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Resumo

O número de redes de câmeras de vigilância é cada vez maior como consequência da

crescente preocupação com segurança. A grande quantidade de dados coletados de-

manda sistemas de vigilância inteligentes para extrair informações que sejam úteis aos

oficiais de segurança. De forma a alcançar esse objetivo, esse sistema deve ser capaz

de correlacionar as informações capturadas por diferentes câmeras de vigilância. Nesse

cenário, a re-identificação de pessoas é de central importância para estabelecer uma

identidade global para indiv́ıduos capturados por diferentes câmeras usando apenas a

aparência visual. No entanto, trata-se de uma tarefa desafiadora, uma vez que a mesma

pessoa quando capturada por câmeras distintas sofre uma drástica mudança de aparên-

cia como consequência das variações no ponto-de-vista, iluminação e pose. Trabalhos

recentes abordam a re-identificação de pessoas propondo descritores visuais robustos

ou funções de correspondência entre câmeras, as quais são funções que aprendem a

calcular a identidade correta de imagens capturadas por diferentes câmeras. Porém,

a maior parte desses trabalhos é prejudicada por problemas como ambiguidade entre

indiv́ıduos, a escalabilidade e o número reduzido de imagens rotuladas no conjunto

de treino. Nesta tese, abordamos o problema de correspondência de indiv́ıduos entre

câmeras de forma a tratar os problemas já mencionados e, portanto, obter melhores

resultados. Especificamente, propomos duas direções: o aprendizado de subespaços e

os modelos de identificação indireta. O primeiro aprende um subespaço comum que é

escalável com respeito ao número de câmeras e robusto em relação à quantidade de im-

agens de treino dispońıveis. Na identificação indireta, identificamos imagens de prova

e galeria baseado na similaridade com as amostras de um conjunto de treino. Resul-

tados experimentais validam ambas as abordagens no problema de re-identificação de

pessoas considerando tanto apenas um par de câmeras como situações mais reaĺısticas

com múltiplas câmeras.

Palavras-chave: Visão Computacional, Vigilância Inteligente, Re-identificação de

pessoas.
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Abstract

The number of surveillance camera networks is increasing as a consequence of the esca-

lation of the security concerns. The large amount of data collected demands intelligent

surveillance systems to extract information that is useful to security officers. In order

to achieve this goal, this system must be able to correlate information captured by

different surveillance cameras. In this scenario, re-identification of people is of central

importance in establishing a global identity for individuals captured by different cam-

eras using only visual appearance. However, this is a challenging task, since the same

person when captured by different cameras undergoes a drastic change of appearance

as a consequence of the variations in the point of view, illumination and pose. Re-

cent work addresses the person re-identification by proposing robust visual descriptors

orcross-view matching functions, which are functions that learn to match images from

different cameras. However, most of these works are impaired by problems such as

ambiguity among individuals, scalability, and reduced number of labeled images in the

training set. In this thesis, we address the problem of matching individuals between

cameras in order to address the aforementioned problems and, therefore, obtain bet-

ter results. Specifically, we propose two directions: the learning of subspaces and the

models of indirect identification. The first learns a common subspace that is scalable

with respect to the number of cameras and robust in relation to the amount of training

images available. we match probe and gallery images indirectly by computing their

similarities with training samples. Experimental results validate both approaches in

the person re-identification problem considering both only one pair of cameras and

more realistic situations with multiple cameras.

Palavras-chave: Computer Vision, Smart Surveillance, Person Re-Identification.
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Chapter 1

Introduction

The interest in video surveillance has increased as consequence of the demand for pub-

lic safety and the wide spread of surveillance camera networks in public (e.g., airports,

universities campus and streets) and private places. These cameras collect a vast vol-

ume of data to be manually analyzed by law enforcement officers or used for forensic

purposes. Nonetheless, there is no human labor to cope with the exponential growth

of these data. Therefore, intelligent video surveillance aims at extracting useful infor-

mation from these visual data to assist the security personnel. To accomplish that,

multiple modules infer complex semantic information based on the detection, tracking

and recognition of persons and objects in images and videos [Wang, 2013].

Multi-camera surveillance is a desired requirement in an intelligent video surveil-

lance system as the data captured by a single camera is limited spatially and temporally.

For instance, to monitor a wide area, as a university campus, we need to use hundreds

of cameras that usually have non-overlapping fields-of-view that further increase the

monitored area coverage. In this setting, how to automatically integrate the informa-

tion from multiple cameras is an important issue. Person re-identification emerged as

a possible solution that attained increasing attention of the research community in the

last years [Zheng et al., 2016].

Person re-identification (Re-ID) provides the identity for an individual as he/she

moves along surveillance cameras with non-overlapping field-of-views. Thus, it is possi-

ble to monitor activities in large areas with a reduced cost (small number of cameras).

For instance, Re-ID allows the retrieval of videos of the same person in an entire cam-

era network or the development of an online multi-camera tracking algorithm using the

correspondence between individuals in multiple cameras.

A Re-ID system is composed of the person detection, tracking, feature extraction

and cross-view matching [Apurva and Shah., 2014; Zheng et al., 2016], as illustrated in

1
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Figure 1.1: Schematic representation of the main steps in a single-shot person re-identification
system. First, person detection and tracking are used in each camera to obtain the person
locations (bounding boxes) at consecutive frames. Then, we extract the feature descriptor
that will be used in the cross-view matching function to compute the similarity between
individuals captured by these different cameras.

Figure 1.1. While in person detection and tracking we determine the person location at

multiple frames in each camera, it is in the feature extraction and cross-view matching

that we actually match images or videos captured by different cameras to assign the

identity for an unknown individual.

In this dissertation, we focus on the single-shot and closed-set scenario, which is

the most common setting in the person re-identification literature. In the single-shot,

we have just have a single image captured from each individual at different and non-

overlapping cameras. In addition, in the closed-set, we consider that the gallery-set

(known identities) always includes the probe (unknown identity) and the number of

individuals enrolled in the gallery is fixed.

Formally, let us consider p as the probe image and G as the gallery-set composed

of N individuals that we know the identities, where gi ∈ G corresponds to the ith

subject in the gallery-set. Then, we can determine p identity (id) as

id = arg max
i
sim(Ψ(p),Ψ(gi)), (1.1)

where Ψ corresponds to a feature extraction function and sim(·, ·) is some cross-view

matching function. In a supervised setting, the cross-view matching and feature ex-

traction functions are learned using a training set, which consists of labeled individuals
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Figure 1.2: Training and Testing sets. In the training set the better configuration of feature
descriptors and cross-view functions are learned using labeled individuals in a pair of cameras.
Then, in the testing set, these functions are deployed using a disjoint subset of individuals.

Figure 1.3: Faces from images captured by distinct surveillance cameras.

captured by different surveillance cameras. Then, these functions are deployed in a

testing set whose identities are disjoint from the training set, as illustrated in Fig-

ure 1.2.

In a Re-ID system, the main challenge corresponds to rank the gallery-set based

on the similarity with a probe (unknown identity) due to the low-resolution images pro-

vided by surveillance cameras where biometric cues such as face and iris are unreliable

(see Fig. 1.3). In this case, the matching between probe and gallery images is based on

appearance cues provided by clothes, mainly color and texture features. Therefore, it

is prone to issues as ambiguity between individuals and the distinct camera conditions.

The ambiguity is a result of the fact that individuals tend to dress similarly. Differ-

ently, the camera conditions are affected by different illumination conditions, camera’s

pose, background clutter and occlusion (see Figure 1.4). In this scenario, the design of

feature descriptors that are simultaneously robust to different camera conditions and
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Figure 1.4: Images of the same person (columns) look more dissimilar than images of different
persons as consequence of the high inter-person similarity and the different camera conditions
(illumination, background, pose and camera viewpoints).

discriminative is an unattainable problem.

Deep learning-based methods are a possible solution to learn the feature rep-

resentation and a matching function in a unique end-to-end framework. Nonetheless,

experimental results obtained using deep learning approaches are still suboptimal. That

can be explained by the laborious work of collecting and annotating images for each

camera pair, which restricts the size of the person Re-ID datasets and prevents the

generalization of the learned model. Therefore, there is still place for more traditional

pipelines in person Re-ID that combine high-dimensional handcrafted and/or deeply

learned descriptors with a cross-view matching function learned independently.

Another important issue that is still neglected by the person re-identification

community is the scalability of the learned models with respect to the number of

surveillance cameras (c). As an example, most of the approaches in literature consider

a distinct model for each camera pair. In this scenario, we would need c(c-1)/2 models

(O(c2)), which is not scalable for real-world surveillance systems. Figure 1.5 illustrates

both settings with the number of models learned. Therefore, how to design more

scalable cross-view matching functions in such scenario is an important issue that we

address in this dissertation.
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Figure 1.5: Pairwise and multiple cameras cross-view matching models. Notice that the
pairwise learns a model for each pair of cameras. Differently, the multiple cameras learns a
single for the entire camera network.

1.1 Motivation

As a consequence of the different camera conditions, feature descriptors extracted from

an individual in a camera A will change drastically when the same person is seen again

in a camera B. Thus, a simple Euclidean distance is ineffective to perform the matching

between probe and gallery samples.

One alternative to tackle the camera transition problem consists in learning a

transformation in the feature space that projects closer images of the same person

independently of the camera conditions as illustrated in Figure 1.6. Nonetheless, the

Figure 1.6: Subspace Learning. Images of the same person captured by different surveillance
cameras are correlated in a common and low-dimensional subspace.
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Figure 1.7: Schematic representation of the indirect matching approach. Training images of
the same individuals are placed in a blue and red boxes to indicate probe and gallery cameras,
respectively. First, we compute for probe and gallery samples an intra-camera representation
(αp and αg) based on some similarity model. Then, using these representations, we indirectly
perform the inter-camera matching between probe and gallery samples.

drastic appearance due to the distinct camera suggests a nonlinear transformation

between cameras. Besides, these models need to deal with real-world settings where

we have a huge number of surveillance cameras and a small number of labeled samples.

Therefore, it motivates us to address the person Re-ID problem with nonlinear subspace

learning models that can be learned with a small number of samples and are scalable

with respect to the number of cameras.

A different solution is avoiding the camera transition by performing only intra-

camera matching. For instance, we can compute the similarity of a probe image with

a subset of individuals in the training set captured by the same camera. As these

individuals are in training set, we also have their images in the gallery camera to

compare with the samples in the gallery set. Then, these representations of similarity

are used to indirectly compare probe and gallery images as illustrated in Figure 1.7.

One problem that also impacts the performance of person re-identification meth-

ods is the ambiguity between individual’s clothes (i.e., individuals dressing uniforms).

This problem can be reduced when additional information such pose and gender are

available as attributes. These attributes can be manually annotated or automatically

obtained using state-of-the-art approaches [Schumann and Stiefelhagen, 2017]. Fig-

ure 1.8 shows some examples of manually annotated attributes. Therefore, to address

the ambiguity problem, it is important to enable the cross-view matching function to

learn from attributes information.
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 Darkshirt 

 Skirt 

 Barelegs 

 Nocoats 

 Lightshirt 

 Backpack 

 

 Lightbottoms 

 Jeans 

 

 Redshirt 

 Lightbottoms 

  Backpack 

 Jeans 

 Darkhair 

 Nocoats  

Figure 1.8: Manually labeled attributes for three individuals in VIPeR dataset.

In this work, we tackle some important issues in the person re-identification prob-

lem as the different camera conditions, the reduced number of training samples, the

scalability with respect to the number of surveillance cameras and the ambiguity be-

tween individuals. Specifically, we show that subspace learning and the indirect match-

ing strategies are successful to obtain feature representations that are robust to the

different camera conditions. In addition, we present models that can be learned using

datasets with small number of training samples, multiple cameras and additional labels

(i.e. attributes). More importantly, we show that by using attribute and identity labels

we can reduce the ambiguity between individual and boost the obtained results.

1.2 Hypotheses

In this dissertation, we assume two main hypotheses. The Subspace Learning hypoth-

esis assumes that “images of the same person when captured by different cameras share

some subtle characteristics that can be captured by nonlinearly mapping feature descrip-

tors from probe and gallery cameras into a common and low-dimensional subspace”. In

addition, the Indirect Matching hypothesis considers that“images that are similar when

captured by one camera will remain similar at a second camera and, therefore, it is pos-

sible to indirectly match images from different cameras using intra-camera similarity
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values”. Based on these hypotheses, we elaborate some secondary hypotheses that are

presented as follows.

Subspace Learning

An usual approach to match images captured by different surveillance cameras consists

in learning either linear or nonlinear projections onto a common subspace that corre-

lates feature descriptors extracted from different cameras. In fact, due to the nonlinear

variations of feature descriptors across cameras, an improved matching performance is

usually achieved using nonlinear subspace learning methods.

The main drawback of current subspace learning methods is that they are based

on pairwise models and, therefore, are not scalable to real-world scenarios as the num-

ber of camera pairs grows quadratically with the number of cameras. Therefore, our

hypothesis is that “we can hierarchically model the nonlinear subspace learning problem

in such a way that the number of learned projections matrices grows linearly with the

number of surveillance cameras”.

Besides, as a consequence of the small number of training samples (i.e., small-

sample-size problem), these subspace learning methods present suboptimal results as

they can not estimate the covariance matrices of the data with high accuracy. There-

fore, another hypothesis is that “we can learn nonlinear subspace models that do not

depend on the estimation of covariance matrices and, therefore, are robust to the small-

sample-size problem”.

Indirect Matching

One possible and simple solution to tackle the camera transition problem consists in

performing an indirect matching of individuals by using a subset of labeled persons

that appeared in both cameras (i.e., training set). These methods assume that when

individuals are similar in one camera, they will remain similar when captured by an-

other, as illustrated in Figure 1.9. Then, using the intra-camera similarity, they are

able to match persons captured by different cameras. In this scenario, one important

issue is how to handle the variations on illumination, background clutter and occlusion

that are present even when considering images captured by the same camera.

Regarding the indirect matching, our first hypothesis is that“due to the ambiguity

problem, we can find individuals in the training set - the prototypes - that are similar

to any given sample (probe or gallery images). More importantly, as they are in the
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Figure 1.9: Indirect Matching. Notice that similar individuals captured by the first cam-
era remain similar when comparing images captured by the second camera. These stable
similarities is the main assumption of the Indirect Matching hypotheses.

training set, we can use them to learn discriminative models in the specific camera

where these models will be deployed and, then, handle the camera transition problem”.

