
ROTEAMENTO E GERÊNCIA DE MOBILIDADE

NA INTERNET DAS COISAS

BRUNO PEREIRA DOS SANTOS

ROTEAMENTO E GERÊNCIA DE MOBILIDADE

NA INTERNET DAS COISAS

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Antonio Alfredo Ferreira Loureiro
Coorientador: Luiz Filipe Menezes Vieira

Belo Horizonte

Agosto de 2019

BRUNO PEREIRA DOS SANTOS

ROUTING AND MOBILITY MANAGEMENT IN

THE INTERNET OF THINGS

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Doctor
in Computer Science.

Advisor: Antonio Alfredo Ferreira Loureiro
Co-Advisor: Luiz Filipe Menezes Vieira

Belo Horizonte

August 2019

© 2019, Bruno Pereira dos Santos.
Todos os direitos reservados.

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg
Lucas Cruz – CRB 6a Reg. no 819.

Santos, Bruno Pereira dos

S237r Routing and Mobility Management in the Internet of
Things / Bruno Pereira dos Santos. — Belo Horizonte,
2019

xxxiii, 128 f. . il.; 29cm

Tese (doutorado) — Universidade Federal de Minas
Gerais – Departamento de Ciência da Computação.

Orientador: Antonio Alfredo Ferreira Loureiro
Coorientador: Luiz Filipe Menezes Vieira

1. Computação – Teses. 2. Redes de Sensores Sem Fio
– Teses. 3. Internet das Coisas – Teses. 4. Roteamento
(Administração de redes de computadores) – Teses.
I. Orientador. II. Coorientador. III. Título.

CDU 519.6*22(043)

Acknowledgments

My warm thanks to everyone who supported me and contributed in different ways to
the development of this work. I would first like to thank my advisor Antonio Alfredo
Ferreira Loureiro for his teaching, knowledge, and patience during all doctoral process.
Also, I thank my co-advisor Luiz Filipe Menezes Vieira for all support and enlightening
talks. Their guidance and expertise were fundamental in the formulating of the research
topic and methodology.

I would like to thank the faculty UFMG and UESC and all supporting staff. The
professors Olga Nikolaevna Goussevskaia, Marcos Augusto M. Vieira, Pedro O.S. Vaz
de Melo for their willingness to support me, clarify doubts and give suggestions.

Also, I would like to thank my colleagues for helping me during the Ph.D. process.
Especially, Paulo Henrique, Clayson Celes, Otávio Augusto, Evellyn Cavalcante, and
Maria Gabriela, WISEMAP/WINET labs, and Qualis Mission study group.

I also want to thank my family and dear friends for affection, encouragement,
and friendship. I hid the names of all people that I would like to thank since this work
without all the people in my life would not be possible. I am thankful for all.

I would like to thank FAPEMIG, CNPq, and CAPES for their financial support
for this research.

ix

“Que a força do medo que tenho
Não me impeça de ver o que anseio

Que a morte de tudo em que acredito
Não me tape os ouvidos e a boca

Porque metade de mim é o que eu grito
Mas a outra metade é silêncio. ”

(Oswaldo Montenegro)

xi

Resumo

No futuro da Internet das Coisas (Internet of Things (IoT)), os objetos do dia-a-dia
irão, provavelmente, ser conectados à Internet e, deste fato, emergem diversas oportu-
nidades tanto no âmbito de pesquisa quanto comercial. Atualmente, a IoT interconecta
predominantemente objetos estáticos anexados em alguma infraestrutura física. No en-
tanto, a mobilidade é um fator presente em nossas rotinas diárias, como consequência
disto, os objetos (“things”) serão transportados ou poderão se mover em um ambiente
cibernético conectado. A este ambiente dá-se o nome de Internet das Coisas Móveis
(Internet of Mobile Things (IoMT)) e, ao se moverem, eventualmente os dispositivos
poderão criar laços sociais surgindo então a Internet das Coisas Sociais (Social Inter-
net of Things (SIoT)). A mobilidade é uma questão de pesquisa no âmbito da IoT, a
qual desempenha papel importante no desenho, implementação, bem como a “ubiqui-
tificação” destes dispositivos em nossas vidas. Apesar da importância da mobilidade
no contexto das redes de computadores, gerenciá-la adequadamente, especialmente no
contexto da IoT, ainda é uma questão de pesquisa em aberto.

Nesta tese, investigamos o reteamento e a gestão da mobilidade no contexto da
IoT. Avaliamos quais são as boas práticas para estas soluções, bem como estudamos
a mobilidade em IoT em diferentes contextos. Soluções já foram propostas para dar
suporte à IoT onde os dispositivos são estáticos. Contudo, pouco se tem feito quando
a mobilidade é presente, o que motiva esta tese. Deste modo, damos um passo além
no estudo sobre o roteamento ciente da mobilidade para IoT ao explorar os blocos
básicos de construção para manipular mobilidade a nível das entidades (comunicação
móvel, dispositivo móveis e software) bem como as operações básicas para gerência da
comunicação (detecção de mobilidade, processo de handover e gerência da mobilidade).
Argumentamos, também, que para manter a comunicação sob eventos de mobilidade,
o roteamento apresenta um papel fundamental no processo. Portanto, as nossas con-
tribuições situam-se nesse contexto. Neste sentido, propusemos soluções de roteamento
chamadas Dribble, Matrix e Mobile Matrix que são alternativas para respectivamente a
detecção de mobilidade de entidades, o roteamento estático e o roteamento sob eventos

xiii

de mobilidade. Estas propostas apresentam melhorias, quando comparados às soluções
existentes na literatura, quanto a eficiência no uso de recursos de memória e energia,
confiabilidade, tolerância a falhas, bem como no gerenciamento da comunicação com
entidades móveis.

Palavras-chave: Internet das Coisas, Mobilidade, Endereçamento Hierárquico, Pro-
tocolo de Roteamento.

xiv

Abstract

In the future Internet of Things (IoT), everyday objects will probably be connected
to the Internet, leading to research and commercial opportunities. Current IoT in-
terconnects mainly static devices attached to some physical infrastructure. However,
mobility is present in our daily life and, thus, naturally objects can move around form-
ing so-called IoMT and create social ties composing the SIoT in the cyber-physical
space. Mobility is a fundamental research field in IoT context, being critical to its
design and implementation, as well as the “ubiquitification” of those devices in our
life. This raises the question of whether existing ready-to-use networking protocols are
enough and suitable to cover social (Social IoT) and mobile (IoMT) demands. Despite
the importance of mobility for IoT, the field is not thoroughly studied and understood
regarding properly handle mobility, especially concerning constrained devices typically
used in IoT.

In this thesis, we have investigated new mechanisms of routing and mobility
management for IoT. Our initial motivation for this research was that many solutions
had been proposed to support static IoT. However, little attention has been given to
the mobility factor in such a context. Here, we take a step forward on the study of
mobility solutions in terms of routing and mobility management for IoT by exploring
the building blocks to handle mobility properly (mobile communication, mobile devices,
and software) as well as to the basic operations to manage mobility communication
(mobility detection, handover process, and mobility management). In such a scenario,
we argue that routing is an IoT enabler playing a key role in handling mobility. In this
thesis, we have proposed routing solutions named Dribble, Matrix, and Mobile Matrix
that are alternatives to deal with IoMT demands for mobility detection, routing for
static devices and routing under mobile environment. Our results advance the state-
of-the art of the IoMT in terms of efficiency in energy and memory usage, reliability,
efficiency, fault tolerance, as well as mobility management.

Palavras-chave: IoT, Mobility, Hierarchical Address, Routing protocol.

xv

List of Figures

1.1 Requirements for a Mobile IoT. 3
1.2 Building block operations to handle mobility. 4

2.1 Interest for IoT and Wireless Sensor Networks (WSN) terms on Google
platform. 8

2.2 Hypercycle of July 2018. The IoT appears in the Peak of Inflated Expecta-
tions and IoT’s Platforms appears as a Technology Trigger. Source: [45]. . 8

2.3 IoT as an Internet extension. Source: [117]. 9
2.4 IoT’s basic building blocks: from technology to human value. 10
2.5 Smart devices interconnection with Internet example. 12
2.6 Example of the Internet Protocol version 6 (IPv6) packet header with and

without compression. 13
2.7 Classification of IoT wireless communication technologies by spatial coverage. 14

4.1 (a) the Multipoint-to-Point (M2P) routing structure that creates routes
from nodes towards the root. (b) presents the Point-to-Multipoint (P2M)
routing structure typically created through control packets sent over (a)
structure. (c) the three main data traffic patterns over the routing structure
constructed on (a) and (b). 30

4.2 Routing Protocol for Low-Power and Lossy Networks (RPL) control packets. 32
4.3 Timer schemes’ basic trade-off faced. 33
4.4 Three main timer schemes commonly used in IoT routing protocols. 34
4.5 Dribble flowchart diagram. 35
4.6 (a) a trace of raw GPS points forming a trajectory of an entity. (b) extracted

Stay Location from a trajectory (a). (b) Stay location history. 39
4.7 Mobility metrics for each entity. 42
4.8 Confusion matrix. 43
4.9 The trade-off between control overhead and disconnection time. 44

xvii

4.10 The control flow overhearing and the average time in a floating state. . . . 44

4.11 The delivery rate for different evaluated scenarios. 46

5.1 Matrix protocol’s architecture. 52

5.2 Multihop Host Configuration for 6LoWPAN (MHCL): simplified IPtree ex-
ample: 8-bit address space at the root and 6.25% reserved for future/delayed
connections. 55

5.3 RCtree example: before and after two links change in the collection tree. . 58

5.4 Alternative top-down routing upon Ctree change. 61

5.5 Routing table usage Complementary Cumulative Distribution Function
(CCDF). The routing table size was setted to 20 entries. 66

5.6 Code and memory footprint in bytes. 67

5.7 Number of control packets. 68

5.8 Top-down routing success rate. 69

5.9 Any-to-any routing success rate. 71

5.10 Response success rate. 72

6.1 µMatrix integrated into the network stack. 79

6.2 µMatrix protocol’s architecture. 81

6.3 Routing structures: Ctree, IPtree, and RCtree. 82

6.4 Simplified hierarchical address assignment with 8-bit available address space
and 6.25% of addresses reserved for delayed nodes. Inside the nodes, its
label and IP assigned, the % next to the nodes express the approximate
sub-tree size. Thick downwards arrows indicate the available IP range fairly
distributed. 83

6.5 Reverse Trickle Timer operation with µMatrix. 85

6.6 Mobile Engine state machine. 86

6.7 Mobile engine operation after mobility events. 87

6.8 µMatrix’s preserves locality when it updates the routing table under mobil-
ity events. Mtables above LCA do not need updates. 88

6.9 CDF of routing table usage. For µMatrix Mtable + IPchildren, for RPL
only downwards routing table. The maximum table size is 20. 98

6.10 The number of control packets. 99

6.11 Bottom-up routing success rate. 101

6.12 Top-down routing success rate. The transparent bar represents inevitable
losses. 102

xviii

6.13 The trade-off between control message overhead and the successful delivery
rate. 103

6.14 The trade-off between the delivery rate with acknowledgment and RTT. . . 104

7.1 Lisp packet flow. (EID: endpoint identifier; ETR: egress tunnel router; ITR:
ingress tunnel router; PxTR proxy tunnel router; RLOC: routing locator).
Source: [115]. 112

xix

List of Tables

4.1 A non-exhaustive list of mobility metrics, a short description and its classi-
fication. 37

4.2 Default simulation parameters . 40
4.3 Mobility models parameters . 41
4.4 Model parameters and classification report 42

5.1 Comparison between related protocols for IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN). 51

5.2 Simulation parameters. 65
5.3 Faulty network scenarios. 65

6.1 Routing protocol properties (RevTT – Reverse Trickle Timer; RTL – Tr-
ever Trickle Timer Like; T – Trickle; P – Periodic; HL – Home Location
Assumption; SN – Static Nodes.) . 76

6.2 GRM parameters. 95
6.3 CRWP parameters. 97
6.4 CRWP mobility metrics. 97
6.5 Simulation parameters. 99

xxi

List of Acronyms

3GPP Third Generation Partnership Project. 15

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks. xxi, 12–14, 23,
47–49, 51, 53, 57, 59, 64, 71–76, 78, 85, 87

AODV Ad hoc On-Demand Distance Vector. 50, 78, 99–105

BLE Bluetooth Low Energy. 14, 17

Bluetooth SIG Bluetooth Special Interest Group. 17

BT Bluetooth. 17

CBFR Counting Bloom Filter Routing. 48

CCDF Complementary Cumulative Distribution Function. xviii, 66

CDF Cumulative Distribution Functions. xviii, 98, 100

CGR Centrality-based Green Routing for Low-Power and Lossy Networks. 51

Co-RPL Corona RPL. 76, 77

CODU Contact duration. 37

CRWP Cyclical Random Waypoint. 27, 41, 75, 96, 97, 100, 101, 104, 105

CTP Collection Tree Protocol. 24, 25, 47–51, 53–55, 57, 59, 60, 64, 65, 67, 68, 73, 77,
79–81, 85, 90, 93

DAG Directed Acyclic Graph. 31

DAO DODAG Destination Advertisement Object. 31, 32, 45

DAO-Ack DODAG Destination Advertisement Acknowledgement. 31

xxiii

DIO DODAG Information Object. 31, 32, 40, 45

DIS DODAG Information Solicitation. 31, 40

DMMLIS Distributed Mobility Management scheme in Locator/Identifier Separation
networks. 112

DODAG Destination Oriented Directed Acyclic Graph. 24, 31, 32, 40, 45

DRM DAG-based Multipath Routing. 76, 77

DSR Dynamic Source Routing Protocol. 50

EDGEP Encounter regularity. 37

EXI Efficient XML Interchange. 11

GRM Group Regularity Mobility Model. 26, 27, 41, 95, 96, 100–104

HF High Frequency. 16

HMIPv6 Hierarchical Mobile IPv6. 78

INCO Inter-contact time. 37

IoMT Internet of Mobile Things. xiii, xv, 1, 3, 6, 10, 19–21, 73–76, 78, 79, 94, 100,
104–106

IoT Internet of Things. xiii, xv, xvii, 1–12, 14–16, 18–21, 23–27, 29–38, 46, 47, 51,
73–76, 78, 79, 94, 99, 100, 104, 105, 107, 108, 111–114

IP Internet Protocol. 12, 23, 47, 59, 111

IPv6 Internet Protocol version 6. xvii, 12–14, 21, 108

LCA Lowest Common Ancestor. 53, 59, 61, 89

LF Low Frequency. 16

LISP Locator/Identifier Separation Protocol. 111

LPWAN Low Power Wide Area Network. 14, 15

M2P Multipoint-to-Point. xvii, 30, 31, 40

xxiv

MA Mobile Agent. 113

ME-RPL Mobility Enhanced RPL. 76, 77

MHCL Multihop Host Configuration for 6LoWPAN. xviii, 52–55, 64–67, 70

MIMO Multiple Input Multiple Output. 15, 114

MIPv6 Mobile IPv6. 72, 78

MLP Multi-Layer Perceptron. 37, 42

MMRPL Mobility Management RPL. 76, 77, 99, 100, 102–105

mRPL Mobile RPL. 76, 77

MRPL-V Mobile RPL to Vehicular Networks. 76, 77

MTU Maximum Transmission Unit. 13

NB-IoT Narrowband IoT. 15, 16

NFC Near-Field Communication. 14, 16, 17

OIoT Opportunistic IoT. 20

ORPL Opportunistic RPL. 48

P2M Point-to-Multipoint. xvii, 30, 31, 40

P2P Point-to-Point. 30, 31, 40

PRR Packet Reception Rate. 102, 103, 105

RADG Radius of gyration. 37

RDF Resource Description Framework. 11

RevTT Reverse Trickle Timer. xviii, 74, 75, 85–89, 101, 102, 108

RevTT Reverse Trickle Timer. 30, 34, 43, 45, 46

RFID Radio-Frequency IDentification. 7, 16

RPL Routing Protocol for Low-Power and Lossy Networks. xvii, xviii, 24, 25, 31–34,
40, 45, 47–49, 51, 53, 57, 59, 64, 66–70, 73, 76–81, 84, 85, 90, 93, 98–105, 108

xxv

RTT Round Trip Time. xix, 104

RWP Random Waypoint. 27, 96

SIoT Social Internet of Things. xiii, xv, 1, 3, 6, 10, 19–21, 73–76, 78, 79, 94, 100,
104–106, 112

SL Stay Location. 39

SLH Stay Location History. 39

SWIM Small World in Motion. 26, 95

TD Travel Distance. 41, 43

THL Time Has Lived. 83, 89, 90

TOPO Topological overlap. 37

TRVD Travel distance. 37

TRVT Travel time. 37

TT Trickle Timer. 29, 33, 34, 36, 43, 45, 46, 108

TTL Time To Lived. 83, 90

UAV Unmanned Aerial Vehicles. 18

UDG Unit Disk Graph. 62

UHF Ultra High Frequency. 16

VIST Visit time. 37

VT Visit Time. 41, 43

WLAN Wireless Local Area Network. 16

WMAN Wireless Metropolitan Area Networks. 14

WOL Web Ontology Language. 11

WPAN Wireless Personal Area Network. 16, 17

WSN Wireless Sensor Networks. xvii, 7, 8, 76, 113

xxvi

XCTP eXtend Collection Tree Protocol. 25, 31, 48–51, 64, 66–68, 70, 76–78

xxvii

List of Algorithms

1 Matrix: Stabilization timer . 54
2 Matrix: Aggregation timer (non-root nodes) 56
3 Matrix: Aggregation timer (root) . 56
4 Matrix: IPv6 address distribution . 57

xxix

Contents

Acknowledgments ix

Resumo xiii

Abstract xv

List of Figures xvii

List of Tables xxi

List of Acronyms xxiii

List of Algorithms xxvii

1 Introduction 1
1.1 Contextualization . 1
1.2 Relevance . 3
1.3 Goals . 4
1.4 Contribution . 5
1.5 Thesis Organization . 5

2 Internet of Things Overview 7
2.1 Internet of Things History Perspective 7
2.2 What is and Why The Internet of Things? 9
2.3 IoT’s Basic Building Blocks . 10
2.4 Internet Integration . 12
2.5 Communication Technologies . 14
2.6 Mobility Meets The Internet of Things 18

2.6.1 New IoT Paradigms and Requirements 19
2.7 Concluding Remarks . 21

xxxi

3 Model and Definition of Problems 23
3.1 Definition of Problems . 23
3.2 Models . 25

3.2.1 Entities . 26
3.2.2 Mobility and Dynamic Model 26

4 Mobility Detection 29
4.1 Contextualization . 29
4.2 IoT Routing in a Nutshell . 30
4.3 Related Work and Problem Statement 32
4.4 Dribble Design . 35

4.4.1 Entities . 36
4.4.2 Extraction of Mobility Metrics 36
4.4.3 Learn-based Model . 37
4.4.4 Timer Scheme Matching . 38
4.4.5 Motion Event . 38

4.5 Evaluation . 39
4.5.1 Modeling the Entities Mobility 41
4.5.2 Measuring Mobility . 41
4.5.3 The Neural Network . 42
4.5.4 Assigning Timer Schemes to Mobility Patterns 43
4.5.5 Simulation Results . 43

4.6 Concluding Remarks . 46

5 An Alternative Routing Protocol for the Static Internet of Things 47
5.1 Contextualization . 47
5.2 Related Work . 50
5.3 Design Overview . 51

5.3.1 MHCL: Multihop Host Configuration for 6LoWPAN 53
5.3.2 Control Plane: Distributed Tree Structures 57
5.3.3 Data Plane: Any-to-Any Routing 59
5.3.4 Fault Tolerance and Network Dynamics 60
5.3.5 Alternative Routing: Geometric Rationale 62

5.4 Complexity Analysis . 62
5.5 Evaluation . 64

5.5.1 Simulation Setup . 64
5.5.2 Results . 66

xxxii

5.6 Concluding Remarks . 71

6 An Alternative Routing Protocol for the Mobile Internet of Things 73
6.1 Contextualization . 73
6.2 Background and Related Work . 76
6.3 Design Overview . 78

6.3.1 Mobile Matrix Architecture . 80
6.3.2 Control Plane: Routing Engine 80
6.3.3 Control Plane: Mobile Engine 84
6.3.4 Mobile Matrix Data Plane: Any-to-Any Routing 90

6.4 Complexity Analysis . 90
6.4.1 Memory Footprint . 91
6.4.2 Control Message Overhead . 92
6.4.3 Routing Path Distortion . 93

6.5 Mobility Modelling . 94
6.5.1 Human Mobility Model . 95
6.5.2 Non-human Mobility Model . 96

6.6 Evaluation . 99
6.6.1 Simulation Setup . 99
6.6.2 Results . 100

6.7 Concluding Remarks . 105

7 Conclusions and Future work 107
7.1 Conclusions . 107

7.1.1 Mobility Detection . 107
7.1.2 Handover Process and Mobility Management 108

7.2 Publications . 108
7.3 Open Problems and Future Work . 111

7.3.1 Inter-domain Routing with Mobile Matrix 111
7.3.2 Social IoT: A Mobility Model 112
7.3.3 Mobile Agents and IoT . 113
7.3.4 IoT on 5G context . 114

Bibliography 115

xxxiii

Chapter 1

Introduction

1.1 Contextualization

The explosive growing number of everyday objects connected to the Internet emerges as
a result of rapid progress and adoption of embedded systems, wired and wireless com-
munication, and mainly the use of devices able to sense and move in the environment.
The set of objects or just “things”1 placed within the cyber-physical environment, where
they can sense, interact with one each other and with humans is named the Internet of
Things (IoT) [125]. Also, mobility is a major factor present in our daily life and, thus,
“things” can move around forming the so-called Internet of Mobile Things (IoMT) [86],
where devices can move in the cyber-physical space. In the future, the Social Inter-
net of Things (SIoT) will be a reality where the smart devices do social ties among
themselves as well as with humans in the social cyber-physical-social environment [1].
Those new technological artifacts have the potential to change the Internet as we see
nowadays and how entities (machines and humans) interact with one each other. In-
deed, in past years, the IoT has been attracted attention because of its potential for
new applications towards smart and ubiquitous environments, academic research, and
industrial and commercial acceptance.

Shortly, the IoT is an extension of the actual Internet, such extension proportion-
ate everyday objects to be connected to the Internet. These objects must have at least
the capacity for computation and communication. By connecting them to the global
system of interconnected computer network, we will be able to control them remotely.
Moreover, it will be possible for the “things” to act as service users or providers. How-
ever, these new facilities and possibilities come with a wide range of academic and

1We use everyday objects, smart objects or devices, objects, devices, and “things” interchangeably,
unless explicitly explained.

1

2 Chapter 1. Introduction

industrial challenges, that vary from technical ones (e.g., protocols standardization,
device constraints) to the social ones (e.g., privacy issues and security threats resolu-
tions).

The concept of computer networks has been changed over the years. With the
introduction of IoT, the concept will change again. Tanenbaum [121] said that early
computer network was a “collection of autonomous computers interconnected by a
single technology”. Such a technology may be wired or wireless. For Peterson [98], “the
most important characteristic of computers networks is its generality” meaning that
computer networks are built with general-purpose hardware and application (e.g., a
phone call, TV signals, or even files transmission). Kurose and Ross [67] argue that
previous concepts (i.e., before 2012) of computer networks are outdated and they do
not reflect the large amount of non-traditional devices and link technologies employed
in the “new” networks.

Smart objects play a fundamental role in the evolution of the computer network
concept, especially regarding the tremendous amount of heterogeneous devices in the
network and highly mobile dynamic requirements. Powered by computational and com-
munication resources, the objects may have the ability of sensing and motion which
transform their functionality. In this sense, nowadays not only conventional computers
are connected to the Internet, but a large sort of heterogeneous devices (e.g., TVs, lap-
tops, automobiles, smart-phones, game consoles, web-cams, so on and so forth) with
different specifications, requirements, and functionalists. In this new context, the de-
vice plurality is evident and is increasing. Recent forecasts [90] indicate that 30 billions
of devices will be online on the Internet by 2020. Upon using the device’s resources,
it will be possible to detect the object context, control it, exchange information, inter-
actions in different perspectives (e.g., human-human, human-objects, objects-objects),
and access and provide services. At the same time, potential new applications (e.g.,
for smart cities, health-care, smart home, and others) and challenges (e.g., regulation,
security, standards) emerge. It is important to highlight that standardization of tech-
nologies plays a crucial role in the success of IoT, which will increase the heterogeneity
of devices connected to the Internet, making the IoT a reality.

The mobility is present in everyday life. It makes life easier and turns IoT ap-
plications more flexible. The usage of many devices for IoT can benefit from it, as is
the case of today’s adoption of smartphones and tablets. By extending IoT to handle
mobility, IoT becomes even more ubiquitous. By supporting mobility, it is expected
that smart objects to be transported or move themselves during normal usage, and
this fact does not inhibit its normal operation and communication exchanges.

1.2. Relevance 3

Mobile Communication

Mobile SoftwareMobile Hardware

Mobility in
IoT

Figure 1.1: Requirements for a Mobile IoT.

1.2 Relevance

Many solutions have been studied and proposed to support static IoT. Also, standards
were already done in the same context. However, handle mobility suitably remains
an open issue in IoT [87]. The mobility factor will allow the flowering of new IoT
paradigms, applications, and ubiquity interaction between humans and computer de-
vices. Figure 1.1 shows the requirements to achieve a mobile IoT, in it, three main
building blocks are highlighted: mobile communication, mobile hardware, and mobile
software.

Issues regarding Mobile Communication usually encompass ad hoc networks as
well as infra-structured networks. Thus, every network stack layer plays an essential
role in mobile communication. Mobile Hardware comprises of mobile devices able to
move by themselves or being attached to a mobile entity. The mobile pattern of the
devices and humans can profoundly influence in mobile communication. Thus, this
understatement is also an issue [8]. Mobile Software deals with the characteristics and
requirements of mobile applications. Thus, for instance, an application may require
specific types of communication patterns (or even delivery requirements) to provide its
practical value to humans. These characteristics and requirements usually pose more
challenges to the mobile IoT software development and designs.

This thesis focuses on the basic building blocks of mobile IoT. Therefore, any new
mobile-based IoT application or paradigms may benefit from the results presented here.
For instance, this study may help to make SIoT’s [9] application a reality. Furthermore,
this thesis advances current state-of-the-art by proposing mobility-aware solutions that
can leverage IoT towards new mobile-based paradigms (such as IoMT and SIoT). These
paradigms were predicted years ago when most of the IoT solutions were designed for
static situations while mobile scenarios solutions were poorly considered. New IoT

4 Chapter 1. Introduction

mobile-based paradigms already have notoriety in a wide range of domains (e.g., smart
home and cities, healthcare, smart automobiles) [5]. Agnihotri and Ramkumar [2] and
Nahrstedt et al. [86] survey a bulk of applications and challenges in the mobile IoT
context, and show the relevance of this thesis study and applicability.

1.3 Goals

Our focus is to propose advances in mobility-aware solutions for IoT, especially mobile
communication solutions. In this context, the performance improvement and real adop-
tion of mobile IoT’s applications are heavily influenced by the full mobility awareness
of the network stack. From the lens of the network stack, we argue that the routing
layer plays a fundamental role to the proper functioning, scalability, and identification
of objects, especially regarding the highly dynamic network of “things”.

For these reasons, the scope of this thesis is the routing layer, but we are not
limited to it. Indeed, we aim to investigate three basic operations to handle mobility
in IoT: Mobility Detection, Handover, and Mobility Management processes. Figure 1.2
highlights those operations and their relationship. Such operations can be explored
through different layers in the network stack, and can be influenced by endogenous
and exogenous factors, such as the device mobility patterns and human intervention,
respectively.

(i) Mobility
Detection

(iii) Mobility
Management

(ii) Handover

Figure 1.2: Building block operations to handle mobility.

Mobility Detection is the task of figuring out when a mobile entity is moving,
specifically in our study within the network. The handover occurs when the entity
changes its actual attachment point to another one. The Mobility Management is the
task of keeping track of the current location of a mobile entity. These basic operations
raise many specific challenges in IoT, for which solutions must be proposed: (i) one

1.4. Contribution 5

specific challenge in Mobility Detection is that frequently IoT devices have only basic
components (e.g., processing and communication units), thus how can the network
stack protocols figure out that the entity is moving? Note that protocols may not have
dedicated location hardware to query this information. (ii) regarding mobile handover
and management, from the point-view of routing, how to promote transparent mobility
and hide it from changes in the transport and application layers (e.g., address changes)?

1.4 Contribution

As mentioned, this thesis aims to improve the performance and support of mobile solu-
tions and applications for IoT. We started by proposing a mobility detection mechanism
named Dribble, which uses a leaning model to predict the devices’ mobility pattern
and then assigns a proper motion probing scheme accordingly. Then, we proposed
a novel routing protocol and addressing scheme for static devices named Matrix. In
future IoT, mobility will be omnipresent, thus we also proposed Mobile Matrx taking
a step in such direction. Mobile Matrix is a novel mobility-aware routing protocol that
provides an alternative to mobility detection, handover, and mobility management.

We summarize the main contributions of this thesis as follows.

1. Proposal of a machine learning based algorithm named Dribble that helps the
mobility detection process for IoT devices.

2. Proposal of a new routing protocol named Matrix for static IoT. We designed the
protocol to provide any-to-any routing, memory efficiency, fault tolerance, IPv6
enabled, and hardware independence;

3. A general overview of mobility, especially regarding the IoT. It helps to under-
stand the state-of-the-art and issues concerning mobility in IoT;

4. Mobile Matrix as an extension of Matrix to support mobility devices. Mobile
Matrix inherits all features from Matrix, but it does a step further by being
able to manage mobility devices. To do that, it performs all building block
operations presented in Figure 1.2. Also, Mobile Matrix was designed taking into
the account cyclical mobility pattern behavior commonly performed by human
and non-human entities.

1.5 Thesis Organization

We organize the rest of this thesis as follows.

6 Chapter 1. Introduction

• Chapter 2 gives an overview of IoT which is the background of this thesis. We
describe the IoT history perspective and why to study this subject. Also, we
describe the IoT’s basic building blocks, as well as the mobility in the IoT context
and new mobile-based IoT paradigms.

• Chapter 3 gives an overview of models and problems presented in the following
chapters. The problems are contextualized first and then the models regarding
topology dynamics are highlighted.

• Chapter 4 presents a learn-based timer scheme selector to support mobility de-
tection of IoT devices. It uses a learning model to automatically predict devices’
mobility pattern and then it assigns a proper motion probing timer schemes suit-
ably.

• Chapter 5 presents an alternative routing protocol for IoT which we named Ma-
trix Protocol. The Matrix can provide any-to-any routing under static and tem-
porary faulty topologies. We show its architecture, formal analysis, and evalua-
tion through simulations.

