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Resumo

A infraestrutura das cidades está passando por um estresse significativo, visto que a de-
manda pelos recursos básicos (como transporte, educação, saúde, etc.) está superando
o fornecimento. Isso se dá devido ao crescimento desordenado, causado pela migração
e aumento da população. Dessa forma, as comunidades científicas e industriais es-
tão cada vez mais interessadas na elaboração de tecnologias baseadas na mobilidade
humana que possam proporcionar um desenvolvimento mais sustentável e que sejam
capazes de reduzir diversos problemas de locomoção, como congestionamentos, afim
de aumentar a qualidade de vida dos cidadãos. Um passo crucial para atingir esses
objetivos é a caracterização dos modos de transportes utilizados. É necessário desen-
volver tecnologias que possam extrair esses dados sem a ativa participação do usuário,
evitando-se dados incompletos e imprecisos.

Nesse contexto, o objetivo dessa dissertação é o desenvolvimento de um frame-
work que, a partir de dados de localização do usuário, possa identificar os modos de
transportes utilizados. Esse framework possui quatro etapas: (i) segmentação, (ii) ex-
tração de atributos, (iii) transformação de dados e (iv) classificação. Maior atenção
é dada à terceira etapa, onde propõe-se uma transformação de dados baseada na dis-
tribuição de probabilidade dos Padrões Ordinais (PO), capaz de extrair a informação
de amplitude presente nos dados – chamada de Padrões Ordinais com Informação de
Amplitude (POIA). Em nossos experimentos, realizados em dados reais, mostra-se que
POIA apresenta resultados de classificação superiores em relação a PO, um ganho de
cerca de 10% de acurácia, indicando que POIA é uma técnica com potencial para a
identificação de modos de transporte.

Palavras-chave: Classificação de Modos de Transporte, Classificação de Séries
Temporais, Padrões Ordinais.
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Abstract

The infrastructure of cities is experiencing significant stress, since the demand for basic
resources (such as transport, education, healthcare, etc) is outstripping supply. This
is happening due to the disorderly growth caused by migration and increasing of the
world’s population. Therefore, the scientific and industrial communities are investing
in solutions based on human mobility that can provide a more sustainable development
and reduce several commuting problems, such as traffic jam, in order to improve the
life quality of humans. A critical step to achieve such goals is to characterize the
transportation mode used. It is paramount the development of technologies that extract
this kind of information, without the active participation of users on the act, hence
avoiding inaccurate and incomplete data.

In this context, this dissertation aim to develop a framework that, from user
location data, can identify the transportation modes used. This framework contains
four step: (i) segmentation; (ii) feature extraction; (iii) data transformation; and (iv)
classification. More attention is given to the third step, where we propose a data
transformation based on Ordinal Patterns (OP) probability distribution, capable of
extracting the amplitude information presented in data – called Ordinal Pattern with
Amplitude Information (OPAI). In our experiments, performed in real data, we show
that OPAI presents superior classification results compared to OP transformation, a
gain of about 10% of accuracy, indicating that OPAI is a technique with potential for
the identification of transportation mode.

Keywords: Transportation Mode Classification, Time Series Classification, Or-
dinal Patterns.
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Chapter 1

Introduction

The current chapter introduces this dissertation work, which is entitled “Transporta-
tion Mode Classification through Ordinal Patterns with Amplitude Information”. We
discuss the initial considerations and motivation of this work in Section 1.1. After,
in Section 1.2, we show the goals we intend to achieve. Section 1.3 expounds the
contributions made. Finally, Section 1.4 describes the organization which this work
follows.

1.1 Motivation

In our world, most of the data generated has a temporal component, whether it is a
natural process (e.g. weather, sound waves, and planet movements) or human-made
(e.g. robotics and citizen mobility). Also, in human growth, time is always present
when our brain is learning tasks like language, vision, and motion (Längkvist et al.,
2014). To acquire a solid knowledge and understanding about the dynamics of life, we
can examine phenomena through time, forming a discrete collection of observations,
called time series.

In this context, trajectory data have an unique value. Since 2018, we have 55% of
the world’s population residing in urban areas, and it is estimated to reach 68% by 2050.
It is caused by the migration from rural to urban areas and the increasing of the world’s
population. Such growth, generally in a disorderly way, is putting significant stress on
city infrastructure, since the demand for basic services (i.e., transportation, education,
healthcare, and safety) is outstripping the supply (United Nations and Social Affairs,
2018). Therefore, in order to solve the challenge of a sustainable development, which
must meet the needs of their increasing population, cities are investing in solutions
based on the study of human mobility. They want to understand and characterize how

1



2 Chapter 1. Introduction

humans commute, where and why they go, to develop essential technologies capable of
reducing traffic jam, travel time, and also more sustainable transport solutions, which
can improve the life quality of humans. A critical step to achieve such goals is to
characterize the transportation mode used.

In the past, the data used in transportation mode characterization were obtained
by surveys answered by volunteers, which often resulted in underreporting of short trips
and in inaccurate and incomplete data (Biljecki et al., 2013). Recent advancements in
positioning technologies, such as Global Positioning System (GPS) and ubiquitous sen-
sors, have made possible to acquire location data in an inexpensive and straightforward
way. For instance, we can see a remarkable growth of mobile phones users (expected
to pass the five billion mark this year 1), which have several sensors (including GPS)
capable of obtaining information about user’s location. Unfortunately, transportation
mode information still relies on users manually labeling their data, which can lead to
errors similar to those found by surveys. It is of paramount importance the devel-
opment of technologies that can extract this kind of information, without the active
participation of users on the act.

Nevertheless, time series data has been the subject of study for decades (Längkvist
et al., 2014), attracting increasing attention from scientific and industrial communities.
Mining time series data, however, faces several complexities, being considered by Yang
and Wu (2006) one of the most challenging problems in data mining research due to
its unique properties, such as heterogeneity and presence of noise. Additionally, we
must face high dimensionality in time series data, a well-known challenge nowadays,
in the big data era, where we have an unprecedented amount of data, being generated
in high speed, for all application domains. Nonetheless, the most striking property of
time series data is its spatio-temporal dependence, i.e., there is a relationship of data
elements. In other words, a change in data points order could change their meaning.
It opposes the common assumption made by many algorithms, such as Naïve Bayes,
of independent and identically distributed observations, leading standard classification
methods to perform poorly in time series (Bagnall et al., 2017).

1.2 Objectives

The main objective of this dissertation is to answer the following question:

Research problem: Is it possible to extract transportation mode infor-
mation from user’s location?

1https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/

https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
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To that end, a fundamental step is to understand the properties of transportation
modes, i.e., how transportation modes can be characterized based on their uniqueness.
We aim to analyze it derived from GPS data. After that, our goal is to model and
extract the transportation mode knowledge from GPS data using Ordinal Patterns
distribution. Thus, we tackle the main objectives of this dissertation answering three
different questions:

• What are the properties of transportation modes? Although transporta-
tion mode classification is a studied field, its characterization is an important step
to urban planning and understanding of humans mobility, for instance. With
that, our goal is to investigate the properties of transportation modes, based
on features extracted from GPS data, in order to understand its challenges and
usefulness;

• How can we extract transportation mode information from GPS data?
Our goal here is to use the features we extract from the analysis process to
the design of a framework to distinguish between the transportation modes that
can be used by a citizen to commute. First, we want a model that enables the
knowledge extraction from trajectory data. This model must try to mitigate
the issues of time series data and, hence, improve classification. Based on this
model, the aim is to propose a methodology that, efficiently and effectively, mines
transportation mode information from trajectory data.

• Is Ordinal Patterns distribution capable of providing good character-
ization of transportation mode? In the design of our framework, our hy-
pothesis is that transforming trajectory data to Ordinal Patterns distribution,
based on the characteristics of this method (such as computationally inexpensive
transformation), can highlight the underlying features presented in the original
data, positively contributing to the transportation mode classification field.

1.3 Contributions

Our main contributions can be summarized in:

• Ordinal Patterns with Amplitude Information (OPAI). We proposed a
novel Ordinal Patterns (OP) representation with amplitude information, provid-
ing better classification results.
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• Characterization and analysis of transportation mode information
based on OPAI.We characterized and analyzed the properties of transportation
modes, using the OPAI technique. With this, we developed a deeper understand-
ing about the properties of transportation mode.

• Definition, modeling, and application of Transportation Mode Classi-
fication Framework. We proposed a novel transportation mode classification
framework, using OPAI method and features extracted from GPS data.

1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides an intro-
ductory overview about time series and transportation mode classification. Chapter 3
introduces and defines fundamental concepts about time series, trajectory data, and
classification, used throughout this work. Chapter 4 discusses the OP distribution and
our contribution to this transformation, OPAI. Chapter 5 presents the framework pro-
posed to transportation mode classification, comparing our results to OP distribution
and showing that our proposal overcome it in classification results. Chapter 6 sum-
marizes the contributions of this dissertation and, moreover, we present some research
directions for future works.



Chapter 2

Related Work

This work presents the design process of a transportation mode classifier from trajec-
tory data. As this data is a type of time series data, our framework can be understood
as a time series classifier. In this chapter, we present Time Series and Transportation
Mode Classification, in Section 2.1 and Section 2.2, respectively. Lastly, Section 2.3
presents our final remarks, finalizing the chapter.

2.1 Time Series Classification

Among the possibilities in time series data mining, Time Series Classification (TSC)
is an extensively studied problem – researchers have proposed hundreds of methods
to solve this task (Bagnall et al., 2017). This section is divided in four subsections.
First, in Section 2.1.1, we discuss the works that use traditional Machine Learning
approaches to contribute in this field; Section 2.1.2 presents the Deep Learning ap-
proaches, Information Theory approaches are shown in Section 2.1.3, Section 2.1.4
reviews the Complex Network approaches, and, finally, in Section 2.1.5 we present a
discussion about the works presented.

2.1.1 Traditional Machine Learning Approaches

The characterization and classification of time series is the subject of study of several
areas and, as such, is widely explored. There are several contributions in the field of
Machine Learning (ML). However, uniformly contradicting results in empirical evalu-
ations demonstrate the need of comprehensive comparison and reproducible research.
Knowing this, Wang et al. (2010) compared the effectiveness of 8 different representa-
tion methods, as well as 9 similarity measures and their variants, in 38 real-world data

5
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sets from diverse application domains. They used a simple k-Nearest Neighbor (k-NN)
(with k = 1) classifier combined with the evaluated methods. Their results showed that
it is more difficult to achieve good classification results using representation methods as
data dimensionality grows. Also, the evaluated similarity measures presented similar
accuracy results.

Bagnall et al. (2017) contributed to extending the reproducible studies in time se-
ries classification evaluating the accuracy of 18+ time series classifiers. They separated
such classifiers into different five groups, namely, shapelets, interval-based, dictionary-
based, whole series and combinations. These categories are based on the type of
discriminatory features the technique is attempting to find. They showed that the
best results belong to the ensemble classifier Collective of Transformation Ensembles
(COTE) (Bagnall et al., 2015). COTE combines 35 classifiers of the 18 evaluated
algorithms (the change of parameters in the algorithms leads to different classifiers).
All algorithms were evaluated in the UCR Time Series Archive (Chen et al., 2015), a
repository composed of 85 univariate real-world data sets of many time series types,
such as motion, simulated, ECG, and device. They concluded that COTE is on average
8% more accurate than others. However, COTE is hugely computationally intensive.
Even more, COTE has an imbalance amount of methods from each domain, so, in case
of similar training accuracy, the collective will be biased.

Lines et al. (2018) improved the COTE proposing a new hierarchical structure
with probabilistic voting. The authors called such approach of Hierarchical Vote Collec-
tive of Transformation-based Ensembles (HIVE-COTE). HIVE-COTE overcomes the
potential design bias by modularizing the elements of each group of classifiers. It allows
only a single probabilistic prediction from each algorithm group (whole series; interval;
shapelet; dictionary; and spectral). They compared the top-ranked algorithms in the
study mentioned above with HIVE-COTE and two Convolutional Neural Networks
(CNN) approaches. COTE presented a better result than the evaluated CNNs, but
HIVE-COTE surpassed all of them. Still, HIVE-COTE presents the same complexity
of COTE, being computationally intensive as well. For instance, training HIVE-COTE
on a data set with only 1,500 time series can require 8 days of CPU time (Shifaz et al.,
2019).

Shifaz et al. (2019) proposed Time Series Combination of Heterogeneous and In-
tegrated Embeddings Forest (TS-CHIEF). It uses Proximity Forests (Lucas et al., 2019)
to separate the time series into an ensemble of classification trees. They choose splitting
functions based on similarity measures, dictionary representations and interval-based
transformations, inspired by previous works, such as Lines et al. (2018). However,
they do not use shapelets transformation because of their high computational com-
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plexity. This approach achieves a better average rank than HIVE-COTE, but it does
not present a significantly better improvement in accuracy. However, it is a scalable
solution, and the authors claim that it is up to 46000 faster than HIVE-COTE in some
cases.

