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Resumo

Esta tese consiste em trés capitulos na qual os dois primeiros estudam o papel da desigualdade em
indices de desenvolvimento humano e o tltimo capitulo analisa o efeito da ambiguidade Knightiana
em um modelo Novo Keynesiano com choque de politica fiscal.

No primeiro capitulo nés axiomatizamos, para o caso multidimensional, uma fungao de avaliagao
social que acomoda o principio Pigou-Dalton e majoragao da correlacao crescente. Essa funcao de
avaliacao social é construida a partir da subclasse de fungoes inframodulares sobre risco propostas
por Miiller e Scarsini.

O segundo capitulo axiomatiza uma classe funcao de avaliacao social multidimensional da qual
o Indice de Desenvolvimento Humano ajustado a Desigualdade é um caso especial. Ademais, nés
mostramos que essa classe de fungao de avaliagao social concorda com o principio de Pigou-Dalton
e com a subclasse de fungoes inframodulares. Por fim, nds analisamos o contexto onde o planejador
social nao tem convicgao sobre como ponderar os atributos da fungao e suas aplicagoes em relagao
a abordagem de aversao a incerteza.

O ultimo capitulo analisa o efeito de um choque de confidéncia sobre a politica fiscal através de
um modelo Novo Keynesiano com agentes avessos a incerteza e rigidezes nominais. Nés também
modelamos a preferéncia das familias por ativos livres de riscos e comparamos os efeitos de um
choque de prémio de risco na atividade economica. Nés encontramos que o choque de confidéncia
na politica fiscal pode gerar movimentos conjuntos entre produto, consumo, investimento e horas
trabalhadas. O choque de prémio de risco apresenta resultados similares sem que a politica fiscal
seja expansiva.
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Abstract

This thesis comprises three chapters in which the first two study the role of inequality on
human development indexes and the last chapter analyses the effect of Knightian ambiguity on a
New Keynesian model with fiscal policy shock.

In the first chapter we axiomatize, in the multidimensional case, a social evaluation function
that can accommodate a natural Pigou-Dalton principle and correlation increasing majorization.
This is performed by building upon a simple subclass of inframodular functions proposed by Miiller
and Scarsini under risk.

The second chapter axiomatizes a class of multidimensional social evaluation function in which
Inequality-adjusted Human Development Index is a special case. We, furthermore, show that this
class of social evaluation function accommodates Pigou-Dalton principle and agrees with the sub-
class of inframodular functions. Finally, we analyze the context where the social planner is unsure
on how to weigh different attributes and their implications to the inequality aversion approach.

The last chapter analyzes the effect of confidence shocks on fiscal policy through a New Key-
nesian model with ambiguity averse agents and nominal rigidities. We also model the household’s
preference for holding risk-free assets and compare the effects of risk premium shocks on economic
activity. We find that confidence shocks on fiscal policy may generate business cycles comovement
among output, consumption, investment and hours worked. Risk premium shock has similar results
without expansive fiscal policy.
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Chapter 1

Introduction (Version francgaise)

Ce chapitre présente une introduction élargie aux trois chapitres suivants et contient les principaux
résultats obtenus dans les essais sur 'inégalité. La section 2, présente, quant a lui, les principaux
résultats de ’essai sur les cycles d’affaires.

1.1 Inégalité

Le sujet principal des deux premiers chapitres traite du le développement humain et 1'inégalité.

1.1.1 Transferts multidimensionnels de Pigou-Dalton
Introduction

Les fonctions d’évaluation sociale multidimensionnelles ont gagné en pertinence au cours des
dernieres décennies, surtout en raison des nouvelles techniques abordées dans le cadre multidi-
mensionnel des travaux pionniers de Atkinson (1970; 1987), Kolm (1976a;b; 1977) et Sen (1976).
En particulier, Tsui (1995; 1999) et Gajdos and Weymark (2005) ont proposé des approches ax-
iomatiques pour concevoir des mesures d’inégalité des revenus dans un contexte multi-attributs.

Dans ce chapitre, nous suivons I’approche additive traditionnelle et nous nous limitons adopter
un transfert Pigou-Dalton spécifique, ce qui nous avons jugé pertinent. De plus, notre approche est
cohérente avec la propriété de Majoration de Corrélation Croissante.

Tout d’abord, nous étudions une classe de fonctions d’évaluation sociale utilitaristes qui s’avérera
inframodulaire. Plus précisément, ce chapitre vise a caractériser une classe de fonctions inframod-
ulaires initialement proposée dans la littérature sur la décision sous risque.

Nous montrons également que les fonctions inframodulaires sont intimement liées a une
généralisation naturelle au cas multidimensionnel du principe classique des transferts unidimen-
sionnels de Pigou-Dalton. Ce point nous meénera a un simple axiome de “principe de transfert”. De
méme, les fonctions inframodulaires étant sous-modulaires, il s’avere que notre fonction d’évaluation
tiendra également compte de la propriété de Majoration de Corrélation Croissante.

Enfin, nous spécifions notre fonction d’évaluation sociale pour la comparer ensuite au célebre
IDH en utilisant des données réelles.

16



Notation, motivation et axiomes

Nous considérons n individus 1,...,4,...,n et A; € R™ est le vecteur colonne de m attributs de
. .. t . ~ . .
cet individu A; = (a1, .., Gij, ..., am;) ; effectivement, les mémes m attributs sont pris en compte
pour chaque individu.
Désormais, pour n individus donnés, A = (A41,...,4;,...,Ay) est la matrice m x n résumant

la population considérée. Notez que A dénotera I’ensemble de ces matrices réelles A avec m lignes
et n colonnes.

Dans le cas unidimensionnel, quand on considere n individus 1,...,7,...,n avec des revenus
z1 <xp <. <z <L <@y, il est généralement supposé que si x5 < 2541, un transfert € > 0 de
I'individu j + 1, vers l'individu j tel que z; + ¢ < 241 — € aura comme effet de réduire I'inégalité.
Ce transfert est ce que nous appelons transfert Pigou-Dalton.

Dans le cas m-dimensionnel avec m > 1, ce qui est le cas dans le chapitre, chaque individu j a
un vecteur colonne A; € R™ de m attributs, la matrice m x n, A = (4;,...,4,,...,A,) résume
les données.

Notre objectif est d’axiomatiser des fonctions d’évaluation sociale additives, c’est-a-dire des
fonctions d’évaluation sociale I : A — R tel que I(A) = 2?21 u(A;), pour tout A € A, ou
u : R™ — R qui respecte une évaluation sociale décroissante dans le cas d’un tel transfert régressif
de Pigou-Dalton comme observé ci-dessus. Donc, pour tout (X,Y) € R™ x R™ tel que X <Y et
pour tout € € R, u devrait satisfaire:

u(X)—u(X —¢) >ulY +¢) —u(Y) (1.1)

C’est la propriété habituelle de la concavité dans le cas uni-dimensionnel, au moins lorsque
est continu. De fait, nous montrons que les fonctions inframodulaires, satisfont la propriété désirée
(1.1) et qu’elle sont cohérentes avec la Majoration de Corrélation Croissante. Rappelons:

Définition 1 Une fonction u : R™ — R est dit inframodularie si:

w(X +¢) —u(X) >uY +¢) —u(Y)

pour tous X, Y € R™ avec X <Y ete € RY.

Nous passons maintenant aux axiomes qui seront considérés afin de modéliser les préférences
7~ du “planificateur social” (ou “observateur éthique”) pour le bien-étre global en tenant compte
du fait que les inégalités ont un impact négatif sur le bien-étre, mais aussi que tous les attributs
sont “positifs”, c’est-a-dire que toute augmentation de certains attributs a un effet positif sur le
bien-étre.

Ainsi, 7 est une relation de préférence sur A (si Ay ou Ay est considéré - ceci est spécifié
dans le théorémes). En effet, pour A, B € A, A - B signifie que A est faiblement préféré a B,
A > B signifie que A est strictement préféré a B, A ~ B signifie que A et B sont considérés comme
équivalents par le planificateur social. Notez que ces définitions sont cohérentes puisque = suppose
un préordre total.

A.1 7 est un préordre total; i.e., 77 est une transitive, compléte et aussi une relation binaire
réflexive sur A.

A.2 Continuité: Soit B € A, donc {A € A|A 7 B} et {A € A|B 7 A} est fermé dans la topologie
habituelle de R™*"™,
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A.8 Monotonie: Pour tous A, B € A, a;; > b;; for all ¢,j, implique A 27 B. Si de plus A # B,
puis A > B.

A.4 Indépendance: Pour tout j et (A4, B); (4;,A_;) = (A;-,A_j) <~ (4;,B_;) (A;-,B_j).

A.5 Anonymat: Pour toute matrice de permutation II et pour tout A € A, on a A ~ AIl; i.e.,
(A1, .. Ay, AL ~ (Ag(l), e Ay Ag(n)) ou o : [1,n] — [1,n] est une bijection.

A.6 Additivité: Pour tous A,Aj7Bj,Cj; (Aj,A,j) ~ (Bj,A,j) — (AJ + Cj,A,j) ~
(Bj +Cj, Aj).

A.7 Principe Pigou-Dalton: Soit A = (Ay,..., 4 ,...,Ay,) tel que pour certains ji,j2 on a
Aj < Aj, et soit € € R alors:

Az (Ar,..., A Aj,—eA;.,,..., A

i1 Aj, +¢€,4; ...,An):AE; en outre, A > A,
sie € R et € #0.

Ji—19 J2—1 J241

Fonctions d’évaluation sociale multidimensionnelle

Le théoreme 1 propose une axiomatisation de la fonction d’évaluation sociale additive.

Théoréme 1 Une relation de préférence 77, sur A satisfait A.1, A.2, A.3, A.4 et A.5 si et seulement
s’il existe: u : R™ — R croissante et continue, telle que:

n n

Pour tous A,Be A, A B <= Zu(Aj) > Zu(Bj)
j=1 j=1

ot u est définie jusqu’a une transformation affine positive.

Nous arrivons maintenant au résultat principal de ce chapitre dans lequel nous caractérisons des
fonctions d’évaluation sociale construites sur le type spécial de fonctions inframodulaires.

Théoréme 2 Une relation de préférence sur A satisfait A.1, A.2, A.8, A.4, A.5, A.6 et A.7 si et
seulement s’il existe a; > 0,4 =1,...,m, tel que E:il a; =1 et il existe ¢ : R — R strictement
croissante, strictement concave et continue telle que:

m

AZB<= > O i ay) =Y v ai-by).
j=1  i=1 j=1

i=1

En outre, ces a;’s sont uniques et 1 est définie jusqu’a une transformation affine croissante.

Spécification de 1) et un indice d’inégalité relative

Spécifier 1, nous introduisons deux axiomes:

A.8 Invariance absolue: Pour tous A, B € Aet pourtout A€ R, A~ B<= A+l ~ B+l
ou 1 est la matrice m x n avec 1 partout.

A.9 Invariance relative: Pour tous A, B € Ay, et pour tout A >0, A ~ B <= \A ~ A\B.

Théoréme 3 Supposons que la relation de préférence = satisfasse A.1 a A.7, alors:

- jusqu’a une transformation affine croissante ¥(t) = —e~ avec a > 0 si et seulement si A.8
est satisfait quand 7, est définie sur A.

- jusqu’a une transformation affine croissante soit ¥ (t) = 1n(t), pour toutt >0 ou ¥(t) = t%,
pour tout t > 0 ot a # 0, a < 1 si et seulement si A.9 est satisfait quand - est définie sur A,y .
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Remarque Notons que dans les cas ou tous les attributs sont strictement positifs, et si nous
adoptons 'axiome A.9 puis pour tout A € A, on pourrait adopter la fonction d’évaluation sociale
J(A) = H?:l(Z?L @ - ij)-

En effet, dans un tel cas:

m

I(A) = Zln(z ;- a;j) = IH(H(Z Q; - agj)).

Nous nous concentrons sur I'indice relatif d’inégalité, qui est lié au choix de ¢(-) = In(+). Cet
indice semble étre I'un des plus faciles & gérer et a prendre en compte dans notre cadre.

Corollaire du Théoréeme 3

L’indice d’inégalité correspondant lié & la fonction d’évaluation sociale définie sur A, .,
I’ensemble des m x n matrices avec des éléments positifs, satisfaisant A.1 & A.7 et A.9 avec
¥(t) = In(¢), avec t > 0 est relatif et se trouve sous la forme,

3

m
Jj=1 Z Qg -
i=1
ol ;, est la moyenne de iy, attribut dans lequel e =1,...,m.

En accord avec la Majoration de Corrélation Croissante.

La Majoration de Corrélation Croissante (MCC) est un concept créé par Boland and Proschan
(1988) et introduit dans la littérature sur les inégalités par Tsui (1999).

Nous allons ici présenter ses définitions (Boland and Proschan, 1988).

Le Concept de Transfert de Corrélation Croissante (TCC)

Soit A, B € A, puis B est obtenu de A par un TCC ¢s’il existe ji,jo ou j1 # jo tel que
le = Ajl A Aj2 et Bj2 = Ajl V AjQ.

Un T'CC est stricte chaque fois que ni A;, < A;, ni A;, < Aj;, produisent.

Le Concept de Majoration de Corrélation Croissante (MCC')

Soit A, B € A, puis A >. B, i.e., A est strictement moins inégal pour le MCC si B peut étre
dérivé de A par une permutation de colonnes et une séquence finie de transferts de corrélation
croissants, avec au moins un élément étant strict.

Nous pouvons maintenant affirmer et prouver que notre évaluation sociale est fonctionnelle du
Théoreme 2 ainsi que de tout respect social inframodulaire strict de la fonction MCC.

Notez que c’est le cas pour la fonction inframodulaire dans le Théoreme 2.

Théoréme 4 Toute évaluation fonctionnelle inframodulaire stricte respecte la MCC.
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Analyse Empirique

Sur la base de Théoréme 3, nous spécialisons 1(-) comme In(+), ainsi, en considérant les cas dans
lesquels tous les attributs sont strictement positifs, nous adoptons, pour tout A € A,,, J(A)
comme une fonction ‘moyenne’ d’évaluation sociale.

Nous visons a évaluer la pertinence de cette fonction inframodulaire & I'aide de données. Afin de
le tester, nous avons décidé de faire une comparaison avec une autre fonction non inframodulaire,
a savoir le célebre Indice de Développement Humain (IDH).

Notre indice a besoin d’informations de niveau individuel pour étre construit. Ainsi, nous
décidons d’effectuer cette comparaison avec ’examen national brésilien pour les lycéens, appelé
ENEM (Exame Nacional do Ensino Médio). Pour postuler H(-) avec ces données, nous avons
concentré notre analyse sur trois attributs: sciences naturelles (a®), langages (a') et mathématiques
(a™).

La population (n) est le nombre d’étudiants dans chaque ville. En suivant les régles de 'IDH,
nous donnons ici le méme poids aux attributs. La fonction J(A) dans ce cas peut s’écrire,

1 < as +at 4+ a™
5w (3
j=1

L’IDH fournissant un résultat compris entre 0 et 1, nous avons décidé d’extraire le ‘I’équivalent
de certitude’ de J(A), i.e., [(A) = exp’4). Nous avons maintenant les deux indices fournissant des
résultats dans l'intervalle [0, 1].

Il est largement reconnu que la formule classique de I'IDH ne prend pas en compte le niveau
d’inégalité dans un pays. Cependant, nous sommes intéressés par le contraste avec I'IDH classique
pour détecter dans quelle mesure I(A) est influencé par les ‘intra’ inégalités.

Premierement, la différence entre les résultats I(A) et H(A) est relativement faible. Leur coef-
ficient de corrélation est de 0,999. La similarité des résultats convient, car elle montre que cette
fonction fournit des résultats compatibles avec ceux de 'IDH.

En d’autres termes, nous voulons voir si 'inégalité est positivement corrélée avec H(A) — I(A).
Pour mesurer I'inégalité, nous avons résumé les valeurs des attributs pour chaque éleve et extrait
I’écart type de cette variable transformée. Nous voulons analyser la corrélation entre ces deux
variables afin d’affirmer si I(A) prend en compte ou non 'inégalité.

Nous avons donc calculé une régression linéaire comme un exercice hypothétique. Le R? =
0,9592 atteste que ’écart type explique fortement le comportement de H(A) — I(A). La relation
positive entre les variables est assez importante.

Par conséquent, sur la base de ces résultats, nous suggérons que cette fonction peut constituer
une bonne alternative a I'Indice de Développement Humain ajusté aux Inégalités (IDHI).

1.1.2 Fonction Rawlsienne d’évaluation sociale ajustée aux inégalités
Introduction

L’inégalité sociale est-elle importante pour mesurer 1’évaluation sociale? Si oui, quel devrait étre
le poids de l'inégalité dans une fonction d’évaluation sociale? Pour répondre a ces questions, il
est essentiel de comprendre le role de 'inégalité dans le développement humain. Les politiques
publiques doivent-elles induire une objectif de réduction des inégalités afin d’améliorer le bien-étre
global?
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La littérature connexe présente un large éventail de possibilités dans lesquelles les inégalités
pourraient entraver le développement humain. Cependant, certains résultats théoriques suggerent
que les inégalités peuvent aussi étre positives pour la croissance économique.

Par conséquent, les inégalités per se sont traitées ici comme un élément important ayant un
impact négatif sur le développement humain.

Les inégalités sociales et le développement humain ont souvent été mesurés essentiellement en
termes de richesse ou de revenu. Ce type d’indicateur devrait étre complété par d’autres attributs
tels que la santé et I’alphabétisation, par exemple. Comme le souligne Tsui (1999), une croissance
économique rapide peut ne pas nécessairement s’accompagner d’améliorations dans les domaines
de la santé et de ’éducation.

En conséquence, afin d’évaluer le niveau de vie d’'une maniere plus large, 1'Indice de
Développement Humain (IDH) a été proposé. Cependant, 'TDH ne tient pas compte des inégalités
au sein de la population. Pour prendre en compte les inégalités dans le développement humain, a
été créé I'Indice de Développement Humain ajusté aux Inégalités (IDHI), ou le niveau d’inégalité
est mesuré pour “pénaliser” les résultats de 'TDH.

Dans ce chapitre, nous cherchons a caractériser une classe de fonctions d’évaluation sociale
multidimensionnelle qui traitent des inégalités, tant entre les individus qu’entre les attributs. Une
axiomatisation de cette fonction d’évaluation sociale est fournie. Nous montrons également que
I'IDHI est un cas particulier de la classe de la fonction d’évaluation sociale que nous axiomatisons.

De plus, nous proposons un indice de bien-étre qui conduit a une situation dans laquelle le
planificateur social n’est pas sir de la fagon d’attribuer des pondération aux attributs lorsqu’ils
sont fortement complémentaires.

Cadre et axiomes

Considérons une population finie 7 = {1,...,j,...,n} d’individus et un ensemble fini d’attributs
Z=A1,...,i,...,m}. Chaque individu j € J est doté de m attributs représentés par un vecteur
(rangées) a; € R™.

Une matrice réele A est un m x n tableau de nombres réels. Soit M,,«, 1'espace vectoriel
de toutes les m-par-n matrices réelles. Egalement, M., et M'T  sont des sous-ensembles de
M, x» de matrices avec des éléments non négatifs et positifs, respectivement. Nous notons qu’'une
population de n individus dotés de m attributs peut étre représentée par une matrice A € M, «p,
avec m lignes et n colonnes.

Considérant une matrice A € R™*"(= M, x»), nous définissons A; € R™(= M,,,x1) comme
vecteur (matrice) de tous les attributs de l'individu j € J, représenté par la jéme colonne de A.
Eg:adement7 A; € R"(= M ) est défini comme le vecteur (matrice) de Vattribut ¢ € Z & tous les
individus, représentés par la ieéme ligne de A. A; peut étre interprété comme un individu ou un
sous-groupe de la société. De méme, A; peut étre interprété comme un attribut ou un sous-groupe
d’attributs. Pourtant, la matrice (A;, A_;) est la matrice A ot la colonne A; est remplacée par la

colonne A;.

Nous présentons ensuite les axiomes qui caractérisent la préférence de ce planificateur social
pour le développement humain.

Considérons un planificateur social qui gouverne une société (un pays ou une ville, par exemple)
et dont I'objectif est d’améliorer le développement humain de cette société. Ce planificateur social a
ses propres préférences sur la facon de mener des politiques sociales afin de faire face aux inégalités
et d’améliorer le développement humain.
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La préférence d’un planificateur social est donnée par une relation binaire 2= sur M, «,. Pour
A, B € M, «n, A ZZ B signifie que A est faiblement préféré a B, A > B signifie A est strictement
préféré a B, A ~ B signifie A and B sont considérés comme indifférents par le planificateur social.

N

A.1 Préordre Total: = est une complete, transitive relation binaire sur M,,.,. A savoir, pour
tous A, B,C € M,;,xn, A ZZ B or B2 A (complétude). De plus, si A7 B and B 77 C alors A - C
(transitivité).

A.2 Continuité: Soit B € Myxn, {A € My,un|A 7 B} et {A € M,,,xn|B 77 A} sont fermé dans
men~

A.3 Monotonie: Pour tous A, B € M, xn, et pour tous ¢, 7, si a;; > b;; alors A 27 B. Si de plus
A # B, alors A > B.

A.4 Indépendance: Pour tous A, B € M, xn et en prenant j € {1,...,n} fixé avec A} € My,x1
i (A5, A—y) Z (A, A-j) <= (4;,B-5) Z (4;,B-;).

A.5 Anonymat: pour tout A € M, x,, et pour toute bijection o : {1,...,n} = {1,...,n}, on a
(A1, .. A A ~ (As1ys - Aa()s - Ao(ny)-

A6 AddZtZUZté Pour tous A,Aj,Bj,Oj; (Aj,A_j) ~ (Bj,A_j) — (A] + Cj,A_j) ~
(Bj +Cj,A_j).

A.6 Fortement homothétique: Pour tout A € M}, et pour tous B;,C; € M\ 15 (A;,A_;) =
(Bj, A—j) = (C;® A;,A;) Z (C; ® B, Ay).

A.7 Principe Pigou-Dalton: Soit A = (A1,...,4;,...,A,) tel que pour certains ji,j2 on a
Aj < A, et soit € € R alors:

Az (A, A A —e A, A

Jra1s Aj, +¢e, A ...7An) = A.; en outre, A > A,
sie e R et € #0.

J1—15 431 J2—1> J2419

Fonction d’évaluation sociale multidimensionnelle

Cette section présente le premier résultat.

Théoréme 5 Une relation de préférence 7= on My, «, satisfait A.1 a A.7 si, et seulement si, il
existe o € A:’_‘;l et il existe b : R — R strictement croissante, strictement concave et continue telle

que:
Az B3 v([laf) =3 v(Te5)-
j=1 i=1

j=1 i=1

En outre, tels o; sont uniques et v est défini jusqu’a une transformation affine croissante.
b

Le planificateur social attribue d’abord un poids pour chaque attribut et les agrége par une regle
Cobb-Douglas. Puis il applique une fonction 1 et ajoute tous les individus.

Nous introduisons ensuite un autre axiome afin de formuler une proposition qui nous aide a
démontrer la relation du Théoreme 5 avec la formulation de 'IDHI.

A.8 Invariance Scalaire: Pour tous A,BEM} etkeR, ; A-B = k-AZk-B.

Proposition 1 Une relation de préférence - sur M) satisfait A.1 o A.8 si, et seulement si,

jusqu’a une transformation affine croissante, soit y(t) = In(t) ou ¥(t) = t3 pour tout t > 0, ou

pe(0,1)
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I(A) = H

De méme, en prenant ¢(-) = In (+) et considérant que tous les attributs sont strictement positifs.
Supposons également que tous les attributs ont le méme poids. De plus, puisque la somme des logs
est le log du produit, nous obtenons,

H":]g

1

I(A) H (H a1]> di (1.2)

j=1

ou I(A) € [0,1]. Prenant m = 3 nous constatons que la condition (1.2) est égal & la formule THDI.