• Chapter 6 presents an alternative routing protocol for mobile IoT scenarios, which
we named Mobile Matrix Protocol (µMatrix). µMatrix holds the same features
as Matrix, but it can execute under mobile scenarios. We present its archi-
tecture, formal analysis, and evaluation through simulations. In our simulation
experiments, µMatrix was tested under human and non-human mobility patterns,
showing that µMatrix has the potential to provide support to SIoT and IoMT
paradigms.

• Chapter 7 concludes this thesis by summarizing the main results achieved as well
as pointing out the future work and open problems.

Chapter 2

Internet of Things Overview

2.1 Internet of Things History Perspective

The Internet of Things term was likely coined by Kevin Ashton in 1999 on one of his
talks [7]. He argues that “Radio-Frequency IDentification (RFID) (we return to this
technology later) and sensor technology will enable computers to observe, identify and
understand the world – without the limitations of human-entered data". Concomi-
tantly, Neil Gershenfeld said in his book titled “When Things Start to Think" [46] that
in the near future the things would be massively connected to the Net. Despite that,
early projects and the embryonic concept of what IoT is nowadays come from 80’s,
where the first connected devices (e.g., the Coke machine [124]) and papers forecasting
ubiquitous computing through the connected and pervasive devices appear [129]. In-
deed, the Genesis of IoT comes from the growth and maturity of multiple technologies
such as Wireless Sensor Networkss (WSNs), embedded systems, RFID, data analytics,
machine learning, among others. Such disciplines bring up advances in industrial and
home automation, techniques explore devices limitation (e.g., size, memory, energy),
scalability and robustness [28, 62].

The IoT has become popular since 2013 when several new sensor-based applica-
tions for the smart environment has gained attention [76]. Then, more attention has
been given to connect heterogeneous devices to the global network which means a huge
amount of devices being manipulated as well as being users of services on the Internet.
Also, integrating IoT and mobile communication through cellular networks (e.g., 5G),
cloud services (e.g., data storage, e-mail, text messages), and combinational cloud ser-
vices (e.g., If This, Then That (IFTTT)1 and Zapier2) will help to the flowering of IoT.

1https://ifttt.com/
2https://zapier.com/

7

https://ifttt.com/
https://zapier.com/

8 Chapter 2. Internet of Things Overview

Figure 2.1: Interest for IoT and WSN terms on Google platform.

The IoT, in parts, comes up from the WSN, when these type of network have
reached its plateau around 2010 [79, 111]. WSN have brought considerable advances
in residential and industrial automation [28, 62], as well as techniques to efficiently
explore devices constraints (e.g., energy and memory), scalability and robustness [79]
in the network.

Ex
pe
ct
at
io
ns

Figure 2.2: Hypercycle of July 2018. The IoT appears in the Peak of Inflated Expecta-
tions and IoT’s Platforms appears as a Technology Trigger. Source: [45].

2.2. What is and Why The Internet of Things? 9

Specialists identified the term Internet of Things as an emerging technology be-
tween 2009 and 2012 [7, 45]. Figure 2.2 shows a diagram named hype cycle that displays
the emerging, adoption, maturity and impact of a range of technologies. In July 2016,
the term Internet of Things appears in the hype of inflated expectations meaning suc-
cessfully stores of the technology used. Also, a volume of researches and applications
were done to the IoT and then IoT’s platforms appear as a result of the potential
technology breakthrough kicks things off.

2.2 What is and Why The Internet of Things?

Internet of Things (IoT) is a network that extends the current Internet [117]. Nowadays,
the core of the Internet includes millions of backbones routers and servers of high
capacity. The Border (or fringe Internet) encompasses the major part of today’s devices
such as personal computers, and local networks linked to the Internet. It is estimated
over 1 billion of such devices in the fringe Internet [117]. The IoT encompasses physical
devices, wearable devices, vehicles, home objects and appliance and others embedded
artifacts. In 2020, it is expected >30 billion devices connected to the Internet [90],
and in long-term trillions of devices. It makes the IoT a challenge to the Internet
perspective as well as a field of opportunities.

 meters

Automation

Core of the Internet
millions of nodes

Fringe Internet
< 2 Billions of nodes

Internet of Things
Short-term > 30 of nodes

Long-term Trillions

Figure 2.3: IoT as an Internet extension. Source: [117].

10 Chapter 2. Internet of Things Overview

Naturally, interconnect billions, or eventually, trillions, of everyday devices to
the global network is a challenging task. Especially, regarding that, the devices are
heterogeneous in many dimensions (e.g., constraints, mobility, form, size). New IoT
applications and paradigms also raise challenges and opportunities. For instance, new
IoT applications may present different requirements to provide human-value, these
requirements (e.g., specific data-traffic pattern) should be supported by the IoT in-
frastructure. New IoT paradigms such as the Internet of Mobile Things and Social
Internet of Things are mobility-based. These new paradigms require support to mobile
communication, mobile software, and hardware (see Section 1.1).

2.3 IoT’s Basic Building Blocks

One can see the IoT as a set of complementary technologies aiming to integrate physic
environmental objects to the virtual world. Figure 2.4 shows in rounded rectangles the
IoT’s basic building blocks:

Human Value:
smart app.,
ubiquity Data value: data fusion,

analytics, AI, etc.

Technology

Services Semantic

Mobility

Sensor/Actuators

Communication
Identification

IoT

Data sensing,
collection,
Contextual data

Flexibility,
mobile pattern,
and Interactions

Figure 2.4: IoT’s basic building blocks: from technology to human value.

2.3. IoT’s Basic Building Blocks 11

• Communication and identification: as mentioned earlier, smart devices hold
unit(s) of processing/memory, and communication giving them computational
power. For processing, it typically uses micro-controllers, FPGAs, and tiny pro-
cessors with a low power. For communication, often wireless technologies such
as Wi-Fi, Bluetooth, IEEE 802.15.4 (low power links), RFID are employed. A
critical factor is the identification of the objects which will be connected to the
Internet and will form a network of >30 billion or even trillions of devices. So, it
is a challenge to manage such a large network.

• Sensors and Actuators: it allows ordinary objects to sense its context. Its mea-
surements may be used to infer changes in the environment. Thus together with
computational resources, the objects can now perform smart tasks that were
impossible before.

• Mobility: eventually smart objects will move freely, but nowadays they usually
are carried on other mobile entities (e.g., humans and cars). The devices mobil-
ity patterns play a key role in the understanding how devices connect each, how
long they remain connected (inter-contact time), and in the design of mobility
management solutions. By handling mobility, the IoT takes a step towards ubiq-
uitous computing, where everything is connected with everything at anytime and
anywhere.

• Semantic: it refers to the ability to extract knowledge from smart objects. It in-
cludes resource usage and discovery as well as modeling information. It prepares
the sensor data to be used in the services application by doing standardiza-
tion through several web technologies such as Resource Description Framework
(RDF), Web Ontology Language (WOL), and Efficient XML Interchange (EXI).
The semantic is one of the key components of the IoT because it sends the de-
mands to the right resource.

• Services: the IoT can provide four classes of services [5]: identity-related services
those related to the association between real and virtual world; information aggre-
gation aiming to collect and summarize sensor data; collaborative-aware services
regard the decision made upon data analysis; and ubiquitous services providing
services anytime and anywhere. Applications built on top of those services can
vary widely (e.g., from identity-related services, information aggregation services,
to collaborative and ubiquitous services.), and this makes the IoT a promising
technology.

12 Chapter 2. Internet of Things Overview

Low Power
Link / Phy.

6LoWPAN

UDP

Application

Low Power
Link / Phy.

IPv6 + 6LoWPAN

Link / Phy. Link / Phy.

6LoWPAN

UDP

Application

Edge Gateway

Smart Device User / Cloud

Figure 2.5: Smart devices interconnection with Internet example.

• Power supply: IoT’s devices require a power source to operate. Although some
IoT devices are directly connected to a wall outlet, others devices demand use of
a battery (often non-rechargeable). Thus, selecting batteries for IoT devices can
be tricky, as they serve to a range of application and there are a wide variety of
devices with different shapes and sizes.

2.4 Internet Integration

IoT is often considered a complex system. It is composed of many parts or elements
that interact with each other. In order to integrate smart objects to the Internet world,
it is often necessary for some kind of adaptations. Figure 2.5 shows the simplest view
of an IoT architecture with some integrating Internet adaptation. It consists of three
main tiers: smart devices (we have already highlighted in previous sections), edge
gateway, and user or cloud.

IoT Internet integration was born from “the idea that the Internet Protocol (IP)
could and should be applied to even the smallest of devices" [85], instead of make use of
complex gateways necessary to translate between proprietary protocols and standard
Internet Protocols. Though initially, IP was not the first thing that one thinks about
sensor networks, the use of IP now is de facto the standard for IoT addressing. Firstly,
the Internet Protocol version 6 (IPv6) is able to support the IoT’s demand for scalability
at the network level [117]. Another important benefit is that developers and users can
use tools already developed for managing and debugging IP networks, cutting off the
learning curve or developing overhead of an entirely new set of specific tools.

With this concept, 6LoWPAN was raised as a protocol definition for sending

2.4. Internet Integration 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

IPv6 header
40 Bytes

Source Port Destination Port

Length Checksum

}
UDP Header
8 Bytes

(a) IPv6/UDP.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Dispatch and LOWPAN_IPHC LOWPAN_NHC SRC DST

UDP Checksum

}
6 Bytes

(b) IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)/UDP.

Figure 2.6: Example of the IPv6 packet header with and without compression.

small packets IPv6 over LoWPANs [68]. The 6LoWPAN’ basic goal was deal with
some IPv6’s requisites that did not match with low power links, for instance, Maxi-
mum Transmission Unit (MTU) and header sizes [32]. Thus, deal fragmentation and
reassembly were one of the primary efforts because low power links typically have data
units as small as 81 bytes[83], while a minimum IPv6 packet is 1280+ octets long. Also,
as a frame of a low power network is typically 127 octets, and just the IPv6 header
is 40 bytes, then only the remaining 41 bytes would be available for upper-layers pro-
tocols (e.g., UDP, TCP, HTTP or others), security and application data. Those and
others issues (such as address autoconfiguration, security, network managements and
others [83]) have pointed to the need for and adaptation layer and header compression.

The header compression relies on three major facts. First, the low 8 octets of an
IPv6 can be the device’s MAC address. Second, low power links frames (e.g., IEEE
802.15.4) carries this MAC address. Third, the IPv6’s header fields are static. Shortly,
by combining those characteristics, 6LoWPAN was able to compress 40 bytes from
standard IPv6 packet header into a small version of just 2 bytes. Figure 2.6 gives an
example of IPv6/UDP headers with and without 6LoWPAN compression technique.
The LoWPAN header comprises a dispatch value identifying the type of header, then
a byte indicating which of IPv6 files are compressed (LOWPAN_IPHC), followed by

14 Chapter 2. Internet of Things Overview

RFID, NFC, Bluetooth/BLE,
ZigBee, Z-Wave

WPAN

IEEE 802.11 "Wi-Fi"

WLAN

Cellular

SigFox, LoRaWAN, NB-IoT

WMAN

LWAN

Figure 2.7: Classification of IoT wireless communication technologies by spatial cover-
age.

any IPv6 [83, 122]. In Figure 2.6b also shows the LOWPAN_NHC byte indicating a
UDP as next header compressed, followed by UDP ports and checksum.

6LoWPAN was designed with special attention on IEEE 802.15.4 low power wire-
less links. However, it does not solve all problems and issues to run IPv6 over low power
wireless links. Thus, there are several efforts to use IPv6 over different low power wire-
less links such as Near-Field Communication (NFC) [22] and Bluetooth Low Energy
(BLE) [89].

2.5 Communication Technologies

In this section, we highlight the main interconnection technologies employed in IoT3.
Wireless communication technologies vary in several dimensions such as communi-
cation range, throughput, energy efficiency, power efficiency and even in the typical
topology [3].

Figure 2.7 shows an example of wireless communication technologies classification
by coverage area. We deliberately present these technologies by dividing them into two
main groups: long-range and short-range communication technologies.

Long-range technologies: this group is composed of Wireless Metropolitan
Area Networkss (WMANs) and Low Power Wide Area Networks (LPWANs) technolo-
gies that allow communication even in several miles away. Here, we highlight four
trending long-range technologies: Cellular, SigFox, LoRaWAN, and Narrowband IoT.

3Note that the following list is a non-exhaustive one, more interconnection technologies and addi-
tional reading are available on [3]

2.5. Communication Technologies 15

• 3G/4G and 5G: mobile network or just cellular network have boosted IoT
adoption. They are already operational and provide communication from several
miles away. The 2nd Generation of mobile telecommunications technology or
just 2G was designed to voice, 3G for data exchange, and 4G for widely Internet
access. Unfortunately, 3G/4G is not power efficient and usually tends to drain
quickly energy resources from devices. Thus, often 3G/4G is not embedded into
extremely energy constrained devices. However, 5G is about to arrive, it aims to
address the limitations of the previous generation such as energy consumption,
machine-to-machine communication, and speed (over 10× faster than 4G). Also,
5G has been designed for mobile low-power and constrained devices as well. Thus,
these 5G features have the potential key to enable IoT. IoT powered by 5G will
use millimeter waves (for high speed communication and accommodate billions
even trillions of devices), small cells (for connectivity), Multiple Input Multiple
Output (MIMO), beamforming (for reduction of interference and improvements
on efficiency), and full-duplex (more efficiency on communication).

• Sigfox: is a proprietary LPWAN technology that intends to be the first global
IoT network focused on gathering data from billions of devices. Sigfox was de-
signed to deal with a small amount of data. The technology acts as an Internet
service operator for IoT and uses ultra narrow-band signals that pass through
solid objects and propagates for long distances. Sigfox provides long range cov-
erage from 30 km up to 50 km in rural zones, and in urban zones up to 10 km.
The throughput varies from 10 bps to 1000 bps. Due to its specifications, Sigfox
is suitable for use cases where data are gathered from devices such as remote
water meters, temperature sensors. In other words, where users do not need to
downlink to the devices. The proprietary aspect concerns the physical and MAC
layers.

• LoRaWAN: is another proprietary LPWAN technology that intends to connect
battery-powered devices to the Internet in regional, national, and global network.
Unlike Sigfox, LoRaWAN provides by default bidirectional communication giving
the opportunity of the device send data and be controlled, if needed. LoRaWAN
data rates range from 0.3 to 50 kbps. The network operates in a star-of-stars
topology, where end-devices are connected with one or many gateways which
relay messages between end-devices and a central network server.

• Narrowband IoT (NB-IoT): is a Third Generation Partnership Project
(3GPP) initiative for LPWAN, along with EC-GSM-IoT and eMTC which form

16 Chapter 2. Internet of Things Overview

Cellular-IOT. It provides low cost and long battery life for IoT devices. Also,
NB-IoT can co-exist with the previous generation of the mobile network by using
principles from LTE physical layer to enable fast standardization and develop-
ment. Thus, the coverage would be wide working both indoor and outdoor envi-
ronments. Also, it is highlighted that over 10 years of battery life can be achieved
in a wide range of use cases. NB-IoT provides downlink data rate up to 60 kbps
and uplinks up to 50 kbps working in a star topology fashion.

Short-range technologies: Wireless Local Area Networks (WLANs) and Wire-
less Personal Area Networks (WPANs) technologies compose this group. We highlight
the following trending technologies: RFID, NFC, ZigBee, Bluetooth, Zwave, andWi-Fi.

• Radio-Frequency IDentification (RFID): the technology was designed for
tracking and identification of stationary and mobile objects. Mainly, RFID is used
on short-range communication where digital information is exchanged typically
between mobile objects and stationary entities [69, 114]. Usually, mobile objects
carry an inexpensive RFID tag where the digital data is encoded. Eventually, the
data is captured by a device reader (RFID reader) through radio waves, such a
device is attached to a more complex system. Those tags can be passive or active
meaning that the former class can collect energy from RFID readers nearby and
then operate by itself, while the latter (active tags) need a dedicated power source
but can operate over wider distances from the RFID reader. RFID’ tags operate
into different frequencies that strongly determines their application options be-
cause of their connection range. Specifically, passive RFID’ tags operate at three
frequency ranges [128]: i) Low Frequency (LF) operates on 125-134 kHz reaching
up to 10 cm; ii) High Frequency (HF) operates on 13.56MHz4, it is capable of
establishing communication between devices up to 30 cm far; and iii) RFID tags
enabled to Ultra High Frequency (UHF) can be read from distances up to 100m,
UHF operates on 865-960MHz.

• Near-Field Communication (NFC): the communication technology allows
short-range communication over 13.56MHz waves. NFC devices must be into
few centimeters (<30 cm) way to communicate. Popular NFC uses are informa-
tion sharing and contactless payment, where NFC enabled devices (smartphones,
credit cards, key fobs) are put together boosting and automating their function-
alities. NFC devices can work in three different modes: i) Card emulation where

4The same frequency of as NFC technology.

2.5. Communication Technologies 17

devices (e.g., smartphones) play the role as smart cards being able to accomplish
transactions (e.g., payments); ii) Tag reader or writer is the mode that enables
NFC devices to read information encoded on tags attached on other devices; And
iii) Peer-to-pper that allows devices to exchange information and share files in
an ad hoc fashion.

• BLE & Bluetooth (BT): such wireless technology has gained a ton of popu-
larity with smartphones and several wireless gadgets. The BT protocol has been
designed by Bluetooth Special Interest Group (Bluetooth SIG) and has become
a key technology for WPAN. Shortly, BT is divided into two groups: Classic
and Bluetooth Low Energy (BLE). The classic group is composed of 3.0 or early
versions that were designed to establish a connection and keep a stream of data
between the devices. The latter, BLE group is composed of versions 4.0 or later
that have been optimized to low power consumption. Classic and BLE are not
compatible, thus some devices may have both. Classic BT can deliver data rates
up to 2Mbps, while BLE up to 1Mbps. Communication range is the same for
both, technically, they can communicate up to ≈100m of distance but, in reality,
10-20m are reachable. BTs groups also have similarities such as both use 2.4GHz,
it is employed for short-range communication and typically use the star topology.
However, BLE introduces low power, more sleep modes, faster pair/connection
times, allows mesh topology (versions 4.1 or later), can connect to the Internet
but requires a gateway.

• ZigBee: is a suite of protocols designed to low power wireless devices. It has
been developed by Zigbee Alliance and it is based on IEEE 802.15.14 specification.
Thus, it aims to provide low-cost and low power networking. The technology can
operate in three different topologies star, mesh, and tree. Depending on power
output transmission, ZigBee can establish communication typically up to 100m
indoor and 300+m line-of-sight environments, operating on 2.4GHz, also ZigBee
provides a data rate up to 250 kbits/sec.

• Z-Wave: is a wireless communication protocol developed by Zensys. Their
main idea is to propose an alternative solution flexible enough to Z-Wave devices
be reachable from or access the Internet, operate in a mesh fashion instead of
the star topology and allow wider communication range (up to 100m) than BT
technologies. Z-Wave operates on the 800-900MHz radio frequency, it can deliver
up to 40 kbits of data rate.

18 Chapter 2. Internet of Things Overview

• Wi-Fi: this wireless communication technology is the most popular due to their
presence in everyday environments such as our homes, offices, industries, and oth-
ers. Wi-Fi follows the standard IEEE 802.11 for transmission and codification.
The standards have been developed since 1997 providing several versions and
typically operating on 2.4GHz or 5GHz waves. Depending on the Wi-Fi version,
it is possible to deliver data rates raging from 1Mbps up to 20Gbps over respec-
tively the versions IEEE 802.11-1997 and the predicted IEEE 802.11ay. Although
IoT devices have been employed with Wi-Fi capabilities, the technology is not
great for most IoT constrained battery-powered devices that need to operate for
months or even years. However, some Wi-Fi versions fit IoT’s demands. They
are named Wi-Fi HaLow (802.11ah) and White-Fi (802.11af). Wi-Fi provides
connectivity up to 20-250m depending if the environment is indoor or outdoor
and the power output, we highlight that Wi-Fi HaLow can reach up to 1 km with
the right antenna.

2.6 Mobility Meets The Internet of Things

In a mobile-enabled IoT, it is important to understand what the devices do,
where/when/how they do, where they move for, what are the places where they come
and go across the time (hourly, daily, etc.). In that context, users should have a consis-
tent experience of use even in occasionally connected set devices. Recent research ques-
tions have focused on the mobile aspect of the IoT’s devices [87]. Examples of devices
are robots, Unmanned Aerial Vehicles (UAV), people carrying smart devices, and vehi-
cles. These new mobile technological artifacts rise several challenges not faced by the
traditional static IoT such as mobility induced sensor network design, robustness over
mobility, coordination, concurrency, opportunistic computing, and others [86, 87, 120].

Mobility concerns three significant aspects (see Figure 1.1): The mobile hard-
ware that includes the devices and components that provide or access the IoT services.
Typically, these devices have a wireless transceiver enabling them to communicate with
other devices and, eventually, they can move by itself or being attached to a mobile
entity. The mobile software encompasses the operational software framework (OS,
applications, etc.) able to providing support to mobility applications. The mobile
software runs on top of mobile hardware, therefore, it should be aware of the hardware
constraints while dealing with the requirements and characteristics of the IoT appli-
cations. The mobile communication refers to data exchanges, seamless and reliable
communication. Also, mobile communication should provide support to transparent

2.6. Mobility Meets The Internet of Things 19

communication although occasionally the devices may be detached from the network.

2.6.1 New IoT Paradigms and Requirements

A natural evolution of static IoT is the smart object mobility freedom allowing new IoT
paradigms such as the Internet of Mobile Things (IoMT) and Social Internet of Things
(SIoT). For IoMT, the major changes appear from the highly dynamic network formed
by mobility-enabled devices. While SIoT pushes forward the concept of everything real
becomes virtual, meaning that each person or object has a virtual entity counterpart
on the Internet. Then, as in the real world, these virtual entities can consume and
produce services as well as do social ties among them.

The IoMT paradigm encompasses the smart “things” able to move independently
or be attached to a mobile entity, and these “things” remain accessible remotely from
the Internet whenever and anywhere if one wishes. IoMT faces challenges different
from static IoT, for example, context and mobility pattern recognition, connectivity
under high dynamic links, energy availability, and security and privacy. Few recent
studies have focused on the IoMT, especially regarding the framework support to this
new paradigm [107, 120]. Indeed, most of the work present predictions or assume that
a basic support framework exists, for example, routing under the mobile scenario is
well understood. However, as mentioned, several challenges still need to be solved.

SIoT extends the original IoT by enabling smart devices to establish social ties.
Note it does not mean that smart objects will sign a Social Media, but they will be
able to create social relationships among them. As pointed by [9], SIoT rise several
advantages such as easy objects and services discover without human involvement by
just using the object’s relationships (e.g. gadgets of Bob can configure new Bob’s
gadgets). Another benefit is that different levels of trustworthiness and interaction can
be applied depending on the friendship between objects, enabling humans, for instance,
to measure security levels of the relationship of the objects. [9, 10] list five types of
smart objects relationship of a SIoT:

• Parental Object Relationship (POR): relation established among objects from
the same production batch, e. i., objects from the same brand and produced in
the same period;

• Co-location Object Relationship (C-LOR): this relation occurs among objects
always used in the same place. For instance, objects from a home environment.
They can be heterogeneous and from different brands;

20 Chapter 2. Internet of Things Overview

• Co-work Object Relationship (C-WOR): occurs when objects collaborate to pro-
vide a common application;

• Ownership Object Relationship (OOR): relations between objects belonging to
the same owner, e. i., smart-phones, laptops, video game consoles, and others.

• Social Object Relationship (SOR): the social relation may appear when objects
contact other objects sporadically or continuously. For instance, devices from
classmates or people that work in the same place.

To support IoMT and SIoT applications and turn them a reality several challenges
need to be overcome. In the following we list some of these challenges:

• Communication requirements: many mobile-enabled IoT applications will require
any-to-any communication due to the flexibility offered. For example, devices in
a SIoT will need communication in a bi-directional way to create their social tiers
as well as provide and access services. The challenge is the high dynamic and
the device heterogeneity turning the any-to-any communication a hard task. In
Chapter 6 we present an alternative to provide any-to-any communication under
static and link fault networks as well as in mobile highly dynamic networks;

• Dynamic network topology: mobile entities in the network cause high dynamic
topologies. Make this dynamic aspect transparent to the applications is a chal-
lenge. For example, mobility can cause disconnections, routing address identi-
fication changes. In Sections 5.3.4 and 6.3.3.1, we propose alternatives to over-
come respectively temporary link dynamic failures, detect motion, and reconfig-
ure routes to reflect entities in its new position in the network;

• Opportunistic computing: this field is concerned with how devices can interact
with each other opportunistically. With IoMT, people can interact with a sta-
tionary or mobile sensor rising the Opportunistic IoT (OIoT) [50]. There are
several traditional opportunistic network solutions for routing, data dissemina-
tion, incentive mechanisms, security, trust, and privacy. However, such solutions
will need to be revised or new solutions proposed to overcome the constraints
posed by IoT contexts such as energy and resource limitations.

• Mobility patterns: unfortunately, data to study and better understand device
mobility patterns in the context of IoMT or even SIoT are not available to date.
When there is, they have limited scope or are not available for free study [66].

2.7. Concluding Remarks 21

Thus, authors of proposed solutions have made several assumptions in their de-
sign of mobility-aware solutions in IoT. The mobility pattern can vary widely, for
example, vehicles travel in specific pre-defined patterns while pedestrian carrying
smart devices. Modeling these patterns and understanding their variability would
yield valuable insights to propose efficient solutions: efficient energy consump-
tion, network connectivity, and coverage, opportunistic contacts, and others. In
Chapter 6, we introduce an alternative routing protocol that considers human and
non-human mobility through mobility models in the experiments, which shows
an option to design mobile-aware routing protocols.

Note that other challenges arise when IoT’s devices can move. For example,
device indoor localization, data gathering, and in-network data fusion. [9, 87, 120].

2.7 Concluding Remarks

Throughout this chapter, we have given an overview of the historical perspective, the
fundamental concepts and building blocks of IoT, as well as IoT IPv6 integration and
different communication technologies. Also, we presented the mobile paradigm within
IoT’s context, which brings new IoT paradigms (IoMT and SIoT) as well as a range of
research challenges and open issues.

Chapter 3

Model and Definition of Problems

In this Chapter, we declare our problem set to which we have proposed solutions as
well as the model to evaluate our propositions.

3.1 Definition of Problems

As our focus is in the IoT routing layer, let us briefly revise what this layer does.
Despite, we are hiding low-level details, addressing and routing are two of the most
important task of the routing layer [98, 121]. The former deals with identifying devices
into the network typically using the IP. However, in IoT networks such a protocol
suffered some adaptations forming the 6LoWPAN. The latter (routing) concerns to
getting messages/packets from the source all the way to the destination, typically
requiring many hops during the routing process. We focused on issues concerning the
routing part.

In IoT, the routing task becomes an issue because devices are typically con-
strained in several ways and may are mobile. Moreover, they have scarce energy and
computational (CPU and memory) resources. Also, the devices can move around caus-
ing topology dynamics. Thus, those factors call for solutions specially designed for
them. The main issue in the routing task is to provide a routing mechanism by making
use of the lowest amount of resource even in mobility events.

There are two main classes of routing protocols: pro-active and reactive1 [104].
The former attempts to maintain consistent, up-to-date routing information to provide
at least one communication paradigm. The latter creates routes only when desired by
the source node. In this work, we focus on pro-active protocols.

1One can also find pro-active as table-driven and reactive as on-demand protocols.

23

24 Chapter 3. Model and Definition of Problems

Three main communication paradigms are mainly employed by routing pack-
ets in an IoT network: many-to-one; one-to-many, any-to-any. The paradigms differ
significantly, affecting their implementation code complexity (e.g., memory, energy),
application design, and applicability. In the literature, there are IoT routing protocols
based on at least one of the communication paradigms. Below, we define each mobile
communication paradigm and we point out well-known protocols that are a reference
in each paradigm:

• Bottom-up (or Many-to-one): this communication paradigm (often called
as data collection paradigm) is the most known and well-solved. It supports
applications that need to gather data, at a single point, from the networked
devices. The main issue is to create and maintain (pro-actively or on-demand)
the routes from the devices to a single target (usually, the root or base station).

Two examples of protocols for many-to-one communication paradigm are: Col-
lection Tree Protocol (CTP) [47] and Routing Protocol for Low-Power and Lossy
Networks (RPL) [133]. Chronologically, RPL was standardized after the CTP
proposal. Essentially RPL implements CTP’s functionalities, but it also provides
other features, i.e., multiple routing trees (named Destination Oriented Directed
Acyclic Graphs (DODAGs)) [133].

• Top-down (or One-to-many): well-known as data dissemination paradigm, it
has characteristics that are opposite to the previous one. It supports applications
that need spread (disseminate) some information from one device to other net-
worked devices. In general, they disseminate data/code to set/reset the device
reconfiguration. The main problem is the efficient way to propagate the informa-
tion to all network devices being aware of duplicate re-transmissions, receptions,
and reachability.

Deluge [21] and Trickle [75] are examples of data dissemination protocols. The
first one was built to disseminate a large amount of data from one or more source
devices to all other networked devices. The second one uses a “polite gossip”
policy that broadcasts information (typically of small size) to local neighbors of
the source device, but it remains silent if it receives identical information from
its neighbors.

• Any-to-any: this paradigm supports both paradigms and allows communication
between any two devices in the network. It does not present significant restric-
tions for traffic exchange unless the device has limited computational resources.
In particular, memory might be a problem since it is necessary to maintain routes

3.2. Models 25

for all devices reachable in the network. An example of an any-to-any routing
protocol is the RPL which is considered the standard routing protocol for IoT.

We are especially interested in this mobile communication paradigm because of its
applicability and potential to enable new mobile IoT applications. In Chapter 6,
we propose a routing protocol able to perform any-to-any routing under mobile
and static scenarios.

• Intermediate approach: Often, an intermediate approach can be useful where
bi-directional communication between the border router and devices are required,
and when devices are too constrained to accommodate any-to-any implementa-
tions. For instance, applications that require an acknowledgment for delivered
messages. In this direction, it is possible to combine the paradigms one-to-many
and many-to-one and create an intermediate one. The protocol eXtend Collec-
tion Tree Protocol (XCTP) [113] is an example of this approach. Indeed, XCTP
is a CTP’s extension that keeps all CTP features, but provides reverse routes
(from the border router to the devices).

In mobile scenarios, besides maintaining consistent and up-to-date routing in-
formation, it is expected that the routing mechanism deals with frequent topology
changes. Normally, IoT routing protocols rely on timers2 that trigger beacons3 to
check topology changes. Those timers play an important role in energy resource usage.
A basic trade-off is faced here if the timer triggers several beacons, then it will quickly
detect topology changes, and energy resources will be quickly drained. Otherwise, if
the timer sends a few beacons, then it will save energy but it will be unaware of topol-
ogy changes. Thus, routing solutions for mobile scenarios should be aware of this timer
trade-off.

In summary, two main problems are addressed in this thesis: (i) To pro-actively
construct and maintain routing information even in case of mobile events in an IoT
network; and (ii) To balance the trade-off faced by the beaconing timer.