Our second hypothesis considers that“by learning a nonlinear regression model for

each camera, we can compute an improved representation of probe and gallery images

based on the similarity with the entire training set”. Notice that while in the first

hypothesis we restrict our model to the prototypes subset, here we use all the available

images in the training set.

Differently, our third hypothesis is that “probe and gallery images can be repre-

sented as a linear combination of training samples captured at their respective cameras

using a multi-task framework. More importantly, we claim that using the computed

linear coefficients we can effectively match probe and gallery images”.

1.3 Objectives

In this work we address the person re-identification problem as a subspace learning

or indirect matching problem. Specifically, we proposed six different methods with

the following objectives: (1) Propose a model robust with respect to the number of

training samples to reduce the burden of annotating persons identities at multiple

cameras. (2) Dimish the camera transition problem using strategies as the nonlinear

mapping of all cameras to a common subspace or indirectly matching samples from

different cameras based on the similarity with samples in a training set. (3) Reduce

the ambiguity problem by including additional labels, such as attributes, that boost

the discriminative power of the learned model. (4) Work with models that are scalable

with respect to the number of surveillance cameras.
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1.4 Contributions

In this section, we present the main contributions of this dissertation. For a better

exposition of these achievements, we categorized them in those related to the subspace

learning hypotheses and those that correspond to the indirect matching hypotheses.

Subspace Learning

In this dissertation, we address person re-identification as the problem of learning

a nonlinear common subspace where the direct matching between probe and gallery

images is successful. Specifically, we propose three methods to learn projection matrices

to the low-dimensional subspace: the Kernel Hierarchical PCA, the Kernel PLS for

Subspace Learning and the Kernel Multiblock PLS .

The proposed methods are novel nonlinear extensions of common subspace learn-

ing models and possess the required characteristics for the person re-identification prob-

lem. For instance, Kernel PLS for Subspace Learning learns a common subspace the

maximize the covariance between feature descriptors captured by different cameras and

is robust to small-sample-size problem. Differently, Kernel Hierarchical PCA and Ker-

nel Multiblock PLS learn a consensus directions between different cameras in a hierar-

chical formulation that grows linearly with the number of surveillance cameras. While

the Kernel Hierarchical PCA only maximizes the covariance of the data, the Kernel

Multiblock PLS performs a nonlinear regression between latent scores and response

variables (e.g., identity labels) (see Chapter 3). Experimental results demonstrate that

the nonlinear extension is important to reach improved results and, more importantly,

these results are comparable to other common subspace learning models from literature

that are not scalable and require the careful adjustment of regularization parameters.

Indirect Matching

The main drawback of nonlinear common subspace learning models resides in the direct

matching between images captured by different cameras. We tackle this problem by

indirectly matching probe and gallery images using labeled individuals in training set.

We propose three methods to indirectly match probe and gallery images: Prototypes-

based Person Re-Identification, Cross-View Kernel PLS and the Kernel Cross-View

Collaborative Representation based Classification.

Our first attempt to indirectly match probe and gallery images was

the Prototypes-based Person Re-Identification that learns discriminative models using

a subset of similar individuals to probe and gallery images captured by their respec-
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tive camera in the training set (prototypes subset). However, determining prototypes

subset revealed to be a very challenging task, mainly for the smaller datasets. Thus, in

the proposed Cross-View Kernel PLS, we use a nonlinear regression model to represent

probe and gallery images based on the similarity with the entire training set. Similarly,

in the novel Kernel Cross-View Collaborative Representation based Classification, we

use a collaborative multi-task framework to adaptively represent probe and gallery im-

ages using coding vectors that balance the representativeness and discriminative power

(see Chapter 4). The obtained experimental results show that our indirect matching

strategy reaches interesting results. In fact, the proposed Kernel Cross-View Collabo-

rative Representation based Classification achieved state-of-the-art results in the three

datasets evaluated.

1.5 Outline

The chapters of this dissertation are organized as follows. Chapter 2 provides an

overview of the main and most recent works in person re-identification. In Chapter 3,

we present the proposed methods to approach person re-identification as a subspace

learning problem. Then, Chapter 4 describes the proposed methods related to Indirect

Matching of probe and gallery images. In Chapter 5, we present the experimental

evaluation of the main parameters related to these methods in a pairwise camera setting

and compare them against state-of-the-art approaches. Then, in Chapter 6, we show

experimental results considering the multiple cameras scenario. Finally, Chapter 7

concludes with the contributions, limitations of this work and future research directions.

1.6 Publications

This dissertation has resulted so far in the seven publications listed in the following.

1. Prates, Raphael Felipe; Schwartz, William Robson. Appearance-Based Person
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In: Biometrics (ICB), 2015 International Conference on. IEEE, 2015. p. 65-72.

2. Prates, Raphael Felipe; Schwartz, William Robson. CBRA: Color-Based
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Chapter 2

Related Works

At the beginning, person Re-ID was not consolidated as a research topic. Instead,

the matching between individuals captured by different cameras occurred as a part of

the multi-camera tracking system, usually combining appearance features with camera

calibration and topology information [Wang, 2013]. For instance, the work proposed

by Zajdel et al. [2005] is the first to use the term person re-identification and was based

on a Bayesian model to relate appearance and spatio-temporal cues with label informa-

tion. Actually, the work of Gheissari et al. [2006] is the first to re-identify individuals

using only appearance features, therefore, establishing person re-identification as an

independent research topic in the computer vision community [Zheng et al., 2016].

Initially, most of the works on person re-identification focused on the single-shot

scenario. In this scenario, the camera transition problems are extreme - due to lack of

available data - and impact more on the obtained experimental results. However, we can

employ detection and tracking algorithms to capture multiple images or videos of the

same individuals. Then, multi-shot and video-based methods have been proposed by

the person re-identification community with improved results [Farenzena et al., 2010].

Nonetheless, these methods also have to deal with the higher intraclass variations than

interclass that can be even more challenge when dealing with videos [You et al., 2016].

Appearance features extracted from still images or videos capture only short-

term signatures, which restricts the applicability of person re-identification systems.

To capture long-term information, some works employed complementary data as gait

features [Liu et al., 2015b] or thermal and depth images [Mogelmose et al., 2013]. Gait

information, which corresponds to the walking style of a person, is a long-term biometry

that can be captured by low-resolution cameras without any suspect collaboration [Liu

et al., 2015c]. However, gait methods commonly extract person’s silhouette, which

is very difficult in low-resolution cameras [Gao et al., 2016a]. Differently, thermal

13



2. Related Works 14

and depth information are captured by additional cameras that are seldom present at

indoor or outdoor environments and have restricted applicability. Then, how to extract

long-term signatures for persons in uncontrolled environments is still an open problem.

In this chapter, we review works proposed in the person re-identification litera-

ture. Notice that despite focusing on the single-shot setting, we also present the main

works that consider different scenarios to provide a better overview of the literature.

We divide these works based on the information used to perform person re-identification

as single-shot (Section 2.1), multiple-shot (Section 2.2) and videos (Section 2.3). It is

important to highlight that we provide a brief description of these methods. For a

more detailed discussion, please refer to the person re-identification surveys [Apurva

and Shah., 2014; Zheng et al., 2016].

2.1 Single-Shot Person Re-Identification

Single-shot person Re-ID consists in matching a person across cameras using a single

image captured by each camera. These methods are motivated by the reduced frame-

rate of conventional surveillance cameras that limits the number of frames available.

Due to the small amount of collected data and the different camera conditions, single-

shot person Re-ID is a very challenging task [Apurva and Shah., 2014]. Therefore,

several works addressed single-shot person re-identification designing better feature

descriptors (Section 2.1.2) or cross-view matching functions (Section 2.1.3). These

steps are illustrated in Figure 1.1.

2.1.1 Labeled Samples

An important issue when dealing with person re-identification is the small number of la-

beled samples. It is a consequence of troublesome task of annotating a large number of

images at multiple cameras. One attempt to tackle this problem that is worth mention-

ing corresponds to the generation of synthetic data. As an example, SOMAset [Barbosa

et al., 2018] consists of synthetic data generated with different height, weight, body

proportions, outfits and 250 different poses (see Figure 2.1). Similarly, in [Bak et al.,

2018], the authors utilize synthetic images with multiple illumination conditions to in-

crease the model’s generalization to unseen illumination conditions. Nonetheless, these

artificial images create a domain gap problem as they are only coarse approximations

of real-world images absent of realism.

In this section, we discuss some recent works that addressed the small number of

annotated samples problem using state-of-the-art techniques as Generative Adversarial
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Figure 2.1: Synthetic images from SOMAset database. Illustration taken from [Barbosa
et al., 2018]

Networks (GANs) [Siarohin et al., 2018; Zhong et al., 2018; Liu et al., 2018b; Zheng

et al., 2017c; Deng et al., 2018; Bak et al., 2018] and Domain Adaptation [Fu et al.,

2018; Geng et al., 2016; Li et al., 2018; Peng et al., 2016, 2018].

Zheng et al. [2017c] is the inaugural work using GANs to automatically generate

images that boost person Re-ID models. In [Zhong et al., 2018], the authors improved

the generative model using CycleGAN to transit between two cameras. Similarly, Bak

et al. [2018] used CycleGAN to reduce the domain shift between synthetic and real-

world images. Recently, more supervision has been deployed to generate more reliable

samples. For instance, Siarohin et al. [2018] used pose information as input to generate

images at a specific pose and Deng et al. [2018] employed a siamese network with a

similarity preserving loss. Liu et al. [2018b] combined the pose with the class infor-

mation to ensure that the generated sample has the target pose while preserving the

identity.

Differently from GANs, Domain Adaptation uses large pre-existent annotated

databases to learn representations that are transferred to an unlabeled dataset. An

early strategy consists in modelling the problem as an asymmetric multi-task dictionary

learning where specific and shared dictionaries are learned using iterative optimization

algorithms with graph Laplacian regularisation terms [Peng et al., 2016, 2018]. In

this way, the shared dictionaries transfer a representation from labeled to unlabeled

samples. The main drawback of these methods is the fact that the feature descriptors

and dictionaries are not learned end-to-end. To address this issue, Li et al. [2018]

proposed an encoder-decoder architecture with shared and specific modules that are

learned jointly using labeled and unlabeled samples. Differently, [Geng et al., 2016] uses
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a co-training strategy that alternates between subspace learning and CNN self-training

to iteratively assigns pseudo-labels to the samples and updates the initial model, which

was pre-trained in a large collection of labeled Re-ID images.

2.1.2 Feature Descriptors

In this section, we describe different feature descriptors that have been proposed in the

literature exploiting both feature representation and body parts from where they will

be extracted and matched [Satta, 2013]. These methods seek for a representation that

remains stable in the presence of variations caused by the different camera conditions.

Regarding the body locations, the goal is to undertake the spatial misalignment

between camera viewpoints. Figure 2.2 illustrates some of these body models proposed

in literature. The simplest and most common strategy corresponds to equally divide

the image in a fixed number of horizontal stripes [Wei-Shi et al., 2011], which is highly

sensitive to the pedestrian detector errors. Thus, there have been some efforts to define

body parts adaptively. Farenzena et al. [2010] used the symmetry of human body

and Cheng et al. [2011] employed Pictorial Structures to automatically detect body

regions. Differently, Zhao et al. [2013] discovered cross-view discriminative and robust

image patches based on saliency information and Chen et al. [2016a] captured spatial

distribution of patches between cameras to constraint the inter-camera matching.

Deep learning-based methods have also been proposed to deal with spatial mis-

alignments between cameras and learn the feature representation in unique frame-

work [Li et al., 2014; Varior et al., 2016; Zheng et al., 2018; Wang et al., 2018; Li

et al., 2017]. In [Li et al., 2014], the authors handle with photometric and geometric

transformations using a patch matching layer, while Varior et al. [2016] exploited the

dependence between different spatial regions of the same image using Long Short-Term

Memory (LSTM) architecture and a siamese network. More recently, Zheng et al. [2018]

and Zheng et al. [2018] explored attentional mechanisms to highlight specific feature

maps while handling the inter-camera misalignment problem, while Li et al. [2017]

explicitly learn body parts segmentation using spatial transformers network.

A different perspective uses the person’s pose information as input to construct a

more reliable embedding representation. In [Jiang et al., 2018], the authors estimated

the body orientation and parts location based on the pose information and proposed

orientation-guided loss that pulls closer images of the same person with similar orienta-

tions. Likewise, Sarfraz et al. [2018] the authors employed the pose information as input

in a model that learns view predictors and, consequently, a pose-sensitive embedding

representation. Differently, Zheng et al. [2017a] construct the PoseBox representation
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Figure 2.2: From left to right. First we have the pedestrian detection, foreground seg-
mentation and the body segmentation. Then, different strategies of body segmentation are
presented. The first two consider a fixed number of stripes, while in the last two we have five
body parts obtained using human body symmetry [Farenzena et al., 2010]. Illustration taken
from [Vezzani et al., 2013].

based on the pose and affine transformations.

After defining body locations, another important step is to represent these re-

gions. For instance, Ma et al. [2012b] captured pixel information using local descriptor

encoded by Fisher Vector, while Matsukawa et al. [2016] used a hierarchical Gaus-

sian distribution to capture the mean and covariance from local patches. In [Ma

et al., 2012a], biologically inspired features and covariance descriptors are combined

to describe image regions. Differently, Yang et al. [2014] used a probabilistic model

to relate color features to semantic color names and Liao et al. [2015] constructed a

stable representation using horizontal occurrence of local features and max-pooling.

Recently, Shangxuan et al. [2016] combined handcrafted feature descriptors with Con-

volutional Neural Network (CNN) features obtaining a more discriminative represen-

tation and the Mirror Representation [Chen et al., 2015] was proposed to obtain an

augmented feature representation that aligns feature distributions across cameras.

In this work, we assume that it is not possible to properly handle the camera

transition by directly matching feature descriptors captured by different cameras using

a simple Euclidean distance. Therefore, we address the problem of learning a cross-view

matching function to efficiently match probe and gallery images. In the next section,

we present some works in literature that also addressed person re-identification learning

cross-view matching functions.

2.1.3 Cross-View Matching

In the following paragraphs, we present the main attempts to learn a cross-view match-

ing function to compute the similarity between images captured by different cameras.

In this setting, feature descriptors are combined with a cross-view matching function

learned using labeled and/or unlabeled images captured at each surveillance camera
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to obtain higher matching performance. In the following sections, we present these

works divided based on their main contribution as metric learning, common subspace

learning, information retrieval and unsupervised learning.