These ensemble approaches are the state-of-the-art in ML field for TSC. Their re-
sults are based on different data representation, such as dictionary-based. It is a very
common approach, based on the hypothesis that patterns that differentiate groups
of time series occurs repeatedly. Therefore, dictionary-based approaches forms a fre-
quency count of repeated patterns. This transformation is useful to reduce dimen-
sionality, being a computationally inexpensive transformation. Bag of SFA Symbols
(BOSS), proposed by Schäfer (2015), is used in HIVE-COTE and TS-CHIEF as their
dictionary-based transformation, due to its high accuracy in the study executed by Bag-
nall et al. (2017). It surpasses other methods of this kind of transformation, such as
BoP (Lin et al., 2012) and SAXVSM (Senin and Malinchik, 2013). The latter, however,
presented results that are not significantly worse than BOSS. More works are being de-
veloped using this type of transformation, such as MiSTiCI (Raza and Kramer, 2019).
Although it achieves results that are statistically not discernible from BOSS, MiSTiCI
is a faster approach.

2.1.2 Deep Learning Approaches

Opposing the “shallow” algorithms described before, Fawaz et al. (2019a) investigated
nine Deep Learning (DL) approaches in time series classification, which were evaluated
in the same 85 data sets of Bagnall et al. (2017). ResNet (He et al., 2016), although
not tailored to this task, won on 50 problems out of 85, beating some approaches built
especially to deal with time series. They compared this deep architecture with the best
classifiers in Bagnall et al. (2017), including COTE. Although COTE presented the best
accuracy, the authors argue that ResNet has some advantages: in addition to training
time, COTE needs a linear scan to perform classification, whereas ResNet classifies
instantly; also, ResNet’s hyperparameters does not need to be tuned for each data set
but rather the same architecture was used for the whole benchmark. They suggested
that further investigation of these hyperparameters should improve DL accuracy.

Still in DL methods, Fawaz et al. (2019b) proposed an ensemble of the current
state-of-the-art DL models for time series classification, called Neural Network En-
semble (NNE). Their model is composed of 60 different DL networks: six different
architectures, with ten different initial weight values for each. NNE reaches state-of-
the-art results, having no significant difference from HIVE-COTE classification. These
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results were concluded from the same database used in the previous mentioned works.

2.1.3 Information Theory Approaches

Techniques derived from Information Theory have also been successful in the charac-
terization of time series. Such methods can distinguish time series using model-free
techniques that also are computationally inexpensive and have low dimensionality.
Bandt and Pompe (2002), in their seminal paper, proposed a time series transforma-
tion, named Ordinal Pattern (OP), which can be calculated for any type of time series,
without model assumptions. They also proposed a complexity measure called Permu-
tation Entropy (PE), that is extracted after the OP transformation. It was shown that
PE is an appropriate complexity measure for chaotic time series, in particular in the
presence of dynamical and observational noise.

Furthermore, several methods are derived from OP transformation, such as
Entropy-Complexity Plane, proposed by Rosso et al. (2007). It is defined as the two-
dimensional diagram obtained by plotting permutation statistical complexity (vertical
axis) versus the PE (horizontal axis) for a given system. They showed that this method
is particularly efficient at distinguishing between the deterministic chaotic and stochas-
tic nature of time series, since the quantifiers have distinctive behaviors for different
types of dynamics.

Many works use these aforementioned approaches in several domains, showing its
importance in time series characterization. For instance, Aquino et al. (2015) character-
ized the behavior of vehicles through their velocities; Aquino et al. (2017) characterized
the behavior of electric loads; Ribeiro et al. (2017) characterized the behavior of the
crude oil price; and Zanin et al. (2012) reviewed the application of PE in biomedical
and econophysics domains.

However, the original definition of PE, presented in Bandt and Pompe (2002), has
the drawback of not capturing data amplitude. Many works proposed an improvement
to accommodate this information, as we can see in Fadlallah et al. (2013) and Azami
and Escudero (2016).

2.1.4 Complex Network Approaches

Another research direction that has also been successful in the characterization of time
series is based on the transformation of the time series into graphs. Gao et al. (2017)
reviewed several approaches and its applications in real-world data analysis, such as
medical time series. Some examples are the visibility graph, by Lacasa et al. (2008),
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and the horizontal visibility graph, by Luque et al. (2009). Using these strategies it
is possible to construct networks that inherit the characteristics of the original time
series – for instance, periodic series are transformed into regular graphs, and random
series are transformed into random graphs. However, as each time series sample is
transformed into a vertex of the graph, there is an impact on the scalability of these
techniques, making them unfeasible for very long time series.

Recently, methods that combine more than one approach are emerging. Small
(2013) proposed to obtain graphs from permutations of possible patterns in OP – the
Ordinal Network. Such network represents the relation between consecutive patterns.
It inherits some properties from OP transformation, such as simplicity, speed, robust-
ness, and scalability, preserving the order in which the patterns occur. However, this
network also inherit the OP drawbacks, such as the inability to detect data amplitude.
Also, as with the OP transformation, this method does not apply to multivariate time
series. Generalizations to multidimensional data were proposed by many works, such
as in Zhang et al. (2017) and Guo et al. (2018).

2.1.5 Discussion

Time series is an ubiquitous data type, hence, of great importance to industry and
research communities. In fact, as said before, Bagnall et al. (2017) relates that there
are hundreds of methods to time series classification, in several computing fields, as we
could see through this section.

ML algorithms have been the most used approach to solve this task and, recently,
there was a growth of DL algorithms focused on this same goal. Furthermore, most of
the works in this areas can be directly compared, since they use the same benchmark
database to evaluate their effectiveness. Although these approaches are the state-
of-the-art in TSC, ML methods rely deeply in time series transformations, such as
dictionary-based. Based on it, a way to leverage this field is developing solutions using
data transformation.

Moreover, Esling and Agon (2012) discuss that the No-Free-Lunch (NFL) theorem
prevents the existence of the best algorithm, i.e., an algorithm that presents the best
results in all domains, despite the effort to find it. According to such theorem, the
good performance of an algorithm in any domain is “paid” by a poorer performance
on another domain. However, Giraud-Carrier and Provost (2005) argue that the NFL
theorem is of little relevance to research in ML, specifically in meta-learning. This
statement is supported by the works presented in Section 2.1.1, in which ensemble
classifiers are the state-of-the-art. A drawback of this kind of solution is the high
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computational cost, since it has to use many transformations to visit each possible
domain without prior knowledge about the data. As presented in Section 2.1.2, DL
methods, with their high-level representation, overcome this issue.

Section 2.1.3 and Section 2.1.4 show that Information Theory (IT) and Complex
Networks (CN) approaches are capable of characterizing time series in several domains.
However, these fields are not as studied as ML and DL to time series classification. Even
more, although possessing promising results, we cannot compare the results of IT and
CN to ML and DL approaches with such easiness since they are used in different data.
It is important to provide studies that deeper examine these areas and their power in
time series classification.

2.2 Transportation Mode Classification

Transportation mode information, that is, the information about the different ways of
transportation made by humans, can be acquired from several sources, not restricted
to just one. For instance, Ermes et al. (2008) and Parkka et al. (2006) use GPS and
wearable sensors data (e.g. body temperature and heart rate) to detect activities
such as walking, rowing, and cycling. This kind of approach, however, obliges the
user to carry several sensors in order to have their transportation mode information
detected. Moreover, some works show that it is possible to combine sensor data with
external information. As examples, we can cite the work of Shah et al. (2014), in
which the authors classify different forms of motorized transport such as car, bus, and
subway, using GPS data, transit route information published by transit agencies, and
motion detection collected from phone’s accelerometer. The disadvantage of this kind
of approach is the need of models capable of collecting the external information every
other time, since city information can change over time.

Accordingly, many works are focused on classifying using information from just
one source. For instance, Huang et al. (2019) presented a systematic review about
transportation mode detection using mobile phone data, in which they discussed the
data, preprocessing steps, and transport mode identified in more than 20 works.

Therefore, in this dissertation, we concentrate our efforts in classification of GPS
data. There are several works that use only GPS data as their source, as presented
by Yang et al. (2018). We will objectively evaluate the works that can be compared
to ours, i.e., those that use the same dataset, described in Section 3.3.3. Moreover,
differently from the aforementioned work, that describes the transportation mode clas-
sification based on their sources (single or mixed sources), we will review based on the
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computational approaches.
In Table 2.1, we summarize the related work presented in the field of Trans-

portation Mode Classification using GPS data. The works are divided by the set of
transportation mode used. To know which features are used in these works, please look
for the study in this section. We present only the techniques that achieved the best
result. Additionally, between parenthesis in the accuracy column, we see the relative
accuracy (the gain, with ↑, or loss, with ↓) compared to the first work that used the
same set of transportation mode. Some works use an unique set, hence, they cannot
be compared to others. Moreover, the works marked with * employ a different data
subset, making them unable to compare with the others. Also, works marked with
� also cannot be adequately compared to others since they use a noise removal ap-
proach based on ground truth information, infringing the prediction procedure. Such
technique may improve accuracy unrealistically as well.

The remainder of section is divided as follows. In Section 2.2.1, we discuss the
traditional Machine Learning approaches. Section 2.2.2 details the Deep Learning
approaches. Information Theory approaches are presented in Section 2.2.3. Lastly,
Section 2.2.4 discusses the works presented.

2.2.1 Traditional Machine Learning Approaches

Zheng et al. (2008b) proposed a framework for transportation mode classification com-
posed of four sequential steps: segmentation, feature extraction, inference and post-
processing. First, they segmented the trajectories by identifying its change point, i.e.,
the point in which the users change their transportation mode. After that, they ex-
tracted, from each segment, the following features: length, mean velocity, expectation
of velocity, variance of velocity, top three velocities, and top three accelerations. To
classify the segments, the authors used four different classification algorithms, namely,
Decision Tree (DT), Support Vector Machine (SVM), Bayesian Net (BN) and Condi-
tional Random Field (CRF). Sequentially, instead of choosing the maximum probability
as final result in the inference process, they consider the conditional probability between
different transportation modes to re-calculate the probability of each segment. There-
fore, they achieved an overall accuracy of 74.3% using DT, when classifying walking,
bus, bike, and driving (car and taxi) as the possible transportation modes.

Extending their previous work, Zheng et al. (2008a) changed some steps in their
proposed framework. The segmentation step still relies on change point detection.
However, for feature extraction, the authors extracted, besides the aforementioned
features, three new ones: heading change rate (HCR), stop rate (SR), and velocity
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change rate (VCR). HCR stands for the change of direction of the transportation
mode used – for instance, intuitively, the change of direction is more accentuate while
walking or cycling than driving or taking a bus, since the latter transportation modes
are constrained by a road. For SR and VCR, they noted that some transportation
modes are likely to stop and diminish their velocity than others, for instance, while
walking, an user stops or do it slowly more than while taking a bus or driving. The
inference step only applies DT method to classify the transportation modes. And,
finally, in the post-processing step, their algorithm takes the preliminary inference
result and a spatial knowledge (a graph of change points constructed from the change
point information extracted from the segments) to enhance the classification results.
For the same transportation modes of the previous work, they achieved 76.2% of overall
accuracy.

Xiao et al. (2017) proposed a method that includes data preprocessing, feature
extraction, model classification and model evaluation. In data preprocessing, they re-
moved duplicate entries in GPS data and outlier trajectories based on “common sense”
(e.g., average speed of walking exceeding 10 m/s or biking exceeding 25 m/s). For
feature extraction, they extracted two groups, called global and local features. The
former refers to descriptive statistics for the entire trajectory, which makes trajectories
more comparable, and the latter, extracted by profile decomposition, reveals more de-
tail in movement behavior. The authors first extracted speed, acceleration, turn angle
(the direction of the two consecutive points) and sinuosity (its winding path divided
by the distance). With these information, for global features, they acquired, from
each segmentation, the mean, standard deviation, mode, top three value, minimum
three value, value range (the maximum value minus the minimum value), percentile,
interquartile range, skewness, kurtosis, coefficient of variation, autocorrelation coeffi-
cient, trajectory length, HCR, VCR, and SR. For local features, a series of features
were extracted from the profile decomposition algorithm. This included the mean and
standard statistics of segment length per decomposition class and per parameter, the
count of changes of decomposition classes, and the proportion per decomposition class
account for the total number of points. Therefore, 111 features were used in this work.
For the model classification, they used and compared the performances of traditional
ML methods (k-NN, SVM, and DT) against tree-based ensemble models, namely Ran-
dom Forest (RF), Gradient Boosting Decision Tree (GBDT), and Extreme Gradient
Boosting (XGBoost). For walk, bus and taxi, bike, car, subway, and train, their best
performance were achieved by XGBoost, with 90.77% of overall accuracy. With this,
they concluded that tree-based ensemble models performed better than the traditional
methods.
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In Etemad et al. (2018), the authors proposed a framework of five steps: data
segmentation, point features generation, feature extraction, noise removal, and nor-
malization. The point features used in step two are distance, speed, acceleration, jerk,
and bearing. Additionally, they calculated two new features, named bearing rate and
the rate of bearing rate, which are important to quantify the change of the bearing in
the movement of the transportation mode. After that, they extracted global and local
features of each trajectory point. For global features, they used minimum, maximum,
mean, median, and standard deviation values; and, for local features, they obtained
five different percentiles (10, 25, 50, 75, and 90) of every point feature. In total, they
computed 70 trajectory features (10 statistical measures including five global and five
local features calculated for 7 point features) for each transportation mode example.
To remove the noise, they used a method called median filter, that creates a mask based
on the average speed of a trajectory, removing the abnormal values. After that, they
normalized the features, using the Min-Max normalization. They classified different
transportation modes set, with five classifiers, namely DT, RF, Neural Network (NN),
Naïve Bayes (NB), Quadratic Discriminant Analysis (QDA). In all the cases, RF pre-
sented the best result. The classified sets are: (i) bike, car, walk, and bus (where they
obtained 96.45% of overall accuracy); (ii) walk, bike, bus, driving (car and taxi), and
train (93.55%); (iii) walk, bus and taxi, bike, car, subway, train (93.19%); (iv) walk,
car, taxi, bike, subway, bus, train (90.20%); and (v) walk, bus, bike, driving (car and
taxi) (93.61%). Therefore, they concluded that noise removal in transportation mode
classification is an important step, improving the performance of the classifiers.

