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Resumo

Pipelines de classificação de texto são uma sequência de tarefas que devem ser execu-
tadas para classificar documentos em um conjunto de categorias predefinidas. A fase de
pré-processamento (antes do treinamento) desses pipelines envolve diferentes maneiras
de transformar e manipular os documentos para a próxima fase (aprendizado).
Nesta dissertação, apresentamos três novas etapas na fase de pré-processamento
dos pipelines de classificação de texto para melhorar a eficácia e reduzir os custos
associados. A etapa de geração de meta-features (MFs) baseadas em distância visa
reduzir a dimensionalidade da matriz termo-documento original, enquanto produz um
espaço potencialmente mais informativo, o qual explora explicitamente as informações
discriminativas sobre as categorias. O segundo passo é a esparsificação que visa
tornar a representação do MF menos densa para reduzir os custos de treinamento. A
terceira etapa é a amostragem seletiva (SS), destinada a remover linhas (documentos)
da matriz obtida na etapa anterior, selecionando cuidadosamente os “melhores”
documentos para a fase de aprendizado. Nossos experimentos mostram que o pipeline
de pré-processamento estendido proposto pode obter ganhos significativos em eficácia
quando comparado ao TF-IDF original (até 52 %) e às representações baseadas em
embeddings (até 46 %), a um custo muito menor (até 9,7x mais rápido em alguns con-
juntos de dados). Outra contribuição principal é uma avaliação completa e rigorosa do
trade-off entre custo e eficácia associadas à introdução dessas novas etapas no pipeline.

Palavras-Chave: pipelines de classificação de texto; pré-processamento; meta-
features ; esparsificação; amostragem seletiva.
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Abstract

Text Classification pipelines are a sequence of tasks needed to be performed to classify
documents into a set of predefined categories. The pre-processing phase (before
training) of these pipelines involve different ways of transforming and manipulating
the documents for the next (learning) phase. In this dissertation, we introduce three
new steps into the pre-processing phase of text classification pipelines to improve effec-
tiveness while reducing the associated costs. The distance-based Meta-Features (MFs)
generation step aims at reducing the dimensionality of the original term-document
matrix while producing a potentially more informative space that explicitly exploits
discriminative labeled information. The second step is a sparsification one aimed at
making the MF representation less dense to reduce training costs. The third step is
a selective sampling (SS) aimed at removing lines (documents) of the matrix obtained
in the previous step, by carefully selecting the “best” documents for the learning
phase. Our experiments show that the proposed extended pre-processing pipeline
can achieve significant gains in effectiveness when compared to the original TF-IDF
(up to 52%) and embedding-based representations (up to 46%), at a much lower cost
(up to 9.7x faster in some datasets). Another main contribution is a thorough and
rigorous evaluation of the trade-offs between cost and effectiveness associated with the
introduction of these new steps into the pipeline.

Keywords: text classification pipelines; pre-processing; meta-features; sparsification;
selective sampling.
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Chapter 1

Introduction

Classification pipelines are a sequence of tasks needed to be performed to classify dig-
ital objects (e.g., textual documents, images) into a set of predefined categories. They
are the main subject of a growing research area called AutoML [Feurer et al., 2018],
whose main goal is to automatically recommend pipelines, algorithms or appropriate
parameters without strong dependencies on user knowledge. In this dissertation, we
are specially concerned with pre-processing steps of text classification pipelines.

Figure 1(a) illustrates a typical text classification pipeline. From the raw textual
content of documents, we usually apply some pre-processing, such as lower-casing,
punctuation, stopwords removal and stemming. Then, an additional feature selection
step may be performed, keeping only the most informative words. After that, a
m × n document-term matrix representation (or some latent term encoding) of
the document is built. The most common representation of this matrix in text
classification exploits the so-called TF-IDF paradigm. The major problems with the
TF-IDF matrix representation have to do with its high dimensionality and sparseness.
Other alternative representations that aim at producing a more compact space in
terms of latent dimensions (e.g., distributional word embeddings) do exist [Mikolov
et al., 2018a], but their unambiguous contribution to text classification tasks has not
yet been fully established, as comparisons are not done with standard benchmarks
following rigorous scientific procedures [Sculley et al., 2018] (e.g., with multiples runs
to check variability and with statistical significance tests to reject the null hypothesis of
equality of results)1. Indeed, some of our experimental results demonstrate that, when
compared using proper and rigorous experimental procedures, (word) embedding-

1Issues regarding poor or inadequate experimental evaluation setups as well as improper or unfair
baseline tuning have recently raised serious questions about the real value of complex deep learning
solutions in areas related to information retrieval [Dacrema et al., 2019; Lin, 2019; Ludewig et al.,
2019].

1



2 Chapter 1. Introduction

Figure 1.1: Text Classification Pipeline

based representations present no clear advantage in terms of effectiveness or cost than
simpler TF-IDF representations, at least in the datasets we experimented with.

In any case, the complexity of the representation is directly associated with
the costs involved in the whole classification process. This is particularly important
given the development of recent techniques such as (word) embedding and deep neural
networks, which require a lot of data and computational power to properly work.
These methods cause large increases in the cost of training, validation and actual
classification of unknown (test) instances.

It used to be the case, not in a distant past, that in text classification tasks the
cost to train a model would not be a dominant factor in the choice of a particular
algorithm or representation, as the training process would be run just once and in
a batch mode. This scenario has changed in the last few years, mainly due to the
tremendous increase in the complexity of the representations (mainly those based
on word embeddings), the complexity of the models (mainly those based on deep
learning) and the size of the datasets. For instance, as we shall see next, some of
the most complex models (e.g., fully connected feed-forward neural networks) when
compared to SVMs with standard TF-IDF representations, are sometimes 30x - 80x
slower. This can make their application sometimes unfeasible for some tasks.

Although the computation power of a central processing unit (CPU) has made
substantial progress in attaining a lower cost per computation and we can also use
graphics processing units (GPUs) to train classification models, measuring the training
performance, especially for industrial and commercial usage, remains necessary. A
middle-sized company or a research group can only have a limited amount of resources
it can invest in hardware improvements. Furthermore, if the accuracy is already
sufficient for a given application, one may not need to run more complex models,
which would require much more additional time or cost to train2. Finally, for some

2Indeed, some Industry estimates evaluate the cost of training state-of-the-art deep learning mod-
els, even pre-trained ones, such as BERT and XLNET, in hundreds of thousands of dollars in very pow-
erful and costly computational architectures: https://syncedreview.com/2019/06/27/the-staggering-
cost-of-training-sota-ai-models/
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applications in which there are rapid changes in some assumptions of the model (e.g.,
class distributions, term distributions, etc) or in real-time stream-based applications
in which recent events may affect such assumptions, a periodical retraining is
required [Guo et al., 2019], which makes the training time a non-negligible factor. In
sum, there is a tradeoff between effectiveness and cost and this has been acknowledged
by recent work [Kastrati et al., 2019; Strubell et al., 2019]. Therefore, in our work, we
consider the training time as an important analysis factor and the gains in performance
that can be obtained with the proposed pipeline without (or with minimal) losses
in classification effectiveness.This issue has been much neglected in the literature and
constitutes one of our main contributions.

1.1 Objectives

Turning back to our proposal, differently from generic AutoML solutions, we here are
not trying to hide the complexity of configuring the classification pipeline. Instead,
our concern is to manage issues related to the trade-off between classification effec-
tiveness (e.g., high accuracy) and the costs involved to achieve it. This aligns with
recent work [de Sá et al., 2017; Schoenfeld et al., 2018] that shows that by properly
working on the pre-processing phase of the pipeline, one can achieve significant gains
in performance, even if effectiveness is not improved. In this dissertation, we investi-
gate issues related to the introduction of three new steps (Meta-Feature Generation,
Sparsification and Selective Sampling - Figure 1(b)) into the standard pre-processing
phase of text classification pipelines with the goal of improving effectiveness while, at
the same time, reducing associated costs3.

1.2 Contributions

The first contribution of this dissertation is the proposal of (distance-based)
Meta-Feature (MF) generation as an explicit pre-processing step in a text classification
pipeline. This step aims at reducing the dimensionality and sparsity of the original
TF-IDF document-term matrix, by producing a potentially more informative denser
space. Indeed, distance-based meta-features have been shown to be very effective in
text classification tasks[Canuto et al., 2018]. However, they have been proposed as
an end on itself, not as a means to achieve a more compact and richer representation

3As it will become clear later on, this sequencing corresponds to just one possible instantiation of
pipelines that can be built with the proposed new steps.
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in a text classification pipeline. As such, our contribution lies in re-thinking its
role in a chain of data transformations before actual learning. By having this as an
explicit goal, we introduce other contributions in this realm, such as: (i) investigations
regarding the dimensionality and density of the MF representation; (ii) explicit studies
on the effectiveness-cost trade-offs associated with the introduction of this step into
the pipeline. Those aspects have not been previously studied.

In sum, by explicitly introducing this step into the pipeline, we aim at answering
the following research questions:

• (RQ1) What are the gains in terms of effectiveness of the MFs when compared
to the original TF-IDF representation? We revisit this question, first posed by
some previous work[Canuto et al., 2018; Canuto et al., 2014], and observe some
new interesting results.

• (RQ2) What are the costs associated with this new step?

• (RQ3) How do the MFs compare with other alternative low-dimensional repre-
sentations (e.g., word embeddings) in terms of effectiveness and incurred costs?

The answers to these questions motivate the second novel contribution of
this dissertation which is the introduction of a new sparsification step of the MF
matrix. Although less dimensional and more informative (with gains, for instance,
in memory consumption), the MF representation is dense, since all features have a
non-zero value. This may have an impact on some classifiers’ learning time, especially
when applied to datasets with many classes due to the increase in density. For this
reason, we propose a procedure to transform such a denser representation in a sparser
one while keeping the same dimensionality. This aligns with recent work [Zamani
et al., 2018] that aims at making dense latent embeddings representations sparser for
the sake of performance in search tasks. As we shall see, this step results in significant
reductions in cost/time, with no significant losses in effectiveness.

Finally, most of the previous related work (e.g., on feature selection) are column-
oriented, but few are concerned with the lines (documents) of the design matrix.
Thus, our third novel contribution is the introduction of a selective sampling
step aimed at reducing the lines of the low-dimensional, denser matrices obtained
in the previous MF step (with and without sparsification). For this, we propose
to use a state-of-the-art compression-based selective sampling strategy–Cover [Silva
et al., 2016]–that has been originally proposed for the learning-to-rank task but has
never been used in the text classification realm. This method has several advantages
towards our goals, including: (i) it is data-driven and independent of any learning



1.2. Contributions 5

framework; (ii) it is computationally cheap for dense representations and scales well
to large datasets; and (iii) it is able to compress the original data in a much smaller
representation without loss of information, by carefully selecting the “best” documents.

