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“Although this may seem a paradox, all exact science

is dominated by the idea of approrimation. When a man
tells you that he knows the exact truth about anything,
you are safe in inferring that he is an inexact man.”
(Bertrand Russell in “The Scientific Outlook”, 1951)



Abstract

As Machine Learning applications drastically increase their demand for optimized imple-
mentations, both in embedded environments and in high-end parallel processing platforms,
the industry and research community have been responding with different approaches to
provide the required solutions. This work presents approximations to arithmetic operations
and mathematical functions that, associated with adaptive Artificial Neural Networks
training methods and an automatic precision adjustment mechanism, provide reliable and
efficient implementations of classifiers, without depending on mixed operations with higher
precision or complex rounding methods that are commonly proposed only with highly
redundant datasets and large networks. This research investigates Approximate Computing
concepts that simplify the design of classifier training accelerators based on hardware with
Application Specific Integrated Circuits or Field Programmable Gate Arrays (FPGAs).
The goal was not to find the optimal simplifications for each problem but to build a method,
based on currently available technology, that can be used as reliably as one implemented
with precise operations and standard training algorithms. Reducing the number of bits
in the Floating Point (FP) format from 32 to 16 has an immediate effect of dividing by
half the memory requirements and is a commonly used technique. By not using mixed
precision and performing further simplifications to the smaller format, this thesis reduces
the implementation complexity of the FP software emulation by ~ 53%. Exponentiation
and division by square root operations are also simplified, without requiring Look-Up
Tables and with implicit interpolation. A preliminary migration of the design to an FPGA
has confirmed that the area optimizations are also relevant in this environment, even when
compared to other optimized implementation which lack the mechanism to adapt the FP
representation range. A logical resource reduction of &~ 64% is achieved when compared to

mixed-precision approaches.

Keywords: Approximate Computing. Artificial Neural Networks. Hardware Implementa-

tion.



Resumo

A medida em que aplicacdes de Aprendizado de Méaquinas aumentam drasticamente sua
demanda por implementagoes otimizadas, tanto em ambientes embarcadas quanto em
plataformas de processamento paralelo de alto desempenho, a industria e a comunidade
de pesquisa tém respondido com diferentes propostas para prover as solugoes requeridas.
Esse trabalho apresenta aproximagcoes em operagoes aritméticas e fun¢des matematicas
que, associadas a métodos adaptativos para treinamento de Redes Neurais Artificiais e um
mecanismo automatico de ajuste de precisao, proporcionam implementacoes confiaveis e
eficientes de classificadores, sem a dependéncia de algumas opera¢ées com maior precisao
ou métodos complexos de arredondamento, que sao frequentemente propostos somente com
conjuntos de treinamento redundantes e grandes redes. Essa pesquisa investiga conceitos de
Computacao Aproximativa que simplificam o projeto de aceleradores para o treinamento
de classificadores implementados em hardware com Circuitos Integrados de Aplicacao
Especifica ou Field Programmable Gate Arrays (FPGA). O objetivo ndo era encontrar
as simplificacoes 6timas para cada problema mas construir um método, baseado em
tecnologia atualmente disponivel, que possa ser usado de forma tao confidvel quanto um
implementado com operagoes precisas e métodos de treinamento padrao. A reducao do
numero de bits no formato de Ponto Flutuante (PF) de 32 para 16 tem efeito imediato na
divisao pela metade dos requisitos de meméria e é uma técnica comumente usada. Por nao
utilizar parcialmente operagoes precisas e propor outras modificagoes no menor formato,
essa tese reduz a complexidade de implementacao da emulagao de PF em software por
~ 53%. Operacoes de exponenciacao e divisao pela raiz quadrada também sao simplificadas,
sem requerer Look-Up Tables e com interpolagdo implicita. Uma migracao preliminar do
projeto para uma FPGA confirmou que as otimizacgoes de area também sao relevantes nesse
ambiente, mesmo quando comparadas com outra implementagao otimizada que nao prové
o0 mecanismo para adaptagao da faixa de representacao do PF. Uma reducao de recursos

l6gicos de ~ 64% é obtida quando comparada com solugdes parciais (mized-precision).

Palavras-chave: Computacao Aproximativa. Redes Neurais Artificiais. Implementacao

em Hardware.
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1 Introduction

Machine Learning implementations have been closely related to hardware since their
early proposals. Artificial Neural Networks (ANNs), for example, were not only inspired
by biological models but also presented very early in efficient hardware implementation
proposals which later became known as “Neuromorphic Computing” (MEAD, 1990).
Despite the high efficiency shown in these approaches, the hardware limits predicted at that
time have been surpassed and the following years showed an impressive increase in computer
performance. This evolution probably influenced the decrease in the interest by hardware
optimized implementations. In this time period, the ML (Machine Learning) field matured
and not only new methods were proposed, like SVM (Support Vector Machines) (CORTES;
VAPNIK, 1995) and Random Forests (HO, 1995), but the researchers put great effort in
reducing the need of parameterization, which also indirectly helped to optimize hardware

implementations.

After decades of fast performance growth, digital circuits implementations began
to show their limits, and the processing speed increase had to rely on other techniques
than denser ICs (Integrated Circuits) and higher clock rates. The level of miniaturization
and voltage scaling reached a point at which reliability became a real and practical
issue (AGARWAL et al., 2000). Parallelization became more present and beneficial for
many ML methods, however, this approach also has its limits (ESMAEILZADEH et al.,
2011): power dissipation is a concern in many scenarios, not only in the embedded and
energy constrained platforms, but also in large processing clusters or powerful GPUs
(Graphics Processing Unit). The AC (Approximate Computing) paradigm - “deterministic
designs that produce imprecise results” (HAN; ORSHANSKY, 2013) - appeared as a
technique not only to be aware of the reliability problems but to explore them to obtain
efficiency gains (AGRAWAL et al., 2016).

Concerns with unreliable hardware date back to the first computing devices (NEU-
MANN, 1956), and by that time the expression “Stochastic Computing” also became
popular. Conversely, AC does not assume stochastic behavior of the hardware but studies
how quantifiable and controllable simplifications can impact the computation precision,
even if they are analyzed statistically. Applications with redundant and/or noisy inputs or
with no single “correct” output (or one that is not guaranteed to be found) are usually
good candidates for AC. Inherent to ML applications, these characteristics have attracted
the attention of the research community interested in the trade-off between precision and

efficient resource usage provided by AC techniques.

Efficiency is frequently a fundamental concern in computing methods implementa-
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tions. From embedded platforms, with power, processing speed and storage limitations,
to large scale clusters or tightly coupled massively parallel processing units, optimiza-
tions are often required. These two extremes (WU et al., 2011; REED; DONGARRA,
2015) in hardware architectures are highly relevant to ML: smart sensors, ubiquitous cell
phones, wearables, Internet of Things (IoT), main stream Big Data applications and high

performance computer vision platforms.

Embedded platforms may execute previously trained and static models, which
may be optimized (pruned and compressed) before the final implementations. This is
possible since the inference phase can be very resilient and can work well with noise (due
to its generalization capabilities) and reduced precision. Conversely, the training process
may suffer if executed on these simplified structures. Since the previously mentioned
applications frequently require Incremental Learning (GEPPERTH; HAMMER, 2016),
and the dependency on remote processing and storage is not always possible, there is
an active interest in researching the training process under approximations in order to

provide more efficient implementations.

Training process optimization is also relevant to the other extreme of hardware plat-
forms. If Incremental Learning is not required on the final device, extensive optimizations
for training are frequently neglected since an efficient process in this case is only relevant
during development. Despite this, since Deep Learning (LECUN; BENGIO; HINTON,
2015) increased its popularity, the size of the models also reached unprecedented scales.
Networks with dozens of layers, thousands of nodes and billions of parameters became
common to solve increasingly complex problems, using vast amounts of data. Training
times of days or weeks were needed even when using powerful hardware platforms like a
GPU server cluster (COATES et al., 2013) or a CPU (Central Processing Unit) cluster
with 1000 machines (16000 cores) (LE, 2013). High level Frameworks like “Caffe” (JIA et
al., 2014): also became popular, since they usually hide the high performance back-ends

programming details.

The technological barriers in IC design and the increasing commercial interest in
ML (in both extremes just mentioned) probably played an important role in reviving
the interest on efficient and simplified hardware implementations. Recent announcements
from Qualcomm (Zeroth Processor - 2013), IBM (MEROLLA et al., 2014) (TrueNorth -
2014), NVIDIA (Tesla P100 - 2016), Google (JOUPPI et al., 2017) (Tensor Processing
Unit - 2016), Apple (Neural Engine - 2017) and also from Intel (Nervana and Movidius
- 2017) confirm the importance of commercial implementations of such solutions. This
scenario of efforts to improve efficiency of ML applications using approximated techniques
or optimized hardware architectures, implemented in several levels, is the main driver of

the work presented here.

Alternative binary value representation formats, like fixed point and LNS (Loga-
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rithmic Number System), are being currently explored by the ML research community. A
considerable part of the work consists in evaluating the effect of reduced bit-width on the
performance with benchmark datasets or specific applications. These efforts are justifiable
considering that simpler hardware to perform arithmetic operations allows more efficient
specialized implementations. Bit-width is also highly relevant, since it has direct impact on
data movement and storage. It should be noted that non-standard formats or bit-widths
may represent difficulties when these customized systems are interfaced with standard
ones. Additionally, compressing the representations to find the minimal requirements
for a maximum acceptable degradation in specific datasets is a different paradigm when
compared to the current confidence in the standard floating points reliability for any
problems. Even in these cases, some simple measures are required to avoid numerical

issues.

The vast majority of ANN research and application is performed at a high ab-
straction level, using the corresponding programming languages and software libraries.
Single and double precision IEEE (Institute of Electrical and Electronics Engineers) FPs
(Floating Points) are reliable enough so that researchers are able to focus on algorithmic
issues, with rare and simple concerns for numerical problems. Conversely, half precision
FPs require more attention and mixed precision training is becoming the norm for resource

efficient and optimized implementations.

The main objective of this research is to develop a mechanism which unifies the
numerical representation used in ANN training implementations in a more efficient format.
The two main motivations of this approach are that it allows the solution to provide a
single and simpler type of arithmetic unit, which results in even more efficient solutions,
and results in lower memory usage when compared to the mixed precision approach.
Additionally to the representation, this thesis also investigates further simplifications to the
FP arithmetic, adapts and proposes higher level mathematical operations approximations
and finally an automatic precision adjustment during the training process which allows the
use of the method without extra care due to the lower precision. The goal is to perform
the training with the same methods, the same network structures and hyper-parameters
used in precise baselines. The approach is not to find the lowest acceptable precision,
which varies for each specific application and training algorithm, but to define an efficient

approximate implementation which can be used as reliably as the reference ones.

The work detailed in the following chapters explores modifications to the standard
half precision FP that simplify its implementation in software (when using low-end
embedded processors, without an FPU - Floating Point Unit) and in hardware (with fixed
implementations or in FPGAs - Field Programmable Gate Arrays). This is achieved with
only minor and optional modifications to the standard binary representation. The standard

format is already being supported by some hardware platforms (e.g. NVIDIA and ARM)
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and compilers (e.g. GCC) and some of the presented results also apply to the standard
IEEE FP format. Approximate implementations of more complex mathematical functions
are also adapted to the 16 bits FP format, as simple replacements for LUT (Look-Up
Table) based activation function implementations. An automatic precision adjustment
mechanism was crucial to avoid using custom training algorithms. Another important note
is that the network configurations (number of layers, nodes and connections) used are
the same minimal ones employed in other references. It is not uncommon to see larger
networks in articles analyzing low precision training, which partially defeats the purpose

of the simplifications.

The main contributions of this thesis are distributed in the following manner:

Chapter 3 Contributes a critical view on the recent AC research applied to ML, showing
that the most aggressive approximations are focused on a small number of simi-
lar problems based on large datasets. Generic, automatic and fully approximated

proposals are rarer in the literature.

Chapter 4 Details the modifications implemented in an ANN training library to transform
it in a simulated and easily modifiable environment to investigate operations with
approximated representations. The same library can be compiled with efficient native

numeric types or with emulated modules which provide the basic operations.

Chapter 5 Contributes adaptations of mathematical functions approximations to a
limited FP format and a new approximation which merges a division operation with
a square root calculation. These approximations behave like stepwise simplifications
with implicit interpolation and require considerable less resources than their precise

counterparts.

Chapter 6 Achieves resilient training of ANNs using a standard adaptive algorithm by
contributing a fully automatic and resource efficient range adjustment mechanism,
applied to the back-propagation operations. Equivalent classification performance is
achieved by quickly reacting to overflows but gradually shifting the representation

range to fit smaller numbers.

Chapter 7 Presents two implementations for viability analyses of the proposed methods.
The first one uses a general purpose processor and one of the function approximations.
The other provides a preliminarily comparison of FPGA operations to a reference from
the literature with relevant gains when compared to the mixed-precision approaches.
The scalability of a multi-layer structure with several FPUs, including the bus

communication, is also analyzed.

Regarding the remaining content, Chapter 2 surveys the related research with a short

historical background on ANNs and their early optimized implementations, which preceded
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a period of diminished research interest in ANNs and their hardware implementations. Final
remarks are outlined in Chapter 8, which reviews the main achievements and challenges of
the current work and analyzes some improvement possibilities and next steps regarding

the complete hardware implementation.

As appropriate and expected, this text gave preference to non-personal language,
which may be sometimes not clear regarding the source of the information. Great effort
was put in making the uses of expressions like “this work”, “this thesis”, “this research”,
“the experiments” and “the proposed method” to clearly refer to actions performed or
decisions taken by the author, which takes full and sole responsibility for them. Wherever
similar constructions refer to other research, persons or actions, explicit references are
made in order to avoid the confusion which normally arises in these situations. Conversely,
the use of the plural in the first person was employed only where the reader is invited to

join a reasoning process or in clearly marked quotes.



2 Historical Background

In order to exemplify how efficient implementations of ANNs have been long related
to hardware, the following sections briefly review the fundamental concepts and some
historical research on the topic. A short introduction to the common aspects of this ML
technique is presented in the first section, without detailing the several architectural
differences and training methods. Some examples of early hardware implementations are
divided into digital and neuromorphic approaches in the two subsequent sections. Back
in (TRELEAVEN; PACHECO; VELLASCO, 1989) this division was still unclear, since
digital implementations appeared more promising for practical purposes. Despite that, it
did not take a long time for an increase in the popularity of the neuromorphic designs.
These two sections briefly cover the period which preceded a decrease in the interest for

optimized ANN hardware implementations.

2.1 Introduction to Artificial Neural Networks

The biological inspiration for ANNs (ROSENBLATT, 1958; MCCULLOCH; PITTS,
1943) points to the first direction in which AC could improve the efficiency of these networks.
The basic artificial neuron model consists of several inputs, each one applying a certain
weight to its respective input signal, contributing to the activation of the neuron’s output
according to a specific function. This is clearly an intrinsically analog model and several
examples in Chapter 3 will show its resilience to approximations. Figure 1 depicts a simple
two layer ANN with two neurons (Nj; and Njp) connected to the inputs and one (Nay)
providing the output. Each arrow pointing to a neuron represents a connection which
multiplies an input signal by a specific weight. In multi-layer topologies, the neuron outputs

of the previous layer(s) usually become the inputs of the next one.

At each layer, the output o of the neuron £ with m inputs is obtained according
to the Equation 2.1, in which z; represents the input signal j and wy; its respective weight.
A bias term (by), independent from the input signals, is included to shift the argument of
the activation function . In practice, the bias is normally implemented as a weight which
is always connected to a fixed value (e.g. 1). The complete system (with all neurons, layers
and connections) represents a model which intends to correctly infer, within an acceptable

error margin, one or more outputs for inputs which were not previously known.

o = (bk + iwijj) (2.1)

j=1
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Connection Weights

Input 1

O Output

Input 2

Neuron Outputs

Figure 1 — A simple ANN with two layers of neurons

In order to build this model, a structure with enough capacity, which is directly
related to its complexity, has to be defined and its parameters (weights and biases) have
to be found. The supervised training technique, which basically consists of adjusting the
input weights and bias based on known input examples with their respective outputs, had
its first breakthrough in (WILLIAMS; HINTON, 1986) and a practical framework was
presented in (RUMELHART et al., 1986), causing the concept of back-propagation to gain
considerable popularity. The term refers to the fact that during the training stage, after
the inputs are “forward-propagated” to the outputs, the inference error (based on a loss
function 1) is propagated backwards and the contribution of each connection to the output

error determines how its weight should be adjusted.