3.2 Models

We have some assumptions and used models to study those problems. Despite keeping
our propositions as simple and generic as possible, our results were evaluated mostly
under a simulated environment. Below, we highlight our assumptions with respect to
the hardware and models to build our solutions presented in the following chapters.

2Also known as Beaconing Timers.
3Small packets to check some properties. In this case, reachability.

26 Chapter 3. Model and Definition of Problems

3.2.1 Entities

“Things” or just entities4 are the generic names when referring to the devices employed
in the IoT. Entities are of different types (e.g., TVs, home cleaners, vehicles, and smart-
phones). Also, entities have a context (e.g., a place, a state). Here, we are interested
in the mobility context. Although mobility can be studied in a broad spectrum, we
just kept the mobility context as simple as possible by classifying entities into two
main groups: those having mobility or no. For mobile entities, we divide them into
human-like and non-human mobility behavior. The context of the entities is obtained
through sensing elements that also have a wide spectrum, e.g., from sensors like GPS
or accelerometer to social media sensors [16, 118]. Aware of the entities’ context it is
possible to design custom solutions as presented in the following chapters proposals.

Our entities assume a basic unit of hardware that holds at least the following char-
acteristics: (i) Processing unit(s); (ii) Memory unit(s); (iii) Communication unit(s);
(iv) Sensor(s) and/or actuator(s). (v) Energy source. One can find basics device ar-
chitectures in the following literature [79, 105]. For entities with those characteristics,
we also named them as smart objects.

The set of sensors and actuators may play a key role in the development of
solutions. For example, with a dedicated proximity sensor, it is possible to detect
entities’ proximity easily. We do not make any assumptions on the set of resources,
except in Dribble (see Chapter4) re-evaluation phase where GPS reads was employed
to make the solution simpler, although approaches with no GPS can be built.

3.2.2 Mobility and Dynamic Model

To the best of our knowledge, there is a lack of real and diverse mobility and topology
dynamic traces for IoT’s entities, usually due to privacy-related or technical issues.
To overcome such a situation, researchers have developed mobility models to fill this
gap [53, 84]. Those models try to mimic real mobile entities behavior allowing us to
generate variable traces in terms of space, time, and size.

We employ mobility models in our simulated environment classifying them into
two groups: human and non-human patterns. For human mobility model, we highlight
the Small World in Motion (SWIM) [81] and the Group Regularity Mobility Model
(GRM) [91]. SWIM produces synthetic traces with similar properties of real mobility
traces. It assumes that humans go to places near their home, where they meet oth-

4In some moments, we also named entities as node. This is a usual term employed in computer
networking, especially concerning the routing layer.

3.2. Models 27

ers, and, eventually, return to their homes. GRM presents similar properties, but it
introduces the dynamics of group meetings and social community structure.

Over the years several non-human mobility models were proposed [6, 12, 84].
We highlight the Random Waypoint (RWP), a well-known mobility model to evalu-
ate MANET routing protocols [12]. In RWP, the entities move freely in a random
direction, velocity, and acceleration. Also, there is an RWP extension named Cycli-
cal Random Waypoint (CRWP) [106], where the entities behave similarly as in RWP.
However, for CRWP entities, after n chosen destinations, the mobile entity returns
to its initial position. CRWP is useful to model scenarios where some entities move
to different destinations, and eventually, return to their initial positions, which is the
case of objects (e.g., portable devices and environment cleaners) that move in homes,
offices, universities, hospitals, factories, among others.

Each mobility model has its parameters. In timely, we highlight each parameter
(number of nodes, environment dimensions, statistical parameters, and others) putting
them into the context of our evaluation environment setup.

To the best of our knowledge, there is no widely and well-known trace of link
dynamics in IoT context. To evaluate our solutions, we simulated a range of faulty
scenarios based on experimental data of TelosB sensor motes deployed in an outdoor
environment [11]. Randomly devices have their radio turned on/off during a time
interval uniformly distributed. It simulates network topology changes. In this thesis,
we highlight the parameters used in our experiments.

We make use of those models to evaluate our proposed solutions for mobile and
dynamic environments. In general, we use two groups (human and non-human) and
faulty scenarios in our evaluations, so we use mobility and faulty contexts that are
simple and treatable. Also, we highlight that mobility patterns and faulty studies in
IoT should be further investigated, but they are out of scope of this thesis.

Chapter 4

Mobility Detection

4.1 Contextualization

Smart devices have been part of our daily routine. They can be attached to infras-
tructures, wearable, and be moving by itself. When those devices are networked and
connected to the Internet, they form the so-called IoT. Nonetheless, they introduce new
challenges from the network lens, because they are heterogeneous (e.g., TVs, smart-
phones, vehicles, etc.) and have different degrees of mobility. Thus, manageability
and scalability are examples of key issues that ask for solutions, especially when the
mobility factor is present. Recently, most of IoT’s solutions were proposed for static
networks [57]. Only a few attempts took the mobile context into consideration [92, 106].
In the mobile and wireless environment, the routing protocol is a key component to
enable mobility to the IoT. Mostly of routing protocols for mobile IoT have one timer
scheme that governs the communication structure construction and maintenance by
triggering from time to time control advertisements.

The timer scheme must deal fairly with a basic trade-off. If it is too greedy
by sending advertisement frequently, it responds quickly to topology changes, but it
spends energy and introduces an overhead to the wireless shared channel. However,
if the timer scheme is too slow, i.e., it sends advertisement infrequently, it will save
energy and bandwidth, but topology problems will persist for a long time.

To balance this trade-off, we propose Dribble, a learn-based timer scheme selector.
To the best of our knowledge, IoT networks are governed by a single timer scheme,
without concerning devices mobility. Dribble differs from single timer schemes by
setting a custom-made timer scheme to devices conveniently. It does that through a
learning process of devices’ mobility patterns and matching them to a proper timer
scheme. We evaluate Dribble against traditional timers such as Trickle Timer (TT)

29

30 Chapter 4. Mobility Detection

1
2

4

5 3

6

(a) Multipoint-to-Point rout-
ing structure.

1

Routes:(2,2),(3,3)
(4,2),(5,2),(6,3)

2

(4,4),(5,5)

4

5 3 (6,6)

6

ctl
ctl

ctl

ctl

ctl

(b) Point-to-Multipoint route
structure and control mes-
sages.

1
2

4

5 3

6

M2P

P2M
P2P

(c) Data traffic patterns over
routing structures.

Figure 4.1: (a) the Multipoint-to-Point (M2P) routing structure that creates routes
from nodes towards the root. (b) presents the Point-to-Multipoint (P2M) routing
structure typically created through control packets sent over (a) structure. (c) the
three main data traffic patterns over the routing structure constructed on (a) and (b).

and Reverse Trickle Timer (RevTT) through extensive simulations. Our analyzes show
that Dribble presents a better trade-off balance than a single timer scheme.

The rest of the chapter is organized as follows. In Section 4.2 we review routing
in IoT. Section 4.3 states the timer scheme problem and describes the related work. In
Section 4.4, we present Dribble workflow. Dribble evaluation is detailed in Section 4.5.
Finally, in Section 4.6 we highlight the final remarks and conclusions.

4.2 IoT Routing in a Nutshell

In IoT, mobility-enabled routing protocols build structures to perform multi-hop
data forwarding in three main traffic patterns: Multipoint-to-Point (M2P), Point-to-
Multipoint (P2M), and Point-to-Point (P2P). Figure 4.1a shows the routing structure
required to provide M2P data-traffic. Typically, the routing protocol creates a rout-

4.2. IoT Routing in a Nutshell 31

ing Directed Acyclic Graph (DAG) oriented towards one or more special device node
(known as a border router or base station). By default, each node maintains at least
one preferred parent, which is used to forward data. The M2P traffic pattern is cost
efficient in terms of memory requiring few routing states.

P2M is the dual traffic pattern (from root to nodes). Protocols that support P2M
build paths by using extra control packets and routing states. Figure 4.1b shows how
a protocol can create P2M paths1, initially it is created a DAG, and then periodically
each node reports to the direct parent, through control packets, reachable downwards
nodes. By supporting both previous traffic patterns, a protocol can combine them to
provide P2P communication (Figure 4.1c). Several routing protocols were proposed to
support at least one IoT data traffic pattern (e.g., XCTP [113], CodeDrip [59], and
Mobile Matrix [106]). RPL [133] became de facto the standard routing protocol for
IoT. RPL is a distance vector protocol that builds a DODAG.

RPL introduces three main control packets to build and maintain routes [133].
Figure 4.2 show the RPL control packets exchanges flow. i) DODAG Information
Solicitation (DIS) is used by a new node to ask for valid DODAG instances nearby in
its neighborhood; ii) DODAG Information Object (DIO) carries information allowing
new nodes to discover and join to RPL’s DODAGs instances and get its configuration
parameters. Initially, the root fires the first DIO triggering a DODAG formation.
Also, a DIS packet reception by a node triggers a DIO transmission; iii) DODAG
Destination Advertisement Object (DAO) propagates destination information upwards
through node’s parent along the DODAG. If RPL is on store-mode2, child nodes send
unicast DAO to selected parents. In Non-Store mode, DAO is unicasted to the border
router; iv) DODAG Destination Advertisement Acknowledgement (DAO-Ack) is an
optional control packet that is acknowledged back to the sender of the DAO.

Most of IoT routing protocols (e.g., RPL and Mobile Matrix) relies on two key
components to construct and maintain their routing structures: a routing metric and a
timer scheme. The former, it is focused on expressing the link quality which is typically
a wireless link. Well known IoT routing metrics such as ETX and 4-Bit are useful to
catch the highly dynamic and busty behavior of wireless technologies employed (e.g.,
IEEE 802.15.4) [47, 106, 133]. Such link metric is regularly advertised into control
packets (e.g., DIOs) helping nodes to find best paths. The focus of this work is on the
timer schemes which concern the triggering time interval between consecutive control

1Note, there are others approaches to build P2M as presented in [92, 106, 133]
2RPL supports two types of downwards routing schemes named Store and Non-Store Modes. In

Store Mode, relay nodes in-network can keep downwards routing structure, i.e., keep routing tables.
In Non-Store Mode just the border router node keep downwards routing structure [133].

32 Chapter 4. Mobility Detection

New node Old

DIS

DAO

DIO

DAO-a
ck

Figure 4.2: RPL control packets.

packets advertisements. The timer scheme plays a key role by tracking topology changes
and inconsistencies (e.g., mobility and loops respectively) as well as energy consumption
and channel occupation overhead. Following, we highlight the problem tackled by timer
schemes and existing solutions.

4.3 Related Work and Problem Statement

Mobility is a major factor present in everyday life, thus the mobility of “things” is a
natural event in the cyber-physical space. In IoT, even reduced device mobility can
cause topology changes due to, for instance, the short-range wireless link technologies
(e.g., IEEE 802.15.x). In such a situation, the routing protocol must rebuild routes to
reflect the new topological organization as soon as possible mitigating network discon-
nections. Typically, pro-active routing protocols advertise control packets from time to
time to build and manage their routing structures. In RPL, a node can re-attach to a
DODAG upon receiving a DIO (upwards routes control packet) and then it transmits
DAOs to build downwards routes.

The timer scheme governing the control advertisements plays a fundamental role
by impacting in the network overall performance. First, the responsively to topology
changes. Second, the energy consumption upon sending control packets. Third, the
introduction of channel overhead also by firing control messages. In Figure 4.3, we put
all together as a basic trade-off faced by time-schemes. If the timer scheme frequently
schedules advertisements, i.e., it has a small interval between consecutive beacons, it
can quickly respond to topology problems at a high cost of energy expenditure and

4.3. Related Work and Problem Statement 33

Figure 4.3: Timer schemes’ basic trade-off faced.

channel overhead. On the other hand, if a timer scheme occasionally (large interval)
advertises control packets, devices use less energy and introduce low overhead, but
topological inconsistencies will persist for a long time. As shown in Figure 4.3a, it is
undesirable to create a timer scheme that it slow to figure out links change and sends
many advertisements. On the other hand, it is desirable a timer scheme that sends
a few control packets advertisement while is fast to respond to topology changes (see
Figure 4.3b). Thus, our effort is in propositioning a solution with such characteristics.

In the literature, few attempts have been made to fill this gap, especially in
IoT environments where mobility is present. The vanilla approach periodically sends
advertisements in a fixed interval see the pattern in Figure 4.4 (Periodic). If the adver-
tisement rate is high then the routing protocol will be able to quickly track topology
changes, but a high channel and energy usage are required. If the advertisements are
sent with large interval low energy and channel occupancy are required, but the routing
protocol will be slow to detect topology changes. Periodic timer scheme leaves to the
network operator the responsibility to control the trade-off, thus the scheme appears
in Figure 4.3c,d.

Often, routing protocols, as is the case of RPL, use the adaptive beaconing Trickle
Timer (TT) algorithm [75]. TT advertises control packets faster when topological
inconsistencies occur in the routing structure, otherwise, it decreases the advertisement
rate exponentially as shown in Figure 4.4 (Trickle). In such a strategy, it is assumed
that the network will be stable, i.e., it is almost static with just a few link changes.
Otherwise, the timer scheme will remain in the minimum interval (typically a very
small interval) implying in network overload of control packets and energy expenditure.
The RPL specification suggests 8ms and 2.3 h as a minimum and a maximum period

34 Chapter 4. Mobility Detection

Figure 4.4: Three main timer schemes commonly used in IoT routing protocols.

respectively for TT [133]. Therefore, a node can wait for a relatively long time before
sending a control packet, which turns the tracking of topology problems an issue to
standard RPL in mobile environments, for this reason several RPL’s adaptations were
proposed for mobile scenarios which typically changes TT scheme [92]. The TT is
positioned in Figure 4.3 (iii) given its characteristics.

Reverse Trickle Timer algorithm [25] works in an opposite fashion than TT as
shown in Figure 4.4 (Reverse Trickle) It starts with a large interval between advertise-
ments, and then it halves the interval after each advertises fired, i.e., increasing the
advertisement rate. The authors argue that RevTT is suitable for mobile networks
where a mobile node attaches to a parent (preferably static). It is assumed that when
a node connects to a parent, such node will likely remain connected to this parent for a
long time. As long as the node remains connected to the same parent, it is likely to that
node moves away. This justifies a large initial interval and the short interval after long
periods. The authors evaluated RevTT with RPL in a mobile network environment.

Besides those approaches, there are some proposals in the literature that make
hard assumptions (e.g., knowledge about parent position) to operate [44, 92]. Also,
vehicular networks is another field which widely explore the benefits of adaptive bea-
coning approaches [52, 116, 119]. Those proposals focus on increase delivery rate and
reduce the channel overload which is important for safety applications and routing
protocols. However, they were not proposed to constrained IoT’ devices.

Different from previous proposals, we do not propose a new timer scheme. In-
stead, we propose a selector to set a custom timer scheme given the mobility pattern of
an IoT device. We advocate that by matching timer schemes to well-known mobility
patterns, it is possible to balance the posed trade-off.

4.4. Dribble Design 35

Yes

We trigger a motion
event when an entity
leaves a geo location.

Start with
default timer

i) Extract of
Mobility
Metrics

ii)
Learning-based

Model

iii) Timer
Scheme

Matching

Motion
Event?

Sleep mode

There are several mobile
metrics available.
We perform a feature selection
in order to choose a minimal
set of metrics

A ML model capable to
classify mobility metrics.
We use a Multi-layer
Perceptron

According with motion
pattern, a proper
time-scheme is setted to
the mobile entity.

Entity

No

Figure 4.5: Dribble flowchart diagram.

4.4 Dribble Design

In this section, we detail Dribble, a learn-based timer scheme selector that helps IoT
routing protocols to manage the mobility. Dribble learns the devices mobility patterns
and then it assigns a custom timer scheme to each IoT device in a distributed fashion.
We advocate that it is possible to better balance the basic trade-off faced by a single
timer scheme (see Section 4.3 and Figure 4.3). We have designed Dribble to be as
generic as possible by no assumption about fixed topologies, network range or sizes in
its methods. The rest of this section is guided by the flowchart presented in Figure 4.5
that present Dribble’s algorithm.

Figure 4.5 shows the Dribble high level work-flow process. It consists of the
following main stages that each entity (device) must execute: A) Update of Mobility
Metrics that are extracted from the entities allowing particular characterization; B) A
learn-based model (e.g., a neural network) which aims to classify the entities mobility
patterns; C) The time scheme matching which is an assignment of entities with a

36 Chapter 4. Mobility Detection

particular motion behavior to a suitable timer scheme. Following, we highlight each
one of Dribble’s stages deeply.

4.4.1 Entities

Initially, each entity running Dribble starts with a default (pre-set) timer scheme. To
set a meaningful default time scheme, we look to the performance and scenarios high-
lighted on state-of-the-art approaches. Thus, in our experiments, we choose Trickle
Timer (TT) to be the default timer scheme because it presents a good trade-off bal-
ance [75].

4.4.2 Extraction of Mobility Metrics

By using sensing elements, it is possible to study the entities context and derive useful
knowledge from them [16]. Here, we are interested in extract mobility patterns from
entities motion by making use of those sensing elements. To do that, the statistical
properties can be extracted from data gathered from sensors (e.g., GPS, Accelero-
menter, Gyroscope, etc.) [61]. Such properties usually are classified as social, spatial,
and temporal [6, 31].

Table 4.1 survey different mobility metrics with a short description and their
properties type. Social properties, for instance inter-connection time and contact du-
ration, help us to better understand how entities connect each other, how long they
stay within each other range, and how they relate to each other. Spatial properties,
such as radius of gyration and travel distance, are related to the movement behavior
of entities in the space, which can give us intuition concerning coverage area as well as
its relationship with locations. Temporal properties, for example visit time and travel
distance, can give us insights regarding regularity and rhythm of each entity motion
from a location to another, how long they stay in a spot. A detailed review of mobility
properties and metrics can be found in [6, 31, 60, 61].

There are several mobility metrics available to process as shown in Table 4.1.
From time to time, it is possible to collect those mobility metrics observed from sensing
elements data. We recommend performing a feature selection in order to choose metrics
which contribute most to the prediction of mobility pattern. This aims to minimize
the burden of processing, storage, and power consumption which are usually scarce
resources in IoT devices. In our experiments, we use three mobility metrics Travel
Distance (TD), Visit Time (VT), and Speed (see Section 4.5 for more details) without
degrading the prediction score.

4.4. Dribble Design 37

Table 4.1: A non-exhaustive list of mobility metrics, a short description and its classi-
fication.

Metric Short Description Type

Inter-contact time (INCO) [65]
The time interval between
consecutive encounters of
a pair of entities. Social

Contact duration (CODU) [31]
Time of a pair of entities is
within each
other communication range.

Encounter regularity (EDGEP) [51]
Computes the regularity of a
social relationship.
Measuring trends of encounters.

Topological overlap (TOPO) [31]

Represents the overlap of
the social relationship between
a pair of entities when considering
all the encounters.

Radius of gyration (RADG) [31] It is the distance of an entity
“orbits” around its home location. Spatial

Travel distance (TRVD) [36] It is the distance traveled between
two consecutive spots.

Entropy [41] Quantify the number of times and
diversity of visits that a spot receives.

Visit time (VIST) [60] It is the time spent by an
entity in a location. Temporal

Travel time (TRVT) [6, 31] The time that an entity spends while
traveling from a location to another.

4.4.3 Learn-based Model

The next stage of Dribble’s pipeline is to the learning process, through sensed data. As
we mentioned before, here the entities mobility context is static or mobile (human-like
and non-human). In this sense, we have a classical classification or clustering problem,
where we want to figure out in which context the entity is. Although we have tested
different models ranging from supervised to unsupervised, we focused on supervised
models since we can obtain labeled data in our experiments (see Sec 4.5). We have
chosen the Multi-Layer Perceptron (MLP) classifier as learning algorithm [88]. One
benefit of MLP is that it can learn a non-linear function for classifying more complex
mobility context by projecting the input data into a space where they are linearly
separable. In a nutshell, MLP learns a function f(·) : Rm → Rp, where m is the
mobility metrics and p are the mobility patterns. Concerning applicability in IoT
devices, our experiments show that a basic MLP architecture can be applied to predict
accurately the nodes mobility patterns evaluated.

38 Chapter 4. Mobility Detection

4.4.4 Timer Scheme Matching

The timer scheme matching is a key stage of Dribble. Traditionally, just one timer
scheme governs the entire construction and maintenance of the IoT network, which
is a hard-assumption, especially if the network entities present mobility capabilities.
However, the main Dribble goal is to set a specific timer scheme for each entity conve-
niently. This makes sense since entities have different resource capabilities and motion
behaviors. Thus, they should have different timer schemes to better accommodate their
demands.

Currently, Dribble relies on a specialist to make the matching between mobility
patterns and timer schemes. To do that assignment, the specialist needs to understand
the mobility pattern and which is the timer scheme more suitable. However, this is a
hard task, thus to mitigate this burden, the network specialist can use the simulation
methodology applied in Section 4.5 to support its decision.

4.4.5 Motion Event

An important step of Dribble is motion event detection. It is expected that entities
change their mobility behavior over time. For example, humans sometimes behave like
a static entity (e.g., working for long periods in an office), sometimes as a mobile entity
(e.g., moving in a grocery). Dribble can re-evaluate the entity mobility pattern by
redoing its process timely when a motion event is detected.

Dribble relies on the device’s GPS readings to detect motion events. We can
separate into two phases the IoT device movement. The first one, a static phase where
the device spends some time staying in the same location/spot. The second one, a
motion phase where it moves from a location to another location of interest. To detect
motion events, we turn our attention to the static phase, because is in this phase
we interpret that devices manifest their intention to change its motion pattern. For
instance, the device is moving similarly to a human during its movement phase and
then it stops and it behaves like a static (or almost static entity). To extract the
static phase from GPS readings, we apply a simple heuristic that depends on two-scale
parameters, ∆Tthresh a time threshold, and δthresh a distance threshold. This heuristic
is similar to that presented in [135, 136]. Following, we present the heuristic:

Definition 1. GPS raw points: Let P = {p1, p2, ..., pn} be the GPS readings con-
taining the latitude, longitude, and timestamp for each point p ∈ P . Figure 4.6a shows
a raw trace of GPS points over timer of an entity moving.

4.5. Evaluation 39

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●●
●●●●●

●●●●●
●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●
●●●●
●●●●●●

●●●●●●
●●●
●●●●●

●●●●●●●
●●●●●●

●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●
●●●
●●●●
●●●●
●●●●●●

●●●●●
●●●●
●●●●

●●●●●●
●●●●●
●●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●
●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●
●●●●
●●●●●●●●

●●●●●●
●●●●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●●●

●●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●
●●●●●●●
●●●●●
●●●●
●●●●●
●●●●
●●●●●●
●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●
●●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●●●●
●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●●●●

●●●●●
●●

X coordinate

Y
 c

oo
rd

in
at

e

0 4 8 12 16
Time (h)

(a)

●●●●●●●

●●●●●●
●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●

●●●●●●●●●●
●●●

●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●●●●●●●●

●●●●●●●

●●●●●
●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●●●
●●●

●●●●●●●●●●●●●

●●●●●●●●●●
●●

●●●●●●●●●●●●●

X coordinate

Y
 c

oo
rd

in
at

e

0 4 8 12 16
Time (h)

(b)

1

2

3

4

567

8

9

10

11

12

13

14

15

16

17

18

19

●●●●●●●

●●●●●
●●●

●●●
●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●

●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●●●
●●●●

●

●●●●●●●●●●●●

●●●●●
●

●●●●●●●●

●●●●●●●

●●●●●●●●

●●●●●●●●●
●●●
●●

●●●
●●●●●●●●●●

●●●●●●●
●●●●

●

●●●●
●●●●●●●●●

X coordinate

Y
 c

oo
rd

in
at

e

(c)

Figure 4.6: (a) a trace of raw GPS points forming a trajectory of an entity. (b)
extracted Stay Location from a trajectory (a). (b) Stay location history.

Definition 2. GPS trajectory: We define a device GPS trajectory a sequence of
GPS points within a certain time interval. Thus, Traj = {p1 → p2 → ...→ pn}, where
pi ∈ P , Time(pi+1) > Time(pi), and Time(pi+1)− Time(pi) ≤ ∆T for (1 ≤ i < n).

Definition 3. GPS Stay location: A Stay Location (SL) is a region where the device
stayed within a certain period. To extract the stay location, we apply a simple heuristic
that depends on ∆Tthresh and δthresh respectively time and distance threshold. Thus, an
SL is identified as a sequence of points from a Traj given by SLpoints = {ps, ps+1, ..., pl}
for all s < i ≤ l, that respect the following two conditions. First, theDistance(ps, pl) ≤
δthresh, and second, ∆Tthresh ≤ |Time(pl)− Time(ps)|. We can derive the latitude and
longitude of an SL simply averaging its points values. Figure 4.6b shows the stay
locations extracted from the raw trajectory points. To set a meaningful ∆Ttresh and
δtresh, we rely on human walk velocity (≈1.4 m/s) and a feasible 1.4 s granularity of
GPS readings. Thus, we set the threshold values to very low values ∆Ttresh = 5 min

and δtresh = 5 m.

Figure 4.6c displays the Stay Location History (SLH) obtained from after applying
the SL method. Thus, SLH is a sequence of SL defined as SLH = {sl1, sl2, ..., sln},
where the average times of the stay locations respect avgT ime(slm) < avgT ime(sln)

for all s ≤ i < l.

4.5 Evaluation

In this section, we describe Dribble performance evaluation against the baseline Pe-
riodic fixed timer scheme, Reverse Trickle scheme as well as the widely used Trickle

40 Chapter 4. Mobility Detection

Table 4.2: Default simulation parameters

Simulation setup

Duration 15 days
of Nodes 200
Base station 1 center
Distribution Random
Radio range 200m UDG
DIM 1500m × 1500m
of random topologies 15
Transmission Model CC2420-like

Timer schemes

Trickle and Reverse Trickle min = 2 s, max = 1024 s
Periodic 90 s

algorithm.

The evaluation process was conducted on Sinalgo simulator [49] and we use the
standard RPL as routing protocol [133]. The RPL implementation has the three data
traffic patterns (M2P, P2M, and P2P) enabled, storing and no-storing modes as well
as hop-count and ETX as Objective Functions. The RPL specification does not define
how and when DIS packets should be sent and also how an unreachable parent should
be removed from the preferred parent set. Those mechanisms play a significant role to
react upon topology changes, especially derived from mobile nodes. In this sense, we
implement a simple but not the most efficient alternative. After a node attaches to a
parent, it waits for a small acknowledgment from the parent for every DIO sent. Then,
if a node is not acknowledged, then it purges the parent from the preferred parent set
and enters in a floating DODAG state [133]. Next, it triggers DIS packets try to re-
attach to a valid DODAG. In mobile scenarios, authors have recommended that mobile
nodes should prioritize static nodes as a parent [25, 92, 106], we also implement this
feature.

Table 4.2 lists the default simulation environment parameters. Our simulation
ran in random network topologies composed of 200 nodes. In all topologies, one fixed
node represents the base station positioned in the center of the field, 50 static nodes
were distributed in a grid fashion, representing the infrastructure. Moreover, there are
149 mobile nodes being that 100 present human-like mobility pattern and 49 present
non-human patterns. Following, the mobility patterns are described.

4.5. Evaluation 41

Table 4.3: Mobility models parameters

GRM-MIT CRWP

Group Duration 720 h Node Speed (max) 5m/s

Path time 300 s Tpause (const.) 600 s

Statistical parameters # Stops Unif(0, 10)

αgmt 2 PerMobNodes 50%
βgmt 720
αdur 2
βdur 720
αsize 2.24
βsize 30

4.5.1 Modeling the Entities Mobility

We use GRM and CRWP as human and non-human mobility patterns, respectively.
Table 4.3 lists the model’s parameters. For GRM, we set the parameters to reproduce
MIT real trace [91] behavior. The statistical parameters are from truncated power laws
with cut-off where α∗ is the power law exponent and β∗ the cut-off value: αgmt and βgmt
define the group meeting times distribution parameters; αdur and βdur characterize the
time that a group of entities will spend together. Finally, αsize and βsize define which
entities will be at each group meeting. For more parameter’s details see [91]. CRWP
has four parameters [106]: i) Speed: speed which the mobile entity moves; ii) Tpause: the
amount of time the entity stays in a destination position; iii) Stops: the number of stops
that the mobile entity does before returning to its original position; iv) PerMobNodes:
maximum percentage of entities that are out from its initial position in each instant of
time.

4.5.2 Measuring Mobility

In our simulation environment, there are static and mobile entities classes. We used mo-
bility metrics as discussed in Sec 4.4.2 to capture the mobility patterns. MOCHA [31]
and BonnMotion [6] are freely available tools utilized to extract the mobility metrics
from the traces. Figure 4.7 shows three mobility metrics analyzed for one of our sim-
ulated topologies. Static nodes present no speed and Travel Distance (TD), however,
the Visit Time (VT) is high. While human-like nodes present high variability in Travel
Distance (TD) with moderate Visit Time (VT). The non-human nodes present high-
speed variability and high values of TD. Visually, it is possible to see three groups in
our dataset, and this insight drove us to the learning-based classification method.

42 Chapter 4. Mobility Detection

Figure 4.7: Mobility metrics for each entity.

Table 4.4: Model parameters and classification report

Neural Network Architecture and parameters
Architecture 1 Hidden layer with 100 neurons
Activation Rectified linear unit function
Learning rate Constant
epochs 500
Weight optimization Adam

Train dataset Mobility metrics from
10 random topologies

Validation model 10-fold cross-validation
Precision Recall F1-score Support

Non-Human 1 0.99 0.99 165
Human 0.98 1 0.99 317
Static 1 0.96 0.98 171

avg / total 0.99 0.99 0.99 653

4.5.3 The Neural Network

We employ a Multi-Layer Perceptron to leaning the mobility context classes (static,
human-like, and non-human). The MLP architecture (see Table 4.4) was kept simple
aiming to be suitable for constrained devices. The model was trained with mobility
metrics measured from 10 random topologies composed of 200 nodes each. As model
validation, we used 10-fold cross-validation over the data. Moreover, Figure 4.8 shows

4.5. Evaluation 43

Non-Human Human Static
Predicted label

Non-Human

Human

Static

Tr
ue

 la
be

l

0.99 0.01 0.00

0.00 1.00 0.00

0.00 0.04 0.96

0.0

0.2

0.4

0.6

0.8

Figure 4.8: Confusion matrix.

the confusion matrix and Table 4.4 lists values of precision, recall, F1-score, and sup-
port. The results show high precision and recall, this is due to the target classes present
disparate mobility metrics characteristics. Therefore, the model fits and predict cor-
rectly the entities classes.

4.5.4 Assigning Timer Schemes to Mobility Patterns

In our experiments, we assign the timer schemes to mobility pattern as follows: i) Non-
human mobile entities were assigned to the Periodic scheme since they present the
highest speed variability and travel distance. Therefore, a Periodic scheme with suitable
short interval can better capture the mobility behavior. ii) Human-like mobile entities
were assigned to RevTT. Those entities presented moderate VT and wide variability
in TD. This suggests that entities usually arrived at the destination, stop for a while
and then move again. This matches with RevTT proposal (Sec 4.3). iii) Static entities
were assigned to TT scheme since they represent infrastructure without any mobility,
thus TT offers low control overhead when nodes experience network stability which
usually occurs for infrastructure devices.