Considering the second and third contributions, the research questions we aim
at answering include:

• (RQ4) Can the more compact (SS) and less dense (SPA) MF representations
reduce costs without loss of effectiveness?

• (RQ5) Is the previous step (MF) of creating a low-dimensional representation
really necessary to apply the proposed SS technique? Or could we use it with the
original TF-IDF matrix?

• (RQ6) Can the compact representation induced by the proposed pipeline benefit
different state-of-the-art classifiers?

Our experiments with four datasets in topic classification show that MF based
representation can indeed be more effective (up to 52%) than TF-IDF (RQ1) and
alternative embedding representations (RQ3) (up to 46%) at a much lower cost (RQ2
and RQ4) (4x-9.7x faster). We also show that reductions up to 430.8x in the size of the
representations can be obtained with no loss in effectiveness (RQ4) by using MF, SPA
and SS steps altogether. This comes with gains in the processing time of about 4-9.7
times (RQ4) over TF-IDF (which is already much faster to generate than the embedding
representations). Moreover, the MF denser representation is essential to guarantee the
scalability of the SS step (RQ5). Finally, we show that the generated representations
are useful in several different classifiers based on completely different paradigms (RQ6).

To summarize, the main contributions of this dissertation include: (i) the study
of MFs in a different role–as a step in pre-processing pipelines; (ii) rigorous comparisons
with alternative representations (i.e., word embeddings) in this role; (iii) a study of MF
generation impact in the whole pipeline; (iv) the proposal of a sparsification step aimed
at reducing the classification related costs; (v) the proposal of a selective sampling step
aimed at reducing classification costs without loss of information; (vi) the combination
of all steps for a robust text classification pipeline; (vii) a thorough evaluation of
effectiveness vs. efficiency trade-off associated with the introduction of those new steps.





Chapter 2

Related Work

2.1 Data Representation

Meta-features (MFs) correspond to n-dimensional document representations derived
from more basic representations such as TF-IDF. The MFs’ scores are obtained by
functions that relate textual data with categories. Here, we focus on distance-based
MFs as they have been shown to produce the best-reported results in the litera-
ture [Canuto et al., 2018]. Clustering techniques were among the first used to generate
distance-based MFs [Kyriakopoulou and Kalamboukis, 2007]. In this approach,
clusters represent higher-level “concepts” in the feature space and the features derived
from them indicate the similarity of each example to these concepts.

Several works [Canuto et al., 2015, 2016, 2014; Gopal and Yang, 2010; Yang and
Gopal, 2012] have proposed to use category centroids or kNN as the main tools to
generate meta-features. These MFs differ from the previous ones derived from clusters
because they explicitly capture information from the labeled set. Gopal and Yang
[2010] reported good results by designing MFs that make a combined use of local
information (through kNN-based features) and global information (through category
centroids) in the training set. That work was extended by Yang and Gopal [2012],
leveraging successful L2R retrieval algorithms over the meta-feature space for the multi-
label classification problem. kNN-based meta-features are computationally expensive
to generate for textual data. Canuto et al. [2014] proposed a massively parallel version
of the kNN classifier for execution on manycore GPU architectures. Canuto et al. [2018]
performed the most comprehensive in-depth analysis ever reported in the literature on
the effectiveness of recently proposed distance-based MFs. They found that a few core
meta-feature groups are responsible for achieving the best results. We here exploit the
best sets of MFs found in [Canuto et al., 2018]. However, we do this as a step in a

7
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pre-processing pipeline, paying special attention to the effectiveness-efficiency trade-offs
implied by this new application. Such issues were not investigated in any previous work.

Recent works pay attention to low-dimensional, dense textual data repre-
sentations based on word embeddings, such as GloVe [Pennington et al., 2014],
Word2Vec [Mikolov et al., 2013] and FastText [Mikolov et al., 2018a]. They relate
to our proposal as they try to provide richer and more compact representations of
textual information. Embedding models are mostly based on co-occurrence statistics
of textual datasets. Words are represented as vectors so that their similarities correlate
with semantic relatedness and contextualized positioning in texts (e.g., terms adjacent
to a target one).

Similarly to GloVe, the unsupervised Word2Vec strategy aims at estimating
the probability of two words occurring close to each other, achieved by a neural
network trained with sequences of words that co-occur within a window of fixed size.
Differently from distributional models, both Word2Vec and GloVe are prediction
models, as they aim at predicting word occurrence. FastText [Mikolov et al., 2018a],
on the other hand, learns vectors for the sub-words (ie., character n-grams) found
within each word. At each training step in FastText, the mean of the target word
and sub-word vectors are used for training. In experiments reported by Baroni et al.
[2014], some of these representations outperformed BOW in several tasks. But in
that, as well as in many other works, comparisons among the representations were not
performed following rigorous and well established experimental procedures supported
by statistical analyses of the results (e.g., statistical significance tests). We investigate
further this issue in our work obtaining different, somewhat surprising, results.

One way to use embeddings for document representation is to create a centroid
vector computed as the average of the vectors of all distinct words belonging to a
document. In contrast to the simple centroid-based and inspired by works in computer
vision, Lev et al. [2015] present a proposal based on pooling methods. The authors
exploit an effective polling strategy called the Fisher Vector (FV) of single multivariate
Gaussian distribution. The FV pooling representation was able to achieve great
results in classification tasks and topic modeling. We compare the MF and Fisher
Vector representations in our work.

Here, we pay special attention to the word embedding model called Fast-
Text [Mikolov et al., 2018b]. FastText learns vectors for the sub-words (ie., character
n-grams) found within each word, as well as the complete word. At each training
step in FastText, the mean of the target word and subword vectors are used for
training. The adjustment that is calculated from the error is then used uniformly to
update each of the vectors that were combined to form the target. This adds a lot of
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additional computation cost to the training step. The trade-off is a set of word-vectors
that contain embedded sub-word information. Mikolov et al. [2018b] claim that the
potential benefits of FastText are: (i) it generates better word embeddings for rare
words; (ii) the usage of character embedding for downstream tasks have recently
shown to boost the performance of those tasks compared to using word embedding
like Word2Vec or GloVe. FastText is one of our representation baselines.

Tang et al. [2015] proposed a semi-supervised method, called Predictive Text
Embedding (PTE), to learn document representations. PTE fills a gap of previous
unsupervised methods that do not consider the labeled information when learning the
representation. According to the authors, unsupervised text embeddings generalize
to different tasks but have a weaker predictive power for a particular task. The
method learns distributed representation of text by embedding the heterogeneous text
network into a low dimensional space. This network is composed of three bipartite
sub-networks: word-word, word-document, and word-label, with word vertices, shared
across the three networks. PTE is also one of our representation baselines.

2.2 Selective Sampling

Most works in Selective Sampling for classification are related to the general area of
Active Learning (AL). AL aims at choosing the most informative instances for labeling
to reduce the labeling effort while maximizing the amount of useful (discriminative)
information for learning a classifier. AL methods try to balance between two distinct
objectives [Cheng et al., 2013]: (i) Exploration - How to select representative examples
of the unlabeled set? (ii) Exploitation - How to find samples that are more useful to
discriminate classes? To achieve the first objective, AL methods propose techniques
to sample from all regions of the feature space to select instances that represent the
diversity of the unlabeled set. The “exploitation” objective is to refine the decision
border through some measure of “uncertainty”. In classification tasks, the harder to
classify instances are (possibly) the ones that may provide most information if labeled
and added to the training set.

In this context, Long et al. [2010] propose a general AL framework based on
expected loss optimization (ELO-QD). They use ensembles of learners to produce
relevance scores and estimate predictive distributions for the documents in the AL
set. They use a bootstrap technique that relies on a large initial labeled training
set to learn the ensemble. Silva et al. [2011, 2014] proposed a lazy association
rule-based active method–SSAR–to select a small training set from scratch based
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on their dissimilarity. The method is the state-of-the-art in L2R tasks and consists
of two main steps: (i) “coverage” of the feature space with the minimum number of
representative instances (“diversity” / “exploration”); and (ii) selection of “interesting”
(i.e., “exploitation”) instances from those remaining in the unlabeled set. However, due
to its lazy nature, SSAR is extremely inefficient and does not scale to large datasets.
Silva et al. [2016] proposed Cover–a selection method that does not rely on training
expensive learning models to choose documents for labeling. They argue that different
from traditional AL, Cover is “unsupervised”–it selects instances in one batch without
any supervision. Cover interprets AL methods as compressors of the large set U of
documents into a much smaller set D of documents to be labeled by annotators. The
goal of Cover is to keep in D most of the information present in U . In experiments,
Cover produced reductions of up to 95% in the size of the datasets while keeping
effectiveness at levels similar to using the whole dataset. We will exploit Cover as
the method of choice for selective sampling in the third step of our pipeline due to
its strengths. Instead of using it to choose instances to label, we will use it to reduce
the amount of redundant information in an already labeled dataset, with the goals of
reducing costs and potential noise of the labeling process.

2.3 AutoML

The main goal of Automatic Machine Learning (AutoML) techniques is to recommend
automatic pipelines, algorithms, and parameters for specific Machine Learning
tasks [de Sá et al., 2017]. The goal is to automatize these tasks with many dependen-
cies on user knowledge. Several research solutions have already been proposed for this
problem such as [Kotthoff et al., 2019; Li et al., 2017; Olson and Moore, 2019] which
are based on several distinct paradigms such as bayesian optimization, multi-armed
bandits, and genetic programming (GP). One of the most interesting works in this
area is RECIPE [de Sá et al., 2017], a GP-based approach that avoids the creation
of invalid pipelines and the explosion of the search space by creating a context-free
grammar that describes and limits the search space for the best pipelines. It not only
avoids the creation of invalid pipelines but also accelerates considerably the search for
the best solutions.

In any case, most of the aforementioned works are mostly concerned with the
learning phase (e.g., classifier training and parameterization) without much attention
paid to the necessary pre-processing tasks and their impact on the overall ML appli-
cation. Our work tries to cover such a gap by focusing exactly on the pre-processing
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phase. One noticeable exception is the work described in [Schoenfeld et al., 2018]. The
authors exploit an exhaustive search in the space of alternatives to analyze the effects
of the pre-processing in several classification algorithms. They conclude that, in most
cases, there are no significant improvements in the effectiveness, but positive effects
can be observed in terms of execution time in several datasets. Here, we focus on the
pre-processing phase of text classification pipelines and propose three new steps in the
traditional pipeline. Differently from previous works, our focus is on maximizing the
effectiveness-efficiency trade-offs. As we shall see, we find that both objectives can be
maximized at the same time, sometimes by large margins, using our solutions.