Metric Learning

Metric learning methods are motivated by the observation that the obtained results

are suboptimal when using state-of-the-art feature descriptors with a simple Euclidean

distance. Therefore, they use the pairwise (same or not-same) or triplet constraints to

learn a distance function that is smaller between pairs of the same person than when

considering different persons [Zheng et al., 2016]. The most commonly used metric is

the generalization of Euclidean distance considering scaling and rotations of feature

space - the Mahalanobis distance. In this formulation, the squared distance between

vectors xi and the xj is compute as

d(xi, xj) = (xi − xj)>M(xi − xj), (2.1)

where M is a positive semidefinite matrix. In the following paragraphs, we explain

different strategies to efficiently compute M.

One of the first works to address person re-identification as a distance metric

learning was proposed by Wei-Shi et al. [2011], where the authors maximize the proba-

bility of true pairs having smaller distances than wrong pairs using a costly optimization

framework. Differently, in KISSME [Koestinger et al., 2012], the authors assume that

the difference between samples are drawn from a Gaussian distribution to efficiently

compute a Mahalanobis distance using log likelihood ratio test. Actually, KISSME

is a two-step method that first needs to project the data into a low-dimensional sub-

space that eliminates dimension correlations to them properly learn the metric distance.

Therefore, Liao et al. [2015] learn a better Mahalanobis matrix considering the sub-

space and distance learning in a unique framework. Differently, Yang et al. [2016] learn

an improved distance function considering not only the differences between samples as

well the commonness - sum of two samples - have a Gaussian distribution. However,

these methods are based on strong assumptions about the distribution of the data,

which are not always true.

One possible solution consists in considering more general metric learning ap-

proaches. For instance, in WARCA [Jose and Fleuret, 2016], the authors learn a

global Mahalanobis distance in a low-dimensional subspace computed using orthonor-

mal regularization. Differently, NLML [Huang et al., 2015] learns multiple local and

nonlinear metric distances using neural networks and large margin optimization and
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MLAPG [Liao and Li, 2015] used a logistic metric learning model with an asymmetric

weighting strategy to address the imbalance between positive and negative samples.

Deep learning-based methods have been also explored in the distance metric learn-

ing for person re-identification. The idea consists in learning the feature representation

and metric distance in an end-to-end framework. For instance, in the DeepML [Yi

et al., 2014], the authors used a siamese network to match images captured by different

cameras based on a simple cosine distance, while Zheng et al. [2017b] employed verifica-

tion and identification losses. Similarly, Shi et al. [2015] applied the same architecture

to learn a constrained Mahalanobis distance, while Wang et al. [2016] included a triplet

loss function.

Triplet loss is widely used in the person re-identification problem. For instance,

MultiCNN [Cheng et al., 2016] applied the triplet loss function with a margin to learn

local and global feature representations and Ding et al. [2015] used triplet units in

the deep relative distance comparison framework. Similarly, McLaughlin et al. [2016a]

employed triplet loss jointly with pose, attributes and identity information in multi-task

framework that regularizes parameters and avoids overfitting. In Hermans et al. [2017],

the authors show that the triplet loss can be successful applied in person Re-ID with

the proper selection of architectures and hard-negative mining. More recently, Chen

et al. [2017] proposed a quadruplet loss with a larger inter-class variation and a smaller

intra-class variation than the triplet loss. The main drawback of these methods is that

they need a large amount of labeled data for each pair of cameras to learn a proper

matching function, which is unrealistic in real-world scenarios.

Subspace Learning

Subspace learning methods have been widely employed in supervised Re-ID approaches.

The idea is to compute a linear or nonlinear mapping function into a low-dimensional

subspace where the matching between images captured by different cameras is success-

ful even when using a simple cosine distance [Apurva and Shah., 2014; Zheng et al.,

2016]. These methods are closely related to the metric learning approaches, as we can

factorize the M (M = L>L) and, then, Equation 2.1 corresponds to a simple euclidean

distance in a learned common subspace.

The first work to address person re-identification as a subspace learning prob-

lem was proposed by An et al. [2013b], where the authors used Canonical Correlation

Analysis (CCA) to learn projection matrices that maximize the correlation of fea-

ture descriptors captured by a camera pair. After that, Liao et al. [2015] learned a

low-dimensional subspace using cross-view quadratic discriminant analysis (XQDA)
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and local Fisher discriminant analysis (LFDA) was used in [Pedagadi et al., 2013].

More importantly, in [Lisanti et al., 2014; Xiong et al., 2014], improved results are

achieved using a nonlinear mapping before computing the projection matrices. For

instance, Lisanti et al. [2014] proposed a nonlinear extension of CCA method - Ker-

nel CCA (KCCA) - obtaining improved results in the evaluated datasets. In fact, the

drastic appearance changes indicate a strong nonlinear behaviour of feature descriptors

when captured by different cameras. Nonetheless, these methods learn a common sub-

space for each pair of cameras and, therefore, are not scalable to scenarios with many

surveillance cameras. In addition, as they estimate covariance matrices using small

number of samples, they need to include regularization parameters that are dataset

specific and require a careful fine-tunning.

In this work, we also address person re-identification as a nonlinear subspace

learning problem. Nonetheless, differently from previous works, we propose a hierarchi-

cal nonlinear subspace learning model that can handle with multiple cameras efficiently

(Section 3.2). Furthermore, the proposed KPLS for subspace learning is robust to the

small-sample-size problem and does not require any regularization.

Information Retrieval

There are also efforts to close the gap between person Re-ID and information retrieval.

In this case, the goal is to explore strategies from information retrieval problems as

re-ranking, ranking aggregation and hashing methods to improve the obtained ranking

lists.

An et al. [2013a] address person re-identification as a re-ranking problem using

detection of soft-biometric attributes (e.g, short hair) and Liu et al. [2013] use human

strong and/or weak feedback in a post-rank optimization framework. To reduce the

human effort, unsupervised post-rank optimization methods have been proposed using a

least squares regression model with manifold regularization [Ma and Li, 2015] or content

and context information [Garcia et al., 2015; Zhong et al., 2017]. For instance, Zhong

et al. [2017] proposed a successful re-ranking approach based on the aggregation of

content (i.e. feature representation) and context (i.e. nearest neighbors) distances.

Some works have proposed a combination of multiple experts at decision level

using structural learning framework [Liu et al., 2015a; Paisitkriangkrai et al., 2015] or

ranking aggregation [Prates and Schwartz, 2015]. More recently, Deep Ranking [Chen

et al., 2016b] addressed Re-ID as a ranking problem to learn the feature representation

and ranking function in a unique deep learning framework, while Liu et al. [2018c]

proposed an end-to-end strategy that learns a discriminative binary coding using ad-



2. Related Works 21

versarial training to discriminate between real-valued and binary embedding.

Unsupervised Learning

The main drawback of the discussed methods is that they depend on the acquisition

of labeled training data at each camera, which restricts the applicability in real-world

scenario. Therefore, some works addressed person Re-ID as unsupervised problem.

In [Kodirov et al., 2015a], the authors iteratively learned a common dictionary

representation and sparse coding for a pair of cameras using unlabeled training data.

To include cross-view discriminative information, they used a graph Laplacian regu-

larization term that keeps similar images close to each other in the learned dictionary

representation. Differently, Kodirov et al. [2016] learned the graph representation and

dictionary in a unique framework that uses `1-regularized graph to alleviate outliers

problem and Lisanti et al. [2015a] used an iterative sparse representation method with

adaptive weighting strategies to successfully rank gallery images based on the recon-

struction error. More recently, Fan et al. [2018] proposed a clustering and sample selec-

tion algorithm that iteratively updates a CNN model based on an unlabeled database.

Despite these interesting works, the matching rates for unsupervised Re-ID are

by a large margin inferior to the supervised scenarios. Therefore, in this work, we focus

on the supervised person re-identification problem.

2.2 Multiple-Shot Person Re-Identification

In most of the real-world surveillance applications, we can collect multiple images of

the same person when walking through the cameras field-of-view. In fact, by using

multiple images of the same person in each surveillance camera, we can capture the

same person in different poses and illumination conditions. Therefore, several works

have been proposed in literature to transform the additional data provided by multiple

images into a useful information to match individuals in a pair of cameras [Apurva and

Shah., 2014; Zheng et al., 2016].

One of the main advantages of using multi-shot scenarios consists in the large

amount of information available for each individual. Thus, some works employ all the

images captured for each individual to perform person re-identification in supervised [Li

et al., 2015b] or unsupervised scenarios [Khan and Brémond, 2016; Khan and Bremond,

2016]. For instance, Li et al. [2015b] use all the images available for each individual

in training set to learn random forests in a low-dimensional subspace obtained by

random projections. They showed that using all the available images of a given probe,
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Figure 2.3: Ambiguity problem in multi-shot datasets. Each column shows images of different
datasets, while in the rows we have different persons that are dressing similarly. Based on
these images, we can notice that ambiguity is still a difficult problem when dealing with
multiple images. Illustration taken from [You et al., 2016].

they are able to select the most discriminative trees and improve the obtained results.

Differently, Khan and Bremond [2016] considered multiple images of the same person

as positive image pairs to learn a metric distance in an unsupervised manner, while

in Khan and Brémond [2016], the authors used a Multi Channel Appearance Mixture to

model appearance variations inside each camera as a Gaussian Mixture Model (GMM).

However, as these methods employed all the images available or just randomly selected

some images, they are introducing noise into the matching models due to the high

intra-camera appearance variability.

Some works tackled the appearance variability problem considering only a subset

of images of the same person when captured by different cameras. Therefore, the main

problem consists in finding a criterion to select the more reliable images for each camera

pair. For instance, Karanam et al. [2015] restricted the number of gallery images used

to represent a given probe image based on block-sparsity criterion. Then, they ranked

the gallery images based on the reconstruction error. Li et al. [2015a] proposed an

iterative procedure of hierarchical cluster and subspace learning that aims at selecting

the most discriminative states of each individual before learning a metric distance,

while Yang et al. [2011] performed key frame selection based on variations of color

and pose information. Differently, in Harandi et al. [2012], the authors used similar

and dissimilar pose images to learn two binary classifiers that boosted the recognition

rate and Cho and Yoon [2016] computed camera intrinsic and extrinsic parameters to

estimate four different poses (left, right, frontal and back) that are used when learning

pose-aware matching functions.

The main drawback of multi-shot methods is that they require much more storage

and computational cost when compared to single-shot scenario. Besides, the increased

computational cost is not followed by a proportional gain in the matching performance.

This occurs because problems that are present when dealing with single images, as

the ambiguity between individuals, are not completely solved when using multiple

images of the same individuals, as illustrated in Figure 2.3. In fact, You et al. [2016]



2. Related Works 23

experimentally demonstrated that these problems become even harder to solve.

2.3 Video-Based Person Re-Identification

Similarly to the multi-shot, video-based person Re-ID also overcomes some common

single-shot person Re-ID problems as pose, occlusion and illumination conditions. More

importantly, video provides spatiotemporal cues helpful to identify individuals in low-

resolution images and without the suspect collaboration. For instance, the gait infor-

mation - the way a person walks - can be captured using spatiotemporal features and

is important to match and align video sequences of the same person captured by differ-

ent cameras [Liu et al., 2015b]. Therefore, in this section, we discuss the video-based

person Re-ID problem focusing on the spatiotemporal information.

Early works on gait recognition are based on binary silhouette extraction to cap-

ture different stages of a walking cycle [Liu et al., 2015c]. Then, based on these cycles,

these methods temporally align different video sequences in such a way that it is pos-

sible to describe and match videos based on gait information extracted from silhouette

images or using the original RGB images. Examples of spatiotemporal descriptors

include the Image Self-Similarity Plot [BenAbdelkader et al., 2004], Gait Energy Im-

age [Han and Bhanu, 2006] and the Space-Time Interest Points [Kusakunniran, 2014].

Nonetheless, these descriptors are view-dependent and, then, their performance reduces

when dealing with multiple cameras (e.g. person re-identification) [Bashir et al., 2010].

Gait matching across different cameras is one the main challenges to face when

applying gait recognition methods in real-world applications [Bashir et al., 2010]. In

one of the first works to tackle this problem, Bashir et al. [2010] estimated the camera

viewpoint and maximized the correlation between gait-based feature descriptors ex-

tracted from different camera viewpoints in a common and low-dimensional subspace

learned using Canonical Correlation Analysis (CCA). However, as they used only gait

information, they discarded appearance features crucial to disambiguate individuals.

To combine gait and appearance information, Liu et al. [2015b] employed gait and

appearance descriptors to learn a unique Metric Learning to Rank (MLR) model that

explores the complementarity of gait and appearance information. Similarly, Kan Liu

and Huang [2015] also used gait information to both discriminate and temporally align

video sequences. However, instead of using the entire body information, they focused

on spatially aligned cuboid regions (body-action units) from where they extract fea-

ture descriptors. Differently, Gao et al. [2016b] compute walking cycles by detecting

displacements of lowest body parts regions estimated using superpixels. Thus, they
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could divide a walking cycle into segments and represent each segment using temporal

pooling. Despite the interesting results, these methods depend on the correct estima-

tive of the walking cycles, which is a very challenging task when we consider real-world

scenarios with heavy occlusion and cluttered backgrounds.

Some works improved temporal alignment using complementary information or

including a fragment selection criterion in the learned framework. For instance, Kawai

et al. [2012] learn multiple matching models, one for each pose, and explored gait to

both discriminate and synchronize video sequences. Differently, Wang et al. [2014]

compute the fragments importance and the matching function in a unique multi-task

framework that uses a pool of fragments. In Zhu et al. [2016], the authors add in the

metric learning a criterion to minimize the intra-video covariance while discriminating

between different videos. Similarly, You et al. [2016] learned discriminative features for

cross-view matching using average pooling in a top-push distance-learning model.

Some works tackled the problem of learning a single representation for an entire

video sequence using Recurrent Neural Network (RNN) architectures. Yan et al. [2016]

used a simple pipeline to combine frame-wise handcrafted descriptors with dynamic in-

formation available in the entire sequence using Long Short-Term Memories (LSTMs).

Differently, McLaughlin et al. [2016b] learned the feature representation and temporal

information in a unique framework that combines CNNs, RNNs and siamese network.

Since they use the image and optical flow information, they are able to correlate spa-

tiotemporal features from different stages of a video sequence. Recently, Liu et al.

[2018a] achieved improved results using a two-stream convolutional architecture that

learns motion contextual information instead of using optical flow.

