra libraries, such as clBLAS or CUBLAS for CUDA. These libraries have

low-level, hardware-dependent, optimizations to maximize computation throughput.

A.2.1 Implementation

A.2.1.1 Matrix multiplication

To perform the matrix multiplication to compute −2 · BT · NCB we leverage the

clBLAS library. We use the clblasSgemm function, passing B and NCB as the matrices

containing the points and specify their memory storage as row-major. Note that though

B appears transposed in Equation (A.1), it is already transposed because its points are

stored row-wise. Therefore, clBLAS should not transpose eiher of the input matrices

and the the actual multiplication performed is −2 ·B ·NCB.

A.2.1.2 Norm computation

The norm computation kernel implemented (Algorithm 14) receives as input a column-

wise batch of points and outputs a vector (vNorm) with the points' norm. It uses a 1-d

index space and each work-item is responsible for computing one norm. Each work-

item will iterate d times in a for-loop (Line 5) to load its assigned point's attributes,

square them, and acumulate the sum. Once the norm is computed, each work-item

writes its norm to the output vector in global memory (Line 9).

The choice of a column-wise storage layout allows the implementation of simple

kernel, that at the same time:

• Maximizes memory bandwidth utilization through coalesced global memory loads

and memory writes. During the i-th iteration, the work-items will access adjacent

memory positions to load the i-th row of the input batch matrix.

• Increases the level of parallelism, since there are as many work-items as points

and the amount of points in a batch is usually larger than d. While it would also

be possible to achieve a good amount of parallelism using a row-wise layout, the

kernel would have to considerably more complex.

88 Appendix A. Implementation Details

Algorithm 14: Kernel for computing the norm of points

1 Function ComputeNorm (B, ptNum, d)

2 gid ← get_global_id(0)
3 ptId ← gid
4 sum ← 0

5 for i = 0 to d do
6 attr ← pts [ptId · ptNum + i]
7 sum + = attr · attr
8 end

9 vNorm[gid] ← sum

The bandwidth optimization is specially important because this kernel is memory-

bound. It only performs 1 �op1 per global memory access, which is an extremelly low

ratio for modern GPUs.

A.2.1.3 Norm Addition

The norm matrices NB and NNCB are mostly comprised of redundant elements and, as

a result, waste too much memory. Considering TPBs and NCBs of size 4096 and 8192,

these matrices would require 128MB each. This is a problem when there are multiple

TPBs being processed concurrently, as it is the case with DROIDg. A better approach

is to represent them as vectors and use special kernels to appropriately add the norms

to matrix −2 ·B ·NCB.
From now on, we will considerNB andNNCB as vectors of size b and c respectively.

The addition of each vector is done di�erently. NNCB needs to be added to each row of

matrix −2 ·B ·NCB, whereas NB needs to be added to each column. However, adding

these vectors with dedicated kernels is inne�cient due to the low arithmetic intensity :

only one �op per 3 global memory accesses. Consequently, the performance of the

additions would be memory-bound. Instead DROIDg performs the additions together

with other important operations. NNCB is added by the sorting kernel, just before the

sorting happens, since both operate on a row basis. Even though the actual distances

were not computed yet (NB has not being added), NNCB − 2 · B · NCB already has

the same ordering as the actual distance matrix. NB, on the other hand, is added to

the sorted matrix by the kernel that computes the anomaly score. The fact that each

matrix row is sorted is irrelevant, since all elements in a given row will be added the

same norm.

1Floating-point operation

A.3. Sorting 89

A.3 Sorting

Once the distance matrix2 is computed, the next step in the knn iteration is to: (i)

�nd the distance between the test points in B and their k closest neighbors; (ii) place

these distances, sorted, at the beginning of each row of ∆. The naive solution is to sort

every row of the matrix in ascending order, but this is inne�cient. Firstly, we are only

interested in the k smallest values and sorting the whole row just wastes computation

cycles. Secondly, the working set of the sorting kernel would be the whole row, too big

to �t in shared memory. Consequently, for a signi�cant portion of the kernel's execution

the data would reside in global memory, thus reducing the kernel's arithmetic intensity

and performance.

Our solution uses the Truncated Bitonic Sort (TBiS) algorithm to perform partial

sorts in each row of ∆. This approach has some advantages. First, TBiS is based on

the Bitonic Sort algorithm. Therefore, it is extremelly parallel and is able to use up

to n/2 work-items to sort n elements. Additionally, each of its comparison and swap

operations are data independent, thus they can be executed in parallel without causing

branch divergence on the GPU. Second, TBiS uses truncation during the merge step of

the Bitonic Sort to discard unnecessary parts of the partial solution. This has two

bene�ts: (i) reduce the complexity of the algorithm, since it does not sort the whole

input; (ii) keep the algorithm's working set small enough to allow the extensive use of

the shared memory; it improves performance considerably by eliminating stalls caused

by global memory accesses and increasing the PEs utilization.