2.2.2 Deep Learning Approaches

To avoid the necessity of hand-crafted features, many researchers applied DL methods,
that are capable of extracting many levels of representation without human interfer-
ence. Dabiri and Heaslip (2018) explored the use of CNN architectures to predict
transportation mode categorized in walk, bike, bus, driving (car and taxi), and train
(in this only case, it involves subway as well). The authors comprised the kinematic
features speed, acceleration, jerk, and bearing rate as matrices, to create a standard
arrangement for the CNN scheme, which is, generally, an image. This data were man-
ually preprocessed to remove abnormal values. They combined seven CNN models in
an ensemble configuration, achieving 84.8% of overall accuracy. The authors highlight
that removing anomalies, designing an efficient input layer with the appropriate motion
characteristics, augmenting training data, tuning hyperparameters, and employing the
bagging concept are the key factors to achieve such high accuracy.
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Jiang et al. (2017) investigated the classification of four transportation modes
(i.e., bike, car, walk, and bus) using Recurrent Neural Network (RNN). Instead of
learning the RNN parameters directly in the features extracted from data, they map
such features into a discretized space, based on the hypothesis that better features
are learned in a smaller shared space (an approach similar to kernel trick (Hofmann,
2006), but without explicit designing of kernel functions). The features extracted were
the point-based speed, average speed per segment, and standard deviation of speed
per segment. Moreover, they used Hampel filter to remove ouliers from the features.
They achieved an overall accuracy of 97.9%. Also, they applied the same technique to
classify seven transportation modes, namely train, car, bus, subway, airplane, and bike,
achieving 97.3% of accuracy. However, these results are applied in a subset, making it
impossible to compare with the other works.

Endo et al. (2016) proposed a method to automatically extract features from
raw trajectory data using Deep Neural Network (DNN). Specifically, the trajectory
is represented as a 2D image data structure (called trajectory image) and higher-level
features are extracted using fully-connected DNN with Stacked Denoising Autoencoder
(SDA). They compared the proposed method with the hand-craft features extracted
in Zheng et al. (2008a) and Zheng et al. (2008b) to classify walking, bus, car, bike, taxi,
subway, and train. The authors concluded that their method present better accuracy
results than such hand-craft features, but the combination of all the features obtained
the best accuracy value, of 67.90%.

2.2.3 Information Theory Approaches

Information Theory (IT) methods are applied in Transportation Mode Classification
as well. Zhang et al. (2015) extracted PE as a feature, along with average speed,
speed variance, HCR, SR, and VCR to characterize walking, bike, bus, driving, train,
and airplane. They classified using Extreme Learning Machine (ELM) for Feedforward
Neural Network with single hidden layer and obtained an accuracy of 83.79%. However,
similar to Jiang et al. (2017), they use a data subset, making it unfeasible to compare
this work with others.

In Cardoso et al. (2019), we proposed a method to classify walk, bike, bus, and
driving using IT features extracted from distance, latitude, and longitude. These
features are PE, Statistical Complexity, and self-transition probability, proposed
by (Borges et al., 2019). We classified using k-NN (k = 2), SVM (with linear and
radial kernels), and DT. With SVM using radial kernel, the best result was obtained,
73.54% of overall accuracy.
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2.2.4 Discussion

Transportation Mode Classification (TMC) using only GPS data as its source is a well
studied field, as we could see in this Section. However, differently from Time Series
Classification, this field lacks of an influential benchmark that can make it easier to
compare the works. Knowing this, we discussed only studies made in the same dataset
in order to contrast them.

An important aspect about the studies above is the presence of feature engineer-
ing. It can help the learning algorithm, but it requires domain expertise to develop the
features. Some works used hand crafted features, such as Etemad et al. (2018); Xiao
et al. (2017); Zheng et al. (2008a); while others used representation learning methods,
as in Dabiri and Heaslip (2018) – Endo et al. (2016) used the two approaches. The
main difference about both approaches is that hand crafted features generate interpre-
tative models, since we known the features; representation learning, however, may not
be understood by humans, due their high-level features.

Another essential point in these works is the data mining. Specifically, it involves
segmentation and data cleaning. In the former, most works used the transportation
mode information to segment data, which relies on ground truth information, being
an acceptable step in literature when focusing on classification, due the need to create
the observations dataset to perform such task. Zheng et al. (2008b), for instance,
used walking information to slice the trajectories. In all the works reviewed here, the
number of segments extracted from trajectory data are different. It is not possible to
say which one is the correct total of segments. In other words, we cannot affirm if
one segment is indeed about one trip or not, since the dataset is manually labelled,
which may lead to errors such as underreporting. Though, since the dataset contains
the ground truth information (which transportation mode a point belongs), at least it
is guaranteed that the segments contains information about only one transportation
mode.

Diverse strategies are used in data cleaning to remove the noise presented in
trajectory data. Zheng et al. (2008a,b); Endo et al. (2016); Zhang et al. (2015);
Cardoso et al. (2019), however, did not mention anything about this step. In Xiao et al.
(2017); Dabiri and Heaslip (2018), this removing is based on “common sense”, as said
in Xiao et al. (2017). It means that they use the information about the transportation
mode to classify which is an abnormal value – i.e., speed of walking exceeding 10 m/s.
This approach goes against the inferring procedure, since we have to know a priori
the transport information in the test data. Additionally, Etemad (2018) showed that
this kind of noise removal can improve accuracy unrealistically – in their experiments,
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the mean accuracy increased from 88.5% to 91.8% using this kind of method. Hence,
we can assume that works that use this approach cannot be adequately compared to
others. Other noise removal methods, such as filters, are also used, as shown in Jiang
et al. (2017), and some works such as Dabiri and Heaslip (2018) used both approaches.

Furthermore, the evaluation methods, mostly accuracy of models, are heteroge-
neous as well. They include random cross validation, cross validation over users and no
cross validation (simply a division of training and test set). The random cross valida-
tion is the method most used in ML evaluation. The over users variation, used by Endo
et al. (2016), separated into training segments of 80% of users and test segments of 20%

of users. They argue that the learned features are dependent on users due their habits
or environments, so the random cross validation might provide optimistic results.

Also in the evaluation stage, some works, such as Zhang et al. (2015) and Jiang
et al. (2017), provide their results in a data subset: they randomly choose 30 and 23
of 73 users, respectively, to apply their methods. It causes a “cherry picking” effect,
preventing such studies to be adequately compared to others as well.

Finally, as seen in Table 2.1, even using the same dataset, the literature does not
classify an unique set of transportation mode. For instance, the set used by Zheng
et al. (2008b) is applied in three more works, whereas Zhang et al. (2017) diverge
by classifying a different set, used only by themselves. It is just one more issue that
prevents the comparison of the works in this field. Therefore, we can conclude that it
is imperative to develop solutions that can unify the methodology of TMC to provide
more comparable works, which can help the progress of such area.

2.3 Final Remarks

This chapter presented a summary of publications related to time series and trans-
portation mode classification.

Although this work also presents a framework to transportation mode classifica-
tion, similar to others cited in this chapter, this work differs from them by proposing a
novel OP transformation, that considers the amplitude information. Moreover, this is
a general approach that can be used to classify time series data from several domains,
as will be demonstrated in this work.
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Table 2.1: Summary of past research in Transportation Mode Classification using GPS
data

Mode Work Method Features Accuracy (%)

walk, bus, bike,
driving (car and taxi) Zheng et al. (2008b) DT 10 74.30

Zheng et al. (2008a) DT 13 76.20 (1.90 ↑)
Etemad et al. (2018) RF 70 93.61 (19.31 ↑)
Cardoso et al. (2019) SVM 4 73.54 (-0.76 ↓)

walk, bus, car, bike,
taxi, subway, train Endo et al. (2016) DNN 23 + DNN 67.90

Etemad et al. (2018) RF 70 90.20 (22.3 ↑)

walk, bike, bus,
train and subway, driving Dabiri and Heaslip (2018) ensemble of CNN 4 84.80 �

Etemad et al. (2018) RF 70 93.55 (8.75 ↑)

walk, bus and taxi, bike,
car, subway, train Xiao et al. (2017) XGBoost 111 90.77 �

Etemad et al. (2018) RF 70 93.19 (2.42 ↑)

bike, car, walk, bus Jiang et al. (2017) RNN 3 97.90 *
Etemad et al. (2018) RF 70 96.45 (-1.45 ↓)

walk, bike, bus,
driving, train, airplane Zhang et al. (2015) ELM 6 83.79 *

train, car, bus, subway,
airplane, bike Jiang et al. (2017) RNN 3 97.30 *





Chapter 3

Preliminaries, Fundamentals, and
Definitions

This chapter presents some preliminary concepts and definitions that are used through-
out this dissertation. It is organized as follows. Section 3.1 discusses time series data.
Section 3.2 explains time series data mining. Section 3.3 describes trajectory data.
And we conclude this chapter in Section 3.4.

3.1 Time series

As technology increases, we can see the growing power of storages and processors. With
this, it is possible to collect and keep data of real-world events for a long time. Hence,
time series, being one of the most ubiquitous data type, have provided the opportunity
of understanding several phenomena in the last decades (Aghabozorgi et al., 2015).

In this section, we will depict some definitions regarding time series that are
fundamental to this dissertation. It is organized as follows. Section 3.1.1 defines time
series.

3.1.1 Definition

The concepts of time series, as defined below, is inspired by Bagnall et al. (2017)
and Esling and Agon (2012).

Definition. An univariate time series X(t) = {x1, x2, . . ., xn} is a sequence of n data
points, record over time, where each element xi represents a point in time, i ∈ N.

19
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Figure 3.1: The process of Knowledge Discovery in Databases (KDD)

Definition. A multivariate time series
#»

X = {X1, X2, . . ., Xn} is a sequence of n uni-
variate time series, where each element Xi represents an univariate time series, i ∈ N.

Throughout this work, “time series” refers to the univariate time series. When
referring to multivariate time series, it will be fully indicated.

3.2 Time Series Data Mining

Data Mining is part of Knowledge Discovery in Databases (KDD), which is the process
of converting raw data into practical information, as shown in Figure 3.1. It can be
defined as follows.

Definition. Data Mining is the process of automatically discovering useful information
in data. This discovering is made by applying techniques and extracting novel and
useful patterns that might otherwise remain unknown.

The input data may have a variety of formats – in this work, we use time series
data; more specifically, trajectory data.

The purpose of preprocessing step is to transform raw data into more appropri-
ate format for subsequent analysis. It encompasses several methods, such as feature
selection, data transformation, noise removal, dimensionality reduction, normalization,
and many others. In this Section we will detail the methods used in this work, namely
segmentation (Section 3.2.1) and data transformation (Section 3.2.2). This step is the
most time-consuming in the overall KDD process.

Postprocessing consists of interpretation and evaluation of the obtained results.
Generally, this step is made by a specialist. It includes, but not limited to, model
evaluation, visualization, and pattern interpretation (Tan et al., 2005). Section 3.2.4
defines the evaluation methods used in this work.

Finally, performing the aforementioned step, information is acquired. In this
work, we obtain knowledge about transportation mode classification, i.e., in which
transportation mode the citizen is moving, based on their trajectory data.

Moreover, in Section 3.2.3 we will describe classification, a Data Mining method.
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3.2.1 Segmentation

We define segmentation as follows.

Definition. Segmentation is the process of dividing a time series into segments, i.e.,
subsets of data, in order to reveal the underlying properties of its source.

This definition is based on the work of Lovrić et al. (2014).
Segmentation can be understood as a partition of a set, hence, time series can be

redefined as follows.

Definition. A time series X(t) of size n is a set of non-empty segments S of X(t) such
that every element x in X(t) is in exactly one of these segments.

In other words, a time series is a set of segments in which the union of the
segments is equal to the time series itself and the intersection of two different segments
is empty. We can define segment as follows.

Definition. A segment S(t) = {s1, s2, . . ., sk} is a consecutive sequence of points ex-
tracted from a time series X(t) with size n, where k ≤ n.

Segmentation can assist the pattern discovery, and consequently, time series clas-
sification, by allowing the division of time series into groups. It helps the assimilation
of the unique properties presented by different groups. In this dissertation, we segment
the raw trajectory data into segments containing the transportation modes information.

3.2.2 Data transformation

Time series are usually high dimensional data. Therefore, work directly with such data,
in their raw version, can be computationally expensive (Esling and Agon, 2012). In
order to avoid this burden, we can apply data transformation.

