

Vitor A. M. Ferreira Torres

Resilient Training of Neural Network Classifiers

with Approximate Computing Techniques for

a Hardware-optimized Implementation

Brazil

December 2019

i

Vitor A. M. Ferreira Torres

Resilient Training of Neural Network Classifiers

with Approximate Computing Techniques for

a Hardware-optimized Implementation

Text revised according to the comments re-
ceived from the Evaluation Committee desig-
nated by the Graduate Program in Electrical
Engineering as a partial requirement for the
Electrical Engineering PhD Degree (Micro-
electronics and Microsystems).

Universidade Federal de Minas Gerais – UFMG

Graduate Program in Electrical Engineering

Supervisor: Frank Sill Torres

Brazil

December 2019

ii

This thesis is dedicated to all of those, my family members and dear friends,

whose full support and trust were crucial to help with all the difficult decisions

along the way which resulted in the contributions proposed with this work.

iii

Acknowledgements

I’d like to thank my brother Luiz and godfather Paulo who were the first ones to

understand the reasons behind the decisions which lead to this work and provide their

immediate, full and unconditional support for this undertaking.

Gratitude also goes to my mother Ana and all the other teachers in my wonderful

family (Julita, Angela, Fernando, Luiza and Mônica) for passing to me this beautiful

passion for education, firstly as a motivated student, later as a curious self-taught technician

who became an Engineer and finally as an Educator.

My dear friends Leonardo Torres and Leandro Collares should also know how

important all the long, frequent, sincere and open conversations were to help me keep the

confidence to pursue this project.

My supervisor Prof. Frank Sill Torres provided the first spark which started this

journey, by organizing the seminars which caught my attention to the interesting open

problems in the reliability field. His patience in the years that followed, giving me directions

and providing careful reviews were also crucial to allow my focused attention to the most

important issues.

The professors at the CEFET-MG Electrical Engineering Graduation Course were

also very understanding colleagues, which gave me full support while I had to share my

time between my duties as a teacher and researcher. After this phase, the CNPq financial

support was also very important.

Finally, I’d like to thank the free software community for decades of excellent

quality tools and a development process which values openness and early collaboration as

fundamental and successful attitudes.

iv

“Although this may seem a paradox, all exact science

is dominated by the idea of approximation. When a man

tells you that he knows the exact truth about anything,

you are safe in inferring that he is an inexact man.”

(Bertrand Russell in “The Scientific Outlook”, 1931)

v

Abstract

As Machine Learning applications drastically increase their demand for optimized imple-

mentations, both in embedded environments and in high-end parallel processing platforms,

the industry and research community have been responding with different approaches to

provide the required solutions. This work presents approximations to arithmetic operations

and mathematical functions that, associated with adaptive Artificial Neural Networks

training methods and an automatic precision adjustment mechanism, provide reliable and

efficient implementations of classifiers, without depending on mixed operations with higher

precision or complex rounding methods that are commonly proposed only with highly

redundant datasets and large networks. This research investigates Approximate Computing

concepts that simplify the design of classifier training accelerators based on hardware with

Application Specific Integrated Circuits or Field Programmable Gate Arrays (FPGAs).

The goal was not to find the optimal simplifications for each problem but to build a method,

based on currently available technology, that can be used as reliably as one implemented

with precise operations and standard training algorithms. Reducing the number of bits

in the Floating Point (FP) format from 32 to 16 has an immediate effect of dividing by

half the memory requirements and is a commonly used technique. By not using mixed

precision and performing further simplifications to the smaller format, this thesis reduces

the implementation complexity of the FP software emulation by ≈ 53%. Exponentiation

and division by square root operations are also simplified, without requiring Look-Up

Tables and with implicit interpolation. A preliminary migration of the design to an FPGA

has confirmed that the area optimizations are also relevant in this environment, even when

compared to other optimized implementation which lack the mechanism to adapt the FP

representation range. A logical resource reduction of ≈ 64% is achieved when compared to

mixed-precision approaches.

Keywords: Approximate Computing. Artificial Neural Networks. Hardware Implementa-

tion.

vi

Resumo

À medida em que aplicações de Aprendizado de Máquinas aumentam drasticamente sua

demanda por implementações otimizadas, tanto em ambientes embarcadas quanto em

plataformas de processamento paralelo de alto desempenho, a indústria e a comunidade

de pesquisa têm respondido com diferentes propostas para prover as soluções requeridas.

Esse trabalho apresenta aproximações em operações aritméticas e funções matemáticas

que, associadas a métodos adaptativos para treinamento de Redes Neurais Artificiais e um

mecanismo automático de ajuste de precisão, proporcionam implementações confiáveis e

eficientes de classificadores, sem a dependência de algumas operações com maior precisão

ou métodos complexos de arredondamento, que são frequentemente propostos somente com

conjuntos de treinamento redundantes e grandes redes. Essa pesquisa investiga conceitos de

Computação Aproximativa que simplificam o projeto de aceleradores para o treinamento

de classificadores implementados em hardware com Circuitos Integrados de Aplicação

Específica ou Field Programmable Gate Arrays (FPGA). O objetivo não era encontrar

as simplificações ótimas para cada problema mas construir um método, baseado em

tecnologia atualmente disponível, que possa ser usado de forma tão confiável quanto um

implementado com operações precisas e métodos de treinamento padrão. A redução do

número de bits no formato de Ponto Flutuante (PF) de 32 para 16 tem efeito imediato na

divisão pela metade dos requisitos de memória e é uma técnica comumente usada. Por não

utilizar parcialmente operações precisas e propor outras modificações no menor formato,

essa tese reduz a complexidade de implementação da emulação de PF em software por

≈ 53%. Operações de exponenciação e divisão pela raiz quadrada também são simplificadas,

sem requerer Look-Up Tables e com interpolação implícita. Uma migração preliminar do

projeto para uma FPGA confirmou que as otimizações de área também são relevantes nesse

ambiente, mesmo quando comparadas com outra implementação otimizada que não provê

o mecanismo para adaptação da faixa de representação do PF. Uma redução de recursos

lógicos de ≈ 64% é obtida quando comparada com soluções parciais (mixed-precision).

Palavras-chave: Computação Aproximativa. Redes Neurais Artificiais. Implementação

em Hardware.

vii

List of Figures

Figure 1 – A simple ANN with two layers of neurons 7

Figure 2 – Graphical representation of back-propagation 8

Figure 3 – Three-class SVM/RBF classifier with large margins 19

Figure 4 – Number of datasets used for concept validation. 26

Figure 5 – Bit representation of the FP16 format. 31

Figure 6 – Effect of subnormal numbers on the lowest exponent 31

Figure 7 – Accumulation error due to limited precision 34

Figure 8 – Activation Functions Comparison . 36

Figure 9 – Stepwise approximation of tanh(x), with interpolation. 37

Figure 10 – Training Process Comparison between half and double precision FP

representations for the MNIST and Soybean datasets 43

Figure 11 – Training Process Comparison between half and double precision FP

representations for the Breast Cancer and Thyroid datasets 43

Figure 12 – Average and maximum absolute values for weight adjustments 47

Figure 13 – Bit layout of the FP16 format . 51

Figure 14 – FP16 exponentiation approximation . 53

Figure 15 – Approximations for powers of 2 . 54

Figure 16 – Reciprocal Square Root Approximations 56

Figure 17 – Division by Square Root Approximation 57

Figure 18 – Division by Square Root Approximation: 2 Newton-Raphson steps . . . 57

Figure 19 – Training Process Comparison between standard IEEE and approximate

FP16 representations for the MNIST and Soybean datasets 59

Figure 20 – Training Process Comparison between standard IEEE and approximate

FP16 representations for the Breast Cancer and Thyroid datasets . . . 60

Figure 21 – Breast Cancer without outliers: comparison of the effect of the momen-

tum term using a double precision FP64 as baseline 63

Figure 22 – Thyroid in full-batch mode: comparison of the effect of the momentum

term using a double precision FP64 as baseline 64

Figure 23 – MNIST dataset: comparing the RMSProp adaptation implemented with

FP16 approximations and a double precision FP64 as baseline (positive

values on the right mean better “approx.” performance) 67

Figure 24 – Modified RMSProp training with the approximate FP16 using different

exponent bias values for variable in Group 3 69

Figure 25 – FP bias distribution among neurons (end of training) 72

Figure 26 – FP bias: feed-forward and back-propagation 72

Figure 27 – Comparisons between different FP formats 73

viii

Figure 28 – Final performance comparisons with the MNIST Dataset 74

Figure 29 – Final performance comparisons with the Breast Cancer Dataset 74

Figure 30 – Final performance comparisons with the Gene Dataset 75

Figure 31 – Final performance comparisons with the Thyroid Dataset 75

Figure 32 – Final performance comparisons with the Soybean Dataset 76

Figure 33 – Performance influence of the Dynamic bias method 77

Figure 34 – Performance influence of the Dynamic bias method 77

Figure 35 – Performance influence of the Dynamic bias method 77

Figure 36 – Performance influence of the Dynamic bias method 78

Figure 37 – All positive values representable in the posit16 format 78

Figure 38 – Internal fields in the generic Posit format with fixed total bits. Source:

(GUSTAFSON; YONEMOTO, 2017), unchanged 79

Figure 39 – Relative increase in training times (compared to the fp32fp32 reference). 82

Figure 40 – Soybean accuracy in ARM Cortex A53. 83

Figure 41 – Zynq subsystem block diagram with two memory blocks. 89

Figure 42 – LUTs and FFs allocated for each memory block added to the bus. Each

separate AXI slave memory block could implement an ANN layer. . . . 89

Figure 43 – Inputs and outputs of the input layer and the first hidden one. 90

Figure 44 – Inputs and outputs of the second hidden layer and the output one. . . 91

Figure 45 – Performance comparisons with the Abalone Dataset 111

Figure 46 – Performance comparisons with the Abalone (18-9 variation) Dataset . . 111

Figure 47 – Performance comparisons with the Breast Cancer Dataset 112

Figure 48 – Performance comparisons with the Car Dataset 112

Figure 49 – Performance comparisons with the Diabetes Dataset 112

Figure 50 – Performance comparisons with the Euthyroid Dataset 113

Figure 51 – Performance comparisons with the German Dataset 113

Figure 52 – Performance comparisons with the Glass Dataset 113

Figure 53 – Performance comparisons with the Heart Dataset 114

Figure 54 – Performance comparisons with the Ionosphere Dataset 114

Figure 55 – Performance comparisons with the Satimage Dataset 114

Figure 56 – Performance comparisons with the Segmentation Dataset 115

Figure 57 – Performance comparisons with the Vehicle Dataset 115

Figure 58 – Performance comparisons with the Vowel Dataset 115

Figure 59 – Performance comparisons with the Yeast Dataset 116

Figure 60 – Performance comparisons with the Yeast (9-1 variation) Dataset 116

ix

List of Tables

Table 1 – Approximation Type . 28

Table 2 – Approximation Method . 29

Table 3 – Characteristics of the benchmark datasets 42

Table 4 – FPGA resource comparison after synthesis using the Vivado HLS 50

Table 5 – High Level Synthesis of Complex Functions 58

Table 6 – Different ranges provided by larger exponent biases 68

Table 7 – Training times (in seconds, with 99% confidence intervals) in the Broad-

com BCM2837 SoC. The mixed precision approach is presented in

fp32fp16, while in the others all variables use the same representa-

tions (FP16 or FP32) . 82

Table 8 – Memory usage reduction (from fp32fp32 to fp32fp16) and dataset sizes 83

Table 9 – Comparison of FPGA resources for the VFloat based FPU with two-

operations (multiplication and addition) the respective approximated

implementations. 86

Table 10 – Comparison of FPGA resouces after implementation 91

Table 11 – Comparison of FPGA resouces after implementation 91

x

List of abbreviations and acronyms

AC Approximate Computing

ALU Arithmetic Logic Unit

ANN Artificial Neural Network

ASIC Application Specific Integrated Circuits

CPU Central Processing Unit

CNN Convolutional Neural Network

DNN Deep Neural Network

DPP Direct Parallel Perceptrons

DSP Digital Signal Processor

ELU Exponential Linear Units

FMA Fused Multiply Add

FMAC Fused Multiply Accumulate

FF Flip-Flop

FP Floating Point

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

GD Gradient Descent

GPU Graphics Processing Unit

HLD High Level Design

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

xi

LDA Linear Discriminant Analysis

LLSE Linear Least Squares Estimation

LNS Logarithmic Number System

LSB Least Significant Bit (or Byte)

LUT Look-Up Table

MAC Multiply and Accumulate

ML Machine Learning

MLP Multi Layer Perceptron

MSB Most Significant Bit (or Byte)

NaN Not a Number

PE Processing Element

RAM Random Access Memory

RBF Radial Basis Function

ReLU Rectified Linear Unit

RLS Recursive Least Squares

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SIMD Single Instruction Multiple Data

SVM Support Vector Machine

TNR True Negative Ratio

TPM Tensor Processing Unit

TPR True Positive Ratio

VLSI Very Large Scale Integration

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

xii

Contents

1 INTRODUCTION . 1

2 HISTORICAL BACKGROUND . 6

2.1 Introduction to Artificial Neural Networks 6

2.2 Digital Hardware Implementations . 9

2.3 Analog and Neuromorphic Implementations 10

3 RELATED WORK . 12

3.1 Neural Networks . 13

3.2 Support Vector Machines . 19

3.3 Generic Approximate Computing . 22

3.4 Comparisons and Limitations of Current Techniques 25

4 ANN IMPLEMENTATIONS . 30

4.1 Floating Point Review . 30

4.1.1 Standard Floating Representation . 30

4.1.2 Standard Floating Point Operations . 32

4.2 Mathematical Operations . 33

4.2.1 Small Values Accumulation . 33

4.2.2 Deep Learning . 35

4.2.3 Activation Functions . 36

4.3 Baseline Tests with standard IEEE FP (64 vs 16 bits) 38

5 SIMPLIFICATIONS AND APPROXIMATIONS 45

5.1 Floating Point Simplifications . 45

5.1.1 Removal of Infinities and NaNs . 45

5.1.2 Restrict Format to Normalized Numbers 46

5.1.3 Preliminary Implementation of FP arithmetic 48

5.2 Math Operations Approximations . 50

5.2.1 Exponentiation and Activation Functions 51

5.2.2 Reciprocal Square Root . 52

5.2.3 Division by Square Root . 56

5.2.4 Preliminary Implementation of Complex Functions 58

5.3 Comparative Tests: Standard IEEE FP16 vs Approximated 58

6 RESILIENT TRAINING OF ANNS 61

6.1 Adaptive Training Mechanisms . 62

xiii

6.1.1 Gradient Descent with Momentum . 62

6.1.2 iRProp- . 63

6.1.3 RMSProp . 65

6.2 Exploring Different FP16 Ranges . 67

6.3 Dynamic FP16 Bias Adjustments . 70

6.4 Experiments with Dynamic FP16 Bias 73

6.5 Experiments with Fixed FP16 Bias 76

6.6 Comparison with Posit (16 bits) . 78

7 PRELIMINARY OPTIMIZED IMPLEMENTATIONS 81

7.1 Exponential Approximation with Hardware IEEE FP16 81

7.2 Implementation of Approximated FP16 Operations in FPGA 84

7.2.1 Preliminary Floating Point Unit . 85

7.2.2 Communication between CPU and FPGA 87

7.2.3 Structure for a multi-layer ANN in FPGA 90

8 CONCLUSIONS AND FUTURE DIRECTIONS 92

8.1 Analysis of the current status . 92

8.2 Future Improvements . 94

8.2.1 Training Methods . 94

8.2.2 Regularization . 95

8.3 FPGA Implementation . 96

8.4 Conclusion and Final Remarks . 97

8.5 Contributions . 98

BIBLIOGRAPHY . 99

APPENDIX 109

APPENDIX A – ADDITIONAL VALIDATION 110

APPENDIX B – COMPARISON WITH POSIT 117

1

1 Introduction

Machine Learning implementations have been closely related to hardware since their

early proposals. Artificial Neural Networks (ANNs), for example, were not only inspired

by biological models but also presented very early in efficient hardware implementation

proposals which later became known as “Neuromorphic Computing” (MEAD, 1990).

Despite the high efficiency shown in these approaches, the hardware limits predicted at that

time have been surpassed and the following years showed an impressive increase in computer

performance. This evolution probably influenced the decrease in the interest by hardware

optimized implementations. In this time period, the ML (Machine Learning) field matured

and not only new methods were proposed, like SVM (Support Vector Machines) (CORTES;

VAPNIK, 1995) and Random Forests (HO, 1995), but the researchers put great effort in

reducing the need of parameterization, which also indirectly helped to optimize hardware

implementations.

After decades of fast performance growth, digital circuits implementations began

to show their limits, and the processing speed increase had to rely on other techniques

than denser ICs (Integrated Circuits) and higher clock rates. The level of miniaturization

and voltage scaling reached a point at which reliability became a real and practical

issue (AGARWAL et al., 2000). Parallelization became more present and beneficial for

many ML methods, however, this approach also has its limits (ESMAEILZADEH et al.,

2011): power dissipation is a concern in many scenarios, not only in the embedded and

energy constrained platforms, but also in large processing clusters or powerful GPUs

(Graphics Processing Unit). The AC (Approximate Computing) paradigm - “deterministic

designs that produce imprecise results” (HAN; ORSHANSKY, 2013) - appeared as a

technique not only to be aware of the reliability problems but to explore them to obtain

efficiency gains (AGRAWAL et al., 2016).

Concerns with unreliable hardware date back to the first computing devices (NEU-

MANN, 1956), and by that time the expression “Stochastic Computing” also became

popular. Conversely, AC does not assume stochastic behavior of the hardware but studies

how quantifiable and controllable simplifications can impact the computation precision,

even if they are analyzed statistically. Applications with redundant and/or noisy inputs or

with no single “correct” output (or one that is not guaranteed to be found) are usually

good candidates for AC. Inherent to ML applications, these characteristics have attracted

the attention of the research community interested in the trade-off between precision and

efficient resource usage provided by AC techniques.

Efficiency is frequently a fundamental concern in computing methods implementa-

Chapter 1. Introduction 2

tions. From embedded platforms, with power, processing speed and storage limitations,

to large scale clusters or tightly coupled massively parallel processing units, optimiza-

tions are often required. These two extremes (WU et al., 2011; REED; DONGARRA,

2015) in hardware architectures are highly relevant to ML: smart sensors, ubiquitous cell

phones, wearables, Internet of Things (IoT), main stream Big Data applications and high

performance computer vision platforms.

Embedded platforms may execute previously trained and static models, which

may be optimized (pruned and compressed) before the final implementations. This is

possible since the inference phase can be very resilient and can work well with noise (due

to its generalization capabilities) and reduced precision. Conversely, the training process

may suffer if executed on these simplified structures. Since the previously mentioned

applications frequently require Incremental Learning (GEPPERTH; HAMMER, 2016),

and the dependency on remote processing and storage is not always possible, there is

an active interest in researching the training process under approximations in order to

provide more efficient implementations.

Training process optimization is also relevant to the other extreme of hardware plat-

forms. If Incremental Learning is not required on the final device, extensive optimizations

for training are frequently neglected since an efficient process in this case is only relevant

during development. Despite this, since Deep Learning (LECUN; BENGIO; HINTON,

2015) increased its popularity, the size of the models also reached unprecedented scales.

Networks with dozens of layers, thousands of nodes and billions of parameters became

common to solve increasingly complex problems, using vast amounts of data. Training

times of days or weeks were needed even when using powerful hardware platforms like a

GPU server cluster (COATES et al., 2013) or a CPU (Central Processing Unit) cluster

with 1000 machines (16000 cores) (LE, 2013). High level Frameworks like “Caffe” (JIA et

al., 2014): also became popular, since they usually hide the high performance back-ends

programming details.

The technological barriers in IC design and the increasing commercial interest in

ML (in both extremes just mentioned) probably played an important role in reviving

the interest on efficient and simplified hardware implementations. Recent announcements

from Qualcomm (Zeroth Processor - 2013), IBM (MEROLLA et al., 2014) (TrueNorth -

2014), NVIDIA (Tesla P100 - 2016), Google (JOUPPI et al., 2017) (Tensor Processing

Unit - 2016), Apple (Neural Engine - 2017) and also from Intel (Nervana and Movidius

- 2017) confirm the importance of commercial implementations of such solutions. This

scenario of efforts to improve efficiency of ML applications using approximated techniques

or optimized hardware architectures, implemented in several levels, is the main driver of

the work presented here.

Alternative binary value representation formats, like fixed point and LNS (Loga-

Chapter 1. Introduction 3

rithmic Number System), are being currently explored by the ML research community. A

considerable part of the work consists in evaluating the effect of reduced bit-width on the

performance with benchmark datasets or specific applications. These efforts are justifiable

considering that simpler hardware to perform arithmetic operations allows more efficient

specialized implementations. Bit-width is also highly relevant, since it has direct impact on

data movement and storage. It should be noted that non-standard formats or bit-widths

may represent difficulties when these customized systems are interfaced with standard

ones. Additionally, compressing the representations to find the minimal requirements

for a maximum acceptable degradation in specific datasets is a different paradigm when

compared to the current confidence in the standard floating points reliability for any

problems. Even in these cases, some simple measures are required to avoid numerical

issues.

The vast majority of ANN research and application is performed at a high ab-

straction level, using the corresponding programming languages and software libraries.

Single and double precision IEEE (Institute of Electrical and Electronics Engineers) FPs

(Floating Points) are reliable enough so that researchers are able to focus on algorithmic

issues, with rare and simple concerns for numerical problems. Conversely, half precision

FPs require more attention and mixed precision training is becoming the norm for resource

efficient and optimized implementations.

The main objective of this research is to develop a mechanism which unifies the

numerical representation used in ANN training implementations in a more efficient format.

The two main motivations of this approach are that it allows the solution to provide a

single and simpler type of arithmetic unit, which results in even more efficient solutions,

and results in lower memory usage when compared to the mixed precision approach.

Additionally to the representation, this thesis also investigates further simplifications to the

FP arithmetic, adapts and proposes higher level mathematical operations approximations

and finally an automatic precision adjustment during the training process which allows the

use of the method without extra care due to the lower precision. The goal is to perform

the training with the same methods, the same network structures and hyper-parameters

used in precise baselines. The approach is not to find the lowest acceptable precision,

which varies for each specific application and training algorithm, but to define an efficient

approximate implementation which can be used as reliably as the reference ones.

The work detailed in the following chapters explores modifications to the standard

half precision FP that simplify its implementation in software (when using low-end

embedded processors, without an FPU - Floating Point Unit) and in hardware (with fixed

implementations or in FPGAs - Field Programmable Gate Arrays). This is achieved with

only minor and optional modifications to the standard binary representation. The standard

format is already being supported by some hardware platforms (e.g. NVIDIA and ARM)

Chapter 1. Introduction 4

and compilers (e.g. GCC) and some of the presented results also apply to the standard

IEEE FP format. Approximate implementations of more complex mathematical functions

are also adapted to the 16 bits FP format, as simple replacements for LUT (Look-Up

Table) based activation function implementations. An automatic precision adjustment

mechanism was crucial to avoid using custom training algorithms. Another important note

is that the network configurations (number of layers, nodes and connections) used are

the same minimal ones employed in other references. It is not uncommon to see larger

networks in articles analyzing low precision training, which partially defeats the purpose

of the simplifications.