Fonction d’évaluation sociale: Une nouvelle proposition

Que se passe-t-il si le planificateur social n’est pas stur de 'importance des attributs choisis pour
évaluer le bien-étre d’une société? Nous caractérisons ce contexte dans I’exemple A, montrant que
I’axiome fortement homothétique peut étre violé.

Cela signifie que I'index formulé dans le théoréme 5 ne capture pas ce genre de comportement.
Une fagon de caractériser ce comportement est d’affaiblir I’axiome fortement homothétique et nous
proposons donc une nouvelle fonction d’évaluation sociale.

Fonction Rawlsienne d’évaluation sociale ajustée aux inégalités

Comme 'axiome de 'homothéticité Forte est violé, nous remplacons cet axiome par trois autres
axiomes: Homothéticité (A.9), Log-Convexité (A.10) et Invariance de Puissance (4.11):

A.9 Homothéticité: Pour tout A € MY, ., k € Ry, et pour tous A;, B; € M (A;,A_;) =
(BjaA—j) = (k A]7A—]) (k- B7aA—7)

A.10 Log-Convezité: Si pour tout A € M .. A € (0,1) et pour tous A;, B; € M,
(Aj,A_j) = (B, A_j) = (A)@ B A_;) = (B, Aj).

A.11 Invariance de Puissance: Si pour tout A € M
(A5, Ay) 5 (ByyAsy) = (A5, A_)) 1 (BE,A).

Théoréme 6 Une relation de préférence 7= sur My, «n satisfait A.1 a A.5, A.7et A.9 a A.11 si,
et seulement si, il existe un ensemble unique, non vide, fermé et convexre C C A des mesures de
probabilité tel que o € A_T;l et il existe ¢ : R — R strictement croissante, strictement concave et
continue telle que:

mx13
mx1s

k € Ry et pour tous A;, B; € M}

mxn’ mx1s

n m
Az B<— min | | a | > min bo" .
~ Z 1’/} acC H ©J Z ,ll) aeC
j=1 i=1 i=1
De plus, 1 est définie jusqu’a une transformation aﬁine croissante.

En outre, un axiome d’homothéticité forte dans le théoréeme 6 impliquerait que I’ensemble C
possede une mesure de probabilité unique.

Afin de pouvoir calculer notre fonction d’évaluation sociale, nous spécifions maintenant 1 (-) =
In(-). Il s’aveére que de simples calculs comme pour la proposition 1 conduisent au corollaire 1:
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Corollaire 1 Une relation de préférence = sur M\ satisfait A.1 ¢ A.5, A.7 et A.9 ¢ A.11 si,
et seulement si, il existe un ensemble unique, fermé et convexe C C A des mesures de probabilité
telles que a € A" et A 7 B si, et seulement si, I(A) > I(B) ot pour tous A, B avec des attributs
strictement positifs:

3=

min | | ag;
et une formule similaire pour I(B).

Example B

Supposons que le planificateur social ne soit plus str de la meilleure fagcon d’attribuer des poids
aux sous-composants de I’éducation. Il ne doute pas que les attributs de I’éducation devraient
représenter conjointement 50% de la mesure. Il croit que leur poids est compris entre [1/s,1/3].
De plus, il suit la fonction d’évaluation sociale fournie dans Corollaire 1, c’est-a-dire, définissant

, Pt 11 B 11 101
o — 4 4 6 3 o — 4 4 3 b
aj = a0y (aeljaezj) et a; 1= ay;a,,; (aeljaew) La réécriture de I'indice donne:

Hmln( a;, j)

Plus le doute de ’agent est élevé pour attribuer des poids aux attributs, plus la gamme de
possibilités de poids est élevée.

Nous complétons cette section en proposant un résultat final qui nous permet de traiter des cas
simples et significatifs, qui semblent donc calculables pour les applications.

Théoréme 7 Supposons que le planificateur social est juste capable de donner une limite supérieure
et inférieure, respectivement a; and b; pour le poids «; de chaque attribut i = 1,...,m, ot 0 <
0; < 0; < 1. Ensuite, le planificateur social est cohérent, c’est-a-dire, qu’il existe a; > 0 tel que
0 <oy < &; pour tout i et Z:Zl a; =1 si, et seulement si,

zm:@ <1< i@- (1.3)
i=1 =1

En outre, la fonction d’évaluation sociale I(A) de toute A avec des attributs strictement positifs,
comme proposé dans le Corollaire 1 est actuellement donné par la formule suivante:

= H exp / Aj dv (1.4)
=l g m)
ot [(-) dv est Uintégrale de Choquet en ce qui concerne v : E € 2{l-mb — y(B) =
max {ZzEE 0,1 =3 icpe 57}

Corollaire 2 Il semble que les planificateurs sociauzx préférent peut-étre envisager des limites
symétriques quant a 1/n i.e. du type 6; = 1/m — €y, 6 = Vm +¢e; ot eg; > 0 pour tout i = 1,...,m.
Dans un tel cas, de simples comparaisons montrent que le Théoréme 7 est valide si, et seulement
Si,OS€i<1—1/m.
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Rawls versus Harsanyi

La nouvelle proposition introduite dans le présent document peut étre associée non seulement a
I'idée d’aversion pour l'inégalité, mais exige également une approche normative sur la maniere
d’évaluer le développement humain du point de vue du planificateur social. Ce contexte implique
invariablement une notion de justice et d’équité.

Afin d’éclairer cette discussion normative, nous revenons sur une discussion tres intéressante
qui a eu lieu dans les années 1970 entre John Rawls et John Harsanyi. Ils ont des points de vue
assez différents sur la justice et, par conséquent, sur la maniere de traiter 'inégalité, et ce différend,
comme décrit par Moehler (2018), a approfondi et enrichi les recherches ultérieures depuis lors.

Pour Rawls, il s’agit d’une critique sévere de 'approche utilitariste, la principale préoccupation
d’une société équitable devant étre la fourniture de produits primaires a tous. Pour cette raison,
les politiques publiques devraient accorder plus d’attention a la personne la plus défavorisée qu’au
reste de la société.

D’un autre coté, Harsanyi était un fervent défenseur de la théorie de la justice des Rawls. Son
approche suppose que les individus sont bayésiens et font leurs choix en fonction du risque ou de
Iincertitude, attribuant des probabilités aux résultats et maximisant leur utilité attendue.

Notre exemple est utile pour décrire comment le théoreme 6 peut représenter le point de vue de
Harsanyi et Rawls dans une fonction d’évaluation sociale multidimensionnelle.

Notre fonction d’évaluation sociale traite les individus de la méme fagon que la théorie de
Harsanyi, donnant le méme poids a tous les individus que dans son modele d’équiprobabilité. De
plus, notre fonction d’évaluation sociale ouvre la possibilité de traiter les attributs comme dans
la théorie de Rawls, c’est-a-dire que le planificateur social n’est pas stur de la facon de peser les
attributs, il donne plus d’importance aux résultats les plus défavorables.

1.2 Cycles d’affaires

1.2.1 Une politique budgétaire ambigué
Introduction

La crise de 2008 a soulevé des questions sur la meilleure fagon de promouvoir le développement
durable & travers les politiques publiques. Les turbulences sur les marchés financiers créées par
cette crise n’ont pas abouti & un consensus sur la maniére de gérer la politique budgétaire. Ce
contexte a élargi I’éventail des scénarios possibles et, par conséquent, accru l'incertitude quant a la
politique budgétaire a mener.

A mesure que les risques augmentent, les agents deviennent plus attentifs aux décisions prises
par les autorités. Il devient également plus important de prévoir ce que les gouvernements feront
dans un proche avenir. Les ménages et les investisseurs craignent la possibilité d’une politique
publique nuisant a leurs plans de consommation. En effet, de mauvaises politiques peuvent affecter
la richesse future et les agents veulent anticiper ce type de scénario, empéchant les pertes futures.

En ce sens, l'incertitude gagne en pertinence pour comprendre les fluctuations de l'activité
économique. Comment un ménage opposé a 'ambiguité réagirait-il face a des informations intangi-
bles contradictoires sur la future politique budgétaire? Cet chapitre vise a caractériser ce contexte
dans un modele New Keynesian, mettant en ceuvre deux stratégies principales: 1) ajouter un choc
d’ambiguité a la Tlut and Schneider (2014) au choc de politique budgétaire et 2) ajouter un choc
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de prime de risque pour le risque sans liaisons comme proposé par Smets and Wouters (2007) et
Fisher (2015).

Je suis Tlut and Schneider (2014) en modélisant les changements d’ambiguité par des chocs de
confiance. Les informations contradictoires qui soulevent la perception d’ambiguité sont percues par
les agents comme un choc de confiance. Toutefois, une baisse de la confiance des agents ne signifie
pas que ’écart budgétaire se produira. Afin de comparer le choc de confiance suivi ou non d’un
écart budgétaire, j’élargis ’analyse en ajoutant un autre choc qui capte la confiance des agents, de
maniere différente, indépendamment des dépenses publiques. Pour cela, j’introduis le choc de prime
de risque, ou choc de liquidité comme dans Smets and Wouters (2007). Un choc positif de primes
de risque fait augmenter la demande des agents en obligations sans risque. Ce mouvement peut étre
interprété comme un comportement de précaution des agents dont la décision d’exiger davantage
d’obligations sans risque est percue comme un moyen de réduire le risque de pertes futures.

L’hypothese est que les agents opposés a I’ambiguité ont des croyances multiples et agissent
dans le pire des cas. Je définis ici la croyance la plus défavorable en considérant que les dépenses
budgétaires non budgétisées de la part des décideurs politiques peuvent produire un rendement
social plus faible que prévu, endommageant les comptes publics.

Un choc positif sur les primes de risque a un effet similaire lorsque les agents craignent que le gou-
vernement prenne une mauvaise décision a I’avenir. Une expansion de la demande d’obligations sans
risque entrainera immédiatement une baisse correspondante de la consommation et des investisse-
ments, entrainant ainsi une baisse de la production. Ce comportement est également cohérent avec
I’hypothese ricardienne, c’est-a-dire que lorsque les agents craignent une future augmentation des
impots, ils visent & augmenter 1’épargne actuelle pour lisser la consommation intertemporelle. La
différence est que le gouvernement a introduit un motif préalable pour augmenter les impots: les
dépenses budgétaires non budgétisées.

Modeéele

Je développe dans cet chapitre un nouveau modele keynésien lancé par Christiano et al. (2005)
et Smets and Wouters (2007) avec des prix et salaires échelonnés, des coiits d’ajustement des
investissements et de nombreux éléments introduits dans la littérature depuis lors.

Les ménages du modele sont représentés par une fonction d’utilité a vie avec un vecteur de
variables d’état exogenes. Pour chaque période, les ménages projettent leur plan de consommation
en choisissant le montant de la consommation, les heures travaillées et le montant des obligations
d’Etat.

La formulation récursive est dynamiquement cohérente sur la base de I’approche introduite par
Epstein and Schneider (2003). De plus, I'espérance rationnelle standard est obtenue comme un cas
spécial si I’ensemble des probabilités conditionnelles ne contient qu’une seule croyance.

Le choc des primes de risque dénote une préférence stochastique pour la détention d’obligations
sans risque émises par le gouvernement. La fonction de demande d’obligations représente la quantité
réelle d’obligations d’Etat & une période achetées par les ménages. En outre, les ménages sont
propriétaires du stock de capital installé, soumis aux couts d’ajustement introduits par Christiano
et al. (2005) et leur contrainte budgétaire compense les dépenses (consommation, investissement,
taxes et obligations achetées) avec les revenus (obligations vendues, bénéfices en capital et salaires).

L’économie compte deux types de denrées périssables. Des entreprises parfaitement compétitives
produisent des biens finaux qui sont fabriqués par la combinaison d’un continuum de biens in-
termédiaires. Les biens intermédiaires sont fabriqués par le capital, la main-d’ceuvre et les bi-
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ens finaux par des entreprises concurrentielles en situation de monopole utilisant une technologie
d’agrégation Dixit-Stiglitz. L’entreprise de biens intermédiaires produit selon une fonction de pro-
duction Cobb-Douglas avec une part de capital.

Je suis Calvo (1983) afin d’établir qu’un groupe aléatoire de bons producteurs intermédiaires
réoptimise le prix a chaque période. Chaque fois que ’entreprise est en mesure de ré-optimiser son
prix, elle maximise la valeur actualisée actuelle attendue des bénéfices futurs.

L’économie compte également deux types de main-d’ceuvre: homogene et spécialisée. La
premiere est proposée par les <agences pour I'emploi> et la seconde est demandée par ces agences.
Comme dans Erceg et al. (2000), la main-d’ceuvre spécialisée est fournie par un continuum de
ménages dans un marché monopolistiquement concurrentiel et c’est la stratégie proposée par Smets
and Wouters (2007) qui introduit la fixation de salaires échelonnés a la Calvo (1983).

Le secteur public de I’économie est composé de la Banque centrale et du gouvernement. La
Banque centrale fixe le taux d’intérét nominal concernant les écarts d’inflation par rapport a
lobjectif et les écarts de production & son potentiel. La contrainte budgétaire a une période des
pouvoirs publics compense les dépenses (dépenses publiques et remboursement des obligations ven-
dues au cours de la période précédente) aux recettes (impots pergus et obligations émises au cours
de la période actuelle).

La regle budgétaire utilisée dans ce modele stipule que la taxe forfaitaire est définie par la
somme des obligations émises et des dépenses publiques, toutes deux réglementées par leurs réponses
sensibles. Ces parametres régissent la réponse de I'imp6t aux émissions d’obligations et aux dépenses
publiques, respectivement.

Enfin, la contrainte générale des ressources indique que la production est égale a la somme de
la consommation privée, des investissements et des dépenses publiques.

Mécanisme du choc de confiance

Ce modele permet aux agents d’avoir des croyances multiples sur les dépenses futures du gou-
vernement. Supposons donc que l'agent dispose d’informations contradictoires sur la question de
savoir si le gouvernement poursuivra strictement le budget approuvé ou dépensera plus, au cours du
trimestre suivant. Ces informations tronquées incitent les agents a considérer les dépenses publiques
du trimestre suivant comme ambigué. Une montée d’ambiguité représente une augmentation du
manque de confiance, ce qui explique le choc. Etre opposé a l'ambiguité signifie que les agents
agissent comme si le pire des scénarios se produisait, c’est-a-dire que dans ce cas, le gouvernement
dépenserait au-dela du budget.

Le terme p; mesure le manque de confiance. Par conséquent, la loi du mouvement sur les
dépenses publiques, du point de vue des agents, est donnée par

gt+1 gt *
log (_) = pglog (_) + 1y F vuniy
g g
ou ¢ ~ N(0,1).
La distribution de probabilité de ’ensemble de croyances exprimée par p; n’est pas connue, ce
qui suggere pourquoi il est si difficile a prédire. Cet ensemble est désigné par,
pi € lar — 2|a], aq] (1.5)

ol a; est défini comme ’ambiguité variant dans le temps. Comme indiqué par Ilut and Schneider
(2014), a; représente un indicateur des informations intangibles disponibles & la date ¢ sur les
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dépenses publiques a t + 1.

Cet ensemble est symétrique, centré autour de zéro. Chaque élément de u; dans intervalle
(1.5) est lié & une croyance contenue dans l’ensemble des probabilités conditionnelles de la fonction
d’utilité des ménages. Lorsque cet ensemble n’a qu’une seule croyance, l'intervalle ne contiendra
donc qu’'un seul élément, caractérisant le parametre d’attente rationnelle standard. Pourtant, plus
les informations recueillies par les agents sont contradictoires, plus I'intervalle est long. L’ambiguité
variable dans le temps suit la loi du mouvement ci-dessous,

agy1 — @ = pa(ar — @) + vangyy

ounf ~ N(0,1) et @ est le niveau d’ambiguité en régime permanent.
Le pire état stable des dépenses publiques en termes de trajectoire de production est,
a

1 —pg

Autrement dit, en I’absence d’ambiguité, g = g. Par exemple, supposons que g = 0, 2 (la part de
la production du gouvernement représente 20% de la production), c’est-a-dire lorsque ces dépenses
ne s’écartent pas du budget. Le pire état stable des dépenses publiques est alors la somme du
parametre non ambigu (§) et du terme ambigu (@/(1— pg)). Plus @ est élevé, plus la différence g — g

est élevée. En d’autres termes, une grande ambiguité de 1’état d’équilibre signifie que les agents
s’attendent & des dépenses publiques plus élevées que d’habitude.

9=g+

Résultats

Il présente ici une comparaison du choc de confiance dans le pire des cas et du choc traditionnel
de la politique budgétaire. Je compare également le choc de confiance avec le choc de la prime de
risque. Enfin, est présenté l'effet de 'aversion au risque obligataire sur les principaux agrégats.

Du point de vue du pire des agents, la loi de mouvement de la politique budgétaire contient une
composante ambigué. L’objectif principal est de simuler un contexte dans lequel les agents perdent
la confiance de la politique budgétaire au trimestre suivant. Les augmentations inattendues des
dépenses publiques sont généralement considérées par les agents comme une mauvaise décision
politique. Plus précisément, le pire scénario se produit lorsque pj = a, c’est-a-dire I’écart maximal
du budget public attendu par 'agent. Cet effet augmente les dépenses publiques, dans la pire des
hypotheses des agents, et affecte le cycle économique.

Un choc de politique budgétaire augmente les dépenses publiques depuis le premier trimestre,
générant un mouvement similaire de la production. La regle fiscale induit une augmentation re-
spective de I'impot et des obligations, ce qui réduit la consommation du ménage. Une offre plus
importante d’obligations sans risque induit une hausse de leur taux d’intérét, diminuant I’écart de
taux d’'intérét. L’inflation et le colt marginal augmentent également, en opposition au choc de
confiance.

La plupart des variables présentent une réponse inverse a une politique budgétaire positive et
a un choc de confiance. En raison d’une augmentation de 'ambiguité, la production, les heures et
les taux d’intérét (obligations et capital) commencent en dessous de 1'état stationnaire.

D’un autre coté, I'investissement, la consommation et les salaires ont une réaction similaire aux
deux chocs. L’investissement diminue en raison de l'effet d’éviction et la consommation suit la
production et les heures diminuent avec une augmentation ultérieure des impots.
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Une autre comparaison intéressante est le choc de confiance et de prime de risque. Un choc
positif de la prime de risque, entre autres possibilités, peut représenter une baisse de confiance des
agents.

Une augmentation inattendue du choc budgétaire se traduit d’abord par une augmentation
proportionnelle des dépenses publiques. De la contrainte des ressources, une augmentation des
dépenses publiques génere une réduction actuelle de la consommation et de la production des
ménages. L’investissement réagit a la perte de confiance, en baisse au cours des quelques premiers
trimestres.

Le choc de confiance provoque au départ une déflation due a la baisse de la production. Puis,
avec l'expansion ultérieure des dépenses publiques, l'inflation prend de ’ampleur, dépassant son
état d’équilibre avant de converger vers 1’équilibre.

En somme, une augmentation de 'ambiguité a I'impact le plus négatif sur I'investissement et le
capital parmi toutes les variables, indiquant que la confiance est un élément tres important pour
que les entrepreneurs décident d’investir ou non.

Considérons maintenant un effet similaire sur la confiance des agents, mais sans effet d’ambiguité
sur la réponse des dépenses publiques. Les gouvernements de mauvaise réputation appellent les
agents & avoir une réaction de précaution pour atténuer le risque de perte. Cependant, ce comporte-
ment n’est pas toujours suivi d’une décision indésirable du gouvernement. Néanmoins, 'attitude
adoptée par les agents est suffisante pour affecter le cycle économique. Ce choc positif sur la de-
mande d’actifs strs et liquides peut étre motivé par plusieurs caractéristiques. L’incertitude quant
a la future politique budgétaire pourrait étre considérée comme 1'une des sources.

En comparant a la fois ’ambiguité et les chocs de primes de risque, il est intéressant de voir que
les deux génerent une baisse de la production, de 'investissement et de la consommation. Malgré
cela, ces chocs présentent certaines différences mécaniques.

Une augmentation de la demande d’obligations sans risque implique nécessairement une baisse
de la consommation wvia la contrainte de ressources des ménages et également une baisse de la
production par la contrainte de ressources. Du fait d’une baisse de la consommation, des investisse-
ments et de la production, I'inflation diminue également. Etant donné que les dépenses publiques
augmentent l'inflation au-dessus de son état d’équilibre, les salaires réels baissent et mettent plus
de temps a se rétablir en raison de I'adhésivité de Calvo.

En outre, comme ’a souligné Fisher (2015), le taux d’intérét des obligations diminue & mesure
que la demande d’obligations augmente. Le taux d’intérét actuel sur le capital ne baisse qu’au
début, comme l’a souligné Smets and Wouters (2007), et prend plus de temps & se rétablir par
rapport au choc de confiance.

Etant donné que le choc des primes de risque, tel qu’introduit ici, est un élément récent de la
littérature, j’analyse également 'effet du coefficient d’aversion au risque relatif sur les principaux
agrégats et les variables de prix.

En bref, une augmentation de l’aversion au risque traduit une plus grande aversion au risque
des agents, compte tenu du fait qu’ils sont moins disposés & prendre des risques compte tenu de
la méme richesse et du méme contexte économique. Des valeurs plus élevées de I'aversion pour le
risque peuvent avoir des effets négatifs sur la consommation, l'investissement, les heures travaillées
et la production. Le fossé entre les taux d’intérét augmente également, car 'augmentation de la
demande d’obligations sans risque entraine une baisse de leurs taux d’intérét plus forte que le taux
d’intérét du capital pour les périodes suivantes.

Comme P’a souligné Ferndndez-Villaverde et al. (2015), la plupart des décisions économiques
sont soumises a une incertitude omniprésente, en particulier a 'incertitude concernant la future
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politique budgétaire. Ce document apporte des preuves supplémentaires qu'une augmentation de
Iincertitude de la politique budgétaire accroit l'effet négatif sur 'activité économique. En fait, il
est important d’estimer les principaux parametres pour comparer les résultats théoriques avec les
données réelles.

Le présent document n’a pas l'intention de conclure que I’ambiguité est la principale source de
fluctuations du cycle économique, mais ces résultats mettent en évidence 'influence de I'ambiguité
sur I'activité économique.
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Chapter 2

Introduction (English version)

This chapter aims at giving an extended introduction to the three subsequent chapters. The next
section presents the main results obtained in the essays about inequality and section 2 the main
results of the business cycle essay.

2.1 Inequality

The main subject of the two first chapters is human development and inequality.

2.1.1 Multidimensional Pigou-Dalton Transfers
Introduction

Multidimensional social evaluation functions has been gaining relevance during the last decades
mainly due to new techniques that extend in the multidimensional setting the pioneering works
by Atkinson (1970; 1987), Kolm (1976a;b; 1977) and Sen (1976). In particular, Tsui (1995; 1999)
and Gajdos and Weymark (2005) have offered axiomatic approaches to designing income inequality
measures in a multi-attribute context.

In this chapter, we follow the traditional additive approach and we confine ourselves to ac-
commodating a particular Pigou-Dalton transfer, which we believe is relevant. Furthermore, our
approach is consistent with the property of Correlation Increasing Majorization.

In actual fact, we investigate a class of utilitarian social evaluation functions that will prove
to be inframodular. More precisely, this chapter aims at characterizing a class of inframodular
functions initially proposed in the literature on decision under risk.

We also show that inframodular functions are intimately linked with a natural generalization
to the multidimensional case of the classical unidimensional Pigou-Dalton transfers principle. This
point will lead us to a key simple “transfers principle” axiom. Likewise, since inframodular functions
are submodular, it turns out that our evaluation function will also accommodate the property of
Correlation Increasing Majorization.

Finally, we specify our social evaluation function in order to compare it with the famous HDI
by using actual data.
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Notation, motivation and axioms

We consider n individuals 1,...,4,...,n and A; € R™ is the column-vector of the m attributes of
this individual A; = (a1, .., 0, . -, amj)t; indeed, the same m attributes are considered for each
individual.