Definition. Data transformation, or data representation, consists of applying a trans-
formation directly to the time series into the same time domain, such as summarizing
original data points into more comprehensible format, or changing the data from the
time domain to another domain, e.g., frequency, shapelets, symbol-based.

The concept of data transformation presented above is inspired by Wilson (2017)
and Bagnall et al. (2017).
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The main motivation of data transformation is to emphasize the essential charac-
teristics of the data in a concise way (Esling and Agon, 2012). According to Aghabo-
zorgi et al. (2015), an appropriate data representation method can be the key compo-
nent that affects the efficiency and accuracy of the solution. Hence, a proper trans-
formation should not only reduce the dimensionality and remove noise, but it must
preserve the critical local and global features of the original data as well (Wilson,
2017). Also, such transformation should be robust to data problems, such as missing
data, outliers, and irregular time spacing, for instance.

As interest in mining of massive sized data continues to rise, since we are liv-
ing in the “Big Data” era, data representation methods by transforming numeric time
series into a finite number of discrete variables or symbols, has become more popu-
lar. Symbolic transformation meets the needs of data reduction, enabling an efficient
computation and usage of memory space for data storage (Wilson, 2017).

Therefore, data transformation is an essential step in time series data mining and,
hence, it is applied in this dissertation. We transform trajectory data into Ordinal
Patterns distribution, a symbolic transformation, described in Chapter 4.

3.2.3 Classification

To achieve the goals intended in Data Mining, we can use Machine Learning (ML)
techniques, defined as follows.

Definition. Machine Learning is an Artificial Intelligence field that studies algorithms
capable of learning how to accomplish activities in general, making the machine able
to behave in a non-programmed way.

This learning is made through of data observations, explicit instructions, or expe-
riences. In general, the learning can be divided in supervised and unsupervised, being
classification part of the supervised learning (James et al., 2013).

Definition. In the Supervised learning, the goal is to find a model that relates obser-
vations with predefined groups (known a priori), in order to characterize the current
observations and predict the class of future observations.

In this context, we can define classification as

Definition. A classification algorithm is a model or a function M that predicts the
class label ŷ for a given input observation x, that is, ŷ = M(x), where ŷ ∈ {c1, . . ., ck},
with k labels, and each ci is a class label.
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To build such model, it is required a set of time series data with their actual class
labels, which is called training set. In this set, the model will learn the relationship
between data and groups. After learning M , it is possible to automatically predict
the class of any new time series (Zaki et al., 2014). Usually, to evaluate the predictive
power of the model M , we predict a set of time series data and compared it to their
actual labels; this dataset is called test set and it must be data that are not present in
the training set.

Most classic ML algorithms, including these developed for classification, do not
work well on time series data due to their unique structure – often, time series have very
high dimensionality, high feature correlation, and large amount of noise. Therefore,
classification algorithms avoid operating on the original data; instead, they consider
some higher-level representation or abstraction of time series (Ratanamahatana et al.,
2010). In this dissertation, we use a data transformation called Ordinal Patterns before
applying the classification algorithm.

A trend to improve performance in classification tasks are the use of Ensemble
models, which can be defined as follows.

Definition. Ensemble models are the combination of different classifiers together.
Such combination associates its classification decision, exploring their individual ad-
vantages, in an attempt to improve the classification results.

The use of Ensemble models can be seen, for instance, in several winner methods
in classification competitions, such as the Netflix Prize1 (Koren, 2009; Töscher et al.,
2009; Piotte and Chabbert, 2009) and Kaggle2. In addition, Bagnall et al. (2015); Lines
et al. (2018); Shifaz et al. (2019) and many others solutions show the power of such
combination in time series classification, with Dabiri and Heaslip (2018) showing its
importance in transportation mode classification.

The hypothesis behind the application of Ensemble models is that different al-
gorithms are capable of capturing different patterns – even the best algorithm can fail
to detect some classes, while others algorithms may detect such patterns correctly,
although presenting an inferior overall performance. Hence, the prediction power of
distinct classifiers may be complementary, leading to better performance compared to
using a single classifier.

We compare two Ensemble classifiers – Gradient Boosting Decision Tree (GBDT)
and Random Forest (RF). They were chosen based on the success of tree-based models

1https://www.netflixprize.com/
2https://www.kaggle.com/

https://www.netflixprize.com/
https://www.kaggle.com/
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over traditional methods to classify transportation mode, as shown by Xiao et al.
(2017).

RF and GBDT classifiers combine Decision Tree (DT) predictors to produce their
model. Hence, to understand them, it is important to learn about DT first.

DT is one of the simplest classification algorithms in data mining. It is a recursive,
partition-based tree model that predicts the class for each data observation. To this, a
DT uses an axis-parallel hyperplane to split the data space into two resulting regions
and, consequently, the data are also divided into two parts. Recursively, each of these
regions is split via axis-parallel hyperplanes until the points within a partition are
relatively pure in terms of their class labels, i.e., most of the points belong to the same
class. The resulting hierarchy of split decisions is the DT model, with the leaf nodes
labeled with the majority class among points in those regions. A new data example
is classified by recursively evaluating in which region it belongs until we reach a leaf
node, so the class of this new observation is predicted as the class of the leaf (Zaki
et al., 2014).

Figure 3.2 shows the tree representation of a DT model and its correspondent
space split in axis-parallel hyperplanes. This model aims at classifying between different
transportation modes: rail-based, walking, bike, road-based modes. We can see that
first the model uses the speed information to split between “fast” (road-based and
rail-based) and “slow” (bike and walking). After, the “fast” speed region is split into
road-based and rail-based modes based on the distance they travel per points, if it is
less than 30 meters, it is a road-based transportation mode, otherwise, it is a rail-based
mode. Simultaneously, the “slow” speed region is divided into bike, if they travel more
than 2 meters per points, and walking, if not. As it is a toy example, each leaf node is
pure, i.e., contains only true positive examples. In real life, it rarely occurs, since real
data are more complex.

To calculate the purity of a node, many measures can be used, such as entropy
and classification error. In this work, we use the Gini Impurity (GI). This metric
measures how often a randomly chosen element would be incorrectly identified if it was
randomly included in a class, according to the distribution of classes in the partitions.
In other words, GI measures how good a split is, based on how mixed (or separated)
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Speed > 10 m/s

distance < 30 m distance > 2 m

yes no

yes
no noyes

Figure 3.2: A tree representation of a decision tree model and its correspondent space
split in axis-parallel hyperplanes

the classes are in the partitions. It is defined as follows.

GI =
k∑
i=1

p(ci)
∑
j 6=i

p(cj) =
k∑
i=1

p(ci)
k∑
i=1

(1− p(ci)) =
k∑
i=1

p(ci)((1− p(ci))

=
k∑
i=1

(p(ci)− p(ci)2) =
k∑
i=1

p(ci)−
k∑
i=1

p(ci)
2 = 1−

k∑
i=1

p(ci)
2.

(3.1)

where p(ci) is the probability of an observation with class i being chosen,
∑

j 6=i p(cj) =

1 − p(ci) is the probability of a mistake in categorizing such observation, and k the
number of classes.

If the partition is pure, the probability of the majority class is 1 and the prob-
ability of all other classes is 0, and thus, GI is 0. On the other hand, if each class is
equally represented, the GI is equal to (k − 1)/k. With this, we can see that higher
values of Gini Index indicate more disorder and, consequently, lower values indicate
more order in terms of the class labels (Zaki et al., 2014).

The RF is a kind of ensemble method known as Bootstrap Aggregating (Bag-
ging). It creates a combination of weak classifiers (decision trees in this case), that are
trained in various random sub-samples of the original dataset. These sub-samples are
always of the same size of the original dataset, thus, since replacement is allowed, an
observation can be in several sub-samples or even in the same sub-sample oftentimes.
In this situation, every sample has an equal probability of being selected by a weak
classifier, making the bagging model less susceptible to overfitting when applied to
noisy data. Moreover, since DT are sensitive to data (i.e., if training data changes, the
result can be quite different), the bagging scheme in RF model can help to reduce the
variance of DT algorithm, which may improve the predictive results. The predicted
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...

Figure 3.3: A Random Forest classifier

class to each data point is generally made by majority of votes (Tan et al., 2005).
Another important characteristic of RF is that the generalization error depends on the
strength and correlation of the individual trees. It means that the bagging scheme
works better if the predictions are uncorrelated or weakly correlated. Nevertheless,
the generalization error of RF converges to a limit as the number of trees in the forest
becomes large (Breiman, 2001).

Figure 3.3 shows a RF model. From the original data, there are random sampling
with replacement. These sub-samples train a DT model, that give their own prediction
to each point in the dataset, and the RF model is responsible for joining the predictions
to create its model. We note that the training in each DT model occurs in parallel,
where one tree does not depend on any other.

GBDT is similar to RF in the sense of creating a combination of decision trees.
However, unlike RF, where the training occurs in parallel fashion, GBDT trains its
models sequentially, adding one by one. This ensemble scheme is known as Boosting.
In Boosting, the algorithm adaptively changes the distribution of training examples so
that the weak classifiers will focus on examples that are hard to classify. Hence, a tree
is fit on the residual of the whole ensemble so far. In other words, GBDT uses trees
that learn from the mistakes of the previous predictor. Differently from the traditional
Boosting techniques, where the change in distribution is made by assigning weights
to each training example (Tan et al., 2005), GBDT performs the same task by using
gradients in the loss function, as shown by Friedman (2001). Hence, GBDT tries to
reduce bias, whereas RF tries to reduce the variance (Xiao et al., 2017). A disadvantage
presented by this model is that, if data is noisy, it is more likely to overfitting.

In Figure 3.4 we see a GBDT model. The first tree is trained in the original data.
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...

Figure 3.4: A Gradient Boosting Decision Tree classifier

The result of this model generates a modified dataset, in which some examples are
bigger than others – they represent the examples that are not correctly learned by the
first model, so their importance in classification is bigger than others. After, another
tree is trained in the modified dataset. These steps, change importance of each point
and train another model, is made throughout the whole ensemble. Hence, a GBDT
model is fitted on the residual of all the trees presented.

3.2.4 Model Evaluation

The simplest way to evaluate the performance of a model of supervised learning is
with a confusion matrix (also called error matrix), which exposes the predictions made
versus the labels previously known. The structure of a confusion matrix is a squared
matrix of the size of the number of classes, i.e., L×L, where L is the number of labels.

Although the confusion matrix contains enough information to determine how
well classification algorithms behave, may be more useful to reduce this information
to a simple measure when assessing the predictive power of several algorithms. In
this work, we will use the two most common measures of model evaluation used in
transportation mode classification, and in data mining in general, defined as follows.

• Accuracy (acc). It measures how well a classifier correctly identifies or excludes
a condition. In other words, this measure estimates how close the prediction of
a classifier is of the actual labels. Acc is defined as

acc =
correct predictions
total of observations

=
TP + TN

P +N
=

TP + TN

TP + TN + FN + FP
, (3.2)
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where TP (true positive) represents the cases in which the predicted class of an
observation is indeed its class; FP (false positive) refers to the cases where the
predicted classes of a observation is mistaken, the model predicts that it belongs
to a class but it does not (also known as type I error); in the TN (true negative)
cases, the model predicts that a observation does not belong to a class and, in
fact, it does not belong; and, finally, FN (false negative) describes the cases in
which the model predicts that an observation does not belong to a class, but it
actually belongs (also called type II error) (Tan et al., 2005).

• F1-measure. It is the weighted harmonic mean between precision (pre) and
sensitivity (sen), defined as

F1 = 2× pre× sen
pre + sen

= 2× TP

TP + FP + FN
, (3.3)

where precision represents the random variation of a model (so, the smaller, the
better), as

pre =

∑L
i=1

TPi

TPi+FPi

L
, (3.4)

and sensitivity explains how effectively a classifier identifies the positive predic-
tion, as

sen =

∑L
i=1

TPi

TPi+FNi

L
. (3.5)

In multi-class problems, such as the identification of many transportation modes,
the evaluation measures can be calculated separately for each class, as in an one-
versus-all scheme – this is called micro-averaged measures. Also, such measures can be
computed as a unweighted average mean of all classes, called macro-averaged measures.
While macro-averaging treats all classes equally, micro-averaging favors the larger. To
choose which one to use depends on the goal (Sokolova and Lapalme, 2009). In this
work, it is more suitable to consider macro-averaging measures, since our dataset is
imbalanced (as we can see in Section 3.3.3).

Usually, to evaluate the performance of a classifier, the input dataset is randomly
split into training and test set. The training set is used to learn the model M and the
test set to evaluate the measures. However, in this type of evaluation, the results may
be biased. For instance, the test set may have only easy or hard observations, leading
to good or bad performance. To overcome such problem, reducing the variability
and enhancing the confidence about the classification performance, the pre-defined
partitioning is replaced by cross-validation.
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Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Figure 3.5: Illustration of cross-validation evaluation, with K = 5

In cross-validation, the dataset is divided into K equal-sized parts, called folds,
namely {D1, . . ., DK}. Each fold Di is, in turn, treated as the test set, with the
remaining folds

⋃
j 6=iDj being used to train the model. After training the model,

its total performance is the average performance in each test fold (Zaki et al., 2014).
Figure 3.5 shows an illustration of this method. The green folds with dashed line are
the test set in each split and the blue folds with full line are the training set. In the
literature it is common to see K as 5 or 10. We used K = 10 in this work.

