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de segurança. I. Orientador. II. Coorientador.
III. T́ıtulo.

CDU 519.6*82.10(043)





Dedico este trabajo a Dios quien me da la vida y fuerza para poder realizarlo.

A mis papas: Hugo, Elsa, Rensso, Luz y mi hermana Giovanna,

a mis profesores y amigos Guillermo y William,

y a mis amigos todos!.



vii

Acknowledgments

I would like to express my sincere thanks and gratitude toward the following people

who contributed their support and assistance to this thesis.

First and foremost, I am grateful with God, whose gifts me everything. Also, I

am deeply grateful to my family, their inspiration and encouragement stimulated me

to pursue a Ph.D.

This thesis would not have been possible without continuous support and guid-

ance from my conscientious supervisors. I owe a debt of gratitude to my primary

advisor, professor William for his patient supervision, constant encouragement, and

profound knowledge, which will benefit me for a lifetime. At the same time, I thank to

my co-advisor Guillermo, someday I hope to teach as well as he does.

In this walk, I made many good friends: the noble Victor Hugo, old friend Edward,

Carlos from Turkey, Alberto Hideki, strong Karla, maddening Guillermo and all the

friends in SSIG laboratory. They were patient with my mood. Antonio Carlos, finally

the Peruvian is leaving.

I would like to thank the National Council for Scientific and Technological De-

velopment – CNPq (Grant 311053/2016-5), the Minas Gerais Research Foundation –

FAPEMIG (Grants APQ-00567-14 and PPM-00540-17) and the Coordination for the

Improvement of Higher Education Personnel – CAPES (DeepEyes Project).

Finally, besides the aforementioned people, I would like to thank all of those who

has helped me complete my thesis no matter in whatever way.



viii

Abstract

Modeling human behavior and activity patterns for detection of anomalous events has

attracted significant research interest in recent years, particularly among the video

surveillance community. An anomalous event might be characterized by the deviation

from the normal or usual, but not necessarily in an undesirable manner. One of the

main challenges of detecting such events is the difficulty to create models due to their

unpredictability and their dependency on the context of the scene.

Anomalous events detection or anomaly recognition for surveillance videos is a

very hard problem. Since anomalous events depend on the characteristic or the context

of a specific scene. Although many contexts could be similar, the events that can be

considered anomalous are also infinity, i.e., cannot be learned beforehand. In this

dissertation, we propose three approaches to detect anomalous patterns in surveillance

video sequences.

In the first approach, we present an approach based on a handcrafted feature

descriptor that employs general concepts, such as orientation, velocity, and entropy to

build a descriptor for spatiotemporal regions. With this histogram, we can compare

them and detect anomalies in video sequences. The main advantage of this approach

is its simplicity and promising results that will be show in the experimental results,

where our descriptors had well performance in famous dataset as UCSD and Subway,

reaching comparative results with the estate of the art, specially in UCSD peds2 view.

This results show that this model fits well in scenes with crowds. In the second proposal,

we develop an approach based on human-object interactions. This approach explores

the scene context to determine normal patterns and finally detect whether some video

segment contains a possible anomalous event. To validate this approach we proposed

a novel dataset which contains anomalies based on the human object interactions,

the results are promising, however, this approach must be extended to be robust to

more situations and environments. In the third approach, we propose a novel method

based on semantic information of people movement. While, most studies focus in

information extracted from spatiotemporal regions, our approach detects anomalies
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based on human trajectory. The results show that our model is suitable to detect

anomalies in environments where trajectory of the people could be extracted.

The main difference among the proposed approaches is the source to describe the

events in the scene. The first method intends to represent the scene from spatiotemporal

regions, the second uses the human-object interactions and the third uses the people

trajectory. Each approach is oriented to certain anomaly types, having advantages and

disadvantages according to the inherit limitation of the source and to the subjective of

normal and anomaly event definition in a determinate context.
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Chapter 1

Introduction
In recent years, video surveillance systems have become very important due to height-

ened security concerns and low hardware costs. These type of systems are widely used

in many applications such as nursing care institutions, law enforcement, building secu-

rity, and traffic analysis. At the same time, the need of effective monitoring of public

places such as airports, railway stations, shopping malls, crowded sport arenas, military

installations is increasing [Popoola and Kejun Wang, 2012]. In view of that, many of

these institutions are beginning to use video surveillance systems [Dautov et al., 2018].

Indeed, the more security is required, the better monitoring is needed.

Traditional surveillance systems have relied on network cameras monitored by a

human operator that must be aware of the actions carried out by people who are in the

camera’s field of view. With the recent growth of the number of cameras to be analyzed,

the efficiency and accuracy of human operators have reached a limit [Keval, 2006]. The

need for several human operators and the difficulties in detecting events as they occur

are the main difficulties faced in surveillance these days. Further, it is quite natural

that human operators will not be able to continuously monitor the video footage due to

fatigue. They also are not able to capture all the important content in the surveillance

video due to the nature of human visual perception. This may cause them to miss the

most informative content of the video, which eventually results in failures and holes

in the surveillance system. Therefore, there is a great need for real-time automated

systems that detect and locate suspicious behaviors and alert security agents. Hence,

the rapid increase in the deployment of Closed Circuit Television (CCTV) systems and

the challenges posed by direct human monitoring have led to a greater demand for

computer algorithms that are able to process the video feeds to extract information of

interest for human operators. In this way, detecting unusual or suspicious activities,

uncommon behaviors, or irregular events in a scene can be seen as a primary objective

of an automated video surveillance system.

A fundamental goal in intelligent video surveillance is to automatically detect
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anomalous events in video streams [Vallejo et al., 2014]. However, the problem of

anomaly detection is greatly open and research efforts are scattered not only in ap-

proaches, but also in the interpretation of the problem, assumptions and goals [Li

et al., 2015]. Therefore, anomaly detection is a relevant problem, however it is not well

defined [Del Giorno et al., 2016].

Qualifying an event as anomalous is largely subjective and depends on the in-

tended application as well as the context. Hence, the scene context is highly related

with the anomaly definition. The context involves the concept about a scene, for in-

stance: “a small market in a neighborhood”. The concept about this scene regards the

common elements and the behavior thus allowing to reason about them, for instance:

people buying and selling products, cabinets, money, baskets, bags, people talking,

among many elements that characterize the idea of the small supermarket. At the

same time, the context bounds the elements within a scene, for instance, a small mar-

ket in a neighborhood hardly has a cinema, many people, antibiotics, people running

and jumping, vehicles, and an infinite list of things that particularly do not belong to

these type of places.

The important characteristics of normal or anomalous activities are relative. For

instance, an anomalous activity in one scenario may become normal in another [Hu

et al., 2013]. For this reason, naming something anomalous is very difficult. We can

label or measure how much anomalous is an observation based on its similarity with the

given examples or given its compatibility with the model derived from the examples.

Thus, the goal of anomaly detection system is not to analyze normal behavior, but to

detect deviations from it [Duan et al., 2014]. This is an important aspect because it

allows to differentiate the anomalous event detection with event recognition. Usually,

event detection models intend to determine what type of event happens from a list of

known events. In case of anomalous event recognition, the anomalies could be either

previously known or could be unknown events.

Jiang et al. [2009] define anomaly detection as the identification of motion pat-

terns that do not behave as the expected behavior. They also define anomaly as rare or

infrequent behavior compared to all other behaviors. However, the identification of this

concept requires semantic information and subjective knowledge regarding the scene

and the expected behavior. Nonetheless, unknown patterns, in most cases, are very dif-

ficult to represent in automatic recognition models. Therefore, the modeling usually is

built for the usual recurring patterns found in the scene and when there is no fitting to

any usual pattern, one concludes a given event as anomalous. There are three common

definitions and assumptions of anomalous event applied in research [Sodemann et al.,

2012]: anomalous events occur infrequently in comparison to normal events, they have
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significantly different characteristics from normal events and, they are events which

have a specific meaning. Within the first category, anomalous events are events that

are not sufficiently represented within the data available for modeling. These models

require the availability of many data samples for modeling. Every event which is not to

be flagged as anomalous must be well represented in the data used to create the model.

Studies within the second category of assumptions define anomalous events as those

which are significantly distinct from the normal events. A limitation of these models

is the inability to detect anomalies which are not significantly distinct from normal

events. The third category defines anomalous events a priori as specific meaningful

actions or occurrences, like an event classification.

A common characteristic in anomalous event detection models is that the only

information available are samples of the “normal” class. In general, anomaly detection

settings cannot use traditional supervised approaches because it is impossible to find

a sufficiently representative set of anomalies [Del Giorno et al., 2016]. The problem of

determining an anomalous event is to define what is an anomaly in a given context. In

this way, models must limit the scope of their methods to certain type of situations,

without losing robustness. This challenging task increments its hardness as semantic

information of anomaly is added.

Most studies are based on a typical pipeline which employs representations

based on spatiotemporal features (low-level characteristics extracted from temporal re-

gions) [Hasan et al., 2016a; Wang and Xu, 2016; Zhou et al., 2016; Cheng et al., 2015]

followed by one-class classifier to determine whether an event is anomalous. These

approaches model anomalies using characteristics such as velocity (magnitude, orienta-

tion), appearance, density and location. Nowadays, deep learning [Yuan et al., 2015] has

become a hot topic, which learns features directly from video sequences. These stud-

ies [Xu et al., 2015; Feng et al., 2016], instead of using hand-crafted features to model

event patterns, they based their models in discriminative feature representations of

both appearance and motion patterns. However, all this information is not well-suited

for solving the anomalous event detection problem since they are constrained to the

same camera view, preventing the detection to be performed on different environments

within the same context.

As aforementioned, common representations for anomaly event detection are

based on low-level features, which fit well to recognize some particular types of anoma-

lies, being mainly restrict to a single camera view. It means that the information

captured by such features from a particular scene (i.e., same camera view) cannot be

considered to detect anomaly in other scenes or even in different camera views within

the same scene due to correlated information recorded from the same camera position.
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Thus, since a more semantic information of anomalies is required to describe normal

situations, these low-level characteristics are not enough to detect anomalies properly.

Given the previous limitation, we need other information type that allows to

detect anomalies. For instance, consider the scenario in which the information of

a specific context is repeated in many scenes. This information could capture the

essence of a specific environment to be employed in similar environment, nevertheless

at same time, this information must not depend on the camera position or be sensitive

to the camera movement. For instance, in high-school classroom, we can find some

common elements such as tables, chairs, a board, among others, also specific context

activities happening such as walking, reading, writing, talking, etc. Figure 1.1 depicts

examples of classroom context, however different scenes. On the other hand, other

objects such as cars, shotguns and beds, or activities such as biking or fighting are not

part of the high-school classroom context and could be characterized as an anomalous

event. Other type of information that could be used to detect anomalies is based on the

human trajectories. Many models focus on the movement information; however, they

have problems about the illumination changes and the conception about the element

that have been performed the anomaly. Introducing trajectory information implies a

higher level of semantics. This can be beneficial since not all anomalies are detected

using low-level characteristics.

In this study we address the anomalous event detection problem using three

perspectives. First, we focus in common handcraft-feature representation in a more

traditional approach (learning and detection of anomaly for a single camera view).

Second, we propose a novel paradigm of anomaly detection based on human-object

interactions able to work for different camera views being restrict only to be within the

same context. Finally, the third approach detects anomalies based on the trajectory

behavior of the people into the scene. Although this approach also is oriented from

fixed view camera, the idea is to use information of more semantic level.

1.1 Research Motivation

There have been considerable efforts in the industry as well as academia, focusing on

different algorithms, techniques and models to develop surveillance solutions [Chandola

et al., 2009]. Following decades of slow market penetration and setbacks, the Intelligent

Video Surveillance and Video Analytics industry is forecasted to experience decades

of rapid growth. The Global Video Analytics, Intelligent Video Surveillance & Ob-

ject Recognition Market-2015-2020 report indicates that the global Intelligent Video
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(a) (b)

(c) (d)

Figure 1.1: Examples of classroom context. First row presents auditorium classrooms,
second row contains examples of small classes. In all the images, many elements are
similar as well as the people behavior.

Surveillance (IVS), Intelligence, Surveillance & Reconnaissance (ISR) and Video Ana-

lytics (VA) industry revenues are forecasted to grow at 14% Compound Annual Growth

Rate (CAGR) from 2014 to 20201. Technology has introduced new tools such as: 4k

videos, HD-CCTV cameras, more storage, new devices that allow demise pure server-

based solutions, drones and integrated frameworks that join Internet of Things (IoT)

with surveillance. In this context, anomalous event detection becomes an important

and attractive topic to be studied and deepened.

Intelligent video surveillance using computer vision techniques is a popular re-

search area and anomalous event detection is a sub-category of it, where the outcomes

of this category can be used in various applications, including circumventing the secu-

rity threats in public places and other day-to-day monitoring in elderly and patient care

1MarketsandMarkets is the largest market research firm worldwide in terms of premium market
research reports published annually. Serving 1,700 Fortune organizations globally with more than
1200 premium studies in a year, MarketsandMarkets caters to multitude of clients across 12 different
industry verticals (www.marketsandmarkets.com).
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centers. In recent years, a wealth of research has been undertaken in the domain of hu-

man behavior classification in automated surveillance. Behavior classification involves

the categorization or classification of perceived behavioral events by an algorithm. Such

research efforts have been driven by an increased concern for security and safety, cou-

pled with an overabundance of available surveillance data relative to the amount of

manpower available to process it.

Exploration of the unusual event detection in surveillance applications is based

on two main arguments. First, the number of security cameras is growing, and the

monitoring of these cameras is becoming increasingly difficult. Second, most of the

solutions available to the public through commercialized products assume simple visual

environments, and when more challenging environments are introduced, laborious and

time intensive initialization procedures are required.

Though there have been lots of methods proposed to learn the activities present

in the scene, there are still many challenges that need to be addressed, such as model-

ing various complex human activities, developing methods to model the activities not

only in the constrained scenarios but also in the unconstrained scenarios. Apart from

modeling, feature extraction also has a major role in the problem of anomalous event

detection. As abnormality depends on the context under consideration, features must

be carefully chosen to provide rich information about the normal activities present in

a specific context. As there are many different contexts, extracting the right features

for each and every context, which could provide abstract information relevant to the

peculiar characteristics of the context, still remains a challenge. The above-mentioned

reasons make video-based detection of normal and anomalous behavior of individuals

a challenging task.

1.2 Problem Description

There are several problems related to the detection of anomalous events [Agrawal and

Agrawal, 2015; Ahmed et al., 2016a; Akoglu et al., 2015; Ahmed et al., 2016b]. In this

section we present the most representative for our research. For this it is important to

delimit the scope of our work. Our study focuses on the detection of anomalous events

in a context of surveillance videos.

One problem found in anomalous event detection is that the analysis of surveil-

lance data is performed without the knowledge of when, where or even if an interesting

event has occurred or is occurring. In this type of analysis, the analyst is interested

in extraordinary events, something that deviates from the normal. Therefore, without
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the suitable tools, it can be a daunting task for the analyst, consisting of sequentially

viewing all raw video data and using his/her judgment to determine whether an event

is unusual.

Another problem found in anomalous event detection is to determine what are the

events which can be labeled as anomalous. In the literature, there have been a variety

of terms used to refer to abnormal or anomalous events including interesting, irregular,

suspicious, anomaly, uncommon, unusual, rare, atypical, salient and outliers. The

definition of anomalous events has been causing much debate in the literature due to the

subjective nature and complexity of human behaviors [Jiang et al., 2009]. In particular,

an event is considered abnormal if there is deviation from observed or learned ordinary

events (i.e., the event having low occurrence or statistical representation in the learned

model) or the event is not known or it is outstanding. As aforementioned, another

important aspect about the definition of anomalies is the context of the scene, which

is directly related to the definition of anomaly in a certain environment or situation.

In addition, the difficulty of semantic anomalous events increases as the semantics of

events grows. In other words, the greater the semantics of an event, more complex

are the situations that must need described to determine the anomalous events of the

normal. Similarly, there is no clear distinction between abnormal activities, events

and behaviors as their descriptions often overlap one another. In this study, we have

opted for using the term anomalous event because abnormal might refer to a unusual

event in a way that is undesirable, which is not our case since we do not capture enough

semantic understand whether a given event is suspicious or just different from a normal

recurring pattern.

To determine whether an event is anomalous or not, there are two main op-

tions: (i) the expected types of anomalies are known, (ii) only the normal patterns

are known. In the first option, approaches have two classes, normal and abnormal.

Usually, this problem is solved with action/activity recognition approaches [Popoola

and Kejun Wang, 2012]. In the second option, there is only one known class. The

main challenge of this latter option is to define features that allowing the detection of

anomalous events and at the same time being suitable in many situations [Sodemann

et al., 2012].

A representative characteristic of the anomalies is the difficulty in representing

them. Once the model has been chosen, the goal is to find the outliers that represent the

anomalies [Akoglu et al., 2015]. The problem is that the outliers do not have a specific

spatial distribution and can be scattered in the space generated by the descriptor. It is

natural that this happens since the spatial distribution depends on the descriptor and

not necessarily the points that represent the anomalies must be together.
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It is difficult to list all the normal situations and, depending on the context, it

is even more complex to list the anomalous events. In other words, anomalous events

are generally unknown so their position in the space generated by the descriptors is

also unknown. There is a need for a prior analysis for each context, this must include

anomalous situations to be able to determine if the descriptor is managing to represent

the events, however, it is not possible to consider all the possible anomalous events,

or in the case If necessary, it is a truly exhaustive task. Therefore, it is necessary to

delimit the scope of the methods, which is also complex given the context and the final

use in the field of surveillance videos.

Compared to other branches of research, the number of datasets for anomaly

recognition is small. And in many cases the observation time of normal situations

is short. This is controversial, because in surveillance videos, probably many normal

situations are constantly repeated, however the recognition of what is normal can be

confused with some abnormal situation. Apart from that, as already mentioned, the

anomalies are unknown so it is difficult to define an observation time necessary to

recognize all the normal events of a determined scene. This is again inherent in the

context and therefore can only be configured according to the objective of surveillance

in that particular scene.

1.3 Hypotheses

Before presenting our hypotheses, we present our main assumption which is: “Some-

thing that has not being seen before is considered anomalous”. This assumption is

important because there are infinite situations that could be defined as anomalies.

Hence, to delimit the scope of anomalies and at the same time give robustness to our

model, we consider as normal any situation that is presented during training phase.

Likewise, the model must secure that something that happening in training observa-

tions are normal events. In the following paragraphs, we present our hypotheses for

the proposed approaches.

In our handcrafted approach, we define four characteristics to be used as clues to

describe normal motion patterns in a particular region of the scene: i) velocity - speed

of moving objects; ii) orientation - common flow of the objects; iii) appearance-texture

of the objects; and (iv) density-number of moving objects. Hence, we hypothesize:

Hypothesis 1 (H1): the use of low-level features extracted for movement patterns

may characterize anomalies, thus, an histogram representation may represent the move-
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ment information, including also contextual information like orientation entropy ex-

tracted from optical flow vectors.

In second approach, human-object interactions, the main idea is to learn infor-

mation regarding the context in a given environment and use that to detect anomalies

in other scenes belonging to the same context. We hypothesize that

Hypothesis 2 (H2): the human-object interactions might lead to the understanding

of the scene. In consequence, normal patterns could be defined from the interaction

representation.

Furthermore, there are common patterns between scenes. Hence, we hypothesize

Hypothesis 3 (H3): patterns learned in some scene might be used in another scene

that shares the same context. This semantic information may help to detect anomalous

patterns.

In trajectory based approach we hypothesize:

Hypothesis 4 (H4): human trajectories could provide relevant information to under-

stand the movement behavior of the people in the scene. Thus, trajectory description

characterizes the movement patterns normal and abnormal, at the same time they pro-

vide contextual information such as velocity, flow, direction and location, that could be

used for behavior analysis.

1.4 Goals

This Ph.D dissertation presents three approaches that aim to detect anomalous events

in surveillance videos. The first, based on handcrafted features, attempts to recognize

anomalies in scenes that are far from camera. This model has as goal to describe

patterns based on movements to determine in which frames an anomaly is happening.