The main contributions of this thesis are distributed in the following manner:

Chapter 3 Contributes a critical view on the recent AC research applied to ML, showing

that the most aggressive approximations are focused on a small number of simi-

lar problems based on large datasets. Generic, automatic and fully approximated

proposals are rarer in the literature.

Chapter 4 Details the modifications implemented in an ANN training library to transform

it in a simulated and easily modifiable environment to investigate operations with

approximated representations. The same library can be compiled with efficient native

numeric types or with emulated modules which provide the basic operations.

Chapter 5 Contributes adaptations of mathematical functions approximations to a

limited FP format and a new approximation which merges a division operation with

a square root calculation. These approximations behave like stepwise simplifications

with implicit interpolation and require considerable less resources than their precise

counterparts.

Chapter 6 Achieves resilient training of ANNs using a standard adaptive algorithm by

contributing a fully automatic and resource efficient range adjustment mechanism,

applied to the back-propagation operations. Equivalent classification performance is

achieved by quickly reacting to overflows but gradually shifting the representation

range to fit smaller numbers.

Chapter 7 Presents two implementations for viability analyses of the proposed methods.

The first one uses a general purpose processor and one of the function approximations.

The other provides a preliminarily comparison of FPGA operations to a reference from

the literature with relevant gains when compared to the mixed-precision approaches.

The scalability of a multi-layer structure with several FPUs, including the bus

communication, is also analyzed.

Regarding the remaining content, Chapter 2 surveys the related research with a short

historical background on ANNs and their early optimized implementations, which preceded

Chapter 1. Introduction 5

a period of diminished research interest in ANNs and their hardware implementations. Final

remarks are outlined in Chapter 8, which reviews the main achievements and challenges of

the current work and analyzes some improvement possibilities and next steps regarding

the complete hardware implementation.

As appropriate and expected, this text gave preference to non-personal language,

which may be sometimes not clear regarding the source of the information. Great effort

was put in making the uses of expressions like “this work”, “this thesis”, “this research”,

“the experiments” and “the proposed method” to clearly refer to actions performed or

decisions taken by the author, which takes full and sole responsibility for them. Wherever

similar constructions refer to other research, persons or actions, explicit references are

made in order to avoid the confusion which normally arises in these situations. Conversely,

the use of the plural in the first person was employed only where the reader is invited to

join a reasoning process or in clearly marked quotes.

6

2 Historical Background

In order to exemplify how efficient implementations of ANNs have been long related

to hardware, the following sections briefly review the fundamental concepts and some

historical research on the topic. A short introduction to the common aspects of this ML

technique is presented in the first section, without detailing the several architectural

differences and training methods. Some examples of early hardware implementations are

divided into digital and neuromorphic approaches in the two subsequent sections. Back

in (TRELEAVEN; PACHECO; VELLASCO, 1989) this division was still unclear, since

digital implementations appeared more promising for practical purposes. Despite that, it

did not take a long time for an increase in the popularity of the neuromorphic designs.

These two sections briefly cover the period which preceded a decrease in the interest for

optimized ANN hardware implementations.

2.1 Introduction to Artificial Neural Networks

The biological inspiration for ANNs (ROSENBLATT, 1958; MCCULLOCH; PITTS,

1943) points to the first direction in which AC could improve the efficiency of these networks.

The basic artificial neuron model consists of several inputs, each one applying a certain

weight to its respective input signal, contributing to the activation of the neuron’s output

according to a specific function. This is clearly an intrinsically analog model and several

examples in Chapter 3 will show its resilience to approximations. Figure 1 depicts a simple

two layer ANN with two neurons (N11 and N12) connected to the inputs and one (N21)

providing the output. Each arrow pointing to a neuron represents a connection which

multiplies an input signal by a specific weight. In multi-layer topologies, the neuron outputs

of the previous layer(s) usually become the inputs of the next one.

At each layer, the output ok of the neuron k with m inputs is obtained according

to the Equation 2.1, in which xj represents the input signal j and wkj its respective weight.

A bias term (bk), independent from the input signals, is included to shift the argument of

the activation function ϕ. In practice, the bias is normally implemented as a weight which

is always connected to a fixed value (e.g. 1). The complete system (with all neurons, layers

and connections) represents a model which intends to correctly infer, within an acceptable

error margin, one or more outputs for inputs which were not previously known.

ok = ϕ



bk +
m
∑

j=1

wkjxj



 (2.1)

Chapter 2. Historical Background 9

versions of these equations may harm the optimization process (e.g. causing instabilities).

Finally, as the training process evolves, the error magnitudes and the respective parameter

adjustments tend to have very low values. This fact may cause the learning process to

stop prematurely if these small adjustments are not considered with enough precision.

This work will assume familiarity with multilayer ANN topologies and their main

training methods. For further information, the reader is referred to (HAYKIN, 1998)

(Chapters 1 to 4) for a comprehensive explanation of ANNs architectures and training

methods. An excellent historical overview of ANNs from the first implementations to the

current state-of-the-art approaches is provided by (SCHMIDHUBER, 2015).

2.2 Digital Hardware Implementations

Due to their simplicity and good performance on certain applications (e.g. change

detection), Weightless Neural Networks are still actively used and researched, despite

their introduction more than half a century ago, in (BLEDSOE; BROWNING, 1959)

and later in (ALEKSANDER, 1966). Instead of the common weighted-sum approach,

the nodes use a LUT based technique, normally realized with regular Random Access

Memory (RAM). WISARD (ALEKSANDER; THOMAS; BOWDEN, 1984), one of the first

practical examples, is completely implemented with standard digital hardware components.

The training consists of simply storing “ones” on memory positions directly accessed by

black-and-white image pixels, which are randomly connected to the address lines of several

nodes. In the inference phase, the amount of nodes recovering the bit “one” from the

memory gives an indication of the confidence in the image similarity. Despite its simple

implementation, this method may achieve a high resilience to noise, specially if noiseless

training is possible. Although not relevant in the short term, quantum computing may

also boost the research interest in this type of ANN.

The ANN size, the way the nodes are connected and the definition of the activation

functions are structural decisions that inform the design of such ML systems. These

and other parameters vary considerably according to the application. Consequently, any

problem-independent hardware implementation proposal needs to be given such flexibility.

FPGAs have this capability and modern devices have enough resources to implement

complete systems for several applications. The intrinsic parallelism of ANNs is also an

incentive for efficient FPGAs implementations. One of the earliest attempts (BOTROS;

ABDUL-AZIZ, 1994) presented a solution which required two FPGAs and an external

memory to implement a single node. In this case the training phase was implemented

entirely in software, but more recent examples (ÇAVUŞLU et al., 2011) provide an almost

complete hardware solution. Even years before this implementation, the book (ZHU;

SUTTON, 2003) surveyed successful examples corroborating the increase in FPGAs

Chapter 2. Historical Background 10

complexity as a crucial requirement to successful ANN implementations. The recent

trend towards general purpose CPUs integrated with FPGAs may also provide interesting

opportunities for hybrid solutions that explore FPGA parallelism and CPU flexibility.

Even in a period when the available integration technologies did not provide

enough capability to implement complex digital ANNs, several solutions were proposed.

The survey (DIAS; ANTUNES; MOTA, 2004) analyzed recent hardware implementations

with emphasis on the commercially available solutions, including some from large companies

(e.g. Philips, Hitachi, Siemens and IBM). Approximately half the components presented

in the paper were considered optimized multiprocessor chips and the vast majority could

implement no more than 64 nodes. While some of the examples could not even hold the

connections internally, two of them could work with 262,144 weights. Precision was also

not high, since most of the products worked with 16 bits or less.

Both FPGA and fixed ASIC implementations of ANNs can be made denser if

arithmetic units and data paths are simplified. In order to evaluate the impacts of such

hardware optimizations, the study (SAVICH; MOUSSA; AREIBI, 2007) compared the

performance of MLPs trained with back-propagation in several fixed and floating point

number formats. The presented trade-off results between accuracy and resources apply only

to FPGAs, since they provide internal DSP modules. Conversely, the impact of numeric

precision on accuracy could be applied to any other similar form of implementation. In

addition to the different representation formats, LUT based activation functions were also

tested. The classic exclusive OR (XOR) problem was employed as benchmark using the

standard configuration of two nodes in the hidden layer and one in the output. From the

15 fixed point formats and 10 floating point ones, from 16 to 22 bits, a fixed point with

4 integer and 13 fractional bits was considered as the optimal configuration. Using this

format as reference the authors also analyzed how resource usage grows for more complex

two layer networks. The amount of slices used varied fairly linearly with the number of

weights.

2.3 Analog and Neuromorphic Implementations

A more direct analog modeling of the neuron behavior is an orthogonal approach for

hardware ANN implementations. In (HOLLER et al., 1989), Intel presented an integrated

component that offered 64 fully interconnected neurons to 64 fully connected inputs. The

connections were implemented with a non-volatile and electrically modifiable memory

which provided analog storage of the weights using a “Floating Gate” technology, previously

proposed. Inputs and outputs were also analog, differential and with compatible levels,

allowing multi-layer implementations using interconnected components. The product of

inputs by their respective weights, the summation and the sigmoid activation function

Chapter 2. Historical Background 11

were implemented in analog circuits as well. The learning process, however, was performed

off-chip. The original article was very detailed but did not evaluate a final application.

A few years latter, the effects of radiation exposure (CASTRO; SWEET, 1993) and

component variations (CASTRO; TAM; HOLLER, 1993) were evaluated, with satisfactory

results. The survey mentioned in Section 2.2 also considered the chip as the only viable

analog one available at the time, comparable only with another more specialized and

neuromorphic proposal.

The paper (VALLE, 2002) mentions three motivations for analog VLSI (Very Large

Scale Integration) implementation of ANNs: analog processing is one of the reasons behind

biological NNs computational power; the physics of the silicon devices can efficiently

implement computation of analog signals; units very similar to biological neurons can be

realized. The authors provide an extensive analysis of practical aspects of this type of

implementations, focusing on the critical issues related to the supervised learning process.

It is argued that weight perturbation is a more promising strategy than back-propagation

for analog circuits and four parallel methods are presented. The work proceeds with a

detailed analysis of related research leading to a conclusion that defends the feasibility

and good performance of such solutions for small scale networks.

12

3 Related Work

After a relatively long period of diminished interest in ANNs and their hard-

ware implementations, the research in this area regained momentum. The increase in

ANN achievements was in part related to higher availability of training data and some

breakthroughs (HINTON; SALAKHUTDINOV, 2006) in Deep Learning training, which

demands great computing power. This higher demand kept pushing the digital hardware

performance limits, which was also facing growth rate limitations and exploring new

optimized techniques. The current chapter separates this recent phase from the historic

proposals and presents a review which covers some of the most relevant contributions

related to digital hardware implementations. The survey provided by this chapter tries to

fill an apparent gap in the literature reviewing the recent trend of applying AC techniques

to ML, with this form of organization and classification.

The following sections group the surveyed research initially by the two most popular

ML techniques, which share many characteristics and explore the AC methodology. The

third group of publications analyses approaches that are more generic (apply to more than

one ML method) or are related to the mathematical methods that are commonly used in

the ML field. The final section summarizes the gaps found in current research that justify

the relevance of the contributions presented in the following chapters.

In order to better understand the following review and its scope, some categorization

should be provided. As previously mentioned, AC explicitly excludes a related field,

Stochastic Computing, which analyzes the effect of non-deterministic hardware behavior.

Algorithmic optimizations in ML methods are also excluded if they do not use some type

of approximation (e.g. trading of mathematical functions precision for efficiency). It should

be also noted that the feature selection or extraction processes, which considerably simplify

the input space, are separate research fields and are not considered as approximations

in the context presented here. Also excluded from this collection of studies are the

mere customizations of specific methods to certain platforms, like DSPs (Digital Signal

Processors) or FPGAs without implying some explicit form of approximation.

Two of the most important aspects of AC are identifying which parts of the methods

or data are good candidates for approximation and determining the compromise between

the level of simplifications and quality. If this analysis is performed at design time and all

approximations are defined in a fixed manner, this can be considered a static approach.

Conversely, if either the promising method parts or the simplification levels are determined

or adjusted at runtime, a dynamic approach is used. Specifically in ML, it is common

to find small parts of the method, like kernels, which represent a large fraction of the

Chapter 3. Related Work 13

processing time, being good candidates for further analysis regarding the approximation

consequences.

Optimizing a part of the method which is not heavily used or selecting an approxi-

mation level which compromises the output quality beyond a certain tolerable amount

should be avoided. There are several examples in the literature that show methods (not

specific to ML) to statically analyze a generic code or algorithm and obtain these opti-

mization parameters. If this process is performed without the designer intervention, it is

considered an automatic approach. This is the opposite of a guided optimization, which

demands knowledge from the designer to decide where and how to approximate operations

and data, but also obviously provides more control of the process.

Several options are present in the literature, not only related to ML, to implement

the computing approximations. One of the most common approaches is the data repre-

sentation, which includes not only less precise floating or fixed point formats but also

different numerical techniques like pure integer operations or logarithmic number systems.

Another option is memory reduction by approximation, which may not significantly

affect execution time but may considerably reduce resource usage and data communication.

Elementary mathematical operations or more complex functions may also be the

objects of approximations trading result exactness for processing time gains. It is also

worth mentioning that simplified algorithms may also obtain advantages by approxi-

mation, when early termination, skipped steps or simpler models, for example, are used to

anticipate part of the results with less quality.

3.1 Neural Networks

Parallel Perceptrons (PPs) are a very resource efficient neural networks realization,

with simple threshold activations and binary outputs. As in SVMs, the classification margin

is maximized and the original training method is based on an iterative optimization scheme.

“Direct Parallel Perceptrons” (DPPs) are proposed with a new algorithm in (FERNANDEZ-

DELGADO et al., 2011) which analytically calculates the network weights, without

any iterative search or parameter-based optimization process, and with computational

complexity varying linearly with the input dimensions. This is possible due to a linear

approximation of the error function. Online training is also very efficient because the

method is incremental and does not have to be repeated for the entire dataset, as in

SVMs. The proposal is compared to Adaboost and Bagging of MLP networks, to the

original PPs, LDA and also two SVM implementations, all applied to several benchmark

problems. For datasets with two classes, the average accuracy of DPPs is 2.8% lower than

the best reference method but higher than 6 out of 9 competitors. Considering C/C++

implementations of 3 reference methods, DPPs are more than 400 times faster than the

Chapter 3. Related Work 14

fastest one.

The work presented in (COURBARIAUX; BENGIO; DAVID, 2014) evaluates three

benchmark datasets with deep neural networks (specifically Maxout networks) using three

different number representations: floating point, fixed point and dynamic fixed point. The

authors focus on the multiplication operations, implementing the accumulators with single

precision (32 bits) floating point. This approach results from an analysis showing that

accumulator precision has low impact on FPGA implementation costs. Simple fixed point

is considered harmful because activations, parameters and gradients have very different

ranges. Gradients are specially critical, since they slowly diminish this range during training.

With a simple dynamic adaption of fixed point to different ranges, the authors find no

statistically relevant accuracy reduction with a precision down to 10 bits. This reduced

precision is used not only for running the networks but also for the training process.

The authors of (ZHANG et al., 2015b) aim at achieving considerable energy

savings in artificial neural networks by applying approximation in data representation,

computation and memory accesses. The framework analyzes the impact that neurons (with

any topologies) have on the output quality, sorts them according to a score, and specifically

adjusts the approximations. Memory Access Skipping is implemented by simply avoiding

certain non-critical neurons (by not reading their respective weights). Precision Scaling is

obtained by reducing the data representation to 4 bits or by using an adjustable bit-width

approximate multiplier (down to 18 bits). An iterative optimization heuristics to select

candidate neurons and update their approximation is presented. The experimental results

are obtained by simulation of the real hardware in 45nm implementation and show energy

benefits from 34% to 51% with less than 5% of quality loss.

Another confirmation of the resilience of ANNs to less precise data representation

is shown in (GUPTA et al., 2015), in which the authors implement deep networks with 16

bits fixed-point number representations and stochastic rounding. This topology provides

similar results to 32 bits floating-point reference implementations in terms of classification

accuracy. It is argued that the use of stochastic rounding reduced by half the number of bits

required for fixed point training, compared to the latest known work of approximate data

representation in deep networks. During the analysis of common benchmark datasets, it is

mentioned that a mixed-precision approach, with higher precision fixed-point operations at

the end of the training process, is also a promising strategy. Furthermore, a proof of concept

FPGA implementation is also presented. This optimized version achieves 37 Gops/s/W

indicating a considerable improvement over CPU and GPU implementations (in the range

of 1− 5 Gops/s/W).

The paper (LIN; TALATHI, 2016) cites three recent works which have shown that

stochastic rounding is a good strategy to improve stability of the training process in deep

neural networks under limited numeric precision. The main contribution of this work

Chapter 3. Related Work 15

is a theoretical insight into the root cause of such stability problems. Complementary

techniques to stochastic rounding are also presented. Starting from a “perfect” activation

function, the authors show how the effective operation (which is not differentiable) intro-

duces quantization errors. Such errors affect the gradient computation especially in the

case of deep networks, because each level propagates the previous errors and introduces

others. Three proposals are presented to the problem: low precision weights and full

precision activations during training, fine-tunning only the top layers since gradient errors

build up and a bottom-to-top iterative fine-tuning scheme which applies approximations

progressively. Results show quality improvement by the three proposals, with similar

results (less than 0.5% difference) among them and to the reference floating point. The

best performance was achieved with 8 bits weights and 16 bits activations, which, if reduced

to 8 bits, cause only a 2% drop in accuracy.

The work (KIM; SMARAGDIS, 2016) presents a neural network architecture that

implements weight parameters, bias terms, input, and intermediate hidden layer output

signals as binary values. These conditions apply only to the feed-forward phase (which

involves just XNOR operations and bit counting), since the training process evolves from

real-valued operations to the convergence to the final binary results. A weight compression

technique is described as the first step of the training process (which has to handle

real-valued inputs) and the final step involves the BNN with a “Noisy Backpropagation”

implementation. The normal sigmoid activation function is also replaced by a simple sign

operation. The method is compared with a 64 bits floating point equivalent ANN, with

negligible accuracy loss for a hand-written digit recognition database. Resource savings

are not analyzed in this publication.

The technical report (HINTON et al., 2012) is cited as the basis or inspiration

for several ANN based approximated implementations - like (WAN et al., 2013) and

(SRIVASTAVA et al., 2014) - and binary networks (with 1 bit precision weights) as

presented in (COURBARIAUX; BENGIO; DAVID, 2015) and (GOODFELLOW et al.,

2013). The main idea is not related to AC by the authors, and presented as an effective

method to trim the complexity of the ANN during training to avoid over-fitting. Despite

this, when compared to other proposals in this review, the method devised by Hinton

et al. can be considered as an approximation, since randomly selected (or less relevant)

connections are dropped and disregarded from calculations during training. Obviously this

would not have an efficiency impact (at least in implemented circuits) on hardware based

topologies, but still serves as another confirmation of the resilience of these algorithms.

Since the removal of nodes reduces the learning capacity of an ANN, it can be used

to implement more complex network topologies that dynamically adapt to problems

that are easier to solve. This technique may provide implicit regularization, as proposed

in (ANGUITA; BONI; RIDELLA, 2003b).

Chapter 3. Related Work 16

The analysis presented in (HASHEMI et al., 2016) is based on a broad range

of numerical representations applied to ANNs in both inputs and network parameters:

floating point (as reference), fixed point (4 different bit widths), powers of two (replacing

multiplications by bit shifts) and binary weight nets. The analysis is based on several

benchmark datasets and evaluates the compromise between accuracy and hardware im-

plementation metrics, with techniques that use some of the saved resources to increase

the ANN size and improve performance. Results show a wide range of approximation

parameters with negligible degradation in performance, but binary nets achieved the best

results: the highest energy savings (94%) with the best accuracy (higher than the floating

point reference). Conversely, powers of two and 8 bits fixed point implementations were

more consistent among different datasets.

A method which dynamically prunes redundant connections from a trained ANN

is presented in (HAN et al., 2015). Since external memory accesses are shown to be the

most relevant operations when energy consumption is considered, reducing the number

of network weights is an important optimization. The reason the authors consider the

proposal as a dynamic one is that the three phases (training, pruning and fine tunning)

can be repeated iteratively. The results for two datasets achieve 9× and 13× compression

ratio, without loss of accuracy. A comparison with 6 other pruning methods is provided

and the effects of regularization parameters are also analyzed. Further developments, which

include weight sharing and Huffman coding, are proposed in (HAN; MAO; DALLY, 2015).

With these improvements, the compression ratios reach 35× in one dataset and 49× on

another.

The Flexpoint format is proposed in (KÖSTER et al., 2017). The precision is

a compromise between fixed point and floating point formats, since the exponent is

shared among all values within the same tensor. This simplification achieves both memory

requirements reduction (which also affects the communication traffic) and computations

complexity savings. Other interesting improvement is the automatic statistical analysis

of the mantissas, which tries to anticipate overflows and adjust the tensor exponents.

The authors compare the approach to single precision floating point references using

three popular deep learning computer vision benchmark datasets with convolutional and

generative adversarial networks. The results show equivalent accuracy performance when

compared to single precision floating point implementations and superior to half precision

floating point in some cases.

In (LI et al., 2017) the authors reinforce the tendency verified in this survey:

“results in this area are largely experimental”. Initially the authors analyze and compare

the convergence of BinaryConnect (BC) and Stochastic Rounding (SR) for convex problems.

Both methods are covered in this work. Despite the fact that the measures of convergence

presented are not directly comparable, in conditions normally found in the final optimization

Chapter 3. Related Work 17

stages for ANNs, BC would perform better than SR. The comparison is then extended

without the convexity assumptions, analyzing SR as a Markov Chain. This method is found

to have a limitation: at the end of the learning process, as the weights adjustments diminish,

it becomes less likely to perform finer minimizations to the loss function. Considering

this characteristic, increasing the batch size would improve the performance of SR. The

experimental section compares the approximations methods using Adam as the baseline

optimizer with popular computer vision benchmarks. The results support the claims of

the presented theoretical study.

Support for standard half-precision floating point format (with 16 bits) is becoming

easily available in GPUs, ASICs and general use CPUs. Three techniques to use this

format with deep neural networks are proposed in (MICIKEVICIUS et al., 2018), without

modifications to hyper-parameters and with equivalent accuracy to precise formats. The

first one does not provide the full memory usage benefits of the lower precision since

it uses single precision (with 32 bits) format to store a “master copy” of weights. The

second technique scales the loss function to avoid loosing the small but significant weight

adjustments. Finally, a mixed precision dot-product arithmetic is presented with half-

precision arguments and single-precision results. With the three techniques enabled, the

authors trained 13 models which matched the baseline accuracy in most cases and even

presented slightly improved results in some of them. This effect is also found in other

methods and is commonly associated to regularizing effects of lower precision.

Another mixed precision training setup is described in (DAS et al., 2018). Like

in the Flexpoint approach, an exponent is shared between values in the same tensor.

Conversely, unlike many related methods, the authors present a solution which is simpler

to implement in general purpose hardware, using integer operations, instead of relying on

specialized hardware. The main part of the optimization are the FMA (Fused Multiply

and Accumulate) operations with 16 bits integer arguments and 32 bits integer output.

The practice of storing precise representation of weights for training calculations is also

used. For this reason, the conversion of integer accumulations to floating point must be

performed. Results show equivalent or slightly better accuracies and almost 50% savings

in computation when compared to a reference single precision floating point baseline.