To guide the weights and biases adjustments, the whole network is analyzed as a
sequence of differentiable functions. Even considering that the activation functions ¢ are
non linear, like the logistic function detailed in Equation 2.2, their derivatives are known,
and frequently can be conveniently calculated using the actual value of the function, like

exemplified in Equation 2.3.

ole) = T 2.2
W) _ oz - () (2.3

1 A loss function is defined to measure how far the network is from the ideal model, considering the whole

training set. The training objective is to minimize the distance to this error-free situation, without
losing the generalization capability.
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Figure 2 illustrates this process of calculating parameter adjustments by applying
the chain-rule of derivatives of every operation (sum-of-products, activation functions and
loss function) from each known training example. Using the chain rule, from the output to
the input, like indicated in Equation 2.4, it is possible to estimate how small changes in
each specific weight wy; would affect the loss function E. This is the fundamental principle
of Gradient Descent (GD) optimization, detailed in Equation 2.5. This method makes
progressively smaller adjustments A6, in each parameter 6,, by applying a small fraction
(determined by n) of the gradient Vy, which guides the direction and intensity of each

adjustment to reduce the loss function £ (hence the negative sign).

Input 1 OE/ow

‘E’ Loss
Function

0E/do
Input 2
Figure 2 — Graphical representation of back-propagation

8E 76_E an

— 2.4

8w1€j 80]' awkj ( )
Ab, = —nVeE(0,; x;y) (2.5a)
Orir = 0, + AD, (2.5b)

There are several variations of the main idea behind back-propagation, but three
common aspects are highly relevant when approximations and reduced precision are
considered. Firstly, although each training example inference and its error propagation
are performed separately, the weight updates may not be executed in every step. This
accumulation process, which may happen for the whole dataset or partial batches, may
loose contributions of small magnitudes when they are accumulated with larger values.
Secondly, the theoretical background for this type of optimization (GD) usually relies

on precise definitions of the activation functions and their derivatives. Approximated
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versions of these equations may harm the optimization process (e.g. causing instabilities).
Finally, as the training process evolves, the error magnitudes and the respective parameter
adjustments tend to have very low values. This fact may cause the learning process to

stop prematurely if these small adjustments are not considered with enough precision.

This work will assume familiarity with multilayer ANN topologies and their main
training methods. For further information, the reader is referred to (HAYKIN, 1998)
(Chapters 1 to 4) for a comprehensive explanation of ANNs architectures and training
methods. An excellent historical overview of ANNs from the first implementations to the
current state-of-the-art approaches is provided by (SCHMIDHUBER, 2015).

2.2 Digital Hardware Implementations

Due to their simplicity and good performance on certain applications (e.g. change
detection), Weightless Neural Networks are still actively used and researched, despite
their introduction more than half a century ago, in (BLEDSOE; BROWNING, 1959)
and later in (ALEKSANDER, 1966). Instead of the common weighted-sum approach,
the nodes use a LUT based technique, normally realized with regular Random Access
Memory (RAM). WISARD (ALEKSANDER; THOMAS; BOWDEN, 1984), one of the first
practical examples, is completely implemented with standard digital hardware components.
The training consists of simply storing “ones” on memory positions directly accessed by
black-and-white image pixels, which are randomly connected to the address lines of several
nodes. In the inference phase, the amount of nodes recovering the bit “one” from the
memory gives an indication of the confidence in the image similarity. Despite its simple
implementation, this method may achieve a high resilience to noise, specially if noiseless
training is possible. Although not relevant in the short term, quantum computing may

also boost the research interest in this type of ANN.

The ANN size, the way the nodes are connected and the definition of the activation
functions are structural decisions that inform the design of such ML systems. These
and other parameters vary considerably according to the application. Consequently, any
problem-independent hardware implementation proposal needs to be given such flexibility.
FPGAs have this capability and modern devices have enough resources to implement
complete systems for several applications. The intrinsic parallelism of ANNs is also an
incentive for efficient FPGAs implementations. One of the earliest attempts (BOTROS;
ABDUL-AZIZ, 1994) presented a solution which required two FPGAs and an external
memory to implement a single node. In this case the training phase was implemented
entirely in software, but more recent examples (CAVUSLU et al., 2011) provide an almost
complete hardware solution. Even years before this implementation, the book (ZHU;

SUTTON, 2003) surveyed successful examples corroborating the increase in FPGAs
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complexity as a crucial requirement to successful ANN implementations. The recent
trend towards general purpose CPUs integrated with FPGAs may also provide interesting
opportunities for hybrid solutions that explore FPGA parallelism and CPU flexibility.

Even in a period when the available integration technologies did not provide
enough capability to implement complex digital ANNs, several solutions were proposed.
The survey (DIAS; ANTUNES; MOTA, 2004) analyzed recent hardware implementations
with emphasis on the commercially available solutions, including some from large companies
(e.g. Philips, Hitachi, Siemens and IBM). Approximately half the components presented
in the paper were considered optimized multiprocessor chips and the vast majority could
implement no more than 64 nodes. While some of the examples could not even hold the
connections internally, two of them could work with 262,144 weights. Precision was also

not high, since most of the products worked with 16 bits or less.

Both FPGA and fixed ASIC implementations of ANNs can be made denser if
arithmetic units and data paths are simplified. In order to evaluate the impacts of such
hardware optimizations, the study (SAVICH; MOUSSA; AREIBI, 2007) compared the
performance of MLPs trained with back-propagation in several fixed and floating point
number formats. The presented trade-off results between accuracy and resources apply only
to FPGAs, since they provide internal DSP modules. Conversely, the impact of numeric
precision on accuracy could be applied to any other similar form of implementation. In
addition to the different representation formats, LUT based activation functions were also
tested. The classic exclusive OR (XOR) problem was employed as benchmark using the
standard configuration of two nodes in the hidden layer and one in the output. From the
15 fixed point formats and 10 floating point ones, from 16 to 22 bits, a fixed point with
4 integer and 13 fractional bits was considered as the optimal configuration. Using this
format as reference the authors also analyzed how resource usage grows for more complex
two layer networks. The amount of slices used varied fairly linearly with the number of

weights.

2.3 Analog and Neuromorphic Implementations

A more direct analog modeling of the neuron behavior is an orthogonal approach for
hardware ANN implementations. In (HOLLER et al., 1989), Intel presented an integrated
component that offered 64 fully interconnected neurons to 64 fully connected inputs. The
connections were implemented with a non-volatile and electrically modifiable memory
which provided analog storage of the weights using a “Floating Gate” technology, previously
proposed. Inputs and outputs were also analog, differential and with compatible levels,
allowing multi-layer implementations using interconnected components. The product of

inputs by their respective weights, the summation and the sigmoid activation function
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were implemented in analog circuits as well. The learning process, however, was performed
off-chip. The original article was very detailed but did not evaluate a final application.
A few years latter, the effects of radiation exposure (CASTRO; SWEET, 1993) and
component variations (CASTRO; TAM; HOLLER, 1993) were evaluated, with satisfactory
results. The survey mentioned in Section 2.2 also considered the chip as the only viable
analog one available at the time, comparable only with another more specialized and

neuromorphic proposal.

The paper (VALLE, 2002) mentions three motivations for analog VLSI (Very Large
Scale Integration) implementation of ANNs: analog processing is one of the reasons behind
biological NNs computational power; the physics of the silicon devices can efficiently
implement computation of analog signals; units very similar to biological neurons can be
realized. The authors provide an extensive analysis of practical aspects of this type of
implementations, focusing on the critical issues related to the supervised learning process.
It is argued that weight perturbation is a more promising strategy than back-propagation
for analog circuits and four parallel methods are presented. The work proceeds with a
detailed analysis of related research leading to a conclusion that defends the feasibility

and good performance of such solutions for small scale networks.
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3 Related Work

After a relatively long period of diminished interest in ANNs and their hard-
ware implementations, the research in this area regained momentum. The increase in
ANN achievements was in part related to higher availability of training data and some
breakthroughs (HINTON; SALAKHUTDINOV, 2006) in Deep Learning training, which
demands great computing power. This higher demand kept pushing the digital hardware
performance limits, which was also facing growth rate limitations and exploring new
optimized techniques. The current chapter separates this recent phase from the historic
proposals and presents a review which covers some of the most relevant contributions
related to digital hardware implementations. The survey provided by this chapter tries to
fill an apparent gap in the literature reviewing the recent trend of applying AC techniques

to ML, with this form of organization and classification.

The following sections group the surveyed research initially by the two most popular
ML techniques, which share many characteristics and explore the AC methodology. The
third group of publications analyses approaches that are more generic (apply to more than
one ML method) or are related to the mathematical methods that are commonly used in
the ML field. The final section summarizes the gaps found in current research that justify

the relevance of the contributions presented in the following chapters.

In order to better understand the following review and its scope, some categorization
should be provided. As previously mentioned, AC explicitly excludes a related field,
Stochastic Computing, which analyzes the effect of non-deterministic hardware behavior.
Algorithmic optimizations in ML methods are also excluded if they do not use some type
of approximation (e.g. trading of mathematical functions precision for efficiency). It should
be also noted that the feature selection or extraction processes, which considerably simplify
the input space, are separate research fields and are not considered as approximations
in the context presented here. Also excluded from this collection of studies are the
mere customizations of specific methods to certain platforms, like DSPs (Digital Signal

Processors) or FPGAs without implying some explicit form of approximation.

Two of the most important aspects of AC are identifying which parts of the methods
or data are good candidates for approximation and determining the compromise between
the level of simplifications and quality. If this analysis is performed at design time and all
approximations are defined in a fixed manner, this can be considered a static approach.
Conversely, if either the promising method parts or the simplification levels are determined
or adjusted at runtime, a dynamic approach is used. Specifically in ML, it is common

to find small parts of the method, like kernels, which represent a large fraction of the
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processing time, being good candidates for further analysis regarding the approximation

consequences.

Optimizing a part of the method which is not heavily used or selecting an approxi-
mation level which compromises the output quality beyond a certain tolerable amount
should be avoided. There are several examples in the literature that show methods (not
specific to ML) to statically analyze a generic code or algorithm and obtain these opti-
mization parameters. If this process is performed without the designer intervention, it is
considered an automatic approach. This is the opposite of a guided optimization, which
demands knowledge from the designer to decide where and how to approximate operations

and data, but also obviously provides more control of the process.

Several options are present in the literature, not only related to ML, to implement
the computing approximations. One of the most common approaches is the data repre-
sentation, which includes not only less precise floating or fixed point formats but also
different numerical techniques like pure integer operations or logarithmic number systems.
Another option is memory reduction by approximation, which may not significantly
affect execution time but may considerably reduce resource usage and data communication.
Elementary mathematical operations or more complex functions may also be the
objects of approximations trading result exactness for processing time gains. It is also
worth mentioning that simplified algorithms may also obtain advantages by approxi-
mation, when early termination, skipped steps or simpler models, for example, are used to

anticipate part of the results with less quality.

3.1 Neural Networks

Parallel Perceptrons (PPs) are a very resource efficient neural networks realization,
with simple threshold activations and binary outputs. As in SVMs, the classification margin
is maximized and the original training method is based on an iterative optimization scheme.
“Direct Parallel Perceptrons” (DPPs) are proposed with a new algorithm in (FERNANDEZ-
DELGADO et al., 2011) which analytically calculates the network weights, without
any iterative search or parameter-based optimization process, and with computational
complexity varying linearly with the input dimensions. This is possible due to a linear
approximation of the error function. Online training is also very efficient because the
method is incremental and does not have to be repeated for the entire dataset, as in
SVMs. The proposal is compared to Adaboost and Bagging of MLP networks, to the
original PPs, LDA and also two SVM implementations, all applied to several benchmark
problems. For datasets with two classes, the average accuracy of DPPs is 2.8% lower than
the best reference method but higher than 6 out of 9 competitors. Considering C/C++

implementations of 3 reference methods, DPPs are more than 400 times faster than the
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fastest one.

The work presented in (COURBARIAUX; BENGIO; DAVID, 2014) evaluates three
benchmark datasets with deep neural networks (specifically Maxout networks) using three
different number representations: floating point, fixed point and dynamic fixed point. The
authors focus on the multiplication operations, implementing the accumulators with single
precision (32 bits) floating point. This approach results from an analysis showing that
accumulator precision has low impact on FPGA implementation costs. Simple fixed point
is considered harmful because activations, parameters and gradients have very different
ranges. Gradients are specially critical, since they slowly diminish this range during training.
With a simple dynamic adaption of fixed point to different ranges, the authors find no
statistically relevant accuracy reduction with a precision down to 10 bits. This reduced

precision is used not only for running the networks but also for the training process.

The authors of (ZHANG et al., 2015b) aim at achieving considerable energy
savings in artificial neural networks by applying approximation in data representation,
computation and memory accesses. The framework analyzes the impact that neurons (with
any topologies) have on the output quality, sorts them according to a score, and specifically
adjusts the approximations. Memory Access Skipping is implemented by simply avoiding
certain non-critical neurons (by not reading their respective weights). Precision Scaling is
obtained by reducing the data representation to 4 bits or by using an adjustable bit-width
approximate multiplier (down to 18 bits). An iterative optimization heuristics to select
candidate neurons and update their approximation is presented. The experimental results
are obtained by simulation of the real hardware in 45nm implementation and show energy
benefits from 34% to 51% with less than 5% of quality loss.

Another confirmation of the resilience of ANNs to less precise data representation
is shown in (GUPTA et al., 2015), in which the authors implement deep networks with 16
bits fixed-point number representations and stochastic rounding. This topology provides
similar results to 32 bits floating-point reference implementations in terms of classification
accuracy. It is argued that the use of stochastic rounding reduced by half the number of bits
required for fixed point training, compared to the latest known work of approximate data
representation in deep networks. During the analysis of common benchmark datasets, it is
mentioned that a mixed-precision approach, with higher precision fixed-point operations at
the end of the training process, is also a promising strategy. Furthermore, a proof of concept
FPGA implementation is also presented. This optimized version achieves 37 G,,s/s/W
indicating a considerable improvement over CPU and GPU implementations (in the range
of 1 =5 Gops/s/W).

The paper (LIN; TALATHI, 2016) cites three recent works which have shown that
stochastic rounding is a good strategy to improve stability of the training process in deep

neural networks under limited numeric precision. The main contribution of this work
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is a theoretical insight into the root cause of such stability problems. Complementary
techniques to stochastic rounding are also presented. Starting from a “perfect” activation
function, the authors show how the effective operation (which is not differentiable) intro-
duces quantization errors. Such errors affect the gradient computation especially in the
case of deep networks, because each level propagates the previous errors and introduces
others. Three proposals are presented to the problem: low precision weights and full
precision activations during training, fine-tunning only the top layers since gradient errors
build up and a bottom-to-top iterative fine-tuning scheme which applies approximations
progressively. Results show quality improvement by the three proposals, with similar
results (less than 0.5% difference) among them and to the reference floating point. The
best performance was achieved with 8 bits weights and 16 bits activations, which, if reduced

to 8 bits, cause only a 2% drop in accuracy.

The work (KIM; SMARAGDIS, 2016) presents a neural network architecture that
implements weight parameters, bias terms, input, and intermediate hidden layer output
signals as binary values. These conditions apply only to the feed-forward phase (which
involves just XNOR operations and bit counting), since the training process evolves from
real-valued operations to the convergence to the final binary results. A weight compression
technique is described as the first step of the training process (which has to handle
real-valued inputs) and the final step involves the BNN with a “Noisy Backpropagation”
implementation. The normal sigmoid activation function is also replaced by a simple sign
operation. The method is compared with a 64 bits floating point equivalent ANN, with
negligible accuracy loss for a hand-written digit recognition database. Resource savings

are not analyzed in this publication.

The technical report (HINTON et al., 2012) is cited as the basis or inspiration
for several ANN based approximated implementations - like (WAN et al., 2013) and
(SRIVASTAVA et al., 2014) - and binary networks (with 1 bit precision weights) as
presented in (COURBARIAUX; BENGIO; DAVID, 2015) and (GOODFELLOW et al.,
2013). The main idea is not related to AC by the authors, and presented as an effective
method to trim the complexity of the ANN during training to avoid over-fitting. Despite
this, when compared to other proposals in this review, the method devised by Hinton
et al. can be considered as an approximation, since randomly selected (or less relevant)
connections are dropped and disregarded from calculations during training. Obviously this
would not have an efficiency impact (at least in implemented circuits) on hardware based
topologies, but still serves as another confirmation of the resilience of these algorithms.
Since the removal of nodes reduces the learning capacity of an ANN, it can be used
to implement more complex network topologies that dynamically adapt to problems

that are easier to solve. This technique may provide implicit regularization, as proposed
in (ANGUITA; BONI; RIDELLA, 2003b).
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The analysis presented in (HASHEMI et al., 2016) is based on a broad range
of numerical representations applied to ANNs in both inputs and network parameters:
floating point (as reference), fixed point (4 different bit widths), powers of two (replacing
multiplications by bit shifts) and binary weight nets. The analysis is based on several
benchmark datasets and evaluates the compromise between accuracy and hardware im-
plementation metrics, with techniques that use some of the saved resources to increase
the ANN size and improve performance. Results show a wide range of approximation
parameters with negligible degradation in performance, but binary nets achieved the best
results: the highest energy savings (94%) with the best accuracy (higher than the floating
point reference). Conversely, powers of two and 8 bits fixed point implementations were

more consistent among different datasets.

