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Resumo

O Team Orienteering Problem (TOP) é um problema NP-difícil de roteamento em que
uma frota homogênea de veículos tem por objetivo coletar prêmios disponíveis em um determi-
nado número de localidades, enquanto respeitando restrições de tempo de percurso. No TOP,
cada localidade pode ser visitada por, no máximo, um veículo, e o objetivo é maximizar o
montante de prêmios coletados pelos veículos dentro de um limite de tempo pré-estabelecido.
Na nossa pesquisa, propomos uma generalização do TOP, denominada Steiner Team Orien-
teering Problem (STOP). No STOP, é dado, adicionalmente, um subconjunto de localidades
obrigatórias. Assim, o STOP também tem por objetivo maximizar o total de prêmios coletados
dentro de um limite de tempo, mas, agora, cada localidade obrigatória deve ser visitada.

Como uma primeira contribuição, propomos para o STOP uma nova formulação baseada
em produto e a usamos dentro de um esquema de planos de cortes. O algoritmo beneficia-
se da compacidade e da força da formulação proposta e funciona separando cinco famílias de
desigualdades válidas, a saber: restrições de conectividade, clássicas lifted cover inequalities
baseadas em limites duais, uma classe de desigualdades denominadas arc-vertex inference cuts
e duas classes de cortes baseados em vértices conflitantes. Até onde sabemos, as últimas três
classes de desigualdades são também inéditas na literatura, sendo aqui introduzidas junto às suas
respectivas provas de validade. Um algoritmo branch-and-cut que é estado-da-arte na literatura
do TOP foi adaptado ao STOP e usado como baseline para avaliar a performance do algoritmo de
planos de cortes proposto. Extensivos experimentos computacionais mostram a competitividade
do novo algoritmo na resolução de instâncias do STOP e do TOP. Em particular, o algoritmo é
capaz de resolver, no total, 14 instâncias do TOP a mais do que qualquer outro algoritmo exato
na literatura, além de encontrar nove novos certificados de otimalidade. Com relação às novas
instâncias do STOP introduzidas neste trabalho, nosso algoritmo resolve 31 instâncias a mais
do que o baseline.

Neste trabalho, também provamos que encontrar uma solução viável para o STOP é NP-
difícil e propomos uma heurística Large Neighborhood Search (LNS) para o problema. A heurís-
tica é inicializada com soluções obtidas pela matheurística conhecida pelo nome de Feasibility
Pump, a qual, em nossa implementação, tem por base a formulação compacta que propomos
para o STOP. A heurística LNS em si combina buscas locais clássicas da literatura de proble-
mas de roteamento com um componente de memória de longo-prazo baseado em Path Relinking.
Experimentos computacionais mostram a eficiência e eficácia da heurística proposta quando re-
solvendo um conjunto de 387 instâncias do STOP. No geral, as soluções heurísticas obtidas
implicam um gap percentual de apenas 0.54% em relação aos melhores limites conhecidos para
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as instâncias. Em particular, a heurística atinge os melhores limites já sabidos em 382 das 387
instâncias utilizadas. Ademais, em 21 desses casos, nossa heurística é ainda capaz de melhorar
esses limites.

Por fim, o algoritmo híbrido obtido ao inicializar o algoritmo de planos de cortes com as
soluções providas pela heurística LNS é capaz de resolver na otimalidade quatro instâncias do
TOP e sete instâncias do STOP a mais do que o algoritmo de planos de cortes sozinho. Além
disso, o algoritmo híbrido obtém novos certificados de otimalidade para cinco instâncias do TOP
ainda não resolvidas por nenhum outro algoritmo da literatura (incluindo nosso algoritmo de
planos de cortes sem a ajuda da heurística).
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Abstract

The Team Orienteering Problem (TOP) is an NP-hard routing problem in which a fleet of
identical vehicles aims at collecting rewards (prizes) available at given locations, while satisfying
restrictions on the travel times. In the TOP, each location can be visited by at most one vehicle,
and the goal is to maximize the total sum of rewards collected by the vehicles within a given
time limit. In our research, we propose a generalization of the TOP, namely the Steiner Team
Orienteering Problem (STOP). In the STOP, we provide, additionally, a subset of mandatory
locations. In this sense, the STOP also aims at maximizing the total sum of rewards collected
within the time limit, but, now, every mandatory location must be visited.

As a first contribution, we propose a new commodity-based formulation for the STOP and
use it within a cutting-plane scheme. The algorithm benefits from the compactness and strength
of the proposed formulation and works by separating five families of valid inequalities, which
consist of some general connectivity constraints, classical lifted cover inequalities based on dual
bounds, a class of the so-called arc-vertex inference cuts and classes of conflict cuts and clique
conflict cuts. To our knowledge, the last three classes of inequalities are also introduced in this
work, along with the due proofs of validity. A state-of-the-art branch-and-cut algorithm from the
literature of the TOP is adapted to the STOP and used as baseline to evaluate the performance
of the cutting-plane. Extensive computational experiments show the competitiveness of the
new algorithm while solving several STOP and TOP instances. In particular, it is able to solve,
in total, 14 more TOP instances than any other previous exact algorithm and finds nine new
optimality certificates. With respect to the new STOP instances introduced in this work, our
algorithm solves 31 more instances than the baseline.

In this work, we also prove that solely finding a feasible solution for the STOP is NP-hard
and propose a Large Neighborhood Search (LNS) heuristic for the problem. The algorithm
is provided with initial solutions obtained by means of the matheuristic framework known
as Feasibility Pump, which, in our implementation, uses as backbone the commodity-based
formulation we propose. The LNS heuristic itself combines classical local searches from the
literature of routing problems with a long-term memory component based on Path Relinking.
Computational experiments show the efficiency and effectiveness of the proposed heuristic in
solving a benchmark of 387 STOP instances. Overall, the heuristic solutions imply an average
percentage gap of only 0.54% when compared to the best known bounds. In particular, the
heuristic reaches the best previously known bounds on 382 of the 387 instances. Additionally,
in 21 of these cases, our heuristic is even able to improve over the best known bounds.

At last, the hybrid algorithm obtained from warm starting our cutting-plane algorithm
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with the LNS heuristic is able to solve to optimality four more TOP instances and seven more
STOP instances than the cutting-plane algorithm alone. Additionally, it provides the optimal-
ity certificates of five previously unsolved (even by our plain cutting-plane algorithm) TOP
instances.

xvi



List of Figures

2.1 An example of an STOP instance. Profit values are omitted. Here, the pair ⟨𝑖, 𝑗⟩
gives an example of conflicting vertices. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Representation of a fractional solution that is cut off from ℒ2 by (2.36) when con-
sidering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have
𝑥𝑠𝑖 = 𝑥𝑖𝑘 = 𝑥𝑘𝑗 = 𝑥𝑗𝑡 = 0.3, 𝑥𝑠𝑙 = 𝑥𝑙𝑡 = 0.7 and 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑗 = 0. Accordingly,
𝑦𝑠 = 𝑦𝑡 = 1, 𝑦𝑖 = 𝑦𝑘 = 𝑦𝑗 = 0.3 and 𝑦𝑙 = 0.7. The violated inequality has 𝑉 = {𝑖, 𝑘, 𝑗}. 18

2.3 Representation of a fractional solution that is cut off from ℒ2 by (2.36) when con-
sidering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have
𝑥𝑠𝑖 = 𝑥𝑖𝑘 = 𝑥𝑘𝑗 = 0.3, 𝑥𝑠𝑙 = 𝑥𝑙𝑗 = 0.7, 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1. Accord-
ingly, 𝑦𝑠 = 𝑦𝑗 = 𝑦𝑡 = 1, 𝑦𝑖 = 𝑦𝑘 = 0.3 and 𝑦𝑙 = 0.7. The violated inequality has
𝑉 = {𝑖, 𝑘, 𝑗, 𝑙, 𝑡}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Example of a fractional solution that is cut off by CCs (2.38) when considering the
polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have 𝑥𝑠𝑖 = 𝑥𝑖𝑘 = 𝑥𝑘𝑗 =
𝑥𝑠𝑙 = 𝑥𝑙𝑗 = 0.5, 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1. Accordingly, 𝑦𝑠 = 𝑦𝑗 = 𝑦𝑡 = 1,
𝑦𝑖 = 𝑦𝑘 = 𝑦𝑙 = 0.5. The violated inequality has 𝑉 = {𝑠, 𝑙, 𝑖, 𝑘, 𝑗}. . . . . . . . . . . . 18

2.5 Conflict graph related to the STOP instance of Figure 2.1. . . . . . . . . . . . . . . 19
2.6 Example of a fractional solution that is cut off by AVICs (2.48) and (2.49) when

considering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have
𝑥𝑠𝑖 = 𝑥𝑖𝑘 = 0.8, 𝑥𝑠𝑙 = 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 0.2, 𝑥𝑙𝑗 = 0.4, 𝑥𝑘𝑗 = 0.6, 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1.
Accordingly, 𝑦𝑠 = 𝑦𝑖 = 𝑦𝑗 = 𝑦𝑡 = 1, 𝑦𝑘 = 0.8 and 𝑦𝑙 = 0.4. The violated AVIC is
𝑦𝑖 − 𝑦𝑘 ≤ 1− (𝑥𝑖𝑘 + 𝑥𝑘𝑖). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Algorithm used to separate violated CCs. . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Example of an auxiliary graph �̃�1 used in the separation of CCs (2.36). This graph

considers the STOP instance of Figure 2.1, the pair of conflicting vertices ⟨𝑖, 𝑗⟩ and a
fractional solution �̄�, with �̄�𝑠𝑖 = �̄�𝑖𝑘 = �̄�𝑘𝑗 = �̄�𝑠𝑙 = �̄�𝑙𝑗 = 0.5, �̄�𝑘𝑖 = �̄�𝑖𝑙 = �̄�𝑙𝑡 = 0 and
�̄�𝑗𝑡 = 1. Here, the values associated with the arcs are their corresponding capacities,
and the infinity symbol stands for a sufficiently large value. . . . . . . . . . . . . . . 25

2.9 Example of an auxiliary graph �̃�2 used in the separation of CCs (2.37). This graph
considers the STOP instance of Figure 2.1, the pair of conflicting vertices ⟨𝑖, 𝑗⟩ and a
fractional solution �̄�, with �̄�𝑠𝑖 = �̄�𝑖𝑘 = �̄�𝑘𝑗 = �̄�𝑠𝑙 = �̄�𝑙𝑗 = 0.5, �̄�𝑘𝑖 = �̄�𝑖𝑙 = �̄�𝑙𝑡 = 0 and
�̄�𝑗𝑡 = 1. Here, the values associated with the arcs are their corresponding capacities,
and the infinity symbol stands for a sufficiently large value. . . . . . . . . . . . . . . 25

xvii



2.10 Algorithm used to separate violated CCCs. . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Procedure update-active-cliques, which manages the currently active conflict cliques

during the separation of CCCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12 Algorithm used to separate possibly violated LCIs. . . . . . . . . . . . . . . . . . . . 32

3.1 Description of the cutting-plane phase of the algorithm proposed, when considering
the first configuration of cuts (GCCs, CCs and LCIs). . . . . . . . . . . . . . . . . . 36

3.2 Description of the cutting-plane phase of the algorithm proposed, when considering
the second configuration of cuts (AVICs, CCCs and LCIs). . . . . . . . . . . . . . . 37

4.1 Description of the OFP algorithm when considering formulation ℱ2. . . . . . . . . . 56
4.2 Description of the general LNS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Description of the sequence of local searches. . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Description of the sequence of inter and intra-route local searches. . . . . . . . . . . 60
4.5 Example of a round of the 3-opt operator on an arbitrary route of a directed graph.

The dashed arcs in the original route of (a) are the candidates for disconnection.
The arc rearrangements of (b) and (c) disconnect two and three of the original arcs,
respectively. Notice that, in some cases of reconnection, some arcs of the original
route are preserved and others are reversed. . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Description of the sequence of vertex replacements. . . . . . . . . . . . . . . . . . . . 62
4.7 Description of the inter-route shifting perturbation. . . . . . . . . . . . . . . . . . . . 62
4.8 Description of the general PR procedure. . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Algorithm for computing the “path” between two solutions. . . . . . . . . . . . . . . 64
4.10 FP algorithms’ average ranks depicted on number lines, along with the Critical

Difference (CD), when considering a significance level 𝛼 = 5%. Connections between
algorithms indicate non-significant differences. . . . . . . . . . . . . . . . . . . . . . . 70

4.11 LNS algorithms’ average ranks depicted on a number line, along with the Critical
Difference (CD), when considering a significance level 𝛼 = 5%. Connections between
algorithms indicate non-significant differences. . . . . . . . . . . . . . . . . . . . . . . 73

xviii



List of Tables

3.1 Parameter configuration adopted in the separation and selection of valid inequalities
in the cutting-plane algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Control set of TOP instances used to tune the algorithms’ parameters. . . . . . . . . 39

3.3 Description of the original benchmark of TOP instances. . . . . . . . . . . . . . . . . 40

3.4 Configurations of valid inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Percentage dual (upper) bound improvements obtained from adding to ℒ2 the in-
equalities of Section 2.2 according to the 10 configurations in Table 3.4. Results
for the original benchmark of TOP instances. Recall that CPA1 and CPA2 adopt
configurations 7 and 10, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Comparison between B-B&C and CPA at solving the original benchmark of TOP
instances. Bold entries highlight, for each instance set, the best algorithm(s) in terms
of number of instances solved to optimality. . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Total number of instances solved by each exact algorithm in the literature of the
TOP. Bold entries highlight, for each instance set, the best algorithm(s) in terms of
number of instances solved to optimality. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Percentage dual (upper) bound improvements obtained from adding to ℒ2 the in-
equalities of Section 2.2 according to the 10 configurations in Table 3.4. Results for
the new STOP instances. Recall that CPA1 and CPA2 adopt configurations 7 and
10, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Comparison between B-B&C and CPA at solving the new benchmark of STOP
instances. Bold entries highlight, for each instance set, the best algorithm(s) in
terms of number of instances solved to optimality. . . . . . . . . . . . . . . . . . . . 50

4.1 Control set of STOP instances used to tune the heuristics’ parameters. . . . . . . . . 65

4.2 Parameter configuration adopted for the FP heuristic. . . . . . . . . . . . . . . . . . 65

4.3 Parameter configuration adopted for the LNS heuristic. . . . . . . . . . . . . . . . . 66

4.4 Variations of the FP analyzed in our study. ℱ2+cuts stands for the reinforced version
of the formulation ℱ2 discussed in Section 3.2. . . . . . . . . . . . . . . . . . . . . . 68

4.5 Summary of the results obtained by the four FP algorithms described in Table 4.4.
Bold entries highlight, for each instance set, the best algorithm(s) in terms of average
gaps and number of pumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xix



4.6 Summary of the results obtained by six variations of the LNS algorithm tested. The
execution times do not consider the time spent by the FP algorithms in finding
initial solutions. Bold entries highlight, for each instance set, the best algorithm(s)
in terms of average gaps and profit sums. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Number of times the two best algorithms (FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000) reached and/or improved over the best known bounds. . . . 73

4.8 Summary of the results obtained by FP_cuts and OFP_cuts while solving the orig-
inal benchmark of TOP instances. Bold entries highlight, for each instance set, the
best algorithm(s) in terms of average gaps and number of pumps. . . . . . . . . . . . 74

4.9 Summary of the results obtained by FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000 while solving the original benchmark of TOP instances.
The execution times do not consider the time spent by the FP algorithms in finding
initial solutions. Bold entries highlight, for each instance set, the best algorithm(s)
in terms of average gaps and profit sums. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Number of times the two best algorithms (FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000) reached and/or improved over the primal bounds provided
by CPA1 while solving the original benchmark of TOP instances. . . . . . . . . . . . 75

A.1 Impact — in terms of percentage bound improvement — of the valid inequalities
(2.12) and (2.22) on the linear relaxations of ℱ1 and ℱ2, respectively. Results for
the original benchmark of TOP instances. . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Impact — in terms of percentage bound improvement — of the valid inequalities
(2.12) and (2.22) on the linear relaxations of ℱ1 and ℱ2, respectively. Results for
the new STOP instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.6 Detailed results for the exact algorithms at solving the original benchmark of TOP
instances. Instances in bold are the ones for which CPA found previously unknown
optimality certificates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.3 Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of B-B&C and CPA at solving the original benchmark of TOP instances. Here,
the CPLEX built-in cuts separated at the root nodes are considered. . . . . . . . . . 97

A.4 Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of CPLEX while directly solving formulations ℱ1 and ℱ2. Results for the
original benchmark of TOP instances. Here, the CPLEX built-in cuts are enabled. . 98

A.5 Extra information on the execution of B-B&C and CPA at solving the original bench-
mark of TOP instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.10 Detailed results for the exact algorithms at solving the new STOP instances. . . . . 100
A.7 Gaps referred to the bounds available at the root nodes of the branch-and-bound

trees of B-B&C and CPA at solving the new STOP instances. Here, the CPLEX
built-in cuts separated at the root nodes are considered. . . . . . . . . . . . . . . . . 108

A.8 Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of CPLEX while directly solving formulations ℱ1 and ℱ2. Results for the new
STOP instances. Here, the CPLEX built-in cuts are enabled. . . . . . . . . . . . . . 109

xx



A.9 Extra information on the execution of B-B&C and CPA at solving the new STOP
instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.11 Bounds obtained by the two best versions of the LNS heuristic proposed. . . . . . . 111
A.12 Comparison of the four variations of the hybrid algorithm tested at solving the

original benchmark of TOP instances. Bold entries highlight, for each instance set,
the best algorithm(s) in terms of number of instances solved to optimality. . . . . . . 120

A.14 Detailed results for the hybrid algorithms at solving the original TOP instances.
We highlight in bold the instances for which the hybrid algorithms found optimality
certificates that could not be found by CPA alone, B-B&C or any other previous
exact algorithm in the literature of the TOP. . . . . . . . . . . . . . . . . . . . . . . 120

A.15 Detailed results for the hybrid algorithms at solving the new benchmark of STOP
instances. We highlight in bold the instances for which the hybrid algorithms found
optimality certificates that could not be found by CPA alone and B-B&C. . . . . . . 131

A.13 Comparison of the four variations of the hybrid algorithm tested at solving the new
benchmark of STOP instances. Bold entries highlight, for each instance set, the best
algorithm(s) in terms of number of instances solved to optimality. . . . . . . . . . . 142

xxi





List of Acronyms

LP Linear Programming
ILP Integer Linear Programming

MILP Mixed Integer Linear Programming
OP Orienteering Problem

TOP Team Orienteering Problem
STOP Steiner Team Orienteering Problem
CVRP Capacitated Vehicle Routing Problem

HPP Hamiltonian Path Problem
VNS Variable Neighborhood Search

TS Tabu Search
SA Simulated Annealing

LNS Large Neighborhood Search
GRASP Greedy Randomized Adaptive Search Procedure

PR Path Relinking
PSO Particle Swarm Optimization

FP Feasibility Pump
OFP Objective Feasibility Pump

RINS Relaxation Induced Neighborhood Search
B-B&C Baseline Branch-and-Cut algorithm

CPA Cutting-Plane Algorithm

xxiii





Contents

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xix

List of Acronyms xxiii

1 Introduction 1
1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem definition and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Mathematical formulations and valid inequalities 9
2.1 Mathematical formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Families of valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 General Connectivity Constraints (GCCs) . . . . . . . . . . . . . . . . . . 15
2.2.2 Conflict Cuts (CCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Clique Conflict Cuts (CCCs) . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Arc-Vertex Inference Cuts (AVICs) . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Lifted Cover Inequalities (LCIs) . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Separation of valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 GCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 CCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 CCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 AVICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.5 LCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Exact algorithms 35
3.1 Baseline branch-and-cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 New cutting-plane scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Results for the TOP instances . . . . . . . . . . . . . . . . . . . . . . . . 41

xxv



3.4.2 Results for the new STOP instances . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Warm starting the cutting-plane algorithms with primal heuristics . . . . . . . . 51

4 Heuristics 53
4.1 Finding an initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Feasibility Pump (FP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 A Large Neighborhood Search (LNS) heuristic with Path Relinking (PR) . . . . 57

4.2.1 Main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Destroying procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Insertion procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 Local searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.5 Inter-route shifting perturbation . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.6 The PR procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Parameter configuration adopted for the FP heuristic . . . . . . . . . . . 65
4.3.2 Parameter configuration adopted for the LNS heuristic . . . . . . . . . . . 65

4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Statistical analysis adopted . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Results for the FP algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Results for the LNS heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.4 Results for the original benchmark of TOP instances . . . . . . . . . . . . 73
4.4.5 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Concluding remarks and future work directions 77

Bibliography 81

Appendix A 85
A.1 Bound comparison between ℱ1 and ℱ2 . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 Detailed results for the exact algorithms at solving the original benchmark of

TOP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.4 Detailed results for the exact algorithms at solving the new STOP instances . . . 100
A.5 Primal bounds obtained by the LNS heuristic . . . . . . . . . . . . . . . . . . . . 111
A.6 Warm starting the cutting-plane algorithms with primal heuristics . . . . . . . . 119

xxvi



Chapter 1

Introduction

Orienteering is a sport usually practiced in places with irregular terrains, such as moun-
tains and dense forests. It is given a set of control points to be visited, each of them with an
associated reward (prize). The competitors are provided a topographical map and compass
in order to guide them from an origin point to a destination one, which are the same for all
competitors. Their goal is to maximize the total sum of rewards collected from visiting the
control points within a previously established time limit. Each reward can be collected by a
single competitor, and the winner is the one that reaches the destination point within the time
limit with the maximum amount of rewards.

Based on this sport, Tsiligirides introduced the Orienteering Problem (OP) (Tsiligirides,
1984). The problem is defined on a graph, usually complete and undirected, where a value of
reward is associated with each vertex and a traverse time is associated with each edge (or arc).
The OP aims at finding a route from an origin vertex to a destination one (visiting each vertex
at most once) that satisfies a total traverse time constraint while maximizing the sum of rewards
collected. In the OP, a reward can only be collected once, just like in the original orienteering
sport. In fact, an optimal route for the OP corresponds to an optimal one for an orienteering
competitor, except for the fact that, in the OP, no vertex can be visited more than once. We
also point out that, contrary to the classical traveling salesman problem (Dantzig et al., 1954),
a solution for the OP does not necessarily visit all the vertices of the graph.

When the origin and destination vertices coincide, the problem is known as the selective
traveling salesman problem (Laporte and Martello, 1990). Moreover, when we consider a team
of competitors working together, the problem becomes the Team Orienteering Problem (TOP)
(Chao et al., 1996). In the TOP, all the 𝑚 members of the team depart from the same vertex
at the same time and have to arrive at the destination vertex, also within a same time limit.
The goal is to find 𝑚 routes that, together, maximize the total reward collected by the team.
As for the OP, a vertex/reward cannot be visited/collected multiple times, i.e., once a member
of the team collects the reward of a vertex, this vertex cannot be visited again.

Both the OP and the TOP are NP-hard (Laporte and Martello, 1990; Poggi et al., 2010)
and find applications in transportation and delivery of goods (de Freitas Viana, 2011). With
the advent of the e-commerce, for instance, several virtual stores assign their delivery requests
to different shipping companies. Nevertheless, the fleet available to a given shipping company is

1



2 Chapter 1. Introduction

not always enough to perform all the deliveries assigned to it in a single working day. In these
cases, the company must select only a subset of the total amount of its deliveries. To this end,
a value of priority can be associated with each delivery. This value corresponds to the reward
achieved by performing the delivery in the current working day and might combine different
factors, such as the priority of the client and the urgency of the request.

A similar application arises in the planning of technical visits (Tang and Miller-Hooks,
2005). Also in this case, a reward is associated with visiting each customer and performing a
given service. Likewise, the values of the rewards rely on factors such as the urgency of the
request and the customer priority. Therefore, the goal is to select a subset of technical visits
(to be performed within a working horizon of time) that maximizes the total sum of rewards
achieved. Notice that, in both applications, this priority policy is not enough to ensure that
deliveries or technical visits with top priority (e.g., those whose deadlines are expiring) will be
necessarily selected in the planning. In this study, we propose a variation of the TOP, namely
the Steiner Team Orienteering Problem (STOP), that addresses this issue.

The STOP is defined on a digraph, where an origin and a destination vertices are given,
and the remaining vertices are subdivided into two categories: the mandatory ones, which must
necessarily be visited, and the profitable ones, which work as Steiner vertices and, thus, may
not be visited. A traverse time is associated with each arc in this digraph, and values of reward
are associated with visiting the profitable vertices. In order to represent the team of members,
it is also given a homogeneous fleet of vehicles, which can only run for a given time limit. The
STOP aims at finding routes (one for each vehicle) from the origin vertex to the destination one
such that every mandatory vertex belongs to exactly one route and the total sum of rewards
collected on the visited profitable vertices is maximized. Here, each profitable vertex can be
visited by at most one vehicle, thus avoiding the multiple collection of a same reward.

Main contributions

The aim of this research is to devise exact and heuristic algorithms for the STOP, which
can also be applied to its specific cases, such as the TOP and the OP. Regarding exact ap-
proaches, our main contribution consists of introducing a commodity-based compact formula-
tion for the STOP and devising a cutting-plane scheme to solve it. The cutting-plane relies
on the separation of five families of inequalities, which consist of some (i) general connectivity
constraints, (ii) classical lifted cover inequalities based on dual bounds, classes of (iii) conflict
cuts and (iv) clique conflict cuts, as well as the so-called (v) arc-vertex inference cuts. As far as
we are aware, the last three families of inequalities are also introduced in this work and can be
applied to similar problems in a straightforward manner. The due proofs regarding the validity
of these new inequalities are also given, along with examples of the fractional solutions cut off
by them.

Our exact algorithm highly benefits from the compactness and the strength of the formula-
tion proposed, which we prove to give the same bounds as the one used within a state-of-the-art
branch-and-cut algorithm from the literature of the TOP. In this work, we adapt this branch-
and-cut algorithm to the STOP and use it as a baseline to evaluate the performance of the
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cutting-plane proposed. According to extensive experiments, our algorithm shows to be highly
competitive with previous exact approaches in the literature. In fact, it is able to solve, in total,
14 more instances than any other TOP exact algorithm and finds the optimality certificates of
nine previously unsolved TOP instances. With respect to the new STOP instances introduced
in this work, the new algorithm solves to optimality 31 more instances than the baseline.

As to motivate the research on heuristics for the problem, we first prove that solely
finding a feasible solution for STOP is NP-hard, thus formalizing the additional difficulty of
the problem when compared to its more specific cases with no mandatory vertices (like TOP).
Then, we propose a Large Neighborhood Search (LNS) heuristic for the problem. The algorithm
is provided with initial solutions obtained by means of the matheuristic framework known as
Feasibility Pump (FP) (Fischetti et al., 2005). In our implementation, FP uses as backbone
our commodity-based formulation reinforced by the classes of inequalities separated in our
cutting-plane algorithm. The LNS heuristic itself combines classical local searches from the
literature of routing problems with a long-term memory component based on Path Relinking
(PR). We use the primal bounds provided by our cutting-plane algorithm to evaluate the quality
of the solutions obtained by the heuristic. Computational experiments show the efficiency and
effectiveness of the proposed heuristic in solving a benchmark of 387 STOP instances. Overall,
the heuristic solutions imply an average percentage gap of only 0.54% when compared to the
bounds of the cutting-plane baseline. In particular, the heuristic reaches the best previously
known bounds on 382 of the 387 instances. Additionally, in 21 of these cases, our heuristic is
even able to improve over the best known bounds.

For completeness, we also test the hybrid algorithm obtained from warm starting our
cutting-plane algorithm with the solutions provided by our heuristic. Computational experi-
ments show that this approach is able to improve the performance of our plain cutting-plane.
In total, the hybrid algorithm is able to solve to optimality four more TOP instances and seven
more STOP instances than the plain cutting-plane algorithm. Additionally, it provides the
optimality certificates of five previously unsolved (even by our plain cutting-plane algorithm)
TOP instances.

Thesis’ outline

The remainder of this thesis is organized as follows. Related works are discussed in Sec-
tion 1.1, and the STOP is formally defined in Section 1.2. Chapter 2 is dedicated to presenting
the mathematical foundation used to devise the algorithms proposed. Within this chapter, in
Section 2.1, we present two formulations for the STOP and prove that they provide the same
bounds. In Section 2.2, we describe five families of inequalities able to reinforce the original
formulations, and the procedures used to separate them are presented in Section 2.3.

Chapter 3 is devoted to the exact algorithms. The baseline branch-and-cut algorithm
adapted to the STOP is briefly described in Section 3.1, and the cutting-plane scheme proposed
is detailed in Section 3.2. Some implementation details are given in Section 3.3, followed by
the due computational results (Section 3.4). In Section 3.5 (and Appendix A.6), we discuss
improving the convergence of the exact algorithms by warm starting them with primal heuristic
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solutions. Chapter 4 is dedicated to the heuristic approaches. In Section 4.1, we prove that
solely finding an initial feasible solution for the STOP is NP-hard and describe the FP procedure
applied to address this issue. Section 4.2 is devoted to detailing the LNS heuristic proposed, and
some implementation choices are discussed in Section 4.3, followed by the due computational
results (Section 4.4). At last, in Chapter 5, we pinpoint some concluding remarks and briefly
discuss future work directions, along with some unsuccessful approaches we tested during the
research.

1.1 Related works

Although the STOP has not been addressed in the literature yet, a specific case of the
problem that considers a single vehicle, namely the Steiner orienteering problem, was already
introduced by (Letchford et al., 2013). In the work, the authors propose four Integer Linear
Programming (ILP) models for the problem, but no computational experiment is reported.
The STOP is also closely related to several routing problems, such as the TOP, the OP and
the Capacitated Vehicle Routing Problem (CVRP) (Toth and Vigo, 2001) and its variations.
In the remainder of this section, we present a literature review on the main heuristic and exact
algorithms to solve the TOP, the problem most closely related to the STOP.

The particular case of the STOP with no mandatory vertices, namely the TOP, was
introduced by the name of the multiple tour maximum collection problem in the work of Butt
and Cavalier (1994). Nevertheless, the problem was only formally defined by Chao et al. (1996).
In the latter work, the first benchmark of TOP instances was proposed, along with a heuristic
procedure. This benchmark, which consists of complete graphs with 21 to 102 vertices, is
adopted in all the TOP works from the literature discussed next.

Throughout the last decade, several heuristics have been proposed for the TOP. For
instance, Tang and Miller-Hooks (2005) presented an algorithm that combines a Tabu Search
(TS) heuristic with an adaptive memory procedure. Archetti et al. (2007) developed two more
TS heuristics for the problem, as well as two procedures based on Variable Neighborhood Search
(VNS). In addition, Ke et al. (2008) proposed ant colony based algorithms which presented
results comparable to those of Archetti et al. (2007), with less computational time effort. The
VNS heuristic of Vansteenwegen et al. (2009) was the first procedure to focus on time efficiency.
However, the quality of the solutions obtained by it is slightly worse than that of the solutions
obtained by Archetti et al. (2007).

Later on, Souffriau et al. (2010) proposed a Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic with Path Relinking (PR) which was able to outperform all the heuristic
approaches aforementioned (Chao et al., 1996; Tang and Miller-Hooks, 2005; Archetti et al.,
2007; Ke et al., 2008; Vansteenwegen et al., 2009) both in effectiveness (i.e., bounds of the
solutions) and time efficiency. More recently, three new approaches were able to outperform
the results of Souffriau et al. (2010): the Simulated Annealing (SA) heuristic of Lin (2013), the
Large Neighborhood Search (LNS) based heuristics of Kim et al. (2013) and the evolutionary
algorithm of Dang et al. (2013b), which is inspired by Particle Swarm Optimization (PSO).

The algorithm of Dang et al. (2013b) showed to be competitive with the ones of Kim et al.
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(2013) in terms of the quality of the solutions obtained for complete graph instances with up to
100 vertices. However, according to the results, the latter heuristics (Kim et al., 2013) are more
efficient. Dang et al. (2013b) also tested their evolutionary algorithm on larger instances, with
up to 400 vertices. Due to the lack of optimality certificates for these instances, the heuristic
was only evaluated in terms of stability and time efficiency in these cases. The results obtained
by Lin (2013) were not compared to those of Kim et al. (2013) and Dang et al. (2013b).

To our knowledge, the latest heuristic for the TOP was proposed by Ke et al. (2016). Their
heuristic, namely Pareto mimic algorithm, introduces a so-called mimic operator to generate
new solutions by imitating incumbent ones. The algorithm also adopts the concept of Pareto
dominance to update the population of incumbent solutions by considering multiple indicators
that measure the quality of each solution. The results indicate that this new algorithm can
achieve all the best-known bounds obtained by Lin (2013) and Dang et al. (2013b). In addition,
the algorithm of Ke et al. (2016) was even able to find improved bounds for 10 of the larger
instances (with up to 400 vertices) introduced by Dang et al. (2013b).

A few works propose exact solution approaches for the TOP. As far as we know, Butt
and Ryan (1999) presented the first exact algorithm for the TOP, which is based on column
generation. More recently, Boussier et al. (2007) proposed a set packing formulation with an
exponential number of variables, each of them representing a feasible route. The formulation
is solved by means of a branch-and-price algorithm, and the pricing sub-problems are solved
through dynamic programming. Poggi et al. (2010) proposed a branch-and-cut-and-price algo-
rithm, along with new min-cut and triangle clique inequalities. The algorithm solves a Dantzig-
Wolfe reformulation of a pseudo-polynomial compact formulation where edges are indexed by
the time they are placed in a route.

Later on, Dang et al. (2013a) developed a branch-and-cut algorithm that relies on a set of
dominance properties and valid inequalities, such as symmetry breaking, generalized sub-tour
eliminations and clique cuts based on graphs of incompatibilities. The algorithms of Poggi
et al. (2010) and Dang et al. (2013a) were both able to obtain new optimality certificates.
Moreover, the branch-and-cut algorithm of Dang et al. (2013a) was able to outperform the
branch-and-price algorithm of Boussier et al. (2007) in terms of the total number of instances
solved to optimality. Since Poggi et al. (2010) do not report the experimental results for the
whole benchmark of TOP instances in the literature, the performance of their algorithm could
not be properly compared with other approaches.

Recently, Keshtkaran et al. (2016) proposed a branch-and-price algorithm where the pric-
ing sub-problems are solved be means of a dynamic programming algorithm with decremen-
tal state space relaxation featuring a two-phase dominance rule relaxation. The authors also
presented a branch-and-cut-and-price algorithm that incorporates a family of subset-row in-
equalities to the branch-and-price scheme. The two algorithms showed to be competitive with
the previous exact methods in the literature. In fact, they both were able to outperform the
algorithms of Boussier et al. (2007) and Dang et al. (2013a) in terms of the total number of
instances solved to proven optimality within the same execution time limit of two hours. More
recently, the work of Dang et al. (2013a) was extended by El-Hajj et al. (2016), where the
authors attempt to solve the same formulation proposed by the former work via a cutting-plane
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algorithm. The algorithm explores intermediate models obtained by considering only a subset of
the vehicles and uses the information iteratively retrieved to solve the original problem. Here,
the promising inequalities introduced by Dang et al. (2013a) are also used to accelerate the
convergence of the algorithm.

Overall, the branch-and-price of Keshtkaran et al. (2016) and the cutting-plane algo-
rithm of El-Hajj et al. (2016) outperform the other exact algorithms previously discussed. In
fact, they present a complementary behaviour when solving the hardest instance sets, i.e., on
some instances, one is better than the other and vice-versa. As pointed out in both works,
such behaviour constitutes a pattern between branch-and-cut and branch-and-price algorithms
previously presented in the literature of the TOP.

A more recent work of Bianchessi et al. (2018) introduced a two-index compact (with a
polynomial number of variables and constraints) formulation inspired by the one of Maffioli and
Sciomachen (1997) for the sequential ordering problem, a scheduling problem where jobs have
to be processed on a single machine and are subject to time windows and precedence relations.
Bianchessi et al. (2018) reinforced this compact formulation for the TOP with connectivity
constraints and solved it via a branch-and-cut algorithm developed with the callback mechanism
of the optimization solver CPLEX1. This simple approach showed to be very effective in practice.
In fact, the algorithm was able to solve at optimality 26 more instances than any other exact
algorithm aforementioned when enabling multi-threading, and 10 more instances when not. All
experiments used the CPLEX built-in cuts.

The branch-and-cut algorithm of Bianchessi et al. (2018) is adopted in this thesis as the
baseline to evaluate the performance of the cutting-plane algorithms we propose. In particular,
our new exact algorithms arise as the new state-of-the-art for the TOP, once they beat the results
of Bianchessi et al. (2018). For detailed surveys on exact and heuristic resolution approaches for
the TOP and its variants, we refer to the works of Vansteenwegen et al. (2011) and Gunawan
et al. (2016).

1.2 Problem definition and notation

The STOP is defined on a digraph 𝐺 = (𝑁,𝐴), where 𝑁 is the vertex set, and 𝐴 is the
arc set. Let 𝑠, 𝑡 ∈ 𝑁 be the origin and destination vertices, respectively, with 𝑠 ̸= 𝑡. Moreover,
let 𝑆 ⊆ 𝑁∖{𝑠, 𝑡} be the subset of mandatory vertices, and 𝑃 ⊆ 𝑁∖{𝑠, 𝑡} be the set of profitable
vertices, such that 𝑆 ∩𝑃 = ∅ and 𝑁 = 𝑆 ∪𝑃 ∪{𝑠, 𝑡}. A reward 𝑝𝑖 ∈ Z+ is associated with each
vertex 𝑖 ∈ 𝑃 , and a traverse time 𝑑𝑖𝑗 ∈ R+ is associated with each arc (𝑖, 𝑗) ∈ 𝐴. Each vehicle
of the homogeneous fleet 𝑀 can run for no more than a time limit 𝑇 .

The STOP aims at finding up to 𝑚 = |𝑀 | routes from 𝑠 to 𝑡 such that every mandatory
vertex in 𝑆 belongs to exactly one route and the total sum of rewards collected by visiting
profitable vertices is maximized. Here, each profitable vertex in 𝑃 can be visited by at most
one vehicle, thus avoiding the multiple collection of a same reward. Likewise, each mandatory
vertex in 𝑆 must be visited only once.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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In the remainder of this thesis, we also consider the notation described as follows. Given
a subset 𝑉 ⊂ 𝑁 , we define the sets of arcs leaving and entering 𝑉 as 𝛿+(𝑉 ) = {(𝑖, 𝑗) ∈ 𝐴 :
𝑖 ∈ 𝑉, 𝑗 ∈ 𝑁∖𝑉 } and 𝛿−(𝑉 ) = {(𝑖, 𝑗) ∈ 𝐴 : 𝑖 ∈ 𝑁∖𝑉, 𝑗 ∈ 𝑉 }, respectively. Similarly, given a
vertex 𝑖 ∈ 𝑁 , we define the sets of vertices 𝛿+(𝑖) = {𝑗 ∈ 𝑁 : (𝑖, 𝑗) ∈ 𝐴} and 𝛿−(𝑖) = {𝑗 ∈ 𝑁 :
(𝑗, 𝑖) ∈ 𝐴}. Moreover, given two arbitrary vertices 𝑖, 𝑗 ∈ 𝑁 and a path 𝑝 from 𝑖 to 𝑗 in 𝐺, we
define 𝐴𝑝 ⊆ 𝐴 as the arc set of 𝑝.

Let 𝑅𝑖𝑗 denote the minimum time needed to reach a vertex 𝑗 when departing from a
vertex 𝑖 in the graph 𝐺, i.e., 𝑅𝑖𝑗 = min{

∑︀
𝑎∈𝐴𝑝

𝑑𝑎 : 𝑝 is a path from 𝑖 to 𝑗 in 𝐺}. Accordingly,

𝑅𝑖𝑖 = 0 for all 𝑖 ∈ 𝑁 , and, if no path exists from a vertex to another, the corresponding entry of
𝑅 is set to infinity. One may observe that 𝑅 is not necessarily symmetric, since 𝐺 is directed.
Moreover, considering that the traverse times associated with the arcs of 𝐺 are non-negative
(and, thus, no negative cycle exists), this 𝑅 matrix can be computed a priori (for each instance)
by means of the classical dynamic programming algorithm of Floyd-Warshall (Cormen et al.,
2001), for instance.





Chapter 2

Mathematical formulations and valid
inequalities

In this chapter, we detail all the mathematical foundation used to devise the algorithms
(both exact and heuristic) developed in this study. In summary, we describe the mathematical
formulations used as backbone for the algorithms, along with some classes of valid inequalities
able to reinforce these formulations. The due separation procedures are also detailed.

2.1 Mathematical formulations

In this section, we present two compact Mixed Integer Linear Programming (MILP)
formulations for the STOP. The first one, denoted by ℱ1, directly extends the TOP formulation
of Bianchessi et al. (2018) through the addition of constraints that impose the selection of
mandatory vertices. The second one, denoted by ℱ2, is a commodity-based formulation which,
to the best of our knowledge, is also introduced in this work. In particular, ℱ1 and ℱ2 constitute,
respectively, the backbone of the branch-and-cut baseline algorithm (discussed in Section 3.1)
and of our cutting-plane algorithm (presented in Section 3.2). By the end of this section, we also
give a formal proof of the equivalence of these formulations and discuss how we take advantage
of a specific characteristic of ℱ2 in the cutting-plane algorithm we propose. Moreover, we shortly
describe some of the formulations that performed poorly in pilot experiments and were, thus,
discarded from this study.

Now, consider the decision variables 𝑦 on the choice of vertices belonging or not to the
solution routes, such that 𝑦𝑖 = 1 if the vertex 𝑖 ∈ 𝑁 is visited by a vehicle of the fleet, and
𝑦𝑖 = 0, otherwise. Likewise, let the binary variables 𝑥 identify the solution routes themselves:
𝑥𝑖𝑗 = 1 if the arc (𝑖, 𝑗) ∈ 𝐴 is traversed in the solution; 𝑥𝑖𝑗 = 0, otherwise. In addition, let
the continuous variables 𝑧𝑖𝑗 , for all (𝑖, 𝑗) ∈ 𝐴, represent the arrival time at vertex 𝑗 of a vehicle
directly coming from vertex 𝑖. The slack variable 𝜙 represents the number of vehicles that are
not used in the solution. ℱ1 is defined from (2.1) to (2.16).

(ℱ1) max
∑︁
𝑖∈𝑃

𝑝𝑖𝑦𝑖, (2.1)

9
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𝑠.𝑡. 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝑆 ∪ {𝑠, 𝑡}, (2.2)∑︁
𝑗∈𝛿+(𝑖)

𝑥𝑖𝑗 = 𝑦𝑖 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃, (2.3)

∑︁
𝑗∈𝛿+(𝑠)

𝑥𝑠𝑗 + 𝜙 = 𝑚, (2.4)

∑︁
𝑖∈𝛿−(𝑡)

𝑥𝑖𝑡 + 𝜙 = 𝑚, (2.5)

∑︁
𝑖∈𝛿−(𝑠)

𝑥𝑖𝑠 = 0, (2.6)

∑︁
𝑗∈𝛿+(𝑡)

𝑥𝑡𝑗 = 0, (2.7)

∑︁
𝑗∈𝛿+(𝑖)

𝑥𝑖𝑗 −
∑︁

𝑗∈𝛿−(𝑖)
𝑥𝑗𝑖 = 0 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃, (2.8)

𝑧𝑠𝑗 = 𝑑𝑠𝑗𝑥𝑠𝑗 ∀ 𝑗 ∈ 𝛿+(𝑠), (2.9)∑︁
𝑗∈𝛿+(𝑖)

𝑧𝑖𝑗 −
∑︁

𝑗∈𝛿−(𝑖)
𝑧𝑗𝑖 =

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃, (2.10)

𝑧𝑖𝑗 ≤ (𝑇 −𝑅𝑗𝑡)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, (2.11)

𝑧𝑖𝑗 ≥ (𝑅𝑠𝑖 + 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, (2.12)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, (2.13)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑁, (2.14)

𝑧𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, (2.15)

0 ≤ 𝜙 ≤ 𝑚. (2.16)

The objective function in (2.1) gives the total reward collected by visiting profitable
vertices. Constraints (2.2) impose that all mandatory vertices (as well as 𝑠 and 𝑡) are selected,
while constraints (2.3) ensure that each vertex in 𝑆 ∪ 𝑃 is visited at most once. Restrictions
(2.4) and (2.5) ensure that at most 𝑚 vehicles leave the origin 𝑠 and arrive at the destination 𝑡,
whereas constraints (2.6) and (2.7) impose that vehicles cannot arrive at 𝑠 nor leave 𝑡. Moreover,
constraints (2.8), along with constraints (2.2) and (2.3), guarantee that, if a vehicle visits a
vertex 𝑖 ∈ 𝑆 ∪ 𝑃 , then it must enter and leave this vertex exactly once.

Constraints (2.9)-(2.11) ensure that each of the solution routes from 𝑠 to 𝑡 has a total
traverse time of at most 𝑇 . In particular, constraints (2.9) implicitly set the depart time from
vertex 𝑠 to be zero, while constraints (2.10) manage the subsequent arrival times according to
the vertices previously visited in each route. Constraints (2.11) impose that an arc (𝑖, 𝑗) ∈ 𝐴
can only be traversed if the minimum extra time needed to reach 𝑡 from 𝑗 does not unfeasible
the route it belongs. Restrictions (2.12) are, in fact, valid inequalities that provide lower bounds
on the arrival times represented by the 𝑧 variables, and restrictions (2.13)-(2.16) set the domain
of the variables. Notice that, in ℱ1, the continuous variables 𝑧 work as flow variables, thus
preventing the existence of sub-tours in the solutions.

Formulation ℱ1 was originally stated by Bianchessi et al. (2018) with the additional
inequality ∑︁

(𝑖,𝑗)∈𝐴
𝑑𝑖𝑗𝑥𝑖𝑗 ≤ 𝑚𝑇, (2.17)
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which the authors claimed to strengthen the formulation. By the end of this section (see
Corollary 1), we prove that such inequality is, in fact, redundant.

The commodity-based formulation we introduce in this work, namely ℱ2, also considers
the 𝑦 and 𝑥 decision variables as defined above, and the intuition behind it is also similar to
that of ℱ1. Precisely, in ℱ2, time is treated as a commodity to be spent by the vehicles when
traversing each arc in their routes, such that every vehicle departs from 𝑠 with an initial amount
of 𝑇 units of commodity, the time limit. Accordingly, the 𝑧 variables of ℱ1 (related to the arrival
times at vertices) are replaced in ℱ2 by the flow variables 𝑓𝑖𝑗 , for all (𝑖, 𝑗) ∈ 𝐴, which represent
the amount of time still available for a vehicle after traversing the arc (𝑖, 𝑗) as not to exceed
𝑇 . As in ℱ1, the slack variable 𝜙 represents the number of vehicles that are not used in the
solution. ℱ2 is defined as follows.

(ℱ2) max
∑︁
𝑖∈𝑃

𝑝𝑖𝑦𝑖, (2.18)

𝑠.𝑡. Constraints (2.2)-(2.8)

𝑓𝑠𝑗 = (𝑇 − 𝑑𝑠𝑗)𝑥𝑠𝑗 ∀ 𝑗 ∈ 𝛿+(𝑠), (2.19)∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗 =

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃, (2.20)

𝑓𝑖𝑗 ≤ (𝑇 −𝑅𝑠𝑖 − 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ̸= 𝑠, (2.21)

𝑓𝑖𝑗 ≥ 𝑅𝑗𝑡𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, (2.22)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, (2.23)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑁, (2.24)

𝑓𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, (2.25)

0 ≤ 𝜙 ≤ 𝑚. (2.26)

The objective function in (2.18) gives the total reward collected by visiting profitable
vertices. Constraints (2.19)-(2.21) ensure that each of the solution routes has a total traverse
time of at most 𝑇 . Precisely, restrictions (2.19) implicitly state, along with (2.4), that the
total flow available at the origin 𝑠 is (𝑚 − 𝜙)𝑇 , and, in particular, each vehicle (used) has an
initial amount of 𝑇 units of flow. Constraints (2.20) manage the flow consumption incurred
from traversing the arcs selected, whereas constraints (2.21) impose that an arc (𝑖, 𝑗) ∈ 𝐴 can
only be traversed if the minimum time of a route from 𝑠 to 𝑗 through (𝑖, 𝑗) does not exceed
𝑇 . In (2.21), we do not consider the arcs leaving the origin, as they are already addressed by
(2.19). Similarly to (2.12), the valid inequalities (2.22) give lower bounds on the flow passing
through each arc, and constraints (2.23)-(2.26) define the domain of the variables. Here, the
management of the flow associated with the variables 𝑓 also avoids the existence of sub-tours
in the solutions.

Notice that, in both formulations, the 𝑦 variables can be easily discarded, as they solely
aggregate specific subsets of the 𝑥 variables. Nevertheless, they enable us to represent some
families of valid inequalities (as detailed in Section 2.2) by means of less dense cuts, which can
noticeably benefit the performance of cutting-plane algorithms.

Now, let ℒ1 and ℒ2 be the linearly relaxed versions of ℱ1 and ℱ2, respectively.
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Theorem 1. ℒ1 and ℒ2 are equivalent.

Proof. We show that, for every solution in ℒ1, there is a corresponding one in ℒ2 (and vice-
versa), with a same objective function value associated. First, consider 𝑥 and 𝑦 as defined in ℱ1

and ℱ2, but without the integrality. Also recall that both formulations have the same objective
function and that constraints (2.2)-(2.8) belong to ℱ1 and to ℱ2. Then, we only have to show
that there also exists a correspondence between the remaining linear constraints which define
ℒ1 and ℒ2. To this end, let us establish the following relation between 𝑧 and 𝑓 variables:

𝑧𝑖𝑗 = 𝑇𝑥𝑖𝑗 − 𝑓𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴. (2.27)

From (2.27), it holds that

1. (2.9)⇐⇒ (2.19)

𝑧𝑠𝑗 = 𝑑𝑠𝑗𝑥𝑠𝑗 ∀ 𝑗 ∈ 𝛿+(𝑠) ⇐⇒ 𝑇𝑥𝑠𝑗 − 𝑓𝑠𝑗 = 𝑑𝑠𝑗𝑥𝑠𝑗 ∀ 𝑗 ∈ 𝛿+(𝑠)

⇐⇒ 𝑓𝑠𝑗 = (𝑇 − 𝑑𝑠𝑗)𝑥𝑠𝑗 ∀ 𝑗 ∈ 𝛿+(𝑠).

2. (2.10)⇐⇒ (2.20)

∑︁
𝑗∈𝛿+(𝑖)

𝑧𝑖𝑗 −
∑︁

𝑗∈𝛿−(𝑖)
𝑧𝑗𝑖 =

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃 ⇐⇒

∑︁
𝑗∈𝛿+(𝑖)

(︁
𝑇𝑥𝑖𝑗 − 𝑓𝑖𝑗

)︁
−

∑︁
𝑗∈𝛿−(𝑖)

(︁
𝑇𝑥𝑗𝑖 − 𝑓𝑗𝑖

)︁
=

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃 ⇐⇒

∑︁
𝑗∈𝛿+(𝑖)

𝑇𝑥𝑖𝑗 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗 −

∑︁
𝑗∈𝛿−(𝑖)

𝑇𝑥𝑗𝑖 +
∑︁

𝑗∈𝛿−(𝑖)
𝑓𝑗𝑖 =

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃 ⇐⇒

∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗 + 𝑇

(︃ ∑︁
𝑗∈𝛿+(𝑖)

𝑥𝑖𝑗 −
∑︁

𝑗∈𝛿−(𝑖)
𝑥𝑗𝑖

)︃
=

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃,

which, from (2.8), implies

∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗 =

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ∀ 𝑖 ∈ 𝑆 ∪ 𝑃.

3. (2.11)⇐⇒ (2.22)

𝑧𝑖𝑗 ≤ (𝑇 −𝑅𝑗𝑡)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 ⇐⇒ 𝑇𝑥𝑖𝑗 − 𝑓𝑖𝑗 ≤ (𝑇 −𝑅𝑗𝑡)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴

⇐⇒ −𝑓𝑖𝑗 ≤ (𝑇 −𝑅𝑗𝑡)𝑥𝑖𝑗 − 𝑇𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴

⇐⇒ 𝑓𝑖𝑗 ≥ 𝑅𝑗𝑡𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴.

4. (2.12) =⇒ (2.21)

𝑧𝑖𝑗 ≥ (𝑅𝑠𝑖 + 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 =⇒ 𝑇𝑥𝑖𝑗 − 𝑓𝑖𝑗 ≥ (𝑅𝑠𝑖 + 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴

=⇒ 𝑓𝑖𝑗 ≤ (𝑇 −𝑅𝑠𝑖 − 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴
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=⇒ 𝑓𝑖𝑗 ≤ (𝑇 −𝑅𝑠𝑖 − 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ̸= 𝑠.

5. (2.21) and (2.19) =⇒ (2.12)

From (2.21) and (2.19), we have that 𝑓𝑖𝑗 ≤ (𝑇 − 𝑅𝑠𝑖 − 𝑑𝑖𝑗)𝑥𝑖𝑗 for all (𝑖, 𝑗) ∈ 𝐴, which
implies

𝑇𝑥𝑖𝑗 − 𝑓𝑖𝑗 ≥ (𝑅𝑠𝑖 + 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 =⇒ 𝑧𝑖𝑗 ≥ (𝑅𝑠𝑖 + 𝑑𝑖𝑗)𝑥𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴.

Proposition 1. The inequality (2.17) does not cut off any solution from the polyhedron ℒ2, the
linear relaxation of ℱ2.

Proof. We prove this result by showing that (2.17) can be implied by linearly combining some
of the linear constraints of ℱ2. First, by aggregating all the constraints (2.20), we obtain

(𝑎)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

(︃ ∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗

)︃
=

∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 . (2.28)

Now, let us define the set 𝐴 = {(𝑖, 𝑗) ∈ 𝐴 : 𝑖, 𝑗 ∈ 𝑆 ∪ 𝑃} composed of the arcs whose
corresponding vertices are neither 𝑠 nor 𝑡. Then, we can rewrite (a) as

(𝑎)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

(︃ ∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗

)︃
=

(𝑏)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖−

(𝑐)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑓𝑖𝑗

=

= (𝑏)⏞  ⏟  ∑︁
(𝑗,𝑖)∈𝐴

𝑓𝑗𝑖 +
∑︁

𝑖∈𝛿+(𝑠)∩(𝑆∪𝑃 )
𝑓𝑠𝑖 +

∑︁
𝑖∈𝛿+(𝑡)∩(𝑆∪𝑃 )

𝑓𝑡𝑖

−

= (𝑐)⏞  ⏟  (︃ ∑︁
(𝑖,𝑗)∈𝐴

𝑓𝑖𝑗 +
∑︁

𝑖∈𝛿−(𝑠)∩(𝑆∪𝑃 )
𝑓𝑖𝑠 +

∑︁
𝑖∈𝛿−(𝑡)∩(𝑆∪𝑃 )

𝑓𝑖𝑡

)︃
. (2.29)

From (2.6), (2.7), (2.19) and (2.21), we have that
∑︀

𝑖∈𝛿+(𝑡)∩(𝑆∪𝑃 )
𝑓𝑡𝑖 =

∑︀
𝑖∈𝛿−(𝑠)∩(𝑆∪𝑃 )

𝑓𝑖𝑠 = 0.