3.3 Trajectory Data

The development of information and communication technologies has made easier to
acquire location data. Nowadays we are surrounded by a myriad of devices that are
equipped with several different sensors, including those responsible for collecting lo-
cation, such as Global Position Systems (GPS) and Radio Frequency Identification
(RFID). Even sensors designed for different activities can be used to acquire location
through Internet, as example, Wi-Fi. In this scenario, everywhere we go, we are sur-
rounded by devices capable of locating not only humans, but also vehicles, animals,
and other entities. Hence, with more location acquisition technology, we can obtain
more data containing time-varying geographic information – the trajectory data.

This section is dedicated to discuss definitions about trajectory data that are
important to this work. It is organized as follows. Section 3.3.1 defines trajectory
data. Section 3.3.2 explains about data transformation. Section 3.3.3 examines the
dataset used in this dissertation.
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3.3.1 Definition

This definition below is inspired by Zheng (2015).

Definition. The mobility of an entity in a geographical space is recorded as a spatial
trajectory T = {p1, p2, . . ., pn}, a trace of chronological points of size n, where each
point pi consists of a geospatial coordinate set and a timestamp, such as pi = (xi, yi, ti),
i ∈ N.

Since x and y are varying together in time, we can consider a trajectory as
a multivariate time series T = {X, Y }, where X(t) = {x1, x2, . . ., xn} and Y (t) =

{y1, y2, . . ., yn}.

3.3.2 Data Transformation

Trajectory data refers to our position on the Earth and is usually composed of latitude,
longitude, and altitude. As described in Section 3.2.2, we can transform such infor-
mation to emphasize the characteristics of the entity responsible for the trajectory;
this transformation can be understood as the extraction of entity features, hence, this
step is also called Feature Extraction. As an example, intuitively, humans can distin-
guish between a car and a bike by their speeds, a feature acquired from latitude and
longitude. Knowing this, we transform latitude and longitude to five motion features,
namely speed, acceleration, distance, bearing, and jerk, which will be described in this
section.

• Distance. With this feature, we calculate the geographical distance between
two succeeding GPS points. We use the geodesic distance between two trajectory
points, which can be seen as a generalization of a straight distance to a curved
surface. In other words, the geodesic distance is the shortest path between two
points on the Earth, using the model of an ellipsoid of revolution. There are
several ellipsoid models, being World Geodetic System (WGS) 84 the standard
in cartography and satellite navigation, including GPS. Hence, we use it in this
dissertation, as explained in Karney (2013). Figure 3.6 shows an example of
geodesic distance, in solid blue line, and euclidean distance, in dashed red line,
between two points.

• Speed. This feature calculates how fast an entity moves to one point to another.
It can defined as in Equation 3.6.

Sp1 =
dist(p1, p2)

∆t
, (3.6)
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where dist is the distance between points p1 and p2, as described above; and
∆t = t2 − t1, which is the difference time between the two points (p1 with time
t1 and p2 with time t2). The SI units for its magnitude are meters per second
(m s−1), so we calculate using these metrics.

• Acceleration. This feature determines the rate of changing of speed of an entity
regarding to time. It is defined as in Equation 3.7.

Ap1 =
Sp2 − Sp1

∆t
. (3.7)

The SI units for its magnitude are m s−2.

• Jerk. It calculates the rate of changing of acceleration of an entity over time.
The Equation 3.8 defines it.

Jp1 =
Ap2 − Ap1

∆t
. (3.8)

The SI units for its magnitude are m s−3.

• Bearing. This feature represents the direction of one point relative to another
point. It is calculated in a clockwise direction, starting from the north line (Hills,
2000). Figure 3.7 (inspired by Hills (2000)) shows two examples of how to calcu-
late bearing. In the first subfigure, the bearing of point p1 from o is 65°. Although
the point p2 is 60° from North, as bearing is calculated in clockwise direction, its
bearing from o is 300°. The second subfigure shows the relationship between two
points for bearing calculation. The bearing of point p1 from p2 is 65°, whereas
the bearing of point p2 from p1 is 245°. Equation 3.9 defines how to calculate
bearing.

Bp1 = arctan
sin(long2 − long1) cos(lat2)

cos(lat1) sin(lat2)− sin(lat2) cos(lat2) cos(long2 − long1)
, (3.9)

where lat1 and lat2 refer to the latitude values of point 1 and 2, respectively;
analogously, long1 and long2 refer to the longitude values of point 1 and 2, re-
spectively. The bearing here is calculated in degrees, as it is its SI units.
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Figure 3.6: Geodesic (solid blue line) and euclidean distance (dashed red line)
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Figure 3.7: Bearing calculation examples

3.3.3 Dataset

In this work, we use the GeoLife3 data, collected by Zheng (2015). This dataset
presents GPS trajectories of 182 users over five years (from April 2007 to August
2012), containing latitude, longitude, and altitude information. Moreover, this dataset
comprises 17, 621 trajectories, with a total distance of 1, 292, 951 kilometers and a total
duration of 50, 176 hours. These trajectories are recorded by different sources (GPS
loggers and GPS phones), having a variety of samples rates – more than 90% of them
contains a dense representation, i.e., every 1 to 5 seconds or every 5 to 10 meters per
point.

Among these users, 73 have the transportation mode information provided, such
as driving, taking a bus, riding a bike, and walking. Table 3.1 lists the total distance and
duration of the transportation modes. Other includes railway and boat, for instance.

3.4 Final Remarks

This section presented some concepts that are important to the development of this dis-
sertation. The definitions given here comprised time series, data mining, and trajectory

3https://www.microsoft.com/en-us/download/details.aspx?id=52367

https://www.microsoft.com/en-us/download/details.aspx?id=52367
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Table 3.1: Total distance and duration of transportation modes in GeoLife dataset

Transportation
mode Distance (km) Duration (hour)

walk 10,123 5,460
bike 6,495 2,410
bus 20,281 1,507
car & taxi 32,866 2,384
airplane 24,789 40
other 9,493 404

total 14,304 12,953

fields. In time series, we defined univariate and multivariate data.
The data mining section described the steps used in this work, such as segmen-

tation, classification, and model evaluation. More specifically, the classification part
explained the Ensemble models, Random Forest and Gradient Boosting Decision Tree,
that are used to classify transportation mode here.

After, we defined trajectory data and explained the features extracted in data
transformation, such as distance, speed, acceleration, jerk, and bearing. Finally, we
described the dataset used in this work.





Chapter 4

Ordinal Patterns Transformation

The unique properties presented by time series data, such as high dimensionality, pres-
ence of noise, and spatio-temporal dependence, impose many challenges to mining such
data. In this context, a data transformation can mitigate these problems and improve
classification.

In this chapter, we discuss the Ordinal Pattern (OP) transformation in Sec-
tion 4.1. In Section 4.2, we propose a novel OP transformation that incorporates the
amplitude information – which is not presented in the traditional OP method. We
conclude this chapter in Section 4.3, presenting our final remarks.

4.1 Ordinal Patterns

Ordinal Patterns (OP) is a method of transforming time series data that does not
require any model assumption about the time series. Therefore, it can be applied to
any time series. This approach is based on the sequence that naturally arises from
the time series, comparing the values that are in the same neighborhood and replacing
them with a sequence of symbols (Bandt and Pompe, 2002).

Consider a time series X(t) = {x1, x2, . . ., xn} of size n, an embedding dimension
D ∈ N, and an embedding delay τ ∈ N as well. We generate a sliding window wt ⊆ x

in each time instant t = {1, . . ., n− (D − 1)τ}, such as

wt = {xt, xt+τ , . . ., xt+(D−2)τ , xt+(D−1)τ}, (4.1)

i.e., each element within the sliding window is obtained from the time series in the
time t, . . ., t + (D − 1)τ . This corresponds to a time series sample at evenly spaced
intervals.

35
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The ordinal relation for each instant t consists of the permutation
π = {r0, r1, . . ., rD−1} of {0, 1, . . ., D − 1}, so that,

xt−rD−1
≤ xt−rD−2

≤ · · · ≤ xt−r1 ≤ xt−r0 . (4.2)

In other words, π represents the permutation of elements in the sliding window
wt, in ascending order. In order to obtain unique results, we define that, if a time series
has elements such that xt−ri = xt−ri−1

, we consider that ri < ri−1. Hence, the time
series is converted to a set of ordinal patterns

ΠOP = {π1, π2. . ., πm}, (4.3)

where m = n − (D − 1)τ and each πm represents a permutation of the possible
permutation set of D ! (Aquino et al., 2017).

The choice of D depends on the time series size and must satisfy the condition
n� D!; the higher D is, the greater the time series length is necessary to have reliably
extracted data (Rosso et al., 2007). Staniek and Lehnertz (2007) provide more details
on this subject. For practical purposes, Bandt and Pompe (2002) recommend values
such that 3 ≤ D ≤ 7, which are adopted in this work.

4.1.1 Ordinal Patterns Probability Distribution

Once the ordinal patterns are constructed from the time series, we can transform it to
another representation, the probability distribution. For all D! possible permutation π
of D, the relative frequency can be computed by the times a certain sequence appeared
in the time series, divided by the number of total sequences. Thus, we obtain the
histogram of the probability distribution P ≡ {p(π)}, which is defined by:

p(π) =
| sπ |

n− (D − 1)τ
, (4.4)

where | sπ |∈ {0, . . .,m} is the number of pattern observed of type π.
Figure 4.1 illustrates the process described above of extracting OP probability

distribution from time series. (i) first, we have the original time series; (ii) we calculate
sliding windows with D and τ values. We can see in the highlighted sliding window
how D and τ behave: simplistically, D is relative to how many data points we consider
to calculate the ordinal pattern, when D = 3, we use three points, D = 4, we use four
points, and so on; τ refers to the spacing between two consecutive points in the sliding
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Figure 4.1: The process of extracting Ordinal Patterns from time series

window, when τ = 1, we use immediate neighboring points, if τ = 2, we use points
that are two points apart, and so forth. (iii) After computing the ordinal patterns to
all the time series, we extract the histogram of relative frequency. (iv) We can use the
probability distribution or the frequency distribution of this histogram, as we can see
in the last step of the process.

The OP probability distribution, and the OP transformation itself, contains sev-
eral advantages, such as:

• Simplicity and fast calculation. The transformation of the time series into the
set of ordinal patterns depends on the length n and the embedding dimension D.
The time complexity to perform such transformation is bounded by O(nD logD),
assuming that the permutations are obtained by sorting the data points of each
sliding window by a common sort algorithm, such as merge sort (of complexity
O(D logD) in the worst case). Using worse sort algorithms, such as selection
sort, of complexity O(D2) in the worst case, the time complexity increases to
O(nD2). However, as D is recommended to be at most 7, the sorting will take no
more than 7 elements. To that end, the complexity of this approach is broadly
reliant on the size n of the time series (Borges et al., 2019).

• Scalability. As said above, this is a simple and fast transformation, with a linear
computational cost. It allows its application in huge time series. Besides that,
the histogram of probability distribution is independent of the size of the time
series – it always needs a space of D !.

• Robustness. This transformation is robust to the presence of observational
and dynamic noise and it is also invariant to non-linear monotonic transforma-
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tions (Aquino et al., 2017; Rosso et al., 2007).

Lastly, lets see an example about the OP transformation to better understanding.
Suppose we have X(t) = {1, 10, 3, 5, 8, 1, 2, 3}. For D = 3 and τ = 1, our sliding
windows are

w = {{1, 10, 3}, {10, 3, 5}, {3, 5, 8}, {5, 8, 1}, {8, 1, 2}, {1, 2, 3}},

which give the ordinal patterns ΠOP = {312, 132, 321, 213, 132, 123}. The his-
togram is {1, 2, 1, 0, 1, 1} and the probability distribution is approximately p(π) =

{0.17, 0.33, 0.17, 0, 0.17, 0.17}.

4.2 Ordinal Patterns with Amplitude Information

Although presenting many advantages, as aforementioned presented, OP has some
drawbacks, such as of not considering amplitude information. Ignoring the amplitude
may lead to lower classification performance, since many time series can have impor-
tant information in this feature. Knowing this, studies have tried to overcome it. For
instance, Fadlallah et al. (2013) proposed a modification to calculate the Permuta-
tion Entropy (PE) (Bandt and Pompe, 2002), called Weighted-permutation entropy
(WPE). They weighted the relative frequency of each extracted ordinal pattern with
the variance of the corresponding part of the time series. However, if all the values in
time series are identical, the variance forces WPE to zero.

Azami and Escudero (2016) proposed a modification to PE as well, named
Amplitude-Aware Permutation Entropy (AAPE). They added a relative normalized
value to the corresponding ordinal patterns probability distribution. This approach
modifies directly the PE calculation, needing the extraction of this feature.

Sun et al. (2014) proposed the use of a pair of symbol: the first is the OP
transformation. The second is obtained by splitting the range of the time series into
equal regions. The amplitude level of the ordinal pattern is then described by the index
of the bin within such pattern falls. In other words, they extract the bin value with
the largest amplitude. However, they do not consider the case in which the ordinal
patterns are not all in the same bin. For instance, in the case of outliers, they are not
clear about which amplitude level is considered.