The explanation of how TBiS is employed in our algorithm is divided into three

parts. Fist, we explain how the Bitonic Sort algorithm works. Then, we explain

TBiS iself. Finally, we discuss how TBiS' kernel was implemented.

A.3.1 Bitonic Sort

Before explaining the algorithm, we need to explain what Bitonic sequences and k-

Bitonic Networks are. Bitonic sequences are sequences of numbers where each half

is sorted in opposing directions, e.g. (1, 3, 10, 0). Additionally, by de�nition, every

pair of numbers is a bitonic sequence. k-Bitonic Networks are sorting networks that

are only able to sort bitonic sequences. They receive a bitonic input of length k and

output a sorted sequence of the same length.

To sort an n element input, the Bitonic Sort algorithm needs to �rst convert the

input into a set of bitonic sequences of length 2. This can be done by simply viewing the

2As we saw before, the actual distances are not computed until the very end of the knn iteration.
However, we will refer to ∆ = −2 ·B ·NCB as the distance matrix from here onwards

90 Appendix A. Implementation Details

input as separate 2 element sequences, which by de�nition are bitonic. Then, through

log2 n stages, it uses k-Bitonic Networks to build larger bitonic sequences, until the

entire input is sorted.

At stage 0, the input is comprised of n/2 bitonic sequences and each sequence is

sorted by a 2-Bitonic Network. Adjacent networks will sort their inputs in opposing

directions and the stage's output will be n/2 sorted sequences of length 2. Alternatively,

one can view pairs of adjacent sequences together (opposing directions) and interpret

the stage's output as n/4 bitonic sequences of length 4. In stage 1, n/4 4-bitonic

networks will be used, each receiving as input (and sorting) one of the bitonic sequences

from the previous stage. As a result, this stage's output will be bitonic sequences of

length 8, which are going to serve as inputs for the next stage. The last stage will be

stage i = log2 (n)− 1. It will receive one bitonic sequence of length n = 2i+1 and will

convert it into a sorted sequence, using just one n-bitonic network. The algorithm's

time complexity is: O(n log2 n).

A.3.2 TBiS

TBiS has two phases. In the �rst, the algorithm splits input I into n/k segments of

length k and uses Bitonic Sort to sort each segment independently and in parallel.

Since the sorting is independent, the working set is just the segment being sorted,

thus it has size k and is small enough to �t in shared memory. In the second phase

(the "conquer phase"), the sorted k-element segments are merged pair-wise, using one

2k-Bitonic network per segment pair. This is possible because adjacent segments are

sorted in opposing directions and together they form a bitonic sequence. Therefore,

the 2k-Bitonic network will sort the segment pair, which is equivalent to merging them.

After each merge, the resulting merged segment is truncated and only the k smallest

elements are kept. Depending on the sorting order, these could be either the �rst or

last k elements.

The truncation is essential for TBiS' performance. Without it, the size of the

merged sequences would increase exponentially, doubling after each merge step. Con-

sequently, the working set (merged sequences) size would rapidly become too large and

the algorithm would have to resort to global memory. However, by using truncation

after each merge, TBiS ensures that the working set size does not grow beyond 2k

elements, allowing it to use shared memory during its entire execution.

The algorithm's time complexity can be derived as follows. The bitonic sort

algorithm is used to sort each of segments, with a total complexity of O(n log2 k).

A.3. Sorting 91

Figure A.1: TBiS splits the input into segments of length k = 2 and sorts them with
Bitonic Sort. They are merged pair-wise and, after each merge, truncation is applied:
the half with the largest elements is discarded.

Moreover, n
k
− 1 merges 3 are performed during the merge phase, each using one 2k-

bitonic network, with a total complexity of O(n log k). Therefore, the total complexity

of the TBiS algorithm is O(n log2 k).

A.3.3 Implementation

The modi�ed TBiS kernel (Algorithm 15) uses a 1-d index space. Work-groups have a

�xed size of 1024 and one work-group is assigned to each row of the matrix.