2.4 Effectiveness vs. Efficiency trade-off

The effectiveness vs. efficiency trade-off is the object of study in a few works [Capan-
nini et al., 2016; Dogan and Tanrikulu, 2013; Kastrati et al., 2019; Akhila et al., 2014].
Capannini et al. [2016] analyze the impact of training parameters on effectiveness
and on efficiency (run time) of learning-to-rank models. In that work, the authors
proposed a methodology to find the most effective ranker given a time budget. They
concluded that there is no overall best algorithm for the learning-to-rank task which
excels in both objectives (effectiveness and efficiency).

The work reported in [Dogan and Tanrikulu, 2013] is one of the first to explicitly
take into account the efficiency(time)-accuracy trade-off in the study of classification
methods. In that study, the authors compared three types of features on multiple
datasets: (i) the original features; (ii) discretized features; (iii) best features chosen
after applying principal component analysis to the original features. The authors also
conducted an extensive experiment to analyze and identify strong relationships between
dataset characteristics and the different type of features, with regard to their impact
on accuracy and efficiency. Akhila et al. [2014] present a comparative study of four tra-
ditional classifications algorithms on the health problem, especially on a dataset about
diabetes in women. The analyzed algorithms were Naive Bayes, MultiLayer Perceptron
(MLP), SVM and C4.5. The evaluation criteria were execution time for training and
classification accuracy. Finally, in [Kastrati et al., 2019], an analysis of the impact of a
semantically enhanced representation, using manually created ontologies, in deep learn-
ers as well as in traditional classifiers is presented. Though the authors report the com-
plexity of the deep learners in terms of number of parameters, the experimental com-
parison is limited to only accuracy (time is not an evaluation metric) in only one dataset
with only one ontology and without proper statistical validation of the results. As the
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technique is very specific and the evaluation is limited, the results are hard to generalize.
Differently from those works, we propose an extended text classification pipeline

that explores the use of meta-features in place of original bag-of-words representation
and the use of a more compact and noisy-less subset of the training set to achieve
gains in both effectiveness and efficiency in the processing of the whole pipeline.



Chapter 3

Extended Text Classification
Pipeline

Text classification pipelines are defined as necessary steps to classify texts into pre-
defined classes. Figure 1(a) illustrates a classical pipeline. Traditionally, classification
pipelines are composed by four steps: (i) Pre-processing; (ii) Feature Selection; (iii)
Data Representation; (iv) and Classification. In the Pre-processing step, different
strategies may be applied to the raw text, such as lower-casing, punctuation, stopwords
removal and stemming. Next, in order to consider just the most discriminative words
for the classification task, Feature Selection algorithms [Viegas et al., 2018] may
be applied to reduce dimensionality. The last step before classification consists of
transforming the data into a representation that can be interpretable by classification
algorithms. The most common representation is the m×n (terms) TF-IDF document-
term matrix. We should note that the pipeline configuration is dynamic, each step
may be instantiated using different methods, or, even omitted as a whole.

In this work, we introduce three new pre-processing steps in traditional classifi-
cation pipelines: (i) MetaFeatures; (ii) Sparsification; and (iii) Selective Sampling. In
the next sections, we will detail each of them.

3.1 Distance-Based Meta-Feature Generation

Recent work [Canuto et al., 2015, 2016; Yang and Gopal, 2012] proposed to collect in-
formation from distances between documents to improve the encoding text data repre-
sentations. We follow this recent trend, using distance-based MFs, i.e., features derived
from the original TF-IDF representations and from distances among labeled documents,
as an additional pre-processing step for text classification. MFs have been studied be-

13
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fore, but not as a means to achieve enhanced compact representations towards maxi-
mizing the effectiveness-efficiency trade-off. To achieve this goal, we introduce two new
steps in the text classification pipeline: sparsification and selective sampling.

The meta-feature generation relies on a previous representation of textual
data. As several pipelines for text classification, we assume that the textual data is
previously encoded with TF-IDF scores [Salton and Buckley, 1988]1, which is a high
dimensional representation. In this scenario, the inclusion of MFs in the pipeline can
bring significant reductions on dimensionality, since distance-based MFs only represent
the distance relationships between a document and other labeled documents instead
of a representation of the original text of documents.

Formally, let X denote the TF-IDF feature space, and C the set of pos-
sible classes for each document ~xi ∈ X . Given a set of labeled documents
Dtrain = {(xi, ci) ∈ X × C}|ni=1, our goal is to generate distance-based metafeatures for
an arbitrary document ~xf ∈ X using distance relationships between ~xf and documents
of Dtrain. A vector of meta-features mf is expressed as the concatenation of the
sub-vectors below, which are defined for each example xf ∈ X as:

• ~vkNN~xf
= [dist(~xij, ~xf )] : A |C|k-dimensional vector produced by considering the

k nearest neighbors of class cj ∈ C to the target vector xf . ~xij is the i-th (i ≤ k)
nearest neighbor to ~xf , and dist(~xij, ~xf ) is the (L2 or Cosine) distance score
between them. A k-dimensional meta-level feature vector is generated for each
class, given xf . These meta-features compose the group of kNN MFs.

• ~vCent~xf
= [dist(~xj, ~xf )]: A |C|-dimensional vector where ~xj is the centroid of

category cj ∈ C. This vector contains the (L2 or Cosine) distance score between
the document xf and the centroid of cj. These meta-features compose the group
of Centroid MFs.

Figures 3.1 and 3.2 illustrate how to obtain kNN and Centroid MFs, respectively.
Figure 3.1 (a) is the representation of a TF-IDF matrix of instances considering just
two dimensions. The colors of elements in the graph represent the classes to which
they belong (i.e. green represents class 1, red, class 2, and blue, class 3). The first step
is to generate the MFs for the training set. For this, considering a training document
d1 of class 1, we calculate its distance (in the case, Euclidian Distance) for all other
documents in class 1. Then, we select the k documents closest to d1 (in the case, k = 2

– Figures 3.1 (b) and (c)) and generate the MFs mf1 and mf2 (Figure 3.1 (h)), in
which the values correspond to the calculated distances. This process is repetead for

1MF-Based representations built from word embeddings may be considered in the future.
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classes 2 (Figures 3.1 (d) and (e)) and 3 (Figures 3.1 (f) and (g)), generating MFs mf3,
mf4, mf5 and mf6. This process is performed for all traning set. In the case of test set,
the process is the same, however the class of each test document is unknow, obvially.

(a) Visual Data Repr. (b) Step 1 (c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5 (g) Step 6 (h) Distance matrix

Figure 3.1: kNN MFs Example

Regarding the Centroid MFs (Figure 3.2), first it is necessary to calculate the
centroid for all classes, which are represented by squares. One more time, considering
a training document d1 of class 1, we calculate its distance (i.e. Euclidian Distance)
for all centroids (Figures 3.2 (a), (b) e (c)), generating the MFs mf1, mf2 and mf3

(Figure 3.2 (d)), in which the values correspond to the calculated distances. This
process is also performed for all traning set. For test set, the process is the same,
however the class of each test document is unknow.

(a) Distance of d1 to
centroid 1

(b) Distance of d1 to
centroid 2

(c) Distance of d1 to
centroid 3

(d) Computed distance
matrix

Figure 3.2: Centroid MFs Example

The MFs we exploit here are the most effective ones across several datasets
according to [Canuto et al., 2018], and also the cheapest to compute. Table 3.1
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provides names for referencing the previously described meta-features according to
the used distance measures and meta-feature vectors.

Meta-Feature Group Description
CosKnn Vector ~vkNN~xf

generated with the cosine similarity.
L2Knn Vector ~vkNN~xf

generated with the L2 distance.
CosCent Vector ~vCent~xf

generated with the cosine similarity.
L2Cent Vector ~vCent~xf

generated with the L2 distance.
All Concatenation of CosCent, L2Cent, CosKnn and L2Knn.
Cent Concatenation of CosCent and L2Cent

Table 3.1: Given names for meta-features.

These meta-features make a combined use of the local information (CosKnn
and L2Knn) and global information (L2Cent and CosCent). More specifically, each
test example is directly compared to a set of nearest labeled examples and category
centroids, which are assumed to be enough to effectively characterize and discriminate
categories. The intuition behind these meta-features consists of the assumption that if
the distances between an example to the nearest neighbors belonging to the category
c (and its corresponding centroid) are small, then the example is likely to belong to c.

The MF step induces a low-dimensional space, but a potentially much denser
one, since now all the features have some existing information (non-zero value) relating
one instance to the defined classes. The drawback is the potential negative impact
in learning runtime as all features have now non-zero values and cannot be ignored
by the classifiers’ optimization process in most implementations. To deal wth this, we
introduce the sparsification step, discussed next.

3.2 Median-Based Sparsification

The sparsification (SPA) step aims at increasing the sparsity of the meta-feature
vectors by zeroing the less informative similarity values, ultimately improving the
learning runtime. Particularly, classifiers such as SVM and Random Forests can ignore
such zeroed values when learning decision rules using sparse data representations.

The process is described in Algorithm 1, which requires as input the training
and the test sets (i.e., Dtrain and Dtest), represented with meta-features from the
set of meta-feature groups. More specifically, each training or test document d

is represented by a vector of meta-features ~md, which is the concatenation of r
sub-vectors [m1

d,m
2
d, ...,m

r
d], and each sub-vector mg

d corresponds to a meta-feature
group g ∈ {CosKnn,CosCent, L2Knn,L2Cent}. For each meta-feature group g, the
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Algorithm 1 Sparsification Algorithm
Require: Training and test sets Dtrain, Dtest in meta-feature space.
Ensure: Sparsification of Dtrain and Dtest.
1: for each meta-feature group g do
2: gmedian ← median(Dtrain, g)
3: for each document d ∈ Dtrain ∪ Dtest do
4: mg

d ← meta-features from group g in document d.
5: for each meta-feature i in mg

d do
6: if mg

d[i] < gmedian then
7: mg

d[i]← 0

algorithm calls the median() function to compute the median value gmedian for the set
formed by the union of all values in sub-vector mg

d in all documents in Dtrain (lines
1-2). Once the median value gmedian of meta-feature group g has been computed, the
algorithm compares the value of each group g meta-feature in each document d of the
training or test set with gmedian. If the meta-feature value is smaller than the median
value, it receives zero (lines 3-5).