A method which dynamically prunes redundant connections from a trained ANN
is presented in (HAN et al., 2015). Since external memory accesses are shown to be the
most relevant operations when energy consumption is considered, reducing the number
of network weights is an important optimization. The reason the authors consider the
proposal as a dynamic one is that the three phases (training, pruning and fine tunning)
can be repeated iteratively. The results for two datasets achieve 9x and 13x compression
ratio, without loss of accuracy. A comparison with 6 other pruning methods is provided
and the effects of regularization parameters are also analyzed. Further developments, which
include weight sharing and Huffman coding, are proposed in (HAN; MAO; DALLY, 2015).
With these improvements, the compression ratios reach 35x in one dataset and 49x on

another.

The Flezpoint format is proposed in (KOSTER et al., 2017). The precision is
a compromise between fixed point and floating point formats, since the exponent is
shared among all values within the same tensor. This simplification achieves both memory
requirements reduction (which also affects the communication traffic) and computations
complexity savings. Other interesting improvement is the automatic statistical analysis
of the mantissas, which tries to anticipate overflows and adjust the tensor exponents.
The authors compare the approach to single precision floating point references using
three popular deep learning computer vision benchmark datasets with convolutional and
generative adversarial networks. The results show equivalent accuracy performance when
compared to single precision floating point implementations and superior to half precision

floating point in some cases.

In (LI et al., 2017) the authors reinforce the tendency verified in this survey:
“results in this area are largely experimental”. Initially the authors analyze and compare
the convergence of BinaryConnect (BC) and Stochastic Rounding (SR) for convex problems.
Both methods are covered in this work. Despite the fact that the measures of convergence

presented are not directly comparable, in conditions normally found in the final optimization
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stages for ANNs, BC would perform better than SR. The comparison is then extended
without the convexity assumptions, analyzing SR as a Markov Chain. This method is found
to have a limitation: at the end of the learning process, as the weights adjustments diminish,
it becomes less likely to perform finer minimizations to the loss function. Considering
this characteristic, increasing the batch size would improve the performance of SR. The
experimental section compares the approximations methods using Adam as the baseline
optimizer with popular computer vision benchmarks. The results support the claims of

the presented theoretical study.

Support for standard half-precision floating point format (with 16 bits) is becoming
easily available in GPUs, ASICs and general use CPUs. Three techniques to use this
format with deep neural networks are proposed in (MICIKEVICIUS et al., 2018), without
modifications to hyper-parameters and with equivalent accuracy to precise formats. The
first one does not provide the full memory usage benefits of the lower precision since
it uses single precision (with 32 bits) format to store a “master copy” of weights. The
second technique scales the loss function to avoid loosing the small but significant weight
adjustments. Finally, a mixed precision dot-product arithmetic is presented with half-
precision arguments and single-precision results. With the three techniques enabled, the
authors trained 13 models which matched the baseline accuracy in most cases and even
presented slightly improved results in some of them. This effect is also found in other

methods and is commonly associated to regularizing effects of lower precision.

Another mixed precision training setup is described in (DAS et al., 2018). Like
in the Flexpoint approach, an exponent is shared between values in the same tensor.
Conversely, unlike many related methods, the authors present a solution which is simpler
to implement in general purpose hardware, using integer operations, instead of relying on
specialized hardware. The main part of the optimization are the FMA (Fused Multiply
and Accumulate) operations with 16 bits integer arguments and 32 bits integer output.
The practice of storing precise representation of weights for training calculations is also
used. For this reason, the conversion of integer accumulations to floating point must be
performed. Results show equivalent or slightly better accuracies and almost 50% savings

in computation when compared to a reference single precision floating point baseline.

Mixed precision is also the recommended technique in (DRUMOND et al., 2018).
The authors propose a hybrid Block Floating Point (BFP), sharing the exponent among
all values in the same tensor, and applying the format to all dot product operations. All
the remaining operations are performed with regular floating points. Stochastic rounding
is used for mantissa truncation, with the advantages already mentioned in this Section.
Besides three image classification datasets, frequently used to test AC techniques, the
article also reports equivalent performance for language modeling tasks. A proof-of-concept

implemented in FPGA achieves a throughput improvement of 8.5 times, when compared
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to FP16 multiply-and-add units implemented in the same FPGA.

A deep ANN architecture, implemented only with integer operations for inference
and training is proposed in (WU et al., 2018). The authors criticize the fact that even in
very strongly approximated ANN implementations, most SGD based methods accumulate
the weight gradients with higher precision. This overhead is even worse in adaptive methods,
which store at least one extra parameter for each weight. Addressing these issues, the
main features may be summarized as: an efficient quantization function with stochastic
rounding and a modified weight initialization to avoid zeroed initial values. Details of
how the quantization is applied to weights, activations, errors and gradients are also
provided. No adaptive terms (like the ones present in Adam, RMSProp or Momentum
based SGD) are included, no batch normalization is used in the optimization process and
no explicit regularization is included in most cases. Softmax is also avoided in models with
fewer outputs. Four classic computer vision benchmark datasets are used o evaluate the
techniques and compare them to eight other methods with approximations. The authors
also conduct experiments testing different quantization parameters, increasing the back-
propagation precision. With the strongest approximation (maximum of 8 bits) the method
achieved state of the art performance in two datasets, and similar accuracy in a third one.

The fourth problem resulted in considerably worse results with this approximation level.

Even historic architectures, like WISARD (ALEKSANDER; THOMAS; BOWDEN,
1984), mentioned in Section 2.2, are still being revisited. In 2019, the 27" European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine Learning
featured a special section on Weightless Neural Networks (WNN). These networks are
so simple that the only arithmetic required is the comparison between unsigned integers.
The generalization does not come from small changes in input values, but from random
binary connections (the “weight” is either 1 or 0). One of the presented approaches in the
mentioned conference was evolved and published in the paper (TORRES et al., 2020).
The authors merge a simplified edge detection mechanism (based on pre-defined patterns)
to deforestation detection WNNs (which also act as binarization circuits for several bits
in parallel). Since training is not required on the target application, the framework au-
tomatically generates VHDL code for trained WNNs, connected to the edge detector,
and also synthesize them unattended, allowing the complexity of the resulting FPGA
implementation to be part of the optimization process. Very simple logic is achievable for
each block of 3 x 3 pixels, due to the sparsity of the trained networks and the optimization

capabilities of the synthesis tool.
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3.2 Support Vector Machines

The SVM is a supervised learning method initially proposed (BOSER; GUYON;
VAPNIK, 1992; CORTES; VAPNIK, 1995) as an algorithm to optimize the separation
hyperplane of binary classifiers. The method can be also used for multi-class classification
or regression and has become one of the de-facto standards in the machine learning
research. The use of kernels to map the input to feature spaces is of special interest for
AC, as shown in the analysis of several papers in this section. Figure 3, generated with
LIBSVM (CHANG; LIN, 2011) and synthetic data, depicts an example of non-linear
Radial Basis Function (RBF) SVM classifier (with two input dimensions and three classes).
Along with the data points, the final classification regions show how the SVM optimization
process tries to maximize the separation between the classification frontiers and the data

regions.

Regions:
[E] Class 1

[®] Class 2
£ Class 3

Figure 3 — Three-class SVM/RBF classifier with large margins

Two papers (ANGUITA; BONI; RIDELLA, 2003b; ANGUITA; BONI; RIDELLA,
2003a) present a research group proposal for a SVM learning digital architecture and
discusses its implementation on an FPGA. The authors provide a detailed analysis of the
quantization effects of the SVM parameters. A considerable amount of comparison tests is
performed with varying register lengths for fixed-point implementations and comparing
them to a floating point reference algorithm. In general, the performance of the proposed
method matches or even improves the reference results. One of the main conclusions in
these papers is that the quantization effect in specific areas benefits the generalization

capability.
The SVM feed-forward phase is implemented in (ANGUITA et al., 2006) with an

iterative algorithm in fixed-point arithmetic using only shift and add operations, avoiding

multiplications. The authors describe a “hardware-friendly” kernel similar to the Gaussian



Chapter 3. Related Work 20

with a different base (2 instead of e) and L; norm. The proposal is based on a 1965
iterative algorithm and a thorough comparison is performed between different precision
implementations regarding the error rate. When comparing the optimized kernel with the
Gaussian, the authors find that the error rate in the approximated version is statistically
equivalent in 11 out of 13 datasets. Final results show that the approach is similar in terms
of error rate to the Gaussian kernel (implemented with 64 bits floating point operations).
Regarding the fixed-point bit width, the accuracy starts to deteriorate between 12 and 8
bits, depending on the dataset.

The novel SVM architecture proposed in (AYINALA; PARHI, 2013) uses two
approximation techniques to achieve a more efficient implementation: multiply-add opera-
tions with fixed width and exponential function based on a size-optimized Look-Up Table
(LUT). Considering linear, polynomial and RBF (Radial Basis Function) kernels, the
authors note that the core computation modules are dot-product, L2-norm and exponent.
The first two benefit from approximations in a multiply-accumulate operation (proposed
in (CHO et al., 2004)) and the trade-off between bit width (12 and 16) and accuracy
is shown. The RBF implementation is optimized by a proposed LUT-based exponent
function with different quantization step sizes. Final results are presented by comparing
not only the bit lengths but also the use of both techniques combined or separated. With
the optimizations combined and choosing 16 bit words, the authors claim 31% energy

savings without affecting SVM accuracy.

It had been shown in (ARNOLD et al., 1997) that Logarithmic Number Systems
(LNS) provide an efficient way of implementing back-propagation training in neural
networks. The same system is applied to SVMs in (KHAN; ARNOLD; POTTENGER,
2005), in which the authors propose a hardware implementation using a linear kernel.
A software simulation of the LNS is also provided for comparison and no statistically
significant difference in the accuracy is found between this version and the hardware one.
The difficulty due to the lack of representation of the “zero” value in LNS is mentioned
but, when compared to a reference implementation, the proposed system achieves the
following classification performance: in one dataset the accuracy is improved from 74% to
83.6% and in the three others it dropped between 1% and 4%. The authors compare the
complexity of the FPGA implementations (in some cases reduced by half) as an indication

of the energy efficiency improvement.

The use of LNS is also analyzed in (KHAN; ARNOLD; POTTENGER, 2004).
The authors use some benchmark datasets to compare a reference SVM double floating
point implementation with several LNS implementations with different bit precisions. The
results show that, for the datasets considered, a general purpose SVM needs only 7 or 8

bits with LNS to achieve results within 1% of the reference implementation.

In (ESMAEELL; GHOLAMPOUR, 2012) the authors propose a more memory
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efficient use of LNS for SVM classifiers. The improvement consists in using LNS for
multiplication but fixed point for addition and subtraction. These two operations are more
complex if implemented logarithmically, usually demanding look-up tables. A comparison
is performed to show the high memory demands by these LUTs to achieve good accuracy.
An optimized system is proposed to convert LNS to fixed point, using a reduced LUT and
a shifter. The authors show that to achieve the same good accuracy in SVM, the memory

demand is reduced to a small fraction (= 1/200) of the traditional LNS implementation.

Recent reports in the literature that achieve comparable results between heavy
quantizations in both data and hyperparameters and reference floating point implemen-
tations of learning systems are analyzed in (SAKR et al., 2016), and later summarized
in (SAKR et al., 2017). One of the criticisms about these works is that most of them are
empirical studies, which leads to the main contribution of the paper: the derivation of
analytical lower bounds on the precision requirements for stochastic gradient descent on
SVMs. Most of the previous methods compare the different precisions with an “acceptable
precision” reference but the proposed method bases its estimation on the converged weight
vector of the reference algorithm. Results support the success of the approach and indicate
considerable energy savings when assigning the numerical precision at the lower theoret-
ical bounds. This is a clear advantage over previous methods which just show different

compromise points among selected precision values.

The application presented in (WU et al., 2016) shows that an approximated SVM
implementation for remote sensing and hyperspectral image classification, achieves 70%
of power savings in the kernel operation in one dataset and 75% in other, both with
comparable classification accuracy (approx. 1% drop on average for all classes). These final
results are based on real data and compared to a precise ripple carry adder implementation
on both classification accuracy and power consumption. In order to analyze resilience
to input error, noise is injected in the original hyperspectral image. This evaluation is
performed as follows: up to 45 LSBs (Least Significant Bits) random error can be inserted
in 100% of data represented with 64 bits floating point per pixel, with no impact on
classification accuracy. Algorithm resilience is also analyzed with a similar procedure and
results show that the kernel accumulation computation module is a promising target for
optimization. A detailed description of a hardware implementation of an approximate

accumulator used in the kernel computation is presented.

A training dataset approximation for SVMs is proposed in (NANDAN; KHAR-
GONEKAR; TALATHI, 2014). The authors present a method to select a representative
subset of the training examples to alleviate the problem of quadratic time complexity
growth with the training dataset size. The authors provide an extensive theoretical basis
to support the solution. Such analysis is not frequently found in similar research, as seen

in this survey. For the experiments, nine datasets were chosen to explore variations in the
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amount of samples, feature complexity and density. In five of the datasets the algorithm
provided considerable reduction of the training set, consequently also the training time, in
some cases as high as 99.5%. For the other four datasets the reduction varied from 27.8%
to no reduction in one case. In the first dataset group the proposed method obtained
equivalent accuracy performance in three cases and considerably better in two, when
compared to standard SVM implementations. Accuracy performance was found to be
equivalent in the second dataset group, with high-dimensional problems, and training time

was not much faster, as expected from the smaller dataset simplifications.

3.3 Generic Approximate Computing

This review does not provide a full coverage of AC methods and only focus on
their ML applications. Many of the papers presented in this section either study a very
specific operation that is commonly used in learning algorithms (without analyzing the

full application) or apply a generic AC technique to more than one ML method.
The approach detailed in (VENKATARAMANTI et al., 2015) explores the idea

that most of the input data from real systems can be correctly classified with minimal
computational effort. This means that only “hard to classify” examples should use the
full computational effort of the classifier in systems aiming for energy efficiency. Although
frequently resorting to SVM in their explanations, the authors claim that their methodology
can be successfully applied to any classification algorithm. The cascaded classifiers output
not only the classification result but also a confidence level. Based on this value, more
complex classifiers are invoked if needed. The method is tested in three ML algorithms
(SVM, ANN and Decision Trees) using several benchmark datasets. The scalable effort
classifiers were designed to achieve the same final classification accuracy as the single-stage
baseline. The average improvement in operations/input varied from 1.2 times to 9.8 times.
The results are presented as average since they depend on the test set. In one extreme

case, for example, 90% of the inputs are evaluated at a cost of just 0.2% of the baseline.

Although focused on the analysis of an imprecise multipliers based on imprecise
adders, which are not focused on this review, the static error estimation technique presented
in (HUANG; LACH; ROBINS, 2012) may me used as inspiration for other types of
approximation approaches. Instead of expensive Monte Carlo simulations, which require
the actual computation to be performed, the authors propose a static analysis which is
based on probability mass functions representing the statistical distributions of errors. The
method is an improvement of the classical interval arithmetic, which is limited to uniform
distributions of errors for each variable and does not consider imprecise operations. The

analysis shows very similar results to the ones obtained from simulations.

A Recursive Least Squares (RLS) algorithm implemented in fixed-point is presented
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in (BOSMAN et al., 2013) as an efficient replacement for Linear Least Squares Estimation
(LLSE), which is used to estimate model parameters in a closed form (without iteration).
The main advantage of the recursive method is that it does not have the to keep all
the input data for calculation. The performance is analyzed regarding standard data
anomalies: spikes, constant values, noise, drift (slow change in offset) and shift (sudden
change in offset). The proposed method is compared to a reference RLS in floating point,
a traditional LLSE and a windowed version of this method. In the best approach, the
anomaly detection itself is performed by comparing the RLS absolute estimation error
with an adaptive threshold. The windowed LLSE also has fixed memory requirements, but
the RLS is less prone to over-fitting and theoretically requires less processing. There are
too many aspects in the final results (anomaly types versus algorithms) to be summarized
here, but RLS is found to be a promising solution for embedded and resource constrained

devices.

The paper (CHIPPA et al., 2013a) is not restricted to ML and intends to show
the high degree of resilience intrinsically present in many applications. The authors
argue that the analysis and some insights into the nature of application resilience are
good guidelines for future work in this area. The five sources of application resilience
(present in most ML methods) are presented to explain why standard error injection,
used to simulate non-deterministic hardware behavior, cannot be used in studies related
to intentional computation approximation. A resilience characterization framework is
presented to achieve the identification of potentially resilient computation kernels (avoiding
the sensitive ones and parts which do not represent a considerable part of the execution
time) and the characterization of these computations through approximation models. The
resulting characterization is divided into three approximation models: data representation,
arithmetic operations and algorithmic level. The effectiveness of approximate computing
in applications that spend most of their computing time in resilient kernels is analyzed
extensively. Results and conclusions are grouped into several parts, including: the relevance
of granularity of approximation adjustments; similarity between frequent small errors
and rare large ones; the importance of relative scale of input data; the advantage of

application-aware approximation over an application-agnostic one.