Also notice that
∑︀

(𝑗,𝑖)∈𝐴
𝑓𝑗𝑖 turns into

∑︀
(𝑖,𝑗)∈𝐴

𝑓𝑖𝑗 (and vice-versa) by simply reordering the notation.

Thus, (2.29) can be rewritten as

(𝑎)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

(︃ ∑︁
𝑗∈𝛿−(𝑖)

𝑓𝑗𝑖 −
∑︁

𝑗∈𝛿+(𝑖)
𝑓𝑖𝑗

)︃
=

∑︁
𝑖∈𝛿+(𝑠)∩(𝑆∪𝑃 )

𝑓𝑠𝑖 −
∑︁

𝑖∈𝛿−(𝑡)∩(𝑆∪𝑃 )
𝑓𝑖𝑡. (2.30)
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Directly from (2.28) and (2.30), it follows that

∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 =
∑︁

𝑖∈𝛿+(𝑠)∩(𝑆∪𝑃 )
𝑓𝑠𝑖 −

∑︁
𝑖∈𝛿−(𝑡)∩(𝑆∪𝑃 )

𝑓𝑖𝑡

≤
∑︁

𝑖∈𝛿+(𝑠)∩(𝑆∪𝑃 )
𝑓𝑠𝑖

≤
∑︁

𝑖∈𝛿+(𝑠)∩(𝑆∪𝑃 )
𝑓𝑠𝑖 +

∑︁
𝑖∈𝛿+(𝑠)∖(𝑆∪𝑃 )

𝑓𝑠𝑖 =
∑︁

𝑖∈𝛿+(𝑠)
𝑓𝑠𝑖. (2.31)

From (2.19) and (2.31), we have that

∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 ≤
∑︁

𝑖∈𝛿+(𝑠)
𝑓𝑠𝑖

=
∑︁

𝑖∈𝛿+(𝑠)
(𝑇 − 𝑑𝑠𝑖)𝑥𝑠𝑖

= 𝑇

(︃ ∑︁
𝑖∈𝛿+(𝑠)

𝑥𝑠𝑖

)︃
−

∑︁
𝑖∈𝛿+(𝑠)

𝑑𝑠𝑖𝑥𝑠𝑖, (2.32)

which implies
(𝑑)⏞  ⏟  ∑︁

𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑖∈𝛿+(𝑠)
𝑑𝑠𝑖𝑥𝑠𝑖 ≤ 𝑇

(︃ ∑︁
𝑖∈𝛿+(𝑠)

𝑥𝑠𝑖

)︃
. (2.33)

Notice that (d) corresponds to

(𝑑)⏞  ⏟  ∑︁
𝑖∈𝑆∪𝑃

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 +
∑︁

𝑖∈𝛿+(𝑠)
𝑑𝑠𝑖𝑥𝑠𝑖 =

∑︁
𝑖∈𝑆∪𝑃∪{𝑠}

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗

=
∑︁

𝑖∈𝑁∖{𝑡}

∑︁
𝑗∈𝛿+(𝑖)

𝑑𝑖𝑗𝑥𝑖𝑗 =
∑︁

(𝑖,𝑗)∈𝐴
𝑑𝑖𝑗𝑥𝑖𝑗 , (2.34)

since, from (2.7), no arc leaving 𝑡 can be selected. Then, from (2.4), (2.26), (2.33) and (2.34),
it follows that

= (𝑑)⏞  ⏟  ∑︁
(𝑖,𝑗)∈𝐴

𝑑𝑖𝑗𝑥𝑖𝑗 ≤ 𝑇
(︃ ∑︁
𝑗∈𝛿+(𝑠)

𝑥𝑠𝑗

)︃
= (𝑚− 𝜙)𝑇 ≤ 𝑚𝑇.

Corollary 1. The inequality (2.17) does not cut off any solution from the polyhedron ℒ1, the
linear relaxation of ℱ1.

Proof. Directly from Theorem 1 and Proposition 1.

As already mentioned, constraints (2.12) and (2.22) are, in fact, valid inequalities in
formulations ℱ1 and ℱ2, respectively. Accordingly, one can take advantage from this fact when
solving these formulations by means of branch-and-cut schemes that, like CPLEX, have cut
management mechanisms. Precisely, in such schemes, valid inequalities — usually referred to
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as user cuts — are treated differently from actual model restrictions, as they are stored in pools
of cuts and only added to the models whenever they are violated.

In the case of ℱ2, one can particularly benefit from cut management mechanisms. Pre-
cisely, we experimentally observed that, on average, the impact of the valid inequalities (2.22)
on the strength of ℱ2 is not as expressive as that of inequalities (2.12) on the strength of ℱ1 (we
refer to A.1 for the summary of the results). In practice, this behaviour suggests that (2.22)
are less likely to be active at optimal solutions for ℱ2. Then, instead of treating inequalities
(2.22) as constraints of ℱ2, we can explicitly define them as user cuts as an attempt to make
the corresponding models lighter while not losing the strength of the original formulation. This
simple idea was originally proposed by Fischetti et al. (1998) and is our main motivation for
solving ℱ2 — and not ℱ1 — within our cutting-plane algorithm.

Originally, we also proposed and tested several other compact formulations for the STOP.
Precisely, we tested two-commodity and multi-commodity versions of the formulations ℱ1 and
ℱ2, as well as variations in which the 𝑥 variables are indexed by the vehicles of the fleet 𝑀 .
Likewise, we also considered classical commodity-based formulations in which the consumption
of each unit of commodity is linked to visiting a single vertex. In addition, we adapted to the
STOP the formulation for the CVRP proposed by Kulkarni and Bhave (1985), which uses the
reinforced Miller-Tucker-Zemlin (Miller et al., 1960) subtour elimination constraints of Kara
et al. (2004). Nevertheless, since all of these additional formulations performed poorly (when
solved directly with CPLEX) in comparison with ℱ1 and ℱ2, they were omitted from this study.
In fact, we conjecture that the superiority of ℱ1 and ℱ2 is partially due to the way they implicitly
handle the limit imposed on the total traverse times of the routes.

2.2 Families of valid inequalities

In this section, we discuss five families of valid inequalities to be separated in the cutting-
plane scheme we propose. They consist of (i) some general connectivity constraints, (ii) a class
of conflict cuts, (iii) clique conflict cuts, (iv) arc-vertex inference cuts and (v) classical lifted
cover inequalities based on dual bounds. As far as we are aware, the classes of inequalities (ii),
(iii) and (iv) are also introduced in this work.

2.2.1 General Connectivity Constraints (GCCs)

The GCC inequalities were originally devised to ensure connectivity and prevent sub-tours
in solution routes (Toth and Vigo, 2001). Although these properties are already guaranteed
in formulations ℱ1 and ℱ2, the GCCs presented below are able to further strengthen both
formulations (Bianchessi et al., 2018).

∑︁
(𝑖,𝑗)∈𝛿+(𝑉 )

𝑥𝑖𝑗 ≥ 𝑦𝑘 ∀ 𝑉 ⊆ 𝑁∖{𝑡}, |𝑉 | ≥ 2, ∀ 𝑘 ∈ 𝑉. (2.35)
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2.2.2 Conflict Cuts (CCs)

Consider the set 𝒦 of vertex pairs which cannot be simultaneously in a same valid route.
Precisely, for every pair of conflicting vertices ⟨𝑖, 𝑗⟩ ∈ 𝒦, with 𝑖, 𝑗 ∈ 𝑁∖{𝑠, 𝑡}, we have that any
route from 𝑠 to 𝑡 that visits 𝑖 and 𝑗 (in any order) has a total traverse time that exceeds the
limit 𝑇 . Then, CCs are defined as follows.

∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥ 𝑦𝑖 + 𝑦𝑗 ∀ ⟨𝑖, 𝑗⟩ ∈ 𝒦, ∀ 𝑉 ⊆ 𝑁∖{𝑠}, {𝑖, 𝑗} ⊆ 𝑉, (2.36)

∑︁
𝑒∈𝛿+(𝑉 )

𝑥𝑒 ≥ 𝑦𝑖 + 𝑦𝑗 ∀ ⟨𝑖, 𝑗⟩ ∈ 𝒦, ∀ 𝑉 ⊆ 𝑁∖{𝑡}, {𝑖, 𝑗} ⊆ 𝑉. (2.37)

Proposition 2. Inequalities (2.36) do not cut off any feasible solution of ℱ2.

Proof. Consider an arbitrary feasible solution (�̄�, 𝑦, 𝑓 , 𝜙) for ℱ2, a pair of conflicting vertices
⟨𝑖, 𝑗⟩ ∈ 𝒦 and a subset 𝑉 ⊆ 𝑁∖{𝑠}. Then, we have four possibilities:

1. if 𝑦𝑖 = 𝑦𝑗 = 0, then

≥ 0⏞  ⏟  ∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥
= 0⏞  ⏟  

𝑦𝑖 + 𝑦𝑗 .

2. if 𝑦𝑖 = 1 and 𝑦𝑗 = 0, then, since 𝑠 /∈ 𝑉 , there must be an arc 𝑒′ ∈ 𝛿−(𝑉 ), with �̄�𝑒′ = 1, so

that the vertex 𝑖 is traversed in a route from 𝑠. Thus,

≥ 1⏞  ⏟  ∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥
= 1⏞  ⏟  

𝑦𝑖 + 𝑦𝑗 .

3. if 𝑦𝑖 = 0 and 𝑦𝑗 = 1, then, since 𝑠 /∈ 𝑉 , there must be an arc 𝑒′ ∈ 𝛿−(𝑉 ), with �̄�𝑒′ = 1, so

that the vertex 𝑗 is traversed in a route from 𝑠. Thus,

≥ 1⏞  ⏟  ∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥
= 1⏞  ⏟  

𝑦𝑖 + 𝑦𝑗 .

4. if 𝑦𝑖 = 𝑦𝑗 = 1, then, since 𝑖 and 𝑗 are conflicting, there must be at least two disjoint routes
from 𝑠 to 𝑡, one that visits 𝑖, and other that visits 𝑗. Since 𝑠 /∈ 𝑉 , we must also have at

least two arcs 𝑒′, 𝑒′′ ∈ 𝛿−(𝑉 ), such that 𝑥𝑒′ = 𝑥𝑒′′ = 1. Therefore,

≥ 2⏞  ⏟  ∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥
= 2⏞  ⏟  

𝑦𝑖 + 𝑦𝑗 .

Corollary 2. Inequalities (2.37) do not cut off any feasible solution of ℱ2.

Proof. The same mathematical argumentation of Proposition 2 can be used to prove the validity
of inequalities (2.37) by simply replacing 𝑠 and 𝛿−(𝑉 ) with 𝑡 and 𝛿+(𝑉 ), respectively.

Corollary 3. Inequalities (2.36) and (2.37) do not cut off any feasible solution of ℱ1.

Proof. Directly from Theorem 1, Proposition 2 and Corollary 2.

Notice that, from (2.8), we have that
∑︀

𝑒∈𝛿−(𝑉 )
𝑥𝑒 =

∑︀
𝑒∈𝛿+(𝑉 )

𝑥𝑒 for all 𝑉 ⊆ 𝑆∪𝑃 = 𝑁∖{𝑠, 𝑡}.

Therefore, for all 𝑉 ⊆ 𝑁∖{𝑠, 𝑡}, inequalities (2.36) and (2.37) cut off the exact same regions of
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𝑠

𝑖

𝑙

𝑘 𝑗

𝑡 |𝑀 | = 1

𝑆 = ∅

𝑇 = 4

𝑑𝑠𝑖 = 1

𝑑𝑠𝑙 = 1

𝑑𝑙𝑗 = 2

𝑑𝑖𝑘 = 1

𝑑𝑘𝑖 = 1

𝑑𝑘𝑗 = 2

𝑑𝑗𝑡 = 1

𝑑𝑙𝑡 = 1

𝑑𝑖𝑙 = 1

Figure 2.1: An example of an STOP instance. Profit values are omitted. Here, the pair ⟨𝑖, 𝑗⟩
gives an example of conflicting vertices.

the polyhedrons ℒ1 and ℒ2. In this sense, the whole set of CCs can be represented in a more
compact manner by (2.36) and

∑︁
𝑒∈𝛿+(𝑉 )

𝑥𝑒 ≥ 𝑦𝑖 + 𝑦𝑗 ∀ ⟨𝑖, 𝑗⟩ ∈ 𝒦, ∀ 𝑉 ⊆ 𝑁∖{𝑡}, {𝑠, 𝑖, 𝑗} ⊆ 𝑉. (2.38)

Notice that inequalities (2.38) only consider the subsets 𝑉 ⊆ 𝑁∖{𝑡} which necessarily contain
𝑠.

Intuitively speaking, CCs forbid the simultaneous selection (in a same route) of any pair
of conflicting vertices of 𝒦. In particular, CCs (2.36) work similarly to the classical capacity-cut
constraints of Toth and Vigo (2001), but in a more flexible manner. Precisely, given a pair of
conflicting vertices ⟨𝑖, 𝑗⟩ ∈ 𝒦 and a subset 𝑉 ⊆ 𝑁∖{𝑠}, {𝑖, 𝑗} ⊆ 𝑉 , the corresponding CC of
type (2.36) states that the minimum number of vehicles needed to visit 𝑖 and 𝑗 is exactly 𝑦𝑖+𝑦𝑗

(which assumes, at most, value 2). Alternatively, 𝑦𝑖 + 𝑦𝑗 can be seen as a lower bound on the
number of vehicles needed to visit all the vertices in 𝑉 .

For instance, consider the digraph shown in Figure 2.1, and let the traverse times of its
arcs be 𝑑𝑠𝑖 = 𝑑𝑠𝑙 = 𝑑𝑖𝑙 = 𝑑𝑖𝑘 = 𝑑𝑘𝑖 = 𝑑𝑙𝑡 = 𝑑𝑗𝑡 = 1 and 𝑑𝑘𝑗 = 𝑑𝑙𝑗 = 2. Also consider 𝑆 = ∅
and a single vehicle to move from 𝑠 to 𝑡, with 𝑇 = 4. In this case, 𝑖 and 𝑗 are an example of
conflicting vertices, since the only possible route from 𝑠 to 𝑡 visiting both vertices exceeds the
time limit 𝑇 = 4. Figures 2.2 and 2.3 show typical fractional solutions that are cut off by CCs
(2.36), while Figure 2.4 gives a solution that is cut off by (2.38). Notice that the solution of
Figure 2.2 also violates CCs (2.37).

2.2.3 Clique Conflict Cuts (CCCs)

Now, consider the conflict graph 𝐺𝑐 = (𝑁∖{𝑠, 𝑡}, 𝐸𝑐) representing the pairs of conflicting
vertices in 𝒦, such that 𝐸𝑐 = {{𝑖, 𝑗} : ⟨𝑖, 𝑗⟩ ∈ 𝒦} (Figure 2.5 shows the conflict graph related
to the STOP instance of Figure 2.1). Also let Σ be the set of all the cliques of 𝐺𝑐, which are
referred to as conflict cliques. Then, CCCs are defined as

∑︁
𝑒∈𝛿−(𝑉 )

𝑥𝑒 ≥
∑︁
𝑖∈𝜎

𝑦𝑖 ∀ 𝜎 ∈ Σ, ∀ 𝑉 ⊆ 𝑁∖{𝑠}, 𝜎 ⊆ 𝑉, (2.39)
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𝑠

𝑖

𝑙

𝑘 𝑗

𝑡

𝑁∖𝑉

𝑉 0.3

0.7 0.7

0.3

0

0.3

0.3

00

Figure 2.2: Representation of a fractional solution that is cut off from ℒ2 by (2.36) when
considering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have 𝑥𝑠𝑖 =
𝑥𝑖𝑘 = 𝑥𝑘𝑗 = 𝑥𝑗𝑡 = 0.3, 𝑥𝑠𝑙 = 𝑥𝑙𝑡 = 0.7 and 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑗 = 0. Accordingly, 𝑦𝑠 = 𝑦𝑡 = 1,
𝑦𝑖 = 𝑦𝑘 = 𝑦𝑗 = 0.3 and 𝑦𝑙 = 0.7. The violated inequality has 𝑉 = {𝑖, 𝑘, 𝑗}.

𝑠

𝑖

𝑙

𝑘

𝑉𝑁∖𝑉

𝑗

𝑡

0.3

0.7

0.70

0.3

0

0.3

1

0

Figure 2.3: Representation of a fractional solution that is cut off from ℒ2 by (2.36) when
considering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have 𝑥𝑠𝑖 = 𝑥𝑖𝑘 =
𝑥𝑘𝑗 = 0.3, 𝑥𝑠𝑙 = 𝑥𝑙𝑗 = 0.7, 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1. Accordingly, 𝑦𝑠 = 𝑦𝑗 = 𝑦𝑡 = 1,
𝑦𝑖 = 𝑦𝑘 = 0.3 and 𝑦𝑙 = 0.7. The violated inequality has 𝑉 = {𝑖, 𝑘, 𝑗, 𝑙, 𝑡}.
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𝑘 𝑗
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0
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Figure 2.4: Example of a fractional solution that is cut off by CCs (2.38) when considering the
polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have 𝑥𝑠𝑖 = 𝑥𝑖𝑘 = 𝑥𝑘𝑗 = 𝑥𝑠𝑙 =
𝑥𝑙𝑗 = 0.5, 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1. Accordingly, 𝑦𝑠 = 𝑦𝑗 = 𝑦𝑡 = 1, 𝑦𝑖 = 𝑦𝑘 = 𝑦𝑙 = 0.5.
The violated inequality has 𝑉 = {𝑠, 𝑙, 𝑖, 𝑘, 𝑗}.
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∑︁
𝑒∈𝛿+(𝑉 )

𝑥𝑒 ≥
∑︁
𝑖∈𝜎

𝑦𝑖 ∀ 𝜎 ∈ Σ, ∀ 𝑉 ⊆ 𝑁∖{𝑡}, 𝜎 ⊆ 𝑉. (2.40)

Their validity follows from the fact that all the vertices of a conflict clique must necessarily
belong to different routes in any feasible solution for ℱ1 and ℱ2. The formal proof can be easily
devised through the same argumentation of Proposition 2. Notice that CCCs are a natural
extension of GCCs and CCs. In particular, GCCs and CCs are CCCs based on cliques of sizes
one and two, respectively.

Remark 1. The set of CCCs defined by (2.39) and (2.40) contains all GCCs and CCs.

𝑖

𝑙

𝑘 𝑗

Figure 2.5: Conflict graph related to the STOP instance of Figure 2.1.

Also in this case, from (2.8), we have that
∑︀

𝑒∈𝛿−(𝑉 )
𝑥𝑒 =

∑︀
𝑒∈𝛿+(𝑉 )

𝑥𝑒 for all 𝑉 ⊆ 𝑆 ∪ 𝑃 =

𝑁∖{𝑠, 𝑡}. Therefore, for all 𝑉 ⊆ 𝑁∖{𝑠, 𝑡}, inequalities (2.39) and (2.40) cut off the exact same
regions of the polyhedrons ℒ1 and ℒ2. In this sense, the whole set of CCCs can be represented
in a more compact manner by (2.39) and

∑︁
𝑒∈𝛿+(𝑉 )

𝑥𝑒 ≥
∑︁
𝑖∈𝜎

𝑦𝑖 ∀ 𝜎 ∈ Σ, ∀ 𝑉 ⊆ 𝑁∖{𝑡}, 𝜎 ∪ {𝑠} ⊆ 𝑉. (2.41)

Theorem 2. For every non-maximal conflict clique 𝜎1 ∈ Σ, there is a clique 𝜎2 ∈ Σ, with
𝜎1 ⊂ 𝜎2, such that the CCCs referring to 𝜎1 are dominated by the ones referring to 𝜎2, when
considering the polyhedron ℒ2.

Proof. Consider an arbitrary non-maximal conflict clique 𝜎1 ∈ Σ and, without loss of generality,
a solution (�̄�, 𝑦, 𝑓 , 𝜙) for ℒ2 that is violated by at least one of the CCCs referring to 𝜎1. We
have to show that there exists a clique 𝜎2 ∈ Σ, with 𝜎1 ⊂ 𝜎2, whose corresponding CCCs also
cut off (�̄�, 𝑦, 𝑓 , 𝜙) from ℒ2. To this end, consider a vertex 𝑘 ∈ (𝑆 ∪𝑃 )∖𝜎1, such that {𝑘, 𝑗} ∈ 𝐸𝑐
for all 𝑗 ∈ 𝜎1. Such vertex exists, since 𝜎1 is supposed to be non-maximal. Then, define the
conflict clique 𝜎2 = 𝜎1 ∪ {𝑘}.

By assumption, (�̄�, 𝑦, 𝑓 , 𝜙) violates at least one of the CCCs (2.39) and (2.40) referring
to 𝜎1. Then, we must have at least one of these two possibilities:

1. ∃𝑉 ′ ⊆ 𝑁∖{𝑠}, with 𝜎1 ⊆ 𝑉 ′, such that
∑︀

𝑒∈𝛿−(𝑉 ′)
�̄�𝑒 <

∑︀
𝑖∈𝜎1

𝑦𝑖.

Define the set 𝑉 ′′ = 𝑉 ′ ∪ {𝑘}. Notice that, if we originally have 𝑘 ∈ 𝑉 ′, then the CCC
(2.39) considering 𝜎2 and 𝑉 = 𝑉 ′(= 𝑉 ′′ in this case) is also violated by (�̄�, 𝑦, 𝑓 , 𝜙).
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Otherwise, if 𝑘 /∈ 𝑉 ′, then

∑︁
𝑒∈𝛿−(𝑉 ′′)

�̄�𝑒 =
∑︁

𝑒∈𝛿−(𝑉 ′)
�̄�𝑒 +

(𝑔)⏞  ⏟  ∑︁
𝑖∈𝛿−(𝑘)∖𝑉 ′

�̄�𝑖𝑘−

(ℎ)⏞  ⏟  ∑︁
𝑗∈𝛿+(𝑘)∩𝑉 ′

�̄�𝑘𝑗 , (2.42)

which follows from the fact that the difference between the summation of arcs entering
𝑉 ′′ and that of arcs entering 𝑉 ′ corresponds to the difference between (g) the sum of arcs
arriving at 𝑘 that do not leave a vertex of 𝑉 ′ and (h) the sum of arcs leaving 𝑘 that arrive
at a vertex of 𝑉 ′. In other words, (g) considers the arcs that traverse the cut (𝑁∖𝑉 ′′, 𝑉 ′′)
but do not traverse (𝑁∖𝑉 ′, 𝑉 ′), while (h) considers the arcs that do not traverse the cut
(𝑁∖𝑉 ′′, 𝑉 ′′) but traverse (𝑁∖𝑉 ′, 𝑉 ′).

From (2.42) and the hypothesis that
∑︀

𝑒∈𝛿−(𝑉 ′)
�̄�𝑒 <

∑︀
𝑖∈𝜎1

𝑦𝑖, it follows that

∑︁
𝑒∈𝛿−(𝑉 ′′)

�̄�𝑒 <
∑︁
𝑖∈𝜎1

𝑦𝑖 +

(𝑔)⏞  ⏟  ∑︁
𝑖∈𝛿−(𝑘)∖𝑉 ′

�̄�𝑖𝑘−

(ℎ)⏞  ⏟  ∑︁
𝑗∈𝛿+(𝑘)∩𝑉 ′

�̄�𝑘𝑗 . (2.43)

From (2.3), (2.8), (2.23) and (2.24), we have that

(𝑔)⏞  ⏟  ∑︁
𝑖∈𝛿−(𝑘)∖𝑉 ′

�̄�𝑖𝑘−

(ℎ)⏞  ⏟  ∑︁
𝑗∈𝛿+(𝑘)∩𝑉 ′

�̄�𝑘𝑗 ≤ 𝑦𝑘. (2.44)

Then, from (2.43), it follows that

∑︁
𝑒∈𝛿−(𝑉 ′′)

�̄�𝑒 <
∑︁
𝑖∈𝜎1

𝑦𝑖 + 𝑦𝑘 (2.45)

<
∑︁
𝑖∈𝜎2

𝑦𝑖, (2.46)

Since 𝜎2 = 𝜎1 ∪ {𝑘} and 𝜎1 ⊆ 𝑉 ′, we have that 𝜎2 ⊆ 𝑉 ′′. Then, also in this case, there
exists a CCC (2.39) referring to 𝜎2 (in particular, with 𝑉 = 𝑉 ′′) that is also violated by
(�̄�, 𝑦, 𝑓 , 𝜙).

2. ∃𝑉 ′ ⊆ 𝑁∖{𝑡}, with 𝜎1 ⊆ 𝑉 ′, such that
∑︀

𝑒∈𝛿+(𝑉 ′)
�̄�𝑒 <

∑︀
𝑖∈𝜎1

𝑦𝑖.

Through the same idea of the previous case, we can also show that the CCC (2.40) referring
to 𝜎2 that considers 𝑉 = 𝑉 ′ ∪ {𝑘} is also violated by (�̄�, 𝑦, 𝑓 , 𝜙).

From Theorem 2, we may discard several CCCs (2.39) and (2.40), as we only need to
consider the ones related to maximal conflict cliques. We highlight that, in the conflict graph,
there might be maximal cliques of size one, which correspond to isolated vertices.
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Figure 2.6: Example of a fractional solution that is cut off by AVICs (2.48) and (2.49) when
considering the polyhedron ℒ2 and the STOP instance of Figure 2.1. Here, we have 𝑥𝑠𝑖 =
𝑥𝑖𝑘 = 0.8, 𝑥𝑠𝑙 = 𝑥𝑖𝑙 = 𝑥𝑘𝑖 = 0.2, 𝑥𝑙𝑗 = 0.4, 𝑥𝑘𝑗 = 0.6, 𝑥𝑙𝑡 = 0 and 𝑥𝑗𝑡 = 1. Accordingly,
𝑦𝑠 = 𝑦𝑖 = 𝑦𝑗 = 𝑦𝑡 = 1, 𝑦𝑘 = 0.8 and 𝑦𝑙 = 0.4. The violated AVIC is 𝑦𝑖 − 𝑦𝑘 ≤ 1− (𝑥𝑖𝑘 + 𝑥𝑘𝑖).

2.2.4 Arc-Vertex Inference Cuts (AVICs)

Consider the set 𝐸 = {{𝑖, 𝑗} : (𝑖, 𝑗) ∈ 𝐴 and (𝑗, 𝑖) ∈ 𝐴}. AVICs are defined as

|𝑦𝑖 − 𝑦𝑗 | ≤ 1− (𝑥𝑖𝑗 + 𝑥𝑗𝑖) ∀ {𝑖, 𝑗} ∈ 𝐸, (2.47)

which can be linearized as

𝑦𝑖 − 𝑦𝑗 ≤ 1− (𝑥𝑖𝑗 + 𝑥𝑗𝑖) ∀ {𝑖, 𝑗} ∈ 𝐸, and (2.48)

𝑦𝑗 − 𝑦𝑖 ≤ 1− (𝑥𝑖𝑗 + 𝑥𝑗𝑖) ∀ {𝑖, 𝑗} ∈ 𝐸. (2.49)

In logic terms, these inequalities correspond to the boolean expressions

(𝑥𝑖𝑗 = 1⊕ 𝑥𝑗𝑖 = 1)→ 𝑦𝑖 − 𝑦𝑗 = 0 ∀ {𝑖, 𝑗} ∈ 𝐸,

where ⊕ stands for the exclusive disjunction operator.
The validity of AVICs relies on two trivial properties that are inherent to feasible solutions

for ℱ1 and ℱ2: (𝑖) for all {𝑖, 𝑗} ∈ 𝐸, arcs (𝑖, 𝑗) and (𝑗, 𝑖) cannot be simultaneously selected (i.e.
𝑥𝑖𝑗 + 𝑥𝑗𝑖 ≤ 1), and (𝑖𝑖) once an arc (𝑖, 𝑗) ∈ 𝐴 is selected in a solution (i.e., 𝑥𝑖𝑗 = 1), we must
have 𝑦𝑖 = 𝑦𝑗 (which, more precisely, are also equal to one). Figure 2.6 gives an example of a
fractional solution that is cut off from ℒ2 (and ℒ1) by AVICs.

One may notice that simpler valid inequalities can be devised by considering arcs sepa-
rately, as follows

|𝑦𝑖 − 𝑦𝑗 | ≤ 1− 𝑥𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴. (2.50)

However, these inequalities are not only weaker, but redundant for formulations ℱ1 and ℱ2, as
proven next.

Proposition 3. Inequalities (2.50) do not cut off any solution from the polyhedrons ℒ1 and ℒ2.
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Proof. From (2.3), (2.8) and the domain of the binary variables 𝑥 and 𝑦, we have that 0 ≤
𝑥𝑖𝑗 ≤ 𝑦𝑖 ≤ 1 and 0 ≤ 𝑥𝑖𝑗 ≤ 𝑦𝑗 ≤ 1 for all (𝑖, 𝑗) ∈ 𝐴. Accordingly, the maximum possible value
assumed by |𝑦𝑖 − 𝑦𝑗 | occurs when one of the corresponding 𝑦 variables assumes its minimum
value (i.e., 𝑥𝑖𝑗), and the other assumes its maximum (i.e., 1).

2.2.5 Lifted Cover Inequalities (LCIs)

Let 𝜏 be a dual (upper) bound on the optimal solution value of ℱ2. Then, consider the
inequality ∑︁

𝑖∈𝑃
𝑝𝑖𝑦𝑖 ≤ ⌊𝜏⌋, (2.51)

where 𝑃 ⊆ 𝑁∖{𝑠, 𝑡} is the set of profitable vertices, with 𝑝𝑖 ∈ Z+ for all 𝑖 ∈ 𝑃 , as defined in
Section 1.2. By definition, (2.51) is valid for ℱ2 (and ℱ1), once its left-hand side corresponds
to the objective function of this formulation.

Notice that (2.51) consists of a knapsack constraint, and, thus, it can be strengthened by
means of classical cover inequalities and lifting. In this sense, a set 𝐶 ⊆ 𝑃 is called a cover for
inequality (2.51) if

∑︀
𝑖∈𝐶

𝑝𝑖 > ⌊𝜏⌋. Moreover, this cover is said to be minimal if it no longer covers

(2.51) once any of its elements is removed, i.e.,
∑︀

𝑖∈𝐶∖{𝑗}
𝑝𝑖 ≤ ⌊𝜏⌋ for all 𝑗 ∈ 𝐶.

Consider the set Φ of the 𝑦 solution values that satisfy (2.51). Precisely,

Φ =
{︁
𝑦 ∈ {0, 1}|𝑃 | :

∑︁
𝑖∈𝑃

𝑝𝑖𝑦𝑖 ≤ ⌊𝜏⌋
}︁
. (2.52)

For any cover 𝐶 ⊆ 𝑃 , the inequality

∑︁
𝑖∈𝐶

𝑦𝑖 ≤ |𝐶| − 1 (2.53)

is called a cover inequality and is valid for Φ. In this work, we apply a variation of these
inequalities, namely LCIs, which are facet-inducing for Φ and can be devised from (2.53) through
lifting (see, e.g., Balas (1975); Wolsey (1975); Gu et al. (1998); Kaparis and Letchford (2008)).
Let two disjoint sets 𝐶1 and 𝐶2 define a partition of a given minimal cover 𝐶, with 𝐶1 ̸= ∅.
LCIs are defined as

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑗∈𝐶2

𝜋𝑗𝑦𝑗 +
∑︁

𝑗∈𝑃∖𝐶
𝜇𝑗𝑦𝑗 ≤ |𝐶1|+

∑︁
𝑗∈𝐶2

𝜋𝑗 − 1, (2.54)

where 𝜋𝑖 ∈ Z, 𝜋𝑖 ≥ 1 for all 𝑖 ∈ 𝐶2, and 𝜇𝑖 ∈ Z, 𝜇𝑖 ≥ 0 for all 𝑖 ∈ 𝑃∖𝐶, are the lifted coefficients.
We detail the way these coefficients are computed in the separation procedure of Section 2.3.5.
For now, only notice that setting 𝜋 = 1 and 𝜇 = 0 suffices for the validity of (2.54), as it leads
to the classical cover inequality (2.53).
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2.3 Separation of valid inequalities

Let (�̄�, 𝑦, 𝑓 , 𝜙) (or (�̄�, 𝑦, 𝑧, 𝜙)) be a given fractional solution referring to the linear relax-
ation of ℱ2 (or ℱ1). Also consider the residual graph �̃� = (𝑁,𝐴) induced by (�̄�, 𝑦, 𝑓 , 𝜙), such
that each arc (𝑖, 𝑗) ∈ 𝐴 belongs to 𝐴 if, and only if, �̄�𝑖𝑗 > 0. Moreover, a capacity 𝑐[𝑖, 𝑗] = �̄�𝑖𝑗

is associated with each arc (𝑖, 𝑗) ∈ 𝐴.
As detailed in the sequel, the separation of GCCs and CCs involves solving maximum

flow problems. Then, for clarity, consider the following notation. Given an arbitrary digraph
𝐺𝑎 with capacitated arcs, and two vertices 𝑖 and 𝑗 of 𝐺𝑎, let max-flow𝑖→𝑗(𝐺𝑎) denote the
problem of finding the maximum flow (and, thus, a minimum cut) from 𝑖 to 𝑗 on 𝐺𝑎. Moreover,
let ⟨𝐹𝑖→𝑗 , 𝜃𝑖→𝑗⟩ denote an optimal solution of such problem, where 𝐹𝑖→𝑗 is the value of the
maximum flow, and 𝜃𝑖→𝑗 defines a corresponding minimum cut, with 𝑖 ∈ 𝜃𝑖→𝑗 .

2.3.1 GCCs

The separation of violated GCCs is done by means of the same algorithm adopted by
Bianchessi et al. (2018) and described as follows. For each pair of vertices ⟨𝑣, 𝑡⟩, 𝑣 ∈ 𝑁∖{𝑡},
a maximum flow from 𝑣 to 𝑡 on �̃� is computed, i.e., the problem max-flow𝑣→𝑡(�̃�) is solved,
obtaining a solution ⟨𝐹𝑣→𝑡, 𝜃𝑣→𝑡⟩. Let 𝑣* = arg max

𝑗∈𝜃𝑣→𝑡

{𝑦𝑗}. If 𝑡 /∈ 𝜃𝑣→𝑡, |𝜃𝑣→𝑡| ≥ 2 and 𝑦𝑣*

is greater than the value of the maximum flow 𝐹𝑣→𝑡, then a violated GCC is found, which
corresponds to ∑︁

(𝑖,𝑗)∈𝛿+(𝜃𝑣→𝑡)
𝑥𝑖𝑗 ≥ 𝑦𝑣* . (2.55)

Notice that, in this case, the GCCs found (if any) are the most violated ones, one for each pair
⟨𝑣, 𝑡⟩, 𝑣 ∈ 𝑁∖{𝑡}.

2.3.2 CCs

Considering the shortest (minimum time) paths matrix𝑅 defined by the end of Section 1.2,
we first compute the set 𝒦 of conflicting vertices by checking, for all pairs ⟨𝑖, 𝑗⟩, 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ̸= 𝑗,
if there exists a path from 𝑠 to 𝑡 on 𝐺 that traverses both 𝑖 and 𝑗 (in any order) and that
satisfies the total time limit 𝑇 . If no such path exists, then ⟨𝑖, 𝑗⟩ belongs to 𝒦. For simplicity,
in this work, we only consider a subset �̃� ⊆ 𝒦 of conflicting vertex pairs, such that

⟨𝑖, 𝑗⟩ ∈ �̃� iff

⎧⎨⎩ (𝑖) 𝑅𝑠𝑖 +𝑅𝑖𝑗 +𝑅𝑗𝑡 > 𝑇, and

(𝑖𝑖) 𝑅𝑠𝑗 +𝑅𝑗𝑖 +𝑅𝑖𝑡 > 𝑇,
∀ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗,

where (𝑖) is satisfied if a minimum traverse time route from 𝑠 to 𝑡 that visits 𝑖 before 𝑗 exceeds
the time limit. Likewise, (𝑖𝑖) considers a minimum time route that visits 𝑗 before 𝑖. Since the
routes from 𝑠 to 𝑡 considered in (𝑖) and (𝑖𝑖) are composed by simply aggregating entries of ℳ,
they may not be elementary, i.e., they might visit a same vertex more than once. Then, �̃� is
not necessarily equal to 𝒦. Also observe that we only have to compute �̃� a single time for a
given STOP instance, as it is completely based on the original graph 𝐺.
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Once �̃� is computed, we look for violated CCs of types (2.36) and (2.37) separately, as
described in the algorithm of Figure 2.7. Let the set 𝒳 keep the CCs found during the separation
procedure. Initially, 𝒳 is empty (line 1, Figure 2.7). Then, for all pairs of conflicting vertices
⟨𝑖, 𝑗⟩ ∈ �̃�, we build two auxiliary graphs, one for each type of CC. The first graph, denoted by
�̃�1, is built by adding to the residual graph �̃� an artificial vertex 𝛽1 and two arcs: (𝑖, 𝛽1) and
(𝑗, 𝛽1) (see line 4, Figure 2.7). The second one, denoted by �̃�2, is built by reversing all the arcs
of �̃� and, then, adding an artificial vertex 𝛽2, as well as the arcs (𝑖, 𝛽2) and (𝑗, 𝛽2) (see line 5,
Figure 2.7).

The capacities of the arcs of �̃�1 and �̃�2 are kept in the data structures 𝑐1 and 𝑐2, re-
spectively. In both graphs, the capacities of the original arcs in �̃� are preserved (see lines 6-8,
Figure 2.7). Moreover, all the additional arcs have a same capacity value, which is equal to a
sufficiently large number. Here, we adopted the value of |𝑀 |, the number of vehicles (see line
9, Figure 2.7).

Figures 2.8 and 2.9 illustrate the construction of the auxiliary graphs described above.
In these examples, we consider the STOP instance of Figure 2.1 and assume that the current
fractional solution (�̄�, 𝑦, 𝑓 , 𝜙) has �̄�𝑠𝑖 = �̄�𝑖𝑘 = �̄�𝑘𝑗 = �̄�𝑠𝑙 = �̄�𝑙𝑗 = 0.5, �̄�𝑘𝑖 = �̄�𝑖𝑙 = �̄�𝑙𝑡 = 0 and
�̄�𝑗𝑡 = 1.

Input: A fractional solution (�̄�, 𝑦, 𝑓 , 𝜙), its corresponding residual graph �̃� = (𝑁,𝐴) and
the subset �̃� of conflicting vertex pairs.
Output: A set 𝒳 of CCs violated by (�̄�, 𝑦, 𝑓 , 𝜙).
1. 𝒳 ← ∅;
2. for all (⟨𝑖, 𝑗⟩ ∈ �̃�) do
3. Step I. Building the auxiliary graphs
4. Build �̃�1 = (�̃�1, 𝐴1), with �̃�1 = 𝑁 ∪ {𝛽1} and 𝐴1 = 𝐴 ∪ {(𝑖, 𝛽1), (𝑗, 𝛽1)};
5. Build �̃�2 = (�̃�2, 𝐴2), with �̃�2 = 𝑁 ∪ {𝛽2} and 𝐴2 = {(𝑣, 𝑢) : (𝑢, 𝑣) ∈ 𝐴} ∪ {(𝑖, 𝛽2), (𝑗, 𝛽2)};
6. for all ((𝑢, 𝑣) ∈ 𝐴) do
7. 𝑐1[𝑢, 𝑣]← 𝑐2[𝑣, 𝑢]← 𝑐[𝑢, 𝑣];
8. end-for;
9. 𝑐1[𝑖, 𝛽1]← 𝑐1[𝑗, 𝛽1]← 𝑐2[𝑖, 𝛽2]← 𝑐2[𝑗, 𝛽2]← |𝑀 |;
10. Step II. Looking for a violated CC (2.36)
11. ⟨𝐹𝑠→𝛽1 , 𝜃𝑠→𝛽1⟩ ← max-flow𝑠→𝛽1(�̃�1);
12. if (𝐹𝑠→𝛽1 < 𝑦𝑖 + 𝑦𝑗) then
13. 𝒳 ← 𝒳 ∪ {⟨𝑁∖𝜃𝑠→𝛽1 , ⟨𝑖, 𝑗⟩⟩};
14. end-if ;
15. Step III. Looking for a violated CC (2.37)
16. ⟨𝐹𝑡→𝛽2 , 𝜃𝑡→𝛽2⟩ ← max-flow𝑡→𝛽2(�̃�2);
17. if (𝐹𝑡→𝛽2 < 𝑦𝑖 + 𝑦𝑗) then
18. 𝒳 ← 𝒳 ∪ {⟨𝑁∖𝜃𝑡→𝛽2 , ⟨𝑖, 𝑗⟩⟩};
19. end-if ;
20. end-for;
21. return 𝒳 ;

Figure 2.7: Algorithm used to separate violated CCs.

Once the auxiliary graphs are built for a given ⟨𝑖, 𝑗⟩ ∈ �̃�, the algorithm looks for violated
CCs by solving two maximum flow problems: one from 𝑠 to 𝛽1 on �̃�1 and other from 𝑡 to 𝛽2 on
�̃�2. Let ⟨𝐹𝑠→𝛽1 , 𝜃𝑠→𝛽1⟩ be the solution of the first maximum flow problem, i.e., ⟨𝐹𝑠→𝛽1 , 𝜃𝑠→𝛽1⟩ =
max-flow𝑠→𝛽1(�̃�1). Recall that 𝐹𝑠→𝛽1 gives the value of the resulting maximum flow, and 𝜃𝑠→𝛽1
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Figure 2.8: Example of an auxiliary graph �̃�1 used in the separation of CCs (2.36). This graph
considers the STOP instance of Figure 2.1, the pair of conflicting vertices ⟨𝑖, 𝑗⟩ and a fractional
solution �̄�, with �̄�𝑠𝑖 = �̄�𝑖𝑘 = �̄�𝑘𝑗 = �̄�𝑠𝑙 = �̄�𝑙𝑗 = 0.5, �̄�𝑘𝑖 = �̄�𝑖𝑙 = �̄�𝑙𝑡 = 0 and �̄�𝑗𝑡 = 1. Here,
the values associated with the arcs are their corresponding capacities, and the infinity symbol
stands for a sufficiently large value.
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Figure 2.9: Example of an auxiliary graph �̃�2 used in the separation of CCs (2.37). This graph
considers the STOP instance of Figure 2.1, the pair of conflicting vertices ⟨𝑖, 𝑗⟩ and a fractional
solution �̄�, with �̄�𝑠𝑖 = �̄�𝑖𝑘 = �̄�𝑘𝑗 = �̄�𝑠𝑙 = �̄�𝑙𝑗 = 0.5, �̄�𝑘𝑖 = �̄�𝑖𝑙 = �̄�𝑙𝑡 = 0 and �̄�𝑗𝑡 = 1. Here,
the values associated with the arcs are their corresponding capacities, and the infinity symbol
stands for a sufficiently large value.
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defines a corresponding minimum cut, with 𝑠 ∈ 𝜃𝑠→𝛽1 . Then, the algorithm checks if 𝐹𝑠→𝛽1 is
smaller than 𝑦𝑖 + 𝑦𝑗 . If that is the case, a violated CC (2.36) is identified and added to 𝒳 (see
lines 10-14, Figure 2.7). Precisely, this inequality is denoted by ⟨𝑁∖𝜃𝑠→𝛽1 , ⟨𝑖, 𝑗⟩⟩ and defined as

∑︁
𝑒∈𝛿−(𝑁∖𝜃𝑠→𝛽1 )

𝑥𝑒 ≥ 𝑦𝑖 + 𝑦𝑗 , (2.56)

where 𝑁∖𝜃𝑠→𝛽1 corresponds to the subset 𝑉 ⊆ 𝑁∖{𝑠} of (2.36).
Likewise, let ⟨𝐹𝑡→𝛽2 , 𝜃𝑡→𝛽2⟩ be the solution of the second maximum flow problem, i.e.,

⟨𝐹𝑡→𝛽2 , 𝜃𝑡→𝛽2⟩ = max-flow𝑡→𝛽2(�̃�2). If 𝐹𝑡→𝛽2 is smaller than 𝑦𝑖 + 𝑦𝑗 , then a violated CC (2.37)
is identified and added to 𝒳 (see lines 15-19, Figure 2.7). This CC is denoted by ⟨𝑁∖𝜃𝑡→𝛽2 , ⟨𝑖, 𝑗⟩⟩
and defined as ∑︁

𝑒∈𝛿+(𝑁∖𝜃𝑡→𝛽2 )
𝑥𝑒 ≥ 𝑦𝑖 + 𝑦𝑗 . (2.57)

Here, 𝑁∖𝜃𝑡→𝛽2 corresponds to the subset 𝑉 ⊆ 𝑁∖{𝑡} of (2.37).

2.3.3 CCCs

First, consider the subset of conflicting vertex pairs �̃� ⊆ 𝒦, which is heuristically
computed as described at the beginning of Section 2.3.2. Then, we build the correspond-
ing conflict graph �̃�𝑐 = (𝑁, �̃�𝑐) representing the pairs of conflicting vertices in �̃�, such that
�̃�𝑐 = {{𝑖, 𝑗} : ⟨𝑖, 𝑗⟩ ∈ �̃�}. Thereafter, we compute a subset Σ̃ ⊆ Σ of conflict cliques by finding
all the maximal cliques of �̃�𝑐, including the ones of size one. To this end, we apply the depth-
first search algorithm of Tomita et al. (2006), which runs with worst-case time complexity of
O
(︀
3

|𝑁|
3
)︀
.

Once Σ̃ is computed, we look for violated CCCs of types (2.39) and (2.40) in a similar way
as in the separation of CCs described in Section 2.3.2. The algorithm is detailed in Figure 2.10.
Let the set 𝒳 ′ keep the CCCs found during the separation procedure. Initially, 𝒳 ′ is empty
(line 1, Figure 2.10). Due to the possibly large number of maximal cliques, we adopt a simple
filtering mechanism to discard cliques from further search whenever convenient. Precisely, the
cliques, which are initially marked as active (line 2, Figure 2.10), are disabled if any of its
vertices belongs to a previously separated CCC. Then, for every conflict clique 𝜎 ∈ Σ̃, we check
if it is currently active (lines 3 and 4, Figure 2.10) and, if so, we build two auxiliary graphs, one
for each type of CCC. The first graph, denoted by �̃�′

1, is built by adding to the residual graph
�̃� an artificial vertex 𝛽1 and |𝜎| arcs (𝑖, 𝛽1), one for each 𝑖 ∈ 𝜎 (see line 6, Figure 2.10). The
second one, denoted by �̃�′

2, is built by reversing all the arcs of �̃� and, then, adding an artificial
vertex 𝛽2, as well as an arc (𝑖, 𝛽2) for each 𝑖 ∈ 𝜎 (see line 7, Figure 2.10).

The capacities of the arcs of �̃�′
1 and �̃�′

2 are kept in the data structures 𝑐′
1 and 𝑐′

2, re-
spectively. In both graphs, the capacities of the original arcs in �̃� are preserved (see lines 8-10,
Figure 2.10). Moreover, all the additional arcs have a same capacity value, which is equal to a
sufficiently large number. Here, we adopted the value of |𝑀 |, the number of vehicles (see lines
11-13, Figure 2.10).

Once the auxiliary graphs are built for a given 𝜎 ∈ Σ̃, the algorithm first looks for a
violated CCC (2.39) by computing the maximum flow from 𝑠 to 𝛽1 on �̃�′

1. Accordingly, let
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Input: A fractional solution (�̄�, 𝑦, 𝑓 , 𝜙), its corresponding residual graph �̃� = (𝑁,𝐴) and
the subset Σ̃ ⊆ Σ of maximal conflict cliques.
Output: A set 𝒳 ′ of CCCs violated by (�̄�, 𝑦, 𝑓 , 𝜙).
1. 𝒳 ′ ← ∅;
2. Set all cliques in Σ̃ as active;
3. for all (𝜎 ∈ Σ̃) do
4. if (𝜎 is active) then
5. Step I. Building the auxiliary graphs
6. Build �̃�′

1 = (�̃� ′
1, 𝐴

′
1), �̃� ′

1 = 𝑁 ∪ {𝛽1}, 𝐴′
1 = 𝐴 ∪ {(𝑖, 𝛽1) : 𝑖 ∈ 𝜎};

7. Build �̃�′
2 = (�̃� ′

2, 𝐴
′
2), �̃� ′

2 = 𝑁 ∪ {𝛽2}, 𝐴′
2 = {(𝑣, 𝑢) : (𝑢, 𝑣) ∈ 𝐴} ∪ {(𝑖, 𝛽2) : 𝑖 ∈ 𝜎};

8. for all ((𝑢, 𝑣) ∈ 𝐴) do
9. 𝑐′

1[𝑢, 𝑣]← 𝑐′
2[𝑣, 𝑢]← 𝑐[𝑢, 𝑣];

10. end-for;
11. for all (𝑖 ∈ 𝜎) do
12. 𝑐′

1[𝑖, 𝛽1]← 𝑐′
2[𝑖, 𝛽2]← |𝑀 |;

13. end-for;
14. Step II. Looking for a violated CCC (2.39)
15. ⟨𝐹𝑠→𝛽1 , 𝜃𝑠→𝛽1⟩ ← max-flow𝑠→𝛽1(�̃�′

1);
16. if (𝐹𝑠→𝛽1 <

∑︀
𝑖∈𝜎

𝑦𝑖) then

17. 𝒳 ′ ← 𝒳 ′ ∪ {⟨𝑁∖𝜃𝑠→𝛽1 , 𝜎⟩};
18. Call update-active-cliques(Σ̃, 𝜎, 𝑦);
19. else
20. Step III. Looking for a violated CCC (2.40)
21. ⟨𝐹𝑡→𝛽2 , 𝜃𝑡→𝛽2⟩ ← max-flow𝑡→𝛽2(�̃�′

2);
22. if (𝐹𝑡→𝛽2 <

∑︀
𝑖∈𝜎

𝑦𝑖) then

23. 𝒳 ′ ← 𝒳 ′ ∪ {⟨𝑁∖𝜃𝑡→𝛽2 , 𝜎⟩};
24. Call update-active-cliques(Σ̃, 𝜎, 𝑦);
25. end-if ;
26. end-if-else
27. end-if ;
28. end-for;
29. return 𝒳 ′;

Figure 2.10: Algorithm used to separate violated CCCs.

⟨𝐹𝑠→𝛽1 , 𝜃𝑠→𝛽1⟩ be the solution of max-flow𝑠→𝛽1(�̃�′
1). Recall that 𝐹𝑠→𝛽1 gives the value of the

resulting maximum flow, and 𝜃𝑠→𝛽1 defines a corresponding minimum cut, with 𝑠 ∈ 𝜃𝑠→𝛽1 .
Then, the algorithm checks if 𝐹𝑠→𝛽1 is smaller than

∑︀
𝑖∈𝜎

𝑦𝑖. If that is the case, a violated CCC

(2.39) is identified and added to 𝒳 ′. Precisely, this inequality is denoted by ⟨𝑁∖𝜃𝑠→𝛽1 , 𝜎⟩ and
defined as ∑︁

𝑒∈𝛿−(𝑁∖𝜃𝑠→𝛽1 )
𝑥𝑒 ≥

∑︁
𝑖∈𝜎

𝑦𝑖, (2.58)

where 𝑁∖𝜃𝑠→𝛽1 corresponds to the subset 𝑉 ⊆ 𝑁∖{𝑠} of (2.39). If a violated CCC (2.39) is
identified, we also disable the cliques that are no longer active by calling the procedure update-
active-cliques, which is described in Figure 2.11. The separation of CCCs (2.39) is summarized
at lines 14-19, Figure 2.10.

Notice that, if the separation algorithm does not find a violated CCC (2.39) for the current
clique, then this clique remains active. In this case, the algorithm looks for a violated CCC of
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Input: A set of conflict cliques Σ̃, a conflict clique 𝜎 ∈ Σ̃ and a fractional solution 𝑦.
1. for all (vertex 𝑖 ∈ 𝜎) do
2. if (𝑦𝑖 > 0) then
3. Deactivate every clique in Σ̃ containing 𝑖;
4. end-if ;
5. end-for;

Figure 2.11: Procedure update-active-cliques, which manages the currently active conflict cliques
during the separation of CCCs.

type (2.40) by computing ⟨𝐹𝑡→𝛽2 , 𝜃𝑡→𝛽2⟩ = max-flow𝑡→𝛽2(�̃�′
2). If 𝐹𝑡→𝛽2 is smaller than

∑︀
𝑖∈𝜎

𝑦𝑖,

then a violated CCC (2.40) is identified and added to 𝒳 ′. This CCC is denoted by ⟨𝑁∖𝜃𝑡→𝛽2 , 𝜎⟩
and defined as ∑︁

𝑒∈𝛿+(𝑁∖𝜃𝑡→𝛽2 )
𝑥𝑒 ≥

∑︁
𝑖∈𝜎

𝑦𝑖. (2.59)

Here, 𝑁∖𝜃𝑡→𝛽2 corresponds to the subset 𝑉 ⊆ 𝑁∖{𝑡} of (2.40). Also in this case, we disable the
cliques that are no longer active by calling the procedure update-active-cliques. The separation
of CCCs (2.40) is summarized at lines 20-25, Figure 2.10.

2.3.4 AVICs

Notice that the total number of AVICs (2.48) and (2.49) is equal to 2 × |𝐸|, which is
at most |𝐴|. Then, this family of inequalities can be separated by complete enumeration with
O
(︀
|𝐴|
)︀

time complexity.

2.3.5 LCIs

Here, we describe the separation procedure we adopt to obtain LCIs, which is based on
the algorithmic framework of Gu et al. (1998). Since the peculiarities behind lifting might be
tricky, we first elucidate in details the concepts of down-lifting and up-lifting, which we apply
throughout this section.

Consider a (not necessarily minimal) cover 𝐶 ⊆ 𝑃 for the knapsack constraint (2.51) and
the corresponding cover inequality (2.53). Moreover, let 𝜔 ∈ Z|𝑃 | be the coefficient vector of the
𝑦 variables in (2.53), such that 𝜔𝑖 = 1 for all 𝑖 ∈ 𝐶, and 𝜔𝑖 = 0 for all 𝑖 ∈ 𝑃∖𝐶. Accordingly,
(2.53) can be alternatively stated as

∑︁
𝑖∈𝑃

𝜔𝑖𝑦𝑖 ≤ |𝐶| − 1. (2.60)

The attempt to increase the coefficient values of the variables 𝑦𝑖 in (2.60) such that 𝑖 ∈ 𝐶
(and, thus, 𝜔𝑖 = 1) is called down-lifting. Likewise, the process of computing new coefficients
for the variables 𝑦𝑖 such that 𝑖 /∈ 𝐶 (and, thus, 𝜔𝑖 = 0) is called up-lifting. In both cases,
the aim is to strengthen the original cover inequality by replacing the initial coefficients with
possibly greater positive integer values. Naturally, these lifted coefficients must be computed in
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a way that preserves the validity of the cover inequality with respect to the original knapsack
constraint (2.51).