Mixed precision is also the recommended technique in (DRUMOND et al., 2018).

The authors propose a hybrid Block Floating Point (BFP), sharing the exponent among

all values in the same tensor, and applying the format to all dot product operations. All

the remaining operations are performed with regular floating points. Stochastic rounding

is used for mantissa truncation, with the advantages already mentioned in this Section.

Besides three image classification datasets, frequently used to test AC techniques, the

article also reports equivalent performance for language modeling tasks. A proof-of-concept

implemented in FPGA achieves a throughput improvement of 8.5 times, when compared

Chapter 3. Related Work 18

to FP16 multiply-and-add units implemented in the same FPGA.

A deep ANN architecture, implemented only with integer operations for inference

and training is proposed in (WU et al., 2018). The authors criticize the fact that even in

very strongly approximated ANN implementations, most SGD based methods accumulate

the weight gradients with higher precision. This overhead is even worse in adaptive methods,

which store at least one extra parameter for each weight. Addressing these issues, the

main features may be summarized as: an efficient quantization function with stochastic

rounding and a modified weight initialization to avoid zeroed initial values. Details of

how the quantization is applied to weights, activations, errors and gradients are also

provided. No adaptive terms (like the ones present in Adam, RMSProp or Momentum

based SGD) are included, no batch normalization is used in the optimization process and

no explicit regularization is included in most cases. Softmax is also avoided in models with

fewer outputs. Four classic computer vision benchmark datasets are used o evaluate the

techniques and compare them to eight other methods with approximations. The authors

also conduct experiments testing different quantization parameters, increasing the back-

propagation precision. With the strongest approximation (maximum of 8 bits) the method

achieved state of the art performance in two datasets, and similar accuracy in a third one.

The fourth problem resulted in considerably worse results with this approximation level.

Even historic architectures, like WISARD (ALEKSANDER; THOMAS; BOWDEN,

1984), mentioned in Section 2.2, are still being revisited. In 2019, the 27th European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Machine Learning

featured a special section on Weightless Neural Networks (WNN). These networks are

so simple that the only arithmetic required is the comparison between unsigned integers.

The generalization does not come from small changes in input values, but from random

binary connections (the “weight” is either 1 or 0). One of the presented approaches in the

mentioned conference was evolved and published in the paper (TORRES et al., 2020).

The authors merge a simplified edge detection mechanism (based on pre-defined patterns)

to deforestation detection WNNs (which also act as binarization circuits for several bits

in parallel). Since training is not required on the target application, the framework au-

tomatically generates VHDL code for trained WNNs, connected to the edge detector,

and also synthesize them unattended, allowing the complexity of the resulting FPGA

implementation to be part of the optimization process. Very simple logic is achievable for

each block of 3× 3 pixels, due to the sparsity of the trained networks and the optimization

capabilities of the synthesis tool.

Chapter 3. Related Work 20

with a different base (2 instead of e) and L1 norm. The proposal is based on a 1965

iterative algorithm and a thorough comparison is performed between different precision

implementations regarding the error rate. When comparing the optimized kernel with the

Gaussian, the authors find that the error rate in the approximated version is statistically

equivalent in 11 out of 13 datasets. Final results show that the approach is similar in terms

of error rate to the Gaussian kernel (implemented with 64 bits floating point operations).

Regarding the fixed-point bit width, the accuracy starts to deteriorate between 12 and 8

bits, depending on the dataset.

The novel SVM architecture proposed in (AYINALA; PARHI, 2013) uses two

approximation techniques to achieve a more efficient implementation: multiply-add opera-

tions with fixed width and exponential function based on a size-optimized Look-Up Table

(LUT). Considering linear, polynomial and RBF (Radial Basis Function) kernels, the

authors note that the core computation modules are dot-product, L2-norm and exponent.

The first two benefit from approximations in a multiply-accumulate operation (proposed

in (CHO et al., 2004)) and the trade-off between bit width (12 and 16) and accuracy

is shown. The RBF implementation is optimized by a proposed LUT-based exponent

function with different quantization step sizes. Final results are presented by comparing

not only the bit lengths but also the use of both techniques combined or separated. With

the optimizations combined and choosing 16 bit words, the authors claim 31% energy

savings without affecting SVM accuracy.

It had been shown in (ARNOLD et al., 1997) that Logarithmic Number Systems

(LNS) provide an efficient way of implementing back-propagation training in neural

networks. The same system is applied to SVMs in (KHAN; ARNOLD; POTTENGER,

2005), in which the authors propose a hardware implementation using a linear kernel.

A software simulation of the LNS is also provided for comparison and no statistically

significant difference in the accuracy is found between this version and the hardware one.

The difficulty due to the lack of representation of the “zero” value in LNS is mentioned

but, when compared to a reference implementation, the proposed system achieves the

following classification performance: in one dataset the accuracy is improved from 74% to

83.6% and in the three others it dropped between 1% and 4%. The authors compare the

complexity of the FPGA implementations (in some cases reduced by half) as an indication

of the energy efficiency improvement.

The use of LNS is also analyzed in (KHAN; ARNOLD; POTTENGER, 2004).

The authors use some benchmark datasets to compare a reference SVM double floating

point implementation with several LNS implementations with different bit precisions. The

results show that, for the datasets considered, a general purpose SVM needs only 7 or 8

bits with LNS to achieve results within 1% of the reference implementation.

In (ESMAEELI; GHOLAMPOUR, 2012) the authors propose a more memory

Chapter 3. Related Work 21

efficient use of LNS for SVM classifiers. The improvement consists in using LNS for

multiplication but fixed point for addition and subtraction. These two operations are more

complex if implemented logarithmically, usually demanding look-up tables. A comparison

is performed to show the high memory demands by these LUTs to achieve good accuracy.

An optimized system is proposed to convert LNS to fixed point, using a reduced LUT and

a shifter. The authors show that to achieve the same good accuracy in SVM, the memory

demand is reduced to a small fraction (≈ 1/200) of the traditional LNS implementation.

Recent reports in the literature that achieve comparable results between heavy

quantizations in both data and hyperparameters and reference floating point implemen-

tations of learning systems are analyzed in (SAKR et al., 2016), and later summarized

in (SAKR et al., 2017). One of the criticisms about these works is that most of them are

empirical studies, which leads to the main contribution of the paper: the derivation of

analytical lower bounds on the precision requirements for stochastic gradient descent on

SVMs. Most of the previous methods compare the different precisions with an “acceptable

precision” reference but the proposed method bases its estimation on the converged weight

vector of the reference algorithm. Results support the success of the approach and indicate

considerable energy savings when assigning the numerical precision at the lower theoret-

ical bounds. This is a clear advantage over previous methods which just show different

compromise points among selected precision values.

The application presented in (WU et al., 2016) shows that an approximated SVM

implementation for remote sensing and hyperspectral image classification, achieves 70%

of power savings in the kernel operation in one dataset and 75% in other, both with

comparable classification accuracy (approx. 1% drop on average for all classes). These final

results are based on real data and compared to a precise ripple carry adder implementation

on both classification accuracy and power consumption. In order to analyze resilience

to input error, noise is injected in the original hyperspectral image. This evaluation is

performed as follows: up to 45 LSBs (Least Significant Bits) random error can be inserted

in 100% of data represented with 64 bits floating point per pixel, with no impact on

classification accuracy. Algorithm resilience is also analyzed with a similar procedure and

results show that the kernel accumulation computation module is a promising target for

optimization. A detailed description of a hardware implementation of an approximate

accumulator used in the kernel computation is presented.

A training dataset approximation for SVMs is proposed in (NANDAN; KHAR-

GONEKAR; TALATHI, 2014). The authors present a method to select a representative

subset of the training examples to alleviate the problem of quadratic time complexity

growth with the training dataset size. The authors provide an extensive theoretical basis

to support the solution. Such analysis is not frequently found in similar research, as seen

in this survey. For the experiments, nine datasets were chosen to explore variations in the

Chapter 3. Related Work 22

amount of samples, feature complexity and density. In five of the datasets the algorithm

provided considerable reduction of the training set, consequently also the training time, in

some cases as high as 99.5%. For the other four datasets the reduction varied from 27.8%

to no reduction in one case. In the first dataset group the proposed method obtained

equivalent accuracy performance in three cases and considerably better in two, when

compared to standard SVM implementations. Accuracy performance was found to be

equivalent in the second dataset group, with high-dimensional problems, and training time

was not much faster, as expected from the smaller dataset simplifications.

3.3 Generic Approximate Computing

This review does not provide a full coverage of AC methods and only focus on

their ML applications. Many of the papers presented in this section either study a very

specific operation that is commonly used in learning algorithms (without analyzing the

full application) or apply a generic AC technique to more than one ML method.

The approach detailed in (VENKATARAMANI et al., 2015) explores the idea

that most of the input data from real systems can be correctly classified with minimal

computational effort. This means that only “hard to classify” examples should use the

full computational effort of the classifier in systems aiming for energy efficiency. Although

frequently resorting to SVM in their explanations, the authors claim that their methodology

can be successfully applied to any classification algorithm. The cascaded classifiers output

not only the classification result but also a confidence level. Based on this value, more

complex classifiers are invoked if needed. The method is tested in three ML algorithms

(SVM, ANN and Decision Trees) using several benchmark datasets. The scalable effort

classifiers were designed to achieve the same final classification accuracy as the single-stage

baseline. The average improvement in operations/input varied from 1.2 times to 9.8 times.

The results are presented as average since they depend on the test set. In one extreme

case, for example, 90% of the inputs are evaluated at a cost of just 0.2% of the baseline.

Although focused on the analysis of an imprecise multipliers based on imprecise

adders, which are not focused on this review, the static error estimation technique presented

in (HUANG; LACH; ROBINS, 2012) may me used as inspiration for other types of

approximation approaches. Instead of expensive Monte Carlo simulations, which require

the actual computation to be performed, the authors propose a static analysis which is

based on probability mass functions representing the statistical distributions of errors. The

method is an improvement of the classical interval arithmetic, which is limited to uniform

distributions of errors for each variable and does not consider imprecise operations. The

analysis shows very similar results to the ones obtained from simulations.

A Recursive Least Squares (RLS) algorithm implemented in fixed-point is presented

Chapter 3. Related Work 23

in (BOSMAN et al., 2013) as an efficient replacement for Linear Least Squares Estimation

(LLSE), which is used to estimate model parameters in a closed form (without iteration).

The main advantage of the recursive method is that it does not have the to keep all

the input data for calculation. The performance is analyzed regarding standard data

anomalies: spikes, constant values, noise, drift (slow change in offset) and shift (sudden

change in offset). The proposed method is compared to a reference RLS in floating point,

a traditional LLSE and a windowed version of this method. In the best approach, the

anomaly detection itself is performed by comparing the RLS absolute estimation error

with an adaptive threshold. The windowed LLSE also has fixed memory requirements, but

the RLS is less prone to over-fitting and theoretically requires less processing. There are

too many aspects in the final results (anomaly types versus algorithms) to be summarized

here, but RLS is found to be a promising solution for embedded and resource constrained

devices.

The paper (CHIPPA et al., 2013a) is not restricted to ML and intends to show

the high degree of resilience intrinsically present in many applications. The authors

argue that the analysis and some insights into the nature of application resilience are

good guidelines for future work in this area. The five sources of application resilience

(present in most ML methods) are presented to explain why standard error injection,

used to simulate non-deterministic hardware behavior, cannot be used in studies related

to intentional computation approximation. A resilience characterization framework is

presented to achieve the identification of potentially resilient computation kernels (avoiding

the sensitive ones and parts which do not represent a considerable part of the execution

time) and the characterization of these computations through approximation models. The

resulting characterization is divided into three approximation models: data representation,

arithmetic operations and algorithmic level. The effectiveness of approximate computing

in applications that spend most of their computing time in resilient kernels is analyzed

extensively. Results and conclusions are grouped into several parts, including: the relevance

of granularity of approximation adjustments; similarity between frequent small errors

and rare large ones; the importance of relative scale of input data; the advantage of

application-aware approximation over an application-agnostic one.

Based on their previous work (CHIPPA et al., 2013a) to characterize application

resilience, the authors propose in (CHIPPA et al., 2013b) a method for dynamically adjust-

ing approximations by analyzing the resilience and acting in a manner similar to a feedback

control mechanism. The authors demonstrate that static settings for approximations do

not handle well situations in which the resilience varies with different problems or even

within the same problem and datasets. This leads to either missed opportunities for energy

savings or degraded output quality. A scalable effort processor is presented, providing

“virtual control knobs” which adjust: the operating voltage (which cause timing errors),

variable bit widths (which leads to quantization and truncation errors) and algorithm

Chapter 3. Related Work 24

specific (SVM and k-Means) parameter simplifications. In order to estimate quality, two

approaches are implemented: infrequently comparing the system outputs with and without

scaling and low overhead sensors at all levels (circuit, architecture and algorithm). The

proposed system is compared to reference implementations and two different approaches

based on static scaling. Consolidated results show that the dynamic method combines

the best performance from both static methods: energy reduction similar to aggressive

adjustments (54% to 69%) with error overshoot similar to the conservative ones (less than

1%).

A framework is proposed in (ZHANG et al., 2014) to dynamically balance the

trade-off between output quality, with guarantees, and computational effort for iterative

methods. The solution is divided into two parts: an offline characterization and an online

reconfiguration. The offline stage is executed once for each application and identifies

the error-resilient parts which are candidates for approximations. With a lightweight

quality estimator used at each iteration, the online stage reconfigures the approximation

modes during execution. Two strategies are proposed: the incremental one starts with the

lowest accuracy level and increases the quality requirements with time; the adaptive one

performs its adjustments based on the contribution of each approximation component to

the convergence of the solution. Results show that energy savings, compared to a reference

without dynamic adjustments, range from 25% to 52% using the incremental approach

and from 28% to 63% with the adaptive one.

A linear discriminant analysis (LDA) algorithm is proposed in (ALBALAWI; LI;

LI, 2014) for efficient implementations of binary classifiers using fixed-point arithmetic

and small word lengths. The standard LDA algorithm, normally implemented with double-

procession floating-point operations, was redesigned to add robustness to rounding errors

and overflows. The feature vectors can be safely scaled and rounded to their fixed point

representation but the weight vectors must be handled more carefully. Feature vectors are

modeled as multivariate Gaussian distributions so that their multiplication by a weight

vector and projections also yield Gaussian distributions. Using this model, it is possible

to adjust the fixed-point conversion within a certain confidence interval without causing

overflow in these operations. With real datasets, results show that the proposed method

achieves 1.8× power reduction without sacrificing classification accuracy when compared

to a regular LDA simply adapted for fixed-point implementation.

A detailed analysis of implementation techniques for machine learning algorithms

in a low-power and high-performance 16 bits DSP is presented in (BHARATI; JHUN-

JHUNWALA, 2015). The analysis is performed separately for each algorithm, listing all

proposed optimizations, but the authors claim that the solutions apply to most commercial

DSPs. Approaches include: an approximate expression for the sigmoid activation function,

efficient dot product implementation using MAC operations and lookup tables, optimized

Chapter 3. Related Work 25

fixed count loops and an approximated formula for the magnitude of a complex value. The

results show drastic reduction in cycle counts (70% to 91%) when compared to reference

floating-point implementations, without considerable compromise of accuracy.

The recent work (MITTAL, 2016) is not focused on ML applications of AC, but

the organization provided by the authors can be applied to facilitate the selection process

for each technique applicable to a specific ML algorithm. Characterization of approximable

program portions are grouped into: error injection, output quality monitoring, source code

annotations and compiler optimizations. The groups of this classification apply seamlessly

to ML. Conversely, not all approximation strategies apply to ML. The relevant ones in

this context are: precision scaling, loop perforation, data fetching simplifications, function

results reuse and multiple kernel precisions.

3.4 Comparisons and Limitations of Current Techniques

Tables 1 and 2 merge the Sections 3.1, 3.2 and 3.3 according to the classification

proposed in this Chapter in order to summarize the research efforts that focus on the

application of AC to ML. The references show which methods of each type were used,

considering only the 38 presented solutions (disregarding the references cited only as

previous and similar works or inspiration). Two papers (CHIPPA et al., 2013a; MITTAL,

2016) from section 3.3 were excluded from Table 1 because they were not focused on a

complete implementation. Improved implementations from the same authors (that were

analyzed together in this survey) are explicitly referenced in the tables.

It is worth mentioning that only 6 methods proposed a solution that was both au-

tomatic and dynamic. This confirms that most of the surveyed implementations are not

generic regarding the ML method and also were not prepared to handle unknown datasets,

adapting the approximations. Despite their potential to be automatically adapted to

different problems, four of them used from two to four datasets to verify their performance.

Understandably, it is not trivial to test very complex models with too many datasets,

due to the required processing time. On the context of AC, it should not be forgotten that

these datasets are typically the most resilient ones (since they are frequently noisy and

redundant). As an evidence that current research is not focused on generic approximated

solutions, Figure 4 represents how extensively the literature tests the proposed methods.

Papers which did not present a complete solution or analyzed only the hardware impact

of the simplifications are plotted as “zero datasets”.

The majority of the methods (22) applied a static and guided approach and 31

implemented the data representation approximation (17 applied only this technique).

This fact strengthens the claims that ML methods are usually resilient to noise but if the

Chapter 3. Related Work 27

completely different goal than defining an efficient and generic method that works equiva-

lently to precise implementations, even if not reaching the highest possible optimization in

each one. Additionally, many papers that present expressive approximations restrict their

validation to a single class of problems (e.g. image classification). It is important to note

that the network configurations (number of layers, nodes and connections) used in this

thesis are the same minimal ones employed in other references (as a form of regularization).

It is not uncommon to see larger networks in articles analyzing low precision training,

which partially defeats the purpose of the simplifications.

Achieving the highest possible optimization usually means that the performance

degradation reaches the limit of acceptability for a specific application. The generic

approach is still rarer in the published research, but commonly found in commercial

hardware offers (with more conservative solutions). Both the recently released NVIDIA

Volta architecture (MICIKEVICIUS et al., 2018) and Google TPUv2 (the second version

of the Tensor Processing Unit) rely on mixed precision 32 bits FP operations to mark their

position as training platforms and not only as inference accelerators. The trend continues

as the third TPU generation, announced in May 2018, still relies on a mixed precision

approach.

This analysis reinforces the relevance of an architecture and method which could

be applied to ML problems, both in inference and training, more efficiently than a precise

implementation and equivalently reliable. Even in the cases where an eventual small

performance (e.g., accuracy) penalty could not be accepted in the final training runs,

approximated solutions could be used for the costly hyper-parameter tuning phases. Using

the categorization proposed in the beginning of this Chapter, the group of methods

implemented in this thesis, which are presented in the next chapters, can be classified as:

dynamic, guided, based on data representation, mathematical operations and

complex functions. Additionally to being grouped with a small number of solutions

proposed in the literature, this thesis presents a method which uses the same representation

in the entire ANN, allowing the implementation of a single type of FPU. It should also

be clear that when “equivalency” to precise methods is stated, an evaluation that the

behavior is “identical” to precise method is obviously not being implied. Even full 32 bits

FP implementations may face numerical problems or suffer from “vanishing gradients”

in deep networks. Approximated operations will certainly reach such limits sooner than

precise references, which could result in, as an example, different optimal hyper-parameters

(like learning rates or batch sizes).

Chapter 3. Related Work 28

Table 1 – Approximation Type

Method Uses

Static (ALBALAWI; LI; LI, 2014; ANGUITA; BONI; RIDELLA, 2003b)
(ANGUITA; BONI; RIDELLA, 2003a; ANGUITA et al., 2006)

(ARNOLD et al., 1997; AYINALA; PARHI, 2013)
(BHARATI; JHUNJHUNWALA, 2015; BOSMAN et al., 2013)

(COURBARIAUX; BENGIO; DAVID, 2014)
(COURBARIAUX; BENGIO; DAVID, 2015; DAS et al., 2018)
(DRUMOND et al., 2018; ESMAEELI; GHOLAMPOUR, 2012)

(FERNANDEZ-DELGADO et al., 2011)
(GOODFELLOW et al., 2013; HASHEMI et al., 2016)

(HINTON et al., 2012; HUANG; LACH; ROBINS, 2012)
(KHAN; ARNOLD; POTTENGER, 2005)
(KHAN; ARNOLD; POTTENGER, 2004)

(LI et al., 2017; MICIKEVICIUS et al., 2018)
(SAKR et al., 2016; SRIVASTAVA et al., 2014)

(WU et al., 2016; WU et al., 2018)

Dynamic (COURBARIAUX; BENGIO; DAVID, 2014)
(CHIPPA et al., 2013b; GUPTA et al., 2015)

(HAN; MAO; DALLY, 2015; KIM; SMARAGDIS, 2016)
(KÖSTER et al., 2017; LIN; TALATHI, 2016)

(NANDAN; KHARGONEKAR; TALATHI, 2014)
(VENKATARAMANI et al., 2015; WAN et al., 2013)

(ZHANG et al., 2015b; ZHANG et al., 2014)

Guided (AGRAWAL et al., 2016; ARNOLD et al., 1997)
(ANGUITA; BONI; RIDELLA, 2003b)
(ANGUITA; BONI; RIDELLA, 2003a)

(ANGUITA et al., 2006; AYINALA; PARHI, 2013)
(BHARATI; JHUNJHUNWALA, 2015; DAS et al., 2018)

(BOSMAN et al., 2013; DRUMOND et al., 2018)
(COURBARIAUX; BENGIO; DAVID, 2015)

(ESMAEELI; GHOLAMPOUR, 2012)
(FERNANDEZ-DELGADO et al., 2011)

(GOODFELLOW et al., 2013)
(GUPTA et al., 2015; HASHEMI et al., 2016)

(HINTON et al., 2012; HUANG; LACH; ROBINS, 2012)
(KHAN; ARNOLD; POTTENGER, 2005)
(KHAN; ARNOLD; POTTENGER, 2004)

(KIM; SMARAGDIS, 2016)
(LI et al., 2017; LIN; TALATHI, 2016)

(MICIKEVICIUS et al., 2018)
(SRIVASTAVA et al., 2014)

(VENKATARAMANI et al., 2015)
(WAN et al., 2013; WU et al., 2018; WU et al., 2016)

Automatic (ALBALAWI; LI; LI, 2014; CHIPPA et al., 2013b)
(HAN; MAO; DALLY, 2015; KÖSTER et al., 2017)
(NANDAN; KHARGONEKAR; TALATHI, 2014)

(SAKR et al., 2016)
(ZHANG et al., 2015b; ZHANG et al., 2014)

Chapter 3. Related Work 29

Table 2 – Approximation Method

Technique Uses

Data (ALBALAWI; LI; LI, 2014; ANGUITA; BONI; RIDELLA, 2003b)
Represent. (ANGUITA; BONI; RIDELLA, 2003a; ANGUITA et al., 2006)

(ARNOLD et al., 1997; AYINALA; PARHI, 2013)
(BHARATI; JHUNJHUNWALA, 2015; BOSMAN et al., 2013)

(CHIPPA et al., 2013a; CHIPPA et al., 2013b)
(COURBARIAUX; BENGIO; DAVID, 2014)

(COURBARIAUX; BENGIO; DAVID, 2015; DAS et al., 2018)
(DRUMOND et al., 2018)

(ESMAEELI; GHOLAMPOUR, 2012; GUPTA et al., 2015)
(HAN; MAO; DALLY, 2015; HASHEMI et al., 2016)

(KHAN; ARNOLD; POTTENGER, 2005)
(KHAN; ARNOLD; POTTENGER, 2004)

(KIM; SMARAGDIS, 2016; KÖSTER et al., 2017)
(LI et al., 2017; LIN; TALATHI, 2016)

(MICIKEVICIUS et al., 2018; MITTAL, 2016)
(SAKR et al., 2016; WAN et al., 2013)

(WU et al., 2018; WU et al., 2016)
(ZHANG et al., 2015b; ZHANG et al., 2014)

Math. (BHARATI; JHUNJHUNWALA, 2015)
Operations (BOSMAN et al., 2013; CHIPPA et al., 2013a)

(FERNANDEZ-DELGADO et al., 2011)
(HUANG; LACH; ROBINS, 2012; WU et al., 2016)

(KIM; SMARAGDIS, 2016; MITTAL, 2016)

Complex (ANGUITA et al., 2006)
Functions (AYINALA; PARHI, 2013)

Simplified (BHARATI; JHUNJHUNWALA, 2015)
Algorithms (CHIPPA et al., 2013b)

(COURBARIAUX; BENGIO; DAVID, 2015)
(FERNANDEZ-DELGADO et al., 2011)

(GOODFELLOW et al., 2013)
(HAN; MAO; DALLY, 2015)

(HINTON et al., 2012; MITTAL, 2016)
(SRIVASTAVA et al., 2014)

(VENKATARAMANI et al., 2015)
(WAN et al., 2013; ZHANG et al., 2015b)

Memory (BOSMAN et al., 2013; CHIPPA et al., 2013a)
(Reduc./ (ESMAEELI; GHOLAMPOUR, 2012)

Skip.) (HAN; MAO; DALLY, 2015)
(NANDAN; KHARGONEKAR; TALATHI, 2014)

(ZHANG et al., 2015b)

30

4 ANN Implementations

This chapter details how the ideal operations in the feed-forward and back-

propagation phases of ANN inference and training, as introduced in Section 2.1, translate

to real implementations. Problems such as the “vanishing gradient”, which arise even

in precise representations, may considerably harm the training process if not dealt with.