The second, based on human-object interaction, collects interactions of a person and

his/her surrounding objects to detect anomalous events. Finally, in our third approach,

based on trajectories, the main goal is to describe the human trajectories in the video

to find movement patterns that can represent the anomalous events.

The following specific goals are defined:

• Propose feature descriptors that employ optical flow information to capture move-

ment information from spatiotemporal regions.
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• Describe human-object interactions to discriminate between normal and anoma-

lous patterns.

• Propose feature descriptors that explain the peculiar characteristics of the human

trajectory patterns in a scene.

• Evaluate, validate and compare the proposed approaches.

1.5 Contributions

We propose three approaches for anomalous event detection. The first based on low-

level (handcrafted) features, the second based on human-object interactions and the

third a human trajectory based approach. The contributions of this proposal thesis are

as follows.

• The use of low-level information regarding speed and orientation to describe the

scene to determine whether a spatiotemporal region can be labeled as normal or

anomalous [Colque et al., 2015], which has been extended in the work [Colque

et al., 2017] with the addition of the entropy information. This model is oriented

scenes with fixed camera.

• The use of human-object interactions to capture anomalies that take place in

the same context (does not requiring the camera to be static of the scene been

recorded in the same environment) [Colque et al., 2018].

• A simple model for multi-tracking of people in surveillance videos. This heuristic

is an alternative to the complex data association models.

• The use of trajectory information to detect anomalous events based on people

movement into the scene. In this approach, a higher semantic level is used to

detect the anomalies. An advantage of this model over traditional methods, is

that the information extracted can be used for a deep analysis of the scene. This

analysis is focused on movement patterns that can be extracted from the set of

trajectories formed by the people in the scene. This approach is oriented for fixed

camera view.

• A brief analysis of trajectory charity which intuitively allows us to know the

behavior of the costume of the people in the scene.
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• Introduction of two new video dataset and a video sequence to contribute with

literature. These datasets propose simple situations for the analysis of anomalous

events, but at the same time they offer an alternative to the current datasets in

the literature. In the case of the Laboratory dataset, the content is real without

forcing any anomalous situation.

This research has the following published papers as contribution to literature:

• Rensso Mora Colque, Carlos Antonio Caetano Junior, William Robson Schwartz:

“Histograms of Optical Flow Orientation and Magnitude to Detect Anomalous

Events in Videos”. SIBGRAPI 2015: 126-133.

• Rensso Mora Colque; Carlos Caetano; Matheus Toledo; William R. Schwartz:

“Histograms of Optical Flow Orientation and Magnitude and Entropy to Detect

Anomalous Events in Videos,” in IEEE Transactions on Circuits and Systems for

Video Technology, vol. 27, no. 3, pp. 673-682, 2017.

• Rensso Mora Colque; Carlos Caetano; Victor H. C. de Melo, Guillermo Ca-

mara Chavez; William R. Schwartz: “Novel Anomalous Event Detection Based

on Human-object Interactions”. in VISAPP 2018: 293-300.

Other papers published during the PhD course:

• Rensso Mora Colque, Guillermo Camara Chavez, William Robson Schwartz: “De-

tection of Groups of People in Surveillance Videos Based on Spatio-Temporal

Clues”. CIARP 2014: 948-955.

1.6 Structure of the Text

This dissertation is structured in the following manner. Chapter 3 contains a litera-

ture review concerning relevant topics and studies. It is followed by Chapter 4 which

discusses the proposed approach based on handcrafted low-level feature descriptors.

Chapter 5 describes our proposed approach for multiple view and same context based

on human-object interactions. In Chapter 6 we describe our third approach based

on human trajectories, then followed by Chapter ?? which discusses the results while

keeping the original goals in mind. Chapter 7 presents the conclusions of our complete

study.
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Chapter 2

Theoretical Background

In this chapter we present important concepts and techniques that aims to clarify our

proposed approaches. This should provide enough information to make the design of the

approaches. Further, the section that refers to neural networks is deeper explained than

the other concepts, due to two of our three approaches are based on neural networks.

2.1 Terminology

Some of the terms that are frequently used throughout the thesis are described below.

Activity refers to a sequence of atomic actions performed by a subject. An

action, on the other hand, implies a sequence of fundamental movements performed by

an object or person.

Event is the occurrence of an activity in a particular time and place.

Context is the semantic of a scene. This concept includes the subjectiveness of

the observer and the broadly perception of the situation.

Anomalies are a deviation from the common rule, type, arrangement or form,

where, the “anomalous” word is its adjective.

Anomalous event is a unusual, odd, out of the ordinary, peculiar, unexpected

type of event. In technical sense, an anomalous event means the patterns of action that

do not conform the normal behaviors that have been learned or expected in a given

context. An event that is anomalous at a certain context may be perfectly normal in

another scene. Anomalous events are generally infrequent, sparse, and unpredictable [Li

et al., 2014]. In the literature, this term has been referred to as: unusual events Zhao

et al. [2011], anomalous events [Jiang et al., 2011], abnormality [Xiang and Gong, 2005],

suspicious activities or irregularities [Boiman and Irani, 2005].
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To clarify the previous concepts, imagine the following scene “an athlete running

in a marathon, which is reaching the goal at first place”. In this example, the activity

is running and it is performed by the athlete, the event is reaching the goal and the

context is the conception of the view at the goal, it means, the people waiting for the

winner, cameras, the goal, people running, etc. The concept of context so important

because it is based on the context that normal and anomalous situations are defined.

Hence, anomalies are dependent of a given context. For instance, an anomaly could

be a car traveling at great speed against the marathoners. Finally, anomalies are

not necessarily hazardous situations, anomalies could be anything depending on the

concept of normal in the determinate context.

Anomalous event detection refers to the problem of finding patterns in data

that do not conform to expected behavior. These non-conforming patterns are often

referred to as anomalies, outliers, discordant observations, exceptions, aberrations, sur-

prises, peculiarities or contaminants in different application domains [Chandola et al.,

2009]. Mathematically, outliers are also referred to as abnormalities, discordants, de-

viants, or anomalies in the data mining and statistics literature [Aggarwal, 2013].

Types of Anomalies Depending on the context and which anomalous events

are modeled, types of anomalies might be divided in [Chandola et al., 2009]:

• Point anomalies indicate that the values of extracted features at a specific lo-

cation deviate significantly from what is considered normal. Therefore, these

anomalies do not consider past values or the information given by nearby objects

or points. If one models the normal velocities of moving objects at all locations in

the scene, any object that displays a velocity that does not fit the model can be

considered an anomaly. This includes, for example, detecting motion of objects

at unusual locations.

• Contextual anomalies consider information from the temporal context (the se-

quence of events), or the spatial context (nearby objects). Anomalies that take

into account the temporal context, also called sequential anomalies, analyze ir-

regularities in the temporal sequence of a given extracted feature. An example

for temporal concept is when person jumps a ticket gate to avoid the payment,

the normal sequence of events indicate that person should walk not jump. An ex-

ample for spatial context could be a person manipulating some forbidden objects

in a museum during visiting hours.

• Collective anomalies refer to collections of samples which are anomalous alto-

gether. For example, people running in a main street city could be considered
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as normal at morning when is late for work. However, all people in the street

running rapidly in one direction for fire is an anomalous situation in a normal

day in a main street context.

Spatiotemporal regions, also known as “cuboids” [Kratz and Nishino, 2009],

are fixed regions in an video, the 3D conception of cube is given by the depth in time

from consecutive frames.

Scene actor is an individual or object that performs a certain action.

2.2 Optical Flow

Optic flow is defined as the change of structured light in the image, e.g. on the retina

or the sensor of a camera, due to a relative motion between the eyeball or camera and

the scene.

The initial hypothesis in measuring image motion is that the intensity structures

of local time-varying image regions are approximately constant under motion for at

least a short duration [Horn and Schunck, 1981]. Formally, if I(X, t) is the image

intensity function, then:

I(X, t) = I(X + δX, t+ δt) (2.1)

where δX is the displacement of the local image region at (X, t) after time δt. Expand-

ing the left-hand side of this equation in a Taylor series yields

I(X, t) = I(X, t) +∇IδX + δtIt +O2, (2.2)

where ∇I = (Ix, Iy) and It are the first order partial derivatives of I(X, t), and O2, the

second and higher order terms, which are assumed negligible. Subtracting I(X, t) on

both sides, ignoring O2 and dividing by δt yields

∇I.V It = 0, (2.3)

where∇I = (Ix, Iy) is the spatial intensity gradient and V = (u, v) is the image velocity.

Equation 2.3 is known as the optical flow constraint equation, and defines a single local

constraint on image motion (see Figure 2.1). In the figure the normal velocity v1 is

defined as the vector perpendicular to the constraint line, that is, the velocity with the

smallest magnitude on the optical flow constraint line. This constraint is not sufficient

to compute both components of V as the optical flow constraint equation is illposed.
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That is to say, only v1, the motion component in the direction of the local gradient

of the image intensity function, may be estimated. This phenomenon is known as

the aperture problem. and only at image locations where there is sufficient intensity

structure (or Gaussian curvature) can the motion be fully estimated with the use of

the optical flow constraint equation (See Figure 2.2). For example, the velocity of a

surface that is homogeneous or containing texture with a single orientation can not

be recovered optically. Because the normal velocity is in the direction of the spatial

gradient ∇I, Equation 2.3 permit to write

Figure 2.1: The optical flow constraint equation defines a line velocity space.

V10
−It∇I
||∇I||22

. (2.4)

Thus, the measurement of spatiotemporal derivatives allows the recovery of normal

image velocity.

From this definition, it becomes clear that for optical flow to be exactly image

motion, a number of conditions have to be satisfied. These are: a) uniform illumination;

b) Lambertian surface reflectance, and c) pure translation parallel to the image plane.

Realistically, these conditions are never entirely satisfied in scenery.. Instead, it si

assumed that these conditions hold locally in the scene and, therefore, locally the image

on the image plane. The degree to which these conditions are satisfied partly determines

the accuracy with which optical flow approximates image motion. Alternatively, the

displacement of a small image patch can be measured, for instance using correlation

in short images sequences (usually two or three frames). Such image displacements

constitute a valuable approximation to image velocity when certain conditions are

met. In particular, the ratio of sensor translational speed to absolute environmental
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Figure 2.2: Through apertures 1 and 3, only normal motions of the edges forming the
square can be estimated, due to a lack of local structure. Inside aperture 2, at the
corner point, the motion can be fully measured as there is sufficient local structure;
both normal motions are visible.

depth, the 3D vertical and horizontal sensor rotations, and the time interval between

frames must be small quantities. Optical flow may also be computed as the disparity

field where, given two stereo images or two adjacent images in some sequence, features

of interest in the images are extracted and matched via a correspondence process.

Essentially, performing 2D motion detection involves the processing of scenes

where the sensor is moving within an environment containing both stationary and non-

stationary objects. Furthermore, visual events such as occlusion, transparent motions,

and nonrigid objects increase the inherent complexity of the measurement of optical

flow.

2.2.0.1 Lucas-Kanade method

In computer vision, the Lucas-Kanade method is a widely used differential method for

optical flow estimation [Lucas and Kanade, 1981]. It assumes that the flow is essentially

constant in a local neighborhood of the pixel under consideration, and solves the basic

optical flow equations for all the pixels in that neighborhood, by the least squares

criterion.

The Lucas-Kanade method assumes that the displacement of the image contents

between two nearby instants (frames) is small and approximately constant within a

neighborhood of the point p under consideration. Thus the optical flow equation can
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be assumed to hold for all pixels within a window centered at p. Namely, the local

image flow (velocity) vector (Vx, Vy) must satisfy

Ix(q1)Vx + Iy(q1)Vy = −It(q1)
Ix(q2)Vx + Iy(q2)Vy = −It(q2)

...

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

where q1, q2, . . . , qn are the pixels inside the window, and Ix(qi), Iy(qi), It(qi) are

the partial derivatives of the image I with respect to position x, y and time t, evaluated

at the point qi and at the current time.

These equations can be written in matrix form Av = b where

A =


Ix(q1) Iy(q1)

Ix(q1) Iy(q1)

... ...

Ix(qn) Iy(qn)


v =

[
Vx

Vy

]

b =

 −It(q1)
−It(q2)

...− It(qn)


This system has more equations than unknowns and thus it is usually over-

determined. The Lucas-Kanade method obtains a compromise solution by the least

squares principle. Namely, it solves the 2×2 system: ATAv = AT b or v = (ATA)−1AT b,

where AT is the transpose of matrix A. That is, it computes

[
Vx

Vy

] [ ∑
i Ix(qi)

2
∑

i Ix(qi)Iy(qi)∑
i Iy(qi)Ix(qi)

∑
i Iy(qi)

2

] [
−
∑
Ix(qi)It(qi)

−
∑
Iy(qi)It(qi)

]

where the central matrix in the equation is an Inverse matrix. The sums are running

from i = 1 to n.

The matrix ATA is often called the structure tensor of the image at the point p.

The plain least squares solution above gives the same importance to all n pixels

qi in the window. In practice it is usually better to give more weight to the pixels that

are closer to the central pixel p. For that, one uses the weighted version of the least
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squares equation, ATWAv = ATWb or v = (ATWA)−1ATWb, where W is an n × n
diagonal matrix containing the weights Wii = wi to be assigned to the equation of pixel

qi, follows

[
Vx

Vy

] [ ∑
iwiIx(qi)

2
∑

iwiIx(qi)Iy(qi)∑
iwiIy(qi)Ix(qi)

∑
iwiIy(qi)

2

] [
−
∑
wiIx(qi)It(qi)

−
∑
wiIy(qi)It(qi)

]

The weight wi is usually set a Gaussian function of the distance between qi and

p.

In order for equation ATAv = AT b to be solvable, ATA should be invertible, or

ATA′s eigenvalues satisfy λ1 ≥ λ2 > 0. To avoid noise issue, usually λ2 is required

to not be too small. Also, if λ1
λ2

is too large, this means that the point p is on an

edge, and this method suffers from the aperture problem. So for this method to work

properly, the condition is that λ1 and λ2 are large enough and have similar magnitude.

This condition is also the one for corner detection. This observation shows that one

can easily tell which pixel is suitable for the Lucas-Kanade method to work on by

inspecting a single image.

One main assumption for this method is that the motion is small (less than

one pixel between two images for example). If the motion is large and violates this

assumption, one technique is to reduce the resolution of images first and then apply

the Lucas-Kanade method.

The Lucas-Kanade method per se can be used only when the image flow vector

Vx, Vy between the two frames is small enough for the differential equation of the

optical flow to hold, which is often less than the pixel spacing. When the flow vector

may exceed this limit, such as in stereo matching or warped document registration, the

Lucas-Kanade method may still be used to refine some coarse estimate of the same,

obtained by other means; for example, by extrapolating the flow vectors computed for

previous frames, or by running the Lucas-Kanade algorithm on reduced-scale versions

of the images. Indeed, the latter method is the basis of the popular Kanade-Lucas-

Tomasi (KLT) feature matching algorithm.

2.3 Histogram of Optical Flow (HOF)

Histogram of Optical Flow (HOF) is a descriptor based on optical flow information.

Proposed by Chaudhry et al. [2009], this descriptor stores the optical flow information

(orientation and magnitude) distributing it in a histogram h = [h1, h2, ...., hB], which
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is composed of B bins. Thus, each flow vector is binned according to its primary angle

from the horizontal axis and incremented a according to its magnitude. Thus, every

optical flow vector, v = (x, y)′, with direction θ = tan−1( y
x
), that contributes with its

magnitude m =
√
x2 + y2 to the i-th bin of the histogram, where 1 ≤ i ≤ B, B value

is the quantized range. Figure 2.3 illustrates the procedure, where angle α contributes

with its corresponding bin adding the magnitude value.

Figure 2.3: Histogram composed by four bins, B = 4 [Chaudhry et al., 2009].

2.4 k-Nearest Neighbors (k-NN)

k-Nearest Neighbors (k-NN) is a non-parametric and data-driven algorithm used for

multi-class classification. Given a testing data, k-NN seeks to find out its k nearest

neighbors from the entire labeled training set with a pre-defined distance metric [Larose,

2004]. The testing data is classified by a majority voting of its k nearest neighbors.

In other words, the testing data is assigned to the dominant class among its k nearest

neighbors. The special case is k = 1, where the testing data is simply assigned to the

class of its nearest neighbor.

The advantages of k-NN are twofold. First, it is easy to implement as in the

training phase the only step is storing the training set and their class labels. Second,

it is flexible to handle diverse data by using specific distance metrics. However, it is

computationally intensive when training set is very large because it must identify the

k nearest neighbor for each testing data.
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2.5 Affinity Propagation

Afinitty Propagation (AP) clustering [Frey and Dueck, 2007] is a fast clustering algo-

rithm especially in the case of large number of clusters. AP works based on similarities

between pairs of data points (or n×n similarity matrix S for n data points) and simul-

taneously considers all the data points as potential cluster centers (called exemplars).

In the AP clustering algorithm, there are two important concepts: the respon-

sibility R(i, k) and availability A(i, k) which represent two messages indicating how

well-suited a data point is to be a potential exemplar. R(i, k) is an accumulated value

which reflects how well the point i is suited to be the candidate exemplar of data point

i and then sends from the latter to the former; that is, compared to other potential ex-

emplars, the point k is the best exemplar. The availability A(i, k) is opposed to R(i, k)

and reflects how well-suited it is for the point i to choose point k as its exemplars.

Based on the candidate exemplar point k, the accumulated message sent to the data

point i indicating it that point k is more qualified as an exemplar than others.

The sum of the values of R(i, k) and A(i, k) is the evaluation basis whether the

corresponding data point can be a candidate exemplar or not. Once a data point is

chosen to be a candidate exemplar, those other data points with nearer distance will be

assigned to this cluster. The similarity value between two data points xi and xj (i 6= j)

is usually assigned the negative Euclidean distance, such as S(i, j) = −||xi−xj||2. The

algorithm uses an initial value called preference, which indicates the preference that

the data point can be chosen as an exemplar, it is usually set by the median(s) of all

distances. The following Algorithm 1 summarizes the process:

Algorithm 1 Afinitty Propagation (AP).

1: procedure ClusteringAP(S)
2: R(i, k) = 0, A(i, j) = 0, ∀i, k
3: while Until converge do
4: R(i, k) = S(i, k)−max(A(i, j) + S(i, j)) | (j ∈ [1, n]; j 6= k)
5: A(i, k) = min(0, R(k, k) +

∑
jmax(0, R(j, k))), | (j ∈ [1, n]; j 6= i; j 6= k)

6: A(k, k) =
∑

imax(0, R(i, k)), | (i 6= k)

7: return Trks

The algorithm iterates until either the cluster boundaries remain unchanged over

a number of iterations or after some predetermined number of iterations. The exemplars

are extracted from the final matrices as those whose “responsibility + availability” for

themselves is positive.
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2.6 Neural Networks

Following the Caudill [1987] definition, Neural Network (NN) is “a computing system

made up of a number of simple, highly interconnected processing elements, which

process information by their dynamic state response to external inputs”.

In simplest form a NN is expressed as linear regression equation Ŷ = Wx+b. The

matrix W represents the weights of the neural model, x is the input data and b is the

bias, this element usually is included in matrix W . The goal of the learning is to find

a W matrix that allow to predict output Ŷ in order to increase the likelihood between

output and real label Y . This formula corresponds to a single layer representation. In

general architectures present many types of layers. A very intuitive form to visualize

a NN is in a graph structure, where each layer contains neurons, and each neuron can

be seen as the simple linear regression formula.

A famous algorithm to learn the weights is the backpropagation. Based on feed-

forward strategy, this algorithm updates the weights iteratively. In forward step the

result of activation function scrutinizes inputs and current weights and based on a loss

function that compares the output of activation functions with the label assign to the

input. In forward step the weights are updated by the Gradient Descent algorithm.

This straightforward process is the core of many machine learning models based on

NN. In this section we present a briefly explanation of the networks that have been

used in our approaches [Caudill, 1987].

2.6.1 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a category of neural networks that has

proven very effective in areas such as image recognition and classification. CNNs have

been successful in identifying faces, objects and traffic signs apart from powering vision

in robots and self driving cars. CNNs have a different architecture than regular NN.