4.5.5 Simulation Results

To compare Dribble against single timer schemes, we use five remaining random net-
work topologies. In each following plot, the bars or points represent the average, and
the error bars indicate the confidence interval of 95%.

44 Chapter 4. Mobility Detection

●

Dribble Periodic

Rev. Trickle

Trickle

100

150

200

250

4000 6000 8000 10000
Number of DIO

A
vg

. d
is

co
nn

ec
tio

n
tim

e
(s

)

Figure 4.9: The trade-off between control overhead and disconnection time.

●

●

●

●

52137.2

128257.2

48832

49129.5

Rev.
Tric

kle
Drib

ble
Tric

kle
Perio

dic

0e+00
5e+04

1e+05

Overhearing Transmissions

(a)

●

●

●

●

36.9
16.1

42
51

Peri
odic

Drib
bleRev

. T
ric

kle

Tric
kle

0 20 40

Floating time (s)

(b)

Figure 4.10: The control flow overhearing and the average time in a floating state.

Firstly, we analyze the trade-off between control advertisement overhead and

4.5. Evaluation 45

the average disconnection time along the 15 days of simulation in Figure 4.9. In the
graphic, it is desirable low control overhead and short disconnection timer. A low
number of control packets implies less energy expenditure and low channel occupancy.
The disconnection time is the time spent from the moment that a node moves out from
the parent radio range until it finds out a new parent. As expected, Periodic is the
fastest timer scheme to find topology problems but it fires more control packets. On the
other extreme, RevTT is more economical in terms of control overhead but topology
problems persist for a long time. TT shows moderate trade-off balance. Dribble shows
a better trade-off balance by quickly reacting to topology changes and triggering fewer
control packets. Which can be explained by the customized timer scheme assignment
to each node.

The wireless channel is a shared medium, therefore when a node sends a message
nearby neighbors nodes may overhear the transmission, even if the message is not
intended to them. Which results in ultimately in unnecessary energy waste, but also
channel occupancy. Figure 4.10a shows the overhearing transmissions (for all control
flow DIOs, DAOs, and Acks) for each timer scheme. RevTT presented the lowest
overhearing average, followed closely by Dribble and TT, while Periodic presented the
highest overhearing average.

The average time of a set of nodes in a floating state3 is shown in Figure4.10b.
Dribble has a lower time in a floating state than TT and RevTT due to the mix of timer
schemes running concurrently. Therefore, it is more likely to a node receive a control
packet and fix the topology inconsistencies. Periodic presented the lowest time in the
floating state, however, it uses more control advertisement as shown in Figure 4.9.

Data delivery is a key aspect concerning routing in mobility scenarios due to
the high topological dynamics. Figure 4.11 presents the data delivery in six random
topologies. Note that RPL with any scheme is able to deliver at least 93.2% of data.
But RevTT presented the lowest results raging from 93.2% to 96.8%. Dribble and TT
have presented similar results while the Periodic. This is expected since Dribble is
able to change its behavior dynamically setting suitably the timer schemes given the
entities mobility behavior, thus Dribble tends to present a mid-term among all timer
schemes.

3A grounded DODAG offers connectivity (route towards the border router) to hosts, while a
floating DODAG does not. It only provides routes to nodes within the floating DODAG [133].

46 Chapter 4. Mobility Detection

●● ●
●

●
●

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A B C D E F
Scenarios

D
el

iv
er

y

● Dribble Periodic Rev. Trickle Trickle

Figure 4.11: The delivery rate for different evaluated scenarios.

4.6 Concluding Remarks

In this work, we proposed Dribble, a learn-based timer scheme selector, to improve the
way timer schemes are used in IoT. Until now, routing protocols have used a single
timer selector chosen without considering the entities’ mobility behavior. Dribble goes
further by setting a custom-made timer scheme to proper devices given their mobility
pattern. We evaluate Dribble against Trickle Timer and Reverse Trickle Timer. As a
result, Dribble presented a better trade-off balance between quick response to topology
problems and energy expenditure and channel occupancy.

As future work, we aim to extensively improve Dribble to support fine-grained
mobility contexts, better recursive re-evaluation of nodes mobility behavior and bea-
coning scheme matching. Also, provide an automatic way to associate mobility patterns
to timer scheme, avoiding specialist mediation.

Chapter 5

An Alternative Routing Protocol for
the Static Internet of Things

5.1 Contextualization

IPv6 over Low-Power Wireless Personal Area Networks 1 is a working group inspired
by the idea that even the smallest low-power devices should be able to run the IP
to become part of the IoT. In [86], the authors argue that IoT turns the cities and
rural areas into smart environments, where IoT’s devices may offer digital services
and functions to a variety of groups of users. These devices do interconnections with
other devices, often fixed, in the physical infrastructure in the environment (roads,
home, cars, body, etc.). The main function of a low-power wireless network is usually
data collection. Applications based on data collection are plentiful, examples include
environment monitoring [123], field surveillance [126], and scientific observation [130].
To perform data collection, a cycle-free graph structure is typically maintained and a
convergecast is implemented on this network topology. Many operating systems for
sensor nodes (e.g. Tiny OS [73] and Contiki OS [33]) implement mechanisms (e.g.
CTP [48] or the RPL [133]) to maintain cycle-free network topologies to support data-
collection applications.

In some situations, however, data flow in the opposite direction – from the root,
or the border router, towards the leaves becomes necessary. These situations might
arise in network configuration routines, specific data queries, or applications that re-
quire reliable data transmissions with acknowledgments. Standard routing protocols
for low-power wireless networks, such as CTP and RPL, have two distinctive charac-

1We use the acronym 6LoWPAN to refer to Low power Wireless Personal Area Networks that use
IPv6

47

48
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

teristics: communication devices have unstructured IPv6 addresses that do not reflect
the topology of the network (typically derived from their MAC addresses), and routing
lacks support for any-to-any communication since it is based on distributed collection
tree structures focused on bottom-up data flows (from the leaves to the root).

The specification of RPL defines two modes of operation for top-down data flows:
the non-storing mode, which uses source routing, and the storing mode, in which each
node maintains a routing table for all possible destinations. This requires O(n) space
(where n is the total number of nodes), which is unfeasible for memory-constrained
devices. Our experiments show that in random topologies with one hundred nodes,
with no link or node failures, RPL succeeds to deliver less than 20% of top-down
messages sent by the root (see Figure 5.8).

Some works have addressed this problem from different perspectives [34, 101, 113].
Counting Bloom Filter Routing (CBFR) [101] is a routing scheme that builds upon col-
lection protocols to enable point-to-point communication. Each node in the collection
tree stores the addresses of its direct and indirect child nodes using Bloom filters to
save memory space. Opportunistic RPL (ORPL) [34] also uses bloom filters and brings
opportunistic routing to RPL to decrease control traffic overload. Both protocols suffer
from false positives problem, which arises from the use of Bloom filters. Even though
CTP does not support any-to-any traffic, XCTP [113], an extension of this protocol,
uses opportunistic and reverse-path routing to enable bi-directional communication in
CTP. XCTP is efficient in terms of message overload, but exhibits the problem of high
memory footprint.

In this work, we build upon the idea of using hierarchical IPv6 address allocation
that explores cycle-free network structures and we propose Matrix, a routing scheme
for dynamic network topologies and fault-tolerant any-to-any data flows in 6LoWPAN.
Matrix assumes that there is an underlying collection tree topology (provided by CTP
or RPL, for instance), in which nodes have static locations, i.e., are not mobile, and
links are dynamic, i.e., nodes might choose different parents according to link quality
dynamics. Therefore, Matrix is an overlay protocol that allows any low-power wireless
routing protocol to become part of the Internet of Things. Matrix uses only one-
hop information in the routing tables, which makes the protocol scalable to extensive
networks. In addition, Matrix implements a local broadcast mechanism to forward
messages to the right subtree when node or link failures occur. Local broadcast is
activated by a node when it fails to forward a message to the next hop (subtree) in the
address hierarchy.

After the network has been initialized and all nodes have received an IPv6 address
range, three simultaneous distributed trees are maintained by all nodes: the collection

5.1. Contextualization 49

tree (Ctree), the IPv6 address tree (IPtree), and the reverse collection tree (RCtree).
The Ctree is built and maintained by a collection protocol (in our case, CTP). It is a
minimum cost tree to nodes that advertise themselves as tree roots. Matrix builds the
IPtree over the first stable version of the Ctree in the reverse direction, i.e., nodes in
the Ctree receive a hierarchical IPv6 address from root to leaves, originating a static
structure. Since the Ctree is dynamic, i.e., links might change due to link qualities,
at some point in the execution the IPtree no longer corresponds to the reverse Ctree.
Therefore, the RCtree is created to reflect the dynamics of the collection tree in the
reverse direction.

Initially, any-to-any packet forwarding is performed using Ctree for bottom-up,
and IPtree for top-down data flows. Whenever a node or link fails or Ctree changes,
the new link is added in the reverse direction into RCtree, and it remains as long as
this topology change persists. Top-down data packets are then forwarded from IPtree
to RCtree via a local broadcast. Whenever a node receives a local-broadcast message,
it checks whether it knows the subtree of the destination IPv6 address: if yes then the
node forwards the packet to the right subtree via RCtree and the packet continues its
path in the IPtree until the final destination.

We evaluated the proposed protocol both analytically and by simulation. Even
though Matrix is platform-independent, we implemented it as a subroutine of CTP on
TinyOS and conducted simulations on TOSSIM. Matrix’s memory footprint at each
node is O(k), where k is the number of children at any given moment in time, in
contrast to O(n) of RPL, where n is the size of the subtree rooted at each routing
node. Furthermore, we show that the probability of a message to be forwarded to the
destination node is high, even if a link or node fails, as long as there is a valid path, due
to the geometric properties of wireless networks. Simulation results show that, when
it comes to any-to-any communication, Matrix presents significant gains in terms of
reliability (high any-to-any message delivery) and scalability (presenting a constant, as
opposed to linear, memory complexity at each node) at a moderate cost of additional
control messages, when compared to other state-of-the-art protocols, such as XCTP
and RPL. In addition, when compared to our any-to-any routing scheme, the reverse-
path routing is more efficient in terms of control traffic. However, the performance of
XCTP is highly dependent on the number of data flows and can be highly degraded
when the application requires more flows or the top-down messages are delayed.

To sum up, Matrix achieves the following essential goals that motivated our work:

• Any-to-any routing: Matrix enables end-to-end connectivity between hosts
located within or outside the 6LoWPAN.

50
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

• Memory efficiency: Matrix uses compact routing tables and, therefore, is scal-
able to extensive networks and does not depend on the number of flows in the
network.

• Reliability: Matrix achieves 99% delivery without end-to-end mechanisms, and
delivers ≥ 90% of end-to-end packets when a route exists under challenging net-
work conditions.

• Communication efficiency: Matrix uses adaptive beaconing based on the
Trickle algorithm [75] to minimize the number of control messages in dynamic
network topologies (except with node mobility).

• Hardware independence: Matrix does not rely on specific radio chip features,
and only assumes an underlying collection tree structure.

• IoT integration: Matrix allocates global (and structured) IPv6 addresses to
all nodes, which allow nodes to act as destinations integrated into the Internet,
contributing to the realization of the Internet of Things.

The rest of this chapter is organized as follows. In Section 5.3, we describe the
Matrix protocol design. In Section 5.4, we analyze the message complexity of the pro-
tocol. In Section 5.5, we present our analytic and simulation results. In Section 5.2, we
discuss some related work. Finally, in Section 5.6, we present the concluding remarks.

5.2 Related Work

Ad hoc On-Demand Distance Vector (AODV) [97] and Dynamic Source Routing Proto-
col (DSR) [58] are on-demand routing protocols for any-to-any communication. AODV
floods the network with messages RREQ to build a path to the destination. On the
other hand, the DSR protocol uses the packet header to store the route path. Unlike
DSR, our protocol does not store any routing path information in the packet header.
The AODV protocol has some similarity with XCTP in the strategy of storing the re-
verse path. Performing a conceptual comparison between these protocols with Matrix,
it is easy to see that Matrix does not save entire routes either in tables or packets.
Dymo [17] is the AODV successor. However, it is optimized for MANETs. In the con-
text of low-power and lossy networks, CTP [48] and CodeDrip [59] were designed for
bottom-up and top-down data flow, respectively. They support communication in only
one direction. CodeDrip is a dissemination protocol that uses network coding to recover
lost packets by combining received packets. Our approach is an any-to-any protocol

5.3. Design Overview 51

that also enables dissemination. CTP is an efficient data collection protocol that uses 4-
bit [40] metric to estimate the link quality and route cost. Data and control packets are
used to obtain the link quality on CTP. MultiHopLQI [131] and MintRoute [134] have
the same propose of CTP, but CTP overcomes them as shown in [48]. Centrality-based
Green Routing for Low-Power and Lossy Networks (CGR) [112] is a collection routing
protocol that considers both centrality and energy to improve network performance
and decrease power consumption.

State-of-the-art routing protocols for 6LoWPAN that enable any-to-any com-
munication are RPL [133], XCTP [113], and Hydro [29]. RPL allows two modes of
operation (storing and non-storing) for downwards data flow. The non-storing mode
is based on source routing, and the storing mode pro-actively maintains an entry in
the routing table of every node on the path from the root to each destination, which
is not scalable to even moderate-size networks. XCTP is an extension of CTP and is
based on a reactive reverse collection route creating between the root and every source
node. An entry in the reverse-route table is kept for every data flow at each node on
the path between the source and the destination, which is also not scalable in terms
of memory footprint. Hydro protocol, like RPL, is based on a DAG (directed acyclic
graph) for bottom-up communication. Source nodes need to periodically send reports
to the border router, which builds a global view (typically incomplete) of the network
topology. More recent protocols [78, 82, 93] modified RPL to include new features.
In [93], a load-balance technique is applied over nodes to decrease power consumption.
In [78, 82], they provide multipath routing protocols to improve throughput and fault
tolerance. Table 5.1 shows a comparison between the 6LoWPANs protocols used in
the analysis.

Table 5.1: Comparison between related protocols for 6LoWPAN.

Features Matrix RPL CTP XCTP

Bottom-up traffic 3 3 3 3

Top-down traffic 3 3 3

Any-to-any traffic 3 3

Memory efficiency 3 3

Fault tolerance 3 3

5.3 Design Overview

The objective of Matrix is to enable an underlying data collection protocol (such as
CTP and RPL) to perform any-to-any routing in the IoT network while preserving

52
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Figure 5.1: Matrix protocol’s architecture.

memory and message efficiency, as well as adaptability to networks topology dynam-
ics2. Matrix is a network layer protocol that works together with a routing protocol.
Figure 5.1 illustrates the protocol’s architecture, which is divided into: routing engine
and forwarding engine. The routing engine is responsible for the address space parti-
tioning and distribution, as well as routing table maintenance. The forwarding engine
is responsible for application packet forwarding.

Matrix encompasses the following execution phases:

1. Collection tree initialization: the collection tree (Ctree) is built by the un-
derlying collection protocol; each node achieves a stable knowledge about who
its parent is; adaptive beaconing based on Trickle algorithm [75] is used to define
stability;

2. IPv6 multihop host configuration: once the collection tree is stable, the
address hierarchy tree (IPtree) is built using Multihop Host Configuration for
6LoWPAN (MHCL) (Section 5.3.1); this phase also uses adaptive beaconing to
handle network dynamics; by the end of this phase, each node has received an
IPv6 address range from its parent, and each non-leaf node has partitioned its
address space among its children; the resulting address hierarchy is stored in the
distributed IPtree, which initially has the same topology as Ctree, but in reverse,
top-down, direction.

2Note that Matrix is not designed to address scenarios with node mobility, but only to work with
network topology dynamics caused by changes in link quality, as well as node and link failures.

5.3. Design Overview 53

3. Standard routing: bottom-up routing is done using the collection tree, Ctree,
and top-down routing is done using the address hierarchy represented by the
IPtree; any-to-any routing is performed by combining bottom-up forwarding,
until the lowest Lowest Common Ancestor (LCA) of sender and receiver, and
then top-down forwarding until the destination.

4. Alternative top-down routing table upkeep: whenever a node changes its
parent in the initial collection tree, it starts sending beacons to its new parent
in Ctree, requesting to upkeep an entry in its routing table with its IPv6 range;
such new links in Ctree, in reverse direction, comprise the RCtree routing tables
for alternative (top-down) routing;

5. Alternative top-down routing via local broadcast: whenever a node fails
to forward a data packet to the next hop/subtree in the IPtree, it broadcasts the
packet to its one-hop neighborhood; upon receiving a local broadcast, all neigh-
bors check if the destination IPv6 belongs to an address range in their RCtree
table; if positive, the packet is forwarded to the correct subtree of IPtree. Oth-
erwise, the packet is dropped; we give a geometric argument and show through
simulations that such events are rare.

Next, we describe the architecture of Matrix in more detail.

5.3.1 MHCL: Multihop Host Configuration for 6LoWPAN

Matrix is built upon the idea of IPv6 hierarchical address allocation. The address
space available to the border router of the 6LoWPAN (e.g., the 64 least-significant
bits of the IPv6 address or a compressed 16-bit representation of it) is hierarchically
partitioned among nodes connected to the border router through a multihop cycle-
free topology (implemented by standard protocols, such as RPL or CTP). Each node
receives an address range from its parent and partitions it among its children until all
nodes receive an address. Since the address allocation is performed hierarchically, the
routing table of each node has k entries, where k is the number of its (direct) children.
Each routing table entry aggregates the addresses of all nodes in the subtree rooted
at the corresponding child-node. A portion, say r%, of the address space available to
each node is left reserved for possible future/delayed connections (parameter r can be
configured according to the expected number of newly deployed nodes in the network,
see Figure 5.2). We refer to the resulting distributed tree structure as IPtree.

Messages: MHCL uses two message types to build the routing structure:
MHCLAggregation andMHCLDistribution respectivelyMHCLA andMHCLD for short.

54
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Messages MHCLA are used in the upward routes, from child to parent. This message
carries the number of a node’s descendants, used in the aggregation phase. Messages
of type MHCLD are sent along downward routes, from parent to child. This message
is used for address allocation and contains the address and corresponding address par-
tition assigned to a child node by its parent. Note that the size of the first address
and the size of the allocated address partition can have a length predefined by the
root, according to the overall address space (we used a value of 16 bits because the
compressed host address has 16 bits). This information is sufficient for the child node
to decode the message and execute the address allocation procedure for its children.

Algorithm 1: Matrix: Stabilization timer

1 parentDefined ← False
2 maxTime ← rand(1

2
× Tricklemin, Tricklemin) // Reset timer

3 while not parentDefined do
4 if not root and timer-off then
5 if parent changed then
6 Reset timer
7 else
8 if timer < maxTime then
9 timer ← 2 × timer // double timer

10 else
11 parentDefined ← True

Network stabilization: In order to decide how the available address space
is partitioned, nodes need to collect information about the topology of the network.
Once a stable view of the network’s topology is achieved, the root starts distributing
address ranges downwards to all nodes. Note that the notion of stability is important
to implement a coherent address space partition. Therefore, MHCL has an initial
set-up phase, during which information about the topology is progressively updated
until a (predefined) sufficiently long period goes by without any topology changes. To
implement this adaptive approach, we use Trickle-inspired timers to trigger messages
(Algorithm 1). In Algorithm 1 two parameters are used: Tricklemin is the minimum
time interval used by the Trickle algorithm, and spChild is a multiplication factor used
to define the maximum time interval, such that, if no changes occur within it, then the
parent choice becomes stable, and the local variable parentDefined is set to TRUE.
Since Matrix starts running at the same time as the underlying protocol (in our case,
CTP), in the initial state of the network nodes do not have any information about

5.3. Design Overview 55

a
0 to 255

b70% c 10% d 20%

e 80% f 20%

16 to 183
184 to 207

208 to 255

27 to 151
152 to 182

Figure 5.2: MHCL: simplified IPtree example: 8-bit address space at the root and
6.25% reserved for future/delayed connections.

neighboring links. CTP uses 4-bit [40] metric (that uses the expected transmission
count, or ETX) to estimate the link quality and route cost. Therefore, Matrix does
not know when a node has finally chosen the best connection to its neighbor, i.e., the
node with the lowest ETX. That’s why Matrix uses the Trickle timer to define what
we call a “stable” network configuration. Note that, once the network reaches an initial
state of stability, later changes to topology are expected to be of local nature, caused
by a link or a node failure, or a change in the preferred parent of a node. In these
cases, the address allocation does not need to be updated, since local mechanisms of
message re-transmission can be used to improve message delivery rates, as described
in Section 5.3.4.

Descendants convergecast: After the initial network stabilization, each node
ni counts the total number of its descendants, i.e., the size of the subtree rooted at
itself, and propagates it to its parent. Moreover, ni saves the number of descendants
of each child. If a node is not the root, and it has defined who the preferred parent
is (parentDefined is TRUE) it starts by sending a MHCLA message with count = 0

(Algorithm 2). Then it waits for MHCLA messages from its children, updates the
number of descendants of each child, and propagates the updated counter to the parent
until its total number of descendants is stable. If a node is the root, then it just updates
the number of descendants of each child by receiving MHCLA messages until its total
number of descendants is stable (Algorithm 3). Parameters spLeaf and spRoot are
used to define stabilization criteria in non-root nodes and the root node, respectively.
Once the aggregation phase is completed, the root’s local variable descendantsDefined
is set to TRUE.

Address allocation: Once the root has received the (aggregate) number of de-

56
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Algorithm 2: Matrix: Aggregation timer (non-root nodes)
1 maxTimeLeaf ← spLeaf × Tricklemin

2 timer ← rand(1
2
× Tricklemin, Tricklemin) // Reset timer

3 count ← 0 // counts descendants through MHCLA messages
4 while NO-MHCLD-FROM-PARENT do // hasn’t received IPv6 range
5 if not root and timer-off then
6 if parentDefined and count < 1 then
7 sendTo(MHCLA, parent) // trigger aggregation

8 if COUNT-CHANGED then
9 sendTo(MHCLA, parent)

10 Reset timer
11 else
12 if timer < maxTimerLeaf then
13 timer ← 2 × timer

Algorithm 3: Matrix: Aggregation timer (root)
1 descendantsDefined ← False
2 maxTimeRoot ← spRoot × Tricklemin

3 timer ← rand(1
2
× Tricklemin, Tricklemin) // Reset timer

4 count ← 0 // counts descendants through MHCLA messages
5 while NOT descendantsDefined do
6 if is root and timer-off then
7 if COUNT-CHANGED then
8 Reset timer
9 else

10 if timer < maxTimerRoot then
11 timer ← 2 × timer
12 else
13 descendantsDefined ← True

scendants of each child; it splits the available address space into k ranges proportionally
to the size of the subtree rooted at each child (see Algorithm 4). Each node ni repeats
the space partitioning procedure upon receiving its address space from the parent and
sends the proportional address ranges to the respective children (always reserving r%
for delayed address allocation requests). The idea is to allocate larger portions to larger
subtrees, which becomes important in especially large networks because it maximizes
the address space utilization. Note that this approach needs information aggregated
along multiple hops, which results in a longer set-up phase.

5.3. Design Overview 57

Algorithm 4: Matrix: IPv6 address distribution
1 stable ← descendantsDefined or NOT-ROOT
2 if stable and (IS-ROOT or RECEIVED-MHCLD) then
3 partition available address space
4 foreach child ci do
5 sendTo(MHCLD, ci) // Send IPv6 “range”
6 if NO ack then
7 sendTo(MHCLD, ci) // retransmit

Delayed connections: If an address allocation request from a new child node
is received after the address space had already been partitioned and assigned, then the
address allocation procedure is repeated using the reserved address space. Because of
the network stabilization phase and since a node does not know how many descen-
dants it has after the stabilization, we have delayed connections of nodes that are not
accounted for during the addressing stage. After the address allocation is complete,
each (non-leaf) node stores a routing table for downward traffic, with an entry for each
child. Each table entry contains the final address of the address range allocated to
the corresponding child, and all table entries are sorted in increasing order of the final
address of each range. In this way, message forwarding can be performed in (sub)linear
time.

5.3.2 Control Plane: Distributed Tree Structures

After the network is initialized and all nodes have received an IPv6 address range, three
simultaneous distributed trees are maintained on all nodes in the 6LoWPAN: Ctree:
the collection tree, maintained by the underlying collection protocol (CTP/RPL). IP-
tree: the IPv6 address tree, built during the network initialization phase and kept
static afterward, except when new nodes join the network, in which case they receive
an IPv6 range from the reserved space of the respective parent node in the collection
tree. RCtree: the reverse collection tree, reflecting the dynamics of the collection
tree in the opposite direction. Initially, IPtree has the same topology as the reverse-
collection tree CtreeR, and RCtree has no links (see Figure 5.3a and 5.3b).

IP tree = CtreeR and RCtree = ∅

Whenever a change occurs in one of the links in Ctree, the new link is added in the
reverse direction into RCtree and maintained as long as this topology change persists

58
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

a
0 to 255

BR

2

3 4

5

67

8

Internet
Ctree

(a) Ctree structure, ID inside the nodes.

0

199A

3F9F 2084

6EB8

6ED9977D

7D6D

Internet
IPtree

(b) IP address assignment by MATRIX hi-
erarchical distribution. Simplified 8-bit IP
inside the nodes.

BR

2

3 4

5

67

8

Internet
Ctree changes

x

x

(c) Links failure cause topology changes.

0

199A

3F9F 2084

6EB8

6ED9977D

7D6D

Internet
RCtree ∪ IPtree

(d) RCtree adapts to topology changes.

Figure 5.3: RCtree example: before and after two links change in the collection tree.

(see Figures 5.3c and 5.3d).

RCtree = CtreeR \ IP tree

Therefore, RCtree is not really a tree since it contains only the reversed links
present in Ctree but not in IPtree. Nevertheless, its union with the “working” links in
IPtree is, in fact, a tree, which is used in the alternative top-down routing:

RCtree ∪ (IP tree ∩ CtreeR) :alternative routing tree.

Each node ni maintains the following information:

• CTparenti: the ID of the current parent in the dynamic collection tree;

• IParenti: the ID of the node that assigned ni its IPv6 range initially CTarenti

5.3. Design Overview 59

= IParenti);

• IPchildreni: the standard (top-down) routing table, with address ranges of each
one-hop descendant of ni in the IPtree;

• RChildreni: the alternative (top-down) routing table, with address ranges of
one-hop descendants in the RCtree.

Note that, each node stores only one-hop neighborhood information, so the mem-
ory footprint is O(k), where k is the number of a node’s children at any given moment
in time, which is optimal, considering that any (optimal) top-down routing mechanism
would need at least one routing entry for every (current) child in the tree topology to
reach all destinations.

The routing engine (see Figure 5.1) is responsible for creating and maintaining the
IPtree and RCtree routing tables. IPtree is created during the network initialization
phase, while RCtree is updated dynamically to reflect changes in the network’s link
qualities. Whenever a node ni has its CTparenti updated, and the current parent is
different from its IParenti (IParenti 6= CTparenti), ni starts sending periodic beacons
to its new parent, with regular intervals (in our experiments, we set the beacon interval
to δ/8, where δ is the maximum interval of the Trickle timer used in CTP). Upon
receiving a beacon (from a new child in the collection tree), a node (nj = CTparenti)
creates and keeps an entry in its alternative routing table RChildrenj with the IPv6
address range of the subtree of ni. As soon as ni stops using nj as the preferred parent,
it stops sending beacons to nj. If no beacon is received from ni after 2 × δ ms, its
(alternative) routing entry is deleted. Therefore, links in RCtree are temporary and
are deleted when not present in neither the collection nor the IP trees.

5.3.3 Data Plane: Any-to-Any Routing

The forwarding engine (see Figure 5.1) is responsible for application packet forwarding.
Any-to-any routing is performed by combining bottom-up forwarding, until the LCA
of sender and receiver, and then top-down forwarding until the destination. Upon
receiving an application layer packet, each node ni verifies whether the destination IPv6
address falls within some range j ∈ IPchildreni: if yes then the packet is forwarded
(downwards) to node nj, otherwise, the packet is forwarded (upwards) to CTparenti.
Note that, since each node has an IPv6 address, in contrast to collection protocols,
such as CTP and RPL, in Matrix, every node can act as a destination of messages
originated inside and outside of the 6LoWPAN.

60
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Each forwarded packet requests an acknowledgment from the next hop and can
be retransmitted up to 30 times (similarly to what is done in CTP [48]). If after that
no acknowledgment is received, then the node performs a local broadcast, looking for
an alternative next hop in the RCtree table of a (one-hop) neighbor. The alternative
routing process is described in detail below.

5.3.4 Fault Tolerance and Network Dynamics

So why is Matrix robust to network dynamics? Note that, since routing is based
on the hierarchical address allocation, if a node with the routing entries necessary to
locate the next subtree becomes unreachable for longer than approximately one second
(failures that last less than 1s are effectively dealt with by retransmission mechanisms
available in standard link layer protocols), messages with destinations in that subtree
are dropped.

When a node or link fails or changes in Ctree, RCtree reflects this change, and
packets are forwarded from IPtree to RCtree via a local broadcast. The node that
receives a local-broadcast checks in its RCtree whether it knows the subtree of the
destination IPv6 address: if yes then is forwards the packet to the right subtree and
the packet continues its path in the IPtree until the final destination.

Consider the following scenario: node X receives a packet with destination IPv6
address D (see Figure 5.4a). After consulting its standard routing table IP−childrenX ,
X forwards the packet to C. However, the link X ⇒ C fails, for some reason, and C does
not reply with an acknowledgment. Then, X makes a constant number (e.g., 30 times
in CTP) of retransmission attempts. Meanwhile, since node C also lost its connection
to X, it decides to change its parent in the collection tree to node A (see Figure 5.4b).
Having changed its parent, C starts sending beacons to A, which creates an entry in its
alternative routing table RC − childrenA for the subtree rooted at C, and keeps it as
long as it receives periodic beacons from C (which will be done as long as CTparentC
= A).

Having received no acknowledgment from C, X activates the local broadcast mode:
it sets the message’s type to “LB” and broadcasts it to all its one-hop neighbors (see
Figure 5.4c). Upon receiving the local broadcast, node A consults its alternative routing
table and finds out that the destination address D falls within the IPv6 address range
C. It then forwards the packet to C, from where the packets follow along its standard
route in the subtree of C (see Figure 5.4d).

The local broadcast is a reactive mechanism that could be alternatively imple-
mented in a proactive way by adding temporary routing entries to indicate that a link

5.3. Design Overview 61

P

A X

C

D

CTparent(c)
IPparent(c)

Message
dst: d

(a) x has a message to node d.

P

A X

C

D

x IPparent(c)

CTparent(c)
Message
dst: d

(b) Link failure causes CTparent(c) to
change.

