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Resumo

As principais abordagens desenvolvidas em visão computacional e processamento de
imagem digital são voltadas para dados obtidos por meio de smartphones e câmeras
compactas. Essas câmeras normalmente são usadas para capturar cenas nos canais
RGB, ou seja, apenas no espectro visível. Outra fonte de imagens que são exploradas
pela visão computacional, são as imagens de satélite ou imagens aéreas. Entretanto,
o desenvolvimento de abordagens de visão computacional que exploram as imagens de
satélite é relativamente recente devido principalmente à pouca disponibilidade a esse
tipo de imagem. Até pouco tempo atrás elas eram de exclusivo uso militar. O acesso a
imagens aéreas, inclusive com informação espectral, vem aumentando principalmente
devido ao baixo custo de drones, novos satélites de uso civil, e conjuntos de dados em
diversas plataformas públicas. Na área de sensoriamento remoto, as aplicações que em-
pregam técnicas de visão computacional são modeladas para classificação em cenários
fechados (closed set). No entanto, o mundo não é puramente closed set, muitos cenários
apresentam classes que não são previamente conhecidas pelo algoritmo, um cenário de
conjunto aberto (open set). Desse modo, o objetivo principal desta dissertação é o es-
tudo e desenvolvimento de técnicas de segmentação semântica considerando o cenário
open set aplicado a imagens de sensoriamento remoto. As principais contribuições dessa
dissertação são: (1) uma discussão dos trabalhos relacionados, mostrando evidências
de que técnicas de segmentação semântica podem ser adaptadas para cenários open
set ; e (2) o desenvolvimento de dois métodos para segmentação semântica open set. Os
métodos OpenPixel e OpenFCN apresentaram resultados competitivos quando com-
parados aos métodos closed set no mesmo conjunto de dados. Em média, o método
OpenPixel apresentou uma acurácia geral de 57,51%, uma acurácia normalizada de
54,23% e um Índice Kappa de 0,5602. Para o OpenFCN, o método resultou em uma
acurácia geral de 82,27%, uma acurácia normalizada de 64,39% e um Índice Kappa de
0,7630. É possível concluir que os métodos propostos podem segmentar classes descon-
hecidas enquanto ainda classificam de forma correta a maioria das classes conhecidas,
realizando uma segmentação semântica open set em imagens de sensoriamento remoto.
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Palavras-chave: Conjunto Aberto, Aprendizado Profundo, Segmentação Semântica,
Sensoriamento Remoto.
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Abstract

The main approaches developed in computer vision and digital image processing are
focused on data obtained through smartphones and compact cameras. These cameras
are typically used to capture scenes on RGB channels, only in the visible spectrum.
Another source of images that are exploited by computer vision is satellite images or
aerial images. However, the development of computational vision approaches that ex-
ploit satellite imagery is relatively recent, mainly due to the limited availability of this
type of image. Until recently they were exclusively for military use. Access to aerial
imagery, including spectral information, has been increasing mainly due to the low
cost of drones, new civilian satellites, and data sets on various public platforms. In
the area of remote sensing, applications that employ computational vision techniques
are modeled for classification in closed set scenarios. However, the world is not purely
closed set, many scenarios present classes that are not previously known by the al-
gorithm, an open set scenario. Thus, the main objective of this dissertation is the
study and development of semantic segmentation techniques considering the open set
scenario applied to remote sensing images. The main contributions of this dissertation
are: (1) a discussion of related works, showing evidence that semantic segmentation
techniques can be adapted for open set scenarios; (2) the development of two methods
for open set semantic segmentation. The OpenPixel and OpenFCN methods presented
competitive results when compared to the closed set methods in the same data set.
On average, the OpenPixel method had an overall accuracy of 57.51%, a normalized
accuracy of 54.23% and a Kappa Index of 0.5602. For OpenFCN, the method resulted
in an overall accuracy of 82.27%, a standard accuracy of 64.39% and a Kappa Index
of 0.7630. It is possible to conclude that the proposed methods can segment unknown
classes while still correctly classifying most of the known classes, performing open set
semantic segmentation on remote sensing images.

Palavras-chave: Open Set, Deep Learning, Semantic Segmentation, Remote Sens-
ing.
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Chapter 1

Introduction

1.1 Motivation

Since the first experiments with cameras and photography in the 18th century, the
ability to capture a moment have brought a lot of possibilities of study and applications.
In recent years, we can observe an increase in the number of studies and techniques of
computer vision caused by the improvement of the quality and ease of acquisition of
photographic images Sumbul et al. [2017].

The main approaches developed in computer vision and digital image processing
are focused on data obtained through smartphones, compact cameras, smartwatches,
glasses, other wearables, and IoT devices. Those cameras are normally used to capture
scenes, people and objects, and in general only capture images in the RGB channels,
the visible spectrum.

Another source of images that are exploited by computer vision is satellite images
or aerial images. However, satellite imagery has not been widely used mainly due to the
limited availability of this type of image. Until recently they were of exclusive military
use. Access to aerial images, including spectral information, has been increasing mainly
due to the low cost of drones, new civilian satellites, and data sets on various public
platforms.

With the advances in studies on computer vision and image processing, a lot of
remote sensing applications are being developed, for example, we have softwares that
help to monitor deforestation or forest burns, as well as change detection in waste dams
and erosion segmentation in railway constructions. Those applications could only be
developed with the advance in remote sensing research, including new technologies as
networks based on deep learning.

These aerial images can bring extra information, such as infrared, ultra-violet
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2 Chapter 1. Introduction

and other bands, which increases the amount of data about a given scene, and that
can be used in several remote sensing applications Lillesand et al. [2014].

According to Andrade [2012], there are also several research challenges from the
computational perspective when working with remote sensing image classification such
as:

• remote sensing data is inherently big, even at 250 meters coarse spatial resolution,
a low resolution for remote sensing application, some aerial images contains more
than 20 million pixels, jointly with a time series and a high number of bands. Most
machine learning models described as state-of-art (e.g., Deep Neural Networks,
nonlinear Support Vector Machines), cannot handle with the magnitude of this
data easily, making it obligatory the use of preprocessing techniques;

• segmentation scale, accompanied by a large amount of information at the level
of the object in very high spatial resolution images, the segmentation algorithms
have difficulty in defining the optimum scale to be used;

• pixel mixture and dimensionality reduction, images with high spectral resolution
must be preprocessed due to problems such as high dimensionality, treatment of
noise and corrupted bands, a mixture of pixels due to the low spatial resolution;

• even collecting information from various sensors, efficiency and capability to pro-
cess that amount of data is desired or even crucial depending on the application.
In some applications, the data must be analyzed in near real-time, which can be
translated to a very computationaly consuming task.

Within the area of remote sensing, most applications work with closed set
scenario-based computer vision techniques. However, the world is not purely closed
set, many scenarios present objects that are not previously known by the algorithm.
These other scenarios would benefit from using open set algorithms Scheirer et al.
[2013], due to the nature of the images. Many of the plantations, cities or objects that
appear in the images are restricted to the place where the images were registered. It
can increase the difficulty of training all the possible classes so that the algorithms
can be utilized in more than one place. Their scenario cannot be as well controlled
as others in traditional computer vision applications, there is an undefined amount of
objects not known by the machine that can be registered on the images.

The open set classification can be described as a classification in which an image
can be labeled as belonging to one of the classes learned by the algorithm or as an
unknown class if it belongs to any class not learned. The biggest challenges of open set
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classification are: (1) the diversity of features of the unknown class, since the unknown
class can aggregate multiple classes that were not present during training; (2) the
similarity between features of known and unknown classes, in example, an algorithm
that have seen examples of aerial images containing trees, may have difficulty in labeling
as unknown an aerial image of grass.

Even with a variety of possible uses for open set scenario algorithms, this area is
still unexplored, especially when compared to the infinite number of closed set methods.
Analyzing the small world of open set methods, one can observe that most of them
perform scene classification, lacking the open set concept on semantic segmentation
methods.

Semantic Segmentation is a task, in computer vision, that aims to classify not an
image as a whole but every pixel in an image accordingly to the classes learned by the
algorithm. This task can be classified as a difficult task since it needs: (1) complex
datasets, in which each image needs to have all the pixels annotated, consuming more
time to be developed than a dataset for image classification; (2) complex algorithms,
that needs to take in account the classification of every single pixel in its decision-
making process to achieve a better accuracy.

In this way, an open set semantic segmentation would be a technique that receives
an image as input and outputs a prediction in which all the pixels are labeled with a
known class, seen during training or as belonging to an unknown class.

Observing these motivations, this dissertation is innovative, since it is the first
work to introduce the concept of open set semantic segmentation for images, to propose
two methods based on this new concept and to apply them to the field of remote sensing
that usually happens in an open set scenario context.

1.2 Objectives

The main objective of this master’s dissertation is to study and to develop techniques
for semantic segmentation for open set scenarios, applied to the remote sensing field.
Specific objectives include:

• Literature review of existing open set techniques

• Adaptation and development of techniques for semantic segmenting satellite im-
ages containing known and unknown classes during the test

• Comparison of the results obtained with the methods developed in relation to
closed set techniques on an open set scenario.
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1.3 Contributions

In practice, the main contributions of this work are:

• evidence that semantic segmentation techniques can be applied to open set sce-
narios,

• a new method for open set semantic segmentation based on the Pixelwise network
Nogueira et al. [2016], and

• a new method for open set semantic segmentation based on the Openmax method
Bendale and Boult [2016].

1.4 Outline

The rest of the document is structured in seven chapters. The first chapter (2) consists
of the main concepts needed to understand the work of this dissertation. Chapter 3
presents the related works, explaining some others techniques existent on the open
set scenario and what are their differences in relation to the methods proposed in
this dissertation. Chapter 4 brings the methodology adopted in this dissertation for
achieving the objectives defined previously. All the configuration and some assumptions
needed to reproduce this work are described in Chapter 5. Chapter 6 brings the results
found using the proposed methods and their analysis. Finally, Chapter 7 brings a
conclusion on the work.
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Key Concepts

Before explaining the related works, methodology and experiments done in this disser-
tation, it is important to understand some key concepts behind this work.

2.1 Digital Images

A monochromatic image is a continuous two-dimensional function f(x, y), in which x
and y are spatial coordinates and the value of f at any point (x, y) is proportional to
the intensity (brightness or luminance level) at the point considered. As computers
are not able to process continuous images, but only arrays of digital numbers, it is
necessary to represent images as two-dimensional point arrangements.

Each point in the two-dimensional grid that represents the digital image is called
image element or pixel. Figure 2.1 shows the usual matrix notation for the location of
a pixel in the pixel arrangement of a two-dimensional image. The first index denotes
the position of the line, m, at which the pixel is located, while the second, n, denotes
the position of the column. If the digital image contains M lines and N columns, the
index m will vary from 0 to M − 1, while n will vary from 0 to N − 1. It is valid to
observe that the reading direction and the convention usually adopted in the spatial
representation of a digital image differs from the traditional Cartesian Plane, in which
the x axis is read from the left to right and the y varies from bottom to the top.