2.4 Complementary Information for Person

Re-Identification

Only few works have addressed person re-identification using multimodal data (e.g.

depth and thermal images). Multimodal data provide complementary information to

appearance features that can be useful when matching images from different cam-

eras [Mogelmose et al., 2013]. For instance, Pala et al. [2015] addressed person re-

identification using a depth camera to extract nine anthropometric measures that are

more robust to pose changes, such as the person’s height. Differently, Mogelmose et al.

[2013] proposed a tri-modal method to combine RGB, depth and thermal data, as illus-

trated in Figure 2.4. Considering calibrated thermal and RGB-D cameras, they used

depth information to compute foreground mask from where RGB and thermal infor-
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Figure 2.4: Complementary sensor data for person re-identification. Left, middle and right
are the RGB, depth and thermal images, respectively. Based on these images, it is possible
to observe that these sensors are capturing different information that can be combined to
improve person re-identification results. Illustration taken from [Mogelmose et al., 2013].

mation are extracted. Despite the interesting results, these methods have a restricted

applicability due to the combination of high cost and short-range sensors.



Chapter 3

Subspace Learning

As mentioned in the previous chapters, one approach to correctly match images cap-

tured by different surveillance cameras consists in learning a common, usually low-

dimensional, subspace that correlates feature descriptors of individuals in training set

captured by different surveillance cameras. We can roughly divide subspace learning

literature in linear and nonlinear models. The first avoids the computation of costly

kernel functions and, therefore, is more scalable. Nonetheless, improved results are

reported when nonlinearly mapping the feature descriptors is performed before com-

puting the linear projections. In fact, nonlinear subspace learning models are simple

and straightforward extensions that can be efficiently computed using the “kernel trick”

(see Figure 3.1).

In this section, we present the proposed nonlinear subspace learning models:

the Kernel PLS for Subspace Learning (Section 3.1), the Kernel Hierarchical PCA

(Section 3.2) and the Kernel Multiblock PLS (Section 3.3). Finally, Section 3.4

outlines the main aspects of these methods.

Notation. We use the following notation in the description. Bold lower-case letters

denote column vectors and bold upper-case letters denote matrices (e.g., a and A,

respectively). We represent the ith image from probe and gallery cameras, as pi and

gi ∈ Rd, respectively, where d denotes the dimension of the feature space. Without

loss of generality, we assume that n testing images from probe camera constitute the

probe set P ∈ Rn×d and n testing images from gallery camera represent the gallery set

G ∈ Rn×d. Similarly, the set of all n training images from probe and gallery cameras

compose the matrices Xp and Xg ∈ Rn×d, respectively.

When describing the nonlinear extensions, we use φ(.) to denote a nonlinear

mapping function of input variables to a feature space F , i.e., φ : xi ∈ Rd → φ(xi) ∈ F

26
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Figure 3.1: Subspace Learning. First, feature descriptors from training images captured
from probe and gallery cameras are mapped to a high-dimensional feature space where linear
projections matrices are learned using some criterion. Then, probe and gallery are projected
onto the learned subspace and matched using the a simple cosine distance. Illustration
from [Prates and Schwartz, 2016].

and, ΦΦΦp and ΦΦΦg are the resulting matrices after nonlinearly mapping Xp and Xg,

respectively. In this dissertation, we apply the“kernel trick”to avoid explicitly mapping

the data into a high-dimensional space substituting the cross-product by K = ΦΦΦΦΦΦ>,

where K ∈ Rn×n is the kernel Gram matrix. Particularly, we define the kernel Gram

matrices Kp as

Kp =



k0
0 k0

1 · · · k0
n

k1
0 k1

1 · · · k1
n

...
...

. . .
...

kn0 kn1 · · · knn


, (3.1)

where kij ∈ R represents the computation of φ(xi)φ(xj)
> and, xi and xj are training

samples from the probe camera. Similarly, we compute the matrix Kg using training

samples from the gallery camera. Finally, we define the row-vector representation

kgi ∈ R1×n, whose element kgi (j) corresponds to the kernel function applied using

feature descriptors of the ith gallery image gi and the the jth training sample at the

gallery camera (xjg ∈ Xg). Similarly, for the ith probe image pi, we compute its vector

kpi ∈ R1×n using training images at probe camera (Xp).
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3.1 Kernel PLS for Subspace Learning

In this section, we use an adaptation of the classical Partial Least Squares (PLS)

to learn a low-dimensional subspace that maximizes the covariance between feature

descriptors extracted from probe and gallery cameras [Rosipal and Krämer, 2006],

which we coined as PLS for Subspace Learning.

PLS for Subspace Learning is a linear model and, improved results have been

reported in literature when addressing appearance changes caused by different camera

conditions using a nonlinear model [Lisanti et al., 2014; Xiong et al., 2014; Ma et al.,

2012c]. Therefore, we propose a nonlinear extension of the PLS for Subspace Learning,

the Kernel PLS for Subspace Learning. To the extent of our knowledge, we are the

first work to propose a Kernel PLS for Subspace Learning.

In the next sections, we first present the PLS for Subspace Learning model (Sec-

tion 3.1.1) to then introduce the necessary adaptations to obtain the proposed Kernel

PLS for Subspace Learning (Section 3.1.2).

3.1.1 Partial Least Squares for Subspace Learning

PLS is a statistical method that computes the regression between independent (X) and

dependent (Y) variables using score vectors t and u that are computed by means of

weight vectors w and c such that

[cov(t,u)]2 = max
|w|=|c|=1

[cov(Xw,Yc)]2, (3.2)

where cov(t,u) is the sample covariance between t and u. This problem is solved

by [Wold, 1985] using the nonlinear iterative partial least squares (NIPALS) method,

a robust procedure to solve singular value decomposition problems.

Despite being widely used at chemometrics [Wold, 1985; Westerhuis et al., 1998],

only recently PLS has attracted the attention of computer vision researches [Schwartz

et al., 2009; Schwartz and Davis, 2009a]. For instance, Schwartz and Davis [2009a]

used PLS regression models to weight high-dimensional feature descriptors based on

their discriminative power in an one-against-all approach. However, they assume that

subtle characteristics present in the gallery set will also be present in images captured

by the probe camera, which disregards the camera transition problem.

In this section, we present the PLS for Subspace Learning model that is the

PLS model indicated to deal with symmetric blocks of data (e.g. multiple camera-

views) [Rosipal and Krämer, 2006]. Similarly to Canonical Correlation Analysis (CCA),
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PLS for Subspace Learning is more suitable for modeling relationship between blocks

of variables in opposition to prediction purposes. However, differently from CCA, PLS

for Subspace Learning is robust to the small-sample-size as it does not require the

estimation of covariance matrices in the original feature space.

In Algorithm 1, we present the algorithm to obtain the latent factors for the PLS

for Subspace Learning model. It is a simple modification of the conventional NIPALS

algorithm that performs rank-one deflation of each block matrices using its associated

score and loadings. Therefore, instead of performing regression, we are only discovering

components on Xp that are also relevant for Xg. To compute the projections into a

low-dimensional subspace we use the approximation of Xp = TW>
p and the fact that

matrices T and Wp are orthonormal to obtain the following equations

Wp = X>p T

T = XpWp(W
>
pWp)

−1,
(3.3)

and, combing both equations, we achieve

Wp = X>p T(T>XpX
>
p T)−1, (3.4)

where matrix T ∈ Rn×f contains the computed score vectors (t ∈ Rn) for each factor

in Algorithm 1 and the number of factors f is a positive integer. Similarly, we can

compute the projection Wg ∈ Rd×f using the score vectors u ∈ Rn and the matrix Xg.

In the test stage, we use these projection matrices to compute the low-dimensional

representation for the ith testing image from probe and gallery cameras as

tpi = piWp and

tgi = giWg.
(3.5)

We assume that the learned subspace handles the camera transition problem. Then,

we perform the matching using the low-dimensional representation of probe (tpi ) and

gallery images (tgi ) and a simple cosine distance.

In the next section, we present a straightforward modification of Algorithm 1 to

tackle the nonlinearity of appearance changes that occurs in the person re-identification

problem.
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Algorithm 1: Partial Least Squares for Subspace Learning.

input : Xp, Xg matrices and the number of factors (f)

1 randomly initialize u and u0

2 for i=1 to f do
3 while ‖u− u0‖ > ε do
4 u0 ← u

5 w = X>p u

6 t = Xpw, t← t
‖t‖

7 c = X>g t

8 u = Xgc, u← u
‖u‖

9 end
10 Xp ← Xp − tt>Xp, Xg ← Xg − uu>Xg

11 end

3.1.2 Proposed Method

In this section, we present the proposed Kernel PLS for Subspace Learning and provide

the algorithm to compute the projection matrices.

The proposed Kernel PLS for Subspace Learning is closely related to the method

proposed by Lisanti et al. [2014] that uses Kernel Canonical Correlation Analysis

method (KCCA) in the person re-identification problem. However, instead of max-

imizing the correlation, the proposed method considers the covariance in the objective

function. Rewriting Equation 3.2 to include the relation between correlation and covari-

ance statistics, we obtain Equation 3.6. Therefore, the main advantage of the proposed

method consists in the fact that maximizing the covariance we are optimizing the cor-

relation as well capturing the variance at both input and output spaces [Sharma and

Jacobs, 2011].

[cov(t,u)]2 = max
|w|=|c|=1

[var(Xw)corr(Xw,Yc)var(Yc)]2. (3.6)

To nonlinearly correlate feature descriptors of the same person from probe and

gallery cameras, we use matrices Kp and Kg, which are computed using labeled image

pairs from both cameras. Specifically, we combine rows 6 and 7 from Algorithm 1,

obtaining

t = XpX
>
p u

t = Kpu.
(3.7)

Likewise, from rows 8 and 9, we compute the score u. Thus, using Algorithm 2 we
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obtain the score vectors T and U.

Algorithm 2: KPLS for Subspace Learning.

input : Kp, Kg matrices and the number of factors (f)

1 randomly initialize u and u0

2 for i=1 to f do
3 while ‖u− u0‖ > ε do
4 u0 ← u
5 t = Kpu, t← t

‖t‖
6 u = Kgt, u← u

‖u‖
7 end
8 Kp ← (I− tt>)Kp(I− tt>), Kg ← (I− uu>)Kg(I− uu>)

9 end

To project new samples onto the learned low-dimensional space, we define pro-

jection matrices Wp and Wg ∈ Rn×d that relate score vectors T and U with matrices

Kp and Kg, respectively, such that

T = KpWp and

U = KgWg,
(3.8)

where projection matrices Wp and Wg are computed as

Wp = T(T>KpT)−1 and

Wg = U(U>KgU)−1.
(3.9)

For the ith gallery image (gi) and the jth probe image (pj), we first compute

its kernel representation kgi and kpj , respectively. Then, we obtain its low-dimensional

representation as

tgi = kgiWg and

tpj = kpjWp.
(3.10)

Finally, we use the cosine between tpj and tgi as the similarity between pj and gi.

3.2 Kernel Hierarchical PCA

Despite being widely employed in chemometrics and biochemical process monitor-

ing [Westerhuis et al., 1998], Hierarchical PCA (HPCA) is not well known by the com-
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puter vision community. Therefore, we first introduce the Hierarchical PCA method

(Section 3.2.1) and, then, present the novel Kernel HPCA method that efficiently com-

putes the consensus projections into a common subspace (Section 3.2.2). It is important

to highlight that due to the hierarchical formulation, these models learn a unique sub-

space for the entire camera network. It is crucial for realistic person re-identification

systems as the number of pairwise models grow quadratically with the number of cam-

eras.

3.2.1 Hierarchical PCA (HPCA)

Principal Component Analysis (PCA) is a statistical method for unsupervised dimen-

sionality reduction that linearly project the data to a common latent subspace that

explains most of the variance among samples [Schölkopf et al., 1998]. Classical ap-

plications of PCA in computer vision include eigenfaces [Turk and Pentland, 1991],

eigengait [BenAbdelkader et al., 2001] and eigentracking [Black and Jepson, 1998].

However, while many computer vision problems present a strong nonlinear behavior,

PCA is a linear model. Therefore, Schölkopf et al. [1998] proposed an extension of PCA

that nonlinearly maps the data into a high-dimensional feature space and computes the

principal components using a “kernel trick”, which is known as Kernel PCA (KPCA).

Despite the success of PCA, there are few works that address person Re-ID prob-

lem using PCA-based methods [Martinel and Micheloni, 2014; Yang et al., 2011]. Mar-

tinel and Micheloni [2014] used PCA to learn a low-dimensional representation of im-

age dissimilarities and, then, train a binary classifier using equivalence constraints.

Differently, Yang et al. [2011] proposed an unsupervised approach that learns a low-

dimensional representation for each gallery images using KPCA. In fact, the small

number of samples in each class and the camera transition problem compose a chal-

lenging scenario to conventional PCA-based methods in the person Re-ID problem.

A possible solution to tackle the person Re-ID problem is to use multiblock mul-

tivariate models [Westerhuis et al., 1998]. These models have been employed when

additional information is available for grouping variables in a meaningful blocks (e.g.,

different camera views). For instance, Hierarchical PCA (HPCA) [Westerhuis et al.,

1998] is a multiblock extension of PCA that seeks for a consensus direction among all

blocks. HPCA is useful when there is a meaningful division of data into blocks. A

typical example corresponds to multiple measures of the same object (e.g., images of

the same subject captured by multiple cameras).

To enable a better understanding, we present a two-block NIPALS algorithm

and the description of this method. However, it is important to highlight that these
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methods can be easily adapted to handle multiple data blocks, not being limited to

two. To the best of our knowledge, this is the first work to propose a common subspace

learning model that can efficiently deal with more than two cameras simultaneously.

Algorithm 3 computes the HPCA model. It consists of the following stages. Let

Xp and Xg be two blocks of data, HPCA starts with a super score t ∈ Rn, which

is an initial guess of consensus and can be a column of these blocks. Then, this super

score is regressed on blocks Xp and Xg to compute the loadings wp, wg ∈ Rm. These

loadings are employed to compute the block scores sp and sg ∈ Rn for probe and

gallery cameras, respectively. Then, the normalized scores constitute the super block

S ∈ Rn×2. Finally, the super score t is regressed on the super block S to obtain the

super weight w ∈ Rm, which is used to update the value of super score t. This process

repeats until the convergence of super score t to a predefined precision. Thus, while

block scores (sp and sg) are resultant of block variables, the super score t is derived

using all variables. After the convergence, block variables Xp and Xg are deflated to

obtain a new score vector at the next iterations until reaching the expected number of

factors f , which is a parameter of the model.