In this work, both liftings are done sequentially (i.e., one variable at a time), and the
lifted coefficients are computed by solving auxiliary knapsack problems to optimality. In order
to describe how down-lifting works, consider a partition of the cover 𝐶 into two disjoint sets 𝐶1

and 𝐶2, with 𝐶1 ̸= ∅. In this partition, 𝐶1 keeps the indexes of the variables whose coefficients
will not be updated (i.e., will remain equal to one), while 𝐶2 identifies the variables to be down-
lifted. Moreover, let 𝐶 ′ keep the indexes of the variables whose lifted coefficients were already
computed, such that, initially, 𝐶 ′ = ∅ and, by the end of all down-liftings, 𝐶 ′ = 𝐶2. During the
down-lifting process, consider the following auxiliary inequality

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′

𝜋𝑖𝑦𝑖 ≤ |𝐶1|+
∑︁
𝑖∈𝐶′

𝜋𝑖 − 1, (2.61)

where 𝜋𝑖 ∈ Z, 𝜋𝑖 ≥ 1 for all 𝑖 ∈ 𝐶 ′, are the currently available lifted coefficients. Without loss
of generality, to down-lift a variable 𝑦𝑗 , 𝑗 ∈ 𝐶2∖𝐶 ′, the following auxiliary knapsack problem is
solved

(𝒜1) 𝜑1 = max
{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′

𝜋𝑖𝑦𝑖 : (2.51), 𝑦𝑗 = 0, 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝐶2∖(𝐶 ′ ∪ {𝑗}), 𝑦 ∈ {0, 1}|𝑃 |
}︃
,

which consists of determining the maximum value 𝜑1 that the left-hand side of (2.61) can
assume while satisfying the original knapsack constraint (2.51) and fixing 𝑦𝑗 = 0 and 𝑦𝑖 = 1 for
all 𝑖 ∈ 𝐶2∖(𝐶 ′ ∪ {𝑗}). The resulting lifted coefficient of 𝑦𝑗 is given by the gap between 𝜑1 and
the current right-hand side value of (2.61), i.e., 𝜋𝑗 = 𝜑1 − (|𝐶1| +

∑︀
𝑖∈𝐶′

𝜋𝑖 − 1). Naturally, we

update 𝐶 ′ ← 𝐶 ′ ∪ {𝑗} after 𝑦𝑗 is lifted.
Intuitively speaking, the process described above can be seen as removing 𝑗 from the cover

(by setting 𝑦𝑗 = 0) and, then, computing the maximum value 𝜋𝑗 can assume as to bring 𝑗 back
to the cover. Recall that simply setting 𝜋 = 1 and considering 𝐶 ′ = 𝐶2 ensures the validity
of (2.61). Accordingly, keeping the remaining un-lifted variables 𝑦𝑖, for all 𝑖 ∈ 𝐶2∖(𝐶 ′ ∪ {𝑗}),
fixed at one while down-lifting a variable 𝑦𝑗 yields the validity of the LCI obtained after all
down-liftings are done (precisely, when 𝐶 ′ = 𝐶2). In particular, this resulting LCI takes the
form ∑︁

𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶2

𝜋𝑖𝑦𝑖 ≤ |𝐶1|+
∑︁
𝑖∈𝐶2

𝜋𝑖 − 1, (2.62)

and is valid for the region Φ determined by the original knapsack constraint (2.51), as defined
by (2.52). In order to avoid unnecessary liftings, a word of caution must be given about down-
lifting.

Proposition 4. If a cover 𝐶 is minimal, then performing down-lifting on any of the variables
𝑦𝑗, 𝑗 ∈ 𝐶, of the original cover inequality (2.60) is ineffective, as it always leads to lifted
coefficients equal to one.

Since we are not sure if this result is already proven in the literature, we devise a formal
proof for it in Appendix A.2.
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Now, let the set 𝐷 ⊆ 𝑃∖𝐶 identify the indexes of the 𝑦 variables to be up-lifted. Moreover,
let 𝐶 ′′ be the index set of the variables in 𝑃∖𝐶 whose coefficients are already established, such
that, initially, 𝐶 ′′ = 𝑃∖(𝐶 ∪ 𝐷) and, by the end of the up-liftings, 𝐶 ′′ = 𝑃∖𝐶. Notice that,
if 𝐷 = 𝑃∖𝐶, then 𝐶 ′′ is empty before the up-liftings take place. During the whole up-lifting
process, consider the following inequality

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶2

𝜋𝑖𝑦𝑖 +
∑︁
𝑖∈𝐶′′

𝜇𝑖𝑦𝑖 ≤ |𝐶1|+
∑︁
𝑖∈𝐶2

𝜋𝑖 − 1, (2.63)

where 𝜇𝑖 ∈ Z, 𝜇𝑖 ≥ 0 for all 𝑖 ∈ 𝐶 ′′, are the currently available coefficients. One may note
that simply setting 𝜇 = 0, i.e., removing all the variables 𝑦𝑖, 𝑖 ∈ 𝑃∖𝐶, from (2.63), turns this
inequality into (2.62). Moreover, considering 𝜇 = 0 and 𝜋 = 1 reduces (2.63) to the original
cover inequality (2.60).

Without loss of generality, to up-lift a variable 𝑦𝑘, 𝑘 ∈ 𝐷∖𝐶 ′′, the following knapsack
problem is solved

(𝒜2) 𝜑2 = max
{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶2

𝜋𝑖𝑦𝑖 +
∑︁
𝑖∈𝐶′′

𝜇𝑖𝑦𝑖 : (2.51), 𝑦𝑘 = 1, 𝑦 ∈ {0, 1}|𝑃 |
}︃
.

In practice, problem 𝒜2 can be seen as forcefully adding 𝑘 to the cover (by setting 𝑦𝑘 = 1)
and, then, computing the maximum value 𝜑2 that the left-hand side of the current inequality
(2.63) can assume while satisfying the original knapsack constraint (2.51). Notice that, as 𝑘
does not belong to the cover originally, satisfying (2.51) and 𝑦𝑘 = 1 can only lead to a value 𝜑2

inferior or equal to the current right-hand side of (2.63). Thus, the resulting lifted coefficient of
𝑦𝑘 is given by the gap between the right-hand side value of (2.63) and 𝜑2. Under the current
circumstances, we would have 𝜇𝑘 = (|𝐶1| +

∑︀
𝑖∈𝐶2

𝜋𝑖 − 1) − 𝜑2. Also notice that, if 𝑝𝑘 > ⌊𝜏⌋,

problem 𝒜2 becomes infeasible. In this case, the original coefficient is preserved, i.e., 𝜇𝑘 is set
to 𝜔𝑘 = 0. Here, we update 𝐶 ′′ ← 𝐶 ′′ ∪ {𝑘} once 𝑦𝑘 is lifted.

In this work, up-lifting is also applied to lift inequalities that are only valid for a restricted
region of Φ — see (2.52). In particular, consider an inequality of the form

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′′

𝜇𝑖𝑦𝑖 ≤ |𝐶1| − 1 (2.64)

that is valid for the restricted polyhedron

Φ′ =
{︁
𝑦 ∈ {0, 1}|𝑃∖𝐶2| :

∑︁
𝑖∈𝑃∖𝐶2

𝑝𝑖𝑦𝑖 ≤ ⌊𝜏⌋ −
∑︁
𝑖∈𝐶2

𝑝𝑖
}︁
. (2.65)

Notice that Φ′ corresponds to {𝑦 ∈ Φ : 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝐶2}. Then, in this case, to up-lift a variable
𝑦𝑘, 𝑘 ∈ 𝐷∖𝐶 ′′, the following knapsack problem is solved

𝜑′
2 = max

{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′′

𝜇𝑖𝑦𝑖 : (2.51), 𝑦𝑘 = 1, 𝑦𝑖 = 1 ∀𝑖 ∈ 𝐶2, 𝑦 ∈ {0, 1}|𝑃 |
}︃
,

and the resulting lifted coefficient assumes the value 𝜇𝑘 = (|𝐶1| − 1)− 𝜑′
2. Here, setting 𝑦𝑖 = 1



2.3. Separation of valid inequalities 31

for all 𝑖 ∈ 𝐶2 yields the validity of the resulting LCI with respect to the unrestricted region Φ.
In fact, in this specific case of up-lifting, the inequality

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶2

𝑦𝑖 +
∑︁
𝑖∈𝐶′′

𝜇𝑖𝑦𝑖 ≤ |𝐶1|+ |𝐶2| − 1 (2.66)

is always valid for Φ and corresponds to (2.63) when 𝜋 = 1.
For simplicity, we described the process of down-lifting by considering a classical cover

inequality of type (2.53). However, this kind of lifting is usually applied only after some or
all the variables identified in 𝑃∖𝐶 have already been up-lifted (see again Proposition 4). In
this sense, consider the following inequality obtained from up-lifting the variables 𝑦𝑖, for all
𝑖 ∈ 𝐷 ⊆ 𝑃∖𝐶, of either (2.60) or (2.64)

∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶2

𝑦𝑖 +
∑︁
𝑖∈𝐷

𝜇𝑖𝑦𝑖 ≤ |𝐶1|+ |𝐶2| − 1. (2.67)

Recall that 𝐶1 and 𝐶2 compose a partition of the cover 𝐶, with 𝐶1 ̸= ∅, and 𝐶 ′ ⊆ 𝐶2 keeps the
indexes of the variables whose down-lifted coefficients were already computed. In this case, the
auxiliary inequality used during the down-lifting of a variable 𝑦𝑗 , 𝑗 ∈ 𝐶2∖𝐶 ′, would take the
form ∑︁

𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′

𝜋𝑖𝑦𝑖 +
∑︁
𝑖∈𝐷

𝜇𝑖𝑦𝑖 ≤ |𝐶1|+
∑︁
𝑖∈𝐶′

𝜋𝑖 − 1, (2.68)

while the auxiliary knapsack problem solved would be

𝜑′
1 = max

{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖+
∑︁
𝑖∈𝐶′

𝜋𝑖𝑦𝑖+
∑︁
𝑖∈𝐷

𝜇𝑖𝑦𝑖 : (2.51), 𝑦𝑗 = 0, 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝐶2∖(𝐶 ′∪{𝑗}), 𝑦 ∈ {0, 1}|𝑃 |
}︃
.

Furthermore, the lifted coefficient would be set to 𝜋𝑗 = 𝜑′
1 − (|𝐶1|+

∑︀
𝑖∈𝐶′

𝜋𝑖 − 1).

Taking into account the liftings detailed above, we describe in Figure 2.12 the algorithm
used to separate LCIs from a fractional solution (�̄�, 𝑦, 𝑓 , 𝜙). At the first step of the algorithm,
we look for a cover 𝐶 for the corresponding knapsack constraint (2.51). Starting from 𝐶 = ∅,
we sequentially add to 𝐶 elements of the subset {𝑖 ∈ 𝑃 : 𝑦𝑖 > 0} in non-increasing order of the
corresponding values in 𝑦. This is done until 𝐶 covers (2.51), i.e.,

∑︀
𝑖∈𝐶

𝑝𝑖 > ⌊𝜏⌋, or until there are

no more elements left to be added (see lines 1-8, Figure 2.12). If no cover is found, the algorithm
terminates (line 9, Figure 2.12). Otherwise, the cover found is converted into a minimal one by
deleting elements from it. This conversion prioritizes the deletion of elements with the smallest
relaxation values (see lines 10-15, Figure 2.12), as a way to increase the chances of devising a
violated LCI.

In order to guide the lifting process, we define three subsets of indexes, denoted by 𝑄 =
{𝑖 ∈ 𝐶 : 𝑦𝑖 = 1}, 𝐶1 = {𝑖 ∈ 𝑃∖𝐶 : 𝑦𝑖 > 0} and 𝐶2 = {𝑖 ∈ 𝑃∖𝐶 : 𝑦𝑖 = 0}. Note that
𝐶1 ∪ 𝐶2 = 𝑃∖𝐶 and 𝐶1 ∩ 𝐶2 = ∅. The following result guarantees that 𝐶∖𝑄 ̸= ∅ at this point
of the separation procedure, i.e., there is at least one element in 𝐶 whose corresponding value
in 𝑦 is fractional.

Proposition 5. Given a fractional solution (�̄�, 𝑦, 𝑓 , 𝜙) for ℒ2 and a bound 𝜏 =
∑︀
𝑖∈𝑃

𝑝𝑖𝑦𝑖, then any
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Input: A fractional solution (�̄�, 𝑦, 𝑓 , 𝜙) and its corresponding bound 𝜏 =
∑︀
𝑖∈𝑃

𝑝𝑖𝑦𝑖.

Output: An LCI of type (2.54), if any.
1. Step I. Finding an initial cover
2. Set the initial cover 𝐶 ← ∅ and the iterator 𝑗 ← 1;
3. Create a vector 𝐻 with the indexes in {𝑖 ∈ 𝑃 : 𝑦𝑖 > 0};
4. Sort 𝐻 in non-increasing order of 𝑦;
5. while (𝑗 ≤ |𝐻|) and (

∑︀
𝑖∈𝐶

𝑝𝑖 ≤ ⌊𝜏⌋) do

6. 𝐶 ← 𝐶 ∪ {𝐻[𝑗]};
7. 𝑗 ← 𝑗 + 1;
8. end-while;
9. if (

∑︀
𝑖∈𝐶

𝑝𝑖 ≤ ⌊𝜏⌋) then halt with no resulting LCI;

10. Step II. Converting the cover into a minimal one
11. Create a vector 𝐶 with the elements in 𝐶;
12. Sort 𝐶 in non-decreasing order of 𝑦;
13. for (𝑘 ← 1, . . . , |𝐶|) do
14. if (

∑︀
𝑖∈𝐶∖{𝐶[𝑘]}

𝑝𝑖 > ⌊𝜏⌋) then 𝐶 ← 𝐶∖{𝐶[𝑘]};

15. end-for;
16. Step III. Lifting
17. Define 𝑄 = {𝑖 ∈ 𝐶 : 𝑦𝑖 = 1}, 𝐶1 = {𝑖 ∈ 𝑃∖𝐶 : 𝑦𝑖 > 0} and 𝐶2 = {𝑖 ∈ 𝑃∖𝐶 : 𝑦𝑖 = 0};
18. Define the initial inequality

∑︀
𝑖∈𝐶∖𝑄

𝑦𝑖 ≤ |𝐶∖𝑄| − 1;

19. Up-lift 𝑦𝑖, for all 𝑖 ∈ 𝐶1, obtaining
∑︀

𝑖∈𝐶∖𝑄
𝑦𝑖 +

∑︀
𝑖∈𝐶1

𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄| − 1;

20. Down-lift 𝑦𝑖, for all 𝑖 ∈ 𝑄, obtaining
∑︀

𝑖∈𝐶∖𝑄
𝑦𝑖 +

∑︀
𝑖∈𝑄

𝜋𝑖𝑦𝑖 +
∑︀
𝑖∈𝐶1

𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄|+
∑︀
𝑖∈𝑄

𝜋𝑖 − 1;

21. Up-lift 𝑦𝑖, for all 𝑖 ∈ 𝐶2, obtaining
∑︀

𝑖∈𝐶∖𝑄
𝑦𝑖 +

∑︀
𝑖∈𝑄

𝜋𝑖𝑦𝑖 +
∑︀

𝑖∈𝑃∖𝐶
𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄|+

∑︀
𝑖∈𝑄

𝜋𝑖 − 1;

22. return the resulting LCI;

Figure 2.12: Algorithm used to separate possibly violated LCIs.

cover 𝐶 for the corresponding knapsack constraint (2.51), with 𝑦𝑖 > 0 for all 𝑖 ∈ 𝐶, necessarily
has an element 𝑖 ∈ 𝐶 such that 0 < 𝑦𝑖 < 1.

Proof. Consider a cover 𝐶 for the knapsack constraint (2.51), with 𝑦𝑖 > 0 for all 𝑖 ∈ 𝐶, and
suppose, by contradiction, that 𝑦𝑖 = 1 for all 𝑖 ∈ 𝐶. In this case, since 𝑝𝑖 ∈ Z+ for all 𝑖 ∈ 𝑃 (by
definition), and 𝐶 covers (2.51), we would have

⌊𝜏⌋ = ⌊
∑︁
𝑖∈𝑃

𝑝𝑖𝑦𝑖⌋ ≥ ⌊
∑︁
𝑖∈𝐶

𝑝𝑖𝑦𝑖⌋ =
∑︁
𝑖∈𝐶

𝑝𝑖 > ⌊𝜏⌋, (2.69)

which is a contradiction.

Then, starting from the inequality

∑︁
𝑖∈𝐶∖𝑄

𝑦𝑖 ≤ |𝐶∖𝑄| − 1, (2.70)
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we up-lift the variables 𝑦𝑖, for all 𝑖 ∈ 𝐶1, which yields the inequality

∑︁
𝑖∈𝐶∖𝑄

𝑦𝑖 +
∑︁
𝑖∈𝐶1

𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄| − 1. (2.71)

Since (2.70) only considers a restricted region of the original polyhedron Φ, neither (2.70) nor
(2.71) are valid LCIs. Nevertheless, the inequality

∑︁
𝑖∈𝐶

𝑦𝑖 +
∑︁
𝑖∈𝐶1

𝜇𝑖𝑦𝑖 ≤ |𝐶| − 1 (2.72)

is valid at this point and can be strengthened by down-lifting the variables 𝑦𝑖, for all 𝑖 ∈ 𝑄.
Once these down-liftings are performed, the LCI takes the form

∑︁
𝑖∈𝐶∖𝑄

𝑦𝑖 +
∑︁
𝑖∈𝑄

𝜋𝑖𝑦𝑖 +
∑︁
𝑖∈𝐶1

𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄|+
∑︁
𝑖∈𝑄

𝜋𝑖 − 1. (2.73)

At last, we up-lift the remaining variables 𝑦𝑖, for all 𝑖 ∈ 𝐶2, obtaining

∑︁
𝑖∈𝐶∖𝑄

𝑦𝑖 +
∑︁
𝑖∈𝑄

𝜋𝑖𝑦𝑖 +
∑︁

𝑖∈𝑃∖𝐶
𝜇𝑖𝑦𝑖 ≤ |𝐶∖𝑄|+

∑︁
𝑖∈𝑄

𝜋𝑖 − 1, (2.74)

with 𝜇 ≥ 0 and 𝜋 ≥ 1. The sequence of liftings detailed above is summarized at the last step
of the algorithm in Figure 2.12 (see lines 16-21). Naturally, the LCI returned by the separation
algorithm (line 22, Figure 2.12) is only used in the cutting-plane scheme if it is violated by
(�̄�, 𝑦, 𝑓 , 𝜙), i.e., if

∑︀
𝑖∈𝐶∖𝑄

𝑦𝑖 +
∑︀
𝑖∈𝑄

𝜋𝑖𝑦𝑖 +
∑︀

𝑖∈𝑃∖𝐶
𝜇𝑖𝑦𝑖 > |𝐶∖𝑄|+

∑︀
𝑖∈𝑄

𝜋𝑖 − 1.

Example. To illustrate the execution of the separation algorithm of Figure 2.12 and the liftings
described above, suppose that, based on an arbitrary STOP instance, we obtained the
following inequation

𝑦1 + 2𝑦2 + 2𝑦3 + 3𝑦4 + 𝑦5 ≤ 5, (2.75)

which corresponds to a valid inequality of type (2.51). In addition, let (�̄�, 𝑦, 𝑓 , 𝜙), with 𝑦 =
(0.9, 0.2, 0.1, 1, 0.7), be the fractional solution given as input to the separation algorithm.
Sorting the elements of {1, . . . , 5} in non-increasing order of 𝑦, we obtain {4, 1, 5, 2, 3}.
Then, following the two first steps of the algorithm in Figure 2.12, the initial cover is
{1, 2, 4, 5}, and the minimal cover is obtained from deleting the element 5, which has the
second smallest relaxation value (𝑦5 = 0.7) among the elements in the initial cover. Notice
that we cannot delete 2 in this case, since the resulting set would no longer be a cover.
Accordingly, the minimal cover obtained is given by 𝐶 = {1, 2, 4}.

Now, we define the sets 𝑄, 𝐶1 and 𝐶2 used to guide the liftings, as detailed at the third
step of the algorithm in Figure 2.12. In this case, 𝑄 = {4}, 𝐶1 = {3, 5} and 𝐶2 = ∅.
Naturally, 𝐶∖𝑄 = {1, 2}. Then, starting from the inequality 𝑦1 + 𝑦2 ≤ 1, we up-lift the
variables whose indexes are in 𝐶1. Starting from 𝑦3, we solve

max
{︁
𝑦1 + 𝑦2 : (2.75), 𝑦3 = 1, 𝑦4 = 1, 𝑦 ∈ {0, 1}5

}︁
,
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which corresponds to

max
{︁
𝑦1 + 𝑦2 : 𝑦1 + 2𝑦2 + 𝑦5 ≤ 0, 𝑦 ∈ {0, 1}5

}︁
.

Notice that we could have set 𝑦5 = 0, as it does not belong to the cover inequality at this
point. In either way, the optimal solution value of this problem is 0, and, thus, the lifted
coefficient is 𝜇3 = 1− 0 = 1, which yields the inequality 𝑦1 + 𝑦2 + 𝑦3 ≤ 1. Then, to up-lift
𝑦5, we solve

max
{︁
𝑦1 + 𝑦2 + 𝑦3 : (2.75), 𝑦5 = 1, 𝑦4 = 1, 𝑦 ∈ {0, 1}5

}︁
,

which corresponds to

max
{︁
𝑦1 + 𝑦2 + 𝑦3 : 𝑦1 + 2𝑦2 + 2𝑦3 ≤ 1, 𝑦 ∈ {0, 1}5

}︁
and has 1 as optimal value. In this case, we have 𝜇5 = 1−1 = 0, and the current inequality
𝑦1 +𝑦2 +𝑦3 ≤ 1 remains the same. In order to turn this inequality into a valid LCI for the
original unrestricted region Φ, we down-lift the variables whose indexes are in 𝑄, which,
in this case, is only 𝑦4. Solving

max
{︁
𝑦1 + 𝑦2 + 𝑦3 : (2.75), 𝑦4 = 0, 𝑦 ∈ {0, 1}5

}︁
,

which corresponds to

max
{︁
𝑦1 + 𝑦2 + 𝑦3 : 𝑦1 + 2𝑦2 + 2𝑦3 + 𝑦5 ≤ 5, 𝑦 ∈ {0, 1}5

}︁
,

we obtain the optimal value 3. Then, the lifted coefficient assumes 𝜋4 = 3 − 1 = 2, and
the resulting LCI takes the form 𝑦1 + 𝑦2 + 𝑦3 + 2𝑦4 ≤ 3. Since 𝐶2 = ∅, no more liftings
are done. Notice that, in this case, the resulting LCI is violated by the current fractional
solution, as 𝑦1 + 𝑦2 + 𝑦3 + 2𝑦4 = 0.9 + 0.2 + 0.1 + 2 = 3.2 > 3.



Chapter 3

Exact algorithms

This chapter is devoted to the exact algorithms developed in this thesis. They consist of
the state-of-the-art branch-and-cut algorithm from the literature of the TOP that we adapted
to the general case of the STOP and our new cutting-plane algorithms. In this chapter, we also
provide some implementation details and a computational study.

3.1 Baseline branch-and-cut algorithm

The exact algorithm of Bianchessi et al. (2018) for the TOP is used as a baseline to
evaluate the performance of the cutting-plane scheme here proposed. In the case of the STOP,
the compact formulation ℱ1, defined by (2.1)-(2.16), with the addition of (2.17), is solved by
means of an optimization solver (in this case, CPLEX) in a way that GCCs are separated on the
fly at each node of the branch-and-bound tree. In order to avoid a tailing-off phenomenon, the
separation of cuts at each node of the tree is iterated until the bound improvement is no greater
than a pre-established tolerance 𝜖1. In this branch-and-cut algorithm, the same procedure
described in Section 2.3.1 is applied to separate GCCs for each fractional solution, and all the
violated cuts found are added to the model.

We remark that, although (2.17) is redundant for ℱ1 (see, again, Corollary 1), this in-
equality was preserved in our experiments as a way to properly reproduce the original algorithm
of Bianchessi et al. (2018). In fact, we conjecture that CPLEX does benefit from this inequality
when the separation of built-in cuts is enabled. This is quite intuitive, since (2.17) takes the
form of a knapsack constraint, and cover cuts are among the several classical valid inequalities
that compose the built-in cuts.

3.2 New cutting-plane scheme

When solving (mixed) integer problems, cutting-plane algorithms work by iteratively
reinforcing an initial Linear Programming (LP) model, which usually corresponds to the linearly
relaxed version of the original problem. Precisely, at each iteration, the algorithm seeks linear
inequalities that are violated by the solution of the current LP model. These inequalities are

35
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referred to as cuts and are added to the model on the fly until a stopping condition is met or
the current solution is feasible (and, thus, optimal) for the original integer problem.

The algorithm here proposed solves the compact formulation ℱ2 within a cutting-plane
scheme that starts from the LP model ℒ2, the linear relaxation of ℱ2. Accordingly, the poly-
hedron defined by ℒ2 is gradually restricted by the addition of new linear inequalities, which,
in this case, correspond to the valid inequalities detailed in Section 2.2. This initial step, called
cutting-plane phase, was devised in this work according to two configurations: (i) a preliminary
one, only considering GCCs, CCs and LCIs, and (ii) an extended one, which separates AVICs
and LCIs and replaces GCCs and CCs with CCCs (see, again, Remark 1 and Theorem 2). The
existence of these two configurations reflects chronologically the evolution of this research, as
GCCs, CCs and LCIs were developed prior to CCCs and AVICs. In the sequel, we describe the
algorithm in details for the first configuration (as summarized in Figure 3.1) and highlight the
minor modifications incurred by the second configuration (algorithm in Figure 3.2).

Consider the polyhedron Ω defined by the feasible region of ℒ2. Precisely, Ω =
{(𝑥, 𝑦, 𝑓, 𝜙) ∈ R|𝐴| × R|𝑁 | × R|𝐴| × R : (2.2)-(2.8), (2.19)-(2.22), 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, 𝑓 ≥
0 and 0 ≤ 𝜙 ≤ 𝑚}. For simplicity, assume that ℱ2 is feasible, and, thus, Ω ̸= ∅. Let LP𝜓 and
UB𝜓 keep, respectively, the LP model and the dual (upper) bound on the optimal solution of ℱ2

available by the end of an iteration 𝜓 of the cutting-plane phase. Likewise, the set Γ𝜓 keeps all
the linear inequalities added to the original LP ℒ2 until the iteration 𝜓. In addition, opt(LP𝜓)
denotes the optimal solution value of a model LP𝜓. Here, the iteration 𝜓 = 0 stands for the
initialization of the cutting-plane phase. Accordingly, the initial model and its corresponding
bound are denoted by LP0 and UB0, respectively, and Γ0 = ∅.

Input: The initial LP model ℒ2 and a tolerance value 𝜖2.
Output: A reinforced LP model and a dual bound on the optimal solution of ℱ2.
1. Initialize the iterator 𝜓 ← 0;
2. Define LP0 = ℒ2 and set Γ0 ← ∅;
3. UB0 ← opt(LP0);
4. do
5. Update 𝜓 ← 𝜓 + 1;
6. Set Γ𝜓 ← Γ𝜓−1;
7. Separate and add to Γ𝜓 some of the violated GCCs, if any;
8. Separate and add to Γ𝜓 some of the violated CCs, if any;
9. Separate and add to Γ𝜓 a violated LCI, if any;
10. Define LP𝜓 =

{︁
max

∑︀
𝑗∈𝑃

𝑝𝑗𝑦𝑗 : inequality 𝑖 is satisfied for all 𝑖 ∈ Γ𝜓, (𝑥, 𝑦, 𝑓, 𝜙) ∈ Ω
}︁

;

11. UB𝜓 ← opt(LP𝜓);
12. while (Γ𝜓 ̸= Γ𝜓−1) and (UB𝜓−1- UB𝜓 > 𝜖2);
13. return (LP𝜓, UB𝜓);

Figure 3.1: Description of the cutting-plane phase of the algorithm proposed, when considering
the first configuration of cuts (GCCs, CCs and LCIs).

After the initialization (lines 1-3, Figure 3.1), the iterative procedure takes place. At
each loop of the cutting-plane phase, the iterator 𝜓 is updated, and the set Γ𝜓 is initialized
with the cuts found so far (see lines 5 and 6, Figure 3.1). Then, the algorithm looks for linear
inequalities violated by the solution of the current model, which, at this point, corresponds to
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LP𝜓−1. These cuts are found by means of the separation procedures described in Section 2.3.
Instead of selecting all the violated cuts found, we only add to Γ𝜓 the most violated cut (if
any) and the ones that are sufficiently orthogonal to it. As verified in several works (see, e.g.,
Wesselmann and Suhl (2012); Samer and Urrutia (2015); Bicalho et al. (2016)), this strategy
is able to balance the strength and diversity of the cuts separated, while limiting the model
size. Here, this strategy is applied to select both GCCs and CCs, but separately (lines 7 and 8,
Figure 3.1). Naturally, this filtering procedure does not apply to LCIs, since at most a single
LCI is separated per iteration (line 9, Figure 3.1). Details on how these cuts are selected are
given in Section 3.3.

After looking for violated inequalities (cuts), we define an updated model LP𝜓, which
corresponds to adding to ℒ2 all the cuts selected so far (see line 10, Figure 3.1). Accordingly,
the current bound is set to the optimal solution value of LP𝜓 (line 11, Figure 3.1). The algorithm
iterates until either no more violated cuts are found or the bound improvement of the current
model is inferior or equal to the tolerance 𝜖2 (see line 12, Figure 3.1). We highlight that the
order in which the three types of inequalities are separated is not relevant in this case (lines 7-9,
Figure 3.1), as the updated LP model is not solved until all separation procedures are done.

Input: The initial LP model ℒ2 and a tolerance value 𝜖2.
Output: A reinforced LP model and a dual bound on the optimal solution of ℱ2.
1. Initialize the iterator 𝜓 ← 0;
2. Set Γ0 ← ∅;
3. Separate and add AVICs to Γ0 by complete enumeration;
4. Define LP0 =

{︁
max

∑︀
𝑗∈𝑃

𝑝𝑗𝑦𝑗 : inequality 𝑖 is satisfied for all 𝑖 ∈ Γ0, (𝑥, 𝑦, 𝑓, 𝜙) ∈ Ω
}︁

;

5. UB0 ← opt(LP0);
6. do
7. Update 𝜓 ← 𝜓 + 1;
8. Set Γ𝜓 ← Γ𝜓−1;
9. Separate and add to Γ𝜓 some of the violated CCCs, if any;
10. Separate and add to Γ𝜓 a violated LCI, if any;
11. Define LP𝜓 =

{︁
max

∑︀
𝑗∈𝑃

𝑝𝑗𝑦𝑗 : inequality 𝑖 is satisfied for all 𝑖 ∈ Γ𝜓, (𝑥, 𝑦, 𝑓, 𝜙) ∈ Ω
}︁

;

12. UB𝜓 ← opt(LP𝜓);
13. while (Γ𝜓 ̸= Γ𝜓−1) and (UB𝜓−1- UB𝜓 > 𝜖2);
14. return (LP𝜓, UB𝜓);

Figure 3.2: Description of the cutting-plane phase of the algorithm proposed, when considering
the second configuration of cuts (AVICs, CCCs and LCIs).

The cutting-plane phase algorithm considering the second configuration of cuts (summa-
rized in Figure 3.2) differs slightly from the algorithm previously described. First, instead of
considering LP0 = ℒ2, the algorithm takes as initial model ℒ2 with the addition of all the
AVICs (see lines 2-4, Figure 3.2). Additionally, taking into account Remark 1 and Theorem 2,
the separation of GCCs and CCs is replaced by solely separating CCCs (line 9, Figure 3.2).

Once the cutting-plane phase is over, the general cutting-plane algorithm follows the same
execution for both configurations of cuts. Precisely, the integrality of the variables 𝑥 and 𝑦 is
restored, and the resulting reinforced model is solved to optimality by an optimization solver.
At this point, inequalities (2.22) from ℱ2 are turned into cuts (instead of actual restrictions),
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just like the ones selected in the cutting-plane phase. As discussed by the end of Section 2.1,
the aim is to take advantage from cut management mechanisms within the optimization solver’s
branch-and-cut scheme.

In practical terms, the algorithm described above is a branch-and-cut in which the in-
equalities proposed in Section 2.2 are only separated at the root node of the branch-and-bound
tree. In fact, the cutting-plane proposed can be easily extended by performing the cutting-
plane phase of Figure 3.1 (or that of Figure 3.2) at each node of the branch-and-bound tree.
Pilot experiments suggested that such approach is not worthy in this case, as the additional
strengthening of the model does not pay off the loss in compactness.

3.3 Implementation details

All the codes were developed in C++, along with the optimization solver ILOG CPLEX
12.6. The baseline branch-and-cut algorithm described in Section 3.1 was implemented using
the callback mechanism of CPLEX. Moreover, CPLEX was used to solve the LP models within
the cutting-plane phase of the cutting-plane algorithm proposed and to close the integrality
gap of the reinforced MILP model obtained from the addition of cuts. We kept the default
configurations of CPLEX in our implementations, since all the previous works in the literature
of TOP that used CPLEX make the same choice.

Regarding the separation of cuts, we solved maximum flow sub-problems with the imple-
mentation of the preflow push-relabel algorithm of Goldberg and Tarjan (1988) provided by the
open-source Library for Efficient Modeling and Optimization in Networks — LEMON (Dezsõ
et al., 2011). The knapsack sub-problems that arise during the separation of LCIs were solved
through classical dynamic programming based on Bellman recursion (Bellman, 1957).

In the selection of cuts, we adopted the absolute violation criterion to determine which
inequalities are violated by a given solution. In turn, the so-called distance criterion was used
to properly compare two cuts, i.e., to determine which one is most violated by a solution. Given
an 𝑛-dimensional column vector 𝑤 of binary variables, a point �̄� ∈ R𝑛 and an inequality of the
general form 𝑎𝑇𝑤 ≤ 𝑏, with 𝑎 ∈ R𝑛, 𝑏 ∈ R, the absolute violation of this inequality with respect
to �̄� is simply given by 𝑎𝑇 �̄�− 𝑏. Moreover, the distance from 𝑎𝑇𝑤 ≤ 𝑏 to �̄� corresponds to the
Euclidean distance between the hyperplane 𝑎𝑇𝑤 = 𝑏 and �̄�, which is equal to (𝑎𝑇 �̄�−𝑏)

‖𝑎‖ , where
‖𝑎‖ is the Euclidean norm of 𝑎.

In our implementation of the cutting-plane algorithm, we set two parameters for each
type of inequality separated: a precision one used to classify the inequalities into violated or
not (namely absolute violation precision), and other one to discard cuts that are not sufficiently
orthogonal to the most violated ones. The latter parameter determines the minimum angle that
an arbitrary cut must form with the most violated cut, as not to be discarded. In practice,
this parameter establishes the maximum acceptable inner product between the arbitrary cut
and the most violated one. Accordingly, we call it the maximum inner product. In the case of
two inequalities 𝑎𝑇1 𝑤 ≤ 𝑏1 and 𝑎𝑇2 𝑤 ≤ 𝑏2, with 𝑎1, 𝑎2 ∈ R𝑛 and 𝑏1, 𝑏2 ∈ R, the inner product
between them is given by (𝑎𝑇

1 𝑎2)
‖𝑎1‖‖𝑎2‖ and corresponds to the cosine of the angle defined by them.

The values adopted for these parameters are shown in Table 3.1.
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Table 3.1: Parameter configuration adopted in the separation and selection of valid inequalities
in the cutting-plane algorithm.

Parameter
Inequalities Absolute violation precision Maximum inner product

GCCs 0.05 0.03
CCs 0.3 0.03
LCIs 10−5 –

The tolerance input value 𝜖2 of the cutting-plane algorithm (see Figures 3.1 and 3.2)
was set to 10−3. In the case of the baseline branch-and-cut, the absolute violation precision
regarding the separation of GCCs was also set to 0.05. In addition, the tailing-off tolerance 𝜖1
was set to 10−3, the same value adopted to 𝜖2.

We remark that all the parameter configurations described above were established accord-
ing to pilot tests on a control set of 10 TOP instances, composed of both challenging instances
and some of the smallest ones. This control set is detailed in Table 3.2, where we report, for
each instance, the number of vertices (|𝑁 |), the number of vehicles (|𝑀 |) and the route duration
limit (𝑇 ). The reduced number of instances was chosen as a way to avoid overfitting. The whole
benchmarks of instances adopted in this study are detailed in Section 3.4.

Table 3.2: Control set of TOP instances used to tune the algorithms’ parameters.

Instance |𝑁 | |𝑀 | 𝑇

p3.3.r 33 3 33.3
p4.3.j 100 3 46.7
p4.3.n 100 3 60.0
p5.3.m 66 3 21.7
p5.3.r 66 3 30.0
p6.2.k 64 2 32.5
p6.3.m 64 3 25.0
p6.3.n 64 3 26.7
p7.3.o 102 3 100.0
p7.3.p 102 3 106.7

We also highlight that, despite of their exact-like form, the algorithms adopted to separate
GCCs, CCs and CCCs are heuristics. In particular, notice that the simple fact that they only
consider the cuts that are violated by at least a constant factor makes them heuristics in
practice. Moreover, these algorithms adopt a stopping condition based on bound improvement
of subsequent iterations, which might halt the separation before all the violated cuts are found.
Then, in practical terms, the separation algorithms adopted do not necessarily give the actual
theoretical bounds obtained from the addition of the inequalities proposed.
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3.4 Computational experiments

The computational experiments were performed on a 64 bits Intel Core i7-4790K machine
with 4.0 GHz and 15.0 GB of RAM, under Linux operating system. The machine has four phys-
ical cores, each one running at most two threads in hyper-threading mode. Here, the Baseline
Branch-and-Cut and the Cutting-Plane Algorithm are referred to as B-B&C and CPA, respec-
tively. In particular, the implementations of CPA under the first and the second configurations
of cuts (as detailed in Section 3.2) are referred to as CPA1 and CPA2, respectively. All the exact
algorithms were set to run for up to 7200s, the same time limit established in previous works
concerning the TOP (Boussier et al., 2007; Poggi et al., 2010; Dang et al., 2013a; Keshtkaran
et al., 2016; El-Hajj et al., 2016; Bianchessi et al., 2018).

In our experiments, we used the benchmark of TOP instances introduced by Chao et al.
(1996), which consists of complete graphs with up to 102 vertices. In this case, no mandatory
vertices are considered. Based on this benchmark, we also generated new instances by randomly
setting a percentage of the vertices as mandatory. Here, this percentage was set to only 5%, as
greater values led to the generation of too many infeasible instances.

The original benchmark of Chao et al. (1996) is composed of 387 instances, which are
sub-divided into seven data sets, according to the number of vertices of their graphs. Within a
given data set, the instances only differ by the time limit imposed on the route duration and the
number of vehicles, which varies from 2 to 4. The characteristics of these data sets are detailed
in Table 3.3. For each set, it is reported the number of instances (#), the number of vertices in
the graphs (|𝑁 |) and the range of values that the route duration limit 𝑇 assumes.

Table 3.3: Description of the original benchmark of TOP instances.

Set 1 2 3 4 5 6 7

# 54 33 60 60 78 42 60
|𝑁 | 32 21 33 100 66 64 102
𝑇 3.8–22.5 1.2–42.5 3.8–55 3.8–40 1.2–65 5–200 12.5–120

As done in previous works (Dang et al., 2013a; Bianchessi et al., 2018), we pre-processed
all the instances used in our experiments by removing vertices and arcs that are inaccessible
with respect to the limit 𝑇 imposed on the total traverse times of the routes. To this end, we
considered the 𝑅 matrix defined by the end of Section 1.2, which keeps, for each pair of vertices,
the time duration of a minimum time path between them. Moreover, in the specific case of the
cutting-plane algorithm, constraints (2.6) and (2.7) are implicitly satisfied by deleting all the
arcs that either enter the origin 𝑠 or leave the destination 𝑡. Naturally, the time spent in these
pre-processings are included in the execution times of the algorithms tested.

In Section 3.4.1, we compare the performance of CPA with B-B&C and other exact
algorithms in the literature of the TOP at solving the original benchmark of Chao et al. (1996).
In turn, the results obtained by our implementations of B-B&C and CPA while solving the new
instances (with a non-empty set of mandatory vertices) are discussed in Section 3.4.2.
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3.4.1 Results for the TOP instances

Here, we study the behaviour of CPA at solving the TOP benchmark of Chao et al. (1996).
In this sense, we first analyzed the impact of the inequalities discussed in Section 2.2 on the
strength of the formulation ℱ2. To this end, we computed the dual (upper) bounds obtained
from adding these inequalities to ℒ2 (the linear relaxation of ℱ2) according to 10 different
configurations, as described in Table 3.4. Precisely, for each instance and configuration, we
solved the cutting-plane phase described in Figures 3.1 and 3.2 while considering only the types
of inequalities of the corresponding configuration. We remark that these first experiments do not
take into account the CPLEX built-in cuts, since only the inequalities described in Section 2.2
are separated at the cutting-plane phase.

Table 3.4: Configurations of valid inequalities.

Inequalities

Configuration GCCs CCs CCCs LCIs AVICs

1 ×
2 ×
3 ×
4 ×
5 ×
6 × ×
7 × × ×
8 × × × ×
9 × ×
10 × × ×

The results are detailed in Table 3.5. The first column displays the name of each instance
set. Then, for each configuration of inequalities, we give the average and the standard deviation
(over all the instances in each set) of the percentage bound improvements obtained from the
addition of the corresponding inequalities. Without loss of generality, given an instance, its
percentage improvement in a configuration 𝑖 ∈ {1, . . . , 10} is given by 100 · 𝑈𝐵𝐿𝑃 −𝑈𝐵𝑖

𝑈𝐵𝐿𝑃
, where

𝑈𝐵𝐿𝑃 denotes the bound provided by ℒ2, and 𝑈𝐵𝑖 stands for the bound obtained from solving
the cutting-plane phase in the configuration 𝑖. The last row displays the numerical results while
considering the complete benchmark of instances.

The results exposed in Table 3.5 indicate that, on average, CCCs are the inequalities that
strengthen formulation ℱ2 the most, followed by CCs, GCCs, AVICs and LCIs. The results
also show that coupling CCCs with LCIs and AVICs gives the best average bound improvement
(4.03%) among all the configurations of inequalities tested. We also point out that, although
LCIs alone only provide marginal average improvements on the bounds, coupling them with
the other inequalities is still effective. Such behaviour is somehow expected, as the separation
of LCIs relies on the quality of the currently available bounds. Then, these LCIs tend to work
better once the bounds are already strengthened by other inequalities.

One may notice that, for some instance sets, coupling different types of inequalities gives
worse average bound improvements than considering only a subset of them (see, e.g., set 3



Table 3.5: Percentage dual (upper) bound improvements obtained from adding to ℒ2 the inequalities of Section 2.2 according to the 10 configurations
in Table 3.4. Results for the original benchmark of TOP instances. Recall that CPA1 and CPA2 adopt configurations 7 and 10, respectively.

Configuration of inequalities

1 — GCCs 2 — CCs 3 — CCCs 4 — LCIs 5 — AVICs

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 3.61 3.09 4.46 3.87 5.33 4.24 0.83 2.03 2.34 1.88
2 0.14 0.44 0.42 1.38 0.87 2.54 0.77 2.38 0.16 0.50
3 1.12 1.08 2.08 1.64 3.77 2.78 0.62 1.01 0.99 0.89
4 4.01 3.53 3.51 3.70 6.38 4.80 0.01 0.02 3.20 2.56
5 0.51 1.65 0.86 1.81 1.68 2.96 0.18 0.65 0.41 1.13
6 0.00 0.00 0.00 0.00 0.01 0.04 0.04 0.10 0.00 0.00
7 3.67 2.27 5.40 4.25 6.45 3.80 0.32 1.10 2.64 1.51

Total 1.98 2.73 2.54 3.43 3.88 4.16 0.37 1.25 1.48 1.91

Configuration of inequalities

6 — GCCs & CCs 7 — 6 & LCIs 8 — 7 & AVICs 9 — CCCs & LCIs 10 — 9 & AVICs

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 4.77 3.79 5.12 3.89 5.09 4.00 5.21 4.20 5.37 4.29
2 0.44 1.40 1.08 2.88 1.09 2.88 1.16 3.03 1.15 3.03
3 2.12 1.65 3.01 2.16 2.94 1.99 3.65 2.56 3.79 2.66
4 4.90 4.07 4.92 4.06 5.05 4.01 6.38 4.80 6.48 4.76
5 0.89 1.80 1.08 1.91 1.08 1.82 1.84 3.02 1.94 3.09
6 0.00 0.00 0.04 0.10 0.04 0.10 0.07 0.13 0.07 0.13
7 6.00 3.80 6.16 3.72 6.13 3.67 6.61 3.90 6.65 3.89

Total 2.90 3.59 3.21 3.68 3.21 3.67 3.94 4.16 4.03 4.19
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under configurations 7 and 8). This behaviour is not inconsistent, since these inequalities are
separated heuristically, as discussed by the end of Section 3.3.

In a second experiment, we evaluated the performance of CPA by comparing the results
obtained by the algorithm with the ones of B-B&C reported by Bianchessi et al. (2018). To make
a fair comparison, we also report the results of our implementation of B-B&C running within
our experimental environment. The results are shown in Table 3.6. The first column displays
the name of each instance set, and, for each algorithm, we give four result values described as
follows. The first value corresponds to the number of instances solved at optimality out of the
complete instance set. The second one is the average wall-clock processing time (in seconds)
spent in solving these instances. Note that this entry only takes into account the instances
solved at optimality. The last couple of result values provides the average and the standard
deviation (only over the unsolved instances in each set) of the relative optimality gaps obtained
by the algorithm. These gaps are given by 𝑈𝐵−𝐿𝐵

𝑈𝐵 , where 𝐿𝐵 and 𝑈𝐵 are, respectively, the
best lower and upper bounds obtained by the corresponding algorithm for a given instance.
Whenever 𝐿𝐵 = 𝑈𝐵 = 0, the corresponding optimality gap is set to 0%. The last row gives
the overall results considering the complete benchmark of instances.

From the results, one may note that the average optimality gaps (concerning unsolved
instances) of the solutions obtained by our implementation of B-B&C are extremely close to
those presented in the original report. On the other hand, our implementation of B-B&C solved
to optimality significantly less instances than the original report. Particularly, it finds difficulty
in closing the gaps of the largest instances (sets 4 and 7). We believe that such behaviour is not
only due to the differences in hardware, but also to some specific implementation choices, such
as the algorithm adopted to solve the maximum flow problems, the CPLEX solver version and,
in special, the values of the parameters discussed in Section 3.3. Since the overall performance
of our implementation is in accordance with the original report and the latter does not provide
all of the implementation details — in particular, the tolerance and precision values adopted in
the separation of GCCs —, we chose not to address this issue in this study.

In any case, the results clearly indicate the superiority of our algorithm (CPA) in solving
the original benchmark of TOP instances, even when compared to the original report of B-B&C.
In particular, CPA1 was able to solve to optimality 31 and 14 more instances than B-B&C when
considering our implementation and the original report by Bianchessi et al. (2018), respectively.
By its turn, CPA2 was able to solve to optimality 28 and 11 more instances than B-B&C when
considering our implementation and the original report by Bianchessi et al. (2018), respectively.
We also remark that CPA and B-B&C present comparable average execution times.

Comparing CPA1 and CPA2, we notice that the former implementation solves to optimal-
ity three more instances than the latter. Additionally, the average optimality gap (concerning
all unsolved instances) of the solutions obtained by CPA1 (2.71%) is almost as tight as that
of CPA2 (2.5%). The results indicate that, although CPA2 has stronger average dual bounds
at the root nodes (see, again, Table 3.5), CPA1 performs better on average for the instances
tested.

As expected, instances whose graphs have greater dimensions are the hardest (sets 4, 5
and 7). We also noticed that instances with greater route duration limits (given by 𝑇 ) tend to



Table 3.6: Comparison between B-B&C and CPA at solving the original benchmark of TOP instances. Bold entries highlight, for each instance
set, the best algorithm(s) in terms of number of instances solved to optimality.

B-B&C (Bianchessi et al., 2018) CPA (Ours)

Original report Our implementation CPA1 CPA2

solved unsolved solved unsolved solved unsolved solved unsolved

Gap (%) Gap (%) Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1 54/54 1.10 – – 54/54 0.70 – – 54/54 1.91 – – 54/54 1.80 – –
2 33/33 0.20 – – 33/33 0.07 – – 33/33 0.13 – – 33/33 0.12 – –
3 60/60 184.90 – – 60/60 109.63 – – 60/60 106.33 – – 60/60 95.80 – –
4 39/60 870.40 2.29 – 32/60 985.92 2.59 1.69 43/60 1286.50 3.03 2.57 42/60 1052.02 2.25 1.78
5 60/78 517.90 3.49 – 60/78 291.58 2.95 1.45 62/78 395.45 3.01 1.78 60/78 400.77 3.00 1.82
6 36/42 22.10 1.92 – 39/42 183.95 1.95 0.57 42/42 262.58 – – 41/42 118.76 1.80 –
7 45/60 992.80 2.53 – 32/60 446.84 2.71 1.26 47/60 626.11 1.94 0.75 48/60 834.88 2.19 0.68

Total 327/387 424.49 2.67 – 310/387 248.82 2.69 1.45 341/387 371.79 2.71 1.95 338/387 352.14 2.50 1.60
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be more difficult to solve. On the other hand, the number of vehicles available does not seem to
interfere with the difficulty in solving the instances. We believe this is in accordance with the
way we model the problem in this work. Precisely, one may note that the size of formulation
ℱ2 (as well as ℱ1) does not depend on the number of vehicles, as all the routes are implicitly
modeled by means of a single commodity.

In Table 3.7, we summarize, for each instance set, the total number of instances solved to
optimality by each exact algorithm in the literature, including our CPA. This table is displayed
for completeness purposes, as the differences in hardware and experimental environments are
not taken into account. The results for the branch-and-price (B&P) and the branch-and-cut-
and-price (B&C&P) algorithms of Keshtkaran et al. (2016) are presented separately. Moreover,
the algorithm of Poggi et al. (2010) was omitted due to the lack of complete results in the
original report.

In total, CPA1 and CPA2 solved, respectively, 14 and 11 more instances than any previous
exact algorithm in the literature. Together, they were able to prove the optimality of nine TOP
instances previously unsolved. Among these instances, six were solved by both algorithms, two
were solved exclusively by CPA1, and one was solved by CPA2. A detailed per-instance report of
the results obtained by our implementations of B-B&C and CPA is presented in Appendix A.3.
There, we also point out the new instances solved, as well as their corresponding optimal
bounds. In Appendix A.3, we also expose extra information of interest, such as the average
optimality gaps at the root nodes of the algorithms proposed, the strength of the initial dual
and primal bounds (when compared to the best known ones), the number of nodes explored at
the branch-and-bound tree, as well as the average number of cuts separated for each family of
inequalities.

3.4.2 Results for the new STOP instances

Now, we study the performance of B-B&C and CPA at solving the new benchmark of
STOP instances. The name of each new STOP instance (set) corresponds to the original name
of the TOP instance (set) from which it was generated, followed by the percentage of vertices
selected as mandatory (in this case, 5%).

As for the TOP instances, we first analyzed the impact of the inequalities discussed in
Section 2.2 on the strength of formulation ℱ2. To this end, we computed the dual (upper)
bounds obtained from adding these inequalities to ℒ2 according to the 10 configurations de-
scribed in Table 3.4. Precisely, for each instance and configuration, we solved the cutting-plane
phase described in Figure 3.1 and 3.2 while considering only the types of inequalities of the
corresponding configuration.

The results are detailed in Table 3.8. The first column displays the name of each instance
set. Then, for each configuration of inequalities, we give the average and the standard deviation
(over all the instances in each set) of the percentage bound improvements obtained from the
addition of the corresponding inequalities. Without loss of generality, given an instance, its
percentage improvement in a configuration 𝑖 ∈ {1, . . . , 10} is given by 100 · 𝑈𝐵𝐿𝑃 −𝑈𝐵𝑖

𝑈𝐵𝐿𝑃
, where

𝑈𝐵𝐿𝑃 denotes the bound provided by ℒ2, and 𝑈𝐵𝑖 stands for the bound obtained from solving



Table 3.7: Total number of instances solved by each exact algorithm in the literature of the TOP. Bold entries highlight, for each instance set, the
best algorithm(s) in terms of number of instances solved to optimality.

Keshtkaran et al. (2016) B-B&C (Bianchessi et al., 2018) CPA (Ours)

Boussier et al. (2007) Dang et al. (2013a) B&P B&C&P El-Hajj et al. (2016) Original report Our implementation CPA1 CPA2

Set #opt/total #opt/total #opt/total #opt/total #opt/total #opt/total #opt/total #opt/total #opt/total

1 51/54 54/54 54/54 54/54 54/54 54/54 54/54 54/54 54/54
2 33/33 33/33 33/33 33/33 33/33 33/33 33/33 33/33 33/33
3 50/60 60/60 60/60 51/60 60/60 60/60 60/60 60/60 60/60
4 25/60 22/60 20/60 22/60 30/60 39/60 30/60 43/60 42/60
5 48/78 44/78 60/78 59/78 54/78 60/78 59/78 62/78 60/78
6 36/42 42/42 36/42 38/42 42/42 36/42 37/42 42/42 41/42
7 27/60 23/60 38/60 34/60 27/60 45/60 33/60 47/60 48/60
Total 270/387 278/387 301/387 291/387 300/387 327/387 306/387 341/387 338/347



Table 3.8: Percentage dual (upper) bound improvements obtained from adding to ℒ2 the inequalities of Section 2.2 according to the 10 configurations
in Table 3.4. Results for the new STOP instances. Recall that CPA1 and CPA2 adopt configurations 7 and 10, respectively.

Configuration of inequalities

1 — GCCs 2 — CCs 3 — CCCs 4 — LCIs 5 — AVICs

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 7.32 4.67 8.83 5.98 8.88 4.09 1.00 3.93 5.05 3.41
2_5% 0.32 0.90 0.86 2.44 0.64 1.81 0.51 1.43 0.22 0.61
3_5% 1.48 1.35 2.71 1.90 3.79 2.60 0.59 0.99 1.39 1.14
4_5% 5.94 5.62 5.15 6.46 8.80 7.33 0.00 0.01 5.52 5.01
5_5% 0.18 0.65 0.86 1.46 1.10 2.01 0.02 0.10 0.22 0.43
6_5% 0.06 0.17 0.69 2.24 0.18 0.45 0.03 0.07 0.18 0.53
7_5% 5.96 4.24 8.95 9.58 9.69 4.77 0.00 0.00 7.30 5.97

Total 3.18 4.46 4.03 5.95 5.01 5.59 0.26 1.52 3.00 4.31

Configuration of inequalities

6 — GCCs & CCs 7 — 6 & LCIs 8 — 7 & AVICs 9 — CCCs & LCIs 10 — 9 & AVICs

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 9.26 6.01 9.46 6.00 9.49 6.05 9.77 6.65 9.13 4.01
2_5% 0.85 2.41 0.97 2.75 1.00 2.82 1.12 3.18 1.21 3.41
3_5% 2.71 1.87 3.22 2.05 3.28 2.04 4.00 2.73 4.07 2.80
4_5% 7.27 6.62 7.27 6.63 7.52 6.58 8.83 7.31 10.00 9.77
5_5% 0.84 1.32 0.87 1.40 0.88 1.39 1.08 1.97 1.25 2.08
6_5% 0.70 2.24 0.73 2.23 0.74 2.24 0.21 0.45 0.28 0.55
7_5% 10.16 8.85 10.08 8.59 10.43 8.60 9.55 4.70 10.63 5.41

Total 4.63 6.14 4.75 6.09 4.86 6.14 5.19 5.97 5.52 6.56
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the cutting-plane phase in the configuration 𝑖. The last row displays the numerical results while
taking into account the complete benchmark of instances.