The luminous intensity at the point (x, y) can be decomposed into: (i) lighting
component, i(x,y), associated with the amount of light incident on the point (x,y); and
the reflectance component, r(x,y), associated with the amount of light reflected by the
point (x,y). The product of i(x,y) and r(x,y) results in:

f(x, y) = i(x, y) · r(x, y),

5
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Figure 2.1: Digital representation of a gray scale image.

in which 0 < i(x, y) < ∞ and 0 < r(x, y) < 1, where i(x,y) depends on the
characteristics of the light source, while r(x,y) depends on the characteristics of the
object surfaces.

In a digital color image in the RGB system, a pixel can be seen as a vector
whose components represent the red, green and blue intensities of its color. The color
image can be seen as the composition of three monochromatic images, a vector whose
components represent the red, green and blue intensities of its color:

f(x, y) = fR(x, y) + fG(x, y) + fB(x, y)

in which fR(x, y), fG(x, y), fB(x, y) represent, respectively, the luminous intensi-
ties of the red, green and blue components of the image at point (x, y).

Figure 2.2 shows the monochromatic planes of an image and the result of the
composition of the three planes. The same concepts formulated for a monochrome
digital image apply to each plane of a color image.

2.2 Remote Sensing

Remote sensing is defined as the measurement of object properties on the Earth’s
surface using data acquired from aircraft and satellites. It is, therefore, an attempt
to measure something at a distance, rather than in situ. Schowengerdt [2006]. Or as
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Figure 2.2: Digital representation of an image in the RGB space.

Câmara et al. [1996] defines, the assembly of processes and techniques used to measure
and record the electromagnetic properties of the terrestrial surface through detection
of the radiant energy flow reflected or emitted by natural targets, objects, through the
utilization of sensors with no direct contact between them.

Understanding the spectral characteristics of a body, forest, a field, pasture or
an agricultural crop, is essential to comprehend the process of its detection by sensors
in satellite cameras Moreira [2005]. After the process of detection, the data acquired
by the sensors are converted into digital format. The scanned data is a set of pixels,
which, distributed in rows and columns, form an image.

A formal definition of multi-band images used in remote sensing, according to
da Silva Torres and Falcao [2006], is denoted by Î =

(
DI , ~I

)
, where:

• DI is a finite set of points in Zn (image domain) and n refers to the size of the
image, and

• ~I : DI → D′ is a function that assigns each p-pixel in DI a set of scalar values
{I1(p), I2(p), . . . , Ik(p)} associated with some physical property. The value of k
refers to the number of bands. For example, D′ = R3 when a color, in the RGB
system, is assigned to a pixel.

An example of remote sensing image in the RGB system is presented in Dos San-
tos [2013], and can be seen in Figure 2.3, in which a flow of radiant energy was detected
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Figure 2.3: An excerpt of a remote sensing image extracted from a coffee region in
the municipality of Monte Santo (MG) and its decomposition in RGB color channels
Dos Santos [2013].

in a region of the city of Monte Santo (southern Minas Gerais State, Brazil), a tradi-
tional region in coffee cultivation. In Figure 2.3, the red color channel (R) corresponds
to values captured in the near-infrared spectral range, the green channel (G) to the
medium infrared and the blue channel (B) to the visible green spectrum.

Many of the studies in remote sense were focused on the adaptation of techniques
used in traditional computer vision scenarios for scene classification, segmentation and
object recognition.

2.3 Artificial Intelligence

Artificial intelligence is a term broadly used by technology companies, marketing, and
even academic projects. But the definition of artificial intelligence is not as precise as
one could expect, and normally differs from the technology used by nowadays applica-
tions.
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The term artificial intelligence first appeared in McCarthy et al. [2006] as an
invitation to a group of researchers from a variety of disciplines, including language
simulation, neuron nets and complexity theory, for a summer workshop called the
Dartmouth Summer Research Project on Artificial Intelligence with the aim to discuss
the, still to be born, field.

The main goal of the researchers was to develop the concepts of thinking machines,
a concept with divergent explanations by that time. The choice of the term artificial
intelligence was made based on its neutrality. Since the field was and still is, very vast,
the use of a neutral term would not give more importance to one or other applications.

The discussed subject was based on the concept that the study is to proceed based
on the conjecture that every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it McCarthy
et al. [2006].

In the computational area, artificial intelligence is usually used as a term to
designate an algorithm or process that may allow the computer to perform tasks that
need a level of intelligence for decision-making. This concept is usually blended with
the idea of machine learning or deep learning. Figure 2.4 better represents the relation
between those concepts, which will be used in this dissertation.

2.3.1 Machine learning

Machine learning can be treated as a subsection inside artificial intelligence. Although
the name machine learning was coined in Samuel [1959], it was in Mitchell [1997] that
the term gained a more formal and widely used definition. The concept was that a
computer program is said to learn from experience E concerning some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E.

This concept means that the term machine learning covers the idea of teaching
a computer to take actions in the same way as a human would be given a specific task
and data and that those actions taken could be compared to actions done by humans
and this could help improve the quality of the decisions taken.

The concept is always dynamic, evolving and changing alongside the evolution of
technology, and nowadays the concept is more based on the idea that the algorithm
should learn how to get the same results as a human. It does not necessarily need
to perform the same process of decision-making, but it is expected to take the same
action a human would. This change in the concept was introduced more hardly with
the development of deep learning algorithms.
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Figure 2.4: Representation of the hierarchy of Artificial Intelligence, Machine Learning
and Deep Learning.

2.3.1.1 Deep Learning

One of the big problems conventional machine learning techniques had before the use
of deep learning was their limited ability to process natural data in their raw form.
According to LeCun et al. [2015], to construct a method that performed machine
learning would require engineering and domain expertise to design a feature extractor
that transformed the raw data (such as the pixel values of an image) into a suitable
internal representation or feature vector from which the learning subsystem, often a
classifier, could detect or classify patterns in the input.

The biggest shift with the introduction of a deep learning system was not a
change in the process, but an integration of the feature extraction step, normally done
by humans, in the algorithm. Deep learning methods are learning methods for rep-
resentation, which means that they can be fed with raw data and to automatically
discover the representations needed for detection or classification. These representa-
tions are done in multiple levels, obtained by composing simple but non-linear modules
that each transform the representation at one level (starting with the raw input) into
a representation at a higher, slightly more abstract level.

In LeCun et al. [2015] it is also explained that this process of applying multi-
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Figure 2.5: Simple representation of a deep learning networking and the features related
to multiple levels Waldrop [2019] .

ple level transformations allowed the methods to learn very complex functions. For
example, in classification tasks, higher layers of representation can be interpreted as
amplifiers of important aspects of the input for the classification.

When applied to use on images, as in this dissertation, the first layers of the
method typically represent the presence or absence of edges at particular orientations
and locations in the image. The next layers typically detect corners by spotting par-
ticular arrangements of edges, regardless of small variations in the edge positions. The
higher layers normally assemble those corners into larger combinations that correspond
to parts of familiar objects, and subsequent layers would detect objects as combinations
of these parts and so on. Figure 2.5 shows an example of the network and the types of
features being used on each level.

The main aspect of deep learning, when compared to other machine learning
techniques is that these layers of features are not designed by human experts, they are
learned from the input data. This introduces the idea of layers that correlate data in a
way humans may not be able to understand. Those layers may increase the accuracy
of methods or even find results and information not predicted by humans. At the same
time, this freedom is given to the algorithms to find the best combination and the use
of the raw data also made it harder to interpret the decision process. It is possible to
analyze the result of the decision, but it became harder to understand why and how
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that decision was made.

2.4 Closed and Open Set Scenario

All the techniques of machine learning are based on the concept of one of the two
possible scenarios, closed and open set. Even though those scenarios are opposites,
they still share some similarities, methods, and networks.

2.4.1 Closed Set Scenario

The closed set scenario is the most used in all types of networks and methods in machine
learning. This scenario is applied in methods for scene classification, recognition, and
semantic segmentation.

The closed set can be described as all the techniques in which all testing classes
are known at training time Scheirer et al. [2013]. This way, when a new image is tested,
it has to belong to one of the classes learned in the training phase. In this scenario,
researchers have assumed one has examples from all classes, and have subsequently
labeled the entire space.

To better understand this scenario, a good example would be a method that can
classify an image in cats or dogs. During the training, the method would have multiple
examples of images belonging to those two classes, cats and dogs. This way the model
generated by the technique can differentiate both classes. During the test phase, the
algorithm would be fed with input images different from the ones seen during the
training. Although the example images are different, the class they belong to tends to
be the same. This is the ideal scenario for closed set programs.

In this ideal scenario, the test image would be a cat or a dog and the system
would need to analyze the image, and predict which of both classes better represents
that image. But sometimes the context is not so ideal, like in the real world. In this
case, the image evaluated during the test may not belong to the classes learned, for
example, an image of a horse. The closed set algorithm when used on an image with
a class different from the one learned, has only one option, to try to predict which
trained class better describes the test image, labeling the horse picture as a dog or a
cat. Figure 2.6 represents both cases, when the image being evaluated belongs to one
of the learned classes and when it does not.

It is obvious that when a closed set method is tested against a context that allows
images from unknown classes to be evaluated, its accuracy and correctness will not be
as good as planned. This is solved using the idea of concept restriction: the closed set
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Figure 2.6: Representation of a closed set algorithm for classifying images in dogs and
cats.

scenario should be used during the entire flow of the method, training, and testing,
so, for the method to work, the test images must belong to one of the learned classes.
This idea is used from scene classification to semantic segmentation.

2.4.2 Open Set Scenario

The open set scenario exists to be an alternative to the closed set scenario in the not
ideal contexts described above. Instead of limiting the use of the algorithms to the
context in which all the classes in testing already seemed during training, the open set
allows a relaxation, covering more real-world problems.

According to Scheirer et al. [2013], an open set scenario has classes, not just
images, in testing that were not seen in training. This way, the examples evaluated
during the test phase can belong to many classes, learned or not by the method. The
only distinction here is that the algorithm does not need to know all the classes, or
predict all the classes during the test, it only needs to understand that some examples
may not belong to any known class.

Following the cats and dogs example utilized in subsection 2.4.1, a method devel-
oped using the open set scenario as a concept also only sees images containing examples
of cats and dogs during the training. The big difference is that during the test phase,
the method is supposed to work on the ideal closed set scenario but also the non ideal
context. This means that the test examples can belong to the class cat, and the method
is expected to predict the class cat, but it also may belong to the class horse and the
method is expected to not predict either cat or dog, but unknown instead. Similarly to
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Figure 2.7: Representation of an open set algorithm for classifying images in dogs and
cats.

Figure 2.6, Figure 2.7 represents the cases in which the image being evaluated is from
one of the classes seen during training and when it isn’t.

It is important to clarify that the method that uses the concept of open set
scenario does not need to predict the classes not learned, it only needs to know and
acknowledge that it is not a learned class. This means that, on the example, an image
of a horse, a bird or a person would all receive the same label, unknown, since they do
not belong to learned classes, cat and dog.