The running time complexity of Algorithm 1 is Θ(nMF (|Dtrain| + |Dtest|)),
where nMF is the number of meta-features in the training and test sets. This bound
in running time is due to the fact that for each meta-feature in each group g, the
algorithm processes all documents in both training and test sets. The training set is
processed twice2 and each document in the test set once.

Depending on the number of groups of meta-features used, the total number of
meta-features nMF may vary from |C|, when only one (the smallest) meta-feature
group is used, to the maximum 2(|C| ∗ k + k), when all groups of meta-features are
utilized. As we show in Section 4.2.2, the running time of this sparsification process is
very fast in all experimented datasets and does contribute significantly to reduce the
overall running time of the whole pipeline.

3.3 Selective Sampling

In this pre-processing step, we apply the Cover selective sampling method [Silva et al.,
2016] to obtain a reduced yet representative subset of the training examples. Cover
was originally proposed for L2R problems. We adapt its use for text classification
by applying it to document representations instead of pairs (query,document). In
this case, the same premisses that work for L2R are valid for classification, such as
the possibility of computing distances between documents and the use of a minimum

2Once for computing the median and another to decide whether the meta-feature md of a training
document d must be zeroed.
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spanning tree to summarize the dataset. Cover is computationally much cheaper
than any compared alternative, scaling to larger collections while retaining most
information from the original dataset, serving well as a pre-processing step.

We should stress that in the present scenario we are assuming that we receive a
set of labeled data for training and our goal is to reduce it for performance reasons.
In this case, Cover is used to obtain a smaller and more informative training set.
Formally, let D be the training set in some feature space (e.g., TF-IDF or MF) from
which we want to obtain a representative subset D′ . Cover assumes that documents
in D that are “close enough” carry similar information. Thus, it groups “close enough”
documents into clusters of indistinguishable elements in terms of the information they
carry and then selects one representative from each cluster to generate the set D′ .

Let d(·, ·) be the Euclidean distance (ED) between two documents in the
(normalized) feature space. Given a non-negative real value λ, the cluster Ci ⊆ D of
indistinguishable elements (CIE) containing di ∈ D is recursively defined as follows:
(1) di ∈ Ci; and (2) if d′ ∈ Ci and d(d′, d) ≤ λ, then d ∈ Ci. Given a value λ, any d ∈ Ci
will yield the same cluster, and hence any element of a cluster can be used as a seed
for the whole cluster. Let G = (D, E) be the complete graph whose vertices are the
elements in D, and each edge e ∈ E, connecting any two vertices, has weight equal
to the ED between the two corresponding elements in the feature space. For a fixed
value of λ, the definition of CIE induces a subgraph Gλ = (D, Eλ) of G where the set
of edges Eλ ⊆ E contains only those edges from E with weights at most λ. Thus, each
connected component in the graph Gλ corresponds to a CIE.

For our purposes, the relevant edges of the induced subgraph Gλ are those
strictly necessary to identify the connected components. A subset of the edges Eλ is
redundant if, and only if, there is more than one distinct path between a pair of vertices
in a connected component. This, in turn, is the definition of cycles in an undirected
graph. By breaking all the cycles, we end up with a spanning tree of the cluster and,
moreover, if we systematically remove the edges with the greatest weights of these
cycles, our graph becomes the Minimum Spanning Tree (MST) of the component.
Since the weights of the edges in graph G = (D, E) correspond to the EDs between
pairs of elements in D, our problem of identifying all clusters connected by edges of
weights at most λ can be reduced to the problem of finding the Euclidean Minimum
Spanning Tree (EMST) of G and then eliminating the longest edge iteratively until
reach the desired number of clusters. The EMST can be computed efficiently with the
Dual-Tree Boruvka [March et al., 2010] (DTB) algorithm. DBT solves this problem
in O(|D| log |D| α(|D|)) time, where α(|D|) is the inverse Ackermann function, which
has an extremely low growth-rate (e.g., α(1080) ≤ 4).
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Algorithm 2 Cover Algorithm
Require: The training set D, number of desired samples s
Ensure: a representative subset D′ ∪ D, such that |D′| = s.
1: n← |D|
2: M← DualTreeBoruvka(D)
3: G = (D, E = ∅)
4: for all i ∈ {1, . . . , n− s} do
5: G.E ← G.E ∪ {Mi}
6: D′

= ∅
7: for all i ∈ {1, . . . , s} do
8: Ci ← i-thCluster(G, i)
9: ci ← GeometricCentroid(Ci)
10: pi ← NearestNeighbour(Ci, ci)
11: D′ ← D′ ∪ {pi}
12: Return D′

Algorithm 2 describes the Cover method. It receives as input the original
training set D and the size of the expected reduced training set s. It produces as
output the set D′ , where |D′ | = s. First, Cover executes the DTB algorithm to obtain
the EMST for all points in D (Line 2). The set of edges in EMST, in ascending order
of distances, is stored in setM. For every element of the edge set, we can tell exactly
how many document pairs will be selected for labeling if we include all edges up to it
(e.g., if we have n points and include the first s edges ofM, we will have exactly n− s
clusters to choose from–Lines 4-6). Then, Cover computes the centroids ci for each
cluster Ci (Line 9) and determines the element pi in Ci which is the nearest neighbor
of ci (Line 10). This element is then inserted in the output set D′ (Lines 11-12).

The complexity of the DBT does not include the time to compute the ED
between a pair of documents which is linear in the number of features composing each
document. In the case of BOW representation of the dataset (using TF-IDF), this time
complexity is O(|V |), where V is the dataset’s vocabulary. In the case where features
are the MFs, the time to compute the ED is Θ(nMF ), where nMF is the number
of meta-features used3. These differences in the size of the feature space can strongly
influence the execution time of DBT in the same collection represented with different
types of features (BOW or MF). The greatest differences (in favor of MFs) occur in
datasets where the number of meta-features nMF is much smaller than the size of V .

3See the discussion about the intervals for nMF in the last paragraph of Section 3.2.
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3.4 Summary

In Figure 3.3 we present a summary of the three new pre-processing steps proposed to
be used along with traditional classification pipelines. Each box represent a step. The
continuous arrows indicate the order of application of the methods, while the dashed
arrows correspond to the possible combinations that can be employed. Note that each
box contains the step name as well as the instantiation proposed in this work. In the
the next section, we evaluate the impact of instantiating each one of these steps, as
well the impact of their joint combinations in the overall text classification process.

Figure 3.3: The three new pre-processing steps that extend traditional classification
pipelines and their possible combinations.
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Experiments

4.1 Experimental Setup

4.1.1 Datasets and Notation

We consider the four real-world textual datasets used in [Canuto et al., 2018]:
(i) WebKB, with 8, 199 documents (i.e. Web pages), collected from Computer Science
departments of four universities, classified into 7 classes (such as student, faculty,
course and project web pages, etc.); (ii) 20NewsGroup, with 18, 846 newsgroup
documents, partitioned almost evenly across 20 different newsgroups categories;
(iii) ACM, a subset of the ACM Digital Library that contains 24, 897 articles related
to Computer Science, classified in 11 classes, according to the first level of the ACM
taxonomy; (iv) Reuters, classical text dataset, composed of 13, 327 news articles
collected and classified across 90 categories. Table 4.1 provides a brief characterization
of the reference datasets, reporting the number of features (words), documents, the
mean number of words per document (density) and the number of classes.

Dataset #Features #Documents Density #Classes
WebKB 23,090 8,199 101.6 7

20NewsGroup (20NG) 103,392 18,846 83.2 20
ACM 52,083 24,897 28.5 11

Reuters90 28,593 13,327 57.6 90

Table 4.1: Dataset characteristics

Regarding notation, MF (Cent) corresponds to the joint use of CosCent and
L2Cent centroid-based MF groups. Since such groups are the cheapest to compute,
we always use them together in our experiments. MF (Cent + CosKnn) corresponds
to the Centroid-based and CosKnn Groups while in MF (All) we use all groups,
including MF (L2Knn).

21
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4.1.2 Evaluation Metrics, Methods and Parameterization

We evaluate the effectiveness of our proposal with Micro Averaged F1 (MicroF1)
and Macro Averaged F1 (MacroF1) [Sokolova and Lapalme, 2009]. While MicroF1
measures the classification effectiveness overall decisions (i.e., the pooled contingency
tables of all classes), MacroF1 measures the classification effectiveness for each
individual class, averaging them.

All experiments were executed using a 10-fold cross-validation procedure. Pa-
rameters were set via cross-validation on the training set and the effectiveness of the
algorithms running with distinct types of features was measured in the test partition.
We adopted the LIBLINEAR [Fan et al., 2008] implementation of the SVM classifier,
as it still is one of the best text classifiers capable of dealing with both high and low di-
mensional representations in large datasets. The regularization parameter was chosen
among eleven values from 2−5 to 215 using the validation sets. Experiments were run on
an Intel superscript registered Core i7-5820K, running at 3.30GHz, with 32Gb RAM.

For feature selection (FS), we consider the importance score of Random Forests
applied to the original features (TF-IDF) as the method of choice [Louppe et al.,
2013], at a reduction rate of 30%, established again in preliminary experiments in
the validation sets. Those numbers were based on the largest reduction possible
without hurting effectiveness. For sparsification, a rate of 50% was established as the
best choice. As for selective sampling, we used a reduction regarding the number of
documents of 66% (2/3) in WebKB and 20NG, 33% (1/3) in ACM and 50% (1/2) in
Reuters90. Those values were set based on results in the validation sets that produced
the best trade-offs between effectiveness and efficiency.

To compare the average results on our cross-validation experiments, we assess the
statistical significance employing a paired t-test with 95% confidence and Bonferroni
correction to account for multiple tests. Some consider the Bonferroni correction too
conservative. To account for that, in our analyses we also consider the Friedman-
Nemenyi-Test [Zar, 2007] for multiple comparisons of mean rank sums. The Friedman
test is used to compare multiple methods (in our context, data representations) con-
sidering different datasets. The test procedure is as follows: for each fold of a dataset
in the cross-fold validation, for all datasets, the best performing method is ranked first
(1), the second-best gets rank 2, and so on. The methods are compared based on the
average of the assigned ranking across all folds. The H0 hypothesis (null-hypothesis)
considers that all methods have the same average ranking position for a predefined
p-value (i.e. 0.05). Nemenyi Post-Hoc is a procedure for pairwise rank comparison.
To identify methods that perform better than others, we calculate the difference of
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the average assigned ranking, in our case calculated by Friedman, between each pair
of methods and its standard error. Considering the results of a pair of methods, if
the interval between their difference plus standard error and their difference minus
standard error contains the value 0, their results are considered equivalent. We
perform an analysis for each specific dataset (within dataset), considering the folded
cross-validation, and a general analysis, considering all datasets (cross-dataset).