Algorithm 3: Hierarchical PCA (HPCA)

input : Xp, Xg matrices and the number of factors (f)

1 randomly initialize t and t0
2 for i=1 to f do
3 while ‖t− t0‖ > ε do
4 t0 ← t

5 wp = X>p t

6 sp = Xpwp sp ← sp
‖sp‖

7 wg = X>g t

8 sg = Xgwg sg ← sg
‖sg‖

9 S← [sp, sg]

10 w = S>t
11 t = Sw t← t

‖t‖
12 end
13 Xp = Xp − tw>p , Xg = Xg − tw>g
14 end

In this dissertation, we assume that the learned common subspace deals with

appearance changes caused by the data capture executed by different cameras. There-

fore, it is possible to compute the similarity between individuals gi and pj using their

respective super scores tgi and tpj in a simple nearest neighbor method. Similarly to the

previous methods, the equation for computing this super score can be obtained using
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the orthonormal constraint and the approximation of Xp = TWp as

tpj = pjX
>
p T(T>XpX

>
p T)−1, (3.11)

where T ∈ Rn×f is constructed storing the computed super scores t for each factor.

Similarly, we can compute the super scores tgi for a testing sample gi using Xg in

Equation 3.11. Then, the matching between probe and gallery images is based on the

cosine between super scores tpj and tgi .

3.2.2 Proposed Method

The complex appearance changes in images of the same individual captured by distinct

cameras and the high matching performance of recent nonlinear person Re-ID mod-

els [Lisanti et al., 2014; Xiong et al., 2014; Ma et al., 2012c] suggest that we can reach

improved results using nonlinear subspace learning models. Therefore, in this section,

we present a kernel extension to HPCA model, which we call Kernel HPCA. To the

best of our knowledge, this is the first kernel extension to the multiblock PCA method.

Kernel HPCA relates data blocks nonlinearly with principal components to ob-

tain block scores (sp and sg). Therefore, our proposed method captures high-order

correlation between input variables to learn the common latent subspace. Further-

more, we present an efficient derivation of NIPALS algorithm to iteratively compute

the principal components (or factors) of Kernel HPCA.

We assume the nonlinear transformation of the input variables from probe and

gallery cameras (blocks) as the kernel Gram matrices Kp and Kg, respectively. Thus,

combining rows 6 and 7 from Algorithm 3 and applying the nonlinear transformation,

we obtain that

sp = Kpt. (3.12)

Likewise, we rewrite rows 8 and 9 from Algorithm 3 as

sg = Kgt. (3.13)

Then, we derive a rank-one approximation of kernel Gram matrix Kp as

Kp ≈ tt>Kp. (3.14)
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An analogous rank-one approximation to kernel Gram matrix Kg results in

Kg ≈ tt>Kg. (3.15)

Algorithm 4: Kernel Hierarchical PCA (Kernel HPCA).

input : Kp, Kg and the number of factors (f)

1 randomly initialize t and t0
2 for i=1 to f do
3 while ‖t− t0‖ > ε do
4 t0 ← t
5 sp = Kpt, sp ← sp

‖sp‖
6 sg = Kgt, sg ← sg

‖sg‖
7 S← [sp, sg]

8 w = S>t
9 t = Sw t← t

‖t‖
10 end
11 Kp ← Kp − tt>Kp, Kg ← Kg − tt>Kg

12 end

Algorithm 4 presents our Kernel HPCA method. Kernel HPCA is based on the

NIPALS algorithm for the computation of Hierarchical PCA with the required modifi-

cations to efficiently handle the nonlinear transformation of input variables. Similarly

to HPCA, Kernel HPCA computes an orthonormal matrix T ∈ Rm×f whose columns

store the super scores t obtained at each iteration. Thus, using the nonlinear mapping,

we compute the super score pj for the jth image from probe camera using its kernel

representation kpj as

tpj = kpjT(T>KpT)−1. (3.16)

Identically, we compute the super score gi for the ith image from gallery camera using

its kernel representation kgi as

tgi = kgiT(T>KgT)−1. (3.17)

Similarly to HPCA model, we assume that the learned subspace handles the cam-

era transition problem and the direct comparison between samples from different blocks

results in a high performance when using their super scores. However, due the nonlin-

ear transformation in the input variables, we believe that the common subspace learned
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with Kernel HPCA method is able to handle more complex feature transitions. Exper-

imental results (see Section 5.2) corroborate our hypothesis with great improvement

when compared with its counterpart - the HPCA model.

3.3 Kernel Multiblock Partial Least Squares

In this section, we discuss the Multiblock PLS (Section 3.3.1) and, then, present the

novel Kernel Multiblock PLS (Section 3.3.2). Similarly to the HPCA, the Multiblock

PLS also learns projections into a low-dimensional subspace using the input data di-

vided into multiblocks. Differently, it simultaneously learns a regression between latent

vectors and response variables (e.g. identity labels) in the latent space.

3.3.1 Multiblock PLS (MBPLS)

The multiblock Partial Least Squares (MBPLS) is commonly used to isolate the impact

of different measures on the output in chemometrics [Brás et al., 2005] and process

monitoring and control [MacGregor et al., 1994]. For instance, in [Brás et al., 2005],

the authors analyse a chemical process using multiblock PLS that considers as input

near-infrared and mid-infrared sensors. To the best of our knowledge MBPLS has not

been applied in the computer vision or image processing problems. Therefore, in the

next paragraphs, we introduce the MBPLS.

Multiblock PLS is useful when the independent variable (X) can be divided into

meaningful blocks, such as multiple measures from the same object [Westerhuis et al.,

1998]. These blocks are useful to compute the individual contribution in the response

and improve the learned latent representation. MBPLS accomplishes that by learning

block-specific projections that drive the different blocks of data to a common score

vector t and, therefore, correlates them in a common subspace. More importantly, the

score vector t is iteratively updated based on the covariance between the response vector

and the block scores. This process is repeated for each factor after the deflation of data

and response matrices. In the following, we present a brief mathematical description

of the MBPLS model. For a more detailed discussion, please refer to work [MacGregor

et al., 1994].

Let matrices Xp and Xg ∈ Rn×d be our data (X) divided into two blocks and

Y ∈ Rn×l be the matrix with the regression responses. MBPLS starts with a random

guess for the latent score t ∈ Rn. Then, this score is regressed on blocks Xp and Xg to

compute the loadings wp and wg ∈ Rd. Block variables are multiplied by the estimated

loading vectors to compute the block-specific score vectors sp and sg ∈ Rn, which are
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normalized to unit length and concatenated in a super block S ∈ Rn×2. As these score

vectors are computed aiming to approximate the score vector t, a regression between

S and t is performed to obtain the weight vector w ∈ R2, where wi corresponds to

the importance of the ith data block in the regression model, and a single score vector

u ∈ Rn that combines information from multiple blocks. Finally, t is updated to be the

result of the regression of Y into u. This process repeats until the convergence of score

t to a predefined precision. After the convergence, the input variables are deflated to

obtain a different score vector at each iteration. This process repeats f times, where f

is the number of latent scores – the only parameter of the MBPLS model.

Algorithm 5: Multiblock PLS (MBPLS )

input : Xp, Xg, Y matrices and the number of factors (f)

1 randomly initialize t and t0
2 for i=1 to f do
3 while ‖t− t0‖ > ε do
4 t0 ← t

5 wp = X>p t

6 sp = Xpwp sp ← sp
‖sp‖

7 wg = X>g t

8 sg = Xgwg sg ← sg
‖sg‖

9 S← [sp, sg]

10 w = S>t
11 u = Sw u← u

‖u‖

12 q = Y>u
13 t = Yq/q>q

14 end
15 Xp = Xp − tt>Xp, Xg = Xg − tt>Xg, Y = Y− tt>Y

16 end

Let Wp ∈ Rd×f be a projection matrix obtained by storing the loading vector wp

computed at each iteration of Algorithm 5. Similarly, T ∈ Rn×f is matrix of scores

t obtained at all the f iterations. Due to the normalization and deflation steps of

MBPLS, T matrix is orthonormal (T>T = I). Therefore, similarly to the previous

approaches, the closed-form solution of Wp is obtained as

Xp = TW>
p ,

Wp = X>p T.
(3.18)

Thus, we can compute the regression coefficients (βp ∈ Rd×l) according to Bennett
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et al. [2003] as

βp = Wp(T
>XpWp)

−1T>Y. (3.19)

Finally, combining Equations 3.18 and 3.19, we obtain the regression response ŷp for

x̂p as

ŷp = x̂pβp,

ŷp = x̂pX
>
p T(T>XpX

>
p T)−1T>Y.

(3.20)

Similarly, we can compute the regression response ŷg for a sample from the gallery

camera (x̂g) using Xg and T based on the Equation 3.20.

3.3.2 Proposed Method

In this section, we describe the proposed Kernel MBPLS that nonlinearly relates data

blocks and responses in a learned latent space. Despite its simplicity, the proposed

method captures high-order correlations between input variables and responses. Fur-

thermore, we show how to efficiently compute the regression coefficients of the Kernel

MBPLS.

Considering the kernel Gram matrices Kp and Kg computed using training sam-

ples from probe and gallery cameras, respectively. Thus, combining rows 6 and 7 from

Algorithm 5 to consider the nonlinear mapping, we obtain that

sp = Kpt. (3.21)

Similarly, we rewrite the deflation equations from row 16, in Algorithm 5, multiplying

both sides by X>p and applying the nonlinear mapping to obtain the rank-1 deflation

as

Kp = Kp − tt>Kp. (3.22)

Algorithm 6 presents our Kernel MBPLS method that efficiently handles the

nonlinear mapping of the multiblock data. Thus, employing the “kernel trick” in Equa-

tion 3.20, we obtain

ŷp = kpjT(T>KpT)−1T>Y, (3.23)
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Algorithm 6: Kernel Multiblock PLS (Kernel MBPLS)

input : Kp, Kg, Y matrices and the number of factors (f)

1 randomly initialize t and t0
2 for i=1 to f do
3 while ‖t− t0‖ > ε do
4 t0 ← t
5 sp = Kpt sp ← sp

‖sp‖
6 sg = Kgt sg ← sg

‖sg‖
7 S← [sp, sg]

8 w = S>t
9 u = Sw u← u

‖u‖

10 q = Y>u
11 t = Yq/q>q

12 end
13 Kp = Kp − tt>Kp, Kg = Kg − tt>Kg, Y = Y− tt>Y

14 end

where kpj is the kernel representation of the jth probe image (pj).

The response matrix Y assumes the form

Y =



1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0nC
0nC

· · · 1nC


, (3.24)

where scalar C and ni represents the number of classes and number of samples in class

Ci, respectively. 1ni
and 0ni

denote a ni×1 vector of ones or zeros, respectively. Notice

that we do not perform the feature mapping in matrix Y as we aiming at predict its

actual values.

In this work, we use the regression responses ŷi and ŷj as discriminative signature

of samples from data blocks i and j (i.e., two distinct surveillance cameras). Specifically,

the similarity between i and j (s(i, j)) is computed using the cosine similarity between

ŷi and ŷj as

s(i, j) = ŷiŷj/ ‖ ŷi ‖‖ ŷj ‖ . (3.25)
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3.4 Final Remarks

In this chapter, we presented the three proposed approaches to tackle the person re-

identification as a nonlinear subspace learning problem. These methods address the

camera transition problem by projecting the data in a common subspace where a

more robust and discriminative representation is obtained. Specifically, we presented

the Kernel PLS for Subspace Learning, the Kernel Hierarchical PCA and the Kernel

Multiblock PLS. In the followings paragraphs we summarize the main aspects of these

methods.

The Kernel PLS for Subspace Learning learns a common and low-dimensional

representation that maximizes the covariance between feature descriptors of the same

individuals extracted from two non-overlapping cameras. It is based on the classical

NIPALS formulation and, therefore, is limited to a pair cameras for model. Differently,

the Kernel Hierarchical PCA employs a hierarchical formulation allowing that feature

descriptors from multiple cameras to be integrated in a unique common subspace that

scales linearly with the number of surveillance cameras.

Kernel Multiblock PLS is also a hierarchical model that scales linearly with the

number of surveillance cameras. In addition, it allows the inclusion of additional labels,

such as attributes, in a response Y and, therefore, better handles with the ambiguity

problem.



Chapter 4

Indirect Matching

One of the main challenges addressed in the person re-identification is the drastic mod-

ification in the appearance of individuals as a result of the different camera acquisition

conditions. In this chapter, we avoid the direct comparison between feature descriptors

extracted from different cameras by using the proposed indirect matching strategy. Our

main assumption is that two individuals whose images are similar when captured by a

first camera will remain similar when captured by second camera. Thus, instead of di-

rectly comparing images obtained from different cameras, we compare them indirectly

based on the similarity with individuals in a training set.

In the following sections, we present the three endeavors to indirectly matching

probe and gallery images. The Prototype-based Person Re-Identification (Section 4.1),

the Cross-View Kernel PLS (Section 4.2) and Cross-View Kernel Collaborative Repre-

sentation based Classification (Section 4.3). When describing these methods, we used

the same notation presented in Chapter 3. Finally, Section 4.4 summarizes the main

characteristics of these approaches.

4.1 Prototype-Based Person Re-Identification

In this section, we present the Prototype-based Person Re-Identification method that

indirectly matches probe and gallery images using prototypes. The main idea is that

we can use the ambiguity between different persons to discover similar individuals for a

given sample (probe or gallery image) in the training set, which we coined as the proto-

types. Then, using these individuals, we can learn models at the specific cameras where

the models will be deployed, bypassing the camera transition problem (see Figure 4.1).

More importantly, we explore the close relation between person re-identification and

41
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Figure 4.1: For a given sample (probe or gallery image), we compute the similarity with
training samples captured by the same camera to determine the most similar individuals,
which constitute the prototypes. Then, we use the class information to transit to the opposite
camera where the models are learned and deployed.

information retrieval approaches and propose to combine complementary ranking lists

using a ranking aggregation method.

The proposed prototype-based person re-identification model shares some aspects

with methods from literature. Similarly to Liu et al. [2012], we also compute the feature

importance for each probe and gallery images adaptively. However, instead of using an

unsupervised approach, we use the class information to shift between cameras avoiding

between cameras comparison. In An et al. [2013b], the authors also indirectly compare

probe and gallery images using training samples. In fact, they learn a common subspace

where they compare probe and gallery images using the similarity with all training

images captured at the respective cameras. Differently, we use the idea of prototypes

and our goal is to compute the feature importance adaptively, considering probe and

gallery appearances. The idea of prototypes was explored in Guo et al. [2007] to handle

with drastic appearance variations caused by non-overlapping cameras. Nonetheless,

they deal with the problem of vehicle recognition and the prototypes are synthetic

images instead of real images captured by each camera.