The results exposed in Table 3.8 follow the same pattern we observed during the res-
olution of the original TOP instances. Precisely, they indicate that, on average, CCCs are
the inequalities that strengthen formulation ℱ2 the most, followed by CCs, GCCs, AVICs and
LCIs. Moreover, coupling CCCs with LCIs and AVICs gives the best average bound improve-
ment (5.52%) among all the configurations of inequalities tested. We also point out that,
curiously, the new STOP instances seem to benefit more than the original TOP instances from
the addition of the proposed inequalities.

As already discussed in Section 3.4.1, coupling different types of inequalities may lead to
worse average bound improvements than considering them separately (see, e.g., set 5_5% under
configuration 2 and 6). Also notice that, although CCCs dominate GCCs and CCs (Remark 1
and Theorem 2), there are cases where CCCs give worse average bound improvements than CCs
(see set 2_5%, Table 3.8). Both behaviours can be explained by the fact that these inequalities
are separated heuristically, as discussed by the end of Section 3.3.

Then, we compared the performance of our implementations of B-B&C and CPA. The
results are shown in Table 3.9. The first column displays the name of each instance set, and,
for each algorithm, we give four result values described as follows. The first value corresponds
to the number of instances solved at optimality (or to proven infeasibility) out of the complete
instance set. The second one is the average wall-clock processing time (in seconds) spent in
solving these instances. Note that this entry only takes into account the instances solved at
optimality. The last couple of result values provides the average and the standard deviation
(only over the unsolved instances in each set) of the relative optimality gaps obtained by the
algorithm. Recall that these gaps are given by 𝑈𝐵−𝐿𝐵

𝑈𝐵 , where 𝐿𝐵 and 𝑈𝐵 are, respectively,
the best lower and upper bounds obtained by the corresponding algorithm for a given instance.
If, for a given instance, no feasible solution is found within the time limit and its infeasibility is
also not proven, the corresponding optimality gap is assumed to be 100%. Likewise, this gap is
set to 0% whenever the instance is proven to be infeasible. The last row gives the overall results
considering the complete benchmark of instances.

The results indicate that CPA2 outperforms B-B&C in terms of the quality of the solutions
obtained when solving the new benchmark of STOP instances. In particular, the average gaps
(concerning the unsolved instances) of the solutions provided by CPA2 are smaller than or
equal to those of B-B&C for all instance sets. Moreover, both implementations of CPA were
able solve to proven optimality more instances than B-B&C. In total, CPA1 and CPA2 solved to
optimality 30 and 31 more instances than B-B&C, respectively. Although B-B&C presents, in
general, smaller average execution times, these values are still close enough to the ones obtained
by CPA, as they have a same order of magnitude for most of the instance sets.

From the results, we also conclude that CPA1 and CPA2 have comparable behaviours
when solving the new STOP instances. Nevertheless, we observed some sort of complementarity
between them: while CPA1 solves more instances from sets 5_5% and 6_5%, CPA2 is more
successful in solving the sets 4_5% and 7_5% (the ones with greatest dimension instances).

Notice that, for the instance set with the greatest dimensions (set 7_5%), the standard
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deviation of the optimality gaps obtained by the three implementations were particularly high.
This is partially due to the fact that, for a few instances in this set, the algorithms could neither
find feasible solutions nor prove their infeasibility within the time limit, thus implying optimality
gaps of 100% in these cases. In fact, by analyzing the results in a per-instance basis, we observed
that the three algorithms had difficulty in proving the infeasibility of the new STOP instances
when that was the case. Such behaviour is in accordance with the fact that, differently from
the TOP, solely finding a feasible solution for an STOP instance (or proving its infeasibility) is
NP-hard in the general case, as it will be detailed in Chapter 4 (see Theorem 3 and Corollary 4).
From the experiments, we could not conclude whether fixing vertices as mandatory (in the new
STOP instances) complicates or favors the solvability of the feasible instances.

In general, the results for the new STOP instances indicate a similar behaviour as the
one observed when solving the original TOP instances. Precisely, instances with greater route
duration limits tend to be more difficult to be solved by B-B&C and CPA, and the number of
vehicles available does not seem to interfere with the difficulty in solving the instances.

A detailed per-instance report of the results obtained by our implementations of B-B&C
and CPA is presented in Appendix A.4. There, we also expose extra information of interest,
such as the average optimality gaps at the root nodes of the algorithms proposed, the strength
of the initial dual and primal bounds (when compared to the best known ones), the number of
nodes explored at the branch-and-bound tree, as well as the average number of cuts separated
for each family of inequalities.

3.4.3 Summary of the results

In this section, we summarize the main conclusions inferred from the results exposed in
Sections 3.4.1 and 3.4.2 and Appendixes A.3 and A.4.

1. From Tables 3.5 and 3.8, we conclude that:

a) The inequalities proposed in Section 2.2 do not seem to dominate each other, except
for CCCs, which were proven to dominate GCCs and CCs (Remark 1 and Theorem 2);

b) CCs (in CPA1) and CCCs (in CPA2) are the inequalities that strengthen formulation
ℱ2 the most;

c) On average, the new STOP instances seem to benefit more than the original TOP
instances from the addition of the proposed inequalities;

2. In total, CPA1 and CPA2 solved, respectively, 14 and 11 more instances than any previous
exact algorithm in the literature (see Table 3.7). Together, they were able to prove
the optimality of nine TOP instances previously unsolved. Regarding the new STOP
instances, CPA1 and CPA2 solved to optimality 30 and 31 more instances than B-B&C,
respectively (see Table 3.9);

3. Overall, CPA1 and CPA2 have comparable performances. Although CPA2 has stronger
average dual bounds at the root nodes (see, again, Tables 3.5 and 3.8), the additional
strength does not always lead to a faster convergence to optimal solutions. In total, CPA1



Table 3.9: Comparison between B-B&C and CPA at solving the new benchmark of STOP instances. Bold entries highlight, for each instance set,
the best algorithm(s) in terms of number of instances solved to optimality.

B-B&C (Our implementation) CPA1 (ours) CPA2 (ours)

solved unsolved solved unsolved solved unsolved

Gap (%) Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1_5% 54/54 1.03 – – 54/54 1.62 – – 54/54 2.37 – –
2_5% 33/33 0.03 – – 33/33 0.03 – – 33/33 0.03 – –
3_5% 60/60 133.68 – – 60/60 130.31 – – 60/60 109.11 – –
4_5% 30/60 639.86 3.15 2.10 41/60 1085.46 3.58 2.85 43/60 714.01 3.11 2.53
5_5% 62/78 170.10 2.45 0.94 65/78 353.58 2.70 1.10 64/78 297.00 2.25 0.98
6_5% 39/42 174.27 2.20 0.08 42/42 219.66 – – 41/42 132.06 1.68 –
7_5% 38/60 145.89 18.61 33.28 51/60 790.22 13.04 32.63 52/60 884.81 14.91 34.40

Total 316/387 158.73 7.75 19.70 346/387 361.04 5.38 15.30 347/387 310.69 5.13 15.49
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solves three more TOP instances than CPA2 within two hours of execution, while CPA2

solves one more STOP instance than CPA1. They are also comparable in terms of average
execution times and average optimality relative gaps of the solutions obtained for both
benchmarks of instances (see Tables A.5 and A.9);

4. Regarding the instance characteristics that interfere with the solvability, we noticed that
greater route duration limits tend to make instances harder to solve. This is possibly
due to the fact that greater limits imply more feasible routes, thus increasing the search
space. On the other hand, the number of vehicles available does not seem to interfere
with the difficulty in solving the instances, which is in accordance with the way we model
the problem in this work;

5. From the experiments, we could not conclude if the fixation of vertices in the STOP
makes the problem harder to solve than the TOP. Nevertheless, we observed that the
three algorithms implemented had difficulty in proving the infeasibility of the new STOP
instances when that was the case, as well as in finding an initial feasible solution. Such
behaviour is in accordance with the fact that, differently from the TOP, solely finding a
feasible solution for an STOP instance is NP-hard in the general case, as it will be detailed
in Chapter 4 (see Theorem 3 and Corollary 4);

6. From Tables A.3, A.4, A.7 and A.8, which expose the average optimality gaps at the root
nodes of B-B&C and CPA, we take two main conclusions:

a) The inequalities proposed in Section 2.2 improve the bounds provided by formulations
ℱ1 and ℱ2, even when the CPLEX built-in cuts are considered;

b) On average, the contribution of the primal bounds to the values of the root optimality
gaps is greater than that of the dual bounds. In practical terms, the root optimal-
ity gaps could be significantly decreased by solely improving the primal bounds,
especially for the largest instances — see sets 4(_5%), 5(_5%) and 7(_5%) in the
aforementioned tables.

3.5 Warm starting the cutting-plane algorithms with primal
heuristics

The results exposed in the previous section indicate that we can obtain tighter root
optimality gaps for the cutting-plane algorithms developed by improving the quality of the
initial primal bounds. Then, we tested the hybrid algorithm obtained from warm starting
CPA with the solutions provided by the heuristic discussed in the next chapter (Chapter 4) as
an attempt to improve the overall convergence of the exact algorithms. In total, the hybrid
algorithm was able to solve to optimality four more TOP instances and seven more STOP
instances than the cutting-plane algorithms alone. Additionally, it provides the optimality
certificates of five previously unsolved (even by the cutting-plane algorithms) TOP instances.
The results obtained are shown in Appendix A.6.





Chapter 4

Heuristics

This chapter is dedicated to the heuristics we propose for the STOP, which consist of
an FP based matheuristic (applied to find initial feasible solutions) and an LNS heuristic. As
a theoretical contribution, we prove that finding an initial feasible solution for the STOP is
NP-hard. We also discuss some implementation details and present a robust computational
study on the performance of the algorithms proposed.

4.1 Finding an initial solution

In the TOP, a trivial feasible solution consists of a set of empty routes, one for each
vehicle. This solution can be easily improved by inserting vertices while not exceeding the
routes’ duration limit. In fact, the heuristics in the literature of the TOP make use of this
simple procedure, usually adopting greedy criteria to iteratively add vertices to the empty
routes (Chao et al., 1996; Archetti et al., 2007; Vansteenwegen et al., 2009; Souffriau et al.,
2010; Lin, 2013; Kim et al., 2013). Once we consider mandatory vertices, a trivial solution with
empty routes is no longer feasible. In fact, we can formally prove that finding an initial feasible
solution for the STOP is an NP-hard problem. To this end, consider the following definition of
the Hamiltonian Path Problem (HPP), which is kwown to be NP-complete (Garey and Johnson,
1979).
Input: A digraph 𝐺 = (𝑁,𝐴), where 𝑁 is the vertex set, and 𝐴 is the arc set. An origin vertex

𝑠 ∈ 𝑁 and a destination vertex 𝑡 ∈ 𝑁 . For short, ⟨𝐺, 𝑠, 𝑡⟩.
Question: Is there an Hamiltonian path from 𝑠 to 𝑡 in 𝐺?

Also consider the problem of determining, given an STOP instance, if there exists a
feasible solution for it. This decision problem is referred to as Feasibility STOP (F-STOP)
hereafter. We show that HPP is polynomial-time reducible to F-STOP.

Theorem 3. HPP ≤𝑝 F-STOP.

Proof. First, we propose a straightforward polynomial time reduction of HPP instances to F-
STOP ones. Given an HPP instance ⟨𝐺, 𝑠, 𝑡⟩, we build a corresponding F-STOP instance by
considering the same digraph 𝐺, where 𝑠 and 𝑡 are its origin and destination vertices as well.
A single vehicle is considered, and all the vertices of 𝐺 are mandatory (except for 𝑠 and 𝑡).
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Accordingly, the set of profitable vertices is empty, and the traverse time vector is set to 𝑑 = 1.
The time limit 𝑇 is a sufficiently large number (say, 𝑇 ≥ |𝑁 | − 1), as to allow the selection of
all mandatory vertices in a route.

Now, we only have to show that an HPP instance has an Hamiltonian path from 𝑠 to 𝑡
if, and only if, the corresponding F-STOP instance (built as described above) is feasible. The
validity of this proposition is quite intuitive, as (i) the pair of HPP and F-STOP instances
shares the same graph, (ii) the time limit 𝑇 allows that all vertices belong to an STOP solution,
and (iii) by definition, the single STOP route must visit each vertex exactly once, which defines
an Hamiltonian path.

Corollary 4. Finding a feasible solution for an STOP instance (or proving its infeasibility) is
NP-hard in the general case.

Proof. Naturally, finding a feasible solution for STOP is at least as hard as determining if there
exists such solution, i.e., solving F-STOP. Then, the result follows directly from Theorem 3 and
the NP-completeness of HPP (Garey and Johnson, 1979).

In this work, we find initial solutions by means of the FP matheuristic framework, which
is described next.

4.1.1 Feasibility Pump (FP)

The FP matheuristic was proposed by Fischetti et al. (2005) as an alternative to solve the
NP-hard problem of finding feasible solutions for generic MILP problems of the form min{𝑐𝑇𝑥 :
𝐴𝑥 ≥ 𝑏, 𝑥𝑖 integer ∀𝑖 ∈ ℐ}. Here, 𝑥 and 𝑐 are column vectors of, respectively, variables and
their corresponding costs, 𝐴 is the restriction matrix, 𝑏 is a column vector, and ℐ is the set of
integer variables.

At each iteration, also called pumping cycle (or, simply, pump) of the FP, an integer
(infeasible) solution �̃� is used to build an auxiliary LP problem based on the linear relaxation of
the original MILP problem. Precisely, the auxiliary problem aims at finding a solution 𝑥* with
minimum distance from �̃� in the search space defined by {𝑥 : 𝐴𝑥 ≥ 𝑏}. Each new 𝑥* is rounded
and used as the integer solution of the next iteration. The algorithm ideally stops when the
current solution of the auxiliary problem is also integer (i.e., [𝑥*] = 𝑥*, where [𝑥*] = ⌊𝑥* + 0.5⌋)
and, thus, feasible for the original problem. Notice that the FP only works in the continuous
space of solutions that satisfy all the linear constraints of the original problem, and the objective
function of the auxiliary problems is the one element that guides the fractional solutions into
integer feasibility. As accurately summarized by Fischetti et al. (2005), “the FP generates two
(hopefully convergent) trajectories of points 𝑥* and �̃� that satisfy feasibility in a complementary
but partial way — one satisfies the linear constraints, the other the integer requirement”.

The original FP framework pays little attention to the quality of the solutions. In fact, the
objective function of the original MILP problem is only taken into account to generate an initial
fractional solution to be rounded and used in the first iteration. In all the subsequent iterations,
the auxiliary LPs aim at minimizing distance functions that do not explore the original objective,
which explains the poor quality of the solutions obtained (Fischetti et al., 2005; Achterberg and
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Berthold, 2007). Some variations of the framework address this issue by combining, in the
auxiliary problems, the original objective function with the distance metric. That is the case,
for instance, of the Objective Feasibility Pump (OFP) (Achterberg and Berthold, 2007), in
which the transition from the original objective function to the distance-based auxiliary one is
done gradually with the progress of the pumps. We refer to Berthold et al. (2019) for a detailed
survey on the several FP variations that have been proposed throughout the years to address
possible drawbacks and convergence issues of the original framework.

In this work, we adopt both the original FP framework and the OFP to find feasible
solutions for ℱ2. In the sequel, we only describe in details the OFP, as it naturally generalizes
the FP. For simplicity, formulation ℱ2 is used throughout the explanation, instead of a generic
MILP.

Consider the vector 𝑥 of decision variables (one for each arc in 𝐴), as defined in Section 2.1,
and let �̃� ∈ {0, 1}|𝐴| be a binary vector defining a not necessarily feasible solution for ℱ2. The
distance function used to guide the OFP framework into integer feasibility is defined as

Δ(𝑥, �̃�) =
∑︁

(𝑖,𝑗)∈𝐴
| 𝑥𝑖𝑗 − �̃�𝑖𝑗 |, (4.1)

which can be rewritten in a linear manner as

Δ(𝑥, �̃�) =
∑︁

(𝑖,𝑗)∈𝐴: �̃�𝑖𝑗=0
𝑥𝑖𝑗 +

∑︁
(𝑖,𝑗)∈𝐴: �̃�𝑖𝑗=1

(1− 𝑥𝑖𝑗). (4.2)

Considering the 𝑦 decision variables on the selection of vertices in the solution routes (as
defined in Section 2.1), the objective function of the auxiliary problems solved at each iteration
of the OFP consists of a convex combination of the distance function Δ(𝑥, �̃�) and the original
objective function of ℱ2. Precisely,

Δ𝛾(𝑥, 𝑦, �̃�) = (1− 𝛾)
‖Δ(𝑥, �̃�)‖Δ(𝑥, �̃�) + 𝛾

‖
∑︀
𝑖∈𝑃

𝑝𝑖𝑦𝑖‖

minus (2.18)⏞  ⏟  
(−
∑︁
𝑖∈𝑃

𝑝𝑖𝑦𝑖), (4.3)

with 𝛾 ∈ [0, 1], and ‖·‖ being the Euclidean norm of a vector. Notice that, in (4.3), we consider an
alternative definition of ℱ2 as a minimization problem, in which max

∑︀
𝑖∈𝑃

𝑝𝑖𝑦𝑖 = min(−
∑︀
𝑖∈𝑃

𝑝𝑖𝑦𝑖).

Moreover, both Δ(𝑥, �̃�) and the original objective function are normalized in order to avoid
scaling issues. Also notice that, since �̃� is a constant binary vector, ‖Δ(𝑥, �̃�)‖ =

√︀
|𝐴| in this

case.
Now, consider the polyhedron Ω defined by the feasible region of ℒ2, the linear relaxation

of ℱ2. Precisely, Ω = {(𝑥, 𝑦, 𝑓, 𝜙) ∈ R|𝐴| × R|𝑁 | × R|𝐴| × R : (2.2)-(2.8), (2.19)-(2.22), 0 ≤ 𝑥 ≤
1, 0 ≤ 𝑦 ≤ 1, 𝑓 ≥ 0 and 0 ≤ 𝜙 ≤ 𝑚} The OFP works by iteratively solving auxiliary problems
defined as

𝐷(𝑥, 𝑦, �̃�, 𝛾) : min{Δ𝛾(𝑥, 𝑦, �̃�) : (𝑥, 𝑦, 𝑓, 𝜙) ∈ Ω}, (4.4)

where 𝛾 balances the influence of the distance function and the original objective, i.e., the integer
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feasibility and the quality of the solution. Considering ℱ2, the OFP algorithm is described in
Figure 4.1.

Input: The model ℱ2, max_iter ∈ Z+, max_iter ≥ 1, 𝜆 ∈ [0, 1] and 𝐾 ∈ Z+.
Output: Ideally, a feasible solution for ℱ2.
1. Initialize 𝛾 ← 1 and iter_counter ← 1;
2. Solve 𝐷(𝑥, 𝑦,0, 𝛾), obtaining a solution (𝑥*, 𝑦*, 𝑓*, 𝜙*);
3. if 𝑥* is integer then return 𝑥*;
4. �̃�← [𝑥*] (= rounding of 𝑥*);
5. while (iter_counter ≤ max_iter);
6. Update 𝛾 ← 𝜆𝛾 and iter_counter ← iter_counter + 1;
7. Solve 𝐷(𝑥, 𝑦, �̃�, 𝛾), obtaining a solution (𝑥*, 𝑦*, 𝑓*, 𝜙*);
8. if (𝑥* is integer) then return 𝑥*;
9. if (�̃� ̸= [𝑥*]) then �̃�← [𝑥*];
10. else flip rand(𝐾/2, 3𝐾/2) entries �̃�𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴, with highest | 𝑥*

𝑖𝑗 − �̃�𝑖𝑗 |;
11. end-while;
12. return 0;

Figure 4.1: Description of the OFP algorithm when considering formulation ℱ2.

Aside from the corresponding model ℱ2, the algorithm receives as input three values: the
maximum number of iterations (pumps) to be performed (max_iter), a rate by which the 𝛾
value is decreased at each pump (𝜆) and a basis value (𝐾) used to compute the amplitude of
the perturbations to be performed in solutions that cycle.

At the beginning, 𝛾 and a variable that keeps the number of the current iteration
(iter_counter) are both set to one (line 1, Figure 4.1). Then, the current problem 𝐷(𝑥, 𝑦,0, 𝛾) is
solved, obtaining a solution (𝑥*, 𝑦*, 𝑓*, 𝜙*). Notice that, since 𝛾 = 1 at this point, 𝐷(𝑥, 𝑦,0, 𝛾)
corresponds to ℒ2, and the integer solution 0 plays no role. If 𝑥* is integer, and, thus, the
current solution is feasible for ℱ2, the algorithm stops. Otherwise, the rounded value of 𝑥* is
kept in a vector �̃� (see lines 2-4, Figure 4.1).

After the first pump, an iterative procedure takes place until either an integer feasible
solution is found or the maximum number of iterations is reached. At each iteration, the 𝛾
value is decreased by the fixed rate 𝜆, and the iteration counter is updated. Then, 𝐷(𝑥, 𝑦, �̃�, 𝛾)
is solved, obtaining a solution (𝑥*, 𝑦*, 𝑓*, 𝜙*). If 𝑥* is integer at this point, the algorithm stops.
Otherwise, it checks if the algorithm is caught up in a cycle of size one, i.e., if �̃� (the rounded
solution from the previous iteration) is equal to [𝑥*]. If not, �̃� is simply updated to [𝑥*]. In turn,
if a cycle is detected, the algorithm performs a perturbation on �̃�. Precisely, a random integer
in the open interval (𝐾/2, 3𝐾/2) is selected as the quantity of binary entries �̃�𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴,
to be flipped to the opposite bound. This perturbation prioritizes entries that have highest
values in the distance vector | 𝑥* − �̃� |. The loop described above is summarized at lines 5-11,
Figure 4.1. At last, if no feasible solution is found within max_pumps iterations, the algorithm
terminates with a null solution (line 12, Figure 4.1).

The original FP framework follows the same algorithm described in Figure 4.1, with the
exception that the decrease rate 𝜆 given as input is necessarily zero. Then, in the loop of lines
5-11, the 𝐷(𝑥, 𝑦, �̃�, 𝛾) problems are solved under 𝛾 = 0, i.e., without taking into account the
original objective function.
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Although we defined the OFP under the assumption that the original model is ℱ2, we also
tested the algorithm with a reinforced version of ℱ2 that considers the inequalities discussed in
Section 2.2. The idea is that the stronger model, being closer to the convex hull, might help
the OFP converging to an integer solution within less pumps.

4.2 A Large Neighborhood Search (LNS) heuristic with Path
Relinking (PR)

In this section, we describe an LNS heuristic for the STOP. The original LNS metaheuris-
tic framework (Shaw, 1998) works by gradually improving an initial solution through a sequence
of destroying and repairing procedures. In our heuristic, the LNS framework is coupled with
classical local search procedures widely used to improve solutions of routing problems in gen-
eral. In particular, these procedures, which consist of the classical k-opt (Lin, 1965), vertex
shifting and vertex exchanges between routes, are also present in most of the successful heuris-
tics proposed to solve the TOP (e.g., Ke et al. (2008); Vansteenwegen et al. (2009); Souffriau
et al. (2010); Kim et al. (2013); Dang et al. (2013b); Ke et al. (2016)). The heuristic we pro-
pose also uses a memory component known as Path Relinking (PR). PR was devised by Glover
(1997) and its original version explores a neighborhood defined by the set of intermediate solu-
tions — namely, the “path” — between two given solutions. The PR framework has also been
successfully applied to solve the TOP (Souffriau et al., 2010).

4.2.1 Main algorithm

We describe in Figure 4.2 the general algorithm of the LNS heuristic we propose. The
heuristic receives four inputs: an initial feasible solution — built through the OFP or the FP
—, the number of iterations to be performed (max_iter), the capacity of the pool of solutions
(max_pool_size) and a parameter called stalling_limit, which manages how frequently the
PR procedure is called. Precisely, it limits the number of iterations in stalling (i.e., with
no improvement in the current best solution) before calling the PR procedure. Initially, the
variables that keep the current number of iterations (iter_counter) and the number of iterations
since the last solution improvement (stalling_counter) are set to zero (line 1, Figure 4.2). Then,
the initial solution 𝑌 is improved through local search procedures (detailed in Section 4.2.4)
and added to the initially empty pool of solutions Λ (lines 2 and 3, Figure 4.2).

At this point, an iterative procedure is performed max_iter times (lines 4-27, Figure 4.2).
First, the iteration counter is incremented, and a solution 𝑌 ′ (randomly selected from the pool)
is partially destroyed by the removal of some vertices, as later described in Section 4.2.2. Then,
the algorithm successively tries to improve 𝑌 ′ (lines 8-15, Figure 4.2). To this end, the local
searches of Section 4.2.4 are performed on 𝑌 ′. If the improved 𝑌 ′ is better than the best solution
currently in the pool (i.e., its total profit sum is strictly greater), then the stalling counter is
set to -1, and a copy of 𝑌 ′ is added to Λ. The addition of solutions to the pool always considers
its capacity. Accordingly, if the pool is not full, the new solution is simply added. Otherwise,
it takes the place of the current worst solution in the pool (see lines 10-14, Figure 4.2).
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Input: An initial feasible solution 𝑌 , max_iter ∈ Z+, max_iter ≥ 1, max_pool_size ∈ Z+,
max_pool_size ≥ 1 and stalling_limit ∈ Z+, stalling_limit ≥ 1.
Output: An ideally improved feasible solution.
1. Initialize iter_counter ← 0 and stalling_counter ← 0;
2. Improve 𝑌 through local searches (see Section 4.2.4);
3. Initialize the pool of solutions Λ← {𝑌 };
4. while (iter_counter ≤ max_iter);
5. Update iter_counter← iter_counter + 1;
6. Randomly select a solution 𝑌 ′ from Λ;
7. Partially destroy 𝑌 ′ by removing vertices (see Section 4.2.2);
8. do
9. Improve 𝑌 ′ through local searches (Section 4.2.4);
10. if (𝑌 ′ is better than the best solution in Λ) then
11. stalling_counter ← −1;
12. if (|Λ| < max_pool_size) then Λ← Λ ∪ {𝑌 ′};
13. else Replace the worst solution in Λ with 𝑌 ′;
14. end-if ;
15. while (perform inter-route shifting perturbations on 𝑌 ′) (Section 4.2.5);
16. if (𝑌 ′ is better than the best solution in Λ) then
17. stalling_counter← 0;
18. else stalling_counter← stalling_counter + 1;
19. if (stalling_counter ≥ stalling_limit) then
20. Perform the PR procedure considering Λ and 𝑌 ′ (see Section 4.2.6);
21. stalling_counter← 0;
22. end-if ;
23. if (𝑌 ′ /∈ Λ) and (𝑌 ′ is better than the worst solution in Λ) then
24. if (|Λ| < max_pool_size) then Λ← Λ ∪ {𝑌 ′};
25. else Replace the worst solution in Λ with 𝑌 ′;
26. end-if ;
27. end-while;
28. return best solution in Λ;

Figure 4.2: Description of the general LNS algorithm.

At this point, the algorithm attempts to do vertex shifting perturbations (line 15, Fig-
ure 4.2), which are detailed in Section 4.2.5. If it succeeds, the algorithm resumes to another
round of local searches. Otherwise, the main loop proceeds by updating the stalling counter.
Precisely, if the possibly improved 𝑌 ′ obtained after the successive local searches and shifting
perturbations has greater profit sum than the best solution in Λ, then stalling_counter is reset
to zero. Otherwise, it is incremented by one (lines 16-18, Figure 4.2). After that, the algorithm
checks if the limit number of iterations in stalling was reached. If that is the case, the PR
procedure, whose description is given in Section 4.2.6, is applied in the current iteration, and
the stalling counter is reset once again (lines 19-22, Figure 4.2).

By the end of the main loop, it is checked if 𝑌 ′ should be added to Λ, which only occurs
if the solution does not already belong to the pool and its profit sum is greater than the current
worst solution available (lines 23-26, Figure 4.2). At last, the algorithm returns the best solution
in the pool (line 28, Figure 4.2). In the next sections, we detail all the aforementioned procedures
called within the heuristic.
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4.2.2 Destroying procedure

The destroying procedure consists of removing some of the profitable vertices belong-
ing to a given feasible solution. Consider a fixed parameter removal_percentage ∈ [0, 1].
First, we determine an upper bound on the number of vertices to be removed, namely
max_number_of_removals. This value is randomly selected in the open interval defined by
zero and the product of removal_percentage and the quantity of profitable vertices in the solu-
tion. Then, the procedure sequentially performs max_number_of_removals attempts of vertex
removal, such that, at each time, a visited vertex is randomly selected. Nevertheless, a vertex
is only actually removed if it is profitable and the resulting route remains feasible.

4.2.3 Insertion procedure

Every time the insertion procedure is called, one of two possible priority orders on the
unvisited vertices to the inserted is randomly chosen: non-increasing or non-decreasing orders of
profits. Then, according to the selected order, the unvisited vertices are individually tested for
insertion in the current solution. If a given vertex can be added to the solution (i.e., its addition
does not make the routes infeasible), it is inserted in the route and position that increase the
least the sum of the routes’ time durations. Otherwise, the vertex remains unvisited and the
next one in the sequence is tested for insertion.

4.2.4 Local searches

Given a feasible solution, the local searches here adopted attempt to improve the solution
quality, which, in this case, means either increasing the profit sum or decreasing the sum of
the routes’ times (while maintaining the same profit sum). The general algorithm sequentially
performs inter and intra-route improvements, vertex replacements and attempts of vertex in-
sertions, as summarized in Figure 4.3. The inter and intra-route improvements are detailed in
Section 4.2.4.1, while the vertex replacements are described in Section 4.2.4.2. The attempts of
vertex insertions (lines 3 and 5, Figure 4.3) are done as described in Section 4.2.3. The algorithm
stops when it reaches a locally optimal solution with respect to the neighborhoods defined by
the aforementioned improvement procedures, i.e., no more improvements are achieved.

Input: An initial feasible solution 𝑌 .
Output: A possibly improved version of 𝑌 .
1. do
2. Do inter and intra-route improvements (Section 4.2.4.1);
3. Try to insert unvisited vertices in 𝑌 (Section 4.2.3);
4. Do vertex replacements (Section 4.2.4.2);
5. Try to insert unvisited vertices in 𝑌 (Section 4.2.3);
6. while (did any improvement on 𝑌 );
7. return 𝑌 ;

Figure 4.3: Description of the sequence of local searches.
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4.2.4.1 Inter and intra-route improvements

Input: An initial feasible solution 𝑌 .
Output: A possibly improved version of 𝑌 .
1. do
2. // inter-route improvements
3. do
4. for (all combinations of two routes in 𝑌 ) do
5. Do 1-1 vertex exchange;
6. Do 1-0 vertex exchange;
7. Do 2-1 vertex exchange;
8. end-for;
9. while (did any inter-route improvement);
10. // intra-route improvements
11. for (each route in 𝑌 ) do
12. Do 3-opt improvement;
13. end-for;
14. while (did any intra-route improvement);
15. return 𝑌 ;

Figure 4.4: Description of the sequence of inter and intra-route local searches.

At each iteration of the algorithm of Figure 4.4, the feasible solution available is first
subject to inter-route improvements, i.e., procedures that exchange vertices between different
routes (lines 2-9, Figure 4.4). Precisely, for all combinations of two routes, three kinds of vertex
exchanges are performed: (i) 1-1, where a vertex from a route is exchanged with a vertex from
another route, (ii) 1-0, where a vertex from a route is moved to another one and (iii) 2-1, where
two adjacent vertices from a route are exchanged with a vertex from another route. In the three
cases, given a pair of routes, an exchange is only allowed if it preserves the solution’s feasibility
and decreases the total sum of the routes’ times. At a call of any of the vertex exchange
procedures, the algorithm only performs a single exchange: the first possible by analyzing the
routes from beginning to end.

The sequence of inter-route improvements described above is performed until no more
exchanges are possible. Then, the algorithm performs the intra-route improvements (lines 10-
13, Figure 4.4). Precisely, for each route of the solution, the classical 3-opt operator (Lin, 1965)
is applied. If any improvement is achieved through the 3-opt operator, the algorithm resumes
the main loop by performing inter-route improvements once again. Otherwise, it returns the
current solution and terminates (line 15, Figure 4.4).

Without loss of generality, a 𝑘-opt operator works by repeatedly disconnecting a given
route in up to 𝑘 places and, then, testing for improvement all the possible routes obtained from
reconnecting the initially damaged route in all the feasible manners. The operator terminates
when no more improvements are possible from removing (and repairing) any combination of 𝑘
or less arcs. At this point, the route is called 𝑘-optimal. In Figure 4.5, we give an example
of a round of the 3-opt operator on an arbitrary route of a directed graph. Accordingly, the
original route of Figure 4.5a is disconnected in three places — identified by dashed arcs —,
and reconnected within seven possible manners (Figures 4.5b and 4.5c). The three first ones
(Figure 4.5b) are also the moves of the 2-opt operator, as one of the initially removed arcs is
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(a) Original route.

(b) two-arc disconnection and reconnection.

(c) three-arc disconnection and reconnection.

Figure 4.5: Example of a round of the 3-opt operator on an arbitrary route of a directed graph.
The dashed arcs in the original route of (a) are the candidates for disconnection. The arc
rearrangements of (b) and (c) disconnect two and three of the original arcs, respectively. Notice
that, in some cases of reconnection, some arcs of the original route are preserved and others are
reversed.

always restored (or reversed). In the latter cases (Figure 4.5c), three of the original arcs are
actually discarded. Notice that, depending on the type of reconnection, some arcs of the original
route have to be reversed. Thus, in the case of not necessarily complete graphs (such as the
STOP), some of the rearrangements might not be always feasible.

4.2.4.2 Vertex replacements

Given a feasible solution, the vertex replacement procedure (Figure 4.6) works by replacing
visited vertices with currently unvisited ones. The selection of unvisited vertices to be inserted in
the solution is done exactly as in the insertion procedure described in Section 4.2.3, i.e., it follows
an either non-decreasing or non-increasing order (chosen at random) of vertex profits. The
procedure considers two types of replacements, namely 1-1 and 2-1 unvisited vertex exchanges.
The former replaces a visited vertex with an unvisited one, while, in the latter, two visited
vertices are replaced by an unvisited one. A replacement is only allowed if it preserves the
solution’s feasibility and either (i) increases the profit sum or (ii) decreases the sum of the
routes’ times while maintaining the same profit sum. At a call of any of the two types of
replacements, the algorithm performs a single replacement: the first feasible one found by
analyzing the routes from beginning to end.
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Input: An initial feasible solution 𝑌 .
Output: A possibly improved version of 𝑌 .
1. do
2. Do 1-1 unvisited vertex exchange;
3. Do 2-1 unvisited vertex exchange;
4. while (did any improvement);
5. return 𝑌 ;

Figure 4.6: Description of the sequence of vertex replacements.

4.2.5 Inter-route shifting perturbation

The inter-route shifting perturbation algorithm works by individually testing if the visited
vertices can be moved to any other route, as described in Figure 4.7. Initially, a copy 𝑌 ′ of the
initial solution 𝑌 is done (line 1, Figure 4.7). Then, 𝑌 is only used as a reference, while all the
moves are performed in 𝑌 ′, as to avoid multiple moves of a same vertex. For each route, the
algorithm attempts to move each of its vertices (either mandatory or profitable) to a different
route in that solution, such that the destination route has the least possible increase in its time
duration (lines 3-5, Figure 4.7). A vertex can be moved to any position of the destination route,
as far as both the origin and the destination routes remain feasible. In this case, moves that
increase the total sum of the routes’ durations are also allowed.

Input: An initial feasible solution 𝑌 .
1. Create a copy 𝑌 ′ of 𝑌 ;
2. for (each route 𝑟1 in 𝑌 ) do
3. for (each vertex 𝑖 in 𝑟1) do
4. In 𝑌 ′, try to move 𝑖 to a route 𝑟2, 𝑟2 ̸= 𝑟1, with least time increase;
5. end-for;
6. if (any move from 𝑟1 was done) then
7. Try to insert unvisited vertices in 𝑟1 of 𝑌 ′;
8. end-if ;
9. end-for;
10. Replace 𝑌 with 𝑌 ′;

Figure 4.7: Description of the inter-route shifting perturbation.

If at least one vertex is relocated during the attempt to move vertices from a given
route, the algorithm proceeds by trying to insert in that route currently unvisited vertices (lines
6-8, Figure 4.7). In this case, vertices are inserted according to the procedure described in
Section 4.2.3, but only in the route under consideration. After all the originally visited vertices
are tested for relocation, 𝑌 is replaced by the possibly modified 𝑌 ′ (line 10, Figure 4.7).

4.2.6 The PR procedure

The PR procedure works by exploring neighborhoods connecting an initial solution to the
ones of a given set of feasible solutions. Here, this set corresponds to the pool of solutions Λ,
which plays the role of a long-term memory. Precisely, at each iteration of the PR procedure,
we compute the intermediate solutions — namely, the “path” — between the initial solution
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and a solution selected from Λ, as detailed in Figure 4.8. The algorithm receives as input an
initial solution 𝑌 , the current pool of solutions Λ, the capacity of Λ (max_pool_size) and a
similarity limit 𝜖3 ∈ [0, 1] used to determine which pairs of solutions are eligible to be analyzed.

Input: An initial feasible solution 𝑌 , the pool of solutions Λ, max_pool_size ∈ Z+,
max_pool_size ≥ 1 and a similarity limit 𝜖3.
Output: The possibly updated pool Λ.
1. Set best_solution← 𝑌 ;
2. for (each solution 𝑋 ∈ Λ) do
3. // Checks similarity between 𝑋 and 𝑌
4. if ((2× 𝑛𝑋∩𝑌 )/(𝑛𝑋 + 𝑛𝑌 ) < 𝜖3) then
5. current_solution← best solution in the “path” from 𝑌 to 𝑋 (see Figure 4.9);
6. if (current_solution is better than best_solution) then
7. best_solution← current_solution;
8. end-if ;
9. current_solution← best solution in the “path” from 𝑋 to 𝑌 (see Figure 4.9);
10. if (current_solution is better than best_solution) then
11. best_solution← current_solution;
12. end-if ;
13. end-if ;
14. end-for;
15. if (best_solution /∈ Λ) and (best_solution is better than the worst solution in Λ) then
16. if (|Λ| < max_pool_size) then Λ← Λ ∪ {best_solution};
17. else Replace the worst solution in Λ with best_solution;
18. end-if ;
19. return Λ;

Figure 4.8: Description of the general PR procedure.

Initially, the variable that keeps the best solution found so far in the PR procedure
(best_solution) is set to the initial solution 𝑌 (line 1, Figure 4.8). Then, for each solution
𝑋 ∈ Λ, we compute its similarity with 𝑌 , which is given by (2× 𝑛𝑋∩𝑌 )/(𝑛𝑋 + 𝑛𝑌 ), where 𝑛𝑋
and 𝑛𝑌 stand for the number of vertices visited in the solutions 𝑋 and 𝑌 , respectively, and
𝑛𝑋∩𝑌 is the number of vertices common to both solutions. If the similarity metric is inferior
to the input limit 𝜖3, the procedure computes the “path” from 𝑌 to 𝑋 and the one from 𝑋

to 𝑌 . In both cases, the best solution found in the corresponding “path” (kept in the variable
current_solution) is compared with the best solution found so far in the whole PR procedure
(best_solution). Then, if applicable (i.e., if the profit sum of current_solution is greater than
that of best_solution), best_solution is updated to current_solution. The process of computing
the “path” between two given solutions is later detailed in Figure 4.9, and the whole loop
described above is summarized at lines 2-14, Figure 4.8. After that, the algorithm attempts to
add best_solution to Λ (lines 15-18, Figure 4.8). Then, the possibly updated pool is returned
and the procedure terminates (line 19, Figure 4.8).

Given two input feasible solutions — a starting one 𝑌𝑠 and a guiding one 𝑌𝑔 –, the pro-
cedure of computing the “path” between them is outlined in Figure 4.9. Initially, the variables
that keep the current and the best solutions found so far in the “path” from 𝑌𝑠 and 𝑌𝑔 are
both set to 𝑌𝑠 (line 1, Figure 4.9). Then, the set of vertices eligible for insertion (namely ver-
tices_to_add) is defined as the vertices that are visited in 𝑌𝑔 and do not belong to 𝑌𝑠 (line 2,
Figure 4.9). Notice that all the vertices in vertices_to_add are profitable, since 𝑌𝑠 and 𝑌𝑔 are
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Input: A starting solution 𝑌𝑠 and a guiding one 𝑌𝑔.
Output: The possibly improved solution.
1. best_solution← current_solution← 𝑌𝑠;
2. vertices_to_add← vertices that are visited in 𝑌𝑔 and not in 𝑌𝑠;
3. Sort vertices_to_add in terms of vertex profits (non-increasing or non-decreasing order);
4. while (vertices_to_add ̸= ∅) do
5. while (vertices_to_add ̸= ∅) and (there is a feasible route in current_solution) do
6. Remove a vertex 𝑖 from vertices_to_add, according to the sorting;
7. Try to insert 𝑖 in a still feasible route of current_solution, allowing infeasibility;
8. end-while;
9. for (each infeasible route 𝑗 in current_solution) do
10. Sequentially remove profitable vertices from 𝑗 to restore its feasibility;
11. end-for;
12. Improve current_solution through local searches (Section 4.2.4);
13. if (current_solution is better than best_solution) then
14. best_solution← current_solution;
15. end-if ;
16. end-while;
17. return best_solution;

Figure 4.9: Algorithm for computing the “path” between two solutions.

both feasible and, thus, visit all the mandatory vertices. After that, vertices_to_add is sorted
in non-increasing or non-decreasing order of vertex profits (line 3, Figure 4.9). This order is
chosen at random at each call of the procedure.

Then, while there are eligible vertices in vertices_to_add, the procedure alternates be-
tween adding vertices to the current solution — even when it leads to infeasible routes — and
removing vertices to restore feasibility. Precisely, at each iteration of the main loop of Figure 4.9
(lines 4-16), the algorithm attempts to add vertices to current_solution as follows. First, the
next vertex in the order established for vertices_to_add is removed from the set. Then, if
possible, such vertex is inserted in the route and position that increase the least the sum of the
routes’ time durations. In this case, an insertion that makes a route infeasible in terms of time
limit is also allowed. Nevertheless, once a route becomes infeasible, it is no longer considered
for further insertions. The rounds of insertion continue until either vertices_to_add gets empty
or all the routes of current_solution become infeasible (see lines 5-8, Figure 4.9).

At this point, the algorithm removes profitable vertices from current_solution to restore
its feasibility. In particular, for each infeasible route, profitable vertices are sequentially removed
in non-decreasing order of its profits until all the routes become feasible again (lines 9-11,
Figure 4.9). If the removal of a vertex would disconnect the route it belongs, then this vertex
is preserved. In these cases, the next candidate vertex is considered for removal, and so on.

After the removals, the algorithm attempts to improve the now feasible current_solution
through the local searches described in Section 4.2.4 (line 12, Figure 4.9), and, if applicable,
best_solution is updated to current_solution (lines 13-15, Figure 4.9). After the main loop
terminates, best_solution is returned (line 17, Figure 4.9).
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4.3 Implementation details

All the codes were developed in C++, and the LP problems that arise in the cutting-plane
used to reinforce formulation ℱ2 were solved by means of the optimization solver ILOG CPLEX
12.6. We kept the default configurations of CPLEX in our implementation.

In the sequel, we describe the parameter configurations adopted in the heuristic algo-
rithms. These configurations were established according to previous studies in the literature,
as well as to pilot tests on a control set of 10 STOP instances, composed of both challenging
instances and some of the smallest ones. This control set is detailed in Table 4.1, where we
report, for each instance, the number of vertices (|𝑁 |), the number of vehicles (|𝑀 |) and the
route duration limit (𝑇 ). The reduced number of instances was chosen as a way to avoid over-
fitting. The complete set of instances adopted in our experiments was previously detailed in
Section 3.4.

Table 4.1: Control set of STOP instances used to tune the heuristics’ parameters.

Instance |𝑁 | |𝑀 | 𝑇

p3.3.r_5% 33 3 33.3
p4.3.j_5% 100 3 46.7
p4.3.n_5% 100 3 60.0
p5.3.m_5% 66 3 21.7
p5.3.r_5% 66 3 30.0
p6.2.k_5% 64 2 32.5
p6.3.m_5% 64 3 25.0
p6.3.n_5% 64 3 26.7
p7.3.o_5% 102 3 100.0
p7.3.p_5% 102 3 106.7

4.3.1 Parameter configuration adopted for the FP heuristic

In Table 4.2, we summarize the values adopted for the input parameters of the FP frame-
work described in Figure 4.1.

Table 4.2: Parameter configuration adopted for the FP heuristic.

Parameter max_pumps 𝜆 𝐾

Value 2000 0.9 10

4.3.2 Parameter configuration adopted for the LNS heuristic

In Table 4.3, we summarize the values adopted for the input parameters of the LNS
heuristic, including the ones related to the procedures called within the main algorithm described
in Figure 4.2.
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Table 4.3: Parameter configuration adopted for the LNS heuristic.

Parameter max_iter max_pool_size stalling_limit removal_percentage 𝜖3

Value {1000, 2000, 5000} 20 100 0.75 0.9

4.4 Computational experiments

The computational experiments were performed on a 64 bits Intel Core i7-4790K machine
with 4.0 GHz and 15.0 GB of RAM, under Linux operating system. The machine has four phys-
ical cores, each one running at most two threads in hyper-threading mode. In our experiments,
we tested several variations of the LNS heuristic obtained by considering the FP and the OFP,
the original formulation ℱ2 and its reinforced version, as well as different numbers of iterations
for the main LNS algorithm. These variations are later detailed in Sections 4.4.2 and 4.4.3.

We used the same benchmarks of instances adopted in the experiments regarding the
exact algorithms (see Section 3.4). The experiments detailed in this section focus on the in-
stances in which the set of mandatory vertices is non-empty, as this specific structure is the
factor that brings the extra level of difficulty and justifies using the FP heuristic to find initial
solutions. Nevertheless, for completeness, we also report the results obtained for the original
TOP instances, where no mandatory vertex exists.

Here, all the instances were also pre-processed by removing vertices and arcs that are
inaccessible with respect to the limit 𝑇 imposed on the total traverse times of the routes. Also
in this case, the time spent in the pre-processing is included in the execution times of the
algorithms tested.

4.4.1 Statistical analysis adopted

Since all the heuristic algorithms proposed have randomized choices within their execution,
we ran each algorithm 10 times for each instance to properly assess their performance. In this
sense, we considered a unique set of 10 seeds common to all algorithms and instances tested.
To evaluate the quality of the solutions obtained by the heuristics proposed, we compared them
with the primal solutions/bounds provided by the cutting-plane algorithm of CPA1, as described
in Section 3.4.

To assess the statistical significance of the results, we follow the tests suggested by Demšar
(2006) for the simultaneous comparison of multiple algorithms on different data (instance) sets.
Precisely, we first apply the Iman-Davenport test (Iman and Davenport, 1980) to check the
so-called null hypothesis, i.e., the occurrence of equal performances with respect to a given
indicator (e.g., quality of the solution’s bounds). If the null hypothesis is rejected, and, thus,
the algorithms’ performances differ in a statistically significant way, a post-hoc test is performed
to analyze these differences more closely. In our study, we adopt the post-hoc test proposed by
Nemenyi (1963).

The Iman-Davenport test is a more accurate version of the non-parametric Friedman
test (Friedman, 1937). In both tests, the algorithms considered are ranked according to an
indicator of performance. Let 𝐼 be the set of instances and 𝐽 be the set of algorithms considered.
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In our case, the algorithms are ranked for each instance separately, such that 𝑟𝑗𝑖 stands for the
rank of an algorithm 𝑗 ∈ 𝐽 while solving an instance 𝑖 ∈ 𝐼. Accordingly, the value of 𝑟𝑗𝑖 lies
within the interval [1, |𝐽 |], such that better performances are linked to smaller ranks (in case
of ties, average ranks are assigned). The Friedman test compares the average ranks (over all
instances) of the algorithms, which are given by 𝑅𝑗 = 1

|𝐼|
∑︀
𝑖∈𝐼

𝑟𝑗𝑖 for all 𝑗 ∈ 𝐽 . Then, the Friedman

statistic is defined as

𝜒2
𝐹 = 12|𝐼|

|𝐽 |(|𝐽 | − 1)

⎡⎣∑︁
𝑗∈𝐽

𝑅2
𝑗 −
|𝐽 |(|𝐽 |+ 1)2

4

⎤⎦ (4.5)

and is distributed according to the chi-squared (𝜒2) distribution with |𝐽 |−1 degrees of freedom
when |𝐼| and |𝐽 | are large enough (as a rule of thumb, |𝐼| > 10 and |𝐽 | > 5). For smaller
numbers of algorithms and instances, exact critical values have been computed (Sheskin, 2007).
By its turn, the less conservative statistic used in the Iman-Davenport test is given by

𝐹𝐹 = (|𝐼| − 1)𝜒2
𝐹

|𝐼|(|𝐽 | − 1)− 𝜒2
𝐹

(4.6)

and follows the F distribution with |𝐽 | − 1 and (|𝐽 | − 1)(|𝐼| − 1) degrees of freedom. The
corresponding critical values can also be found in the book of Sheskin (2007).

Critical values are determined considering a significance level 𝛼, which, in this case,
indicates the probability of the null hypothesis being erroneously rejected. In practical terms,
the smaller 𝛼, the greater the statistical confidence of the test. Accordingly, in the case of
the Iman-Davenport test, the null hypothesis is rejected if the statistic 𝐹𝐹 is greater than the
critical value. In our experiments, we alternatively test the null hypothesis by determining
(through a statistical computing software) the so-called 𝑝-value, which provides the smallest
level of significance at which the null hypothesis would be rejected. In other words, given an
appropriate significance level 𝛼 (usually, at most 5%), we can safely discard the null hypothesis
if 𝑝-value ≤ 𝛼.

Once the null hypothesis is rejected, we can apply the post-hoc test of Nemenyi (1963),
which compares the algorithms in a pairwise manner. The performances of two algorithms
𝑗, 𝑘 ∈ 𝐽 are significantly different if the corresponding average ranks 𝑅𝑗 and 𝑅𝑘 differ by at
least the Critical Difference

𝐶𝐷 = 𝑞𝛼

√︃
|𝐽 |(|𝐽 |+ 1)

6|𝐼| , (4.7)

where the critical value 𝑞𝛼 is based on the Studentized range statistic. In our experiments,
we used the R open software for statistical computing1 to compute all of the statistics needed,
including the average ranks and the critical differences.

1https://www.r-project.org/
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4.4.2 Results for the FP algorithms

We first compared four variations of the FP framework discussed in Section 4.1.1, as
summarized in Table 4.4. Precisely, we considered both the FP and the OFP while based on
the original formulation ℱ2 and the one reinforced according to the cutting-plane algorithm
described in Section 3.2. The latter formulation is referred to as ℱ2+cuts.

Table 4.4: Variations of the FP analyzed in our study. ℱ2+cuts stands for the reinforced version
of the formulation ℱ2 discussed in Section 3.2.

Framework Base formulation

Algorithm FP OFP ℱ2 ℱ2+cuts

FP_raw × ×
FP_cuts × ×
OFP_raw × ×
OFP_cuts × ×

In Table 4.5, we report the results obtained by the four FP algorithms described in Ta-
ble 4.4. For each algorithm and instance set, we report four values: (i) the average and (ii) the
standard deviation of the relative gaps given by 100 · 𝐿𝐵*−𝐿𝐵

𝐿𝐵* , where 𝐿𝐵* is the best primal
bound (for the instance) obtained by CPA1, and 𝐿𝐵 is the average bound (over the 10 execu-
tions) obtained by the corresponding FP algorithm; (iii) the average number of iterations/pumps
(over the 10 executions and all instances of the set), and (iv) the average wall-clock processing
time (in seconds). We highlight that, for the cases where a feasible solution is not found in any
of the 10 executions, the corresponding relative gaps of (i) are set to 100%. The same is done
in case no primal bound is available from the baseline exact algorithm. Moreover, when the
instance is proven to be infeasible, the gap is set to 0%. Entries in bold discriminate the cases
where the reinforcement of the original formulation led to better performances or not.

First, notice that, in terms of solution quality, the results of the four algorithms are rather
poor, as the average relative gaps and standard deviations are quite high. Nevertheless, these
results do not indicate unsuccessful performances, as the general FP framework was devised to
find feasible solutions, usually at the expense of solution quality. As expected, the quality of
the solutions obtained by the algorithms that use the OFP framework is slightly superior (on
average) to that of solutions obtained by the algorithms based on pure FP. Nevertheless, as we
will discuss later, we cannot assure that the gain of the OFP is statistically significant in this
case.

More importantly, the results suggest that, on average, the reinforcement of the original
formulation ℱ2 improves both the quality of the solutions obtained and the convergence (signaled
by the number of pumps) of the algorithms to feasible solutions. In particular, for all instance
sets but 6_5%, the average gaps of the solutions obtained by FP_cuts are strictly smaller (and,
thus, better) than those obtained by FP_raw. The same applies for the average numbers of
pumps. When comparing OFP_cuts and OFP_raw, the same pattern is verified. Regarding
average execution times, the four algorithms are comparable.

We applied the Iman-Davenport and the Nemenyi tests to validate the statistical sig-
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Table 4.5: Summary of the results obtained by the four FP algorithms described in Table 4.4.
Bold entries highlight, for each instance set, the best algorithm(s) in terms of average gaps and
number of pumps.

FP_raw FP_cuts

Gap (%) Gap (%)

Set Avg StDev Pumps (#) Time (s) Avg StDev Pumps (#) Time (s)

1_5% 26.60 29.92 5.86 0.06 26.19 29.58 4.59 0.10
2_5% 11.74 23.61 2.19 0.00 9.18 20.82 1.75 0.00
3_5% 29.47 26.30 7.32 0.08 28.24 24.33 6.12 0.14
4_5% 29.69 24.62 86.59 39.38 18.49 19.70 53.41 56.76
5_5% 27.76 26.33 38.06 3.33 24.25 25.67 34.91 10.96
6_5% 12.46 16.87 5.23 0.45 13.66 18.07 5.05 0.70
7_5% 27.66 34.21 161.26 109.12 16.42 24.44 53.40 83.76

Total 25.12 27.51 48.80 23.77 20.60 24.48 25.88 24.11

OFP_raw OFP_cuts

Gap (%) Gap (%)

Set Avg StDev Pumps (#) Time (s) Avg StDev Pumps (#) Time (s)

1_5% 25.46 29.64 19.74 0.30 23.80 26.71 18.09 0.44
2_5% 11.54 23.70 9.14 0.01 11.18 22.00 8.07 0.02
3_5% 27.30 23.63 25.65 0.38 26.81 23.41 24.03 0.54
4_5% 28.46 24.36 102.70 61.43 20.21 20.43 72.20 80.50
5_5% 24.48 25.10 65.49 7.46 21.77 23.48 53.63 16.86
6_5% 13.50 21.02 66.72 7.77 12.49 16.22 18.89 3.09
7_5% 25.20 31.66 187.30 133.95 15.24 23.20 90.91 175.60

Total 23.49 26.45 72.91 32.74 19.67 23.06 45.08 43.59

nificance of the results discussed above. While comparing the relative gaps, we ranked the
algorithms according to the values 100 ·

(︁
1− 𝐿𝐵*−𝐿𝐵

𝐿𝐵*

)︁
, as to make smaller gaps imply greater

ranks. Similarly, while comparing the number of pumps, the algorithms were ranked based on
the maximum number of pumps (parameter max_iter of Figure 4.1) minus the actual number of
pumps performed. With respect to the relative gaps, we obtained the statistic 𝐹𝐹 = 10.76, with
𝑝-value = 5.62 · 10−7. Regarding the number of pumps, we obtained the statistic 𝐹𝐹 = 94.06,
with 𝑝-value = 2.2 ·10−16. Then, in both cases, we can safely reject the null hypothesis of equal
performances.