These tests assure that the best results are statistically superior to others or are
clearly marked as ties. Finally, we report the execution time of each step aiming at
analyzing the effectiveness-efficiency trade-offs in all steps of the proposed pipeline.
The metric is the overall time in seconds (average of 10 folds).

Next, we present the results of all variants of the proposed pipeline and baselines,
including: (i) Original TF-IDF representation; (ii) Feature selection applied to
TF-IDF (FS); (iii) MF only (3 variants)–MF (Cent), MF (Cent + CosKnn) and
MF (All); (iv) Meta-features followed by selective sampling (MF (∗) +SS)–3 variants;
(v) Meta-features followed by sparsification of the MF matrix (MF (∗) + SPA)–3
variants); (vi) complete pipeline, e.g., MF generation, followed by sparsification and
selective sampling (MF (∗) + SPA + SS)–3 variants. The overall best results for
one dataset and one metric are highlighted in bold. If there are statistical ties for
the best results, all ties are marked in bold. We use the symbols H, N, and • to
denote, respectively, statistical inferiority, superiority, and ties of the proposed variants
concerning the TF-IDF representation in terms of effectiveness.

Before we proceed with our analyses, we point out that we only show the results
of the feature selection (FS) step applied to the original TF-IDF representation. The
application of FS before the generation of the MF representations produced losses in
terms of effectiveness in most cases, with practically no gains in efficiency. For these
reasons and the sake of simplicity and space, we do not present the results of the FS
+ MF variants.

4.2 Experimental Results

4.2.1 Effectiveness Analysis (RQ1)

We can see in Table 4.2 that the two most effective representations are those that con-
sider the Knn-based meta-features (i.e., MF (All) and MF (Cent+ CosKnn)). These
two groups produce the overall best results in all datasets considering both MicroF1
and MacroF1 (tying with TF-IDF only in WebKB, but never losing). For instance,
MF (All) achieves impressive results in Reuters90, gains of up to 52% over TF-IDF in
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WebKB 20NG
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

TFIDF 82.26(0.9) 72.90(2.1) 627.8 89.23(0.7) 89.07(0.7) 2,957.4
FS 82.79(1.0) • 73.41(2.4) • 518.7 88.82(0.7) • 88.64(0.8) • 2,490.7
MF(Cent) 78.29(1.1) H 68.84(2.5) H 46.3 83.56(0.5) H 83.12(0.6) H 465.0
MF(Cent) + SS 78.43(1.1) H 68.56(2.7) H 25.4 83.14(0.4) H 82.72(0.5) H 153.6
MF(Cent) + SPA 78.33(1.0) H 68.84(2.5) H 34.9 82.94(0.6) H 82.51(0.5) H 316.2
MF(Cent) + SPA + SS 78.37(1.1) H 68.05(1.9) H 21.6 82.77(0.4) H 82.35(0.5) H 149.5
MF(Cent+CosKnn) 81.49(0.8) • 71.51(2.4) • 372.4 91.00(0.5) N 90.84(0.6) N 1,302.1
MF(Cent+CosKnn)+SS 80.66(1.0) • 70.59(2.5) • 191.0 90.60(0.5) N 90.48(0.5) N 382.2
MF(Cent+CosKnn)+SPA 81.22(0.9) • 71.78(2.1) • 247.8 90.77(0.5) N 90.63(0.5) N 719.8
MF(Cent+CosKnn)+SPA+SS 80.83(0.9) • 70.71(2.1) • 129.9 90.36(0.5) N 90.21(0.6) N 305.2
MF(All) 80.91(1.0) • 71.62(2.4) • 644.0 90.88(0.5) N 90.74(0.6) N 2171.7
MF(All) + SS 80.29(1.1) • 69.87(2.4) • 323.0 90.61(0.4) N 90.48(0.4) N 653.0
MF(All) + SPA 81.03(0.9) • 71.59(1.7) • 387.5 90.78(0.4) N 90.64(0.5) N 1641.6
MF(All) + SPA + SS 80.55(1.1) • 70.51(2.1) • 198.2 90.25(0.4) N 90.10(0.5) N 568.7

ACM Reuters90
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

TFIDF 77.76(0.4) 67.95(0.7) 1,883.4 73.31(1.0) 31.86(3.2) 1,643.3
FS 77.41(0.4) • 67.25(1.4) • 1,501.6 73.54(1.1) • 31.61(3.0) • 1,317.4
MF(Cent) 72.55(0.9) H 62.91(1.2) H 727.0 72.71(0.9) • 36.20(2.7) N 1,086.9
MF(Cent) + SS 72.02(0.8) H 62.08(1.2) H 54.0 73.07(1.1) • 35.98(2.1) N 254.0
MF(Cent) + SPA 72.56(0.8) H 62.92(1.2) H 390.7 70.74(1.4) • 34.24(2.6) N 871.8
MF(Cent) + SPA + SS 70.02(0.8) H 62.08(1.2) H 52.8 71.58(1.3) • 34.57(2.1) N 191.8
MF(Cent+CosKnn) 79.86(0.4) N 70.33(1.0) N 4,105.5 78.77(0.9) N 44.34(2.6) N 4,027.0
MF(Cent+CosKnn)+SS 79.28(0.5) N 69.83(1.3) N 826.4 80.05(0.7) N 45.53(2.8) N 1,155.5
MF(Cent+CosKnn)+SPA 79.99(0.4) N 70.47(1.0) N 2,632.3 78.58(1.0) N 44.13(2.5) N 2,558.7
MF(Cent+CosKnn)+SPA+SS 79.29(0.6) N 69.37(1.8) N 678.8 78.26(1.0) N 44.35(3.0) N 750.7
MF(All) 79.39(0.4) N 69.33(1.2) N 8,075.0 82.32(0.7) N 48.42(2.6) N 7,426.1
MF(All) + SS 79.71(0.7) N 69.57(1.4) N 1,131.1 82.56(0.8) N 48.74(2.8) N 2,018.1
MF(All) + SPA 79.39(0.5) N 69.47(1.2) N 6,364.1 81.86(1.0) N 48.33(3.3) N 4,356.8
MF(All) + SPA + SS 79.45(0.5) N 69.17(1.4) N 1,063.5 82.43(0.7) N 48.55(2.7) N 1,201.2

Table 4.2: Effectiveness and Efficiency Results of All Variants of the Proposed Pipeline
by t-test with Bonferroni correction.

MacroF1. MF (Cent+CosKnn) also produces large improvements in this dataset with
a tie in Macrof1 with MF (All). Also notice that in all datasets, with both metrics, all
versions that employ data reduction (i.e., that use SPA and/or SS) do not suffer from
any statistically significant loss with regard to their “full” version. This is is important
evidence for answering RQ4, as smaller representations are usually more efficient. We
will further elaborate on this later on.

As mentioned, we also conducted an analysis with Friedman and Nemenyi post-
hoc tests. As explained, the Friedman test is a non parametric alternative to the
one-way ANOVA used to test differences among methods (in our case, the data repre-
sentations). Given n blocks (repetitions) and k treatments (data representations), the
Friedman test ranks each representation based on the mean of each repetition. Nemenyi
is a post-hoc pairwise test for multiple comparisons of ranks . This test is able to find
the groups that differ after a statistical significance test (in our case, Friedman test).
Results are presented in Table 4.3, in which the values correspond to the average rank



4.2. Experimental Results 25

Avg. Rank per dataset AvgRepresentation WebKB 20NG ACM Reuters90 Cross-Dataset
TFIDF 3.70 8.95 9.05 10.70 9.50
FS 2.55 10.00 9.70 9.90 9.50
MF(Cent) 12.25 11.20 11.50 11.45 11.40
MF(Cent) + SS 11.55 12.15 13.50 10.60 11.90
MF(Cent) + SPA 12.30 12.65 11.50 13.40 12.80
MF(Cent) + SPA + SS 12.15 14.00 13.50 12.95 13.90
MF(Cent+CosKnn) 4.40 2.05 2.15 6.50 5.10
MF(Cent+CosKnn)+SS 6.75 5.20 5.65 5.10 6.30
MF(Cent+CosKnn)+SPA 4.55 3.20 1.50 7.05 6.30
MF(Cent+CosKnn)+SPA+SS 6.40 6.35 6.90 7.35 8.00
MF(All) 6.35 3.20 4.85 2.35 1.90
MF(All) + SS 8.60 5.00 5.15 1.80 2.90
MF(All) + SPA 5.65 3.55 4.90 3.45 2.10
MF(All) + SPA + SS 7.80 7.50 5.15 2.40 3.40

Table 4.3: Rank per dataset and Cross-dataset Friedman Analysis on Micro-F1. Bold
denotes rank ties by Nemenyi post-hoc.

position in the 10-fold cross-validation, considering MicroF1, of each representation in
each dataset and cross-datasets (last column). Bold denotes rank ties based on the
Nemenyi post-hoc test. As we can see in the Table 4.3, the Friedman-Nemenyi-tests
agrees in most part with the t-tests with Bonferroni correction presented in Table 4.2.

One noticeable difference is that, according to the Friedman’s test, MF (Cent +

CosKnn) and its variants now statistically tie with MF (All) considering both, Mi-
croF1 and MacroF1 in Reuters90 – in the previous test, there were ties only inMacroF1.
And confirming the previous test, MF (Cent+CosKnn) and MF (All) and their vari-
ants are the best representations, with ties with (TF-IDF and FS) only in WebKB.

Regarding the ranks themselves, we can see that in a within dataset analysis,
in 3 out of 4 datasets (WebKB, 20NG and ACM) the MF (Cent + CosKnn) and its
variants usually get lower ranks that MF (All), while the opposite behavior occurs in
Reuters90. On the other hand, in the cross-dataset comparison, the MF (All) + (∗)
have a slight tendency to have lower ranks, but from a statistical point of view, none
of these differences are significant and both set of representations can be considered as
equivalent according to the performed test.

Our results for the considered MF representations corroborate some of the
results first obtained in [Canuto et al., 2018]: the MF space not only preserves the
information in the original TF-IDF space but, in fact, enhances it by exploiting
distance-based information from labeled data. In any case, the use of MFs as
an explicit step in the pre-processing phase of text classification pipelines has not
been discussed before, mainly when considering the effectiveness-efficiency trade-offs
imposed by its use in this context. That is what we analyze next.
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4.2.2 Efficiency Analysis (RQ2; RQ4)

In this section, we provide answers to research questions RQ2 and RQ4. In this analysis
we will consider only the two most effective representations: MF (All) andMF (Cent+

CosKnn). The overall total time forMF generation of these pipeline variants is shown
in Table 4.2. It corresponds to the sum of the times forMF construction, sparsification,
selective sampling and classifier learning (including parameter optimization).