Section 4.1 presents the IEEE format for limited precision FP numbers, which has been an

industry standard for more than three decades. Section 4.2 lists some important caveats

when limited precision representation is used in ANNs and Section 4.3 details how an

open source ANN library was modified to become an easily extensible framework for

experiments with different number representations, using emulated code to abstract all

operations. The first numerical type integrated (IEEE FP with 16 bits), used for the tests

in this Chapter, is also provided by code extracted from another open source library. This

Section also shows comparisons of the training process evolution with a precise baseline

when standard FPs are used.

4.1 Floating Point Review

In order to better understand the approximations and adjustments that are detailed

in Chapter 5, some important and fundamental details of the FP representation are

presented in the following sections. The reader is referred to the official standard (IEEE,

2008) for a complete explanation.

4.1.1 Standard Floating Representation

For a fixed space number representation, FPs have become an ubiquitous way to

achieve an excellent compromise between digital implementation complexity and useful

range. By using a binary version of the scientific notation, the same format can represent

very small and very large numbers, with different resolutions. The 16 bits binary format

(FP16 or “half precision”) is defined as follows:

B S0.S-1S-2S-3S-4S-5S-6S-7S-8S-9S-10 × 2E where E = E4E3E2E1E0

A single bit B is used to hold the signal information (’1’ meaning a negative number)

which is common to higher precision formats (32 and 64 bits are the most commonly used

and respectively named “single” and “double” precision). Normalized significands in base

10 are represented in the interval [1.0, 10.0), which translate to [1.0, 2.0) when a base two

exponent is used. This means that S0 will always be 1 in binary normalized numbers, so

Chapter 4. ANN Implementations 32

considering that floating point programming is not always a trivial task (GOLDBERG,

1991). Such subnormal numbers add considerable complexity to FPU implementations,

which may even disregard such support, leaving it to be handled as an exception at

software level. Even in modern CPUs the effects of operations involving these numbers

may be noticeable (LAWLOR et al., 2005; ANDRYSCO et al., 2015), furthermore the

relative error may be much higher, considering the reduced number of effective bits in

the significand. The following excerpt from IEEE 754R minutes of September 19, 2002 is

useful to understand the rationale behind the committee’s decisions involving subnormals:

“[. . .] Whatever causes one underflow will usually cause a lot more. So occa-

sionally a program will encounter a large batch of underflows, which makes it

slow. The loss of speed will upset someone. [. . .]

If we want reliable codes, we must make codes easy to prove, and we must

provide default behaviors that give numerically naive programmers the best

chance of avoiding problems.”

The highest representable exponent (with all bits set to 1) is also used to encode two

other exceptions. When all significand bits are set to zero the numbers represent infinity

(±∞, depending on the sign bit). This exception is returned whenever the operation results

in a number with an absolute value higher than the largest representable one. Significand

bits different from zero signal the other exception, NaN (Not-a-Number), triggered by

invalid operations which are not covered by simple underflows or overflows (e.g. 0/0).

4.1.2 Standard Floating Point Operations

The basic FP arithmetic operations will be briefly analyzed, but a common aspect

will be omitted in each explanation: the handling of subnormal numbers. Such exception

to the common flow demands that this type of numbers is normalized before the actual

operations are performed. Moreover the underflowed results are verified to determine if

they are representable as denormalized values. Not only these operations add complexity

to FPU implementations, but they also have indirect effects on the resources required to

handle normalized numbers (e.g. internal significand representation).

Addition and subtraction share the common step of exponent adjustment and

significand alignment. In order to add or subtract the significand, which can be handled as

a binary integer, each bit position must be aligned to another with the same magnitude.

For this reason, if the operands exponents do not match, they have to be adjusted firstly in

one of the numbers, which requires that its significand is shifted accordingly. The resulting

significand may be outside the range [1.0, 2.0), in which case its contents must be shifted

and the exponent adjusted, if possible. It should be noted that the exponent bias is not

Chapter 4. ANN Implementations 33

used in these operations, since it is only required that the encoded exponents are aligned

for the addition or subtraction to be performed.

The resulting exponent for the multiplication is just the addition of the operands

exponents subtracted by the bias value. The significands are directly multiplied as integers,

what may result in much more digits than the representation limit, requiring extra bits

to be dropped after the rounding operation. Resulting significands ≥ 2 are also adjusted

together with the exponent, if possible.

Due to the complexity of the integer division hardware circuits, the significand

division is usually implemented in more efficient ways such as using multiplication opera-

tions and LUTs. FP division can be quite hard to implement correctly in an optimized

way, which probably plays a role in in the occurrence of defects like the “Pentium FDIV

bug”. Resulting significands may also require adjustments and the final exponent depends

on this process, after being determined by the difference of the operands exponents and

bias addition.

Every operation generating more significand bits than the maximum representable

value is subjected to rounding. From the several available options, the most commonly

used is rounding to the nearest value. This method results in a maximum error of 1/2 LSB

in the significand (≈ ±0.05% in FP16). The non-standard stochastic rounding may also

be applied and is especially useful in low precision arithmetic applied to ANN training.

The main reason behind this usage is that the explicit “numeric noise” acts as a form of

implicit annealing and also acts as a regularization mechanism. Regardless of which from

these two methods is used, correct rounding is an expensive operation to be implemented

and it must also include a normalization step, since it may cause the resulting significand

to be ≥ 2. Simpler solutions like truncating the significand are normally avoided due to

the fact that they add a bias to the rounding error.

4.2 Mathematical Operations

Several characteristics of ANNs may present both opportunities and challenges to

low precision representations and operations. The following sections analyze some of these

issues and techniques related to them.

4.2.1 Small Values Accumulation

It comes directly as a consequence of a fixed length significand/exponent repre-

sentation that adding or subtracting numbers with exponents that are too far apart may

result in cancellation (the result equals one of the numbers). A graphical representation

of how this problem easily arises on less precise formats is shown in Figure 7: the x axis

depicts how many times the value 0.001 is added to a FP number starting from 0 and the

Chapter 4. ANN Implementations 35

In most ANN structures commonly used nowadays, including Deep Learning

applications, the number of connections per node (normally between dozens and thousands)

does not represent a critical reliability issue for representations as low as FP16. Additionally

to this structural characteristic, random small and adaptive weight initialization (GLOROT;

BENGIO, 2010), associated with regularization techniques that avoid large weight values,

contribute to the resilience of the sum-of-products realization in the feed-forward phase.

For problems with large datasets, it is not efficient to apply weight changes during

training for each example, which is the classic Stochastic Gradient Descent (SGD) method.

Full-batch optimization methods, which accumulate slope calculations for each weight for

the entire dataset, will also suffer from slow convergence, in spite of being very adequate

for massive parallelization due to training set partitioning. Mini-batch training methods,

which represent the compromise between these two strategies, will also have the advantage

of being a solution to avoid large errors due to small values accumulation. This benefit,

a direct effect of smaller gradient accumulation sequences, may be possible even with

very small initial learning rates. By performing slope accumulations for small subsets of

training examples, the weight adjustments will not reach values that are too large when

compared to each contribution, avoiding cancellation errors.

4.2.2 Deep Learning

Even before the work presented in this thesis is implemented in hardware and reaches

the required performance to make it feasible to analyze Deep Neural Networks (DNNs), it

is important to note issues inherent to the these topologies. These complex structures are

associated with difficult problems, usually represented by very large datasets. Although

the mini-batch training approach attenuates the accumulation errors, the “Vanishing

Gradient” problem may be an issue even for precise implementations. When methods

based on back-propagation are used to train ANNs with many layers, the ones closer to the

inputs may suffer from very slow training speeds due to small gradient values. Activation

functions that saturate their outputs (like the sigmoidal ones) tend to diminish derivatives

for input values far from the outputs. Other activation functions like Rectified Linear

Units (ReLUs), their variations and the slightly more complex Exponential Linear Units

(ELU) have recently become popular and counteract this problem that contributes to

smaller gradients for the first layers during back-propagation.

A detailed study of the “Vanishing Gradient” problem, which also affects RNNs

(Recurrent Neural Networks) with specific datasets, is presented in (SUTSKEVER et al.,

2013). The authors argue that both the weight initialization and a well tuned momentum

factor are crucial for an SGD based training to perform well. The datasets used so far in

this work do not demand networks that are deep enough to cause the problem mentioned

here, but adaptive methods have been considered and will be presented, as well as different

Chapter 4. ANN Implementations 38

4.3 Baseline Tests with standard IEEE FP (64 vs 16 bits)

With the details of ANN implementations based on standard FPs already presented,

it is interesting at this point to compare a double-precision baseline with the standard

16 bits FP. Sometimes this “half precision” representation is even considered a baseline

for comparison with approximate implementations, but since some values during training

reach magnitudes lower than what FP16s are capable of representing, a thorough analysis

is required. Using a standardized floating point format has the advantage of making this

first investigation relevant for the growing amount of available systems (compilers and

hardware) supporting this representation.

The “Fast Artificial Neural Network Library” 1 (FANN) (NISSEN, 2012) was used

as a basis for the implementation, but was heavily modified. One of the main changes was

the integration of part of the Berkeley SoftFloat Library (HAUSER, 2017) to perform

half-precision standard FP operations 2. Other important modifications include:

• A complete abstraction of all arithmetic operations and conversions

• Restructuring of the ANN internal representation

• Added support for POSIX Multi-threading

• Removal of unwanted features

• Implementation of detailed operation statistics

• Added compilation option optimized for embedded targets (without statistics and

terminal IO)

• Creation of a flexible binary with all ANN definitions selectable at runtime

• Adaptation of RProp to conform to the original iRProp-

• Added support for RMSProp and normalized initialization

• Added support for ReLU activation and Softmax outputs

All coding was implemented in ANSI C, without architecture-specific assembly

optimizations, and compiled with GCC 5.4 for a Linux based 64 bits system with an Intel

Core-i5-2537M CPU. Compiler optimizations which improved the training time when

using the approximated implementations (like aggressive “inlining”) were enabled but no

accelerations to the native floating point operations were activated.
1 Source code also available at: <https://github.com/libfann/fann.git>
2 Source code also available at: <https://github.com/ucb-bar/berkeley-softfloat-3.git>

Chapter 4. ANN Implementations 39

This setup with software emulation and abstraction of arithmetic operations

provided great flexibility to explore approximations, but had a relevant drawback: the

performance of the implementation made it infeasible to test complex datasets. Using FP16

only for the representation and performing all operations with native FP instructions would

be an option for better performance, but would not allow these trials to be considered as

equivalent to standard half precision hardware.

In order to prepare the library for the changes and experiments presented in the

next chapters, variables used in the entire implementation were split in the following

groups, whose types are selectable at compile time:

Group 1 variables used for external interaction (dataset loading and saving, ANN persis-

tence, real time statistics etc) fixed in hardware native floating points

Group 2 variables used directly by the neurons (weights, steepness, neuron inputs and

outputs) and the operations involving only these variables (except activation functions

and derivative functions, which belong to Group 3)

Group 3 all other variables involved in the forward and backward phases of the ANN

execution (including all parameters and operations of the training algorithms)

Disregarding Group 1 and analyzing the variables that are relevant for the actual

ANN operation, the rationale for the division was as follows. Due to the known resilience

of the inference phase, in the Group 2 were included the variables participating in this

process. These variables, especially the connection weights, are the most important for

memory usage (space and traffic) in the forward phase for large fully-connected networks.

Additionally, regarding Group 2, it should be noted that representing the training data

in this format may lead to a significant contribution of these variables to the overall

gain with the approximation, due to lower memory usage. Some variables used in the

inference phase do not require a considerable amount of space, but they remained in

this group in order to reduce the need for conversions, since they are frequently used

in feed-forward operations. As an exception, activation functions were not included in

Group 2, because their relevance in resource usage decreases with the network size and

complexity: since the activations are executed only once for every full sum-of-products

input accumulation and their resources are fixed regardless of input fan-in, the more

connections each neuron has, the less relevant the activation cost will be when compared

to the of sum-of-products in the inputs. Additionally, for the preliminary studies, specific

approximations for activation functions could be explored without mixing the effects of

LUT-based implementation, for example, with the errors related to representation accuracy.

With this reasoning and the irrelevant variables in Group 1, the Group 3 was already

Chapter 4. ANN Implementations 40

defined: it held the variables more directly related to the training process, which could

require more precise representations.

Internally in the library code, the variable groups were associated to specific types

defined at compile time. With the downside of resulting in more complex internal source

code, this design decision allowed the use of the same library for native and simulated

compilations without compromising the user visible code. A short segment extracted from

the incremental weight adjustments code is presented in Listing 4.1, where fann type ff

and fann type bp refer respectively to variables in the Group 2 and Group 3, as

defined previously. Two arithmetic operations (add and mac) are shown with the necessary

type conversions. All calls prefixed with fann bp or fann ff are actually macros which

may refer to native C code (e.g. operations for FP types) or simulated functions for various

approximated implementations, defined at compilation time. Depending on the actual

format being simulated, these functions can be implemented with the help of native FP

operations or entirely in emulations based on integer types.

Listing 4.1 – Internal example of FANN variable types and operations

fann_type_bp tmp_error , delta_w , ∗weight_slopes ;

fann_type_ff ∗weights , learning_momentum ;

/∗ . . . ∗/
delta_w = fann_bp_mac(fann_ff_to_bp (learning_momentum) ,

weight_slopes [w] , tmp_error) ;

weights [w] = fann_bp_to_ff (fann_bp_add (delta_w ,

fann_ff_to_bp (weights [w]))) ;

The code snippet presented in Listing 4.2 shows how the application programming

interface provided by the library allows high level definitions of ANN implementations,

and is not affected by the internally defined types and operations. The internal complexity

of the type conversions and simulation is transparent to application code. Besides the

actual numerical representations and respective arithmetic operations, which are fixed at

compilation, all other ANN aspects are defined at runtime. For this reason, each simulated

format is compiled to a different binary, using the same code base.

Listing 4.2 – Simple example of FANN application code

struct fann_data ∗ train_data , ∗ test_data ;

struct fann ∗ann ;

/∗ read da t a s e t f o l d s f o r t r a i n i n g and t e s t purposes ∗/
train_data = fann_read_data_from_file (" datase t . t r a i n ") ;

Chapter 4. ANN Implementations 41

test_data = fann_read_data_from_file (" datase t . t e s t ") ;

/∗ c r e a t e s the main ANN s t r u c t u r e ∗/
ann = fann_create_standard_args (threads , num_layers ,

train_data−>num_input ,

num_neurons_hidden ,

train_data−>num_output) ;

/∗ normal ized i n i t i a l i z a t i o n o f we i gh t s ∗/
fann_init_weights (ann) ;

/∗ o p t i o n a l c a l l b a c k func t i on to manage the t r a i n i n g proces s ∗/
fann_set_cal lback (ann , t ra in_ca l lback) ;

/∗ ANN hyper−parameters ∗/
fann_set_act ivat ion_funct ion_hidden (ann , FANN_RELU) ;

fann_set_act ivat ion_funct ion_output (ann , FANN_SIGMOID) ;

/∗ Depending on the t r a i n i n g a lgor i thm , o ther

hyper−parameters are a v a i l a b l e ∗/
fann_set_tra in ing_algor i thm (ann , FANN_TRAIN_RPROP) ;

/∗ This func ion re turns when t r a i n i n g s top c r i t e r i a i s reached

or when the c a l l b a c k func t i on e x p l i c i t l y i n t e r r u p t s i t . ∗/
fann_train_on_data (ann , train_data , max_epochs ,

epochs_between_reports , de s i r ed_er ro r) ;

/∗ F i l l s the ann s t r u c t u r e wi th t e s t e r ror s t a t i s t i c s .

May be c a l l e d during t r a i n i n g from the c a l l b a c k . ∗/
fann_test_data (ann , test_data) ;

Weight initialization was a factor kept constant among all tests and datasets. Each

random seed was repeated once in the FP64 and FP16 runs. This assured that, for every

execution, both representations started from the same random weights (apart from the

reduced numerical representations). Since all trials were trained with the same order of

examples using the same algorithms and hyper-parameters, this procedure allowed a more

direct comparison of the approximations effects in the training epochs.

No regularization component or stop criteria was defined for all the comparisons in

this study. Hyper-parameters and network topologies were defined based only on the FP64

Chapter 4. ANN Implementations 42

runs and repeated in the FP16 tests. These experimental design decisions associated with

paired weight initializations provided a more direct way to graphically compare training

evolution and generalization capacity of the implementations. Throughout the following

chapters, paired plots of the train and test average accuracies of two ANN implementations

will be compared to analyze several differences in the training progress. An important fact

is that maximum test accuracies should not always be compared between different graphs

because they may happen at different epochs, causing the averaged value to be lower if

the network tends to overfitting. For this reason, confidence intervals differences may also

provide important informations.

To avoid performance differences in datasets due to class imbalance and also to

show more clearly possible effects on the minority classes, the reported accuracy is the

average of individual classes, and not the global one. Equivalently, for binary classification

problems, the accuracy is the average between True Positive Ratio (TPR) and True

Negative Ratio (TNR). In the final tests, presented in Chapter 6, a unified approach was

used, by calculating the geometric mean of individual class accuracies, which captures

more aggressively the “catastrophic forgetting” of minority classes. Graphical comparisons

will always be presented with 95% confidence intervals for the average on each epoch.

Table 3 summarizes the main characteristics of the classification datasets selected

for this preliminary study. They were chosen from common benchmarks which have been

used for a long time (PRECHELT et al., 1994) to explore a mixture of following parameters:

set size, input complexity and number of classes (mutually exclusive). Class imbalance

also varies and will be analyzed later, when the approximated version is evaluated. All

datasets are freely available from open repositories like (LICHMAN, 2013) and usually

accompany ML software packages, like FANN. MNIST was obtained directly from the

original Yann LeCun’s website: <http://yann.lecun.com/exdb/mnist/>.

Table 3 – Characteristics of the benchmark datasets

Dataset Inputs Outputs Training Set Size Testing Set Size

MNIST 784 10 60000 10000
Breast Cancer 30 1 455 114

Thyroid 21 3 3600 3600
Soybean 82 19 342 341

Regarding the training methods, the following comparison was based on simple

standard back-propagation in batch modes (mini-batch for the larger datasets and full-

batch for the two others). Not even incremental SGD with a momentum factor was

included in this phase. Adaptive algorithms, more robust to hyper-parameter changes and

with faster convergence, like iRProp (IGEL; HÜSKEN, 2000), RMSProp (TIELEMAN;

HINTON, 2012) or Adam (KINGMA; BA, 2014) will be considered in the next chapters.

Chapter 4. ANN Implementations 44

to both precisions. The Thyroid dataset presented a different behavior: the learning

process stagnated in the less precise (FP16) version and kept progressing in the reference

implementation. There is a possibility that setting a different a learning-rate could provide

better results for FP16 in these datasets, but this would violate the premise of performing

comparisons under the same conditions. Additionally, the evidence that the lower precision

ANN was not equivalent in these cases can not be disregarded.

As it can be seen in these comparisons, FP16, which is sometimes used as a

baseline for approximation studies, is not a direct “drop-in” replacement for more precise

FPs in ANN training. Even considering that hardware manufacturers like NVIDIA show

impressive results using their powerful GPUs, implementation details should be analyzed

with care. These implementations may include a mixture of FP32 operations, sometimes

used only internally, or specific ANN architectures and training algorithms adjusted to

perform well with low precision arithmetic. Since this work aims at optimized hardware

ANN implementations, it is an important factor to observe that even before further

simplifications are added to the system with reduced precision, attention is required to

provide reliable operation.

45

5 Simplifications and Approximations

In Chapter 4, a reduced standard FP representation was presented as a first step

to optimize the ANN training process (by reducing its memory footprint) and simplify the

FPUs (by using fewer circuits or iteration steps in basic operations). This Chapter intro-

duces further optimizations that simplify the hardware design by eliminating exceptions to

this reduced FP format (Section 5.1) and approximating higher level mathematical opera-

tions frequently used in ANNs (Section 5.2). Section 5.3 repeats the same test procedures

already detailed, replacing the double FP baseline by the IEEE FP16, to verify if the

approximated implementation with extra simplifications introduced further performance

penalties. All approximations proposed in this chapter are based on the FP16 format,

using the environment described in Section 4.3.

5.1 Floating Point Simplifications

As previously mentioned, the lowest and highest exponents in the IEEE FP

representation are used to represent exceptional conditions. Removing these exceptions has

a few direct beneficial effects and some changed behaviors regarding the lack of indication

of such occurrences. This section analyzes the rationale and effects of these modifications.

5.1.1 Removal of Infinities and NaNs

By replacing the highest exponent with an extra set of normal numbers, 1024 new

values become representable in the FP16 format. This means that the largest magnitude is

doubled (from 65504 to 131008, considering the default bias). This improvement represents

a mere ≈ 1.6% increase in the representable numbers set which, with the default bias, is

outside the most useful range for ANNs since models are typically initialized with very

small weights (positive and negative). No relevant FPU simplifications result from this

change since the overflow condition must still be detected and the maximum positive (or

minimum negative) number be returned as a result. Conversely, infinite arguments do not

have to be checked at the operation inputs.