Henceforth, for n given individuals, A = (Aq,..., A4;,..., A,) is the m x n matrix summarizing

the considered population. Note that A will denote the set of such real matrices A with m rows
and n columns.

In the unidimensional case, when considering n individuals 1,...,7,...,n with incomes x; <
z2 < ... <z < ... < xy, it is usually assumed that if x; < 2,41 then a transfer ¢ > 0 from
individual j + 1, to individual j such that x; + ¢ < xj41 — € reduces inequality. This transfer is a
Pigou-Dalton transfer.

Thus turning to the m-dimensional case where each individual j has a column-vector A; € R™
of m attributes, we get that the m x n matrix A = (A4,...,4;,..., A,) summarizes the data.

Our goal is to axiomatize additive social evaluation functions, i.e., social evaluation functions
I: A — R such that I(4) = Z?Zl u(A;), for all A € A, where u : R™ — R agrees with a
diminishing social evaluation in the case of such a Pigou-Dalton regressive transfer as above. It is
immediate that for all (X,Y) € R™ x R™ such that X <Y and for all € € R, u should satisfy:

w(X) —uw(X —e) > u(Y +¢) —u(Y) (2.1)

This is the usual property of concavity in the one-dimensional case, at least when u is continuous.
Actually, we show that inframodular functions satisfy the desired property (2.1), and are consistent
with Correlation Increasing Majorization. Let us recall:

Definition 1 A function u : R™ — R is said to be inframodular if:

u(X +e)—uX) >ulY +¢) —ulY)
for all X, Y € R™ with X <Y and e € R

We now switch to the axioms which will be considered to model the preferences 7 of the “social
planner” (or “ethical observer”) for global welfare taking into account that inequalities have a
negative impact on welfare, but also that all attributes are “positive” that is, an increase in some
attribute has a positive effect on welfare.

Thus, 7 is a preference relation on A (if Ay or A, is considered — this is specified in the
theorems). Indeed, for A, B € A, A 7 B means that A is weakly preferred to B, A > B means A
is strictly preferred to B, A ~ B means A and B are considered as equivalent by the social planner.
Note that these definitions are consistent since -, will be assumed to be a weak order.

A.1 = is a Weak Order; i.e., 7 is a transitive, complete hence also a reflexive binary relation
on A.

A.2 Continuity: Let B € A be given, then {A € A|A - B} and {A € A|B 7 A} is closed in the
usual topology of R™*™,

A.83 Monotonicity: For all A, B € A, a;; > b;; for all 4, j, implies A 77 B. If furthermore A # B,
then A >~ B.

A.4 Independence: For all j and (4, B); (4;,A_;) Z (A;»,A,j) = (4;,B_;) (A;»,B,j).

A.5 Anonymity: For any permutation matrix II and for all A € A, one has A ~ AII,; i.e.,
(A1, Ay, An) ~ (Astys - Asgys - - - A(ny) Where o : [1,n] — [1,n] is a bijection.
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A6 Additivity: For all A7Aj,Bj,Cj; (Aj7A,j) ~ (Bj,A,j) - (Aj + Cj,A,j) ~
(Bj +Cj, Aj).

A.7 Pigou-Dalton Principle: Let A = (A4,...,4,,...,A,) such that for some ji,j2 one has
Aj < Aj, and let € € R then:

Az (A, Ay LAy = A LAy LA e Ay, Ay) = Ag furthermore, A -
A if e € R and € # 0.

Multidimensional social evaluation functions

Theorem 1 offers an axiomatization of the additive social evaluation function.

Theorem 1 A preference relation -, on A satisfies A.1, A.2, A.8, A.4 and A.5 if and only if there
exists: u : R™ — R increasing and continuous, such that:

Forall ABE A, AZ B> u(4;)>> u(B))
j=1 j=1

where u is defined up to a positive affine transformation.

We come now to the main result of this chapter in which we characterize social evaluation
functions built upon the special type of inframodular functions.

Theorem 2 A preference relation on A satisfies A.1, A.2, A.3, A.4, A.5, A.6 and A.7 if and only
if there exists a; > 0, @ = 1,...,m, such that >.", a; = 1 and there exists ¢ : R — R strictly
increasing, strictly concave and continuous such that:

AZB<= > 00 ai-ay) >y o> ai-by).
j=1 =1 Jj=1 =1

Furthermore, such «;’s are unique and ¥ is defined up to an increasing affine transformation.

Specification of 1) and a relative inequality index

To specify 1, we introduce two axioms:

A.8 Absolute Invariance: For all A, B € Aand foral \ e R, A~ B <= A+ )l ~ B+ 1
where 1 is the matrix m x n with 1 everywhere.

A.9 Relative Invariance: For all A,B € Ay, and for all A >0, A~ B <= AA ~ AB.

Theorem 3 Assume that the preference relation 7, satisfies A.1 to A.7, then:

- up to an increasing affine transformation y(t) = —e~% with a > 0 if and only if A.8 is satisfied
when 7 is defined on A.

- up to an increasing affine transformation either ¥(t) = In(t), for allt >0 or (t) =t% for
allt > 0 where a £ 0, a < 1 if and only if A.9 is satisfied when = is defined on Ay, .

Remark Notice that in cases in which all attributes are strictly positive, and if we adopt axiom

A.9 then for all A € A4 one could adopt the social evaluation function J(A) = H?Zl (O, @iraig).

33



Indeed, in such a case:

m

I(A) =Y () ai-aij) =[O ai - aiy)).
j=1 =1 Jj=1

i=1

We focus on the relative inequality index, which is linked with the choice of ¥(-) = In(-). This
index appears to be one of the most tractable and relevant in our framework.

Corollary of Theorem 3

The corresponding inequality index related to the social evaluation function defined on A, ,
the set of m x n matrices with positive elements, satisfying A.1 to A.7 and A.9 with ¥(¢) = In(t),
with ¢t > 0 is relative and has the form

3
3|

™
Jj=1 Z Q- g
i=1
where u;, is the mean of iy, attribute in whichi=1,...,m.

Agreeing with correlation increasing majorization.

Correlation Increasing Majorization (CIM) is a concept due to Boland and Proschan (1988) and
introduced into the inequality literature by Tsui (1999).

Let us introduce some definitions (see Boland and Proschan, 1988).

Concept of Correlation Increasing Transfer (CIT)

Let A, B € A, then B is obtained from A by a CIT if there exists j1, jo where j; # ja such that
le = Ajl A\ Aj2 and Bj2 = Ajl V Aj2.

A CIT is strict whenever neither A;, < Aj;, nor A;, < A; happen.

Concept of Correlation Increasing Majorization (CIM)

Let A,B € A, then A >. B, i.e., A is strictly less unequal for the CIM if B may be derived
from A by a permutation of columns and a finite sequence of Correlation Increasing Transfers with
at least one being strict.

We can now state and prove that our social evaluation functional of Theorem 2 as well as any
strict inframodular social functional respects CIM.

Note that this is the case for the inframodular function in the Theorem 2.

Theorem 4 Any strict inframodular social evaluation functional respects CIM.

Empirical Analysis

Based on Theorem 3, we specialize ¥(-) as In(-), thus, considering cases in which all of the attributes
are strictly positive, we adopt, for all A € A;, J(A) as a ‘mean’ social evaluation function.
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We aim at evaluating the pertinence of this inframodular function using data. In order to test
it, we decided to make a comparison with another function that is not inframodular, namely the
famous Human Development Index (HDI).

Our index needs the individual-level information to be built. Thereby, we decide to perform
this comparison with the Brazilian national exam for high school students, called ENEM (Exame
Nacional do Ensino Médio). To apply H(-) with these data, we focused our analysis on three
attributes: natural sciences (a*), languages (a') and mathematics (a™).

The population (n) is the number of students in each town. Following HDI rules, here we also
give the same weight to the attributes. The function J(A) in this case, can be written as,

1 & as +al +a™
A=Y ([ LTLTY )
J(A) nZn( 2 )

Jj=1

Since HDI provides an outcome between 0 and 1, we decided to extract the ‘certainty equivalent’
of J(A), i.e., I(A) = exp’). Then, now we have both indexes delivering results in the range [0, 1].

It is widely known that classical HDI formula does not consider in its calculation the level of
inequality within a country. However, we are interested in contrast with the classical HDI to detect
to what extent I(A) is influenced by the ‘intra’ inequalities.

Firstly, the difference between the I(A) and H(A) outcomes is relatively small. Their correlation
coefficient is 0,999. The similarity of the outcomes is suitable because it shows that this function
provides the outcomes in a similar sense as HDI usually does.

In other words, we want to see whether inequality is positively correlated with H(A)—1I(A). To
measure the inequality in this case, we summed the values of the attributes for each student and
extracted the standard deviation of this transformed variable. We want to analyze the correlation
between these two variables to assert whether T(A) takes inequality into account or not.

We thus computed a linear regression as a hypothetical exercise. The R? = 0.9592 attests that
standard deviation explains strongly H(A) — I(A) behavior. The positive relationship between the
variables is quite substantial.

Therefore, based on these results we suggest that this function could be a good alternative to
IHDI.

2.1.2 Rawlsian Inequality-Adjusted Social Evaluation Function
Introduction

Is social inequality important to measure social evaluation? If yes, what should be the weight of
inequality in a social evaluation function? To answer these questions, it is essential to understand
the role of inequality in human development. Should public policies induce a reduction of inequality
to improve global welfare?

The related literature presents a wide range of possibilities in which inequality might hamper
human development. In the opposite sense, some theoretical results suggest that inequality can
also be positive for economic growth.

Therefore, inequality per se is treated here as an important element of a negative impact on
human development.

Social inequality and human development have often been measured essentially in terms of
wealth or income. This kind of indicator should be supplemented by other attributes as health
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and literacy, for example. As Tsui (1999) points out, fast economic growth may not necessarily be
accompanied by improvements in health and education.

Accordingly, to evaluate living standards more broadly, the Human Development Index (HDI)
was proposed. However, HDI does not capture inequality in the population. To consider inequality
in human development, the Inequality-adjusted Human Development Index (IHDI) was created,
where the inequality level is measured to “penalize” HDI outcome.

In this chapter, we aim at characterizing a class of multidimensional social evaluation function
which contemplates inequality, both among individuals and among attributes. It is provided an
axiomatization to this social evaluation function. We also show that THDI is a special case of the
class of the social evaluation function that we axiomatize.

Moreover, we propose a well-being index that leads to a situation in which the social planner is
unsure about how to assign weight to attributes when they are strongly complementary.

Framework and axioms

Let us consider a finite population J = {1,...,7,...,n} of individuals and a finite set of attributes
Z=A1,...,i,...,m}. Each individual j € J is endowed with m attributes represented by a (row)
vector a; € R™.

A real matrix A is an m X n array of real numbers. Let M,,«, be the vector space of all
m-by-n real matrices. Also, M\, and M\ =~ are subsets of M, of matrices with non-negative
and positive elements, respectively. We note that a population of n individuals endowed with m
attributes can be represented by a matrix A € M, «,, with m rows and n columns.

Given a matrix A € R™*™(= M,,,xr), we define A; € R™(= M, «1) as the vector (matrix) of
all attributes of the individual j € J, represented by the jth column of A. Also, 4; € R™(= M «,,)
is defined as the vector (matrix) of the attribute i € Z across all individuals, represented by the
ith row of A. A; may be interpreted as an individual, or a subgroup of society. Similarly, A; may
be interpreted as an attribute, or a subgroup of attributes. Yet, denote the matrix (A;, A_j), in

which column A; is replaced by column A;- in the matrix A.

We next present the axioms that characterize this social planner’s preference for human devel-
opment.

Consider a social planner who governs a society (a country or a city, for example) and her goal
is to improve the human development of this society. This social planner has her preferences about
the way to carry out social policies to deal with inequality and improve human development.

A social planner’s preference is given by a binary relation 27 on M, »,,. For A, B € M,,,x,,, A 72 B
means that A is weakly preferred to B, A = B means A is strictly preferred to B, A ~ B means A
and B are considered as indifferent by the social planner.

A.1 Weak Order: 7 is a complete and transitive binary relation on M, «,. That is, for all

~

A, B,C € M,,xn, Az Bor B, A (completeness). Moreover, if A 77 B and B 77, C then A - C
(transitivity).

A.2 Continuity: Given B € My, xp, {A € Mi,wn|A 77 B} and {A € M, x| B 7 A} are closed in
Man~

A.8 Monotonicity: For all A, B € M,,,xn, and for all ¢, j, if a;; > b;; then A 27 B. If furthermore
A # B, then A >~ B.

A.4 Independence: For all A, B € M,,«, and taking j € {1,...,n} fixed with A; € Myx1 ;
(Aij*j) i (Aij*j) — (AjaB*j) i (Aij*j)'
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A.5 Anonymity: For all A € M, and for all bijection o : {1,...,n} — {1,...,n}, one has
A1y Ay An) ~ (A os Aoty s Ao )

A.6 Strongly Homothetic: For all A € M},
(Bj’A—j) = (Cj ®Aj’A—]) ~ (CJ ®B]7A—J)

A.7 Pigou-Dalton Principle: Let A = (Aq,...,A;,..., Ay) such that for some ji,j2 € {1,...,n}
one has A;; < Aj, and let € € R? then:

Az (A, Ay LA, 5A
A, if e ¢ R and € # 0.

and for all B;,C; € M (A;,A_) =

m><17 ~

Aj, +¢€, A An) =: A.. Furthermore, A =

]1+1"" J2 19 J2+17"'7

Multidimensional social evaluation function
This section presents the first result.

Theorem 5 A preference relation - on My, «, satisfies A.1 to A.7 if, and only if, there exists
a € AT;l and there exists ¢ : R — R strictly increasing, strictly concave and continuous such that:

A§B<E>2¢(H >Z¢ Hbm

j:l =1 1=
Furthermore, such o;’s are unique and 1 is defined up to an increasing affine transformation.

The social planner first assigns a weight for each attribute and aggregates them through a
Cobb-Douglas rule. Then she applies a function ¥ and adds all the individuals.

We next introduce another axiom to formulate a proposition that helps us to demonstrate the
relation of Theorem 5 with the IHDI formulation.

A.8 Scale Invariance: For all A Be M}  andke€R,y; A B = k-Axk-B.

mXxXn

Proposition 2 A preference relation > on M . satisfies A.1 to A.8 if, and only if, up to an

m><n
increasing affine transformation, either 1/1( ) =1In(t) or(t) =t? for allt > 0, where B € (0,1)
1(4) = ( [TIT4
j=1li=1

Likewise, taking ¢(-) = In (-) and considering that all the attributes are strictly positive. Suppose
also that all the attributes have the same weight. Moreover, since the sum of logs is the log of
product, we get,

17w

H (H a”> | (2.2)

where T(A) € [0,1]. Taking m = 3 we find that the condition (2.2) is equal to THDI formula.
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Social Evaluation Function: A new proposal

What happens if the social planner is not sure about the importance of the attributes chosen to
assess a society’s welfare? We characterize this context in Example A showing that the Strongly
Homothetic axiom might be violated.

It means that the index formulated in Theorem 5 does not capture this kind of behavior. One
way to characterize this behavior is to weaken the strongly Homothetic axiom and we thus propose
a new social evaluation function.

Rawlsian Inequality-Adjusted Social Evaluation Function
Since Strong Homotheticity is violated, we replace this axiom by another three axioms: Homo-
theticity (A.9), Log-Convexity (A.10) and Power Invariance (A.11):

A.9 Homotheticity: For all A € M\ k € Ry and for all A;,B; € Mt 15 (A;,A-;) =
(Bj,A_;) = (k-Aj;,A_;) z (k-Bj,A_j).

A.10 Log-Converity: If for all A € M\ A € (0,1) and for all A;, B; € Mt 13 (A;,A_;) =
(Bj,A_;) = (A)®BI™ A_;) 7z (B;,A_;).

A.11 Power Invariance: If forall A€ M\ k€ R, and forall A;, B; € M}, 1 (A;,A_;) =

(Bj,A,j) — (A‘I;,A,j) - (Bjk,A,])

Theorem 6 A preference relation = on M, «,, satisfies A.1 to A.5, A.7 and A.9 to A.11 if, and
only if, there exists a unique, non-empty, closed and convex set C C A of probability measures such
that o € AT;l and there exists 1 : R — R strictly increasing, strictly concave and continuous such

that:
A>B<:>Z¢<m1nHaal>>Zip<mm bO‘l).
i=1

Furthermore, ¢ is defined up to an increasing affine transformation.

In addition, Strong Homotheticity axiom in Theorem 6 would imply that the set C' has a unique
probability measure.

In order to be able to compute our social evaluation function, we now specify ¥ (-) = In(:). It
turns out that simple computations as for Proposition 2 lead to Corollary 7:

z ywn Satisfies A.1 to A.5, A.7 and A.9 to A.11 if,
and only if, there exists a unique, closed and conver set C' C A of probability measures such that
a € AT;l and A 7 B if, and only if, I(A) > I(B) where for all A, B with strictly positive attributes:

Corollary 7 A preference relation >~ on M}
min ay; i

and similar formula for I(B).

Example B
Suppose the social planner is no longer sure about the best way to assign weights to education
sub-components. She has no doubt that the education attributes should jointly represent 50% of
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the measurement. she believes that their weights are between [!/6,1/3]. Furthermore, she follows
, 1

11 11
the social evaluation function provided in Corollary 7, i.e. let us define a; := a;ija;:j (aeﬁl JTON j)

” 1 1 1 1
P 4 4 3 6 3 3
and a; = Ay iy (aeljaezj>. Rewriting the index,

I1(A) = jlf[lmin(a;,a;) |

The higher is her dubiety to assign weights to the attributes, the higher is the range of weight
possibilities.

We complete this section by proposing a final result that allows us to deal with simple meaningful
cases, which furthermore appears to be tractably computable for applications.

Theorem 8 Assume that the social planner is only able to give an upper and a lower bound respec-
tively a; and b; for the weight oy of each attribute i = 1,...,m, where 0 < §; < 6; < 1. Then the
soctal planner is consistent, i.e. there exists oy > 0 such that §; < o < &; for alli and Z:’;l a; =1
if, and only if,

ilﬁlﬁza (2.3)

Furthermore, the social evaluation function I(A) of any A with strictly positive attributes, as
proposed in Corollary 7 is now given by the following formula:

I(A) =[] exp / Aj dv (2.4)
= my

where [(-) dv is the _Choquet integral with respect to v : E € ofl,om} v(E) =
Inax {ZzeE @7 1- ZiGEC 5i}-

Corollary 9 It appears that social planners might prefer to envision bounds symmetrical with re-
spect to 1/n i.e. of the type §; =1/m —¢e;, 0; = Ym +¢; where g; >0 for all i =1,...,m. In such a
case, simple comparisons show that Theorem 8 is valid if, and only if, 0 <e&; <1 —1/m.

Rawls versus Harsanyi

The new proposal introduced in this chapter may be associated not only with the idea of inequality
aversion, but also requires a normative approach on how to assess human development from the
social planner’s perspective. This context involves a notion of justice and fairness, invariably.

To shed some light on this normative discussion, we revisit a very interesting discussion that
occurred in the 1970’s between John Rawls and John Harsanyi. They have quite different views
about justice and, consequently, on how to deal with inequality, and this dispute, as described by
Moehler (2018), has deepened and enriched subsequent researches since then.

For Rawls, a sharp critic of utilitarianism approach, the main concern of a fair society should be
the provision of primary goods for all. For that reason, public policies should give more attention
to the worst off individual than to the rest of society.
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On the other hand, Harsanyi was a harsh critic of Rawls’ theory of justice. His approach
assumes that individuals are Bayesian and make their choices based on risk or uncertainty, assigning
probabilities to outcomes and maximizing their expected utility.

Our example is useful to describe how theorem 2 may represent Harsanyi and Rawls’ point of
view in a multidimensional social evaluation function.

Our social evaluation function treats individuals similarly to Harsanyi’s theory, giving the same
weight to all individuals as in his equiprobability model. Additionally, our social evaluation function
opens up the possibility to treat attributes as in Rawls’s theory, i.e. since the social planner is unsure
about how to weigh attributes, she gives more importance to the worst off outcome.

2.2 Business Cycles

2.2.1 Ambiguous Fiscal Policy
Introduction

The 2008 crisis has raised questions about the best way to promote sustainable development through
public policies. The turmoil in financial markets created by this crisis did not lead to a consen-
sus on how to manage fiscal policy. This context expanded the range of possible scenarios and,
consequently, increased the uncertainty about the fiscal policy to be carried out.

As risks increase, agents become more alert about decisions taken by authorities. It also becomes
more important to foresee what governments will do in the near future. Households and investors
fear the possibility of a public policy harming their consumption plans. Indeed, bad policies may
affect future wealth and agents want to anticipate this kind of scenario, preventing future losses.

In this sense, uncertainty has been gaining relevance to understanding fluctuations in economic
activity. How would an ambiguity averse household react when facing conflicting intangible in-
formation about future fiscal policy? This chapter aims at characterizing this context in a New
Keynesian model, implementing two main strategies: 1) adding a shock of ambiguity a la Ilut and
Schneider (2014) into fiscal policy shock and 2) adding a risk premium shock for risk-free bonds as
proposed by Smets and Wouters (2007) and Fisher (2015).

I follow Tlut and Schneider (2014) modeling changes in ambiguity through shocks to confidence.
Conflicting information that raises the perception of ambiguity is perceived by agents as a shock
of confidence. However, a drop in agents’ confidence does not mean that the budget deviation
will occur. In order to compare the shock of confidence followed or not by a budget deviation,
I expand the analysis adding another shock that captures agents’ confidence, in a different way,
independently of the government expenditure. For that, I introduce the risk premium shock, or
liquidity shock as in Smets and Wouters (2007). A positive shock of risk premium raise agents’
demand for risk-free bonds. This movement can be interpreted as a precautionary behavior of the
agents whose decision to demand more risk-free bonds is perceived as a way to reduce the risk of
future losses.

The hypothesis is that ambiguity averse agents have multiple beliefs and act under the worst-
case belief. I define the worst-case belief here by considering that non-budgeted fiscal expenditures
on the part of policymakers may produce a lower than expected return to society, damaging public
accounts.

A positive risk premium shock has a similar effect when agents fear that the government will
make a bad decision in the future. An expansion of risk-free bonds demand will immediately
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generate a corresponding fall in consumption and investment, consequently dropping output. This
behavior is also coherent with the Ricardian hypothesis, i.e. when agents fear a future increase in
taxes they aim to increase current savings to smooth intertemporal consumption. The difference
is that a prior motive is being inputted for the government to increase taxes: non-budgeted fiscal
spending.

Model

I develop in this chapter a New Keynesian model as pioneered by Christiano et al. (2005) and
Smets and Wouters (2007) with staggered prices and wages, investment adjustment cost and many
elements introduced in the literature since then.

Households in the model are represented by a lifetime utility function with a vector of exogenous
state variables. For every period, households project their consumption plan by choosing the amount
of consumption, hours worked and the amount of government bonds.

The recursive formulation is dynamically consistent based on the approach introduced by Epstein
and Schneider (2003). Moreover, the standard rational expectation is obtained as a special case if
the set of conditional probabilities contains only one belief.

The risk premium shock denotes a stochastic preference for holding risk-free bonds issued by the
government. The demand function for bonds represents the real quantity of one-period government
bonds purchased by the households. Besides, households own the installed capital stock, subject
to adjustment costs as introduced by Christiano et al. (2005) and their budget constraint offsets
spending (consumption, investment, taxes, and bonds purchased) with revenues (bonds sold, capital
profits, and wages).

The economy has two types of perishable goods. Perfectly competitive firms produce final
goods that are made by the combination of a continuum of intermediate goods. Intermediate
goods are made through the capital, labor, and final goods by monopolistically competitive firms
using a Dixit-Stiglitz aggregation technology. Intermediate goods firm produces according to a
Cobb-Douglas production function with capital share.