Figure 4.1 presents the results in Macro-F1 by time for TFIDF, FS, MF (Cent +
CosKnn) + (*) and MF (All) + (*). The idea is to be able to visualize the effectiveness
of the methods in comparison with the time spent in training. On the y axis, we measure
the Macro-F1 for the method, while on the x axis, we measure 1/time. Note that we
use 1/time so that the most efficient methods are to the right of the axis. The lines cor-
respond to the median values for the x and y axes (1/time and Macro-F1, respectively).
Thus, the methods belonging to the first quadrant are those with better effectiveness
than the median, but are more expensive. The second quadrant methods (clockwise)
are considered the best in efficiency and effectiveness. Those in the third quadrant
are the worst in MacroF1 but faster than the median. Finally, the fourth quadrant
methods are worse than the median in time and effectiveness. To summarize, the more
to the right and and the higher, the better the efficiency-effectiveness trade-off for the
methods in question. Later on, in Table 4.5, we will break down these individual times
for analysis purposes, but for now, we will concentrate on the overall time to analyze the
trade-offs. All comparisons will be made against the faster version of TF-IDF, after ap-
plying feature selection (FS), since this is a standard procedure in traditional pipelines.
FS caused a reduction of 30% of the features without diminishing effectiveness.

Figure 4.1 shows that, in all cases, both proposed steps (SPA and SS) produced
significant efficiency gains, individually or when applied in conjunction, when com-
pared to the MF versions. The SS step produces the largest time reductions when
compared to SPA, though the later is also very efficient. When combined together,
the largest cost reductions are usually observed. Note in Table 4.2, that although
no effectiveness gains could be observed in WebKB with the use of the MFs, costs
were reduced by a factor of 4.0 in the case of MF (Cent + CosKnn) + SPA + SS.
MF (Cent + CosKnn) also produced the best trade-offs in 20NG with one of its
variants (MF (Cent + CosKnn) + SPA + SS) producing statistically significant
effectiveness gains over TF-IDF with up to 9.7x processing time reductions.
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(a) WebKB (b) 20NG

(c) ACM (d) Reuters90

Figure 4.1: Trade-off between Macro-F1 (effectiveness) and training time (efficiency)
for each dataset.

In ACM, we do have a clear winner: MF (Cent+CosKnn)+SPA+SS. Though
slightly below the median, its results are statistically equivalent to the best ones. In
other words, MF (Cent + CosKnn) + SPA + SS produces effectiveness results that
are better than TF-IDF and as good as any variant of MF (All), at a much lower
cost than any other alternative. ACM is an excellent example of the benefits SPA
and SS bring together to the classification task. Each step in isolation produces some
reduction in the overall costs, but when applied together they do reduce the overall
time of MF (Cent + CosKnn) by a factor of 6.0, resulting in an overall time almost
2.2x faster than TF-IDF with gains in effectiveness.

In Reuters90, we have a “good dilemma”. Both MF (All) + SPA + SS and
MF (Cent+CosKnn) + SPA+ SS, belonging to the second quadrant, produce large
effectiveness gains against TF-IDF, with the former having a slight tendency (not
statistically significant) of producing better results in terms of MacroF1. As we can
see, onlyMF (All) andMF (Cent+CosKnn) are slower in terms of efficiency. However,
by applying the entire proposed pipeline, these costs are significantly reduced.
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Overall, if cost is not an issue, we would recommend MF (All) + SPA + SS,
otherwise MF (Cent+CosKnn) + SPA+ SS offers a better compromise, being more
effective and faster than FS and TF-IDF. We emphasize that, in the particular case
of Reuters90, even some MF (Cent) variants are good alternatives. For instance,
MF (Cent) + SS has significant effectiveness gains in MacroF1 (with no loss in Mi-
croF1) and is 5.2x faster than TF-IDF (even after FS). Considering all the results and
effectiveness-efficiency trade-off analyses, our recommendation as a better compromise
is MF (Cent+ CosKnn) + SPA+ SS.

These impressive results can be explained by reductions in dimensionality
produced by the MF step, density reductions induced by the sparsification step (SPA),
and selective sampling of instances to be used for training. The impact of these steps
in each variant of the pipeline is detailed in Table 4.4.

WebKB 20NG
Dim. Red. Dens. Inc. #inst. Dim. Red. Dens. Inc. #inst.

TFIDF 23,090 - 101.6 - 7,379 103,392 - 83.2 - 16,961
FS 8,233 2.8x 88.6 0.87x 7,379 24,304 4.3x 74.0 0.89x 16,961
MF(Cent+CosKnn) 154.0 1.5x 7,379 240.0 2.9x 16,961
MF(Cent+CosKnn) + SS 154.0 1.5x 4,796 240.0 2.9x 11,024
MF(Cent+CosKnn) + SPA 150.1 1.5x 7,379 130.4 1.6x 16,961
MF(Cent+CosKnn) + SPA + SS

154 149.9x

149.2 1.5x 4,796

240 430.8x

132.5 1.6x 11,024
MF(All) 294.0 2.9x 7,379 440.0 5.3x 16,961
MF(All) + SS 294.0 2.9x 4,796 440.0 5.3x 11,024
MF(All) + SPA 290.1 2.9x 7,379 330.3 4.0x 16,961
MF(All) + SPA + SS

294 78.5x

291.2 2.9x 4,796

440 235.0x

333.4 4.0x 11,024
ACM Reuters90

Dim. Red. Dens. Inc. #inst. Dim. Red. Dens. Inc. #inst.
TFIDF 52,083 - 28.5 - 22,407 28,593 - 57.6 - 11,994
FS 15,601 3.3x 25.8 0.90x 22,407 6,196 4.6x 51.9 0.90x 11,994
MF(Cent+CosKnn) 242.0 8.5x 22,407 1,080.0 18.8x 11,994
MF(Cent+CosKnn) + SS 242.0 8.5x 7,842 1,080.0 18.8x 5,997
MF(Cent+CosKnn) + SPA 187.1 6.6x 22,407 586.6 10.2x 11,994
MF(Cent+CosKnn) + SPA + SS

242 215.2x

186.2 6.6x 7,842

1,080 26.5x

586.0 10.2x 5,997
MF(All) 462.0 16.2x 22,407 1,980.0 34.4x 11,994
MF(All) + SS 462.0 16.2x 7,842 1,980.0 34.4x 5,997
MF(All) + SPA 406.8 14.3x 22,407 1486.2 25.8x 11,994
MF(All) + SPA + SS

462 112.7x

407.3 14.3x 7,842

1,980 14.4x

1485.8 25.8x 5,997

Table 4.4: Dimensionality, Density and Sampling Analysis

In fact, the reduction in the number of features (dimensionality) is considerable:
for the two best representations, MF (All) and MF (Cent + CosKnn) (and its vari-
ants), it goes from a factor of 430.8x (maximum, in 20NG, withMF (Cent+CosKnn))
to 14.4x (minimum, in Reuters90, with MF (All)). We can also see in Table 4.4 that
the proposed sparsification strategies (columns with +SPA) were able to reduce the
density in the MF representations by a factor of 50% with no losses in effectiveness
in all cases and large gains in learning time. The application of selective sampling
(columns with #inst.) reduced the datasets sizes between 33% and 66%, with no
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losses in effectiveness. These reductions resulted in the aforementioned impressive
gains in terms of efficiency of the final learning process.

WebKB
Time MF SVM Total

Train Test Test[avg] SPA SS Grid Train Test Test[avg]
TFIDF * * * * * 591.38 26.35 2.62 3.21e-03 627.8
FS * * * * * 486.71 20.53 2.21 2.71e-03 518.7
MF(Cent+CosKnn) * * 354.24 6.10 0.39 4.82e-04 372.4
MF(Cent+CosKnn)+SS * 9.62 166.63 2.79 0.27 3.34e-04 191.0
MF(Cent+CosKnn)+SPA * 230.30 5.44 0.32 3.85e-04 247.8
MF(Cent+CosKnn)+SPA+SS

3.76 0.49 5.99e-04
0.02 4.63 115.33 2.66 0.22 2.71e-04 129.9

MF(All) * * 617.64 10.89 0.87 1.06e-03 644.0
MF(All)+SS * 18.12 285.52 4.31 0.51 6.26e-04 323.0
MF(All)+SPA * 363.36 8.94 0.68 7.54e-04 387.5
MF(All)+SPA+SS

6.22 0.90 1.09e-03
0.04 8.29 178.73 4.43 0.42 5.14e-04 198.2

20NG
TFIDF * * * * * 2,801.90 127.30 11.37 6.03e-03 2,957.4
FS * * * * * 2,360.50 94.58 9.88 5.24e-03 2,490.7
MF(Cent+CosKnn) * * 1,229.50 8.37 1.96 1.04e-03 1,302.1
MF(Cent+CosKnn)+SS * 37.50 277.25 4.06 1.10 5.86e-04 382,2
MF(Cent+CosKnn)+SPA * 647.61 8.07 1.71 9.09e-04 719,8
MF(Cent+CosKnn)+SPA+SS

29.63 15.78 8.37e-03
0.10 37.44 200.14 4.07 1.19 6.33e-04 305,2

MF(All) * * 2,062.10 16.55 4.19 2.22e-03 2,171.7
MF(All)+SS * 69.29 485.70 7.19 1.95 1.03e-03 653,0
MF(All)+SPA * 1,534.80 14.47 3.21 1.70e-03 1,641.6
MF(All)+SPA+SS

49.83 22.19 1.18e-02
0.19 69.01 400.13 8.22 2.23 1.18e-03 568,7

ACM
TFIDF * * * * * 1,789.40 80.99 6.26 2.51e-03 1,883.4
FS * * * * * 1,419.30 60.41 5.17 2.08e-03 1,501.6
MF(Cent+CosKnn) * * 3,990.80 62.02 7.72 3.10e-03 4,105.5
MF(Cent+CosKnn)+SS * 321.59 451.51 6.45 1.86 7.48e-04 826,4
MF(Cent+CosKnn)+SPA * 2,542.80 39.60 4.76 1.91e-03 2,632.3
MF(Cent+CosKnn)+SPA+SS

28.71 9.52 3.82e-03
0.12 176.76 430.00 22.57 4.38 1.76e-03 678,8

MF(All) * * 7,864.20 119.78 14.10 5.66e-03 8,075.0
MF(All)+SS * 339.87 698.38 12.22 3.71 1.49e-03 1,131.1
MF(All)+SPA * 6,200.00 77.54 9.39 3.77e-03 6,364.1
MF(All)+SPA+SS