It is reasonable to think that it is possible to use the closed set concept in the
open set scenario by gathering examples of all the possible classes, but the number and
variety of those are not well modeled. But in reality, a method cannot know all the
possible classes that may appear during the test phase in an uncontrolled ambient.

2.5 Image Classification and Semantic

Segmentation

Besides the scenario utilized by the method, another important characteristic is the
type of task it is trying to achieve. The task can be scene classification, recognition,
segmentation, instance classification, semantic segmentation, and others.

One of the most common tasks done in deep learning and machine learning meth-
ods is scene classification. The scene classification is based on the idea that an algorithm
should be able to predict what an image contains or represents. It does not need to
know necessarily wherein an image is an object or if there are more objects in the same
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(a) Input RGB Image (b) Scene Classification (c) Semantic Segmentation

Figure 2.8: Example of an image processed by an scene classification and semantic
segmentation algorithm Hazirbas [2014].

image, it only needs to have a general idea of the content of the image.
In contrast to scene classification, semantic segmentation, is defined by Garcia-

Garcia et al. [2017] as a fine-grained inference that has a goal to make dense predictions
inferring labels for every pixel instead of making a prediction for the input as a whole.
The resulting prediction is a map in which each pixel is labeled with the class of
its enclosing object or region. The Figure 2.8 shows the difference between scene
classification and semantic segmentation.

It is possible to interpret the semantic segmentation task as a scene classification
in which the input is not a whole image, but each pixel. This way, the algorithms need
to infer what is the content of each pixel in the image. This task can be used to find
out which objects are present in an image, where they are spatially, their shapes and
other detailed information.





Chapter 3

Related Work

Due to the demand of open set techniques, adapting closed set ones to this other sce-
nario became as popular as creating new methods. This chapter presents background
knowledge and a literature review on open set based methods for image classifica-
tion, described in section 3.1 and also, on section 3.2, a literature review on semantic
segmentation techniques.

Even though the work presented in Pham et al. [2018] is not deeply explored in
this section, it is valid to mention it. The reason it was not chosen to be described as
related work is the fact that the paper method uses the concept of open set scenarios
on the semantic instance segmentation task. The result, in some cases, can seem close
to the one obtained by the proposed methods in this dissertation, but the concept and
task goal are different and the semantic instance segmentation needs to be designed
and tweaked to be comparable with the open set semantic segmentation.

3.1 Open Set Classification

To better compare the existing approaches, Table 3.1 brings their key aspects summa-
rized, which are detailed in the following subsections. Analyzing Table 3.1, we notice
that each of the newer techniques tries to fulfill a gap left by the technique before using
different methodologies.

3.1.1 Towards Open Set Recognition

In Scheirer et al. [2013] the authors present the idea of the Open Set scenario and
describe a version of a support vector machine (SVM) developed to classify scenes
in this scenario. The choice of using SVM was made because it has various alluring

17
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Table 3.1: Open set techniques comparison

Subsection Technique Approach Threshold SVM Deep Learning
3.1.1 1-vs-Set Machine [Scheirer et al., 2013] 1-vs-All × X ×
3.1.2 NNO [Bendale and Boult, 2015] Multiclass X × ×
3.1.3 EVM [Rudd et al., 2015] Multiclass X × ×
3.1.4 OpenMax [Bendale and Boult, 2016] 1-vs-All × × X
3.1.5 OSNNcv [Mendes et al., 2017] Multiclass × × ×
3.1.5 OSNN [Mendes et al., 2017] Multiclass X × ×
3.1.6 G-OpenMax [Ge et al., 2017] 1-vs-All × × X

characteristics that can help in this scenario: its answers are global and unique; it has
a basic geometric understanding, and it does not rely upon the dimensionality of the
information space.

Their method consists of a 1-vs-Set machine that adjusts the unknown classes
by getting a center edge around the choice limit A from the base SVM, specializing
the subsequent half-space by including another plane, and after that, generalizing or
specializing the two planes to upgrade experimental and open space risk. It is known
where positive training samples exist and that in "open space" (space far away from
known instances) there is no evidence for labeling as the class of interest.

The base linear 1-vs-Set machine, shown in Figure 3.1(a), will just touch the
extremes of the positive examples. It then turns to greedy optimization to move the
planes simultaneously. If all negative training classes are outside that slab, the over-
specialization risk terms will counteract the open space risk term and move the planes
to generalize, as in Figure 3.1(b). If the negative examples overlap the base slab, the
overspecialization risk will be 1, and the over-generalization risk term and probably the
empirical risk term will require the planes to move inward, as in Figure 3.1(c). When
addressing open set problems, the risk of the unknown is reduced by specializing the
slab to be closer to the positive examples.

Figure 3.1: Example of linear 1-vs-Set Machine showing the (a) base slab for both
the 1-class and binary formulations, where the second class is only considered in the
latter case (b) the generalization, and (c) the specialization operators. Blue refers
to generalization, red for specialization and gray for the base linear 1-vs-Set Machine
[Scheirer et al., 2013].
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3.1.2 Towards Open World Recognition

Going a step further, Bendale and Boult [2015] present and develop a technique for
an “open-world”, a recognition system that should update new object categories and
be robust to these unseen groups, besides, to have minimum downtime. To do so, its
first step is to continuously detect novel classes; The second is to update the system
to include these new classes when novel inputs are found, as represented in Figure 3.2.

Figure 3.2: Open world recognition system which is able to recognize objects from
known and unknown classes. The novel unknown classes should be collected and la-
beled, adapting itself and learning in an open Bendale and Boult [2015].

In particular, in open-world recognition, the Law of Total Probability and Bayes’
Law cannot be directly applied and hence cannot be used to normalize scores. As time
goes by and odd classes are added, the normalization factors and probabilities keep
changing, therefore Nearest Class Mean type Algorithms (NCM) is not suitable for
open set recognition.

Bendale and Boult [2015] show how to extend NCM to a Nearest Non-Outlier
(NNO) algorithm that evolves model efficiently adding object categories incrementally
while detecting outliers and managing open space risk.

3.1.3 Extreme Value Machine

While Towards Open World Recognition extends the previous methods including the in-
cremental learning process Bendale and Boult [2015], the proposed Nearest Non-Outlier
(NNO) algorithm updates the model efficiently adding object categories incrementally
while detecting outliers and managing open space risk.

Unfortunately, NNO lacks strong theoretical grounding, using thresholded values
for decision function and ignoring distribution information. To deal with that, a model
called Extreme Value Machine (EVM) is presented Rudd et al. [2015]. The model is
derived from extreme value theory, which calculates the radial probability of inclusion
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of a point in a class. A compact probabilist representation using extreme vectors (EV)
is achieved using points and distributions that best summarize each class.

In EVM, a training set is represented by a set of extreme vectors, each of them
associated with the Probability of Sample Inclusion (Ψ) derived from EVT. The Ψ term
is modeled in terms of the distribution of sample half-distances relative to a reference
point. For each positive reference point, we get half distances to the nearest negative
samples - as in figure 3.3.

Figure 3.3: EVM algorithm trained on four classes. The colors in the rings show a
probability for each extreme vector chosen by the algorithm. EVM supports open set
recognition and can reject the three "?" inputs that lie beyond the support of the
training set as "unknown" Rudd et al. [2015] .

As EVT theorem states, the minimal values of margin for a given point is given
by Weibull distribution. This way, the probability that a sample x′ is included in the
boundary estimated by xi is defined as:

Ψ(xi, x
′, ki, λi) = exp

−
(
‖xi−x

′‖
λi

)ki
(3.1)

where ‖ xi−x′ ‖ is the distance of x′ from sample xi, x′, ki, λi are parameters of Weibull
distribution.

Given a point x′ in space, the probability that x′ belongs to a class is defined as
the max probability P̂ (Cl|x′) between the known classes compared to a threshold(δ). If
P̂ (Cl|x′) ≥ δ then x′ belongs to class Cl, otherwise the point is classified as "unknown".
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3.1.4 Towards Open Set Deep Networks

Looking for a deep learning solution, Bendale and Boult [2016] shows a new model,
called OpenMax, that represents an alternative for the SoftMax function as the final
layer of the network, which estimates the probability of an input being from an unknown
class. Reducing the number of errors made by a deep network when given fooling
generated images.

Figure 3.4 shows an example of the use of the model described in Bendale and
Boult [2016], comparing the activation maps of the features. This figure also demon-
strates the characteristics of the method to be linked to scene classification, since when
the image has cropped the values of the activation maps can drastically change, mod-
ifying the results predicted.

Figure 3.4: OpenMax predicting failure during training. The official class is agama but
the MAV for agama is rejected and the highest scoring class is jeep with probability
0.26. However, cropping out image regions can find windows where the agama and the
Jeep are well detected, with probability 0.32 and 0.21 respectively [Bendale and Boult,
2016].

By dropping the restriction for the probability for known classes to sum to 1, and
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rejecting inputs far from known inputs, OpenMax can formally handle unknown/unseen
classes during operation. This new layer uses the scores from the penultimate layer of
deep networks (the fully connected layer before SoftMax) to estimate if the input is far
from known training data. The approach is based on the fact that the values from this
layer (Activation Vector), are not an independent per-class score estimate, but rather
they provide a distribution of what classes are related.

3.1.5 Nearest Neighbors Distance Ratio

Using a shallow approach, Mendes et al. [2017] proposes a method named Open Set
NN (OSNN) and a variation called OSNNcv, both can recognize samples from un-
known classes during training time and outperform other approaches in the literature.
OSNNcv method verifies if the test sample can be classified as unknown, checking if
the two closest samples are from different classes. The OSNN method uses the ratio
of similarity scores to the two most similar classes by applying a threshold on it. One
of the advantages of this approach is that it is inherently multiclass, which means that
the computational time is not affected as the number of classes for training increases.

In the interest of finding the best value for the threshold in an open set scenario,
a parameter optimization is performed. For this purpose, a simulation of an open set
environment is established. For that, a training set is created with half of the known
classes. In addition, a validation set receives the other half of known classes and also
all instances of unknown classes. After all, the threshold is based on the accuracy of
the validation set. Details of this operation can be seen in figure 3.5.

Figure 3.5: Scheme of data partitioning for the experiments and the parameter opti-
mization of the OSNN. a A dataset is divided into training and testing sets. b Most of
the samples in testing set are unknown . c Partitioning of the training set by simulating
an open set scenario.[Mendes et al., 2017]

OSNN has the characteristic of being inherently multi-class (non-binary-based),
differently from other state-of-the-art approaches. Usually these approaches lose some
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efficiency when the number of classes is increased, while the method proposed by
Mendes et al. [2017] is not affected by the number of classes.

3.1.6 Generative OpenMax for Multi-Class Open Set

Classification

Generative OpenMax (G-OpenMax) Ge et al. [2017], extends OpenMax Scheirer et al.
[2013] by providing explicit probability estimation over unknown categories. This is
done by using generative adversarial networks (GANs), which initially are a technique
to estimate models via an adversarial process between two neural networks and are
Scheirer et al. [2013] uses to generate the unknown classes. The synthetic samples are
created by mixture distributions of known classes in space.