Based on their previous work (CHIPPA et al., 2013a) to characterize application
resilience, the authors propose in (CHIPPA et al., 2013b) a method for dynamically adjust-
ing approximations by analyzing the resilience and acting in a manner similar to a feedback
control mechanism. The authors demonstrate that static settings for approximations do
not handle well situations in which the resilience varies with different problems or even
within the same problem and datasets. This leads to either missed opportunities for energy
savings or degraded output quality. A scalable effort processor is presented, providing
“virtual control knobs” which adjust: the operating voltage (which cause timing errors),

variable bit widths (which leads to quantization and truncation errors) and algorithm
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specific (SVM and k-Means) parameter simplifications. In order to estimate quality, two
approaches are implemented: infrequently comparing the system outputs with and without
scaling and low overhead sensors at all levels (circuit, architecture and algorithm). The
proposed system is compared to reference implementations and two different approaches
based on static scaling. Consolidated results show that the dynamic method combines
the best performance from both static methods: energy reduction similar to aggressive

adjustments (54% to 69%) with error overshoot similar to the conservative ones (less than

1%).
A framework is proposed in (ZHANG et al., 2014) to dynamically balance the

trade-off between output quality, with guarantees, and computational effort for iterative
methods. The solution is divided into two parts: an offline characterization and an online
reconfiguration. The offline stage is executed once for each application and identifies
the error-resilient parts which are candidates for approximations. With a lightweight
quality estimator used at each iteration, the online stage reconfigures the approximation
modes during execution. Two strategies are proposed: the incremental one starts with the
lowest accuracy level and increases the quality requirements with time; the adaptive one
performs its adjustments based on the contribution of each approximation component to
the convergence of the solution. Results show that energy savings, compared to a reference
without dynamic adjustments, range from 25% to 52% using the incremental approach
and from 28% to 63% with the adaptive one.

A linear discriminant analysis (LDA) algorithm is proposed in (ALBALAWI; LI;
LI, 2014) for efficient implementations of binary classifiers using fixed-point arithmetic
and small word lengths. The standard LDA algorithm, normally implemented with double-
procession floating-point operations, was redesigned to add robustness to rounding errors
and overflows. The feature vectors can be safely scaled and rounded to their fixed point
representation but the weight vectors must be handled more carefully. Feature vectors are
modeled as multivariate Gaussian distributions so that their multiplication by a weight
vector and projections also yield Gaussian distributions. Using this model, it is possible
to adjust the fixed-point conversion within a certain confidence interval without causing
overflow in these operations. With real datasets, results show that the proposed method
achieves 1.8x power reduction without sacrificing classification accuracy when compared

to a regular LDA simply adapted for fixed-point implementation.

A detailed analysis of implementation techniques for machine learning algorithms
in a low-power and high-performance 16 bits DSP is presented in (BHARATI; JHUN-
JHUNWALA, 2015). The analysis is performed separately for each algorithm, listing all
proposed optimizations, but the authors claim that the solutions apply to most commercial
DSPs. Approaches include: an approximate expression for the sigmoid activation function,

efficient dot product implementation using MAC operations and lookup tables, optimized
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fixed count loops and an approximated formula for the magnitude of a complex value. The
results show drastic reduction in cycle counts (70% to 91%) when compared to reference

floating-point implementations, without considerable compromise of accuracy.

The recent work (MITTAL, 2016) is not focused on ML applications of AC, but
the organization provided by the authors can be applied to facilitate the selection process
for each technique applicable to a specific ML algorithm. Characterization of approximable
program portions are grouped into: error injection, output quality monitoring, source code
annotations and compiler optimizations. The groups of this classification apply seamlessly
to ML. Conversely, not all approximation strategies apply to ML. The relevant ones in
this context are: precision scaling, loop perforation, data fetching simplifications, function

results reuse and multiple kernel precisions.

3.4 Comparisons and Limitations of Current Techniques

Tables 1 and 2 merge the Sections 3.1, 3.2 and 3.3 according to the classification
proposed in this Chapter in order to summarize the research efforts that focus on the
application of AC to ML. The references show which methods of each type were used,
considering only the 38 presented solutions (disregarding the references cited only as
previous and similar works or inspiration). Two papers (CHIPPA et al., 2013a; MITTAL,
2016) from section 3.3 were excluded from Table 1 because they were not focused on a
complete implementation. Improved implementations from the same authors (that were

analyzed together in this survey) are explicitly referenced in the tables.

It is worth mentioning that only 6 methods proposed a solution that was both au-
tomatic and dynamic. This confirms that most of the surveyed implementations are not
generic regarding the ML method and also were not prepared to handle unknown datasets,
adapting the approximations. Despite their potential to be automatically adapted to

different problems, four of them used from two to four datasets to verify their performance.

Understandably, it is not trivial to test very complex models with too many datasets,
due to the required processing time. On the context of AC, it should not be forgotten that
these datasets are typically the most resilient ones (since they are frequently noisy and
redundant). As an evidence that current research is not focused on generic approximated
solutions, Figure 4 represents how extensively the literature tests the proposed methods.
Papers which did not present a complete solution or analyzed only the hardware impact

of the simplifications are plotted as “zero datasets”.

The majority of the methods (22) applied a static and guided approach and 31
implemented the data representation approximation (17 applied only this technique).

This fact strengthens the claims that ML methods are usually resilient to noise but if the
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Figure 4 — Number of datasets used for concept validation.

method is not dynamic, the selected approximation levels may not be adequate to other
datasets (or network topologies in the case of ANNs). Conversely, if the approximation
solution is specifically designed for one method, the automatic approach may represent
an unnecessary complexity, since frequently the resource usage is known a priori and very

specifically located.

One example of the focus on specific methods, the sum of products operations seem
to attract a lot of interest. Approximations on complex functions were rarely found on
the surveyed research. The computational cost of activation functions were representative
on smaller ANNs (SCHRAUDOLPH, 1999) but the increased size of current models and
simpler functions like ReLUs - Rectified Linear Units (NAIR; HINTON, 2010) - probably
influence this tendency. Specific techniques, adequate for FPGA implementations, are
still being presented (DIAS; SALES; OSORIO, 2016). These may be relevant also for
multi-class problems that rely on Softmaz (DUNNE; CAMPBELL, 1997) outputs, due to

their use of the exponential function.

It is not a surprise that deep learning and computer vision or big data applications
dominate the reviewed AC research when ANNs are considered, due to their fast increase
in popularity in this decade and high performance demand. Its is important to note that
these problems rely on very large, redundant an usually noisy datasets. This is a crucial set
of characteristics to explain why the extreme implementation simplifications found in this
work are possible. A similar level of interest was not found when AC is applied to another
promising field: online and autonomous ML used in resource constrained smart devices.
When mixed precision approaches are not used for training, even standard “half-precision”
floating points (with 16 bits) result in training problems with some simple datasets, as
shown in (TORRES; TORRES, 2017).

Searching for the highest acceptable approximation level on specific problems is a
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completely different goal than defining an efficient and generic method that works equiva-
lently to precise implementations, even if not reaching the highest possible optimization in
each one. Additionally, many papers that present expressive approximations restrict their
validation to a single class of problems (e.g. image classification). It is important to note
that the network configurations (number of layers, nodes and connections) used in this
thesis are the same minimal ones employed in other references (as a form of regularization).
It is not uncommon to see larger networks in articles analyzing low precision training,

which partially defeats the purpose of the simplifications.

Achieving the highest possible optimization usually means that the performance
degradation reaches the limit of acceptability for a specific application. The generic
approach is still rarer in the published research, but commonly found in commercial
hardware offers (with more conservative solutions). Both the recently released NVIDIA
Volta architecture (MICIKEVICIUS et al., 2018) and Google TPUv2 (the second version
of the Tensor Processing Unit) rely on mixed precision 32 bits FP operations to mark their
position as training platforms and not only as inference accelerators. The trend continues
as the third TPU generation, announced in May 2018, still relies on a mixed precision

approach.

This analysis reinforces the relevance of an architecture and method which could
be applied to ML problems, both in inference and training, more efficiently than a precise
implementation and equivalently reliable. Even in the cases where an eventual small
performance (e.g., accuracy) penalty could not be accepted in the final training runs,
approximated solutions could be used for the costly hyper-parameter tuning phases. Using
the categorization proposed in the beginning of this Chapter, the group of methods
implemented in this thesis, which are presented in the next chapters, can be classified as:
dynamic, guided, based on data representation, mathematical operations and
complex functions. Additionally to being grouped with a small number of solutions
proposed in the literature, this thesis presents a method which uses the same representation
in the entire ANN, allowing the implementation of a single type of FPU. It should also
be clear that when “equivalency” to precise methods is stated, an evaluation that the
behavior is “identical” to precise method is obviously not being implied. Even full 32 bits
FP implementations may face numerical problems or suffer from “vanishing gradients”
in deep networks. Approximated operations will certainly reach such limits sooner than
precise references, which could result in, as an example, different optimal hyper-parameters

(like learning rates or batch sizes).
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Table 1 — Approximation Type

|

Method

|

Uses

|

Static

Dynamic

(ALBALAWT, L[, L, 2014, ANGUITA; BONT, RIDELLA, 2003b)
(ANGUITA; BONI; RIDELLA, 2003a; ANGUITA et al., 2006)
(ARNOLD et al., 1997; AYINALA; PARHI, 2013)
(BHARATT; JHUNJHUNWALA, 2015; BOSMAN et al., 2013)
(COURBARIAUX; BENGIO; DAVID, 2014)
(COURBARIAUX; BENGIO; DAVID, 2015; DAS et al., 2018)
(DRUMOND et al., 2018; ESMAEELI; GHOLAMPOUR, 2012)
(FERNANDEZ-DELGADO et al., 2011)
(GOODFELLOW et al., 2013; HASHEMI et al., 2016)
(HINTON et al., 2012; HUANG; LACH; ROBINS, 2012)
(KHAN; ARNOLD; POTTENGER, 2005)

(KHAN; ARNOLD; POTTENGER, 2004)

(LI et al., 2017; MICIKEVICIUS et al., 2018)

(SAKR et al., 2016; SRIVASTAVA et al., 2014)

(WU et al., 2016; WU et al., 2018)

(COURBARIAUX; BENGIO; DAVID, 2014)
(CHIPPA et al., 2013b; GUPTA et al., 2015)
(HAN; MAO; DALLY, 2015; KIM; SMARAGDIS, 2016)
(KOSTER et al., 2017; LIN; TALATHI, 2016)
(NANDAN; KHARGONEKAR; TALATHI, 2014)
(VENKATARAMANTI et al., 2015; WAN et al., 2013)
(ZHANG et al., 2015b; ZHANG et al., 2014)

Guided

Automatic

(AGRAWAL et al., 2016; ARNOLD ot al., 1907)
(ANGUITA; BONI; RIDELLA, 2003b)
(ANGUITA; BONI; RIDELLA, 2003a)

(ANGUITA et al., 2006; AYINALA; PARHI, 2013)
(BHARATTI; JHUNJHUNWALA, 2015; DAS et al., 2018)
(BOSMAN et al., 2013; DRUMOND et al., 2018)
(COURBARIAUX; BENGIO; DAVID, 2015)
(ESMAEELI; GHOLAMPOUR, 2012)
(FERNANDEZ-DELGADO et al., 2011)
(GCOODFELLOW et al., 2013)

(GUPTA et al., 2015; HASHEMI et al., 2016)
(HINTON et al., 2012; HUANG; LACH; ROBINS, 2012)
(KHAN; ARNOLD; POTTENGER, 2005)
(KHAN; ARNOLD; POTTENGER, 2004)

(KIM; SMARAGDIS, 2016)

(LI et al., 2017; LIN; TALATHI, 2016)
(MICIKEVICIUS et al., 2018)
(SRIVASTAVA et al., 2014)
(VENKATARAMANTI et al., 2015)

(WAN et al., 2013; WU et al., 2018; WU et al., 2016)

(ALBALAWI; LI; LI, 2014; CHIPPA et al., 2013b)
(HAN; MAO; DALLY, 2015; KOSTER et al., 2017)
(NANDAN; KHARGONEKAR; TALATHI, 2014)
(SAKR et al., 2016)

(ZHANG et al., 2015b; ZHANG et al., 2014)
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Table 2 — Approximation Method

| Technique |

Uses

|

Data
Represent.

Math.
Operations

Complex
Functions

Simplified
Algorithms

Memory
(Reduc./
Skip.)

(ALBALAWT; LI; LI, 2014; ANGUITA; BONI; RIDELLA, 2003b)
(ANGUITA; BONI; RIDELLA, 2003a; ANGUITA et al., 2006)
(ARNOLD et al., 1997; AYINALA; PARHI, 2013)
(BHARATI; JHUNJHUNWALA, 2015; BOSMAN et al., 2013)
(CHIPPA et al., 2013a; CHIPPA et al., 2013b)
(COURBARIAUX; BENGIO; DAVID, 2014)
(COURBARIAUX; BENGIO; DAVID, 2015; DAS et al., 2018)
(DRUMOND et al., 2018)

(ESMAEELI; GHOLAMPOUR, 2012; GUPTA et al., 2015)
(HAN; MAO; DALLY, 2015; HASHEMI et al., 2016)
(KHAN; ARNOLD; POTTENGER, 2005)

(KHAN; ARNOLD; POTTENGER, 2004)

(KIM; SMARAGDIS, 2016; KOSTER et al., 2017)

(LI et al., 2017; LIN; TALATHI, 2016)
(MICIKEVICIUS et al., 2018; MITTAL, 2016)
(SAKR et al., 2016; WAN et al., 2013)

(WU et al., 2018; WU et al., 2016)

(ZHANG et al., 2015b; ZHANG et al., 2014)

(BHARATT; JHUNJHUNWALA, 2015)
(BOSMAN et al., 2013; CHIPPA et al., 2013a)
(FERNANDEZ-DELGADO et al., 2011)
(HUANG; LACH; ROBINS, 2012; WU et al., 2016)
(KIM; SMARAGDIS, 2016; MITTAL, 2016)

(ANGUITA et al., 2006)
(AYINALA; PARHI, 2013)

(BHARATI; JHUNJHUNWALA, 2015)
(CHIPPA et al., 2013b)
(COURBARIAUX; BENGIO; DAVID, 2015)
(FERNANDEZ-DELGADO et al., 2011)
(GOODFELLOW et al., 2013)
(HAN; MAO; DALLY, 2015)
(HINTON et al., 2012; MITTAL, 2016)
(SRIVASTAVA et al., 2014)
(VENKATARAMANI et al., 2015)
(WAN et al., 2013; ZHANG et al., 2015b)

(BOSMAN et al., 2013; CHIPPA et al., 2013a)
(ESMAEELI; GHOLAMPOUR, 2012)
(HAN; MAO; DALLY, 2015)
(NANDAN; KHARGONEKAR; TALATHI, 2014)
(ZHANG et al., 2015b)
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4 ANN Implementations

This chapter details how the ideal operations in the feed-forward and back-
propagation phases of ANN inference and training, as introduced in Section 2.1, translate
to real implementations. Problems such as the “vanishing gradient”, which arise even
in precise representations, may considerably harm the training process if not dealt with.
Section 4.1 presents the IEEE format for limited precision FP numbers, which has been an
industry standard for more than three decades. Section 4.2 lists some important caveats
when limited precision representation is used in ANNs and Section 4.3 details how an
open source ANN library was modified to become an easily extensible framework for
experiments with different number representations, using emulated code to abstract all
operations. The first numerical type integrated (IEEE FP with 16 bits), used for the tests
in this Chapter, is also provided by code extracted from another open source library. This
Section also shows comparisons of the training process evolution with a precise baseline

when standard FPs are used.

4.1 Floating Point Review

In order to better understand the approximations and adjustments that are detailed
in Chapter 5, some important and fundamental details of the FP representation are
presented in the following sections. The reader is referred to the official standard (IEEE,

2008) for a complete explanation.

4.1.1 Standard Floating Representation

For a fixed space number representation, FPs have become an ubiquitous way to
achieve an excellent compromise between digital implementation complexity and useful
range. By using a binary version of the scientific notation, the same format can represent
very small and very large numbers, with different resolutions. The 16 bits binary format
(FP16 or “half precision”) is defined as follows:

B 8°.97187287337437°3763773783798719 x 2F where E = E*E3E?E'E°

A single bit B is used to hold the signal information (’1” meaning a negative number)
which is common to higher precision formats (32 and 64 bits are the most commonly used
and respectively named “single” and “double” precision). Normalized significands in base
10 are represented in the interval [1.0,10.0), which translate to [1.0,2.0) when a base two

exponent is used. This means that Sy will always be 1 in binary normalized numbers, so
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its representation is omitted. Significand lengths of 10, 23 and 52 correspond to the 16, 32

and 64 bits binary formats, respectively.