P

A X

C

D

IPparent(c)

CTparent(c)

Anyone
knows d?

(c) x tries sending by Local Broadcast.

P

A X

C

D

IPparent(c)CTparent(c)

Message
dst: d

(d) a forwards messages targeted to c’
sub-tree while CTparent(c) = a.

Figure 5.4: Alternative top-down routing upon Ctree change.

has changed to all nodes in the path between the new parent and the LCA. Such a
proactive approach could be preferable if Matrix were designed to work in a mobile
node environment, where link changes were not local and persistent. However, the
memory footprint of such a solution would be linear with the number of link changes
in each LCA node’s subtree. Local broadcast, on the other hand, handles link dynam-
ics (without node mobility), while guaranteeing a constant memory footprint at each
node.

Finally, note that the local broadcast mechanism does not guarantee that the
message will be delivered. If no one-hop neighbor of X had the address range of C in its
alternative routing table, then the packet would be lost. Nevertheless, we argue that
the probability that the message will be forwarded to the appropriate subtree is high.

62
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

5.3.5 Alternative Routing: Geometric Rationale

The success of the local broadcast mechanism lies in the ability to forward messages
top down along the IPtree, in spite of one or more link or node failures on the way.
Note that, whenever a node of IPtree is unavailable, it might not be possible to find
the right subtree of the destination. Matrix is designed to handle (non-adjacent) link
or node failures and relies on a single local broadcast and temporary reverse collection
links (RCtree).

Consider once again the scenario illustrated in Figure 5.4. When a node X is
unable to forward a packet to the next hop, it activates the local broadcast mechanism,
and it becomes essential that one of X’s one-hop neighbors (in this case A) has replaced
X as a parent of C in the collection tree. Therefore, given that the new parent of C is A,
it becomes essential that X and A are neighbors. We argue that it is unlikely that this
is not the case, and show our argument in a Unit Disk Graph (UDG) model. We use
the fact that the number of independent neighbors of any node in a UDG is bounded
by a small constant, namely 5 [23].

Given that the maximum number of neighbors that do not know each other is
very small, for any possible node distribution and density around X, the probability
that two neighbors of X are independent is low. In Figure 5.4c, since both X and A

are neighbors of C, the probability that they are themselves neighbors is high. Similar
arguments can be used to back the effectiveness of the local broadcast mechanism when
dealing with different non-adjacent link and node failures.

Note that this reasoning is only valid in an open space without obstacles and,
even then, does not guarantee that the message will be delivered. Nevertheless, our
experiments show that this intuition is in fact correct, and Matrix has a 95%–99%
message delivery success in scenarios with node failures of increasing frequency and
duration.

5.4 Complexity Analysis

In this section, we assume synchronous communication model with point-to-point mes-
sage passing. In this model, all nodes start executing the algorithm simultaneously and
time is divided into synchronous rounds, i.e., when a message is sent from node v to
its neighbor u at time-slot t, it must arrive at u before time-slot t+ 1.

We first analyze the message and time complexity of the IPv6 address allocation
phase of Matrix. Then, we look into the message complexity of the control plane of
Matrix after the network initialization phase.

5.4. Complexity Analysis 63

Note that Matrix requires that an underlying acyclic topology (Ctree) has been
constructed by the network before the address allocation starts, i.e., every node knows
who its parent in the Ctree is. Moreover, one of the building blocks of Matrix is the
address allocation phase, described in Section 5.3.1.

Theorem 1. For any network of size n with a spanning collection tree Ctree rooted
at node r, the message and time complexity of Matrix protocol in the address allo-
cation phase is Msg(MatrixIP (Ctree, r)) = Θ(n) and Time (MatrixIP (Ctree, r))

= Θ(depth(Ctree)), respectively. This message and time complexity is asymptotically
optimal.

Proof. The address allocation phase of Matrix is comprised of a tree convergecast and
a tree broadcast. In the tree convergecast phase, each node sends one message to its
preferred parent, informing the size of its subtree, which takes O(n) messages in total
and O(depth(Ctree)) time-slots. In the tree broadcast phase, address range allocation
information is distributed from the root to all nodes in the collection tree, also using
O(n) messages and O(depth(Ctree)) time-slots. In the convergecast operation, since
every node must send a message to its parent after having received a message from its
children, the minimum number of exchanged messages is Ω(n). Also, a message sent by
every leaf node must reach the root, at distance ≤ depth(Ctree), which needs at least
Ω(depth(Ctree)) time-slots. Similarly, in the broadcast operation, a message must be
sent to every node by the respective parent, which needs Ω(n) messages. Moreover, the
message sent by the root must reach every node at depth(Ctree) hops away, which needs
Ω(depth(Ctree)) time-slots. Therefore, the message and time complexity of Matrix is
asymptotically optimal.

Next, we examine the communication cost of the routines involved in the alter-
native routing, performed in the presence of persistent node and link failures.

Theorem 2. Consider a network with n nodes and a failure event that causes LCT links
to change in the collection tree Ctree for at most ∆ ms. Moreover, consider a beacon
interval of δ ms. The control message complexity of Matrix to perform alternative
routing is Msg(MatrixRC) = O(n).

Proof. Consider the LCT link changes in the collection tree Ctree. Note that LCT =

O(n) since Ctree is acyclic and, therefore, has at most n − 1 links. Every link that
was changed must be inserted in the RCtree table of the respective (new) parent and
kept during the interval ∆ using regularly sent beacons from the child to the parent.
Given a beacon interval of δ, the total number of control messages is bounded by
∆/δ × LCT = O(n).

64
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

The analysis presented in this section is based on the synchronous communication
model. Nevertheless, in reality, the assumptions of synchronicity and point-to-point
reliable message delivery do not typically hold in a 6LoWPAN. The moment in which
each node joins the tree varies from node to node, such that nodes closer to the root
tend to start executing the address allocation protocol earlier than nodes farther away
from the root. Moreover, collisions, node, and link failures can cause delays and pre-
vent messages from being delivered. We analyze the performance of Matrix in an
asynchronous model with collisions and transient node and link failures of variable
duration through simulations in Section 5.5.

5.5 Evaluation

In this section, we evaluate Matrix performance against state-of-the-art protocols such
as RPL [133], CTP [48] and XCTP [113]. In order to do that, we conduct a bulk
of experiments through simulation, although Matrix’ code is ready to run into real
devices. We divide the experiments into three main classes: memory efficiency, protocol
overhead, and protocol reliability.

In terms of memory efficiency, we analyze the routing table usage as demand
measurement to perform routing, and RAM and ROM footprint as requisites to deploy
the protocols. Also, we measured the protocols cost regarding control message overhead
to build and maintain routing structures updated, in both dynamic and static scenarios.
We also measure the protocol reliability in terms of delivered data packets in both
dynamic and static scenarios.

5.5.1 Simulation Setup

Matrix was implemented as a subroutine of CTP in TinyOS [74] and the experiments
were run using the TOSSIM simulator [72]. We compare Matrix with and without the
local broadcast mechanism, to which we refer as MHCL. XCTP also was implemented
in TinyOS. RPL was implemented in ContikiOS [33] and was simulated on Cooja [38].

Firstly, we run the protocols over a static network scenario without link or node
failures. Table 5.2 lists the default simulation parameters for the non-faulty scenario.
We use the LinkLayerModel tool from TinyOS to generate the topology and connec-
tivity model. We also simulated a range of faulty scenarios, based on experimental data
collected from TelosB sensor motes, deployed in an outdoor environment [11]. In each
scenario, after every 60 s of simulation, each node shutdowns its radio with probability
σ and keeps the radio off for a time interval uniformly distributed in [ε − 5, ε + 5]

5.5. Evaluation 65

Table 5.2: Simulation parameters.

Parameter Value

Base Station 1 center
Number of Nodes 100
Radio Range (m) 100
Density (nodes/m2) 10
Number of experiments 10
Path Loss Exponent 4.7
Power decay (dB) 55.4
Shadowing Std Dev (dB) 3.2
Simulation duration 20 min
Application messages 10 per node
Max. Routing table size 20 entries

Table 5.3: Faulty network scenarios.

Probability (σ) \ Duration (ε) Short Dur. Moderate Dur. Long Dur.

Low Prob. (1%, 10 s) (1%, 20 s) (1%, 40 s)
Moderate Prob. (5%, 10 s) (5%, 20 s) (5%, 40 s)
High Prob. (10%, 10 s) (10%, 20 s) (10%, 40 s)

seconds. Table 5.3 presents a range of values for A and B, in which A scales from
low to high probabilities, and B from short to long time interval. So, each scenario
represents a combination of values of σ and ε. Note that these are all node-failure
scenarios, which are significantly harsher than models that simulate link or per-packet
failures only.

On top of the network layer, we ran two different applications: top-down and any-
to-any. In the top-down application, each node sends 10 messages to the root and the
root replies with an acknowledgment. In the any-to-any application, each node chooses
randomly 10 destination addresses and sends one message to each of those addresses.
Nodes start sending application messages 90 s after the simulation has started. The
entire simulation takes 20 minutes. Each simulation was run 10 times. In each plot,
the curve or bars represent the average, and the error bars the confidence interval of
95%. For each protocol, only results relevant to each plot were included: e.g., CTP
does not have a reverse routing table to performs top-down routing, and MHCL differs
from Matrix only in faulty scenarios; otherwise, it performs equally and therefore was
omitted.

66
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Figure 5.5: Routing table usage CCDF. The routing table size was setted to 20 entries.

5.5.2 Results

Firstly, we turn our attention to the memory efficiency of each protocol. To evaluate
the use of routing tables, we compare the number of entries utilized by each protocol.
Each node was allocated a routing table of maximum size equal to 20 entries. In Figure
5.5, we show the Complementary Cumulative Distribution Functions (CCDFs) of the
percentage of routing table usage among nodes3 for Matrix, RPL, XCTP, and MHCL.

In this plot, Matrix was simulated in the faulty scenario, where σ and ε were set
to High Probability and Long Duration, respectively (Table 5.3). Note that > 35% of
nodes are leaves, i.e., do not have any descendants in the collection tree topology, and
therefore use zero routing table entries.

As we can see, RPL is the only protocol that uses 100% of table entries for some
nodes (≥ 25% of nodes have their tables full). This is because RPL, in the storing
mode, pro-actively maintains an entry in the routing table of every node on the path
from the root to each destination, which quickly fills the available memory and forces
packets to be dropped.

3We measured the routing table usage of each node in one-minute intervals, then took the average
over 20 minutes.

5.5. Evaluation 67

Figure 5.6: Code and memory footprint in bytes.

XCTP reactively stores reverse routes only when required. Therefore, the number
of routing entries used by XCTP depends on the number of data flows going through
each node. Since the simulated flows were widely spaced during the simulation time,
the XCTP was able to perform efficiently. The difference between MHCL and Matrix is
small: MHCL stores only the IPtree structure, whereas Matrix stores IPtree and RCtree
data; the latter are kept only temporarily during parent changes in the collection tree,
so its average memory usage is low.

Figure 5.6 compares RAM and ROM footprints in the protocol stack of CTP,
RPL, XCTP, and Matrix. We can see that Matrix adds only a little more than 7Kb
of code to CTP, allowing this protocol to perform any-to-any communication with
high scalability. When compared with RPL, the execution code of Matrix requires less
RAM. Compared to XCTP, Matrix uses almost the same amount of RAM.

In order to evaluate the protocols cost, we measure the protocols overhead to cre-
ate and maintain the routing structures. Figure 5.7 illustrates the amount of control
traffic in our experiments (the total number of beacons sent during the entire simu-
lation). Figure 5.7a shows the protocols cost for the static scenario. Matrix sends
fewer control packets than RPL, because it only sends additional beacons during net-
work initialization and in case of collection tree topology updates, whereas RPL has a
communication intensive maintenance of downward routes during the entire execution
time. Since XCTP is a reactive protocol, it does not send additional control packets,
when compared to CTP. Figure 5.7b reports the protocols cost to every combination
of faulty parameters. Again, the protocols behavior repeat, but the total amount of
control packets increases due to the network dynamics. In the worst scenario case (high

68
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

(a) Static scenario.

(b) Faulty scenarios.

Figure 5.7: Number of control packets.

probability and long duration), Matrix presents 45% less control overhead than RPL.
Matrix sends 22% more beacons than XCTP and CTP. However, Matrix maintains
routes downwards unlike XCTP and CTP.

To evaluate the protocols reliability, we analyze the delivery rate. In Figure 5.8 we
compare top-down routing success rate. We measured the total number of application
(ack) messages sent downwards and successfully received by the destination.4 In the

4We do not plot the success rate of bottom-up traffic, since it is done by the underlying collection
protocol, without any intervention from Matrix.

5.5. Evaluation 69

(a) Static scenario.

(b) Faulty scenarios.

Figure 5.8: Top-down routing success rate.

plot, “inevitable losses” (unfilled bars) refers to the number of messages that were lost
due to a failure of the destination node, in which case, there was no valid path to the
destination and the packet loss was inevitable. The remaining messages were lost due
to wireless collisions and node failures on the packet’s path.

Figure 5.8a shows the protocols top-down success rate for the static scenario. All
protocols present high top-down success rate except RPL, which present poor delivery
rate. RPL proactively stores entries in the routing table, thus nodes table nearby the
root node quickly fill their entries and lack memory to store all top-down routes. In

70
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Figure 5.8b, we present the protocols performance under faulty scenarios. We can see
that, when a valid path exists to the destination, the top-down success rate of Matrix
varies between 95% and 99%. In the harshest faulty (High Prob. and Long Dur.),
without the local broadcast mechanism, MHCL delivers 85% of top-down messages.
With the local broadcast activated, the success rate increases to 95%, i.e., roughly
2/3 of otherwise lost messages succeed in reaching the final destination. Note that
external factors may be causing RPL’s low success rate. Since RPL was the only
protocol implemented on Contiki and evaluated in Cooja, native protocols from this
OS can interfere with the results. In [14], the authors show how different radio duty
cycling mechanisms affect the performance of a RPL network. However, RPL delivered
less than 20% of messages in all simulated scenarios due to lack of memory to store
routes. Since XCTP is a reactive protocol, it adapts best to failures and dynamics,
because downward routes are updated when a message travels upwards. In this way,
the top-down success rate of XCTP is higher even in the presence of failures.

In Figure 5.9 we compare the any-to-any success rate. We measured the total
number of messages sent by a node that was successfully received by the destination.
In this application, each node chooses randomly a destination address and sends a
message to this node. We can see that, as expected, there is no significant difference
between any-to-any and top-down traffic patterns. Matrix performs any-to-any routing
with 90% to 100% success rate, when a valid path exists to the destination. The success
rate of RPL remains low, due to lack of memory to store all the routing information
needed.

Finally, in Figure 5.10 we compare the response rate of Matrix and XCTP. We
calculate the rate of reply by dividing the number of acknowledgments sent by the root
by the number of messages received by the root. We vary the reply delay, that is, upon
receipt of a message, the root will reply with an acknowledgment after x milliseconds,
where x ∈ { 100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 800 }. We can see
that the performance of XCTP is highly dependent on the number of data flows. By
increasing the application response delay, the number of simultaneous flows increases
and the response success rate decreases, because nodes can not store all the information
needed. Matrix, on the other hand, does not depend on the number of flows, and the
routing table usage is bounded by the number of children of each node.

5.6. Concluding Remarks 71

(a) Static scenario.

(b) Faulty scenarios.

Figure 5.9: Any-to-any routing success rate.

5.6 Concluding Remarks

In this chapter, we proposed Matrix: a novel routing protocol that runs upon a dis-
tributed acyclic directed graph structure and is comprised of two main phases: (1)
network initialization, in which hierarchical IPv6 addresses, which reflect the topol-
ogy of the underlying wireless network, are assigned to nodes in a multihop way; and
(2) reliable any-to-any communication, which enables message and memory-efficient
implementation of a wide range of new applications for 6LoWPAN.

72
Chapter 5. An Alternative Routing Protocol for the Static Internet

of Things

Figure 5.10: Response success rate.

Matrix differs from previous work by providing a reliable and scalable solution for
any-to-any routing in 6LoWPAN, both in terms of routing table size and control mes-
sage overhead. Moreover, it allocates global and structured IPv6 addresses to all nodes,
which allow nodes to act as destinations integrated into the Internet, contributing to
the realization of the Internet of Things.

An interesting future direction is to study mobility in 6LoWPAN. We would like
to evaluate the suitability of Matrix in mobile scenarios, where nodes change their
point-of-attachment to the 6LoWPAN without changing their IPv6 address, exploring
features of the Mobile IPv6 (MIPv6) protocol [96]. Once we consider the mobility of
nodes, the local broadcast mechanism that relies on the proximity of the alternative
links will no longer hold. This implies that nodes may need to update the routing tables
from the new parent to the lowest common ancestor. At first, the memory footprint of
such a solution would be linear with the number of mobile descendent nodes (or parent
changes) in each node’s subtree, but this will avoid unnecessary retries, timeouts, and
broadcast.

Chapter 6

An Alternative Routing Protocol for
the Mobile Internet of Things

6.1 Contextualization

IoT has become a reality with the explosive adoption of smart environments, where ev-
eryday objects (“things”) are capable of communicating through the Internet. Usually,
IoT is a set of interconnected static “things” forming a cyber-physical environment.
For example, a smart grid composed of smart meters and smart sensors into a smart
building. However, mobility is a major factor present in human and non-human life. It
makes life easier and turns smart application more flexible and suitable in the mobile
world. Nowadays, we already have mobile phones and vehicles in the IoT, in the near
future we will have further mobile devices. Naturally, IoT will need to evolve encom-
passing mobile things (IoMT) and, furthermore, such devices will be able to develop
social ties (Social IoT) in the cyber-physical space. With this evolution, IoT takes
a step towards ubiquitous computing, where virtually everything is connected with
everything at anytime and anywhere.

In the literature, one can find several applications and service proposals for IoMT
and SIoT [1, 10, 77, 86]. However, they assume that the networking stack is capable of
meeting their requirements of mobility management, memory, energy, and processing
efficiency. Actually, we find that we are far from covering all issues imposed by mobility,
especially, regarding very tiny devices with resource constraints.

6LoWPAN defines standards for low-power devices that comprise the IoT. Stan-
dard routing protocols have been defined, such as CTP [47] and RPL [133], and are
widely used to build IoT applications and services. Nonetheless, they do not always

73

74
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

meet the requirements of IoT, IoMT, and SIoT apps and services, such as the mobility
management, any-to-any communication, memory efficiency, and others [57].

To address these challenges, we present Mobile Matrix (µMatrix), a complemen-
tary solution to standard routing protocols for IoT, which provides better support for
IoMT and SIoT. µMatrix is a routing protocol that uses hierarchical IPv6 address
allocation to manage mobility without changing a node’s IPv6 address, while being
memory efficient, favoring resource-constrained devices. µMatrix manages mobility
transparently to the upper networking layers in the stack, therefore favoring IoMT and
SIoT implementation and adoption. One of the building blocks of µMatrix is a passive
mechanism, named Reverse Trickle Timer (RevTT), to detect mobility in a device’s
neighborhood. Therefore, the protocol does not need extra hardware to operate. Given
that there is an intrinsic trade-off between the delay to detect mobility and the number
of control messages, one can tune µMatrix’s frequency of control messages according
to the application or the mobility pattern.

µMatrix is built upon a previously proposed protocol, named Matrix [95]. Besides
integrating mobility management into Matrix, µMatrix presents the following features:

• Transparent mobility management : devices can move in the cyber-physical space
without ever changing their IPv6 address;

• Optimal routing path distortion: messages addressed to a mobile device, from
anywhere in the network, are sent along the shortest path from the source to its
current location, using its original IPv6 address;

• Any-to-Any routing : devices running µMatrix are able to not just perform
bottom-up data collection or top-down dissemination, but also to send messages
to any other device in the 6LoWPAN;

• Passive mobility detection: µMatrix uses RevTT to detect neighbor device mo-
bility, which can be tuned according to the application or the mobility pattern;

• Low memory footprint : µMatrix is in consonance with IPv6 addressing and uses
a hierarchical address allocation to reduce memory usage to store routing infor-
mation in a dynamic mobile environment;

• No fixed devices required : µMatrix does not rely on fixed devices to manage
mobility, except for the border router, commonly employed in 6LoWPAN;

6.1. Contextualization 75

• Link dynamics and fault-tolerance support : µMatrix inherits from Matrix the
capacity to overcome temporary device failure or link dynamics by rerouting the
data flows using a local broadcasting mechanism [95];

• Platform-independent : µMatrix does not rely on any specific platform or extra
hardware (e.g., GPS, accelerometer) to operate;

Moreover, we propose a new mobility model, to which we refer as Cyclical Ran-
dom Waypoint mobility model. In CRWP, nodes are assigned a home location and
might make several moves in random directions, connecting to the 6LoWPAN at dif-
ferent attachment points (and forming social ties), and eventually return to their home
locations. Our motivation for proposing a new mobility model comes from application
scenarios, where communication is carried out in environments with limited mobility,
such as 6LoWPAN deployed in an office or school buildings, university campuses or
concert halls or sports stadiums.

The main contributions of this chapter can be summarized as follows:

1. We present µMatrix, a communication protocol that performs hierarchical IPv6
address allocation and manages routing and mobility without ever changing a
node’s IPv6 address. The protocol favors the implementation and adoption of
IoT, IoMT, and SIoT with constrained devices. µMatrix has low memory foot-
print, adjustable control message overhead and achieves optimal routing path
distortion;

2. We provide analytic proofs for the computational complexity and efficiency of
µMatrix, as well as an evaluation of the protocol through simulations. We evalu-
ate µMatrix under human and non-human mobility patterns, therefore showing
its functionality;

3. An essential building block of µMatrix is the RevTT, a passive mobility detec-
tion mechanism that captures changes in topology without requiring additional
hardware (e.g., accelerometer, GPS or compass).

4. We propose the Cyclical Random Waypoint (CRWP) model, a new mobility model
for scenarios where devices have a home location and perform periodic random
movement patterns.

5. The source code of µMatrix was made publicly available, so all experimental
results presented in this work can be reproduced1.

1https://bps90.github.io/mmatrix-code/

https://bps90.github.io/mmatrix-code/

76
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

Feature µMatrix RPL Co-RPL MMRPL MRPL-V ME-RPL mRPL DRM XCTP Hydro

Bottom-up

Top-Down

Any-to-any

IPv6 support

Address Allocation

Memory efficiency

Fault Tolerance

Local Repair

Mobility Detection RevTT T P RTL P T T T T P

Constraints HL SN SN SN SN SN

Table 6.1: Routing protocol properties (RevTT – Reverse Trickle Timer; RTL – Trever
Trickle Timer Like; T – Trickle; P – Periodic; HL – Home Location Assumption; SN –
Static Nodes.)

The rest of this chapter is organized as follows. We discuss some related work in
Section 6.2. The design overview of µMobile is presented in Section 6.3. We analyze the
message complexity of the protocol in Section 6.4. We describe the mobility modeling
in Section 6.5. In Section 6.6, we present our simulation results. Finally, in Section 6.7,
we present the concluding remarks.

6.2 Background and Related Work

WSN are a type of network, where usually tiny static devices are employed to sense,
process, store and communicate information surrounding the device. With the inte-
gration of Internet Protocol (IP) to WSN emerges the IoT. The concept appeared in
early 1982, but its real implementation and adoption started in the last years [129].
More recently, two new paradigms have arisen from IoT: the Social Internet of Things
(SIoT) [10] and the Internet of Mobile Things (IoMT) [86]. Those new paradigms hold
a common characteristic: their devices are no longer static, but are able to move by
itself or are attached to mobile entities.

Several mobility-enabling routing protocols have been proposed for IoT. Table 6.1
summarizes properties of these routing protocols. We use a check mark if the protocol
has the feature or empty otherwise. Ten features have been considered, which are
related to traffic patterns, addressing, memory, reliability, and protocol limitations.

RPL [133] is a well-known standard routing protocol for 6LoWPAN. Nevertheless,
it presents some limitations, in particular in mobility scenarios, such as scalability
issues, reliability, and robustness for top-down traffic [57, 95]. Most recent mobile-

6.2. Background and Related Work 77

enabled routing protocols are RPL extensions [92]. They focus on mobility issues but
not always handle the drawbacks of RPL.

Corona RPL (Co-RPL) [43] provides mobility support for RPL but does not take
advantage of the dynamic features of the Trickle Timer algorithm, which is intrinsic
to RPL. This turn Co-RPL more responsive by using the corona mechanism, but it
has a higher overhead. Co-RPL builds on top of RPL’s strategies to build and repair
downwards routes, which is inefficient regarding memory.

Mobility Management RPL (MMRPL) [25] modifies the RPL beacon periodicity
by replacing Trickle with a reverse Trickle-Like mechanism. Thus, their reverse Trickle
decays exponentially as longer as a node stay attached to the same parent. Mobility
Management RPL (MMRPL) assumes that as longer as a node remains attached to a
parent, the higher will be the probability of the node to move. Also, MMRPL assumes
that some nodes are static, which helps its mobility management, therefore requiring
heterogeneous devices and more complex code to operate.

Mobile RPL to Vehicular Networks (MRPL-V) [70] modifies RPL to work in
vehicular networks. The protocol replaces the Trickle mechanism by a periodic fixed
timer to fire RPL control messages. However, since RPL is not built to support highly
dynamic scenarios, like vehicular ones, using periodic beaconing to advertise topology
changes might be too fast, while the global routing repair is too slow to keep with the
changes. Thus, downwards routing can present poor reliability.

Mobility Enhanced RPL (ME-RPL) [37] also assumes that some nodes are static
and others can move. In the RPL route discovery phase, when a node is choosing its
preferred parent, static nodes have higher priority than mobile ones. When a node is
detached from a parent, it sends RPL’s DODAG Information Solicitation (DIS) mes-
sages in dynamic intervals. Such alterations turn ME-RPL responsive to mobile nodes
rejoining the RPL tree and identify mobile nodes. However, the memory requirement
to maintain downward routes is still prohibitive.

Mobile RPL (mRPL) [42] is based on the so-called smart-HOP algorithm, a hand-
off mechanism for mobile nodes in RPL. They separate nodes into mobile nodes (MN)
or serving access points (AP). APs are static and MN nodes use AP nodes as parents
in the RPL routing tree.

DAG-based Multipath Routing (DRM) [54] enhances RPL to support data trans-
fer in mobile nodes. DRM removes some features from RPL like top-down and any-to-
any traffic handling. DRM also stores routing information to choose the best parent
to deliver data reliably.

XCTP [113] extends CTP [47] to support bidirectional traffic and manage mo-
bility. However, XCTP uses a flat address structure instead of IPv6 addressing. Also,

78
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

XCTP does not fully support any-to-any routing. Hydro [30] fills the gap of any-to-any
communication traffic, but it requires static nodes with a large memory to maps nodes’
current locations. In fact, XCTP and Hydro were created for static scenarios but can
operate under mobility.

MIPv6 [96] supports mobility among different domains by assigning multiple IP
addresses to each mobile node: a fixed home address and a Care-of Address (CoA),
which changes depending on the current subnet where the node is. A home agent
(HA), a fixed entity, is required to manage the mobility and map the addresses. All
data traffic is firstly routed to the HA, and then to the CoA, thus MIPv6 does not
use the shortest path to routing data flow, presenting a sub-optimal routing path
distortion. Hierarchical Mobile IPv6 (HMIPv6) [13] enhances MIPv6 by reducing the
signaling load among mobile devices. However, these protocols were not designed for
6LoWPAN, and they do not present a mobility detection mechanism, nor adjustable
timers to handle network dynamics.

Protocols for mobile ad hoc networks, like AODV [97] and OLSR [24], have
high memory footprint and control message overhead, which makes them not suitable
for low-power devices or 6LoWPAN. Actually, there are efforts to extend those for
6LoWPAN such as LOAD [64] and DYMO-Low [63]. These protocols were inspired by
AODV and DYMO, but they still present drawbacks in mobile scenarios in terms of
memory.

Differently from most of the RPL-based protocols, we present a mobility-enabling
routing protocol that deal better with many of RPL’s drawbacks. µMatrix presents
low memory footprint for top-down and any-to-any routes under mobility, transparent
mobility management, optimal routing path distortion, and fault-tolerance support.
Thus, µMatrix is designed to support IoMT and SIoT implementation and broader
adoption.

6.3 Design Overview

As mobility is a new factor to IoT, a question arises: where can we handle mobility
in IoT? It is possible to handle mobility with different purposes in different layers of
the IoT network protocol stack. However, we argue that mobility in the network layer
plays a crucial role in the entire IoT operation in mobile scenarios. Firstly, this is due
to the need to maintain routes under device mobility. Secondly, if the device address
changes, all protocol layers above the network layer need to be aware of it, increasing
the overall protocol complexity. Finally, if devices have constrained resources, then

6.3. Design Overview 79

Figure 6.1: µMatrix integrated into the network stack.

managing routes for mobile devices can be expensive in terms of memory and energy.

There are three data traffic patterns that a routing protocol should provide for
IoT, IoMT and SIoT applications [57]:

1. Bottom-up,

2. Top-down,

3. Any-to-any.

The first type of traffic pattern provision is the primary function of standard protocols,
such as CTP [47] and RPL [133], and efficient implementations are widely available.
However, top-down and any-to-any traffic implementation is not always supported or
is not optimized for performance by standard protocols [57]. Therefore, µMatrix is
designed to function on top of an existing bottom-up, or collection, scheme (we use
CTP in our implementation), and adds an efficient solution for the remaining two data
traffic patterns, besides providing support for mobility.

80
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

6.3.1 Mobile Matrix Architecture

Figure 6.1 shows how µMatrix is integrated into the overall network protocol stack.
µMatrix is implemented in the network layer and is comprised of two planes and sub-
modules to handle routing states and manage mobility, as illustrated in Figure 6.2:

• Control plane: hierarchical IPv6 address allocation, routing table maintenance,
and mobility management;

• Data plane: routing information querying and data and control forward data
and control packet forwarding.

µMatrix operates according to the following phases, described in detail in Sections
6.3.2 through 6.3.4:

1. Collection tree initialization: an underlying bottom-up routing protocol (e.g.,
CTP or RPL) creates a collection routing tree, which is dynamically updated to
reflect current connectivity conditions;

2. Hierarchical IPv6 address allocation: once the collection tree was built,
µMatrix performs a convergecast to gather information about the network’s ini-
tial topology, which is used to partition the available IPv6 address space in a
hierarchical way among all nodes.

3. Packet forwarding: bottom-up data traffic is forwarded along the collection
tree built and maintained in phase (1); top-down data is forwarded using IPv6
addresses allocated in phase (2); any-to-any packet forwarding is performed by
combining the routing structures maintained in phases (1) and (2).

4. Mobility management: µMatrix uses additional routing data structures to
reflect the topology changes due to device mobility.