The proposal we introduce in this dissertation does not need the calculation of
PE, using directly the histogram of probability distribution, but adding an amplitude
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information. We call this approach of Ordinal Pattern with Amplitude Information
(OPAI).

Similarly to Sun et al. (2014), we divide the range of the time series into equal
q regions, of height h, transforming the continuous time series to discrete values. We
calculate h as

h =
max(X)−min(X)

q
. (4.5)

That is, we split the space between the maximum and minimum value found in the
time series into q bins of the discrete space Q, which is composed of equal intervals
with height h. We then map each time series value to its correspondent interval, i. e.,
xi → Q. We define Q as

Q = {[min(X),min(X) + h], . . ., (min(X) + (q − 1)h,max(X)]}, (4.6)

where we can see that max(X) = min(X) + qh.

Furthermore, we note that if q = 1, OPAI is equal to OP transformation, since the
only existing interval would contain any value between the maximum and the minimum
value of the time series, which is the time series itself.

To calculate the amplitude information presented in each sliding window wt (de-
fined in Equation 4.1), we do the correspondence between the values in wt to the
discretized space Q, as

at = max(Qwt)−min(Qwt). (4.7)

In other words, our amplitude information a is calculated by subtracting the
maximum and the minimum value in the sliding window when transformed to the
discretized space. It is different from h, that considers the values in all time series,
while at uses the values in the sliding window of time t.

Hence, the time series is converted to a set of ordinal pattern containing the
amplitude information, ΠOPAI = {(πq, a1), . . ., (πm, am)}, where m = n− (D− 1)τ and
each (πm, am) represents the combination of the possible permutation set of D ! and
the amplitude information.

The histogram of the probability distribution is calculated as in Equation 4.4,
but, as stated above, the patterns observed in this approach is the cartesian product
between the ordinal patterns π and the amplitude information a. Hence, the time
complexity of histogram calculation is higher, O(qD !).

In fact, properly speaking, we do not extract all the amplitude information of
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each ordinal pattern, but its amplitude variation. It is possible to extract the complete
amplitude information, but keeping it is computationally expensive, since the histogram
is the product between amplitude information and the ordinal pattern, it would be
qDD !. For instance, if D = 5 and q = 8, the histogram would have more than 10
billions bins.

Due to this, our hypothesis is that the amplitude variation contained in each
sliding window is enough to capture the amplitude information of the time series.
This proposal inherits all the advantages presented by OP transformation, described
in Section 4.1.

Figure 4.2 shows the process of extracting the OPAI transformation from time
series. The process is very similar to OP transformation. Excluding the second step,
where we calculate the ordinal patterns with the D and τ values, we also calculate the
amplitude value q. Furthermore, the resulting histogram will be larger.

We will use the same example of the section before to illustrate the concepts
presented here for clarification. Let the time series X(t) = {1, 10, 3, 5, 8, 1, 2, 3}. For
D = 3, τ = 1, and q = 4, we have h = (10 − 1)/4 = 2.25. It gives the space Q =

{[1.0, 3.25], (3.25, 5.5], (5.5, 7.75], (7.75, 10.0]}, which will call from 0 to 3, respectively.
Our sliding windows are

wt = {{1, 10, 3}, {10, 3, 5}, {3, 5, 8}, {5, 8, 1}, {8, 1, 2}, {1, 2, 3}},

that give the ordinal patterns ΠOP = {312, 132, 321, 213, 132, 123}. To calculate the
amplitude information, we subtract the maximum and minimum value of each sliding
window. For instance, for a1 = max(Qw1)−min(Qw1) = 3− 0 = 3. So we have

a = {3, 3, 3, 3, 3, 0}.

Finally, we obtain the OPAI transformation patterns ΠOPAI =

{(312, 3), (132, 3), (321, 3), (213, 3), (132, 3), (123, 0)}.

4.3 Final Remarks

This chapter explained the Ordinal Patterns transformation. This data representation
is very useful in different time series domains, as shown in Section 2.1.3. However,
it has the disadvantage of not storing amplitude information. Some approaches in
literature tried to overcome it, but they require the PE extraction or considerate just
the highest amplitude point.
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Figure 4.2: The process of extracting Ordinal Patterns with Amplitude Information
from time series

In this dissertation, we propose a modification to the OP transformation in order
to keep the amplitude information. Indeed, we only extract the amplitude variation,
since to keep all the amplitude information is computationally expensive. We hypoth-
esize that it is enough to capture the amplitude information, enhancing time series
classification. Although our proposal has a slight higher computational cost to calcu-
late the histogram of probability distribution, it inherits some characteristics of OP
transformation, such as simplitcity, fast calculation, scalabitility, and robustness.





Chapter 5

Transportation Mode Classification

The urban areas need to develop sustainable solutions due to the high demand for their
services, which is surpassing the supply. Such solutions can, for instance, reduce traffic
jam and travel time, leading to an improvement in life quality. Hence, identify how
citizens commute, that is, identify which transportation modes are used in a city is an
important step for this task. This identification should rely on technologies that do
not depend on the active participation of the user.

In other words, we need a framework capable of automatically extracting trans-
portation mode information from user’s location. This is our main objective, as de-
scribed in Section 1.2. To achieve such goal, we unravel it in three specific objectives,
that will be answer in this chapter. Section 5.1 investigates the properties of trans-
portation modes, based on features extracted from GPS data; Section 5.2 proposes a
methodology to mine transportation mode information from trajectory data; and Sec-
tion 5.3 explores the characterization of transportation modes based on Ordinal Pat-
terns with Amplitude Information (OPAI). Finally, Section 5.4 concludes this chapter
with our final remarks.

5.1 Properties of Transportation Modes

This section is dedicated to answer our first specific objective:

What are the properties of transportation modes?

This characterization is an important step in order to understand the peculiarities
of each transportation mode and, hence, being able to distinguish between them. In
fact, if we can distinguish the transportation mode used, we can develop solutions to
such identification, leading us to the fully achievement of our main goal.

43
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The first step to answer this question is to preprocess the trajectory data, trans-
forming them to more comprehensible and concise features; data transformation is
better discussed in Section 3.3.2. We transform the trajectories to five motion fea-
tures, namely jerk, acceleration, speed, bearing, and distance. In Figure 5.1, we see
examples of time series for the distance feature made by different transportation modes,
namely, bus (the purple time series in Figure 5.1a), car (the golden in Figure 5.1b) and
walking (Figure 5.1c, the green time series). The y axis is limited from 0 to 200 meters
in all figures. We see that car and bus have more similarity in their features, with spikes
along its entire length. Intuitively, car and bus, by being road-based transportation
modes, can cover similar distance between points. Whereas the distance feature for
walking is softer, without many spikes and the distance covered is smaller, with at most
10 meters. Therefore, although walking stands out from bus and car when described
by the distance feature, car and bus are more difficult to discriminate. Our hypothesis
is that combining the features with OPAI transformation, our proposal, we can distin-
guish between transportation modes, allowing good identification and, consequently,
good classification results. In other words, we can say that such features can contrast
some transportation modes and this difference can be more evident when using OPAI
rather than OP transformation. To support our hypothesis, we analyze some examples
of features for different transportation modes.

In Figure 5.2 we have the OP transformation (when q = 1, OPAI is the OP
transformation), with D = 3 and τ = 1, of distance values for bus (the purple bars in
Figure 5.2a), car (Figure 5.2b, the gold bars), and walk (green bars in Figure 5.2c). The
y axis is limited from 0 to 0.3 and represents the probability distribution from the π pat-
terns. The π patterns are sorted, i.e., for D = 3, they are {123, 132, 213, 231, 312, 321};
they are hidden in the figures for easy reading. The OP transformation for bus and
car have similar distribution, in which 123 and 321 have higher values than the other
patterns, and these patterns also have similar values among them. Using OP, we know
the trends in the trajectory, but we do not know the variation between them. For
instance, for D = 3 and τ = 1, X1 = {0, 2, 3, 30} and X2 = {0, 5, 15, 30} result in the
same transformation ΠOP = {321, 321}. Hence, the distance between each point is not
captured. We can interpret it as following: for OP, there is no difference if a car travels
2 meters and after 1 meter or 1 meters and after 27 meters, the pattern will be the
same.

Figure 5.3 shows the OPAI transformation, with D = 3, τ = 1, and q = 16 for
the same trajectory represented in Figure 5.2. The colors are the same of the afore-
mentioned figure. The distribution for OPAI transformation are more distinguished
between car and bus than using OP. Although, as before, the patterns 123 and 321
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Figure 5.1: Example of time series for distance feature made by different transportation
modes: bus, car, and walking, respectively.
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Figure 5.2: Example of OP transformation (with D = 3, τ = 1, and q = 1) of distance
for bus, car, and walk, respectively
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have higher values than others, there is more than one representation for each pattern.
In bus, we have more patterns with amplitude variation 1 and 2; whereas in car, am-
plitude variation of 2 and 3 appear as well. That is, in this trajectory, though most of
the trends are up or down, there is variation in amplitude between the points. With
OPAI transformation, it is easier to see the contrast between the road-based modes
(car and bus) and walking, in which there is not a pattern with higher values than 0.01;
in fact, most of the data is below 0.05. Using the same example as before to represent
how OPAI can capture variations that OP cannot, for D = 3, τ = 1, and q = 16,
X1 = {0, 2, 3, 30} (in the discrete space Q1 = {0, 1, 1, 15}) and X2 = {0, 5, 15, 30}
(Q2 = {0, 2, 7, 15}) result in the transformations ΠOPAI = {(321, 1), (321, 14)} and
ΠOPAI = {(321, 7), (321, 13)}, respectively.

5.2 Extraction of Transportation Mode Information

from GPS Data

In this section, we want to answer our second specific objective:

How can we extract transportation mode information from GPS data?

To answer this question and achieve our goal, we developed a framework com-
posed of four steps, called Segmentation, Feature Extraction, Data Transformation,
and Classification, as shown in Figure 5.4. In the first step, our framework receives a
raw trajectory data (latitude, longitude, and altitude information) and segment them.
From each segment, the framework extracts features related to transportation mode
properties. After, these features are transformed and this transformation feds the clas-
sification algorithm. With these steps, which will be explained throughout this section,
our framework is able to classify the transportation modes used. Moreover, we present
a complexity analysis of our framework as well.

Segmentation

As said in Section 3.3.3, we use the portion of GeoLife dataset which contains the
transportation mode information, that includes 73 users. We segment the raw trajec-
tory provided by separating it by user, day, and transportation mode. This type of
segmentation supposes that the transportation mode used in each raw trajectory is
known. It is a strong assumption, however, since we are focusing in classification, we
use such segmentation technique. Several works in literature do the same first step,
such as Etemad et al. (2018) and Dabiri and Heaslip (2018), to cite a few.
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Figure 5.3: Example of OPAI transformation (with D = 3, τ = 1, and q = 16) of
distance for bus, car, and walk, respectively
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Figure 5.4: Transportation Mode Classification Framework
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Figure 5.5: Total of segmented trajectories

Furthermore, we discard trajectory samples with less than 10 points, since small
samples may input noise into the model due to a low quality data.

Figure 5.5 shows the segments obtained by splitting the raw trajectories (the red
bars) and after discarding the short ones (the blue bars). Before discarding the short
trajectories, in total, we have 9880 trajectories. The data are unbalanced, with most
of it being walking trajectories (about 42%), followed by bus (19%), bike (18%), car
(8%), subway (6%), taxi (5%), and train (2%) trajectories. After discarding, we have
9460 trajectories, with the following proportion: about 41% for walking trajectories,
20% for bus, 17% for bike, 9% for car, 6% for subway, 5% for taxi, and 2% for train.

Feature Extraction

This step comprehends the transformation of segmented trajectories to motion features.
We call it feature extraction to differentiate from trajectory transformation into OPAI
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representation.
Trajectory data is usually provided in latitude, longitude, and altitude. These

features, however, are difficult to interpret. Hence, their transformation in another
feature improve the transportation mode identification. We transform the trajecto-
ries (latitude and longitude information) into five motion features, namely geodesic
distance, speed, acceleration, jerk, and bearing. Such features are handcrafted and
require a previous knowledge about the problem domain, hence, this is the most time-
consuming step.

Data Transformation

This step is responsible for transform the motion features to OPAI transformation. In
other words, each motion feature of the trajectories is converted into its correspondent
OPAI representation. Hence, for each trajectory, we have five representations, one for
each feature.

This step requires the adjustment of the parameters: embedded dimension D,
embedded delay τ , and amplitude regions q.

Classification

This step receives the motion features and classifies them using a tree-based Ensemble
method.

To evaluate our classification, we use a cross-fold validation, with K = 10. Since
our data are imbalanced, we stratify each class in order to force each fold to have the
same class distribution, i.e., we preserve the percentage of sample for each class in each
fold. It ensures that neither of the classes are over-represented, leading to increased
unrealistically results.

The input of the classifier algorithm is a matrix of the motion features in OPAI
representation, where each feature is a row of the matrix. Joining these features make
the algorithm receive different information from the transportation modes motion that
a trajectory is related to. With this, the classifier can learn more, hence, generalizing
more such learning and improving its results.