I follow Calvo (1983) to establish that a random group of intermediate good producers re-
optimizes the price at every period. Whenever the firm is able to re-optimize its price, it maximizes
the expected present discounted value of future profits.

The economy has also two types of labor: homogeneous and specialized. The first is offered by
’employment agencies’ and the second is demanded by those agencies. As in Erceg et al. (2000),
specialized labor is supplied by a continuum of households in a monopolistically competitive market
and it is adopted here the strategy proposed by Smets and Wouters (2007) introducing staggered
wages setting a la Calvo (1983).

The economy’s public sector is composed of the Central Bank and the Government. The Central
Bank sets the nominal interest rate concerning deviations of inflation from the target and output de-
viations from its potential. Government one-period budget constraint offsets spending (government
expenditures and repayment of bonds sold in the previous period) with revenues (taxes collected
and bonds issued in the current period).

The fiscal rule used in this model states that lump-sum tax is defined by the sum of bonds issued
and government spending, both regulated by their sensitive responses. These parameters govern
the response of tax to bonds issuance and government spending, respectively.

Finally, the general resource constraint states that output is equal to the sum of private con-
sumption, investments, and government expenditures.
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Mechanism of the confidence shock

This model allows agents to have multiple beliefs about future government expenditures. Suppose
thus the agent has conflicting information about whether the government will strictly pursue the
approved budget or spend more, in the following quarter. This truncated information induces
agents to treat the following quarter’s government expenditure as ambiguous. A raise of ambiguity
represents an increase in the lack of confidence, which explains the shock. Being ambiguity averse
means that agents act as if the worst-case scenario will happen, i.e., in this case, the government
will spend beyond the budget.

The term pf measures the lack of confidence. Hence, government spending law of motion, from
the perspective of the agents, is given by

IOg <gt;1> = pg log ('Zt) + [L;k + Uun?—&-l

where 7} ~ N(0,1).
It is not known the probability distribution of the belief set expressed by u;, suggesting why it
is so hard to predict. This set is denoted by,

1y € ar — 2|adl, a] (2.5)

where a; is defined as the time-varying ambiguity. As pointed out by Ilut and Schneider (2014),
a; represents an indicator of intangible information available at date ¢t about government expenditure
at t + 1.

This set is symmetric, centered around zero. Each element of y; in the interval (2.5) is related
to one belief contained in the set of conditional probabilities in the households’ utility function.
When this set has only one belief, the interval will thus contain also only one element, characterizing
the standard rational expectation setting. Yet, the more conflicting is the information gathered by
agents, the greater the interval is. The time-varying ambiguity follows the law of motion below,

A1 — @ = po(a — a) + vangy

where ¢ ~ N (0,1) and a is the steady state ambiguity level.
The worst-case steady state of government spending in terms of output path is,

That is, in the absence of ambiguity, ¢ = g. For example, suppose that § = 0.2 (government’s
output share represents 20% of output), i.e. when such spending does not deviate from budget.
Then the worst-case steady state of government spending is the sum of the unambiguous parameter
(g) and the ambiguous term (a/(1—py)). The higher a is, the higher is the difference g —g. In other
words, a large steady state ambiguity means that agents expect government expenditures greater
than usual.

Results

It is presented here a comparison of the confidence shock in the worst-case setup and traditional
fiscal policy shock. I also compare the confidence shock with the risk premium shock. Finally, is
presented the effect of the bonds risk aversion on the main aggregates.
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From the agents’ worst-case perspective, the law of motion of fiscal policy contains an ambiguous
component. The main goal is to simulate a context in which agents lose the confidence of the fiscal
policy in the following quarter. Unexpected increases in government expenditures are usually
considered by agents as a bad political decision. More specifically, the worst scenario happens when
wi = ag, i.e. the maximum deviation of the public budget expected by the agent. This effect
increases government expenditures, in the agents’ worst-case perspective, and affects the business
cycle.

A fiscal policy shock increases government expenditure since the first quarter, generating a
similar movement of output. The fiscal rule induces a respective increase in tax and bonds, which
reduces the household’s consumption. A larger supply of risk-free bonds, induces a rise in their
interest rate, decreasing the interest rate spread. Inflation and marginal cost also increase, in
opposition to the confidence shock.

Most of the variables present an inverse response to a positive fiscal policy and a confidence
shock. Because of an increase of ambiguity, output, hours and the interest rates (bonds and capital)
starts below the steady state.

On the other hand, investment, consumption, and wages have a similar reaction to both shocks.
Investment drops as a result of crowding out effect and consumption follows output and hours
decrease with a subsequent rise of taxes.

Another interesting comparison is the confidence and risk premium shock. A positive shock of
risk premium, among other possibilities, may represent a fall of agents’ confidence.

An unexpected increase of the fiscal shock is firstly reflected in a proportional increase in govern-
ment expenditure. From the resource constraint, an increase in government expenditure generates a
current reduction of household consumption and output. Investment reacts to the loss of confidence,
falling during the few first quarters.

Confidence shock causes deflation at the beginning due to the drop in output. Then with the
subsequent expansion of government spending, inflation gains momentum, surpassing its steady
state before converging to equilibrium.

In sum, an increase of ambiguity has the most negative impact on investment and capital
among all variables, denoting that confidence is a quite important element for entrepreneurs to
decide whether to invest or not.

Consider now a similar effect on agents’ confidence, but without ambiguity effect on government
spending response. Governments with bad reputation call agents to have a precautional reaction
to mitigate the risk of loss. However, this behavior is not always followed by a government unde-
sirable decision. Nevertheless, the attitude taken by agents is enough to affect the business cycle.
This positive shock to demand for safe and liquidity assets may be motivated by several features.
Uncertainty about future fiscal policy might be considered as one of the sources.

In comparing both ambiguity and risk premium shocks, is interesting to see that both generate
a comovement fall in output, investment, and consumption. Despite that, such shocks have some
mechanic differences.

An increase in demand for risk-free bonds implies necessarily a fall of consumption via house-
hold’s resource constraint and also a fall of output through resource constraint. As a result of a
decrease in consumption, investment, and output, inflation also reduces. Since government spending
increases inflation above its steady state, real wages decrease and takes longer to recover because
of Calvo stickiness.

Furthermore, as pointed out by Fisher (2015), the interest rate of bonds decreases as demand
for bonds increases. The current capital interest rate drops only in the beginning, as pointed out
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by Smets and Wouters (2007), and takes longer to recover compared with the confidence shock.

Since the risk premium shock, as introduced here, is a recent element in the literature, I also
analyze the effect of the relative risk aversion coefficient on the main aggregates and price variables.

Briefly, an increase of the risk aversion reflects a greater aversion to risk by the agents, taking
into account that they are less willing to take risks considering the same wealth and the same
economic context. Larger values of the risk aversion potentialize negative effects on consumption,
investment, hours worked and output. The wedge between the interest rates also increases, since
the increment in the demand for risk-free bonds causes their interest rates to fall sharper than the
capital interest rate for the subsequent periods.

As Ferndndez-Villaverde et al. (2015) pointed out, most of the economic decision-making is
subject to pervasive uncertainty, in particular, to uncertainty about future fiscal policy. This
chapter contributes with further evidence that an increase in fiscal policy uncertainty increases the
negative effect on economic activity. In fact, it is important to estimate the main parameters to
compare the theoretical results with actual data.

This chapter does not intend to conclude that ambiguity is the main source of business cycle
fluctuations, but these findings highlight the influence of ambiguity on economic activity.
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Chapter 3

Multidimensional Pigou-Dalton
tranfers and social evaluation
functions

This chapter is a result of the article “Multidimensional Pigou-Dalton transfers and social evaluation
functions”, made in collaboration with Alain Chateauneuf, Marcelo Basili, and Maurizio Franzini.

Abstract

We axiomatize, in the multidimensional case, a social evaluation function that can ac-
commodate a natural Pigou-Dalton principle and correlation increasing majorization. This is
performed by building upon a simple class of inframodular functions proposed by Miiller and
Scarsini under risk.

Keywords: Multidimensional inequality, Pigou-Dalton transfer, Inframodular functions, In-
creasing majorization, Human Development Index.
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3.1 Introduction

There has been a resurgence of interest in multidimensional social evaluation functions mainly due
to new techniques that extend in the multidimensional setting the pioneering works by Atkinson
(1970; 1987), Kolm (1976a;b; 1977) and Sen (1976). In particular, Tsui (1995; 1999) and Gajdos
and Weymark (2005) have offered axiomatic approaches to designing income inequality measures
in a multiattribute context.

Although Tsui mainly used the additive approach, Gajdos and Weymark built upon the gener-
alized Gini social function. These two different approaches are not at all innocuous. The former
aggregates the attributes of each individual and then additively aggregates the resulting values; the
latter evaluates the different attributes through a specific aggregation and then simply aggregates
the values.

Note also that although Tsui’s (1999) approach is a ‘traditional’ additive evaluation, Gajdos
and Weymark (2005) adopted a non-additive approach, which was introduced by Weymark in his
seminal paper in 1981.

In this chapter, we follow the traditional additive approach, but instead of imposing the ma-
jorization theory of the m-dimensional case as in Tsui (1995), we confine ourselves to accommodat-
ing a particular Pigou-Dalton transfer, which we believe is relevant. Furthermore, our approach is
consistent with the meaningful property of Correlation Increasing Majorization (e.g. Tsui, 1999).

In actual fact, we investigate a class of utilitarian social evaluation functions (that consist in
aggregating the individual utilities), where the utility function, the same for all the individuals
and which depends on several attributes, will prove to be inframodular (a natural multivariate
generalization of the notion of concavity). More precisely, the chapter aims at characterizing a
class of inframodular functions initially proposed in the literature on decision under risk, by Miiller
and Scarsini (2012).

Letting © = (x1, ..., %) be the list of endowments of an individual in each of the m attributes,
the chapter investigates the class of inframodular utility functions that can be written as u(x) =
Y (3%, a;x;) where 1 is increasing and concave, a; > 0 and >, a; = 1. Notice that such a
utility function requires the commensurability of different dimensions. Additionally, from Theorem
1 in Section 3.3, the fact that u is defined up to a positive affine transformation suggests that the
underlying attributes are cardinally measurable. Although the same criticisms can be raised against
the standard Human Development Index (HDI) approach, we have the feeling that such limitations
allow however to treat most of the interesting situations.

Moreover, we show that inframodular functions are intimately linked with a natural generaliza-
tion to the multidimensional case of the classical unidimensional Pigou-Dalton transfers principle,
which allows one to consider situations where some of the welfare attributes are not transferable
(to be compared with Bosmans et al. (2009)). This point will lead us to a key simple ’transfers
principle’ axiom. Likewise, since inframodular functions are submodular, it turns out that our
evaluation function will also accommodate the property of Correlation Increasing Majorization.

Finally, we specify our social evaluation function to compare it with the famous HDI by using
actual data.

The chapter is organized as follows. Section 3.2 presents the notation and also introduces the
chapter’s motivation and axioms. Section 3.3 offers our main theorem, specifically Theorem 2
which characterizes our social evaluation function. Section 3.4 aims at reducing the number of
parameters, namely, specifying some fundamental ¢ function, for our purpose. Thus, we deliver
a tractable relative inequality index in the corollary of Theorem 3. Section 3.5 shows that our
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evaluation function can accommodate Correlation Increasing Majorization. Section 3.6 illustrates
using Brazilian data in what way the current methodology differs from the popular HDI. Finally,
Section 3.7 concludes and some proofs can be found in Appendix A and Appendix B.

3.2 Notation, motivation and axioms

We consider n individuals 1,...,4,...,n and A; € R™ is the column-vector of the m attributes of
a1y

this individual A; = | a;; |[; indeed, the same m attributes are considered for each individual®.
Amj

Henceforth, for n given individuals, A = (A1,..., A4;,..., A,) is the m x n matrix summarizing

the considered population. Note that A will denote the set of such real matrices A with m rows
and n columns. A and A, will denote the subset of A consisting of matrices with non negative
elements and positive elements, respectively.

In the unidimensional case, when considering n individuals 1,...,7,...,n with incomes z; <
z2 < ... <z <... < xy, it is usually assumed that if x; < x;41 then a transfer ¢ > 0 from
individual j + 1, to individual j such that x; + ¢ < x;41 — € reduces inequality. This transfer is a
Pigou-Dalton transfer. Note that this is equivalent to assuming that if z; < x;;, then modifying
x; into x; — € and ;41 into x;41 + € increases inequality.

Thus turning to the m-dimensional case with m > 1, which is the topic of this chapter, where
each individual j has a column-vector A; € R™ of m attributes, we get that the m X n matrix
A= (Ay,...,A;,..., A,) summarizes the data. Imagine that for two individuals their respective
column attributes are X and Y, with X <Y (ie. x; <y, foralli =1,...,m) and let ¢ € R’
with € # 0. In such a situation, the transfer of ¢ from X to Y will be a regressive Pigou-Dalton
transfer because it would increase inequalities?.

Our goal is to axiomatize additive social evaluation functions, i.e., social evaluation functions
I: A — R such that I(4) = 377 u(4;), for all A € A, where u : R™ — R agrees with a
diminishing social evaluation in the case of such a Pigou-Dalton regressive transfer as above. It is
immediate that for all (X,Y) € R™ x R™ such that X <Y and for all € € R, u should satisfy:

wX)—uwX —¢)>ulY +¢) —u() (3.1)

This is the usual property of concavity in the one-dimensional case, at least when u is continuous.
Actually, we show (see Lemma 1 in Appendix B) that inframodular functions (see Definition 2
below), extensively studied by Marinacci and Montrucchio (2005) and proposed by Miiller and
Scarsini (2012) as a meaningful representation of risk aversion in the multidimensional case, satisfy

INote that throughout the chapter we assume n > 3. Indeed, to obtain an additive representation in a parsi-
monious way through the classical independence axiom as in Debreu’s theorem (1960), it is known that n > 2 is
required, which in any case appears to make sense for applications.

2Since this chapter has been performed, we are aware of a similar Pigou-Dalton principle introduced by Bosmans
et al. (2009). Nevertheless main differences persist between the two chapters: our definition is model-free and our
main motivation is to link this principle to inframodularity.
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the desired property (3.1), and are consistent with the relevant property of Correlation Increasing
Majorization?. Let us recall:

Definition 2 A function u : R™ — R is said to be inframodular if:

u(X+e)—uX)>ul¥ +¢e) —ulY)
for all X, Y € R™ with X <Y and e € R

Inframodular functions may not be concave (e.g. Marinacci and Montrucchio, 2005); there-
fore, as observed by Miiller and Scarsini (2001; 2012), inframodular functions do not match
the property of risk aversion, which states that adding a random vector E with mean 0 to
a constant multivariate vector is always unfavorable. Note also that multidimensional concave
functions may not be inframodular. A typical example is the three-dimensional HDI function*
v (z1,29,23) € (0,13 — v(w1,22,23) = xi/sx;/?’x;/g’. Thereby, an additive social evaluation
function based on HDI might not respect the natural multidimensional Pigou-Dalton principle
evoked above. As an example let us consider two individuals with row attributes respectively
X =(0.8,0.64,0.729) and Y = (0.9,0.81,0.729) and let us transfer ¢ = (0,0,0.1) from X to Y. A
simple computation delivers v(X —e) +v(Y +¢) > v(X) + v(Y).

In actual fact the standard additive version of HDI would rank equally (X,Y) and (X —¢,Y +¢)

since:
X+Y X—e+Y+e¢
= _—
2 2

HDI(X7Y):v< >=HDI(X—5,Y+5)

As a consequence, this index would not take into account what appears as a clear deterioration
of the social function with respect to inequality, when modifying (X,Y) into (X —¢e,Y +¢).

This contrasts with the additive social evaluation function that we propose in this chapter (e.g.

Theorem 3 and Section 3.6), namely I(X,Y) = u(X) + u(Y) where u(z1, s, w3) — In 2222 T8

3
which delivers,
I(X,Y) =1In(0.587) > I(X —&,Y +¢) = In(0.583)

hence a ranking in accordance with the intuition.

As pointed out in the introduction, we intend to test the pertinence of inframodular social
evaluations when compared to HDI. This explains why we focus on particularly tractable and
meaningful inframodular functions u as proposed by Miiller and Scarsini (2001; 2012) through:

u($133x137xm) :1/’(20%1’2) (32)
i=1

where v is increasing, concave and aq, ..., > 0.

Observe that such an wu is a valuable function for our purpose, since, first, it makes sense to
weight the different attributes in accordance with their importance «; > 0, and second, with such a
1 concave, the resulting u is inframodular, so it agrees with our definition of increasing inequality.

3Let (X,Y) €R™ xR, X AY = (...,min(x;,v;),...),X VY = (..., max(z;,y;),...). Correlation Increasing
Majorization stipulates the meaningful requirement that replacing two individuals endowed initially with X and Y
by individuals endowed with X AY and X VY increases inequality. Since an inframodular function u is submodular
fe. w(X)+u}) > u(XAY)+u(X VY), one gets this property.

4In 2010 the HDI functional has changed its additive form to a multiplicative form as introduced above. Section
3.6 includes a discussion about this ‘new’ HDI. Details are in Zambrano (2014).
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Accordingly, in this chapter, we mainly axiomatize the social evaluation function of the type
given by (3.2), present the natural usual axioms aiming to specify v, and propose a simple relative
inequality index. Moreover, as mentioned in the Introduction, our social evaluation function is
proved to satisfy the condition of Correlation Increasing Majorization.

We now switch to the axioms which will be considered to model the preferences 7 of the “social
planner” (or “ethical observer”) for global welfare taking into account that inequalities have a
negative impact on welfare, but also that all attributes are “positive” that is, an increase in some
attribute has a positive effect on welfare.

Thus, - is a preference relation on A (if Ay or A, is considered — this is specified in the
theorems). Indeed, for A, B € A, A = B means that A is weakly preferred to B, A > B means A
is strictly preferred to B, A ~ B means A and B are considered as equivalent by the social planner.
Note that these definitions are consistent since = will be assumed to be a weak order.

The first three axioms are standard; therefore, they do not require a particular explanation:

A.1 - is a Weak Order; i.e., 7 is a transitive, complete hence also a reflexive binary relation
on A.

A.2 Continuity: Let B € A be given, then {A € A|A 7 B} and {A € A|B 7z A} is closed in the
usual topology of R™*™,

A.8 Monotonicity: For all A, B € A, a;; > b;; for all ¢, j, implies A 27 B. If furthermore A # B,
then A > B.

For A € A and A;- a column of R™, (A;»,A_j) denotes the matrix A where column A; has

been replaced by column A;-. Thus, the classical independence axiom states that the impact for
the ranking of replacing a given individual by another one is the same if all the other individuals
remain unchanged.

A.4 Independence: For all j and (A4, B); (A;,A_;) = (A;-,A_j) <~ (4;,B_;) (A;-,B_j).

Below is the usual anonymity axiom which states that the value of a distribution does not
depend on the identity; only the value of the attributes matters.

A.5 Anonymity: For any permutation matrix II and for all A € A, one has A ~ AIl; i.e.,
(A1, Ay, An) ~ (Asays - Asgys - - - Ag(ny) Where o : [1,n] — [1,n] is a bijection.

The additivity axiom A.6 allows through the independence axiom A.4 to show that the common
preferences of individuals over R™ are additive in the sense of axiom® A*.6, which is similar to the
one used in Theorem A2.1 of (Wakker, 1989; p.161). Thus we obtain what Peter Wakker quoted as
“de Finetti Theorem”.

Roughly speaking, the additivity axiom states that if the social planner considers that, for a given
individual, two given vectors of attributes are similarly valuable (this property being consistently
defined through the independence axiom A.4) then they will remain similarly valuable if the same
vector of attributes is added to both of them.

A6 Add’ttl’l)lty For all A7Aj,Bj,Cj; (Aj,A,j) ~ (Bj,A,j) - (A] + Cj,A,j) ~
(Bj + Cj, A,J‘).

Finally, axiom A.7 is crucial for our purpose. The following Pigou-Dalton principle is the direct
translation of the fact that if for an individual j; all the attributes are smaller than for another one
J2, then, for any ¢, transferring a value €; > 0 of the attribute ¢ from j; to j2, clearly should increase
the inequality (strictly increase if some &; > 0), leading to a worse social or welfare situation.

Indeed, the global progressive transfer ¢ € R from individual j; to individual j is “rank-
preserving” in the sense that the individual jo who is initially richer than the individual j; in any

5See the Proof of Theorem 2, in Section 3.3
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attribute remains richer when compared to j; after the transfer.
A.7 Pigou-Dalton Principle: Let A = (Ay,...,4,,...,A,) such that for some ji,j2 one has
Aj < Aj, and let € € R then:
A?\:(Al,...,Ajlil,Ajlf{f,A‘ ,A

141 Aj, +¢e, A ...,An) = A,; furthermore, A >
A if e € R and € # 0.

J2-19 J2+4+10

3.3 Multidimensional social evaluation functions

In this Section, multidimensional social evaluation functions are defined and characterized. Theorem
1 offers an axiomatization of the additive social evaluation function.

Theorem 1 A preference relation 77, on A satisfies A.1, A.2, A.8, A.4 and A.5 if and only if there
exists: u : R™ — R increasing and continuous, such that:

Forall ABE A, AZ B> u(4;)>> u(B))

j=1 j=1

where u is defined up to a positive affine transformation (the proof is in Appendiz A).

We come now to the main result of this chapter in which we characterize social evaluation
functions built upon the special type of inframodular functions satisfying (3.2) as proposed in a
different framework by Miiller and Scarsini. Such a social function agrees with our Pigou-Dalton
principle A.7 and with the property of Correlation Increasing Majorization as shown respectively
in Section 3.5 and Appendix B.

In this chapter, we consider situations where the relevant attributes are commensurable and
cardinally measurable. Therefore it might make sense to first summarize the list of attributes as a
weighted sum of these attributes, with positive weights summing to 1. Thus allowing each weight
to value the relative importance of the corresponding attribute, this explains why in Theorem 2
below a; > 0 for all i and >_1" | o = 1.

Theorem 2 A preference relation on A satisfies A.1, A.2, A.8, A.4, A.5, A.6 and A.7 if and only
if there exists a; > 0, i = 1,...,m, such that EZZI a; = 1 and there exists ¢ : R — R strictly
increasing, strictly concave and continuous such that:

AZB<= > O i ay) =Y v ai-by).
j=1 i=1 j=1 1

=
Furthermore, such «;’s are unique and v is defined up to an increasing affine transformation.

Proof. The necessary part of the proof is straightforward since inframodular functions satisfy A.7
(see Lemma 1 in Appendix B); thus we confine ourselves to provide the sufficiency part of the
proof. From Theorem 1, we already know that the “social evaluation” of each individual j, by
the social planner, is identically given by w up to a positive affine transformation, henceforth the
corresponding induced preference relations 7Z,; on R™ of every individual j are identical.

~J
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R, that X = Y if and only if K(X) > K(Y) and that K(z-1) =z,

o

*
Let us denote 7 this common preference relation and let us show that there exists a; > 0, for
alli=1,...,m, with 3", o; = 1 such that for all (X,Y) € R™ x R™,

i=1 i=1
Note that, A.1, A.2, A.3, and A.6 imply that = satisfies:

A*.1: 7 is a weak order
A*.2: Continuity: X® XY € R™ then®

A*¥2.1: XP) =Y forallp, X®P | X = XY
A*2.2:asY = X® forallp, XP 1+ X =YV = X

A*.3: Monotonicity: X, Y e R™, X >Y = X = Y, furthermore

FXAY = X5V

A*.6: Additivity: For all X,Y,Z €R", XY =X+ ZAY +Z
For X € R™ denote K(X) : = Inf {.73 ER|z-1 iX}, it is easy to see that K (X) exists in

1

for all x € R, where indeed 1 = . e R™

Let e; be the i, vector of the canonical basis of R™, i.e., ¢; =

= K(e;), from A*.3, since K(0) =0, one gets o; > 0.