That is, while OpenMax estimates the pseudo probability of unknown class using
an aggregating calibrated score from known classes, the G-OpenMax which is an in-
tuitive solution, directly estimates the probability of unknown class. Being performed
through synthetic images as an extra training label apart from known labels.

The main difference between OpenMax and G-OpenMax is show in 3.6. In G-
OpenMax the network NetG is trained with an extra class where the extra images come
from the generator G to represent the unknown class.

Figure 3.6: a) Illustrates the pre-training process of Net and NetG. GAN-based syn-
thetic images are used as an extra training label. b) Explains the difference between
score calibration in normal OpenMax and G-OpenMax [Ge et al., 2017].
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3.2 Semantic Segmentation

The subsections presented here bring a brief overview of the state-of-art methods of
semantic segmentation. All of these methods were developed for the closed set scenario.

3.2.1 Fully Convolutional Networks for Semantic

Segmentation

Besides the open set characteristics of this dissertation, the state of art algorithms for
semantic segmentation also needes to be understood . With this in mind, Long et al.
[2015] shows that convolutional networks trained end-to-end, pixels-to-pixels, exceed
the state-of-the-art in semantic segmentation.

To do so, the proposed algorithm builds a fully convolutional network (FCN)
that receives an arbitrary size input and outputs a correspondingly-sized output with
inference and learning.

The system is divided into two steps: first they adapt contemporary classification
networks as AlexNet, the VGG net, and GoogLeNet into fully convolutional networks
and transfer learned representations by fine-tuning to the segmentation task; second
step is to use a skip architecture that combines semantic information from a deep, coarse
layer with appearance information from a shallow, fine layer to produce accurate and
detailed segmentation.

3.2.2 Conditional Random Fields as Recurrent Neural

Networks

Zheng et al. [2015] proposed that one central issue in the use of deep learning techniques
for image recognition to tackle pixel-level labeling tasks, semantic segmentation, is the
limited capacity of deep learning techniques to delineate visual objects.

As a solution, Zheng et al. [2015] introduces a convolutional neural network
that combines Convolutional Neural Networks (CNN) and Conditional Random Fields
(CRFs) probabilistic graphical modeling. To do so, the proposed system is divided in
two main parts, the first is to formulate the CRF with Gaussian pairwise potentials
and mean-field approximate inference as Recurrent Neural Networks, the second part
is to plug in the CRF as a part of a CNN to obtain a final deep network that has
desirable properties of both. The Figure 3.7 presented an example of the approach
described in Zheng et al. [2015].
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Figure 3.7: The End-to-end Trainable Network. Schematic visualization of the full
network which consists of a CNN and the CNN-CRF network [Zheng et al., 2015]

One big advantage of this methodology is that it makes possible to train the
whole deep network end-to-end with the usual back-propagation algorithm, avoiding
offline post-processing methods for object delineation.

3.2.3 U-Net: Convolutional Networks for Biomedical Image

Segmentation

Even though the U-Net method was designed for biomedical image segmentation it
is one of the most used methods in the semantic segmentation area on any domain,
alongside the FCN, used in this dissertation. In Ronneberger et al. [2015], the au-
thors present a network and training strategy that relies on the strong use of data
augmentation to use the available annotated samples more efficiently.

The architecture consists of a contracting path and an expansive path, as rep-
resented in Figure 3.8. The contracting path follows the typical architecture of a
convolutional network. It consists of the repeated application of two 3×3 convolutions
(unpadded convolutions), each followed by a rectified linear unit (ReLU) and a 2 × 2

max pooling operation with stride 2 for downsampling. At each downsampling step,
we double the number of feature channels.

Every step in the expansive path consists of an upsampling of the feature map
followed by a 2 × 2 convolution (“up-convolution”) that halves the number of feature
channels, a concatenation with the correspondingly cropped feature map from the
contracting path, and two 3× 3 convolutions, each followed by a ReLU. The cropping
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Figure 3.8: U-net architecture (example for 32x32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of channels
is denoted on top of the box. The x-y-size is provided at the lower left edge of the
box. White boxes represent copied feature maps. The arrows denote the different
operations. [Ronneberger et al., 2015]

is necessary due to the loss of border pixels in every convolution. At the final layer,
a 1 × 1 convolution is used to map each 64-component feature vector to the desired
number of classes. In total the network has 23 convolutional layers.

3.2.4 Fully convolutional networks for dense semantic labeling

of high-resolution aerial imagery

Using the idea that higher resolution remote sensing imagery facilitates a transition
from land-use classification to object-level scene understanding, Sherrah [2016] presents
a model that does not rely purely on spectral content, but it also uses appearance-based
image features.

For this, the authors use deep convolutional neural networks applied to semantic
labeling of high-resolution remote sensing data, adapting fully convolutional networks
(FCNs) to overhead data. This approach is described as effective as in other domains.

More specifically, full-resolution labeling is inferred using a deep FCN with no
downsampling, obviating the need for deconvolution or interpolation. To make better



3.2. Semantic Segmentation 27

use of image features, a pre-trained CNN is fine-tuned on remote sensing data in a
hybrid network context, resulting in superior results compared to a network trained
from scratch. The architecture of this hybrid network is presented in Figure 3.9.

Figure 3.9: Schematic of the hybrid network architecture, combining pre-trained image
features with DSM features trained from scratch. [Sherrah, 2016]

3.2.5 Semantic segmentation of earth observation data using

multimodal and multi-scale deep networks

The work present in Audebert et al. [2016] investigates the use of deep fully convo-
lutional neural networks (DFCNN) for pixel-wise scene labeling of Earth Observation
images. In a more specific manner, the authors trained a variant of the SegNet architec-
ture on remote sensing data over an urban area using diverse strategies for performing
accurate semantic segmentation. Since the overall architecture used in Audebert et al.
[2016] is based on the SegNet model, the Figure 3.10 is similar, in interpretation, to
the one presented on in Badrinarayanan et al. [2017].

The authors of the paper were able to transfer efficiently a DFCNN from images
taken by smartphones and compact cameras, registering pictures on the RGB channel,
to remote sensing images. They also introduced a multi-kernel convolutional layer for
fast aggregation of predictions at multiple scales and performed a data fusion from
optical and laser sensors using residual correction.
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Figure 3.10: Illustration of the SegNet architecture applied to Earth Observation data.
[Audebert et al., 2016]

3.2.6 SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation

A novel and practical deep fully convolutional neural network architecture for semantic
pixel-wise segmentation termed SegNet is presented in Badrinarayanan et al. [2017].
The core trainable segmentation engine consists of an encoder network, a corresponding
decoder network followed by a pixel-wise classification layer. The architecture of the
encoder network is topologically identical to the 13 convolutional layers in the VGG16
network. Figure 3.11 show the approach introduced in Badrinarayanan et al. [2017]

Figure 3.11: An illustration of the SegNet architecture. There are no fully connected
layers and hence it is only convolutional. A decoder upsamples its input using the
transferred pool indices from its encoder to produce a sparse feature map(s). It then
performs convolution with a trainable filter bank to densify the feature map. The final
decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.
[Badrinarayanan et al., 2017]

The role of the decoder network is to map the low-resolution encoder feature
maps to full input resolution feature maps for pixel-wise classification. The novelty
of SegNet is in the manner in which the decoder upsamples its lower resolution input
feature map(s). Specifically, the decoder uses pooling indices computed in the max-
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pooling step of the corresponding encoder to perform non-linear upsampling. This
eliminates the need for learning to upsample. The upsampled maps are sparse and are
then convolved with trainable filters to produce dense feature maps.

SegNet was primarily motivated by scene understanding applications. Hence, it
is designed to be efficient both in terms of memory and computational time during
inference. It is also significantly smaller in the number of trainable parameters than
other competing architectures and can be trained end-to-end using stochastic gradient
descent.

3.2.7 DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs

Another work that uses CRFs is the one by Chen et al. [2017], but their approaches
differ from Zheng et al. [2015]. The proposed technique consists of three main ideas.
The first is the use of atrous convolution, convolution with upsampled filters to explic-
itly control the resolution at which feature responses are computed within Deep CNNs.
Another use of atrous convolution is to enlarge the field of view of filters to incorporate
larger context without increasing the number of parameters.

The second part of the method is an atrous spatial pyramid pooling (ASPP) to
robustly segment objects at multiple scales, using an incoming convolutional feature
layer with filters at multiple sampling rates and effective fields-of-views.

Finally, the third is the combination of Deep Convolutional Neural Networks
(DCNNs) and probabilistic graphical models to improve the localization of object
boundaries. The combination of max-pooling and downsampling in DCNNs achieves
invariance but has the price of decreasing the accuracy of object location. To solve
this problem, the authors, combine the results of the final layer with a fully connected
CRF, improving localization performance. Figure 3.12 represents the architecture used
in the paper.

3.2.8 Classification with an edge: Improving semantic image

segmentation with boundary detection

In Marmanis et al. [2018], the authors present an end-to-end trainable deep convo-
lutional neural network (DCNN) for semantic segmentation with built-in awareness
of semantically meaningful boundaries. One of the reasons that semantic segmenta-
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Figure 3.12: . Model illustration. A deep convolutional neural network such as VGG-16
or ResNet-101 is employed in a fully convolutional fashion, using atrous convolution to
reduce the degree of signal downsampling (from 32x down 8x). A bilinear interpolation
stage enlarges the feature maps to the original image resolution. A fully connected
CRF is then applied to refine the segmentation result and better capture the object
boundaries. [Chen et al., 2017]

tion networks work on remote sensing areas is that deep networks learn to accumulate
contextual information over very large receptive fields.

However, it usually has a cost, since the associated loss of effective spatial resolu-
tion washes out high-frequency details and leads to blurry object boundaries. Observ-
ing this, the Marmanis et al. [2018] proposes a combination of semantic segmentation
with semantically informed edge detection, thus making class boundaries explicit in
the model.

To do so, the approach defined was to construct a comparatively simple, memory-
efficient model by adding boundary detection to the SEGNET encoder-decoder archi-
tecture. It also included boundary detection in FCN-type models and set up a high-end
classifier ensemble. Figure 3.13 shows a representation of the class-boundary network
proposed.

3.3 Gaps Explored by the Proposed Methods

The open set methodologies proposed in this dissertation differ from all of those men-
tioned above. Even though the scenario considered is the same, the ones here described
were developed for scene classification, while the technique proposed is focused on se-
mantic segmentation.

In a similar way, when observing the state-of-art semantic segmentation algo-
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Figure 3.13: The Class-Boundary network. Colour and height are processed in sep-
arate streams. Before each pooling level (red squares) the network outputs a set of
scale-dependent class-boundaries, which are fused into the final multi-scale boundary
prediction. Yellow circles denote concatenation of feature maps. [Marmanis et al.,
2018]

rithms the gap becomes clear, no method can classify each pixel of the input into a
known or unknown class, as the methods proposed in this dissertation do.