To compare the performance of the algorithms in a pairwise manner, we proceeded with
the Nemenyi test. Figure 4.10 depicts the average ranks of the four FP algorithms and the
Critical Difference (CD) while considering a significance level 𝛼 = 5%. Connections between
algorithms indicate non-significant differences, i.e., the difference between the corresponding
pair of average ranks is no greater than the CD. Figures 4.10a and 4.10b are based on the
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relative gaps and the number of pumps, respectively.

With respect to the relative gaps, we can conclude that the performance of OFP_cuts
is significantly better than those of OFP_raw and FP_raw. Moreover, FP_cuts outperforms
FP_raw. Nevertheless, we cannot conclude if OFP_cuts is significantly better than FP_cuts,
neither that OFP_raw is better than FP_raw in this same indicator. Regarding the conver-
gence (number of pumps), FP_cuts outperforms all the other algorithms. In summary, from
the results, we can safely conclude that the reinforcement of ℱ2 here applied yields better per-
formances both in terms of convergence and solution quality. In addition, considering both
indicators, FP_cuts stands out as the best option.

2 3

CD

OFP_cuts

FP_cuts

OFP_raw

FP_raw

(a) Ranks based on the relative gaps.

1 2 3 4

CD

FP_cuts

FP_raw

OFP_cuts

OFP_raw

(b) Ranks based on the number of pumps.

Figure 4.10: FP algorithms’ average ranks depicted on number lines, along with the Critical
Difference (CD), when considering a significance level 𝛼 = 5%. Connections between algorithms
indicate non-significant differences.
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4.4.3 Results for the LNS heuristic

In the experiments concerning the LNS heuristic, we tested the influence of the initial
solution on the overall performance of the heuristic, as well as the impact of the number of
iterations on the quality of the final solution obtained. To this end, we tested six variations of
the heuristic by considering the two best FP algorithms — FP_cuts and OFP_cuts — coupled
with the LNS framework of Section 4.2 running for max_iter ∈ {1000, 2000, 5000} iterations.
Without loss of generality, an algorithm that receives an initial solution provided by FP_cuts
and runs the LNS heuristic for 1000 iterations is referred to as FP_cuts_LNS_1000.

In Table 4.6, we summarize the results obtained by the six LNS algorithms tested. For
each algorithm and instance set, we report five values: (i) the average and (ii) the standard
deviation of the relative gaps given by 100 · 𝐿𝐵*−𝐿𝐵

𝐿𝐵* , where 𝐿𝐵 is the average bound (over the
10 executions) obtained by the corresponding algorithm. Recall that 𝐿𝐵* is the best primal
bound (for the instance) obtained by CPA1; (iii) the average (over the 10 executions and all
instances of the set) profit sum of the solutions obtained, and (iv) the average (over all instances
of the set) profit sum of the best (in each round of 10 executions) solutions found. At last, we
provide (v) the average wall-clock processing time (in seconds) of the execution of the LNS
steps, excluding the time spent by the FP algorithm in finding the initial solution. We highlight
that, for the cases where a feasible solution is not provided in any of the 10 executions of the
corresponding FP algorithm, the due relative gaps of (i) are set to 100%. The same is done in
case no primal bound is available from the baseline exact algorithm. Moreover, negative gaps
indicate that the heuristic gives better primal bounds than the baseline ones. Entries in bold
discriminate the cases where the OFP framework led to better performances than the FP or
otherwise.

The results indicate that, on average, the LNS algorithms that use the initial solutions
provided by FP_cuts and OFP_cuts reach final solutions with comparable quality. In addi-
tion, as expected, increasing the number of iterations does improve (on average) the quality of
the solutions obtained. Also notice that the average execution times are almost the same for
algorithms with a same number of iterations, which is in accordance with the stopping criterion
adopted in the algorithms. In fact, the LNS heuristics run fairly fast, being the search for initial
feasible solutions responsible for the majority of the computational effort (see again Table 4.5).
Such behaviour was expected, since finding an initial solution for the STOP is an NP-hard task
(Corollary 4).

As for the FP heuristics, we also applied the Iman-Davenport and the Nemenyi tests to
validate the statistical significance of the results discussed above. We highlight that, although
better (greater) profit sums imply smaller relative gaps on a per-instance basis, the same does
not hold when we consider average values, since relative gaps are normalized by definition. Once
our statistical tests use the results on a per-instance basis, considering either relative gaps or
profit sums leads to a same ranking of the algorithms. In particular, we ranked the algorithms
according to the values 100 ·

(︁
1− 𝐿𝐵*−𝐿𝐵

𝐿𝐵*

)︁
, as to make smaller gaps imply greater ranks.

Regarding the Iman-Davenport test, we obtained the statistic 𝐹𝐹 = 7.26, with 𝑝-value =
9.49 · 10−7, thus rejecting the null hypothesis of equal performances of all the six algorithms
tested. Then, proceeding with the Nemenyi test, Figure 4.11 depicts the average ranks of the six
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Table 4.6: Summary of the results obtained by six variations of the LNS algorithm tested. The
execution times do not consider the time spent by the FP algorithms in finding initial solutions.
Bold entries highlight, for each instance set, the best algorithm(s) in terms of average gaps and
profit sums.

FP_cuts_LNS_1000 OFP_cuts_LNS_1000

Gap (%) Profit sum Gap (%) Profit sum

Set Avg StDev Avg Best Time (s) Avg StDev Avg Best Time (s)

1_5% 0.37 1.91 79.34 79.63 0.10 0.00 0.00 79.63 79.63 0.10
2_5% 0.00 0.00 41.52 41.52 0.01 0.00 0.00 41.52 41.52 0.01
3_5% 0.00 0.00 308.50 308.50 0.20 0.00 0.00 308.50 308.50 0.20
4_5% −0.07 1.22 609.37 613.75 7.37 -0.19 1.08 612.15 614.23 7.10
5_5% 1.34 11.32 602.36 603.14 1.04 1.34 11.32 602.40 603.21 1.04
6_5% 0.01 0.03 375.20 375.29 0.55 0.02 0.05 375.11 375.29 0.55
7_5% 1.79 12.90 306.32 311.22 1.42 3.48 18.08 292.82 295.20 1.36

Total 0.59 7.23 366.53 368.18 1.68 0.78 8.79 364.91 365.78 1.63

FP_cuts_LNS_2000 OFP_cuts_LNS_2000

Gap (%) Profit sum Gap (%) Profit sum

Set Avg StDev Avg Best Time (s) Avg StDev Avg Best Time (s)

1_5% 0.37 1.91 79.34 79.63 0.20 0.00 0.00 79.63 79.63 0.20
2_5% 0.00 0.00 41.52 41.52 0.03 0.00 0.00 41.52 41.52 0.03
3_5% 0.00 0.00 308.50 308.50 0.39 0.00 0.00 308.50 308.50 0.39
4_5% −0.15 1.19 610.07 614.02 14.75 -0.25 1.11 612.78 614.30 14.35
5_5% 1.31 11.32 602.70 603.14 2.08 1.30 11.32 602.74 603.21 2.09
6_5% 0.00 0.02 375.24 375.29 1.09 0.01 0.03 375.21 375.29 1.11
7_5% 1.74 12.90 306.73 311.28 3.04 3.44 18.08 293.13 295.25 2.85

Total 0.56 7.23 366.78 368.23 3.39 0.76 8.80 365.14 365.80 3.30

FP_cuts_LNS_5000 OFP_cuts_LNS_5000

Gap (%) Profit sum Gap (%) Profit sum

Set Avg StDev Avg Best Time (s) Avg StDev Avg Best Time (s)

1_5% 0.37 1.91 79.34 79.63 0.50 0.00 0.00 79.63 79.63 0.51
2_5% 0.00 0.00 41.52 41.52 0.07 0.00 0.00 41.52 41.52 0.07
3_5% 0.00 0.00 308.50 308.50 0.98 0.00 0.00 308.50 308.50 1.00
4_5% −0.24 1.17 611.07 614.47 37.46 -0.30 1.14 613.28 614.43 35.98
5_5% 1.29 11.32 602.96 603.21 5.30 1.29 11.32 602.94 603.21 5.30
6_5% 0.00 0.01 375.26 375.29 2.74 0.00 0.02 375.26 375.29 2.76
7_5% 1.72 12.90 306.92 311.30 7.50 3.40 18.09 293.45 295.27 7.15

Total 0.54 7.23 367.02 368.32 8.57 0.74 8.80 365.31 365.82 8.29

LNS algorithms and the Critical Difference (CD) while considering a significance level 𝛼 = 5%.
Connections between algorithms indicate non-significant differences with respect to CD. From
the results, we cannot conclude if the LNS algorithms based on FP_cuts differ significantly (in
terms of the quality of the solutions obtained) from the corresponding ones based on OFP_cuts.
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Figure 4.11: LNS algorithms’ average ranks depicted on a number line, along with the Critical
Difference (CD), when considering a significance level 𝛼 = 5%. Connections between algorithms
indicate non-significant differences.

On the other hand, the results clearly indicate that increasing the number of iterations from
1000 to 5000 does lead to a statistically significant improvement.

In Table 4.7, we summarize the number of instances for which the two best variations
of the heuristic (FP_cuts_LNS_5000 and OFP_cuts_LNS_5000) were able to reach the best
previously known bounds. For each algorithm and instance set, we also indicate the number of
cases where the LNS algorithm improved over the solutions provided by CPA1. In Appendix A.5,
we provide a per-instance report of the primal bounds obtained by the LNS heuristic proposed.

Table 4.7: Number of times the two best algorithms (FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000) reached and/or improved over the best known bounds.

FP_cuts_LNS_5000 OFP_cuts_LNS_5000

Set Reached best (#) Improved best (#) Reached best (#) Improved best (#)

1_5% 54/54 0/54 54/54 0/54
2_5% 33/33 0/33 33/33 0/33
3_5% 60/60 0/60 60/60 0/60
4_5% 59/60 18/60 59/60 17/60
5_5% 76/78 3/78 76/78 3/78
6_5% 42/42 0/42 42/42 0/42
7_5% 58/60 0/60 54/60 0/60

Total 382/387 21/387 378/387 20/387

4.4.4 Results for the original benchmark of TOP instances

For completeness, the two variations of the heuristic that performed better for the STOP
instances (FP_cuts_LNS_5000 and OFP_cuts_LNS_5000) were also run to solve the original
benchmark of TOP instances. The results obtained are summarized in Tables 4.8, 4.9 and 4.10.



74 Chapter 4. Heuristics

Table 4.8: Summary of the results obtained by FP_cuts and OFP_cuts while solving the
original benchmark of TOP instances. Bold entries highlight, for each instance set, the best
algorithm(s) in terms of average gaps and number of pumps.

FP_cuts OFP_cuts

Gap (%) Gap (%)

Set Avg StDev Pumps (#) Time (s) Avg StDev Pumps (#) Time (s)

1 27.91 26.17 4.18 0.09 27.35 24.43 21.97 0.45
2 35.96 31.49 3.49 0.01 34.93 30.14 21.51 0.03
3 32.16 23.69 5.75 0.14 32.49 21.29 29.97 0.59
4 24.72 13.85 14.31 27.57 22.65 12.12 41.03 62.89
5 26.60 22.23 9.15 2.68 27.22 22.98 31.64 8.81
6 17.06 19.64 4.78 0.57 13.61 17.83 20.09 2.94
7 31.50 21.01 13.46 59.77 28.71 17.91 35.22 112.67

Total 27.88 22.88 8.44 14.18 26.76 21.68 29.93 29.47

Table 4.9: Summary of the results obtained by FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000 while solving the original benchmark of TOP instances. The ex-
ecution times do not consider the time spent by the FP algorithms in finding initial solutions.
Bold entries highlight, for each instance set, the best algorithm(s) in terms of average gaps and
profit sums.

FP_cuts_LNS_5000 OFP_cuts_LNS_5000

Gap (%) Profit sum Gap (%) Profit sum

Set Avg StDev Avg Best Time (s) Avg StDev Avg Best Time (s)

1 1.67 9.66 111.07 112.04 0.65 0.00 0.00 112.04 112.04 0.65
2 6.67 15.14 131.45 140.45 0.18 0.61 2.42 139.14 140.45 0.19
3 3.17 13.96 411.22 414.67 1.18 0.00 0.00 414.67 414.67 1.18
4 0.34 3.11 801.22 804.23 38.20 -0.17 1.14 802.63 804.25 37.31
5 0.38 2.52 756.16 756.92 5.72 0.00 0.11 756.74 756.99 5.69
6 0.71 4.63 449.20 450.57 3.10 0.24 1.54 450.11 450.57 2.92
7 2.66 12.00 562.26 568.25 10.90 0.14 0.27 567.33 568.55 10.97

Total 1.91 9.59 503.01 506.14 9.39 0.07 1.00 505.56 506.21 9.24

In Table 4.8, we report, for each FP algorithm tested (FP_cuts and OFP_cuts) and
instance set, four values: (i) the average and (ii) the standard deviation of the relative gaps
given by 100 · 𝐿𝐵*−𝐿𝐵

𝐿𝐵* , where 𝐿𝐵* is the best primal bound (for the instance) obtained by the
baseline exact algorithm CPA1, and 𝐿𝐵 is the average bound (over the 10 executions) obtained
by the corresponding FP algorithm; (iii) the average number of iterations/pumps (over the 10
executions and all instances of the set), and (iv) the average wall-clock processing time (in
seconds). We highlight that, whenever 𝐿𝐵* = 𝐿𝐵 = 0, the corresponding gap of (i) is set to
0%.

In Table 4.9, for each LNS algorithm tested (FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000) and instance set, we report five values: (i) the average and (ii)
the standard deviation of the relative gaps given by 100 · 𝐿𝐵*−𝐿𝐵

𝐿𝐵* , where 𝐿𝐵 is the average
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Table 4.10: Number of times the two best algorithms (FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000) reached and/or improved over the primal bounds provided by CPA1
while solving the original benchmark of TOP instances.

FP_cuts_LNS_5000 OFP_cuts_LNS_5000

Set Reached best (#) Improved best (#) Reached best (#) Improved best (#)

1 54/54 0/54 54/54 0/54
2 33/33 0/33 33/33 0/33
3 60/60 0/60 60/60 0/60
4 55/60 12/60 53/60 12/60
5 78/78 2/78 78/78 3/78
6 42/42 0/42 42/42 0/42
7 56/60 1/60 59/60 1/60

Total 378/387 15/387 379/387 16/387

bound (over the 10 executions) obtained by the corresponding algorithm. 𝐿𝐵* is the best
primal bound (for the instance) obtained by the baseline exact algorithm (CPA1); (iii) the
average (over the 10 executions and all instances of the set) profit sum of the solutions obtained,
and (iv) the average (over all instances of the set) profit sum of the best (in each round of 10
executions) solutions found. At last, we provide (v) the average wall-clock processing time (in
seconds) of the execution of the LNS steps, excluding the time spent by the FP algorithm in
finding the initial solution. Also in this case, whenever 𝐿𝐵* = 𝐿𝐵 = 0, the corresponding gap
of (i) is set to 0%.

In Table 4.10, we summarize the number of instances for which the two best variations of
the heuristic (FP_cuts_LNS_5000 and OFP_cuts_LNS_5000) were able to reach the primal
bounds obtained by CPA1. For each algorithm and instance set, we also indicate the number of
cases where the LNS algorithm improved over the solutions provided by CPA1. In Appendix A.5,
we provide a per-instance report of the primal bounds obtained by the LNS heuristic proposed.

4.4.5 Summary of the results

Here, we summarize the main conclusions inferred from the results of the experiments
performed to asses the behaviour of the heuristics proposed.

1. From Table 4.5 and the due statistical tests (see Figure 4.10), we conclude that:

a) the FP algorithms that use the reinforced version of formulation ℱ2 perform better
(on average) both in terms of the quality of the solutions obtained and convergence
(signaled by the number of pumps) than the ones that are based on the plain formu-
lation ℱ2;

b) the FP algorithms based on the OFP framework obtain slightly better quality solu-
tions (on average) than the ones that use the pure FP framework. Nevertheless, our
tests could not conclude if this gain is statistically significant. Moreover, the better
quality solutions of the OFP come at the expense of slower convergences;
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c) considering both indicators (solution quality and convergence), FP_cuts stands out
as the best option;

2. From Tables 4.6 and 4.7 and the due statistical tests (see Figure 4.11):

a) we cannot conclude if the LNS algorithms based on FP_cuts differ significantly (in
terms of the quality of the solutions obtained) from the corresponding ones based on
OFP_cuts;

b) the results clearly indicate that increasing the number of iterations from 1000 to 5000
leads to a statistically significant improvement in terms of solution quality;

c) in total, the heuristic proposed could reach the best previously known bounds on 382
of the 387 STOP instances tested and even improve them on 21 of these cases.



Chapter 5

Concluding remarks and future work
directions

In this thesis, we introduced the Steiner Team Orienteering Problem (STOP), a gen-
eralization of capacitated routing problems with profit collection. The STOP is defined on a
digraph in which arcs are associated with traverse times, and whose vertices are labeled as either
mandatory or profitable, being the latter provided with rewards (profits). Given a homogeneous
fleet of vehicles 𝑀 , the goal is to find up to 𝑚 = |𝑀 | disjoint routes (from an origin vertex to a
destination one) that maximize the total sum of rewards collected while satisfying a given limit
on the route’s duration. Naturally, all mandatory vertices must be visited.

We first extended to the problem a state-of-the-art branch-and-cut algorithm (referred
to as Baseline Branch-and-Cut — B-B&C) from the literature of the Team Orienteering Prob-
lem (TOP), a closely related specialization of the STOP in which no mandatory vertices are
considered. Then, we proposed other exact and heuristic algorithms to solve the STOP. The
algorithms are based on a compact (with a polynomial number of variables and constraints)
commodity-based MILP formulation we also introduced in this work. We also devised the formal
proof that our formulation gives the same bounds as the one used within B-B&C.

Regarding exact solutions, we proposed two variations of Cutting-Plane Algorithms (CPA)
which work by reinforcing our formulation by means of the separation of five families of inequali-
ties: (i) General Connectivity Constraints (GCCs), (ii) classical Lifted Cover Inequalities (LCIs)
based on dual bounds, (iii) Arc-Vertex Inference Cuts (AVICs), (iv) Conflict Cuts (CCs) and
(v) Clique Conflict Cuts (CCCs). To our knowledge, the last three classes of inequalities are
also introduced in this thesis. The due proofs regarding the validity of the new inequalities and
some dominance results are also given, along with examples of the fractional solutions cut off
by the inequalities.

Extensive computational experiments showed that CPA is highly competitive in solving
a benchmark of TOP instances. In particular, the algorithm solved, in total, 14 more instances
than any other exact algorithm in the literature of the TOP. Moreover, our approach was able
to find optimal solutions for nine previously unsolved instances. Regarding the new STOP
instances introduced in this work, our algorithm solved 31 more instances than B-B&C. From
the results, we concluded that CPA benefits from both the strength and compactness of the

77
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model used as backbone, as well as from the reinforcement provided by the aforementioned
families of inequalities.

Regarding heuristic approaches, we first discussed the additional difficulty of the STOP by
showing that solely finding a feasible solution for the problem is NP-hard. To address the issue
of finding initial solutions, we made use of the Feasibility Pump (FP) matheuristic of Fischetti
et al. (2005). As a matheuristic, FP uses a mathematical formulation to guide its search for a
feasible solution, which, in this case, consists of the compact formulation we proposed. In order
to refine the initial solutions obtained by FP, we proposed a Large Neighborhood Search (LNS)
heuristic that combines classical local searches from the literature of routing problems with a
memory component based on Path Relinking (PR).

We used the primal bounds provided by CPA to guide our computational experiments,
which showed the efficiency and effectiveness of the proposed heuristic in solving a benchmark
of 387 STOP instances. In particular, the heuristic could reach the best previously known
bounds on 382 of these instances. Additionally, in 21 of these cases, our heuristic was even
able to improve over the best known bounds. Overall, the heuristic solutions imply an average
percentage gap of only 0.54% when compared to the bounds of CPA.

For completeness, we also tested the hybrid algorithm obtained from warm starting CPA
with the solutions provided by our LNS heuristic. The computational results show that this
approach is able to improve the convergence of CPA. In total, the hybrid algorithm is able to
solve to optimality four more TOP instances and seven more STOP instances than CPA alone.
Additionally, it provides the optimality certificates of five previously unsolved (even by CPA)
TOP instances.

Future works

In terms of future work directions, we first remark that our commodity-based formulation
and the three new classes of inequalities here proposed can be naturally extended for other
routing problems. In particular, we believe that our algorithms might be also successful in
solving a closely related problem known as the orienteering arc routing problem (Archetti et al.,
2016), in which arcs (instead of vertices) are sub-divided into mandatory and profitable.

During the research, we have also made some pre-processing attempts by considering
reduced costs and other bounds incurred by fixing and removing vertices/arcs of the original
problem. These attempts were not successful, specially because of the time overhead of indi-
vidually solving several MILP auxiliary problems (one for each vertex/arc fixation/removal).
Nevertheless, we still believe that investing in pre-processing procedures is a direction of research
worthy to follow in this case.

In terms of exact algorithms, we believe that only innovative approaches can lead to
further significant improvements for the problem. In the particular case of our formulation, we
noticed that the reinforcements proposed (the families of valid inequalities) only pay off to a
certain extent, as separating the inequalities in other nodes of the branch-and-bound tree —
aside from the root — showed to slow down the convergence of the algorithms, as discussed by
the end of Section 3.2. In summary, the loss in compactness has a greater impact than the gain
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in strengthening in this case.
Regarding heuristics, there is still a wide range of possibilities to explore. Once we proved

that finding an initial solution for the STOP is NP-hard — and our experiments indicated that
this task can be time consuming — we believe that investigating alternative ways to build initial
solutions might be a promising research direction for the problem. In this sense, other rounding
and diving matheuristics like Relaxation Induced Neighborhood Search (RINS) (Danna et al.,
2005) could be tested. In addition, there are plenty of improvement metaheuristic frameworks
to be tested for the problem, including the ones already applied to the TOP (as detailed in
Section 1.1). In particular, we anticipate that we have already done some pilot experiments on
applying Local Branching (Fischetti and Lodi, 2003) to refine initial solutions for the STOP
and the results were quite poor. Precisely, we could only achieve minor solution improvements
at the cost of great computational effort. Thus, this is a research path we do not encourage.
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Appendix A

A.1 Bound comparison between ℱ1 and ℱ2

Here, we summarize the results obtained from our experimental analysis of the impact of
the valid inequalities (2.12) and (2.22) on the strength of formulations ℱ1 and ℱ2, respectively.
The results for the original benchmark of TOP instances of Chao et al. (1996) and the new
STOP instances introduced in this work are detailed in Tables A.1 and A.2, respectively. In both
tables, the first column displays the name of each instance set. Then, we give the average and
the standard deviation (over all the instances in each set) of the percentage bound improvements
referred to (2.12) on ℱ1 and to (2.22) on ℱ2. In both tables, the last row displays the numerical
results while considering the complete benchmark of instances.

Without loss of generality, given an instance, the percentage bound improvement referred
to (2.12) on ℱ1 is given by 100 · 𝑈𝐵ℒ1∖(2.12)−𝑈𝐵ℒ1

𝑈𝐵ℒ1∖(2.12)
, where 𝑈𝐵ℒ1 denotes the bound provided by

ℒ1 (the linear relaxation of ℱ1), and 𝑈𝐵ℒ1∖(2.12) stands for the bound obtained from solving
ℒ1 without inequalities (2.12). Likewise, given an instance, the percentage bound improvement
referred to (2.22) on ℱ2 is given by 100 · 𝑈𝐵ℒ2∖(2.22)−𝑈𝐵ℒ2

𝑈𝐵ℒ2∖(2.22)
, where 𝑈𝐵ℒ2 denotes the bound

provided by ℒ2 (the linear relaxation of ℱ2), and 𝑈𝐵ℒ2∖(2.22) stands for the bound obtained
from solving ℒ2 without inequalities (2.22). Recall that, from Theorem 1, 𝑈𝐵ℒ1 is always equal
to 𝑈𝐵ℒ2 .

Table A.1: Impact — in terms of percentage bound improvement — of the valid inequalities
(2.12) and (2.22) on the linear relaxations of ℱ1 and ℱ2, respectively. Results for the original
benchmark of TOP instances.

ℒ1 — with (2.12) ℒ2 — with (2.22)

Set Avg (%) StDev (%) Avg (%) StDev (%)

1 4.52 4.20 2.70 2.79
2 0.33 0.97 0.30 0.84
3 3.42 3.08 2.12 1.85
4 2.38 2.68 2.29 2.53
5 3.09 3.34 1.89 2.10
6 0.18 0.47 0.17 0.47
7 4.73 4.65 3.50 3.61

Total 2.93 3.60 2.03 2.56
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Table A.2: Impact — in terms of percentage bound improvement — of the valid inequalities
(2.12) and (2.22) on the linear relaxations of ℱ1 and ℱ2, respectively. Results for the new STOP
instances.

ℒ1 — with (2.12) ℒ2 — with (2.22)

Set Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 3.51 4.96 2.06 3.12
2_5% 0.17 0.99 0.15 0.85
3_5% 2.30 3.05 1.39 1.86
4_5% 1.78 3.13 1.83 3.20
5_5% 2.70 6.20 1.89 5.11
6_5% 0.23 0.67 0.22 0.66
7_5% 2.61 4.97 2.01 3.95

Total 2.11 4.36 1.52 3.40
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A.2 Proof of Proposition 4

Proposition 4. If the cover 𝐶 is minimal, then performing down-lifting on any of the variables
𝑦𝑗, 𝑗 ∈ 𝐶, of the original cover inequality (2.60) is ineffective, as it always leads to lifted
coefficients equal to one.

Proof. Consider that 𝐶 is minimal, and let 𝐶1 and 𝐶2 define an arbitrary partition of 𝐶, with
𝐶1 ̸= ∅. In this case, also consider 𝐶2 ̸= ∅, since the opposite implies no variable being down-
lifted. The proof is done by induction on |𝐶 ′|, i.e., the number of variables 𝑦𝑖, for all 𝑖 ∈ 𝐶2,
whose lifted coefficients have already been computed. In this sense, given a non-negative integer
𝑛, consider the following property.

P(n): For any configuration of 𝐶 ′ ⊂ 𝐶2, |𝐶 ′| = 𝑛, performing down-lifting on any of the
variables 𝑦𝑗, 𝑗 ∈ 𝐶2∖𝐶 ′, of (2.61) always leads to lifted coefficients equal to one.

We want to prove that 𝑃 (𝑛) holds for all 𝑛 ∈ Z, 0 ≤ 𝑛 ≤ |𝐶2| − 1.

Base case. In the base case, 𝑛 = 0, and, thus, 𝐶 ′ = ∅. Let 𝑗 ∈ 𝐶2 be the index of the first
variable to be down-lifted. During the lifting of 𝑦𝑗 , the corresponding auxiliary knapsack
problem 𝒜1 assumes the form

max
{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖 +

= 0⏞  ⏟  ∑︁
𝑖∈𝐶′

𝜋𝑖𝑦𝑖 : (2.51), 𝑦𝑗 = 0, 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝐶2∖{𝑗}, 𝑦 ∈ {0, 1}|𝑃 |
}︃
.

Since 𝐶 is a minimal cover for (2.51), the solution 𝑦, with 𝑦𝑗 = 0, 𝑦𝑖 = 1 for all 𝑖 ∈ 𝐶∖{𝑗}
and 𝑦𝑘 = 0 for all 𝑘 ∈ 𝑃∖𝐶, is feasible and, thus, optimal for this maximization problem.
Accordingly, the optimal value of this problem is given by

∑︀
𝑖∈𝐶1

1 = |𝐶1|, and the lifted

coefficient is 𝜋𝑗 = |𝐶1|−(|𝐶1|+
∑︀
𝑖∈𝐶′

𝜋𝑖−1). Since 𝐶 ′ = ∅, we have 𝜋𝑗 = |𝐶1|−(|𝐶1|−1) = 1.

Induction step. Given a value 𝑘 ∈ Z, 0 ≤ 𝑘 < |𝐶2| − 1, assume, as inductive hypothesis, that
𝑃 (𝑛′) is true for all 𝑛′ ∈ Z, 0 ≤ 𝑛′ ≤ 𝑘. Thus, we must show that 𝑃 (𝑘 + 1) is also true.
To this end, consider an arbitrary 𝐶 ′ ⊂ 𝐶2, with |𝐶 ′| = 𝑘 + 1. Notice that, in this case,
|𝐶 ′| is at most |𝐶2| − 1. Since 𝑃 (𝑛′) is supposedly true for all 𝑛′ ∈ Z, 0 ≤ 𝑛′ ≤ 𝑘, we
necessarily have

𝜋𝑖 = 1 ∀ 𝑖 ∈ 𝐶 ′. (A.1)

Without loss of generality, assume that one wants to down-lift a variable 𝑦𝑗 , with 𝑗 ∈
𝐶2∖𝐶 ′. Then, from (A.1), the corresponding auxiliary knapsack problem 𝒜1 assumes the
form

max
{︃ ∑︁
𝑖∈𝐶1

𝑦𝑖 +
∑︁
𝑖∈𝐶′

𝑦𝑖 : (2.51), 𝑦𝑗 = 0, 𝑦𝑖 = 1 ∀ 𝑖 ∈ 𝐶2∖(𝐶 ′ ∪ {𝑗}), 𝑦 ∈ {0, 1}|𝑃 |
}︃
.

Since 𝐶 is a minimal cover for (2.51), the solution 𝑦, with 𝑦𝑗 = 0, 𝑦𝑖 = 1 for all 𝑖 ∈ 𝐶∖{𝑗}
and 𝑦𝑘 = 0 for all 𝑘 ∈ 𝑃∖𝐶, is also feasible (and optimal) for this auxiliary problem.
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Accordingly, the optimal value of this problem is given by
∑︀
𝑖∈𝐶1

1 +
∑︀
𝑖∈𝐶′

1 = |𝐶1| + |𝐶 ′|,

and the lifted coefficient is 𝜋𝑗 = |𝐶1| + |𝐶 ′| − (|𝐶1| +
∑︀
𝑖∈𝐶′

𝜋𝑖 − 1). From (A.1), 𝜋𝑗 =

|𝐶1|+ |𝐶 ′| − (|𝐶1|+ |𝐶 ′| − 1) = 1.
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A.3 Detailed results for the exact algorithms at solving the original
benchmark of TOP instances

In Tables A.3 and A.4, we display some information on the bounds available at the root
nodes of the branch-and-bound trees of B-B&C and CPA while solving the original benchmark of
TOP instances. In Table A.3, for each algorithm and instance set, we give the averages and the
corresponding standard deviations of three gap values. The first one is the relative optimality
gap, given by 𝑈𝐵𝑟−𝐿𝐵𝑟

𝑈𝐵𝑟
, where 𝐿𝐵𝑟 and 𝑈𝐵𝑟 are, respectively, the lower and upper bounds at

the root node. The second and third gaps, namely primal and dual gaps, are given by 𝐿𝐵*−𝐿𝐵𝑟
𝑈𝐵𝑟

and 𝑈𝐵𝑟−𝐿𝐵*

𝑈𝐵𝑟
, respectively. Here, 𝐿𝐵* corresponds to the best lower bound obtained by B-B&C

or CPA for a given instance after two hours of execution. Notice that, for every instance, the
summation of the corresponding primal and dual gaps gives the root relative optimality gap.
Then, these last two gaps are given as a way to estimate the contribution of the primal and
the dual bounds to the actual optimality gap. All the bounds considered in Table A.3 also take
into account the CPLEX built-in cuts separated at the root nodes. In Table A.4, we give the
same information displayed in Table A.3, but for formulations ℱ1 and ℱ2 without the addition
of the inequalities proposed in section 2.2. Recall that ℱ1 and ℱ2 are the formulations solved
within B-B&C and CPA, respectively. Also in this case, the CPLEX built-in cuts are enabled.

In Table A.5, we display some extra information concerning the execution of B-B&C and
CPA at solving the original benchmark of TOP instances. For each algorithm and instance set,
we first display the average and the standard deviation of the relative optimality gaps of the
solutions obtained within two hours of execution. Here, we consider the results for the complete
benchmark, and not only the instances not solved to optimality (as in Table 3.6). In Table A.5,
we also expose the average number of nodes explored in the branch-and-bound tree, as well
as the average number of cuts separated for each class of inequalities discussed in section 2.2.
In the results for CPA2, we omitted the average number of AVICs, as they are separated by
complete enumeration and the number of these cuts in each instance always corresponds to
2× |𝐸|.

In Table A.6, we display a per-instance report of the results obtained by our imple-
mentations of B-B&C and CPA at solving the original benchmark of TOP instances. For all
algorithms, we report, for each instance, the best lower and upper bounds obtained within two
hours of execution (columns “LB” and “UB”, respectively) and the wall-clock execution time in
seconds. We marked in bold the instances for which CPA found previously unknown optimality
certificates.

Table A.6: Detailed results for the exact algorithms at solving the original benchmark of TOP
instances. Instances in bold are the ones for which CPA found previously unknown optimality
certificates.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p1.2.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.2.b 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00

Continued on next page
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Table A.6 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p1.2.c 20.00 20.00 0.00 20.00 20.00 0.00 20.00 20.00 0.00
p1.2.d 30.00 30.00 0.00 30.00 30.00 0.01 30.00 30.00 0.01
p1.2.e 45.00 45.00 0.01 45.00 45.00 0.03 45.00 45.00 0.05
p1.2.f 80.00 80.00 0.03 80.00 80.00 0.06 80.00 80.00 0.06
p1.2.g 90.00 90.00 0.39 90.00 90.00 0.98 90.00 90.00 0.77
p1.2.h 110.00 110.00 0.70 110.00 110.00 1.09 110.00 110.00 2.97
p1.2.i 135.00 135.00 2.27 135.00 135.00 3.52 135.00 135.00 4.83
p1.2.j 155.00 155.00 0.97 155.00 155.00 1.11 155.00 155.00 1.28
p1.2.k 175.00 175.00 1.17 175.00 175.00 2.38 175.00 175.00 2.97
p1.2.l 195.00 195.00 1.36 195.00 195.00 2.85 195.00 195.00 2.53
p1.2.m 215.00 215.00 1.89 215.00 215.00 0.89 215.00 215.00 1.17
p1.2.n 235.00 235.00 0.65 235.00 235.00 3.45 235.00 235.00 2.89
p1.2.o 240.00 240.00 1.66 240.00 240.00 3.48 240.00 240.00 3.29
p1.2.p 250.00 250.00 1.62 250.00 250.00 3.04 250.00 250.00 3.72
p1.2.q 265.00 265.00 1.76 265.00 265.00 3.72 265.00 265.00 4.63
p1.2.r 280.00 280.00 2.41 280.00 280.00 2.06 280.00 280.00 2.45
p1.3.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.3.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.3.c 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00
p1.3.d 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00
p1.3.e 30.00 30.00 0.00 30.00 30.00 0.01 30.00 30.00 0.00
p1.3.f 40.00 40.00 0.00 40.00 40.00 0.01 40.00 40.00 0.01
p1.3.g 50.00 50.00 0.02 50.00 50.00 0.03 50.00 50.00 0.03
p1.3.h 70.00 70.00 0.03 70.00 70.00 0.07 70.00 70.00 0.08
p1.3.i 105.00 105.00 0.05 105.00 105.00 0.14 105.00 105.00 0.21
p1.3.j 115.00 115.00 0.36 115.00 115.00 2.02 115.00 115.00 2.62
p1.3.k 135.00 135.00 0.50 135.00 135.00 2.76 135.00 135.00 3.93
p1.3.l 155.00 155.00 0.95 155.00 155.00 6.09 155.00 155.00 2.96
p1.3.m 175.00 175.00 1.22 175.00 175.00 3.77 175.00 175.00 2.91
p1.3.n 190.00 190.00 3.14 190.00 190.00 13.82 190.00 190.00 11.58
p1.3.o 205.00 205.00 2.77 205.00 205.00 6.67 205.00 205.00 6.17
p1.3.p 220.00 220.00 0.68 220.00 220.00 1.35 220.00 220.00 2.80
p1.3.q 230.00 230.00 2.88 230.00 230.00 8.40 230.00 230.00 6.45
p1.3.r 250.00 250.00 3.06 250.00 250.00 6.51 250.00 250.00 5.71
p1.4.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.4.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.4.c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p1.4.d 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00
p1.4.e 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00
p1.4.f 25.00 25.00 0.00 25.00 25.00 0.00 25.00 25.00 0.00
p1.4.g 35.00 35.00 0.00 35.00 35.00 0.01 35.00 35.00 0.00
p1.4.h 45.00 45.00 0.00 45.00 45.00 0.01 45.00 45.00 0.00
p1.4.i 60.00 60.00 0.01 60.00 60.00 0.02 60.00 60.00 0.02
p1.4.j 75.00 75.00 0.02 75.00 75.00 0.03 75.00 75.00 0.04
p1.4.k 100.00 100.00 0.04 100.00 100.00 0.08 100.00 100.00 0.09
p1.4.l 120.00 120.00 0.31 120.00 120.00 0.46 120.00 120.00 0.23
p1.4.m 130.00 130.00 0.46 130.00 130.00 3.40 130.00 130.00 2.81
p1.4.n 155.00 155.00 0.51 155.00 155.00 3.89 155.00 155.00 2.65
p1.4.o 165.00 165.00 0.67 165.00 165.00 5.22 165.00 165.00 2.75
p1.4.p 175.00 175.00 0.55 175.00 175.00 2.53 175.00 175.00 2.61
p1.4.q 190.00 190.00 2.04 190.00 190.00 3.66 190.00 190.00 3.28
p1.4.r 210.00 210.00 0.73 210.00 210.00 3.62 210.00 210.00 3.69

p2.2.a 90.00 90.00 0.01 90.00 90.00 0.01 90.00 90.00 0.03
p2.2.b 120.00 120.00 0.01 120.00 120.00 0.02 120.00 120.00 0.03
p2.2.c 140.00 140.00 0.05 140.00 140.00 0.05 140.00 140.00 0.05

Continued on next page
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Table A.6 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p2.2.d 160.00 160.00 0.06 160.00 160.00 0.13 160.00 160.00 0.16
p2.2.e 190.00 190.00 0.16 190.00 190.00 0.20 190.00 190.00 0.17
p2.2.f 200.00 200.00 0.07 200.00 200.00 0.10 200.00 200.00 0.08
p2.2.g 200.00 200.00 0.05 200.00 200.00 0.10 200.00 200.00 0.08
p2.2.h 230.00 230.00 0.07 230.00 230.00 0.08 230.00 230.00 0.14
p2.2.i 230.00 230.00 0.04 230.00 230.00 0.13 230.00 230.00 0.13
p2.2.j 260.00 260.00 0.08 260.00 260.00 0.76 260.00 260.00 0.45
p2.2.k 275.00 275.00 1.22 275.00 275.00 2.14 275.00 275.00 1.85
p2.3.a 70.00 70.00 0.00 70.00 70.00 0.01 70.00 70.00 0.00
p2.3.b 70.00 70.00 0.00 70.00 70.00 0.00 70.00 70.00 0.00
p2.3.c 105.00 105.00 0.02 105.00 105.00 0.01 105.00 105.00 0.01
p2.3.d 105.00 105.00 0.00 105.00 105.00 0.01 105.00 105.00 0.01
p2.3.e 120.00 120.00 0.00 120.00 120.00 0.01 120.00 120.00 0.02
p2.3.f 120.00 120.00 0.01 120.00 120.00 0.02 120.00 120.00 0.03
p2.3.g 145.00 145.00 0.08 145.00 145.00 0.07 145.00 145.00 0.09
p2.3.h 165.00 165.00 0.04 165.00 165.00 0.11 165.00 165.00 0.12
p2.3.i 200.00 200.00 0.04 200.00 200.00 0.13 200.00 200.00 0.15
p2.3.j 200.00 200.00 0.07 200.00 200.00 0.10 200.00 200.00 0.10
p2.3.k 200.00 200.00 0.05 200.00 200.00 0.01 200.00 200.00 0.01
p2.4.a 10.00 10.00 0.00 10.00 10.00 0.00 10.00 10.00 0.00
p2.4.b 70.00 70.00 0.00 70.00 70.00 0.00 70.00 70.00 0.00
p2.4.c 70.00 70.00 0.00 70.00 70.00 0.01 70.00 70.00 0.00
p2.4.d 70.00 70.00 0.00 70.00 70.00 0.00 70.00 70.00 0.00
p2.4.e 70.00 70.00 0.00 70.00 70.00 0.01 70.00 70.00 0.00
p2.4.f 105.00 105.00 0.00 105.00 105.00 0.01 105.00 105.00 0.00
p2.4.g 105.00 105.00 0.00 105.00 105.00 0.00 105.00 105.00 0.00
p2.4.h 120.00 120.00 0.01 120.00 120.00 0.01 120.00 120.00 0.00
p2.4.i 120.00 120.00 0.01 120.00 120.00 0.02 120.00 120.00 0.02
p2.4.j 120.00 120.00 0.01 120.00 120.00 0.01 120.00 120.00 0.02
p2.4.k 180.00 180.00 0.03 180.00 180.00 0.04 180.00 180.00 0.05

p3.2.a 90.00 90.00 0.00 90.00 90.00 0.01 90.00 90.00 0.01
p3.2.b 150.00 150.00 0.01 150.00 150.00 0.03 150.00 150.00 0.03
p3.2.c 180.00 180.00 0.14 180.00 180.00 0.19 180.00 180.00 0.21
p3.2.d 220.00 220.00 0.12 220.00 220.00 0.19 220.00 220.00 0.24
p3.2.e 260.00 260.00 0.61 260.00 260.00 2.71 260.00 260.00 2.27
p3.2.f 300.00 300.00 1.37 300.00 300.00 7.75 300.00 300.00 4.20
p3.2.g 360.00 360.00 1.23 360.00 360.00 9.08 360.00 360.00 5.06
p3.2.h 410.00 410.00 5.91 410.00 410.00 10.00 410.00 410.00 10.98
p3.2.i 460.00 460.00 3.06 460.00 460.00 10.55 460.00 460.00 11.57
p3.2.j 510.00 510.00 11.51 510.00 510.00 26.41 510.00 510.00 12.10
p3.2.k 550.00 550.00 26.32 550.00 550.00 16.60 550.00 550.00 10.95
p3.2.l 590.00 590.00 3.30 590.00 590.00 8.46 590.00 590.00 5.64
p3.2.m 620.00 620.00 3.74 620.00 620.00 8.02 620.00 620.00 6.06
p3.2.n 660.00 660.00 1.36 660.00 660.00 5.28 660.00 660.00 5.34
p3.2.o 690.00 690.00 2.97 690.00 690.00 4.97 690.00 690.00 3.40
p3.2.p 720.00 720.00 5.15 720.00 720.00 8.62 720.00 720.00 7.69
p3.2.q 760.00 760.00 1.80 760.00 760.00 5.69 760.00 760.00 6.05
p3.2.r 790.00 790.00 14.99 790.00 790.00 9.27 790.00 790.00 7.93
p3.2.s 800.00 800.00 3.73 800.00 800.00 4.83 800.00 800.00 0.92
p3.2.t 800.00 800.00 1.73 800.00 800.00 0.83 800.00 800.00 1.09
p3.3.a 30.00 30.00 0.00 30.00 30.00 0.00 30.00 30.00 0.00
p3.3.b 90.00 90.00 0.00 90.00 90.00 0.01 90.00 90.00 0.00
p3.3.c 120.00 120.00 0.00 120.00 120.00 0.01 120.00 120.00 0.01
p3.3.d 170.00 170.00 0.01 170.00 170.00 0.03 170.00 170.00 0.06
p3.3.e 200.00 200.00 0.03 200.00 200.00 0.06 200.00 200.00 0.04

Continued on next page



92 Appendix A.

Table A.6 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p3.3.f 230.00 230.00 0.19 230.00 230.00 0.36 230.00 230.00 0.53
p3.3.g 270.00 270.00 0.20 270.00 270.00 0.66 270.00 270.00 0.53
p3.3.h 300.00 300.00 0.65 300.00 300.00 5.88 300.00 300.00 1.58
p3.3.i 330.00 330.00 6.36 330.00 330.00 20.58 330.00 330.00 22.07
p3.3.j 380.00 380.00 7.07 380.00 380.00 20.09 380.00 380.00 25.01
p3.3.k 440.00 440.00 4.62 440.00 440.00 25.52 440.00 440.00 10.34
p3.3.l 480.00 480.00 29.98 480.00 480.00 53.74 480.00 480.00 112.66
p3.3.m 520.00 520.00 66.18 520.00 520.00 119.05 520.00 520.00 101.19
p3.3.n 570.00 570.00 11.57 570.00 570.00 14.34 570.00 570.00 11.42
p3.3.o 590.00 590.00 544.59 590.00 590.00 456.10 590.00 590.00 364.39
p3.3.p 640.00 640.00 1170.08 640.00 640.00 2843.94 640.00 640.00 1510.00
p3.3.q 680.00 680.00 26.73 680.00 680.00 47.17 680.00 680.00 19.53
p3.3.r 710.00 710.00 1.60 710.00 710.00 8.18 710.00 710.00 10.86
p3.3.s 720.00 720.00 53.40 720.00 720.00 116.35 720.00 720.00 33.41
p3.3.t 760.00 760.00 115.41 760.00 760.00 91.57 760.00 760.00 153.61
p3.4.a 20.00 20.00 0.00 20.00 20.00 0.00 20.00 20.00 0.00
p3.4.b 30.00 30.00 0.00 30.00 30.00 0.00 30.00 30.00 0.00
p3.4.c 90.00 90.00 0.00 90.00 90.00 0.00 90.00 90.00 0.00
p3.4.d 100.00 100.00 0.00 100.00 100.00 0.01 100.00 100.00 0.02
p3.4.e 140.00 140.00 0.01 140.00 140.00 0.01 140.00 140.00 0.01
p3.4.f 190.00 190.00 0.02 190.00 190.00 0.02 190.00 190.00 0.03
p3.4.g 220.00 220.00 0.03 220.00 220.00 0.03 220.00 220.00 0.03
p3.4.h 240.00 240.00 0.11 240.00 240.00 0.16 240.00 240.00 0.23
p3.4.i 270.00 270.00 0.18 270.00 270.00 0.15 270.00 270.00 0.16
p3.4.j 310.00 310.00 0.42 310.00 310.00 1.04 310.00 310.00 0.89
p3.4.k 350.00 350.00 0.27 350.00 350.00 0.28 350.00 350.00 0.37
p3.4.l 380.00 380.00 0.40 380.00 380.00 6.42 380.00 380.00 0.20
p3.4.m 390.00 390.00 606.88 390.00 390.00 404.88 390.00 390.00 402.78
p3.4.n 440.00 440.00 48.98 440.00 440.00 65.25 440.00 440.00 61.12
p3.4.o 500.00 500.00 24.45 500.00 500.00 17.11 500.00 500.00 53.28
p3.4.p 560.00 560.00 2.89 560.00 560.00 50.88 560.00 560.00 18.30
p3.4.q 560.00 560.00 3703.06 560.00 560.00 1780.26 560.00 560.00 2698.82
p3.4.r 600.00 600.00 37.68 600.00 600.00 45.36 600.00 600.00 23.79
p3.4.s 670.00 670.00 1.72 670.00 670.00 37.26 670.00 670.00 4.34
p3.4.t 670.00 670.00 23.21 670.00 670.00 7.41 670.00 670.00 4.48

p4.2.a 206.00 206.00 0.15 206.00 206.00 0.22 206.00 206.00 0.38
p4.2.b 341.00 341.00 1.53 341.00 341.00 1.48 341.00 341.00 2.53
p4.2.c 452.00 452.00 2.85 452.00 452.00 2.35 452.00 452.00 4.43
p4.2.d 531.00 531.00 66.63 531.00 531.00 36.39 531.00 531.00 42.87
p4.2.e 618.00 618.00 39.41 618.00 618.00 28.44 618.00 618.00 56.86
p4.2.f 687.00 687.00 1407.29 687.00 687.00 303.13 687.00 687.00 316.83
p4.2.g 757.00 757.00 3347.87 757.00 757.00 375.21 757.00 757.00 218.06
p4.2.h 835.00 835.00 2812.21 835.00 835.00 563.81 835.00 835.00 101.72
p4.2.i 918.00 918.00 1831.07 918.00 918.00 321.89 918.00 918.00 69.21
p4.2.j 962.00 977.71 7200.00 965.00 965.00 496.17 965.00 965.00 358.04
p4.2.k 1022.00 1048.77 7200.00 1022.00 1022.00 1522.30 1022.00 1022.00 391.10
p4.2.l 1072.00 1114.09 7200.00 1074.00 1074.00 2542.10 1074.00 1074.00 748.97
p4.2.m 1130.00 1161.46 7200.00 1132.00 1132.00 2295.54 1132.00 1132.00 155.79
p4.2.n 1172.00 1205.34 7200.00 1174.00 1174.00 1576.98 1174.00 1174.00 609.13
p4.2.o 1217.00 1235.06 7200.00 1218.00 1218.00 663.38 1218.00 1218.00 752.99
p4.2.p 1241.00 1270.44 7200.00 1242.00 1242.00 5192.14 1242.00 1242.00 2138.22
p4.2.q 1258.00 1283.10 7200.00 1265.00 1273.22 7200.00 1268.00 1268.00 5924.10
p4.2.r 1285.00 1298.59 7200.00 1292.00 1292.00 3328.89 1292.00 1292.00 1586.48
p4.2.s 1304.00 1306.00 7200.00 1300.00 1306.00 7200.00 1299.00 1305.72 7200.00
p4.2.t 1306.00 1306.00 189.76 1306.00 1306.00 3882.98 1306.00 1306.00 6800.75
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B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p4.3.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
p4.3.b 38.00 38.00 0.00 38.00 38.00 0.01 38.00 38.00 0.01
p4.3.c 193.00 193.00 0.10 193.00 193.00 0.16 193.00 193.00 0.17
p4.3.d 335.00 335.00 1.42 335.00 335.00 10.33 335.00 335.00 10.11
p4.3.e 468.00 468.00 12.87 468.00 468.00 18.02 468.00 468.00 15.24
p4.3.f 579.00 579.00 3.92 579.00 579.00 19.64 579.00 579.00 17.07
p4.3.g 653.00 653.00 95.22 653.00 653.00 181.03 653.00 653.00 261.50
p4.3.h 729.00 729.00 811.58 729.00 729.00 4764.03 729.00 729.00 592.34
p4.3.i 809.00 809.00 643.36 809.00 809.00 534.24 809.00 809.00 636.13
p4.3.j 861.00 861.00 6997.81 861.00 863.39 7200.00 861.00 866.48 7200.00
p4.3.k 919.00 948.80 7200.00 919.00 935.32 7200.00 919.00 930.52 7200.00
p4.3.l 966.00 1022.34 7200.00 970.00 1013.68 7200.00 978.00 1018.70 7200.00
p4.3.m 1063.00 1080.13 7200.00 1063.00 1063.00 4553.93 1063.00 1074.99 7200.00
p4.3.n 1121.00 1139.22 7200.00 1121.00 1121.00 3400.28 1121.00 1121.00 3005.56
p4.3.o 1172.00 1196.69 7200.00 1172.00 1172.00 5322.10 1170.00 1176.50 7200.00
p4.3.p 1222.00 1234.29 7200.00 1222.00 1222.00 2436.57 1222.00 1222.00 4985.21
p4.3.q 1251.00 1272.24 7200.00 1245.00 1262.44 7200.00 1253.00 1258.35 7200.00
p4.3.r 1266.00 1290.13 7200.00 1257.00 1289.60 7200.00 1271.00 1286.83 7200.00
p4.3.s 1295.00 1302.20 7200.00 1295.00 1299.89 7200.00 1295.00 1298.77 7200.00
p4.3.t 1301.00 1306.00 7200.00 1298.00 1306.00 7200.00 1299.00 1306.00 7200.00
p4.4.a 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
p4.4.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
p4.4.c 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
p4.4.d 38.00 38.00 0.00 38.00 38.00 0.01 38.00 38.00 0.01
p4.4.e 183.00 183.00 0.01 183.00 183.00 0.02 183.00 183.00 0.02
p4.4.f 324.00 324.00 0.24 324.00 324.00 3.08 324.00 324.00 0.88
p4.4.g 461.00 461.00 4.47 461.00 461.00 20.81 461.00 461.00 18.43
p4.4.h 571.00 571.00 33.96 571.00 571.00 77.72 571.00 571.00 102.37
p4.4.i 657.00 657.00 338.82 657.00 657.00 358.45 657.00 657.00 629.99
p4.4.j 732.00 732.00 6987.50 732.00 732.00 6298.35 732.00 732.00 7130.64
p4.4.k 821.00 821.00 1473.53 821.00 821.00 1913.23 821.00 821.00 3445.36
p4.4.l 880.00 880.00 4445.93 880.00 880.00 2273.87 880.00 880.00 3055.40
p4.4.m 918.00 946.43 7200.00 912.00 943.51 7200.00 915.00 943.36 7200.00
p4.4.n 972.00 1016.84 7200.00 972.00 1012.45 7200.00 961.00 1013.73 7200.00
p4.4.o 1037.00 1090.84 7200.00 1061.00 1089.72 7200.00 1050.00 1094.17 7200.00
p4.4.p 1124.00 1145.92 7200.00 1064.00 1148.61 7200.00 1124.00 1152.78 7200.00
p4.4.q 1158.00 1215.85 7200.00 1113.00 1216.72 7200.00 1149.00 1208.78 7200.00
p4.4.r 1210.00 1259.41 7200.00 1172.00 1254.08 7200.00 1197.00 1253.07 7200.00
p4.4.s 1191.00 1288.28 7200.00 1256.00 1281.49 7200.00 1259.00 1279.99 7200.00
p4.4.t 1273.00 1304.05 7200.00 1240.00 1302.00 7200.00 1245.00 1299.10 7200.00