We now intend to show that

K(X) = i ;5
i=1

Note that since K (1) = 1 this will entail ;" | a; = 1.
To prove (3.3), let us show first that: for all Y, Z € R™ one has

K(Y +2)=K(Y)+K(Z)

1 the iy, column, and let

(3.4)

Since Y ~ K(Y) -1 and Z ~ K(Z) - 1, then A*6 implies (3.4), since Y +Z ~ K(Y) -1+ Z
and K(Y)- 1+ Z~ (K(Y)+K(Z))-1,gives Y + Z <~ (K(Y) + K(Z)) -1
It turns out that K (X) =" K(z;-¢;). It remains to show that K(z; - ¢;) = x; - K(e;).

6Indeed, x® l X and x® 1 X means that the sequences X® are respectively decreasing (increasing) with
respect to the point-wise order in R™ while converging towards X.
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It is enough to prove that”:

Kz -X)=z -K(X)

for all x € R and for all X € R™.

This has been already proved for z = 0. So let us assume x € R*.

Assume first © € Q* i.e. x =7/, p € N*, g € Z*.

From (3.4) we have K(?/,- X) = K(p-%/,) =p - K(*/,) but K(X) = K(q-%/,) =q¢-K(¥/,).
Therefore, K(*/,- X) =%/, - K(X).

From A*.2 it is simple to see that X,, | X = K(X,,) | K(X) and

X, 1T X = K(X,) 1 K(X), and that K is monotone i.e. X >Y = K(X) > K(Y).

Hence, let us consider now that z € R and z, € Q, such that x, | x, and y, € Q, such that

Yn T .
We know that from A*.3 we can write z, - X > - X > y, - X and it implies that z, - X

Zx-X =y, X. Then K(z,,- X) > K(z-X) > K(yn - X).
Therefore, z,, - K(X) > K(x-X) > y, - K(X) for all n, so letting n — 400, we get K(x-X) =
x - K(X), which completes the fact that:

X ZY if and only if Y aiwi =Y iy

=1 i=1

We end the proof by showing that up to an increasing affine transformation there exists a unique
1 : R — R strictly increasing, strictly concave, and continuous such that for all A, B € A :

m

A7 B<— Zib(zai'aij)z Z¢(Zai'bij)~
j=1 =1 Jj=1

i=1

From Theorem 1 there exists - up to a positive affine transformation - a unique v increasing and
continuous such that, for all X,Y € R™,

X5 Y e u(X) > u(Y).

N

Since K : R™ — R is also a strictly increasing and continuous representation of 7, there exists
up to a positive affine transformation a strictly increasing continuous function ¥ : R — R such that
u=1okK.

It remains to be proved that v is strictly concave.

It is enough to show that for all (a,b) € R?, a < b and for all € > 0 one has ¥(a) — ¥(a — &) >
b+ <) — ().

It is immediate to find X,Y € R™ such that X <Y, a=Y" az; and b =) " o;y;, then
from A.7, we get

w(X) —uw(X —el) > u(Y +el) —u(Y).

Therefore, ¥ (a) — ¥ (a —¢e) > (b + ¢) — 1 (b), which completes the proof of Theorem 2 m

"Indeed, below Z,N and Q (respectively Z*,N* and Q*) denote as usually the set of integers, non-negative
integers, rational numbers (respectively non-null elements in Z,N and Q).
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3.4 Specification of ¢ and a relative inequality index

To specify v, we introduce two axioms that have a long tradition in the literature; see, for instance,
Kolm (1976a;b) and, more recently, Gajdos and Weymark (2005).

A.8 Absolute Invariance: For all AAB € Aand forall \ e R, A~ B<= A+ Al ~ B+ )l
where 1 is the matrix m x n with 1 everywhere.

This axiom usually called “absolute invariance” expresses that the inequalities remain unchanged
if the same amount is added to all attributes and all individuals.

The following axiom usually called “relative invariance”, which applies only if all the attributes
are strictly positive, i.e., A € A, expresses that inequalities remain unchanged if all attributes
are multiplied by the same positive number A > 0 for all individuals.

A.9 Relative Invariance: For all A,B € A, and for all A > 0, A~ B <= AA ~ A\B.

Theorem 3 Assume that the preference relation 77, satisfies A.1 to A.7, then:

- up to an increasing affine transformation y(t) = —e~* with a > 0 if and only if A.8 is satisfied
when 7~ is defined on A.

- up to an increasing affine transformation either ¥(t) = In(t), for allt >0 or ¥(t) =1t%, for
allt > 0 where a # 0, a < 1 if and only if A.9 is satisfied when = is defined on Ay, .

Proof. We prove only the if part; the only if part is straightforward.

Assume A.§ is satisfied. It is easy to see that if Y57 ¥ (x;) = Y7_ ¥(y;) where z;,y; € R,
we must have Y7 (x; + k) = 37 (y; + k) for all k € R.

Therefore we can apply the results of the classical one-dimensional social welfare theory (see
e.g. Kolm (1976a) or else Aczél (1966)) to get the desired result.

Now, assume A.9 is satisfied and = is defined on A, . It is easy to see that Z?Zl P(z;) =
Z?Zl ¥(y;) where x; > 0 and y; > 0, for all j implies Z?Zl v(A\x;) = Z?ﬂ P(Ay;) for all A > 0.
Then we can apply the results of the classical one-dimensional social welfare theory® m

Remark Notice that in cases in which all attributes are strictly positive, and if we adopt axiom
A.9 then for all A € A4 one could adopt the social evaluation function J(A) = H?:1 (o, airaig).
Indeed, in such a case:

m

I(A) =Y () ai-aij) =In(J[O ai - aiy)).
j=1 i=1 j=1

i=1

We focus on the relative inequality index, which is linked with the choice of ¥(-) = In(-). This
index appears to be one of the most tractable and relevant in our framework.

3.4.1 Corollary of Theorem 3

The corresponding inequality index related to the social evaluation function defined on A4, the
set of m x n matrices with positive elements, satisfying 4.1 to A.7 and A.9 with ¢ (¢) = In(t), with

8See e.g. Kolm (1976a;b), Atkinson (1970) or else Aczél (1966) to get this result.
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t > 0 is relative and has the form

m
j=1 Z [Py V7
i=1
where u;, is the mean of iy, attribute in which i =1,...,m.

Proof. Following Tsui (1995) and Kolm (1977), let us define the multidimensional inequality index
Ip(A) for Ae Ai as Ir(A) =1—6(A) where 6(A) € [0,1] is defined by I(A) =1 (6(A) - A4,)
M1
where, A, is the m x n matrix where each column writes i
[im
From I(A) = Zj:l In(3_;%; ;- ai;) =In Hj:1(zz':1 @; - a;;) and
1(5(A) - 4,) = In (5(A)" - (X - )").
Based on that, one gets the desired result, namely,
1
m P
n Z Q; - Qg

A =1-|[[ 55—

J=1Y 0 o i
i=1

3.5 Agreeing with correlation increasing majorization.

Correlation Increasing Majorization (CIM) is a concept due to Boland and Proschan (1988) and
introduced into the inequality literature by Tsui (1999) who pointed out this type of majorization
is known as an ordering of dependence in statistics (e.g. Shaked, 1982) and in economics of risks
as ‘pairwise more risk’ (Richard, 1975). Note that CIM or the majorization aziom corresponds
to Atkinson-Bourguignon ordering (Atkinson and Bourguignon, 1982), but Gajdos and Weymark
(2005) observed that Bourguignon and Chakravarty (2003) raised reservations about this axiom,
because CIM does not take into account individual preferences. Since the point of view of our
social evaluation is to consider a social planner who aims to consider each individual in the same
way, we do not concur with the previous reservation and agree with the motivating examples given
by Tsui in 1999.

As an illustration, let A, B, C be the following three matrices summarizing the distributions of

attributes,’

123 123 123
A= 231 )], B=|( 132 Jand C=| 12 3
321 123 123
In accordance with Tsui (1999), we agree that intuitively the distribution of attributes summa-

rized by C' is most unequal followed by B and then by A.

9FEach column represents an individual.
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Note that column B; and Bjs are nothing else than By = Ay A A3 and By = A; V A3, where A
and V are the classical operators min and max.

Furthermore, Co = By A B and C3 = By V Bs.

After this illustration, it is time to define formally Correlation Increasing Majorization.

First, let us introduce some definitions (see Boland and Proschan, 1988).

Concept of Correlation Increasing Transfer (CIT)

Let A, B € A, then B is obtained from A by a CIT if there exists j1, jo where j; # jo such that
Bj, = Aj, NAj, and Bj, = Aj, V Aj,.

A CIT is strict whenever neither A;, < A;, nor A;, < A;, happen.

Concept of Correlation Increasing Majorization (CIM)

Let A,B € A, then A >, B, i.e., A is strictly less unequal for the CIM if B may be derived
from A by a permutation of columns and a finite sequence of Correlation Increasing Transfers with
at least one being strict.

We can now state and prove that our social evaluation functional of Theorem 2 as well as any
strict inframodular social functional respects CIM.

We say that an inframodular function u is strict if:

Forall (X,Y)eR" xR™ X <Y, ie, X<Y, X#Y ande € R™, ¢ #0.

Then one has u(X +¢) — u(X) > u(Y +¢) —u(Y).

Note that this is the case for the inframodular function in the Theorem 2.

Theorem 4 Any strict inframodular social evaluation functional respects CIM.

Proof. It is enough to prove that if A; and A, are two columns in R™, and neither A; < As nor
As < Ay, then the inframodular function u satisfies u(A;) + w(As) > u(A; A As) + u(A; V Ag).
The proof of this point is given in Appendix B, Lemma 2 =

3.6 Empirical Analysis

Based on Theorem 3, we specialize ¥(-) as In(-), thus, considering cases in which all of the attributes
are strictly positive, we adopt, for all A € A, ., J(A) as a ‘mean’ social evaluation function,

J(A) = %ilniaiaij
j=1 i=1

We aim at evaluating the pertinence of this inframodular function using data. To test it, we
decided to make a comparison with another function that is not inframodular, namely the famous
Human Development Index (HDI) launched by the United Nations in 1990.1° The classical version
of this index works with three variables (life expectancy (h), education (e) and income (w)) and
provides a value, which allows us to obtain ranking among countries. Recently, in 2010, this index
has been updated!! and now its form (similar that presented in Section 3.2) is,

wl=
Wl

1
e3ws

H(h,e,w)=h

0For more details, see UNDP (1990).
1 Zambrano (2014) discusses this new index, its computation and axiomatization. See also Herrero et al. (2010).
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where each variable is an index between 0 and 1 and consists, basically, in the population mean,
for example, h = - Z?Zl h;.

Besides the famous role of HDI, we can simply consider this index as a way to aggregate different
attributes, as well. As H(h, e, w) provides an outcome between 0 and 1, we decided to extract the
‘certainty equivalent’ of .J(A), i.e., I(A) = exp’). Then, now we have both indexes delivering
results in the range [0, 1].

Unfortunately, we can not make a comparison between the indexes using the regular HDI
database. In actual fact, only the means for each attribute by country are available. Our index
needs the individual-level information to be built. Thereby, we decide to perform this comparison
with another database that gives us the information level that we need. The database we have
chosen is the Brazilian national exam for high school students.'? The final notes in this exam are
split up in five categories: natural sciences, human sciences, languages, mathematics and essay
writing. To apply H(-) with these data, we focused our analysis on only three attributes, namely,
natural sciences (a®), languages (a') and mathematics (a™). Then, our empirical analysis, while
not performing a direct comparison with the classical HDI, is nevertheless indeed multidimensional,
since we consider three attributes.

The population (n) is the number of students in each town. Following HDI rules, here we also
give the same weight to the attributes. The function J(A) in this case, can be written as,

1 <& as +at 4+ a™
J(A):an(J 3 J).

j=1

It is widely known that classical HDI formula does not consider in its calculation the level of
inequality within a country. For this, a specific index is available, called IHDI.'3 However, we are
interested in contrast with the classical HDI to detect to what extent I(A) is influenced by the
‘intra’ inequalities. In other words, we want to see whether this function delivers a worse result for
towns that have more inequality among their students. In this case, as the classical HDI neglects
inequality characteristics, this comparison could be a good option to test the effectiveness of this
function concerning inequality.

Since Brazil has 5570 towns, we confined our analysis to Minas Gerais state. Below the
descriptive statistics are presented.

Firstly, the difference between the I(A) and H(A) outcomes is relatively small. Their correlation
coefficient is 0,999. The similarity of the outcomes is suitable because it shows that this function
provides the outcomes in a similar sense as HDI usually does. Nevertheless, we may see through
the descriptive statistics table that there are some differences between the two functions’ results
and we are interested in them.

For example, despite the strong closeness among the outcomes, we found that H(A) is always
bigger than I(A) for every town, and this difference varies. Thus, since HDI does not consider
inequality in its computation, we would like to know if the size of the difference between the
functions is related to the inequality level of the towns. In other words, we want to see whether

12This exam is called ENEM (Exame Nacional do Ensino Médio — National high school exam). This exam is
non-mandatory and has been used both as an admission test for enrollment in federal universities and educational
institutes, as well as for certification for a high school degree.

BKovacevic (2010) offers a good review and discussion about the importance of the inequality to evaluate human
development.
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Table 3.1 — Descriptive Statistics

Variable Mean Star-lda}rd Minimum Maximum
Deviation
Science 0.49611 0.07456 0.34200 0.87640
Language 0.51850 0.06725 0.30620 0.79440
Math 0.49559 0.11077 0.31850 0.97360
Students 677.127
Results by Town
Function Mean Star.lda}rd Minimum Maximum
Deviation
I(A) 0.48412 0.01851 0.43577 0.53025
H(A) 0.48765 0.01913 0.43748 0.53450
Towns 853

Source: ENEM 2014.

inequality is positively correlated with H(A) — I(A). To measure the inequality, in this case, we
summed the values of the attributes for each student and extracted the standard deviation of this
transformed variable. We want to analyze the correlation between these two variables to assert
whether I(A) takes inequality into account or not.

To answer this question, we need to evaluate these variables jointly. Below in Figure 3.1, one
will find the dispersion graph of these two variables.

Figure 3.1 — Dispersion graph between H(A) — I(A) and the global standard deviation of the
attributes
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We, also, computed a linear regression as a hypothetical exercise. The equation is written in
the graph and depicted by the black line. The value of R? attests that standard deviation explains
almost 96% of the H(A) — I(A) behavior. The positive relationship between the variables is quite
substantial.
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Therefore, based on these results we suggest that this function could be a good alternative
to THDI. In short, we provide an inframodular function which can be used to aggregate several
attributes (with different weights, if necessary), and takes into account the inequality inside the
analyzed population.

3.7 Concluding remarks

This chapter aimed at characterizing a simple ‘additive’ social evaluation function based on a par-
ticular type of inframodular function proposed by Miiller and Scarsini. In the multidimensional
case, it allows us to respect what can be considered as a natural Pigou-Dalton principle. Further-
more, if the social planner treats every individual equally, which might be fair, our social evaluation
functions agree with the property of Correlation Increasing Majorization, already suggested by
Tsui.

Building upon a long tradition, we specify our functions to obtain a simple tractable relative
inequality index. Finally, we propose an empirical analysis evaluating the pertinence of a specific
inframodular evaluation function ¢ la Miiller and Scarsini when compared to the famous HDI
functional.

We split up the Appendix in two parts: Appendix A includes the proof of Theorem 1. Appendix
B gives the proofs of Lemma 1 and Lemma 2.

Appendix A

Theorem 1
Proof. We give only the sufficiency part since the necessary proof is immediate.

From A.1, A.2, A.3, A./ (weak order, continuity, monotonicity and independence) and n > 3,
Theorem 3 in Debreu (1960) implies that there exist n increasing!? and continuous functions w;
R™ — R such that

n n
AZ B uj(4)) > ui(B))
j=1 j=1
where the u; are unique up to affine transformation au; + 8; with o > 0 and 3; € R. Thus, we
can assume that for all j, u;(0) = 0.
From A.5 (Anonymity), let us see that we can assume that there exists u : R™ — R, increasing

and continuous such that: . .

AZ B> u(4)) > u(B;) (A1)

j=1 j=1

Then, fix u; such that u;(0) = 0, for all j. By symmetry, we only need to prove that u; =
ug. Take any A; € R™ and consider (41,0, As,...,A,) and (0, Ay, As,..., A,). Through A.5:
ur(Ar) + uz(0) + 227 s ui(A;) = ui(0) + ug(Ar) + 3775 u;(A;y), this entails straightforwardly
ui (A1) = ua(Ay); thus, u; = ug = ... = u, = u. Therefore, there exists u : R™ — R increasing
continuous (satisfying u;(0) = 0) such that (A.1) holds. Clearly, u is defined up to a positive affine
transformation m

4 Note that u; increasing comes from our monotonicity axiom A.3.
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Appendix B

Marinacci and Montrucchio (2005) provided a thorough analysis of ‘Ultramodular Functions’, thus
(by reversing the inequality in the definition) of what Miiller and Scarsini (2012) called ‘Inframod-
ular Functions’ defined in Section 3.2.

We intend now to prove that inframodular functions agree with our Pigou-Dalton regressive
transfers (see Introduction).

Lemma 1 if v : R” — R is inframodular then u satisfies the property (3.1) quoted in Section
3.2
Proof. Let z,y e R", x <yande >0. Set 2’ =x—candy =y,e’ =¢,50 2’ <y and & > 0.
Then from the Definition 2 in Section 3.2 of u inframodular,

w@' +¢e) —u(@') >uly +¢) —uly)

- u(z) — u(z — &) > uly + ) — u(y)

Lemma 2 (Proof of Theorem 4)

First, it is known that if u is inframodular, then w is submodular, i.e., for all a,b € R™, wu(a) +
u(b) > u(a Ab) +u(aVb) (see e.g. Marinacci and Montrucchio, 2005).

Let us show it again for the sake of completeness.

Let t=aAb,soa=aAb+e withe > 0.

Let y = b, one has x <y and € > 0 then v inframodular implies
u(z+e)—u(z) > uly+e)—uly), ie. ula)—uland) > u(b+a—anb)—u(b). But b+a—aAb=aVb,
hence, the result:

u(a) + u(b) > u(a Ab) +u(a V b).

Thus one has u(A41) + u(Az) > u(A; V As) + u(A; A As).

Since by hypothesis neither A; < As nor As < Ay, u strict inframodular implies u(A;)+u(As) >
’LL(Al V AQ) + U(Al A Ag)

Actually since not Ay < Ap, we get A1 A Ay < Ay then letting x = Ay A Ag, y = As,
e=A; — A1 N Ay, we get:

u(z+e) +uly) >uly+¢e)+u(r), ie u(Ary) +u(As) >u(A; V As) +u(A; A Az) B
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Chapter 4

Rawlsian inequality-adjusted social
evaluation function

This chapter is a result of the working paper “Rawlsian inequality-adjusted social evaluation func-
tion”, made in collaboration with Alain Chateauneuf and Jose Heleno Faro.

Abstract

A new methodology with a multiplicative structure for the calculations of the Human De-
velopment Index was unveiled in 2010 by the United Nations Development Programme. This
chapter aims at axiomatizing a class of multidimensional social evaluation function in which
Inequality-adjusted Human Development Index is a special case. We, furthermore, show that
this class of social evaluation function accommodates the Pigou-Dalton principle and agrees
with the subclass of inframodular functions. Finally, we analyze the context where the social
planner is unsure of how to weigh different attributes and their implications to the inequality
aversion approach.

Keywords: Multidimensional inequality, Pigou-Dalton transfer, Inframodular functions,
Inequality-adjusted Human Development Index.
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4.1 Introduction

Is social inequality important to measure social evaluation? If yes, what should be the weight of
inequality in a social evaluation function?

To answer these questions, it is essential to understand the role of inequality in human devel-
opment.! For instance, whether regions with less inequality are more developed. Should public
policies induce a reduction of inequality to improve global welfare?

OECD (2015), for example, analyzed member countries over 30 years and found that income
inequality has a sizeable and statistically significant negative impact on growth. One suggestion in
this study is that inequality may affect economic performance by lowering investment opportunities
of poorer population segments, especially in education. Indeed, this discussion is hardly new.
Kravis (1960), using data from the 1950’s, and Lydall (1968) found out that income is more equally
distributed in richer countries.

The related literature presents a wide range of possibilities in which inequality might hamper
human development. Alesina and Rodrik (1994) show that high inequality in income and land
distribution are negatively associated with subsequent growth. Galor and Zeira (1993) demonstrate
that wealth and income distribution affect output and investment in the short and long term. Thus,
high levels of inequality result in under-investment in human capital mainly by the poorer portion
of society and also curb social mobility and allocation of talents across occupations (Banerjee and
Newman (1993), Owen and Weil (1998) and Checchi et al. (1999))

In the opposite sense, some theoretical results suggest that inequality can also be positive for
economic growth. Kaldor (1955) advocated that the rich have a larger marginal propensity to save
than the poor. Hence, if GDP growth is positively correlated with savings (in proportion of GDP),
then unequal societies would grow faster. Stiglitz (1969) formalized this hypothesis by showing
that in linear savings function aggregate capital accumulation behavior is independent of wealth
distribution. As an extension, Bourguignon (1981) showed further that when savings is a convex
function of income, different degrees of inequality generate multiple steady states. The main result
is that output is larger in cases with greater inequality for both individual and aggregate levels.

Aghion et al. (1999) raised another aspect. Investment projects often involve large sunk costs.
In the absence of an efficient market for shares (crowdfunding shares, for instance), big investments
need a sufficient concentration of wealth.

In this sense, inequality cannot be viewed strictly as a negative aspect of human development
or economic growth. Still, the relationship between inequality and human development is far from
being well understood. It is thus possible to consider inequality to assess human development, but
the inequality level may not be the only (or even the most) important feature to be considered.

Therefore, as discussed above, inequality per se is treated here as an important element of a
negative impact on human development; a fully egalitarian society is not a benchmark to be sought
here.

Social inequality and human development have often been measured essentially in terms of
wealth or income.? However, many specialists have argued that confine the construction of a
welfare indication in only income is insufficient and inadequate. This kind of indicator should be
supplemented by other attributes as health and literacy, for example. As Tsui (1999) points out, fast

IWe refer human development in a most broader way, like UNDP (2016) i.e. “Human development implies that
people must influence the processes that shape their lives. In all this, economic growth is an important means for
human development, but not the end.”(p. 2)

2See, for instance, Atkinson (1970), Kolm (1976a;b), Foster and Sen (1997).
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economic growth may not necessarily be accompanied by improvements in health and education.

Amartya Sen has raised several critiques of utilizing income as a single measure of human
development (Sen, 1985; 1987; 1992). His capabilities approach emphasizes the importance of
considering the “end” of development and not only the “means”.? Sen also affirms that the human
being is the “end” of development, the real objective of all activities. “Means” are the standard
method to evaluate development, for example, GDP growth, GDP per capita and so on. Anand
and Sen (1994) argue that these indicators are important but they do not measure properly the
standard of living itself.

Accordingly, the Human Development Index (HDI) was proposed to evaluate living standards
more broadly. That is, instead of assessing economic indicators to measure development, HDI
gathers information related to health, education and wealth.

However, HDI does not capture inequality in the population. To consider inequality in human
development, the Inequality-adjusted Human Development Index (IHDI) was created, where the
inequality level is measured to “penalize” HDI outcomes, i.e. countries with higher inequality have
an IHDI outcome smaller to their HDI.

In sum, we treat human development in the sense used by the Human Development Report
(UNDP, 1990). We follow Sen’s critique by working with a multidimensional social evaluation
function.

In this chapter, we aim at characterizing a class of multidimensional social evaluation function
which contemplates inequality, both among individuals and among attributes. It is provided an
axiomatization to this social evaluation function. We also show that THDI is a special case of the
class of the social evaluation function that we axiomatize.

Moreover, we propose a well-being index that leads to a situation in which the social planner is
unsure about how to assign weight to attributes when they are strongly complementary.