It is also valid to note that most of the methods here described can be adapted
to work on the open set scenario. The adaptation can be in the form of aggregating a
classification layer to perform the open set prediction. This way the core of the network
can remain the same. There are other possibilities, but they may require a change in
the architecture of the original network in a manner that can hurt the accuracy of the
method when applied to closed set scenarios.





Chapter 4

Methodology

This chapter describes in detail the two proposed methods, they are: (1)the OpenPixel
method presented in section 4.1, and (2) the method OpenFCN presented in the section
4.2. Both methods are based on existing closed set methods for semantic segmentation,
but the OpenPixel technique does a pixel-level classification and applies a threshold
to differentiate between known and unknown classes while OpenFCN uses the relation
between activation maps of each known class and the FCN network to perform the
task.

4.1 OpenPixel: Pixel-based open set classification

One of the methods developed and presented in this dissertation is an open set adap-
tation from the closed set Pixelwise algorithm proposed in Nogueira et al. [2016]. The
Pixelwise approach consists of the individual treatment of all the pixels present in the
images. Context windows, however, consist of 55x55 crops with the central pixel rep-
resenting the crop class. In this way, context windows have been created for all pixels
in the image, and each of these windows is used as the input of the network.

A context window is a group of pixels surround the main pixel being evaluated
that are used for the network to understand the existing context. This group, usually
is set as a square matrix, in which, the size can be varied. The Figure 4.1 represents
a context window, the green labels mark the pixels used for context and the red label
notes the pixel being evaluated.

Thus, the proposed neural network can individually classify all the pixels of the
image, taking into account the nearest neighbors, and through that, it is possible to
obtain thresholds of the desired regions.

33
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Figure 4.1: Representation of a context window,the green labels mark the pixels used
for context and the red label notes the pixel being evaluated by the network.

Figure 4.2: Simplified architecture view of the Closed Set Pixelwise method.

Figure 4.3: Simplified architecture view of the proposed OpenPixel method.

Figure 4.2 illustrates the architecture of the convolutional neural network used
in this work, Pixelwise, for the Closed Set. To achieve the OpenPixel, we added an
extra layer for thresholding the results as well as a layer to filter false positives, as
in Figure 4.3. This network receives an image as input, this image passes through 3
layers of convolutions, 3 layers max pooling, 2 layers fully connected, to then reach
the output layer, which is responsible for sorting the central pixel of the input image.
Unlike traditional neural networks, CNNs have some peculiarities. The purpose and
functioning of these peculiarities will be explained below.

The main purpose of the convolution layers is to extract relevant features con-
tained in the input image. This extraction is made by applying specific filters, updated
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during training, on small crops of these images. In the case of the first convolution
layer, 64 different filters with a 4x4 dimension are applied to the image received as
input with a stride of 1.

Immediately after the convolutions are applied, an activation function on the
outputs generated by the convolution. In this architecture, the Rectified linear unit
(ReLU) was used. The purpose of this application is to introduce linearity to the data
since the convolutions apply exclusively linear operations on them.

Finally, after applying the ReLU, the resulting data passes through a layer of
pooling. In the case of the network, max-pooling was used. The main purpose of
pooling layers is to perform a spatial reduction in the resulting matrix. In the network
used in this work 3 downsamplings were made using 3 layers of max pooling with filters
2x2 and stride 2.

4.1.1 Thresholding

The architecture of OpenPixel is the same as that of Pixelwise for the closed set sce-
nario, the difference consists in applying a threshold of certainty in the classification
given by the softmax. To do so, a pixel with a value of certainty given by the soft-
max for a certain class that exceeds that class threshold is labeled as belonging to the
class, but if the value is inferior to the determined threshold, the pixel is classified as
unknown. As the value of probability given by the softmax varies between 0 and 1,
the possible values of threshold also vary between 0 and 1. The representation be-
low presents the threshold control done during the classification phase, in which x is
the pixel being evaluated, P (xc) is the probability of x belonging to class c, given by
softmax, and T is the threshold used.x = c, if P (xc) >= T

x = unknown, if P (xc) < T

The values for thresholds are dynamically obtained during the training phase.
For a given application, the network runs against a Validation set with multiples pos-
sible values of threshold per class, the results that have an increase in accuracy are
determined as the best for use on the test set of the application.

The problem of using an approach based on the threshold of uncertainty, is that
neighbouring areas, the areas where the context window has information from more
than one class, usually have a low probability of belonging to any one of the known
class, being labeled as unknown, even though the ground truth of those areas has no
distinction between a boundary area or not.
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Figure 4.4: Example of application done by the morphological filter developed, in which
classes 1 to 3 are known classes and class 4 is unknown.

To solve the problem found on those regions, a new method was develop. The
Morph-OpenPixel technique is based on the OpenPixel described above, but with the
advantage of solving the existing problem with the use of a morphological filter.

4.1.2 Morph-OpenPixel: OpenPixel With a Morphological

Filter

After the result predicted at the softmax layer and applied the threshold by the network,
a post-processing filter is applied, called the morphological filter. It is only applied at
the pixels classified as unknown. This filter analyzes the neighbors of the pixel to
determine if it should keep it as unknown class or it should be labeled with the same
class as most of its neighbors.

The applied filter can be seen as an erosion done over the unknown class labels.
For each pixel classified as unknown, the filter analyses its neighbors, to determine if
it belongs to a border or if it is an inside pixel. If the pixel belongs to the border and
has pixels belonging to other classes as neighbors, the pixel classification is exchanged
to the class with a higher amount of pixels in the neighborhood. If all the pixels are
from the unknown class, it means the central pixels are not on the border and it should
remain labeled as unknown. Figure 4.4 shows an example of the application of the
morphological filter used in this dissertation. The existence of this filter is to mitigate
the false positives that can happen due to the boundaries of the known classes.

4.2 OpenFCN: Open Set Fully Convolutional

Network

The original application of the OpenMax technique was to develop a method that could
discern between images generated by computers and real images. The idea described
on Bendale and Boult [2015] is that some images can be generated to fool classification
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Figure 4.5: Simplified architecture view of the OpenFCN method.

networks, simulating features similar to real images. However when comparing the
distribution of the classes and their similarities, the OpenMax method could be able
to classify an image as a fooling image. In that case, this classification would set the
image class as unknown, i.e. not belonging to any known class.

Similarly to most of the other open set techniques, Openmax was based on scene
classification, only deciding the general label of the image, not pixel by pixel. This
change brings a lot of new problems, and applications, to the method. So the method
OpenFCN uses the same idea of an OpenMax layer, but adapted to an FCN, a pixel-
by-pixel approach.

Figure 4.5 illustrates the architecture of the fully-convolutional neural network
used in this work, FCN, adapted for the open set scenario. To achieve the OpenFCN, we
substituted the classification layer, softmax, for the OpenMax. This network receives
an image as input. This image passes through 6 layers of convolutions and 4 layers of
max pooling, to then be deconvoluted 4 times, using information from earlier layers,
and then reach the output layer, OpenMax, which is responsible for classifying each
pixel and deciding if it belongs to a known or unknown class.

The architecture of the Fully Convolutional Networks (FCN) was introduced in
Long et al. [2015]. In the paper, the authors show that convolutional networks by
themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic
segmentation. With this in mind, the main contribution is to build “fully convolutional”
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networks that take input of the arbitrary size and produce correspondingly-sized output
with efficient inference and learning.

4.2.1 Convolutional Layers

This contribution is based on the idea that all of the layers in the network are convolu-
tional layers. At the same time, FCN does not have any fully-connected layers at the
end, which are typically used for classification. To suppress the traditional classification
layer, FCN uses convolutional layers to classify each pixel in the image.

For this classification to work, the layer needs to have the same height and width
as the input image, but the number of channels will be equal to the number of classes
being evaluated. Aggregating this layer with a softmax or openmax probability func-
tion, it is possible to determine the most likely class for each pixel, semantic segmenting
the input image.

4.2.2 Deconvolutional Layers

One common problem to the FCN architecture is the fact that intermediate layers, as
expected, get deeper, but this also results in smaller layers, as striding and pooling
reduce the height and width dimensions of the tensors. To solve this, FCN uses a
deconvolution function, that can also be explained as a backward convolution. This
layer is used to upsample the intermediate tensors, in a way that they can recover the
width and height of the original input image.

The great advantage of using these deconvolution layers is the fact that they
can be treated as a derivation of convolution layers, maintaining the characteristics of
having weights that can be learned, facilitating the regulation of the network.

4.2.3 Combining Layers

A second problem that FCNs presented was an inaccuracy on the upsampling from the
last convolutional layer, caused by the loss of spatial information during the downsam-
pling steps in the network, affecting the correctness of the method. As a solution for
this, the authors in Long et al. [2015] combined the upsampling layers of the network,
aggregating spatial information existent before the downsampling stages. As tested on
converting networks like AlexNet Krizhevsky et al. [2012], VGG Simonyan and Zisser-
man [2014], and GoogLeNet Szegedy et al. [2015] into FCNs, this approach solved the
problem and improve the accuracy of the technique.
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It is valid to observe that even though this work uses an FCN as the network
to extract features for each pixel, the architecture of OpenFCN allows the use of any
pixel-wise network. The method becomes flexible when observed that the Openmax
layer is applied during the testing phase, being isolated from the training, facilitating
and mitigating the number of adaptations needed to introduce a different pixel-wise
network for feature extraction.

4.2.4 OpenMax layer

The classification of the pixels happens in the OpenMax layer. This layer is based on
the distance between each evaluated pixel and the distributions of the known classes,
being these Weibull distributions. Another way of describing the OpenMax layer is as
a classification layer that uses similarity between the activation vector of the pixel, its
features, and the activation vectors of the pixels belonging to known classes to label
the pixels.

For the OpenMax layer to correctly classify the pixels, it needs to use the ap-
propriate parameters for the Weibull distribution and calculation of distances. So the
parameters that needed to be searched and evaluated related to the OpenMax layer
were the Weibull tail size and the Alpha Rank. Parameters of Weibull distribution
are estimated based on the distance between each correctly classified training example,
obtaining a class-specific distance distribution. The exact length of tail for estimat-
ing parameters of Weibull distribution is determined during the parameter estimation
phase over a small set of the data.

The Weibull is the distribution calculated for each class in the OpenMax process
and its tail size is related to the flexibility of classifying a pixel class as unknown. The
bigger is the value of the tail size, the more relaxed the method is, and more uncertainty
pixels are classified as the open set class. The smaller the tail size value is, the more
restricted is the classification, resulting in labeling as unknown only the class with high
uncertainty.

In a different aspect, the alpha rank represents the number of top classes that
are considered during the recalibration of the classes. Those top classes are defined as
the classes with the biggest variance between the activation maps, in other words, the
classes that better represent the diversity of the dataset.

To better understand the use of top classes, consider an animal dataset, containing
different species of birds, dogs, and cats. Since different species of birds still have some
similar characteristics, using all of the bird’s classes as top classes could not represent
a good diversity of the dataset. It would be preferred to use one class representing
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each of the groups: birds, dogs, and cats. All the classes not chosen as the top would
be ranked lower in diversity and would have a high similarity to one of the top classes.