Regular NNs transform an input by putting it through a series of hidden layers. Every

layer is made up of a set of neurons, where each layer is fully connected to all neurons

in the layer before. Finally, there is a completely connected last layer, the output

layer, which represents the predictions. The CNNs are different. First, the layers are

organized in three dimensions: width, height and depth. In addition, the neurons in

one layer do not connect to all the neurons in the next layer, but only to a small region

of the same. Finally, the final result will be reduced to a single vector of probability

scores, organized along the depth dimension. CNNs have two components: feature

extraction and classification steps.
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The hidden layers or feature extraction layers perform a series of convolutions

and pooling operations. The primary purpose of Convolution is to extract features

from the input image. Convolution preserves the spatial relationship between pixels

by learning image features using small squares of input data. Pooling operations aim

at scaling the convolution output to represent global information. The matrix formed

by sliding the filter over the image and computing the dot product is called activation

map or feature map. It is important to note that filters act as feature detectors from

the original input image.

In the classification part, the output from the convolutional and pooling layers

represent high-level features of the input image. The purpose of the fully connected

layer is to use these features for classifying the input image into various classes based

on the training dataset. The fully connected layer is a traditional multilayer perceptron

that uses a softmax activation function in the output layer, other models utilize SVM.

The term“Fully Connected”implies that every neuron in the previous layer is connected

to every neuron on the next layer. The size of the feature map is controlled by three

parameters: depth, stride and padding. Depth corresponds to the number of filters for

the convolution operation. Stride is the number of pixels by which the technique slides

the filter matrix over the input matrix. When the stride is 1 then algorithm slides the

filters one pixel at a time. When the stride is 2, then the filters jump 2 pixels at a time

as algorithm slides them around. Having a larger stride will produce smaller feature

maps. Padding adds zeros around the image border. Adding zero-padding is also called

wide convolution, and not using zero-padding would be a narrow convolution.

The pioneering work with CNN is LeNet [Le Cun et al., 1990]. That net was

used to classify digits and it was applied by several banks to recognize hand-written

numbers on digitized checks in 32× 32 pixel greyscale input images. The architecture

for this convolutional neural network employs sequence of three layers of convolution

and pooling. This architecture is shown in Figure 2.4. The convolution layers extract

spatial features, pooling layers subsample using spatial average of maps. Multi-layer

Neural Network (MLP) is the final classifier. The ability to process higher resolution

images requires larger and more convolutional layers, so this technique is constrained

by the availability of computing resources. During some years, CNNs and neural net-

works went unnoticed, until computing power rose, CPUs were becoming faster, and

GPUs became a general-purpose computing tool. Specifically, CNN reappeared in

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The ImageNet

project is a large visual database designed for use in visual object recognition soft-

ware research. In this contest, models compete to correctly classify and detect objects

and scenes. In 2012, AlexNet [Krizhevsky et al., 2012] significantly outperformed all
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the prior competitors and won the challenge by reducing the top-5 error from 26% to

15.3%. The network had a very similar architecture as LeNet by Yann LeCun et al

but it was deeper, with more filters per layer, and with stacked convolutional layers. It

consisted 11×11, 5×5, 3×3, convolutions, max pooling, dropout, data augmentation,

Rectified Linear Unit (ReLu) activations, SGD with momentum. It attached ReLu ac-

tivations after every convolutional and fully-connected layer. Figure 2.5 presents this

architecture.

In past years, other important architectures appear, improving drawbacks from

predecessors, for instance: VGG16 proposed by [Simonyan and Zisserman, 2014],

GoogleNet [Szegedy et al., 2015], Microsoft Res-Net [He et al., 2016], focusing mainly

on image classification. However, novel approaches focus on object detection which

compromises a high difficult level. In this group we can mention: Faster R-CNN [Ren

et al., 2017], Yolo9000 [Redmon and Farhadi, 2017], Single Shot Detector (SSD) [Liu

et al., 2016] and Feature Pyramid Network [Lin et al., 2017]. All these models show the

the effectiveness of CNNs and the architectures are also utilized in many other stud-

ies [Li Yandong, 2016], including anomaly and crowd behavior analysis approaches [Tri-

pathi et al., 2018].

Figure 2.4: Clasical CNN architecture proposed by Le Cun et al. [1990].

Figure 2.5: Alexnet architecture [Krizhevsky et al., 2012].
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2.6.2 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a powerful and robust type of neural network

and is employed in many promising algorithms because they are the only NN type

with an internal memory. RNNs are able to remember important information about

the input that they received, which enables them to be very precise in predicting next

information states. These models are well suited for sequential data such as time series,

speech, text, financial data, audio, video and weather. An particular advantage is that

they can form a much deeper understanding of a sequence and its context, compared

to other algorithms.

In a RNN, the information feeds cells through a loop. When it makes a decision,

it takes into consideration the current input and also what it has learned from the

inputs it received previously. A usual RNN has a short-term memory. Thus, recurrent

neural network has two inputs, the present and the recent past. This is important

because the sequence of data contains crucial information about future information.

This NN assigns, as all other deep learning algorithms, a weight matrix to its inputs

and then produces the output. Note that RNNs apply weights to the current and also

to the previous input. Furthermore, they also update their weights for both: through

gradient descent and backpropagation through time, this latter term is basically back-

propagation algorithm on an unrolled RNN. Figure 2.6 presents an example of unrolled

RNN. In the left, you can see the RNN, which is unrolled after the equal sign. Note

that there is no cycle after the equal sign since the different time steps are visualized

and information is passed from one time step to the next. Classical RNN deals with

two major problems: exploding and vanish gradient. The first problem refers when

algorithm assigns high importance to the weights, without much reason. The second

issue occurs when the values of a gradient are too small and the model stops learn-

ing or takes way too long because of that. This was a major problem in the 1990s

decade and much harder to solve than the exploding gradients. Fortunately, it was

solved by Hochreiter and Schmidhuber [1997], whose introduced the Long Short-Term

Memory (LSTM).

Figure 2.6: Example for unrolled Recurrent Neural Network (RNN) [Olah, 2018].
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LSTM is special kind of RNN, capable of learning long-term dependencies. In

standard RNNs, the main unit is composed by a simple structure, such as a single tanh

layer. However, LSTM introduces a structure based on four gates, which are used to

remember important information, to forget irrelevant information and to select which

type of information is used in each iteration during the learning. This revolutionary

technique aims to solve many problems improving the classical models.

2.6.2.1 Gated Recurrent Unit (GRU)

Proposed by Chung et al. [2014], Gated Recurrent Unit (GRU) solves the vanishing

gradient problem which comes with a standard recurrent neural network. GRU can also

be considered as a variation on the LSTM because both are designed similarly and, in

some cases, produce equally excellent results. To solve the vanishing gradient problem

of a standard RNN, GRU uses an update gate and a reset gate. Basically, these are two

vectors which decide what information should be passed to the output. An important

characteristic about them is that they can be trained to keep information from long

ago without losing it through time or removing information which is irrelevant to the

prediction. Figure 2.7 depicts the unrolled GRU and Figure 2.8 presents the GRU

cell layout, where, plus symbol represents the plus operation, sigma box is the sigmoid

function, circle is the Hadamard product � and tanh is the tangent hyperbolic.

Figure 2.7: Unrolled Gated Recurrent Unit (GRU).

The update gate helps the model to determine how much of the past information

(from previous time steps) need to be passed along to the future. It represents an

important advantage because the model can decide to copy all the information from

the past and eliminate the risk of vanishing gradient problem. This process follows:

zt = σ(W (z)xt + U (z)ht−1). (2.5)

Given an input xt, it is multiplied by its own weight W (z). Similar with ht−1, which

holds the information for the previous t − 1 units and it is also multiplied by its own

weight U (z). Both results are added together and a sigmoid activation function is

applied to squash the result between 0 and 1.
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Figure 2.8: Gated Recurrent Unit (GRU).

Reset gate is used to decide how much of the past information to forget. The

reset value is computed following the equation 2.5. This formula is the same as update

gate, the difference is the weights and the usage of the gate. Once the model computed

the information of each gate, the algorithm uses the reset gate to store the relevant

information from the past. As:

h′t = tanh(Wxt + rt � Uht−1).

The network computes ht vector which contains information about the current unit

and passes it to the network. Update gate determines what to collect from the current

memory content h′t and what from the previous steps ht−1. This process is computed

as follows:

ht = zt � ht−1 + (1− zt)� h′t.

GRU eliminates the vanishing gradient problem because it keeps the relevant informa-

tion and passes it to the next time steps of the network.

2.6.3 Autoencoder (AE)

Autoencoders are a subcategory of (feed-forward) Artificial Neural Network (ANN)

which possesses auto-association property. It is an unsupervised learning algorithm

trained by using backpropagation method. Autoencoders are similar to dimensionality

reduction techniques like Principal Component Analysis (PCA). They project the data
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from a higher dimension to a lower dimension using linear transformation and try to

preserve the important features of the data while removing the non-essential parts.

Autoencoders usually have a hidden layer which has a smaller number of neurons

compared to visible layers. The main goal of this particular type of networks is to

learn how to reconstruct the data from a lower dimensional space representation.

The AE tries to learn a function AW,b(x) ≈ x. In other words, it is trying to

learn an approximation to the identity function, so as to output x̂ that is similar to x.

The identity function seems a particularly trivial function to be trying to learn; but

by placing constraints on the network, such as by limiting the number of hidden units,

interesting structure about the data could be discovered.

AE can be divided into three parts: encoder, code and decoder. Figure 2.9

depicts the classical architecture for AEs. The encoder compresses or down-samples

the input into a lower dimension. The space represented by this new dimensionality

is often called the latent-space or bottleneck and contains the semantic representation

or the code of the input. The decoder intends to reconstruct the input using only the

encoding of the input. AEs have generalized the idea of encoder and decoder beyond

deterministic functions to stochastic mappings fencoder(h|x) and gdecoder(x|h). The goal

is to minimize argminf,g||x − (f o g)(x)||2. In the Figure 2.9, the AE contains three

fully connected hidden layers. Thus, given an input x ∈ Rd, the encoder maps into

h ∈ Rp, where, h = ρ(Wx+ b). After that, decoder looks for rebuilt the representation

x̂ = ρ(W ′x + b′). Activation function ρ usually is a ReLu or a Sigmoid. The loss

function for this representation is given by

L(x, x̂) = ||x− ρ(W ′(ρ(Wx+ b)) + b′)||2. (2.6)

Figure 2.9: Image representation of Autoencoder.

Due to their capacity to build features based on only normal patterns, AEs have
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been used in many anomaly recognition approaches [Chong and Tay, 2017]. Thus,

AEs offer an alternative of unsupervised feature extraction, where, approaches train

with normal representations (images, trajectories, optical flow, among others), there-

fore, during the test characteristics for the anomalous events, the representations are

sufficiently different from the characteristics of the normal representations.
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Chapter 3

Related Work

Anomaly detection involves many research areas and application domains, such as

cyber-intrusion detection, fraud detection, medical anomaly detection, industrial dam-

age detection, image processing, textual anomaly detection and sensor networks.

Anomalous events are something that people have learned to identify based on

their experiences and abilities to understand the context in which things occur. For

instance, there is nothing anomalous when car is on a road, however, a car driving on a

playground is very strange, and should be considered an anomaly. On the other hand,

there is nothing abnormal about a child playing on a playground, but it certainly would

be if the child were on the road. Generally, if we see some event, we will consider its

context, which will help us to decide whether we should be concerned or not. Thus, an

anomalous event depends on the environment and mainly the context. Furthermore,

we can define an anomalous event as “something that is inconsistent with or deviates

from what is usual, normal, or expected”.

It is important to emphasize that an anomalous event is not necessarily an ab-

normal situation, it only deviates from the normal or expected. An algorithm can be

designed to recognize what is normal and anomalous, however it is not currently capa-

ble of solving this problem as humans do because a person has years of experience and

knowledge regarding many domains, rendering the automatic anomaly event detection

a hard and challenging task.

In the following sections, we present the two steps of anomalous event detection:

(i) feature extraction and (ii) learning models. Our main goal is to give a brief overview

of models and relating them with our study. For further details, please refer to works

such as [Lavee et al., 2009; Chandola et al., 2009; Li et al., 2015].
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3.1 Feature Extraction

A feature, in computer vision, is a mapping of an image or patch from raw data to

an often smaller, however, rich information representation. This should be done by

extracting only the key information of the raw data and leaving out the redundant and

unimportant information. In general, a system for activity understanding and unusual

event detection in surveillance videos involves several key components for processing

videos: (i) low-level components for background modeling, feature extraction, and ob-

ject tracking; (ii) middle-level components for object and action description, e.g. object

and action classification; and (iii) high-level components for semantic interpretation,

e.g. activity understanding and unusual event detection. Our proposed models focus

on low level and high level representations.

A very common category of anomaly detection methods found in the literature

addressed the problem by learning activity patterns from low-level handcrafted visual

features from spatiotemporal regions. They describe regions using Histogram of Opti-

cal Flow (HOF) [Chaudhry et al., 2009], Histogram of Oriented Gradient (HOG) [Dalal

and Triggs, 2005], Space-Time Interest Points (STIP) [Laptev and Lindeberg, 2003],

and some variations of these descriptors. Ye and Li [2017] proposed a sparse repre-

sentation based on HOG and HOF to build a semantic dictionary, which is used to

compute a score based on each descriptor. Leyva et al. [2017] proposed a model based

on optical flow information and HOF, which is utilized in a voting inference scheme

from Gaussian Mixture Model (GMM) and Markov Model (MM) Cheng et al. [2016]

proposed a Bayesian approach to model HOF and HOG features, classified using a

one-class Support Vector Machine (SVM). Cheng et al. [2015] address the problem

using local and global analysis, mid-level features (codebooks) extracted from STIP

decriptor to perform anomaly recognition.

Other models explore the scene using real world points. De Almeida et al. [2017]

proposed a model that describe using real world movement flow, to create a 2D his-

togram representation. Afterwards, it groups features to determine change in crowd

movement. This, model takes in conseideration the complete frame. Shi et al. [2016]

employed STIP and Multiscale HOF to build a salience map from temporal blocks with

different structure, anomalies are detected when testing sequences exceed a threshold

in map representation. Besides movement, other approaches focus on appearance, such

as Wang and Xu [2016] which employs the wavelet transform to create a saliency map

from texture information.

Our approach based on low-level features differs from literature since it introduces

a descriptor that explores the subject movement and captures the information in form



31

of ranges. These ranges aim at detecting strong variations in the orientation or speed of

the subjects in the scene. Studies based on descriptors commonly extract texture and

movement information and combine them in a descriptor or create codebooks. Instead

of that, our model distributes the information in a single descriptor, which can be used

directly to detect anomalous events.

A common characteristic of the previously mentioned methods is that features

are basically extracted from spatiotemporal regions, defined by the location of inter-

est points. Nevertheless, there are approaches that extract features from different

sources. For instance, Xiang and Gong [2008] utilized the blob information extracted

from actor (subjects and objects) bounding boxes. Other models employ texture in-

formation to create salience maps. For instance, Duan et al. [2014] proposed a feature

named Kernel Dynamic Texture (KDT), which is a statistical model that transforms

the video sequence to represent the appearance and dynamics of the video. Yuan et al.

[2015], not only employed KDT, but also proposed a novel structure to model crowd

behavior, called Structural Context Descriptor (SCD). Then, anomaly are localized

using an online spatiotemporal analyzing the SCD variation of the crowd. Finally,

Nallaivarothayan et al. [2012] mixed the information regarding blobs, motion (optical

flow of regions) and textures extracted from motion to update a double Hidden Markov

Model (HMM). In surveillance context, these models present a great advantage over

spatiotemporal approaches, which is the specific target location, and in case of tra-

jectories, the complete event performed by the actor. This important characteristic is

explored by our approaches that focus on the individual.

The majority of methods model activity patterns only considering local or global

context, and not both. In view of that, Xu et al. [2013] proposed a hierarchical frame-

work that considers both global and local spatiotemporal contexts. Regarding the

global context, the authors extract atomic activity patterns from low level optical

flow features, and the distributions of atomic activity patterns are modeled for higher-

level activity representation. Cheng et al. [2015] also proposed a unified framework

to detect both local and global anomalies using a sparse set of Space-Time Interest

Points (STIP) [Laptev and Lindeberg, 2003]. They identify local anomalies as STIP

features with low-likelihood visual patterns and global anomalies as interactions that

have either dissimilar semantics or misaligned structures with respect to a probabilistic

normal model. We adopt the robustness of such approaches in our third model based

on neural networks, which utilizes semantic information extracted from trajectories.

With the success of Deep Neural Network (DNN), researchers have started to use

Convolutional Neural Network (CNN), Autoencoder (AE), Generative Adversarial Net-

work (GAN) and Recurrent Neural Network (RNN) to solve the anomaly recognition
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problem [Kiran et al., 2018]. Such architectures learn hierarchical layers of represen-

tations to perform pattern recognition and have demonstrated impressive results on

many tasks. Commonly, the techniques either employ DNN in part of their approach

or present a complete model based on DNN.

CNN approaches [Sabokrou et al., 2018; Shao et al., 2016; Zhou et al., 2016] look to

describe anomalies, creating models that combine optical flow and texture information

from spatiotemporal regions. Most of these models present an end-to-end architecture.

Models that use AE or Convolutional Auto Encoder (CAE) [Feng et al., 2016; Chong

and Tay, 2017; Qiao et al., 2017; Ribeiro et al., 2017] describe events in non-supervised

fashion. Thus, anomalies are representations that differ from normal because they

cannot be reconstructed by the AE. Similar to AE, GAN approaches [Ravanbakhsh

et al., 2017; Lawson et al., 2017] learn the normal behavior using a generative model.

Anomalies are recognized by the discriminator since the generator built an anomaly

representation based on normal situations, it means trying to fit something that is

different using only the normal. RNN models [Feng et al., 2016; Chong and Tay, 2017]

usually appear accompanied with DNN, specially for movement data. The idea is to

combine the recurrent information of what is considered normal and create a represen-

tation of it. Nevertheless, most of these models depend on the camera position. Thus,

these models learn specific patterns of the camera view which cannot be transferred

to other views without retraining. Our second approach (human-object interaction)

has a significantly advantage from traditional models and its main difference is how it

collects the information and uses it in other scenes. Instead of using correlated infor-

mation between camera and scene, our approach looks for patterns that can be used

in other scenes. Thus, human-object iterations aim to determine anomalous events in

other scenes that belonging to same context.

Xu et al. [2015] proposed a novel Appearance and Motion Deep-Net (AMDN)

framework for discovering anomalous activities. Their model learns discriminative fea-

ture representations of both appearance and motion patterns in a fully unsupervised

manner. Patches from still images and dynamic motion fields represented with opti-

cal flow are used as input of two separate networks, to learn appearance and motion

features, respectively. Then, early fusion is performed by combining pixels with their

corresponding optical flow to learn a joint representation. Finally, a late fusion strat-

egy is introduced to combine the anomaly scores predicted by multiple one-class SVM

classifiers. Similarly to handcrafted features, these techniques also extract texture (ap-

pearance) and movement (flow) information. In our model based on trajectories, the

source of information for anomaly representation is different. Specifically, our model

extracts information from trajectories which implying semantic information about a
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person int he scene, for instance the location of the person, its speed, its orientation,

the performed path. An important difference with these models is the fact that our

model (trajectory based), is not affected with high color intensity changes. Obviously,

the number of persons and the distance from camera is an important limitation of our

model, compared with crowded models.

To take advantage of the best of both trends (handcrafted and deep fea-

tures), Hasan et al. [2016a] used an Autoencoder (AE), based on the two types of

features, to learn regularity in video sequences. According to the authors, the AE can

model the complex distribution of the regular dynamics of appearance changes. As

an input to the AE, they used handcrafted features (HOG and HOF) with improved

trajectories and learn the regular motion signatures by a AE based on seven stacked

fully connected layers. Since the features were not designed or optimized for their

problem, the authors claim that it may be suboptimal for learning temporal regularity,

thus they used the video as an input and learn both local motion features and the AE

by an end-to-end learning model based on a fully convolutional neural network.