What is more relevant for reliability is that in the same situations when infinities

would occur, the highest possible number is returned as the operation result. This can be

viewed as a form of “graceful degradation”, since invalid numbers that would interrupt

the learning process are replaced by valid values. If this operation was, for example, in

the gradient calculation, the result could be just a smaller learning adjustment step in

one weight, instead of a failed learning sequence. The fact that the migration from FP32

Chapter 5. Simplifications and Approximations 46

to FP16 drastically reduces the largest representable number, potentially increasing the

likelihood of overflows, is partially mitigated by this conservative behavior. Some adaptive

training algorithms even limit the largest weight adjustment step as a hyper-parameter.

The IEEE standard is very specific about the invalid operations that should result

in NaNs, also making distinctions between the quiet and signaling types. The simple

removal of infinities eliminates many of these situations. The approximate implementations

of the reciprocal square root functions (detailed in Section 5.2) associated with their

specific use in this research, eliminates another possibility. The simplicity of ANNs, which

requires only a subset of the standard operations, narrows down the remaining possibilities

to a single one: the division of zero by zero. This operation occurs in only two situations

in all analyzed methods: the Softmax output function and some adaptive methods which

dynamically adjust the learning speeds of each weight. The first situation can be reasonably

handled by the mathematical absurdity 0/0 = 0, which makes sense in this case, since

no output was activated, but for training purposes the error will be high for the one

which was not activated. The second situation can be easily circumvented by testing the

denominator, which also avoids the division by zero.

Besides eliminating NaNs and infinity representations, some situations in which

exceptions occur may also set hardware flags: inexact result, underflow, overflow, infinite

and invalid operation. All the tests required to generate these flags were also removed. The

inexact result is the only condition not previously analyzed. It means that the returned

value could have been more precise if more bits were available in the format (in other words,

if the value was rounded), which is useless for this type of application. When grouped, the

simplifications detailed so far lead to considerable resource savings, as shown later in this

section.

5.1.2 Restrict Format to Normalized Numbers

The removal of the subnormal number representation exception, and the use of

its exponent to represent normalized numbers, has a direct and minor effect similar to

the previous one: the smallest normal magnitude in the FP16 format is reduced by half

(from 6.1095× 10−5 to 3.0547× 10−5, considering the default bias). Taking into account

that these new normal values replace the subnormal ones, the limit is actually worsened

since the smallest subnormal magnitude is 5.9605 × 10−8. It should not be forgotten

that this mode of operation is a form of “graceful degradation” applied to the underflow

situations. Not only there is a performance penalty in their use, but the FPU must have

extra complexity to handle this exceptional situation. Other undesirable characteristic is

that the smaller the number of effective bits in the subnormal significand (which is smaller

than 1.0, thus has leading zeros) the larger the relative error of the operations. This leads

to the conclusion that, even if supported, subnormal numbers should be avoided.

Chapter 5. Simplifications and Approximations 48

conditions, the small weight changes missed in the FP16 format were overwhelmed by other

dataset characteristics, like redundancy. It should also be noted that the low magnitudes

(when compared to the FP16 representation limits) imply that the subnormal range of

FP16 would have been frequently used in this process, especially at the end of the training

in the first layer, when even the average value got close to the smallest magnitude limit.

Restricting the representation and arithmetic operations to normalized numbers

has many direct beneficial effects, as already mentioned, but also an indirect one. When

the operations are performed, the possibility of a subnormal value as a result has to be

considered, which requires the internal number representation to have enough precision

to generate such results. Removing the circuits (or code) to handle subnormal numbers

also gives room to reduce the internal bit representation in some operations. This fact was

explored in the optimized implementation and the effects are presented in the following

section.

5.1.3 Preliminary Implementation of FP arithmetic

Even before the final hardware implementation, a preliminary evaluation of the

gains obtained with the described simplifications was performed. Though the results of

this analysis can not be directly extrapolated to hardware FPUs, they suggest that the

effects of the simplifications were significant in this proof of concept. A similar gain could

be observed in very low end CPUs, which base their FP implementations on libraries that

normally use native integer arithmetic internally, like the one used in these tests. Direct

FPGA implementations may also yield similar benefits, since these components provide

internal DSP units capable of performing integer FMA operations.

The reference “SoftFloat” IEEE compliant implementation was firstly trimmed

to include only the functions used by the modified FANN library (the contents of the

methods were not modified). The resulting code is the library used to run the tests with

Standard IEEE FP16 and resulted in a compiled binary 1 with 125,264 bytes. The first

step for the approximation operations was the removal of exceptional conditions and
1 For compilation off all binaries, all optimizations from level 1 were selected (with -O1) but the flags

from levels 2 and 3 were hand-picked (instead of using -O2 and -O3):
-finline-functions -funswitch-loops -fpredictive-commoning -fgcse-after-reload

-fipa-cp-clone -ftree-loop-distribute-patterns -ftree-slp-vectorize

-fvect-cost-model -ftree-partial-pre -ftree-pre -fstrict-aliasing

-fstrict-overflow -fgcse -finline-small-functions -fthread-jumps -falign-functions

-falign-jumps -falign-loops -falign-labels -fcaller-saves -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fdelete-null-pointer-checks -fdevirtualize

-fexpensive-optimizations -ftree-vrp -fgcse-lm -fhoist-adjacent-loads

-findirect-inlining -fipa-cp -fipa-sra -foptimize-sibling-calls -foptimize-strlen

-fpartial-inlining -fpeephole2 -freorder-blocks -freorder-blocks-and-partition

-freorder-functions -frerun-cse-after-loop -fsched-interblock -fsched-spec

-fschedule-insns -fschedule-insns2 -ftree-builtin-call-dce -ftree-switch-conversion

-ftree-tail-merge

Chapter 5. Simplifications and Approximations 49

flushing the subnormal numbers to zero. At this point a reduction of almost 40% in size

was already observed. Further optimization possibilities resulting from the removal of

subnormal numbers were identified, which simplified the implementation of some arithmetic

operations. The final version of the approximated library, with the exact same API and

supported methods, reached a size of 59,088 bytes, representing ≈ 53% of size reduction.

Stress tests were performed with all arithmetic operations in both libraries in order to

identify any abnormal behavior. The arguments for each operation (two or three) were

generated randomly, each operation was performed and the results were compared. Different

results would interrupt the test sequence and the ones that increased the maximum relative

error found so far were displayed for inspection. The maximum observed error was ±0.05%

in both libraries, as expected from the significand representation length and rounding

method. These figures exclude the operations involving subnormals which are performed

with worse resolution. For each operation the maximum error was reached after a few

thousand operations but the stress tests were executed hundreds of millions of times for

each one, increasing the confidence in the correctness of both implementations.

Optimized FPGA implementations should be performed directly with an appro-

priate hardware implementation tailored language, but a preliminary evaluation could

also be obtained using the Vivado High-Level Synthesis tool, offered by Xilinx. With

this method, the libraries source codes are used as inputs in the design process. A full

FPU was not implemented using this method, but the most important operations were

compared: FMA, multiplication and addition (which also includes the subtraction). The

comparison between the results provided by the tool are presented in Table 4, where the

rows identified as “Total” summarize the resource usage. Relative reductions from 26%

to 45% were observed for the LUTs and Flip-Flop (FF) resources. Due to inherent code

obfuscation techniques of the Synthesis tool it was not possible to determine the reasons

for the considerable reduction in DSP usage (from 16 to 1, in the DSP48E columns) and

the higher RAM usage (from one to two blocks, in the BRAM 18K columns). The analysis

shows that relevant benefits were still present when the software designs were migrated

to the FPGA. It is important to note that an efficient FPGA implementation approach

would take advantage of common blocks sharing (such as the final packing and rounding

module) and also from the component peculiarities, like the bit width of the internal DSPs.

Another important observation is that when a full ANN implementation is considered, the

FPU is only part of the whole architecture and these benefits are expected to be diluted.

This research has not yet evaluated alternative rounding solutions, fixing its

implementation to the most conservative (and expensive) choice: round to the nearest

value. There are less complex options, like the simple elimination of extra bits, which

doubles the maximum error due to rounding and, more importantly, introduces a bias into

that error. Stochastic rounding has also been analyzed in the literature as an option to

accumulating long series in values with higher precision.

Chapter 5. Simplifications and Approximations 52

i = 210 (x + 15)⇒ i = 1024x + 15360⇒ i = (int)(1024xf + 15360) (5.1)

If xf is a fractional number (regardless of the representation) i becomes the

conversion of the resulting number to an integer, discarding the fractional part. But in

this case, the bits that are assigned to the significand part of the FP number may not be

zero. This difference is what makes the linear interpolation between the integer values

possible, and automatic. Remembering that the exponent part refers to the power of the

first bit 1 in the significand, which is omitted, the next bit (S−1) is worth 0.5, the next one

0.25, and so the sequence follows. This means that the lower order bits of the multiplied

number will fill the gap between two integer exponents, proportionally to the fractional

part of the input.

Two more steps are needed to conclude the approximation. The first is that the 2x

operation must be transformed in ex. This is achieved by simply dividing x/ln(2), according

to Equation 5.2, so that the resulting multiplication becomes 1024/ln(2) ≈ 1477.32. Finally,

a small adjustment should be performed in the sum with 15360, which results in a minor

reduction of the maximum approximation error. Since the search space for FP16 is very

small, this value was obtained with exhaustive search. The adjusted value found was 15320,

resulting in the final expression for the simplification, given in Equation 5.3.

2 = eln(2) ⇒ 2x/ln(2) =
(

eln(2)
)x/ln(2)

= ex (5.2)

i = (int)(1477xf + 15320) (5.3)

Figure 14 presents the final approximation results in a narrow range, compared to

a precise double precision reference. The relative error curve repeats the same aspect in all

the usable input range, which is: −10.367 < x < 11.805 (arguments outside this interval

result in non-representable answers). For values outside this range the function returns

3.0756× 10−5 and 1.3056× 105, respectively.

5.2.2 Reciprocal Square Root

This approximation method also takes advantage of the intrinsic exponentiation

operation of the FP format, but for a different purpose. Like many other implementations

of complex functions, it relies on an initial estimate for the result (usually obtained from a

LUT) followed by some iterative refinement operations. The better the initial guess for the

answer, the fewer iterative adjustments are required until the desired accuracy is reached.

The original method relies on single precision FP numbers and this adaptation modifies it

Chapter 5. Simplifications and Approximations 55

In order to use the Newton-Raphson, the reciprocal square root calculation must

be transformed into a root-finding problem, based on the efficient initial estimate detailed

previously. For an argument a > 0, we have to find a value x that gives us x = 1/
√

a,

starting from a first approximation x0 ≈ 1/
√

a. We define f(x) = x−2 − a which will

reach f(x) = 0 for the correct answer. Using the first derivative for f(x) and applying

it to the Equation 5.5, we define an analytical expression for the first iteration of the

Newton-Raphson method. This is the most computationally intensive part of the reciprocal

square root approximations since it is regularly performed as floating point operations: 4

multiplications and one subtraction, as indicated by Equation 5.6.

f(x0) = (x0)−2 − a⇒ f ′(x0) = −2x−3
0 (5.6a)

x1 = x0 −
(

x−2
0 − a

−2x−3
0

)

(5.6b)

x1 = x0 −
(

−0.5x0 + 0.5ax3
0

)

(5.6c)

x1 = x0

(

1.5− 0.5ax2
0

)

(5.6d)

In the previous explanation the variable x was used in a more adequate way to relate

the equation definition to the Newton-Raphson method, which is a root-finding algorithm.

If the first part of the explanation (the bit shift and integer subtraction operations to

obtain the first estimate) is merged with the numerical method iteration just defined, a

final expression can be obtained (Equation 5.7) for the complete reciprocal square root

approximation. The approximation Y = 1/
√

X is then calculated in two steps, considering

that in the first part the argument X is handled as a 16 bits integer and in the second

part as a regular FP16 number, as well as G, the first estimate for the numerical method.

G = 0x59BB− (X ≫ 1) (5.7a)

Y = G
(

1.5− 0.5XG2
)

(5.7b)

Figure 16 depicts a precise reference for y = 1/
√

x in blue. On the left, this reference

is compared to the first approximation G (in red), obtained by the first step and interpreting

G as a FP number. On the right, the same reference is compared to the full operation,

which includes one step of the numerical approximation. The relative error patterns repeat

themselves in the whole usable input range (6.1095× 10−5 < x < 3.3952× 10+4).

This approximation will not be tested on the comparisons that close this Chapter,

since it is not used in the simple training methods presented here. Due to the low

precision requirements of some resilient applications, it is worth noticing that even the

first approximation step already results in similar relative errors to the ones obtained at

the exponentiation approximation.

Chapter 5. Simplifications and Approximations 58

5.2.4 Preliminary Implementation of Complex Functions

Similarly to what was reported in the Section 5.1.3, a preliminary viability analysis

was performed to verify if the proposed complex function approximations resulted in signif-

icant simplification. Since the SoftFloat library does not provide a precise exponentiation

function for comparison, the synthesis of the FMA operations were repeated as references.

This new synthesis was necessary for a fair comparison because, at this stage, a newer

Xilinx Vivado version (2018.3) was used, which produced better HLS results in both the

baseline and approximate version. Additionally, the approximated multiplication code

with variable FP bias, mentioned in Section 5.2.3, modifies these approximated source

code implementation basis.

The synthesis results are presented at Table 5. When compared to Table 4, the

same columns with non-zero values are shown but only the rows previously identified as

“Total” are presented for each entry. Like in the previous analysis, the Softfloat original

code is used as the HLS input for the “Standard IEEE FP” synthesis rows while the other

ones are generated from the approximated code. The direct comparison shows that the

exponentiation approximation is even simpler than the approximated FMA operation. It

is also clear that the division by square root, including the variable FP bias, is so simple

it could be implemented only with combinational logic.

Total Resource: BRAM 18K DSP48E FF LUT
FMA: Standard IEEE FP 1 16 2079 6062
FMA: Approximate FP 2 1 892 3426
Exp. Approximate FP 2 1 598 2177
sqrt(): Standard IEEE FP 1 34 1751 2763
b/sqrt(a) Approximate FP 0 0 0 157

Table 5 – High Level Synthesis of Complex Functions

5.3 Comparative Tests: Standard IEEE FP16 vs Approximated

The purpose of the following comparison is to verify if the approximations presented

in this Chapter had any relevant effects on the ANNs performance. For this reason, the

baseline for comparison will be the same standard IEEE FP16 (half precision) imple-

mentation tested in Section 4.3, with the same initializations. The comparison method

is also the same, graphically analyzing the average accuracy during training, with 95%

confidence intervals. In all these comparisons, the approximations presented in this chapter

are implemented in the trials identified as “approx. 16”.

In Figure 19 the same two datasets which previously showed no significant difference

to the double precision implementation, also behaved similarly when implemented with

61

6 Resilient Training of ANNs

Chapter 4 presented the details of ANN implementations based on standard FP

operations, showing evidence that FP16 is not always a direct replacement for more

precise formats. In Chapter 5, approximations that simplify the FP16 implementations

were analyzed and no evidence was found to consider them less reliable than standard

FP16 for basic ANN training. This Chapter will analyze other learning techniques that

could be more efficient than conventional Gradient Descent by adapting the weight change

mechanism to each connection. This is evaluated as a better approach than, for example,

increasing the global learning rate to solve problems like the ones found in the FP16

implementations. For this reason, these methods rely on storing extra information for each

weight, adjusting it as the training progresses. Several robust adaptive methods have been

proposed in the literature as a mechanism to dynamically and individually adjust weights

at different speeds. These methods differ regarding how much extra memory is required

for the adaptive behavior.

Efficiency, as mentioned, is a broad concept when related to this analysis. A network

that converges faster (with less evaluations of the training examples) requiring much more

memory or computing, may require even more energy than a simpler and slower one. The

memory use alone may result in the infeasibility of an FPGA implementation, by not

allowing a good localization of the parameters 1. As the final target for this work is an

efficient hardware implementation, only methods that store a single extra variable for each

weight will be analyzed. Not even the use of temporary variables with higher precision

(like accumulations in FP32) will be considered, for the same reason.

Finally, an automatic method to dynamically adapt the approximated FP16 repre-

sentation range during training, for each neuron and without extra hyper-parameters, is

proposed. Adaptive training methods for ANNs improve the equivalence of low-precision

arithmetic to the reference ones, but were not enough to reach a desirable performance

on all tested datasets. The final system is also tested against the bfloat16 format, used

in the accelerated TPU platforms, designed by Google (<https://cloud.google.com/tpu/

docs/bfloat16>), and also being adopted by Intel (HENRY; TANG; HEINECKE, 2019)

and ARM (BURGESS et al., 2019). A novel FP representation with dynamic precision is

also used for comparison, in its fixed size form: the posit16.
1 If the parameters used for a node are not stored in a distributed way, close to the processing elements,

the data traffic to external memory may dominate the training costs, as stated, e.g. in (HAN et al.,
2015) and (MISRA; SAHA, 2010).

Chapter 6. Resilient Training of ANNs 62

6.1 Adaptive Training Mechanisms

This Section will use the same notation for the weight updates in all its Parts,

adding terms and operations according to the analyzed method. Equation 6.1 details

the update rule for GD where the parameters θn (the weights and biases) are updated

by applying at iteration n a change ∆θn. This change is a small fraction (given by η,

the learning rate) of the gradient ∇θ of the loss function L(θn; x; y) with respect to the

parameters, given the inputs x and outputs y. The negative sign comes from the fact that

the loss function is the objective to be minimized. An incremental approach applies this

change for each training example, i.e. a (x; y) pair, while batch methods accumulate the

gradient contributions of several examples before adjusting the parameters.

∆θn = −η∇θL(θn; x; y) (6.1a)

θn+1 = θn + ∆θn (6.1b)

The following parts present different methods to determine the change ∆θn and

the analysis is focused on specific datasets, according to the problems found.

6.1.1 Gradient Descent with Momentum

The basic idea for a momentum term is to change the “velocity” of weight updates

instead of their “position”. This analogy considers each connection value as a particle that

should be moved, as fast as possible, without instabilities, to improve the network loss.

If successive updates happen in the same direction, the weight change will increase its

rate, or momentum. Conversely, gradients that frequently change sign will not be heavily

adjusted. Equation 6.2 summarizes this update scheme where γ, usually < 1, determines

how much of the previous “velocity” ∆θn−1 is kept in the current step. This means that

for each weight an extra parameter should be stored and updated during training.

∆θn = γ∆θn−1 − η∇θL(θn; x; y) (6.2)

The momentum term did not improve the slightly lower convergence speed in

some specific initializations of the Breast Cancer dataset. By removing 3 (out of 150)

initializations that could be considered outliers due to delayed convergence, all of them

common to both representations, no significant difference was found between the two

precisions. This similarity also happens in the previous test, if outliers are excluded.

Figure 21 shows how the approximated FP16 (as defined in Chapter 5 and identified as

“approx.”) behaved similarly to the reference when momentum was used (plot on the

right), but with a slightly faster accuracy growth when compared with regular GD (on

Chapter 6. Resilient Training of ANNs 65

Algorithm 6.1 – iRprop- Method

1: for all parameters ∈ θn do

2: if (∇n
θ .∇n−1

θ > 0) then

3: ∆θ+
n ← min(µ+.∆θ+

n−1, ∆max)

4: else if (∇n
θ .∇n−1

θ < 0) then

5: ∆θ+
n ← max(µ−.∆θ+

n−1, ∆min)

6: ∇n
θ ← 0

7: else

8: ∆θ+
n ← ∆θ+

n−1

9: end if

10: ∆θn ← −sign(∇n
θ).∆θ+

n

11: end for

Previously this research attempted to implement some minor modifications to the

iRProp- method to improve its behavior with reduced precision and the normalized weights

initialization. The main changes were: adjusting the initial step as a relative value of the

uniform random distribution limits in each layer, causing a hyper-parameter to be used as

a fixed value; creating a mechanism to restart the weight change process when this was

interrupted by a flush to zero (more common with reduced precision). An option was also

evaluated to restart the learning process only for significant weights if the network shifts

to a different position in the optimization space where a specific change becomes relevant

again.

The proposed modifications improved the training behavior in most datasets, but

caused a slightly worse performance in one of them. Specially when generalization is

analyzed, the results are mixed, with slight advantages for each FP representation on

different datasets. iRProp- is a robust algorithm, with noticeably better convergence speeds

for many datasets. The fact that this method does not rely on the gradient value was

considered an advantage for low precision training but, even with guided modifications,

equivalent behavior was not generally achieved.

6.1.3 RMSProp

The previous sections analyzed two adaptive techniques as attempts to improve, at

the training method level, the performance difference found between some FP64 and FP16

implementations. The well known beneficial effects of the momentum term improved the

results for the two datasets which presented differences earlier. This improvement was not

enough to consider the approximate implementation as equivalent to the precise one. The

impressive convergence speed and reliability of iRProp-, even with modifications, were not

enough to provide equivalent results and do not cover the problems with large datasets

Chapter 6. Resilient Training of ANNs 66

as it is a method known to be adequate only for full-batch training. This leads to the

current investigation of RMSProp, still keeping the constraint of a single extra adjustable

parameter for each weight.

An interesting fact about RMSProp is that it achieved “huge empirical success”,

as stated in (MUKKAMALA; HEIN, 2017), before a rigorous theoretical analysis was

published. For this reason, most of the papers analyzing RMSProp cite a slide (TIELE-

MAN; HINTON, 2012) from the Geoffrey Hinton’s on-line ANN course, where he quickly

mentions the method as an unpublished idea and also some possible improvements worth

investigating. The algorithm implemented for the tests in this section is based on the

details provided in (MUKKAMALA; HEIN, 2017), due to the informality and brevity of

Hinton’s presentation, but it does not include the improvements proposed in the paper.

The datasets used for the following tests did not require the dynamic hyper-parameters

adjustments proposed by the author as a way to improve reliability.

Equation 6.3 details the original RMSProp algorithm. A small term added to the

denominator to avoid division by zero is omitted as it is not used in the approximated

implementation, since division by zero is handled differently (without an exception). A

running average of the squared gradient is stored in ∇avg
θ , and adjusted by the factor β < 1.

Originally this parameter was proposed as static but the in (MUKKAMALA; HEIN, 2017)

it is argued that this may lead to divergence and should be adapted during training. The

method is sometimes compared to RProp but with the advantage that gradient fluctuations

between mini-batches do not cause instabilities because the running average provides

a normalization. It should also be noted that the learning rate is attenuated with the

training progress (since it is divided by
√

n).

∇avg
θ = β∇n−1

θ + (1− β)(∇n
θ)2 (6.3a)

∆θn =
η
√

n
×
∇n

θ
√

∇avg
θ

(6.3b)

When ∇avg
θ reaches very low values and is flushed to zero, the adjustments for these

specific weights may be interrupted if the gradient does not reach higher values as the

training progresses. To cope with these problems, a simple modification was implemented

in this thesis. The running average is initialized to a small value (e.g. ∇avg
θ = 1×10−4) and

as soon as it reaches zero the update rule for that respective weight falls back to regular

GD with momentum, using the same learning rate. The running average stops being

updated for that weight so the new scheme is maintained until training is interrupted.

Since the variable holding the average gradient becomes available, it can be used to

hold the dynamic momentum term without increasing the memory usage. Alternative

methods for the learning rate decay have not been evaluated, as they would imply another

Chapter 6. Resilient Training of ANNs 68

training methods themselves to cope with problems caused by the approximations, after

their occurrence.