Lack of certainty in assigning a weight to attributes is treated here as the aversion of the social
planner to inequality and for this reason, she gives more importance to the worst attribute. We
thus relate this social planner’s behavior with the approach proposed by Rawls (1971).

We restrict our focus in this chapter in analyzing possibilities on how to aggregate attributes
to build a human development assessment concerning inequality. Idiosyncratic criteria to choose
attributes and how to measure them are not treated here, although they might be considered as
relevant as the aggregation of the social evaluation function.

This chapter is organized as follows: Section 4.2 includes the framework and the list of axioms;
Section 4.3 presents the Theorem 1; Section 4.4 introduces an application of Theorem 1, method-
ology of IHDI and its relation with the main theorem; Section 4.5 proposes a new index by means
of Theorem 2 and Section 4.6 is the conclusion.

4.2 Framework

Let us consider a finite population J = {1,...,J,...,n} of individuals and a finite set of attributes
Z=A{1,...,i,...,m}. Each individual j € J is endowed with m attributes represented by a (row)
vector a; € R™.

A real matrix A is an m X n array of real numbers. Let M,,«, be the vector space of all
m-by-n real matrices. Also, Ml and M7 are subsets of M, of matrices with non-negative
and positive elements, respectively. We note that a population of n individuals endowed with m

3For more details about the capabilities approach, see Sen (1985).

62



attributes can be represented by a matrix A € M, «,, with m rows and n columns:

all e alj e aln
A=(ij) i = @1 -+ Qj o Qi
aml ... amj .. amn

Given a matrix A € R™*"(= M,;,xy), we define A; € R™(= M,,,x1) as the vector (matrix) of all
attributes of the individual j € 7, represented by the jth column of A.* Also, A; € R"(= M ,,) is
defined as the vector (matrix) of the attribute i € Z across all individuals, represented by the ith row
of A. A; may be interpreted as an individual, or a subgroup of society with different endowments
on attributes. Similarly, A; may be interpreted as an attribute, or a subgroup of attributes with
different endowments to each individual. Yet, denote the matrix (A;-, A_;), in which column A; is
replaced by column A; in the matrix A.

We say then that I : M,,,x, — R is an additive social evaluation function if there exists a utility
index u : R™ — R over attributes such that for all A € M,,,xn,

I(A) = u(4;).
j=1
Given A € M}, .., A;,C;,D; € M} and A\, 3 > 0 with j € {1,...,n}, we define C;‘ ® Af =

Dj, where for any ¢ € {1,...,m}:

R
du—cz'j'aij

We also define the set AT ={a € AT": 300 oy = 1}
Consider ¥ := 2{1+m} g capacity v on ¥ is a mapping v : & — [0, 1] such that:

(i) v(@) =0and v({1,...,m}) =1;
(ii) foral E,F € ¥, EC F = v(FE) <v(F).

Moreover, v is convex if for all B, F € X,

WEUF)>v(E)+vu(F)—v(ENF).

Given A; = (ayj...am; )" if a;; # ay; for all i,¢' € {1,...,m} take a permutation v :
{1,...,m} — {1,...,m} such that ay(1); > ay2); > ... > Ao(m);-
A, can be viewed as a mapping A; : {1,...,m} — R where for all i € {1,...,m}, 4;(%) := a;;.

Denote E; := A;l(aa(i)j). The Choquet integral of A; with respect to v is defined by:

/ Aj dv = Z(ao(i)j = Qo (i41)5)V (U Ek) :
i=1 k=1

(1.5m)
The case where there exist 7,7 € {1,...,m} such that a;; = a;/; is analogous.
130, Aj can be identified with the vector (a1; ... amj) € R™ or the matrix (a; ... amj)t € My, x1.
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4.2.1 Axioms

Consider a social planner who governs a society (a country or a city, for example) and her goal is
to improve the human development of this society.> This social planner has her preferences about
the way to carry out social policies to deal with inequality and improve human development.

We next present the axioms that characterize this social planner’s preference for human devel-
opment.

A social planner’s preference is given by a binary relation =~ on M, x,,. For A, B € M, xp,, A7 B
means that A is weakly preferred to B, A = B means A is strictly preferred to B, A ~ B means A
and B are considered as indifferent by the social planner. Note that these definitions are consistent
since =~ is assumed to be a weak order, i.e. social planner’s preference is complete and transitive.

A.1 Weak Order: = is a complete and transitive binary relation on M,,«,. That is, for all

~

A, B,C € M,,xn, A7 B or B, A (completeness). Moreover, if A = B and B 7, C then A = C
(transitivity).

The next axiom guarantees that the social planner’s preferences do not change suddenly.

A.2 Continuity: Given B € My, xpn, {A € M,wn|A 77 B} and {A € M, x| B 77 A} are closed in
MTVIXH'

The monotonicity axiom states that if all elements of the matrix are equal or greater than
another matrix, then the social planner prefers the first one.

A.8 Monotonicity: For all A, B € My, xn, and for all 4, j, if a;; > b;; then A 27 B. If furthermore
A # B, then A > B.

The independence axiom states that if the social planner prefers A to (A;-, A_;), then the ranking
remains the same even if the rest of the population is modified (from A_; to B_j, for example).

A.4 Independence: For all A, B € M,,,x, and taking j € {1,...,n} fixed with A; € Myx1 ;
(Aj, A—j) Z (A, A-j) <= (A;,B-;) Z (4;,B-).

The anonymity axiom states that the value of a distribution does not depend on the individual’s
identity; only the values of the attributes matter.

A.5 Anonymity: For all A € M, and for all bijection o : {1,...,n} — {1,...,n}, one has
(Al,. .. ,Aj,. .. ,An) ~ (Ag(l), R ,Aa(j), .. .,Ag(n)).

The next axiom is based on Trockel (1989) and Faro (2013). It states that the social plan-
ner’s preference regarding populations remains the same even after switch individuals, or groups of
individuals, multiplying both by the same attributes’ vector.

A.6 Strongly Homothetic: For all A € M and for all B;,C; € M/} ;i (4;,A_;) =
(Bj, A—j) = (C;@4;,A;) Z (C; @ Bj, Aj).

The following Pigou-Dalton principle states: if all attributes of individual j; are smaller than
the respective attributes of jo, then, for any attribute 4, the transfer €; > 0 from j; to jo, increases
inequality,® resulting in a worse social situation.

Therefore, the global progressive transfer ¢ € M;ﬂ from individual j; to individual js is
“rank-preserving” i.e., individual js maintains himself with greater values for any attributes, than

individual j; after the transfer.

A.7 Pigou-Dalton Principle: Let A = (Aq,...,A;,..., Ay) such that for some ji,j2 € {1,...,n}
one has A;; < Aj, and let € € R} then:

5This social planner also might be considered as a group of authorities, for instance. The crucial point here is
that this person or group is in charge of the human development improvement of this society.
6Strictly increase when g; > 0.
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Az (Ar,. Ay LA —e A A

Ac if e € R and € # 0.

giarse Ay Ay e, Ay, An) =: Ao Furthermore, A -

4.3 Multidimensional social evaluation function

This section presents the first result, in which a social evaluation function agrees with the Pigou-
Dalton principle in a multidimensional context. Attributes are aggregated through a weighted
geometric mean and individuals through sum.

Theorem 1 A preference relation 7, on M, satisfies A.1 to A.7 if, and only if, there exists
o€ AT;I and there ezists 1 : R — R strictly increasing, strictly concave and continuous such that:

m

aen e Sodlep = o)

i=1
Furthermore, such «;’s are unique and v is defined up to an increasing affine transformation.

See Appendix for the proof.

This representation rules the way that the social planner aggregates both individuals and at-
tributes to reach an outcome to assess the level of human development of this society.

She first assigns a weight for each attribute and aggregates them through a Cobb-Douglas rule.
Then she applies a function ¥ and adds all the individuals. This function % has an important role
in the next section relating Theorem 1 with the IHDI formulation.

4.4 Special Case: THDI

In this section, we present how IDHI is calculated and introduce the proposition demonstrating
how THDI is a special case of the function in Theorem 1.

4.4.1 Origins of THDI

This index was proposed by Alkire and Foster (2010) aiming at adjusting HDI to reflect the distri-
bution of human development achievements across the population and attributes. IHDI has been
analyzed by the United Nation Development Program (UNDP) since 2010.

The idea of the index was conceived by Atkinson (1970) who created a family of inequality
measures, which, in turn, was based on mean generalization. Hence, for the one-dimensional case,
the generalized mean i4(A) is,

(af+ad+ ...+ al)
fq(A) = n
(a1~a2~...oan)% forg=0

for ¢ #0

Note that pq(a) is an arithmetic mean, po(a) a geometric mean and p—(a) an harmonic mean.
Moreover, it is easy to see that pi, is strictly increasing in ¢ when at least two observations into the
distribution are different.” The greater ¢ is, the greater is the weight of the upper part of the a’s

"When all a’s values are equal, [tq is constant in q.
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distribution. On the other hand, as ¢ decreases, more weight is attached to the lower end of the
distribution. For instance, at the extreme case, that ¢ — —o0, i, tends to the “Rawlsian” social
welfare function (or mazimin rule), where p4(a) = minfas, ag, . . ., a,], in which only the lowest part
of the distribution is relevant.®

Therefore, the class of inequality measures proposed by Atkinson (1970) is given by,

I(a)=1- [%} for ¢ < 1. (4.1)

As observed by Foster et al. (2005), Atkinson’s idea was to compare a “bottom-sensitive” general
mean with the “neutral” arithmetic mean. Taking ¢ < 1, we always have the ratio (u,(a)/p(a))
between 0 and 1. The smaller ¢ is, the smaller will be this ratio and larger will be I,(a). It
means that g reflects the sensibility level given to the lower part of the distribution, i.e. ¢ might be
considered as an “inequality aversion” parameter.

Consider, for instance, the case of maximum aversion. Then p4(a) will have the Rawlsian form
and I,(a) reaches the largest value.

Though, in the THDI case, we have ¢ = 0. It means that the ratio in (4.1) is a geometric mean
over an arithmetic mean. In this sense, Ip(a) is used to adjust HDI for inequality.

Define HDI by Hy = (a1azas)'/®, where each attribute a; where i = {1, 2,3}, is aggregated by a
normalized arithmetic mean.® Then,

a;»k = (1 — Io)ai

where af is an HDI attribute that is adjusted by its inequality level ().
Then THDI is the geometric mean of three adjusted attributes,

Hy = (ajaza3)t

Note that Hy < Hyg. When Iy = 0, then H; = Hy. This explains why HDI can be considered as
potential Human Development, i.e., the IHDI is a special case when there is no inequality throughout
the population.'©

Yet, considering that p(a) in (4.1) is obtained as a;, i.e. a normalized arithmetic mean, then
w(a) = a;, and it is easy to see that a} = po(a).

It means that the attribute adjusted for inequality (a}) is exactly the geometric mean of the
attribute. Hence, for each attribute 1,

n

aj = Haij (4.2)
j=1

From that, we can conclude that the IHDI is a geometric mean of geometric means. In fact,
Alkire and Foster (2010) highlighted this aspect:

8See Rawls (1971; 2001) and Foster and Sen (1997).

9Each one of the HDI attributes has one type of normalization. This mean is normalized between the minimum
and the maximum value found in each attributes’ distribution. For life expectancy, for instance, a minimum value
of 20 years is used instead of O years, since there is no country with a smaller life expectancy in the 20th century.
For more details, see Zambrano (2014).

10For more details, see Kovacevic (2010), Section 5.
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IHDI is the geometric mean of the geometric means of income, education and health,
and each of the latter can either be calculated directly from the data or constructed from
the arithmetic means and inequality levels. (p. 8).

Therefore, another way to write Hj is,

ol

n
;
H ajlajgajg " . (43)
that can be viewed as a geometric mean of geometric means.

4.4.2 Theorem 1 and THDI

We next introduce another axiom to formulate a proposition that helps us to demonstrate the
relation of Theorem 1 with the THDI formulation in (4.3).

The Scale Invariance axiom states that the social planner’s preference remains the same when
all the individuals’ attributes are multiplied by the same scalar k.

A.8 Scale Invariance: For all AABEM!  andk€R,y; AZB = k-Axk-B.

The scalar k can be viewed as a constant attribute vector.

Proposition 3 A preference relation = on M;Xn satisfies A.1 to A.8 if, and only if, up to an
increasing affine transformation, either z/;( ) =1n(t) or(t) =t? for allt > 0, where B € (0,1)

n

n m
I | | I g
aij

j=1li=1

See Appendix for the proof.
Likewise, taking t(-) = In(:) and considering that all the attributes are strictly positive, let
G(A) be a “mean” social evaluation function,

= %ZlnHaZj. (4.4)
j=1 =1

Now, taking a;; € (0,1],'* we know that G(A) € (—o0,0]. To avoid an index with this wide
range of results, let I(A) = exp®) . Suppose also that all the attributes have the same weight,
i.e., for m attributes each one of them is weighted by 1/m. Moreover, since the sum of logs is the
log of product, we get,

1

H (H a”> | (4.5)
=1

where I(A) € [0,1]. Taking m = 3 we find that the condition (4.5) is equal to (4.3). This proves
that THDI is a special case of the social evaluation function proposed in Theorem 1.

11 Although it is possible to have null values, this information is omitted here, since we are working with geometric
mean.
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4.5 Social Evaluation Function: A new proposal

What happens if the social planner is not sure about the importance of the attributes chosen to
assess a society’s welfare? In this section, we present in Example A a characterization of this context
and propose a social evaluation function regarding this context in Theorem 2. We then relate this
social evaluation function with Rawls and Harsanyi’s inequality approaches.

4.5.1 Example A

Suppose that the social planner has to decide on which attribute to concentrate investments to
improve the IHDI outcome of a country. The social planner is concerned with four attributes,
namely: health (h), wealth (w), mean years of schooling (e;) and expected years of schooling
(e2).12

The social planner does not assign the same importance to each attribute. She considers edu-
cation more important than either health or wealth, but she does not know precisely how to weigh
education attributes separately. Her main concern is to increase both attributes together because of
their strong complementarity. More specifically, her lack of certainty on how to assess the education
attributes separately does not mean that she gives the same importance to each of them. What
she knows precisely is: improving education attributes together is more important compared to
improve either health or wealth separately.

Moreover, the country where the social planner acts is ideally divided into three regions, namely:
r1,T2,73. She got funding from an international institution to improve human development in the
poorest region, which is ;. For the sake of simplicity, the amount invested is 9. The situation in
which the region 7 receives investment in health is represented by the matrix A and the investment
in mean years of schooling is B, where,

A B
ry ra rs ry ra rs
h 9 ai2 ai13 h 1 ai2 a3
er |1 ax asx| and e |9 axn ax
ex |1 azx ass ex |1 azx ass
W 1 Q42 Q43 A\'% 1 Q42 a43

Comparing both situations, she strictly prefers to invest in health than in mean years of school-
ing, i.e. A > B.

Now, suppose that she received extra funding to invest in the same region, but this time neces-
sarily in the attribute (es2), but she still needs to choose investing either in health or in mean years
of schooling, i.e.

A B
ry ro rs ry ro rs
h 19 a2 a3 h 11 ap a3
er |1 ax as| and e; |9 ax am
ez |9 azx ass ez |9 azx ass
w L1  age  ag3 w L1  age  ag3

12The way these investments will be applied and their effectiveness is not of concern here.
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Since she gives more importance to invest in both education attributes, she inverts her preference,
ie. let Cq = (1,1,9, l)t € Myxq, A= (Cl ®A1,A,1) and B = (C1® Bl,Bfl).13 Then B - 121,
which constitutes a violation of the Strongly Homothetic axiom.

It means that the index formulated in Theorem 1 does not capture this kind of behavior.
The context in which the social planner has difficulties to weigh attributes is similar to Ellsberg
paradox.'* One way to characterize this behavior is to weaken the strongly Homothetic axiom a
la Gilboa and Schmeidler (1989). In other words, we no longer obtain the ordering (A4;, A_;) =
(Bj, A_;) after multiplying the individual j by a non-constant attribute vector C; above. Because
of that, we follow Faro (2013) and substitute Strongly Homothetic axiom by Homotheticity (4.9),
Log-Convexity (A.10) and Power Invariance (A.11).

4.5.2 Rawlsian Inequality-Adjusted Social Evaluation Function

Since Strong Homotheticity is violated by the example above, we weaken the conditions as Faro
(2013), replacing this axiom by another three axioms: Homotheticity (A.9), Log-Convexity (A.10)
and Power Invariance (A.11).

Homotheticity axiom means that the social planner’s preference remains the same after multi-
plying all the attributes of individuals A; and B; by a scalar k.

A.9 Homotheticity: For all A € M}, ., k € Ry, and for all A;,B; € Mt 5 (A;,A_;) =
(Bj, A—j) = (k- A;,A;) Z (k- Bj, Aj).
The scalar k may be considered as a constant attribute vector where k € M.

The next axiom states that if the social planner prefers (A;, A_;) over (B;j, A_;) then she will
prefer a Cobb-Douglas mixture A; ® B;*)‘ over Bj.

A.10 Log-Convexity: If for all A € M\ A€ (0,1) and for all A;,B; € Mt |3 (A;,A_;) =
(Bj,A_j) = (A}®@B] A ;)= (B;,A).

Finally, the Power Invariance axiom states that the social planner’s preference keeps the same
preference with individuals’ attributes A; and B; changed by the power of any positive scalar k.

A.11 Power Invariance: If for all A € M\ k€ Ry, and forall A;, B; € MY 15 (4;,A_;) =
(Bj,A_]‘) — (A;C,A_]) i (Bf,A_j)

Theorem 2 A preference relation =, on My, «n, satisfies A.1 to A.5, A.7 and A.9 to A.11 if, and
only if, there exists a unique, non-empty, closed and convex set C C A of probability measures such
that a € AT;I and there exists 1 : R — R strictly increasing, strictly concave and continuous such

that:
vmo S (mflr) - S (i)
J= 1= 1=

1=1

Furthermore, 1 is defined up to an increasing affine transformation.

See Appendix for the proof.

Also, Strong Homotheticity axiom in Theorem 2 would imply that the set C has a unique
probability measure.

13As we can see, A_; = B_1.
14Gee Ellsberg (1961) for more details.
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In order to be able to compute our social evaluation function, we now specify v in Theorem
2 by requiring also axiom A.8, and accordingly choosing ¢(-) = In(-). It turns out that simple
computations as for Proposition 3 lead to Corollary 3:
Corollary 3 A preference relation - on M = satisfies A.1 to A.5, A.7 and A.9 to A.11 if,
and only if, there exists a unique, closed and conver set C' C A of probability measures such that
a € AT and A 75 B if, and only if, I(A) > I(B) where for all A, B with strictly positive attributes:

1
n

I(A) = min a

and similar formula for I(B).

4.5.3 Example B

In this section, we extend the idea given in Theorem 2, and more precisely in Corollary 3, for the
case when the social planner is not able to weigh attributes properly. This section gives an insight
into how to characterize this situation.

To be as clear as possible, let us take IHDI (H) as a point of departure.

n

n 1
H ah]aejaw 3

The education attribute is built through the geometric mean of two sub-components: mean
years of schooling (a., ;) and expected years of schooling (ae,;). Then,

3=

n
H (ahj awa eu aez] )

Now, the social planner, who is in charge of assessing human development, is no longer sure
about the best way to assign weights to education sub-components. She has no doubt that the
education attributes should jointly represent 50% of the measurement, i.e. let o be the probability
of a.,; and @ the probability of a,;. Then, a+a = 1/2. However, instead of assigning equal weights
to each of them (1/4), she believes that their weights are between [1/6,1/3]. Furthermore, she follows
the social evaluation function provided in Corollary 3, i.e.

1

1
n 7
11 1 1
3 3 6
H hj w]mm(aeljaezj,ae jaezj) .
1
4
w,

1 1 1 1 1 1 1
i S T S [ Ty 3,6 it
Similarly, let us define a; := a,;a,,; (aeljaezj) and a; = a,;a,,; (a a ) Rewriting the

index,

70



I(A) = jﬁmin (a},a!)

The higher is her dubiety to assign weights to the attributes, the higher is the range of weight
possibilities. In the example above, the interval [1/6,1/3] was chosen, but in the extreme case, this
range would be [0,1/2], i.e. the social planner would take only the worst attribute to compose the
index.

Let us recall Example A in Section 4.5.1. Theorem 1 does not capture this context, since A = B
might imply (C; ® By, A_1) = (C1 ® A;, A_1) which violates Strongly Homothetic axiom. The
specification proposed in Theorem 2 is consistent with Example A.

To demonstrate that, consider the probabilities presented in this example. It is easy to see that
A > B, since A has a weight of 1/4 and B’s weight is min(1/s,1/3) = 1/6. Moreover, (Cy ® By, A_1)
has a weight of 1/2 and (C7 ® A;, A_1) has a weight of min(1/4,1/2) = 1/4, which gives us that
(Ch ® B1,A_1) = (C1 ® A1, A_1). This proves that the specification in Theorem 2 agrees with
Example A.

We complete this section by proposing a final result that allows us to deal with simple meaningful
cases, which furthermore appears to be tractably computable for applications.

Theorem 4 Assume that the social planner is only able to give an upper and a lower bound re-
spectively a; and b; for the weight a; of each attribute i = 1,...,m, where 0 < §; < 6; < 1. Then
the social planner is consistent, i.e. there exists'®> o; > 0 such that 6 <oy < &; for all i and
Yot =1 if, and only if,

Sa<1<Y (4.6)

Furthermore, the social evaluation function I(A) of any A with strictly positive attributes, as
proposed in Corollary 3 is now given by the following formula:

I(A) =[] exp / A; dv (4.7)
5=1 {L“'vm}
where [(-) dv is the Choquet integral with respect to v : E € 2-m — o(E) =
max {3 ;cp 0 1 = Xiepe 0i -
Remark 1
Before giving the proof of Theorem 4, let us mention that in the case of general set C' the
computation of I(A) contained in Corollary 3 is not so easy. As we will see, in the reasonable
particular case of Theorem 4 the min condition a la Gilboa and Schmeidler (1989) turns out to be

a min condition a la Schmeidler (1989) hence allowing to obtain an alternative formula through a
Choquet integral.

Corollary 5 It appears that social planners might prefer to envision bounds symmetrical with re-
spect to 1/n i.e. of the type §; =1/m —e;, 0; = Ym +&; where e, > 0 for all i =1,...,m. In such a
case, simple comparisons show that Theorem 4 is valid if, and only if, 0 < &; < 1 — 1/m.16

15Note that indeed consistency requires a; > 0 for any 4.
6Remember that m > 2
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4.5.4 Rawls versus Harsanyi

The new proposal introduced in this chapter may be associated not only with the idea of inequality
aversion discussed in Section 4.4.1 but also requires a normative approach on how to assess human
development from the social planner’s perspective. This context involves a notion of justice and
fairness, invariably.

To shed some light on this normative discussion, we revisit a very interesting discussion that
occurred in the 1970’s between John Rawls and John Harsanyi. They have quite different views
about justice and, consequently, on how to deal with inequality, and this dispute, as described by
Moehler (2018), have deepened and enriched subsequent researches since then.

Also in Section 4.4.1, we presented the social evaluation function proposed by Rawls, called
mazximin Tule, whose goal is to maximize the welfare of the worst-off individual. This approach
represents an extreme case of inequality aversion, as already discussed in that section. For Rawls,
the main concern of a fair society should be the provision of primary goods for all. For that reason,
public policies should give more attention to the worst off individual than to the rest of society.

Rawls develops his justice theory in two books (Rawls, 1971; 2001) and his principle of justice
attempts to build an approach opposing utilitarianism. As pointed out by Fleurbaey et al. (2008),
for Rawls utilitarianism fails to satisfy one of the main ideas of Immanuel Kant that individuals
should be treated as ends in and of themselves, not just as means for promoting the social good.