54.66 15.51 6.23e-03
0.21 319.78 650.85 12.03 3.74 1.50e-03 1,063.5

Reuters90
TFIDF * * * * * 1,544.90 84.86 5.75 4.31e-03 1,643,3
FS * * * * * 1,209.80 60.72 5.05 3.79e-03 1,317.4
MF(Cent+CosKnn) * * 3,810.10 38.00 9.57 7.18e-03 4,027.0
MF(Cent+CosKnn)+SS * 118.83 847.33 13.94 6.08 4.56e-03 1,155.5
MF(Cent+CosKnn)+SPA * 2,344.40 36.24 8.28 6.22e-03 2,558.6
MF(Cent+CosKnn)+SPA+SS

87.35 74.11 5.56e-02
0.39 109.37 456.98 9.65 5.02 3.77e-03 750,7

MF(All) * * 7,077.80 75.68 17.32 1.30e-02 7,426.1
MF(All)+SS * 203.16 1,524.30 24.86 10.52 7.89e-03 2,018.1
MF(All)+SPA * 4,024.20 63.08 13.66 1.03e-02 4,356.8
MF(All)+SPA+SS

136.57 110.84 8.32e-02
0.57 118.44 801.73 16.85 8.30 6.68e-03 1,201.2

Table 4.5: Time Spent in Each Step of the Proposed Pipeline (* does not apply)

For our final analysis regarding these research questions, we now break down
the overall time in the individual times taken by each step of the proposed pipeline.
These times can be seen in Table 4.5. We can see that the time to generate the
meta-features (MF column) in all datasets is at most 21.5% of the overall time.which
is largely dominated by the time to train the SVM classifier (comprising parame-
terization and actual learning). In the cases in which the whole pipeline is applied
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(MF (Cent + CosKnn) + SPA + SS), the SVM learning time is usually between
66%-95% of the overall time. The SPA time is thus quite negligible in all cases, when
compared to the total time. Also, the time for SS is no more than 35% of the overall
time. In fact, in the largest and more difficult datasets (ACM and Reuters90) the
time for SS is considerably lower than the time to create the MF representations. But
as we shall see this representation is crucial for the application of SS step.

The most interesting results are again seen when applying the whole pipeline.
The two additional steps of sparsification and selective sampling can reduce the overall
time by a factor of 7.6-13.8 when compared to MF (∗) causing also the overall time
to be much lower than that of the TF-IDF (up to 2.2 times faster) in all cases. These
gains in efficiency come mainly due to the reduction of the SVM learning time as
a result of the low-dimensional, “not-so-dense” (in terms of lines/documents) final
representation produced by the proposed pipeline. Note that the test and test average1

time in all cases are negligible when compared with the the other steps of the pipeline.
Therefore, our proposal can explore efficiency and effectiveness representations.

4.2.3 Comparison with Embedding-Based Representations

(RQ3)

Remind that the research question we aim at answering in this section is “How do
the MFs compare with other alternative low-dimensional representations (e.g., word
embeddings) in terms of effectiveness and incurred costs?” In order to answer this, we
run experiments with three embeddings-based representations described in section 2.2:
PTE, FisherVector and FastText. As a way of keeping the comparison fair, we stan-
dardize the use of the SVM as default classifier, with the parameterization explained
in Section 4.1.2. For generating each representation, best parameters were searched
using Grid Search with the validation sets. We present in Table 4.6 the searched pa-
rameters for each method, as well as, the search values range. Rows that have only one
value correspond to parameters for which we use the best values based on the original
works [Lev et al., 2015; Mikolov et al., 2018a; Tang et al., 2015]. The best parameters
found for each representation are marked in bold. The best found parameters were
the same for all 4 considered datasets.

1In Table4.5, column Test stands for the average time to classify the complete test set, whereas
Test[avg] corresponds to the average time taken to classify an instance of the test set.
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Parameter Values
context window [1, 2, 3, 4, 5]
samples [100, 200, 300]
dimension [100, 300]PTE

min word count 1
pre-treined embedding [GloVe, GoogleNews]FisherVector dimension [100, 300]
context window [1, 2, 3, 4, 5]
epochs [100, 500, 1000]
dimension [100, 300]
learning rate [0.1]

FastText

loss function [Skipgram negative sampling (a.k.a. ns)]

Table 4.6: Embedding-Based Representations Parameterization Search.

The overall time includes the time to generate these representations. Results are
shown in Table 4.7. As before, results in bold are the best among all and the arrow
markers correspond to the comparisons with FS, the faster Bow-based representation.
As we can see, in terms of effectiveness, FastText is clearly the worst among the
embeddings representations (6 losses in 8 cases), while PTE and FisherVector are more
competitive. In any case, all embeddings-based representations are worse than (or at
most tie with) FS in all cases. In fact, there are even significant losses, for instance,
with all embeddings approaches in WebKB and with FastText in ACM and 20NG.
Indeed, embeddings are never competitive when compared to the MF representations.
In all cases, there are significant losses.

In terms of efficiency, the embeddings results are even poorer: the overall times
to generate them are 1.5x-31.1x slower than FS. When compared to the overall times
after the application of our pipeline, the losses are even more significant – they reach
up to 68.9x of slowdown (as in the case of Fisher vsMF (Cent+CosKnn)+SPA+SS

in ACM).

WebKB 20NG
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

FS 82.79(1.0) 73.41(2.4) 518.7 88.82(0.7) 88.64(0.8) 2,490.7
MF(Cent+CosKnn)+SPA+SS 80.83(0.9) • 70.71(2.4) • 129.9 90.36(0.5) N 90.21(0.6) N 305.2
MF(All) + SPA + SS 80.55(1.1) • 70.51(2.1) • 198.2 90.25(0.4) N 90.10(0.4) N 568.7
PTE + SVM 72.0(1.1) H 59.10(2.9) H 765.9 88.96(0.5) • 88.72(0.5) • 2,480.7
FisherVector + SVM 74.81(0.7) H 64.45(1.1) H 16,121.0 87.88(2.8) • 87.44(2.9) • 38,497.8
FastText+SVM 76.80(1.2) H 69.17(2.8) • 390.7 81.58(0.6) H 81.14(0.7) H 1,906.6

ACM Reuters90
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

FS 77.41(0.4) 67.25(1.4) 1,501.6 73.54(1.1) 31.61(3.1) 1,317.4
MF(Cent+CosKnn)+SPA+SS 79.29(0.7) N 69.37(1.8) N 678.8 78.36(1.0) N 44.35(2.9) N 750.7
MF(All) + SPA + SS 79.45(0.5) N 69.17(1.4) N 1,063.5 82.43(0.7) N 48.55(2.7) N 1,201.2
PTE + SVM 76.41(0.7) • 63.71(1.2) H 2,912.1 72.54(0.9) • 30.52(2.5) • 1,719.5
FisherVector + SVM 75.34(1.1) • 69.05(2.5) • 46,675.2 63.28(0.7) H 28.37(3.8) • 6,253.5
FastText + SVM 73.64(0.7) H 62.67(1.3) H 1,191.9 68.08(0.9) H 32.26(2.2) • 1,571.5

Table 4.7: Comparison with Word Embeddings Approaches
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To better understand this rather surprising results, we run additional experiments
in which we use:

• the original classifiers with which the embedding representations were run, i.e.,
Linear Regression (LR) for PTE and FastText and SVM for FisherVector as
already reported in Table 4.7 ;

• the TF-IDF original representation (without Feature selection) with Linear re-
gression, since these were the baselines for PTE and FastText in the original
works; as before, the LR classifier was tuned using the validation sets;

• Bow-based representation (FS and TF-IDF) without tuning of the Linear Re-
gression classifier, since the original works were not clear about how they pa-
rameterized LR. The hypothesis here is that LR when applied to BOW-based
representations may have been improperly tuned.

Results are shown in Table 4.8.

WebKB 20NG
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

TFIDF + SVM 82.26(0.9) • 72.90(2.1) • 627.8 89.23(0.7) • 89.07(0.7) • 2,957.4
FS + SVM 82.79(1.0) • 73.41(2.4) • 518.7 88.82(0.7) • 88.64(0.8) • 2,490.7
TFIDF + LR 82.24(0.6) • 70.54(1.8) • 16.4 89.65(0.6) • 89.42(0.6) • 120.8
TFIDF + LR (without tunning) 79.79(0.7) H 63.78(1.4) H 0.8 86.73(0.6) H 86.05(0.7) H 6.7
FS + LR 82.33(0.7) • 70.94(2.3) • 12.9 89.25(0.6) • 89.03(0.6) • 67.8
FS + LR (without tunning) 79.78(0.8) H 63.88(1.6) H 0.6 86.25(0.6) H 85.50(0.7) H 4.2
PTE + SVM 71.92(0.9) H 59.40(2.2) H 765.9 88.96(0.5) • 88.72(0.5) • 2,480.7
PTE + LR 72.28(0.8) H 59.23(1.6) H 349.9 89.19(0.5) • 88.85(0.5) • 636.1
FisherVector + SVM 74.81(0.7) H 64.45(1.1) H 16,121.0 87.88(2.8) • 87.44(2.9) • 38,497.8
FastText + SVM 76.80(1.2) H 69.17(2.8) • 390.7 81.58(0.6) H 81.14(0.7) H 1,906.6
FastText + LR 75.61(1.2) H 65.98(1.7) H 285.9 80.56(0.5) H 80.09(0.5) H 1,144.2

ACM Reuters90
MicroF1 MacroF1 Time(s) MicroF1 MacroF1 Time(s)

TFIDF + SVM 77.76(0.4) • 67.95(0.7) • 1,883.4 73.31(1.0) • 31.86(3.2) • 1,643.3
FS + SVM 77.41(0.4) • 67.25(1.4) • 1,501.6 73.54(1.1) • 31.61(3.1) • 1,317.4
TFIDF + LR 78.64(0.4) 65.54(1.1) • 45.1 66.85(0.9) H 33.43(2.4) • 228.3
TFIDF + LR (without tunning) 76.60(0.7) • 59.58(0.6) H 1.7 69.50(1.2) H 25.49(2.0) H 9.8
FS + LR 78.02(0.4) • 64.69(0.7) H 31.3 67.92(0.9) H 32.55(2.2) • 152.5
FS + LR (without tunning) 76.13(0.6) • 59.20(0.6) H 1.2 66.71(1.1) H 25.44(2.1) H 7.4
PTE + SVM 76.41(0.7) • 63.71(1.2) H 2,912.1 72.54(0.9) • 30.52(2.5) • 1,719.5
PTE + LR 76.18(0.6) • 63.35(1.3) H 501.0 67.36(0.7) H 31.08(2.5) • 1,192.9
FisherVector + SVM 75.34(1.1) • 69.05(2.5) • 46,675.2 63.28(0.7) H 28.37(3.8) • 6,253.5
FastText + SVM 73.64(0.7) H 62.67(1.3) H 1,191.9 68.08(0.9) H 32.26(2.2) • 1,571.5
FastText + LR 73.39(0.7) H 61.33(1.1) H 599.9 66.35(0.7) H 30.58(2.2) • 2,294.9

Table 4.8: Additional Experiments with Linear Regression (LR) classifier and
parametrization tunning

As can be seen, in Table 4.8, the results show that:

• Feature selection did not have much impact on effectiveness when used with LR.
This is consistent with our previous results with SVM.
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• LR produces equivalent or worse results than SVM in all cases (e.g., there are
losses in Reuters90 and ACM with FS). In fact, our results with PTE + SVM
are even higher in 20NG than those reported in the original work;

• Results of TF-IDF without LR tuning are consistent with those reported in the
original papers when using the same datasets (e.g., 20NG).