6.3.2 Control Plane: Routing Engine

The control plane manages all routing table structures and makes decisions based on
information from other modules, such as mobile or forwarding engines and the under-
lying collection protocol (Figure 6.2). In this section, we describe the basic routing
functionalities of the control plane of µMatrix, in the following order: routing engine
data structure (Section 6.3.2.1), control packets and parameters (Section 6.3.2.2), IPv6
multihop host configuration (Section 6.3.2.3). Then, in Section 6.3.3, we present the
mobile engine of µMatrix.

6.3. Design Overview 81

Figure 6.2: µMatrix protocol’s architecture.

6.3.2.1 Routing Engine: Data Structures

µMatrix and the underlying collection protocol build and maintain three routing trees
structures:

1. Ctree: a collection tree built by the underlying collection protocol (e.g., CTP [47]
or RPL [133]). CTP was used as a data collection routing protocol providing
efficiently bottom-up routes. We chose CTP purposely due to its lower code
complexity than RPL’s [95], robustness, loop avoidance, and its wide acceptance
by the community.

2. IPtree: an IPv6 hierarchical tree is created using MHCL algorithm [95] at
µMatrix initialization phase. The IPtree is kept static, except when new de-
vices join the network2;

3. RCtree: a tree that reflects the topology changes caused by devices mobility.

Figure 6.3 shows those routing structures graphically. Initially, in Figure 6.3a, the
underlying collection protocol builds the Ctree structure, note that we have a border
router (node 1) that starts the process. Then, µMatrix starts the MHCL algorithm
to distribute the available range of IPv6 hierarchically3. At this moment, IPtree =

2As described in detail in [95], each node is assigned a reserve address space for nodes joining the
network after the initialization phase.

3The network operator defines this range of IPs, which will be distributed along the IPtree [95].

82
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

1

2

5 6

3 4

Ctree

(a) Ctree structure, ID inside the nodes.

1

16

27 152

184 208

IPtree

(b) IP address assignment by MHCL hier-
archical distribution. Simplified 8-bit IP
inside the nodes.

1

2

5

X

6

X

X

3 4

2

Ctree
changes

(c) Node 2 moves, then Ctree changes.

1

2

27 152

184 208

16

RCtree ∪
IPtree

(d) RCtree ∪ IP tree. Red and thicker
links are in RCtree, but not in IPtree.

Figure 6.3: Routing structures: Ctree, IPtree, and RCtree.

CtreeR and RCtree = ∅ (see Figure 6.3b). Whenever a topology change occurs due
to mobility in Ctree, a new reverse link is added into RCtree, and it is maintained
while the change remains, therefore RCtree = CtreeR \ IP tree (see Figures 6.3(c)(d)).
RCtree is not essentially a tree since it contains only reversed links in Ctree but not
in IPtree. Nevertheless, RCtree ∪ IP tree is, in fact, a tree, which µMatrix uses to
downward routing. Each node η keeps the following information to build and maintain
those trees:

• CTparent(η): the ID of the current parent of a node η in the Ctree;

• PRV parent(η): the ID of η’s previous CTparent(η);

• IPparent(η): the ID of the node that assigned to η its IPv6 and IP range;

• IPchildren(η): the standard (top-down) routing table with IPv6 ranges for one-
hop descendants of η in the IPtree;

6.3. Design Overview 83

A
0

0 to 255

B
1670% C

184 10%
D

208 20%

E
27 80% F

152 20%

16 to 183
184 to 207

208 to 255

27 to 151
152 to 182

Figure 6.4: Simplified hierarchical address assignment with 8-bit available address
space and 6.25% of addresses reserved for delayed nodes. Inside the nodes, its label
and IP assigned, the % next to the nodes express the approximate sub-tree size. Thick
downwards arrows indicate the available IP range fairly distributed.

• Mtable(η): a temporary alternative routing table for mobility management. Each
Mtable entry has the following fields: IPv6 range, next hop, and Time Has Lived
(THL).

6.3.2.2 Control Packets and Parameters

µMatrix introduces one new control packet and one parameter to exchange topology
information and update the Mtables upon mobility events:

1. nodeInfo frame has 7 fields: seqNum, IP Node, IP range, IPparent, CTparent,
TTL, and Type. The fields are self-explanatory, except by the type field, which
specifies if the frame is a keepRoute to an entry into the Mtable, or rmRoute to
remove an entry. Following, we will use keepRoute or rmRoute for short;

• A node sends keepRoute beacons to inform its current location and the
in-network nodes can update its Mtables to reflect the present network
topology;

• rmRoutes is an optional beacon. It is sent when nodes move from a location
to another in order to quickly remove inconsistent states in-network nodes.

2. δ parameter specifies the time between sending two consecutive nodeInfo packets.
Note others time-based strategies can be used than the periodic one.

84
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

A device fills its Mtable by receiving keepRoute beacons from mobile nodes.
The node keeps Mtable entries as long as it receives keepRoute (see Section 6.4.1 for
Mtable memory footprint analysis). Otherwise, it uses a THL-based mechanism or
rmRoutes to remove entries. In static scenarios any node stores one-hop neighborhood
information in IPparent(η) table, this requires O(k) entries, where k is the number of
direct children of a node in the Ctree. This memory footprint is better than state-of-
the-art, e.g., RPL would need at least 1 routing entry for every child in a node sub-tree
to perform top-down routing.

6.3.2.3 IPv6 Multihop Host Configuration

µMatrix relies on an underlying collection routing protocol to build the Ctree. Once
the Ctree is stable4, the address space available to the border router, e.g., the 64
least-significant bits of the IPv6 address (or its compressed 16-bit representation), is
hierarchically partitioned among nodes in the Ctree by using the MHCL algorithm [95].
The (top-down) address distribution is preceded by a (bottom-up) convergecast phase,
in which each node counts the total number of its descendants and propagates it to its
parent. Thus, a node knows how many descendants each child has. Such information is
required to distribute IP ranges in a fairly way. As result of this procedure is obtained
the IPtree.

Figure 6.4 shows the IP host configuration process. First, the underlying routing
protocol creates the Ctree (upwards grey arrows), and then, after the Ctree stabiliza-
tion, the convergecast phase occurs allowing nodes to know the size of theirs sub-tree
(% next to each node). Next, the border router starts the IP distribution by auto-
setting its IP (e.g., the first available IP from range) and then reserving a portion of
the range for delayed nodes. After that, the node distributes the remaining range fairly
among its children (e.g., in Figure 6.4 B receives 70% of the available range, i.e., from
16 to 183). Finally, each node repeats the IP distribution process.

6.3.3 Control Plane: Mobile Engine

The mobile engine plays a central role in the µMatrix operation. It is responsible
for identifying when mobility events happen and feed the routing engine with current
node status. With this, it helps the routing engine to take action upon mobility events
properly.

4A node is stable in the Ctree if it reaches k times the maximum maintenance beacon period of
Ctree protocol without changing its parent. We use Trickle Timer [75] as beacon scheme.

6.3. Design Overview 85

Figure 6.5: Reverse Trickle Timer operation with µMatrix.

Following, in Section 6.3.3.1, we present details of RevTT a passive mobility
detection algorithm. Next, in Section 6.3.3.2, we present the µMatrix finite state
machine used to keep track of the node’s status. Finally, in Section 6.3.3.3, we present
the µMatrix strategies to prevent and recover from the loop.

6.3.3.1 Mobility Detection

Mobility detection is a crucial issue to handle mobile devices in routing protocols.
Most of the related protocols (see Section 6.2) modify this component to improve the
routing protocol performance under device mobility. There are two classes of mobility
detection events: i) active mobility event; ii) passive motion event. In the first one, the
devices by using extra hardware (e.g., accelerometer or GPS) inform their motion to
the routing protocol to take actions. In the second one, the protocol, by itself, infers
the movement of the devices(e.g., by using beaconing mechanisms).

Standards 6LoWPAN routing protocols, such as CTP or RPL, make use of Trickle
Timer algorithm [75] that passively detects topology changes. However, Trickle Timer
lacks in agility to detect changes in dynamic network and mobile nodes. We propose
a Reverse Trickle Timer (RevTT) that operates similarly to the standard algorithm,
but in reverse order.

RevTT introduces three parameters which the network operator must tune ac-
cording to the application and the mobility pattern requirements. Also, RevTT has
three methods to manipulate its behavior. The parameters and methods are described

86
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

below:

1. Parameters: Imax and Imin the maximum and minimum time interval to fire an
event. Ik the number of attempts before declaring an inconsistency.

2. Methods: Start aiming to start the RevTT operation, Stop aiming to break the
timers, and Reset that basically stops the current times using Stops method and
then the Start method.

RevTT operation is straightforward. The algorithm starts with Imax interval
to fire an event. If Stop/Reset methods are not used, then RevTT goes to the Imin
interval for Ik attempts. If nothing happens during Ik fires, then RevTT triggers an
event indicating inconsistency.

Figure 6.5 shows the RevTT procedure within µMatrix Mobile Engine. First, a
node starts sending unicast hasMoved beacons to its parent in Imax intervals. If the
node did not receive an acknowledgment for a hasMoved beacon, then RevTT sets the
interval to Imin. After Ik unsuccessful attempts, the node knows that a movement
or fault happens. Thus, the node can take actions, for example, properly perform a
handover to another parent and then the procedure restarts. Note that by setting the
RevTT parameters, the network operator should consider the trade-off between delay
to detect mobility and number of beacons. For a smaller delay in mobility detection,
Imax must be tuned to small values at the cost of more hasMoved beacons. In our
experiments (see Section 6.6), RevTT parameters were set according to the application
data rate.

HL MD

NM

PM

1

5
2

4

3

4

HL Home Location
MD Movement Detected
NM Node Moves
PM Parent Moves
1 IPparent does not answer
2 Children are active
3 Children are NOT active
4 CTparent does not answer
5 IPparent is back

Figure 6.6: Mobile Engine state machine.

In [92], the authors argue that a common modification to support mobility is to
change the control message periodicity. The typical approach uses a simple periodic
timer or the standardized Trickle Timer. While RevTT waits for Imax + Tk × Imin to

6.3. Design Overview 87

A

B

(a) The µMatrix acts as Matrix in static
situations, just before a leaf node B moves.

A B

LCA(A,B)

(b) After B movement, eventually, it is at-
tached to a new CTparent. Then, B sends
keepRoute beacons towards A in order to
fix outdated routes.

A

B

C

(c) Static µMatrix situation, just before a
non-leaf node B moves.

A

C

B

LCA(A,B)
LCA(A, IPchildren(B))

LCA(A, IPchildren(B))

(d) After B (a non-leaf node) movement,
eventually, B and C reach NM and PM
states respectively. Then, they start the
routing updates process.

Figure 6.7: Mobile engine operation after mobility events.

detect a topology change, where Imin � Imax, the periodic and standardized Trickle
approaches wait for at least 2× Imax.

6.3.3.2 Mobile Engine: Finite State Machine

µMatrix starts the mobile engine as soon as the host configuration finishes. The mobile
engine allows the nodes to move around the 6LoWPAN. This module uses a finite
state machine, as shown in Figure 6.6. Each node can be in one state depending on its
previous condition and the knowledge about its neighborhood. The engine uses RevTT
to recognize mobility and transit among states. Following, we discuss the actions taken

88
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

in each one of those states.
Each node starts at Home Location (HL) state. In HL, the nodes start RevTT

sending a hasMoved beacon to its CTparent(η). When RevTT identifies an inconsis-
tency and triggers a mobility event, the node transits to Movement Detected (MD)
state.

When a node reaches the MD state, it knows that a mobility event happened,
but it does not know if itself or its parent moved. There are at last two ways to
automatically find out who moved. First, a node can pro-actively query its children
(IPChildren(η)), if no one answer then the node moved; otherwise the parent moved.
Second, a node must wait for a period (e.g., one RevTT Imax interval) to receive
hasMoved beacons from its children and then infer who moved. We use the second
approach in our implementation. After discovering who moved, the node goes to Node
Moved (NM) or Parent Moved (PM) state.

Base Est.

A
0

0-255

B
16

E
27

F
152

C
184

D
208

16-183
184-207

208-255

27-151 152-182

(a) Routing structures in a static situa-
tion. Ctree is represented by upwards thin
arrows, thick arrows the IPtree.

Base Est.

A
0

IP R Nx
27 155 C
16 0 D

E
27

F
152

C
184

D
208

B
16

IP R Nx
27 124 E

IP R Nx
27 155 F

IP R Nx
16 0 B

(b) Mtables updated after node B
moves. No nodes above the node A =
LCA(A,B) = LCA(E,A) = LCA(F,A)
need to update the Mtable. Also, no
nodes below E and F need to update its
tables.

Figure 6.8: µMatrix’s preserves locality when it updates the routing table under mo-
bility events. Mtables above LCA do not need updates.

Several actions are taken when a node reaches NM state. Firstly, the node
disables the IPChildren(η) table usage due to the node new position in the Ctree.
Next, the Mtable is cleaned, because it must be outdated. Then, the node triggers
the new parent discovery from underlying collection protocol. When the node is at-

6.3. Design Overview 89

tached again to the Ctree, it restarts RevTT with new CTparent and begins sending
keepRoute.IP_ONLY at a frequency of δ to its IPparent. At NM state, the nodes do
not fill the nodeInfo.IP_RANGE field because the node is no longer at home location
in the IPtree, being incapable of using its IPChildren(η) table. Figures 6.7(a)(b) il-
lustrate this situation. Figure 6.7a shows the node B before its movement, then when
B is attached to a new CTparent (Figure 6.7b), it sends keepRoute beacons to A. The
beacons are forwarded upward to the Lowest Common Ancestor LCA(A, B) and then
downwards to the node A.

When a node reaches PM, this means that its parent moved. Then, the node trig-
gers the parent discovery mechanism from the underlying collection protocol. When it
is attached again to Ctree, it restarts RevTT and starts sending keepRoute beacons (if
it has children in the IPtree, it fills the IP_RANGE) at a frequency of δ. The first beacon
is addressed to its grand IPparent. The Figure 6.7(c)(d) illustrates this situation. Fig-
ure 6.7c shows C, a non-leaf node, before B movement. Then, in Figure 6.7d, B moves
and then C eventually reaches PM state, next C starts sending keepRoute beacons to
its grandIPparent = A. The messages travel to LCA(A, C) and then to the ultimate
destinations. The node B moves to NM state and takes the actions accordingly.

Eventually, nodes return to their home position being attached again to its IP-
parent in the Ctree. This situation also triggers some actions. First, the node stops
sending keepRoute beacons. Also, the returned node restarts the RevTT with its
IPparent.

Besides the action in each state, optional actions can be made. If a node is
attached to a sequence of CTparent before returning to the home location, several
states will be installed in-network Mtables. Although the Mtable’ THL field exists
to remove inconsistent entries, it is possible to send rmRoute beacons to each node’s
PRVparent to eliminate route inconsistency quickly.

Discussion: note that a sub-tree can move and nodes still hear each other. For
instance, in Figure 6.7c suppose A and B move together. Then, A and C eventually
will transit to PM, while B and C’s sub-tree remain in HL. In this case, the LCA has
two Mtable entries matching with C’s sub-tree, but one more restrictive than other.
Thus, the LCAs play a key role, which they always route through the most restrictive
Mtable range match available.

Also, note that µMatrix preserves locality when manages mobile nodes since no
Mtables need updates above LCA. Figure 6.8 illustrates this situation. In Figure 6.8a,
shows µMatrix’s routing structures in a static situation. Then, the node B moves,
Figure 6.8b, it eventually reaches the NM state, therefore the Mtables comprised in
the shortest path from B to A = IPparent(B) = LCA(B, IPparent(B)) will receive

90
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

B’s keepRoute updates. Also, B movement causes E and F to transit from HL to PM
state. Then, when E and F eventually find new routes, they will update the Mtables

comprised between them and its grandIPparent = A.
Note that Mtable(C) and Mtable(A) require only one entry for both E and F

sub-trees. We explore the fact of the contiguous IP ranges can be aggregated into
unique entries in the Mtables improving the memory usage efficiency.

6.3.3.3 Loop Avoidance

Dynamic links and mobile nodes cause turn route information to become outdated,
which may leverage routing loops [47]. µMatrix uses data path validation and adaptive
beaconing to detect loops such as CTP and RPL [47, 70]. Besides that, if a node receives
more than one unique control packet5, then this indicates an inconsistency in the tree
triggering the control packet suppression and the underlying collection protocol route
update. Besides that, Mtable and keepRoute beacon have, respectively, THL and
Time To Lived (TTL) fields, which are used to remove inconsistent routes and packets
from the network.

6.3.4 Mobile Matrix Data Plane: Any-to-Any Routing

The Forwarding Engine (see Figure 6.2) is responsible for data traffic forwarding. Any-
to-any routing combines both routing schemes: bottom-up and top-down. The engine
uses bottom-up routes to forward packets until the LCA between the sender and re-
ceiver, and then it uses top-down routes to forward data to the destination. Upon
receiving a data packet, the node checks if the message is for itself. Second, the node
tries to match the destination with the most restrictive entry in the Mtable. Third, if
any Mtable entry matches with the target address, then the node checks if the packet
destination falls within some range in IPchildren(η), if a match occurs, then the node
forwards the packet downwards according. Finally, if all previous attempts fail, then
the node sends the packet upwards using CTparent(η).

6.4 Complexity Analysis

For the formal analysis, we assume a synchronous communication message-passing
model with no faults. Thus, all nodes start executing the algorithm simultaneously
and the time is divided into synchronous rounds, i.e., when a message is sent from

5The keepRoute fields together (see Section 6.3.2.1) denote a unique packet instance.

6.4. Complexity Analysis 91

node v to its neighbor u in time-slot t, it must arrive at u before time-slot t + 1, and
d(v, u) is the shortest path length between v and u in Ctree ∪ IP tree ∪ RCtree. The
performance of µMatrix in faulty scenarios is analyzed through simulations in Section
6.6.

6.4.1 Memory Footprint

As described in Section 6.3, the temporary routing information needed to maintain
mobility is stored in the Mtable data structure of some nodes. Each entry is kept for
at most THLmax seconds, a time interval pre-configured by the network operator, and
is deleted unless a keepRoute beacon is received. In the following theorem, we bound
the total number of Mtable entries in the network, necessary to manage the routing of
each mobile node µ ∈ CTree.

Theorem 3. The memory footprint to manage the mobility of one node µ ∈ Ctree

with µMatrix isM(µ) = O(depth(Ctree)).

Proof. Consider a node µ ∈ Ctree that has moved from its home location in time-
slot t0 and returned in time-slot tf . Consider the permanent IPparent(µ) and the
temporary CTparenti(µ) in time-slot t0 < ti < tf . A routing entry for the temporary
location of µ will be stored in the Mtable of every node comprising the shortest path
between IPparent(µ) and CTparenti(µ). Moreover, if µ has descendants in the IPtree,
in other words, k(µ) = |IPchildren(µ)| > 0, then each node c ∈ IPchildren(µ) will
send keepRoute beacons to their respective CTparenti(c), and a (temporary) routing
entry will be stored in the Mtable of every node comprising the shortest path between
CTparenti(c) and IPparent(µ). Therefore, the total memory footprint to manage the
mobility of a node µ is:

M(µ) = d(CTparenti(µ), IPparent(µ)) + 1

+
∑

c∈IPchildren(µ)

(d(CTparenti(c), IPparent(µ)) + 1)

≤ (k(µ) + 1)× (depth(Ctree) + 1)

= O(depth(Ctree))

Theorem 3 implies that the total memory footprint to manage the mobility of m
nodes is O(m × depth(Ctree)). Note that µMatrix preserves locality when managing

92
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

mobile routing information of a node µ, since no Mtable needs to be updated at nodes
above the LCA(IPparent(µ), CTparent(µ)).

6.4.2 Control Message Overhead

Control messages used by µMatrix are comprised of three types: i) those used by Matrix
to set up the initial IPtree and address allocation; ii) keepRoute beacons, defined in
Section 6.3.2.1; and iii) hasMoved beacons, defined in Section 6.3.3.1.

For any network of size n with a spanning collection tree Ctree rooted at node
r, the message and time complexity of Matrix protocol in the address allocation phase
is Msg(MatrixIP (Ctree)) = O(n) and T (MatrixIP (Ctree)) = O(depth(Ctree)),
respectively, which is asymptotically optimal, as proved in [95]. Next, we bound the
number of control messages of type (ii) and (iii).

Theorem 4. Consider a network with n nodes, with a spanning collection tree Ctree
rooted at node r, and m mobility events, consisting of m nodes µi, changing location
during time intervals ∆i ≤ ∆ time-slots. Moreover, consider the hasMoved beacon
parameters Imin, Imax and Ik and the keepRoute beacon interval of δ time-slots. The
control message complexity of µMatrix to perform routing under mobility of m nodes
is

Msg(µMatrix(Ctree)) = O

(
m× Ik
Imin

+
n

Imax

)
+ O

(
m×∆

δ
depth(Ctree)

)
.

Proof. Firstly, we bound the number of hasMoved (hM) beacons, which are sent peri-
odically by all nodes in order to detect mobility events. As described in Section 6.3.3.1,
when there is no mobility, the periodicity of hasMoved beacons is 1/Imax. If some node
µ has moved (an ack is lost), then Ik messages are sent at intervals of Imin time-slots.
Using the fact that the network is a tree and the number of edges is O(n), this gives a
total of messages

Msg(µMatrixhM(Ctree)) = O

(
m× Ik
Imin

+
n

Imax

)
.

Now, we bound the number of keepRoute (kR) beacons. As described in Sec-
tion 6.3, mobile nodes send periodic keepRoute beacons at a frequency of δ to keep the
Mtables up-to-date. Consider a node µ ∈ Ctree that has moved from its home location
in time-slot t0 and returned in time-slot tf . Consider the IPparent(µ), CTparenti(µ)

6.4. Complexity Analysis 93

in time-slot t0 < ti < tf , and ∆ = tf − t0. When µ is attached to a CTparenti(µ),
µ sends keepRoute beacons at a rate of δ for at most ∆ time-slots, such beacons
travel through the shortest path |(CTparenti(µ), IPparent(µ))| ≤ 2 × depth(Ctree).
Furthermore, if µ has descendants, i.e., k(µ) = |IPchildren(µ)| > 0, then each node
c ∈ IPchildren(µ) will also send keepRoute beacons at a rate of δ for at most ∆

time-slots, such beacons will travel the shortest path |(CTparenti(c), IPparent(µ))|
≤ 2 × depth(Ctree). Therefore, the total control overhead to manage the mobility of
a node µ is ≤ 2 ×depth(Ctree)(k(µ) + 1)∆/δ, which results in

Msg(µMatrixkR(Ctree)) = O

(
m×∆

δ
depth(Ctree)

)
.

Finally, the total control overhead is bounded by:

Msg(µMatrix) =Msg(µMatrixhM) +Msg(µMatrixkR)

Once again µMatrix preserves locality when managing mobile routing
state of a node µ since no messages need to be sent to nodes above the
LCA(IPparent(µ), CTparent(µ)).

6.4.3 Routing Path Distortion

We analyze the route length of messages, addressed to mobile nodes. Consider the
underlying collection protocol (e.g., CTP or RPL), which dynamically optimizes the
(bottom-up, or upwards) links in the collection tree Ctree, according to some metric,
such as Four-bit wireless link estimation [40]. We define an optimal route length as
the distance of the shortest path between (s, d), comprised of the upwards links of the
collection tree Ctree and the downwards links of the union of the IPv6 address tree
and the reverse-collection tree, i.e., IP tree ∪RCtree.

Theorem 5. µMatrix presents optimal path distortion under mobility, i.e., all mes-
sages are routed along shortest paths towards mobile destination nodes.

Proof. Consider a mobile node µ ∈ Ctree, which has moved from its home location in
time-slot t0. Messages addressed to µ and originated by some node η ∈ Ctree in time-
slot ti > t0 can belong to traffic flows of three kinds: (1) bottom-up: LCAi(µ, η) = µ;
(2) top-down: LCAi(µ, η) = η; and (3) any-to-any: LCAi(µ, η) 6= µ 6= η. In case (1),
messages are forwarded using the underlying collection protocol, using the upwards

94
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

links of the collection tree Ctree, which is optimal. In case (2), messages are forwarded
using Mtables of η and its descendents, until reaching the mobile location of µ in some
time-slot tf > t0. This path is comprised of the downwards links of IP tree ∪ RCtree
in time-slot t0 < ti ≤ tf , which is the optimal route from η to the mobile location
of µ in that time-slot. In case (3), the route between η and LCAi(µ, η) falls into the
case (1) and the route between LCAj(µ, η) and µ falls into the case (2), for some
t0 < ti ≤ tj ≤ tf , which is optimal.

6.5 Mobility Modelling

As previously discussed in Section 6.3.3, the protocol’s mobility management was de-
signed upon the assumption that devices hold a home location position, for which they
eventually return after moving around in the cyber-physical space. Thus, µMatrix
presents better performance under mobility patterns that present this characteristic
(see Section 6.4). Although µMatrix can, in principle, also work without the home
location assumption, it affects its memory efficiency. Moreover, other protocols, like
MANET [24, 64, 97], are designed to deal with this feature accordingly.

Fortunately, the home location assumption is often present in mobility patterns
ranging from human [53, 55, 81, 91] to non-human behavior [18, 84]. Humans mobility
pattern tends to include group meeting dynamics and regularity. For example, people
typically have a home, and they go to places nearby (meet friends, work, go shopping,
etc.), then, eventually, they return to their homes. On the other hand, in a non-human
mobility pattern, entities move and also can maintain an initial fixed position where they
eventually come back. For instance, consider a team of autonomous robotic vacuum
cleaners, assigned with the task of cleaning an office building. Usually, the robotic
cleaners move randomly and, when the batteries are low, they return to their initial
positions to recharge.

These characteristics fit well with the properties of µMatrix, exploiting its perfor-
mance gains over other solutions for mobile environments. However, there is a lack of
available real mobility traces in such domains, usually due to privacy-related or tech-
nical issues. Opportunely, researchers have developed mobility models to fill in this
gap [6, 53, 84]. A mobility model simulates the real mobility behavior and allows us to
generate variable traces in several dimensions: spatial, temporal, and size. We employ
mobility models to evaluate µMatrix in different scenario conditions and highlight its
potential to support IoT, IoMT, and SIoT. Following, we present the mobility model
used in this work, its parameters, and behavior.

6.5. Mobility Modelling 95

Table 6.2: GRM parameters.

Parameters GRM-Inf06 GRM-Camb. GRM-MIT

Simulation parameters

of nodes 78 54 100
Duration (days) 3 11 15
Group duration (h) 12 24 720
DIM (m2) 300 500 1000
Path time 120 120 300

Statistical parameters

αgmt 1.35 1.35 2
βgmt 12 24 720
αdur 1.5 1.5 2
βdur 3 20 720
αsize 2.24 2.24 2.24
βsize 30 30 30

6.5.1 Human Mobility Model

Hess et al. [53] survey available mobility models in the literature. Here, we highlight
two: SWIM [81] and Group Regularity Mobility Model (GRM) [91]. SWIM produces
synthetic traces with similar properties of real mobility traces. It assumes that humans
go to places nearby their home, where they meet others, and eventually they return
to their homes. GRM presents the same features of SWIM, but it introduces the
dynamics of group meetings and social community structure. GRM produces synthetic
traces with human and group regularity while other models do not.

These mobility models and others with similar characteristics [53, 84], especially
the home location assumption, are suitable for µMatrix. In this work, we use GRM
as mobility model to generate traces based on real traces parameters. We produce
three traces using GRM mobility model: GRM-Inf06, GRM-Camb., and GRM-MIT.
Table 6.2 lists the GRM parameters for each trace6. The simulation parameters are
self-explanatory, except by the path time which defines the time of a mobile entity
takes to move from a location to another. The statistical parameters are parameters
of truncated power laws with cut-off where α∗ is the power law exponent and β∗ the
cut-off value: αgmt and βgmt define the group meeting times distribution parameters;
αdur and βdur characterize the time that a group of entities will spend together; finally,
αsize and βsize define which entities will be at each group meeting. The reader can find

6We extract the parameters from the following references:[19, 56, 81, 91].

96
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

more parameter details in [91]. Following, we describe the traces produced by GRM:

• GRM-Inf06 : this trace was produced based on the Infocom06 [56] real trace.
The original trace was produced during a scientific conference. It has 78 nodes,
of which 34 were assigned to 4 groups with sizes 4, 5, 10, and 5. The original
conference trace has three different levels, but we simplify to 1 since GRM does
not support this feature. The trace covers 3 days.

• GRM-Camb: we generate this trace based on the Cambridge [56] real trace, which
uses 54 nodes (36 mobile + 18 fixed) distributed into two groups of students in
the University of Cambridge. The data set covers 11 days.

• GRM-MIT : the GRM’s authors provided a ready to go GRM-MIT trace [91].
The synthetic trace was produced based on Reality MIT trace [35] where 100
smart phones were deployed to students in two university buildings. This is the
most representative trace in terms of a large area, and higher mobility. In the
experiments (Section 6.6), we highlight the contrast between GRM-MIT and the
other traces.

The above real traces and others can also be found in Crawdad site [66]. But, the
mobility traces usually have only the contact trace (when two nodes meet each other)
and the time when the contact happened. Most of the mobile network simulators use
mobile traces of positions instead of contact traces. Thus, mobility models have the
advantage of generating plausible locations (coordinates) of the nodes, instead of using
heuristics to infer positions from contact trace [132].

6.5.2 Non-human Mobility Model

In the literature, there are several non-human mobility models available [6, 12, 84]. We
highlight the RWP well-known mobility model to evaluate MANET routing protocols
[12]. In RWP, the mobility entities move freely in a random direction, velocity, and
acceleration. we propose the Cyclical Random Waypoint Model (CRWP), a mobility
model based on the RWP. CRWP is useful to model scenarios where some of the entities
move to different destinations, and eventually, they return to their initial positions,
which is the case of objects (e.g., portable devices) that move in offices, universities,
hospitals, factories, etc.

In CRWP, the entities move independently to random destinations and speeds
as in RWP. When an entity arrives at the destination, it stops for a given time Tpause.
A difference in CRWP is that after n chosen destinations, the mobile entity returns

6.5. Mobility Modelling 97

Table 6.3: CRWP parameters.

Parameters Values

Simulation time 1.5 h
nodes 100 in grid
traces 10 traces/scenario

Dim (m2) 400
Node speed constant 4m/s

CRWP Tpause constant 300 s
CRWP Stops Uni. Distribution (1,3)
CRWP Trace Low Mod. High
PerMobNodes 5% 10% 15%

Table 6.4: CRWP mobility metrics.

Mobility Metrics (Avg) CRWP-Low. CRWP-Mod. CRWP-High

of link failures 1621 3057 4838
Link duration (s) 761.90 457.4 345
Node degree 4.12 4.36 4.44
Time for a link to fail (s) 227.6 216.1 204.5

to its initial position. Besides that, only k% of mobile entities are outside of their
initial position in each instant of time. CRWP has four parameters: i) PerMobNodes:
maximum percentage of entities that are mobile in each instant of time; ii) Stops:
number of stops that the mobile entity do before returning to its original position;
iii) Speed: speed which the mobile entity moves; iv) Tpause: the amount of time that
the entity stays in a destination position.