During many years, the researchers employ region based models due to the ease

of adapting the model in environments with few people and crowds, avoiding using tra-

jectories due to the difficulty of extracting them in environments with a high density

of people. However, with the recent developments in object detection and recogni-

tion, including new technologies, this issue has been progressively reduced. Pioneering

studies on the recognition of anomalies based their extraction of characteristics on

trajectories [Wang et al., 2008]. New trends are resuming the use of trajectories to

detect anomalous events. Bera et al. [2016] restricted their work to trajectory-level be-

haviors or movement features per agents, including current position, average velocity

(including speed and direction), cluster flow, and the intermediate goal position. In

view of that, they developed a pedestrian behavior feature interactively computed from

tracked trajectories. In contrast with this approach, our trajectory based approach uses

information extracted with neural model, these features contains semantic information

about movement. The model proposed by Cosar et al. [2017] takes information of tra-

jectories to build regions, such regions are examined in a time lapse to find texture

and movement information. Li et al. [2013] proposed a technique that describes the

scene using a sparse representation of overlapping trajectories, which are grouped and

abnormal events are recognized when they differs much from any cluster. Chebiyyam

et al. [2017] built a graph representation based on trajectories. Saini et al. [2018] pro-

posed a different way to determine anomalies, their algorithm uses the trajectories to

train a Hidden Markov Model (HMM), combined with genetic algorithm, which detect

anomalies by their low probability. Zhou et al. [2015] proposed a method based on
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HMM and feature clustering. An important difference with these approaches and ours

is that our trajectory model does not segment the trajectories in parts or blocks, it

means our model focus in complete trajectory.

Other studies focus on the trajectory orientation, for instance Dee and Caplier

[2010] whose proposed a model based on trajectories representing the information in

histograms. This model is very similar to our handcrafted approach, however we in-

troduce entropy information, as well as they take information about the trajectory

instead of this, our handcrafted approach extracts information from spatiotemporal

region. About our third trajectory based approach, the difference is the semantic in-

formation extracted from the neural networks.

Trajectory analysis is based on object tracking and typically requires an un-

crowded environment to operate, while Motion analysis, is better suited for crowded

scenes by analyzing patterns of movement rather than attempting to distinguish ob-

jects [Ryan et al., 2011; Adam et al., 2008] individually. The difficulty of the trajectory

approach increases proportionally to the number of individuals in the scene [Popoola

and Kejun Wang, 2012; Vishwakarma and Agrawal, 2013]. Most of Motion analysis

methods tend to handle a crowd as short groups of people [Choi and Savarese, 2012].

The object-centered approaches [Shao et al., 2014; Mehran et al., 2009] require explicit

detection and segmentation of individuals. These techniques, in some cases are not

feasible due to severe inter-object occlusion, especially in highly crowded scenes. Other

models prefer to represent the crowd scenes using dense information rather than de-

termining interest objects (groups of people). These models focus on scenes where the

people movement covers most of the vision field.

3.2 Learning Models

Learning models address the anomaly detection step by learning the normal patterns

and using this knowledge to classify normal from anomalous patterns. These ap-

proaches are trained in an unsupervised manner using videos containing only normal

event, and an incoming video is classified as either normal or anomalous based on

the likelihood of the clip according to the trained model, i.e outliers of the model are

classified as abnormal while the other are classified as normal [Nallaivarothayan et al.,

2013].

Zhang et al. [2015] proposed a model based on Locality Sensitive Hashing Filters

(LSHF), in which, the idea is to hash the data into a low-dimensional binary (Ham-

ming) space, where similar data points are mapped into the same bucket with a high
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probability while dissimilar data points are hashed into the same bucket with a low

probability. Wang and Xu [2016] presented a model that extracts dynamic textures

from spatiotemporal regions, this information is built using steerable pyramid wavelet

transform. The final detection is based on Gaussian probability function. Anders-

son et al. [2013] presented an approach where K-means and Hidden Markov Model

are trained and recomputed every time that an anomaly is recognized. Zhang et al.

[2005] proposed a model that trains an HMM using a large amount of normal situa-

tions. It performs iterations of likelihood test and Viterbi decoding on unlabeled video

sequences, a number of unusual models is derived using the unlabeled sequences via

Bayesian adaptation. These approaches have the benefit of not requiring any train-

ing data from anomalous events, which are often poorly represented within the data

available for training. However, this approach may also suffer from a high rate of

false positives, since any event not sufficiently represented in the training data will be

detected as anomalous.

Xu et al. [2015] proposed a model based on patterns learned from one-class SVM

classifier. These representations are combined in a weight vector which is the result of

linear combination of one class SVM scores. Del Giorno et al. [2016] proposed a model

based on classical Histogram of Oriented Gradient (HOG), Histogram of Optical Flow

(HOF) and Motion Boundary Histogram (MBH), this study determines the anomalous

frames defining probabilities extracted from one-class classifier. Fang et al. [2016]

proposed a model based on Principal Component Analysis (PCA) neural network. This

model uses optical flow information of patches, a set of PCANet models are learned

separately based on them. For each patch, this model removes block-wise histograms

represent each block in the patch, as opposed to linking them all to a single vector. After

obtaining training features, one-class classifiers are trained to determine anomalous

patches. Liu et al. [2014] proposed a model based on a temporal dynamic textures

to describe spatiotemporal volumes of events in videos. Using this information an

sparse coding is utilized for reconstructing the test data and determining if a volume is

anomalous or not. Similar model was presented by Li et al. [2014]. They used dynamic

textures as features, however, instead using space coding, they utilized saliency maps to

detect where occurs an anomaly. These maps are built from statistical model based on

Conditional Random Field (CRF) filters. A feature shared by these methods is the use

of local (patches or regions) and global features. Antić and Ommer [2011], proposed a

pixel level model, instead using patches, this model determines the abnormality firstly

computing foreground pixels, after that, the model creates hypothesis about them.

This hypothesis is used to train a probabilistic graphical model to determine if a video

parse is normal or not. These methods have the benefit of not requiring labeling the
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multiple classes of training data, but suffer from the drawbacks associated with the

assumption that all rare events are anomalous. In the results for our trajectory based

approach, we present an analysis for this type of situations.

To model the events, the majority of techniques employ Gaussian Mixture Model

(GMM) [Pathan et al., 2010] and Hidden Markov Model (HMM) [Zhang et al., 2005].

In [Kratz and Nishino, 2009], a multi-level HMM is used to predict the anomalous

events in specific regions of the crowd. In [Andrade et al., 2006; Kim and Grauman,

2009], Markov models allow the analysis of the scene. The expectation maximization

algorithm has been also employed as predictor for anomaly [Mehran et al., 2009]. An-

other statistical model was employed in [Antić and Ommer, 2011], where each pixel

has a estimated probability to belong to foreground (there is no movement at that

particular location), then by using inference techniques, it determines whether a pixel

is an anomaly signal. In [Li et al., 2014], a robust approach uses a hierarchical mixture

of dynamic textures to describe the frame. Despite stated in several papers, the models

based on the crowd trajectories are hard to accomplish, due to aspects such as occlusion

and video quality. Xiang and Gong [2008] proposed a model based on group profiling

that is considerably different from common models in the literature. Their model is

based on group modeling, where a map of four descriptors define the anomalies. Then,

this information is quantized using a bag of words technique and the events are classi-

fied as anomalous or not using a Support Vector Machine (SVM). The popularity of

these models is due to their ability to model events by means of probabilities. Many

of them even consider temporal sequences. However, with the tendency and success of

convolutional and recurrent networks, the use of these models has declined in recent

years.

A straightforward, however successful technique is based on k-Nearest Neighbors

(k-NN) ranking. For instance, Saligrama and Chen [2012] proposed a model based on

handcrafted features, where the relation between spatiotemporal regions is given by a

MM, and the local analysis is performed using k-NN in each region. In our handcrafted

approach, we utilize a similar pipeline. In our trajectory based approach, the learning

model is based on the own trajectory descriptors, nevertheless, the final recognition is

also performed using k-NN technique.

Many models based on Neural Networks [Kiran et al., 2018] present an end to

end architecture, it means, the complete process of learning is part of the architecture,

this includes the feature extraction and the anomaly detection. In last few years, this

type of models has achieved great popularity among researchers, due to the success of

the networks. As aforementioned, in our approach based on trajectories, we employ

neural networks to create the feature representation, the learning process is performed
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by an Autoencoder (AE). We employ also NNs in our study, however, a difference with

conventional neural network models is that our model focus in trajectory information,

while classical models focus on spatiotemporal information.
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Chapter 4

Anomaly Detection based on

Handcrafted Feature Descriptor

Extracted from Spatiotemporal

Regions

Anomalous event detection in video sequences has proven to be challenging because

of the variations in the environment, appearance of actors, the way that same action

is performed by different people, speed, duration and points of view from which the

event is observed. This variability renders the difficulty of defining effective descriptors.

Many studies focus on extracting information that suits in many context scenes. Thus,

handcrafted features from spatiotemporal regions have been a effective tool in most

studies in literature.

In this chapter, we present two representations for anomalous event detection

approaches, both based on handcrafted feature descriptors. Inspired on the Histogram

of Optical Flow (HOF) [Chaudhry et al., 2009]. While the first proposition considers

the magnitude and orientation of the optical flow, the second incorporates entropy

information to better detect possible anomalous events. This approach aims to detect

anomalies in static camera view and collects only information from moving objects.

4.1 Overview

Handcrafted features extracted from a spatiotemporal region are presented in many

classical studies [Li et al., 2015]. The goal of these methods is to extract low-level



39

features from motion, color, and other fundamental image properties. The following

paragraphs presents some important characteristics of such methods.

The main advantage of using information from low level features is that the major-

ity of activities, which are part of any event, present movement. Thus, models based

on this type of information are robust to image-processing difficulties, for instance,

occlusion. Further, since no objects are explicitly detected, approaches based on spa-

tiotemporal regions are able to operate successfully even with large numbers of targets

in view, for instance crowded scenes [Sodemann et al., 2012]. It is for this reason that

these types of models are popular in recognition of anomalous events containing crowds.

Finally, these models are suitable for real time applications [Roshtkhari and Levine,

2013]. These are important advantages of classical handcrafted feature descriptors, due

to their simple model structure.

Generally, the main drawback associated with these methods is their locality.

Since the activity pattern of a pixel cannot be used for behavioral understanding, their

applicability in surveillance systems is restricted to the detection of local temporal

phenomena [Mehran et al., 2009]. Even though, this disadvantage depends on the

objective of anomaly detection, many cases suit well with this type of approaches.

The following sections describe our approach to detect anomalous event based on

handcrafted features extracted from spatiotemporal regions. Our main contribution

are two feature descriptors. The first descriptor is the Histograms of Optical Flow

Orientation and Magnitude (HOFM) and the second is an extension, called Histograms

of Optical Flow Orientation, Magnitude and Entropy (HOFME). These descriptors

aim to capture anomalies based on the movement of a defined region. Therefore, the

anomalies that can be detected only consider situations that involve movement. Our

models are oriented to situations with crowds and, where in general, the camera has a

wide view of the scene, which allows to analyze by regions the scene.

4.2 Proposed Approach

Based on common anomalous events, such as pedestrians moving with excessive speed,

spatial anomaly (intruders in restricted areas or unusual locations), and presence of

non-human objects in unusual locations [Ryan et al., 2011], we define four character-

istics that could be extracted from spatiotemporal regions, to describe normal motion

patterns in a particular region of the scene: i) velocity - speed of moving objects;

ii) orientation - common flow of the objects; iii) appearance - texture of the objects;

and (iv) density - number of moving objects. We hypothesize that the use of such
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characteristics allow us to capture information regarding anomaly. Note that these

characteristics allow the detection of anomalies based on movement and appearance.

Hence, we propose a spatiotemporal feature descriptor based on orientation and ve-

locity information extracted from optical flow. The goal of this descriptor is to split

movement information to discriminate speed and orientation of components in the re-

gion. Therefore, we can determine anomalous event comprising fast/slow movements

and unknown direction of actors (people, cars, bicycles) in the scene, thus the feature

extraction step must describe the movement in certain regions in the frame sequence.

Our method is composed of two main steps: (i) descriptor extraction and (ii)

anomalous event detection. It divides the video into non-overlapping spatiotemporal

regions and builds an orientation-magnitude representation for each region (cuboid).

On the training step, the histograms extracted from cuboids are assumed to contain

normal patterns. In other words, our model collects the histograms in a specific spa-

tiotemporal region to be able to capture the normal patterns. During tests, for a

specific cuboid, our approach performs a simple nearest-neighbor search to find simi-

lar patterns stored during training at that region. If none is found, we consider it as

anomalous. An overview of the approach is illustrated in Figure 4.1.

Figure 4.1: Diagram illustrating the proposed approach to performing anomalous event
detection.
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4.2.1 Descriptor Extraction

Our proposed descriptor is based on two main steps: (i) Frame difference and Optical

flow extraction; and (ii) histogram building, described in the next paragraphs.

Frame Difference and Optical Flow Extraction

Since the extraction of optical flow for the whole image can be computationally expen-

sive [Ryan et al., 2011], we first create a binary mask using image subtraction between

the frame Ii and the frame Ii+t (where i is the frame number). Given a threshold d,

if the resulting difference is smaller than d, then the pixel is discarded; otherwise, this

pixel p is set to its corresponding local cuboid Ci. The spatiotemporal region Ci is a

tri-dimensional representation of a region Ri in c consecutive frames. c is considered

as temporal length, and region R is a patch of the frame. The optical flow is computed

between framei−1 and framei as illustrated in Figure 4.2. It is important to mention,

that consecutive frames are not necessarily immediately consecutive frames, in this

way, discarding intermediate frames allows us to capture more movement information.

Thus, model can take two frames discarding n frames between them.

Figure 4.2: Image representation of a spatiotemporal region or cuboid Ci, which is
composed of region R over c frames.

Figure 4.3 shows an example of this stage. We can see two consecutive frames

and the resulting frame difference image. In Figure Figure 4.3(d), the colored pixels

show optical flow output position, in green the past frame, and in pink the optical flow

vector position. An important aspect to mention is that the quantity of information

to be processed has been reduced whit this pre-processing step.
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(a) Framei−1 (b) Framei

(c) Frame Difference (d) Optical flow of two frames

Figure 4.3: (a) and (b) are two consecutive frames. (c) is the frame difference between
Frame i − 1 and Frame i, (d) is the optical flow representation, colored points repre-
sent the optical flow translation, green for previous frame, pink represents optical flow
output. Then, image in (c) is a mask, thus, only white pixels this image are used to
compute optical flow.

Histogram Building

In this section, we present and discuss our proposed feature descriptors. First, we

detail the Histograms of Optical Flow Orientation and Magnitude (HOFM) descriptor

algorithm, afterwards, the Histograms of Optical Flow Orientation, Magnitude and

Entropy (HOFME). The main motivation of our proposed descriptor is to encode

the movement of a determinate region, with the aim of capturing information about

the normal flow of subjects that pass trough the regions. Inspired in HOF the idea

is to distribute the flow information in order to differentiate direction and velocity

(magnitude) in each region, it means from any object that presents movement. Thus,

scenes where the context presents slow movement like people walking (university, public

institutions, etc.) our descriptor and our model in general gets to differentiate this type

of events from people running.

Let be FS×B a matrix, where S is the number of orientation ranges and B the

number of HOF magnitude ranges. Similar to the original HOF, we build an accumu-

lation matrix based on the orientation of the vector, but we incorporate information
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of magnitude provided by the vector field resultant of optical flow (note that the mag-

nitude of the optical flow indicates the velocity that the pixel is moving). Thus, given

the pixels p(x, y, t) and p′(x, y, t + 1) belonging to the cuboid Ci, 1 < i < nc is the

id position of cuboids in the grid created by cuboid layout. For instance, similar to

matrix representation, a grid with 4× 5 layout will have nc = 20 cuboids, where i = 5

is the position (2, 1) in this grid. The vector field −→v between p and p′ is composed by

the magnitude m and orientation θ. In this way, for each cuboid at time t, we compute

the cumulating matrix F using

F (s, b) =
∑
−→v→Ct

i


1 if (s = mod(m,M)) and

(b = mod(θ, B))

0 otherwise

, (4.1)

where s ∈ {1, 2, . . . , S} and b ∈ {1, 2, . . . , B} denote orientation and magnitude ranges,

respectively. The spatiotemporal descriptors are computed for each cuboid Ci.

Figure 4.4 shows a matrix presenting four magnitude and orientation ranges. Each

pixel in the cuboid Ci increments the occurrence of a specific bin in the accumulation

matrix. In this way, our feature vector can be seen as a matrix, where each line

corresponds to a orientation range and each column corresponds to the magnitude

ranges. For instance, the example pixel in figure 4.4 has (50, 17), orientation and

magnitude values, this pixel increments the value in M1×1, since the angle 50 is in OC1

range and its speed is between (0, 20], corresponding to first column. In this example

for simplicity, the temporal depth is c = 2. In case of c > 2, there will be more optical

flow vectors for each pixel position, e.g., t = 4 yields three optical flow images.

The Histograms of Optical Flow Orientation, Magnitude and Entropy (HOFME)

is a direct extension of the Histograms of HOFM. Where, we introduce orientation

entropy to the descriptor. The idea is to collect more information regarding texture in

the spatiotemporal regions. The HOFME steps are very similar to the HOFM. The

main difference is in the histogram building stage.

For the HOFME histogram, we define a cube FS×B×E, where S is the number of

orientation ranges, B the number of magnitude ranges and E is the number of entropy

ranges. We build a 3D matrix based on the orientation and magnitude information

provided by the optical flow. We refer to cube, as a graphical representation of the

cumulating matrix, the word cuboid refers to a spatiotemporal region. For the entropy

information extraction, we use the orientation information, thus, different flow orienta-

tions in the spatiotemporal region may indicate the presence of distinct objects moving

in different directions, it is important because it provides to the model information
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Figure 4.4: Example of feature vector extraction using orientation-magnitude
descriptor. This figure shows a matrix presenting four magnitude ranges:
{(0, 20], (20, 40], (40, 60], (60,∞)}, named SR1, SR2, SR3, SR4. All magnitudes are
represented by colors blue, green, orange and red, respectively. Moreover, this fig-
ure also presents four ranges for orientations: {(0, 90], (90, 180], (180, 270], (270, 360]},
named as OC 1, OC 2, OC 3, OC 4.

about different actors in the region or objects with different size. In this way, if some

cuboid presents different orientations, it is more likely that “subjects” or “objects” on

it have a distinct movement, because, commonly moving objects present the same di-

rection. For instance, a vehicle passing through the view presents low entropy in its

orientation flow.

Given pixels p ∈ Ct
i , the vector −→vp is composed by magnitude m and orientation

θ. For each cuboid at time t, we compute the cube feature F using the Algorithm 2.

Algorithm 2 HOFME Descriptor algorithm.

1: procedure HOFME(Ct
i )

2: Ct
i is the cuboid i at time t

3: for each pixel p ∈ Ct
i do

4: e← Entropy(p)/E
5: s← pθ/S
6: b← pm/B
7: F [e, s, b]← F [e, s, b] + 1

8: return F
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In Algorithm 2, s ∈ {0, 1..(S−1)}, b ∈ {0, 1..B} and e ∈ {1, 2..(E−1)} represent

the bins in the cuboid, respectively. S, B and E are the factors for the number of bins

(e.g., if we use 4 bins for orientation, the range B is 90◦ or 2π/4).

The magnitude range is a variable that depends on the scene. For instance,

when moving objects are far from camera, the optical flow vector presents a small

magnitude, in contrast, when the moving objects are near the camera, the optical

flow vector presents a high magnitude. Although, this variable is set according to the

scene, the number of ranges is fixed. Magnitudes that exceed the maximum value in

the range are truncated. Thus, pixels that present higher magnitudes, we increment

the bin corresponding with the last magnitude range. Thus, the distribution in the

histogram is clearly divided or separated by small or large magnitudes.

To compute the entropy, we use a 3D patch around the pixel p, similar to cuboid

however much tiny. The first step is to build the orientation distribution around the

pixel p. The resultant histogram Op is normalized to get the probability of each quan-

tized orientation for pixel p, finally the entropy is computed by

Entropy(p) = −
S∑
i

Op(i)log[Op(i)],

where S is the number of quantization ranges as well as orientation used to build the

cumulative cube.