The kernel receives as input three parameters: (i) the distance matrix ∆; (ii)

NNCB, containing the norm of the neighbor candidates used in the iteration; (iii) the

amount of smallest elements to be selected from each row (k). The work-items start

by loading the NCB norm (Line 6) that needs to be added to the elements of their

assigned row (rowId). Then, each work-group will collectively load 2048 elements from

their row into lbu� (Line 7), a bu�er located in shared memory. Next, the work-groups

will sort segments of 2 · k elements, such that adjacent segments are sorted in inverse

order (Line 9). Each sorted segment is truncated. The smallest k elements of each

segment are written in the �rst half of lbu� and its second half is considered empty.

The next part of the kernel will process the elements from column 2048 ownwards.

In each iteration of the for-loop (Line 11), 1024 elements are read from global memory,

added to the row's speci�c NCB norm and written into the "empty" half of lbu�.

3The merge tree has log2
n
k levels and level i has 2i merges. So, the total number of merges is

∑log2 (n
k)−1

i=0 2i = n
k − 1

92 Appendix A. Implementation Details

Algorithm 15: TBiS

1 Function TBiSMat (∆, NNCB, k)

2 lid ← get_local_id(0)
3 locs ← get_local_size(0)
4 rowId ← get_group_id(0)
5 nextElem ← lid

// Norm to be added to elements of this row

6 norm ← NNCB [rowId]

// Each work-item loads two distances into shared memory

7 lbu� [lid] ← ∆ [rowId · width + nextElem] + norm
8 lbu� [lid + locs] = ← ∆ [rowId · width + nextElem + locs] + norm

// Sort segments of 2 · k elements

9 BitonicSort (lbu�, 0, 2 · k)
10 Truncate (lbu�, k)

11 for (; nextElem < width; nextElem += locs) do
12 lbu� [locs + lid] ← ∆ [rowId · width + nextElem] + norm

13 BitonicSort (lbu�, locs, k)
14 BitonicMerge (lbu�, 0, 2 · k)
15 Truncate (lbu�, k)

16 end

17 for (segNum ← locs; segNum > 1; segNum �=1) do
18 BitonicMerge (lbu�, 2 · k)
19 Truncate (lbu�, k)

20 end

21 if lid < k then
22 ∆ [rowId · width + lid] ← lbu� [lid]
23 end

Then, the newly loaded elements are sorted in segments of length k and all the bitonic

sequences in lbu� are merged and truncated. This process is repeated until there are

no more elements to be read.

The last part of the kernel performs the �nal selection of the k smallest elements

of the row (Line 17). At this moment, lbu� has 1024/2 · k bitonic sequences in its

�rst half. With every iteration of the for-loop, the bitonic sequences are sorted and

then truncated, until only the k smallest elements remain. Finally, these distances are

written back to ∆ in global memory.

A.4 Pruning

At the end of a knn iteration, the anomaly score upper-bound of all test points in B

have been updated and the DROIDg needs to apply the pruning operation. The pruning

A.4. Pruning 93

needs to remove from B all the points proved to be inliers, i.e. whose score has fallen

bellow Dk
M .

To implement the pruning we used an important primitive called stream com-

paction (NVidia [2008]). It allows �ltering a heterogeneous bu�er to produce a homo-

geneous one, containing just the desired elements. In our case these elements would be

the ones not pruned. This primitive has three steps:

• Map: Maps which elements should be kept and which should be discarded. It

generates a binary bu�er A, such that A[i] = 1 indicates that the i-th input

element was selected.

• Scan: Computes the output index of the selected elements. It generates a bu�er

I contaning the result of an exclusive scan on A. If the i-th element was selected,

then I[i] is its output index.

• Scatter: Uses A and I to scatters the selected input elements into their respective

positions in the output bu�er

For the pruning to be implemented properly, each bu�er associated to the test

points needs to be scattered. So, in a general way, our pruning algorithm works in the

following manner. First, it performs the map and scan steps of the stream compaction.

Second, it performs the scatter step once for every associated data: point attributes,

ids, norm, score and pKnn.

A.4.1 Map

Map is the simplest of the three steps. It receives as input the bu�er S containing the

anomaly score of the test points and the Dk
M and applies the following predicate:

A[i] =





1, If S[i] < Dk
M

0, otherwise
(A.2)

The kernel will be launched using a 1-d index space with |S| work-items, such

that each work-item is responsible to apply Equation (A.2) to their respective score.