We produce three different traces using CRWP by varying the parameter k%

(percentage of mobile nodes away from home location): i) CRWP-Low; ii) CRW-Mod;
iii) CRWP-High .Table 6.3 shows the parameters for each trace.

6.5.2.1 CRWP Mobility Scenario Analysis

We use the BonnMotion [6] to implement CRWP as well as to generate and analyze
mobility traces. Table 6.3 presents the CRWP simulation parameters. We simulated
scenarios where n = 100 mobile entities are assumed to be in an office or building, and
they can move around and return to a predefined home position. The nodes are de-
ployed in a grid. We divided the mobility scenarios into three groups: low, moderate,
and high mobility. Table 6.4 presents the average of some mobility metrics [6] that
characterize each scenario (low, moderate, and high mobility). We highlight that the

98
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

Static

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

CRWP−Low

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)
C

D
F

 n
od

es
 (

%
)

CRWP−Mod.

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

GRM−MIT

0.25
0.50

0.75
1.000.00

0.25
0.50
0.75
1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

Mob. Matrix MMRPL/RPL AODV CRWP−High

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)
GRM−Camb.

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

GRM−Inf06

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

Figure 6.9: CDF of routing table usage. For µMatrix Mtable + IPchildren, for RPL
only downwards routing table. The maximum table size is 20.

metric number of link failures is an important metric in the performance of the net-
work protocol. Observe that high mobility scenarios present up to 20% more topology
changes than in low mobility. As expected, the average link duration decreases when
PerMobNode increases. The metrics node degree and time for a link to fail do not
vary much from each mobility scenario.

6.6. Evaluation 99

Table 6.5: Simulation parameters.

Simulation parameter Values
Number of experiments 10 runs/trace

Border Router 1 center
keepRoute period δ = 60 s
RevTT Imax = 60 s, Imin = 1 s, Ik = 3
RPL Trickle Imax = 60 s
Downwards table Size = 20 entries

1

10

100

1000

10000

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

N
um

be
r

of
 B

ea
co

ns
 (

lo
g)

RPL MMRPL AODV Mob. Matrix

Figure 6.10: The number of control packets.

6.6 Evaluation

6.6.1 Simulation Setup

We implemented µMatrix in ContikiOS [33] and made the source code publicly avail-
able7. The experiments were executed on Cooja [38] simulator and the following three
baseline protocols were used: RPL, AODV, and MMRPL [25]. The former two proto-
cols were already available on ContikiOS, while the latter we implemented on top of
the available RPL implementation.

We simulated seven different scenarios. The first scenario represents the static
network, in which devices do not move. One can interpret this scenario as the tradi-
tional static IoT. The remaining scenarios present different mobility patterns by using

7https://bps90.github.io/mmatrix-code/

https://bps90.github.io/mmatrix-code/

100
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

CRWP and GRM as mobility models (see Section 6.5 for more details): 3 using CRWP
named low, moderate, and high; 3 using GRM which we refer as Inf06, Camb., and
MIT. One can interpret these scenarios as SIoT or IoMT cyber-physical mobile spaces
being a step forward from standard IoT. Table 6.5 lists the default simulation and
protocols parameters. In each plot, the bars or points represent the average, and the
error bars indicate the confidence interval of 95%. The curves are the maximum table
usage for a given mobility scenario.

For static and CRWP scenarios, we executed an application on top of the network
layer, in which each node sends 20 data packets to the border router at a rate of 1 packet
per minute. Upon receiving a data packet, the border router confirms to the sender
with an acknowledgment packet that has the size of a data packet. The application
waits for 10min for protocols initialization and stabilization before it starts sending
data. The nodes start sending their data in a simulation time randomly chosen in
(10, 20] min. The mobility traces were configured to start after the stabilization time.
Additionally, we generate 10 mobility traces for each scenario. Each trace and the
static scenario were run 10 times, totaling 3010 executions.

We ran a similar application for GRM scenarios except that the nodes, after
sending their data packets, reschedule to send the data packets again in a simulation
time randomly chosen in next [1, 12] hours. This process repeats indefinitely until the
maximum GRM simulation time is achieved. For each trace, we run 5 times, totaling
15 executions.

6.6.2 Results

In Figure 6.9, we show the Cumulative Distribution Functionss (CDFs) of the percent-
age of downward routing table usage among nodes, for each scenario. In the static
scenario, all µMatrix nodes use up to 25% of available downwards route entries, while
in RPL and MMRPL ≥ 75% of nodes use ≥ 25% of entries. MMRPL and RPL present
almost identical routing memory usage since the only different between MMRPL RPL
is the mobility detection mechanism, which does not affect memory usage. In AODV,
the devices flood the network with route queries to find the packet’s destination, then
the devices opportunistically fill all available route entries. Therefore, AODV ≈ 100%

of nodes use 100% of route entries. Indeed, for some RPL nodes and almost AODV
nodes, 100% of table entries are used. Usually, these nodes that use more memory are
near the border router, and they play a fundamental role in top-down routing. If they
overflow their downward routing table, then the traffic pattern top-down suffers from
poor reliability, and some nodes may be unreachable.

6.6. Evaluation 101

0.00

0.25

0.50

0.75

1.00

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

B
ot

to
m

−
up

 P
R

R
 (

%
)

RPL MMRPL AODV Mob. Matrix

Figure 6.11: Bottom-up routing success rate.

µMatrix also presents a more efficient memory footprint than other protocols, in
non-human mobility scenarios (CRWP). The difference among the protocols grows up
as the nodes mobility increase. Figure 6.9 shows CRWP-{Low, Mod., High} memory
usage. In these scenarios, µMatrix uses up to 65% of the downward routing table, while
> 15% of RPL devices present full table usage as well as almost all devices running
AODV.

For human mobility scenarios (GRM), we highlight two of them: GRM-MIT and
GRM-Camb.. The first one, it presents higher mobility, larger area, number of nodes
and duration than other scenarios. On the other hand, GRM-Camb. presents fewer
nodes and mobility than MIT. Figure 6.9 also shows the protocols under the GRM
mobility pattern. In GRM-MIT, µMatrix presents lower downward routing table than
RPL and AODV. For RPL and AODV, almost all route entries are used causing poor
reliability in top-down and any-to-any routing. Therefore, µMatrix is more efficient in
the most dynamic scenario. In the GRM-Camb. scenario, RPL and AODV seem to
presented better results, but GRM-Camb. has only 54 nodes and the routing table size
is only 20, and yet some nodes consume all routing memory available. In GRM-Camb.,
µMatrix uses ≤ 65% of downwards route entries.

Another relevant analysis is the control messages (or beacons) overhead of each
routing protocol. µMatrix sends beacons to react to topology changes quickly by using
the RevTT algorithm and the underlying collection protocol beaconing scheme. The
protocol AODV sends route queries to find routes between the sender and receiver.

102
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

0.00

0.25

0.50

0.75

1.00

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

To
p−

do
w

n
P

R
R

 (
%

)
RPL MMRPL AODV Mob. Matrix Inevitable Losses

Figure 6.12: Top-down routing success rate. The transparent bar represents inevitable
losses.

RPL sends controls beacons to build and maintain its routing structures. µMatrix
allows tuning the RevTT fire rate to reduce the sending beacons, but note that the
reverse trickle adjustment faces a trade-off between quick mobility discovery and control
overhead. In Table 6.5, we set Imax of RPL and µMatrix evenly and close to data packet
rate, which gives to the protocols the fair opportunity to identify topology changes and
react to them.

Figure 6.10 shows the amount of control traffic overhead of the protocols (the
total number of beacons sent during the entire simulation). AODV is a reactive rout-
ing protocol (create routes on demand); therefore it sends fewer control packets than
µMatrix, MMRPL, and RPL, which are pro-active. However, AODV presents higher
losses than others evaluated protocols as we show ahead. MMRPL, µMatrix, and RPL
present close control overhead being µMatrix slightly more economical. The difference
between RPL and µMatrix does not exceed 8.6%. The different of quantities in GRM
traces to others is only due to the simulation time.

Figure 6.11 shows the Packet Reception Rate (PRR) in bottom-up data traf-
fic. In all scenarios, µMatrix presents higher or equal PRR than RPL, MMRPL or
AODV. Upon node mobility, µMatrix realizes that a topological change happened by
using RevTT, it quickly triggers the underlying route discovery, and as a consequence,
bottom-up routes are rapidly rebuilt, and the reliability increases. MMRPL and RPL
also present high reliability on bottom-up data traffic overall evaluated scenarios but be-

6.6. Evaluation 103

●
●

●

●

●

●

Low

Mod.

High

Low

Mod.

High

Low

Mod.

High

Low Mod.

High

●● ●● ● ●

Low

Mod.

High

Low

Mod.

High

Low

Mod. HighLow

Mod.

High

●
●●

●

●●

MITCamb.

Inf06

MIT

Camb.
Inf06 MITCamb.

Inf06

MIT

Camb.

Inf06

●

●

●
●

●

●

MIT
Camb.Inf06

MIT

Camb.

Inf06
MITCamb.

Inf06

MIT

Camb.
Inf06

CRWP GRM

B
ottom

−
up

Top−
dow

n

0.05 0.10 0.15 0 5 10 15

0.2

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

Number of Beacons (x106)

D
el

iv
er

y
R

at
e

(%
)

●● RPL MMRPL AODV Mob. Matrix

Figure 6.13: The trade-off between control message overhead and the successful delivery
rate.

ing slightly less reliable than µMatrix. AODV, in the static scenario, presents ≈ 100%

PRR, however, in non-human mobile scenarios, its reliability decreases as the mobility
increases. In human mobility, for example, GRM-MIT (higher mobile scenario), AODV
also presents poor reliability in bottom-up routing.

Figure 6.12 shows the PRR for top-down data traffic. In the plot, “inevitable
losses" are represented with a transparent bar, and they refer to the number of messages
that were lost due to the node being in transit from one location to another. Meanwhile,
messages were routed before the route updated mechanism (see Section 6.3), in which
case, there was no valid path to the destination, and the packet loss is inevitable.

It is possible to see that in all scenarios µMatrix presents higher PRR than other
protocols in top-down data traffic routing. Under no mobility, µMatrix presented
99.9% of success rate, while RPL and MMRPL presented < 21%, and AODV pre-
sented ≈ 26%. In non-human mobility scenarios, µMatrix PRR decreases slowly when
more mobility is allowed. In the harshest mobility scenario, CRWP-High, µMatrix
shows PRR of 95% while AODV has 68% and RPL has 17%. RPL, MMRPL, and
AODV presented top-down PRR 19%, 28%, and 68% respectively. µMatrix, in GRM
scenarios, presented at least 97% of top-down PRR, and RPL exhibited the lowest
PRRs ranging from 16% to 35% followed closely by MMRPL. AODV presented PRR
up to 75%, but its delivery rate with acknowledgment is low as we show ahead.

104
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

RPL, MMRPL and AODV suffer from poor reliability because of the lack of
memory (see Figure 6.9) to store top-down routes, while µMatrix is more efficient in
the memory usage, as we have shown in complexity analysis in Section 6.4.

●●

●●

●●

●●

●●

●●

●●

GRM−Inf06

CRWP−High GRM−MIT GRM−Camb.

Static CRWP−Low CRWP−Mod.

0 4 8 12

0 4 8 12 0 4 8 12

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Mean RTT (s)

M
ea

n
de

liv
er

y
ra

te
 w

ith
 a

ck
no

w
le

dg
m

en
t (

%
)

●● RPL MMRPL AODV Mob. Matrix

Figure 6.14: The trade-off between the delivery rate with acknowledgment and RTT.

Figure 6.13 shows the trade-off between control message overhead and the suc-
cessful delivery rate. Figure 6.13 is composed of four graphics. The two top graphics
are for bottom-up traffic, and the two lower graphics are for top-down traffic. The
two left graphics are for CRWP mobility model, and the two right graphics are for
GRM mobility model. In each graphic, it is desirable a high delivery rate with a low
number of beacons (upper-left region). However, to identify mobility passively and
quickly, usually, it requires more control messages. Therefore, protocols that balance
this trade-off are fundamental in the IoT, IoMT or SIoT context, especially when the
devices have energy constraints.

Note that in all scenarios and traffic patterns, µMatrix presents a higher delivery
rate and a balanced number of beacons. AODV is the most economical concerning
message overhead, but it suffers from reliability, especially in high mobility scenarios
and both data traffic pattern. RPL shows the lower delivery rate and higher control
message overhead. Also, the MMRPL and RPL beacons go from the node to the border
router to recreate routes downwards. µMatrix reduces this cost by preserving route
updates locality as discussed in Section 6.3 and analyzed in Section 6.4. In general,
MMRPL presented a better delivery rate than RPL at the cost of more beacons.

Figure 6.14 depicts the trade-off between delivery with acknowledgment rate and
Round Trip Time (RTT). Note that only round-trip messages were considered. We plot

6.7. Concluding Remarks 105

a graphic for each of the seven mobility scenarios. RPL, MMRPL, and AODV suffer
from losses in the top-down traffic (as explained in Figure 6.12). µMatrix presents
the higher delivery with acknowledgment rate. The mean RTT is similar between the
four protocols except for CRWP-High scenario. In the CRWP-High scenario, µMatrix
presents higher RTT because, when there is no valid route between the sender and the
receiver, CTP [47] (underlying routing protocol employed) keeps some messages in a
buffer for a while, then the forwarding engine (see Section 6.3) eventually sends the
messages. Therefore, in high mobile scenarios where the topology constantly changes,
some messages will be delivered with some delay; thus µMatrix also presents higher
delivery with acknowledgment rate.

6.7 Concluding Remarks

In this work, we have designed, analyzed and evaluated the Mobile Matrix, a mobile
routing protocol with a hierarchical addressing scheme for resource-constrained devices
largely employed in IoT, IoMT, and SIoT. In the new IoT context, the “things” are able
to move and do social ties; thus µMatrix represents a step towards this new mobile
cyber-physical environment by allowing the devices to move around while providing
device mobility transparency to upper layers in the network stack. The protocol has
a low memory footprint, adjustable control message overhead, optimal routing path
distortion, and provides any-to-any communication. We provide a formal analysis of
µMatrix memory footprint, control message overhead, and the routing path distortion.
We also introduced the CRWP, a non-human mobility model suited for scenarios with
mobile devices that have cyclical movement patterns.

We evaluated the routing protocols under human and non-human mobility pat-
terns. Our µMatrix implementation offers ≥ 95% of top-down PRR in highly dynamic
and mobile scenarios, while other protocols ≤ 75%. This difference is a consequence
of the downwards routing table usage, in which the devices running µMatrix proto-
col use up to 65% of routing entries available while for RPL, MMRPL and AODV
several devices presented full routing table implying in poor top-down and any-to-any
reliability. It was also shown that existing routing protocols have poor delivery with
acknowledgment rate.

We have shown that existing routing protocols do not meet several IoMT and
SIoT requirements such as mobility management, memory, and energy efficiency in
routing. Thus, efforts in that direction, e.g., the µMatrix, enable several opportunities
for future research in IoMT and SIoT network stack support. For instance, it would be

106
Chapter 6. An Alternative Routing Protocol for the Mobile

Internet of Things

interesting to evaluate: i) how µMatrix and others ready-to-go protocols perform under
IoMT or SIoT applications in a large-scale network with thousands of mobile devices;
ii) how to passively detect mobility, the efficacy of this technique may lead to a better
energy efficiency of routing protocols for IoMT and SIoT. It is also worth mentioning
the possibility of extending µMatrix to allow devices to move between different network
domains.

Chapter 7

Conclusions and Future work

In this chapter, we summarize the main results achieved so far (Section 7.1) and present
the open problems and future work derived from this thesis (Section 7.3).

7.1 Conclusions

In this thesis, we have studied distinct aspects related to routing under mobility in In-
ternet of Things. Specially, we did studies, analyses, and formulated proposition of so-
lution in Mobility detection, Handover process, and Mobility Management in IoT. Such
studies were presented along this thesis, which are summarized in the Sections 7.1.1
and 7.1.2.

7.1.1 Mobility Detection

We have studied the mobility detection aspect in IoT from the lens of beaconing timer
schemes at the routing layer level (See Chapter 4). Such a process is a key step of the
design and overall performance of routing under static and dynamic IoT environments.
An efficient timer scheme enables the routing protocol to be aware timely to network
dynamic links while should be saver regarding constrained resource such as energy or
channel occupancy. Thus, the timer scheme must deal fairly with this basic trade-
off. If it is too greedy by sending advertisement frequently, it responds quickly to
topology changes, but it spends energy and introduces an overhead to the wireless
shared channel. However, if the timer scheme is too slow, i.e., it sends advertisement
infrequently, it will save energy and bandwidth, but topology problems will persist for
a long time.

107

108 Chapter 7. Conclusions and Future work

Commonly, routing protocols rely on only one timer schemes and assumes that
all networked devices follow the same mobility behavior. We have argued that such
assumptions do not fit. In this sense, we have proposed the Dribble learn-based timer
scheme selector. Dribble uses learning model to predict devices mobility pattern and
then it sets, to the device, a custom timer schemes (Periodic, TT, and RevTT) that
better catches its mobility pattern. In our experiments (Section 4.5), we showed that
Dribble is an alternative to better balance the trade-off faced by single timer schemes
and it favors the delivery data rate while being aware of the device’s power constraints.

7.1.2 Handover Process and Mobility Management

We have proposed two routing protocols for IoT. Initially, we proposed the Matrix
routing protocol and later Mobile Matrix routing protocol. They share the same work-
ing core, however, they differ regarding their main goal. In short, both protocols were
built upon the idea of using hierarchical IPv6 address allocation that explores cycle-
free network structures. With this idea, Matrix and Mobile Matrix are able to perform
any-to-any routing (especially top-down routing see Sections 5.3 and 6.3) by using only
one-hop information in static conditions which means be aware of IoT device’s resource
constraints (especially, memory and energy). Matrix was designed to working properly
in networks with low link dynamics, although Matrix implements mechanisms of reli-
ability and fault-tolerance. Mobile Matrix does a step further being able to manage
mobile nodes. It does that by only assuming that nodes have a home location for which
the nodes eventually come back.

We bounded the memory footprint, control overhead, behavior upon network fail-
ures, and routing path distortion for our routing protocols proposition. We did this
through mathematical analysis and experimental evaluations. Also, we made compar-
isons of Matrix and Mobile Matrix against the latest routing protocols, including RPL
the de facto standard routing protocol for IoT in Low-Power and Lossy Networks. Our
experiments (see Sections 5.5 and 6.6) have shown that our proposition can be an al-
ternative for routing for IoT in static and mobile scenarios. The results indicated that
Matrix and Mobile Matrix are favorable in terms of memory footprint, data delivery
rate, fault-tolerance, and energy.

7.2 Publications

So far, during my Ph.D., I have authored or participated in the scientific publications
below:

7.2. Publications 109

Chapter 1 and 2: only part.

1. Santos, B. P., Silva, L., Celes, C., Borges, J. B., Neto, B. S. P., Vieira, M. A. M.,
Vieira, L. F. M., Goussevskaia, O. N., and Loureiro, A. (2016). Internet das
coisas: da teoria à prática. Minicursos SBRC-Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuıdos. Book Chapter Accepted.

Chapter 4:

2. Santos, B. P., Rettore, P. H. L., Vieira, L. F. M., and Loureiro, A. A. (2018c).
Dribble: a learn-based timer scheme selector for mobility management in iot.
IEEE Wireless Communications and Networking Conference WCNC. Confer-
ence paper.

Chapter 5:

3. Peres, B. S., Souza, O. A. d. O., Santos, B. P., Junior, E. R. A., Goussevskaia,
O., Vieira, M. A. M., Vieira, L. F. M., and Loureiro, A. A. F. (2016). Matrix:
Multihop Address Allocation and Dynamic Any-to-Any Routing for 6LoWPAN.
In Proceedings of the 19th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, MSWiM ’16, pages 302–309,
New York, NY, USA. ACM. Conference paper.

4. Peres, B., Santos, B. P., de O. Souza, O. A., Goussevskaia, O., Vieira, M. A. M.,
Vieira, L. F. M., and Loureiro, A. A. F. (2018). Matrix: Multihop Address
allocation and dynamic any-To-any Routing for 6LoWPAN. Computer Networks,
140:28 – 40. Published Journal.

Chapter 6:

5. Santos, B. P., Goussevskaia, O., Vieira, L. F. M., Vieira, M. A. M., and Loureiro,
A. A. (2017a). Mobile Matrix: A Multihop Address Allocation and Any-to-Any
Routing in Mobile 6LoWPAN. In Proceedings of the 13th ACM Symposium on
QoS and Security for Wireless and Mobile Networks, Q2SWinet ’17, pages 65–72.
Conference paper.

6. Santos, B. P., Goussevskaia, O., Vieira, L. F., Vieira, M. A., and Loureiro, A. A.
(2018a). Mobile Matrix: Routing under Mobility in IoT, IoMT, and Social IoT.
Ad Hoc Networks. Published Journal.

110 Chapter 7. Conclusions and Future work

Others scientific publication beyond this thesis scope: in Intelligent Trans-
portation Systems, Social Networks, and IoT/WSN:

7. Rettore, P. H., Santos, B. P., Campolina, A. B., Villas, L. A., and Loureiro, A. A.
(2016). Towards intra-vehicular sensor data fusion. In Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on, pages 126–131.
IEEE. Conference paper.

8. Cunha, F., Maia, G., Ramos, H., Santos, B. P., Celes, C., Rettore, P., Campolina,
A., Guidoni, D., Souza, F., Villas, L., Mini, R., and Loureiro., A. (2017a). Emerg-
ing Trends in Vehicular Ad-hoc Network (VANET). Emerging Wireless Com-
munication and Network Technologies: Principle, Paradigm and Performance.
Springer Chapter Book. Book Chapter Accepted.

9. Cunha, F., Maia, G., Ramos, H., Santos, B. P., Celes, C., Rettore, P., Campolina,
A., Guidoni, D., Souza, F., Villas, L., Mini, R., and Loureiro., A. (2017b). Sis-
temas de Transporte Inteligentes: Conceitos, Aplicações e Desafios (Intelligent
Transportation Systems: Concepts, Applications and Challenges - In portuguese).
XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos.
1ed.Porto Alegre: Sociedade Brasileira de Computação (SBC) SBRC 2017. Chap-
ter Book. Book Chapter Accepted.

10. Santos, B. P., Vieira, L. F. M., and Vieira, M. A. M. (2017c). CGR: Centrality-
based green routing for Low-power and Lossy Networks. Computer Networks,
129:117–128. Published Journal.

11. Santos, B. P., Rettore, P. H., Ramos, H. S., Vieira, L. F., and Loureiro, A. A.
(2017b). T-MAPS: Modelo de Descrição do Cenário de Trânsito Baseado no Twit-
ter. Anais do XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos. Conference paper.

12. Santos, B. P., Rettore, P. H., Ramos, H. S., Vieira, L. F., and Loureiro, A. A.
(2018b). Enriching Traffic Information with a SpatiotemporalModel based on So-
cial Media. In Computers and Communications (ISCC), 2018 IEEE Symposium
on, page 0. IEEE. Conference paper.

Also, we have also submitted a full journal.

13. Rettore, P. H., Santos, B. P., Maia, G., Villas, L. A., and Loureiro, A. A. F. (2018).
Rode: Road data enrichment framework based onheterogeneous data fusion for

7.3. Open Problems and Future Work 111

its. Transactions on Intelligent Transportation Systems. Journal under minor
review.

Finally, we are working to submitting new results obtained from Chapter 4 in a full
journal.

7.3 Open Problems and Future Work

During this research, we perceived many future directions on this thesis. We highlight
some of them below.

7.3.1 Inter-domain Routing with Mobile Matrix

Initially, µMatrix was designed to provide any-to-any intra-domain routing for static
and mobile nodes. However, the mobile freedom degree of a mobile IoT allows mobile
devices to move through different domains. On the Internet, inter-domain mobility was
handled by deploying centralized mobile anchors for which inter-domain mobile nodes
eventually attach. However, with the growth of the Internet and the increasing number
of IoT devices (potentially billions of nodes) attached to the network, it is worth that
distributed models for mobility management will be needed.

On the Internet, the IPs are used to the routing process as well as a mechanism
to identify end hosts. One way to implement a mobile management inter-domain is
through locator-identifier separation. Locators are the address used to identify border
routers in the network. These addresses are advertised to the network (e.g., by using
BGP). Identifiers are addresses to identify end hosts, and they are not spread out to
the routing system.

One example of locator-identifier implementation is Locator/Identifier Separation
Protocol (LISP) [39]. Figure 7.1 shows the LISP packet flow. Host at the same network
domain can exchange packets directly (A→ B), border routers (ITRx and ETRx) uses
the routing system (e.g., BGP) to advertise its address (locator address) to the global
Internet. Note that end hosts do not advertise its identifiers. If A wants to send
packets to C, then it first sends the packets to the border router (ITR2), in turn,
ITR2 queries the LISP mapping system to retrieve the location border routers that
can reach C (e.g., ETRx). Then ITR2 encapsulates the A’s packets and forwards
them to the retrieved border router locator (e.g., ETR1). Then, ETR1 removes the
headers of the encapsulated packet and forwards the regular A’s packets towards C.
Note that LISP uses a centralized approach for the mapping location-identifier, but

112 Chapter 7. Conclusions and Future work

Figure 7.1: Lisp packet flow. (EID: endpoint identifier; ETR: egress tunnel router; ITR:
ingress tunnel router; PxTR proxy tunnel router; RLOC: routing locator). Source:
[115].

there is a distributed approach namely Distributed Mobility Management scheme in
Locator/Identifier Separation networks (DMMLIS) [100].

We are interested in investigating the viability of extension of µMatrix to couple
inter-domain routing feature, especially in a distributed fashion. One way to tackle this
issue is by performing an extensive literature study, as well as studying the benefits
and issues of distributed mobile inter-domain management as listed in [20]. If viable,
we want to perform a formal analysis, and comparative evaluation of an inter-domain
enable µMatrix routing with state-of-the-art solutions.

7.3.2 Social IoT: A Mobility Model

As mentioned in Chapter 2, SIoT is a new IoT paradigm which expands and provide
several benefits. However, we argue that we are not prepared yet to support the
paradigm fully. One argument is that the way smart devices move play a key role
in the understatement and design of solutions for SIoT. However, real smart device
mobility traces are not yet available. Thus, synthetic approaches is a way to overcome
this limitation [9]. In this sense, one can analyze and eventually propose a mobility
model to entities in SIoT to generate social traces that can benefit SIoT application
and support software designs.

7.3. Open Problems and Future Work 113

7.3.3 Mobile Agents and IoT

Mobile Agent (MA) has been a subject of study since 2000 when the Internet become
more dynamic, mobile and ubiquitous with the introduction of embedded systems [80].
There is not a consensus about a definition of MA, but in general lines, Mobile Agent is
a software that can move within a heterogeneous network (Internet, intranet) and by
receiving authorization levels, it acts autonomously on behalf of or in place for some
entity. MA has been used to a range of purposes such as find and filter information,
automate work, cooperative tasks, automatic processes without user intervention [15,
80]. MA has a life-cycle model (creation/destroy, start/stop, etc.), a computational
model (data manipulation, thread control), a security model (the way that MA access
network resources), and a communication model (communication between agents and
between agent and others entities), navigation model (cares about the transportation
of the agents between computational resources in different physical locations).

Although MA has been studied on a diversity of contexts, on the IoT domain,
MA has received little attention. However, we believe that MAs have certain benefits
that are especially useful for IoT context, for example, MA help to reduce network
load, network latency, and encapsulate protocols. Some literature studies have shown
that MA concept can be brought to the IoT domain. In [71], the authors propose MA
to integrate IoT and WSN, and in [127], it is described the technical solutions used
to implement MA for Web-of-Things by using HTML5. However, MA studies on IoT
context are still in embryonic stage.

Aiming do a step forward, we draw some research questions that we believe to
be worth as future work direction.

• How to potentialize device mobility by using MAs (software mobility)?

Mobile agents have a navigation model [15, 99] which defines how the mobile
agents will move, e.i., the itinerary of the MA. One can study the viability of
potentializing the hardware mobility by taking advantage of MA movements.

Our previous experiences with centrality metrics and routing in WSN/IoT [112]
allow us to rise up one specific question involving centrality and navigation model
that is: is it possible to use centrality metrics to plan itineraries for MA in IoT
context?

• What is the optimal number of MA in an IoT system?

It is a fact that multiple agents can co-exist in a system. However, it is a challenge
to determine how many agents (or clones) can co-exist. The life-cycle, commu-

114 Chapter 7. Conclusions and Future work

nication, and navigation models play a key role in the determination of such an
optimal number.

7.3.4 IoT on 5G context

Another viable direction is the symbiosis between IoT and 5G1. The 2G of a mobile
network was designed to voice, 3G for data exchange, and 4G for widely Internet
access. Now, 5G aims to address the limitations of the previous generation such as
energy consumption, machine-to-machine communication, and speed (over 10× faster
than 4G). Also, 5G has been designed for mobile low-power and constrained devices
as well. Thus, these 5G features have the potential key to enabler IoT. IoT powered
by 5G will use millimeter waves (for high speed communication and accommodate
billions even trillions of devices), small cells (for connectivity), MIMO, beamforming
(for reduction of interference and improvements on efficiency), and full-duplex (more
efficiency on communication).

The symbiosis of IoT and 5G rise up several issues that request for solutions,
especially regarding mobility management. In [4], the authors highlight that a critical
research challenge in IoT/5G networks is the mobility management, coverage, and
reachability which remain an open research area for IoT. Besides that other issues
are the scalability, network management, interoperability under heterogeneous devices,
security and privacy, and network congestion and overload.

15th generation wireless systems.

Bibliography

[1] Afzal, B., Umair, M., Shah, G. A., and Ahmed, E. (2017). Enabling IoT plat-
forms for social IoT applications: Vision, feature mapping, and challenges. Future
Generation Computer Systems.

[2] Agnihotri, S. and Ramkumar, K. (2017). A survey and comparative analysis of the
various routing protocols of Internet of things. International Journal of Pervasive
Computing and Communications, 13(3):264–281.

[3] Akpakwu, G. A., Silva, B. J., Hancke, G. P., and Abu-Mahfouz, A. M. (2017). A
survey on 5G networks for the Internet of Things: Communication technologies and
challenges. IEEE Access, 6:3619–3647.

[4] Akpakwu, G. A., Silva, B. J., Hancke, G. P., and Abu-Mahfouz, A. M. (2018). A
survey on 5g networks for the internet of things: Communication technologies and
challenges. IEEE Access, 6:3619–3647.

[5] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015).
Internet of things: A survey on enabling technologies, protocols, and applications.
IEEE Communications Surveys & Tutorials, 17(4):2347–2376.

[6] Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., and Schwamborn, M. (2010).
BonnMotion: a mobility scenario generation and analysis tool. In EAI ICST, page 51.

[7] Ashton, K. (2009). That ‘internet of things’ thing. RFiD Journal, 22(7):97–114.