Figure 4.5 shows a matrix presenting four magnitude and orientation ranges.

Similar to HOFM descriptor, each pixel in the cuboid C increments the occurrence

of corresponding bin in the histogram. The feature vector could be represented as a

cube, where each line corresponds to a determinate orientation range, each column

corresponds to the magnitude ranges and the deep of the cube represents the entropy

measure. In the example, the pixel increments a unity in M1×1, since the angle 50 is in

OC1 range and its speed is between (0, 20], corresponding to first column. Finally, we

compute the entropy orientation measure. Around the pixel p(50, 17), all the adjacent

pixels have the same orientation, then the histogram for orientation distribution is

accumulating in just single bin range, using equation 4.2.1, the entropy is 0. Hence,

zero entropy corresponds to Epy1. In this example the depth of cuboid is c = 2, then,

there is only one optical flow matrix (magnitude and orientation each pixel).

Other studies [Wang et al., 2013; Laptev et al., 2008], similar to ours, are also

based on optical flow information, nevertheless, there are some fundamental differences.

First, our descriptor instead of accumulating the magnitude value in the orientation bin,

it represents the magnitudes in a different axis, quantizing the magnitude in ranges,
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SR_1 SR_2 SR_3 SR_4

OC_1

OC_2

OC_3

OC_4

50

OC_4

OC_1

OC_3

OC_2

17

Orientation Distribution Magnitude and orientation

Epy_1 Epy_2 Epy_3 Epy_4

Feature Vector [4 x 4 x 4]

Figure 4.5: Matrix representation for four magnitude ranges:
{(0, 20], (20, 40], (40, 60], (60,∞)}, named SR1, SR2, SR3, SR4. All magnitudes
are represented by colors blue, green, orange and red, respectively. Moreover, this Fig-
ure also presents four ranges for orientations: {(0, 90], (90, 180], (180, 270], (270, 360]},
named as OC 1, OC 2, OC 3, OC 4. Finally we can see the entropy as a
third dimension based on four ranges also {(0, 1

2
], (1

2
, 1], (1, 3

2
], (3

2
, 2]} labeled as

Epy1, Epy2, Epy3, Epy4 respectively. Entropy value is between [0, 2] given base of two.

providing information regarding to orientation and velocity separately. The second

important difference is the entropy. Our descriptor also includes another axis, which

represents the orientation variation. Finally, the descriptors proposed in [Wang et al.,

2013; Laptev et al., 2008] concatenate other descriptors HOF, HOG and MBH, all to

compose the feature vector.

4.2.2 Detection of Anomalous Events

In this step, for each cuboid, the feature vectors for testing are compared with normal

feature vectors, collected in the training. Similar to Saligrama and Chen [2012] model,

the goal of this process is to search in the normal pool some feature vector that are

similar to the sample test. Therefore, if a sample test is similar to a normal pattern,

then, it is classified as normal. Otherwise, it is considered as an anomalous pattern.
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This process is explained in Algorithm 3, where, for a specific cuboid Ci, T is the

feature vector for a test sample, N is the set of features vector extracted from Ci. In

each iteration, the algorithm computes the distance ||T − n||2, where n is a normal

pattern in N . If the distance is less than a threshold τ , then the algorithm stops

and returns false, considering the sample a normal pattern. Otherwise, the algorithm

returns true, which indicates that the test sample T is an anomalous pattern.

Algorithm 3 Anomaly detection with nearest-neighbor search.

1: procedure Nearest neighbor search(T,Ci)
2: T is a test feature vector at cuboid i
3: N is a set o normal feature vectors cuboid Ci
4: for n ∈ N do
5: if ||T − n||2 < τ then
6: return False
7: return True

Figure 4.6 illustrates this step by using blue points to represent patterns seen during

training and orange points to represent test samples.

A

B

Figure 4.6: Nearest neighbor search. Anomalous patterns is represented by point A,
normal patterns is point B.

4.3 Experiments

In this section, we evaluate our anomaly detection approach based on handcrafted fea-

tures using the well-known UCSD [Lab, 2014] and Subway [Adam et al., 2008] datasets

and a proposed dataset called Badminton. The criterion used to evaluate anomaly de-

tection accuracy was based on frame-level (i.e., there is an anomaly in a given frame),
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as most works in the literature, the algorithm predicts the frames containing anomalous

events and those predictions are compared to the ground-truth annotations.

4.3.1 Datasets

UCSD Dataset

UCSD [Lab, 2014] is an annotated publicly available dataset for the evaluation of

anomalous event detection and localization in crowded scenarios featuring pedestrian

walkways [Mahadevan et al., 2010]. The dataset was acquired with a stationary camera,

each frame has 238× 158 pixels and it was recorded with frame rate of 10 frames per

second. Anomalous events are due to either the circulation of non-pedestrian entities

in the walkways or anomalous pedestrian motion patterns.

The UCSD videos are divided into two scenarios: Peds1 and Peds2, each captured

by a camera at a different location. The videos recorded from each scenario were split

into various video sequences (clips) containing around 200 frames. The number of

training sequences is 27 and 16 for Peds1 and Peds2, respectively.

Subway Dataset

This dataset is composed of two sequences in a set of videos proposed by Adam et al.

[2008]. The first video sequence, known as Entrance Gate, has a time length of one

hour and 36 minutes and the second video, called Exit Gate has length of 43 minutes.

These sequences correspond to a ticket gate in a subway entrance and exit. The original

ground-truth provided by the authors, containing the initial frame of anomalous events,

focuses on two specific anomaly types: walking in wrong direction and jumping the

ticket gate.

Entrance Gate is a sequence recorded from a subway entrance gate view. The

training phase considers the initial 20 minutes (first 30, 000 frames) and the remaining

of the clip for test (approximately one hour and 16 minutes), where the ground-truth

presented two types of anomalies: walking on wrong way and jumping the ticket gate.

The Exit Gate clip contains data recorded from a subway exit. In this case, the

ground-truth considers only people walking in wrong way. The training set considers

only the first five minutes (first 8, 000 frames) and the rest of video is used to test.

Badminton Dataset

This clip was recorded from a badminton game. In this video, with a total of 345

seconds captured at 30 frames per second and with a frame size of 640 × 360 pixels.
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The scene for this video sequence is simple; there is a grandstand with people watching

the badminton game, people are sitting in the grandstand. We built the ground-truth

focusing on motion activities occurred in the grandstand, especially three situations,

when people jump the stands, people run in the corridor and people celebrate a game

point. Along the video, the initial 56 seconds were used for training to determine what

were the normal activities, such as people climbing up the stairs or walking from the

right side to the left side of the camera and vice-versa. Activities which occurred in

the rest of the video that are different from those previously described were considered

anomalies. The anomalous events detected were people running, which occurred three

times, and individuals walking down the stairs, which occurred several times. In this

video sequence, we define a Region of Interest (ROI), focusing only on the grandstand,

discarding the region where players are competing.

4.3.2 Parameter Setting

Before explaining the experiments, we present the hardware configuration and the

parameter tuning. Our experiments were carried out using a Intel Core I7 (3.2 GHz)

processor and 8 Gbs of memory. Most of the processing has two bottleneck, first in the

optical flow extraction, and second in anomaly detection using the K-nn strategy.

In first stage, for frame difference and optical flow extraction we changed the frame

size, duplicating its size, with the aim of getting more motion optical flow information

since the optical flow vectors present larger magnitudes. For optical flow extraction

we used the pyramidal implementation [yves Bouguet, 2000] presented in the OpenCV

library [Bradski, 2000]. Specifically, calcOpticalF lowPyrLK function receives as input

the consecutive frames, the list of points to determine the optical flow vectors (in

our case the points that are segmented with the frame difference step), and finally a

windows size which is the motion boundary (30× 30 in all our experiments).

The first descriptor HOFM uses four bins for each orientation and six for mag-

nitude. HOFME uses four bins for each orientation, magnitude and entropy ranges.

The model also filters the pixels with small moving magnitude by thresholding values

lower than 0.5 and removing the respective pixels, thus with the aim to filter small

magnitudes that could correspond to intensity variations due to video compression.

These values were chosen in empirical way, trying to obtain the better results.

Both descriptors share two main parameters: (i) the threshold τ , for the nearest

neighbor search; and (ii) the cuboids size (n×m× t), cuboid spatial dimension (width

and height) were set to 30×30 pixels and 5 frames as a temporal depth for both HOFM

and HOFME descriptors. Here, we changed the τ value to generate the Receiver
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Operating Characteristic (ROC) curves, Equal Error Rate (EER) and Area Under

Curve (AUC). ROC curve is utilized to measure the detection accuracy and based

on the ROC curve, there are two evaluation criteria: AUC and EER which is the

ratio of misclassified frames at which False Positive Rate (FPR) = 1 − true Positive

Rate (TPR).

The setup of this parameters is highly dependent of the camera view. Hence, the

values must be set according to the scene view, for instance, camera view distance, the

image size, the people size in the scene, among others. In our experiments we chose

parameter values after many empirical tests, where, we concluded that a good size for

cuboids is when a person in the center of the frame image fits at least into two cuboids.

For our experiments, we employed Euclidean distance to determine the similarity

between patterns. This is due to other performed experiments during testing the

Euclidean distance was the one that achieved the best results (we carried concept

test using hamming, cosine and the mahalanobis distance).

Also, we performed several tests varying the number of bins of the descriptor,

increasing or decreasing the orientation and magnitude ranges. In the results, we

present only the best configuration.

4.3.3 Evaluation on the UCSD Dataset

Table 4.1 shows the results considering the UCSD dataset. On Peds1 scenario, HOFME

approach achieved an EER of 32.0% and an AUC of 0.727, being competitive to most

of the reported methods on the literature, HOFM achieves 0.727 and 33.3%, AUC and

EER respectively. On the other hand, on Peds2, we achieved an EER of 20% and AUC

of 0.875, outperforming all reported results. HOFM descriptor obtains 20.7% of EER

and 0.87 of AUC. The ROC curves for the two scenarios are shown in Figures 4.7

and 4.8. ROC curves and the AUC (curves and values were gently provided by Li

et al. [2014], we included our results on the figure). In this experiment, we compared

our descriptors with other handcrafted descriptors. Figures 4.7 and 4.8 present HOF

descriptor results. Although they have almost random behavior, we present them

because our descriptor is inspired on them. In literature, new approaches using neural

networks as they employ other type of features, they are not present in this comparison.

According to the results, HOFM and HOFME achieved similar results in this

dataset. The entropy information was able to incorporate information only in few cases

where car is passing through. We investigated the cases where our approaches failed.

Most of the undetected anomalous frames correspond to very challenging cases, such

as a skateboarder or a wheelchair going in an almost similar velocity of the pedestrians
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Table 4.1: Anomaly detection AUC and ERR (%) results of HOFME on UCSD dataset.
The results for [Li et al., 2014] was obtained from the original paper.

Peds1 Peds2

Approach AUC ERR (%) AUC ERR (%)

MDT-temporal [Li et al., 2014] 0.827 25.4 0.775 25.9
HOG3D [Kläser et al., 2008] 0.52 50.0 0.61 47.7
MBH [Wang et al., 2013] 0.57 43.4 0.55 45.0
HOOF [Chaudhry et al., 2009] 0.69 36.4 0.82 25.9

Our HOFM 0.727 33.3 0.87 20.7
Results HOFME 0.727 33.1 0.875 20.0

Figure 4.7: Results for Peds1.

and with partial occlusions, as shown in Figures 4.14(b) and 4.14(c). These errors

occurred in sequences 21 and 12 of Peds1 and Peds2, respectively. We can see that

appearance is an important criterion in UCSD dataset. The entropy information is

computed over the orientation information and it is used to filter anomalies, especially

in very crowded scenes. For instance, in the middle of the street where people are

walking when a car passes, the entropy of the car is smaller than normal events where

people is walking in different directions.

Although our model does not include explicit appearance information, it incorpo-

rates spatial characteristic and orientation entropy information. Thus, higher entropy

values may mean that many pixels are moving with different velocities and, conse-

quently, the objects in the scene do not have a regular texture, which captures some

information regarding appearance and density of the region. For instance, some lo-

cations in the scene may not present movement on the training sequences however,

during test, subjects might appear in those regions, which should be considered as an

anomaly since such informations were not present in training. In addition, depending
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Figure 4.8: Results for Peds2.

on how the ground-truth was labeled, these regions may be omitted or considered as a

normal situation. Figure 4.14(d) illustrates one of such cases.

It is important to highlight the premise used by our approaches, we use patterns

to determine the anomalous cases, i.e., patterns that do not occur during the training

phase are considered as anomalous during the test phase. In this way, our model

intended to be as general as possible, even when it is impossible to train any model

with all possibilities of “normal” motion. Another important remark of our proposal is

that it does not use appearance information. The main reason for this is because the

appearance of the unknown is difficult to quantized. For instance, when a histogram

based on codebooks is constructed, patterns fit in determinate bins, however, in case of

anomalous patterns they also have to fit in other bins and cannot be differentiated from

normal ones. We may specialize our descriptor for particular scenes or environments,

but this would reduce the generalization capability of our proposal.

Finally, entropy does not provide appearance information directly, it introduces

information regarding region texture when something in moving in the cuboid (solid),

the orientation of the block will be similar and the entropy will be low. In case of many

orientations, for instance, people walking in different directions, the entropy will be

high. This type of information helps to differentiate some regions, for instance where

there are different flows or when the objects are very different. Our experiments show

that entropy provides marginal improvements to the recognition model.

4.3.4 Evaluation on the Subway Dataset

Exit Gate. For the Exit Gate clip, we counted the matches and false alarms manu-

ally. We performed various experiments and the best configuration achieved 100% of
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accuracy recognizing all anomalous events. Nonetheless, our descriptor also reported

40 false alarms. Experimentally, we chose six bins for orientation, four ranges for mag-

nitude and five frames of temporal depth for HOFM and HOFME. Figure 4.9 shows

examples of true positive matches using HOFME. Figure 4.9 presents some examples

of correct matches using the HOFME descriptor.

(a) (b)

Figure 4.9: Examples of true positive matches for the exit gate clip.

Entrance Gate. This clip contains sequences for the subway entrance gate. In total,

we have 31 anomalous events. Following the protocol presented by the authors, we

trained with the initial 20 minutes and tested our model using the rest of the clip, which

is approximately one hour and 16 minutes. We obtained 83% of accuracy. Figure 4.10

presents some examples of correct matches using the HOFME descriptor.

Although our model recognized most of the anomalous events, it also presented

many false alarms (67 for the entrance gate clip and 40 for the exit gate clip). During

the training phase, people move in few directions in the entire scene. Then, in the test,

our model detects anomalies of people walking in different directions from the learned

one in the training phase. The dataset ground-truth only considers as anomaly people

jumping over the ticket gate. Thus, the false alarms obtained by our method are due

to the creation of the ground-truth assuming that anomalies could take place only near

the ticket gate.

A second aspect to discuss is the anomaly based on jumping the ticket gate.

In this case, the anomaly contains high semantic information. Our descriptor looks

for atomic information (such as orientation, entropy and velocity), discarding explicit

modeling of appearance. When people jump the ticket gate, velocity and appearance
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(a) (b)

Figure 4.10: Examples of true positive matches for the entrance gate clip.

information may be used to recognize the action. However, during the training, velocity

and direction in this specific region is the same when passes thorough the ticket gate

in much cases. In this way, we are not able to recognize it as anomalous since during

the training, this type of orientation and magnitude appears.

Figures 4.11(a) and 4.11(b) show some of aforementioned events. Most of them

correspond to people that walk by ignoring the ticket gate. Another important aspect

to consider is the velocity. For instance, in Figures 4.11(c) and 4.11(d), the person

jumped the ticket gate but our model did not detect this action. However, after the

man started running our model detected it as anomalous since nobody runs in that

direction during the training phase. A very similar case happens in Figures 4.11(e)

and 4.11(f), where the person appears running out of the scene, this will be considered

as anomalous event.

The New Ground Truth for the Subway Dataset Since the ground-truth in subway

clips focuses on events that involved the ticket gate, many other events may happen in

the whole scene. For instance, a young boy running in the corridor or people walking

in forbidden areas.

Now, we propose an alternative ground-truth for the subway dataset. The cri-

terion used to determine the anomalies in the clip is based on the following premises:

any event that have not occurred during the training stage is reported as anomalous.

We considered as “event”: the directions, the speed, the location, and also the original

subway ground-truth. Therefore, for instance, if someone runs in testing and nobody

ran during the training, that event will be considered as anomalous.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Examples of false alarms samples for the subway clips. In first row two mis-
takes of position are presented, in second row the algorithm can recognize the anomaly,
however after some time, in third the boy running which is anomalous, nonetheless it
does not appear in the ground-truth.

Table 4.2 shows our results and the results achieved using different local feature

extraction approaches. On the exit scenario, HOFME achieved an equal error rate

(EER) of 17.8% and an AUC of 0.849, outperforming the other descriptors. In this

case, HOFM achieved 18.8% and AUC of 0.845. On the entrance clip, HOFME achieved

an EER of 22.8% and AUC of 0.816, while HOFM 23.5% and AUC of 0.815 . The ROC

curves for the two scenarios are shown in Figures 4.13 and 4.12. HOFME outperforms

the HOFM, HOOF, MBH and HOG3D descriptors.
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Table 4.2: Anomaly detection AUC and ERR (%) results of Subway dataset.

Exit Entrance

Approach AUC ERR (%) AUC ERR (%)

HOG3D [Kläser et al., 2008] 0.524 48.6.3 0.497 50.1
MBH [Wang et al., 2013] 0.61 43.4 0.519 48.7
HOOF [Chaudhry et al., 2009] 0.8 25.1 0.774 24.4

Our HOFM 0.845 18.8 0.815 23.5
Results HOFME 0.849 17.8 0.816 22.8
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Figure 4.12: ROC curve for exit sequence.

4.3.5 Evaluation on Badminton Dataset

Table 4.3 shows the AUC and EER rate for the Badminton dataset. According to the

results, HOFME achieved an AUC very similar to the HOFM and a smaller EER than

the HOOF. In Figure 4.16, we can see the respective ROC curve. In this case, the

HOFM descriptor achieves the best results because the entropy does not add much dis-

criminative information, since the anomalies are activities such as running and moving

in wrong direction, which can be well captured by the HOFM.

Table 4.3: Precision Recall (P/R) results of Badminton dataset.

Peds1
Approach AUC ERR (%)

HOG3D [Kläser et al., 2008] 0.5 50.0
MBH [Wang et al., 2013] 0.539 48.7
HOOF [Chaudhry et al., 2009] 0.765 26.2

Our HOFM 0.806 28.6
results HOFME 0.798 28.0
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Figure 4.13: ROC curve for entrance sequence.

(a) True positive (b) False negative

(c) False positive (d) False positive

Figure 4.14: Examples analyzed through anomaly detection.
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Figure 4.15: Results for Subway Entrance clip.

Figure 4.16: ROC curves for the Badminton dataset.

With this experiment, we intended to present a non-controlled environment. Al-

though, the labels are simple, our model recognized accurately most of labeled events.

We focused on the region with people on the grandstand, discarding the players in the

game and the people that cross in front of the camera. Some examples are showed in

Figure 4.17.
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(a) (b)

(c) (d)

Figure 4.17: Examples of anomaly detections in the Badminton dataset.
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Chapter 5

Anomaly Detection Based on

Human-Object Interactions
In this chapter, we present our second approach to detect anomalous events. In this

model we focus on discovering context patterns that will be used to detect anomalies.

The main idea is to create a list of relations between human and objects in many scenes

belonging to some context (for instance, a comic book store, computer laboratory).

This list contains only normal interactions. In the detection step, two strategies are

used to determine the anomalous patterns in the scene.

5.1 Overview

Generally, the intuition to detect anomalous events is based on low level characteristics

such as movement, appearance and position. Usually, these types of characteristics

belong to a specific environment and are correlated with the camera view. Nonetheless,

depending on the context, anomalies could be detected using other information sources.