Rawls’ core moral ideal is the original position that justifies his principles of justice. The concept
of original position means that individuals express a desire for certain social primary goods which
give them a positive satisfaction (more is better than less). Indeed, such goods are not just tangible
ones. The original position of individuals embodies Rawls’ conception of citizenship, including the
freedom to form and pursue a pleasant life and a notion of justice. Under the concept of the original
position, individuals are seen as independent entities. Moreover, they are not aware of the specific
preference profiles and circumstances of society. This idea constitutes the concept of thick veil of
ignorance.

Furthermore, according to Rawls, the concept of the original position leads to a non-utilitarian
conclusion about justice, which makes possible the application of the maximin rule.

For the application of this rule, Rawls imposes two main conditions: 1) individuals are not
endowed with a justifiable basis for assigning specific probabilities to outcomes. This lack results
from the concept of the thick veil of ignorance; 2) Individuals care essentially for the minimum
level of goods that they receive. This condition is related to the sense of individuals as independent
entities and to the principle of difference in which an ideal society follows a fair system of cooperation
among free and equal citizens.

On the other hand, Harsanyi was a harsh critic of Rawls’ theory of justice. His approach
assumes that individuals are Bayesian and make their choices based on risk or uncertainty, assigning
probabilities to outcomes and maximizing their expected utility. Harsanyi develops his point of view
in several articles (Harsanyi, 1955; 1975a;b; 1978) where he mainly argues that individuals would
choose an average utility principle to attain the highest degree of fairness and to fulfill the concept
of justice.

In Harsanyi’s theory, individuals know the specific circumstances of the society, but they do not
know the existing preference profiles and, therefore, they cannot favor themselves or anyone else in
their choices, i.e. individuals know the circumstances but do not know the names attached to the
respective positions in society. This idea is at the core of the concept of the thin veil of ignorance,
which is the opposite of Rawls’ approach.
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The thin veil of ignorance is a consequence of the moral ideal of impartiality and impersonality
which is a key feature in Harsanyi’s argument.

Under these concepts, individuals not only know their social position but they also believe to
have an equal chance of occupying any other social position existing in their society. Considering
this context, Harsanyi (1978) builds a hypothetical decision situation for rational individuals that
he calls equiprobability model.

Yet, the equiprobability model does not require the assumption that all individuals are seen as
separate entities, as thus the original position, and states that for the sake of justice the individuals’
utility functions have the same weight. In this sense, it is rational to assign equal probabilities to
all possible outcomes.

Despite sharing some similarities, Rawls and Harsanyi reach different conclusions. Their liberal
point of view implies that the idea of justice must pass through the concept of impartiality. Both
approaches reinforce the concept of impartiality from different perspectives. For Rawls, the thick
veil of ignorance renders individuals unaware of the specific social and economic circumstances of the
society, thus placing individuals’ preferences under the concept of original position. For Harsanyi,
the thin veil of ignorance ensures that besides knowing the circumstances of society, individuals do
not know personal profiles, which prevents any possibility of partiality.

In sum, the Harsanyi-Rawls dispute takes into account the circumstances that the social plan-
ner may face with. To bring these theories to our context, we have to adapt some features. First,
Harsanyi and Rawls are essentially dealing with the individual-level. Our context deals with an
additional dimension, attribute-level. That is, instead of discussing probability assessments only
about individuals, we also discuss assessments about attributes. Second, their discussion is wider
than our context. In our case, the social planner has to decide the rule to measure human devel-
opment taking into account the approaches presented above. Third, as already mentioned, Rawls’
theory is deeply critical to the utilitarianism approach, which is a cornerstone of this chapter. De-
spite all this, our main inspiration from Rawls is the priority given to the worst-off individuals as
embraced by Rawls in the maximin principle.

Rawls’ condition to apply the maximin rule is that individuals are not able to assign specifics
probabilities to outcomes. This condition is closely related to a situation where the social planner
does not assess precisely the weight of the education attributes.

Our example is useful to describe how theorem 2 may represent Harsanyi and Rawls’ point
of view in a multidimensional social evaluation function where instead of considering the popu-
lation perspective we are interested in how to treat misconceptions concerning weighing different
attributes.

In sum, Harsanyi prefers to give the same weight to all individuals, while Rawls believes it
is fairer to give more importance to the worst off individual. In this sense, our social evaluation
function treats individuals similarly to Harsanyi’s theory, giving the same weight to all individuals
as in his equiprobability model. Additionally, our social evaluation function opens up the possibility
to treat attributes as in Rawls’s theory, i.e. since the social planner is unsure about how to weigh
attributes, she gives more importance to the worst off outcome.

Incidentally, when the social planner has no doubt about the weight of the attributes and
weighs them equally, then she would be following the IHDI format. Therefore, since IHDI treats
both individuals and attributes according to Harsanyi, IHDI can be considered a special case of our
social evaluation function.
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4.6 Conclusion

The main goal of this chapter is to analyze a class of multidimensional social evaluation function
of which IDHI is a special case. This analysis aimed at providing an axiomatization in a similar
framework as the one in Basili et al. (2017). We also discuss the origin of THDI and its inequality
aversion degree, which allowed us to introduce a context where the strong homotheticity axiom is
violated. To treat this violation, we provide another axiomatization, weakening the strong homo-
theticity axiom, resulting in another social evaluation function. We contextualize it, providing an
example that accommodates this new social evaluation function where the social planner acts fol-
lowing Harsanyi and Rawls’ approaches for the population and attributes dimension, respectively.
This new proposal seems to be more inequality averse than IHDI.
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Appendix

In the appendix, we provide the proof of our results.
Let us denote =* as a preference relation induced from >-. The following lemma gives us some
useful properties which are important for the proofs of the Theorems 1 and 2.

Lemma 1 The azioms A.1, A.2, A.3, A.6, A.9, and A.10 imply that:
A*.1: =* is weak order;
A*.2: =¥ is continuous if given any sequence {(ap,bp)tpen such that a, 22* by for alln > 1, if
ap l%f a € R and b, ‘&f be R, then a J* b;
A*.8: 7% is monotone if for all a,b € R, a > b= a * b, furthermore if a # b= a =" b;
A*.6: 7% is strongly homothetic if for all a,b,c e R, a Z*b=a®@cZ* b®@c;
A*.8: =* is homothetic if for all a,b € M} |, and k € Ry, a 2" b = ka 2* kb;
A*.9: =% is log-convex if for all a,b € M} | and X\ € (0,1), a 5" b = a* @b~ 2% b;
A*.10: =¥ is power invariant if for all a,b € M\ ., and k € Ry, a 2" b = aF 2* bk,

Proof. Let us define r € M, and A" € M}, such that,

1 1 1
1 1

AT = " .
Tm 1 1

mXxn

A*.1: (Completeness) It is easy to see that A(® = A®) or A®) = A or both. It implies a =* b
or b ~* a or both.

(Transitivity) If A = A®) and A® = A then A = A, Tt also implies that if a =* b
and b Z* ¢, then a 2% c.

A*.2: Suppose any sequence {(ap,bp)}pen such that a, Z* b,. Now, taking Alar) and Ar)
where, from A.2,

apr 1 - 1 bpy 1 - 1
| b |
A(al’) — aI.)Q - A(bp) — 2.72 )
dpm Lol mxn bpm Lol mxn
1f Al e 4@ ¢ Mt and A0 M 40) ¢ M then A@ = A®. Tt implies that
ap =" by and, consequently, a Z* b.
A*.3: Let a,b € M, such that a > b. Hence, from A.3, for all i = 1,--- ,m, a; > b; =

Al > A0 — A(@) = A®) Then a * b.
A*.6: Let a,b,c € M, such that a ==* b. Hence, A(®) > A®) where,
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A@ = .. ) and A@ =

am 1 - 1 am 1 - 1
mXxXn mXn

A*.8: (Homotheticity) Let a,b € M, such that a »2* b. Then, if A = A®) by taking
k € Ry, we can say that A = A®) — (kA1 ,A(_al)) Z (kAlb),A_b%), which implies that
ka 7* kb.

A*.9: (Log-convexity) Let a,b € Mt | such that a >2* b. Hence A > A®). Taking A € [0, 1]
if A@ = A0 — ((Aga) ® (AP)1- A,A{“f) = A®) where,

aibi_i 11
((Aga)))\ ® (Agb))lf)\ A(a1)> _ a2b2 1 P ].
apbisr 1 -1

mXn

which implies that a* ® b'=* >=* b.
A*.10: (Power Invarlance) Let a,b € M\, such that a =* b. Then, if A@ > A®) by taking

k€ Ry, we can say that A = A®) — ((Aga)) ,A(fl)) Z ((A(lb)) ,A(b)) where

k
al 1 PRI 1
k
<(A§a))k A(al)) _ a; 1 1
ab 1 1
m mxn

which implies that a* =* b*
|

Theorem 1

Proof.
Most of the only if part is straightforward. Our proof is limited to showing that the preference

relation 7 satisfies independence, strong homotheticity, and Pigou-Dalton principle.

o Independence: We know that

iwﬁl EP» o[ ag) +w(I (e, )
= (Il o) (i) = 5 oI o) + v )
It turns out that,

<.
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e Strong Homotheticity: From the axiom, i ¢(ﬁ aii) > > ¢(H )+ w(H b)) =
=1 =1 Py
> w(H agi) + (11 (ciaiz)*) = 32 O(I1 agf) + (11 (ibiz,)*)
J#j =1 i=1 J#j =1 i=1

which gives us,

Hba ) = 1/)(H(Ciai)ai) = ¢(H(Cibi)ai)'

i=1 i=1 i=1

o

=

e Pigou-Dalton Principle: Let J : M, «,, — R where J(A) and J(A.) is:

ZwH%+wH% gm>

J#j1,g2 =1

Z ( Ha” + H aij, —€i)™") +¢(H(aij2 +ei)™).

J#j1,ge =1 i=1

We must show that J(A) > J(A:) where A is the population in which the poorer individual
j1 transfers € > 0 to the richer individual js.

Since 1 is strictly concave, we can write that

m m

([T as) + w<H ay) > ([ J(aij, —e)™) + (] [ (@i +20)™)

i=1 =1 i=1 i=1

3

Adding ( S( H )) to both sides of the equation, we conclude that J(A) > J(A.).

J#j1,2 =1

This proves the only if part. Now, let us show the if part.
Under the axioms A.1, A.2, A.3 and A.4 using Theorem 3 in Debreu (1960), there exist n
continuous and increasing functions u; : R* — R, such that, 17 for all A,B € M},

Az B ui(4) > u(B))
j=1 j=1
where A = (A;...A;...A,) and B= (By...B;...B,), with A;, B; € M. _,. Yet, u; are unique
up to affine transformation au; + 8; with o > 0 and §; € R.
By the Axiom A.5, we obtain that u; = uj/, for all j,j € {1,...,n}. In this sense, there exists
u: R} — R, such that

Forn >3
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Given z,y € R" we define 2Z* on R by

Y1 1 - 1
- def T9 1 1 . Y2 1 - 1

T Y — . ~ .
Tm 1 - 1 X Um 1 - 1

mxXn

where —* is represented by u and satisfies the axioms A.1, A.2, A.8 and A.6 in Theorem 1 of
Faro (2013) where there exists v : R7 — R such that v(z) = [[/~, 8 with @ € A7, Then,

vy <= v(z) 2 v(y)
By A.6, taking Cy :={z1,22,...,Zm,

A@) = AW — (0; @ A1, A")) = (01 © AV, AY)), which implies that

2121 1 - 1 21Y1 1 --- 1
Z29T9 1 - 1 22Y2 1 - 1

z ) . = 125 Y®z
ZmTm 1 -0 1 ZmYm 1 - 1

Once 7= satisfies A*.1, A*2, A*.8 and A* 6, then from Faro (2013) (Theorem 1, Remark 3),
we obtain the representation below:

vty = v(x) = v(y)
where v(z) = [T, o and v(y) = [T,
Since v, u : M, — R are representations of 7Z*, there exists ¢ : R — R such that u = ¢ o v.
Now, let us show that v is strictly concave.
Suppose that for all a,b € R2, b > a and for all € > 0, one has

P(a) —y(a—e) > P(b+e) —P(b)

From A.7 we know that, for all x,y,1 € M;,le, such that x > y we get!'®

9)

u(z) —u(x —el) > u(y +el) — u(y).
Since a = [[;~, 28" and b =[], y{"" the condition 9 holds. Then, up to an increasing affine

transformation, ther exists a unique ¥ : R — R strictly increasing, strictly concave and continuous,
such that for all A, B € M

e N1 CIE (1 )

j=1 i=1 j=1 i=1
]

Proposition 3

Proof. We prove only the if part. The only if part is straightforward.

181 is a column vector with 1 everywhere.
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Assume the axiom A.§ is satisfied and 75 is defined on Mt T . For all j € {1,...,n}, it is easy

mxn®

to see that Y7 ¥(a;) = D27, (by) 1mphes > lkay) = 370 (kby), for all aj,b; € My
and k € Ry,. We can thus apply the results of the classical one-dimensional social welfare theory
for our purpose.l® m

Theorem 2
Proof.

To prove the only if part, it remains to show that the preference relation - is homothetic,
log-convex and power invariant.

Firstly, define T : M/ , = Rand y: M/t — R where:

mXxXn—

-l

J#i i=1

V(a) =1 (glelg am)

i=1

e Homotheticity: We know that, I'(a) + v(a) > I'(a) + v(b). Taking k € R4, is easy to see
that T'(a) 4+ ky(a) > T'(a) + kv(b) implies that - satisfies A.9.

e Log-convexity: From A.10, T'(a) + v(a) > T'(a) + v(b) must imply I'(a) + v(a) y(b)*~* >
I'(a) +~(b). It turns out that y(a)* > ~(b)* and, consequently, v(a) > (). This proves that
7~ satisfies both A.10 and A.11.

NOV\/ the Zf part. The prOOf Of TheOrem 1 iS rather Simﬂar Gi\/en l'7y S R we deﬁne ~ on
+

1 1 - 1 po 1.1

o 1 - 1 1 .- 1
x,é*yg .2 ) ) z y.2

Tom, 1 1 . Ym 1 1 .

where ~* is represented by u and satisfies the axioms A.1, A.2, A.3, A.9, A.10 and A.11
in Theorem 3 of Faro (2013) where there exists v : RT" — R such that T'(z) = [[;", 2" with
a € AT;l. Then,

vty <=T(z) =2 (y) (10)
Once =" satisfies A*.1, A* 2, A*3, A*8, A*9 and A* 10, then from Faro (2013) Theorem 3,
the condition (10) holds, i.e.
x 7y <= v(x)>0v(y).

where v(z) = mingec [[o; 23 and v(y) = mingec [[2, v
Since v, u : M,,,xn — R are representations of ~*, there exists a concave 1) : R — R such that
u = 1 o v, which concludes the proof.

9For more details, see Aczél (1966), Atkinson (1970) and Kolm (1976a;b).
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Theorem 4

Proof. From Corollary 3 one needs to compute mingec [[i, a;f where C = {a € AT_:l, 6 <

a; < 0;, i =1,...,m}, indeed the computation will be performed as soon as min,ec Yot i In(ag)
will be obtained for any j.

For a fixed j: denoting ¢ and C' as above, it turns out that in the language of uncertainty this
is a situation of regular uncertainty, the terminology of Jean Yves Jaffray who coined it,?° that is
under condition (4.6), C' = core(v) where v(E) = max a(FE) for all E € 2{%™} and furthermore
here the value of v(FE) is given in (4.7). This result was obtained by De Campos et al. (1994) and
also states that v is a convex capacity.

As a consequence building upon Schmeidler (1986) comes that:

m

min Zai In(a;;) = / Ina; dv

a€Ecore(v) P
- {1,....m}

hence the formula (4.7) of Theorem 4, which completes the proof
(]

20See Jaffray (1988) and Chateauneuf and Jaffray (1989).
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Chapter 5

Business Cycles with Ambiguous
Fiscal Policy

)

This chapter is a result of the working paper “Business Cycles with Ambiguous Fiscal Policy”.

Abstract

This chapter analyzes the effect of confidence shocks on fiscal policy through a New Keyne-
sian model with ambiguity averse agents and nominal rigidities. I also model the household’s
preference for holding risk-free assets and compare the effects of risk premium shocks in eco-
nomic activity. I find that ambiguity shocks on the fiscal policy may generate business cycle
comovement among output, consumption, investment and hours worked.

Keywords: Ambiguity aversion, business cycles, fiscal policy, liquidity preference.
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5.1 Introduction

The 2008 crisis has raised questions about the best way to promote sustainable development through
public policies. The turmoil in financial markets created by this crisis did not lead to a consen-
sus on how to manage fiscal policy. This context expanded the range of possible scenarios and,
consequently, increased the uncertainty about the fiscal policy to be carried out.

As risks increase, agents become more alert about decisions taken by authorities. It also becomes
more important to foresee what governments will do in the near future. Households and investors
fear the possibility of a public policy harming their consumption plans. Indeed, bad policies may
affect future wealth and agents want to anticipate this kind of scenario, preventing future losses.

In this sense, uncertainty has been gaining relevance to understanding fluctuations on economic
activity. How would an ambiguity averse household react when facing conflicting intangible in-
formation about future fiscal policy? This chapter aims at characterizing this context in a New
Keynesian model, implementing two main strategies: 1) adding a shock of ambiguity a la Ilut and
Schneider (2014) into fiscal policy shock and 2) adding a risk premium shock for risk-free bonds as
proposed by Smets and Wouters (2007) and Fisher (2015).

I follow Ilut and Schneider (2014) modeling changes in ambiguity through shocks to confidence.
Conflicting information that raises the perception of ambiguity is perceived by agents as a shock
of confidence. However, a drop in agents’ confidence does not mean that the budget deviation
will occur. In order to compare the shock of confidence followed or not by a budget deviation,
I expand the analysis adding another shock that captures agents’ confidence, in a different way,
independently of the government expenditure. For that, I introduce the risk premium shock, or
liquidity shock as in Smets and Wouters (2007). A positive shock of risk premium raise agents’
demand for risk-free bonds. This movement can be interpreted as a precautionary behavior of the
agents whose decision to demand more risk-free bonds is perceived as a way to reduce the risk of
future losses.

The risk premium shock generates a wedge between the central bank interest rate for risk-free
bonds and the return on assets held by households. Smets and Wouters (2007) point out that
a positive shock on this wedge expands the return required by households on assets and reduces
consumption. It also increases the cost of capital and reduces the value of investment.

The context analyzed in this chapter is straightforward. Countries with strong and democratic
institutions generally have public budgets approved by policymakers (public authorities) during the
previous year before budget execution. However, policymakers usually have some degree of freedom
to execute the budget throughout the year. Developed democracies have also an efficient system
of checks and balances that limits policymakers’ ability to deviate from the approved budget.
Nevertheless, policymakers usually have some “space” to take sudden decisions that bypass the
budget, in case of emergency events for instance. Because of this autonomy, agents might fear
an improper use of such budget deviation, that would harm economic activity and, ultimately,
their wealth. Unexpected budget deviations are perceived by agents as ambiguous when conflicting
information prevents them to foresee this scenario correctly. The baseline model aims to capture this
kind of agents’ behavior, i.e. through ambiguity shock on the next period’s government spending.

Some studies associate an increase in uncertainty with declines in aggregates such as output,
consumption and hours worked (Bloom, 2009; Bloom et al., 2018; Ilut and Schneider, 2014; Alex-
opoulos and Cohen, 2015; Ferndndez-Villaverde et al., 2015). Other studies find none or less impact
of uncertainty on economic activity (Bachmann and Bayer, 2013; Bachmann et al., 2013; Chugh,
2016; Bekaert et al., 2013; Born and Pfeifer, 2014).
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More specifically, two main studies analyzed the effect of uncertainty on fiscal policy. Exploring
the time-varying volatility in tax structure and government spending, Fernandez-Villaverde et al.
(2015) found a considerable impact on output, consumption, investment, hours worked and prices.
Moreover, they show that when the economy is at zero lower bound the effects are even greater. On
the other hand, Born and Pfeifer (2014) concluded that the role of policy risk to explain business
cycle through uncertainty shocks is small. A two-standard deviation shock to policy risk decreases
output by only 0.065 percent. Both studies considered uncertainty as time-varying volatility.

Tlut and Schneider (2014) proposed a new approach that deals with ambiguity in a business cycle
model. Instead of considering uncertainty as time-varying volatility, they introduced the concept
of ambiguity (Knightian uncertainty) in a New Keynesian model, which is defined through averse
ambiguity agents, who assess intangible information to predict future productivity. For example,
a raise in conflicting information, puzzling agents’ beliefs, is perceived as an increase in ambiguity.
Tlut and Schneider found that shocks of productivity and ambiguity jointly explain about 2/3 of
business cycle frequency in the US.

Based on a similar methodology, Masolo and Monti (2017) also investigate the wedge among
long-run inflation expectations, trend inflation, and inflation target. In their model, the policymaker
is also ambiguity averse. The results imply that in a situation of a high degree of ambiguity, as in
the early 1980s, the policymaker should be more hawkish in comparison with the same context but
without ambiguity.

Fisher (2015) micro-founded the risk premium shock deepening its analysis into a New Keynesian
model. He argues that this shock is an important source of fluctuations to explain comovement
among output, consumption, investment and hours worked. Some recent studies as Barsky et al.
(2014) and Christiano et al. (2015) suggest that risk premium shock is specifically important to
interpret post-2008 crisis dynamics.

The hypothesis is that ambiguity averse agents have multiple beliefs and act under the worst-
case belief. I define the worst-case belief here by considering that non-budgeted fiscal expenditures
on the part of policymakers may produce a lower than expected return to society, damaging public
accounts. Since households are Ricardian agents, a sudden increase in fiscal spending generates in
the future a tax increase or a fiscal contraction affecting economic activity.

A positive risk premium shock has a similar effect when agents fear that the government will
make a bad decision in the future. An expansion of risk-free bonds demand will immediately
generate a corresponding fall in consumption and investment, consequently dropping output. This
behavior is also coherent with the Ricardian hypothesis, i.e. when agents fear a future increase in
taxes they aim to increase current savings to smooth intertemporal consumption. The difference
is that a prior motive is being inputted for the government to increase taxes: non-budgeted fiscal
spending.

The outline of this chapter is as follows: Section 5.2 presents the model. Section 5.3 analyzes
the impulse response functions (IRFs) and section 5.4 contains the conclusion.

5.2 Model

This section presents a New Keynesian model pioneered by Christiano et al. (2005) and Smets and
Wouters (2007) with staggered prices and wages, investment adjustment cost and many elements
introduced in the literature since then.
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5.2.1 Households

Households in the model are represented by a lifetime utility function with a vector of exogenous
state variables s; € S, where st = (s1,...,5;) that denotes the history up to date t. For every
history s' households project their consumption plan C' by choosing the amount of consumption

Cy, hours worked h; and the amount of government bonds B;. Utility is recursively defined as,

140y
U(C;s') =log(Cy) + t+ +eV(B;) + 8 min EP[U1(C; s, s141)] (5.1)

140 pEP:(st)

where P;(s?) is the set of conditional probabilities about state of the economy in the next period
(s¢+1). This recursive formulation is dynamically consistent. I follow the approach introduced by
Epstein and Schneider (2003) where the update rule is based on rectangular sets of priors. The
standard rational expectation is obtained as a special case if the set of conditional probabilities
Py (st) contains only one belief. The parameter o; > 0 is the Frisch elasticity of labor supply, and
B is the discount factor.

The risk premium shock €2 denotes a stochastic preference for holding risk-free bonds issued by
the government. The law of motion follows an AR(1):

loge} = pylogel_; + vpny (5.2)

where n? ~ N(0,1).

The function V' (B;), represents the real quantity of one-period government bonds purchased by
the household at date ¢.