[8] Asl, H. Z., Iera, A., Atzori, L., and Morabito, G. (2013). How often social objects
meet each other? Analysis of the properties of a social network of IoT devices based
on real data. In Global Communications Conference (GLOBECOM), 2013 IEEE,
pages 2804–2809. IEEE.

[9] Atzori, L., Carboni, D., and Iera, A. (2014). Smart things in the social loop:
Paradigms, technologies, and potentials. Ad Hoc Networks, 18:121–132.

115

116 BIBLIOGRAPHY

[10] Atzori, L., Iera, A., Morabito, G., and Nitti, M. (2012). The social internet of
things (siot)–when social networks meet the internet of things: Concept, architecture
and network characterization. Computer networks, 56(16):3594–3608.

[11] Baccour, N., Koubâa, A., Mottola, L., Zúñiga, M. A., Youssef, H., Boano, C. A.,
and Alves, M. (2012). Radio Link Quality Estimation in Wireless Sensor Networks:
A Survey. ACM Transactions on Sensor Networks (TOSN), 8(4):34:1–34:33.

[12] Bai, F. and Helmy, A. (2004). A survey of mobility models. Wireless Adhoc
Networks.

[13] Bellier, L., Malki, K. E., Castelluccia, C., and Soliman, H. (2008). Hierarchical
Mobile IPv6 (HMIPv6) Mobility Management. RFC 5380.

[14] Bezunartea, M., Gamallo, M., Tiberghien, J., and Steenhaut, K. (2016). How
Interactions Between RPL and Radio Duty Cycling Protocols Affect QoS in Wireless
Sensor Networks. In Proceedings of the 12th ACM Symposium on QoS and Security
for Wireless and Mobile Networks, Q2SWinet ’16, pages 135–138, New York, NY,
USA. ACM.

[15] Bieszczad, A., Pagurek, B., and White, T. (1998). Mobile agents for network
management. IEEE Communications Surveys, 1(1):2–9.

[16] Boukerche, A., Loureiro, A. A., Nakamura, E. F., Oliveira, H. A., Ramos, H. S.,
and Villas, L. A. (2014). Cloud-assisted computing for event-driven mobile services.
Mobile Networks and Applications, 19.

[17] C., P., S., R., and J., D. (2013). Dynamic MANET On-demand (AODVv2) Rout-
ing. https://tools.ietf.org/html/draft-ietf-manet-dymo-26.

[18] Camp, T., Boleng, J., and Davies, V. (2002). A survey of mobility models for ad
hoc network research. Wireless communications and mobile computing, 2(5):483–502.

[19] Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., and Scott, J. (2005).
Pocket switched networks: Real-world mobility and its consequences for opportunis-
tic forwarding. Technical report, University of Cambridge, Computer Laboratory.

[20] Chan, H., Liu, D., Seite, P., Yokota, H., and Korhonen, J. (2014). Requirements
for distributed mobility management.

[21] Chlipala, A., Hui, J., and Tolle, G. (2004). Deluge: data dissemination for network
reprogramming at scale. University of California.

https://tools.ietf.org/html/draft-ietf-manet-dymo-26

BIBLIOGRAPHY 117

[22] Choi, Y., Hong, Y.-G., Youn, J.-S., Kim, D., and Choi, J. (2018). Transmission of
IPv6 Packets over Near Field Communication. Internet-Draft draft-ietf-6lo-nfc-12,
Internet Engineering Task Force. Work in Progress.

[23] Clark, B. N., Colbourn, C. J., and Johnson, D. S. (1991). Unit Disk Graphs.
Discrete mathematics, 86(1-3):165–177.

[24] Clausen, T. and Jacquet, P. (2003). Optimized link state routing protocol (olsr).
RFC 3626.

[25] Cobarzan, C., Montavont, J., and Noel, T. (2014). Analysis and performance
evaluation of RPL under mobility. In IEEE ISCC, pages 1–6.

[26] Cunha, F., Maia, G., Ramos, H., Santos, B. P., Celes, C., Rettore, P., Campolina,
A., Guidoni, D., Souza, F., Villas, L., Mini, R., and Loureiro., A. (2017a). Emerging
Trends in Vehicular Ad-hoc Network (VANET). Emerging Wireless Communication
and Network Technologies: Principle, Paradigm and Performance. Springer Chapter
Book.

[27] Cunha, F., Maia, G., Ramos, H., Santos, B. P., Celes, C., Rettore, P., Campolina,
A., Guidoni, D., Souza, F., Villas, L., Mini, R., and Loureiro., A. (2017b). Sistemas
de Transporte Inteligentes: Conceitos, Aplicações e Desafios (Intelligent Transporta-
tion Systems: Concepts, Applications and Challenges - In portuguese). XXXV Sim-
pósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. 1ed.Porto Ale-
gre: Sociedade Brasileira de Computação (SBC) SBRC 2017. Chapter Book.

[28] Da Xu, L., He, W., and Li, S. (2014). Internet of things in industries: A survey.
IEEE Transactions on industrial informatics, 10(4):2233–2243.

[29] Dawson-Haggerty, S., Tavakoli, A., and Culler, D. (2010a). Hydro: A hybrid
routing protocol for low-power and lossy networks. In Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, pages 268–273.
IEEE.

[30] Dawson-Haggerty, S., Tavakoli, A., and Culler, D. (2010b). Hydro: A hybrid
routing protocol for low-power and lossy networks. In IEEE SmartGridComm, pages
268–273.

[31] de Souza, F., Domingues, A. C., Vaz de Melo, P., and A.F. Loureiro, A. (2018).
MOCHA: A tool for mobility characterization. In MSWiM.

118 BIBLIOGRAPHY

[32] Deering, D. S. E. and Hinden, B. (2017). Internet Protocol, Version 6 (IPv6)
Specification. RFC 8200.

[33] Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors. In IEEE LCN, pages 455–
462, Washington, DC, USA. IEEE Computer Society.

[34] Duquennoy, S., Landsiedel, O., and Voigt, T. (2013). Let the Tree Bloom: Scalable
Opportunistic Routing with ORPL. In Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’13, pages 2:1–2:14, New York, NY,
USA. ACM.

[35] Eagle, N. and Pentland, A. S. (2006). Reality mining: sensing complex social
systems. Personal and ubiquitous computing, 10(4):255–268.

[36] Ekman, F., Keränen, A., Karvo, J., and Ott, J. (2008). Working day movement
model. In Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models,
pages 33–40. ACM.

[37] El Korbi, I., Brahim, M. B., Adjih, C., and Saidane, L. A. (2012). Mobility
enhanced RPL for wireless sensor networks. In IEEE ICUFN, pages 1–8.

[38] Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., Sauter,
R., and Marrón, P. J. (2009). COOJA/MSPSim: Interoperability Testing for Wire-
less Sensor Networks. In Proceedings of the 2Nd International Conference on Simu-
lation Tools and Techniques, Simutools’09, pages 27:1–27:7.

[39] Farinacc, D., Fuller, V., Meyer, D., and Lewis, D. (2013). RFC 6830 - The
Locator/ID Separation Protocol (LISP). https://tools.ietf.org/html/rfc6830.
(Accessed on 04/01/2018).

[40] Fonseca, R., Gnawali, O., Jamieson, K., and Levis, P. (2007). Four-Bit Wireless
Link Estimation. In HotNets.

[41] Foroozani, A., Gharib, M., Hemmatyar, A. M. A., and Movaghar, A. (2014). A
novel human mobility model for manets based on real data. In 2014 23rd Interna-
tional Conference on Computer Communication and Networks (ICCCN), pages 1–7.
IEEE.

[42] Fotouhi, H., Moreira, D., and Alves, M. (2015). mRPL: Boosting mobility in the
Internet of Things. Ad Hoc Networks, pages 17–35.

https://tools.ietf.org/html/rfc6830

BIBLIOGRAPHY 119

[43] Gaddour, O., Koubâa, A., Rangarajan, R., Cheikhrouhou, O., Tovar, E., and
Abid, M. (2014). Co-RPL: RPL routing for mobile low power wireless sensor net-
works using Corona mechanism. In Industrial Embedded Systems (SIES), 2014 9th
IEEE International Symposium on, pages 200–209. IEEE.

[44] Gara, F., Ben Saad, L., Ben Hamida, E., Tourancheau, B., and Ben Ayed, R.
(2016). An adaptive timer for RPL to handle mobility in wireless sensor networks.
IWCMC 2016, (978):678–683.

[45] Gartner, I. (2018). Hype Cycle Research Methodology | Gartner Inc. https://

www.gartner.com/technology/research/methodologies/hype-cycle.jsp. (Ac-
cessed on 03/22/2018).

[46] Gershenfeld, N. (1999). When Things Start to Think. Henry Holt and Co., Inc.,
New York, NY, USA.

[47] Gnawali, O., Fonseca, R., Jamieson, K., Kazandjieva, M., Moss, D., and Levis, P.
(2013). CTP: An efficient, robust, and reliable collection tree protocol for wireless
sensor networks. ACM TOSN, 10(1):16.

[48] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and Levis, P. (2009). Collection
Tree Protocol. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, pages 1–14.

[49] Group, E. D. C. (2008). Sinalgo-simulator for network algorithms.

[50] Guo, B., Yu, Z., Zhou, X., and Zhang, D. (2012). Opportunistic IoT: Exploring
the social side of the internet of things. In Computer Supported Cooperative Work
in Design (CSCWD), 2012 IEEE 16th International Conference on, pages 925–929.
IEEE.

[51] Guo, S., Wang, M., and Leskovec, J. (2011). The role of social networks in online
shopping: information passing, price of trust, and consumer choice. In Proceedings
of the 12th ACM conference on Electronic commerce, pages 157–166. ACM.

[52] Hassan, A., Ahmed, M. H., and Rahman, M. A. (2013). Adaptive beaconing
system based on fuzzy logic approach for vehicular network. IEEE PIMRC, pages
2581–2585.

[53] Hess, A., Hummel, K. A., Gansterer, W. N., and Haring, G. (2016). Data-driven
human mobility modeling: A survey and engineering guidance for mobile networking.
ACM Computing Surveys (CSUR), 48(3):38.

https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
https://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

120 BIBLIOGRAPHY

[54] Hong, K.-S. and Choi, L. (2011). DAG-based multipath routing for mobile sensor
networks. In IEEE ICT, pages 261–266.

[55] Hong, X., Gerla, M., Pei, G., and Chiang, C.-C. (1999). A group mobility model
for ad hoc wireless networks. In Proceedings of the 2nd ACM international workshop
on Modeling, analysis and simulation of wireless and mobile systems, pages 53–60.
ACM.

[56] Hui, P., Crowcroft, J., and Yoneki, E. (2011). Bubble rap: Social-based forwarding
in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576–
1589.

[57] Iova, O., Picco, P., Istomin, T., and Kiraly, C. (2016). RPL: The Routing Standard
for the Internet of Things... Or Is It? IEEE Communications Magazine, 54:16–22.

[58] Johnson, D., Hu, Y., Maltz, D., et al. (2007). The dynamic source routing protocol
for mobile ad hoc networks. Technical report, RFC 4728.

[59] Júnior, N. d. S. R., Vieira, M. A. M., Vieira, L. F. M., and Gnawali, O. (2014).
CodeDrip: Data dissemination protocol with network coding for wireless sensor net-
works. In Wireless Sensor Networks, pages 34–49. Springer.

[60] Karamshuk, D., Boldrini, C., Conti, M., and Passarella, A. (2011). Human mobil-
ity models for opportunistic networks. IEEE Communications Magazine, 49(12):157–
165.

[61] Karamshuk, D., Boldrini, C., Conti, M., and Passarella, A. (2014). SPoT: Rep-
resenting the social, spatial, and temporal dimensions of human mobility with a
unifying framework. Pervasive and Mobile Computing, 11:19–40.

[62] Kelly, S. D. T., Suryadevara, N. K., and Mukhopadhyay, S. C. (2013). Towards
the implementation of IoT for environmental condition monitoring in homes. IEEE
Sensors Journal, 13(10):3846–3853.

[63] Kim, K., Montenegro, G., Park, S., Chakeres, I., and Perkins, C. (2007a). Dynamic
MANET On-demand for 6LoWPAN (DYMO-low) Routing. Internet Engineering
Task Force.

[64] Kim, K., Park, S. D., Montenegro, G., Yoo, S., and Kushalnagar, N. (2007b).
6LoWPAN ad hoc on-demand distance vector routing (LOAD). Network WG Inter-
net Draft, 19.

BIBLIOGRAPHY 121

[65] Kosta, S., Mei, A., and Stefa, J. (2012). Large-scale synthetic social mobile net-
works with SWIM. IEEE Transactions on Mobile Computing, 13(1):116–129.

[66] Kotz, D. and Henderson, T. (2005). Crawdad: A community resource for archiving
wireless data at dartmouth. IEEE Pervasive Computing, 4(4):12–14.

[67] Kurose, J. F. and Ross, K. W. (2012). Computer Networking: A Top-Down Ap-
proach (6th Edition). Pearson, 6th edition.

[68] Kushalnagar, N., Montenegro, G., and Schumacher, C. (2007). IPv6 over low-
power wireless personal area networks (6LoWPANs): overview, assumptions, prob-
lem statement, and goals. Technical report.

[69] Landt, J. (2005). The history of RFID. IEEE potentials, 24(4):8–11.

[70] Lee, K. C., Sudhaakar, R., Dai, L., Addepalli, S., and Gerla, M. (2012). RPL
under mobility. In IEEE CCNC, pages 300–304. IEEE.

[71] Leppanen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Narhi, P., Riekki,
J., and Ojala, T. (2013). Mobile agents for integration of internet of things and
wireless sensor networks. In Systems, Man, and Cybernetics (SMC), 2013 IEEE
International Conference on, pages 14–21. IEEE.

[72] Levis, P., Lee, N., Welsh, M., and Culler, D. (2003). TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In Proceedings of the 1st In-
ternational Conference on Embedded Networked Sensor Systems, SenSys ’03, pages
126–137, New York, NY, USA. ACM.

[73] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., et al. (2005a). TinyOS: An operating system for
sensor networks. Ambient intelligence, 35:115–148.

[74] Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., et al. (2005b). TinyOS: An operating system for
sensor networks. Ambient intelligence, 35:115–148.

[75] Levis, P., Patel, N., Culler, D., and Shenker, S. (2004). Trickle: A Self-regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In
Proceedings of the 1st Conference on Symposium on Networked Systems Design and
Implementation - Volume 1, NSDI’04, pages 2–2.

122 BIBLIOGRAPHY

[76] Libelium (2013). Libelium Smart World Infographic – Sensors for Smart
Cities, Internet of Things and beyond | Libelium. http://www.libelium.com/

libelium-smart-world-infographic-smart-cities-internet-of-things/.
(Accessed on 09/05/2018).

[77] Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., and Zhao, W. (2017). A survey
on internet of things: Architecture, enabling technologies, security and privacy, and
applications. IEEE Internet of Things Journal, 4(5):1125–1142.

[78] Lodhi, M. A., Rehman, A., Khan, M. M., and Hussain, F. B. (2015). Multiple
path RPL for low power lossy networks. In Wireless and Mobile (APWiMob), 2015
IEEE Asia Pacific Conference on, pages 279–284.

[79] Loureiro, A. A., Nogueira, J. M. S., Ruiz, L. B., Mini, R. A. d. F., Nakamura,
E. F., and Figueiredo, C. M. S. (2003). Redes de Sensores Sem Fio. In Simpósio
Brasileiro de Redes de Computadores (SBRC), pages 179–226.

[80] Mattern, F. (2000). Mobile Agents. https://www.vs.inf.ethz.ch/publ/

slides/MobAgsTut.pdf. (Accessed on 04/01/2018).

[81] Mei, A. and Stefa, J. (2009). SWIM: A Simple Model to Generate Small Mobile
Worlds. In IEEE INFOCOM 2009, pages 2106–2113.

[82] Moghadam, M. N., Taheri, H., and Karrari, M. (2015). Multi-class Multipath
Routing Protocol for Low Power Wireless Networks with Heuristic Optimal Load
Distribution. Wireless Personal Communications, 82(2):861–881.

[83] Montenegro, G., Schumacher, C., and Kushalnagar, N. (2007). IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals. RFC 4919.

[84] Mota, V. F., Cunha, F. D., Macedo, D. F., Nogueira, J. M., and Loureiro, A. A.
(2014). Protocols, mobility models and tools in opportunistic networks: A survey.
Computer Communications, 48:5–19.

[85] Mulligan, G. (2007). The 6lowpan architecture. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 78–82. ACM.

[86] Nahrstedt, K., Li, H., Nguyen, P., Chang, S., and Vu, L. (2016). Internet of mo-
bile things: Mobility-driven challenges, designs and implementations. In Internet-
of-Things Design and Implementation (IoTDI), 2016 IEEE First International Con-
ference on, pages 25–36. IEEE.

http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/
http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-of-things/
https://www.vs.inf.ethz.ch/publ/slides/MobAgsTut.pdf
https://www.vs.inf.ethz.ch/publ/slides/MobAgsTut.pdf

BIBLIOGRAPHY 123

[87] Narendra, N. and Misra, P. (2016). Research challenges in the internet of mobile
things.

[88] Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., and Suen, C. (2011). Backpropagation
Algorithm. http://ufldl.stanford.edu/wiki/index.php/Backpropagation_

Algorithm. (Accessed on 10/11/2018).

[89] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., and Gomez, C.
(2015). IPv6 over BLUETOOTH(R) Low Energy. RFC 7668.

[90] Nordrum, A. (2016). Popular Internet of Things Forecast of 50 Billion
Devices by 2020 Is Outdated - IEEE Spectrum. https://spectrum.ieee.org/tech-
talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-
2020-is-outdated (Accessed on 03/22/2018).

[91] Nunes, I. O., Celes, C., Silva, M. D., Vaz de Melo, P. O., and Loureiro, A. A.
(2017). GRM: Group Regularity Mobility Model. In Proceedings of the 20th ACM
International Conference on Modelling, Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’17, pages 85–89, New York, NY, USA. ACM.

[92] Oliveira, A. and Vazão, T. (2016). Low-power and lossy networks under mobility:
A survey. Computer Networks, 107:339–352.

[93] Palani, U., Alamelumangai, V., and Nachiappan, A. (2015). Hybrid routing and
load balancing protocol for wireless sensor network. Wireless Networks, pages 1–8.

[94] Peres, B., Santos, B. P., de O. Souza, O. A., Goussevskaia, O., Vieira, M. A. M.,
Vieira, L. F. M., and Loureiro, A. A. F. (2018). Matrix: Multihop Address allocation
and dynamic any-To-any Routing for 6LoWPAN. Computer Networks, 140:28 – 40.

[95] Peres, B. S., Souza, O. A. d. O., Santos, B. P., Junior, E. R. A., Goussevskaia,
O., Vieira, M. A. M., Vieira, L. F. M., and Loureiro, A. A. F. (2016). Matrix:
Multihop Address Allocation and Dynamic Any-to-Any Routing for 6LoWPAN. In
Proceedings of the 19th ACM International Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, MSWiM ’16, pages 302–309, New York,
NY, USA. ACM.

[96] Perkins, C., Johnson, D., and Arkko, J. (2011). Mobility support in IPv6. RFC
6275.

http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated

124 BIBLIOGRAPHY

[97] Perkins, C. E. and Royer, E. M. (1999). Ad-hoc on-demand distance vector rout-
ing. InMobile Computing Systems and Applications, 1999. Proceedings. WMCSA’99.
Second IEEE Workshop on.

[98] Peterson, L. L. and Davie, B. S. (2011). Computer Networks, Fifth Edition: A
Systems Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition.

[99] Qadori, H. Q., Zulkarnain, Z. A., Hanapi, Z. M., and Subramaniam, S. (2017).
Multi-mobile agent itinerary planning algorithms for data gathering in wireless sensor
networks: A review paper. International Journal of Distributed Sensor Networks,
13(1):1550147716684841.

[100] Qiu, F., Zhou, H., Li, X., Wang, G., and Zhang, H. (2014). A distributed mobility
management scheme in networks with the locator/identifier separation. International
Journal of Communication Systems, 27(10):1874–1893.

[101] Reinhardt, A., Morar, O., Santini, S., Zoller, S., and Steinmetz, R. (2012). CBFR:
Bloom filter routing with gradual forgetting for tree-structured wireless sensor net-
works with mobile nodes. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2012 IEEE International Symposium on a, pages 1–9.

[102] Rettore, P. H., Santos, B. P., Campolina, A. B., Villas, L. A., and Loureiro,
A. A. (2016). Towards intra-vehicular sensor data fusion. In Intelligent Transporta-
tion Systems (ITSC), 2016 IEEE 19th International Conference on, pages 126–131.
IEEE.

[103] Rettore, P. H., Santos, B. P., Maia, G., Villas, L. A., and Loureiro, A. A. F.
(2018). Rode: Road data enrichment framework based onheterogeneous data fusion
for its. Transactions on Intelligent Transportation Systems.

[104] Royer, E. M. and Toh, C.-K. (1999). A review of current routing protocols for
ad hoc mobile wireless networks. IEEE personal communications, 6(2):46–55.

[105] Ruiz, L. B., Correia, L. H. A., Vieira, L. F. M., Macedo, D. F., Nakamura, E. F.,
Figueiredo, C. M., Vieira, M. A. M., Bechelane, E. H., Camara, D., Loureiro, A. A.,
et al. (2004). Arquiteturas para Redes de Sensores Sem Fio. In Simpósio Brasileiro
de Redes de Computadores (SBRC).

[106] Santos, B. P., Goussevskaia, O., Vieira, L. F., Vieira, M. A., and Loureiro, A. A.
(2018a). Mobile Matrix: Routing under Mobility in IoT, IoMT, and Social IoT. Ad
Hoc Networks.

BIBLIOGRAPHY 125

[107] Santos, B. P., Goussevskaia, O., Vieira, L. F. M., Vieira, M. A. M., and Loureiro,
A. A. (2017a). Mobile Matrix: A Multihop Address Allocation and Any-to-Any
Routing in Mobile 6LoWPAN. In Proceedings of the 13th ACM Symposium on QoS
and Security for Wireless and Mobile Networks, Q2SWinet ’17, pages 65–72.

[108] Santos, B. P., Rettore, P. H., Ramos, H. S., Vieira, L. F., and Loureiro, A. A.
(2017b). T-MAPS: Modelo de Descrição do Cenário de Trânsito Baseado no Twit-
ter. Anais do XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuídos.

[109] Santos, B. P., Rettore, P. H., Ramos, H. S., Vieira, L. F., and Loureiro, A. A.
(2018b). Enriching Traffic Information with a SpatiotemporalModel based on Social
Media. In Computers and Communications (ISCC), 2018 IEEE Symposium on,
page 0. IEEE.

[110] Santos, B. P., Rettore, P. H. L., Vieira, L. F. M., and Loureiro, A. A. (2018c).
Dribble: a learn-based timer scheme selector for mobility management in iot. IEEE
Wireless Communications and Networking Conference WCNC.

[111] Santos, B. P., Silva, L., Celes, C., Borges, J. B., Neto, B. S. P., Vieira, M.
A. M., Vieira, L. F. M., Goussevskaia, O. N., and Loureiro, A. (2016). Internet
das coisas: da teoria à prática. Minicursos SBRC-Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuıdos.

[112] Santos, B. P., Vieira, L. F. M., and Vieira, M. A. M. (2017c). CGR: Centrality-
based green routing for Low-power and Lossy Networks. Computer Networks,
129:117–128.

[113] Santos, B. P., Vieira, M. A. M., and Vieira, L. F. M. (2015). eXtend collection
tree protocol. In Wireless Communications and Networking Conference (WCNC),
2015 IEEE, pages 1512–1517. IEEE.

[114] Sattlegger, K. and Denk, U. (2014). Navigating your way through the RFID
jungle. White paper, Texas Instruments.

[115] Saucez, D., Iannone, L., Bonaventure, O., and Farinacci, D. (2012). Designing
a deployable internet: The locator/identifier separation protocol. IEEE Internet
Computing, 16(6):14–21.

[116] Schmidt, R. K., Leinmuller, T., Schoch, E., Kargl, F., and Schafer, G. (2010).
Exploration of adaptive beaconing for efficient intervehicle safety communication.
IEEE Network, 24(1):14–19.

126 BIBLIOGRAPHY

[117] Shelby, Z. and Bormann, C. (2011). 6LoWPAN: The wireless embedded Internet,
volume 43. John Wiley & Sons.

[118] Silva, T. H., de Melo, P. O. V., Almeida, J. M., Musolesi, M., and Loureiro, A. A.
(2017). A large-scale study of cultural differences using urban data about eating and
drinking preferences. Information Systems, 72:95–116.

[119] Sommer, C., Tonguz, O. K., and Dressler, F. (2010). Adaptive beaconing for
delay-sensitive and congestion-aware traffic information systems. In IEEE VNC.

[120] Talavera, L. E., Endler, M., Vasconcelos, I., Vasconcelos, R., Cunha, M., and
e Silva, F. J. d. S. (2015). The mobile hub concept: Enabling applications for the
internet of mobile things. In Pervasive computing and communication workshops
(PerCom workshops), 2015 IEEE international conference on, pages 123–128. IEEE.

[121] Tanenbaum, A. (2002). Computer Networks. Prentice Hall Professional Technical
Reference, 4th edition.

[122] Thubert, P. and Hui, J. (2011). Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282.

[123] Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess,
S., Dawson, T., Buonadonna, P., Gay, D., and Hong, W. (2005). A Macroscope
in the Redwoods. In Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, SenSys ’05, pages 51–63.

[124] University, C. M. (2014). The "Only" Coke Machine on the Internet. https:

//www.cs.cmu.edu/~coke/history_long.txt. (Accessed on 09/05/2018).

[125] Vasseur, J.-P. and Dunkels, A. (2010). Interconnecting smart objects with ip: The
next internet. Morgan Kaufmann.

[126] Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., Luo, L., Stoleru, R.,
Stankovic, J. A., and Abdelzaher, T. F. (2009). Achieving Long-term Surveillance
in VigilNet. ACM Transactions on Sensor Networks (TOSN), 5(1):9:1–9:39.

[127] Voutilainen, J.-P., Mattila, A.-L., Systä, K., and Mikkonen, T. (2016). HTML5-
based mobile agents for Web-of-Things. Informatica, 40(1):43.

[128] Weis, S. A. (2007). Rfid (radio frequency identification): Principles and applica-
tions. System, 2(3):1–23.

https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt

BIBLIOGRAPHY 127

[129] Weiser, M. (1999). The computer for the 21st century. Mobile Computing and
Communications Review, 3(3):3–11.

[130] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. (2006a).
Fidelity and Yield in a Volcano Monitoring Sensor Network. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation, OSDI ’06, pages
381–396.

[131] Werner-Allen, G., Lorincz, K., Johnson, J., Lees, J., and Welsh, M. (2006b).
Fidelity and yield in a volcano monitoring sensor network. In Proceedings of the
7th symposium on Operating systems design and implementation, pages 381–396.
USENIX Association.

[132] Whitbeck, J., de Amorim, M. D., and Conan, V. (2010). Plausible Mobility: In-
ferring Movement from Contacts. In Proceedings of the Second International Work-
shop on Mobile Opportunistic Networking, MobiOpp ’10, pages 110–117, New York,
NY, USA. ACM.

[133] Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K.,
Struik, R., Vasseur, J., and Alexander, R. (2012). RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550 (Proposed Standard).

[134] Woo, A., Tong, T., and Culler, D. (2003). Taming the Underlying Challenges
of Reliable Multihop Routing in Sensor Networks. In International Conference on
Embedded Networked Sensor Systems. ACM.

[135] Zheng, Y., Zhang, L., Xie, X., and Ma, W.-Y. (2009). Mining interesting locations
and travel sequences from gps trajectories. In Proceedings of the 18th international
conference on World wide web, pages 791–800. ACM.

[136] Zignani, M. and Gaito, S. (2010). Extracting human mobility patterns from
gps-based traces. In 2010 IFIP Wireless Days, pages 1–5. IEEE.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	List of Algorithms
	1 Introduction
	1.1 Contextualization
	1.2 Relevance
	1.3 Goals
	1.4 Contribution
	1.5 Thesis Organization

	2 Internet of Things Overview
	2.1 Internet of Things History Perspective
	2.2 What is and Why The Internet of Things?
	2.3 IoT's Basic Building Blocks
	2.4 Internet Integration
	2.5 Communication Technologies
	2.6 Mobility Meets The Internet of Things
	2.6.1 New IoT Paradigms and Requirements

	2.7 Concluding Remarks

	3 Model and Definition of Problems
	3.1 Definition of Problems
	3.2 Models
	3.2.1 Entities
	3.2.2 Mobility and Dynamic Model

	4 Mobility Detection
	4.1 Contextualization
	4.2 IoT Routing in a Nutshell
	4.3 Related Work and Problem Statement
	4.4 Dribble Design
	4.4.1 Entities
	4.4.2 Extraction of Mobility Metrics
	4.4.3 Learn-based Model
	4.4.4 Timer Scheme Matching
	4.4.5 Motion Event

	4.5 Evaluation
	4.5.1 Modeling the Entities Mobility
	4.5.2 Measuring Mobility
	4.5.3 The Neural Network
	4.5.4 Assigning Timer Schemes to Mobility Patterns
	4.5.5 Simulation Results

	4.6 Concluding Remarks

	5 An Alternative Routing Protocol for the Static Internet of Things
	5.1 Contextualization
	5.2 Related Work
	5.3 Design Overview
	5.3.1 MHCL: Multihop Host Configuration for 6LoWPAN
	5.3.2 Control Plane: Distributed Tree Structures
	5.3.3 Data Plane: Any-to-Any Routing
	5.3.4 Fault Tolerance and Network Dynamics
	5.3.5 Alternative Routing: Geometric Rationale

	5.4 Complexity Analysis
	5.5 Evaluation
	5.5.1 Simulation Setup
	5.5.2 Results

	5.6 Concluding Remarks

	6 An Alternative Routing Protocol for the Mobile Internet of Things
	6.1 Contextualization
	6.2 Background and Related Work
	6.3 Design Overview
	6.3.1 Mobile Matrix Architecture
	6.3.2 Control Plane: Routing Engine
	6.3.3 Control Plane: Mobile Engine
	6.3.4 Mobile Matrix Data Plane: Any-to-Any Routing

	6.4 Complexity Analysis
	6.4.1 Memory Footprint
	6.4.2 Control Message Overhead
	6.4.3 Routing Path Distortion

	6.5 Mobility Modelling
	6.5.1 Human Mobility Model
	6.5.2 Non-human Mobility Model

	6.6 Evaluation
	6.6.1 Simulation Setup
	6.6.2 Results

	6.7 Concluding Remarks

	7 Conclusions and Future work
	7.1 Conclusions
	7.1.1 Mobility Detection
	7.1.2 Handover Process and Mobility Management

	7.2 Publications
	7.3 Open Problems and Future Work
	7.3.1 Inter-domain Routing with Mobile Matrix
	7.3.2 Social IoT: A Mobility Model
	7.3.3 Mobile Agents and IoT
	7.3.4 IoT on 5G context

	Bibliography