One way of choosing the alpha rank value and the top classes would be to use
all of the classes in the dataset. This works for a small number of classes or if all the
classes do not share similar characteristics. But in other cases, when observed that
this choice would involve using more information in each recalibration, it could only
lead to increasing the computational time need, without increasing the accuracy of the
method.

4.2.5 Existing bottlenecks

One of the biggest problems that surface when adapting a method based on scene
detection to semantic segmentation is the increase in computational time required to
analyze each pixel from the image. Even though most of the networks and technologies
used in this dissertation allowed parallel processing, there is still a bottleneck in the
OpenMax method that reduces the efficiency of parallel computing of the method.

This bottleneck is on the stage in which the technique calculates the distances of
each pixel to all the class distributions and, after allocating that pixel to a predicted
class, redistributes the class distribution, needing to follow a sequential process of
finding a pixel class, before evaluating the next one.

There are a lot of techniques that could be applied to accelerate the process, but
at the same time, they could be weakening some of the bases of the methodology. One
example, based on the spatial correlation between pixels, could be to run the Openmax
method in parallel in arbitrary parts of the image, but this could make the method
lose some of its accuracy, since it would not use the pixels predicted to recalculate the
classes distributions in the same way as without this technique.

4.2.6 SLIC-OpenFCN: OpenFCN Using Super Pixels

The technique utilized in this work, to accelerate the method, was the use of super-
pixels. The difference between this technique and the described above is not to group
arbitrary parts of the image, but to use their spatial correlation to find the best groups
of neighbors pixels that could be treated as one. To segment, the input image in super-
pixels was used the Simple Linear Iterative Clustering (SLIC) method Achanta et al.
[2012].

The SLIC generates superpixels by clustering pixels based on their color similarity
and proximity in the image plane. To achieve this, the authors use the five-dimensional
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[labxy] space, in which [lab] is the pixel color vector in CIELAB color space, widely
considered as perceptually uniform for small color distances, and xy is the pixel spatial
position.

According to Achanta et al. [2012], the method is simple to use and understand.
By default, the only parameter that needs to be changed by the user is k, the desired
number of approximately equally sized superpixels. For color images in the CIELAB
color space, the clustering procedure begins with an initialization step where k initial
cluster centers Ci = [liaibixiyi]

T are sampled on a regular grid spaced S =
√
N/k pixels

apart, being N the number of pixels in the input image.
The idea behind the method is to produce roughly equally sized superpixels, with

the size S. The centers are moved to seed locations corresponding to the lowest gradient
position in a 3× 3 neighborhood. This approach exists to avoid centering a superpixel
on an edge, since this could result in superpixels containing information from multiple
classes and to reduce the chance of seeding a superpixel with a noisy pixel.

After the definition of the size of the superpixels, and the choice of centers, the
algorithm associates each pixel with the nearest cluster center whose search region
overlaps its location. This limitation on the size of the search regions is able to reduce
the number of distance calculations needed and consequently reduces the time needed
by the algorithm to cluster the pixels, making it a faster method when compared with
conventional k-means clustering, in which each pixel is compared with all cluster centers
in the image space, having no limitation.

This approach of limiting the search region is based on the idea that the expected
spatial extent of a superpixel is a region of approximate size S × S, making it possible
to search for similar pixels in a region 2S × 2S around the superpixel center. An
update step adjusts the center of each cluster after a pixel has been associated with
that cluster, being that the nearest cluster.

The residual error between the new cluster center locations and previous cluster
center locations is computed by the use of L2 norm. The assignment and update steps
are repeated in an iterative process until the error converges.

For this segmentation method, different values of superpixels were tested, but
the chosen value that increases the speed of the algorithm while maintaining some
individual information was a group of 20 pixels for each superpixel. That means that,
on average, every 20 pixels from the original image would be represented by a single
one in the final image, and this way the method would need to evaluate 20 times fewer
pixels for each image. After the prediction by the Openmax layer, the method reverses
the superpixel, copying the prediction of the superpixel for each one of the 20 original
pixels. This process is represented by one example in Figure 4.6.
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Figure 4.6: Example of the process of applying SLIC to the input image, classifying
with OpenFCN and using SLIC to return the prediction to the original image. In
this example, after the OpenFCN method, white represents the class street, dark blue
represents a car, green represents trees and light blue represents grass.

Even though the use of superpixels could lead to losing some of the information
inside each superpixel, the grouping created by this technique can help decrease the
time consumption by the SLIC-OpenFCN method without loosing too much informa-
tion, taking in account that on the application analyzed in this dissertation, the amount
of 20 pixels usually represents pixels belonging to the same class in real world.



Chapter 5

Experimental Setup

In this chapter, we introduce the configuration used during the experiments needed
to guarantee the reproducibility of results. Section 5.1 shows the Vaihingen dataset
utilized. Ssection 5.2 presents the protocol for training and testing. Section 5.3 brings
the hardware and software set up and, finally, section 5.4 introduces the metrics used
for evaluation.

5.1 Datasets

This dissertation will focus on the application of open set semantic segmentation on
satellite images due to the open set nature of most aerial images. Moreover, some
satellite image datasets have already been used by closed set methods of semantic
segmentation, making it easier to compare application based on the different scenarios.

The Vaihingen dataset contains 33 patches (of different sizes), each consisting of
a true orthophoto (TOP) extracted from a larger TOP mosaic. Figure 5.1 represents
the grid, while Figure 5.2 shows an example of RGB and Ground Truth annotations
given. These 33 patches were captured over the city of Vaihingen in Germany by the
German Society for Photogrammetry and have a ground sampling distance of 9 cm.
The Ground Truth consists of 5 classes, being street, building, grass, tree, and car,
represented by the colors white, dark blue, light blue, green and yellow respectively.

The dataset was created to be well controlled and avoid areas without data. To
do so, the patches were selected from the central part of the mosaic and not from
the boundaries. Even with this approach, some small areas missing information could
occur. To prevent that from happening, interpolation is used to fill all the gaps. The
TOP is 8 bit TIFF files with three bands, being three RGB bands, corresponding to
the near-infrared, red and green.
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Figure 5.1: Representation of all the patches on the Vaihingen dataset, including the
ones not released for Photogrammetry and Sensing [2019].

(a) RGB Image (b) Ground Truth

Figure 5.2: Example of one of the 33 patches available on the Vaihingen dataset.

Not all the 33 patches have released ground truths. The ground truth of some
patches remain unreleased and is used as a benchmark test for the evaluation of sub-
mitted semantic segmentation methods. The proposed methods in this work were not
tested against those unreleased ground truths since the benchmark does not consider
open set solutions.
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5.2 Training/Predicting Protocol

Following the protocol used in other papers that work with the Vaihingen dataset for
semantic segmentation, the images were divided into two sets, one for training and one
for testing. The testing set consists of images from the patches 11, 15, 28, 30 and 34,
being the rest, used as training data. During this phase, 4 of the 5 classes of the dataset
are considered as known classes, classes used for the algorithm to learn the model.

The validation set, only used by the OpenPixel method to determine the best
threshold values and by the OpenFCN approach to search for the best values to the
parameters of Weibull tail size and alpha rank, is composed of a subset of images from
the training set. When this set is used, the method is trained in the group of images
that composes the training set, excluding examples on the validation set.

In the prediction phase, each input image is processed independently by the
trained deep model, which outputs a final prediction map in which for each pixel a
label indicates whether or not the pixel belongs to a known class, and if it belongs, to
which class. This stage uses and presents the one class not seen during learning as the
unknown class.

5.2.1 OpenPixel Contexts

It was analyzed four different contexts with the OpenPixel network. The first was
training and testing as a closed set, in this case, the method knows all the classes that
are going to appear during training. This context was only used to show the accuracy
of the method without the open set concept.

The second context was training as a closed set, but testing in an open set sce-
nario, which means that during the testing phase, the algorithm sees pixels from classes
he does not know and classify them wrong. This scenario along with the next one shows
the relevance of the open set concept for semantic segmentation.

The third is training and testing the method in open set scenarios. This way the
network knows it will analyze some pixels from not known classes during the training
phase and will be able to classify them as unknown. In this case, it was not used the
morphological filter after the softmax result, to show the potential of the OpenPixel
network alone.

The last one is very similar to the third one, the only difference is that it applies
the morphological filter to enhance the prediction and mitigate some False Positives.
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5.2.2 OpenFCN Contexts

For the OpenFCN method, it was used four possible scenarios. The first and second
one, similarly to the OpenPixel, the method is trained in a closed set and tested in an
closed and open set scenario. Again, having to classify the unknown pixels as one of
the known classes seeing during training. This case can demonstrate the inefficiency
of closed set methods when utilized in open set scenarios.

The third one, OpenFCN is trained and tested using the concept of open set,
making it possible to classify never seen pixel classes as open set class.

Finally, the technique of superpixel, specifically the SLIC, is applied in the pro-
cess, to reduce the time consumption and to improve the results.

5.3 Software and Hardware

Depending on the open set method used for semantic segmentation a different set up
could be utilized since the OpenPixel is not as complex and resource-consuming as the
OpenFCN. Either way, to better compare both of them, as well as the baselines used,
the software and hardware were kept fixed. Table 5.1 present the information related
to the set up utilized.

Table 5.1: Software and Hardware Utilized

Software
Operating System Ubtuntu 18.04.1

Python 3.6
Tensorflow 1.12

Cuda 1.3
Hardware

RAM Memory 64GB DIMM DDR4
Architecture 64bits

CPU i7-5930k, 3.50GHz
GPU Nvidia TitanX 12GB
ROM 7TB TOSHIBA HDWE150

It is interesting to note that for the OpenPixel method, an increase in the amount
of GPU available could reduce the time needed to train and to test. At the same time,
for the OpenFCN technique an increase in the GPU configuration could only speed up
the training phase, since, during the testing, the OpenMax layer can’t be parallelized,
as explained in Section 3, leading to similar time consumption.
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5.4 Metrics

All results obtained in this work are reported using Cohen’s Kappa Index and Overall
and Normalized Accuracy scores, given that these metrics take into account the exis-
tence of multiple classes and the importance of correctly segmenting all of them. All of
these metrics are calculated from a confusion matrix generated from the segmentation
results.

According to Sokolova and Lapalme [2009], confusion matrix (CM), represented
in Table 5.2, is a square table that presents in a organized way four distinct types of
counts for each class considered in the domain of the segmentation task: the number
of pixels that were correctly recognized as belonging to a class, true positives (TP);
the number of pixels correctly recognized as not belonging to a class, true negatives
(TN); the number of pixels which actually belong to a certain class but were incorrectly
classified into another class, false negatives (FN); and the number of pixels from other
classes which were assigned to a specific class, false positives (FP).