Anomalies depend on the scene context and the scenes could be similar to each

other. Hence, in some cases, given the same context the anomalies could be the same

in various scenes. In fact, this hypothesis comprises the fact that common patterns are

similar or the same in various scenes that share the same context. To depict this idea,

imagine this scenario: “a classroom in the building of the computer science department”.

Despite the laboratories, the majority of classrooms in this building share the same

context, and probably in most cases anomalies also, for instance, a crowd running to

the exit, people walking after midnight and other suspicious situations. Based on this

premise, information from a specific scene could be used in similar scenes. Using the

past premise, some type of patterns can be employed in a different scene, therefore,

our hypothesis is the extraction of normal patterns in a specific scene could be used to

detect anomalies in other scenes that share the same context. Note, we refer to the
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context to that information specific to the scene as are the elements and rules that

make it up and give semantic meaning to a certain situation that happens in a certain

place and time.

In Li et al. [2015], the information is extracted and used for the same scene.

This is logical because the goal is to detect anomalies in a specific context. However,

many of research are based on fixed regions on the frame. This type of information is

highly correlated with camera position; thus, for instance, abrupt camera movement

or zoom may change the scene and consequently the extracted information for this

scene cannot be used in the new camera view. Then, information extracted from fixed

regions, specially low level features, is not suitable to use in other scenes. Although it

is an obvious affirmation, the idea is to highlight the importance of source information

to determine what kind of patterns could be used to represent the events in different

scenes.

Labeling scenes [Byeon et al., 2015; Johnson et al., 2016] is a very intuitive way

to describe images. However, this type of description is limited to the knowledge of

the learning model, because there is infinity number of possible situations. Following

similar intuition, scene description is a good clue to describe events, specially objects

that are part of the scene and people that perform the event. Therefore, our sec-

ond hypothesis is the interaction between humans and objects in the scene represents

important information of the context.

Before presenting the proposed approach, one important aspect must be dis-

cussed: the types of anomalies our approach intends to detect. Our model is oriented

to detect anomalies in different environments, implying that typical information em-

ployed for anomaly detection (e.g., velocity and orientation captured through optical

flow), cannot be used due to the change of camera position. To overcome this problem,

our approach describes the scene as a set of interactions between persons and objects,

instead. Thus, our proposed model fits is oriented to detect anomalies in scenes where

person’s pose can be recognized, it means, camera must be near enough to the people

in the scene for a correct pose detection and object linking.

5.2 Proposed Approach

Our approach is divided into two main steps: anomaly representation and anomalous

pattern detection. In the first step, a preprocessing stage allows our model to describe

the sequence creating structures to represents interactions. The idea is to collect these

interactions as patterns belonging to a given person. In the second step, the extracted
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patterns are compared with learned pattern in the training phase to discover whether

some of them may be considered as anomalous. The model collects a set of normal

patterns based on interactions. The training step consists on vocabulary and prob-

abilistic model generation. Then, in the testing, patterns found in training step are

used to detect if a person is performing any anomaly event. Here, it is important to

highlight that video sequences belonging to training set could be completely different

from testing sequences. However, all of them have the particularity of having the same

context. Figure 5.1 illustrates the proposed approach.

Figure 5.1: Diagram illustrating the proposed approach to perform anomalous event
detection using human-object interaction. The box in gray color indicates the steps for
anomaly representation (training and testing) and the box in yellow indicates step for
anomalous pattern detection (testing only).

5.3 Anomaly Representation

To create human-object representation, actors (people and objects) must be located.

Afterwards, our approach determines the interaction between a person and objects.

We employ a human pose estimation approach [Eichner et al., 2012] to locate the
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person’s hands. This is important because, we are looking for objects that are near to

the person’s hands, and consequently, interacting with the individual. After that, we

estimate people’s tracklets using a Kalman filter.

The tracking algorithm on this approach is simple. This heuristic creates a sim-

ple representation of a person tracklet. Our model creates a Kalman model for each

bounding box in the scene, then using the Kalman model we predict the following

position of the bounding box. We use as reference point the center of the bounding

box. In the next frame, our model associates the new samples of bounding box with

the last set of traklets.

Once the tracklets have been defined, the next step consists in linking the objects

with the people. However, recognizing when a human-object interaction happens is

a difficult task, especially because the model does not have any depth information

(single camera). Hence, we propose a heuristic model to link human and objects by

employing the position of the hands based on the distance between objects and the

person. If the distance is smaller than a threshold δ2, the model joins or relates this

object with a person. This distance is computed from the hand to the perimeter of

objects bounding box. When the pose estimation does not provide the hand position,

our model determines as hand’s position using a straightforward heuristic. Firs, our

model divides the bounding box into a grid of 3 × 3. We assume, the middle row

contains three blocks and the hands are the middle point in the exterior blocks of this

row.

To create a structure that represents the object interactions with a person, we

employ a graph representation, with connections between people and objects. Here,

each interaction may be represented by a label meaning the set of objects that this

specific interaction contains. For instance, if a person interacts with a chair and table,

the structure is named as chair-table. Therefore, the objects which are in the inter-

action set give the name to the structure at framei. Thus, we can see the tracklet

representation as a list of structures formed by square and circle nodes. Figure 5.2 il-

lustrates the representation, where square node represents the person belonging to the

tracklet and circle nodes represent the objects that have been linked with such person.

Note that objects may appear many times, however the label interaction is the same.

This is done by a unique interaction label composed by the sorted object identifiers.

Further, Figure 5.3 presents another example of this process. At a given frame, the

interaction for one person are described using a graph representation, we call to this

representation, interaction structure. In the example, the interaction structure is the

“word” [blank-chair-chair]. The token blank refers when there are no objects interacting

with the person.
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Figure 5.2: Interaction representation from a person tracklet. Squares represent the
person at determinate frame and circles represent the linked objects, different colors
indicate different objects. Letters on top of structures are the word representation for
this interaction. For instance, in Frame i− 1, there are two objects: A and B.

Figure 5.3: Graphical example of human-object interaction. It is a simple representa-
tion, where, there are only a single person with one object. The label for this interaction
structure is [blank-chair-chair].

The aim of this part is to describe the scene, in such a way that objects and

humans are detected. For instance, using the past classroom example, we can imagine

the following scene: ‘‘there are two students walking in the classroom through tables

and chairs and one of them takes a book from the last table”. In this example, there

are two people, chairs, tables and book, and one person interacts with a book in the

table.

5.4 Anomalous Pattern Detection

The idea of this part is to use the learned information in some context and detect the

anomalies from this knowledge in another view. For instance, the model may collect

the normal interactions in two classrooms in the university and attempt to detect

anomalies in other classrooms. To accomplish this goal, the model looks for two type
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of information, interactions that have not been observed in the training phase and from

some sequence of interactions that have not been seen.

Given the interaction structures, the next step is to detect anomalous patterns on

the testing phase. At this stage, our model is composed by two different strategies: (i)

unrecognized interactions, and (ii) sequence of interactions. The goal of these strategies

is to recognize anomalies by learning contextual information. The solution of our model

is a combination of these strategies.

5.4.1 Unrecognized Interactions

In our model, this strategy represents the first level of anomaly detection, once model

aims to recognize atomic structures of anomalies. The idea is simple, during the training

phase a list of interactions is built, then, if some interaction is not present in this list,

the structure is label as anomalous. This strategy helps to recognize when an object,

or a set of objects, present in the scene has not been seen during the training phase.

As an example, during training phase, in a computer laboratory, nobody interacts with

the fire extinguisher, if such interaction happens in testing phase, this could represent

a hazardous event and should be regarded as an anomalous event.

5.4.2 Sequence of Interactions

Based on [Crispim et al., 2016], this strategy explores statistical information regarding

sequence interactions. Similar to probabilistic language model, the idea here is to detect

some events given their occurrence probability. For this specific case, we are interested

in events with low probabilities (anomalies).

An n-gram model [Jurafsky and Martin, 2016] is a type of probabilistic model

that allows to make a statistical prediction of the next element of a certain sequence

of elements that has happened up to now. An n-gram model can be defined by a

Markov chain of order n − 1. More precisely, an n-gram model predicts xi based on

xi−1, xi−2, ..., xi−n. Due to computational limitations and the open nature of problems

(there are usually infinite possible elements), it is usually assumed that each element

depends only on the last n elements of the sequence. The two main advantages of this

type of models are: relative simplicity and it is easy to expand the study context by

increasing the size of n. In our specific case, a n-gram computes the probability of

determinate occurrence using maximum likelihood

P (wi|w1, w2...wi−1) ≈
count(wi−1, wi)

count(wi−1)
,
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where, wi represents a label of structure in the graph representation of interactions

which is built by square nodes and its related circle nodes (see Figure 5.2 and Figure 5.3)

and count returns the number of times a determinate word occurs. During the training

phase, we collect the words and word pairs to be used in this step. In our model, each

word is represented by a structure label, i.e., the object set that interacts with the

person in a determinate frame. Finally, if the probability P (wi|wi−1) is smaller than a

threshold η (0.6 in our experiments), such interaction and consequently the observed

tracklet, is marked as anomalous.

5.5 Experiments

We divided the experiments into two parts: (i) tests based on unrecognized interactions;

and (ii) test based on the sequence of interactions. We use the same set of videos for

evaluating both approaches for detecting anomalous patterns. The hardware employed

in these experiments has the following configuration: Intel(R) Core i7(R) 4960x @

3.6GHz processor, 64 GB Kingston DDR3-1600MHz of ram memory; one hard disk

Seagate 1.5TB; and one Geforce Titan X graphic card. All the framework were coding

using python libraries.

Interaction Objects Dataset

This dataset was built from different views captured in distinct laboratories. We created

a set of training videos to represent common events, including people interacting with

chairs, laptops, backpacks and monitors. The dataset is divided in training and testing

video sequences. The ground-truth is composed by every event that was not present in

the training videos (i.e., anomalous event). It is important to highlight the diversity

not only on camera view but also in environments. Our dataset contains clips captured

in different places and views for the same context which is a computer laboratory. For

instance, various laboratory sequences and clips were recorded with different camera

position in the room. In general, there are three of four people at most in the scenes.

Our proposed dataset is composed of everyday laboratory activities. For instance,

students sitting, reading, coding, etc. In the camera view, people enter and pass in

front of the camera. The videos do not exceed five minutes of recording. The dataset is

composed by 11 clips for testing and 20 for training. The image frame in the videos has

1280×720. In the ground-truth we consider as normal events where people interact with

common computer laboratory objects including chair, table, notebooks, computers and

books. As anomaly samples, we considered the interactions that a person performs with
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the coffee machine or a pillow, which we chose to be the anomalous events. We also

considered the sequence of events to determine if it is anomalous or not. Naturally,

anomalous events are cases that do not happen continuously. Hence, we created a

ground-truth and labeled some specific events for each set of tests.

5.5.1 Parameter setting.

In the first stage, our model detects actors and human poses. For this approach, we used

the precomputed models provided by [Liu et al., 2015] and [Eichner et al., 2012]. This

networks were trained by the authors, we just used the model provided by them, and

run the algorithms with their default values; both solutions are coded in Keras [Chollet

et al., 2015]. Our approach is limited by the objects that can be detected by the object

detector. In the second stage, we have two variables: (i) tracklet building variable

δ1 = 50; and (ii) Jaccard index j = 0.7. The Jaccard index is a complement to our

tracking model since in some events the bounding boxes of certain person may vary

by its pose, i.e., if this person stretches arms his bounding box will grow and only

a distance threshold may give a wrong answer. Having on view of this, we used an

occupation criterion based on overlapping areas. The configuration of Kalman filter

is the default presented in the OpenCV framework [Bradski, 2000]. These values are

chosen given the distance and the image view, in which almost the entire body appears

in the camera view. Hence, the variables for this approach also depends on the camera

view.

In the pattern description step, interaction representation for a particular tracklet

is built. Here, we have a threshold δ2 = 100 to link objects with a person tracklet. The

δ values are in pixel unity.

5.5.2 Metrics.

To evaluate the detection results, we use the metric proposed in [Cao et al., 2010].

Ground truth anomalies are denoted by Qg = {Qg
1, Q

g
2, ..., Q

g
m} and output results are

denoted by Qd = {Qd
1, Q

d
2, ..., Q

d
n}. The function HG(Qg

i ) denotes whether a ground-

truth interval Qg
i is detected. Function TD(Qd

j ) denotes whether a detected interval Qd
j

is relevant. HG(Qg
i ) and TD(Qd

j ) are judged by checking whether the Jaccard index is
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above a threshold th (0.30 in our experiments). Using

HG(Qg
i ) =

{
1, if ∃Qd

k, s.t.
Qd

k∩Q
g
i

||Qg
i ||

> th and

0, otherwise

TD(Qd
j ) =

 1, if ∃Qg
k, s.t.

Qg
k∩Q

d
j

||Qd
j ||

> th,

0, otherwise

(5.1)

the precision and recall values are defined as

Precision =
∑m

i=1HG(Qg
i )

m
,

Recall =
∑n

j=1 TD(Qd
j )

n

(5.2)

To better understand this metric, imagine two binary arrays, one for ground-truth

and the other for the answer or prediction, the intervals are marked with ones. The

intersection is measured bin by bin between these arrays using “and” operation.

Figure 5.4 shows simple examples of our model when an anomaly is detected.

Subjects and objects are marked by blue and green bounding boxes, respectively. The

hand positions are marked as pink circles. Figure 5.4(a) and 5.4(b) show examples of

anomalous events. In these cases, the subject is removing the camera, which is con-

sidered as anomalous since the camera was placed in that position during the training

phase, and nobody took it out of that place. Figures 5.4(c) and 5.4(d) show examples

of unrecognized interactions. During the training these objects were not seen.

5.5.3 Unrecognized Interactions

These experiments are oriented to detect anomalies regarding unrecognized objects. As

we mentioned in the dataset description, we introduced some objects in the scene that

are not part of the laboratory. The idea of this experiment is to show that our model is

able to recognize an anomalous event caused by a “suspicious” interaction. One can say

that such binary problem is easy to solve when we talk about only objects that do not

appear during the training. However, it is more than only unrecognized objects since

we are also looking for unknown interactions. For instance, interactions with laptops,

chairs, notebooks and backpacks are common in computer laboratories, nonetheless,

some combinations such as computer and coffee cup may result in an unseen interaction

that should be classified as an anomalous event. Another goal of this experiment is to

determine interactions with unrecognized objects (e.g, people interacting with weapons

may be considered an anomalous situation in a laboratory because such interactions

are rare or previously unseen).
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(a) (b)

(c) (d)

Figure 5.4: Examples analyzed through anomaly detection using human-object ap-
proach.

Table 5.1 presents the results of such experiments, which are composed by four

test events. All tests focus on the object that does not belongs to the scene. As

discussed in Section 5.4, we present the results following two different strategies: (i)

unrecognized interactions; and (ii) sequence of interactions. Precision and recall values

are presented as tuple (P,R). According to the results, tests related to the detection

of anomalies due to unknown interactions presented positive results in the first level

of detection. Moreover, this strategy was satisfactory to detect anomalous sequences.

However, test 3 and 4 presented a lower value of precision and recall than expected for

both methods.

The reason for the low accuracy in test three is that we do not have the infor-

mation regarding the depth of the image. Due to the perspective projection, a person

with their hands far from an object in the depth can be considered as an interaction.

The low recall in test 4 occurs because the pose estimator sometimes fails to detect

the coordinates of the person hands, thus, although the person is near to the object

the reference point of the hand appears far, this problem happens specially in occlu-
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sions. Another mistake occurs when the distance between the hands of the actor and

the objects exceeds the threshold distance between hands and objects that defining

an interaction. This problem happens because the threshold was small to detect the

interaction. This is a problem of our model because this parameter is variable in the

context and the image view.

Strategy 1 Strategy 2

Test 1 1/1 0/0
Test 2 1/0.5 1/0.5
Test 3 0.25/0 0.25/0.1
Test 4 1/0.11 1/0.07

Table 5.1: Precision and Recall results of human-object interaction dataset. Only
unrecognized objects are present in these sequences.

5.5.4 Sequence of Interactions

Here, our main goal is the temporal information regarding the sequences of interactions

that have not been seen before (e.g., to enter a bank office you first need to pass through

a metal detector security door). The results are presented in Table 5.2. As it was

expected, N-grams (Strategy 2) achieved the best results for detecting anomalies for

sequences of events.

Strategy 1 Strategy 2

Test 5 0/0 1/0.5
Test 6 0/0.5 0.5/0.5
Test 7 1/0.5 1/1
Test 8 0/0 1/0.33
Test 9 0/0 1/0.5
Test 10 0/0 1/1
Test 11 0/0 1/0.5

Table 5.2: Precision and Recall results of human-object interaction dataset. Only
unknown sequences of interactions are presented in the clips.

The next paragraphs discuss important aspects regarding the proposed method

to detect anomaly based on sequence of interaction human-objects.

Dependency on the low-level tasks: It is important to highlight that our goal is

to introduce a new approach to recognize and detect anomalies, instead of using only

a specific environment, our proposed approach attempts to learn context based on
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human-object interactions. However, we deal with some artifacts and mistakes due to

the object detector, tracking and pose recognition approaches that could be overcome

by employing better low level approaches to generate tracklets.

Human-object interaction recognition: It is clear that only using a distance to

link humans and objects is not the best strategy. However, we did not include depth

information since surveillance commonly uses a single camera for certain environments.

Our approach is quite simple in this stage, nonetheless, human-object interaction in

video sequences is part of our future works.

Dataset and anomaly cases: Even though it is not our main goal, we also introduce

a new sequence for anomaly detection. As future work, we intend to create a platform

to progressively increasing the anomaly dataset.

On-line vs. off-line approaches: Other approaches such as [Javan Roshtkhari and

Levine, 2013; Yuan et al., 2015] learn scene patterns to determine anomalies while the

sequence is presented to them. However, an important disadvantage of these approaches

is the training time. Moreover, some sequences start with the anomaly in the beginning

making these approaches to learn it as a normal situation (e.g., UCSD dataset [Lab,

2014], specifically in Peds2 camera view, where many of test anomalies starts at the

sequence beginning). Instead, off-line approaches attempt to learn as much as possible

to avoid miss some anomalies.

Dataset annotation bias: The common underlying assumption behind anomaly

detection is that anomalous events occur with low probability when data is collected.

Then, when one annotates a ground-truth is natural to have a bias due to subjective

observation of the scene, which makes the progress on this problem even harder.

Testing with other datasets: In literature, there are a few well-known datasets.

However, these ones are pretty specific for crowds with low resolution. Nevertheless,

our approach is oriented to recognize human-object interactions and in most cases, this

type of relations are not clear given the clarity of the video sequences.

Comparisons with other approaches: As our approach does not have representa-

tive results in other datasets, other algorithms cannot fit in our proposed dataset. It is

due to the type of representations which are based on characteristics like: speed, ori-

entation, trajectories, appearance, textures. This type of features changes significantly

scene from scene, leaving without representativeness that type of characteristics when

the environment changes.
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Chapter 6

Anomaly Detection based on

Trajectories

Many studies focus on creating representations robust to most types of situations, i.e.,

models that fit in most of cases. Typically, the problem is formulated as a detection

task where a model learns patterns from normal data to detect events that do not fit

with them. Classical models usually choose to represent events based on spatiotemporal

information, which is more prone to issues related to noise from complex backgrounds

and illumination changes. This may be addressed using high level information (e.g.,

object detections), to model abnormal movements directly. In this chapter, we present

an approach based on human trajectory description to detect anomalous events.

6.1 Overview

Abnormal event detection for video surveillance refers to the problem of finding patterns

in sequences that do not conform to expected events [Du et al., 2013]. It is a challenging

problem because the definition of anomaly is subjective to the particular scene context,

giving origin to a large number of possibilities. For instance, someone running at

a marathon is a normal event, while someone running during a regular working day

might be due to an emergency, an anomalous event. Therefore, the difficulty of anomaly

recognition is related to the semantics that are observed in the scene.

The complexity in defining algorithms that suit in any case is a hard problem.