The remaining bits are used to represent the exponent (F) as a non negative integer
number, which is shifted by a standardized bias (equal to +15 in the “half precision”
format). For example: the minimum exponent for a normal number in 16 bits binary format
is —14, which is encoded as 1. When both significant and exponent are equal to zero, £+0

is represented, depending on the sign bit. The complete bit representation is depicted in

OEEGEGEEEEEEEEEEEE

Figure 5 — Bit representation of the FP16 format.

Figure 5.

The exponent is also used to encode a few exceptional conditions in the binary
representation itself. The smallest exponent (F = 0) is used to encode denormalized
numbers, meaning that Sy is assumed to be 0. These numbers may be considered a
“soft representation” of an underflow (COONEN, 1981) (an operation that results in a
number with an absolute value smaller than the smallest representable absolute number).
A graphical comparison between subnormal numbers and normal ones is presented in
Figure 6: the 2000 smallest positive numbers in FP16 have their values represented if
subnormal numbers are assumed (Red) or without this exception (Green). The plot clearly

shows how significantly smaller values are reached by denormalized numbers.
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Figure 6 — Effect of subnormal numbers on the lowest exponent

The first impression is that such feature is welcomed to ease the effort of handling

underflow conditions. It can be argued, instead, when such feature is useful, especially
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considering that floating point programming is not always a trivial task (GOLDBERG,
1991). Such subnormal numbers add considerable complexity to FPU implementations,
which may even disregard such support, leaving it to be handled as an exception at
software level. Even in modern CPUs the effects of operations involving these numbers
may be noticeable (LAWLOR et al., 2005; ANDRYSCO et al., 2015), furthermore the
relative error may be much higher, considering the reduced number of effective bits in
the significand. The following excerpt from IEEE 754R minutes of September 19, 2002 is

useful to understand the rationale behind the committee’s decisions involving subnormals:

“[...] Whatever causes one underflow will usually cause a lot more. So occa-
sionally a program will encounter a large batch of underflows, which makes it

slow. The loss of speed will upset someone. |...]

If we want reliable codes, we must make codes easy to prove, and we must
provide default behaviors that give numerically naive programmers the best

chance of avoiding problems.”

The highest representable exponent (with all bits set to 1) is also used to encode two
other exceptions. When all significand bits are set to zero the numbers represent infinity
(+00, depending on the sign bit). This exception is returned whenever the operation results
in a number with an absolute value higher than the largest representable one. Significand
bits different from zero signal the other exception, NaN (Not-a-Number), triggered by

invalid operations which are not covered by simple underflows or overflows (e.g. 0/0).

4.1.2 Standard Floating Point Operations

The basic FP arithmetic operations will be briefly analyzed, but a common aspect
will be omitted in each explanation: the handling of subnormal numbers. Such exception
to the common flow demands that this type of numbers is normalized before the actual
operations are performed. Moreover the underflowed results are verified to determine if
they are representable as denormalized values. Not only these operations add complexity
to FPU implementations, but they also have indirect effects on the resources required to

handle normalized numbers (e.g. internal significand representation).

Addition and subtraction share the common step of exponent adjustment and
significand alignment. In order to add or subtract the significand, which can be handled as
a binary integer, each bit position must be aligned to another with the same magnitude.
For this reason, if the operands exponents do not match, they have to be adjusted firstly in
one of the numbers, which requires that its significand is shifted accordingly. The resulting
significand may be outside the range [1.0,2.0), in which case its contents must be shifted

and the exponent adjusted, if possible. It should be noted that the exponent bias is not



Chapter 4. ANN Implementations 33

used in these operations, since it is only required that the encoded exponents are aligned

for the addition or subtraction to be performed.

The resulting exponent for the multiplication is just the addition of the operands
exponents subtracted by the bias value. The significands are directly multiplied as integers,
what may result in much more digits than the representation limit, requiring extra bits
to be dropped after the rounding operation. Resulting significands > 2 are also adjusted

together with the exponent, if possible.

Due to the complexity of the integer division hardware circuits, the significand
division is usually implemented in more efficient ways such as using multiplication opera-
tions and LUTs. FP division can be quite hard to implement correctly in an optimized
way, which probably plays a role in in the occurrence of defects like the “Pentium FDIV
bug”. Resulting significands may also require adjustments and the final exponent depends
on this process, after being determined by the difference of the operands exponents and

bias addition.

Every operation generating more significand bits than the maximum representable
value is subjected to rounding. From the several available options, the most commonly
used is rounding to the nearest value. This method results in a maximum error of 1/2 LSB
in the significand (~ +0.05% in FP16). The non-standard stochastic rounding may also
be applied and is especially useful in low precision arithmetic applied to ANN training.
The main reason behind this usage is that the explicit “numeric noise” acts as a form of
implicit annealing and also acts as a regularization mechanism. Regardless of which from
these two methods is used, correct rounding is an expensive operation to be implemented
and it must also include a normalization step, since it may cause the resulting significand
to be > 2. Simpler solutions like truncating the significand are normally avoided due to

the fact that they add a bias to the rounding error.

4.2 Mathematical Operations

Several characteristics of ANNs may present both opportunities and challenges to
low precision representations and operations. The following sections analyze some of these

issues and techniques related to them.

421 Small Values Accumulation

It comes directly as a consequence of a fixed length significand /exponent repre-
sentation that adding or subtracting numbers with exponents that are too far apart may
result in cancellation (the result equals one of the numbers). A graphical representation
of how this problem easily arises on less precise formats is shown in Figure 7: the z axis

depicts how many times the value 0.001 is added to a FP number starting from 0 and the
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y axis indicates the accumulated value for two FP representations. The actual shape of
the curve varies with the rounding method, but the saturation value for this example in

32 bits FPs is almost 4 orders of magnitude larger than the one for FP16.

Sucessive Accumulation of the value 0.001
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Figure 7 — Accumulation error due to limited precision

The IEEE FP standard specifies an operation which can be applied to handle the
frequent sum-of-products calculations in ANNs, and is commonly supported by commercial
hardware: FMA (Fused-Multiply-Add). The main idea is not focused on minimizing the
error due to small values accumulation, although it may provide some improvements.
Equation 4.1 represents a single step of a sum-of-products operation, in which A,, and B,
hold the values to be multiplied, C),_; the previous accumulated value and C), the next one.
If the full step is broken in two completely separate arithmetical operations, the product
result must be rounded and normalized, discarding the extra significand bits, before an
addition is performed. These intermediate rounding and normalization procedures can be
skipped, saving resources in the whole process, improving the performance and may also

present slightly more precise results (due to a better final rounding).

C = (A X By) + Coy (4.1)

The same idea could be extended if the main focus is on an efficient and long
accumulation without loosing too many small contributions. Both the argument C,,_; and
the result C), could be represented in a more precise representation (e.g. 32 bits), while
the product arguments are passed in a vector with smaller precision (e.g. 16 bits). Known
as Fused Multiply-Accumulate (FMAC) or simply MAC, this technique has also become
frequently available in several hardware platforms, although it is not always implemented

with mixed precisions.
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In most ANN structures commonly used nowadays, including Deep Learning
applications, the number of connections per node (normally between dozens and thousands)
does not represent a critical reliability issue for representations as low as FP16. Additionally
to this structural characteristic, random small and adaptive weight initialization (GLOROT;
BENGIO, 2010), associated with regularization techniques that avoid large weight values,

contribute to the resilience of the sum-of-products realization in the feed-forward phase.

For problems with large datasets, it is not efficient to apply weight changes during
training for each example, which is the classic Stochastic Gradient Descent (SGD) method.
Full-batch optimization methods, which accumulate slope calculations for each weight for
the entire dataset, will also suffer from slow convergence, in spite of being very adequate
for massive parallelization due to training set partitioning. Mini-batch training methods,
which represent the compromise between these two strategies, will also have the advantage
of being a solution to avoid large errors due to small values accumulation. This benefit,
a direct effect of smaller gradient accumulation sequences, may be possible even with
very small initial learning rates. By performing slope accumulations for small subsets of
training examples, the weight adjustments will not reach values that are too large when

compared to each contribution, avoiding cancellation errors.

4.2.2 Deep Learning

Even before the work presented in this thesis is implemented in hardware and reaches
the required performance to make it feasible to analyze Deep Neural Networks (DNNs), it
is important to note issues inherent to the these topologies. These complex structures are
associated with difficult problems, usually represented by very large datasets. Although
the mini-batch training approach attenuates the accumulation errors, the “Vanishing
Gradient” problem may be an issue even for precise implementations. When methods
based on back-propagation are used to train ANNs with many layers, the ones closer to the
inputs may suffer from very slow training speeds due to small gradient values. Activation
functions that saturate their outputs (like the sigmoidal ones) tend to diminish derivatives
for input values far from the outputs. Other activation functions like Rectified Linear
Units (ReLUs), their variations and the slightly more complex Exponential Linear Units
(ELU) have recently become popular and counteract this problem that contributes to

smaller gradients for the first layers during back-propagation.

A detailed study of the “Vanishing Gradient” problem, which also affects RNNs
(Recurrent Neural Networks) with specific datasets, is presented in (SUTSKEVER et al.,
2013). The authors argue that both the weight initialization and a well tuned momentum
factor are crucial for an SGD based training to perform well. The datasets used so far in
this work do not demand networks that are deep enough to cause the problem mentioned

here, but adaptive methods have been considered and will be presented, as well as different
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activation functions.

4.2.3 Activation Functions

Activation function implementations may be as simple as testing if the input value
is negative (e.g. ReLU) or involve more expensive mathematical operations such as the
exponential function. Since the derivatives are also used in the learning phase, it is an
interesting feature to be able to calculate them based on the output value, instead of
repeating the execution of the resource intensive mathematical method. Equations 4.2
to 4.4 present three common activation functions with their derivatives and Figure 8

compares their output.

1 ifxz>0
f(z) = ReLU(z) = max(0, x) , f(z) = (4.2)
0 ifz<O
T ifxz>0 1 ifx>0
f(x) = ELU(z) = ;o Jl@) = (4.3)
exp(z) =1 ifz <0 fle)+1 ifx<0
2 /
f() = tanh(r) = T — f() = 1= flw) (4.4)
3 Common Activation Functions
2 5
tanh(x)
> 1
ReLU(x)
0 —tanh(x)
; , , [ —ReLU(x)
-3 2 -1 0 1 2 3

Figure 8 — Activation Functions Comparison

Optimized activation function implementations have been frequently found in the
literature for decades and new specific proposals are still being made (DIAS; SALES;
OSORIO, 2016). Unless supported by hardware (which is the case for the most used
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general purpose CPUs), precise implementations of exponentials are usually considered
an overkill which may compromise the ANN performance. LUT-based implementations
(even without numerical refinement) may be sufficient for most applications, including the
training phase. Figure 9 depicts a LUT based implementation with interpolation and its
relative error. The continuous line shows a precise reference calculated with the standard
library exponential function. The crosses show several line segments with interpolated
values between the LUT values. The relative errors are presented with dotted lines. Even
less precise solutions are found in the literature, as well as implementations based on

approximations of the mathematical functions, like exponentiation.

Stepwise Approximation of the tanh Function
1 . . . . .

10 |— tanh(x)
X approx.
--- rel. error

o
Relative Error (%)

10

Figure 9 — Stepwise approximation of tanh(z), with interpolation.

Contrary to these simple and efficient implementations, functions like Softmax
(Equation 4.5), which is commonly found in the output of mutually exclusive multi-class
classifiers, are interesting targets for careful optimizations. Due to the fact that Softmax
is multi-variate (each x represents the aggregate input of a neuron in a certain layer with
K neurons), LUT based implementations may not be practical for a large number of
dimensions. Not only the table size but also the interpolations would require a considerable
amount of resources. For this reason, the explicit exponentiation operations are the
preferred base for implementation. Performance issues due to the cost of exponentiation
when Softmax is used with a large number of classes motivates research on optimizations,
like described in (JOULIN et al., 2017). Unlike simpler activation functions, the divisions
and the exponentiations may result in instabilities (e.g. NaNs or infinities). Subtracting
the maximum =z in the layer from each z; before taking the exponentials is a simple

countermeasure against infinities, for example.

evi

— 4.5
S (4.5)

Softmax(¥); =
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4.3 Baseline Tests with standard IEEE FP (64 vs 16 bits)

With the details of ANN implementations based on standard FPs already presented,
it is interesting at this point to compare a double-precision baseline with the standard
16 bits FP. Sometimes this “half precision” representation is even considered a baseline
for comparison with approximate implementations, but since some values during training
reach magnitudes lower than what FP16s are capable of representing, a thorough analysis
is required. Using a standardized floating point format has the advantage of making this
first investigation relevant for the growing amount of available systems (compilers and

hardware) supporting this representation.

The “Fast Artificial Neural Network Library” ' (FANN) (NISSEN, 2012) was used
as a basis for the implementation, but was heavily modified. One of the main changes was
the integration of part of the Berkeley SoftFloat Library (HAUSER, 2017) to perform

half-precision standard FP operations 2. Other important modifications include:

A complete abstraction of all arithmetic operations and conversions
e Restructuring of the ANN internal representation

e Added support for POSIX Multi-threading

e Removal of unwanted features

e Implementation of detailed operation statistics

e Added compilation option optimized for embedded targets (without statistics and
terminal 10)

e Creation of a flexible binary with all ANN definitions selectable at runtime
e Adaptation of RProp to conform to the original iRProp-
e Added support for RMSProp and normalized initialization
e Added support for ReLU activation and Softmax outputs
All coding was implemented in ANSI C, without architecture-specific assembly
optimizations, and compiled with GCC 5.4 for a Linux based 64 bits system with an Intel
Core-i5-2537M CPU. Compiler optimizations which improved the training time when

using the approximated implementations (like aggressive “inlining”) were enabled but no

accelerations to the native floating point operations were activated.

1
2

Source code also available at: <https://github.com/libfann/fann.git>
Source code also available at: <https://github.com/ucb-bar/berkeley-softfloat-3.git>
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This setup with software emulation and abstraction of arithmetic operations
provided great flexibility to explore approximations, but had a relevant drawback: the
performance of the implementation made it infeasible to test complex datasets. Using FP16
only for the representation and performing all operations with native FP instructions would
be an option for better performance, but would not allow these trials to be considered as

equivalent to standard half precision hardware.

In order to prepare the library for the changes and experiments presented in the
next chapters, variables used in the entire implementation were split in the following

groups, whose types are selectable at compile time:

Group 1 variables used for external interaction (dataset loading and saving, ANN persis-

tence, real time statistics etc) fixed in hardware native floating points

Group 2 variables used directly by the neurons (weights, steepness, neuron inputs and
outputs) and the operations involving only these variables (except activation functions

and derivative functions, which belong to Group 3)

Group 3 all other variables involved in the forward and backward phases of the ANN

execution (including all parameters and operations of the training algorithms)

Disregarding Group 1 and analyzing the variables that are relevant for the actual
ANN operation, the rationale for the division was as follows. Due to the known resilience
of the inference phase, in the Group 2 were included the variables participating in this
process. These variables, especially the connection weights, are the most important for
memory usage (space and traffic) in the forward phase for large fully-connected networks.
Additionally, regarding Group 2, it should be noted that representing the training data
in this format may lead to a significant contribution of these variables to the overall
gain with the approximation, due to lower memory usage. Some variables used in the
inference phase do not require a considerable amount of space, but they remained in
this group in order to reduce the need for conversions, since they are frequently used
in feed-forward operations. As an exception, activation functions were not included in
Group 2, because their relevance in resource usage decreases with the network size and
complexity: since the activations are executed only once for every full sum-of-products
input accumulation and their resources are fixed regardless of input fan-in, the more
connections each neuron has, the less relevant the activation cost will be when compared
to the of sum-of-products in the inputs. Additionally, for the preliminary studies, specific
approximations for activation functions could be explored without mixing the effects of
LUT-based implementation, for example, with the errors related to representation accuracy.

With this reasoning and the irrelevant variables in Group 1, the Group 3 was already
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defined: it held the variables more directly related to the training process, which could

require more precise representations.

Internally in the library code, the variable groups were associated to specific types
defined at compile time. With the downside of resulting in more complex internal source
code, this design decision allowed the use of the same library for native and simulated
compilations without compromising the user visible code. A short segment extracted from
the incremental weight adjustments code is presented in Listing 4.1, where fann_type_ff
and fann_type_bp refer respectively to variables in the Group 2 and Group 3, as
defined previously. Two arithmetic operations (add and mac) are shown with the necessary
type conversions. All calls prefixed with fann_bp or fann_ff are actually macros which
may refer to native C code (e.g. operations for FP types) or simulated functions for various
approximated implementations, defined at compilation time. Depending on the actual
format being simulated, these functions can be implemented with the help of native FP

operations or entirely in emulations based on integer types.