Algorithm Complexity Analysis

We have the start and end point of each transportation mode used by each user sepa-
rated from the raw trajectory data. Thus, the Segmentation step finds the trajectory
related to the transportation mode label and split it. The cost for this operation is
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O(| ` | rn), where | ` | is the size of transportation mode label data, r represents how
many raw trajectories a user has, and n the size of user’s trajectory.

The cost to extract each motion feature is O(n). Since each feature is extracted
separately, the cost for the Feature Extraction step is O(n).

Algorithm 1 shows the pseudo-code to the OPAI transformation. In line 3 we
calculate the q regions of height h and define the discrete space Q. It must find the
maximum and minimum of the time series, calculate the Q regions and, after that,
locate each trajectory value into Q – the cost for such operation is O(n). The lines
from 4 to 10 go through all the trajectories, doing the following operations: in line 5,
we select the indices of points that will be transformed to OPAI – that is, we select
every D points, spaced by τ value. This costs O(1). Line 6 indeed obtains such points
values from the trajectory data, based on the indices values, with the cost O(1) as
well. The ARGSORT function returns the indices that would sort an array, hence,
in line 7 we obtain the ordinal pattern π. It uses a simple algorithm to sort, such as
Merge sort, having a cost of O(D logD). In line 8, we identify the points (the same
transformed to OP) in the Q space, again with cost O(1). Finally, in line 9, we get the
amplitude variation of the pattern, with cost O(1). The costs for get the maximum
and minimum value in the amplitude information is O(D) for each operation. Hence,
the complexity cost for the OPAI transformation is O(nD logD).

Algorithm 1 Ordinal Pattern with Amplitude Information Transformation
1: procedure opai_transformation(trajectory,D, τ, q)
2: symbols = list()
3: Q = cut(trajectory, q)
4: for p in range(1, size(trajectory)− (D − 1)τ) do
5: indices = range(p, p+ (D − 1)τ, τ)
6: values = loc(indices, trajectory)
7: π = argsort(values)
8: amplitude_information = loc(indices,Q)
9: a = max(amplitude_information)−min(amplitude_information)
10: symbols.append((π, a))
11: end for
12: return symbols
13: end procedure

To obtain the histograms, we first obtain the list of patterns, that costs O(qD !).
After, we count each pattern obtained in the trajectory. It costs O(n). Then, the cost
to this step is O(qD !). Therefore, the Data Transformation step, that includes the
OPAI transformation and histogram construction, costs O((qD !) + (nD2)) = O(qD !).
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The complexity of the Classification step is related to the classification algorithm
used. For instance, a Random Forest classifier has cost O(N2 × f × t), where N is the
total of trajectories, f is the total of features, and t the total of trees.

5.3 Characterization of Transportation Mode using

Ordinal Patterns with Amplitude Information

In this section, we investigate the following question:

Is Ordinal Patterns distribution capable of providing good characterization
of transportation mode?

We believe that the Ordinal Patterns (OP) distribution, based on its character-
istics (discussed in Chapter 4), is a transformation capable of highlighting the under-
lying patterns presented in trajectory data, leading to good classification results. The
absence of amplitude information may impact negatively in such classification results,
however. Knowing this, we believe that adding this information will enhance the trans-
portation modes identification, hence, increasing the classification. Thereupon, in this
work, we proposed a modification to OP that considers the amplitude information,
called Ordinal Patterns with Amplitude Information (OPAI). The focus of this sec-
tion is to analyze the behavior of our proposal, OPAI, when classifying transportation
modes, and compare it to OP transformation. This comparison takes place through in-
vestigating how the parameters influence the classification values. We start with the q
parameter in Section 5.3.1, followed by the parameters of the classifiers in Section 5.3.2,
and D and τ parameters in Sections 5.3.3 and 5.3.4, respectively. After fine tuning
the parameters, Section 5.3.5 is dedicated to analyze the confusion matrices of the
classification that uses best parameters, in order to better understand it. Finally, in
Section 5.3.6, we compare our proposal to the works presented in literature, previously
discussed in Chapter 2.

All the implementation procedure in this dissertation was made in Python (ver-
sion 3.7.3), using the Anaconda distribution (version 4.7.11)1. Specifically, we used the
libraries geopy2, to calculate the geodesic distance; xgboost3 to perform the GBDT
classifier; and scikit-learn4 to the others classification steps (e.g., Random Forest clas-
sifier, average voting Ensemble scheme, K-fold).

1https://www.anaconda.com
2https://geopy.readthedocs.io/en/stable/
3https://xgboost.readthedocs.io/en/latest/
4https://scikit-learn.org/stable/

https://www.anaconda.com
https://geopy.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
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The machine in which they were executed had the following configuration:
Ubuntu 18.04.3 OS, 20 × Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz, and 125
GB RAM.

We performed the experiments in five sets of different transportation modes.
These sets were evaluated in previous works as well, described in Section 2.2, helping
the comparison of our results. The sets are:

• {bus, car, subway, taxi, train, walk, bike} (used first by Endo et al. (2016));

• {walking, bike, bus, driving (car and taxi)} (Zheng et al. (2008a));

• {walk, bike, bus, driving, subway and train} (Dabiri and Heaslip (2018));

• {bike, car, walk, bus} (Jiang et al. (2017)); and

• {walk, bus, car, bike, taxi, train, subway} (Xiao et al. (2017)).

To facilitate the addressing about the sets, we refer to them in this work by the
first author’s name that used such partitions originally.

5.3.1 Impact of q in OPAI transformation

First, we analyze the impact of q in OPAI transformation. This impact is measured
by accuracy results, since our focus in this work is transportation mode classification.
The q parameter, exclusive to OPAI, represents the space binning, i.e., in how many
q regions the space of the continuous time series is divided, in order to generate a
discrete space. It is important to capture the amplitude variation – the variation in q
determines the granularity of the discrete space. It means that bigger values give a finer
granularity, whereas smaller values provide a coarse granularity. In other words, bigger
values creates more regions with smaller heights, hence, the transformation from time
series to discrete space will be more detailed. However, not necessarily bigger values
deliver best accuracy results, since the discrete space with more regions may be less
robust to noise.

We vary this parameter as q = {1, 4, 8, 16, 32, 64} and fix the others, which are the
OPAI parameters D = 3, τ = 1, and 50 trees to build the model classifiers: Random
Forest (RF) and Gradient Boosting Decision Tree (GBDT) is used to investigate the
performance in this experiment. They are both tree-based ensemble methods, but
they are build in different ways, thus, it is expected different classification values.
Nevertheless, have in mind that when q = 1, OPAI is the same as OP transformation.
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(b) Accuracy results using RF classifier

Figure 5.6: Accuracy results for variation in q parameter to OPAI transformation using
different classifiers

Figure 5.6 shows the values of accuracy obtained by changing q to RF and GBDT
models, in Figure 5.6b and 5.6a, respectively. We have five groups, where red boxes
represent the Endo et al. (2016) set, the blue boxes display the Zheng et al. (2008a) set,
purple boxes are the Dabiri and Heaslip (2018) set, the grey boxes portray the Xiao
et al. (2017) set, and the yellow boxes express the Jiang et al. (2017) set. The y axis
is zoomed from 58% to 90% to help showing the difference between the results.

Figure 5.6a shows the accuracy results when using the GBDT classifier. We see
that the changing in the q parameter has influence in the performance. For instance,
between q = 1 and q = 4, there is an average increase of about 5% in accuracy of
all sets. This difference grows to about 10%, in average, between q = 1 and q = 64.
However, there is little gain in accuracy values when q is from 16 to 64, with about
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1% of difference in average. Hence, q = 16 is the best choice to this parameter in this
scenario, since it will have a smaller histogram to store, with qD ! = 16 · 3 ! = 96 bins,
against 192 and 384 when q = 32 and q = 64, respectively, making the classification
faster.

Figure 5.6b shows the accuracy results of the RF model. Similar to the afore-
mentioned case, with the GBDT classifier, when the q value is increased, the accuracy
results improve. Between q = 1 and q = 4, for example, there are an average differ-
ence of about 5% in all sets. This discrepancy is greater when q = 1 and q = 64, for
example, with about 8% in all sets, in average. Likewise, q = 16 is a better choice to
this parameter with this classifier, in order to provide a smaller histogram without an
intense decrease in accuracy.

The difference in accuracy results between OP (when q = 1) and OPAI transfor-
mation is easily seen in this experiment, with OPAI values surpassing OP in both cases.
Moreover, between both classifiers, using the same q value, the results varies up to 5%,
as we can see when q = 1. As the q value grows, the discrepancy in accuracy results
decreases; for instance, when q = 64, the difference is of about 2%. Furthermore, in
general, the RF model presents better accuracy results than GBDT model, although
the latter has a smaller variance.

5.3.2 Impact of the parameters of the classifiers

In the next experiment, we compare the influence of the parameters of the classifiers.
To this, although each classifier has several parameters, we vary only the number of
decision trees presented in each model, since it is a common parameter. We fix the
other parameters to D = 3, τ = 1, and q = 16 and vary the number of trees as
trees = {50, 100, 500, 1000}. We classify OP transformation as well, to compare it to
our proposal.

Figure 5.7 shows the accuracy results when varying the number of decision trees
to GBDT and RF classifiers in OP and OPAI transformation. The scheme color is
equal to the previous experiment.

In Figures 5.7a and 5.7b we see OP and OPAI transformation, respectively, classi-
fied with RF classifier. In OP transformation, the best number of trees is 500, however,
little variance is presented in all the parameter value, being virtually the same accuracy.
This steadiness also occurs in OPAI transformation. Comparing both transformation,
we see that OPAI presents better accuracy results independent on the number of trees,
with an improvement of about 8% in all sets, in average.

Figures 5.7c and 5.7d show OP and OPAI transformation classified with GBDT
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(a) Accuracy results using RF classifier and OP transformation
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(b) Accuracy results using RF classifier and OPAI transformation
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(c) Accuracy results using GBDT classifier and OP transformation

Figure 5.7: Accuracy results for variation in tree parameters to different classifiers
using OP and OPAI transformation
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(d) Accuracy results using GBDT classifier and OPAI transformation

Figure 5.7: Accuracy results for variation in tree parameters to different classifiers
using OP and OPAI transformation

classifier, respectively. Differently from the RF classifier, as the number of trees grows,
GBDT model provides better accuracy results to both transformation – OP increases
about 5% in average in all sets and OPAI about 6% in average. Comparing the two
transformations, OPAI transformation provides an increase of about 10% in accuracy,
in average. Hence, independently of the classifiers, we can see that OPAI gives better
accuracy results than OP.

Additionally, we can say that, when using OP transformation, RF is a better
choice to the context of this dissertation. It presents an average gain of about 5% in
accuracy. The RF classifier presents the advantage of being robust to the number of
trees – the changing in accuracy results is minimal. When using the OPAI transfor-
mation, however, the GBDT model provides better results, with a gain of about 2%,
in average, over the RF model.

5.3.3 Impact of D

In this section we evaluate the impact of D in the OPAI and OP transformation.
Table 5.1 shows how many bins the histogram has when varying D. When q = 1, we
have the OP transformation, and, although several values are possible to q in OPAI
transformation, we evaluate only to q = 16, since this value were used in the previous
experiment, where were demonstrated that it provided good accuracy results. The
number of bins is calculated as qD!. Even though the acceptable range, determined
by Bandt and Pompe (2002), is small, from 3 to 7, a factorial growth can easily turn the
problem intractable. The table shows such growth; forD = 7 in OP transformation and
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Table 5.1: Histogram size to OP and OPAI transformation

q D bins

1 3 6
1 4 24
1 5 120
1 6 720
1 7 5040

16 3 96
16 4 384
16 5 1920
16 6 11520
16 7 80640

from D = 5 in OPAI transformation, we have more than 1000 bins in each histogram,
with D = 6 and D = 7 in OPAI having more than 10000. This can be a problem
not only because of the storage, but capturing this amount of patterns in a time series
can lead to overfitting: too many details that do not generalize well, damaging the
classifier performance. Moreover, this big amount of bins will make the classifier very
slow. Knowing this, we evaluate the accuracy results for D = {3, 4, 5}. We fix τ = 1

and classify with GBDT using 1000 trees.

Figure 5.8 shows how the variation in D value affects the accuracy results for OP
and OPAI classification. Comparing each D between both transformation, we see that
the difference in accuracy results decreases as D increases: when D = 3, there is about
10% of difference in average in all sets; it reduces to about 7% when D = 4 and to
about 5% when D = 5. In all cases, OPAI transformation gives better accuracy results
than OP transformation.

The OP transformation, in Figure 5.8a, presents an increasing in accuracy when
varying D; between D = 3 and D = 4, there is an improvement of about 3% (in
average), and between D = 4 and D = 5, the difference is of about 2% in average.
Hence, the best D value to this transformation is D = 5.