In the following sections, we present the proposed method in more details. Specif-

ically, Section 4.1.1 presents the prototype discovery approach where we define a subset

of similar individuals in training set for a specific sample image. Then, Section 4.1.2

presents the model learned to weight the feature descriptors accordingly to information

present in the prototypes. Finally, Section 4.1.3 shows how complementary ranking lists

are obtained starting from probe or gallery image.
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4.1.1 Prototype Discovery

In short, the prototype discovery consists in computing the similarity between images

captured by the same camera. These similarities are crucial as they provide the iden-

tity information that we can use to seamless move between different cameras in the

training set. We accomplish that using a robust feature representation and a discrimi-

native model to weight the feature descriptor accordingly with the importance. More

specifically, we use well-known feature descriptors in person re-identification commu-

nity to capture the appearance information and the one-shot similarity (OSS) [Wolf

et al., 2009] to compute similarity between images.

In the OSS, the similarity between two images is computed using two discrim-

inative model and a fixed subset of negatives images, denoted as background subset.

Each model focuses on learning the discerning characteristics of a given sample when

compared to the background. Algorithm 7 presents the OSS algorithm to compute the

similarity between the ith sample image (probe or gallery) and the jth training image

captured by the same camera, represented by si and tj, respectively. Notice that si (tj)

is deployed in the model learned using the background and tj (si). Thus, the scores

will be as higher as more similar are si and tj.

The background subset (B) can be any set of images without intersection with

the images that we want to compute the similarity. For instance, when computing

the similarity between a probe image and the training images captured by the probe

camera, we use as background subset training images captured by the gallery camera.

In addition, we use the Partial Least Squares (PLS) regression as the discriminative

models. PLS fits well in the person re-identification problem as it handles with the

high-dimensional feature descriptor and the multicollinearity problem [Schwartz and

Davis, 2009b].

Algorithm 7: One-Shot-Similarity (OSS)

input : si, tj vectors and the background subset (B)

1 model1 ← PLS (si, B), model2 ← PLS (tj, B)
2 score1 = model1 (tj), score2 = model2 (si)
3

4 score← score1+score2
2

5 return score

After computing the similarity between a given sample and training images, we

return the K most similar images in the training set and their respective identities,

where K is a parameter of the model. It is important to highlight that using the
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identity information available for the training samples, we can obtain the prototypes

subset at any camera.

4.1.2 Prototype Modeling

In this section, we present the prototype modeling that uses the prototypes to learn

representative models in the cameras where the models will be deployed. For instance,

for a probe image, we discover the prototypes in the probe camera but we use the

class information to learn the subtle characteristics present in the prototypes using the

training images at the gallery camera. Consequently, we can indirectly compute the

similarity between probe and a gallery image using this prototype model.

Similarly to the prototype discovery, we also use the PLS regression model to

weight the feature descriptor based on its discriminative power. However, instead of

using as negative samples images captured by a different cameras (e.g., background

subset) as in the OSS model, we use the training images captured by the same camera

but not present in the prototype subset. Therefore, we can focus on the nuances that

discriminate the prototypes from the remaining images captured in the same camera

instead of artefacts that appear due to different camera conditions.

Once we learn the prototype model for a given sample, we can compute the

similarity with any image captured by an opposite camera. For instance, when we

learn the prototype model for a probe (gallery), we can use this model compute the

similarity with the gallery (probe) images.

4.1.3 Sample Ranking

Previous section explains how to learn prototypes model for a given sample image. In

this section, we show that probe and gallery images can be used to compute probe-

and gallery-based ranking lists, respectively. Then, we present a ranking aggregation

method to combine both ranking lists in an improved prototypes result.

The gallery-based ranking list is computed using as sample a gallery image. Thus,

for each gallery image we learn a prototype model in the probe camera and then, we

use this model to compute the similarity between a given probe and the respective

gallery image. Differently, the probe-based ranking lists learns the prototypes model in

the gallery camera and projects all the gallery images in this unique model to compute

the similarity with the given probe. To compute the probe-based ranking list, we

have to consider Figure 4.1 in direction left-to-right, while the right-to-left direction
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corresponds to the gallery-based ranking list. Notice that both ranking lists consist on

the gallery images sorted in descending order of similarity with a given probe.

In this dissertation, we assume that probe- and gallery-based ranking lists have

complementary information and combine their results using a ranking aggregation

strategy. Specifically, we employ the Stuart ranking aggregation method [Stuart et al.,

2003] that was proposed to handle lists of genes and is robust to noisy information and

scalable, which are necessary requisites for the person Re-ID problem.

Finally, the obtained ranking list corresponds to an indirect matching of probe and

gallery images using prototypes. However, the usual approach in in literature consists in

directly matching probe and gallery images. For instance, KISSME [Koestinger et al.,

2012] is a well-known metric learning method that computes a Mahalanobis distance

based on a likelihood ratio test. We claim that due to the different strategies, the

proposed prototype-based method is complementary to KISSME, and combine them

using ranking aggregation. The obtained experimental results (see Section 5.4) confirm

our expectation with improved results when combining both approaches.

4.2 Cross-View Kernel PLS

In Section 4.1, we presented our first attempt to indirectly handle the camera transition

and weight the feature descriptors based on their discriminative power. However, the

prototype-based approach depends on the discovery of a prototype subset, which is

difficult due to variations of illumination and background that occur even in a fixed

camera. In addition, the prototype modeling is based on a linear model, while state-

of-the-art methods have shown improved working in a nonlinear feature space.

In this section, we present the Cross-View Kernel PLS (X-KPLS) method that

computes a robust representation for a given sample using the entire training set at

their respective camera based on a nonlinear regression model. More importantly,

we learn the nonlinear regression model to map the feature descriptors into different

vertices of a regular simplex, which ensures the best separability between classes and

then, the model generalization [Vapnik, 1998]. Thus, we obtain a novel representation

that is robust to the different camera conditions and has a dimensionality that depends

uniquely on the number of images in the training set.

Indirectly matching probe and gallery images based on the similarity with the

entire training set is not novel in person re-identification. An et al. [2013b] described

probe and gallery images based on the similarity with training samples. They computed

the similarity in a low-dimensional subspace that maximizes the correlation between
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Figure 4.2: Schematic representation of the proposed X-KPLS model. In the training stage,
we learn for each camera a nonlinear regression model that maps the feature descriptor
extracted from training samples to vertices of a regular simplex. Then, in the testing stage,
we apply probe and gallery images in the learned regression models to compare them using
the regression responses and a similarity function.

images captured from different cameras. Despite the similar ideas, X-KPLS works in

a nonlinear feature space and uses a regression model to compute the low-dimensional

signatures of probe and gallery images.

In the following sections, we present the proposed X-KPLS method. First, Sec-

tion 4.2.1 presents a brief introduction regarding the Kernel Partial Least Squares

(KPLS) method. Then, we present the X-KPLS model that computes signatures for

probe and gallery images as the regression responses computed by the camera-specific

KPLS models in Section 4.2.2. Figure 4.2 illustrates the proposed X-KPLS method.

4.2.1 Kernel Partial Least Squares (KPLS)

In this section, we present a brief description of the Kernel PLS, which is a straightfor-

ward extension of the PLS regression model. In the following paragraphs, we consider
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the input feature descriptor and responses as the zero-mean matrices X ∈ Rn×m and

Y ∈ Rn×q, respectively.

The main idea in Kernel PLS consists in nonlinearly transform the input variables

to a feature space F , i.e, ΦΦΦ : xi ∈ Rm → ΦΦΦ(xi) ∈ F , such that a linear regression in

F corresponds to a nonlinear regression at the original space Rm. However, instead of

explicitly map the data into the high-dimensional space, the Kernel PLS model uses

the “kernel trick” to substitute the cross-product by Kx = ΦΦΦΦΦΦ>, where Kx ∈ Rn×n is

the kernel Gram matrix.

Algorithm 8: Kernel Partial Least Squares (KPLS).

input : Kx, Y matrices and the number of factors (f)

1 randomly initialize u and u0

2 for i=1 to f do
3 while ‖u− u0‖ > ε do
4 u0 ← u
5 t = Kxw, t← t

‖t‖

6 c = Y>t
7 u = Yc, u← u

‖u‖
8 end
9 Kx ← (I− tt>)Kx(I− tt>)

10 Y← Y− tt>Y

11 end

Algorithm 8 presents the Kernel PLS method proposed in Rosipal and Trejo

[2002]. Note that they do not perform a nonlinear map from Y onto a high-dimensional

space, since they want to predict Y from Kx. For instance, in classification problems,

the response matrix Y assumes the form

Y =



1n1 0n1 · · · 0n1

0n2 1n2 · · · 0n2

...
...

. . .
...

0nC
0nC

· · · 1nC


, (4.1)

where scalar C represents the number of classes and ni indicates the number of samples

in class Ci. 1ni
and 0ni

denote a ni × 1 vector of ones or zeros, respectively. In fact,

this strategy also has the advantage of promoting the best separability of training data

and generalization ability of the learned model [Vapnik, 1998].
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Finally, KPLS predicts the responses as Y ≈ ΦB. Thus, for the training and

testing data, we obtain the responses Ŷ and Ŷt ∈ Rn, respectively, as

Ŷ = TT>Y and

Ŷt = ktU(T>KxU)−1T>Y,
(4.2)

where matrices T and U ∈ Rn×f contain the computed score vectors from Algortihm 8,

and kt ∈ Rn consists of the computation of Φ(x)ΦΦΦ>, which corresponds to the kernel

function applied using a given sample x and the training images X.

4.2.2 Proposed Method

In this section, we present the proposed X-KPLS method that learns a Kernel PLS

regression model for each camera. These regression models map feature descriptors of

the same class to the same vertex of a regular simplex, which is only possible due to the

class information available in the training set. Thus, when computing the regression

response for probe and gallery images, we can use the models learned at probe and

gallery cameras, respectively. Figure 4.2 schematically represents the X-KPLS method.

X-KPLS represents the ith probe image (pi) and the jth gallery image (gj) using

training images at their respective cameras, Xp and Xg, respectively, based on camera-

specific KPLS models. To achieve that, we first use Algorithm 8 to learn two nonlinear

regression models - one for probe and the other for gallery camera. These models

are learned for the probe and gallery using as output (Y) a response matrix defined

accordingly to Equation 4.1, and the input matrix (X) consists of the feature descriptors

extracted from training samples at their respective cameras (see Algorithm 9).

In the testing stage, to represent a probe image (pi), we first define the matrix Kp,

whose element i, j is the result of a kernel function using as input the feature descriptors

xip and xjp. Then, using Algorithm 9, we compute the probe’s signature Ŷ
i

p accordingly

to Equation 4.2, where matrices T and U are obtained using Algorithm 8. Similarly,

we compute the signature for jth gallery image Ŷ
j

g using the training images at camera

gallery camera (Xg). Notice that these signatures have values proportional to the

similarity between probe and gallery images with training samples at their respective

cameras. Therefore, use signatures Ŷ
pi

t and Ŷ
gj

t to indirectly compare the probe image

pi and gallery image gj using the cosine similarity.
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Algorithm 9: Cross-View Kernel PLS (X-KPLS)

input : Xp, Xg are input matrices and, kpi , k
g
j are row-vectors

1 modelp ← KPLS (Xp, Y), modelg ← KPLS (Xg, Y)

2 Ŷ
i

p = modelp (kpi ), Ŷ
j

g = modelg (kgj )

3 score← Ŷ
i
pŶ

j
g

‖Ŷi
p‖‖Ŷ

j
g‖

4 return score

4.3 Kernel Cross-View Collaborative Representation

based Classification

In this section, we propose a novel method to address the person Re-ID problem using

a nonlinear supervised Collaborative Representation based Classification (CRC) frame-

work, the Kernel Cross-View Collaborative Representation based Classification (Kernel

X-CRC). Kernel X-CRC efficiently represents each pair probe p and gallery g images

collaboratively using its camera-view specific training samples Xp and Xg, respectively.

Some works also investigate the person re-identification problem using sparse or

collaborative representations [Lisanti et al., 2015b; Zeng et al., 2015; Karanam et al.,

2015; Harandi et al., 2012; Kodirov et al., 2015b]. Kernel X-CRC has some key ad-

vantages when compared to the these methods. For instance, Kernel X-CRC is a

general method that does not assume a block structure in the coefficients represen-

tation as occurs in Karanam et al. [2015]. Differently from dictionary learning-based

approaches [Harandi et al., 2012; Kodirov et al., 2015b], our work represents probe and

gallery images using training samples, which avoids solving costly optimization prob-

lems without sacrificing the matching rate. More importantly, different from previous

works [Lisanti et al., 2015b; Karanam et al., 2015; Harandi et al., 2012; Kodirov et al.,

2015b], we efficiently model the strong nonlinear transition of features between cameras

achieving an analytical solution.

To the best of our knowledge, this is the first work addressing the person re-

identification problem as a multi-task collaborative representation problem. Further-

more, it is important to emphasize that, even though employed to the person re-

identification problem, the proposed approach provides a general framework to other

multi-view computer vision problems, such as the matching of multi-modal biometrics.

In the following sections, we first discuss the Collaborative Representation based

Classification in the context of person re-identification (Section 4.3.1) and, then, we

present the novel Kernel X-CRC method (Section 4.3.2) that computes the similarity

between probe and gallery images based on its respective coding vectors.
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4.3.1 Collaborative Representation based Classification

In this section, we present the Collaborative Representation based Classification (CRC)

method and show a simple adaptation to consider the person re-identification problem.

Then, we motivate the proposed Kernel X-CRC method.

Due to the lack of available samples or the high cost of collecting and annotating

a large number images for each individual captured by different cameras, conventional

person re-identification datasets contain only hundreds of individuals. In this scenario,

we have to deal with the small-sample-size problem. It is also a common problem in the

face identification task that has been addressed coding a query (probe) sample as sparse

(SRC [Wright et al., 2010]) or collaborative (CRC [Zhang et al., 2012]) combination of

the gallery samples. Thus, the ith probe image (pi) is represented using a gallery-set

G with proper regularization term as

min
α
‖ pi −Gααα ‖22 +λ ‖ ααα ‖r, (4.3)

where λ is a scalar and ααα is the sparse (r = 1) or the collaborative (r = 2) coding

vector [Zhang et al., 2012; Wright et al., 2010]. Then, the probe image is assigned to

the class that results in the smallest reconstruction error.