Listing 4.1 — Internal example of FANN variable types and operations

fann_type_ bp tmp_error, delta w, xweight_ slopes;

fann_type ff xweights, learning momentum:;

delta_w = fann_bp_ mac(fann_ff to_bp(learning momentum),
weight_slopes|[w], tmp_error);
weights [w] = fann_ bp to ff(fann bp add(delta w,
fann_ff to_bp(weights[w])));

The code snippet presented in Listing 4.2 shows how the application programming
interface provided by the library allows high level definitions of ANN implementations,
and is not affected by the internally defined types and operations. The internal complexity
of the type conversions and simulation is transparent to application code. Besides the
actual numerical representations and respective arithmetic operations, which are fixed at
compilation, all other ANN aspects are defined at runtime. For this reason, each simulated

format is compiled to a different binary, using the same code base.

Listing 4.2 — Simple example of FANN application code

struct fann data xtrain_ data, xtest data;

struct fann xann;

/% read dataset folds for training and test purposes x/

train__data = fann_read_ data_from_ file("dataset.train");
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test__data = fann_read data_from_file("dataset.test");

/x creates the main ANN structure x/

ann = fann_create_ standard args(threads, num_layers,
train_data—>num_input,
num_ neurons_ hidden ,

train__data—>num_ output );

/% normalized initialization of weights */

fann init weights(ann);

/% optional callback function to manage the training process */

fann_set callback (ann, train_callback);

/x ANN hyper—parameters x/
fann_ set activation function hidden (ann, FANN RELU);
fann_ set activation function_ output(ann, FANN SIGMOID);

/% Depending on the training algorithm , other
hyper—parameters are available x/

fann_set_training_ algorithm (ann, FANN_ TRAIN RPROP);

/x This funcion returns when training stop criteria is reached
or when the callback function explicitly interrupts it. x/
fann_train_on_data(ann, train_data, max_epochs,

epochs_between reports, desired_ error);

/x Fills the ann structure with test error statistics.
May be called during training from the callback. x/

fann_test data(ann, test_data);

Weight initialization was a factor kept constant among all tests and datasets. Each
random seed was repeated once in the FP64 and FP16 runs. This assured that, for every
execution, both representations started from the same random weights (apart from the
reduced numerical representations). Since all trials were trained with the same order of
examples using the same algorithms and hyper-parameters, this procedure allowed a more

direct comparison of the approximations effects in the training epochs.

No regularization component or stop criteria was defined for all the comparisons in

this study. Hyper-parameters and network topologies were defined based only on the FP64
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runs and repeated in the FP16 tests. These experimental design decisions associated with
paired weight initializations provided a more direct way to graphically compare training
evolution and generalization capacity of the implementations. Throughout the following
chapters, paired plots of the train and test average accuracies of two ANN implementations
will be compared to analyze several differences in the training progress. An important fact
is that maximum test accuracies should not always be compared between different graphs
because they may happen at different epochs, causing the averaged value to be lower if
the network tends to overfitting. For this reason, confidence intervals differences may also

provide important informations.

To avoid performance differences in datasets due to class imbalance and also to
show more clearly possible effects on the minority classes, the reported accuracy is the
average of individual classes, and not the global one. Equivalently, for binary classification
problems, the accuracy is the average between True Positive Ratio (TPR) and True
Negative Ratio (TNR). In the final tests, presented in Chapter 6, a unified approach was
used, by calculating the geometric mean of individual class accuracies, which captures
more aggressively the “catastrophic forgetting” of minority classes. Graphical comparisons

will always be presented with 95% confidence intervals for the average on each epoch.

Table 3 summarizes the main characteristics of the classification datasets selected
for this preliminary study. They were chosen from common benchmarks which have been
used for a long time (PRECHELT et al., 1994) to explore a mixture of following parameters:
set size, input complexity and number of classes (mutually exclusive). Class imbalance
also varies and will be analyzed later, when the approximated version is evaluated. All
datasets are freely available from open repositories like (LICHMAN, 2013) and usually
accompany ML software packages, like FANN. MNIST was obtained directly from the
original Yann LeCun’s website: <http://yann.lecun.com/exdb/mnist/>.

Table 3 — Characteristics of the benchmark datasets

’ Dataset \ Inputs \ Outputs \ Training Set Size \ Testing Set Size ‘

MNIST 784 10 60000 10000
Breast Cancer 30 1 455 114

Thyroid 21 3 3600 3600

Soybean 82 19 342 341

Regarding the training methods, the following comparison was based on simple
standard back-propagation in batch modes (mini-batch for the larger datasets and full-
batch for the two others). Not even incremental SGD with a momentum factor was
included in this phase. Adaptive algorithms, more robust to hyper-parameter changes and
with faster convergence, like iRProp (IGEL; HUSKEN, 2000), RMSProp (TIELEMAN;
HINTON, 2012) or Adam (KINGMA; BA, 2014) will be considered in the next chapters.
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The following comparisons are based on two standard FP representations, already
defined at the beginning of this section, allocated to the variable Groups 2 and 3. The
purpose was to analyze the effects of lower resolution arithmetic in simple training methods,

even before further approximations were introduced.

Figure 10 depicts the average training behavior for the two datasets (MNIST and
Soybean) that did not present significant difference between the two representations. Both
the generalization pattern and the accuracy spread were very similar. No relevant difference

in convergence speed was observed and also no trial failed to converge.
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Figure 10 — Training Process Comparison between half and double precision FP represen-
tations for the MNIST and Soybean datasets
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Figure 11 — Training Process Comparison between half and double precision FP represen-
tations for the Breast Cancer and Thyroid datasets

Figure 11 exhibits the training process for two datasets which behaved differently
with lower precision. The larger spread in the first epochs for the Breast Cancer dataset is
due to different convergence speeds between trials, but the average true ratio converges

to similar values at the end. A single initialization failed to converge and this happened
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to both precisions. The Thyroid dataset presented a different behavior: the learning
process stagnated in the less precise (FP16) version and kept progressing in the reference
implementation. There is a possibility that setting a different a learning-rate could provide
better results for FP16 in these datasets, but this would violate the premise of performing
comparisons under the same conditions. Additionally, the evidence that the lower precision

ANN was not equivalent in these cases can not be disregarded.

As it can be seen in these comparisons, FP16, which is sometimes used as a
baseline for approximation studies, is not a direct “drop-in” replacement for more precise
FPs in ANN training. Even considering that hardware manufacturers like NVIDIA show
impressive results using their powerful GPUs, implementation details should be analyzed
with care. These implementations may include a mixture of FP32 operations, sometimes
used only internally, or specific ANN architectures and training algorithms adjusted to
perform well with low precision arithmetic. Since this work aims at optimized hardware
ANN implementations, it is an important factor to observe that even before further
simplifications are added to the system with reduced precision, attention is required to

provide reliable operation.
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5 Simplifications and Approximations

In Chapter 4, a reduced standard FP representation was presented as a first step
to optimize the ANN training process (by reducing its memory footprint) and simplify the
FPUs (by using fewer circuits or iteration steps in basic operations). This Chapter intro-
duces further optimizations that simplify the hardware design by eliminating exceptions to
this reduced FP format (Section 5.1) and approximating higher level mathematical opera-
tions frequently used in ANNs (Section 5.2). Section 5.3 repeats the same test procedures
already detailed, replacing the double FP baseline by the IEEE FP16, to verify if the
approximated implementation with extra simplifications introduced further performance
penalties. All approximations proposed in this chapter are based on the FP16 format,

using the environment described in Section 4.3.

5.1 Floating Point Simplifications

As previously mentioned, the lowest and highest exponents in the IEEE FP
representation are used to represent exceptional conditions. Removing these exceptions has
a few direct beneficial effects and some changed behaviors regarding the lack of indication

of such occurrences. This section analyzes the rationale and effects of these modifications.

5.1.1 Removal of Infinities and NaNs

By replacing the highest exponent with an extra set of normal numbers, 1024 new
values become representable in the FP16 format. This means that the largest magnitude is
doubled (from 65504 to 131008, considering the default bias). This improvement represents
a mere ~ 1.6% increase in the representable numbers set which, with the default bias, is
outside the most useful range for ANNs since models are typically initialized with very
small weights (positive and negative). No relevant FPU simplifications result from this
change since the overflow condition must still be detected and the maximum positive (or
minimum negative) number be returned as a result. Conversely, infinite arguments do not

have to be checked at the operation inputs.

What is more relevant for reliability is that in the same situations when infinities
would occur, the highest possible number is returned as the operation result. This can be
viewed as a form of “graceful degradation”, since invalid numbers that would interrupt
the learning process are replaced by valid values. If this operation was, for example, in
the gradient calculation, the result could be just a smaller learning adjustment step in

one weight, instead of a failed learning sequence. The fact that the migration from FP32
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to FP16 drastically reduces the largest representable number, potentially increasing the
likelihood of overflows, is partially mitigated by this conservative behavior. Some adaptive

training algorithms even limit the largest weight adjustment step as a hyper-parameter.

The IEEE standard is very specific about the invalid operations that should result
in NaNs, also making distinctions between the quiet and signaling types. The simple
removal of infinities eliminates many of these situations. The approximate implementations
of the reciprocal square root functions (detailed in Section 5.2) associated with their
specific use in this research, eliminates another possibility. The simplicity of ANNs, which
requires only a subset of the standard operations, narrows down the remaining possibilities
to a single one: the division of zero by zero. This operation occurs in only two situations
in all analyzed methods: the Softmax output function and some adaptive methods which
dynamically adjust the learning speeds of each weight. The first situation can be reasonably
handled by the mathematical absurdity 0/0 = 0, which makes sense in this case, since
no output was activated, but for training purposes the error will be high for the one
which was not activated. The second situation can be easily circumvented by testing the

denominator, which also avoids the division by zero.

Besides eliminating NaNs and infinity representations, some situations in which
exceptions occur may also set hardware flags: inexact result, underflow, overflow, infinite
and invalid operation. All the tests required to generate these flags were also removed. The
inexact result is the only condition not previously analyzed. It means that the returned
value could have been more precise if more bits were available in the format (in other words,
if the value was rounded), which is useless for this type of application. When grouped, the
simplifications detailed so far lead to considerable resource savings, as shown later in this

section.

5.1.2 Restrict Format to Normalized Numbers

The removal of the subnormal number representation exception, and the use of
its exponent to represent normalized numbers, has a direct and minor effect similar to
the previous one: the smallest normal magnitude in the FP16 format is reduced by half
(from 6.1095 x 107 to 3.0547 x 107>, considering the default bias). Taking into account
that these new normal values replace the subnormal ones, the limit is actually worsened
since the smallest subnormal magnitude is 5.9605 x 10~%. It should not be forgotten
that this mode of operation is a form of “graceful degradation” applied to the underflow
situations. Not only there is a performance penalty in their use, but the FPU must have
extra complexity to handle this exceptional situation. Other undesirable characteristic is
that the smaller the number of effective bits in the subnormal significand (which is smaller
than 1.0, thus has leading zeros) the larger the relative error of the operations. This leads

to the conclusion that, even if supported, subnormal numbers should be avoided.
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The problem with the reduced range of small magnitudes in FP16, aggravated by the
removal of subnormals, is that such low values are common in ANNS, especially considering
the weight initialization values. Even simple numerical techniques, like adding a small value
(e.g. 1077) to a positive denominator before making a division in order to avoid a division
by zero, become problematic. Additionally, mixed precision approaches implemented
in standard hardware may rely on this exception as an extended representation range,
opening the possibility for a performance cost. Conversely, in FPGA implementations the
subnormals are normally not included due to resource usage, as can be observed in two
commercial and two academic examples: Altera (ALTERA, 2016), Xilinx (XILINX, 2017),
FloPoCo (DINECHIN; PASCA, 2011) and VFloat (WANG; LEESER, 2010).

In order to exemplify the order of magnitudes seen in typical weight adjustments
during training, Figure 12 depicts trials of the MNIST dataset using the same initialization,
with the conditions detailed in Chapter 4, comparing FP16 without subnormals and
FP32 executions. The plots compare the maximum (green and black), which are very
similar, and the average (red and blue) absolute values for the weight changes in each
layer during training. Layer 3 (Output) is omitted due to its similarity with Layer 2. The
minimum non-zero absolute values are not represented since they are very small in the
FP32 execution (lower than 1071 and frequently reaching values that are subnormals

even in this format).

MNIST mini-batch Training Process: Average Absolute Weight Deltas
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Figure 12 — Average and maximum absolute values for weight adjustments

It is worth emphasizing that even with a dataset (MNIST) in which no relevant
difference was found in the average performance (progress in training accuracy and
generalization), noticeable differences are verified in the weight adjusts. When just the
average absolute values are compared, the differences are only significant in the first layer,
which has the smaller adjustments, where they differ by more than an order of magnitude

by the end of the training. This is an indication that, for this problem and in these training
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conditions, the small weight changes missed in the FP16 format were overwhelmed by other
dataset characteristics, like redundancy. It should also be noted that the low magnitudes
(when compared to the FP16 representation limits) imply that the subnormal range of
FP16 would have been frequently used in this process, especially at the end of the training

in the first layer, when even the average value got close to the smallest magnitude limit.

Restricting the representation and arithmetic operations to normalized numbers
has many direct beneficial effects, as already mentioned, but also an indirect one. When
the operations are performed, the possibility of a subnormal value as a result has to be
considered, which requires the internal number representation to have enough precision
to generate such results. Removing the circuits (or code) to handle subnormal numbers
also gives room to reduce the internal bit representation in some operations. This fact was
explored in the optimized implementation and the effects are presented in the following

section.

5.1.3 Preliminary Implementation of FP arithmetic

Even before the final hardware implementation, a preliminary evaluation of the
gains obtained with the described simplifications was performed. Though the results of
this analysis can not be directly extrapolated to hardware FPUs, they suggest that the
effects of the simplifications were significant in this proof of concept. A similar gain could
be observed in very low end CPUs, which base their FP implementations on libraries that
normally use native integer arithmetic internally, like the one used in these tests. Direct
FPGA implementations may also yield similar benefits, since these components provide

internal DSP units capable of performing integer FMA operations.

The reference “SoftFloat” IEEE compliant implementation was firstly trimmed
to include only the functions used by the modified FANN library (the contents of the
methods were not modified). The resulting code is the library used to run the tests with
Standard IEEE FP16 and resulted in a compiled binary ! with 125,264 bytes. The first

step for the approximation operations was the removal of exceptional conditions and

L For compilation off all binaries, all optimizations from level 1 were selected (with -01) but the flags

from levels 2 and 3 were hand-picked (instead of using -02 and -03):

-finline-functions -funswitch-loops -fpredictive-commoning -fgcse-after-reload
-fipa-cp-clone -ftree-loop-distribute-patterns -ftree-slp-vectorize
-fvect-cost-model -ftree-partial-pre -ftree-pre -fstrict-aliasing
-fstrict-overflow -fgcse -finline-small-functions -fthread-jumps -falign-functions
-falign-jumps -falign-loops -falign-labels -fcaller-saves -fcrossjumping
-fcse-follow-jumps -fcse-skip-blocks -fdelete-null-pointer-checks -fdevirtualize
-fexpensive-optimizations -ftree-vrp -fgcse-lm -fhoist-adjacent-loads
-findirect-inlining -fipa-cp -fipa-sra -foptimize-sibling-calls -foptimize-strlen
—-fpartial-inlining -fpeephole2 -freorder-blocks -freorder-blocks—-and-partition
-freorder-functions -frerun-cse-after-loop -fsched-interblock -fsched-spec
-fschedule-insns -fschedule-insns2 -ftree-builtin-call-dce -ftree-switch-conversion
-ftree-tail-merge
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flushing the subnormal numbers to zero. At this point a reduction of almost 40% in size
was already observed. Further optimization possibilities resulting from the removal of
subnormal numbers were identified, which simplified the implementation of some arithmetic
operations. The final version of the approximated library, with the exact same API and
supported methods, reached a size of 59,088 bytes, representing ~ 53% of size reduction.
Stress tests were performed with all arithmetic operations in both libraries in order to
identify any abnormal behavior. The arguments for each operation (two or three) were
generated randomly, each operation was performed and the results were compared. Different
results would interrupt the test sequence and the ones that increased the maximum relative
error found so far were displayed for inspection. The maximum observed error was +0.05%
in both libraries, as expected from the significand representation length and rounding
method. These figures exclude the operations involving subnormals which are performed
with worse resolution. For each operation the maximum error was reached after a few
thousand operations but the stress tests were executed hundreds of millions of times for

each one, increasing the confidence in the correctness of both implementations.