p5.2.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p5.2.b 20.00 20.00 0.01 20.00 20.00 0.01 20.00 20.00 0.00
p5.2.c 50.00 50.00 0.01 50.00 50.00 0.01 50.00 50.00 0.03
p5.2.d 80.00 80.00 0.27 80.00 80.00 0.41 80.00 80.00 0.45
p5.2.e 180.00 180.00 0.03 180.00 180.00 0.11 180.00 180.00 0.43
p5.2.f 240.00 240.00 0.19 240.00 240.00 1.03 240.00 240.00 0.62
p5.2.g 320.00 320.00 2.97 320.00 320.00 8.43 320.00 320.00 15.32
p5.2.h 410.00 410.00 4.09 410.00 410.00 18.86 410.00 410.00 12.29
p5.2.i 480.00 480.00 107.34 480.00 480.00 80.11 480.00 480.00 81.68
p5.2.j 580.00 580.00 26.56 580.00 580.00 52.42 580.00 580.00 78.04
p5.2.k 670.00 670.00 184.95 670.00 670.00 92.04 670.00 670.00 151.27
p5.2.l 800.00 800.00 1.00 800.00 800.00 1.77 800.00 800.00 2.06
p5.2.m 860.00 860.00 38.27 860.00 860.00 12.57 860.00 860.00 14.36
p5.2.n 925.00 925.00 490.18 925.00 925.00 188.87 925.00 925.00 209.98
p5.2.o 1020.00 1020.00 277.15 1020.00 1020.00 74.67 1020.00 1020.00 73.91
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B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p5.2.p 1150.00 1150.00 0.92 1150.00 1150.00 1.16 1150.00 1150.00 1.45
p5.2.q 1195.00 1195.00 21.69 1195.00 1195.00 17.90 1195.00 1195.00 14.27
p5.2.r 1260.00 1260.00 116.40 1260.00 1260.00 42.42 1260.00 1260.00 62.75
p5.2.s 1340.00 1340.00 0.86 1340.00 1340.00 2.49 1340.00 1340.00 2.57
p5.2.t 1400.00 1400.00 34.20 1400.00 1400.00 6.60 1400.00 1400.00 6.61
p5.2.u 1460.00 1460.00 11.11 1460.00 1460.00 5.81 1460.00 1460.00 6.03
p5.2.v 1505.00 1505.00 5937.96 1505.00 1505.00 609.34 1505.00 1505.00 570.04
p5.2.w 1565.00 1565.00 1210.50 1565.00 1565.00 103.07 1565.00 1565.00 368.40
p5.2.x 1610.00 1610.00 268.72 1610.00 1610.00 37.74 1610.00 1610.00 6.67
p5.2.y 1645.00 1645.00 264.90 1645.00 1645.00 86.92 1645.00 1645.00 41.54
p5.2.z 1680.00 1680.00 48.06 1680.00 1680.00 6.54 1680.00 1680.00 45.76
p5.3.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p5.3.b 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.00
p5.3.c 20.00 20.00 0.01 20.00 20.00 0.00 20.00 20.00 0.00
p5.3.d 60.00 60.00 0.01 60.00 60.00 0.01 60.00 60.00 0.01
p5.3.e 95.00 95.00 0.03 95.00 95.00 0.03 95.00 95.00 0.02
p5.3.f 110.00 110.00 2.15 110.00 110.00 9.06 110.00 110.00 7.40
p5.3.g 185.00 185.00 0.25 185.00 185.00 0.44 185.00 185.00 0.52
p5.3.h 260.00 260.00 2.08 260.00 260.00 8.09 260.00 260.00 11.25
p5.3.i 335.00 335.00 1.75 335.00 335.00 3.99 335.00 335.00 4.98
p5.3.j 470.00 470.00 0.36 470.00 470.00 1.15 470.00 470.00 4.23
p5.3.k 495.00 495.00 1000.88 495.00 495.00 3678.80 495.00 495.00 4505.21
p5.3.l 595.00 595.00 626.80 595.00 595.00 546.37 595.00 595.00 538.07
p5.3.m 650.00 686.69 7200.00 650.00 689.83 7200.00 650.00 696.63 7200.00
p5.3.n 755.00 755.00 2179.52 755.00 755.00 6162.82 755.00 766.20 7200.00
p5.3.o 870.00 870.00 386.17 870.00 870.00 285.57 870.00 870.00 178.54
p5.3.p 990.00 990.00 9.72 990.00 990.00 24.82 990.00 990.00 37.58
p5.3.q 1070.00 1070.00 42.31 1070.00 1070.00 53.80 1070.00 1070.00 53.88
p5.3.r 1125.00 1134.14 7200.00 1125.00 1125.00 2264.09 1125.00 1133.86 7200.00
p5.3.s 1185.00 1239.32 7200.00 1190.00 1229.46 7200.00 1190.00 1228.12 7200.00
p5.3.t 1260.00 1313.84 7200.00 1260.00 1306.55 7200.00 1260.00 1306.70 7200.00
p5.3.u 1345.00 1390.85 7200.00 1345.00 1378.18 7200.00 1345.00 1375.11 7200.00
p5.3.v 1425.00 1452.80 7200.00 1425.00 1438.03 7200.00 1425.00 1435.22 7200.00
p5.3.w 1485.00 1513.21 7200.00 1485.00 1499.74 7200.00 1465.00 1506.47 7200.00
p5.3.x 1555.00 1578.62 7200.00 1555.00 1555.00 3833.30 1555.00 1555.00 4355.18
p5.3.y 1595.00 1625.99 7200.00 1590.00 1623.06 7200.00 1595.00 1620.19 7200.00
p5.3.z 1635.00 1665.32 7200.00 1635.00 1659.11 7200.00 1635.00 1660.01 7200.00
p5.4.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p5.4.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p5.4.c 20.00 20.00 0.00 20.00 20.00 0.00 20.00 20.00 0.00
p5.4.d 20.00 20.00 0.00 20.00 20.00 0.01 20.00 20.00 0.00
p5.4.e 20.00 20.00 0.00 20.00 20.00 0.01 20.00 20.00 0.00
p5.4.f 80.00 80.00 0.01 80.00 80.00 0.09 80.00 80.00 0.01
p5.4.g 140.00 140.00 0.02 140.00 140.00 0.03 140.00 140.00 0.03
p5.4.h 140.00 140.00 5.49 140.00 140.00 16.78 140.00 140.00 7.43
p5.4.i 240.00 240.00 0.05 240.00 240.00 0.06 240.00 240.00 0.08
p5.4.j 340.00 340.00 0.06 340.00 340.00 0.15 340.00 340.00 0.29
p5.4.k 340.00 340.00 459.14 340.00 340.00 799.44 340.00 340.00 2960.84
p5.4.l 430.00 430.00 12.10 430.00 430.00 43.02 430.00 430.00 52.56
p5.4.m 555.00 555.00 7.72 555.00 555.00 14.96 555.00 555.00 14.69
p5.4.n 620.00 620.00 534.94 620.00 620.00 3037.07 620.00 620.00 3215.61
p5.4.o 690.00 709.19 7200.00 690.00 718.01 7200.00 690.00 728.81 7200.00
p5.4.p 760.00 813.20 7200.00 760.00 820.95 7200.00 760.00 815.17 7200.00
p5.4.q 860.00 885.35 7200.00 860.00 890.01 7200.00 860.00 892.49 7200.00
p5.4.r 960.00 960.00 2443.39 960.00 960.00 1838.42 960.00 960.00 5689.60
p5.4.s 1030.00 1071.78 7200.00 1025.00 1075.95 7200.00 1030.00 1077.02 7200.00
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B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p5.4.t 1160.00 1160.00 682.75 1160.00 1160.00 183.36 1160.00 1160.00 366.48
p5.4.u 1300.00 1300.00 1.30 1300.00 1300.00 2.25 1300.00 1300.00 4.10
p5.4.v 1320.00 1351.02 7200.00 1320.00 1349.62 7200.00 1320.00 1354.78 7200.00
p5.4.w 1390.00 1429.19 7200.00 1390.00 1417.86 7200.00 1385.00 1420.57 7200.00
p5.4.x 1450.00 1494.34 7200.00 1450.00 1488.33 7200.00 1445.00 1489.65 7200.00
p5.4.y 1520.00 1553.50 7200.00 1520.00 1545.77 7200.00 1520.00 1543.66 7200.00
p5.4.z 1620.00 1620.00 47.49 1620.00 1620.00 258.32 1620.00 1620.00 270.84

p6.2.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.2.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.2.c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.2.d 192.00 192.00 0.16 192.00 192.00 0.27 192.00 192.00 0.26
p6.2.e 360.00 360.00 1.81 360.00 360.00 3.52 360.00 360.00 2.59
p6.2.f 588.00 588.00 0.30 588.00 588.00 0.45 588.00 588.00 0.58
p6.2.g 660.00 660.00 43.42 660.00 660.00 70.86 660.00 660.00 79.02
p6.2.h 780.00 780.00 11.89 780.00 780.00 18.09 780.00 780.00 12.74
p6.2.i 888.00 888.00 1.43 888.00 888.00 6.08 888.00 888.00 4.57
p6.2.j 948.00 966.19 7200.00 948.00 948.00 1266.70 948.00 948.00 1190.73
p6.2.k 1032.00 1058.97 7200.00 1032.00 1032.00 1715.31 1032.00 1032.00 2093.70
p6.2.l 1116.00 1116.00 424.97 1116.00 1116.00 229.80 1116.00 1116.00 132.97
p6.2.m 1188.00 1188.00 3108.01 1188.00 1188.00 71.25 1188.00 1188.00 38.70
p6.2.n 1260.00 1260.00 1.14 1260.00 1260.00 1.53 1260.00 1260.00 1.90
p6.3.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.3.g 282.00 282.00 0.29 282.00 282.00 0.96 282.00 282.00 0.95
p6.3.h 444.00 444.00 59.19 444.00 444.00 69.66 444.00 444.00 63.49
p6.3.i 642.00 642.00 0.80 642.00 642.00 2.11 642.00 642.00 2.04
p6.3.j 828.00 828.00 0.91 828.00 828.00 1.36 828.00 828.00 2.05
p6.3.k 894.00 894.00 1051.25 894.00 894.00 1704.91 894.00 894.00 532.27
p6.3.l 1002.00 1002.00 326.48 1002.00 1002.00 107.48 1002.00 1002.00 102.28
p6.3.m 1080.00 1095.53 7200.00 1080.00 1080.00 5010.76 1080.00 1099.83 7200.00
p6.3.n 1170.00 1170.00 1885.01 1170.00 1170.00 609.09 1170.00 1170.00 482.82
p6.4.a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.d 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.f 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.g 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
p6.4.j 366.00 366.00 0.40 366.00 366.00 1.96 366.00 366.00 1.89
p6.4.k 528.00 528.00 217.08 528.00 528.00 24.05 528.00 528.00 19.61
p6.4.l 696.00 696.00 34.92 696.00 696.00 94.21 696.00 696.00 90.52
p6.4.m 912.00 912.00 3.11 912.00 912.00 12.65 912.00 912.00 9.29
p6.4.n 1068.00 1068.00 1.63 1068.00 1068.00 5.34 1068.00 1068.00 4.20

p7.2.a 30.00 30.00 0.00 30.00 30.00 0.01 30.00 30.00 0.00
p7.2.b 64.00 64.00 0.00 64.00 64.00 0.01 64.00 64.00 0.01
p7.2.c 101.00 101.00 0.06 101.00 101.00 0.13 101.00 101.00 0.13
p7.2.d 190.00 190.00 0.67 190.00 190.00 2.20 190.00 190.00 1.45
p7.2.e 290.00 290.00 6.43 290.00 290.00 10.29 290.00 290.00 13.33

Continued on next page
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Table A.6 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p7.2.f 387.00 387.00 8.04 387.00 387.00 3.73 387.00 387.00 5.68
p7.2.g 459.00 459.00 20.81 459.00 459.00 11.80 459.00 459.00 18.54
p7.2.h 521.00 521.00 526.83 521.00 521.00 102.22 521.00 521.00 89.05
p7.2.i 580.00 580.00 2753.82 580.00 580.00 145.95 580.00 580.00 173.35
p7.2.j 646.00 653.02 7200.00 646.00 646.00 278.74 646.00 646.00 289.37
p7.2.k 705.00 720.74 7200.00 705.00 705.00 140.54 705.00 705.00 323.09
p7.2.l 767.00 783.05 7200.00 767.00 767.00 85.12 767.00 767.00 454.05
p7.2.m 827.00 857.05 7200.00 827.00 827.00 832.30 827.00 827.00 439.31
p7.2.n 888.00 912.97 7200.00 888.00 888.00 318.79 888.00 888.00 312.76
p7.2.o 945.00 965.56 7200.00 945.00 945.00 920.81 945.00 945.00 292.73
p7.2.p 1002.00 1021.83 7200.00 1002.00 1002.00 2118.39 1002.00 1002.00 431.12
p7.2.q 1043.00 1061.78 7200.00 1044.00 1044.00 2324.04 1044.00 1044.00 1659.69
p7.2.r 1082.00 1108.41 7200.00 1094.00 1094.00 3080.47 1094.00 1094.00 370.02
p7.2.s 1119.00 1151.39 7200.00 1136.00 1136.00 1044.59 1136.00 1136.00 355.02
p7.2.t 1166.00 1187.31 7200.00 1179.00 1179.00 1911.50 1179.00 1179.00 555.45
p7.3.a 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
p7.3.b 46.00 46.00 0.00 46.00 46.00 0.01 46.00 46.00 0.00
p7.3.c 79.00 79.00 0.00 79.00 79.00 0.02 79.00 79.00 0.02
p7.3.d 117.00 117.00 0.03 117.00 117.00 0.05 117.00 117.00 0.05
p7.3.e 175.00 175.00 0.19 175.00 175.00 0.59 175.00 175.00 0.60
p7.3.f 247.00 247.00 1.14 247.00 247.00 6.75 247.00 247.00 4.99
p7.3.g 344.00 344.00 3.88 344.00 344.00 9.83 344.00 344.00 15.66
p7.3.h 425.00 425.00 967.41 425.00 425.00 601.99 425.00 425.00 588.76
p7.3.i 487.00 487.00 3722.25 487.00 487.00 1446.77 487.00 487.00 4788.93
p7.3.j 564.00 564.00 505.07 564.00 564.00 271.76 564.00 564.00 704.18
p7.3.k 633.00 633.00 514.09 633.00 633.00 97.47 633.00 633.00 180.00
p7.3.l 684.00 697.81 7200.00 684.00 687.92 7200.00 684.00 684.00 6812.05
p7.3.m 762.00 762.00 2355.60 762.00 762.00 320.73 762.00 762.00 425.37
p7.3.n 820.00 824.91 7200.00 820.00 820.00 522.20 820.00 820.00 464.41
p7.3.o 859.00 904.70 7200.00 874.00 874.00 1655.47 874.00 874.00 7016.51
p7.3.p 917.00 965.27 7200.00 929.00 929.00 5562.65 929.00 929.00 6001.06
p7.3.q 967.00 1020.14 7200.00 987.00 987.00 3455.92 987.00 987.00 6705.31
p7.3.r 1014.00 1064.63 7200.00 1020.00 1057.35 7200.00 1020.00 1055.82 7200.00
p7.3.s 1074.00 1108.62 7200.00 1081.00 1097.61 7200.00 1081.00 1098.71 7200.00
p7.3.t 1115.00 1150.06 7200.00 1120.00 1142.78 7200.00 1120.00 1142.42 7200.00
p7.4.a 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
p7.4.b 30.00 30.00 0.00 30.00 30.00 0.01 30.00 30.00 0.00
p7.4.c 46.00 46.00 0.00 46.00 46.00 0.01 46.00 46.00 0.00
p7.4.d 79.00 79.00 0.01 79.00 79.00 0.01 79.00 79.00 0.01
p7.4.e 123.00 123.00 0.01 123.00 123.00 0.04 123.00 123.00 0.02
p7.4.f 164.00 164.00 0.08 164.00 164.00 0.16 164.00 164.00 0.18
p7.4.g 217.00 217.00 0.36 217.00 217.00 1.71 217.00 217.00 2.38
p7.4.h 285.00 285.00 6.48 285.00 285.00 29.02 285.00 285.00 40.78
p7.4.i 366.00 366.00 7.81 366.00 366.00 13.44 366.00 366.00 7.86
p7.4.j 462.00 462.00 1042.57 462.00 462.00 869.92 462.00 462.00 219.11
p7.4.k 520.00 529.53 7200.00 520.00 529.96 7200.00 520.00 532.38 7200.00
p7.4.l 590.00 597.62 7200.00 590.00 596.26 7200.00 590.00 600.64 7200.00
p7.4.m 646.00 679.16 7200.00 646.00 664.78 7200.00 646.00 670.28 7200.00
p7.4.n 730.00 730.00 1855.22 730.00 730.00 1229.16 730.00 730.00 311.97
p7.4.o 781.00 795.56 7200.00 781.00 793.20 7200.00 781.00 794.54 7200.00
p7.4.p 846.00 870.45 7200.00 846.00 862.54 7200.00 846.00 865.81 7200.00
p7.4.q 909.00 939.78 7200.00 909.00 929.80 7200.00 909.00 929.44 7200.00
p7.4.r 970.00 995.32 7200.00 970.00 994.58 7200.00 970.00 990.16 7200.00
p7.4.s 1022.00 1049.24 7200.00 1022.00 1041.82 7200.00 1022.00 1042.78 7200.00
p7.4.t 1077.00 1096.33 7200.00 1077.00 1096.39 7200.00 1077.00 1092.04 7200.00
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Table A.3: Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of B-B&C and CPA at solving the original benchmark of TOP instances. Here, the CPLEX
built-in cuts separated at the root nodes are considered.

B-B&C

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 6.14 7.19 2.91 4.15 3.23 3.67
2 1.44 4.24 0.85 3.30 0.59 2.00
3 7.37 6.70 3.12 3.99 4.26 4.00
4 14.73 10.54 10.08 9.53 4.65 2.75
5 8.77 9.68 4.45 7.52 4.32 4.64
6 3.29 4.10 0.75 1.84 2.54 2.96
7 14.67 12.33 8.91 10.64 5.76 3.36

Total 8.81 9.81 4.88 7.72 3.92 3.82

CPA1

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 2.76 4.75 1.14 2.75 1.62 2.81
2 1.60 4.18 1.00 2.90 0.59 2.00
3 6.81 6.34 3.34 4.30 3.47 3.67
4 13.37 7.84 9.51 6.82 3.86 2.58
5 9.02 9.02 4.44 6.99 4.58 5.00
6 3.51 4.71 0.98 2.35 2.53 3.04
7 11.20 10.05 7.64 9.32 3.56 2.30

Total 7.59 8.36 4.42 6.70 3.16 3.57

CPA2

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 2.28 4.61 1.00 2.83 1.28 2.51
2 2.36 4.85 1.77 3.92 0.59 2.00
3 7.18 6.52 3.99 4.76 3.19 3.12
4 10.83 7.24 7.77 6.26 3.06 2.41
5 8.76 9.58 4.69 7.55 4.08 4.60
6 3.48 4.68 0.87 2.25 2.61 3.06
7 8.46 7.73 5.36 5.99 3.09 2.42

Total 6.77 7.66 3.98 5.88 2.78 3.29
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Table A.4: Gaps referred to the bounds available at the root nodes of the branch-and-bound trees
of CPLEX while directly solving formulations ℱ1 and ℱ2. Results for the original benchmark
of TOP instances. Here, the CPLEX built-in cuts are enabled.

ℱ1

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 7.23 8.60 3.75 5.84 3.48 3.81
2 2.96 7.19 2.37 6.82 0.59 2.00
3 8.01 6.86 3.70 4.38 4.31 4.05
4 15.89 10.54 10.87 9.84 5.03 3.08
5 9.11 9.93 4.76 7.72 4.35 4.67
6 3.29 4.10 0.75 1.84 2.54 2.96
7 15.56 12.35 9.39 10.52 6.17 3.64

Total 9.57 10.22 5.48 8.16 4.09 3.97

ℱ2

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1 6.62 7.35 2.94 4.28 3.68 4.05
2 1.97 4.32 1.34 3.72 0.63 2.09
3 8.68 7.36 4.06 4.79 4.62 4.20
4 16.99 10.54 11.91 10.03 5.07 3.03
5 11.93 11.28 7.28 9.39 4.65 5.03
6 3.86 5.37 1.36 3.61 2.50 2.94
7 16.77 12.97 10.44 11.46 6.33 3.80

Total 10.50 10.73 6.23 8.74 4.26 4.15
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Table A.5: Extra information on the execution of B-B&C and CPA at solving the original
benchmark of TOP instances.

B-B&C

Final gap

Set Avg (%) StDev (%) Nodes (#) GCCs (#)

1 0.00 0.00 709.28 37.65
2 0.00 0.00 61.45 0.79
3 0.00 0.00 53 325.30 176.53
4 1.21 1.73 188 373.25 1081.75
5 0.68 1.42 528 237.04 868.40
6 0.14 0.52 271 593.05 272.17
7 1.27 1.61 356 152.85 684.77

Total 0.54 1.25 228 735.94 511.13

CPA1

Final gap User cuts (#)

Set Avg (%) StDev (%) Nodes (#) GCCs CCs LCIs

1 0.00 0.00 941.07 8.94 27.76 2.00
2 0.00 0.00 290.48 0.73 1.24 0.91
3 0.00 0.00 42 045.15 6.63 21.80 3.53
4 0.85 1.92 269 974.58 27.12 111.00 0.65
5 0.62 1.45 936 014.97 2.38 29.12 1.00
6 0.00 0.00 352 712.33 0.55 2.76 0.55
7 0.42 0.87 334 659.02 18.52 331.18 0.55

Total 0.32 1.10 327 349.39 9.95 82.08 1.35

CPA2

Final gap User cuts (#)

Set Avg (%) StDev (%) Nodes (#) LCIs CCCs

1 0.00 0.00 907.72 2.11 19.15
2 0.00 0.00 189.85 0.85 1.58
3 0.00 0.00 57 883.95 4.57 16.03
4 0.67 1.41 298 083.80 1.22 98.45
5 0.69 1.53 949 125.00 1.64 23.79
6 0.04 0.28 316 775.64 0.52 0.79
7 0.44 0.93 275 486.58 0.85 104.37

Total 0.32 1.01 323 718.01 1.78 41.62
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A.4 Detailed results for the exact algorithms at solving the new
STOP instances

In Tables A.7 and A.8, we display some information on the bounds available at the root
nodes of the branch-and-bound trees of B-B&C and CPA while solving the original benchmark of
TOP instances. In Table A.7, for each algorithm and instance set, we give the averages and the
corresponding standard deviations of three gap values. The first one is the relative optimality
gap, given by 𝑈𝐵𝑟−𝐿𝐵𝑟

𝑈𝐵𝑟
, where 𝐿𝐵𝑟 and 𝑈𝐵𝑟 are, respectively, the lower and upper bounds at

the root node. The second and third gaps, namely primal and dual gaps, are given by 𝐿𝐵*−𝐿𝐵𝑟
𝑈𝐵𝑟

and 𝑈𝐵𝑟−𝐿𝐵*

𝑈𝐵𝑟
, respectively. Here, 𝐿𝐵* corresponds to the best lower bound obtained by B-B&C

or CPA for a given instance within two hours of execution. Notice that, for every instance, the
summation of the corresponding primal and dual gaps gives the root relative optimality gap.
Then, these last two gaps are given as a way to estimate the contribution of the primal and
the dual bounds to the actual optimality gap. All the bounds considered in Table A.7 also take
into account the CPLEX built-in cuts separated at the root nodes. In Table A.8, we give the
same information displayed in Table A.7, but for formulations ℱ1 and ℱ2 without the addition
of the inequalities proposed in section 2.2. Recall that ℱ1 and ℱ2 are the formulations solved
within B-B&C and CPA, respectively. Also in this case, the CPLEX built-in cuts are enabled.

In Table A.9, we display some extra information concerning the execution of B-B&C and
CPA at solving the new STOP instances. For each algorithm and instance set, we first display
the average and the standard deviation of the relative optimality gaps of the solutions obtained
within two hours of execution. Here, we consider the results for the complete benchmark, and
not only the instances not solved to optimality (as in Table 3.9). In Table A.9, we also expose
the average number of nodes explored in the branch-and-bound tree, as well as the average
number of cuts separated for each class of inequalities discussed in section 2.2. In the results for
CPA2, we omitted the average number of AVICs, as they are separated by complete enumeration
and the number of these cuts in each instance always corresponds to 2× |𝐸|.

In Table A.10, we display a per-instance report of the results obtained by our implementa-
tions of B-B&C and CPA at solving the new benchmark of STOP instances. For all algorithms,
we report, for each instance, the best lower and upper bounds obtained within two hours of
execution (columns “LB” and “UB”, respectively) and the wall-clock execution time in seconds.
For the cases where neither a feasible solution was found nor the infeasibility was proven, the
entries “LB” and “UB” were filled with “-inf” and “inf”, respectively. We filled with dashes the
entries related to the instances that were proven to be infeasible within the time limit of two
hours.

Table A.10: Detailed results for the exact algorithms at solving the new STOP instances.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p1.2.a_5% – – 0.00 – – 0.00 – – 0.00
p1.2.b_5% – – 0.00 – – 0.00 – – 0.00
p1.2.c_5% – – 0.00 – – 0.00 – – 0.00

Continued on next page
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p1.2.d_5% 15.00 15.00 0.00 15.00 15.00 0.00 15.00 15.00 0.01
p1.2.e_5% – – 0.00 – – 0.00 – – 0.00
p1.2.f_5% – – 0.00 – – 0.00 – – 0.00
p1.2.g_5% – – 0.00 – – 0.00 – – 0.00
p1.2.h_5% 45.00 45.00 0.29 45.00 45.00 0.81 45.00 45.00 0.58
p1.2.i_5% 110.00 110.00 1.38 110.00 110.00 2.21 110.00 110.00 3.67
p1.2.j_5% 140.00 140.00 0.52 140.00 140.00 1.11 140.00 140.00 0.91
p1.2.k_5% 150.00 150.00 2.08 150.00 150.00 2.86 150.00 150.00 2.69
p1.2.l_5% 185.00 185.00 1.65 185.00 185.00 4.44 185.00 185.00 2.44
p1.2.m_5% 190.00 190.00 0.61 190.00 190.00 1.02 190.00 190.00 1.19
p1.2.n_5% 215.00 215.00 1.02 215.00 215.00 1.17 215.00 215.00 0.98
p1.2.o_5% 220.00 220.00 1.30 220.00 220.00 0.81 220.00 220.00 1.21
p1.2.p_5% 225.00 225.00 1.15 225.00 225.00 2.33 225.00 225.00 3.25
p1.2.q_5% 245.00 245.00 0.57 245.00 245.00 1.48 245.00 245.00 2.04
p1.2.r_5% 265.00 265.00 3.24 265.00 265.00 1.58 265.00 265.00 5.18
p1.3.a_5% – – 0.00 – – 0.00 – – 0.00
p1.3.b_5% – – 0.00 – – 0.00 – – 0.00
p1.3.c_5% – – 0.00 – – 0.00 – – 0.00
p1.3.d_5% – – 0.00 – – 0.00 – – 0.00
p1.3.e_5% – – 0.00 – – 0.00 – – 0.00
p1.3.f_5% – – 0.00 – – 0.00 – – 0.00
p1.3.g_5% – – 0.00 – – 0.00 – – 0.00
p1.3.h_5% – – 0.00 – – 0.00 – – 0.00
p1.3.i_5% 90.00 90.00 0.04 90.00 90.00 0.10 90.00 90.00 0.16
p1.3.j_5% 80.00 80.00 0.24 80.00 80.00 0.75 80.00 80.00 2.09
p1.3.k_5% 115.00 115.00 0.44 115.00 115.00 2.48 115.00 115.00 2.92
p1.3.l_5% 140.00 140.00 0.68 140.00 140.00 3.67 140.00 140.00 3.45
p1.3.m_5% 130.00 130.00 26.14 130.00 130.00 19.13 130.00 130.00 44.96
p1.3.n_5% 165.00 165.00 3.57 165.00 165.00 8.13 165.00 165.00 8.07
p1.3.o_5% 180.00 180.00 1.66 180.00 180.00 4.30 180.00 180.00 5.80
p1.3.p_5% 200.00 200.00 0.77 200.00 200.00 0.97 200.00 200.00 2.47
p1.3.q_5% 210.00 210.00 2.89 210.00 210.00 9.27 210.00 210.00 9.87
p1.3.r_5% 225.00 225.00 2.24 225.00 225.00 6.26 225.00 225.00 6.03
p1.4.a_5% – – 0.00 – – 0.00 – – 0.00
p1.4.b_5% – – 0.00 – – 0.00 – – 0.00
p1.4.c_5% – – 0.00 – – 0.00 – – 0.00
p1.4.d_5% – – 0.00 – – 0.00 – – 0.00
p1.4.e_5% – – 0.00 – – 0.00 – – 0.00
p1.4.f_5% – – 0.00 – – 0.00 – – 0.00
p1.4.g_5% – – 0.00 – – 0.00 – – 0.00
p1.4.h_5% – – 0.00 – – 0.00 – – 0.00
p1.4.i_5% – – 0.00 – – 0.00 – – 0.00
p1.4.j_5% – – 0.00 – – 0.00 – – 0.00
p1.4.k_5% – – 0.00 – – 0.00 – – 0.00
p1.4.l_5% – – 0.00 – – 0.00 – – 0.00
p1.4.m_5% 115.00 115.00 0.72 115.00 115.00 2.17 115.00 115.00 3.15
p1.4.n_5% 135.00 135.00 0.42 135.00 135.00 3.02 135.00 135.00 2.21
p1.4.o_5% – – 0.00 – – 0.00 – – 0.00
p1.4.p_5% 150.00 150.00 0.49 150.00 150.00 2.29 150.00 150.00 4.40
p1.4.q_5% 165.00 165.00 1.00 165.00 165.00 2.77 165.00 165.00 4.27
p1.4.r_5% 195.00 195.00 0.77 195.00 195.00 2.38 195.00 195.00 3.80

p2.2.a_5% – – 0.00 – – 0.00 – – 0.00
p2.2.b_5% – – 0.00 – – 0.00 – – 0.00
p2.2.c_5% – – 0.00 – – 0.00 – – 0.00
p2.2.d_5% – – 0.00 – – 0.00 – – 0.00
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p2.2.e_5% – – 0.00 – – 0.00 – – 0.00
p2.2.f_5% – – 0.00 – – 0.00 – – 0.00
p2.2.g_5% – – 0.00 – – 0.00 – – 0.00
p2.2.h_5% 200.00 200.00 0.23 200.00 200.00 0.26 200.00 200.00 0.14
p2.2.i_5% – – 0.00 – – 0.00 – – 0.00
p2.2.j_5% 220.00 220.00 0.20 220.00 220.00 0.31 220.00 220.00 0.22
p2.2.k_5% 210.00 210.00 0.04 210.00 210.00 0.11 210.00 210.00 0.39
p2.3.a_5% – – 0.00 – – 0.00 – – 0.00
p2.3.b_5% – – 0.00 – – 0.00 – – 0.00
p2.3.c_5% – – 0.00 – – 0.00 – – 0.00
p2.3.d_5% – – 0.00 – – 0.00 – – 0.00
p2.3.e_5% – – 0.00 – – 0.00 – – 0.00
p2.3.f_5% – – 0.00 – – 0.00 – – 0.00
p2.3.g_5% – – 0.00 – – 0.00 – – 0.00
p2.3.h_5% – – 0.00 – – 0.00 – – 0.00
p2.3.i_5% 170.00 170.00 0.15 170.00 170.00 0.12 170.00 170.00 0.12
p2.3.j_5% 160.00 160.00 0.15 160.00 160.00 0.07 160.00 160.00 0.07
p2.3.k_5% 170.00 170.00 0.05 170.00 170.00 0.04 170.00 170.00 0.05
p2.4.a_5% – – 0.00 – – 0.00 – – 0.00
p2.4.b_5% – – 0.00 – – 0.00 – – 0.00
p2.4.c_5% – – 0.00 – – 0.00 – – 0.00
p2.4.d_5% – – 0.00 – – 0.00 – – 0.00
p2.4.e_5% – – 0.00 – – 0.00 – – 0.00
p2.4.f_5% – – 0.00 – – 0.00 – – 0.00
p2.4.g_5% – – 0.00 – – 0.00 – – 0.00
p2.4.h_5% 95.00 95.00 0.01 95.00 95.00 0.01 95.00 95.00 0.00
p2.4.i_5% – – 0.00 – – 0.00 – – 0.00
p2.4.j_5% – – 0.00 – – 0.00 – – 0.00
p2.4.k_5% 145.00 145.00 0.02 145.00 145.00 0.06 145.00 145.00 0.05

p3.2.a_5% – – 0.00 – – 0.00 – – 0.00
p3.2.b_5% – – 0.00 – – 0.00 – – 0.00
p3.2.c_5% – – 0.00 – – 0.00 – – 0.00
p3.2.d_5% – – 0.00 – – 0.00 – – 0.00
p3.2.e_5% 220.00 220.00 0.68 220.00 220.00 1.82 220.00 220.00 2.14
p3.2.f_5% – – 0.00 – – 0.00 – – 0.00
p3.2.g_5% 290.00 290.00 1.36 290.00 290.00 4.14 290.00 290.00 6.13
p3.2.h_5% 360.00 360.00 1.40 360.00 360.00 4.42 360.00 360.00 4.89
p3.2.i_5% 400.00 400.00 3.19 400.00 400.00 11.09 400.00 400.00 9.75
p3.2.j_5% 470.00 470.00 9.47 470.00 470.00 20.00 470.00 470.00 12.72
p3.2.k_5% 510.00 510.00 15.22 510.00 510.00 14.02 510.00 510.00 23.63
p3.2.l_5% 540.00 540.00 3.59 540.00 540.00 4.84 540.00 540.00 4.80
p3.2.m_5% 560.00 560.00 4.51 560.00 560.00 4.38 560.00 560.00 6.45
p3.2.n_5% 610.00 610.00 1.64 610.00 610.00 5.67 610.00 610.00 6.75
p3.2.o_5% 660.00 660.00 2.39 660.00 660.00 5.62 660.00 660.00 5.60
p3.2.p_5% 690.00 690.00 5.50 690.00 690.00 5.52 690.00 690.00 7.38
p3.2.q_5% 710.00 710.00 5.65 710.00 710.00 7.94 710.00 710.00 3.16
p3.2.r_5% 740.00 740.00 12.26 740.00 740.00 8.03 740.00 740.00 4.45
p3.2.s_5% 730.00 730.00 13.98 730.00 730.00 8.15 730.00 730.00 3.81
p3.2.t_5% 700.00 700.00 1.76 700.00 700.00 0.66 700.00 700.00 0.66
p3.3.a_5% – – 0.00 – – 0.00 – – 0.00
p3.3.b_5% – – 0.00 – – 0.00 – – 0.00
p3.3.c_5% – – 0.00 – – 0.00 – – 0.00
p3.3.d_5% 150.00 150.00 0.02 150.00 150.00 0.03 150.00 150.00 0.04
p3.3.e_5% – – 0.00 – – 0.00 – – 0.00
p3.3.f_5% 160.00 160.00 0.17 160.00 160.00 0.38 160.00 160.00 0.43
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p3.3.g_5% – – 0.00 – – 0.00 – – 0.00
p3.3.h_5% – – 0.00 – – 0.00 – – 0.00
p3.3.i_5% – – 0.00 – – 0.00 – – 0.00
p3.3.j_5% 360.00 360.00 11.77 360.00 360.00 18.13 360.00 360.00 18.19
p3.3.k_5% 400.00 400.00 32.86 400.00 400.00 14.90 400.00 400.00 37.33
p3.3.l_5% – – 0.00 – – 0.00 – – 0.00
p3.3.m_5% 470.00 470.00 31.19 470.00 470.00 43.21 470.00 470.00 60.92
p3.3.n_5% 500.00 500.00 4.49 500.00 500.00 14.68 500.00 500.00 15.48
p3.3.o_5% 560.00 560.00 664.38 560.00 560.00 446.60 560.00 560.00 425.11
p3.3.p_5% 570.00 570.00 966.90 570.00 570.00 1934.16 570.00 570.00 2361.59
p3.3.q_5% 650.00 650.00 101.12 650.00 650.00 14.13 650.00 650.00 49.10
p3.3.r_5% 660.00 660.00 0.48 660.00 660.00 1.68 660.00 660.00 77.51
p3.3.s_5% 670.00 670.00 39.79 670.00 670.00 845.76 670.00 670.00 20.99
p3.3.t_5% 700.00 700.00 643.37 700.00 700.00 109.41 700.00 700.00 99.74
p3.4.a_5% – – 0.00 – – 0.00 – – 0.00
p3.4.b_5% – – 0.00 – – 0.00 – – 0.00
p3.4.c_5% – – 0.00 – – 0.00 – – 0.00
p3.4.d_5% – – 0.00 – – 0.00 – – 0.00
p3.4.e_5% – – 0.00 – – 0.00 – – 0.00
p3.4.f_5% – – 0.00 – – 0.00 – – 0.00
p3.4.g_5% 190.00 190.00 0.04 190.00 190.00 0.02 190.00 190.00 0.03
p3.4.h_5% 220.00 220.00 0.09 220.00 220.00 0.16 220.00 220.00 0.22
p3.4.i_5% 230.00 230.00 0.22 230.00 230.00 0.52 230.00 230.00 0.27
p3.4.j_5% – – 0.00 – – 0.00 – – 0.00
p3.4.k_5% 280.00 280.00 0.24 280.00 280.00 0.47 280.00 280.00 0.48
p3.4.l_5% – – 0.00 – – 0.00 – – 0.00
p3.4.m_5% 340.00 340.00 3075.14 340.00 340.00 1752.61 340.00 340.00 681.31
p3.4.n_5% 380.00 380.00 7.85 380.00 380.00 46.07 380.00 380.00 73.50
p3.4.o_5% – – 0.00 – – 0.00 – – 0.00
p3.4.p_5% 530.00 530.00 104.55 530.00 530.00 33.76 530.00 530.00 22.95
p3.4.q_5% 500.00 500.00 2218.34 500.00 500.00 2383.30 500.00 500.00 2430.31
p3.4.r_5% 560.00 560.00 24.53 560.00 560.00 35.00 560.00 560.00 47.31
p3.4.s_5% 610.00 610.00 8.13 610.00 610.00 4.37 610.00 610.00 15.27
p3.4.t_5% 630.00 630.00 2.60 630.00 630.00 13.08 630.00 630.00 6.48

p4.2.a_5% – – 0.00 – – 0.00 – – 0.00
p4.2.b_5% – – 0.00 – – 0.00 – – 0.00
p4.2.c_5% – – 0.00 – – 0.00 – – 0.00
p4.2.d_5% – – 4827.47 – – 7200.00 – – 222.44
p4.2.e_5% 443.00 443.00 802.64 443.00 443.00 661.15 443.00 443.00 519.41
p4.2.f_5% 618.00 618.00 245.12 618.00 618.00 43.57 618.00 618.00 82.30
p4.2.g_5% 574.00 604.19 7200.00 574.00 574.00 4272.56 574.00 574.00 1307.21
p4.2.h_5% 718.00 748.65 7200.00 718.00 718.00 493.26 718.00 718.00 595.76
p4.2.i_5% 721.00 762.68 7200.00 728.00 728.00 1003.05 728.00 728.00 1650.08
p4.2.j_5% 873.00 873.00 977.63 873.00 873.00 566.79 873.00 873.00 306.44
p4.2.k_5% 955.00 967.03 7200.00 955.00 955.00 670.97 955.00 955.00 311.05
p4.2.l_5% 1046.00 1072.88 7200.00 1049.00 1049.00 2266.38 1049.00 1049.00 160.49
p4.2.m_5% 1092.00 1126.93 7200.00 1096.00 1096.00 2408.78 1096.00 1096.00 227.01
p4.2.n_5% 1071.00 1155.54 7200.00 1111.00 1111.00 3776.28 1111.00 1111.00 1618.87
p4.2.o_5% 1147.00 1169.66 7200.00 1149.00 1149.00 3987.48 1149.00 1149.00 368.74
p4.2.p_5% 1154.00 1183.30 7200.00 1153.00 1172.52 7200.00 1138.00 1166.50 7200.00
p4.2.q_5% 1192.00 1218.34 7200.00 1201.00 1209.52 7200.00 1201.00 1208.39 7200.00
p4.2.r_5% 1224.00 1232.28 7200.00 1225.00 1225.00 3640.27 1225.00 1225.00 5741.00
p4.2.s_5% 1213.00 1214.79 7200.00 1206.00 1215.00 7200.00 1213.00 1213.00 2659.11
p4.2.t_5% 1242.00 1243.00 7200.00 1242.00 1243.00 7200.00 1243.00 1243.00 3309.66
p4.3.a_5% – – 0.00 – – 0.00 – – 0.00
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p4.3.b_5% – – 0.00 – – 0.00 – – 0.00
p4.3.c_5% – – 0.00 – – 0.00 – – 0.00
p4.3.d_5% – – 0.00 – – 0.00 – – 0.00
p4.3.e_5% – – 0.00 – – 0.00 – – 0.00
p4.3.f_5% – – 0.00 – – 0.00 – – 0.00
p4.3.g_5% – – 0.00 – – 0.01 – – 0.01
p4.3.h_5% 384.00 410.28 7200.00 383.00 421.23 7200.00 383.00 408.72 7200.00
p4.3.i_5% 742.00 742.00 1798.13 742.00 742.00 879.93 742.00 742.00 1091.06
p4.3.j_5% 724.00 724.00 2425.22 724.00 724.00 1730.63 724.00 724.00 1938.23
p4.3.k_5% 829.00 829.00 6695.63 829.00 829.00 1422.84 829.00 829.00 2261.30
p4.3.l_5% 886.00 929.39 7200.00 884.00 915.40 7200.00 888.00 914.19 7200.00
p4.3.m_5% 982.00 1015.89 7200.00 977.00 1003.68 7200.00 966.00 1010.54 7200.00
p4.3.n_5% 1030.00 1053.99 7200.00 1030.00 1030.00 2840.10 1030.00 1030.00 4381.97
p4.3.o_5% 1105.00 1154.38 7200.00 1110.00 1134.46 7200.00 1114.00 1131.78 7200.00
p4.3.p_5% 1152.00 1160.44 7200.00 1152.00 1152.00 5135.90 1152.00 1152.00 632.50
p4.3.q_5% 1176.00 1193.44 7200.00 1169.00 1185.89 7200.00 1176.00 1182.89 7200.00
p4.3.r_5% 1203.00 1237.57 7200.00 1215.00 1226.23 7200.00 1198.00 1229.37 7200.00
p4.3.s_5% 1259.00 1267.59 7200.00 1228.00 1266.49 7200.00 1259.00 1263.39 7200.00
p4.3.t_5% 1240.00 1256.00 7200.00 1249.00 1256.00 7200.00 1244.00 1256.00 7200.00
p4.4.a_5% – – 0.00 – – 0.00 – – 0.00
p4.4.b_5% – – 0.00 – – 0.00 – – 0.00
p4.4.c_5% – – 0.00 – – 0.00 – – 0.00
p4.4.d_5% – – 0.00 – – 0.00 – – 0.00
p4.4.e_5% – – 0.00 – – 0.00 – – 0.00
p4.4.f_5% – – 0.00 – – 0.00 – – 0.00
p4.4.g_5% – – 0.00 – – 0.00 – – 0.00
p4.4.h_5% – – 0.00 – – 0.00 – – 0.00
p4.4.i_5% – – 0.00 – – 0.00 – – 0.00
p4.4.j_5% 573.00 573.00 997.56 573.00 573.00 519.73 573.00 573.00 342.38
p4.4.k_5% – – 0.00 – – 0.01 – – 0.01
p4.4.l_5% 682.00 682.00 426.34 682.00 682.00 984.17 682.00 682.00 975.27
p4.4.m_5% – – 0.01 – – 0.01 – – 0.01
p4.4.n_5% 852.00 904.07 7200.00 842.00 908.24 7200.00 841.00 901.36 7200.00
p4.4.o_5% 922.00 985.09 7200.00 933.00 981.73 7200.00 942.00 980.38 7200.00
p4.4.p_5% 1048.00 1075.56 7200.00 1034.00 1069.96 7200.00 1048.00 1061.33 7200.00
p4.4.q_5% 1071.00 1132.58 7200.00 1048.00 1134.25 7200.00 1045.00 1130.15 7200.00
p4.4.r_5% 1109.00 1183.93 7200.00 1115.00 1174.28 7200.00 1084.00 1174.54 7200.00
p4.4.s_5% 1207.00 1234.43 7200.00 1127.00 1232.40 7200.00 1206.00 1226.32 7200.00
p4.4.t_5% 1243.00 1265.52 7200.00 1203.00 1261.96 7200.00 1242.00 1260.54 7200.00

p5.2.a_5% – – 0.00 – – 0.00 – – 0.00
p5.2.b_5% – – 0.00 – – 0.00 – – 0.00
p5.2.c_5% – – 0.00 – – 0.00 – – 0.00
p5.2.d_5% – – 0.00 – – 0.00 – – 0.00
p5.2.e_5% – – 0.00 – – 0.00 – – 0.00
p5.2.f_5% – – 0.00 – – 0.00 – – 0.00
p5.2.g_5% – – 0.00 – – 0.00 – – 0.00
p5.2.h_5% – – 0.91 – – 1.65 – – 1.87
p5.2.i_5% 350.00 350.00 116.18 350.00 350.00 90.32 350.00 350.00 95.09
p5.2.j_5% 460.00 460.00 11.19 460.00 460.00 7.96 460.00 460.00 21.61
p5.2.k_5% 505.00 505.00 26.42 505.00 505.00 18.25 505.00 505.00 24.96
p5.2.l_5% 660.00 660.00 12.16 660.00 660.00 17.67 660.00 660.00 12.51
p5.2.m_5% 730.00 730.00 10.03 730.00 730.00 4.96 730.00 730.00 8.22
p5.2.n_5% 815.00 815.00 119.75 815.00 815.00 78.33 815.00 815.00 77.57
p5.2.o_5% 900.00 900.00 126.37 900.00 900.00 122.83 900.00 900.00 66.57
p5.2.p_5% 1030.00 1030.00 0.80 1030.00 1030.00 1.68 1030.00 1030.00 2.35
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p5.2.q_5% 1080.00 1080.00 5.73 1080.00 1080.00 9.38 1080.00 1080.00 63.83
p5.2.r_5% 1170.00 1170.00 13.63 1170.00 1170.00 12.91 1170.00 1170.00 12.34
p5.2.s_5% 1250.00 1250.00 2.10 1250.00 1250.00 5.00 1250.00 1250.00 2.90
p5.2.t_5% 1310.00 1310.00 26.58 1310.00 1310.00 4.04 1310.00 1310.00 8.43
p5.2.u_5% 1360.00 1360.00 7.73 1360.00 1360.00 6.65 1360.00 1360.00 9.48
p5.2.v_5% 1395.00 1395.00 3428.61 1395.00 1395.00 512.27 1395.00 1395.00 516.79
p5.2.w_5% 1465.00 1465.00 91.10 1465.00 1465.00 141.53 1465.00 1465.00 17.08
p5.2.x_5% 1490.00 1490.00 464.27 1490.00 1490.00 5.94 1490.00 1490.00 5.07
p5.2.y_5% 1535.00 1535.00 715.13 1535.00 1535.00 80.05 1535.00 1535.00 111.82
p5.2.z_5% 1570.00 1570.00 7.92 1570.00 1570.00 170.60 1570.00 1570.00 165.48
p5.3.a_5% – – 0.00 – – 0.00 – – 0.00
p5.3.b_5% – – 0.00 – – 0.00 – – 0.00
p5.3.c_5% – – 0.00 – – 0.00 – – 0.00
p5.3.d_5% – – 0.00 – – 0.00 – – 0.00
p5.3.e_5% – – 0.00 – – 0.00 – – 0.00
p5.3.f_5% – – 0.00 – – 0.00 – – 0.00
p5.3.g_5% 95.00 95.00 0.31 95.00 95.00 0.58 95.00 95.00 0.52
p5.3.h_5% – – 0.00 – – 0.00 – – 0.00
p5.3.i_5% – – 0.00 – – 0.00 – – 0.00
p5.3.j_5% – – 0.00 – – 0.00 – – 0.00
p5.3.k_5% 425.00 425.00 52.47 425.00 425.00 119.60 425.00 425.00 143.61
p5.3.l_5% 490.00 490.00 116.05 490.00 490.00 199.79 490.00 490.00 299.48
p5.3.m_5% 535.00 535.00 1020.06 535.00 535.00 2255.23 535.00 535.00 4186.74
p5.3.n_5% 665.00 665.00 295.31 665.00 665.00 595.05 665.00 665.00 339.62
p5.3.o_5% 740.00 740.00 468.27 740.00 740.00 880.16 740.00 740.00 239.89
p5.3.p_5% 860.00 860.00 1.78 860.00 860.00 2.76 860.00 860.00 4.08
p5.3.q_5% 965.00 965.00 11.40 965.00 965.00 11.31 965.00 965.00 12.72
p5.3.r_5% 985.00 985.00 2576.34 985.00 985.00 682.86 985.00 985.00 857.75
p5.3.s_5% 1090.00 1120.00 7200.00 1090.00 1121.63 7200.00 1090.00 1116.89 7200.00
p5.3.t_5% 1150.00 1205.02 7200.00 1150.00 1195.68 7200.00 1150.00 1190.61 7200.00
p5.3.u_5% 1225.00 1261.15 7200.00 1225.00 1253.97 7200.00 1225.00 1252.27 7200.00
p5.3.v_5% 1310.00 1339.87 7200.00 1315.00 1315.00 3594.90 1315.00 1323.80 7200.00
p5.3.w_5% 1385.00 1409.88 7200.00 1385.00 1405.53 7200.00 1390.00 1407.25 7200.00
p5.3.x_5% 1455.00 1474.64 7200.00 1455.00 1455.00 5868.47 1455.00 1455.00 4063.02
p5.3.y_5% 1500.00 1533.11 7200.00 1500.00 1531.32 7200.00 1500.00 1531.39 7200.00
p5.3.z_5% 1515.00 1542.96 7200.00 1515.00 1541.57 7200.00 1515.00 1540.00 7200.00
p5.4.a_5% – – 0.00 – – 0.00 – – 0.00
p5.4.b_5% – – 0.00 – – 0.00 – – 0.00
p5.4.c_5% – – 0.00 – – 0.00 – – 0.00
p5.4.d_5% – – 0.00 – – 0.00 – – 0.00
p5.4.e_5% – – 0.00 – – 0.00 – – 0.00
p5.4.f_5% – – 0.00 – – 0.00 – – 0.00
p5.4.g_5% – – 0.00 – – 0.00 – – 0.00
p5.4.h_5% – – 0.00 – – 0.00 – – 0.00
p5.4.i_5% – – 0.00 – – 0.00 – – 0.00
p5.4.j_5% 220.00 220.00 0.11 220.00 220.00 0.31 220.00 220.00 0.57
p5.4.k_5% – – 0.00 – – 0.00 – – 0.00
p5.4.l_5% – – 0.00 – – 0.00 – – 0.00
p5.4.m_5% – – 0.00 – – 0.00 – – 0.00
p5.4.n_5% 440.00 440.00 3.44 440.00 440.00 14.95 440.00 440.00 15.88
p5.4.o_5% – – 0.00 – – 0.00 – – 0.00
p5.4.p_5% 665.00 694.52 7200.00 665.00 701.27 7200.00 665.00 697.52 7200.00
p5.4.q_5% 715.00 725.40 7200.00 715.00 743.10 7200.00 715.00 730.05 7200.00
p5.4.r_5% 850.00 850.00 530.14 850.00 850.00 368.64 850.00 850.00 1244.17
p5.4.s_5% 935.00 955.06 7200.00 935.00 961.69 7200.00 935.00 961.25 7200.00
p5.4.t_5% 1060.00 1079.15 7200.00 1060.00 1060.00 6149.68 1060.00 1060.00 6238.71

Continued on next page
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p5.4.u_5% 1190.00 1190.00 1.32 1190.00 1190.00 2.56 1190.00 1190.00 2.23
p5.4.v_5% 1230.00 1252.75 7200.00 1230.00 1251.71 7200.00 1230.00 1250.59 7200.00
p5.4.w_5% 1260.00 1299.42 7200.00 1260.00 1286.46 7200.00 1260.00 1289.06 7200.00
p5.4.x_5% 1310.00 1353.36 7200.00 1300.00 1348.69 7200.00 1310.00 1348.68 7200.00
p5.4.y_5% 1400.00 1431.14 7200.00 1400.00 1425.33 7200.00 1400.00 1423.62 7200.00
p5.4.z_5% 1530.00 1530.00 282.43 1530.00 1530.00 943.60 1530.00 1530.00 135.11

p6.2.a_5% – – 0.00 – – 0.00 – – 0.00
p6.2.b_5% – – 0.00 – – 0.00 – – 0.00
p6.2.c_5% – – 0.00 – – 0.00 – – 0.00
p6.2.d_5% – – 0.00 – – 0.00 – – 0.00
p6.2.e_5% 282.00 282.00 0.35 282.00 282.00 0.33 282.00 282.00 0.35
p6.2.f_5% 474.00 474.00 0.55 474.00 474.00 0.75 474.00 474.00 0.71
p6.2.g_5% 522.00 522.00 9.11 522.00 522.00 20.01 522.00 522.00 27.67
p6.2.h_5% 708.00 708.00 1.38 708.00 708.00 1.81 708.00 708.00 2.49
p6.2.i_5% 828.00 828.00 1.57 828.00 828.00 7.43 828.00 828.00 4.72
p6.2.j_5% 846.00 864.36 7200.00 846.00 846.00 1143.76 846.00 846.00 881.75
p6.2.k_5% 948.00 969.29 7200.00 948.00 948.00 711.32 948.00 948.00 723.58
p6.2.l_5% 1008.00 1008.00 1170.47 1008.00 1008.00 362.08 1008.00 1008.00 175.41
p6.2.m_5% 1086.00 1086.00 4797.85 1086.00 1086.00 1018.09 1086.00 1086.00 1689.98
p6.2.n_5% 1170.00 1170.00 6.39 1170.00 1170.00 2.92 1170.00 1170.00 3.50
p6.3.a_5% – – 0.00 – – 0.00 – – 0.00
p6.3.b_5% – – 0.00 – – 0.00 – – 0.00
p6.3.c_5% – – 0.00 – – 0.00 – – 0.00
p6.3.d_5% – – 0.00 – – 0.00 – – 0.00
p6.3.e_5% – – 0.00 – – 0.00 – – 0.00
p6.3.f_5% – – 0.00 – – 0.00 – – 0.00
p6.3.g_5% – – 0.00 – – 0.00 – – 0.00
p6.3.h_5% – – 0.00 – – 0.00 – – 0.00
p6.3.i_5% 582.00 582.00 0.60 582.00 582.00 1.38 582.00 582.00 1.62
p6.3.j_5% 678.00 678.00 1.81 678.00 678.00 5.16 678.00 678.00 5.68
p6.3.k_5% 840.00 840.00 120.94 840.00 840.00 85.29 840.00 840.00 113.55
p6.3.l_5% 930.00 930.00 42.43 930.00 930.00 32.08 930.00 930.00 44.34
p6.3.m_5% 1014.00 1037.75 7200.00 1014.00 1014.00 4402.47 1014.00 1031.34 7200.00
p6.3.n_5% 1092.00 1092.00 591.30 1092.00 1092.00 1248.71 1092.00 1092.00 1567.65
p6.4.a_5% – – 0.00 – – 0.00 – – 0.00
p6.4.b_5% – – 0.00 – – 0.00 – – 0.00
p6.4.c_5% – – 0.00 – – 0.00 – – 0.00
p6.4.d_5% – – 0.00 – – 0.00 – – 0.00
p6.4.e_5% – – 0.00 – – 0.00 – – 0.00
p6.4.f_5% – – 0.00 – – 0.00 – – 0.00
p6.4.g_5% – – 0.00 – – 0.00 – – 0.00
p6.4.h_5% – – 0.00 – – 0.00 – – 0.00
p6.4.i_5% – – 0.00 – – 0.00 – – 0.00
p6.4.j_5% – – 0.00 – – 0.00 – – 0.00
p6.4.k_5% 318.00 318.00 0.36 318.00 318.00 2.23 318.00 318.00 2.91
p6.4.l_5% 660.00 660.00 36.49 660.00 660.00 144.18 660.00 660.00 107.05
p6.4.m_5% 786.00 786.00 13.16 786.00 786.00 30.63 786.00 786.00 55.59
p6.4.n_5% 990.00 990.00 1.85 990.00 990.00 5.19 990.00 990.00 5.93

p7.2.a_5% – – 0.00 – – 0.00 – – 0.00
p7.2.b_5% – – 0.00 – – 0.00 – – 0.00
p7.2.c_5% – – 0.00 – – 0.00 – – 0.00
p7.2.d_5% – – 0.00 – – 0.00 – – 0.00
p7.2.e_5% – – 0.00 – – 0.00 – – 0.00
p7.2.f_5% – – 0.00 – – 0.00 – – 0.00
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Table A.10 — continued from previous page.