Before a different representation is evaluated for the variable group which may

require more precision, it should be considered if, in some cases and to some extent, less

precision is in fact better. Not only some tests reported in this thesis, but also the literature

presented in Chapter 3, provide examples where, by a small margin, the approximated

implementation behaved better than the reference one regarding average test accuracy.

Even early experiments like the ones presented in (SIETSMA; DOW, 1991) and seminal

papers like (BISHOP, 1995) reinforce the confidence in systematic use of noise as a

regularization mechanism. For the datasets and training methods, where more precision

brings also more sensitivity to let noise become detrimental in the learning process, there

is a rich set of explicit regularization methods available in the literature.

If smaller numbers are indeed necessary in some cases during the back-propagation

phase and consequently in the gradient calculation processes, a simple way to avoid their

underflow would be to increase the value of the loss function, by multiplying it by a growing

factor as the training progresses. The actual loss value must not be calculated for the

training methods evaluated here, but the multiplication would increase its derivative, and

that would result in larger weight gradients. It must be taken into account that this global

method may lead to large weight updates in some cases since it can not selectively adjust

the gradients for different layers or nodes. This limitation becomes even more important

for Deep ANNs, due to the “vanishing gradient” problem.

As detailed in Section 4.1.1, the FP exponent is encoded in positive integer numbers,

shifted by a constant value. Choosing different bias values also changes the representation

limits, with only minor changes to the FP operations. To reach smaller values, the bias

should be increased, sacrificing the largest representable number. Table 6 details some

different absolute ranges for normal numbers provided by biases larger than the standard

one. As a general rule, if the smallest normal significant equals 1.0 (with all fractional bits

set to zero) and the largest one equals 1.9990234375 (with all fractional bits set to one),

the ratio between the maximum and minimum representable absolute numbers does not

change with the bias (Equation 6.4).

Table 6 – Different ranges provided by larger exponent biases

Bias Smallest Positive Largest Positive

19 1.9092× 10−6 8.1889× 103

23 1.1933× 10−7 5.1175× 102

27 7.4579× 10−9 3.1984× 101

31 4.6611× 10−10 1.9990× 100

Chapter 6. Resilient Training of ANNs 70

variability (accuracy standard deviation at each epoch) was observed in the trials with

bias = 24.

It is evident from these tests that the bias selection affects the training results even

with a more robust algorithm. Adjusting the precision on the Group 3 considering the

bias value as an extra independent hyper-parameter is not reasonable since the purpose of

the simplifications is to make the learning process more efficient (and hyper-parameter

search must be included in the training cost for a fair evaluation). Evaluating metrics, like

the frequency of underflows and overflows, may also have a considerable cost if applied

to all operations. Conversely, verifying only final values like weight changes at the end

of each training data batch may loose important information regarding cancellations, for

example. A light-weight heuristic to adjust the bias for separately for each neuron during

back-propagation is presented in Section 6.3. The method is completely automatic, not

requiring any a-priori search for hyper-parameter values.

6.3 Dynamic FP16 Bias Adjustments

As mentioned previously, the exponent representation in FP is shifted by a bias that

allows simple operations using the unsigned format and simple FP magnitude comparisons.

By choosing a central value (15) for the bias, the IEEE 754 standard creates an almost

symmetrical exponent range: [−15, 16]. An interesting effect of this decision, specially

useful for ANN inference, is that practically half the representable values are within −1.0

and 1.0. For ANN training, and other GD optimizations, as the process advances smaller

adjustments are performed until they stop improving the model. Higher exponents, in this

context, waste representation space for large magnitudes that never occur at the expense

of a reduced capacity to represent small numbers. For this reason, this thesis proposes a

simple mechanism to automatically shift the representation range for variables involved in

training, separately for each neuron, while keeping the inference variables in the standard

range.

The decision to keep the FP bias constant in the variables used for the inference

phase is mainly based on two aspects: it allows a direct deployment of trained models to

platforms that support the standard FP16 format; it reduces the computational cost of the

inference operations during training, by not requiring conversions. Additionally, it should

also be noted that standard FP16 is becoming a safe choice for the inference phase in

most datasets, and is even considered “too precise” in some cases (as seen in Section 3.1).

The bfloat16 format (detailed in Section 6.4), which is even simpler for mixed-precision

approaches, is also gaining momentum, reaching commercial solutions beyond the original

Google’s proposal: ARM and Intel are also adding support for this format.

For the dynamic range adjustment in the variables used only in training (Group

Chapter 6. Resilient Training of ANNs 71

3, as defined in Section 4.3), the FP exponent bias is set separately for each neuron,

and updated as the GD optimization progresses. The purpose of a completely automatic

method is mainly to avoid the creation of extra hyper-parameters, like error thresholds

that guide adjustments to the biases, and also adapt the network to changing precision

requirements. Basically three conditions could guide the adjustments: overflows (when

the result magnitude is larger then the representable limit), underflows (when the result

magnitude is smaller then the lower limit) and cancellation (e. g. when a small number

is added to a larger one, or subtracted from it, without changing its value). It should be

clear that by shifting the representation range to avoid overflows, underflows could become

more common. Also important is that cancellations among the more precise variables are

not directly affected by the bias shifts, as these errors are related to the significand bit

length, which is not changed, and the exponent difference, which is not affected.

Since acting on both overflows and underflows would lead to antagonistic decisions,

the proposed method is directed at quickly avoiding the occurrence of the first error

type. For each training mini-batch, a single overflow shifts the current neuron’s bias to

a smaller value (limited to 15), which increase the largest representable magnitude. In

contrast, a shift to a larger bias (limited to 31) only happens if no overflow is observed for

operations with that neuron in a whole epoch (the period that evaluates every training

example once). Acting on a mini-batch granularity is important as it avoids conversions of

temporary values (zero has the same representation, regardless of the bias), without taking

to long to act on overflows. If a finer granularity than a mini-batch was chosen, temporary

gradient accumulation and training parameters would have to be adapted before the weight

adjustment.

In the experiments, detailed in Section 6.4, this research found different behaviors

for these adjustments. With the MNIST and Thyroid datasets, the biases stabilize in

distributions (in the first case similar to a Gaussian), with centers not close to the limits.

Figure 25 depicts the FP bias distribution at the end of the training process. In the other

problems, all the neuron biases shift to the maximum value (the most precise one) at the

end of the training, and in some of them this process happens very early. This difference

reinforce the importance of an adaptive method as opposed to one that creates a new

(global or distributed) fixed hyper-parameter.

It should be noted that this proposed method, although experimented earlier, has

some similarities to the shared tensor exponent, presented in (KÖSTER et al., 2017), where

the authors also criticize methods that react to overflow thresholds, instead anticipating

them. The granularity of the adjustments (which in this thesis is per neuron, as opposed

to the data representation itself in (KÖSTER et al., 2017)), the fact that the proposed

method requires a single FPU type for all numbers and the simple adjustment mechanism

(quickly avoiding overflows, instead of trying to predict them as in (KÖSTER et al., 2017)),

Chapter 6. Resilient Training of ANNs 80

Some characteristics of posit16 are also present in the approximated FP16 format

used in this thesis: the same fixed bit length, absence of subnormals, no encoding for infinity,

saturation to the largest representable number and extended range (when compared to

IEEE FP16). Despite the similarities, there is a difference that may be crucial when gradient

descent optimization is considered: the representation error in the range responsible for

the smaller numbers is quite large when compared to normalized FP16 representation

(with dynamic bias). As an example, in posit16 there are only 16 representable values

between 1.0 ∗ 10−6 and 3.7 ∗ 10−9, which is the smallest non-zero magnitude.

The SoftPosit library 3, which was based on the same library (SoftFloat) used in this

thesis for the IEEE FP16 baseline, was integrated to the simulated environment described

in Chapter 4 for comparisons using the same graphical method. Several Posit formats and

operations are supported by the SoftPosit library. For consistency with other tests, the fixed

format with 16 bits was used for feed-forward and back-propagation operations, resulting

in the same memory usage. The detailed performance differences between posit16 and

the format proposed in this thesis (identified as soft-ap) are presented in Appendix B.

The main aspects can be summarized as follows:

• No inferior generalization performance was observed for soft-ap.

• Statistically significant worse results in generalization for soft-posit16 are present

in the experiments with 7 datasets (from ≈ 1% to ≈ 2%).

• In two datasets soft-ap presented better overfitting resistance, while in other two

soft-posit16 was superior in this aspect.

3 Source code available at: <https://gitlab.com/cerlane/SoftPosit>

81

7 Preliminary optimized implementations

Despite the obvious advantage in memory footprint when compared to mixed

precision solutions, and the resource reduction estimated with HLS in Sections 5.1.3 and

5.2.4, it is important to verify the practicality of real implementations. The approximations

and methods proposed in Chapters 5 and 6 are implementation agnostic, since the concepts

could be realized in FPGAs, ASICs or in fully customized ICs.

The impact of higher level approximations was evaluated on a widely used ARM

processor for embedded projects and the results are presented in Section 7.1. Due to

the low cost and faster development cycle, an ARM-FPGA hybrid platform was used to

explore practical implementation concepts for an ANN accelerator. This viability analysis

is presented in Section 7.2.

7.1 Exponential Approximation with Hardware IEEE FP16

The Broadcom SoC (System on Chip) BCM2837 includes four ARM Cortex A53

cores. These CPUs support IEEE FP16 as a storage format and provide conversion

instructions to allow the 32 bits FPUs to be used efficiently. Throughout this Section,

all references of FP16 and FP32 refer to the native support provided by this CPU, but

even with hardware conversion instructions there is a considerable procesing overhead in

using the reduced format. This impact is clearly noticeable in Table 7, where the average

training times (in seconds) for the reference FP32 implementation are presented in the

fp32fp32 column. The fp16fp16 presents the training times for the implementation that

use the FP16 storage format for all variables, thus demanding conversions every time a

floating point is read from or written to RAM to perform operations. The implementations

in both columns use precise exp() and sqrt() operations (provided by the standard math.h

library), and the second one uses the VSQRT hardware instruction while the first one is

implemented in software. The use of FP16 for all variables implies the largest memory

usage reduction (50% less space required for variables converted from FP32 to FP16) but,

as detailed next, the mixed precision savings may approach this figure for large datasets.

Regarding CPU usage, code profiling showed that computational cost was more relevant

in the inference phase than in back-propagation, and the exp() function was one of the

main causes.

The fp32fp16 column presents the training times for implementations which use

a mixed precision approach: back-propagation, gradient accumulation and weight updates

are performed in FP32 while inference data and operations use FP16. Both approximations

for the exp() and sqrt() (presented in Sections 5.2.1 and 5.2.3, respectively) operations

Chapter 7. Preliminary optimized implementations 84

SIMD), without impact on accuracy (since mixed precision is becoming a de-facto standard

for such architectures). The experiments presented in this section show evidences which

indicate that DL/ML problems based on larger datasets may benefit from the proposed

higher level function approximations in the conditions analyzed. This improvement was

achieved using native IEEE FP16 representation, without the other proposed FP16

approximations.

7.2 Implementation of Approximated FP16 Operations in FPGA

Preliminary analysis of the complexity reduction obtained from FP16 hardware

implementation, presented in Sections 5.1.3 and 5.2.4, provided evidence to support the

claim that the approximate behavior requires considerable less resources for FP operations

and complex functions. Synthesizing hardware based on source code for generic processors,

or any form of High Level Design (HLD), has the obvious advantages of reducing design

effort and increasing confidence in the generated modules. Conversely, it is not unexpected

that this approach results in less efficient resource usage in the final hardware device, even

if it is based on a low level language like C.

Project flows for more efficient hardware designs can be very different depending

on the final target (e. g. custom ICs, ASICs or FPGAs) but, it is important to test the

implementation in at least one of these options. Mainly for its relatively low cost and

short development/test/improve cycles, FPGAs are very popular for such prototyping.

This option received one more incentive, as the main manufacturers started to offer

programmable hardware integrated with generic processors, internally connected by high-

speed buses and direct access to external memory.

The Xilinx Zynq R©-7000 family integrates ARM R© processor cores with an FPGA

fabric. This architecture is particularly appropriate for this problem, since the CPU can be

dedicated to higher level tasks, while exporting specific (highly parallelizable) procedures to

be accelerated in the FPGA. Testing is also facilitated, since code running in the processor

can use the IEEE compliant FP instructions to verify the FPGA implementation.

The chosen model is the xc7z020clg484, which contains the resources summarized

next. It is clear from these specifications that the device has a CPU powerful enough to

run a full operating system but the programmable hardware, although powerful, is not

among the high-end devices from the same manufacturer.

• CPU dual-core ARM R© Cortex R©-A9 (ARMv7-A architecture)

• FPGA Artix R©-7 with:

– 53.200 Look-Up Tables (LUTs).

Chapter 7. Preliminary optimized implementations 85

– 106.400 Flip-Flops (FFs).

– 140 RAM units with 36 KiB each (4.9 MiB in total).

– 220 arithmetic processors (DSPs).

7.2.1 Preliminary Floating Point Unit

Choosing a good comparison benchmark is important to evaluate the impact of the

variable bias approach. The IEEE FP standard does not detail how the FPUs should be

designed, and the optimized implementations are active research and development topics.

For this reason, there are no standard or reference implementations of either FP32 or

FP16 units. The main FPGA manufacturers provide configurable FP IPs optimized for

their products, but their closed form would not allow customizations.

As mentioned in Section 5.1.2, ignoring sub-normal exceptions is the rule in FPGA

FP implementations, which excludes the most relevant simplification from the IEEE stan-

dard comparison baseline. From the two mentioned open source options, VFloat (WANG;

LEESER, 2010) is chosen instead of FloPoCo (DINECHIN; PASCA, 2011), mainly due to

its clear, modular and standard design. Additionally, the second one is a code generation

tool for specific FPGA models, and uses a different representation format (exceptions are

encoded as separate signals).

Two common targets for ANN accelerators, due to their parallelization capabilities

and relevant performance impact, are convolutions (which are not covered in this thesis)

and FMA/FMAC operations. The two base operations to implement these fused-multiply-

add modules were chosen as the base units for comparison, merged in a simple FPU. The

exponential approximation could later use the separate multiplication for an implementation

focused on space saving. The square root approximation would not provide a fair comparison

to VFloat since even its HLS implementation is very small and the counterpart would require

merging the division and square root modules. Under these conditions, the implementation

and analysis that follows are based on this simple two-operations FPU.

The first attempted approach was to use VFloat as a base VHDL implementation

and simplify it to obtain some of the approximation gains. Despite initial satisfactory

results regarding size reduction, this modification was abandoned for two reasons: it

was not possible to reduce the architecture depth (the amount of sequentially connected

modules), without practically re-writing it, to optimize Flip-Flop usage; stress tests showed

some 1-bit round errors. The final implementation for the two main operations (addition

and multiplication) is an asynchronous VHDL code, without sequential stages, written

from scratch and fine-tuned to catch rounding errors larger than half LSB, including

flushes to zero and overflows (which are saturated in the approximated implementation,

as described in Chapter 5). The two operations were merged in a simple FPU, without

Chapter 7. Preliminary optimized implementations 86

sharing the common modules (e. g. normalization and rounding), for a fair comparison

with the VFLoat counterparts.

The sequential logic which is saved from the FPUs is available to be dedicated to the

processing of different neuron layers with the same floating point hardware or implementing

the control logic that will manage the inference and back-propagation processes. Since

layers are not simultaneously activated, pipelining different training samples in the same

batch would be an option, but it may be expensive in terms of memory usage in this

application. For the back-propagation phase, intermediate values must be stored for the

gradient calculations during each batch. Using FFs for a pipelined FPU would obviously

increase the throughput but would require even more complex control circuits.

Using the Xilinx Vivado to perform a post-implementation timing simulations for

the approximated multiplication circuit with dynamic bias resulted in latencies from 14 to

18 ns with different operands. For the addition operation, delays from 20 to 24 ns were

found. These figures would lead to a worst case throughput in the order of 40 million FP

operations per second in each FPU. Enabling the usage of DSPs in the synthesis of the

multiplication circuit resulted in slightly reduced delays: from 13 to 16 ns. Even if enabled,

the addition synthesis was performed without DSPs.

Table 9 presents the comparison of the implemented modules with the baseline.

RAM usage, equal to zero in all designs, is omitted. DSP usage was explicitly disabled

in the synthesis tool to allow the results to be extrapolated to other platforms. Since

both approaches are fully parameterizable, FP32 representations, with 8-bits exponents

and 23-bits significands are also included as references to evaluate the gain from a mixed

precision solution. The lines marked with VFLoat refer to the simple FPU previously

described, using the modules from this open source reference. The lines marked with FP

Approx. refer to the implementation proposed in this thesis, but the adjustable FP bias

(designed as an extra operand input) is only enabled in the implementation presented in

last line, marked with “+ Bias”.

Format (exp. bits, sig. bits) FPU LUT FF

FP32 (8,23)
VFloat 1195 584
FP Aprox. 1164 2

FP16 (5,10)
VFloat 386 305
FP Aprox. 421 2
FP Aprox. + Bias 422 2

Table 9 – Comparison of FPGA resources for the VFloat based FPU with two-operations
(multiplication and addition) the respective approximated implementations.

Analyzing the resource usage of a single FPU in the context of the chosen Zynq

device, it can be seen that it uses only ≈ 0.79% of the available LUTs. Even without

considering that a specific synthesis would reduce this figure in favor of the use of DSP

Chapter 7. Preliminary optimized implementations 87

modules, it is clear that there is room for a considerable amount of parallel operations. The

synthesis for the FP32 format indicated a ≈ 2.6% reduction in LUTs with the approximated

implementation, but the reduced FP16 FPU was ≈ 9.3% larger than its baseline. This

difference will be further analyzed in Section 7.2.3, where a device specific synthesis is

performed.

In Chapter 5, Tables 5 and 4 provided comparisons resource usage using HLS and

similar baselines to show the effect of the proposed approximations in implementation

agnostic modules. Evaluating the feasibility of a simple FPU implemented directly in

VHDL, targeting an FPGA with enough room for many parallel operations, is certainly

an assuring first step for a full implementation. This also adds evidence to the lack of

efficiency of using HLS for complex modules. Despite these results, for a full realization of

this acceleration, many aspects related to the chosen platform must be analyzed.

All parameters should fit in the internal RAM to reduce the communication between

the processors and the FPGA. It is worth noting that LUTs can also be used as RAM,

but the amount of available memory is only appropriate to simpler problems, which

are commonly related to the embedded systems. Despite this limitation, the amount of

FPGA memory blocks provided by the Zynq device should not be considered too small for

practical applications. The recently released Sipeed M1/M1W “AI Processor” 1, includes

2 MiB of RAM for its CNN (Convolutional Neural Network) accelerator while the other

6 MiB are used by two 64 bits RISC-V cores.

There are considerable differences between the operations in the input layer (which

receives the data examples sequentially from the interconnection bus), the hidden layers

(which receive all the inputs simultaneously) and the output layer (which must calculate

the output error and start the back-propagation process). As a next step in this viability

analysis, Section 7.2.2 proposes a mechanism to create memory mapped blocks to be used

as separate and distributed storage for different ANN layers in the specific ARM-FPGA

device being considered.

7.2.2 Communication between CPU and FPGA

Very simple ANN architectures for FPGA have been proposed, like the one

in (SAHIN; BECERIKLI; YAZICI, 2006), with a single hidden layer with three neu-

rons, using FP32 FPUs. The paper (HIMAVATHI; ANITHA; MUTHURAMALINGAM,

2007) presented a slightly larger one, with up to three hidden layers with 5 neurons

each, using more restricted fixed point arithmetic (mixing 9, 17 and 25 bits for different

parameters). Recently, accelerating convolution operation is becoming more common, like

seen in (ZHANG et al., 2015a) and (QIU et al., 2016), since practical results with popular

benchmark datasets are achievable. These accelerators allow the offloading of specific tasks
1 Sipeed M1/M1W with Kendryte’s K210 AI chip: <https://wiki.sipeed.com/en/maix/module/m1.html>

Chapter 7. Preliminary optimized implementations 88

to the FPGA while the higher level (and more complex) training process is implemented

in a general purpose processor. Vendors like Intel and Xilinx have been offering integrated

CPU-FPGA devices, connected by specific buses, which must be used efficiently in a full

implementation. This Section evaluates one of these interconnection mechanisms, allowing

a full implementation which could be based on the modified FANN library, described in

Chapter 4, offloading the FP16 operations to the FPGA.

The Xilinx Zynq R©-7000 integrated IC provides a high performance standard com-

munication bus between the CPU and the FPGA: the Advanced eXtensible Interface

(AXI), which is part of the ARM Advanced Microcontroller Bus Architecture 4. Xilinx

has chosen 2 AXI as a standard interface for its IP (Intellectual Property) blocks, and

provides modules to implement the following communication methods:

AXI4-Lite the simplest memory mapped interface, using fewer signals and less logic,

requiring each data transfer to be associated with its respective address

AXI4-Full achieves higher throughput using more signals and logic for state control,

allowing burst transfers (sequenced data associated with a single base address)

AXI4-Stream provides a data-flow mechanism, without explicit memory mapping (with

extra modules is used to implement asynchronous DMA transfers)

Due to its simplicity, AXI4-Lite was used for the tests during the implementations

presented in Section 7.2.1. Conversely, the ANN accelerator should use a more efficient

method for data transfer since the data presented in the inputs is organized as a vector,

always with the same size and order. That favors the “Full” interface when compared

with the “Lite” one, but does not justify the extra cost (both in FPGA resources and

CPU code) to handle asynchronous DMA transfers. Without mini-bath parallelization or

pipelining, ANN training is synchronous, since the error obtained from one input must be

back-propagated before the next one is processed.

Due to the fact that AXI is a master-slave point-to-point interface, Xilinx provides

an “AXI SmartConnect” module, which transparently maps several independent slave

modules to a single master. Each slave module has a relatively small mapped memory

limit (1 KiB, organized as 256 32 bits words), viewed as a different base address vector

from the application code running in the CPU. If memory usage can be divided between

read-only and write-only blocks, this limit can be doubled. Figure 41 presents a block

diagram with two slave modules: each one is an instance of the same user defined IP (fully

customizable), with the maximum supported amount of internal read/write memory (the

FPU was not integrated in this experiment).
2 Xilinx AXI Reference Guide:<https://www.xilinx.com/support/documentation/ip_documentation/

ug761_axi_reference_guide.pdf>

92

8 Conclusions and Future Directions

In this Chapter the main achievements and limitations of the research conduced for

this thesis are summarized in Section 8.1. Most of the contributions of this research have

been published in the paper (TORRES; TORRES, 2019). A few more investigations that

are worth analyzing, possibly still in the simulation environment, are listed in Section 8.2.

Section 8.3 discusses the plans and possible challenges regarding the implementation of

the adaptive training methods in FPGAs. The final remarks and conclusions about the

status of this work close this document in Section 8.4.

8.1 Analysis of the current status

Early in this research an investigation method was defined to focus the comparisons

on the possible effects that different precisions could have on training performance. Simple

comparisons of final test accuracies would hide different convergence trajectories and

possible effects of increased generalization, commonly found in approximated solutions.

To avoid loosing relevant information in unbalanced datasets, the average class accuracy

was initially used instead of the global one. This was further improved to the geometrical

mean, which penalizes even more the minority class poor performance due to “catastrophic

forgetting” and also in the beginning of the training process. In every comparison, the

same structures (connections, nodes per layer, activation and loss functions), weight

initializations, hyper-parameter adjusts were the same and even the pseudo-random training

examples presentation order was preserved. This methodology allowed the verification of

relevant effects that helped considerably in the investigations.