Optimized FPGA implementations should be performed directly with an appro-
priate hardware implementation tailored language, but a preliminary evaluation could
also be obtained using the Vivado High-Level Synthesis tool, offered by Xilinx. With
this method, the libraries source codes are used as inputs in the design process. A full
FPU was not implemented using this method, but the most important operations were
compared: FMA, multiplication and addition (which also includes the subtraction). The
comparison between the results provided by the tool are presented in Table 4, where the
rows identified as “Total” summarize the resource usage. Relative reductions from 26%
to 45% were observed for the LUTs and Flip-Flop (FF) resources. Due to inherent code
obfuscation techniques of the Synthesis tool it was not possible to determine the reasons
for the considerable reduction in DSP usage (from 16 to 1, in the DSP48E columns) and
the higher RAM usage (from one to two blocks, in the BRAM_18K columns). The analysis
shows that relevant benefits were still present when the software designs were migrated
to the FPGA. It is important to note that an efficient FPGA implementation approach
would take advantage of common blocks sharing (such as the final packing and rounding
module) and also from the component peculiarities, like the bit width of the internal DSPs.
Another important observation is that when a full ANN implementation is considered, the

FPU is only part of the whole architecture and these benefits are expected to be diluted.

This research has not yet evaluated alternative rounding solutions, fixing its
implementation to the most conservative (and expensive) choice: round to the nearest
value. There are less complex options, like the simple elimination of extra bits, which
doubles the maximum error due to rounding and, more importantly, introduces a bias into
that error. Stochastic rounding has also been analyzed in the literature as an option to

accumulating long series in values with higher precision.
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Table 4 — FPGA resource comparison after synthesis using the Vivado HLS

Standard IEEE FP Approximate FP

Name BRAM_18K DSP48E  FF LUT Name BRAM_18K DSP48E  FF LUT
DSP - - - - DSP - 1 - -
Expression - - - - Expression - - 2101 2274
FIFO - - - - FIFO - - - -
Instance 1 16 5455 5125 [Instance 1| - 761 658 FMA
Memory - - - - Memory 1 - 0 0
Multiplexer - - - 13 [Multiplexer - - - 170
Register - - 3 - Register . - 442/ -
Total 1 16 5138 Total 2 1 3 310

Name BRAM_18K DSP48E, FF LUT Name BRAM_18K DSP48E, FF LuT
DSP - - - - DSP - 1 - -
Expression - 16 495 1034 |[Expression - - 336 419
FIFO - - - - FIFO - - - -
Instance - - 833 845 |[Instance 1 - 761 658 Mul.
Memory 1 - 0 0 [Memory 1 - 0 0
Multiplexer - - - 185  |Multiplexer - - - 64
Register - - 369 - Register - - 101 -
Total 1 160 1697 2064 [Total 2 1 1 1141

Name BRAM_18K DSP48E  FF LUT Name BRAM_18K DSP48E  FF LUT
DSP - - - - DSP - - - -
Expression - - 0 18 |[Expression - - 0 18
FIFO - - - - FIFO - - - -
Instance 1 - 4123 4179 [Instance E 2968 2770 Add.
Memory - - - - Memory - - - -
Multiplexer - - - 35 |Multiplexer - - - 53
Register - - 13 - Register - - 101 -
Total 1 0 4 4232/ [Total 3 0 3069 2841

An improvement to achieve resilient training of ANNs is to dynamically adapt the
FP range for each problem and network structure by adjusting the exponent bias. Since
even standard FP16 numbers showed mixed results in the first tests, further reducing the
representation ranges, by restricting the format to normalized values, may compromise
even more the performance with some problems. The implementation of such feature is
relatively straightforward, but the adjustment mechanism may be implemented at several
levels and granularities, with different complexity compromises. The evaluations could be
performed at each batch, mini-batch or even for each training example. The adjustments
could be applied to each neuron, layer or to the whole network, avoiding the conversion
operations. Non-automatic adjustments are not desirable, since they add hyper-parameters

to the training.

5.2 Math Operations Approximations

As mentioned in Chapter 4, LUT based implementations for the most complex
activation functions used in ANNs are a common way to optimize their hardware imple-

mentations. Optimizing a basic mathematical operation used in the activation function
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definition is another option. This approach has the benefit that the same operation, for
example the exponentiation, can be used in other functions. In this case, besides the
Softmax output activation, the exponential could also be used to decay hyper-parameters
in some adaptive training methods. The other operation approximation will merge a

division and a square root into a single method, which is also useful in some algorithms.

The first two methods presented in this section are adaptations to the simplified
FP16 format of approximation techniques proposed several years ago. The first tech-
nique (SCHRAUDOLPH, 1999) was associated with ANNs from the beginning, but the
second one appeared in the context of the early 3D gaming platforms (KUSHNER, 2002)
without being directly related to a scientific publication. These techniques share a common
background of computing platforms that performed much better with integer operations
than with floating points. For specific resilient applications (like ANNs and fast 3D ren-
dering) they benefited directly from the FP representation format (BLINN, 1997) to
obtain better performance. It is interesting to see how these two fields have been sharing
performance techniques for a long time and this trend continues as so many important
ML results nowadays rely on powerful GPUs. Finally, a third approximation is proposed
with similar techniques. It replaces the reciprocal operation in the second method by a
full division (taking the two arguments). Interestingly, the implementation is even simpler,

at the cost of a larger relative error.

5.2.1 Exponentiation and Activation Functions

The original idea for this approximation was defined for double precision repre-
sentations. According to the author, it is equivalent to a LUT implementation with 2048
entries with interpolation. The half-precision modification proposed here, despite having
a larger error, will behave similarly. This adaptation is based on the same principle but
it uses all the 16 bits of the resulting FP16 number while the double precision version

performs its main operation on the upper 32 bits of the FP number.

Figure 13 details how the FP16 format defined in Section 4.1.1 is represented. The
FP format is intuitively an exponentiation operation with base 2 for small numbers. If a
small integer number x, within the valid range [—15, 14], is added to the exponent bias (15)
and shifted 10 positions to the left, the resulting integer (i), interpreted as a FP number,
equals 2%. The shifting operation may be replaced by a multiplication by a power of two

integer (in this case 2! = 1024), which results in the Equation 5.1.

BllE|IE|EEHENSTSSS|SIsHsTsS]S
MSB LSB

Figure 13 — Bit layout of the FP16 format
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i =2'""(z 4 15) = i = 1024z + 15360 = i = (int)(1024x; + 15360) (5.1)

If z; is a fractional number (regardless of the representation) i becomes the
conversion of the resulting number to an integer, discarding the fractional part. But in
this case, the bits that are assigned to the significand part of the FP number may not be
zero. This difference is what makes the linear interpolation between the integer values
possible, and automatic. Remembering that the exponent part refers to the power of the
first bit 1 in the significand, which is omitted, the next bit (S_1) is worth 0.5, the next one
0.25, and so the sequence follows. This means that the lower order bits of the multiplied
number will fill the gap between two integer exponents, proportionally to the fractional

part of the input.

Two more steps are needed to conclude the approximation. The first is that the 2%
operation must be transformed in e®. This is achieved by simply dividing z/in(2), according
to Equation 5.2, so that the resulting multiplication becomes 1024 /In(2) ~ 1477.32. Finally,
a small adjustment should be performed in the sum with 15360, which results in a minor
reduction of the maximum approximation error. Since the search space for FP16 is very
small, this value was obtained with exhaustive search. The adjusted value found was 15320,

resulting in the final expression for the simplification, given in Equation 5.3.

z/ln(2)

92— 6111(2) = 2x/ln(2) _ (eln(Q)) — % (52)

i = (int)(1477z; 4 15320) (5.3)

Figure 14 presents the final approximation results in a narrow range, compared to
a precise double precision reference. The relative error curve repeats the same aspect in all
the usable input range, which is: —10.367 < x < 11.805 (arguments outside this interval
result in non-representable answers). For values outside this range the function returns
3.0756 x 1075 and 1.3056 x 10°, respectively.

5.2.2 Reciprocal Square Root

This approximation method also takes advantage of the intrinsic exponentiation
operation of the FP format, but for a different purpose. Like many other implementations
of complex functions, it relies on an initial estimate for the result (usually obtained from a
LUT) followed by some iterative refinement operations. The better the initial guess for the
answer, the fewer iterative adjustments are required until the desired accuracy is reached.

The original method relies on single precision FP numbers and this adaptation modifies it
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Stepwise Approximation of Exponential Function

. — 1/exp(x)
; X approx.
---rel. error
§
. S
; L]
: [0)
: 2
-‘ : E
[ )
0 ] ) K . “\: _4
-1 -0.5 0 0.5 1
X

Figure 14 — FP16 exponentiation approximation

for the FP16 format. A very detailed analysis of the method was provided by the Technical
Report (LOMONT, 2003), on which this adaptation was based.

The first part is the most interesting one in the proposed implementation. It uses
the exponent representation to obtain an initial guess for the operation, without a LUT.
Considering a number with the significand = 1.0, the reciprocal square root could be
obtained by multiplying the exponent by —0.5. Integer division by 2 is quite simple since
it can be implemented with a single right shift, but this operation has to cope with two
issues: the FP exponent is biased and if the value is odd the LSB from the exponent will be
assigned to the MSB of the significand. The sign bit is not a problem since the reciprocal
square root is only used for positive numbers in the targeted ANN methods 2. Equation 5.4
details the operation and the final exponent encoding in which £ is the initial exponent

and Eg the resulting one.
Reciprocal Square root of numbers with significand = 1.0:

<2E—15>_1/2 _ 9(15-1)/2 (5.42)

15-F
Er = 5

E
+15 =225 = (5.4b)

If exponents were represented in fixed point, with a single fractional bit, this simple
operation, composed by a shift and a integer subtraction would obtain an exact answer for
pure exponential arguments. Instead, lets consider a subtraction from 22 (which, encoded in
the appropriate position would be 0x5800), slightly underestimating the answer. Two cases

must be analyzed: even argument exponents and the odd ones, on which the shift causes the

2 In both RMSProp and Adagrad the argument for the reciprocal square root is a sum-of-squares. The
condition with the argument = 0 must still be handled.
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exponent LSB to become MSB of the significand. Figure 15 shows how estimates for even
exponents (starting from 0) are underestimated and the other ones become overestimated
due to the significand changing to 1.5 (due to bit shifting). These estimates are represented
as crosses, above and below the reference reciprocal square root value, considering only

integer exponents and the operations just described, affecting the mantissa value.

Initial Estimate for Reciprocal Square Root
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Figure 15 — Approximations for powers of 2

Similarly to the exponential approximation, the argument significand will provide
an interpolation between the whole exponents, but it will not be a linear one and will
also improve the approximation in these points. The best value for the initial subtraction
was adjusted by exhaustive search ?, minimizing the absolute error on the initial guess:
0x59BB.

The second part of the approximation is a single iteration of the Newton-Raphson *
method. If xq is a first guess for = that makes f(x) = 0, Equation 5.5 indicates how a
better value for x (1, for iteration 1) could be estimated by using the first terms of a

Taylor approximation for f(z).

~ f(@o)
0 (o) (5.5)

r1 =2

3 All subtration values from 0x5800 to 0x60FF were tested and, for each one of them, all possible

arguments (positive numbers) were evaluated. For each subtraction value, the maximum relative error
resulting from all arguments was noted. The subtraction value which provided the better absolute
maximum error in the initial guess was used.

1 http://mathworld.wolfram.com /NewtonsMethod.html
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In order to use the Newton-Raphson, the reciprocal square root calculation must
be transformed into a root-finding problem, based on the efficient initial estimate detailed
previously. For an argument a > 0, we have to find a value x that gives us x = 1/4/a,

2 _ a which will

starting from a first approximation xy ~ 1/y/a. We define f(x) = z~
reach f(x) = 0 for the correct answer. Using the first derivative for f(x) and applying
it to the Equation 5.5, we define an analytical expression for the first iteration of the
Newton-Raphson method. This is the most computationally intensive part of the reciprocal
square root approximations since it is regularly performed as floating point operations: 4

multiplications and one subtraction, as indicated by Equation 5.6.

fzo) = (v0) 2 —a = f'(zg) = —22;° (5.6a)
x52 —a

Ty =Tg— (_2%_3> (5.6b)

7y = a9 — (—0.520 + 0.5az}) (5.6¢)

7y = a0 (1.5 - 0.5a17) (5.6d)

In the previous explanation the variable z was used in a more adequate way to relate
the equation definition to the Newton-Raphson method, which is a root-finding algorithm.
If the first part of the explanation (the bit shift and integer subtraction operations to
obtain the first estimate) is merged with the numerical method iteration just defined, a
final expression can be obtained (Equation 5.7) for the complete reciprocal square root
approximation. The approximation Y = 1/ VX is then calculated in two steps, considering
that in the first part the argument X is handled as a 16 bits integer and in the second

part as a regular FP16 number, as well as GG, the first estimate for the numerical method.

G = 0x59BB — (X > 1) (5.7a)
Y =G (15-05XG?) (5.7b)

Figure 16 depicts a precise reference for y = 1/4/x in blue. On the left, this reference
is compared to the first approximation G (in red), obtained by the first step and interpreting
G as a FP number. On the right, the same reference is compared to the full operation,
which includes one step of the numerical approximation. The relative error patterns repeat
themselves in the whole usable input range (6.1095 x 107° < z < 3.3952 x 10%4).

This approximation will not be tested on the comparisons that close this Chapter,
since it is not used in the simple training methods presented here. Due to the low
precision requirements of some resilient applications, it is worth noticing that even the
first approximation step already results in similar relative errors to the ones obtained at

the exponentiation approximation.
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Initial Value for Reciprocal Square Root Approximate Value after One Iteration
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Figure 16 — Reciprocal Square Root Approximations

5.2.3 Division by Square Root

Extending the same ideas used in the previous approximations, another technique
that includes a division in the operation is proposed, giving an approximate answer for
the expression y = b/+/a. Additionally, this is implemented in a way that accepts dynamic
FP bias values. The rationale for the new method is similar to the other two adapted
approximations, by initially considering only power of two arguments (both significands
have only zeroed bits). The resulting encoded exponent (E,) can be obtained by direct
operations from the argument’s encoded exponents (F, and Ej). The equation (5.8) details

the operations, where FP bias is also considered variable and is represented as BIAS.

E, —BIAS
E, — BIAS = E}, — BIAS — (f) (5.8a)
E, BIAS

Divisions by two are efficiently implemented as 1 bit shifts. Similarly to the other
methods, the exponent operations are not performed separately. Instead, the arithmetic
and shift operations are performed with the whole represented FP numbers, including the
significands. The same error compensation explained in Section 5.2.2 happens when the
fractional LLSB of the exponent’s operation “leaks” into the significand. Both significands
also provide a interpolations without extra cost and a negative argument b preserves
its sign bit due to the shift operation in the a argument (which is always positive, as

mentioned previously).

Fig. 17 depicts, in a limited range, the relative error for the approximated y = b/+/a
operation, using logarithmic scales for the two arguments, and a double precision FP
standard implementation as reference. Invalid arguments are not considered since they are
handled before the approximation, returning either zero or the maximum representable

number (with the same sign as b). Not considering these underflow and overflow conditions,
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the relative error limits in the entire useful output range (including exponent biases varying
from 15 to 31) are ~ +8.866%.
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Figure 17 — Division by Square Root Approximation

The Newton-Raphson method is very effective in reducing the initial approximation
error, but it is computationally expensive: each step performs 5 multiplications, one
division and one subtraction. Fig. 18 depicts how two numerical steps reduce the maximum
approximation error. For each value of a, calculated with FP16 BIAS = 24, the largest
errors for all possible values of the argument b which lead to valid results are tested. Both
steps are performed with single precision operations. As in the previous example, this

numerical method was not included in the final approximate implementation.
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Figure 18 — Division by Square Root Approximation: 2 Newton-Raphson steps
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5.2.4 Preliminary Implementation of Complex Functions

Similarly to what was reported in the Section 5.1.3, a preliminary viability analysis
was performed to verify if the proposed complex function approximations resulted in signif-
icant simplification. Since the SoftFloat library does not provide a precise exponentiation
function for comparison, the synthesis of the FMA operations were repeated as references.
This new synthesis was necessary for a fair comparison because, at this stage, a newer
Xilinx Vivado version (2018.3) was used, which produced better HLS results in both the
baseline and approximate version. Additionally, the approximated multiplication code
with variable FP bias, mentioned in Section 5.2.3, modifies these approximated source

code implementation basis.

The synthesis results are presented at Table 5. When compared to Table 4, the
same columns with non-zero values are shown but only the rows previously identified as
“Total” are presented for each entry. Like in the previous analysis, the Softfloat original
code is used as the HLS input for the “Standard IEEE FP” synthesis rows while the other
ones are generated from the approximated code. The direct comparison shows that the
exponentiation approximation is even simpler than the approximated FMA operation. It
is also clear that the division by square root, including the variable FP bias, is so simple

it could be implemented only with combinational logic.