Indeed, most models focus on extracting features based on movement and appearance

from spatiotemporal regions [Popoola and Kejun Wang, 2012]. Nevertheless, this type

of information might be affected by noise due to complex backgrounds, illumination

changes and poor lighting conditions. With new trends in computer vision, this issue
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can be minimized by using higher semantic information, such as object detections and

pose estimation to model anomalies directly from people movements.

In this approach, we exploit high level information to create a robust representa-

tion for anomaly recognition. Our approach model people’s movements by leveraging

reference points from body skeletons obtained through a state-of-the-art pose estimator.

The reference points are aggregated through time building a trajectory. Each trajec-

tory is then represented using deep neural networks to better encode its morphology.

Our hypothesis is that trajectories are able to encode the necessary information from

movement to recognize certain anomalous events. Thus, our approach describes the

trajectories to find a representation that encodes the people movement, this kind of

feature is extracted from flow and morphology of the human trajectories in the scene.

This approach aims to find a trajectory representation, then the anomalies that can be

detected are strong related with people movement only. Thus, while trajectories could

be extracted then our model may detect anomalies, it is important to determine the

environment in which our model fits well to detect anomalies with success.

In addition to being more robust to the aforementioned issues, trajectories may

also be used for people behavior analysis. To validate such application, we also evaluate

the rarity of trajectories using clustering models. An advantage from using trajectories

is that the localization of the particular individual performing an anomalous event is

easily retrieved. Furthermore, trajectories may aid behavior understanding of pedestri-

ans [Zhou et al., 2012]. It is important to highlight that the proposed model is oriented

to scenes where people detector and tracking algorithms may offer a good representa-

tion; thus, high crowded scenes are not considered in the scope of this chapter. This

approach intends to detect anomalies in static camera view.

6.2 Proposed Approach

In this section, we present the proposed approach for anomaly recognition comprising

four main steps: (i) pose estimation, (ii) tracking building, (iii) feature extraction, and

(iv) anomaly and rare trajectory recognition. In the first step (Section 6.2.1), the goal

is to obtain a reference point of people within the scene to obtain a concise represen-

tation. In the second step (Section 6.2.2), the model creates for each reference point a

tracklet and generates a set of trajectory points, which may be normalized depending

on the number of points. Then, in the third step (Section 6.2.3), we propose two fea-

ture extraction models, whose input are normalized trajectories, generating a feature

vector. At the end (Section 6.2.4), our approach outputs two predictions, the anoma-
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Figure 6.1: Overview of our approach. Given a body skeleton, we select reference
points that are used to build trajectories. A sequence of such reference points consists
of a trajectory. Then, we describe the normalized trajectories using two different
techniques, a convolutional descriptor based on CNN or a recurrent descriptor modeled
using a RNN. During the testing phase, we recognize anomalies and rare trajectories
by comparing the descriptors extracted from each test sample regarding the trained
model.

lous trajectories and the rare trajectories, each predicted by a corresponding method.

The general workflow for training and testing are the same until the feature extraction

step. Stage four addresses the anomaly recognition and trajectory discrimination and

these are exclusive for testing. Figure 6.1 presents an overview of our approach.
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6.2.1 Pose Estimation

Given a video sequence V as input, the goal of this step is to detect people in the scene

and to find a reference point for each. The reference point represents a person and

will be used to create a trajectory point. In the literature, we can find accurate object

and person detectors [Redmon and Farhadi, 2017; Liu et al., 2016; Lin et al., 2017].

These detectors provide the bounding box of the detected person/object. Although,

the person is inside the bounding box, the four points do not represent a reliable point

to define as a reference point of a person due to the variation in size of the bounding

boxes. For instance, a person with stretched arms will have a larger bounding box

than a person with closed arms. Another case where bounding box coordinates are not

reliable as reference points is when the detector detects a group of persons and their

bounding box changes in size in every frame. The aim of finding a reference point is

to define trajectories that represent people movement with more fidelity.

In our approach, we define the reference point of a person as the joint point

between body and head. We use this point because it rarely presents independent

movement from the whole body. To find this point, we use a multi-person pose estima-

tor [Cao et al., 2017]. This model extracts the person skeleton and chooses the point

that corresponds the joint between head and body parts. Before continue detailing the

model, we present some definitions. A reference point pk = (x, y, t), where x and y

are the position in the image and k is the ID for the reference point at frame t. Thus,

at frame Ft ∈ V , the set Pt contains the reference points found at time t. Hence P

is the set that contains all Pi. Trajectory Point pti = (x, y, t), where x and y are the

position in the image and i is the ID point that belongs to trajectory j at time t (the

reference and trajectory point are the same). We use these two definitions explaining

the following methods, where points may belong either to a set of reference points or

to a trajectory.

6.2.2 Trajectory Building

The next step of our approach is to create the trajectories for each person. The goal

is to connect reference points, relating them frame by frame and labeling the set with

a person identifier. Literature presents many models for tracking objects [Watada

et al., 2010; Čehovin et al., 2016], where most of them are based on data association

approaches for single [Čehovin et al., 2016] and multi-tracking objects [Dehghan et al.,

2015]. In the case of surveillance videos, the method must deal with multi-object

tracking, which is a np-hard problem [Betke and Wu, 2016]. In this study, we introduce
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an algorithm that aims at offering a straightforward alternative to complex multi-

tracking models. This method is presented in Algorithm 4.

Algorithm 4 Trajectory Builder algorithm.

1: procedure Trajectory(P , |V |)
2: P = {Pi|Pi = {pik}k=1:npi , i = 1 : |V |}
3: P is the set point for whole video V ,
4: npi is the number of points at frame i,
5: |V | is the number of frames of video V ,
6: Trks = {},
7: for i until |V | do
8: S ← ComputeScoreMatrix(Pi, Trks),
9: M ← Munkres(S),

10: Trks← Matching(Pi, Trks, M)
11: Update(Trks)

12: return Trks

The procedure receives as input the set of points P computed in previous step and

the number of frames |V | of video V . Trks is the trajectory set, which is initialized

empty. In the first state of the main loop (line 8), the model computes the score

between reference points that belong to Pi and current tracklet set Trks. An element

of Trksj ∈ Trks is a tuple (pti|i = 1 : nt−1, prtj, Km), where the first element is the

trajectory points that belong to tracklet j at time t − 1 being ptt−1i the last point

inserted in the set, the second is the predicted point using Kalman filter for time t,

and finally the third is the Kalman model for this particular tracklet. To avoid excess

nomenclature, point pk ∈ Pi will be just p, ptt−1i will be l (last) and prtj will be pr

(predicted). To compute the score point l is subtracted from p and pr in such a way

that l is considered as coordinate origin. Let be the result of r = (~p. ~pr)/‖~p‖.‖ ~pr‖, this

value is truncated between [−1, 1]. Thus, the angle between p and pr is θk,j = arccos(r)

is in the range [0, π]. The final score is given by

scr(pk, T rksj) =


θk,j if δ1 < th+ bf,

θk,j × τ if δ2 < ‖ ~pr‖,
π × τ otherwise

(6.1)

where δ1 = ‖p− pr‖ is the distance between candidate point p and the predicted point

pr, bf = th/(2 × |Trksj|) is a value that is inversely proportional to the number of

elements in the set Trksj, δ2 = ‖p− pr/2‖ is the distance from point p and the middle

point of l and pr, as l is the origin of coordinates then, this point is half pr, the variable

th is a threshold value that is set before the process and depends on the size of people
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in the video, and τ ≥ 2 is a penalty value.

(a) (b)

Figure 6.2: Score function examples. At left is the situation when the point p is near
to point pr. At right is when point p is near enough to last point on tracklet and
predicted point pr.

The idea of the score function is to assign a low value to the compared point that

is closer to the predicted point, as we can see in Figure 6.2(a). Using the variable bf ,

we extend the initial threshold and balance the initial prediction of the Kalman model,

specifically for the initial points, where the Kalman model is not stable. Variable bf

decreases as more points are in the trajectory. The second case of the score function

is when the point is not sufficiently near to the predicted point but it is close to the

trajectory flow, as shown in Figure 6.2(b). The idea in this case is to cover a greater

region where candidate point could move, including a little region behind the last

trajectory point. In the last case, the candidate point is outside of the possible regions

of movement.

Matrix Snpi×|Trks| contains all the scores between points in Pi and tracklets Trks.

In the next state, our approach computes the best distribution using Munkres’ algo-

rithm [Zhu et al., 2016] to solve the assignment problem [Shah et al., 2015]. After that,

the points are assigned to a specific trajectory. Unassigned points create new tracklets.

Finally, all trajectories update their information (Kalman model and predicted point),

and trajectories that do not present changes within time lapse are closed and saved to

avoid confusing with new trajectories.

After every trajectory is collected, the trajectories must have the same number of

points to use this information as input for the models. Therefore, we trim or increase

the number of points up to a certain value by employing a point reduction or point

augmentation process. The problem in the first process lies in the choice of significant
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Figure 6.3: Examples for point selection when the number or points have to be reduced.
First row corresponds to the first derivative (number of points vs derivative value),
circles show some interest points. In second row are marked the selected points in the
frame, which for this case has a 1270× 720 dimension.

points. To solve this, we select the points that best represent the shape of the trajectory,

giving preference to the points where there is more variation, such as curves. To

select these points, we apply the second derivative to set of points [Escobedo and

Camara, 2016]. Highest values represent the curves in the shape of trajectory. Thus,

our approach chooses the interest points by sorting from largest to the smallest the

values obtained by the second derivative. Figure 6.3 illustrates the idea of this process,

where the first row depicts the images with the first derivatives of the trajectories, the

highest values are the key points, and the second row shows the chosen points. Hence,

with this heuristic, we reduce the number of points in a trajectory.

For the point augmentation, our approach performs a straightforward strategy.

Depending on the number of required points, they are introduced in the middle of two

consecutive points. This process is performed initially in the original set of points, if

more points are needed, the process is repeated until the number of necessary points

is reached. Finally, all the trajectories have the same number of points n. Thus,

Trajectory is a tuple Tj = (tid,{pti|i = 1 : n}), where tidi is the trajectory identifier, n

is the number of points. A trajectory is formed by ordered set of points in time and is

a part of a specific tracklet.
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6.2.3 Feature Extraction

Unsupervised representation learning has become an important tool for anomaly recog-

nition. An Autoencoder (AE) is a neural network trained with backpropagation algo-

rithm that provides a dimensionality reduction by reducing the reconstruction error

on the training set [Kiran et al., 2018]. Our approach presents two feature extraction

models: Descriptor A, based on an image representation extracted from a Convolu-

tional Auto Encoder (CAE), and Descriptor B, which directly utilizes the trajectory

information in a recurrent AE.

Inspired by [Zhang and Lu, 2004], the idea of the first descriptor (Convolutional)

is to find a representation that depicts the trajectory as a complete entity (i.e., without

segmenting or dividing it). Therefore, the goal is to describe the morphology of the

trajectory. To accomplish this goal, our approach saves the variation between each

pair of points belonging to a given trajectory into two matrices: angular (AG) and

radial (RD), which are square matrices of dimension n×n. The position AGa,b is filled

with the angle formed by points pa, pb ∈ Tj. Similarly, position RDa,b is filled with the

magnitude of the vector formed by points pa, pb ∈ Tj. Thus, local information is saved

in places that are near to diagonal, as soon as the global information appears closer to

the edges of the matrix. The radial matrix is symmetric. In the angular matrix, the

values are complements between superior and inferior triangular sections of the matrix.

These images are n× n dimensions. Figure 6.4 presents examples of this matrices for

a straight path trajectory.

(a) (b)

Figure 6.4: Trajectory matrix representation, angular and radial respectively.

The description process for these images is performed by a Convolutional Auto

Encoder (CAE). Encoder and decoder are composed by two convolutional layers, each
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layer has eight filters, the size of convolutional mask is 5× 5 followed by max pooling

and up sampling layers of size 2× 2. In the middle of this representation, the CAE ar-

chitecture presents two fully connected layers, with 512 and 2048 neurons, respectively,

the input and output for this segment is flattening and reshaping. The idea of this

architecture is to find a semantic representation for angular and radial matrices. This

network is trained with only normal trajectory images normalized between [0, 1]. After

the model computes the weights, trajectory features are extracted from the first fully

connected layer (512). The feature vector is the concatenation of outputs of angular

and radial CAE. Hence, the final representation is a vector with 1024 dimensions.

Figure 6.5 depicts the autoencoder architecture.

Figure 6.5: Architecture for convolutional autoencoder.

The second descriptor (Recurrent) builds the feature vectors using a recurrent

Autoencoder (AE). Similar to the previous model, the idea in this approach is to

find an entire representation for the trajectory by correlating the morphology and the

temporal information. Thus, the proposed network learns the temporal patterns of

trajectory. Composed by only three layers, it begins with a recurrent cell, which in

our approach is a Gated Recurrent Unit (GRU) [Chung et al., 2014]. We opted to

use GRU instead of Long Short Time Memory (LSTM) [Hochreiter and Schmidhuber,

1997] because they suit better with small training sets [Chung et al., 2014]. The input

for this cell is the set of overlapping segments that compose the trajectory. The next

element is a fully connected layer with 225 neurons. Both layers, recurrent cell and

fully connected utilize sigmoid as activation function. At the end of the pipeline,

the model reshapes the output to the same input size, thus the RAE can learn the

trajectory patterns. This network is also trained with only normal trajectories. After
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the weights are computed, the descriptor for a trajectory is the output of the fully

connected layer, a vector with 225 dimensions. Figure 6.6 presents the architecture for

recurrent autoencoder.

Figure 6.6: Architecture for recurrent autoencoder.

6.2.4 Anomaly Recognition and Rare Trajectory Identification

In the last step, our approach is divided into two approaches: anomaly trajectory recog-

nition and rare trajectory identification, both oriented for video surveillance analysis.

While the first addresses the problem of identifying anomalies, the second intends to

provide a detection of rare trajectories.

The strategy for anomaly recognition is simple, our approach computes nearest

neighbor for each point in testing. Following the Algorithm 3, the idea is the same as

our approach based on low level features, where the anomalous patterns are located

using the distance to the normal patterns.

In the rare trajectory identification, we suppose that points that represent com-

mon trajectories make clusters in the feature space and anomalies are isolated points or

they are in groups with few elements. Thus, our approach groups the trajectories using

a clustering model Affinity Propagation (AP) [Frey and Dueck, 2007]. An advantage

of using AP model is that it does not need to set the number of clusters. Thus, the

trajectories are segmented. The rareness of a trajectory is given number of elements of

the cluster that it belongs.
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6.3 Experiments

In this section, we present our experiments. First, we describe the results regarding

anomaly recognition (Section 6.3.2) and then present the results achieved on the rare

trajectory recognition task (Section 6.3.3). Experiments were performed on the follow-

ing datasets: Subway [Adam et al., 2008], Avenue [Lu et al., 2013], Train sequence [Za-

harescu and Wildes, 2010], and our proposed video dataset, named Laboratory. The

complete framework was developed using Python and Keras [Chollet et al., 2015]. The

hardware employed in these experiments has the following configuration: Intel(R) Core

i7(R) 4960x @ 3.6GHz processor, 64 GB Kingston DDR3-1600MHz of ram memory;

one hard disk Seagate 1.5TB; and one Geforce Titan X graphic card. We performed

our experiments in Subway [Adam et al., 2008], Train sequence Zaharescu and Wildes

[2010], Avenue [Lu et al., 2013] and our proposed dataset called Laboratory. In follow-

ing paragraphs we present the datasets, not including Subway dataset which is detailed

in Section 4.3.1.

Train Sequence Dataset

The train sequence is part of a set of videos for anomaly recognition proposed by

Zaharescu et al. [Zaharescu and Wildes, 2010]. This video clip has a view from the

interior of a train coach and is the only sequence that contains people in the scenes. It

contains 19, 218 frames which are very challenging due to drastic variation in lighting

conditions and camera jitter. The anomalies in this sequence comprise people coming

out and moving on the train.

Avenue Dataset

Introduced by Lu et al. [Lu et al., 2013], the avenue dataset contains videos from

entrance avenue at the Chinese University of Hong Kong (CUHK) and is composed of

16 training videos and 21 test clips. Testing videos include both normal and anomalous

events. It comprises three types of anomalies: running, wrong direction and abnormal

object. The anomalous event in sequences abnormal object is a person that pulls up a

backpack.

Laboratory Dataset

This dataset contains one month of recordings of the entrance of our laboratory at the

Universidade Federal de Minas Gerais (UFMG). The image size is 1280× 720, and the

frame rate is 30 FPS. The videos have a length between 30 seconds and four minutes.
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The ground-truth is based on people behavior, for instance, a person staying for a

long time at the door or going around suspiciously. For training, we selected ten days

(1,100 normal trajectories), and rest of days for testing (2,946 normal and abnormal

trajectories). Videos contain at least one person and might have up to 10 persons in

the same scene.

6.3.1 General Settings

The setup for the tracking step depends on the video scene. Each dataset has a different

variable setup, basically due to the people that appear on the scene being near or far

from the camera. We fixed the number of points per trajectory to n = 64. For

the recurrent autoencoder, the GRU input is the trajectory divided in segments, each

segment composed of eight points with an overlap of four points between them for each

segment. This autoencoder was trained after 200 epochs, we use sigmoid function for

the activation and hard sigmoid the recurrent activation, we employed mean square

error as loss function and AdaDelta algorithm for optimizer. For the convolutional

autoencoder, the training phase was limited by 300 epochs, using mean square error as

loss function and the Adam optimizer algorithm. The average loss value during training

were 0.0001 and 0.01 for recurrent and convolutional networks respectively. These

protocols were the same for all datasets. The ∆ value for KNN distance algorithm is

used to build the Receiver Operating Characteristic (ROC) curves, this value is set

between [0, 10] with intervals of 0.01. There are two evaluation criteria: Area Under

Curve (AUC) and Equal Error Rate (EER) which is the ratio of misclassified frames

at which FPR = 1 − TPR. We fixed number of points for trajectory is n = 64. For

the recurrent autoencoder, the input for GRU is the trajectory divided in segments,

each segment composed of eight points with an overlapping between them in four

points for each segment. The ∆ value for k-NN distance algorithm is used to built

the curves, this value is set between [0, 30]. All the comparative values from other

models were extracted directly from source papers using a tool that extracts points

from plots [Rohatgi, 2018].

Our model employs a pre-processing step which consists in to find the reference

point. This step is carried out by the model proposed by Cao et al. [2017], using

the Keras implementation [Bouguet, 2018] (all values setting as default as the authors

indicate in the website). This framework receives as input an image and returns the

points corresponding to the body joints of the people in the scene. We modified the code

so that it receives a video as input, and the output is only the point that represents the

joint between head and the body. It is important to highlight that in our experiments
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we also try to find the reference point using face or head detection models, however, in

many cases specially when people have their backs to the camera, the detection is lost,

in contrast, pose estimation framework present a better people detection. Additionally,

pose estimation provides the reference point at the same time, instead of head or face

detections which already have the problem of changing bounding box.

6.3.2 Anomaly Recognition

In figure 6.7 that presents the results (also in following figures that present the results),

our model is called Temporal Autoencoder of Trajectories (TAoT), this label is accom-

panied by letter ’T’ in case of recurrent autoencoder or ’M’ in case of convolutional

autoencoder. In figures, TAoT-T is colored in red and TAoT-M in green. To compare

with ground-truth, any anomalous trajectory mark the entire frame as anomalous, this

evaluation methodology is known as Frame Level Analysis.

The subway dataset. This dataset is composed of two sequences in a set of videos

proposed by Adam [Adam et al., 2008]. The first video sequence, known as Entrance

Gate, has a time length of one hour and 36 minutes and the second video, called Exit

Gate has length of 43 minutes. These sequences correspond to a ticket gate in a subway

entrance and exit. The original ground-truth provided by the authors, containing the

initial frame of anomalous events, focuses on two specific anomaly types: walking in

wrong direction and jumping the ticket gate. For both video sequences, we utilized the

validation protocol presented by Saligrama and Chen [2012].

Entrance Gate is a sequence recorded from a subway entrance gate view. The

training phase considers the initial 20 minutes (first 30, 000 frames) and the remaining

of the clip for test (approximately one hour and 16 minutes), where the ground-truth

presented two types of anomalies: walking on wrong way and jumping the ticket gate.