Equation 4.3 directly reconstructs a probe image using gallery samples, which

is only reasonable when probe and gallery images are feature descriptors from the

same modality (e.g. same cameras). Therefore, this formulation will result in poor

matching performance when directly applied in person re-identification as consequence

of the camera transition problem. Therefore, in this work, we consider the problem

of adapting this model to handle the person re-identification scenario. Specifically, we

focus on the collaborative representation problem as it presents an analytical solution.

A straightforward attempt to adapt the collaborative representation to the person

re-identification problem would be to compute the collaborative representation coeffi-

cients (coding vectors) αααp and αααg by solving the camera-specific optimization problems

min
αααp

‖ pi −Xpαααp ‖22 +λ ‖ αααp ‖22 and min
αααg

‖ gj −Xgαααg ‖22 +λ ‖ αααg ‖22, (4.4)

where each linear regularized model represents the probe or the gallery image using the

respective images in the training set (Xp or Xg). Therefore, similar coding coefficients

would be expected when pi and gj correspond to the same individual acquired from

different cameras (i = j). Then, the matching between probe and gallery images

occurs indirectly using the coding vectors (αααp and αααg). Note that Xg and Xp can be

any representation of the training images able to balance discriminative power and
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Figure 4.3: Schematic representation of the proposed Kernel X-CRC method. For a pair of
probe and gallery images, we compute the coding vectors (αp and αg) that collaboratively
represent them using training samples captured at their respective camera. A similarity term
balances the trade-off between representativeness and similarity. Illustration from [Prates
and Schwartz, 2018].

robustness to camera transition. In fact, we show in the experimental results that we

reach improved matching rates when working in a learned common subspaces.

Equation 4.4 considers probe and gallery cameras independently while elements

αααig and αααip are the coding vectors of ith individual in training set. Therefore, a better

model should consider not only the representativeness in each camera, but also the

similarity between αααp and αααg in a unique multi-task framework. In addition, better

results have been reported working in a nonlinear feature space [Lisanti et al., 2014].

4.3.2 Proposed Approach

Considering as related tasks the representation of probe and gallery images using train-

ing images from their respective cameras, the proposed Kernel X-CRC model simul-

taneously estimates αααg and αααp in a multi-task collaborative representation framework.

Thus, we aim at estimating the most similar coding vectors αααg and αααp that simul-

taneously describe probe and gallery subjects. To compute these coding vectors, we

introduce a similarity term ‖ αααp − αααg ‖22 in our multi-task formulation that balances

representativeness and similarity, as illustrated in Figure 4.3.

The proposed Kernel X-CRC model results in the following optimization problem

min
αααg ,αααp

‖ φ(p)−ΦΦΦpαααp ‖22 + ‖ φ(g)−ΦΦΦgαααg ‖22

+λ ‖ αααp ‖22 +λ ‖ αααg ‖22 +τ ‖ αααp −αααg ‖22,
(4.5)

where φ(.) is a nonlinear function and, ΦΦΦg and ΦΦΦp are resulting nonlinear mapping

of Xg and Xp, respectively. that we analytically derived with respect to αααp and αααg



4. Indirect Matching 52

obtaining

αααp = A−1p αααg + A−1p ΦΦΦ>p φ(p) and αααg = A−1g αααp + A−1g ΦΦΦ>g φ(g), (4.6)

where projections matrices Ap and Ag are given by

Ap = ΦΦΦ>p ΦΦΦp + (λ+ τ)I and Ag = ΦΦΦ>g ΦΦΦg + (λ+ τ)I. (4.7)

Note that the Equations in 4.6 are interdependent. Therefore, replacing αααg and isolat-

ing αααp, we obtain

αααp = τQ−1A−1p A−1g ΦΦΦ>g φ(g) + Q−1A−1p ΦΦΦ>p φ(p) (4.8)

with projection matrix Q corresponding to

Q = I− τ 2A−1p A−1g . (4.9)

Similarly, we can compute the coding vector αααg as

αααg = τW−1A−1g A−1p ΦΦΦ>p φ(p) + W−1A−1g ΦΦΦ>g φ(g) (4.10)

with W computed as

W = I− τ 2A−1g A−1p . (4.11)

To avoid explicitly mapping of data to a high-dimensional space, we can use the

“kernel trick” substituting cross-product ΦΦΦ>g ΦΦΦg and ΦΦΦ>p ΦΦΦp by the kernel Gram matrix

Kg and Kp ∈ Rn×n, respectively. Furthermore, we replace ΦΦΦ>g φ(g) and ΦΦΦ>p φ(p) by

its respective row vectors kg and kp, respectively. Then, the similarity between a pair

of probe p and gallery g is computed by the cosine similarity between αααp and αααg, as

described in Algorithm 10.
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Algorithm 10: Kernel X-CRC.

input : Kernel matrices (Kg and Kp)
output: Ranking list of gallery images R

1 Compute Ag, Ap, Q and W matrices using the above equations

2 βββgg ←W−1P−1g , βββpg ← τW−1A−1g A−1p
3 βββpp ← Q−1A−1p , βββgp ← τQ−1A−1p A−1g
4 for pj ∈ P do
5 for xi ∈ X do
6 αααx ← βββggk

g
i + βββpgk

p
j , αααp ← βββgpk

g
i + βββppk

p
j

7 sim(i)← ααα>
g αααp

‖αααg‖‖αααp‖
8 end
9 Rj ← sort(sim, descend)

10 end
11 return R

4.4 Final Remarks

In this chapter, we present the proposed methods that address the camera transition

problem by avoiding the direct comparison between images captured from distinct

cameras. It is accomplished by indirectly matching probe and gallery images based

on the similarity with training samples. Specifically, we proposed the Prototypes-

based Person Re-identification, the Cross-view Kernel PLS and the Kernel Cross-view

Collaborative Representation based Classification. In the followings paragraphs, we

discuss the main aspects of each method.

The Prototypes-based Person Re-Identification assumes a training set with

enough samples to find a subset of similar individuals for a given sample, the pro-

totypes. The prototypes subset is used to transit between cameras and, therefore,

learn a discriminative model at the camera where the model will be deployed. Com-

plementary models are learned when considering probe or gallery sample to compute

the prototype subset. Finally, these models are combined using ranking a ranking

aggregation approach. The main drawback of this method is the need of a large and

diverse subset of training samples to discover similar prototypes for every probe/gallery

sample. Differently, the X-KPLS and Kernel X-CRC avoid this issue using the entire

training set.

The X-KPLS matches probe and gallery samples based on a similarity repre-

sentation learned using the entire training set. The key idea is consists in using the

training samples at each camera to learn a nonlinear regression model that maps from

feature descriptors to vertices of a regular simplex (i.e. identity indexes). Thus, we
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have a model that computes a regression a response at each specific camera that is

proportional to the similarity with the training samples. Besides, it scales linearly with

the number of surveillance cameras. Then, the matching between probe and gallery

cameras is performed by projecting them at probe and gallery regression models and

computing the similarity between the responses. Nonetheless, it has the drawback that

camera-specific models are learned independently of each other, which we tackle in the

Kernel X-CRC.

The Kernel X-CRC also uses a similarity representation computed using the train-

ing set. This representation is learned using a collaborative representation framework

that allows the representation of probe and gallery samples as a nonlinear combination

of training samples at their respective cameras. Besides, it includes a similarity term to

force a trade-off between similarity and representativeness. This optimization is solved

simultaneous for a pair of cameras, which permits the flow of information between

cameras. The main limitation of this method is that it must be computed for each pair

of cameras.



Chapter 5

Experimental Results - Pairwise

Cameras

In this chapter, we perform a comprehensive evaluation of the proposed methods as-

sessing the influence of different parameters in the obtained experimental results and

providing a broad comparison with state-of-the-art approaches in three camera pairwise

datasets (VIPeR, PRID450S and CUHK01). To further enrich the discussion, we add

attributes labels in the analysis of the regression-based approaches (Kernel MBPLS

and Cross-view Kernel PLS). These attributes, which are obtained from work [Layne

et al., 2014], are detailed in Table 5.1.

To set the parameters of the proposed methods, we use the common strategy in

the person re-identification literature of using a validation and testing set composed by

ten random partitions of images in training and probe/gallery subsets. These partitions

have an equal number of samples, with the only exception of CUHK01 that has 971

unique identities. In this case, we used 486 individuals in the training set and the

remaining 485 in the probe/gallery set.

When presenting results in tables, we report the mean rank-k matching rate

in ten distinct partitions of the data, which consists of the percentage of individuals

correctly identified when considering the top-k ranking positions, a widely employed

metric to compare Re-ID approaches. Besides, we report between parenthesis the

standard deviation to assess the stability of the different methods.

In the following, we first present the three datasets evaluated and the employed

feature descriptors. Then, in the following sections, we present the parameters setting

of each method proposed. Finally, Section 5.7 shows the comparison of the proposed

methods against state-of-the-art approaches.

55
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Table 5.1: Manually annotated attributes in VIPeR dataset.

Redshirt Blueshirt Lightshirt Darkshirt Greenshirt

Nocoats Sidebag Darksidebag Colourbottoms Darkbottoms

Lightbottoms Satchel Barelegs Shorts Jeans

Male Skirt Patterned Midhair Darkhair

Bald HandBag Backpack

Datasets

We selected three well-known person re-identification datasets to assess the performance

of state-of-the-art approaches. These datasets are the VIPeR [Gray and Tao, 2008],

PRID450S [Roth et al., 2014] and CUHK01 [Li et al., 2012]. These datasets consider the

classical person re-identification scenario where we have images of the same individual

captured by two non-overlapping surveillance cameras.

VIPeR is one of the most widely used dataset for person re-identification due to

the challenging imposed by the image resolution, illumination, pose and background

conditions. In fact, these drastic appearance changes make this dataset difficult even

for humans. Then, a more controlled dataset - PRID450S - was released with 450

individuals captured by two non-overlapping and static surveillance cameras. However,

these datasets consider only few individuals and images, which limits the application

of data intensive approaches (e.g. deep learning). To tackle these problems, in 2012,

CUHK01 was proposed with more individuals and multiple images from each individual

(multi-shot scenario). More recently, multi-cameras and multi-shot datasets have been

proposed to close the gap between the researches and real-world applications as we

will discuss in Chapter 6. In the following paragraphs, we present each dataset and its

main aspects.

VIPeR dataset. VIPeR [Gray and Tao, 2008]1 contains 632 labelled image pairs cap-

tured by two different outdoor cameras located in an academic environment where each

subject appears once in each camera (single-shot scenario). The main difficulties occur

due viewpoint changes, illumination and image quality. For instance, most of the im-

age pairs show viewpoint change larger than 90 degrees. All images are normalized to

128 × 48 pixels for evaluations. Figure 5.1 illustrates some image pairs from VIPeR.

1Available at: https://vision.soe.ucsc.edu/projects
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1a 2a 3a 4a 5a

1b 2b 3b 4b 5b

Figure 5.1: Example of images captured at camera A (first row) and B (last row), in VIPeR
dataset. Individuals 4 and 5 are similar at camera A and B. However, it is not common. For
instance, individuals 1a, 2a and 3a are similar at camera A, while at camera B they look
quite different as a consequence of self-occlusion (1b) and illumination changes (2b).

PRID450S dataset. PRID450S [Roth et al., 2014]2 consists of 450 images pairs of

pedestrians captured by two non-overlapping cameras. Each subject appears in single

image at each camera (single-shot). The main challenges are related to changes in

viewpoint, pose as well as significant differences in background and illumination (see

Fig. 5.2).

CUHK01 dataset. CUHK01 [Li et al., 2012]3 dataset captures two disjoint camera-

view images for each person in a campus environment. It contains 971 persons with two

images from each camera-view (multi-shot scenario) that are normalized to 160 × 60

pixels for evaluations. Camera A captures the frontal view or back view, while camera

B captures the side view of pedestrians (see Fig. 5.3).

Feature Descriptors

As designing a feature descriptor is not the focus of this dissertation, we evaluate

the proposed methods using different feature descriptors from person re-identification

2Available at: http://lrs.icg.tugraz.at/download.php
3Available at: http://www.ee.cuhk.edu.hk/rzhao/
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Figure 5.2: Image pairs of the same individual captured by different cameras from PRID450S
dataset. Observe that the illumination and pose change person’s visual appearance.

Figure 5.3: Image pairs of the same individual captured by different cameras from CUHK01
dataset. Notice that similarly to VIPeR, we also have different illumination conditions, pose
and occlusion problems. Illustration taken from [Li et al., 2012].
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literature. To accomplish that, we select two widely used descriptors: the Hierarchical

Gaussian descriptor (GoG) [Matsukawa et al., 2016] and the combination of handcrafted

and deeply learned features (LOMO + CNN) [Shangxuan et al., 2016]. In the following,

we present a brief overview of these feature descriptors and, then, the kernel function

that we use in the remaining experiments - Radial Basis Function (RBF) Kernel.

LOMO + CNN. LOMO [Liao et al., 2015] consists of color and texture descriptors

extracted from multiple scales and horizontal stripes. Differently, the CNN features are

automatically learned from image pixels and, to avoid overfitting, are constrained by

previously extracted handcrafted descriptors using a feature fusion layer [Shangxuan

et al., 2016]. The final descriptor is a simple high-dimensional concatenation of LOMO

and CNN features.

GoG. GoG descriptor assumes a Gaussian distribution to capture texture and color

information of local patches using covariance and mean statistics, respectively. Then,

these Gaussian distributions are learned hierarchically from patches to image regions

to compose the final Hierarchical Gaussian descriptor.

When mapping the data to a nonlinear feature space, we used the radial basis

function kernel, or RBF kernel. The RBF kernel on feature vectors x and y is computed

as

K(x,y) = exp(−‖x− y‖2

2σ2
), (5.1)

where σ is a parameter that we empirically set for each feature descriptor and dataset.

5.1 Kernel PLS for Subspace Learning

In this section, we consider parameters directly related to the proposed model. First,

we present experimental results considering the already mentioned feature descriptors

from literature. Then, we consider distinct values of sigma and latent factors. Finally,

we compare the proposed kernel extension with its counterpart linear model - PLS

for Subspace Learning - to demonstrate the performance gain due to the nonlinear

mapping.