In sum, the alleged claims of superiority of the embedding representations over
the BoW-based ones previously reporteded may have been a combination of: (i) the
use of weaker classifiers (e.g. LR); (ii) unfair tuning of the baselines; (iii) improper
experimental protocols (all experiments were run with a single split of the datasets);
(iv) lack of statistical significance tests to reject the null hypothesis of equality of
results; (v) a combination of some or all the above options. Similar issues have been
recently reported in comparative works in related areas (e.g., [Dacrema et al., 2019;
Shen et al., 2018]).

We should stress that these results regard only ATC tasks in the tested datasets
and cannot be generalized for all NLP tasks in which the experimented embeddings
can be used.

4.2.4 Selective Sampling Applied to TF-IDF (RQ5)

A natural question that arises from our discussion is whether we could perform a selec-
tive sampling in the original high-dimensional TF-IDF representation before generating
the MFs. Figure 4.2 shows the application of Cover on the TF-IDF representation after
feature selection. We use the loge scale due to the large time difference in both appli-
cations. We can see that the sampling time in this representation is 13.1x to 176.6x
slower than when applying it to MF (All). In fact, when comparing with the results
in Figure 4.2, we can see that SS applied to TF-IDF is 6.3x to 34.7x slower than just
using the original TF-IDF (with FS - Table 4.5) to learn the classifier, with no selective
sampling at all.

Figure 4.2: Log of the Time Spent in Cover on TF-IDF Representation.
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Simply put, Cover, as designed, is not suitable to be applied to the original
TF-IDF representation before generating MFs, since its complexity is highly influenced
by the dimensionality size (see Section 3.3).

4.2.5 Impact on other Classifiers (RQ6)

In these experiments, we chose to show the results with MF (All) (instead of
MF (Cent + CosKnn)) and the complete pipeline MF (All) + SPA + SS applied to
it. We do so because MF (All) is the most complete meta-level representation we
experiment with. As we do not know, a priori, how the other classifiers would behave
with the MF representation, we provide to them as much information as we could.
As one of our main goals with these experiments is to check whether the observed
gains in efficiency could be replicated with other classifiers, MF (All) serves well our
purpose. We leave for the future experimentations with all other variants. As before,
all parameterization of learners and pipelines was performed in the validation sets.

As representatives of state-of-the-art classifiers we chose the Random Forest (RF)
classifier and two recently proposed extensions of RF that has excelled in text classi-
fication tasks: BROOF [Salles et al., 2015] and BERT [Campos et al., 2017]. RF was
proposed by Breiman [Breiman, 2001], and its fundamental aspect that guarantees the
high effectiveness is the large set of low-correlated trees composing the forest, which
is obtained by disturbing the data with series of random procedures, such as bagging
of the training set and random attribute selection drawn from a randomly chosen sub-
set of features. BROOF, a boosted RF strategy that combines boosting and bagging
by exploiting RF as "weak learners", and BERT, which is BROOF-like and adds an
additional source of randomization to reduce bias. Concerning those algorithms, we
set the parameters as suggested in [Campos et al., 2017; Salles et al., 2015]. We also
chose two simple neural network architectures (NNs). Their simplicity was targeted at
efficiency, mainly for hyperparameter optimization, thus they are trained following a
parameterization process with cross-validation, as the other classifiers. This guarantees
a fair comparison. As shown in the literature [Le et al., 2018] deep models have not yet
proven to be more effective than shallow models for ATC tasks, thus, both chosen NNs
have few layers and simpler architecture for the sake of efficiency. Both architectures
are feed-forward neural network: the first one, named Multilayer Perceptron (MLP)
consists of one input and one output layer. The second, named Deep Multilayer Per-
ceptron (DMLP) comprises one input layer, some hidden layers and one output layer.
For parameter optimization (based on MacroF1), we use the Tree-of-Parzen-Estimators
(TPE) algorithm with both NNs models [Bergstra et al., 2015]. The number of neu-
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rons, learning rate, activation function, type of regularization were optimized in both
NNs, while dropout and number of layers were optimized only in the DMLP architec-
ture. Our deep learning models were implemented using Keras and trained on an Intel
superscript registered Core i7, 64 GB of memory and GPU Titan V. The number of
epochs and batch size are set to 100 and 64, respectively. We also use early stopping
criteria and set patience to 20 epochs. Figure 4.3 presents the results of MicroF1,
MacroF1 and time for each of the considered classifiers and representations.

Figure 4.3: Proposed Pipeline Applied to Other State-of-The-Art Classifiers.
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We start our analysis by observing that the overall best results among all classi-
fiers in all datasets, considering all metrics, are still produced by SVM. As mentioned
before, as far as we know, SVM is still one of the best-known text classifiers, at least in
the tested datasets. Regarding the RF and RF-based classifiers (BERT and BROOF),
we can see that the latter produced slightly better results in terms of effectiveness. In
terms of efficiency, RF and BERT are almost equivalent, while BROOF is moderately
more time consuming. But, more interestingly, when looking at the intra-classifier
comparison between TF-IDF (with FS) and MF (All) + SS + SPA with RF, BERT
and BROOF, we observe no effectiveness losses for the latter representation (other
than in MacroF1 in WebKB)2 , and mainly several gains as seen on 20NG, ACM, and
Reuters90 in MicroF1 and 20NG on MacroF1. We can observe (statistically) significant
gains ofMF (All)+SS+SPA over TF-IDF in MicroF1 in 20NG, ACM and Reuters90,
in MacroF1 in WebKB and in both metrics in 20NG and ACM. The largest overall
improvements of the RF classifiers are observed in MicroF1 in Reuters90, almost 11%
with RF. The second important observation is that the application of the complete
pipeline produced significant gains in terms of efficiency. When comparing the overall
times of MF (All) + SPA+ SS with those of TF-IDF (FS), we can see speedup gains
between 1.3x-2.4x. When looking at the impact of the use of complete pipeline over
MF (All), the gains in efficiency achieve up to 3.8x. In fact, even some effectiveness
gains may be observed with the use of the complete pipeline over MF (All) such as
in 20NG with both classifiers in both metrics. This may reveal that, with selective
sampling, we are either removing noise or improving the generalization of the model,
as it becomes less complex. We will investigate this issue further in the future.

Regarding the NNs, we see that they are no match for SVM in terms of the
effectiveness-efficiency trade-off. However, the NNs are competitive with the RF clas-
sifiers in terms of effectiveness in some datasets, such as in 20NG and Reuters90,
although much less efficient. When comparing both NN architectures, MLP is, in gen-
eral, more effective and faster, probably due to the use of fewer layers. In any case,
the application of both NN architectures to the original TF-IDF representation is too
time-consuming. Also, disconsidering WebKB, which is perhaps too small for the NNs
to properly work, the complete pipeline over MF (All) not only reduced the overall
time considerably (e.g. speedup of 10x in 20NG and 8x in Reuters90), with no effec-
tiveness loss (in case of MLP) and even gains over TF-IDF, (e.g. in 20NG), confirming
the enrichment of information brought by the MFs.

2The results of both RF-based classifiers in Reuters90 with all representations, including TF-IDF,
are very far away from those of SVM. We believe this is due to the large number of classes of this
dataset and the use of the one-against-all strategy of SVM.
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To summarize, MF representations with sparsification and selective sampling
makes it possible to apply NN architectures to text classification tasks with poten-
tial effectiveness gains and much improved scalability. Scalability and training costs
are, in particular, important issues that have been mostly neglected or poorly discussed
in applications of deep learning to text classification tasks.





Chapter 5

Conclusion and Future Work

We have provided evidence that, perhaps even more important than the classifier
algorithm itself, is the adequate pre-processing of the data to achieve the best possible
effectiveness results at the minimum cost (effectiveness-efficiency trade-off). We have
introduced three new steps into the traditional text classification pipeline which
were shown to produce large effectiveness gains or cost reductions (time), or both.
By transforming the original textual representation, reducing dimensionality (MF
generation step), increasing sparseness (SPA step) and reducing the number of training
instances (SS step), we achieved improvements in terms of effectiveness with decreased
costs. We verified this accomplishment using a carefully designed, statistically rigorous
experimental framework, that highlight how each proposed pipeline step influences
on effectiveness.Based on our experiments, We could conclude that, considering the
analyzed effectiveness-efficiency trade-offs, MF (Cent + CosKnn) and its variants
produced the overall best results, after the application of the complete pipeline: it
produces the best effectiveness with the largest reductions in overall time.

Our work has the potential to change the way text classification is performed.
Our proposed pipeline is by no means a fixed one. In fact, we presented only one
instantiation of it. Different or enhanced versions of the algorithms we have employed
in each step could be considered. The order of the steps could be changed (e.g., SS
before MF , if efficient solutions are devised for TF-IDF-based representations). Steps
could be omitted (or included, e.g., FS) depending on the characteristics and goals
(focus on effectiveness or efficiency).

As future work, we envision the construction of AutoML solutions that could
incorporate the proposed steps according to the characteristics of the datasets and
goals of the task. We also plan to evaluate our proposal on additional datasets,
classifiers, and configurations. We also envision improvements in the individual

39
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steps of the current pipeline. In MF generation, we could take better advantage of
the similarity information of pairs of neighbors, using common information (words)
between them. Also, it is possible to increase sparsity levels of the representations
with a per document strategy. In the SS step, we could better exploit the information
of the positive classes in the selection of negative ones. We have not explored labeled
information in the selection process at all. In sum, we have only started to grasp the
possibilities opened up by our proposal.
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