A.4.2 Scan

Once A is computed, the pruning algorithm computes the output index of the selected

elements using an exclusive scan operation. Because the scan operation is memory

intensive, to implement it reasonably e�ciently on the GPU, the kernel(s) should use

94 Appendix A. Implementation Details

Algorithm 16: Mapping inliers and non-inliers

1 Function PruningMap (S, Dk
M , A)

2 gid ← get_global_id(0)

3 res = (S[gid] < Dk
M) ? 0 : 1

4 A[gid] = res

as much of shared memory as possible. Therefore, our scan implementation is divided

into three parts:

• Local Scan Performs the scan on segments of A using exclusively the shared

memory. Each work-group loads two elements from A per work-item. Then an

implementation of the Blelloch (ref) algorithm is used to perform the scan on

shared memory. At the end, two outputs are generated. The results of the local

scan are written to I. Additionally, work-group i writes to T [i] the last element

of the exclusive scan it performed.

• Top-level Scan: Performs an exclusive scan of T , using one work-group.

• Uniform Update: Obtains the �nal scan result of A. Add T [i] to all the

elements in the local scan result of work-group i. The, output is written to I.

It should be noted that this imposes a maximum size on the input bu�er A

of: 2 · l2, where l is the work-group size. Considering the maximum size possible on

current GPUs, 1024, the maximum size of A is over 2M elements. This upper-limit can

be raised in two way. Top-level Scan and Uniform Update can be repeated recursively,

or Top-level Scan can be made to use multiple work-groups and perform the scan on

global memory. However, for the purpose of this work, the 2M elements size limit is

enough.

A.4.2.1 The Blelloch algorithm

The Blelloch algorithm was chosen because of its great parallel e�ciency. It has two

phases: Reduction and Downsweep. The reduction phase performs a staggared parallel

reduction of A with the sum operation, in log2 |A| steps. At step i, only |A|/2i+1 work-

items are used and each work-item uses two operands with an o�set ∆ = 2i positions.

The operand indexes can be computed as follows:

lId = ∆ · (2 · lid+ 1)− 1 (A.3)

rId = ∆ · (2 · lid+ 2)− 1 (A.4)

A.4. Pruning 95

Algorithm 17: The Reduction function of the Blelloch algorithm

1 Function Reduction (A, n, lbu�)

2 gid ← get_global_id(0)
3 lid ← get_local_id(0)

4 lbu� [2· lid] = A[2· gid]
5 lbu� [2· lid + 1] = A[2· gid + 1]
6 lval = lbu� [2· lid]
7 m ← n/2
8 for ∆ = 1; ∆ < n; ∆ <<= 1 do

9 rId ← ∆ · (2 · lid+ 2)− 1
10 if lid < m then

11 res ← lVal + lbu� [rId]
12 lbu� [rId] = res

13 end

14 lVal = res
15 barrier()

// Halve the # of active work-items

16 m >>= 1

17 end

The second phase, Down-sweep, is a mirror image of the Reduction, thus the

number of steps is the same and the operand indexes can also be computed using

Equation (A.4). There are two di�erences, however: (i) for step i, the o�set is

∆ = |A|/2i+1; (ii) the phase uses the sweep operator instead of the sum. This operator

takes two inputs and produces two outputs. The left output is a copy of the right

operand and should be written to the left operands position. The right output is the

sum of the inputs and should be written to the right output's position.

A.4.2.2 The scan algorithm

To scan A, the three kernels shown in Algorithm 19 need to be called. ScanLocal is

called using a 1-d index space, with |A|
2
work-items. We pass as input �ve parameters:

1. A: the binary map to be scanned. It is located in global memory

2. I: global memory bu�er to store the result of the local scan. It must have the

same size as A

3. T : global memory bu�er to store the last element of each local scan result. Its

length should be equal to the number of work-groups used.

4. n: number of elements to be scanned

96 Appendix A. Implementation Details

Algorithm 18: The Down-Sweep function of the Blelloch algorithm

1 Function Downsweep (I, n, lbu�)
2 gid ← get_global_id(0)
3 lid ← get_local_id(0)

4 if lid == 0 then
5 lbu� [2· get_local_size(0) - 1] = 0
6 end

7 lVal ← lbu� [n/2 - 1]
8 for ∆ = n/2; ∆ >= 1; ∆ >>= 1 do

9 lId ← ∆ · (2 · lid+ 1)− 1
10 rId ← ∆ · (2 · lid+ 2)− 1

11 if lid < ∆ then

12 rVal ← lbu� [rId]
13 res ← lVal + rVal
14 lbu� [lId] ← rVal
15 lbu� [rId] ← res

16 end

17 lVal = rVal
18 barrier()

19 end

// Write local scan result to I
20 I[2· gid] ← lbu� [2· lid]
21 I[2· gid + 1] ← lbu� [2· lid + 1]

5. lbu�: where the scan will be done. It resides in shared memory and has a size

equal to twice the size of the work-groups used.