B-B&C CPA1 CPA2

Instance LB UB Time (s) LB UB Time (s) LB UB Time (s)

p7.2.g_5% – – 0.75 – – 1.37 – – 1.72
p7.2.h_5% 337.00 337.00 48.54 337.00 337.00 20.55 337.00 337.00 42.74
p7.2.i_5% – – 0.01 – – 0.01 – – 0.01
p7.2.j_5% -inf inf 7200.00 – – 7200.00 – – 7200.00
p7.2.k_5% -inf inf 7200.00 – – 7200.00 – – 7200.00
p7.2.l_5% 636.00 691.57 7200.00 636.00 636.00 403.97 636.00 636.00 493.25
p7.2.m_5% 731.00 767.46 7200.00 731.00 731.00 835.87 731.00 731.00 448.92
p7.2.n_5% 614.00 739.49 7200.00 656.00 669.52 7200.00 656.00 656.00 1315.99
p7.2.o_5% 802.00 830.52 7200.00 802.00 802.00 1725.97 802.00 802.00 477.10
p7.2.p_5% 831.00 886.20 7200.00 844.00 844.00 7075.30 844.00 844.00 6525.18
p7.2.q_5% 862.00 917.67 7200.00 885.00 885.00 4880.19 885.00 885.00 5513.97
p7.2.r_5% 968.00 968.00 3237.01 968.00 968.00 393.81 968.00 968.00 332.91
p7.2.s_5% 992.00 1022.62 7200.00 1007.00 1007.00 1287.75 1007.00 1007.00 1017.59
p7.2.t_5% 1074.00 1084.17 7200.00 1075.00 1075.00 945.38 1075.00 1075.00 622.74
p7.3.a_5% – – 0.00 – – 0.00 – – 0.00
p7.3.b_5% – – 0.00 – – 0.00 – – 0.00
p7.3.c_5% – – 0.00 – – 0.00 – – 0.00
p7.3.d_5% – – 0.00 – – 0.00 – – 0.00
p7.3.e_5% – – 0.00 – – 0.00 – – 0.00
p7.3.f_5% – – 0.00 – – 0.00 – – 0.00
p7.3.g_5% – – 0.00 – – 0.00 – – 0.00
p7.3.h_5% – – 0.00 – – 0.00 – – 0.00
p7.3.i_5% – – 0.00 – – 0.00 – – 0.00
p7.3.j_5% -inf inf 7200.00 -inf inf 7200.00 -inf inf 7200.00
p7.3.k_5% 395.00 395.00 607.68 395.00 395.00 39.97 395.00 395.00 87.83
p7.3.l_5% 522.00 522.00 1461.13 522.00 522.00 486.58 522.00 522.00 467.19
p7.3.m_5% – – 0.01 – – 0.01 – – 0.01
p7.3.n_5% – – 82.96 – – 344.24 – – 135.44
p7.3.o_5% 602.00 602.00 105.77 602.00 602.00 196.10 602.00 602.00 204.23
p7.3.p_5% 757.00 794.38 7200.00 757.00 757.00 2489.18 757.00 757.00 4962.79
p7.3.q_5% 866.00 912.94 7200.00 874.00 874.00 1332.51 874.00 874.00 2216.66
p7.3.r_5% 923.00 959.05 7200.00 923.00 923.00 2550.24 923.00 923.00 5412.53
p7.3.s_5% 942.00 995.88 7200.00 949.00 974.87 7200.00 949.00 974.64 7200.00
p7.3.t_5% 1012.00 1062.79 7200.00 1034.00 1047.03 7200.00 1029.00 1053.26 7200.00
p7.4.a_5% – – 0.00 – – 0.00 – – 0.00
p7.4.b_5% – – 0.00 – – 0.00 – – 0.00
p7.4.c_5% – – 0.00 – – 0.00 – – 0.00
p7.4.d_5% – – 0.00 – – 0.00 – – 0.00
p7.4.e_5% – – 0.00 – – 0.00 – – 0.00
p7.4.f_5% – – 0.00 – – 0.00 – – 0.00
p7.4.g_5% – – 0.00 – – 0.00 – – 0.00
p7.4.h_5% – – 0.00 – – 0.00 – – 0.00
p7.4.i_5% – – 0.00 – – 0.00 – – 0.00
p7.4.j_5% – – 0.00 – – 0.00 – – 0.00
p7.4.k_5% – – 0.00 – – 0.00 – – 0.00
p7.4.l_5% – – 0.00 – – 0.00 – – 0.00
p7.4.m_5% – – 0.00 – – 0.00 – – 0.01
p7.4.n_5% – – 0.00 – – 0.01 – – 0.01
p7.4.o_5% 537.00 558.14 7200.00 537.00 537.00 892.01 537.00 537.00 1325.01
p7.4.p_5% 771.00 791.01 7200.00 771.00 779.03 7200.00 771.00 780.09 7200.00
p7.4.q_5% 778.00 809.66 7200.00 781.00 799.92 7200.00 781.00 799.11 7200.00
p7.4.r_5% 794.00 859.61 7200.00 798.00 808.51 7200.00 792.00 828.10 7200.00
p7.4.s_5% 857.00 902.83 7200.00 857.00 898.97 7200.00 857.00 895.08 7200.00
p7.4.t_5% 862.00 995.11 7200.00 939.00 959.26 7200.00 939.00 961.15 7200.00
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Table A.7: Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of B-B&C and CPA at solving the new STOP instances. Here, the CPLEX built-in cuts
separated at the root nodes are considered.

B-B&C

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 5.26 7.88 2.27 4.42 2.99 4.78
2_5% 1.29 3.54 1.29 3.54 0.00 0.00
3_5% 6.43 6.87 2.87 3.98 3.56 4.26
4_5% 17.47 18.30 11.18 11.87 4.62 5.75
5_5% 6.46 7.72 3.42 4.95 3.03 3.91
6_5% 2.00 3.79 0.43 1.83 1.57 2.45
7_5% 19.15 28.67 8.82 15.12 3.66 5.04

Total 9.04 15.78 4.71 9.04 3.04 4.48

CPA1

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 2.22 5.19 1.04 2.82 1.18 2.94
2_5% 1.16 3.74 1.16 3.74 0.00 0.00
3_5% 5.89 7.04 3.01 4.65 2.87 3.77
4_5% 13.47 12.32 9.80 9.53 3.67 4.38
5_5% 7.31 9.13 4.49 6.71 2.82 3.55
6_5% 2.45 3.83 0.63 1.49 1.82 2.58
7_5% 10.93 17.88 6.95 11.36 2.32 3.16

Total 6.84 10.96 4.28 7.63 2.31 3.48

CPA2

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 2.51 4.81 0.97 2.44 1.54 3.03
2_5% 1.06 3.41 1.06 3.41 0.00 0.00
3_5% 6.08 7.06 3.48 5.04 2.60 3.43
4_5% 11.84 15.69 7.21 8.02 2.96 4.49
5_5% 8.08 10.18 5.40 7.81 2.68 3.41
6_5% 2.35 4.34 0.62 2.24 1.73 2.60
7_5% 7.49 14.96 4.03 6.77 1.79 2.51

Total 6.26 10.86 3.67 6.36 2.08 3.29
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Table A.8: Gaps referred to the bounds available at the root nodes of the branch-and-bound
trees of CPLEX while directly solving formulations ℱ1 and ℱ2. Results for the new STOP
instances. Here, the CPLEX built-in cuts are enabled.

ℱ1

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 6.47 9.56 2.90 5.36 3.57 5.80
2_5% 1.36 3.75 1.36 3.75 0.00 0.00
3_5% 6.91 7.25 3.29 4.51 3.62 4.30
4_5% 17.93 18.40 11.29 11.94 4.97 6.20
5_5% 6.59 7.67 3.54 5.04 3.05 3.94
6_5% 2.03 3.79 0.46 1.84 1.57 2.45
7_5% 19.23 28.67 8.86 15.10 3.70 5.11

Total 9.40 15.93 4.92 9.14 3.19 4.77

ℱ2

Root gap Root primal gap Root dual gap

Set Avg (%) StDev (%) Avg (%) StDev (%) Avg (%) StDev (%)

1_5% 6.20 8.67 2.67 4.68 3.53 5.38
2_5% 1.25 5.28 1.25 5.28 0.00 0.00
3_5% 7.56 7.96 3.73 4.87 3.84 4.50
4_5% 17.70 17.43 11.19 11.15 4.84 5.81
5_5% 8.30 9.82 5.21 7.33 3.09 4.04
6_5% 2.40 3.65 0.70 1.95 1.70 2.50
7_5% 18.87 27.44 8.58 12.89 3.62 4.99

Total 9.75 15.57 5.25 8.75 3.21 4.65
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Table A.9: Extra information on the execution of B-B&C and CPA at solving the new STOP
instances.

B-B&C

Final gap

Set Avg (%) StDev (%) Nodes (#) GCCs (#)

1_5% 0.00 0.00 1966.44 30.83
2_5% 0.00 0.00 8.24 1.88
3_5% 0.00 0.00 78 611.77 144.73
4_5% 1.58 2.17 138 863.02 1059.98
5_5% 0.50 1.08 456 363.04 760.64
6_5% 0.16 0.57 259 702.45 269.10
7_5% 6.83 21.82 124 164.17 516.25

Total 1.42 8.91 173 407.28 453.79

CPA1

Final gap User cuts (#)

Set Avg (%) StDev (%) Nodes (#) GCCs CCs LCIs

1_5% 0.00 0.00 1392.67 6.59 22.09 1.17
2_5% 0.00 0.00 59.06 0.15 0.45 0.15
3_5% 0.00 0.00 57 958.87 5.30 16.20 2.37
4_5% 1.13 2.30 214 328.93 23.37 66.45 0.37
5_5% 0.45 1.10 731 486.51 1.04 22.59 0.54
6_5% 0.00 0.00 319 153.62 0.38 5.12 0.24
7_5% 1.96 12.90 171 646.52 9.72 162.82 0.10

Total 0.57 5.20 251 094.60 7.13 46.29 0.75

CPA2

Final gap User cuts (#)

Set Avg (%) StDev (%) Nodes (#) LCIs CCCs

1_5% 0.00 0.00 2850.56 1.78 13.26
2_5% 0.00 0.00 10.82 0.33 1.00
3_5% 0.00 0.00 50 461.72 3.12 10.80
4_5% 0.88 1.93 222 886.62 1.02 88.57
5_5% 0.40 0.96 667 742.45 0.67 17.41
6_5% 0.04 0.26 353 146.43 0.29 0.71
7_5% 1.99 12.90 128 465.40 0.38 68.28

Total 0.53 5.17 235 605.10 1.14 31.51
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A.5 Primal bounds obtained by the LNS heuristic

In Table A.11, we display the primal bounds obtained by the two best versions of the
LNS heuristic (FP_cuts_LNS_5000 and OFP_cuts_LNS_5000) at solving the original TOP
instances and the new STOP ones. For each instance and algorithm, we give the average
(over the 10 executions) profit sum of the solutions obtained, and the profit sum of the best
(in each round of 10 executions) solution found. We filled with dashes the entries related to
the instances for which no feasible solution was found by the heuristic, including the cases of
infeasible instances.

Table A.11: Bounds obtained by the two best versions of the LNS heuristic proposed.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p1.2.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p1.2.b(_5%) 15.00 15.00 15.00 15.00 – – – –
p1.2.c(_5%) 20.00 20.00 20.00 20.00 – – – –
p1.2.d(_5%) 30.00 30.00 30.00 30.00 15.00 15.00 15.00 15.00
p1.2.e(_5%) 45.00 45.00 45.00 45.00 – – – –
p1.2.f(_5%) 80.00 80.00 80.00 80.00 – – – –
p1.2.g(_5%) 90.00 90.00 90.00 90.00 – – – –
p1.2.h(_5%) 99.00 110.00 110.00 110.00 40.50 45.00 45.00 45.00
p1.2.i(_5%) 135.00 135.00 135.00 135.00 99.00 110.00 110.00 110.00
p1.2.j(_5%) 155.00 155.00 155.00 155.00 140.00 140.00 140.00 140.00
p1.2.k(_5%) 175.00 175.00 175.00 175.00 150.00 150.00 150.00 150.00
p1.2.l(_5%) 195.00 195.00 195.00 195.00 185.00 185.00 185.00 185.00
p1.2.m(_5%) 215.00 215.00 215.00 215.00 190.00 190.00 190.00 190.00
p1.2.n(_5%) 235.00 235.00 235.00 235.00 215.00 215.00 215.00 215.00
p1.2.o(_5%) 240.00 240.00 240.00 240.00 220.00 220.00 220.00 220.00
p1.2.p(_5%) 250.00 250.00 250.00 250.00 225.00 225.00 225.00 225.00
p1.2.q(_5%) 265.00 265.00 265.00 265.00 245.00 245.00 245.00 245.00
p1.2.r(_5%) 280.00 280.00 280.00 280.00 265.00 265.00 265.00 265.00
p1.3.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p1.3.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p1.3.c(_5%) 15.00 15.00 15.00 15.00 – – – –
p1.3.d(_5%) 15.00 15.00 15.00 15.00 – – – –
p1.3.e(_5%) 30.00 30.00 30.00 30.00 – – – –
p1.3.f(_5%) 40.00 40.00 40.00 40.00 – – – –
p1.3.g(_5%) 15.00 50.00 50.00 50.00 – – – –
p1.3.h(_5%) 70.00 70.00 70.00 70.00 – – – –
p1.3.i(_5%) 105.00 105.00 105.00 105.00 90.00 90.00 90.00 90.00
p1.3.j(_5%) 115.00 115.00 115.00 115.00 80.00 80.00 80.00 80.00
p1.3.k(_5%) 135.00 135.00 135.00 135.00 115.00 115.00 115.00 115.00
p1.3.l(_5%) 155.00 155.00 155.00 155.00 140.00 140.00 140.00 140.00
p1.3.m(_5%) 175.00 175.00 175.00 175.00 130.00 130.00 130.00 130.00
p1.3.n(_5%) 190.00 190.00 190.00 190.00 165.00 165.00 165.00 165.00
p1.3.o(_5%) 205.00 205.00 205.00 205.00 180.00 180.00 180.00 180.00
p1.3.p(_5%) 220.00 220.00 220.00 220.00 200.00 200.00 200.00 200.00
p1.3.q(_5%) 230.00 230.00 230.00 230.00 210.00 210.00 210.00 210.00
p1.3.r(_5%) 250.00 250.00 250.00 250.00 225.00 225.00 225.00 225.00
p1.4.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p1.4.b(_5%) 0.00 0.00 0.00 0.00 – – – –
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Table A.11 — continued from previous page.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p1.4.c(_5%) 0.00 0.00 0.00 0.00 – – – –
p1.4.d(_5%) 15.00 15.00 15.00 15.00 – – – –
p1.4.e(_5%) 15.00 15.00 15.00 15.00 – – – –
p1.4.f(_5%) 25.00 25.00 25.00 25.00 – – – –
p1.4.g(_5%) 35.00 35.00 35.00 35.00 – – – –
p1.4.h(_5%) 45.00 45.00 45.00 45.00 – – – –
p1.4.i(_5%) 54.00 60.00 60.00 60.00 – – – –
p1.4.j(_5%) 75.00 75.00 75.00 75.00 – – – –
p1.4.k(_5%) 100.00 100.00 100.00 100.00 – – – –
p1.4.l(_5%) 120.00 120.00 120.00 120.00 – – – –
p1.4.m(_5%) 130.00 130.00 130.00 130.00 115.00 115.00 115.00 115.00
p1.4.n(_5%) 155.00 155.00 155.00 155.00 135.00 135.00 135.00 135.00
p1.4.o(_5%) 165.00 165.00 165.00 165.00 – – – –
p1.4.p(_5%) 175.00 175.00 175.00 175.00 150.00 150.00 150.00 150.00
p1.4.q(_5%) 190.00 190.00 190.00 190.00 165.00 165.00 165.00 165.00
p1.4.r(_5%) 210.00 210.00 210.00 210.00 195.00 195.00 195.00 195.00

p2.2.a(_5%) 90.00 90.00 90.00 90.00 – – – –
p2.2.b(_5%) 48.00 120.00 120.00 120.00 – – – –
p2.2.c(_5%) 140.00 140.00 140.00 140.00 – – – –
p2.2.d(_5%) 112.00 160.00 144.00 160.00 – – – –
p2.2.e(_5%) 190.00 190.00 190.00 190.00 – – – –
p2.2.f(_5%) 200.00 200.00 200.00 200.00 – – – –
p2.2.g(_5%) 200.00 200.00 200.00 200.00 – – – –
p2.2.h(_5%) 230.00 230.00 230.00 230.00 200.00 200.00 200.00 200.00
p2.2.i(_5%) 230.00 230.00 230.00 230.00 – – – –
p2.2.j(_5%) 234.00 260.00 260.00 260.00 220.00 220.00 220.00 220.00
p2.2.k(_5%) 275.00 275.00 247.50 275.00 210.00 210.00 210.00 210.00
p2.3.a(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.3.b(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.3.c(_5%) 42.00 105.00 105.00 105.00 – – – –
p2.3.d(_5%) 105.00 105.00 105.00 105.00 – – – –
p2.3.e(_5%) 120.00 120.00 120.00 120.00 – – – –
p2.3.f(_5%) 108.00 120.00 120.00 120.00 – – – –
p2.3.g(_5%) 145.00 145.00 145.00 145.00 – – – –
p2.3.h(_5%) 165.00 165.00 165.00 165.00 – – – –
p2.3.i(_5%) 180.00 200.00 200.00 200.00 170.00 170.00 170.00 170.00
p2.3.j(_5%) 180.00 200.00 200.00 200.00 160.00 160.00 160.00 160.00
p2.3.k(_5%) 200.00 200.00 200.00 200.00 170.00 170.00 170.00 170.00
p2.4.a(_5%) 10.00 10.00 10.00 10.00 – – – –
p2.4.b(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.4.c(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.4.d(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.4.e(_5%) 70.00 70.00 70.00 70.00 – – – –
p2.4.f(_5%) 105.00 105.00 105.00 105.00 – – – –
p2.4.g(_5%) 105.00 105.00 105.00 105.00 – – – –
p2.4.h(_5%) 108.00 120.00 120.00 120.00 95.00 95.00 95.00 95.00
p2.4.i(_5%) 108.00 120.00 120.00 120.00 – – – –
p2.4.j(_5%) 108.00 120.00 120.00 120.00 – – – –
p2.4.k(_5%) 180.00 180.00 180.00 180.00 145.00 145.00 145.00 145.00

p3.2.a(_5%) 90.00 90.00 90.00 90.00 – – – –
p3.2.b(_5%) 150.00 150.00 150.00 150.00 – – – –
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Table A.11 — continued from previous page.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p3.2.c(_5%) 180.00 180.00 180.00 180.00 – – – –
p3.2.d(_5%) 220.00 220.00 220.00 220.00 – – – –
p3.2.e(_5%) 260.00 260.00 260.00 260.00 220.00 220.00 220.00 220.00
p3.2.f(_5%) 300.00 300.00 300.00 300.00 – – – –
p3.2.g(_5%) 360.00 360.00 360.00 360.00 290.00 290.00 290.00 290.00
p3.2.h(_5%) 410.00 410.00 410.00 410.00 360.00 360.00 360.00 360.00
p3.2.i(_5%) 460.00 460.00 460.00 460.00 400.00 400.00 400.00 400.00
p3.2.j(_5%) 510.00 510.00 510.00 510.00 470.00 470.00 470.00 470.00
p3.2.k(_5%) 550.00 550.00 550.00 550.00 510.00 510.00 510.00 510.00
p3.2.l(_5%) 590.00 590.00 590.00 590.00 540.00 540.00 540.00 540.00
p3.2.m(_5%) 620.00 620.00 620.00 620.00 560.00 560.00 560.00 560.00
p3.2.n(_5%) 660.00 660.00 660.00 660.00 610.00 610.00 610.00 610.00
p3.2.o(_5%) 690.00 690.00 690.00 690.00 660.00 660.00 660.00 660.00
p3.2.p(_5%) 720.00 720.00 720.00 720.00 690.00 690.00 690.00 690.00
p3.2.q(_5%) 760.00 760.00 760.00 760.00 710.00 710.00 710.00 710.00
p3.2.r(_5%) 790.00 790.00 790.00 790.00 740.00 740.00 740.00 740.00
p3.2.s(_5%) 800.00 800.00 800.00 800.00 730.00 730.00 730.00 730.00
p3.2.t(_5%) 800.00 800.00 800.00 800.00 700.00 700.00 700.00 700.00
p3.3.a(_5%) 30.00 30.00 30.00 30.00 – – – –
p3.3.b(_5%) 27.00 90.00 90.00 90.00 – – – –
p3.3.c(_5%) 120.00 120.00 120.00 120.00 – – – –
p3.3.d(_5%) 170.00 170.00 170.00 170.00 150.00 150.00 150.00 150.00
p3.3.e(_5%) 200.00 200.00 200.00 200.00 – – – –
p3.3.f(_5%) 230.00 230.00 230.00 230.00 160.00 160.00 160.00 160.00
p3.3.g(_5%) 270.00 270.00 270.00 270.00 – – – –
p3.3.h(_5%) 300.00 300.00 300.00 300.00 – – – –
p3.3.i(_5%) 330.00 330.00 330.00 330.00 – – – –
p3.3.j(_5%) 380.00 380.00 380.00 380.00 360.00 360.00 360.00 360.00
p3.3.k(_5%) 440.00 440.00 440.00 440.00 400.00 400.00 400.00 400.00
p3.3.l(_5%) 480.00 480.00 480.00 480.00 – – – –
p3.3.m(_5%) 520.00 520.00 520.00 520.00 470.00 470.00 470.00 470.00
p3.3.n(_5%) 570.00 570.00 570.00 570.00 500.00 500.00 500.00 500.00
p3.3.o(_5%) 590.00 590.00 590.00 590.00 560.00 560.00 560.00 560.00
p3.3.p(_5%) 640.00 640.00 640.00 640.00 570.00 570.00 570.00 570.00
p3.3.q(_5%) 680.00 680.00 680.00 680.00 650.00 650.00 650.00 650.00
p3.3.r(_5%) 710.00 710.00 710.00 710.00 660.00 660.00 660.00 660.00
p3.3.s(_5%) 720.00 720.00 720.00 720.00 670.00 670.00 670.00 670.00
p3.3.t(_5%) 760.00 760.00 760.00 760.00 700.00 700.00 700.00 700.00
p3.4.a(_5%) 20.00 20.00 20.00 20.00 – – – –
p3.4.b(_5%) 30.00 30.00 30.00 30.00 – – – –
p3.4.c(_5%) 90.00 90.00 90.00 90.00 – – – –
p3.4.d(_5%) 40.00 100.00 100.00 100.00 – – – –
p3.4.e(_5%) 56.00 140.00 140.00 140.00 – – – –
p3.4.f(_5%) 190.00 190.00 190.00 190.00 – – – –
p3.4.g(_5%) 220.00 220.00 220.00 220.00 190.00 190.00 190.00 190.00
p3.4.h(_5%) 240.00 240.00 240.00 240.00 220.00 220.00 220.00 220.00
p3.4.i(_5%) 270.00 270.00 270.00 270.00 230.00 230.00 230.00 230.00
p3.4.j(_5%) 310.00 310.00 310.00 310.00 – – – –
p3.4.k(_5%) 350.00 350.00 350.00 350.00 280.00 280.00 280.00 280.00
p3.4.l(_5%) 380.00 380.00 380.00 380.00 – – – –
p3.4.m(_5%) 390.00 390.00 390.00 390.00 340.00 340.00 340.00 340.00
p3.4.n(_5%) 440.00 440.00 440.00 440.00 380.00 380.00 380.00 380.00
p3.4.o(_5%) 500.00 500.00 500.00 500.00 – – – –
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Table A.11 — continued from previous page.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p3.4.p(_5%) 560.00 560.00 560.00 560.00 530.00 530.00 530.00 530.00
p3.4.q(_5%) 560.00 560.00 560.00 560.00 500.00 500.00 500.00 500.00
p3.4.r(_5%) 600.00 600.00 600.00 600.00 560.00 560.00 560.00 560.00
p3.4.s(_5%) 670.00 670.00 670.00 670.00 610.00 610.00 610.00 610.00
p3.4.t(_5%) 670.00 670.00 670.00 670.00 630.00 630.00 630.00 630.00

p4.2.a(_5%) 164.80 206.00 206.00 206.00 – – – –
p4.2.b(_5%) 306.90 341.00 341.00 341.00 – – – –
p4.2.c(_5%) 452.00 452.00 452.00 452.00 – – – –
p4.2.d(_5%) 529.10 531.00 527.20 530.00 – – – –
p4.2.e(_5%) 618.00 618.00 618.00 618.00 443.00 443.00 443.00 443.00
p4.2.f(_5%) 677.60 679.00 679.50 687.00 618.00 618.00 618.00 618.00
p4.2.g(_5%) 753.70 757.00 752.10 756.00 574.00 574.00 574.00 574.00
p4.2.h(_5%) 827.10 835.00 827.70 835.00 714.80 718.00 716.40 718.00
p4.2.i(_5%) 912.60 918.00 918.00 918.00 726.80 728.00 726.80 728.00
p4.2.j(_5%) 962.80 964.00 962.80 964.00 869.20 873.00 868.60 873.00
p4.2.k(_5%) 1022.00 1022.00 1022.00 1022.00 952.00 955.00 952.00 955.00
p4.2.l(_5%) 1060.50 1074.00 1073.40 1074.00 1047.90 1049.00 1049.00 1049.00
p4.2.m(_5%) 1129.50 1132.00 1130.10 1132.00 1085.90 1096.00 1095.00 1096.00
p4.2.n(_5%) 1173.20 1174.00 1173.80 1174.00 1090.60 1111.00 1104.50 1111.00
p4.2.o(_5%) 1218.00 1218.00 1218.00 1218.00 1142.50 1149.00 1147.90 1149.00
p4.2.p(_5%) 1241.10 1242.00 1241.20 1242.00 1154.10 1157.00 1154.20 1157.00
p4.2.q(_5%) 1265.60 1268.00 1265.40 1268.00 1198.10 1202.00 1197.60 1201.00
p4.2.r(_5%) 1288.10 1292.00 1289.30 1292.00 1223.30 1225.00 1223.80 1225.00
p4.2.s(_5%) 1304.00 1304.00 1304.00 1304.00 1213.00 1213.00 1213.00 1213.00
p4.2.t(_5%) 1306.00 1306.00 1306.00 1306.00 1243.00 1243.00 1243.00 1243.00
p4.3.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p4.3.b(_5%) 38.00 38.00 38.00 38.00 – – – –
p4.3.c(_5%) 193.00 193.00 193.00 193.00 – – – –
p4.3.d(_5%) 335.00 335.00 335.00 335.00 – – – –
p4.3.e(_5%) 468.00 468.00 468.00 468.00 – – – –
p4.3.f(_5%) 579.00 579.00 579.00 579.00 – – – –
p4.3.g(_5%) 652.90 653.00 652.90 653.00 – – – –
p4.3.h(_5%) 726.80 729.00 727.60 729.00 383.30 384.00 383.20 384.00
p4.3.i(_5%) 809.00 809.00 809.00 809.00 742.00 742.00 742.00 742.00
p4.3.j(_5%) 858.70 861.00 860.00 861.00 724.00 724.00 724.00 724.00
p4.3.k(_5%) 918.20 919.00 918.20 919.00 828.20 829.00 828.20 829.00
p4.3.l(_5%) 967.80 970.00 970.60 979.00 887.20 888.00 885.80 888.00
p4.3.m(_5%) 1053.40 1063.00 1053.80 1063.00 969.00 982.00 968.40 982.00
p4.3.n(_5%) 1120.40 1121.00 1121.00 1121.00 1024.90 1028.00 1026.20 1028.00
p4.3.o(_5%) 1167.70 1170.00 1168.90 1171.00 1108.60 1114.00 1107.90 1111.00
p4.3.p(_5%) 1222.00 1222.00 1222.00 1222.00 1150.20 1152.00 1150.70 1152.00
p4.3.q(_5%) 1253.00 1253.00 1252.80 1253.00 1171.50 1177.00 1175.60 1177.00
p4.3.r(_5%) 1268.90 1271.00 1269.60 1273.00 1215.00 1215.00 1215.00 1215.00
p4.3.s(_5%) 1295.00 1295.00 1295.00 1295.00 1258.70 1259.00 1258.10 1259.00
p4.3.t(_5%) 1304.30 1305.00 1304.30 1305.00 1254.00 1254.00 1254.00 1255.00
p4.4.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p4.4.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p4.4.c(_5%) 0.00 0.00 0.00 0.00 – – – –
p4.4.d(_5%) 38.00 38.00 38.00 38.00 – – – –
p4.4.e(_5%) 183.00 183.00 183.00 183.00 – – – –
p4.4.f(_5%) 324.00 324.00 324.00 324.00 – – – –
p4.4.g(_5%) 461.00 461.00 461.00 461.00 – – – –
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TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p4.4.h(_5%) 571.00 571.00 571.00 571.00 – – – –
p4.4.i(_5%) 657.00 657.00 657.00 657.00 – – – –
p4.4.j(_5%) 731.90 732.00 731.60 732.00 573.00 573.00 573.00 573.00
p4.4.k(_5%) 819.90 821.00 819.80 821.00 – – – –
p4.4.l(_5%) 877.70 879.00 877.90 879.00 682.00 682.00 682.00 682.00
p4.4.m(_5%) 915.30 919.00 913.70 916.00 – – – –
p4.4.n(_5%) 967.20 976.00 965.30 971.00 847.30 852.00 847.80 852.00
p4.4.o(_5%) 1050.70 1060.00 1040.60 1051.00 943.89 945.00 944.20 945.00
p4.4.p(_5%) 1121.40 1124.00 1121.30 1124.00 1046.70 1048.00 1046.70 1048.00
p4.4.q(_5%) 1160.20 1161.00 1159.90 1161.00 1076.60 1077.00 1076.20 1078.00
p4.4.r(_5%) 1210.00 1216.00 1207.50 1216.00 1128.50 1137.00 1132.80 1137.00
p4.4.s(_5%) 1257.90 1260.00 1256.70 1260.00 1205.90 1208.00 1206.20 1208.00
p4.4.t(_5%) 1283.10 1285.00 1283.30 1285.00 1241.70 1244.00 1242.10 1244.00

p5.2.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p5.2.b(_5%) 20.00 20.00 20.00 20.00 – – – –
p5.2.c(_5%) 50.00 50.00 50.00 50.00 – – – –
p5.2.d(_5%) 80.00 80.00 80.00 80.00 – – – –
p5.2.e(_5%) 180.00 180.00 180.00 180.00 – – – –
p5.2.f(_5%) 216.00 240.00 240.00 240.00 – – – –
p5.2.g(_5%) 320.00 320.00 320.00 320.00 – – – –
p5.2.h(_5%) 410.00 410.00 410.00 410.00 – – – –
p5.2.i(_5%) 480.00 480.00 480.00 480.00 350.00 350.00 350.00 350.00
p5.2.j(_5%) 580.00 580.00 580.00 580.00 460.00 460.00 460.00 460.00
p5.2.k(_5%) 670.00 670.00 670.00 670.00 505.00 505.00 505.00 505.00
p5.2.l(_5%) 800.00 800.00 800.00 800.00 660.00 660.00 660.00 660.00
p5.2.m(_5%) 860.00 860.00 860.00 860.00 730.00 730.00 730.00 730.00
p5.2.n(_5%) 924.00 925.00 924.50 925.00 815.00 815.00 815.00 815.00
p5.2.o(_5%) 1020.00 1020.00 1020.00 1020.00 900.00 900.00 900.00 900.00
p5.2.p(_5%) 1150.00 1150.00 1150.00 1150.00 1030.00 1030.00 1030.00 1030.00
p5.2.q(_5%) 1195.00 1195.00 1195.00 1195.00 1080.00 1080.00 1080.00 1080.00
p5.2.r(_5%) 1260.00 1260.00 1260.00 1260.00 1170.00 1170.00 1170.00 1170.00
p5.2.s(_5%) 1340.00 1340.00 1340.00 1340.00 1250.00 1250.00 1250.00 1250.00
p5.2.t(_5%) 1398.00 1400.00 1398.00 1400.00 1310.00 1310.00 1309.00 1310.00
p5.2.u(_5%) 1460.00 1460.00 1460.00 1460.00 1360.00 1360.00 1360.00 1360.00
p5.2.v(_5%) 1504.50 1505.00 1505.00 1505.00 1395.00 1395.00 1394.50 1395.00
p5.2.w(_5%) 1562.50 1565.00 1561.00 1565.00 1464.00 1465.00 1465.00 1465.00
p5.2.x(_5%) 1610.00 1610.00 1610.00 1610.00 1488.50 1490.00 1490.00 1490.00
p5.2.y(_5%) 1645.00 1645.00 1645.00 1645.00 1535.00 1535.00 1534.50 1535.00
p5.2.z(_5%) 1680.00 1680.00 1680.00 1680.00 1570.00 1570.00 1570.00 1570.00
p5.3.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p5.3.b(_5%) 15.00 15.00 15.00 15.00 – – – –
p5.3.c(_5%) 20.00 20.00 20.00 20.00 – – – –
p5.3.d(_5%) 60.00 60.00 60.00 60.00 – – – –
p5.3.e(_5%) 95.00 95.00 95.00 95.00 – – – –
p5.3.f(_5%) 88.00 110.00 110.00 110.00 – – – –
p5.3.g(_5%) 185.00 185.00 185.00 185.00 95.00 95.00 95.00 95.00
p5.3.h(_5%) 260.00 260.00 260.00 260.00 – – – –
p5.3.i(_5%) 335.00 335.00 335.00 335.00 – – – –
p5.3.j(_5%) 470.00 470.00 470.00 470.00 – – – –
p5.3.k(_5%) 495.00 495.00 495.00 495.00 425.00 425.00 425.00 425.00
p5.3.l(_5%) 595.00 595.00 595.00 595.00 490.00 490.00 490.00 490.00
p5.3.m(_5%) 650.00 650.00 650.00 650.00 535.00 535.00 535.00 535.00
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TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p5.3.n(_5%) 755.00 755.00 755.00 755.00 665.00 665.00 665.00 665.00
p5.3.o(_5%) 870.00 870.00 870.00 870.00 740.00 740.00 740.00 740.00
p5.3.p(_5%) 990.00 990.00 990.00 990.00 860.00 860.00 860.00 860.00
p5.3.q(_5%) 1070.00 1070.00 1070.00 1070.00 965.00 965.00 965.00 965.00
p5.3.r(_5%) 1125.00 1125.00 1125.00 1125.00 985.00 985.00 985.00 985.00
p5.3.s(_5%) 1190.00 1190.00 1190.00 1190.00 1090.00 1090.00 1090.00 1090.00
p5.3.t(_5%) 1260.00 1260.00 1260.00 1260.00 1150.00 1150.00 1150.00 1150.00
p5.3.u(_5%) 1345.00 1345.00 1345.00 1345.00 1224.00 1225.00 1224.50 1225.00
p5.3.v(_5%) 1424.00 1425.00 1424.00 1425.00 1314.00 1315.00 1314.00 1315.00
p5.3.w(_5%) 1485.00 1485.00 1485.00 1485.00 1387.50 1390.00 1387.00 1390.00
p5.3.x(_5%) 1549.50 1555.00 1548.00 1555.00 1447.50 1450.00 1447.00 1450.00
p5.3.y(_5%) 1590.00 1590.00 1591.50 1595.00 1500.50 1505.00 1500.50 1505.00
p5.3.z(_5%) 1635.00 1635.00 1635.00 1635.00 1515.00 1515.00 1515.00 1515.00
p5.4.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p5.4.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p5.4.c(_5%) 20.00 20.00 20.00 20.00 – – – –
p5.4.d(_5%) 20.00 20.00 20.00 20.00 – – – –
p5.4.e(_5%) 20.00 20.00 20.00 20.00 – – – –
p5.4.f(_5%) 80.00 80.00 80.00 80.00 – – – –
p5.4.g(_5%) 140.00 140.00 140.00 140.00 – – – –
p5.4.h(_5%) 140.00 140.00 140.00 140.00 – – – –
p5.4.i(_5%) 240.00 240.00 240.00 240.00 – – – –
p5.4.j(_5%) 340.00 340.00 340.00 340.00 220.00 220.00 220.00 220.00
p5.4.k(_5%) 340.00 340.00 340.00 340.00 – – – –
p5.4.l(_5%) 430.00 430.00 430.00 430.00 – – – –
p5.4.m(_5%) 555.00 555.00 555.00 555.00 – – – –
p5.4.n(_5%) 620.00 620.00 620.00 620.00 440.00 440.00 440.00 440.00
p5.4.o(_5%) 690.00 690.00 690.00 690.00 – – – –
p5.4.p(_5%) 765.00 765.00 765.00 765.00 665.00 665.00 665.00 665.00
p5.4.q(_5%) 860.00 860.00 860.00 860.00 715.00 715.00 715.00 715.00
p5.4.r(_5%) 960.00 960.00 960.00 960.00 850.00 850.00 850.00 850.00
p5.4.s(_5%) 1029.50 1030.00 1030.00 1030.00 935.00 935.00 935.00 935.00
p5.4.t(_5%) 1160.00 1160.00 1160.00 1160.00 1060.00 1060.00 1060.00 1060.00
p5.4.u(_5%) 1300.00 1300.00 1300.00 1300.00 1190.00 1190.00 1190.00 1190.00
p5.4.v(_5%) 1320.00 1320.00 1320.00 1320.00 – – – –
p5.4.w(_5%) 1390.00 1390.00 1389.00 1390.00 1258.00 1260.00 1256.50 1260.00
p5.4.x(_5%) 1449.50 1450.00 1450.00 1450.00 1310.00 1310.00 1310.00 1310.00
p5.4.y(_5%) 1520.00 1520.00 1520.00 1520.00 1397.00 1400.00 1397.00 1400.00
p5.4.z(_5%) 1620.00 1620.00 1620.00 1620.00 1530.00 1530.00 1530.00 1530.00

p6.2.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.2.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.2.c(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.2.d(_5%) 134.40 192.00 172.80 192.00 – – – –
p6.2.e(_5%) 360.00 360.00 360.00 360.00 282.00 282.00 282.00 282.00
p6.2.f(_5%) 588.00 588.00 588.00 588.00 474.00 474.00 474.00 474.00
p6.2.g(_5%) 660.00 660.00 660.00 660.00 522.00 522.00 522.00 522.00
p6.2.h(_5%) 780.00 780.00 780.00 780.00 708.00 708.00 708.00 708.00
p6.2.i(_5%) 888.00 888.00 888.00 888.00 828.00 828.00 828.00 828.00
p6.2.j(_5%) 948.00 948.00 948.00 948.00 846.00 846.00 846.00 846.00
p6.2.k(_5%) 1032.00 1032.00 1032.00 1032.00 948.00 948.00 948.00 948.00
p6.2.l(_5%) 1116.00 1116.00 1116.00 1116.00 1008.00 1008.00 1008.00 1008.00
p6.2.m(_5%) 1188.00 1188.00 1188.00 1188.00 1086.00 1086.00 1086.00 1086.00
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Table A.11 — continued from previous page.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p6.2.n(_5%) 1260.00 1260.00 1260.00 1260.00 1169.40 1170.00 1170.00 1170.00
p6.3.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.c(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.d(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.e(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.f(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.3.g(_5%) 282.00 282.00 282.00 282.00 – – – –
p6.3.h(_5%) 444.00 444.00 444.00 444.00 – – – –
p6.3.i(_5%) 642.00 642.00 642.00 642.00 582.00 582.00 582.00 582.00
p6.3.j(_5%) 828.00 828.00 828.00 828.00 678.00 678.00 678.00 678.00
p6.3.k(_5%) 894.00 894.00 894.00 894.00 840.00 840.00 840.00 840.00
p6.3.l(_5%) 1002.00 1002.00 1002.00 1002.00 930.00 930.00 930.00 930.00
p6.3.m(_5%) 1080.00 1080.00 1080.00 1080.00 1014.00 1014.00 1014.00 1014.00
p6.3.n(_5%) 1170.00 1170.00 1170.00 1170.00 1092.00 1092.00 1090.80 1092.00
p6.4.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.b(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.c(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.d(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.e(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.f(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.g(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.h(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.i(_5%) 0.00 0.00 0.00 0.00 – – – –
p6.4.j(_5%) 366.00 366.00 366.00 366.00 – – – –
p6.4.k(_5%) 528.00 528.00 528.00 528.00 318.00 318.00 318.00 318.00
p6.4.l(_5%) 696.00 696.00 696.00 696.00 660.00 660.00 660.00 660.00
p6.4.m(_5%) 912.00 912.00 912.00 912.00 785.40 786.00 786.00 786.00
p6.4.n(_5%) 1068.00 1068.00 1068.00 1068.00 990.00 990.00 990.00 990.00

p7.2.a(_5%) 30.00 30.00 30.00 30.00 – – – –
p7.2.b(_5%) 64.00 64.00 64.00 64.00 – – – –
p7.2.c(_5%) 30.30 101.00 101.00 101.00 – – – –
p7.2.d(_5%) 190.00 190.00 190.00 190.00 – – – –
p7.2.e(_5%) 231.50 290.00 289.40 290.00 – – – –
p7.2.f(_5%) 387.00 387.00 387.00 387.00 – – – –
p7.2.g(_5%) 459.00 459.00 459.00 459.00 – – – –
p7.2.h(_5%) 521.00 521.00 521.00 521.00 337.00 337.00 337.00 337.00
p7.2.i(_5%) 579.20 580.00 579.60 580.00 – – – –
p7.2.j(_5%) 646.00 646.00 645.80 646.00 – – – –
p7.2.k(_5%) 702.50 705.00 702.20 705.00 – – – –
p7.2.l(_5%) 764.20 767.00 767.00 767.00 636.00 636.00 631.00 631.00
p7.2.m(_5%) 827.00 827.00 825.00 827.00 731.00 731.00 731.00 731.00
p7.2.n(_5%) 888.00 888.00 888.00 888.00 654.20 656.00 656.00 656.00
p7.2.o(_5%) 944.60 945.00 944.60 945.00 802.00 802.00 802.00 802.00
p7.2.p(_5%) 1001.60 1002.00 1001.50 1002.00 843.20 844.00 843.60 844.00
p7.2.q(_5%) 1042.30 1043.00 1042.70 1044.00 880.70 885.00 880.22 884.00
p7.2.r(_5%) 1093.70 1094.00 1093.00 1094.00 968.00 968.00 965.60 968.00
p7.2.s(_5%) 1134.70 1135.00 1127.80 1136.00 1001.20 1007.00 1004.50 1007.00
p7.2.t(_5%) 1172.20 1179.00 1176.30 1179.00 1073.80 1075.00 1068.80 1070.00
p7.3.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p7.3.b(_5%) 46.00 46.00 46.00 46.00 – – – –
p7.3.c(_5%) 79.00 79.00 79.00 79.00 – – – –
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Table A.11 — continued from previous page.

TOP STOP

FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000 FP_cuts_LNS_5000

Profit sum Profit sum Profit sum Profit sum

Avg Best Avg Best Avg Best Avg Best

p7.3.d(_5%) 46.80 117.00 117.00 117.00 – – – –
p7.3.e(_5%) 175.00 175.00 175.00 175.00 – – – –
p7.3.f(_5%) 247.00 247.00 247.00 247.00 – – – –
p7.3.g(_5%) 344.00 344.00 344.00 344.00 – – – –
p7.3.h(_5%) 425.00 425.00 425.00 425.00 – – – –
p7.3.i(_5%) 487.00 487.00 487.00 487.00 – – – –
p7.3.j(_5%) 560.40 564.00 563.20 564.00 – – – –
p7.3.k(_5%) 633.00 633.00 633.00 633.00 395.00 395.00 395.00 395.00
p7.3.l(_5%) 683.00 684.00 683.20 684.00 522.00 522.00 522.00 522.00
p7.3.m(_5%) 759.40 762.00 760.90 762.00 – – – –
p7.3.n(_5%) 816.40 820.00 818.30 820.00 – – – –
p7.3.o(_5%) 858.80 860.00 865.00 874.00 600.70 602.00 601.30 602.00
p7.3.p(_5%) 920.50 927.00 920.30 927.00 755.90 757.00 755.90 757.00
p7.3.q(_5%) 975.10 987.00 973.80 987.00 873.20 874.00 873.80 874.00
p7.3.r(_5%) 1020.70 1021.00 1020.50 1023.00 923.00 923.00 923.00 923.00
p7.3.s(_5%) 1077.80 1081.00 1075.40 1081.00 949.00 949.00 – –
p7.3.t(_5%) 1117.80 1120.00 1117.50 1120.00 1031.10 1034.00 1030.20 1034.00
p7.4.a(_5%) 0.00 0.00 0.00 0.00 – – – –
p7.4.b(_5%) 30.00 30.00 30.00 30.00 – – – –
p7.4.c(_5%) 46.00 46.00 46.00 46.00 – – – –
p7.4.d(_5%) 79.00 79.00 79.00 79.00 – – – –
p7.4.e(_5%) 123.00 123.00 123.00 123.00 – – – –
p7.4.f(_5%) 164.00 164.00 164.00 164.00 – – – –
p7.4.g(_5%) 217.00 217.00 217.00 217.00 – – – –
p7.4.h(_5%) 285.00 285.00 285.00 285.00 – – – –
p7.4.i(_5%) 366.00 366.00 366.00 366.00 – – – –
p7.4.j(_5%) 462.00 462.00 462.00 462.00 – – – –
p7.4.k(_5%) 518.40 520.00 519.20 520.00 – – – –
p7.4.l(_5%) 586.70 590.00 586.70 590.00 – – – –
p7.4.m(_5%) 646.00 646.00 646.00 646.00 – – – –
p7.4.n(_5%) 728.10 730.00 727.70 730.00 – – – –
p7.4.o(_5%) 779.90 781.00 780.50 781.00 537.00 537.00 537.00 537.00
p7.4.p(_5%) 842.80 846.00 844.90 846.00 768.30 771.00 767.40 771.00
p7.4.q(_5%) 908.10 909.00 908.40 909.00 780.80 781.00 780.60 781.00
p7.4.r(_5%) 970.00 970.00 970.00 970.00 794.29 796.00 793.00 794.00
p7.4.s(_5%) 1022.00 1022.00 1021.90 1022.00 857.00 857.00 857.00 857.00
p7.4.t(_5%) 1077.00 1077.00 1076.80 1077.00 939.00 939.00 939.00 939.00
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A.6 Warm starting the cutting-plane algorithms with primal
heuristics

For completeness, we tested four variations of the hybrid algorithm obtained from
warm starting CPA with the solutions provided by the LNS heuristic discussed in
Chapter 4 (in particular, the two best variations, namely FP_cuts_LNS_5000 and
OFP_cuts_LNS_5000). Without loss of generality, an algorithm that couples the cutting-
plane algorithm CPA1 with the heuristic solution provided by FP_cuts_LNS_5000 is referred
to as CPA1+FP_cuts_LNS_5000.

In our implementation, the heuristic solution is fully and explicitly provided to
CPLEX through the MIPStart mechanism. Additionally, we also set the paramater IloC-
plex::Param::Advance to 2, in order to guide CPLEX into re-applying its presolve considering
the initial solution provided to the solver.

The summary of the results obtained for the variations of the hybrid algorithm tested are
given in Tables A.12 and A.13. The first column displays the name of each instance set, and, for
each variation of the hybrid algorithm, we give four result values described as follows. The first
value corresponds to the number of instances solved at optimality (or to proven infeasibility)
out of the complete instance set. The second one is the average wall-clock processing time
(in seconds) spent in solving these instances. Note that this entry only takes into account the
instances solved at optimality. The last couple of result values provides the average and the
standard deviation (only over the unsolved instances in each set) of the relative optimality gaps
obtained by the algorithm. These gaps are given by 𝑈𝐵−𝐿𝐵

𝑈𝐵 , where 𝐿𝐵 and 𝑈𝐵 are, respectively,
the best lower and upper bounds obtained by the corresponding algorithm for a given instance
within two hours of execution. If, for a given instance, no feasible solution is found within the
time limit and its infeasibility is also not proven, the corresponding optimality gap is assumed
to be 100%. Likewise, this gap is set to 0% whenever the instance is proven to be infeasible.
The last row gives the overall results considering the complete benchmark of instances. Bold
entries highlight, for each instance set, the best algorithm(s) in terms of number of instances
solved to optimality.

In Tables A.14 and A.15, we display a per-instance report of the results obtained by
our implementations of CPA2+FP_cuts_LNS_5000 and CPA2+OFP_cuts_LNS_5000 — the
ones that performed batter — at solving, respectively, the original TOP instances and the
new benchmark of STOP instances. For both algorithms, we report, for each instance, the
best lower and upper bounds obtained within two hours of execution (columns “LB” and “UB”,
respectively) and the wall-clock execution time in seconds. For the cases where neither a feasible
solution was found nor the infeasibility was proven, the entries “LB” and “UB” were filled with
“-inf” and “inf”, respectively. We filled with dashes the entries related to the instances that
were proven to be infeasible within the time limit. In addition, we marked in bold the instances
for which any of the two algorithms found optimality certificates that could not be found by
CPA alone, B-B&C or any other previous exact algorithm in the literature (in the case of the
TOP instances).
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Table A.12: Comparison of the four variations of the hybrid algorithm tested at solving the
original benchmark of TOP instances. Bold entries highlight, for each instance set, the best
algorithm(s) in terms of number of instances solved to optimality.