Total Resource: BRAM 18K | DSP48E | FF | LUT
FMA: Standard IEEE FP 1 16 | 2079 | 6062
FMA: Approximate FP 2 1| 892 | 3426
Exp. Approximate FP 2 1| 598 | 2177
sqrt(): Standard IEEE FP 1 34 | 1751 | 2763
b/sqrt(a) Approximate FP 0 0 0| 157

Table 5 — High Level Synthesis of Complex Functions

5.3 Comparative Tests: Standard IEEE FP16 vs Approximated

The purpose of the following comparison is to verify if the approximations presented
in this Chapter had any relevant effects on the ANNs performance. For this reason, the
baseline for comparison will be the same standard IEEE FP16 (half precision) imple-
mentation tested in Section 4.3, with the same initializations. The comparison method
is also the same, graphically analyzing the average accuracy during training, with 95%
confidence intervals. In all these comparisons, the approximations presented in this chapter

are implemented in the trials identified as “approx. 16”.

In Figure 19 the same two datasets which previously showed no significant difference

to the double precision implementation, also behaved similarly when implemented with
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the approximate operations. Exactly as before, no approximated trials failed to converge.
Due to the lack of difference in average behavior and the narrow confidence intervals, the
approximate implementation can be considered equivalent to the standard FP16 for these

datasets and training method.

Accuracy During Training (MNIST) Accuracy During Training (Soybean)
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Figure 19 — Training Process Comparison between standard IEEE and approximate FP16
representations for the MNIST and Soybean datasets

Two of the datasets compared to a precise implementation in Section 4.3 presented
significant differences to the baseline. Conversely, when the standard FP16 trials are
compared to the approximated version, as depicted in Figure 20, no evidence was found that
indicates worse or better training performance of the approximated FP16 implementation
and the simple exponential method. As it happened previously, the larger spread in the
first epochs for the Breast Cancer dataset is due to slower convergence speeds of some
trials. The same initialization which failed to converge previously, also diverged in the
approximated version. In the Thyroid dataset, the same slower learning progress was
observed, with similar averages and narrow confidence intervals. For this reasons, the
approximate implementation can also be considered equivalent to the standard FP16 in

these conditions.

To summarize the analysis: no evidence was found to indicate that the approxima-
tions and simplifications proposed in this Chapter worsened the performance of the ANN
training procedures when compared to the low precision IEEE FP16. Unfortunately, as
shown in Chapter 4, even this standard format was proven to not always be equivalent to
the more precise ones. The two relevant differences found when the comparison was based

on a double precision implementation will be handled in the Chapter 6, when adaptive
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Figure 20 — Training Process Comparison between standard IEEE and approximate FP16
representations for the Breast Cancer and Thyroid datasets

methods are introduced and used with an automatic FP bias adjustment mechanism.
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6 Resilient Training of ANNSs

Chapter 4 presented the details of ANN implementations based on standard FP
operations, showing evidence that FP16 is not always a direct replacement for more
precise formats. In Chapter 5, approximations that simplify the FP16 implementations
were analyzed and no evidence was found to consider them less reliable than standard
FP16 for basic ANN training. This Chapter will analyze other learning techniques that
could be more efficient than conventional Gradient Descent by adapting the weight change
mechanism to each connection. This is evaluated as a better approach than, for example,
increasing the global learning rate to solve problems like the ones found in the FP16
implementations. For this reason, these methods rely on storing extra information for each
weight, adjusting it as the training progresses. Several robust adaptive methods have been
proposed in the literature as a mechanism to dynamically and individually adjust weights
at different speeds. These methods differ regarding how much extra memory is required

for the adaptive behavior.

Efficiency, as mentioned, is a broad concept when related to this analysis. A network
that converges faster (with less evaluations of the training examples) requiring much more
memory or computing, may require even more energy than a simpler and slower one. The
memory use alone may result in the infeasibility of an FPGA implementation, by not
allowing a good localization of the parameters !. As the final target for this work is an
efficient hardware implementation, only methods that store a single extra variable for each
weight will be analyzed. Not even the use of temporary variables with higher precision

(like accumulations in FP32) will be considered, for the same reason.

Finally, an automatic method to dynamically adapt the approximated FP16 repre-
sentation range during training, for each neuron and without extra hyper-parameters, is
proposed. Adaptive training methods for ANNs improve the equivalence of low-precision
arithmetic to the reference ones, but were not enough to reach a desirable performance
on all tested datasets. The final system is also tested against the bfloat16 format, used
in the accelerated TPU platforms, designed by Google (<https://cloud.google.com/tpu/
docs/bfloat16>), and also being adopted by Intel (HENRY; TANG; HEINECKE, 2019)
and ARM (BURGESS et al., 2019). A novel FP representation with dynamic precision is

also used for comparison, in its fixed size form: the posit16.

L If the parameters used for a node are not stored in a distributed way, close to the processing elements,

the data traffic to external memory may dominate the training costs, as stated, e.g. in (HAN et al.,
2015) and (MISRA; SAHA, 2010).
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6.1 Adaptive Training Mechanisms

This Section will use the same notation for the weight updates in all its Parts,
adding terms and operations according to the analyzed method. Equation 6.1 details
the update rule for GD where the parameters 6,, (the weights and biases) are updated
by applying at iteration n a change A6,. This change is a small fraction (given by 7,
the learning rate) of the gradient V, of the loss function L(6,;z;y) with respect to the
parameters, given the inputs x and outputs y. The negative sign comes from the fact that
the loss function is the objective to be minimized. An incremental approach applies this
change for each training example, i.e. a (z;y) pair, while batch methods accumulate the

gradient contributions of several examples before adjusting the parameters.

A, = —nVoL(0,;2;y) (6.1a)
Orir = 0, + AB, (6.1b)

The following parts present different methods to determine the change A6, and

the analysis is focused on specific datasets, according to the problems found.

6.1.1 Gradient Descent with Momentum

The basic idea for a momentum term is to change the “velocity” of weight updates
instead of their “position”. This analogy considers each connection value as a particle that
should be moved, as fast as possible, without instabilities, to improve the network loss.
If successive updates happen in the same direction, the weight change will increase its
rate, or momentum. Conversely, gradients that frequently change sign will not be heavily
adjusted. Equation 6.2 summarizes this update scheme where v, usually < 1, determines
how much of the previous “velocity” A#,_ is kept in the current step. This means that

for each weight an extra parameter should be stored and updated during training.

Ab,, = vAO, 1 —nVoL(0,; z;y) (6.2)

The momentum term did not improve the slightly lower convergence speed in
some specific initializations of the Breast Cancer dataset. By removing 3 (out of 150)
initializations that could be considered outliers due to delayed convergence, all of them
common to both representations, no significant difference was found between the two
precisions. This similarity also happens in the previous test, if outliers are excluded.
Figure 21 shows how the approximated FP16 (as defined in Chapter 5 and identified as
“approx.”’) behaved similarly to the reference when momentum was used (plot on the

right), but with a slightly faster accuracy growth when compared with regular GD (on
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the left). The reference is the same double precision floating point (IEEE FP64) used in

Chapter 4. The same reason defined in Section 4.3 justifies the use of Average True Ratio.
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Figure 21 — Breast Cancer without outliers: comparison of the effect of the momentum
term using a double precision FP64 as baseline

The first experiments with momentum applied to the Thyroid dataset showed that
the addition of this term did not minimize the problems found when standard FP64 and
FP16 were compared with mini-batch training. To extend the comparison scope, the first
training setup was repeated using a full-batch approach, which is not the ideal one for
large datasets since it only applies the weight changes once for each complete evaluation
of the dataset. Figure 22 compares the training progress with this method without (to the
left) and with the momentum term (to the right). The higher precision training (double
precision FP64) presented instabilities late in the process which were not observed in the
approximate version (as defined in Chapter 5 and identified as “approx.”). It is worth
mentioning that this is the most unbalanced dataset in these tests. The two minority
classes represent only 2.3% and 5.1% of the training examples and the rest belongs to
a single class. The use of a cost based approach to handle the class imbalance caused a
sequential progress in the learning process, and the instabilities coincide with the epochs
when the accuracy of the third class is increased. This problem would go unnoticed if
global accuracies had been used. The momentum term improved the stability and the
accuracy progress. It reduced the difference between the precisions, but a small advantage
is still present for the FP64 implementation.

6.1.2 iRProp-

The original RProp (“Resilient back-Propagation”) algorithm (RIEDMILLER;
BRAUN, 1993) offered a very simple way of learning the weight adjustment rates adaptively.
The basic idea is that just the signs of the gradients in consecutive epochs are used to

decide if the absolute value of A#,, should be increased or reduced and in which direction
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Figure 22 — Thyroid in full-batch mode: comparison of the effect of the momentum term
using a double precision FP64 as baseline

it should be applied. When a partial derivative changes its sign, it is assumed that the
last update was too large and the network has jumped over a local minimum. In this case
the absolute value of Af, is multiplied by a positive factor p~ < 1. If the gradient sign
does not change, the absolute value of A, is multiplied by a factor u™ > 1 to increase the
convergence speed. The choice of the correction factors 0 < p~ < 1 < pt is considered an
optional hyper-parameter adjustment, but eventual changes must be performed carefully

as they are crucial for convergence.

A few modifications were proposed in (IGEL; HUSKEN, 2000), from which the
iRProp- variation was chosen for the tests performed here due to its performance and
simplicity. Not only these proposals but also more recent ones, like (BAILEY, 2015),
keep the premise of using this algorithm in full-batch mode. This is probably the main
reason that explains the lack of popularity of this robust method in a context of great

achievements related to Deep Learning with large datasets.

In Algorithm 6.1, as defined in (IGEL; HUSKEN, 2000), Aé;" is the absolute value
of the weight adjustment, stored between epochs. The function sign(z) returns —1 if
x <0, 1if 2 >0 or 0 otherwise. After the last step, only the sign of the gradient must be
stored and a flag indicating if, in the previous step, a weight adjustment was not performed

(caused by the “else if” branch in line 6). The actual steps are limited by fixed and global
values (A and Ayaz).



Chapter 6. Resilient Training of ANNs 65

Algorithm 6.1 — iRprop- Method

1: for all parameters € 6,, do

2 if (V3.V, ' >0) then

3 A0 + min(pt A0 Aaz)
4 elseif (V2.Vy~ ' <0) then

5: AT <+ max(pu= A0, Apin)
6 Vy <0

7 else

8 AT +— AOF

9: end if

10: NG, «+ —sign(V}).AbF

11: end for

Previously this research attempted to implement some minor modifications to the
iRProp- method to improve its behavior with reduced precision and the normalized weights
initialization. The main changes were: adjusting the initial step as a relative value of the
uniform random distribution limits in each layer, causing a hyper-parameter to be used as
a fixed value; creating a mechanism to restart the weight change process when this was
interrupted by a flush to zero (more common with reduced precision). An option was also
evaluated to restart the learning process only for significant weights if the network shifts
to a different position in the optimization space where a specific change becomes relevant

again.

The proposed modifications improved the training behavior in most datasets, but
caused a slightly worse performance in one of them. Specially when generalization is
analyzed, the results are mixed, with slight advantages for each FP representation on
different datasets. iRProp- is a robust algorithm, with noticeably better convergence speeds
for many datasets. The fact that this method does not rely on the gradient value was
considered an advantage for low precision training but, even with guided modifications,

equivalent behavior was not generally achieved.

6.1.3 RMSProp

The previous sections analyzed two adaptive techniques as attempts to improve, at
the training method level, the performance difference found between some FP64 and FP16
implementations. The well known beneficial effects of the momentum term improved the
results for the two datasets which presented differences earlier. This improvement was not
enough to consider the approximate implementation as equivalent to the precise one. The
impressive convergence speed and reliability of iRProp-, even with modifications, were not

enough to provide equivalent results and do not cover the problems with large datasets
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as it is a method known to be adequate only for full-batch training. This leads to the
current investigation of RMSProp, still keeping the constraint of a single extra adjustable

parameter for each weight.

An interesting fact about RMSProp is that it achieved “huge empirical success”,
as stated in (MUKKAMALA; HEIN, 2017), before a rigorous theoretical analysis was
published. For this reason, most of the papers analyzing RMSProp cite a slide (TIELE-
MAN; HINTON, 2012) from the Geoffrey Hinton’s on-line ANN course, where he quickly
mentions the method as an unpublished idea and also some possible improvements worth
investigating. The algorithm implemented for the tests in this section is based on the
details provided in (MUKKAMALA; HEIN, 2017), due to the informality and brevity of
Hinton’s presentation, but it does not include the improvements proposed in the paper.
The datasets used for the following tests did not require the dynamic hyper-parameters

adjustments proposed by the author as a way to improve reliability.

Equation 6.3 details the original RMSProp algorithm. A small term added to the
denominator to avoid division by zero is omitted as it is not used in the approximated
implementation, since division by zero is handled differently (without an exception). A
running average of the squared gradient is stored in V", and adjusted by the factor 8 < 1.
Originally this parameter was proposed as static but the in (MUKKAMALA; HEIN, 2017)
it is argued that this may lead to divergence and should be adapted during training. The
method is sometimes compared to RProp but with the advantage that gradient fluctuations
between mini-batches do not cause instabilities because the running average provides
a normalization. It should also be noted that the learning rate is attenuated with the

training progress (since it is divided by /n).

Ve =BV 4+ (1= B)(V)? (6.3a)
A, = Ly Vi (6.3b)

When Vg reaches very low values and is flushed to zero, the adjustments for these

specific weights may be interrupted if the gradient does not reach higher values as the
training progresses. To cope with these problems, a simple modification was implemented
in this thesis. The running average is initialized to a small value (e.g. V" = 1x 107%) and
as soon as it reaches zero the update rule for that respective weight falls back to regular
GD with momentum, using the same learning rate. The running average stops being
updated for that weight so the new scheme is maintained until training is interrupted.
Since the variable holding the average gradient becomes available, it can be used to
hold the dynamic momentum term without increasing the memory usage. Alternative

methods for the learning rate decay have not been evaluated, as they would imply another
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hyper-parameter to be tunned. It should also be noted that this modification was enabled
in the trials for both precisions, but rarely activated in the precise ones (since the average
value drops to very low value without being flushed to zero). It is worth noting that
automatic FP bias adjustments, detailed in Section 6.3, make this handling non-significant

to increase training reliability.

Figure 23 presents the results which compare the average training accuracy progress
in the same two precision implementations (identified as previously) for the MNIST dataset.
The first noticeable difference on the left plot is the faster convergence speed when compared
to normal gradient descent, which reached its maximum generalization after 50 epochs,
against 28 for RMSProp. The graph on the right provides a more clear view of the accuracy
differences, showing a very small but statistically significant advantage regarding overfitting

resistance in the FP16 approximated version.
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Figure 23 — MNIST dataset: comparing the RMSProp adaptation implemented with FP16
approximations and a double precision FP64 as baseline (positive values on
the right mean better “approx.” performance)

6.2 Exploring Different FP16 Ranges

In Sections 6.1.1, 6.1.2 and 6.1.3, simple adaptive methods provided more reliable
results and faster convergence with approximated FP implementations, when compared
with regular GD training. Despite this improvement, a general equivalent behavior to
precise arithmetic was not observed for all datasets. With these robust training algorithms,
a method could be explored to provide a flexible representation for variables in Groups 2
and 3, adapting the precisions to each problem. Representation ranges could be shifted
towards smaller numbers, for example, to provide better precision for variables which
never operate with the larger representable values. To avoid considerable overhead, this
feature should be able to operate without requiring complex conversion procedures between

different precisions. This could be considered a more reliable approach than to modify the
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training methods themselves to cope with problems caused by the approximations, after

their occurrence.

Before a different representation is evaluated for the variable group which may
require more precision, it should be considered if, in some cases and to some extent, less
precision is in fact better. Not only some tests reported in this thesis, but also the literature
presented in Chapter 3, provide examples where, by a small margin, the approximated
implementation behaved better than the reference one regarding average test accuracy.
Even early experiments like the ones presented in (STETSMA; DOW, 1991) and seminal
papers like (BISHOP, 1995) reinforce the confidence in systematic use of noise as a
regularization mechanism. For the datasets and training methods, where more precision
brings also more sensitivity to let noise become detrimental in the learning process, there

is a rich set of explicit regularization methods available in the literature.

If smaller numbers are indeed necessary in some cases during the back-propagation
phase and consequently in the gradient calculation processes, a simple way to avoid their
underflow would be to increase the value of the loss function, by multiplying it by a growing
factor as the training progresses. The actual loss value must not be calculated for the
training methods evaluated here, but the multiplication would increase its derivative, and
that would result in larger weight gradients. It must be taken into account that this global
method may lead<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>