As stated by Fisher (2015), V(B;) must be positive, increasing and concave. To evaluate the
role of risk-free bonds demand on household utility, the risk-free bond demand is given as,

Blfo'b

t .
V(Bt) _ T—oy if (o} 75 1
log(By) ifop, =1

where o, > 0 is the Frisch elasticity for bonds, i.e. the higher the o}, the more willing are agents
to demand risk-free bonds if price increases. Moreover, o, may be interpreted as a degree of agents’
risk aversion. In section 5.3 is analyzed the effect of different values of o, on the main aggregates.
Households own the installed capital stock K, subject to adjustment costs as introduced by

Christiano et al. (2005).
1 L\’
1- ok <'y — It—l) ] I, (5.3)

where I; denotes gross investment and x > 0 is a parameter that regulates capital adjustment.
The parameter ~ represents the labor productivity.
The household’s budget constraint is given by,

Kt+l = (]. 75)Kt +

PtCt + PtIt + Bt = Bt—lRt—l + PtTfKt + Wtht — Ttpt (54)

where P; is the index of intermediate good prices, R; is the gross nominal interest rate, ¥ is the
nominal interest rate that remunerates capital, W; is the wage rate for homogeneous labor services
and T; denotes net lump-sum tax.
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5.2.2 Firms

The economy has two types of perishable goods. Perfectly competitive firms produce final goods Y;
which are made by the combination of a continuum of intermediate goods Y; ;. Intermediate goods
are made through capital K;, labor H; and final goods by monopolistically competitive firms using
a Dixit-Stiglitz aggregation technology,

1o Af
Y, = U Yj’tfd]} : (5.5)
0

The parameter Ay regulates the substitution elasticity among intermediate goods, given by
Ar/(Ay —1). Intermediate goods firm ¢ produces Y;. according to a Cobb-Douglas production
function with capital share «,

@ -«
Vi =Ky (Y Hje) =@ (5.6)

The fixed cost of production ® grows with labor productivity, ensuring that profits are zero in
the steady state.
Demand for intermediate good j is,

A

P\ ™t
Y=Y | =— .
it =Y (Pj,t) (5.7)
The index of intermediate prices P; is defined as a continuum of intermediate goods prices as,
1 1}\ (I=xy)
P = { /0 P dj] (5.8)

I follow Calvo (1983) in order to establish that a random group of intermediate good producers
(1 — &,) re-optimizes the price at every period following the rule P;; = I:IPi,t,l, where II is the
steady state inflation.

Whenever the firm is able to re-optimize its price, it maximizes the expected present discounted
value of future profits,

oo

E; Z (&) Mypys [PiarsYines — WersHjprs — Prysrty JKjiss)] (5.9)
s=0

where M ;1 denotes the stochastic discount factor of households owning firms. Both the rental
rate on capital services P;rf and the wage rate for homogeneous labor services W; are purchased
in competitive factor markets.

5.2.3 Labor market

The economy has also two types of labor: homogeneous and specialized. The first is offered by
’employment agencies’. The second is demanded by those agencies following the rule,

Aw
W Aw —1
L ) (5.10)

hir = H,
2,t t (Wi,t
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where A,, measures substitutability level among specialized labor and W;; is the wage rate
for the ith type of specialized labor. As in Erceg et al. (2000), specialized labor is supplied by a
continuum of households in a monopolistically competitive market represented by,

Aw

H%{K@MQ} (5.11)

It is adopted here the strategy proposed by Smets and Wouters (2007) introducing staggered
wages setting a la Calvo (1983). Households optimize their wages with probability of (1 —&y)-
With probability of &, wages are set by the rule W; ; = IIvW; 1, where 0 < &, < 1.

5.2.4 Central Bank and Government

The economy’s public sector is composed of the Central Bank and the Government. The Central
Bank sets the nominal interest rate R; concerning deviations of inflation from the target II and
output deviations from its potential Y. Nominal interest rate is set as,

Ry _ (R \™"[(IN\™ (Y \™]7’"
7R ) \yoar (5.12)

where the nominal interest rate in steady state is given by R = IIy/S. The parameter a, > 1
measures the effect of inflation on the interest rate and pr sets the weight of the lagged interest
rate deviation.

Government one-period budget constraint is

Gy + By_1Ry_y =T, + B, (5.13)

where G denotes government expenditures, set as G; = ¢;7'Y’, where g, is a stationary stochas-
tic process in terms of steady state output path. That is, the government budget constraint states
that its spending plus repayment of bonds must be equal to tax plus bond income.

The government issues bonds By, collects lump-sum tax T; and spends G;. From the perspective
of the fiscal policy authority (who has no ambiguous view about future government expenditure)
the law of motion for g, is,

log (gt;l> = pg log (?) + vy (5.14)

where 77 ~ N(0,1) and g is the steady state government spending in terms of output.
The fiscal rule was taken from Blanchard and Perotti (2002) and Gali et al. (2007).

Tt = qbbBt + ¢th (515)

This condition states that lump-sum tax is defined by the sum of bonds issued and government
spending, both regulated by sensitive responses ¢;, and ¢4. These parameters govern the response of
tax to bonds issuance and government spending, respectively. For example, a high tax response to
bonds (high ¢;), means that an increase in tax implies a larger bond issuance equal to government
expenditure. The reasoning is the same for ¢4. For example, Gali et al. (2007) show that a positive
comovement of consumption and output in response to government spending shocks requires a
sufficiently high response of ¢, and sufficiently low response of ¢,.
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Finally, the general resource constraint is,

Y, =Ci+I; + Gy (5.16)

5.2.5 Mechanism of the confidence shock

Following Gilboa and Schmeidler (1989), Epstein and Schneider (2003) and Ilut and Schneider
(2014), this model allows agents to have multiple beliefs about future government expenditures.
Suppose thus the agent has conflicting information about whether the government will strictly
pursue the approved budget or spend more, in the following quarter. This truncated information
induces agents to treat the following quarter’s government expenditure as ambiguous. A raise of
ambiguity represents an increase in the lack of confidence, which explains the shock. This lack
of confidence obstruct agents in inferring trustworthy predictions. Besides having multiple beliefs
ambiguity is not desirable by agents, which explains the aversion. Being ambiguity averse, in the
Gilboa and Schmeidler sense, means that agents act as if the worst-case scenario will happen, i.e.,
in this case, the government will spend beyond the budget.

When different intangible information is diffuse, indicating opposite scenarios, agents might be
less confident about their forecast. This lack of confidence is not necessarily random and cannot
be captured by the stochastic term 1/. The term p} measures the lack of confidence. Hence,
government spending law of motion, from the perspective of the agents, is given by

log <9t;1) = p,log <g;) + 1y v (5.17)

where 7y ~ N(0,1).
It is not known the probability distribution of the belief set expressed by p}, suggesting why it
is so hard to predict. This set is denoted by,

wy € [ar — 2]ay|, a4 (5.18)

where a; is defined as the time-varying ambiguity. As pointed out by Ilut and Schneider (2014),
a; represents an indicator of intangible information available at date t about government expenditure
at t + 1.

This set is symmetric, centered around zero. Each element of y; in the interval (5.18) is related
to one belief s;11 contained in the set of conditional probabilities ’Pt(st) in the households’ utility
function (5.1). When P;(s) has only one belief, the interval will thus contain also only one element,
characterizing the standard rational expectation setting. Yet, the more conflicting is the information
gathered by agents, the greater the interval is. The time-varying ambiguity follows the law of motion
below,

a1 — @ = pa(ar — @) + vaniyq (5.19)
where ¢ ~ N(0,1) and @ is the steady state ambiguity level.

Worst-case steady state

One of the main innovations of Ilut and Schneider (2014) was to characterize the context of worst-
case in the model’s dynamic state as well as in its steady state structure.
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Following the same strategy, the worst-case steady state of government spending in terms of
output path is,

(5.20)

That is, in the absence of ambiguity, ¢ = g. For example, suppose that § = 0.2 (government’s
output share represents 20% of output), i.e. when such spending does not deviate from budget.
Then the worst-case steady state of government spending is the sum of the unambiguous parameter
(g) and the ambiguous term (a/(1—py)). The higher a is, the higher is the difference g —g. In other
words, a large steady state ambiguity means that agents expect government expenditures greater
than usual.

5.2.6 Parameters

Most of the parameters used in the model are common in the literature. The parameters’ values
are set quarterly. The demand elasticity of prices and wages is based in Christiano et al. (2005).
Ambiguity is measured in the sense of Ilut and Schneider (2014). I assume that u; “looks like” a
normal #d process and it is independent from 7J. T also assume that the empirical second moment
(YT ZZ;I pin?) converges to zero. Taken together, these two assumptions assure that the empirical
mean of the innovation to g; converges to zero and the empirical variance converges to Ug > v2,
The condition uf = a means that the best forecast in the set [—a, a] is the supremum a. In this
case, a is the closest forecast to the true conditional mean p;. Hence, since uf looks like an #id

normal process with mean zero and variance ’Ug — 02, the confidence interval where the supremum

is expresses the best forecast at least 5% of the time, then a < 2V Ug —v2. In this case, one should
expect that the mean of the ambiguity @ is smaller than v,. Larger values of @ imply that the
ambiguity must be excessively high in order to explain intangible information about government
expenditure shocks. In order to control it, define n € (0,1) where a = nv, and v, = v,vg. The
values assumed in the model are on Table 5.1.

The values of the parameters ¢, and ¢, are taken from Gali et al. (2007) and those of Calvo
price/wage from Smets and Wouters (2007).

5.3 Results

In this section is presented a comparison of the confidence shock in the worst-case setup and
traditional fiscal policy shock. I also compare the confidence shock with the risk premium shock.
Finally, is presented the effect of o, on the main aggregates.

5.3.1 Worst-case versus fiscal policy shock

The first question that raises about the model presented in Section 5.2 is the difference between
a confidence shock and a fiscal policy shock. Considering the confidence shock under the worst-
case scenario from the agents’ perspective. To conceive this comparison, I have replicated the
parameters’ value of the law of motion g; (dashed green) in a; (solid blue) to simulate a similar
dynamic behavior.
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Table 5.1 — Structural Parameters

Parameter Description Value
«@ Capital share 0.30
B8 Discount factor 0.25
6 Depreciation rate of capital 0.025
& Calvo price 0.375
&w Calvo wage 0.375
vy Natural growth rate 0.4

T Inflation target 0.6

K Investment adj. cost 4

o Inflation response 1.75
oy Output Response 0.2
PR Interest Smoothing 0.5

n Ambiguity Level 0.5
Pa Ambiguity Persistence 0.5
Py Gov. spending Persistence 0.9
U Ambiguity 0.005
Y Demand Elasticity Goods 1.2
Aw Demand Elasticity Wages 1.05
oy Labor Supply Elasticity 1

P Fixed Cost 0.0434
g Government Spending Share 0.2
Vg Ambiguity Standard Deviation 0.0005

A third comparison is included to represent the context when the ambiguity persistence (p,) is
zero. It means that the ambiguity shock on fiscal policy is confined to the stochastic component
(van?). The absence of temporal persistence on ambiguity emphasizes the difference of the stochastic
shock in a; (solid red) and g; (dashed green).

From the agents’ worst-case perspective, the law of motion of fiscal policy contains an ambiguous
component, following the strategy introduced by Tlut and Schneider (2014). The main goal is to
simulate a context in which agents lose the confidence of the fiscal policy in the following quarter.
Unexpected increases in government expenditures are usually considered by agents as a bad political
decision.!

It is important to emphasize that this chapter does not assess whether an expansive fiscal
policy is positive or negative for economic activity. The main point is the unexpected spending
that surprises agents and harms the public budget. When the government suddenly applies public
resources in areas not previously discussed with the society or even spends more than expected in
ongoing projects, these decisions may negatively affect the economic activity. Usually, this kind
of unexpected expenditure is perceived by agents as a loss of confidence, which increases future
ambiguity.

More specifically, the worst scenario happens when py = a;, i.e. the maximum deviation of the

T do not analyze in this chapter the occurrence of exceptional events that produce a heavy negative impact
on economy aggregates as, for instance, natural disasters or great economic depressions. The effect of unexpected
expenditure in those cases may have a different dynamic compared with this model.
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public budget expected by the agent. This effect increases government expenditures, in the agents’
worst-case perspective, and affects the business cycle.

A fiscal policy shock increases government expenditure since the first quarter, generating a
similar movement of output. The fiscal rule induces a respective increase in tax and bonds, which
reduces the household’s consumption.

A larger supply of risk-free bonds, induces a raise of their interest rate, decreasing the spread
(Etrfﬂ — R;). Inflation and marginal cost also increase, in opposition to the confidence shock.
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Figure 5.1 — Impulse Response of a positive confidence shock under the worst-case belief and
government expenditure shock

Most of the variables in Figure 5.1 present an inverse response to a positive fiscal policy and a
confidence shock. Because of an increase of ambiguity, output, hours and the interest rates (bonds
and capital) starts below the steady state. Thereafter, with the rise of government spending, those
variables recover smoothly as long as the confidence shock dissipates.

On the other hand, investment, consumption, and wages have a similar reaction to both shocks
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(blue and green lines). Real Wages decrease because of inflation and hours response to the fiscal
policy. In the meantime, confidence shock makes real wages decrease because of the fall of inflation
and hours.

Investment drops as a result of crowding out effect and consumption follows output and hours
decrease with a subsequent rise of taxes.

Moreover, despite the consistency of the theoretical results, it is important also to evaluate these
results by estimating some parameters with actual data. Another interesting exercise is to analyze
whether the public debt is below or above its steady state to evaluate the impact of an unexpected
expansion of government spending on output. Last, it is important to analyze the implications at
the zero lower bound (ZLB) scenario.

5.3.2 Worst-case versus risk premium shock

Another interesting comparison is the confidence and risk premium shock. Once again, the former
characterizes the perspective of ambiguity averse agents experiencing a negative shock on their
confidence about future fiscal policy. The latter represents a positive shock on risk-free assets
demand. A positive shock of risk premium, among other possibilities, may represent a fall of
agents’ confidence.
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Figure 5.2 — Impulse Response of a positive confidence shock under worst-case belief and risk
premium shock

The confidence shock under agents’ worst-case perspective has an analogous effect as presented
in Figure 5.1 except for the parameters of the law of motion a;, which assumes the values in Table
5.1.

Figure 5.2 shows that an unexpected increase of the fiscal shock is firstly reflected in a pro-
portional increase in government expenditure. From the resource constraint (5.16), an increase
in government expenditure generates a current reduction of household consumption and output.
Investment reacts to the loss of confidence, falling during the few first quarters. With adjustment
costs, investment takes longer than consumption to converge to its steady state.

Output initially decreases because of the ambiguity positive shock, but then begins to recover
due to the effective increase of government spending.

From the Fiscal rule (5.15), tax is regulated by government spending and bonds issue: in a
context of expansive fiscal policy, the issuance of bonds must necessarily increase, generating a
similar effect on tax.
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Confidence shock causes deflation at the beginning due to the drop in output. Then with the
subsequent expansion of government spending, inflation gains momentum, surpassing its steady
state before converging to equilibrium.

Hours worked follow the same fluctuation, decreasing in the beginning because of ambiguity.
Real wage drops due to deflation and takes longer to reach the steady state because of the rigidity
implied by Calvo’s rule. In sum, an increase of ambiguity has the most negative impact on invest-
ment and capital among all variables, denoting that confidence is a quite important element for
entrepreneurs to decide whether to invest or not.

Consider now a similar effect on agents’ confidence, but without ambiguity effect on government
spending response. Governments with bad reputation call agents to have a precautional reaction to
mitigate the risk of loss. However, this behavior is not always followed by a government undesirable
decision. Nevertheless, the attitude taken by agents is enough to affect the business cycle. This
background is interpreted here through a positive shock on risk-free bonds demand.

This positive shock to demand for safe and liquidity assets may be motivated by several features.
Uncertainty about future fiscal policy might be considered as one of the sources. I follow here the
same strategy used by Ilut and Schneider (2014) when they compare the confidence shock about
future productivity with the disutility of work.

Christiano et al. (2015) refer to risk premium shock as a consumption wedge, given the negative
effect on consumption caused by a larger demand for safe and liquid assets. As in their results,
This consumption wedge leads to a deterioration in labor markets condition, with a persistent drop
of hours worked and real wages.

In comparing both ambiguity and risk premium shocks, is interesting to see that both generate
a comovement fall in output, investment, and consumption. Despite that, such shocks have some
mechanic differences.

An increase in demand for risk-free bonds implies necessarily a fall of consumption via house-
hold’s resource constraint (5.4) and also a fall of output through resource constraint (5.16). As a
result of a decrease in consumption, investment, and output, inflation also reduces.

Since government spending increases inflation above its steady state, real wages decrease with
the confidence shock and takes longer to recover because of Calvo stickiness. But with the risk
premium shock, hours worked take longer to recover, expanding real wages during the first few
quarters. However, real wages fall as inflation increases with the recovery of aggregate demand.

Furthermore, as pointed out by Fisher (2015), the interest rate of bonds decreases as demand
for bonds increases.? The current capital interest rate drops only in the beginning, as pointed out
by Smets and Wouters (2007), and takes longer to recover compared with the confidence shock.

The risk-free interest rate decreases less than the capital interest rate, exhibiting a larger spread
(Eyrf, . — Ry), as the main results in the literature. This wedge takes more than 20 quarters to
disappear.

According to Smets and Wouters (2007), this wedge increases the expected return on assets and
reduces current consumption, as already mentioned. In addition, it also increases the cost of capital
(in comparison to risk-free bonds) and reduces the value of investment and capital, as we can see
in Figure 5.1.

2The supply of bond decreases jointly with the drop of its interest rate on the same scale. This fall is not captured
by the graph in Figure 5.2 because the worst-case result has a bigger scale.
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5.3.3 Risk aversion effect

Since the risk premium shock, as introduced here, is a recent element in the literature, I also analyze
the effect of the relative risk aversion coefficient (03) on the main aggregates and price variables.

Briefly, an increase of o}, reflects a greater aversion to risk by the agents, taking into account
that they are less willing to take risks considering the same wealth and the same economic context.

Figure 5.3 shows that larger values of o, potentialize negative effects on consumption, invest-
ment, hours worked and output. A decrease in output makes tax and bonds decrease as well, due to
the fiscal rule and government budget constraint. The real wages increase in the first few quarters
because of the fall of inflation and hours worked and decrease with the subsequent recovery of both
variables.

Moreover, the wedge between capital interest rate at ¢ + 1 and risk-free bonds interest rates at
t also increases, since the increment in the demand for risk-free bonds causes their interest rates to
fall sharper than the capital interest rate for the subsequent periods.
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Figure 5.3 — Impulse Response Function to a increase of £?
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5.4 Conclusion

Departing from a different uncertainty approach than the one used by Fernandez-Villaverde et al.
(2015), I found that the role of uncertainty in fiscal policy is, in the same sense, important to
explain fluctuations of the main aggregates in the model.

As Ferndndez-Villaverde et al. (2015) pointed out, most of the economic decision-making is
subject to pervasive uncertainty, in particular, to uncertainty about future fiscal policy. This
chapter contributes with further evidence that an increase in fiscal policy uncertainty increases the
negative effect on economic activity. In fact, it is important to estimate the main parameters to
compare the theoretical results with actual data.

One natural extension of this chapter is the analysis of the effect of ambiguity on the business
cycle through taxation on consumption, labor, and capital. It might be interesting to evaluate
alternative features of New Keynesian models as well as alternative approaches to ambiguity.

This chapter does not intend to conclude that ambiguity is the main source of business cycle
fluctuations, but these findings highlight the influence of ambiguity on economic activity.

The business cycles literature is just starting to explore the Knightian uncertainty approach and
there still are plenty of features to take into account in future researches. It would be interesting
to explore some other features in the business cycle through the ambiguity approach: open small
economies, financial frictions and confidence shocks in prices of assets. Finally, the source of the
confidence shock, which I treat here as exogenous, is an interesting element to be analyzed in a
joint effort by economic and political science.
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Appendix

It is presented in this appendix the dynamic equilibrium and First Order Condition (FOC) of the
model. To induce stationarity, the variables are scaled to solve the model:
Ct = %; Yt = Xz; ki = Ktt; it = I%; Azt = )\tPt'Yt
Y Y Y Y
where \; is the Lagrange multiplier of the household budget constraint. The term &; is the
Lagrange multiplier of capital accumulation in consumption units,

_ &
Q= "y
Prices are determined as,
_ Qx.t _— Wy
qt Pt 3 t ’ytPt
and the variables controlled by the government are scaled by the output,
—Gtt _Tt. b, — Bt
gt_}/tat_}/ta t_Pt)/t

Moreover, Calvo prices and wages are scaled as,

1—X

TAf 1=
= Af * * -1 ! 1i§”w =
P dj s wp = (Wh) ; Wi

where households are referred to as ¢ and firms as j.
Household specialized labor h; ; is aggregated as h:, which allow us to write homogeneous labor
Iy in terms of hy,

1 1
toim [ Hyo di= @)™ b where b= [ o d
0 0

From the scaled form above, below is presented the nonlinear equilibrium conditions of the
model. Conditional moments under worst-case belief u; = a; is denoted by asterisk.

Households
Households maximize their utility (5.1) subject to budget constraint (5.4), capital accumulation
(5.3) and labor demand (5.10). Marginal utility of consumption is given by,

)\zt:*

» Ct

Capital accumulation decision (k¢41)

B

Moy =Ef ——— ., RF
) t zt+140 41
Te4+17Y

Capital return is defined as,
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(Tk + (1 - 5) Qt) Tt
qt—1

Ry =

Capital accumulates as,

. N
where the investment adjust is .S (ﬂ> =1k (7 — ﬂ) .

1t—1
Investment decision (i;),

. . . )\Z . . 2
Azt = Az {1 -5 (lt’Y) -5 <m> Zt’Y] + BE; S22 g S (Zt+1’7> (W>
-1 -1/ tt—1 Y 27 U

Bond decision is,

b
Et * ﬂ
Aot = *btgb + B 77Tt+1,y)\z,t+1Rt

Firms
Firms minimize costs subject to the renting of labor and capital for each unit of output:

N BN
e(2) ™ () e

Moreover, firms also must equalize marginal costs with the cost to rent one unit of capital
divided by the marginal capital productivity:

k
Tt

. 1—a?
le
o ()

where the capital-labor ratio is the same for all firms.
Production function is,
Y o\ ¢
w= 07 | (2) e ol
Y
Calvo Prices

Following Calvo’s method, the price p; is given as,

f £
) ¢ =Xy T =Xy
*_ 1~ Dt T
by ( &p) (Fp,t> +&p (tht1>

mi =
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where the terms ¥, ; e F},, are,

A

f TN
Uyt = ApAzeyeme + BE By (7”) Wp 41
t+

Epy = Moy + BEES ( ) Fpi41

Tt+1

AN A
(1£p>‘1<15p(:t) )]
Calvo wages

The wage (w;) according to Calvo method is,

Aw Aw w
Wyt \ 1= Aw(i+ey) Ty T=w
* 1— w ) w | —— *7
o [< ¢ >(@tFw,t> e (thwt 1) ]

where the wage inflation is the following,

Uyt =Fpu

Wy
Tw,t = thw
t—1

and the terms V,, ; e F, + are,

Ty 2% (1407)
\Ilw,t+1

Tw,t+1

_Aw 1
1 >1Aw T w

\Ilw,t = ltl+gl + ngE: (

w,t+1

A ST
Fw,t = lt &l + 5&071‘1*“’ Et <
VYTt+1

)\w 7rw,t+1

_ 1 1=Xy (1+07)
(l_fw)_l (1_5711 <7W> )]
7Tw,t
Government

Government adjusts interest rate based on the Taylor rule,

‘I’w,t = thw,t

NS ONENONN

Government budget constraint is given by

by =bi_1R_1+ g — 1

The fiscal rule is,

ty = ¢dpby + Gg0:
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Production function,

* /\)\fl k “ —Q
=07 () e

Finally, the aggregated resource constraint is,

Yo = ¢t + i + gy

which concludes the dynamic model with 22 dynamic equations and 22 endogenous variables,
namely:

Ctyit,yt,lt,btﬂft,k‘t+17/\z,uQt,Tf,Rf7mt,Rt,pf,7t,Fp,t7‘I’p,t,w?,Fw,t, Wt
W, Ty .
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