CPA1+FP_cuts_LNS_5000 CPA1+OFP_cuts_LNS_5000

solved unsolved solved unsolved

Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1 54/54 1.89 – – 54/54 2.04 – –
2 33/33 0.28 – – 33/33 0.29 – –
3 60/60 94.47 – – 60/60 116.43 – –
4 44/60 753.55 1.66 1.31 42/60 745.34 1.69 1.54
5 62/78 359.44 3.01 1.70 61/78 368.47 2.84 1.71
6 41/42 135.24 1.37 – 41/42 156.92 1.50 –
7 50/60 650.80 2.19 0.59 49/60 630.96 2.01 0.79

Total 344/387 288.68 2.28 1.44 340/387 288.93 2.18 1.52

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

solved unsolved solved unsolved

Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1 54/54 1.64 – – 54/54 2.00 – –
2 33/33 0.29 – – 33/33 0.32 – –
3 60/60 85.43 – – 60/60 106.83 – –
4 46/60 862.62 2.02 1.48 46/60 904.12 2.16 1.65
5 63/78 631.18 3.17 1.76 63/78 482.03 3.00 1.68
6 42/42 188.12 – – 41/42 102.29 1.62 –
7 47/60 463.84 1.92 0.97 48/60 649.07 2.05 0.83

Total 345/387 331.51 2.40 1.54 345/387 329.95 2.42 1.49

Table A.14: Detailed results for the hybrid algorithms at solving the original TOP instances.
We highlight in bold the instances for which the hybrid algorithms found optimality certificates
that could not be found by CPA alone, B-B&C or any other previous exact algorithm in the
literature of the TOP.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p1.2.a 0.00 0.00 0.01 0.00 0.00 0.01
p1.2.b 15.00 15.00 0.03 15.00 15.00 0.03
p1.2.c 20.00 20.00 0.06 20.00 20.00 0.06
p1.2.d 30.00 30.00 0.06 30.00 30.00 0.06
p1.2.e 45.00 45.00 0.16 45.00 45.00 0.16
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p1.2.f 80.00 80.00 0.27 80.00 80.00 0.29
p1.2.g 90.00 90.00 0.82 90.00 90.00 1.11
p1.2.h 110.00 110.00 1.35 110.00 110.00 1.93
p1.2.i 135.00 135.00 2.15 135.00 135.00 3.15
p1.2.j 155.00 155.00 1.72 155.00 155.00 2.83
p1.2.k 175.00 175.00 1.93 175.00 175.00 3.20
p1.2.l 195.00 195.00 1.97 195.00 195.00 3.69
p1.2.m 215.00 215.00 2.60 215.00 215.00 3.89
p1.2.n 235.00 235.00 2.71 235.00 235.00 3.73
p1.2.o 240.00 240.00 3.46 240.00 240.00 4.41
p1.2.p 250.00 250.00 3.17 250.00 250.00 3.81
p1.2.q 265.00 265.00 3.32 265.00 265.00 3.87
p1.2.r 280.00 280.00 4.68 280.00 280.00 5.37
p1.3.a 0.00 0.00 0.01 0.00 0.00 0.01
p1.3.b 0.00 0.00 0.01 0.00 0.00 0.01
p1.3.c 15.00 15.00 0.04 15.00 15.00 0.04
p1.3.d 15.00 15.00 0.04 15.00 15.00 0.04
p1.3.e 30.00 30.00 0.08 30.00 30.00 0.09
p1.3.f 40.00 40.00 0.10 40.00 40.00 0.10
p1.3.g 50.00 50.00 0.04 50.00 50.00 0.21
p1.3.h 70.00 70.00 0.35 70.00 70.00 0.41
p1.3.i 105.00 105.00 0.48 105.00 105.00 0.63
p1.3.j 115.00 115.00 1.16 115.00 115.00 1.35
p1.3.k 135.00 135.00 2.62 135.00 135.00 3.02
p1.3.l 155.00 155.00 2.02 155.00 155.00 2.46
p1.3.m 175.00 175.00 1.89 175.00 175.00 2.63
p1.3.n 190.00 190.00 9.45 190.00 190.00 8.90
p1.3.o 205.00 205.00 3.59 205.00 205.00 4.37
p1.3.p 220.00 220.00 2.37 220.00 220.00 3.05
p1.3.q 230.00 230.00 6.22 230.00 230.00 6.76
p1.3.r 250.00 250.00 3.44 250.00 250.00 5.22
p1.4.a 0.00 0.00 0.01 0.00 0.00 0.01
p1.4.b 0.00 0.00 0.01 0.00 0.00 0.01
p1.4.c 0.00 0.00 0.01 0.00 0.00 0.01
p1.4.d 15.00 15.00 0.04 15.00 15.00 0.04
p1.4.e 15.00 15.00 0.04 15.00 15.00 0.04
p1.4.f 25.00 25.00 0.08 25.00 25.00 0.08
p1.4.g 35.00 35.00 0.12 35.00 35.00 0.12

Continued on next page



122 Appendix A.

Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p1.4.h 45.00 45.00 0.13 45.00 45.00 0.13
p1.4.i 60.00 60.00 0.22 60.00 60.00 0.23
p1.4.j 75.00 75.00 0.31 75.00 75.00 0.33
p1.4.k 100.00 100.00 0.50 100.00 100.00 0.55
p1.4.l 120.00 120.00 0.81 120.00 120.00 0.87
p1.4.m 130.00 130.00 3.67 130.00 130.00 3.82
p1.4.n 155.00 155.00 2.37 155.00 155.00 2.58
p1.4.o 165.00 165.00 4.54 165.00 165.00 5.58
p1.4.p 175.00 175.00 3.09 175.00 175.00 3.45
p1.4.q 190.00 190.00 4.80 190.00 190.00 5.25
p1.4.r 210.00 210.00 3.25 210.00 210.00 3.86

p2.2.a 90.00 90.00 0.11 90.00 90.00 0.11
p2.2.b 120.00 120.00 0.13 120.00 120.00 0.14
p2.2.c 140.00 140.00 0.20 140.00 140.00 0.23
p2.2.d 160.00 160.00 0.19 160.00 160.00 0.32
p2.2.e 190.00 190.00 0.45 190.00 190.00 0.49
p2.2.f 200.00 200.00 0.27 200.00 200.00 0.27
p2.2.g 200.00 200.00 0.28 200.00 200.00 0.32
p2.2.h 230.00 230.00 0.37 230.00 230.00 0.42
p2.2.i 230.00 230.00 0.37 230.00 230.00 0.43
p2.2.j 260.00 260.00 0.40 260.00 260.00 0.44
p2.2.k 275.00 275.00 3.13 275.00 275.00 3.27
p2.3.a 70.00 70.00 0.06 70.00 70.00 0.07
p2.3.b 70.00 70.00 0.08 70.00 70.00 0.08
p2.3.c 105.00 105.00 0.02 105.00 105.00 0.14
p2.3.d 105.00 105.00 0.13 105.00 105.00 0.13
p2.3.e 120.00 120.00 0.15 120.00 120.00 0.18
p2.3.f 120.00 120.00 0.14 120.00 120.00 0.16
p2.3.g 145.00 145.00 0.30 145.00 145.00 0.32
p2.3.h 165.00 165.00 0.28 165.00 165.00 0.32
p2.3.i 200.00 200.00 0.40 200.00 200.00 0.45
p2.3.j 200.00 200.00 0.37 200.00 200.00 0.44
p2.3.k 200.00 200.00 0.29 200.00 200.00 0.34
p2.4.a 10.00 10.00 0.01 10.00 10.00 0.01
p2.4.b 70.00 70.00 0.07 70.00 70.00 0.08
p2.4.c 70.00 70.00 0.09 70.00 70.00 0.09
p2.4.d 70.00 70.00 0.08 70.00 70.00 0.08
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p2.4.e 70.00 70.00 0.08 70.00 70.00 0.08
p2.4.f 105.00 105.00 0.15 105.00 105.00 0.15
p2.4.g 105.00 105.00 0.14 105.00 105.00 0.16
p2.4.h 120.00 120.00 0.16 120.00 120.00 0.18
p2.4.i 120.00 120.00 0.17 120.00 120.00 0.19
p2.4.j 120.00 120.00 0.15 120.00 120.00 0.17
p2.4.k 180.00 180.00 0.32 180.00 180.00 0.32

p3.2.a 90.00 90.00 0.10 90.00 90.00 0.13
p3.2.b 150.00 150.00 0.18 150.00 150.00 0.19
p3.2.c 180.00 180.00 0.49 180.00 180.00 0.54
p3.2.d 220.00 220.00 0.73 220.00 220.00 0.85
p3.2.e 260.00 260.00 1.21 260.00 260.00 1.29
p3.2.f 300.00 300.00 6.88 300.00 300.00 4.84
p3.2.g 360.00 360.00 2.83 360.00 360.00 4.06
p3.2.h 410.00 410.00 4.01 410.00 410.00 4.87
p3.2.i 460.00 460.00 7.56 460.00 460.00 8.34
p3.2.j 510.00 510.00 11.38 510.00 510.00 12.26
p3.2.k 550.00 550.00 10.28 550.00 550.00 11.41
p3.2.l 590.00 590.00 2.88 590.00 590.00 4.07
p3.2.m 620.00 620.00 5.65 620.00 620.00 6.52
p3.2.n 660.00 660.00 3.79 660.00 660.00 4.85
p3.2.o 690.00 690.00 3.60 690.00 690.00 4.63
p3.2.p 720.00 720.00 4.65 720.00 720.00 5.40
p3.2.q 760.00 760.00 3.68 760.00 760.00 5.13
p3.2.r 790.00 790.00 6.60 790.00 790.00 7.53
p3.2.s 800.00 800.00 0.58 800.00 800.00 1.25
p3.2.t 800.00 800.00 3.77 800.00 800.00 5.12
p3.3.a 30.00 30.00 0.05 30.00 30.00 0.06
p3.3.b 90.00 90.00 0.02 90.00 90.00 0.11
p3.3.c 120.00 120.00 0.15 120.00 120.00 0.16
p3.3.d 170.00 170.00 0.27 170.00 170.00 0.26
p3.3.e 200.00 200.00 0.33 200.00 200.00 0.33
p3.3.f 230.00 230.00 1.01 230.00 230.00 1.13
p3.3.g 270.00 270.00 1.12 270.00 270.00 1.23
p3.3.h 300.00 300.00 1.99 300.00 300.00 2.05
p3.3.i 330.00 330.00 34.32 330.00 330.00 22.52
p3.3.j 380.00 380.00 20.96 380.00 380.00 18.43
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p3.3.k 440.00 440.00 26.30 440.00 440.00 26.77
p3.3.l 480.00 480.00 58.23 480.00 480.00 151.02
p3.3.m 520.00 520.00 90.32 520.00 520.00 77.86
p3.3.n 570.00 570.00 12.26 570.00 570.00 13.29
p3.3.o 590.00 590.00 700.73 590.00 590.00 319.75
p3.3.p 640.00 640.00 1810.30 640.00 640.00 1901.46
p3.3.q 680.00 680.00 4.48 680.00 680.00 5.05
p3.3.r 710.00 710.00 2.94 710.00 710.00 3.77
p3.3.s 720.00 720.00 41.69 720.00 720.00 27.14
p3.3.t 760.00 760.00 130.54 760.00 760.00 45.73
p3.4.a 20.00 20.00 0.05 20.00 20.00 0.04
p3.4.b 30.00 30.00 0.06 30.00 30.00 0.06
p3.4.c 90.00 90.00 0.11 90.00 90.00 0.11
p3.4.d 100.00 100.00 0.12 100.00 100.00 0.14
p3.4.e 140.00 140.00 0.21 140.00 140.00 0.22
p3.4.f 190.00 190.00 0.32 190.00 190.00 0.33
p3.4.g 220.00 220.00 0.39 220.00 220.00 0.39
p3.4.h 240.00 240.00 0.81 240.00 240.00 0.84
p3.4.i 270.00 270.00 0.87 270.00 270.00 0.89
p3.4.j 310.00 310.00 1.43 310.00 310.00 1.54
p3.4.k 350.00 350.00 1.07 350.00 350.00 1.17
p3.4.l 380.00 380.00 1.32 380.00 380.00 1.46
p3.4.m 390.00 390.00 513.83 390.00 390.00 856.31
p3.4.n 440.00 440.00 71.30 440.00 440.00 113.65
p3.4.o 500.00 500.00 25.04 500.00 500.00 25.73
p3.4.p 560.00 560.00 2.80 560.00 560.00 3.07
p3.4.q 560.00 560.00 1451.07 560.00 560.00 2656.80
p3.4.r 600.00 600.00 31.56 600.00 600.00 29.44
p3.4.s 670.00 670.00 2.36 670.00 670.00 3.06
p3.4.t 670.00 670.00 2.51 670.00 670.00 2.95

p4.2.a 206.00 206.00 1.12 206.00 206.00 1.31
p4.2.b 341.00 341.00 4.69 341.00 341.00 7.95
p4.2.c 452.00 452.00 10.84 452.00 452.00 20.89
p4.2.d 531.00 531.00 61.24 531.00 531.00 105.83
p4.2.e 618.00 618.00 61.46 618.00 618.00 109.77
p4.2.f 687.00 687.00 337.32 687.00 687.00 387.79
p4.2.g 757.00 757.00 172.49 757.00 757.00 221.99
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p4.2.h 835.00 835.00 146.30 835.00 835.00 199.12
p4.2.i 918.00 918.00 152.43 918.00 918.00 225.00
p4.2.j 965.00 965.00 195.68 965.00 965.00 287.35
p4.2.k 1022.00 1022.00 280.31 1022.00 1022.00 372.53
p4.2.l 1074.00 1074.00 368.99 1074.00 1074.00 486.28
p4.2.m 1132.00 1132.00 231.68 1132.00 1132.00 305.02
p4.2.n 1174.00 1174.00 289.82 1174.00 1174.00 351.89
p4.2.o 1218.00 1218.00 198.46 1218.00 1218.00 270.53
p4.2.p 1242.00 1242.00 1081.80 1242.00 1242.00 1031.72
p4.2.q 1268.00 1268.00 2884.50 1268.00 1268.00 2653.58
p4.2.r 1292.00 1292.00 621.60 1292.00 1292.00 832.86
p4.2.s 1304.00 1304.00 5657.63 1304.00 1304.00 6057.61
p4.2.t 1306.00 1306.00 14.52 1306.00 1306.00 300.14
p4.3.a 0.00 0.00 0.03 0.00 0.00 0.03
p4.3.b 38.00 38.00 0.13 38.00 38.00 0.13
p4.3.c 193.00 193.00 1.22 193.00 193.00 1.25
p4.3.d 335.00 335.00 12.23 335.00 335.00 13.29
p4.3.e 468.00 468.00 15.24 468.00 468.00 20.83
p4.3.f 579.00 579.00 13.02 579.00 579.00 19.75
p4.3.g 653.00 653.00 106.99 653.00 653.00 217.72
p4.3.h 729.00 729.00 496.03 729.00 729.00 567.03
p4.3.i 809.00 809.00 113.45 809.00 809.00 147.91
p4.3.j 861.00 861.00 4335.73 861.00 861.00 6602.74
p4.3.k 919.00 924.59 7200.00 919.00 930.13 7200.00
p4.3.l 970.00 1007.88 7200.00 970.00 1007.90 7200.00
p4.3.m 1053.00 1070.99 7200.00 1063.00 1065.69 7200.00
p4.3.n 1121.00 1121.00 717.11 1121.00 1121.00 1078.36
p4.3.o 1172.00 1172.00 5700.81 1172.00 1172.00 5759.42
p4.3.p 1222.00 1222.00 700.18 1222.00 1222.00 762.96
p4.3.q 1253.00 1253.00 979.20 1253.00 1253.00 1011.26
p4.3.r 1269.00 1285.32 7200.00 1271.00 1285.00 7200.00
p4.3.s 1295.00 1297.65 7200.00 1295.00 1299.09 7200.00
p4.3.t 1304.00 1306.00 7200.00 1304.00 1306.00 7200.00
p4.4.a 0.00 0.00 0.03 0.00 0.00 0.04
p4.4.b 0.00 0.00 0.03 0.00 0.00 0.03
p4.4.c 0.00 0.00 0.03 0.00 0.00 0.04
p4.4.d 38.00 38.00 0.14 38.00 38.00 0.14
p4.4.e 183.00 183.00 0.83 183.00 183.00 0.85
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p4.4.f 324.00 324.00 3.12 324.00 324.00 3.31
p4.4.g 461.00 461.00 17.51 461.00 461.00 18.11
p4.4.h 571.00 571.00 106.47 571.00 571.00 107.01
p4.4.i 657.00 657.00 688.39 657.00 657.00 695.64
p4.4.j 732.00 732.00 5945.60 732.00 732.00 5894.22
p4.4.k 821.00 821.00 2401.94 821.00 821.00 2401.83
p4.4.l 880.00 880.00 4551.98 880.00 880.00 2036.31
p4.4.m 919.00 942.65 7200.00 912.00 944.29 7200.00
p4.4.n 964.00 1015.06 7200.00 968.00 1009.94 7200.00
p4.4.o 1061.00 1085.52 7200.00 1037.00 1092.69 7200.00
p4.4.p 1124.00 1138.82 7200.00 1124.00 1138.81 7200.00
p4.4.q 1161.00 1201.71 7200.00 1161.00 1205.43 7200.00
p4.4.r 1202.00 1248.25 7200.00 1209.00 1248.70 7200.00
p4.4.s 1257.00 1276.44 7200.00 1257.00 1276.44 7200.00
p4.4.t 1285.00 1296.46 7200.00 1282.00 1297.38 7200.00

p5.2.a 0.00 0.00 0.02 0.00 0.00 0.02
p5.2.b 20.00 20.00 0.12 20.00 20.00 0.12
p5.2.c 50.00 50.00 0.24 50.00 50.00 0.24
p5.2.d 80.00 80.00 0.95 80.00 80.00 1.03
p5.2.e 180.00 180.00 1.27 180.00 180.00 1.32
p5.2.f 240.00 240.00 1.44 240.00 240.00 3.00
p5.2.g 320.00 320.00 19.80 320.00 320.00 25.92
p5.2.h 410.00 410.00 7.47 410.00 410.00 11.19
p5.2.i 480.00 480.00 129.62 480.00 480.00 117.75
p5.2.j 580.00 580.00 37.68 580.00 580.00 37.69
p5.2.k 670.00 670.00 210.74 670.00 670.00 185.12
p5.2.l 800.00 800.00 6.73 800.00 800.00 13.42
p5.2.m 860.00 860.00 16.67 860.00 860.00 30.05
p5.2.n 925.00 925.00 238.35 925.00 925.00 321.84
p5.2.o 1020.00 1020.00 83.54 1020.00 1020.00 94.78
p5.2.p 1150.00 1150.00 8.72 1150.00 1150.00 13.80
p5.2.q 1195.00 1195.00 20.83 1195.00 1195.00 27.75
p5.2.r 1260.00 1260.00 57.56 1260.00 1260.00 67.31
p5.2.s 1340.00 1340.00 17.80 1340.00 1340.00 27.92
p5.2.t 1400.00 1400.00 18.58 1400.00 1400.00 31.26
p5.2.u 1460.00 1460.00 24.77 1460.00 1460.00 34.25
p5.2.v 1505.00 1505.00 746.92 1505.00 1505.00 784.16
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p5.2.w 1565.00 1565.00 318.34 1565.00 1565.00 267.03
p5.2.x 1610.00 1610.00 26.58 1610.00 1610.00 37.12
p5.2.y 1645.00 1645.00 62.07 1645.00 1645.00 76.55
p5.2.z 1680.00 1680.00 5.26 1680.00 1680.00 16.37
p5.3.a 0.00 0.00 0.02 0.00 0.00 0.02
p5.3.b 15.00 15.00 0.07 15.00 15.00 0.08
p5.3.c 20.00 20.00 0.13 20.00 20.00 0.13
p5.3.d 60.00 60.00 0.23 60.00 60.00 0.23
p5.3.e 95.00 95.00 0.40 95.00 95.00 0.39
p5.3.f 110.00 110.00 8.61 110.00 110.00 10.60
p5.3.g 185.00 185.00 1.41 185.00 185.00 1.53
p5.3.h 260.00 260.00 13.17 260.00 260.00 13.70
p5.3.i 335.00 335.00 5.91 335.00 335.00 9.76
p5.3.j 470.00 470.00 8.13 470.00 470.00 12.70
p5.3.k 495.00 495.00 2466.97 495.00 495.00 2473.85
p5.3.l 595.00 595.00 688.93 595.00 595.00 588.46
p5.3.m 650.00 700.14 7200.00 650.00 697.79 7200.00
p5.3.n 755.00 755.00 5766.31 755.00 755.00 2495.43
p5.3.o 870.00 870.00 343.12 870.00 870.00 217.33
p5.3.p 990.00 990.00 38.63 990.00 990.00 41.90
p5.3.q 1070.00 1070.00 58.77 1070.00 1070.00 80.16
p5.3.r 1125.00 1125.00 6641.90 1125.00 1125.00 3169.01
p5.3.s 1190.00 1222.22 7200.00 1190.00 1220.94 7200.00
p5.3.t 1260.00 1304.99 7200.00 1260.00 1304.11 7200.00
p5.3.u 1345.00 1374.86 7200.00 1345.00 1375.65 7200.00
5.3.v 1425.00 1425.00 6148.33 1425.00 1425.00 4736.31
p5.3.w 1485.00 1503.76 7200.00 1485.00 1501.81 7200.00
p5.3.x 1555.00 1555.00 3288.86 1555.00 1555.00 4846.99
p5.3.y 1590.00 1620.74 7200.00 1590.00 1621.61 7200.00
p5.3.z 1635.00 1659.89 7200.00 1635.00 1655.76 7200.00
p5.4.a 0.00 0.00 0.02 0.00 0.00 0.03
p5.4.b 0.00 0.00 0.02 0.00 0.00 0.03
p5.4.c 20.00 20.00 0.09 20.00 20.00 0.09
p5.4.d 20.00 20.00 0.14 20.00 20.00 0.14
p5.4.e 20.00 20.00 0.15 20.00 20.00 0.15
p5.4.f 80.00 80.00 0.40 80.00 80.00 0.54
p5.4.g 140.00 140.00 0.62 140.00 140.00 0.62
p5.4.h 140.00 140.00 9.00 140.00 140.00 8.77
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p5.4.i 240.00 240.00 0.99 240.00 240.00 1.02
p5.4.j 340.00 340.00 1.37 340.00 340.00 1.48
p5.4.k 340.00 340.00 2984.86 340.00 340.00 1614.77
p5.4.l 430.00 430.00 34.75 430.00 430.00 52.87
p5.4.m 555.00 555.00 21.42 555.00 555.00 31.14
p5.4.n 620.00 620.00 3994.26 620.00 620.00 4069.32
p5.4.o 690.00 729.14 7200.00 690.00 714.93 7200.00
p5.4.p 765.00 811.87 7200.00 765.00 816.00 7200.00
p5.4.q 860.00 886.50 7200.00 860.00 889.62 7200.00
p5.4.r 960.00 960.00 4917.73 960.00 960.00 3421.38
p5.4.s 1025.00 1075.09 7200.00 1030.00 1075.59 7200.00
p5.4.t 1160.00 1160.00 214.58 1160.00 1160.00 187.89
p5.4.u 1300.00 1300.00 10.35 1300.00 1300.00 15.05
p5.4.v 1320.00 1350.17 7200.00 1320.00 1346.55 7200.00
p5.4.w 1390.00 1422.61 7200.00 1390.00 1425.03 7200.00
p5.4.x 1450.00 1485.68 7200.00 1450.00 1485.46 7200.00
p5.4.y 1520.00 1546.65 7200.00 1520.00 1544.33 7200.00
p5.4.z 1620.00 1620.00 31.49 1620.00 1620.00 36.78

p6.2.a 0.00 0.00 0.02 0.00 0.00 0.02
p6.2.b 0.00 0.00 0.02 0.00 0.00 0.02
p6.2.c 0.00 0.00 0.02 0.00 0.00 0.02
p6.2.d 192.00 192.00 0.31 192.00 192.00 1.05
p6.2.e 360.00 360.00 4.75 360.00 360.00 6.77
p6.2.f 588.00 588.00 2.13 588.00 588.00 3.63
p6.2.g 660.00 660.00 43.89 660.00 660.00 57.22
p6.2.h 780.00 780.00 16.92 780.00 780.00 24.37
p6.2.i 888.00 888.00 9.96 888.00 888.00 17.30
p6.2.j 948.00 948.00 886.84 948.00 948.00 919.44
p6.2.k 1032.00 1032.00 1861.95 1032.00 1032.00 1393.93
p6.2.l 1116.00 1116.00 207.55 1116.00 1116.00 301.55
p6.2.m 1188.00 1188.00 34.46 1188.00 1188.00 53.48
p6.2.n 1260.00 1260.00 22.03 1260.00 1260.00 28.02
p6.3.a 0.00 0.00 0.02 0.00 0.00 0.02
p6.3.b 0.00 0.00 0.02 0.00 0.00 0.02
p6.3.c 0.00 0.00 0.02 0.00 0.00 0.02
p6.3.d 0.00 0.00 0.02 0.00 0.00 0.02
p6.3.e 0.00 0.00 0.02 0.00 0.00 0.02
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p6.3.f 0.00 0.00 0.02 0.00 0.00 0.02
p6.3.g 282.00 282.00 1.52 282.00 282.00 1.66
p6.3.h 444.00 444.00 45.52 444.00 444.00 42.01
p6.3.i 642.00 642.00 4.80 642.00 642.00 7.44
p6.3.j 828.00 828.00 4.35 828.00 828.00 8.87
p6.3.k 894.00 894.00 1465.15 894.00 894.00 575.88
p6.3.l 1002.00 1002.00 153.87 1002.00 1002.00 96.60
p6.3.m 1080.00 1080.00 2453.30 1080.00 1097.75 7200.00
p6.3.n 1170.00 1170.00 507.67 1170.00 1170.00 491.61
p6.4.a 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.b 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.c 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.d 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.e 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.f 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.g 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.h 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.i 0.00 0.00 0.02 0.00 0.00 0.02
p6.4.j 366.00 366.00 2.86 366.00 366.00 2.98
p6.4.k 528.00 528.00 25.67 528.00 528.00 26.60
p6.4.l 696.00 696.00 125.87 696.00 696.00 109.19
p6.4.m 912.00 912.00 8.19 912.00 912.00 11.37
p6.4.n 1068.00 1068.00 10.97 1068.00 1068.00 12.74

p7.2.a 30.00 30.00 0.08 30.00 30.00 0.08
p7.2.b 64.00 64.00 0.16 64.00 64.00 0.15
p7.2.c 101.00 101.00 0.17 101.00 101.00 0.43
p7.2.d 190.00 190.00 1.64 190.00 190.00 1.95
p7.2.e 290.00 290.00 6.68 290.00 290.00 9.71
p7.2.f 387.00 387.00 10.99 387.00 387.00 18.81
p7.2.g 459.00 459.00 30.29 459.00 459.00 58.19
p7.2.h 521.00 521.00 110.72 521.00 521.00 211.42
p7.2.i 580.00 580.00 214.45 580.00 580.00 437.79
p7.2.j 646.00 646.00 388.79 646.00 646.00 741.24
p7.2.k 705.00 705.00 464.80 705.00 705.00 621.57
p7.2.l 767.00 767.00 690.75 767.00 767.00 853.83
p7.2.m 827.00 827.00 654.31 827.00 827.00 849.49
p7.2.n 888.00 888.00 545.74 888.00 888.00 658.61
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p7.2.o 945.00 945.00 516.78 945.00 945.00 602.49
p7.2.p 1002.00 1002.00 370.58 1002.00 1002.00 423.40
p7.2.q 1044.00 1044.00 940.74 1044.00 1044.00 802.17
p7.2.r 1094.00 1094.00 383.07 1094.00 1094.00 437.08
p7.2.s 1136.00 1136.00 346.38 1136.00 1136.00 508.65
p7.2.t 1179.00 1179.00 338.49 1179.00 1179.00 393.41
p7.3.a 0.00 0.00 0.04 0.00 0.00 0.04
p7.3.b 46.00 46.00 0.11 46.00 46.00 0.11
p7.3.c 79.00 79.00 0.21 79.00 79.00 0.21
p7.3.d 117.00 117.00 0.09 117.00 117.00 0.43
p7.3.e 175.00 175.00 1.41 175.00 175.00 1.39
p7.3.f 247.00 247.00 9.93 247.00 247.00 6.88
p7.3.g 344.00 344.00 14.95 344.00 344.00 22.57
p7.3.h 425.00 425.00 389.16 425.00 425.00 361.49
p7.3.i 487.00 487.00 1461.20 487.00 487.00 1703.66
p7.3.j 564.00 564.00 185.12 564.00 564.00 405.45
p7.3.k 633.00 633.00 142.20 633.00 633.00 234.01
p7.3.l 684.00 684.00 6248.22 684.00 684.00 6435.07
p7.3.m 762.00 762.00 454.50 762.00 762.00 467.12
p7.3.n 820.00 820.00 501.09 820.00 820.00 601.16
p7.3.o 874.00 874.00 1077.76 874.00 874.00 1011.32
p7.3.p 929.00 929.00 4574.07 929.00 929.00 4776.17
p7.3.q 987.00 999.03 7200.00 987.00 996.06 7200.00
p7.3.r 1021.00 1056.01 7200.00 1021.00 1056.32 7200.00
p7.3.s 1081.00 1095.49 7200.00 1081.00 1096.73 7200.00
p7.3.t 1120.00 1136.32 7200.00 1118.00 1137.38 7200.00
p7.4.a 0.00 0.00 0.04 0.00 0.00 0.04
p7.4.b 30.00 30.00 0.10 30.00 30.00 0.10
p7.4.c 46.00 46.00 0.15 46.00 46.00 0.15
p7.4.d 79.00 79.00 0.24 79.00 79.00 0.24
p7.4.e 123.00 123.00 0.41 123.00 123.00 0.40
p7.4.f 164.00 164.00 0.84 164.00 164.00 0.89
p7.4.g 217.00 217.00 3.74 217.00 217.00 4.97
p7.4.h 285.00 285.00 30.40 285.00 285.00 30.57
p7.4.i 366.00 366.00 11.24 366.00 366.00 9.66
p7.4.j 462.00 462.00 362.21 462.00 462.00 280.79
p7.4.k 520.00 532.13 7200.00 520.00 532.94 7200.00
p7.4.l 590.00 592.87 7200.00 590.00 595.67 7200.00
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Table A.14 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p7.4.m 646.00 671.79 7200.00 646.00 670.31 7200.00
p7.4.n 730.00 730.00 315.59 730.00 730.00 656.64
p7.4.o 781.00 792.77 7200.00 781.00 794.69 7200.00
p7.4.p 846.00 865.20 7200.00 846.00 863.45 7200.00
p7.4.q 909.00 931.53 7200.00 909.00 930.48 7200.00
p7.4.r 970.00 994.12 7200.00 970.00 991.84 7200.00
p7.4.s 1022.00 1041.97 7200.00 1022.00 1041.91 7200.00
p7.4.t 1077.00 1084.08 7200.00 1077.00 1077.00 6513.17

Table A.15: Detailed results for the hybrid algorithms at solving the new benchmark of STOP
instances. We highlight in bold the instances for which the hybrid algorithms found optimality
certificates that could not be found by CPA alone and B-B&C.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p1.2.a_5% – – 0.00 – – 0.00
p1.2.b_5% – – 0.00 – – 0.00
p1.2.c_5% – – 0.00 – – 0.00
p1.2.d_5% 15.00 15.00 0.05 15.00 15.00 0.04
p1.2.e_5% – – 0.00 – – 0.00
p1.2.f_5% – – 0.00 – – 0.00
p1.2.g_5% – – 0.00 – – 0.00
p1.2.h_5% 45.00 45.00 0.63 45.00 45.00 1.06
p1.2.i_5% 110.00 110.00 2.16 110.00 110.00 2.92
p1.2.j_5% 140.00 140.00 1.71 140.00 140.00 2.64
p1.2.k_5% 150.00 150.00 2.15 150.00 150.00 3.19
p1.2.l_5% 185.00 185.00 2.26 185.00 185.00 4.27
p1.2.m_5% 190.00 190.00 2.30 190.00 190.00 3.70
p1.2.n_5% 215.00 215.00 2.41 215.00 215.00 3.23
p1.2.o_5% 220.00 220.00 2.71 220.00 220.00 3.89
p1.2.p_5% 225.00 225.00 2.85 225.00 225.00 3.73
p1.2.q_5% 245.00 245.00 3.17 245.00 245.00 3.73
p1.2.r_5% 265.00 265.00 4.16 265.00 265.00 4.72
p1.3.a_5% – – 0.00 – – 0.00
p1.3.b_5% – – 0.00 – – 0.00
p1.3.c_5% – – 0.00 – – 0.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p1.3.d_5% – – 0.00 – – 0.00
p1.3.e_5% – – 0.00 – – 0.00
p1.3.f_5% – – 0.00 – – 0.00
p1.3.g_5% – – 0.00 – – 0.00
p1.3.h_5% – – 0.00 – – 0.00
p1.3.i_5% 90.00 90.00 0.44 90.00 90.00 0.51
p1.3.j_5% 80.00 80.00 1.03 80.00 80.00 1.21
p1.3.k_5% 115.00 115.00 1.52 115.00 115.00 1.78
p1.3.l_5% 140.00 140.00 1.71 140.00 140.00 2.34
p1.3.m_5% 130.00 130.00 42.71 130.00 130.00 43.11
p1.3.n_5% 165.00 165.00 6.63 165.00 165.00 7.11
p1.3.o_5% 180.00 180.00 2.65 180.00 180.00 3.52
p1.3.p_5% 200.00 200.00 2.18 200.00 200.00 2.86
p1.3.q_5% 210.00 210.00 8.73 210.00 210.00 6.62
p1.3.r_5% 225.00 225.00 3.06 225.00 225.00 4.22
p1.4.a_5% – – 0.00 – – 0.00
p1.4.b_5% – – 0.00 – – 0.00
p1.4.c_5% – – 0.00 – – 0.00
p1.4.d_5% – – 0.00 – – 0.00
p1.4.e_5% – – 0.00 – – 0.00
p1.4.f_5% – – 0.00 – – 0.00
p1.4.g_5% – – 0.00 – – 0.00
p1.4.h_5% – – 0.00 – – 0.00
p1.4.i_5% – – 0.00 – – 0.00
p1.4.j_5% – – 0.00 – – 0.00
p1.4.k_5% – – 0.00 – – 0.00
p1.4.l_5% – – 0.00 – – 0.00
p1.4.m_5% 115.00 115.00 3.99 115.00 115.00 4.06
p1.4.n_5% 135.00 135.00 2.02 135.00 135.00 2.07
p1.4.o_5% – – 0.00 – – 0.00
p1.4.p_5% 150.00 150.00 5.36 150.00 150.00 5.38
p1.4.q_5% 165.00 165.00 5.70 165.00 165.00 6.06
p1.4.r_5% 195.00 195.00 3.89 195.00 195.00 4.63

p2.2.a_5% – – 0.00 – – 0.00
p2.2.b_5% – – 0.00 – – 0.00
p2.2.c_5% – – 0.00 – – 0.00
p2.2.d_5% – – 0.00 – – 0.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p2.2.e_5% – – 0.00 – – 0.00
p2.2.f_5% – – 0.00 – – 0.00
p2.2.g_5% – – 0.00 – – 0.00
p2.2.h_5% 200.00 200.00 0.41 200.00 200.00 0.47
p2.2.i_5% – – 0.00 – – 0.00
p2.2.j_5% 220.00 220.00 0.34 220.00 220.00 0.41
p2.2.k_5% 210.00 210.00 0.28 210.00 210.00 0.42
p2.3.a_5% – – 0.00 – – 0.00
p2.3.b_5% – – 0.00 – – 0.00
p2.3.c_5% – – 0.00 – – 0.00
p2.3.d_5% – – 0.00 – – 0.00
p2.3.e_5% – – 0.00 – – 0.00
p2.3.f_5% – – 0.00 – – 0.00
p2.3.g_5% – – 0.00 – – 0.00
p2.3.h_5% – – 0.00 – – 0.00
p2.3.i_5% 170.00 170.00 0.39 170.00 170.00 0.45
p2.3.j_5% 160.00 160.00 0.35 160.00 160.00 0.39
p2.3.k_5% 170.00 170.00 0.28 170.00 170.00 0.33
p2.4.a_5% – – 0.00 – – 0.00
p2.4.b_5% – – 0.00 – – 0.00
p2.4.c_5% – – 0.00 – – 0.00
p2.4.d_5% – – 0.00 – – 0.00
p2.4.e_5% – – 0.00 – – 0.00
p2.4.f_5% – – 0.00 – – 0.00
p2.4.g_5% – – 0.00 – – 0.00
p2.4.h_5% 95.00 95.00 0.14 95.00 95.00 0.16
p2.4.i_5% – – 0.00 – – 0.00
p2.4.j_5% – – 0.00 – – 0.00
p2.4.k_5% 145.00 145.00 0.25 145.00 145.00 0.26

p3.2.a_5% – – 0.00 – – 0.00
p3.2.b_5% – – 0.00 – – 0.00
p3.2.c_5% – – 0.00 – – 0.00
p3.2.d_5% – – 0.00 – – 0.00
p3.2.e_5% 220.00 220.00 1.94 220.00 220.00 2.24
p3.2.f_5% – – 0.00 – – 0.00
p3.2.g_5% 290.00 290.00 9.18 290.00 290.00 9.70
p3.2.h_5% 360.00 360.00 1.86 360.00 360.00 2.54
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p3.2.i_5% 400.00 400.00 7.53 400.00 400.00 8.36
p3.2.j_5% 470.00 470.00 11.19 470.00 470.00 12.03
p3.2.k_5% 510.00 510.00 13.87 510.00 510.00 14.88
p3.2.l_5% 540.00 540.00 2.90 540.00 540.00 3.92
p3.2.m_5% 560.00 560.00 5.41 560.00 560.00 6.57
p3.2.n_5% 610.00 610.00 4.41 610.00 610.00 4.99
p3.2.o_5% 660.00 660.00 3.32 660.00 660.00 4.30
p3.2.p_5% 690.00 690.00 5.70 690.00 690.00 6.95
p3.2.q_5% 710.00 710.00 4.59 710.00 710.00 5.53
p3.2.r_5% 740.00 740.00 6.73 740.00 740.00 7.48
p3.2.s_5% 730.00 730.00 0.31 730.00 730.00 4.33
p3.2.t_5% 700.00 700.00 3.87 700.00 700.00 4.93
p3.3.a_5% – – 0.00 – – 0.00
p3.3.b_5% – – 0.00 – – 0.00
p3.3.c_5% – – 0.00 – – 0.00
p3.3.d_5% 150.00 150.00 0.24 150.00 150.00 0.24
p3.3.e_5% – – 0.00 – – 0.00
p3.3.f_5% 160.00 160.00 0.84 160.00 160.00 0.85
p3.3.g_5% – – 0.00 – – 0.00
p3.3.h_5% – – 0.00 – – 0.00
p3.3.i_5% – – 0.00 – – 0.00
p3.3.j_5% 360.00 360.00 15.62 360.00 360.00 15.92
p3.3.k_5% 400.00 400.00 26.99 400.00 400.00 26.67
p3.3.l_5% – – 0.00 – – 0.00
p3.3.m_5% 470.00 470.00 36.50 470.00 470.00 77.54
p3.3.n_5% 500.00 500.00 16.68 500.00 500.00 17.40
p3.3.o_5% 560.00 560.00 337.80 560.00 560.00 334.96
p3.3.p_5% 570.00 570.00 3587.90 570.00 570.00 3203.12
p3.3.q_5% 650.00 650.00 6.47 650.00 650.00 6.96
p3.3.r_5% 660.00 660.00 3.36 660.00 660.00 4.18
p3.3.s_5% 670.00 670.00 22.76 670.00 670.00 29.09
p3.3.t_5% 700.00 700.00 41.60 700.00 700.00 42.93
p3.4.a_5% – – 0.00 – – 0.00
p3.4.b_5% – – 0.00 – – 0.00
p3.4.c_5% – – 0.00 – – 0.00
p3.4.d_5% – – 0.00 – – 0.00
p3.4.e_5% – – 0.00 – – 0.00
p3.4.f_5% – – 0.00 – – 0.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p3.4.g_5% 190.00 190.00 0.35 190.00 190.00 0.37
p3.4.h_5% 220.00 220.00 0.66 220.00 220.00 0.69
p3.4.i_5% 230.00 230.00 0.94 230.00 230.00 1.01
p3.4.j_5% – – 0.00 – – 0.00
p3.4.k_5% 280.00 280.00 3.06 280.00 280.00 3.33
p3.4.l_5% – – 0.00 – – 0.00
p3.4.m_5% 340.00 340.00 557.48 340.00 340.00 474.10
p3.4.n_5% 380.00 380.00 40.16 380.00 380.00 40.71
p3.4.o_5% – – 0.00 – – 0.00
p3.4.p_5% 530.00 530.00 2.54 530.00 530.00 3.08
p3.4.q_5% 500.00 500.00 2304.71 500.00 500.00 4016.78
p3.4.r_5% 560.00 560.00 32.88 560.00 560.00 33.19
p3.4.s_5% 610.00 610.00 2.27 610.00 610.00 2.88
p3.4.t_5% 630.00 630.00 2.52 630.00 630.00 3.04

p4.2.a_5% – – 0.00 – – 0.00
p4.2.b_5% – – 0.01 – – 0.01
p4.2.c_5% – – 0.01 – – 0.01
p4.2.d_5% – – 1635.29 – – 1075.85
p4.2.e_5% 443.00 443.00 761.59 443.00 443.00 850.04
p4.2.f_5% 618.00 618.00 103.01 618.00 618.00 160.12
p4.2.g_5% 574.00 574.00 865.72 574.00 574.00 888.54
p4.2.h_5% 718.00 718.00 487.22 718.00 718.00 396.10
p4.2.i_5% 728.00 728.00 447.40 728.00 728.00 596.27
p4.2.j_5% 873.00 873.00 250.53 873.00 873.00 312.77
p4.2.k_5% 955.00 955.00 336.00 955.00 955.00 408.87
p4.2.l_5% 1049.00 1049.00 180.60 1049.00 1049.00 263.28
p4.2.m_5% 1096.00 1096.00 272.60 1096.00 1096.00 336.91
p4.2.n_5% 1111.00 1111.00 508.81 1111.00 1111.00 1105.25
p4.2.o_5% 1149.00 1149.00 298.27 1149.00 1149.00 275.79
p4.2.p_5% 1157.00 1157.00 1918.14 1157.00 1157.00 1318.11
p4.2.q_5% 1202.00 1202.00 2316.38 1202.00 1202.00 3962.04
p4.2.r_5% 1225.00 1225.00 650.59 1225.00 1225.00 695.41
p4.2.s_5% 1213.00 1213.00 5011.03 1213.00 1213.00 5110.12
p4.2.t_5% 1243.00 1243.00 303.49 1243.00 1243.00 281.73
p4.3.a_5% – – 0.00 – – 0.00
p4.3.b_5% – – 0.00 – – 0.00
p4.3.c_5% – – 0.00 – – 0.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p4.3.d_5% – – 0.01 – – 0.01
p4.3.e_5% – – 0.01 – – 0.01
p4.3.f_5% – – 0.01 – – 0.01
p4.3.g_5% – – 0.01 – – 0.01
p4.3.h_5% 384.00 416.95 7200.00 383.00 414.95 7200.00
p4.3.i_5% 742.00 742.00 432.14 742.00 742.00 396.42
p4.3.j_5% 724.00 724.00 1335.19 724.00 724.00 1459.80
p4.3.k_5% 829.00 829.00 938.27 829.00 829.00 1574.56
p4.3.l_5% 888.00 904.97 7200.00 885.00 906.29 7200.00
p4.3.m_5% 977.00 1003.89 7200.00 982.00 998.15 7200.00
p4.3.n_5% 1030.00 1030.00 2409.08 1030.00 1030.00 2219.47
p4.3.o_5% 1114.00 1123.99 7200.00 1105.00 1131.08 7200.00
p4.3.p_5% 1152.00 1152.00 349.75 1152.00 1152.00 318.76
p4.3.q_5% 1169.00 1183.64 7200.00 1177.00 1177.00 2646.79
p4.3.r_5% 1215.00 1221.83 7200.00 1215.00 1221.60 7200.00
p4.3.s_5% 1259.00 1262.14 7200.00 1259.00 1262.03 7200.00
p4.3.t_5% 1254.00 1256.00 7200.00 1254.00 1256.00 7200.00
p4.4.a_5% – – 0.00 – – 0.00
p4.4.b_5% – – 0.00 – – 0.00
p4.4.c_5% – – 0.00 – – 0.00
p4.4.d_5% – – 0.00 – – 0.00
p4.4.e_5% – – 0.00 – – 0.00
p4.4.f_5% – – 0.00 – – 0.00
p4.4.g_5% – – 0.01 – – 0.01
p4.4.h_5% – – 0.01 – – 0.01
p4.4.i_5% – – 0.01 – – 0.01
p4.4.j_5% 573.00 573.00 137.62 573.00 573.00 162.62
p4.4.k_5% – – 0.02 – – 0.02
p4.4.l_5% 682.00 682.00 728.62 682.00 682.00 784.22
p4.4.m_5% – – 0.02 – – 0.02
p4.4.n_5% 846.00 903.23 7200.00 848.00 905.66 7200.00
p4.4.o_5% 945.00 982.33 7200.00 945.00 982.27 7200.00
p4.4.p_5% 1048.00 1058.92 7200.00 1048.00 1058.86 7200.00
p4.4.q_5% 1078.00 1123.01 7200.00 1078.00 1122.99 7200.00
p4.4.r_5% 1130.00 1171.22 7200.00 1137.00 1171.51 7200.00
p4.4.s_5% 1204.00 1224.46 7200.00 1208.00 1222.56 7200.00
p4.4.t_5% 1244.00 1257.73 7200.00 1244.00 1257.64 7200.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p5.2.a_5% – – 0.00 – – 0.00
p5.2.b_5% – – 0.00 – – 0.00
p5.2.c_5% – – 0.00 – – 0.00
p5.2.d_5% – – 0.00 – – 0.00
p5.2.e_5% – – 0.01 – – 0.00
p5.2.f_5% – – 0.01 – – 0.01
p5.2.g_5% – – 0.01 – – 0.02
p5.2.h_5% – – 2.33 – – 2.21
p5.2.i_5% 350.00 350.00 129.16 350.00 350.00 129.55
p5.2.j_5% 460.00 460.00 15.19 460.00 460.00 28.36
p5.2.k_5% 505.00 505.00 40.32 505.00 505.00 54.81
p5.2.l_5% 660.00 660.00 14.20 660.00 660.00 24.48
p5.2.m_5% 730.00 730.00 9.63 730.00 730.00 20.09
p5.2.n_5% 815.00 815.00 90.87 815.00 815.00 98.25
p5.2.o_5% 900.00 900.00 26.53 900.00 900.00 48.88
p5.2.p_5% 1030.00 1030.00 9.07 1030.00 1030.00 14.12
p5.2.q_5% 1080.00 1080.00 16.95 1080.00 1080.00 22.61
p5.2.r_5% 1170.00 1170.00 27.90 1170.00 1170.00 34.12
p5.2.s_5% 1250.00 1250.00 14.95 1250.00 1250.00 21.93
p5.2.t_5% 1310.00 1310.00 20.67 1310.00 1310.00 28.05
p5.2.u_5% 1360.00 1360.00 25.32 1360.00 1360.00 33.62
p5.2.v_5% 1395.00 1395.00 663.67 1395.00 1395.00 682.19
p5.2.w_5% 1465.00 1465.00 39.00 1465.00 1465.00 49.33
p5.2.x_5% 1490.00 1490.00 30.17 1490.00 1490.00 40.64
p5.2.y_5% 1535.00 1535.00 64.76 1535.00 1535.00 85.93
p5.2.z_5% 1570.00 1570.00 7.55 1570.00 1570.00 16.36
p5.3.a_5% – – 0.00 – – 0.00
p5.3.b_5% – – 0.00 – – 0.00
p5.3.c_5% – – 0.00 – – 0.00
p5.3.d_5% – – 0.00 – – 0.00
p5.3.e_5% – – 0.00 – – 0.00
p5.3.f_5% – – 0.00 – – 0.00
p5.3.g_5% 95.00 95.00 0.87 95.00 95.00 1.05
p5.3.h_5% – – 0.00 – – 0.01
p5.3.i_5% – – 0.01 – – 0.01
p5.3.j_5% – – 0.01 – – 0.01
p5.3.k_5% 425.00 425.00 56.76 425.00 425.00 68.71
p5.3.l_5% 490.00 490.00 239.69 490.00 490.00 247.43
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p5.3.m_5% 535.00 535.00 2308.63 535.00 535.00 927.30
p5.3.n_5% 665.00 665.00 374.30 665.00 665.00 352.40
p5.3.o_5% 740.00 740.00 368.91 740.00 740.00 520.20
p5.3.p_5% 860.00 860.00 9.73 860.00 860.00 16.52
p5.3.q_5% 965.00 965.00 21.01 965.00 965.00 26.27
p5.3.r_5% 985.00 985.00 748.67 985.00 985.00 521.46
p5.3.s_5% 1090.00 1113.25 7200.00 1090.00 1112.76 7200.00
p5.3.t_5% 1150.00 1191.71 7200.00 1150.00 1193.02 7200.00
p5.3.u_5% 1225.00 1250.96 7200.00 1225.00 1253.11 7200.00
p5.3.v_5% 1315.00 1315.00 3785.79 1315.00 1315.00 4085.58
p5.3.w_5% 1390.00 1401.60 7200.00 1390.00 1390.00 3657.10
p5.3.x_5% 1455.00 1455.00 4177.00 1455.00 1455.00 3062.75
p5.3.y_5% 1500.00 1530.67 7200.00 1500.00 1531.04 7200.00
p5.3.z_5% 1515.00 1540.00 7200.00 1515.00 1540.00 7200.00
p5.4.a_5% – – 0.00 – – 0.00
p5.4.b_5% – – 0.00 – – 0.00
p5.4.c_5% – – 0.00 – – 0.00
p5.4.d_5% – – 0.00 – – 0.00
p5.4.e_5% – – 0.00 – – 0.00
p5.4.f_5% – – 0.00 – – 0.00
p5.4.g_5% – – 0.00 – – 0.00
p5.4.h_5% – – 0.00 – – 0.00
p5.4.i_5% – – 0.00 – – 0.00
p5.4.j_5% 220.00 220.00 1.91 220.00 220.00 2.04
p5.4.k_5% – – 0.00 – – 0.00
p5.4.l_5% – – 0.01 – – 0.01
p5.4.m_5% – – 0.01 – – 0.01
p5.4.n_5% 440.00 440.00 22.78 440.00 440.00 27.93
p5.4.o_5% – – 0.02 – – 0.02
p5.4.p_5% 665.00 697.80 7200.00 665.00 694.70 7200.00
p5.4.q_5% 715.00 715.00 6483.63 715.00 722.66 7200.00
p5.4.r_5% 850.00 850.00 602.81 850.00 850.00 392.47
p5.4.s_5% 935.00 952.75 7200.00 935.00 956.82 7200.00
p5.4.t_5% 1060.00 1060.00 4846.70 1060.00 1060.00 3478.27
p5.4.u_5% 1190.00 1190.00 9.79 1190.00 1190.00 14.70
p5.4.v_5% 1230.00 1251.52 7200.00 1230.00 1251.63 7200.00
p5.4.w_5% 1260.00 1284.63 7200.00 1260.00 1284.80 7200.00
p5.4.x_5% 1310.00 1345.19 7200.00 1310.00 1348.19 7200.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p5.4.y_5% 1400.00 1422.23 7200.00 1400.00 1424.63 7200.00
p5.4.z_5% 1530.00 1530.00 23.79 1530.00 1530.00 32.76

p6.2.a_5% – – 0.00 – – 0.00
p6.2.b_5% – – 0.00 – – 0.00
p6.2.c_5% – – 0.00 – – 0.00
p6.2.d_5% – – 0.00 – – 0.00
p6.2.e_5% 282.00 282.00 1.14 282.00 282.00 3.14
p6.2.f_5% 474.00 474.00 2.31 474.00 474.00 5.59
p6.2.g_5% 522.00 522.00 16.03 522.00 522.00 24.26
p6.2.h_5% 708.00 708.00 5.80 708.00 708.00 11.58
p6.2.i_5% 828.00 828.00 9.21 828.00 828.00 16.51
p6.2.j_5% 846.00 846.00 1453.75 846.00 846.00 1481.26
p6.2.k_5% 948.00 948.00 1013.62 948.00 948.00 617.78
p6.2.l_5% 1008.00 1008.00 914.78 1008.00 1008.00 371.34
p6.2.m_5% 1086.00 1086.00 1167.78 1086.00 1086.00 1657.98
p6.2.n_5% 1170.00 1170.00 21.18 1170.00 1170.00 29.38
p6.3.a_5% – – 0.00 – – 0.00
p6.3.b_5% – – 0.00 – – 0.00
p6.3.c_5% – – 0.00 – – 0.00
p6.3.d_5% – – 0.00 – – 0.00
p6.3.e_5% – – 0.00 – – 0.00
p6.3.f_5% – – 0.00 – – 0.00
p6.3.g_5% – – 0.00 – – 0.00
p6.3.h_5% – – 0.01 – – 0.00
p6.3.i_5% 582.00 582.00 3.22 582.00 582.00 6.06
p6.3.j_5% 678.00 678.00 16.15 678.00 678.00 16.52
p6.3.k_5% 840.00 840.00 89.27 840.00 840.00 90.94
p6.3.l_5% 930.00 930.00 41.82 930.00 930.00 47.23
p6.3.m_5% 1014.00 1023.74 7200.00 1014.00 1014.00 4456.22
p6.3.n_5% 1092.00 1092.00 499.31 1092.00 1092.00 428.76
p6.4.a_5% – – 0.00 – – 0.00
p6.4.b_5% – – 0.00 – – 0.00
p6.4.c_5% – – 0.00 – – 0.00
p6.4.d_5% – – 0.00 – – 0.00
p6.4.e_5% – – 0.00 – – 0.00
p6.4.f_5% – – 0.00 – – 0.00
p6.4.g_5% – – 0.00 – – 0.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p6.4.h_5% – – 0.00 – – 0.00
p6.4.i_5% – – 0.00 – – 0.00
p6.4.j_5% – – 0.00 – – 0.00
p6.4.k_5% 318.00 318.00 8.01 318.00 318.00 8.95
p6.4.l_5% 660.00 660.00 113.84 660.00 660.00 169.34
p6.4.m_5% 786.00 786.00 36.10 786.00 786.00 39.86
p6.4.n_5% 990.00 990.00 9.69 990.00 990.00 14.00

p7.2.a_5% – – 0.00 – – 0.00
p7.2.b_5% – – 0.00 – – 0.00
p7.2.c_5% – – 0.00 – – 0.00
p7.2.d_5% – – 0.00 – – 0.00
p7.2.e_5% – – 0.01 – – 0.01
p7.2.f_5% – – 0.04 – – 0.04
p7.2.g_5% – – 2.40 – – 2.33
p7.2.h_5% 337.00 337.00 61.80 337.00 337.00 99.59
p7.2.i_5% – – 0.04 – – 0.04
p7.2.j_5% – – 7200.00 – – 7200.00
p7.2.k_5% – – 7200.00 – – 7200.00
p7.2.l_5% 636.00 636.00 746.21 636.00 636.00 927.43
p7.2.m_5% 731.00 731.00 583.88 731.00 731.00 673.26
p7.2.n_5% 656.00 656.00 975.25 656.00 656.00 1093.89
p7.2.o_5% 802.00 802.00 461.66 802.00 802.00 570.78
p7.2.p_5% 844.00 844.00 2882.32 844.00 844.00 2994.84
p7.2.q_5% 885.00 885.00 1443.13 885.00 885.00 3142.25
p7.2.r_5% 968.00 968.00 358.42 968.00 968.00 425.41
p7.2.s_5% 1007.00 1007.00 478.26 1007.00 1007.00 490.02
p7.2.t_5% 1075.00 1075.00 323.46 1075.00 1075.00 494.54
p7.3.a_5% – – 0.00 – – 0.00
p7.3.b_5% – – 0.00 – – 0.00
p7.3.c_5% – – 0.00 – – 0.00
p7.3.d_5% – – 0.00 – – 0.00
p7.3.e_5% – – 0.00 – – 0.00
p7.3.f_5% – – 0.00 – – 0.00
p7.3.g_5% – – 0.01 – – 0.01
p7.3.h_5% – – 0.02 – – 0.02
p7.3.i_5% – – 0.04 – – 0.04
p7.3.j_5% -inf inf 7200.00 -inf inf 7200.00
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Table A.15 — continued from previous page.

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

Instance LB UB Time (s) LB UB Time (s)

p7.3.k_5% 395.00 395.00 123.22 395.00 395.00 164.72
p7.3.l_5% 522.00 522.00 195.70 522.00 522.00 572.04
p7.3.m_5% – – 0.04 – – 0.04
p7.3.n_5% – – 182.70 – – 180.95
p7.3.o_5% 602.00 602.00 234.72 602.00 602.00 381.97
p7.3.p_5% 757.00 757.00 3657.93 757.00 757.00 4464.31
p7.3.q_5% 874.00 874.00 1637.33 874.00 874.00 2141.15
p7.3.r_5% 923.00 923.00 3593.14 923.00 923.00 3779.55
p7.3.s_5% 949.00 971.81 7200.00 944.00 981.09 7200.00
p7.3.t_5% 1034.00 1043.60 7200.00 1034.00 1044.30 7200.00
p7.4.a_5% – – 0.00 – – 0.00
p7.4.b_5% – – 0.00 – – 0.00
p7.4.c_5% – – 0.00 – – 0.00
p7.4.d_5% – – 0.00 – – 0.00
p7.4.e_5% – – 0.00 – – 0.00
p7.4.f_5% – – 0.00 – – 0.00
p7.4.g_5% – – 0.00 – – 0.00
p7.4.h_5% – – 0.00 – – 0.00
p7.4.i_5% – – 0.01 – – 0.01
p7.4.j_5% – – 0.01 – – 0.01
p7.4.k_5% – – 0.02 – – 0.02
p7.4.l_5% – – 0.04 – – 0.04
p7.4.m_5% – – 0.06 – – 0.06
p7.4.n_5% – – 0.09 – – 0.09
p7.4.o_5% 537.00 537.00 1182.18 537.00 537.00 1278.87
p7.4.p_5% 771.00 771.00 4971.00 771.00 771.00 3656.41
p7.4.q_5% 781.00 794.85 7200.00 781.00 797.28 7200.00
p7.4.r_5% 775.00 843.52 7200.00 794.00 825.42 7200.00
p7.4.s_5% 857.00 887.61 7200.00 857.00 886.77 7200.00
p7.4.t_5% 939.00 958.84 7200.00 939.00 960.11 7200.00
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Table A.13: Comparison of the four variations of the hybrid algorithm tested at solving the
new benchmark of STOP instances. Bold entries highlight, for each instance set, the best
algorithm(s) in terms of number of instances solved to optimality.

CPA1+FP_cuts_LNS_5000 CPA1+OFP_cuts_LNS_5000

solved unsolved solved unsolved

Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1_5% 54/54 1.55 – – 54/54 1.93 – –
2_5% 33/33 0.07 – – 33/33 0.09 – –
3_5% 60/60 92.34 – – 60/60 77.13 – –
4_5% 44/60 852.38 1.98 1.62 45/60 709.68 1.91 1.75
5_5% 65/78 305.20 2.41 0.91 64/78 185.42 2.35 1.14
6_5% 42/42 284.87 – – 42/42 284.35 – –
7_5% 53/60 890.07 16.15 36.99 51/60 679.23 12.83 32.71

Total 351/387 347.89 4.89 16.35 349/387 272.55 4.66 15.95

CPA2+FP_cuts_LNS_5000 CPA2+OFP_cuts_LNS_5000

solved unsolved solved unsolved

Gap (%) Gap (%)

Set #opt/total Time (s) Avg StDev #opt/total Time (s) Avg StDev

1_5% 54/54 2.19 – – 54/54 2.46 – –
2_5% 33/33 0.07 – – 33/33 0.09 – –
3_5% 60/60 118.79 – – 60/60 140.63 – –
4_5% 45/60 503.94 2.47 2.28 46/60 600.00 2.52 2.27
5_5% 66/78 383.80 2.21 1.01 66/78 285.92 2.28 0.90
6_5% 41/42 132.27 0.95 – 42/42 226.11 – –
7_5% 53/60 726.48 16.95 36.70 53/60 791.37 16.60 36.79

Total 352/387 281.77 5.23 16.60 354/387 300.80 5.42 17.06
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