The first comparison reduced the floating point precision from FP64 to FP16 using

a simple GD method for training. One of the datasets presented considerable performance

decrease in the lower precision tests and further analysis indicated that the subnormal

range of the standard FP16 was easily reached in these trials. Additional simplifications to

the FP16 arithmetic were presented and approximations for the exponential and reciprocal

square root functions were adapted to this reduced FP format. A new approximation

for the division by the square root was also proposed. When compared to the standard

FP16 representation, no evidence of differences in the performance was found between the

two implementations. The approximated FP16 software implementation, based on native

integer operations, resulted in a ≈ 53% smaller compiled binary when compared to the

standard one. High level synthesis was used to migrate the FP16 implementations to an

FPGA, which allowed the verification that the space gains were still significant for the

basic arithmetic operations and also for the complex functions.

Chapter 8. Conclusions and Future Directions 93

Regarding the adaptive training algorithms, the first step was the addition of a

standard momentum term. This modification provided better accuracy results than regular

GD. Despite this, the new term was still not able to provide equivalent results between

FP64 and the approximated FP16 in one dataset. For simpler datasets, which allow

full-batch training, RProp was evaluated, but could not achieve equivalent performance

for all tested problems without modifications and new hyper-parameters. As an option for

large datasets, RMSProp was also tested, with minor modifications, and presented good

results regarding convergence speed, accuracy and stability. Despite these results, a method

to provide equivalent behavior with unmodified training algorithms was proposed. This

feature consisted in an automatic and light-weight method to change the representation

range of FP values in Group 3, related to back-propagation, for each neuron, by adapting

the FP bias value. This mechanism provided comparable accuracy results without relying in

the modifications in the training algorithms to handle “vanishing gradient” and underflow

problems. The full method with the dynamic FP bias was later tested with a larger set

of unbalanced problems, including comparisons with the recently proposed bfloat16 and

posit16 formats, achieving excellent results.

Despite the good results it should be noted that in some cases the proposed

method has shown less resistance to overfitting. This characteristic would not affect a full

implementation with specific regularization techniques, since the training process would

stop before the generalization is compromised. In fact, it could be considered an evidence

for the resilience of the proposed method, which does not stagnate the learning process

when gradient values become to low, and continues to improve the training error beyond

the point of best generalization. A discussion about future works related to regularization

can be found in Section 8.2.2, but it is an important note for this Section to observe that

the current status of equivalence, without relying on specific training algorithms, may

indicate that further approximations are still possible.

The main limitation of the current full implementation is the training time. Emulat-

ing all FP arithmetic operations with native integer instructions in a general purpose CPU

is extremely flexible for development purposes but it increases training time by an order of

magnitude when compared to native FP instructions. A partial speedup can be obtained

by using the approximated FP16 only for storage and implementing the FP operations

using native instructions. Unfortunately this is still 4 to 5 times slower than a fully native

FP implementation. All the time measurements just mentioned were performed with the

MNIST dataset, which can be considered simple when compared to recent Deep Learning

applications, with large datasets. For smaller models, more frequently found in embedded

platforms, the first step to an optimized accelerator in FPGAs was realized, with a VHDL

implementation of a simple ALU. A comparison of the resource usage confirmed that

the final design, with variable FP bias, is comparable to a reference in the literature in

combinational logic, but practically reducing to zero the cost in sequential logic, due to its

Chapter 8. Conclusions and Future Directions 94

architecture. With a specific CPU/FPGA IC as an example, a basic structure for a fully

connected ANN was synthesized, with promising results regarding the amount of used

resources and their scalability to larger network structures.

8.2 Future Improvements

The investigation method detailed in Section 8.1 will not be adequate for a statisti-

cally significant comparisons to other approaches in the literature. For this to be possible a

full training method must be implemented to stop the learning process and provide a final

test accuracy for each trial. Besides this required change, other possible improvements may

be analyzed, and are detailed in this Section. It is important to note that these proposals

may be attempted after the hardware implementation, which is discussed in Section 8.3.

8.2.1 Training Methods

The RProp algorithm may be considered to have a limited reach for complex

problems, due to its intrinsic dependency on full-batch training. Conversely, its simplicity

and resiliency to avoid an expensive hyper-parameter search deserve extra efforts which

could allow its reliable use with approximated methods. The iRProp- variation, as an

example, presents the desirable characteristics of not requiring the actual calculation of

the loss function value and also performing its weight adjustments without depending on

the precise value of the gradient, but relying only in its sign. The initial idea of restarting

the learning process for specific weights may be revisited and improved for more aggressive

approximated formats.

A modified version of RMSProp was proposed by adding a momentum term to the

“fall-back” scenario described in Section 6.1.3, but equivalent convergence performance was

later obtained without relying on this feature (due to the dynamic FP bias adjustments).

This mechanism may have its effectiveness reevaluated with more aggressively approximated

formats, as a method to recover from the situations where small gradient values are flushed

to zero, harming the fine-tuning phase of the learning process.

If the opportunity to evaluate other training algorithms is presented, another

adaptive proposal with similar resource usage to RMSProp (a single extra parameter

for each weight) is Adagrad (MUKKAMALA; HEIN, 2017), which also shares the same

division by square root approximation already implemented. More complex options in

terms of resource usage (both memory and computing), like Adam (KINGMA; BA, 2014),

may also be studied but that could be postponed as a possible improvement after the full

FPGA implementation, if the available hardware capabilities allow this extra demand.

Chapter 8. Conclusions and Future Directions 95

8.2.2 Regularization

Regularization was explicitly excluded in the experiments as a mechanism to

improve the chance of better generalization capabilities (due to limited precision) being

observable. This effect has been verified with relevant magnitudes in specific cases, which

means that more precision in these conditions resulted in slightly worse results. A fully

implemented training algorithm will include a form of regularization, which may have

beneficial effects also in these cases.

It is a well known fact (DENIL et al., 2013) that complex ANN models are frequently

over-parameterized, which means that not only they can be simplified after training but

also have better resilience to approximations (as seen in Section 3.1). Regularization

provides a way to avoid the inherent overfitting tendency in these structures. This feature

may be implemented by, for example: stopping the learning process early (based on

a separate validation dataset); reducing the model complexity (without affecting the

maximum accuracy or convergence capabilities); adding a penalization to large weights in

the loss function (method known as Weight Decay). A cost evaluation of such approaches

should be performed in the FPGA implementation.

Implementing the bias adjustments associated to an efficient regularization method,

like DropOut (SRIVASTAVA et al., 2014), may be able to avoid the occasional negative

effects regarding the overfitting resistance. Batch Normalization (IOFFE; SZEGEDY,

2015) is also a promising strategy to avoid drastic changes in the value ranges during

training that could alter the ideal bias selection. By inserting normalization layers before

the non-linearities, the network calculates the mean and variance for each input dimension

within a mini-batch. After this procedure, the inputs are normalized and may be shifted

and scaled by learnable parameters, so that each layer may adapt to different means and

standard deviations using a standard back-propagation process. The authors claim that

the method allows much higher learning rates, is more robust to bad initializations and

even provides regularization. Unfortunately, the cost of this method is considerable and

this may affect the feasibility of a full hardware implementation.

Stochastic rounding has received a lot of attention recently, when approximate

computing techniques are used for training ANNs to solve problems with large datasets,

without resorting to mixed precision (DALLY, 2015). The noise added to the training

process, more relevant at the fine tuning stage, has been related to better generalization.

This technique has the advantage to be directly related to the arithmetic operations

implementation, and not to the training method.

In the AC literature related to ML, it is quite common to see slightly better

generalization results for the approximated method being related do “pseudo-random”

quantization noise. Adding noise to training (to the datasets, to weight values or even

Chapter 8. Conclusions and Future Directions 96

to their adjustments) has been known for decades as a way to improve generalization. A

good theoretical and generic analysis of quantization errors as a way to automatically

provide this noise is still required. Other ways to explore these results are also possible:

cancellations may impede small adjustments to weights, limiting their growth, which is

also a regularization technique; weights with small values may loose their effectiveness

since multiplications by other small values may be flushed to zero (this could be compared

to a form of Dropout or Pruning, also affecting generalization).

8.3 FPGA Implementation

In order to validate the results obtained in this research, the presented methods

should be implemented in FPGA. The intrinsic characteristics of FPGAs have been

explored in efficient ANN implementations for a long time, e.g. (BOTROS; ABDUL-AZIZ,

1994). As these components evolve and increase their capacity, their applicability to more

complex problems becomes more evident, like recently shown in (LIU et al., 2017). When

compared to the optimizations proposed in this thesis, it should be noted that this latest

example is focused on the inference phase, which allows significant approximations on

parameters, inputs and internal operations.

This research is focused on the learning phase, which includes the inference with

higher precision and adds considerable complexity to the system for handling all the

operations involved in back-propagation and parameter adjustments. This extra resource

usage certainly limits the ANN structure and model size but the intrinsic parallelization of

FPGAs can be fully explored. The implementation should ideally limit the communications

between the FPGA and external memory for maximum efficiency. For this reason, not

only the logic elements required to implement arithmetic operations but also the memory

blocks used for parameters and internal variables should be carefully considered.

Key concepts for a specific IC which merges an FPGA to two ARM cores were

presented in Section 7.2. This device is an example of a recent trend of encapsulating

FPGAs and CPUs in the same package, which should provide efficient solutions for

embedded platforms. In these cases, even if the FPGA does not have the capacity to

implement larger models, the flexibility of a general purpose CPU closely integrated with a

reconfigurable and highly efficient parallel hardware may represent excellent optimization

possibilities for several applications. Since one of the targets for the approximations

proposed here are the embedded applications, such devices are an attractive option for

the hardware realization and the preliminary results presented in this thesis allow an

optimistic expectation on the complexity of real problems which can be optimized.

Depending on the FPGA capacity, the ANN training process provides even more

parallelization opportunities than the inference phase. If all the nodes and parameters fit

Chapter 8. Conclusions and Future Directions 97

in the component and a mini-batch process is performed, not only the neurons in each

layer may operate in parallel but also sequential layer operations may be pipelined. In this

case, the inputs and the intermediate activations must be temporarily stored to allow the

back-propagation calculations. Most of the datasets used in this work require simple ANNs

with two small fully connected hidden layers. For this reason, and comparing with recent

Deep ANN research on FPGAs, high-end devices are not expected as a requirement to

reproduce in hardware most of the results presented in this thesis.

Even simple architectures like the one proposed in (ÇAVUŞLU et al., 2011) may

provide relevant results when a specific baseline for comparison is improved, which in

this case is (SAVICH; MOUSSA; AREIBI, 2007). Deep ANNs are certainly an interesting

topic, but their full implementation is not required in FPGA accelerators. In (ZHANG et

al., 2015a), for example, only the convolution operations are optimized and the authors

used High-Level Synthesis and FP32 representations in their approach. There are many

possibilities to explore if the implementation is limited by a hardware with a lower

specification grade.

8.4 Conclusion and Final Remarks

As ML applications currently demand efficient implementations both in embedded

low power platforms and in high-end massively parallel solutions, the research community

has been offering several approaches to implement such optimized systems. Neuromorphic

Computing, which regained momentum, and Quantum Computing may lead to new

paradigms for the field in the medium and long terms. For the short term, the variety of

recent solutions applicable to the current technology of digital circuits (FPGAs, GPUs

and ASICs) confirms that the state-of-the-art in this area is still evolving quickly.

This research approached the problem of implementing efficient and reliable ANN

training methods by applying AC techniques to reduce the complexity of hardware

implementations. Besides the optimizations on arithmetic operations, modifications to

adaptive learning methods were proposed and evaluated as mechanisms to cope with the

small values found during the training process. Despite the good results, an approach

that is more in line with the hardware approximations was developed: a fully automatic

and light-weight mechanism to adapt the FP representation range of each neuron during

training. In this Chapter, several possible venues for further improvements and the final

FPGA implementation were discussed. Despite the variety of possibilities, the current

status of the work, supported by the simulation results and preliminary FPGA syntesis,

indicates a promising scenario for the hardware implementation.

Chapter 8. Conclusions and Future Directions 98

8.5 Contributions

During the time dedicated to this research, the following contributions were pub-

lished in peer-reviewed publications and conferences:

• Ferreira Torres, Vitor Angelo; Torres, Frank Sill. A Comparative Analysis

of Neural Networks Implemented with Reduced Numerical Precision

and Approximations. In: ENIAC - 2017 XIV Encontro Nacional de Inteligência

Artificial e Computacional, Uberlândia, October 2-3-4-5, 2017. p. 193-204.

• Eduardo Ribeiro ; Ferreira Torres, Vitor Angelo ; Brayan Jaimes ; Mateus Braga ;

Elcio Shiguemori ; Haroldo Velho ; Luiz Torres ; Antônio Braga. Weightless neural

systems for deforestation surveillance and image-based navigation of

UAVs in the Amazon forest. In: ESANN2019 27th European Symposium on

Artificial Neural Networks, 2019, Bruges, Belgium, April 24-25-26, 2019. p. 153.

• Vitor Torres; Brayan Jaimes; Eduardo Ribeiro; Mateus Braga; Elcio Shiguemori;

Haroldo Velho; Luiz Carlos B Torres; Antonio Braga. Combined Weightless

Neural Network FPGA Architecture for Deforestation Surveillance and

Visual Navigation of UAVs, Engineering Applications of Artificial Intelligence,

Elsevier, 2020, Qualis A1, DOI: 10.1016/j.engappai.2019.08.021

• Ferreira Torres, Vitor; Torres, Frank Sill. Resilient Training of Neural Net-

work Classifiers with Approximate Computing Techniques for Hardware-

optimized Implementations, Computers & Digital Techniques, IET, 2019, Qualis

B1, DOI: 10.1049/iet-cdt.2019.0036. Temporary URL: <http://ietdl.org/t/UiWFdb>

99

Bibliography

AGARWAL, V. et al. Clock rate versus ipc: The end of the road for conventional
microarchitectures. In: ACM. ACM SIGARCH Computer Architecture News. [S.l.], 2000.
v. 28, n. 2, p. 248–259. Cited on page 1.

AGRAWAL, A. et al. Approximate computing: Challenges and opportunities. In: IEEE.
Rebooting Computing (ICRC), IEEE International Conference on. [S.l.], 2016. p. 1–8.
Cited 2 times on pages 1 and 28.

ALBALAWI, H.; LI, Y.; LI, X. Computer-aided design of machine learning algorithm:
Training fixed-point classifier for on-chip low-power implementation. In: IEEE. Design
Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE. [S.l.], 2014. p. 1–6. Cited
3 times on pages 24, 28, and 29.

ALEKSANDER, I. Self-adaptive universal logic circuits. Electronics Letters, IET, v. 2,
n. 8, p. 321–322, August 1966. ISSN 0013-5194. Cited on page 9.

ALEKSANDER, I.; THOMAS, W.; BOWDEN, P. Wisard: a radical step forward in
image recognition. Sensor review, MCB UP Ltd, v. 4, n. 3, p. 120–124, 1984. Cited 2
times on pages 9 and 18.

ALTERA. Floating-Point IP Cores User Guide. [S.l.], 2016. Altera Corporation (now part
of Intel). Cited on page 47.

ANDRYSCO, M. et al. On subnormal floating point and abnormal timing. In: IEEE.
Security and Privacy (SP), 2015 IEEE Symposium on. [S.l.], 2015. p. 623–639. Cited on
page 32.

ANGUITA, D.; BONI, A.; RIDELLA, S. A digital architecture for support vector
machines: theory, algorithm, and fpga implementation. IEEE Transactions on neural
networks, IEEE, v. 14, n. 5, p. 993–1009, 2003. Cited 3 times on pages 19, 28, and 29.

ANGUITA, D.; BONI, A.; RIDELLA, S. Svm learning with fixed-point math. In: IEEE.
Neural Networks, 2003. Proceedings of the International Joint Conference on. [S.l.], 2003.
v. 3, p. 2072–2076. Cited 4 times on pages 15, 19, 28, and 29.

ANGUITA, D. et al. Feed-forward support vector machine without multipliers. IEEE
Transactions on Neural Networks, IEEE, v. 17, n. 5, p. 1328–1331, 2006. Cited 3 times on
pages 19, 28, and 29.

ARNOLD, M. et al. On the cost effectiveness of logarithmic arithmetic for backpropagation
training on simd processors. In: IEEE. Neural Networks, 1997., International Conference
on. [S.l.], 1997. v. 2, p. 933–936. Cited 3 times on pages 20, 28, and 29.

AYINALA, M.; PARHI, K. K. Low-energy architectures for support vector machine
computation. In: IEEE. Signals, Systems and Computers, 2013 Asilomar Conference on.
[S.l.], 2013. p. 2167–2171. Cited 3 times on pages 20, 28, and 29.

BAILEY, T. M. Convergence of rprop and variants. Neurocomputing, Elsevier, v. 159, p.
90–95, 2015. Cited on page 64.

Bibliography 100

BHARATI, K. S.; JHUNJHUNWALA, A. Implementation of machine learning applications
on a fixed-point dsp. In: IEEE. Electrical and Computer Engineering (CCECE), 2015
IEEE 28th Canadian Conference on. [S.l.], 2015. p. 1458–1463. Cited 3 times on pages
24, 28, and 29.

BISHOP, C. M. Training with noise is equivalent to tikhonov regularization. Neural
computation, MIT Press, v. 7, n. 1, p. 108–116, 1995. Cited on page 68.

BLEDSOE, W. W.; BROWNING, I. Pattern recognition and reading by machine. In:
ACM. Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference. [S.l.], 1959. p. 225–232. Cited on page 9.

BLINN, J. F. Floating-point tricks. IEEE Computer Graphics and Applications, IEEE,
v. 17, n. 4, p. 80–84, 1997. Cited on page 51.

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin
classifiers. In: ACM. Proceedings of the fifth annual workshop on Computational learning
theory. [S.l.], 1992. p. 144–152. Cited on page 19.

BOSMAN, H. H. et al. Anomaly detection in sensor systems using lightweight machine
learning. In: IEEE. Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on. [S.l.], 2013. p. 7–13. Cited 3 times on pages 23, 28, and 29.

BOTROS, N. M.; ABDUL-AZIZ, M. Hardware implementation of an artificial neural
network using field programmable gate arrays (fpga’s). IEEE Transactions on Industrial
Electronics, IEEE, v. 41, n. 6, p. 665–667, 1994. Cited 2 times on pages 9 and 96.

BURGESS, N. et al. Bfloat16 processing for neural networks. In: IEEE. Proceedings of the
26th Symposium on Computer Arithmetic. [S.l.], 2019. p. 88–91. Cited on page 61.

CASTRO, C. L. de. Novos critérios para seleção de modelos neurais em problemas de
classificação com dados desbalanceados. Tese (Doutorado) — Universidade Federal de
Minas Gerais - Programa de Pós-Graduação em Engenharia Elétrica, 10 2011. Supervisor:
Prof. Antônio de Pádua Braga. Cited on page 75.

CASTRO, H. A.; SWEET, M. R. Radiation exposure effects on the performance of an
electrically trainable artificial neural network (etann). IEEE transactions on nuclear
science, IEEE, v. 40, n. 6, p. 1575–1583, 1993. Cited on page 11.

CASTRO, H. A.; TAM, S. M.; HOLLER, M. A. Implementation and performance of
an analog nonvolatile neural network. Analog Integrated Circuits and Signal Processing,
Springer, v. 4, n. 2, p. 97–113, 1993. Cited on page 11.

ÇAVUŞLU, M. A. et al. Neural network training based on fpga with floating point number
format and it’s performance. Neural Computing and Applications, Springer, v. 20, n. 2, p.
195–202, 2011. Cited 2 times on pages 9 and 97.

CHANG, C.-C.; LIN, C.-J. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), Acm, v. 2, n. 3, p. 27, 2011.
Cited on page 19.

CHIPPA, V. K. et al. Analysis and characterization of inherent application resilience for
approximate computing. In: ACM. Proceedings of the 50th Annual Design Automation
Conference. [S.l.], 2013. p. 113. Cited 3 times on pages 23, 25, and 29.

Bibliography 101

CHIPPA, V. K. et al. Managing the quality vs. efficiency trade-off using dynamic effort
scaling. ACM Transactions on Embedded Computing Systems (TECS), ACM, v. 12, n. 2s,
p. 90, 2013. Cited 3 times on pages 23, 28, and 29.

CHO, K.-J. et al. Design of low-error fixed-width modified booth multiplier. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, IEEE, v. 12, n. 5, p.
522–531, 2004. Cited on page 20.

COATES, A. et al. Deep learning with cots hpc systems. In: International Conference on
Machine Learning. [S.l.: s.n.], 2013. p. 1337–1345. Cited on page 2.

COONEN, J. T. Underflow and the denormalized numbers. Computer, IEEE, n. 3, p.
75–87, 1981. Cited on page 31.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20,
n. 3, p. 273–297, 1995. Cited 2 times on pages 1 and 19.

COURBARIAUX, M.; BENGIO, Y.; DAVID, J.-P. Training deep neural networks with
low precision multiplications. arXiv:1412.7024 (Workshop contribution at ICLR 2015),
2014. Cited 3 times on pages 14, 28, and 29.

COURBARIAUX, M.; BENGIO, Y.; DAVID, J.-P. Binaryconnect: Training deep neural
networks with binary weights during propagations. In: Advances in Neural Information
Processing Systems. [S.l.: s.n.], 2015. p. 3123–3131. Cited 3 times on pages 15, 28, and 29.

DALLY, W. High-performance hardware for machine learning. NIPS Tutorial, 2015.
Cited on page 95.

DAS, D. et al. Mixed precision training of convolutional neural networks using
integer operations. Accepted Paper at the Sixth International Conference on Learning
Representations, 2018. ArXiv:1802.00930. Cited 3 times on pages 17, 28, and 29.

DENIL, M. et al. Predicting parameters in deep learning. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2013. p. 2148–2156. Cited on page 95.

DIAS, F. M.; ANTUNES, A.; MOTA, A. M. Artificial neural networks: a review of
commercial hardware. Engineering Applications of Artificial Intelligence, Elsevier, v. 17,
n. 8, p. 945–952, 2004. Cited on page 10.

DIAS, M. A.; SALES, D. O.; OSORIO, F. S. Automatic generation of luts for hardware
neural networks. Neurocomputing, Elsevier, v. 180, p. 108–120, 2016. Cited 2 times on
pages 26 and 36.

DINECHIN, F. D.; PASCA, B. Designing custom arithmetic data paths with flopoco.
IEEE Design & Test of Computers, IEEE, v. 28, n. 4, p. 18–27, 2011. Cited 2 times on
pages 47 and 85.

DRUMOND, M. et al. Training dnns with hybrid block floating point. In: Advances in
Neural Information Processing Systems. [S.l.: s.n.], 2018. p. 453–463. Cited 3 times on
pages 17, 28, and 29.

DUNNE, R. A.; CAMPBELL, N. A. On the pairing of the softmax activation and
cross-entropy penalty functions and the derivation of the softmax activation function. In:
Proc. 8th Aust. Conf. on the Neural Networks, Melbourne, 181. [S.l.: s.n.], 1997. v. 185.
Cited on page 26.

Bibliography 102

ESMAEELI, S.; GHOLAMPOUR, I. Reduced memory requirement in hardware
implementation of svm classifiers. In: IEEE. Electrical Engineering (ICEE), 2012 20th
Iranian Conference on. [S.l.], 2012. p. 46–50. Cited 3 times on pages 20, 28, and 29.