Table 5.2: Confusion Matrix Representation

Ground Truth

Prediction
Classes C1 C2 ... CN

C1 x11 x12 ... x1N
C1 x21 x22 ... x2N
... ... ... ... ...
C1 xN1 xN2 ... xNN

The four counts described above can be represented in equations following the
representation of the confusion matrix in Table 5.2, as in Santana [2017]. These equa-
tions are presented in relation to each class, i, being evaluated:

TPi = xii (5.1)

FNi =
∑
u6=i,

∑
u=1,...,N

xi,u (5.2)

FPi =
∑
u6=i,

∑
u=1,...,N

xu,i (5.3)

TNi =
∑

u,v=1,...,N

xu,v − TPi − FNi − FPi (5.4)
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Table 5.3: Kappa Index interpratation

Kappa index Interpretation
κ = 1 Perfect agreement

0.8 < κ < 1.0 Almost perfect agreement
0.6 < κ ≤ 0.8 Substantial agreement
0.4 < κ ≤ 0.6 Moderate agreement
0.0 < κ ≤ 0.4 Poor agreement

κ ≤ 0 No agreement

Observing the organization of the CM and the relation between the counts de-
scribed in this section, it becomes easier to understand all the metrics used in this
dissertation, since they derive from the CM and the Equations 5.1, 5.2, 5.3 and 5.4.

5.4.1 Kappa

The metric Kappa or Cohen’s Kappa has a similar representation as classification
accuracy, the difference is that it is normalized at the baseline of random chance on
the dataset. For this reason, as presented in Dos Santos [2013], it is a common metric
to use on problems that have imbalanced classes examples in the dataset, as a lot of
the remote sensing datasets.

According to Cohen [1960], the Kappa index k is the measure of agreement be-
tween the reference data and the classifier result and can computed by:

κ =
N
∑m

i=1 xii −
∑m

i=1 (xi+ × x+i)

N2 −
∑m

i=1 (xi+ × x+i)

where m is the number of rows in the confusion matrix, xii is the number of
observations in row i and column i; xi+ and x+i are the marginal totals of row i and
column i, respectively; and N is the total number of observations.

Normally it is possible to interpret the negative value of Kappa as no under-
standing between predict data and ground truth or reference data. When the value
of Kappa is equivalent to 1.0 signifies that an impeccable understanding happened be-
tween the data. Analyses in various fields demonstrate that Kappa could have different
elucidations and these rules could be diverse relying upon the application. Table 5.3,
presented in Kim and Kim [2004], shows an interpretation for the values of Kappa
Index.
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5.4.2 Accuracy

The accuracy or overall accuracy (OA) is a common metric used to infer the correctness
of a method. This metric, according to Congalton [1991], is based on the relation
between the prediction done by the evaluated method and the correct values in the
ground truth, as represented in the Equation 5.5. One problem that can affect the
value of an overall accuracy is the unbalance of a testing example. If it is the case that
an image, per example, has a lot more pixels belonging to a certain class than others, it
is possible that the value obtained by the accuracy does not represent the correctness
of the entire image.

OA :
TP + TN

TP + FN + FP + TN
(5.5)

To better understand this example, it is possible to imagine an image that has
98% of its pixels belonging to class A and 2% to class B. If the method predicts that
all the pixels belong to the class A, overall accuracy would say that the method has a
98% of correctness, but one can observe that it got all the pixels from class B wrong,
it was not a good prediction, it did not learn to predict those classes, it only learned
to always say that the pixels belong to class A.

To solve that problem, it is used the normalized accuracy (NA), that takes in ac-
count all of the classes in the dataset and the unbalanced status, with this in mind, the
normalized accuracy is the combination of the accuracies of each class, as represented
in the Equation 5.6, in which NC represents the number of evaluated classes.

NA =

∑NC
i=1

TPi+TNi
TPi+FNi+FPi+TNi

NC
(5.6)





Chapter 6

Results and Discussion

The results presented in this chapter, obtained using the proposed methods and some
baselines, according to the experimental setup in Chapter 5, aim to answer the following
questions:

• Is the OpenPixel able to semantically segment a remote sensing image (Section
6.1)?

• What are the best configurations of parameters for the OpenPixel method (Sub-
section 6.1.1)?

• Is the OpenFCN able to semantically segment a remote sensing image (Section
6.2)?

• What are the best configurations of parameters for the OpenFCN method (Sub-
section 6.2.1)?

• How the proposed methods compare to their upper bound, the Pixelwise and
Openmax methods applied to a closed scenario (Section 6.3)?

6.1 OpenPixel Evaluation

The results presented in this section try to answer the question if the OpenPixel is able
to semantic segment a remote sensing image. Table 6.1 presents the results obtained
using the overall and normalized accuracy and kappa index metrics. By analyzing
them, it is possible to note that the proposed method, OpenPixel, obtained results
that show that semantic segmentation can be applied to open set scenarios.
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Table 6.1: Normalized Accuracy and Kappa Index obtained by the OpenPixel method
and baselines

Network Scenario Tested Overall Accuracy Normalized Accuracy Kappa
Closed Set Open Set 55.84% 53.98% 0.5585
Open Set Open Set 55.78% 53.15% 0.5106

Morph-OpenPixel Open Set 57.51% 54.23% 0.5602

Analyzing the results presented in Table 6.1 is possible to observe that the Pixel-
wise method trained on an open set configuration achieved similar results to the closed
set when tested on an open set scenario while being able to correctly classify the un-
known classes. Even though the open set method only achieved better results than the
closed set when was used a morphology filter as post-processing, Morph-OpenPixel,
the version without any post-processing also has the benefit of finding unknown classes
that are always mislabeled by closed set methods in this scenario.

Each class has different features and can be more similar or divergent when com-
pared to other classes. Because of that, it is necessary to experiment with the method
varying the class not seen by the method during learning, the unknown class. Table
6.2 presents the results of the method in those scenarios and Figure 6.1 has a visual
representation of the results.

Table 6.2: Overall, Normalized Accuracy and Kappa Index obtained by the OpenPixel
method for each class as unknown

Unknown Class Overall Accuracy Normalized Accuracy Kappa
Street 60.25% 58.59% 0.584219

Building 58.78% 56.87% 0.566427
Grass 53.27% 47.59% 0.529113
Tree 54.31% 49.42% 0.534565
Car 60.93% 58.71% 0.586909

Figure 6.2 show one example in which the algorithms were able to correctly
classify the known classes while presenting some FP results for the unknown class. In
this specific example, even though there are no pixels belonging to the unknown class
on the ground truth, the result is still valid, since it shows that the method can classify
the pixels into known classes.

Figure 6.3 represents an example in which the ground truth had known and
unknown classes, being the car class (in yellow) the unknown. The Closed Set Pixelwise
technique wrongly classified all the pixels belonging to cars, as was expected, since it
does not know this class. The prediction resulting from the Morph-OpenPixel, as it
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Figure 6.1: Graph representing the results obtained by the OpenPixel method for each
class as unknown.

(a) RGB Image (b) Ground Truth (c) Morph-OpenPixel

Figure 6.2: Example of prediction that correctly classified most of the pixels from
known classes.

can be noticed, has most of the instances of the known classes classified correctly, while
still classifying the car pixels as unknown (in red).

Another observation that can be done using Figure 6.3 is to understand the
usefulness of the proposed method and at the same time, it shows the biggest reason
for the low accuracy, the existence of shadow in the images. While the RGB images
present those shadows, the ground truths do not make any distinction, labeling the
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(a) RGB Image (b) Ground Truth

(c) Pixelwise Closed Set Prediction (d) Morph-OpenPixel Prediction

Figure 6.3: Example in which the Closed Set Pixelwise misses classify the unknown
classes wrongly as known, while the Open Set Pixel wise classify as unknown.

same as an area of the class without shadow, and in the prediction phase, the open
set method classifies the darker areas as unknown classes, a different result as the one
expected.

6.1.1 OpenPixel Variation

A variation on the values of the Threshold applied to the OpenPixel method was done to
find the best configurations of parameters for the method. To evaluate these variations
it was considered four accuracies, the normalized accuracy of the images, known classes,
unknown classes and an arithmetic median between known and unknown.

The normalized accuracy of the image was measured as explained in 5.4.2. This
metric gives an idea of the results expected when using those values of threshold, but
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since the number of known classes is larger than the unknown classes, this metric may
not be enough for finding the best parametrization.

The accuracy of known classes is measured only taking into account the classes
seen by the method during learning. This metric alone has a bias towards maintaining
a low value of threshold, since the lower value tends the method to not classify pixels
as unkown, approximating of a closed set classification, increasing the accuracy of
segmentation over known classes, while having a low accuracy for unknown classes.

The unknown accuracy, or accuracy of unknown classes, is the opposite as de-
scribed above. It only uses the pixels labeled or belonging to classes not learned by the
algorithm to evaluate the accuracy of the method. While this metric gives importance
to the open set scenario, it can not be isolated, since the method may shift towards
classifying every pixel as unknown.

Finally, the arithmetic median of both accuracies of known and unknown classes
has the goal to find the best balance between them. This metric differs from the
normalized accuracy, since it does not take into account the number of classes, but only
if they were learned or not by the algorithm. Figure 6.4 presents the graph showing
the different values of the accuracies described here when altering the threshold used
by the OpenPixel method.

Observing mainly the values of the median accuracy presented in Figure 6.4, the
best configuration of a threshold is using the value of 0.7. This was the value used for
the configuration with the best value of the OpenPixel.

It is valid to note that this search of the best configuration threshold uses the
concept of applying the same threshold for all the classes, even though the network
makes it possible the use of different values for each class. This choice of implementation
was done taking into account the time needed to test all the possibilities of combinations
of each class threshold. Using this application as an example, since there are 4 known
classes, and each threshold can be varied in an 0.05 step (this step can be increased
or decreased altering the number of combinations possible), the number of possible
combinations needed to be tested would be of 160000.

Since the number of combinations tends to be multiplied by 20 (using a step of
0.05), it becomes computationally infeasible to perform the search. Another solution
to vary the threshold for each class with only 20 iterations, would be to analyze the
precision, TP

TP+FP
, of each class. This solution tries to find the threshold that classifies

more pixels correctly for each class but fails to take into account the relationship with
other classes.
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Figure 6.4: Graph representing the variation of threshold values for the OpenPixel and
it accuracies.

6.2 OpenFCN Evaluation

The experimental question "Is the OpenFCN able to semantic segment a remote sensing
image?" can be answered by observing the Table 6.3 that presents the results obtained
using the overall and normalized accuracy and kappa index metrics. Analyzing it, it
is possible to note that the proposed method, OpenFCN, obtained results that also
shows that semantic segmentation can be applied to open set scenarios.