The other two kernels have roughly the same list of parameters and are also called

using a 1-d index space. TopLevelScan is run using just one work-group with as many

work-items as work-groups that were used to run ScanLocal. Finally, UniformUpdate

is called with |A| work-items.

A.4.3 Scatter

The scatter primitive is very simple. It uses a binary map (A) and its exclusive scan

(I) to place the desired elements (E) at the beginning of the output bu�er (O) and

the undesired ones at the back. However, for our application, the undesired elements,

i.e. pruned, are of no interest and thus are ignored.

For our use case, there needs to be two scatter implementations: (i) 1d scatter

for the bu�ers storing the ids, norms and point scores; (ii) 2d scatter for the matrices

pKnn and the points themselves. The 1d scatter is fairly simple. It is launched using a

1d index space, with |A| work-items. If A[i] == 1, then work-item i copies the input

element E[i] to its output position O[I[i]]. The 2d scatter works similarly but it also

A.4. Pruning 97

Algorithm 19: The three kernels for performing the scan operation

1 Kernel ScanLocal (A, I, T , n, lbu�)
2 Reduction (A, n, lbu�)
3 Downsweep (I, n, lbu�)

// Write the result of each work-group local scan

4 wgId ← get_group_id(0)
5 wgSize ← get_local_size(0)
6 T [wgId] ← lbu� [2· wgSize · (wgId + 1) - 1]

7 Kernel TopLevelScan (A, I, T , n, lbu�)
8 Reduction (T , n, lbu�)
9 Downsweep (T , n, lbu�)

10 Kernel UniformUpdate (I, T)
11 wgId ← get_group_id(0)
12 tSum ← T[wgId]

13 I [gid] ← I [gid] + tSum

needs to take into consideration the matrices' row-wise storage layout. It is launched

using a 2d index space, with width work-items in the �rst dimension (x) and height

= |A| elements in the second dimenion (y). If A[j] == 1, then the j-th row of the

input matrix will be copied to the output. All work-items with gidy = j will copy

their assigned element inside the row, indicated by gidx = i, and write it to its output

position: O[I[j] · width + i].

Algorithm 20: Scatter Kernel

1 Kernel Scatter (A, I, E, O)
2 gid ← get_global_id(0)
3 outId ← I [gid]

4 if A [gid] == 1 then
// Element selected

5 O [outId] = E [gid]

6 end

7 Kernel Scatter2D (A, I, E, O, width)
8 gidx ← get_global_id(0)
9 gidy ← get_global_id(1)

10 colId ← gidx
11 rowId ← I[gidy]

12 if A [gidy] == 1 then
// Element selected

13 O [rowId * width + colId] = E [gidy * width + gidx]

14 end

98 Appendix A. Implementation Details

A.4.4 The pruning algorithm

Using all the functions and kernels discussed, we implemented the pruning algorithm

shown in Algorithm 21. It starts by creating the temporary bu�ers A and I, with size

equal to the number of test points in B. Then, it builds the binary map A of the

points not pruned and computes the output indexes of these points, I, by performing

an exclusive scan of A. At this point, the host will perform an asynchronous copy of

the number of points not pruned 4 and saving it to B. ev is an event object that will

allow the host to when the copy �nished. Finally, the scatter of all the data associated

with the TPB is performed.

Algorithm 21: The pruning algorithm

1 Function Pruning (B, Dk
M , k)

2 A← Bu�er(B.ptNum)
3 I ← Bu�er(B.ptNum)

4 PruningMap(B.S, Dk
M , A)

5 Scan(A, I)
// Get the number of points not pruned

6 ev ← GetPtNumLeft(A, I, B)

// Scatter all the data associated with the TPB

7 Scatter2D(A, I, B.pts, B.pts, B.d)

8 Scatter2D(A, I, B.pKnn, B.pKnn, 2k̇)
9 Scatter(A, I, B.Norm, B.Norm)
10 Scatter(A, I, B.S, B.S)

11 return ev

It should be noted that there are many performance optmizations that could be

made to the kernels presented in this section. For instance: (i) Map and Scan could

be joined to avoid a full read/write of the A bu�er; (ii) LocalScan could be made to

perform the scan on private memory, before resorting to shared memory. This would

considerably improve the utilization of the PEs; (iii) Scatter2D could use vector copies

to read from and write to global memory, in order to improve memory bandwidth

utilization. However, these optimizations are unnecessary for our application, because

the Pruning, implemented as shown here, of out algorithm. Thus, the resulting

performance gains from these optimizations would minor, but the kernels would have

become considerably more complex and harder to maintain.

4This can be computed by summing the last elements of A and I