ESMAEILZADEH, H. et al. Dark silicon and the end of multicore scaling. In: ACM.
ACM SIGARCH Computer Architecture News. [S.l.], 2011. v. 39, n. 3, p. 365–376. Cited
on page 1.

FERNANDEZ-DELGADO, M. et al. Direct parallel perceptrons (dpps): fast analytical
calculation of the parallel perceptrons weights with margin control for classification tasks.
IEEE transactions on neural networks, IEEE, v. 22, n. 11, p. 1837–1848, 2011. Cited 3
times on pages 13, 28, and 29.

GEPPERTH, A.; HAMMER, B. Incremental learning algorithms and applications. In:
European Symposium on Artificial Neural Networks (ESANN). [S.l.: s.n.], 2016. Cited on
page 2.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics. [S.l.: s.n.], 2010. p. 249–256. Cited on page 35.

GOLDBERG, D. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., ACM, New York, NY, USA, v. 23, n. 1, p. 5–48, mar.
1991. ISSN 0360-0300. Disponível em: <http://doi.acm.org/10.1145/103162.103163>.
Cited on page 32.

GOODFELLOW, I. J. et al. Maxout networks. ICML (3), v. 28, p. 1319–1327, 2013.
Cited 3 times on pages 15, 28, and 29.

GUPTA, S. et al. Deep learning with limited numerical precision. In: ICML. [S.l.: s.n.],
2015. p. 1737–1746. Cited 3 times on pages 14, 28, and 29.

GUSTAFSON, J. The end of numerical error. In: ARITH 22. [S.l.: s.n.], 2015. p. 74.
Cited on page 79.

GUSTAFSON, J. L. The End of Error: Unum Computing. [S.l.]: Chapman and Hall/CRC,
2015. Cited on page 79.

GUSTAFSON, J. L. A radical approach to computation with real numbers. Supercomputing
frontiers and innovations, v. 3, n. 2, p. 38–53, 2016. Cited on page 79.

GUSTAFSON, J. L.; YONEMOTO, I. T. Beating floating point at its own game: Posit
arithmetic. Supercomputing Frontiers and Innovations, v. 4, n. 2, p. 71–86, 2017. Cited 3
times on pages viii, 78, and 79.

HAN, J.; ORSHANSKY, M. Approximate computing: An emerging paradigm for
energy-efficient design. In: IEEE. Test Symposium (ETS), 2013 18th IEEE European.
[S.l.], 2013. p. 1–6. Cited on page 1.

HAN, S.; MAO, H.; DALLY, W. J. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015. Cited 3 times on pages 16, 28, and 29.

Bibliography 103

HAN, S. et al. Learning both weights and connections for efficient neural network. In:
Advances in Neural Information Processing Systems. [S.l.: s.n.], 2015. p. 1135–1143. Cited
2 times on pages 16 and 61.

HASHEMI, S. et al. Understanding the impact of precision quantization on the accuracy
and energy of neural networks. arXiv:1612.03940 (Accepted for conference proceedings in
DATE17), 2016. Cited 3 times on pages 16, 28, and 29.

HAUSER, J. Berkeley SoftFloat. 2017. <http://www.jhauser.us/arithmetic/SoftFloat.
html>. Accessed: 2017-06-26. Cited on page 38.

HAYKIN, S. Neural Networks: A comprehensive foundation. 2. ed. [S.l.]: Prentice Hall,
1998. 842 p. ISBN 978-0132733502. Cited on page 9.

HENRY, G.; TANG, P. T. P.; HEINECKE, A. Leveraging the bfloat16 artificial
intelligence datatype for higher-precision computations. In: IEEE. Proceedings of the 26th
Symposium on Computer Arithmetic. [S.l.], 2019. p. 69–76. Cited on page 61.

HIMAVATHI, S.; ANITHA, D.; MUTHURAMALINGAM, A. Feedforward neural network
implementation in fpga using layer multiplexing for effective resource utilization. IEEE
Transactions on Neural Networks, IEEE, v. 18, n. 3, p. 880–888, 2007. Cited on page 87.

HINTON, G. E.; SALAKHUTDINOV, R. R. Reducing the dimensionality of data with
neural networks. science, American Association for the Advancement of Science, v. 313,
n. 5786, p. 504–507, 2006. Cited on page 12.

HINTON, G. E. et al. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv:1207.0580 (Technical report), 2012. Cited 3 times on pages 15, 28,
and 29.

HO, T. K. Random decision forests. In: IEEE. Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on. [S.l.], 1995. v. 1, p. 278–282. Cited
on page 1.

HOLLER, M. et al. An electrically trainable artificial neural network (etann) with 10240
floating gate synapses. In: International Joint Conference on Neural Networks. [S.l.: s.n.],
1989. v. 2, p. 191–196. Cited on page 10.

HUANG, J.; LACH, J.; ROBINS, G. A methodology for energy-quality tradeoff using
imprecise hardware. In: ACM. Proceedings of the 49th Annual Design Automation
Conference. [S.l.], 2012. p. 504–509. Cited 3 times on pages 22, 28, and 29.

IEEE. IEEE Standard for Floating-Point Arithmetic. [S.l.], 2008. IEEE Std 754-2008.
Cited on page 30.

IGEL, C.; HÜSKEN, M. Improving the rprop learning algorithm. In: ICSC ACADEMIC
PRESS. Proceedings of the second international ICSC symposium on neural computation
(NC 2000). [S.l.], 2000. v. 2000, p. 115–121. Cited 2 times on pages 42 and 64.

IOFFE, S.; SZEGEDY, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: BACH, F.; BLEI, D. (Ed.). Proceedings
of the 32nd International Conference on Machine Learning. Lille, France: PMLR,
2015. (Proceedings of Machine Learning Research, v. 37), p. 448–456. Disponível em:
<http://proceedings.mlr.press/v37/ioffe15.html>. Cited on page 95.

Bibliography 104

JIA, Y. et al. Caffe: Convolutional architecture for fast feature embedding. In: ACM.
Proceedings of the 22nd ACM international conference on Multimedia. [S.l.], 2014. p.
675–678. Cited on page 2.

JOULIN, A. et al. Efficient softmax approximation for gpus. In: International Conference
on Machine Learning. [S.l.: s.n.], 2017. p. 1302–1310. Cited on page 37.

JOUPPI, N. P. et al. In-datacenter performance analysis of a tensor processing unit.
arXiv:1704.04760 (To appear at the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 26, 2017.), 2017. Cited on page 2.

KHAN, F. M.; ARNOLD, M. G.; POTTENGER, W. M. Finite precision analysis of
support vector machine classification in logarithmic number systems. In: IEEE. Digital
System Design, 2004. DSD 2004. Euromicro Symposium on. [S.l.], 2004. p. 254–261.
Cited 3 times on pages 20, 28, and 29.

KHAN, F. M.; ARNOLD, M. G.; POTTENGER, W. M. Hardware-based support vector
machine classification in logarithmic number systems. In: IEEE. Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on. [S.l.], 2005. p. 5154–5157. Cited 3
times on pages 20, 28, and 29.

KIM, M.; SMARAGDIS, P. Bitwise neural networks. arXiv:1601.06071 (Proceedings of
the 31 st International Conference on Machine Learning, Lille, France, 2015. JMLR),
2016. Cited 3 times on pages 15, 28, and 29.

KINGMA, D.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. Cited 2 times on pages 42 and 94.

KÖSTER, U. et al. Flexpoint: An adaptive numerical format for efficient training of deep
neural networks. In: Advances in Neural Information Processing Systems. [S.l.: s.n.], 2017.
p. 1742–1752. Cited 4 times on pages 16, 28, 29, and 71.

KUSHNER, D. The wizardry of id [video games]. IEEE Spectrum, IEEE, v. 39, n. 8, p.
42–47, 2002. Cited on page 51.

LAWLOR, O. et al. Performance degradation in the presence of subnormal floating-point
values. In: Proc. Workshop on Operating System Interference in High Performance
Applications. [S.l.: s.n.], 2005. Cited on page 32.

LE, Q. V. Building high-level features using large scale unsupervised learning. In: IEEE.
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on. [S.l.], 2013. p. 8595–8598. Cited on page 2.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Nature Research, v. 521,
n. 7553, p. 436–444, 2015. Cited on page 2.

LI, H. et al. Training quantized nets: A deeper understanding. In: Advances in Neural
Information Processing Systems. [S.l.: s.n.], 2017. p. 5813–5823. Cited 3 times on pages
16, 28, and 29.

LICHMAN, M. UCI Machine Learning Repository. 2013. Disponível em: <http:
//archive.ics.uci.edu/ml>. Cited on page 42.

Bibliography 105

LIN, D. D.; TALATHI, S. S. Overcoming challenges in fixed point training of deep
convolutional networks. arXiv:1607.02241 (As “Fixed Point Quantization of Deep
Convolutional Networks” in Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR), 2016. Cited 3 times on pages 14, 28,
and 29.

LIU, Z. et al. Throughput-optimized fpga accelerator for deep convolutional
neural networks. ACM Trans. Reconfigurable Technol. Syst., ACM, New York,
NY, USA, v. 10, n. 3, p. 17:1–17:23, jul. 2017. ISSN 1936-7406. Disponível em:
<http://doi.acm.org/10.1145/3079758>. Cited on page 96.

LOMONT, C. Fast inverse square root. 2003. 12 p. Disponível em: <http:
//lomont.org/Math/Papers/Papers.php>. Cited on page 53.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, n. 4, p. 115–133, 1943.
Cited on page 6.

MEAD, C. Neuromorphic electronic systems. Proceedings of the IEEE, IEEE, v. 78, n. 10,
p. 1629–1636, 1990. Cited on page 1.

MEROLLA, P. A. et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, American Association for the Advancement
of Science, v. 345, n. 6197, p. 668–673, 2014. Cited on page 2.

MICIKEVICIUS, P. et al. Mixed precision training. In: . [S.l.: s.n.], 2018. ArXiv:1710.03740.
Cited 4 times on pages 17, 27, 28, and 29.

MISRA, J.; SAHA, I. Artificial neural networks in hardware: A survey of two decades of
progress. Neurocomputing, Elsevier, v. 74, n. 1, p. 239–255, 2010. Cited on page 61.

MITTAL, S. A survey of techniques for approximate computing. ACM Computing Surveys
(CSUR), ACM, v. 48, n. 4, p. 62, 2016. Cited 2 times on pages 25 and 29.

MUKKAMALA, M. C.; HEIN, M. Variants of rmsprop and adagrad with logarithmic
regret bounds. In: International Conference on Machine Learning. [S.l.: s.n.], 2017. p.
2545–2553. Cited 2 times on pages 66 and 94.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th international conference on machine learning (ICML-10). [S.l.:
s.n.], 2010. p. 807–814. Cited on page 26.

NANDAN, M.; KHARGONEKAR, P. P.; TALATHI, S. S. Fast svm training using
approximate extreme points. The Journal of Machine Learning Research, JMLR.org,
v. 15, n. 1, p. 59–98, 2014. Cited 3 times on pages 21, 28, and 29.

NEUMANN, J. V. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. Automata studies, v. 34, p. 43–98, 1956. Cited on page 1.

NISSEN, S. Fast Artificial Neural Network Library. 2012. <http://leenissen.dk/fann/wp>.
Accessed: 2017-06-26. Cited on page 38.

Bibliography 106

PODOBAS, A.; MATSUOKA, S. Hardware implementation of posits and their application
in fpgas. In: IEEE. 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). [S.l.], 2018. p. 138–145. Cited on page 79.

PRECHELT, L. et al. Proben1: A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, 1994. Cited on page 42.

QIU, J. et al. Going deeper with embedded fpga platform for convolutional neural
network. In: ACM. Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. [S.l.], 2016. p. 26–35. Cited on page 87.

REED, D. A.; DONGARRA, J. Exascale computing and big data. Communications of the
ACM, ACM, v. 58, n. 7, p. 56–68, 2015. Cited on page 2.

RIEDMILLER, M.; BRAUN, H. A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In: IEEE. Neural Networks, 1993., IEEE International
Conference on. [S.l.], 1993. p. 586–591. Cited on page 63.

ROSENBLATT, F. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, American Psychological Association, v. 65,
n. 6, p. 386, 1958. Cited on page 6.

RUMELHART, D. E. et al. A general framework for parallel distributed processing.
Parallel distributed processing: Explorations in the microstructure of cognition, v. 1, p.
45–76, 1986. Cited on page 7.

SAHIN, S.; BECERIKLI, Y.; YAZICI, S. Neural network implementation in hardware
using fpgas. In: SPRINGER. International Conference on Neural Information Processing.
[S.l.], 2006. p. 1105–1112. Cited on page 87.

SAKR, C. et al. Understanding the energy and precision requirements for online learning.
Reduced version accepted for The 42nd IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2017) as “Minimum Precision Requirements for
the SVM-SGD Learning Algorithm”, 2016. ArXiv:1607.00669. Cited 3 times on pages 21,
28, and 29.

SAKR, C. et al. Minimum precision requirements for the svm-sgd learning algorithm.
In: IEEE. Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on. [S.l.], 2017. p. 1138–1142. Cited on page 21.

SAVICH, A. W.; MOUSSA, M.; AREIBI, S. The impact of arithmetic representation on
implementing mlp-bp on fpgas: A study. IEEE transactions on neural networks, IEEE,
v. 18, n. 1, p. 240–252, 2007. Cited 2 times on pages 10 and 97.

SCHMIDHUBER, J. Deep learning in neural networks: An overview. Neural Networks,
v. 61, p. 85–117, 2015. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].
Cited on page 9.

SCHRAUDOLPH, N. N. A fast, compact approximation of the exponential function.
Neural Computation, MIT Press, v. 11, n. 4, p. 853–862, 1999. Cited 2 times on pages 26
and 51.

SIETSMA, J.; DOW, R. J. Creating artificial neural networks that generalize. Neural
networks, Elsevier, v. 4, n. 1, p. 67–79, 1991. Cited on page 68.

Bibliography 107

SRIVASTAVA, N. et al. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, v. 15, n. 1, p. 1929–1958, 2014. Cited 4 times on
pages 15, 28, 29, and 95.

SUTSKEVER, I. et al. On the importance of initialization and momentum in deep
learning. In: International conference on machine learning. [S.l.: s.n.], 2013. p. 1139–1147.
Cited on page 35.

TIELEMAN, T.; HINTON, G. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, v. 4,
n. 2, p. 26–31, 2012. Cited 2 times on pages 42 and 66.

TORRES, V. A. et al. Combined weightless neural network fpga architecture for
deforestation surveillance and visual navigation of uavs. Engineering Applications
of Artificial Intelligence, Elsevier, v. 87, p. 103227, 1 2020. Disponível em:
<https://doi.org/10.1016/j.engappai.2019.08.021>. Cited on page 18.

TORRES, V. F.; TORRES, F. S. A comparative analysis of neural networks implemented
with reduced numerical precision and approximations. In: 6th Brazilian Conference on
Intelligent Systems. [S.l.: s.n.], 2017. p. 193–204. Cited on page 26.

TORRES, V. F.; TORRES, F. S. Resilient training of neural network classifiers with
approximate computing techniques for hardware-optimised implementations. IET
Computers & Digital Techniques, IET, v. 13, n. 6, p. 532–542, 2019. Disponível em:
<https://doi.org/10.1049/iet-cdt.2019.0036>. Cited on page 92.

TRELEAVEN, P.; PACHECO, M.; VELLASCO, M. Vlsi architectures for neural networks.
IEEE micro, IEEE, v. 9, n. 6, p. 8–27, 1989. Cited on page 6.

VALLE, M. Analog vlsi implementation of artificial neural networks with supervised
on-chip learning. Analog Integrated Circuits and Signal Processing, Springer, v. 33, n. 3, p.
263–287, 2002. Cited on page 11.

VENKATARAMANI, S. et al. Scalable-effort classifiers for energy-efficient machine
learning. In: ACM. Proceedings of the 52nd Annual Design Automation Conference. [S.l.],
2015. p. 67. Cited 3 times on pages 22, 28, and 29.

WAN, L. et al. Regularization of neural networks using dropconnect. In: Proceedings of
the 30th International Conference on Machine Learning (ICML-13). [S.l.: s.n.], 2013. p.
1058–1066. Cited 3 times on pages 15, 28, and 29.

WANG, X.; LEESER, M. Vfloat: A variable precision fixed-and floating-point library for
reconfigurable hardware. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), ACM, v. 3, n. 3, p. 16, 2010. Cited 2 times on pages 47 and 85.

WILLIAMS, D.; HINTON, G. Learning representations by back-propagating errors.
Nature, v. 323, n. 6088, p. 533–538, 1986. Cited on page 7.

WU, G. et al. M2m: From mobile to embedded internet. IEEE Communications Magazine,
IEEE, v. 49, n. 4, 2011. Cited on page 2.

WU, S. et al. Training and inference with integers in deep neural networks. Accepted
Paper at the Sixth International Conference on Learning Representations, 2018.
ArXiv:1802.04680. Cited 3 times on pages 18, 28, and 29.

Bibliography 108

WU, Y. et al. Approximate computing of remotely sensed data: Svm hyperspectral
image classification as a case study. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE, v. 9, n. 12, p. 5806–5818, 2016. Cited 3 times
on pages 21, 28, and 29.

XILINX. Floating-Point Operator v7.1 LogiCORE IP Product Guide. [S.l.], 2017. Xilinx,
Inc. Cited on page 47.

ZHANG, C. et al. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In: ACM. Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. [S.l.], 2015. p. 161–170. Cited 2 times on pages 87
and 97.

ZHANG, Q. et al. Approxann: an approximate computing framework for artificial neural
network. In: EDA CONSORTIUM. Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition. [S.l.], 2015. p. 701–706. Cited 3 times on pages 14, 28,
and 29.

ZHANG, Q. et al. Approxit: An approximate computing framework for iterative methods.
In: ACM. Proceedings of the 51st Annual Design Automation Conference. [S.l.], 2014.
p. 1–6. Cited 3 times on pages 24, 28, and 29.

ZHU, J.; SUTTON, P. Fpga implementations of neural networks–a survey of a decade of
progress. Field Programmable Logic and Application, Springer, p. 1062–1066, 2003. Cited
on page 9.

109

Appendix

110

APPENDIX A – Additional Validation

APPENDIX A. Additional Validation 111

The following plots compare the performances using the same methodology pre-

sented in the previous Chapters. Hyper-parameters are defined by search using the double

precision reference implementation. The approximated solution, identified by soft-ap is

compared to the reference (double) in the figures on the left (a) and to Google’s bfloat16,

used in all variables, in the figures on the right (b).

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 45 – Performance comparisons with the Abalone Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 46 – Performance comparisons with the Abalone (18-9 variation) Dataset

APPENDIX A. Additional Validation 112

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 47 – Performance comparisons with the Breast Cancer Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 48 – Performance comparisons with the Car Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 49 – Performance comparisons with the Diabetes Dataset

APPENDIX A. Additional Validation 113

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 50 – Performance comparisons with the Euthyroid Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 51 – Performance comparisons with the German Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 52 – Performance comparisons with the Glass Dataset

APPENDIX A. Additional Validation 114

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 53 – Performance comparisons with the Heart Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 54 – Performance comparisons with the Ionosphere Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 55 – Performance comparisons with the Satimage Dataset

APPENDIX A. Additional Validation 115

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 56 – Performance comparisons with the Segmentation Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 57 – Performance comparisons with the Vehicle Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 58 – Performance comparisons with the Vowel Dataset

APPENDIX A. Additional Validation 116

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 59 – Performance comparisons with the Yeast Dataset

(a) Approx. FP16 × Double precision (b) Approx. FP16 × BFloat16

Figure 60 – Performance comparisons with the Yeast (9-1 variation) Dataset

117

APPENDIX B – Comparison with Posit

APPENDIX B. Comparison with Posit 118

The following plots extend the comparison of the approximated FP16 method to

another recently proposed format: Posit, in the variation with fixed size of 16 bits. In the

following graphs, this format is identified as soft-posit16. Equivalently to the comparison

with bfloat16, the memory usage in the case presented in this appendix requires the same

amount of RAM used in the approximated solution, identified by soft-ap. The tests use

the same methodology presented in the previous Chapters. Hyper-parameters are defined

by search using the double precision reference implementation.

(a) Performance comparisons with the
Abalone Dataset

(b) Performance comparisons with the Abalone
(18-9 variation) Dataset

(a) Performance comparisons with the
Breast Cancer Dataset (Diagnostic)

(b) Performance comparisons with the Breast
Cancer Dataset (Prognostic)

APPENDIX B. Comparison with Posit 119

(a) Performance comparisons with the
Car Dataset

(b) Performance comparisons with the Diabetes
Dataset

(a) Performance comparisons with the
Euthyroid Dataset

(b) Performance comparisons with the Gene
Dataset

(a) Performance comparisons with the
German Dataset

(b) Performance comparisons with the Glass
Dataset

APPENDIX B. Comparison with Posit 120

(a) Performance comparisons with the
Heart Dataset

(b) Performance comparisons with the Iono-
sphere Dataset

(a) Performance comparisons with the
Satimage Dataset

(b) Performance comparisons with the Segmen-
tation Dataset

(a) Performance comparisons with the
Soybean Dataset

(b) Performance comparisons with the Thyroid
Dataset

APPENDIX B. Comparison with Posit 121

(a) Performance comparisons with the
Vehicle Dataset

(b) Performance comparisons with the Vowel
Dataset

(a) Performance comparisons with the
Yeast Dataset

(b) Performance comparisons with the Yeast (9-1
variation) Dataset

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Historical Background
	Introduction to Artificial Neural Networks
	Digital Hardware Implementations
	Analog and Neuromorphic Implementations

	Related Work
	Neural Networks
	Support Vector Machines
	Generic Approximate Computing
	Comparisons and Limitations of Current Techniques

	ANN Implementations
	Floating Point Review
	Standard Floating Representation
	Standard Floating Point Operations

	Mathematical Operations
	Small Values Accumulation
	Deep Learning
	Activation Functions

	Baseline Tests with standard IEEE FP (64 vs 16 bits)

	Simplifications and Approximations
	Floating Point Simplifications
	Removal of Infinities and NaNs
	Restrict Format to Normalized Numbers
	Preliminary Implementation of FP arithmetic

	Math Operations Approximations
	Exponentiation and Activation Functions
	Reciprocal Square Root
	Division by Square Root
	Preliminary Implementation of Complex Functions

	Comparative Tests: Standard IEEE FP16 vs Approximated

	Resilient Training of ANNs
	Adaptive Training Mechanisms
	Gradient Descent with Momentum
	iRProp-
	RMSProp

	Exploring Different FP16 Ranges
	Dynamic FP16 Bias Adjustments
	Experiments with Dynamic FP16 Bias
	Experiments with Fixed FP16 Bias
	Comparison with Posit (16 bits)

	Preliminary optimized implementations
	Exponential Approximation with Hardware IEEE FP16
	Implementation of Approximated FP16 Operations in FPGA
	Preliminary Floating Point Unit
	Communication between CPU and FPGA
	Structure for a multi-layer ANN in FPGA

	Conclusions and Future Directions
	Analysis of the current status
	Future Improvements
	Training Methods
	Regularization

	FPGA Implementation
	Conclusion and Final Remarks
	Contributions

	Bibliography
	Appendix
	Additional Validation
	Comparison with Posit