For this sequence, we compare our results with the state-of-the-art approaches proposed

by Roshtkhari and Levine [2013] (Sparce), Cheng et al. [2015] (GPR), Li et al. [2014]

(Bayes), Saligrama and Chen [2012] (Agr) and Colque et al. [2017]. Figure 6.7(a) shows

our experimental results and the comparison with the state-of-the-art. Our recurrent

descriptor achieved a promising result compared with recent methods in the literature.

Unfortunately, our convolutional descriptor missed some anomalies, specifically the

ticket jumping, because the convolutional autoencoder aims to describe the morphology

of the trajectory and when the people jump the ticket gate the morphology of the

trajectory is similar with other normal trajectories.

The Exit Gate clip contains data recorded from a subway exit. In this case, the

ground-truth considers only people walking in wrong way. The training set considers
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only the first five minutes (first 8, 000 frames) and the rest of video is used to test.

We compare our results with the methods proposed by Li et al. [2014] (Bayes) and

our proposed descriptor Colque et al. [2017] (HOFME). Figure 6.7(b) presents the

results for this clip. In this case our recurrent descriptor outperforms the other models.

However in this case convolutional descriptor reports low AUC compared with the other

methods.
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Figure 6.7: Experimental results and comparison with the state-of-the-art on the En-
trance, Exit. (a) ROC results for Entrance clip; (b) results for the Exit clip.

Train sequence. The train sequence is part of a set of videos for anomaly recognition

proposed by Zaharescu and Wildes [2010]. This video clip has a view from the interior

of a train coach and is the only sequence in the dataset that contains people in the

scenes. It has 19, 218 frames which are very challenge due to drastic variation in lighting

conditions and camera jitter. The anomalies in this sequence comprise people coming

out and moving on the train.

For this video sequence, we present two results, where “TAoT-T-mod” (green

colored curve) and “TAoT-T” (red colored curve), both using recurrent descriptor.

The first experiment was performed training with 800 frames and testing with the

rest of the video. The second experiment “TAoT-T”, which following the original

ground-truth configuration file for validation where for training is used the first 800

frames and testing the last 5000. These experiments have two goals, first we want to

evaluate our recurrent descriptor, which presents better results for anomaly detection in

a difficult lighting condition sequence. Figure 6.8(c) shows our results and the results

achieved by Cheng et al. [2016] (Bayes). In the experiments the second experiment

obtained better results because the information for trajectories were clear in contrast
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with the other experiment. Also, according to the results shown in Figure 6.8(c), our

model outperforms the Cheng’s method because, to build the trajectories, our model

utilizes a pose estimation/person detector, which is robust to problems of illumination

changes, camera movement, shadows, etc. The “TAoT-T-mod” experiment looks for

introducing more knowledge to the model, training with more frames than original

800. Unfortunately, the accuracy of the model reduced due to new trajectories being

confused with anomalies.
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Figure 6.8: ROC curves for Train sequence.

Avenue dataset. Introduced by Lu et al. [2013], the avenue dataset contains videos

from entrance avenue at the Chinese University of Hong Kong (CUHK) and is com-

posed of 16 training videos and 21 test clips. Testing videos include both normal and

anomalous events. It comprises three types of anomalies: running, wrong direction

and abnormal object. Abnormal object sequences contains a person that pulls up a

backpack. In this work, we did not perform test with sequences that contains this

type of anomalies, because are out of study analysis. Thus, our experiments were per-

formed without sequences 5, 10, 12, 13, 14, 16, 17 and 20. All videos for training were

used to tune the network. In this experiment, we just tested the recurrent descriptor.

According to Table 6.1, we achieve the best result in sequence 18 and the worst in

sequence 19. In this last sequence, the missed anomaly is a person walking in a wrong

direction towards the camera, but due to the projection, the generated trajectory was

too small. In this case, depth information would be beneficial. We cannot compare this

experiments with literature due to sequence reduction in our experiments. However,
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Sequence AUC ERR %

1 0.69 45
2 0.80 24
3 0.44 53
4 0.94 22
6 0.84 21
7 0.88 21
8 0.82 29
9 0.80 29
11 0.74 34
15 0.50 47
18 0.95 9
19 0.22 51
21 0.61 35

Mean .71 32.3

Table 6.1: AUC and ROC for Avenue sequences. Highlighted in bold, we present our
best and worst result.

compared only the mean AUC with other studies [Hasan et al., 2016b; Kiran et al.,

2018] our results are still competitive.

6.3.3 Rare Trajectory Identification

The experiments performed to identify rare trajectories intend to separate or iden-

tify trajectories that are not usual. The criterion is simple, clustering trajectories to

segment common from uncommon. Rare trajectories are useful because they are not

necessarily anomalies, but could be suspicious events that would trigger an alarm. For

these experiments, we introduce a novel dataset called Laboratory.

The Laboratory dataset contains one month of recordings of the entrance of a

laboratory. The video resolution is 1280 × 720, recorded at a frame rate of 30 FPS.

The videos have length between 30 seconds and four minutes. The ground-truth is

based on people behavior, for instance, a person staying for a long time at the door

or going around suspiciously. For training, we selected 10 days of recordings (1, 100

normal trajectories), and the remaining for testing (2, 946 normal and abnormal tra-

jectories). Videos contain at least one person and might have up to 10 people in the

same scene. We evaluate both the convolutional descriptor and recurrent descriptor.

Table 6.2 shows the clustering results, which reports the number of clusters created,

the cluster with the smallest number of trajectories and the one with largest number,

respectivelly. Clusters with a small number of trajectories are trajectories that have

unusual morphology, but are not necessarily anomalies. We see that TAoT-M creates
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Figure 6.9: Example of normal cluster. which in this case contains 73 elements.

more clusters than TAoT-T, which are in turn less compact, allowing to TAoT-M to

find more rare trajectories. This shows that TAoT-M is better at finding more fine-

grained differences between the trajectories. Despite this, TAoT-T still yields better

results on anomaly recognition, since it is able to group spatially similar trajectories,

while anomalies have very dissimilar morphology.

Rare trajectories are trajectories that are morphologically distinct. In our case

much of these events are not rare trajectories. Figure 6.9 presents a cluster with

common trajectories. Figure 6.10 shows an example of rare trajectory identification,

these images are thumbnails from original trajectories, the circle (green) represents

the initial point of each trajectory. It is important to highlight that our descriptors

preserve also the direction as well as the morphology of the trajectories.

Descriptor N. Clus. Min. Ele Max. Ele

TAoT-T 58 5 212
TAoT-M 141 3 133

Table 6.2: Clustering chart for Rare Trajectory Identification.
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Figure 6.10: Example of anomalous cluster. which in this case contains 10 elements or
trajectories.

We also performed tests over UMN Science and neering: Monitoring Human Ac-

tivity [2018]. For trajectory based anomaly recognition. The UMN is a challenging

dataset because of its low resolution, occlusion and very short time for training. After

observing that, we just used two of eleven short sequences. For both sequences, one

and four, clustering divides anomaly situations from normal into two groups.

6.3.4 Discussion

In this section we present some important remarks from the experiments performed

considering all proposed approaches.

In the experiments carried out, specifically, in the approaches based on hand-

crafted features and trajectories, we only use the k-NN method to detect the anoma-

lous patterns. An alternative for this model could be the one-class SVM. However,

we consider that the spatial distribution of the patterns in space is not uniform. Fig-

ure 6.11 presents a visualization of points using t-Distributed Stochastic Neighbor Em-

bedding (t-SNE) [van der Maaten and Hinton, 2008] in a video sequence of UMN [Sci-

ence and neering: Monitoring Human Activity, 2018] dataset. In this dataset, there

are two situations where people are walking and running, being the last the anomalous

event. Purple points correspond to normal patterns, colored with yellow, green and

blue correspond to anomaly patterns, we colored these points using Afinitty Propaga-

tion (AP) algorithm and the ground-truth. We can appreciated that the cloud points

are not clearly segmented and anomalies are in the middle of the cloud. Furthermore,

anomalies are not joint together. For this reason, we employed only k-NN for our

experiments.

Another important point to take in consideration is the classification method,

in our handcrafted descriptor and trajectory based approach, we employed the K-NN
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Figure 6.11: Image visualization of normal and anomalous points using t-SNE. Purple
points correspond to normal patterns, colored with yellow, green and blue correspond
to anomaly patterns.

method to label a pattern as normal or anomalous, it due to the unknown distribution

of the points. It means, as we can see in Figure 6.11 (3D representation of space

reduction), normal patterns could be mixed among the anomalous. For instance, taking

as example our trajectory based approach experiments, specifically the Entrance view

of Subway, when people jump the ticket gate normal trajectories are pretty similar with

the trajectories of this anomalous event, the difference appears only when the person

is jumping, this causes that feature points have a similar representation, differing only

in some values that represent this deviation. Then K-NN model fits well in our model

considering the points that are very near to the normal cloud and the outliers that are

far from the point cloud.
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Chapter 7

Conclusions
This dissertation has set out to explore the possibility of using environment context

for activity understanding and unusual event detection in surveillance videos. In this

study, we proposed three methods for anomalous event detection. In the first method,

based on low level features, our goal is to detect anomalies in outdoors and when the

environment may have crowds and usual detectors cannot detect many objects due

to distance or video quality. In a second approach, we propose a model based on

human-object interaction, with this model we pretend to use context information to

define patterns, these patterns are described as set of objects that are related to a

person in a determinate frame. In other words, we describe the scene using human-

object relations. In the third approach, we present a model that describes the human

trajectories in the scene. Similar to our second proposal, this approach employs uses

higher level information to describe events on the scene.

Handcrafted descriptors for anomaly detection are very popular in literature.

This type of features still make an important contribution to anomaly detection re-

searches. In our first approach we proposed a low level descriptor called Histograms of

Optical Flow Orientation, Magnitude and Entropy (HOFME). The main goal of the

proposed feature is to improve anomalous event recognition tasks. It uses of orientation

and magnitude from optical flow information in order to create a feature vector for a

spatiotemporal region.

We evaluated the performance of our approach compared to other published re-

sults on the UCSD Anomaly Detection dataset and Subway dataset, two well known

publicly available datasets for the evaluation of anomaly detection. On UCSD dataset

we achieved state-of-the-art results on Peds2 scenario and our model presented com-

parable results on the Peds1 scenario.

On Subway dataset we achieved 100% of accuracy recognizing all anomalous

situations on Exit Gate clip and 83% of accuracy on Entrance Gate clip. Although our

model recognized most of the anomalous events, it also presented many false alarms.
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The two main reasons are because the original ground truth focused only on the ticket

gate and, during the training phase, people move in few directions. In view of that, we

can state that our knowledge regarding anomalous direction is not only for the ticket

gate, but it is for all the scene. To cope with these situations, we also proposed a

new ground truth addressing such anomalies considering all the scene. Moreover, we

introduced a new anomaly detection dataset, known as Badminton, composed by a

labeled video sequence recorded from a badminton game.

The parameters of this model must be set according to the scenario. For instance,

depending of the camera position and the human size spatiotemporal regions would be

changed in every scene. This would be taken as a disadvantage, because the collected

information only can be used for this specif situation. If camera moves the scene may

vary enough to present a totally different scenario.

During the investigation, many models have been testing to improve the results

of the complete pipeline, for instance, including new axis with appearance information

(quantized Gabor information), or even modifying the distance when histograms are

compared (cosine, mahalanobis, manhattan). Nevertheless, none of them achieves an

important results that are worth to present.

An important contribution of this approach is that our descriptor is quite sim-

ple compared with other complex model in literature. However, as we presented in

experiments chapter, our results can be compared with other descriptors.

As second approach we proposed a model for anomaly detection and localization

based on context information. Instead of modeling using common information such

texture, magnitude or orientation, we proposed a model based on human-object inter-

actions. An important contribution of this study is the different perspective about the

information collecting and the anomaly representation. Our model is capable to detect

anomalies and to determine which individual in a certain frame makes a suspicious

action.

Our model can use information from many scenes (same context) and use this

information to detect anomalous patterns in other scene belonging to the same context.

Also, our approach tries to introduce semantic information leaning relation patterns,

thus, it does not need that camera is in a determinate position, as long as the context

does not vary much. Therefore, our approach can detect and also determine the subject

that caused the anomalous event.

In a third approach we proposed a method based on human trajectories. It

consist in a spatial and temporal trajectory descriptor for anomalous event detection

based on deep neural networks, aiming at describing trajectories by their morphology.

This study presents a novel approach for anomaly recognition extracted from higher
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level information.

In our approach we also proposed a heuristic for multi-object tracking for data

association based on Kalman filter. The goal of our heuristic is to propose an easy

alternative to a complex problem, based only on the results of the anomalies and our

subjective analysis. However, the main objective of the model does not focus on the

algorithms but on the general idea.

In our study we presented an experimental evaluation regarding trajectories and

the relation between anomalies and rarity. Our experiments show that our proposed

model achieves comparable results regarding the state of the art in terms of recognition

of anomalies. As expected, the clustering of the trajectories also showed that the rare

events were in the clusters with less number of elements.

7.0.1 Additional discuss

Anomaly event detection is a challenging task even for humans, actually even to create

the annotations or to define the anomalies in a determinate scene. Indeed, many of the

dataset ground-truth have the inherit subjectivity of the annotator. In our experience

in the creation of own ground-truth for the proposed datasets and also the subway

dataset, the events that could be anomalous depending of the point of view of the

annotator about the scene context. For instance, for Cosar et al. [2017] in the ground-

truth employed in their experiments over subway entrance clip, they considered people

loitering, where in our opinion the people just waiting at the door of the entrance is not

much suspicious as the child running which appears minutes later of this event in the

video sequence. Following the same argument, we can mention the anomaly event based

on the wheelchair in UCSD dataset, because that person goes in same velocity as the

other people, here, the annotator clearly focuses on the appearance of the wheelchair,

however it is neither suspicious nor anomalous. Then, in many cases the algorithms

fit well in the certain datasets and are not fine for others. In our experiments we

chose different datasets in which our approaches can fit or solve the anomaly detection

problem. In the case of our proposed datasets, the ground-truth was annotated by

different people in our laboratory.

The camera view is important for our approaches. The handcrafted and trajectory

based approaches must use videos with fixed camera view. It means the camera cannot

present movement. It because they collect information about the scene in that specific

view. In contrast, our approach based on human-object interactions may utilize the

information collected in one camera view and use this information in another scene that

has the same context of the collected information. In addition, this model allows small
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movements of the camera since the scene context does not change. For instance, in the

classroom example, if the camera rotates, however the view is still the classroom, then

our approach works fine. In other case, if the camera rotates and the view change to

the window or to another view where the idea of classroom changes, then our approach

cannot be employed.

Following with the scene context discussion, how similar can a context be? The

context is also a subjective concept, for instance in the classroom example, there are

many types of classrooms, then the context must be limited by the semantic where the

model could be used. Thus, for example, the classroom in the computer science building

composed by chairs, tables, square, students, professors, among others typically objects,

however, could be a special classroom that only contains couch and other objects

regarding presentations. Although this example is obvious, it is important to highlight

because, in some cases the camera view could contain different objects.

In the literature, there is another type of analysis for anomalous event validation,

this methodology is called pixel level. In this methodology, the certain localization at

pixel level is provided by the ground-truth, thus the researchers could test their model

trying to find the exact localization of the anomaly in a determinate frame. However,

this methodology is not common in the literature, because it depends on the correct

delimitation of the ground-truth, and the definition of anomaly in that context. This

could be very subjective. In our trajectory based approach, the goal is to identify

the person whose performs the anomalous events, it is similar to pixel level, however,

not the same. Pixel level refers to position on the image frame, instead of that our

model refers to the person which has a position in the image frame. This difference

is important because in pixel level only the event is highlighted, in our approach the

tracklet shows the complete event from the beginning to the end.

The complexity of our approaches mainly depends on the tools that have been

employed for achieving the goal anomalous event detection. Hence, in handcrafted

approach the complexity is in worst case when all the frame presents movement, then

the final complexity for feature extraction is O(f(nm)), where n is the number of pixels

in the spatiotemporal region, m is the 3D region for entropy extraction and f is the

optical flow computing. The complexity for testing phase is given by the number of

cuboids in the entire test video, for each cuboid the complexity is the distance for all

trained patterns with each test pattern. In the human-object interaction approach, the

complexity is computed by the structure building, this depends on the number of people

in the scene. To determine the anomalous event the complexity of each first strategy is

the binary search into the dictionary building with the structure label. In the second

strategy, the complexity is computed regarding the two-gram complexity, in this case
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we built a sparse probability matrix in form of two hash tables, where is stored the

probability each tuple of labels found in the training phase. The search in this matrix

is O(log(d)), where d is the number of words in the dictionary label structure. In the

third approach, the complexity is the sum of various models, pose estimation, tracking

building, and neural network feature extraction in training phase. Pose estimation has

high computational cost, which is not detailed in the original paper. Tracking building

depends on the number of people in the scene, for instance in some frame with three

people the complexity is O(m(N2)), where m(N2) is the Munkres algorithm and N the

number of people in this specific frame. For feature extraction, the complexity depends

on the neural framework. In testing phase, k-NN complexity is given by the number

of learned patterns same as affinity propagation clustering.

All the experiments in our research were done offline. Undoubtedly, one of the

characteristics of the recognition of anomalies in surveillance videos is prevention, in

this way, some studies focus on real time models [Bera et al., 2016; Sultani et al., 2018].

However, in our opinion, our first approach could be easily adapted to an approach of

this type models. In the case of our future proposals, we do not doubt that with the

advance of the technology, the speed in the pose recognition, which is the method that

takes the longest, allows to realize the detection of anomalous events in real time.

7.1 General Conclusions

In this section we present the general study conclusions:

• The definition anomaly can have some degree of ambiguity within a domain of

application.

• Anomalies are infinite, in this study proposed models with the objective of recog-

nize at most as possible type of anomalies that happening in surveillance videos.

In our approaches we focus on movement patterns, where other characteristics

like appearance or more semantic information are not employed.

• In a complete framework all the approaches complement each other.

• Approach based on low-level features suits better for crowded scenes, however,

the influence of noisy data, the choice and representation of low-level features,

significantly influences the discriminative power of the detection.

• Human-object based approach tries to cover the drawbacks presented in first

model, using patterns with more semantic information.
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• Trajectory based approach attempts to offer an alternative to anomalous event

detection where the target is recognized at the same time as the anomalous event.

• Two datasets and a video sequence have been incorporated to the literature.

The goal of these datasets is to introduce an alternative for anomaly detection

experiments.

• Some of our models are available in the page of the laboratory, and the rest will

be published soon.

7.2 Future Directions

In this section, directions that can be extended from the contributions of this study,

are presented. This study proposes different modeling techniques and feature repre-

sentation techniques to the problem of anomaly detection.

Deep Neural Networks are a trending research topic in both machine learning

and computer vision in recent times. They have been outperforming most of the state

of the art performances in the fields of object classification and recognition. In this

work we propose two descriptors based on autoencoders, however, new trends based

on generative models [Ravanbakhsh et al., 2017; Lawson et al., 2017] present a very

interesting field to continue with our proposed feature descriptors.

In our second approach, human-object interactions, the main idea is to describe

the scene. Hence, a path that would be taken is to describe also the activities that

people perform. These activities initially could be a simple action like running, walking,

sitting, waiting. The aim is to introduce more information into the structures.

Multi-tracking humans in crowds is a hard problem to solve [Čehovin et al., 2016].

However, this is a point that must be improved for the continuation of our study. A

good characteristic that would help to improve the tracking is the appearance. Since

the reference point is located, we may assume that the region around that point presents

a fixed appearance. This information could be employed into the score function.

Another possible approach is to start by densely sampling spatiotemporal features

and subsequently add structure to the sequence representation. This information also

can be modeled or described by AEs.

One type of information that was not explore in our study is the depth. We be-

lieve that depth of the actors (people and objects) contains important information. In

this perspective, we found two alternatives, one based on auto camera calibration [Vas-

concelos et al., 2018] for scene homography and the second using depth map [Eigen
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et al., 2014] extracted using a DNN. We consider that both options would provide

promising results.
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