Table 6.3: Normalized Accuracy and Kappa Index obtained by the OpenFCN method
and baselines

Network Scenario Tested Weibull tail size Alpha rank Overall Accuracy Normalized Accuracy Kappa
FCN Long et al. [2015] Open Set - - 74.76% 56.86% 0.6648

OpenFCN Open Set 125,000 1 47.82% 45.91% 0.3774

SLIC-OpenFCN Open Set 1,000,000 4 80.77% 63.92% 0.7437

OpenFCN Open Set 1,000,000 4 82.27% 64.39% 0.7630

Now, observing the results from OpenFCN at Table 6.3, is possible to analyze that
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(a) RGB Image (b) Ground Truth

(c) FCN Long et al. [2015] Prediction
in Open Set Scenario

(d) OpenFCN Prediction

Figure 6.5: Example of prediction by the OpenFCN method with the Grass as unknown
class. The color white, dark blue, green and yellow represents the class street, building,
tree and car , respectively and red represents the predict unknown class, grass, colored
as light blue on the ground truth.

the method outperforms the closed set technique when applied to an open set scenario.
Similarly, as the OpenPixel, the method can correctly classify the pixels belonging
to known classes, and still classify most of the unknown pixels correctly. Figure 6.5
shows one example of semantic segmentation done by OpenFCN when compared to
the application of the closed set FCN Long et al. [2015] on an open set scenario.

The OpenFCN method uses known classes to calculate distances of each pixel
being evaluated and uses that to classify them. For this reason, depending on which
classes are being used for the algorithm to learn and which classes are set as unknown
the results may vary. For this reason, the method needed to be tested against all the
cases, and the results for the instance in which each class is set as unknown is presented
in Table 6.4 and Figure 6.6.

The results on Table 6.4 shows a lower accuracy and kappa when the classes
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Table 6.4: Overall, Normalized Accuracy and Kappa Index obtained by the OpenFCN
method for each class as unknown

Unknown Class Overall Accuracy Normalized Accuracy Kappa
Street 84.95% 68.02% 0.7921

Building 83.93% 66.08% 0.7782
Grass 78.99% 59.96% 0.7294
Tree 79.86% 60.82% 0.7343
Car 83.59% 67.11% 0.7811

Figure 6.6: Graph representing the results obtained by the OpenFCN method for each
class as unknown.

grass or tree are set as unknown. It is easy to understand the reason when observed
the concept of the method. When using grass as an unknown class, the class tree is
learned and used to calculate the distances, and since the classes grass and tree have
similar features, the method tends to label grass pixels as the class tree, since it learned
tree features. The same happens when the tree class is used as the open set class and
the grass is seen during training. Since the method tends to label unknown pixels as
a known class, the accuracy decreases. One way to solve that would be not to use a
similar class to calculate the distances, but this would affect the classification of known
classes, also decreasing the accuracy.
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It is also valid to discuss the fact that both instances of the OpenFCN method
gave similar results. The OpenFCN without the use of superpixels had a slightly better
result than the technique using superpixels, SLIC-OpenFCN. This is probably due to
the fact that even though superpixels have a tendency to group pixels, leading to a loss
of individual information and at the same time mitigating the cases in which equivocally
one pixel surrounded by pixels of the same class would receive a different label, the
size of the superpixel chosen was small, not having a big impact on the accuracy of the
method, only its speed.

6.2.1 OpenFCN Variation

The OpenFCN method only can achieve the best result with the proper setup and to
find the best configurations of parameters for the OpenFCN method it was needed to
perform a search on two parameters, Weibull tail size, and alpha rank.

Figure 6.7 presents a graph with the values of overall, normalized accuracy and
kappa index found by the network using different values of Weibull tail size, these
results are also presented in the Table 6.5. The value of alpha rank was also varied
using the best Weibull tail size found, the results are presented in the form of a graph
in Figure 6.8. Observing those results, it is possible to determine the best values for
this application, being a Weibull tail size of 1,000,000 and an alpha rank of 4.

It is important to note that the number of alpha rank values used can only be in
the range of the known classes. Since the alpha rank represents the number of classes
used to calculate the distances for the pixels, using a value higher than the number of
learned classes is not possible and using zero classes does not fit the model. That is
the reason that in this application the variation of alpha rank values was between 1
and 4 known classes.

Just for comparison, it was added in Table 6.3 the results of using OpenFCN
with different values of Weibull tail size and alpha rank than the one found during the
grid search. This result proves that the use of different parameters can affect the final
results and shows the need for personalized values, trough a grid search, for different
applications.

The variation in the size of the Weibull tail size and the number of classes analyzed
as the alpha rank is also represented in the Figure 6.9 that shows the results on an
example image, using different values. It is valid to observe that without the grid search
done to find the best values for each parameter of the OpenMax layer, the method could
perform even worse than the other techniques presented in this dissertation, both open
and closed set.
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Figure 6.7: Graph representing the variation of Weibull Tail Size values for the Open-
FCN and it accuracies.

Table 6.5: Normalized Accuracy and Kappa Index obtained by the OpenFCN method
with different Weibull tail sizes

Weibull tail size Overall Accuracy Normalized Accuracy Kappa
10 38.05% 34.89% 0.2480

100 58.51% 50.35% 0.4983

500 58.57% 50.93% 0.4692

1000 58.44% 50.44% 0.4977

5000 68.55% 61.66% 0.5694

10000 80.77% 62.92% 0.7237

250000 81.07% 63.69% 0.7541

500000 81.42% 63.97% 0.7587

1000000 82.27% 64.39% 0.7630
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Figure 6.8: Graph representing the variation of Alpha Rank value for the OpenFCN,
using the best value of Weibull Tail Size found (1,000,000), and it accuracies.

6.3 Upper Bound Comparison

An interesting comparison to make is to analyze the relationship between the proposed
methods and the original networks they were based on. The original networks were
developed as closed set techniques and can be used as an upper bound if tested in a
closed set scenario on the Vaihinghen dataset. Being an upper bound means that it is
expected that the proposed methods can achieve, in the open set scenario, at most the
same as the closed set networks in a closed set scenario.

This can be understood, taking into account that a method evaluated over all the
classes it has seen during the learn stage tends to have a better result than a method
that learns only some classes and uses this knowledge to differ from unseen classes
during evaluation. Table 6.6 presents the comparison between the proposed methods
and the original networks on closed set scenarios, the upper bounds.

Observing the results of Table 6.6 it is possible to see that the Morph-OpenPixel
is still far from its upper bound, the Closed Set Pixelwise. At the same time, the
results found using the OpenFCN were statistically similar to its upper bound, the
FCN Long et al. [2015] tested on a closed set scenario. This shows that the OpenFCN
has reached the expected limit of its correctness and is a valid method for open set
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Table 6.6: Comparison between the proposed methods and the original networks on
closed set scenarios, the upper bounds

Network Scenario Tested Overall Accuracy Normalized Accuracy Kappa
Closed Set Pixelwise Closed Set 69.76% 67.10% 0.5651
Morph-OpenPixel Open Set 57.51% 54.23% 0.5602

FCN Long et al. [2015] Closed Set 82.14% 62.50% 0.7333

OpenFCN Open Set 82.27% 64.39% 0.7630

semantic segmentation.
Since the OpenFCN method is more complex than the OpenPixel, is acceptable

that its results are better for the open set scenario. While the OpenPixel technique
had a lot of trouble with the boundaries between classes, the Openmax method did
not suffer as much. The ability to deal with boundaries between classes is even more
present when the SLIC Achanta et al. [2012] is applied during the process of OpenFCN,
SLIC-OpenFCN. Figure 6.10 show a comparison between both methods in the same
area, with the class Car as unknown.

At the same time, it is needed to observe that, for being more complex, the
OpenFCN method is also more time-consuming. While the OpenPixel could be trained
in 8 hours, the Openmax would take from 6 to 8 days, in the setup configuration used
in this dissertation. The same can be observed for the testing, while the OpenPixel
could generate a prediction for all the images on the testing dataset under 30 minutes,
the OpenFCN would take 140 minutes, without the use of SLIC Achanta et al. [2012]
or 50 minutes for the SLIC-OpenFCN, to generate the prediction of a single image.
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(a) RGB Image (b) Ground Truth (c) Weibull Tail size = 10,000 and
Alpha Rank = 4

(d) Weibull Tail size = 1,000,000
and Alpha Rank = 4

(e) Weibull Tail size = 250,000
and Alpha Rank = 4

(f) Weibull Tail size = 250,000
and Alpha Rank = 2

Figure 6.9: Comparison on the prediction made by OpenFCN varying Weibull tail
size and alpha rank values. The color white, dark blue, light blue, yellow and green
represents the class street, building, grass, car and tree, respectively, the color red
represents the unkown.



64 Chapter 6. Results and Discussion

(a) RGB Image (b) Ground Truth

(c) OpenPixel Prediction (d) SLIC-OpenFCN Prediction

Figure 6.10: Example of comparison between the OpenPixel and OpenFCN method
for semantic segmentation. The color white, yellow, dark blue, light blue and green
represents the class street, car, building, grass and tree, respectively and red represents
the predict unknown class.
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Conclusion and Future Works

The open set is the best scenario to describe the real world, since a controlled ambient,
where all the possible classes are known, is hardly going to be found in practice. This
characteristic is even more present in remote sensing since images can present classes
from vegetation to cars or people, and it is common to find datasets with a small amount
of annotated pixels. For this reason is important to develop open set techniques, more
specifically, open set semantic segmentation methods.

The method presented in this dissertation, dubbed OpenPixel, presented accept-
able rates of normalized accuracy when compared to closed set methods on the same
dataset. On average, the open set scenario method presented an overall accuracy of
57.51%, a normalized accuracy of 54.23% and a kappa index of 0.4600.

The OpenFCN method presented good results of normalized accuracy when com-
pared to closed set methods on the same dataset and even better when compared to
the OpenPixel. On average the open set scenario method presented an overall accuracy
of 82.27%, a normalized accuracy of 64.39% and a kappa index of 0.7630.

Observing the experiments and the results presented in this dissertation, it is
possible to affirm that the proposed methods are effective in semantically segmenting
pixels belonging to unknown classes, while still correctly classifying pixels from known
classes, performing an open set semantic segmentation on remote sensing images.

It is also valid to observe that both methods presented different problems when
executing the semantic segmentation task on an open set scenario, which led to the
realization that those problems are related to the networks utilized and not necessarily
to the concept of open set semantic segmentation.

In conclusion, this dissertation main contributions are: (1) a discussion of the
related works, showing evidence that the semantic segmentation techniques can be
applied to open set scenarios; and (2) the development of two methods for open set
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semantic segmentation.
As future works, the Pixelwise method presented can be improved by adding

more techniques of data augmentation, as histogram equalization or brightness control
can be used to mitigate the shadow problem encountered.

The OpenFCN could continue to be explored, applying to other networks, to
observe if newer segmentation techniques could improve the results presented here.
Furthermore, other techniques to decrease the time consumption of the method could
also be evaluated.

The parametrization of the SLIC technique applied to the OpenFCN method
could be better evaluated with a grid search with the goal of not reducing the time
consumption, but increasing the accuracy of the network, by grouping pixels probably
belonging to the same class and mitigating the equivocal labeling of isolated pixels.

Finally, other scene classification open set methods (described in Section 3) could
be adapted to the semantic segmentation task, as well as other closed set techniques,
classification and segmentation, could be adapted to the open set scenario. An approach
that could be used in this scenario, is the Generative Adversarial Neural Networks.
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