Figure 5.8b displays the accuracy results for OPAI transformation in variation of
D. The parameter values D = 3 and D = 4 present similar results, whereas in D = 5

is possible to note a slight decrease in accuracy results. Thus, it is better to adopt
D = 3 as the best choice to this transformation, since it produces a smaller histogram,
leading to a faster classification.
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(a) Accuracy results for D values in OP transformation
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(b) Accuracy results for D values in OPAI transformation

Figure 5.8: Accuracy results for variation in D parameter to OP and OPAI transfor-
mation

5.3.4 Impact of τ

In the experiment described in this section, we evaluate the impact of τ in transporta-
tion mode classification using OP and OPAI transformation. The τ defines the delay
between the data points used to the transformation. The maximum τ value depends
on the time series size n and the dimension D, being limited by:

τ <
n

D − 1
(5.1)

The greater the τ value, the greater must be the time series samples. For example,
for D = 3 and τ = 1, the time series has to be, at least, greater than 2 points; for
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(a) Accuracy results for τ values in OP transformation
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(b) Accuracy results for τ values in OPAI transformation

Figure 5.9: Accuracy results for variation in τ parameter to OP and OPAI transfor-
mation

D = 3 and τ = 2, n > 4; for D = 3 and τ = 3, n > 6; D = 3 and τ = 5, n > 10; D = 3

and τ = 10, n > 20; D = 3 and τ = 15, n > 30, and so on. Moreover, the D value also
influences in the size needed to the time series. As examples, for D = 4 and τ = 5, the
time series must be greater than 15; for D = 5 and τ = 5, n > 20; D = 7 and τ = 5,
n > 30, and so forth. In other words, as τ and D increase, the longer the trajectories
must be. With this, smaller trajectories, and, consequently, data, are discarded.

We analyze the accuracy results for τ = {1, 5, 10}. We fix D = 3 and q = 16

to OPAI transformation and D = 5 to OP, which were the best parameters in the
previous experiments. Both use the GBDT classifier with 1000 trees.

Figure 5.9 shows the accuracy results when varying τ for OP and OPAI trans-
formation. In Figure 5.9a we see the OP transformation. As τ grows, the accuracy
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Table 5.2: Accuracy and F1 results to OP (D = 5, τ = 1) and OPAI (D = 3, τ = 1, q =
16) transformation

OP OPAI

Acc (%) F1-macro (%) Acc (%) F1-macro (%)
Endo 71.3435 (±1.35) 61.9762 (±2.31) 77.5051 (±0.90) 71.2442 (±1.70)
Zheng 73.8701 (±1.75) 70.0206 (±1.35) 80.2047 (±1.09) 77.1446 (±1.14)
Dabiri 71.9446 (±1.62) 67.6068 (±1.76) 78.5203 (±1.16) 75.7842 (±1.70)
Xiao 74.4087 (±1.40) 68.3089 (±2.74) 79.8834 (±1.12) 76.0084 (±2.63)
Jiang 76.9880 (±1.33) 73.1574 (±1.19) 81.7426 (±0.93) 78.9165 (±1.22)

results decrease of about 3% in average.
For OPAI transformation, in Figure 5.9b, also there is a drop in accuracy results,

however, it is of about 1% in this case.
Comparing both transformation, we see that the difference between OP and OPAI

increases from about 6% (when τ = 1), to 9% when τ = 5, and expands to about 11%

in average, when τ = 10.
Hence, we can presume that OPAI, besides given better accuracy results, is also

less affected by τ variation.
Moreover, to both transformation, τ = 1 is a better choice to the context of this

dissertation.

5.3.5 Confusion Matrices

In this section we look more closely to the best results of OP and OPAI transformation
presented in the previous experiments. Table 5.2 exhibits the metrics accuracy and
F1-macro score to OP and OPAI transformation, along with their standard deviation.
In all sets, the accuracy result is greater when using OPAI transformation. Specifically,
in Endo set, the improvement is of 6.16%; in Zheng set, 6.33%; in Dabiri set, 6.58%;
in Xiao set, 5.47%; and in Jiang set, 4.75%. Note that, for OP transformation, the
best result is when D = 5. It means that, in this classification task, there is a greater
need to fine tuning to achieve its higher accuracy result, with the difference between
each D value, for instance, being of about 2% (from D = 3 to D = 5, thus, there is
a loss of about 4% in accuracy). OPAI transformation, however, achieves its highest
accuracy value with D = 3 and it is comparatively steady among its D values. The
disadvantage of OPAI in contrast to OP is its speed (i.e., OPAI is slower than OP) and
need for more storage space.

In Figure 5.10 we see the confusion matrices to each set using OP transformation.
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Walk is a very misclassified transportation mode, in all sets, especially with bike.
It makes sense since they, intuitively, have similar features, such as speed. Another
confusion occurs between car and bus, transportation modes with alike features as well,
such as distance. In Endo set (Figure 5.10a), we see that taxi is heavily misclassified as
bus. The confusion matrix to Xiao set (Figure 5.10c), as well as Endo set (Figure 5.10a,
show that this same situation appears between car and bus. Consequently, driving, that
includes car and taxi, is also misplaced as bus, as we can see in Dabiri (Figure 5.10d) and
Zheng (Figure 5.10b) set. It is a plausible condition, since all of these transportation
modes are road-based, and may have similar features values, e.g., bearing. Moreover,
in Endo set, taxi is also misclassified as walk. There is not an easy explanation to this
fact. One can suppose that an extraordinary fact were occurring that forced the taxi
to have similar features to walk or vice-versa. In fact, it would be necessary to analyze
the events that were influencing the mobility captured by the GPS data to understand
this situation.

Figure 5.11 shows the confusion matrices to OPAI transformation. It makes the
same mistakes as OP, such as taxi and car with bus and everything with walk. However,
it is better to correctly classify the data examples, hence, increasing the true positives
and decreasing the false positives. It leads to better accuracy and F1 results, as we
can see in the previous experiments, presented from Section 5.3.1 to Section 5.3.4. For
instance, in Endo set (Figure 5.11a), the taxi almost doubles its true positives, going
from 94 to 170. However, OP is slight better to classify bus in all cases, although OPAI
surpass it in the others transportation modes.

5.3.6 Comparison to previous works

Finally, in our last evaluation, we analyze our proposal, OPAI transformation, and OP
as well, compared to previous works presented in literature, which were reviewed in
Chapter 2. Table 5.3 presents the accuracy results to our proposal, OP, and several
other works found in literature. Only accuracy is exhibited, since it is the only metric
common to all works. They are separated by the set used, hence, each work can be
compared with others that use the same transportation modes to classify. In Endo and
Zheng set, OPAI present the second best accuracy. Although there is a difference of
about 13% in accuracy between our work and Etemad et al. (2018), it is important to
have in mind that the latter uses 70 features to achieve such results, whereas OPAI
uses only 5 features. We suppose that more features will enhance our results, rivaling
it to the state-of-the-art. This assumption will be investigated in future. However, we
still consider our results relevant in both cases, since it uses less feature and beats Deep
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Figure 5.10: Confusion Matrix using OP (D = 5, τ = 1) transformation
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Figure 5.10: Confusion Matrix using OP (D = 5, τ = 1) transformation

Learning approaches used by Endo et al. (2016), other machine learning approaches,
such as Zheng et al. (2008a) and Zheng et al. (2008b), that uses more features than our
proposal (10 and 13, respectively), and other our previous work (Cardoso et al., 2019),
that uses features extracted from Ordinal Networks. It is important to note that Endo
et al. (2016) divides their data using a different kind of cross-validation, which may
influence their results.

The works of Dabiri and Heaslip (2018) and Xiao et al. (2017) remove outliers
based on ground truth information. As shown by Etemad (2018), this kind of noise re-
moval can improve accuracy unrealistically. Moreover, this technique relies on already
knowing the transportation mode information of test data, which is an erroneous as-
sumption. Hence, in fact, such works cannot be adequately compared to others, they
may have inflated results. Knowing this, we can see that OPAI still has accuracy
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Figure 5.11: Confusion Matrix using OPAI (D = 3, τ = 1, q = 16) transformation
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Figure 5.11: Confusion Matrix using OPAI (D = 3, τ = 1, q = 16) transformation

near Dabiri and Heaslip (2018), which use a bagging of Convolutional Neural Net-
work (CNN) – their CNN models alone varies their accuracy from 69.2% to 79.8%.
Therefore, we can see that OP and OPAI transformation can have similar results to
CNN models. Furthermore, Xiao et al. (2017) use 110 features to obtain their results,
whereas we use only 5. As aforementioned, we will investigate whether more features
can improve our results.

Lastly, Jiang et al. (2017) use a subset to evaluate their work. It brings distrust
to their result, making impossible to compare it to others.

Another interesting point about this result is that most of the studies presented
in literature, such as Etemad et al. (2018); Endo et al. (2016); Xiao et al. (2017); Dabiri
and Heaslip (2018); Jiang et al. (2017), perform their classification in the continuous
space; differently of OPAI, as well as OP, which work in a smaller space, since they
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Table 5.3: Comparing OP and OPAI transformation with other works

Set Work Acc (%)

Endo Endo et al. (2016) 67.90
Etemad et al. (2018) 90.20
OP 71.34
OPAI 77.51

Zheng Zheng et al. (2008a) 74.30
Zheng et al. (2008b) 76.20
Etemad et al. (2018) 93.61
Cardoso et al. (2019) 73.54
OP 73.87
OPAI 80.20

Dabiri Dabiri and Heaslip (2018) 84.80
Etemad et al. (2018) 93.55
OP 71.94
OPAI 78.52

Xiao Xiao et al. (2017) 90.77
Etemad et al. (2018) 93.19
OP 74.41
OPAI 79.88

Jiang Jiang et al. (2017) 97.90
Etemad et al. (2018) 96.45
OP 76.99
OPAI 81.74

transform the data to a discrete space. Hence, the amount of information available
is not the same – the methods in the continuous space have more information at
their disposal. Even so, our proposal can compete with them in classification results,
overcoming some cases. The advantage of transform data to a smaller space is, as
discussed in Section 3.2.2, the use of less space to storage and the gain of speed in
classification.

5.4 Final Remarks

This chapter presented the Transportation Mode Classification proposed by this work.
We evaluate how our transformation technique, OPAI, behaved when varying their and
the classifier parameters. This analysis were made in comparison to OP. Our results
showed that OPAI is more robust than OP to the variation of its parameters (D, τ ,
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and q) and achieves a better classification results in transportation mode classification,
up to 10%, in average, than OP. In addition, we compared OPAI to previous literature
works. Although it does not achieves the best result, OPAI presents competitive results
using a much smaller set of features.



Chapter 6

Conclusion and Future Directions

In this work, we proposed a framework to Transportation Mode Classification (TMC).
It is an important field of investigation, since it can help the cities to develop sustainable
solutions that improves the life quality of citizens by reducing mobility issues, such
as traffic jam and travel time. Therefore, it is a well-studied problem, with several
solutions in many fields, such as Machine Learning, Deep Learning, Information Theory,
and Complex Network.

The framework is composed of five steps: segmentation, feature extraction, data
transformation, and classification. Since our focus in this dissertation is classification,
segmentation and feature extraction were little explored. In segmentation, we split
data based on day, time, and transportation mode used. To the feature extraction
step, we extracted five motion features, namely geodesic distance, speed, acceleration,
jerk, and bearing. In future works we plan to investigate deeper these two steps, by
proposing segmentation methods that do not relies on transportation mode information
and extracting more features. With that, we believe that our framework will be more
accurate and reliable.

The data transformation step is the most important step in this work. We devel-
oped a modification to Ordinal Pattern (OP) that considers the amplitude information
presented in time series data to transportation mode classification. We call it Ordi-
nal Pattern with Amplitude Information (OPAI). Through experiments in real-world
data, we demonstrated that OPAI presents better accuracy results than OP to trans-
portation mode classification. Moreover, OPAI is more robust than OP to change in
parameter values. A disadvantage of this method is that, since more patterns are ex-
tracted from time series, there is need for more storage and it is slight slower than OP
– however, it still is a computationally inexpensive method, as OP, and also inherent
others advantagens of OP, such as simplicity, scalability, and robustness to noise.

69
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Although having various contributions in time series characterization, the Infor-
mation Theory field lacks of contributions in Time Series Classification (TSC), includ-
ing transportation mode classification. We expect that our work contribute to the
development of Information Theory in TSC.

In classification, we evaluated the use of two techniques, namely Random Forest
(RF) and Gradient Boosting Decision Trees (GBDT). Although both uses Decision
Trees as their base classifier, they build their model in different ways – RF disposes its
trees in a parallel fashion, whereas GBDT is sequential. GBDT was better to identify
transportation modes, with better accuracy results.

Furthermore, there is not standardization of how to develop a investigation in
TMC, making it hard to compare the works. For instance, some works use only a
subset of data and others uses different kind of evaluation that may influence how the
results are understood. As future work, we intend to develop a methodology that can
really contrast the methods already made, similar to Bagnall et al. (2017), in order to
understand the contribution of them and helps the development of the TMC.

Finally, the contributions made by this work, although being evaluated in TMC,
may be taken to a wider context, that is, the time series classification field. We intend
to investigate this hypothesis in future works.

Nevertheless, as future works, we also want to evaluate our contribution compared
to other methods that adds amplitude information to OP distribution, in order to
evaluate how different techniques with the same goal behave.

Previous to this work, in Cardoso et al. (2019), we presented some preliminary
results of this dissertation, about the use of Ordinal Pattern distribution and Ordinal
Networks to transportation mode classification.
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