Feature Descriptors. Tables 5.2 and 5.3 present the obtained experimental results

of the proposed approach with different feature descriptors in VIPeR and PRID450S

datasets, respectively. Table 5.2 shows that the best performing feature descriptor is

the GoG, achieving 37.6% of rank-1 matching rate. Similarly, we observed improved
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results for GoG descriptor in the CUHK01 dataset. Nonetheless, as shown in Table 5.3,

LOMO+CNN outperformed the GoG descriptor in PRID450S dataset. We credit this

improvement to the distinct characteristics of each dataset that can benefit one or

another feature representation.

Table 5.2: Matching rates for different ranking positions in the VIPeR dataset using the
proposed Kernel PLS for Subspace Learning with different feature descriptors.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 37.6 (1.9) 72.1 (2.1) 84.0 (1.6) 89.4 (1.2) 92.4 (0.8)

LOMO + CNN 29.9 (2.1) 61.4 (1.7) 73.7 (1.6) 79.3 (1.4) 83.7 (1.4)

Table 5.3: Matching rates for different ranking positions in the PRID450S dataset using the
proposed Kernel PLS for Subspace Learning with different feature descriptors.

Descriptors
PRID450S (p=225)

r = 1 r = 5 r = 10 r = 15 r = 20

LOMO + CNN 47.0 (2.4) 73.6 (1.8) 81.8 (2.5) 86.2 (2.1) 89.0 (1.2)

GoG 39.6 (3.2) 70.9 (3.9) 81.9 (2.8) 88.6 (2.2) 92.5 (2.1)

Parameter σ. Table 5.4 shows the obtained rank-1 matching rates using the

proposed Kernel PLS for Subspace Learning with different values of sigma and the

VIPeR dataset. Based on these results, 2.0 is the best value of sigma and therefore, is

the value that we set for the following experiments.

Table 5.4: Rank-1 matching rates in the VIPeR dataset using the Kernel PLS for Subspace
Learning with different values of parameter sigma.

Sigma
VIPeR (p=316)

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

Rank-1 31.1 (2.5) 37.6 (1.9) 36.3 (2.5) 35.3 (2.4) 34.2 (2.8)

Latent Factors. Table 5.5 presents the rank-1 matching rate for different number of

latent factors, which is the parameter f in Algorithm 2. Based on these results, we

conclude that the results stabilize after 200 components. Therefore, in the remaining

experiments, we will employ 200 components for VIPeR. Likewise, we set the number

of latent factors for PRID450S and CUHK01 as 200 and 300, respectively.

Nonlinear Mapping. Table 5.6 presents the experimental results using the Linear

and the Kernel PLS model for Subspace Learning in VIPeR dataset. The obtained
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Table 5.5: Rank-1 matching rates in the VIPeR dataset using the Kernel PLS for Subspace
Learning with different numbers of latent factors.

Factors
VIPeR (p=316)

f = 50 f = 100 f = 200 f = 250 f = 300

Rank-1 31.1 (1.9) 35.0 (2.1) 37.6 (1.9) 37.4 (2.4) 37.8 (2.9)

experimental results show that the proposed nonlinear extension increases the rank-1

matching rate in 12.1 percentage points. Figure 5.4 shows some ranking results for

Kernel PLS and PLS for Subspace Learning models. These results agree with the

quantitative results presented in Table 5.6 as for some individuals only the nonlinear

model is able to return the correct gallery image between the top ten individuals.

Table 5.6: Matching rates for different ranking positions in the VIPeR dataset of PLS and
Kernel PLS methods for Subspace Learning.

Methods
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Kernel PLS 37.6 (1.9) 72.1 (2.1) 84.0 (1.6) 89.4 (1.2) 92.4 (0.8)

PLS 25.5 (1.8) 55.9 (4.0) 70.8 (2.8) 79.6 (2.1) 85.7 (1.2)
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Figure 5.4: First ten individuals in gallery set ranked accordingly with the similarity with
probe images using the Kernel PLS (first three rows) and the PLS (last three rows) for
Subspace Learning. Individuals surrounded by a blue box correspond to the correct match
for the probe image in the gallery set.

5.2 Kernel Hierarchical PCA

As described in Section 3.2, the proposed Kernel HPCA iteratively computes a

low-dimensional representation that corresponds to a consensus between blocks of

variables. In this section, we evaluate four parameters directly related with the

performance of the proposed method: the feature descriptors, the values of sigma, the

number of latent factors and the influence of the nonlinear mapping.

Feature Descriptors. In this experiment, we determine the matching rates of the

proposed method with the evaluated feature descriptors. The obtained experimental

results using VIPeR dataset are presented in Table 5.7. Based on these results, it is

possible to notice that GoG descriptor outperforms the LOMO + CNN by a large

margin. Similar results were also observed in CUHK01 dataset. However, we observed

an improved rank-1 matching rate for LOMO + CNN when compared against GoG
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descriptor in PRID450S, as shown in Table 5.8. Therefore, in the remaining experi-

ments, we will employ GoG for VIPeR and CUHK01 datasets, and LOMO + CNN for

PRID450S dataset.

Table 5.7: Matching rates for different ranking positions in the VIPeR dataset using the
proposed Kernel HPCA method with different feature descriptors.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 39.0 (2.4) 74.3 (1.8) 86.0 (1.1) 92.0 (1.1) 94.4 (0.7)

LOMO + CNN 33.3 (1.9) 67.2 (2.4) 79.4 (1.5) 84.7 (1.8) 88.4 (1.6)

Table 5.8: Matching rates for different ranking positions in the PRID450S dataset using the
proposed Kernel HPCA method with different feature descriptors.

Descriptors
PRID450S (p=225)

r = 1 r = 5 r = 10 r = 15 r = 20

LOMO + CNN 48.6 (3.5) 74.5 (2.7) 83.3 (2.2) 87.6 (2.0) 90.5 (1.5)

GoG 48.0 (3.3) 77.6 (2.3) 87.6 (2.1) 91.8 (2.0) 94.3 (1.8)

Parameter σ. Table 5.9 presents the rank-1 matching rates for distinct values of

sigma in VIPeR dataset, which impacts in the output of the RBF-kernel computation.

For these results, we notice that the best value for sigma is 2.0.

Table 5.9: Rank-1 matching rates in the VIPeR dataset using the Kernel HPCA method with
different values of parameter sigma.

Sigma
VIPeR (p=316)

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

Rank-1 31.0 (2.6) 39.0 (2.4) 37.8 (2.3) 36.6 (1.7) 35.8 (1.6)

Latent Factors. We also evaluated the influence of the number of latent factors in

the experimental results, which is the parameter f from Algorithm 4. The obtained

experimental results are presented in Table 5.10. Based on these results, it is possible

to conclude that better experimental results are obtained using 200 components.

Notice that the number of components is limited by the number of training samples

available, which is 316 for VIPeR dataset. Similarly, we set the number of latent

factors as 250 and 150 for CUHK01 and PRID450S datasets, respectively.

Nonlinear Mapping. Table 5.11 presents the obtained experimental results using

the HPCA and the novel Kernel HPCA models. Based on these results, it is possible

to conclude that the nonlinear mapping is responsible for a great improvement in the
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Table 5.10: Rank-1 matching rates in the VIPeR dataset using the Kernel HPCA with dif-
ferent numbers of latent factors.

Factors
VIPeR (p=316)

f = 50 f = 100 f = 200 f = 250 f = 300

Rank-1 35.6 (2.4) 38.0 (2.2) 39.0 (2.4) 38.6 (2.1) 38.3 (2.1)

Figure 5.5: The first ten individuals in gallery set ranked accordingly with the similarity
with probe images using the Kernel HPCA (first three rows) and the HPCA (last three rows)
models. Individuals surrounded by a blue box correspond to the correct match for the probe
image in the gallery set.

matching rates. For instance, the rank-1 increases in almost five percentage points.

Figure 5.5 shows qualitative results that support these conclusions.

Table 5.11: Matching rates for different ranking positions in the VIPeR dataset of HPCA
and Kernel HPCA methods.

Methods
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Kernel HPCA 39.0 (2.4) 74.3 (1.8) 86.0 (1.1) 92.0 (1.1) 94.4 (0.7)

HPCA 34.6 (2.2) 70.9 (1.5) 82.8 (1.6) 89.0 (0.9) 92.1 (0.7)
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5.3 Kernel Multiblock PLS

In this section, we focus on discovering the best configuration of parameters for the

proposed Kernel Multiblock PLS. Specifically, we evaluate different settings for the

feature descriptors, values of sigma, number of latent factors and the influence in the

obtained results of the nonlinear mapping. Finally, we perform an experiment assess

the impact on the experimental results when adding manually labeled attributes in

the response matrix Y.

Feature Descriptors. Table 5.12 presents the experimental results obtained using

LOMO + CNN and GoG descriptors in VIPeR dataset. Similarly, Table 5.13 presents

these results for PRID450S. We can notice that in both datasets GoG presents higher

results than the LOMO + CNN. For instance, the GoG descriptor is 5.0 percentage

points higher for the rank-1 in VIPeR dataset. Based on these improved results, we

set the feature descriptor as the GoG in the remaining experiments.

Table 5.12: GoG and LOMO + CNN descriptors evaluated using the proposed Kernel MBPLS
in the VIPeR dataset.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 38.8 (2.3) 74.2 (1.4) 85.9 (1.3) 92.1 (1.0) 94.4 (0.9)

LOMO + CNN 33.8 (2.1) 67.1 (2.1) 79.7 (1.5) 84.7 (1.5) 88.0 (1.5)

Table 5.13: GoG and LOMO+CNN descriptors evaluated using the proposed Kernel MBPLS
in the PRID450S dataset.

Descriptors
PRID450S (p=225)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 46.6 (2.8) 77.1 (3.0) 87.0 (1.4) 92.2 (1.5) 94.6 (1.8)

LOMO + CNN 44.2 (2.0) 73.9 (1.9) 82.4 (2.1) 87.6 (1.5) 89.9 (1.6)

Parameter σ. Table 5.14 shows the obtained rank-1 matching rates using the

proposed Kernel MBPLS method with different values of sigma and the VIPeR

dataset. These results demonstrate that the best value of sigma is 2.0, which is the

value that we set in the following experiments.

Latent Factors. We evaluate different number of latent factors using the Kernel

MBPLS and the VIPeR dataset. These results are shown in Table 5.15. For these

results, it is possible to see that the best trade-off between high matching rates and
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Table 5.14: Evaluation of different values of sigma using the Kernel Multiblock PLS method
in the VIPeR dataset.

Sigma
VIPeR (p=316)

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

Rank-1 31.1 (2.4) 38.8 (2.3) 37.8 (2.4) 36.3 (1.9) 35.7 (1.7)

computational cost is achieved when using 200 factors. Thus, we set the number of

factors as 200 in the following tests.

Table 5.15: Evaluation of different number of factors using the Kernel Multiblock PLS in the
VIPeR dataset.

Factors
VIPeR (p=316)

f = 50 f = 100 f = 200 f = 250 f = 300

Rank-1 35.7 (2.2) 38.2 (2.1) 38.8 (2.3) 38.8 (1.9) 38.4 (2.0)

Nonlinear Mapping. One important assumption of the proposed Kernel MBPLS

is the positive impact of the nonlinear mapping in the results. To evaluate that, we

compared the Kernel MBPLS with its linear counterpart, the MBPLS model. The

obtained experimental results are presented in Table 5.16. Based on these results,

we can observe improved results for all the ranking positions when using the Kernel

MBPLS. Figure 5.6 corroborates with these results showing that for all probe images

analyzed the Kernel MBPLS provided better ranking lists than the MBPLS.

Table 5.16: Matching rates for different ranking positions in VIPeR dataset when using the
MBPLS and the proposed Kernel MBPLS.

Methods
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Kernel MBPLS 38.8 (2.3) 74.2 (1.4) 85.9 (1.3) 92.1 (1.0) 94.4 (0.9)

MBPLS 33.8 (2.1) 66.4 (1.7) 78.9 (1.4) 85.0 (1.1) 88.3 (0.7)

Attributes. Kernel MBPLS is originally a nonlinear regression model and therefore, it

suits to the inclusion of different information in the response matrix Y. In Table 5.17,

we present experiments regarding the use of identity, attribute and identity + attribute

labels. For these results, we can notice that the addition of attribute labels results in

an improved performance of the Kernel MBPLS. It can be explained to the better

separability of the data in the low-dimensional subspace that is achieved when using

attribute labels.
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Figure 5.6: The top ten individuals in gallery set ranked accordingly with the similarity
with probe images using the Kernel MBPLS (first three rows) and MBPLS (last three rows)
regression models. Individuals surrounded by a blue box correspond to the correct match for
the probe image in the gallery set.

Table 5.17: Evaluation of the proposed Kernel MBPLS in the VIPeR dataset using the
Identity, Attributes and Identity + Attributes settings.

Method
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Ident. 38.8 (2.3) 74.2 (1.4) 85.9 (1.3) 92.1 (1.0) 94.4 (0.9)

Attr. 21.5 (1.8) 48.6 (3.2) 61.5 (2.8) 69.0 (3.1) 74.4 (2.9)

Ident. + Attr. 41.0 (1.5) 76.7 (2.4) 87.9 (0.9) 93.0 (0.9) 95.0 (0.5)

5.4 Prototype-Based Person Re-Identification

As described in Section 4.1, the Prototype Discovery stage computes the similarity

between a given sample image and the training images captured by the same camera

using One-Shot Similarity (OSS) measure. The OSS measure depends on the choice of

the discriminative model and the feature representation. We fixed the discriminative

model as the PLS regression model and analyzed the influence of the different feature

descriptors. We observed that the number of components (latent factors) used in
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the PLS model has a small impact in the obtained experimental results. Thus, we

maintained it equals one.

Regarding the remaining stages, we evaluated the impact of the prototypes size

on the obtained experimental results. Then, we show that probe- and gallery-based

ranking lists are complementary and then, can be aggregated to achieve better results.

Finally, we demonstrate that the proposed indirect matching using prototypes model

is complementary to a well-known metric learning approach method that directly

matches probe and gallery images.

Feature Descriptors. We first evaluated different feature descriptors on the VIPeR

dataset. To reduce the computational cost, we first projected these high-dimensional

feature descriptors into a low-dimensional feature space computed using Principal

Component Analysis (PCA) method, which we fixed the dimensionality as 80 com-

ponents. In addition, we report the obtained experimental results obtained after

the aggregation of probe- and gallery-based ranking lists. According to Table 5.18,

improved results were achieved when setting the descriptor as the GoG. These results

are consistent with the obtained experimental results in PRID450S and CUHK01.

Therefore, we focus on the GoG descriptor in the remaining experiments at these

datasets.

Table 5.18: Matching rates for different ranking positions in the VIPeR dataset using the
prototypes-based approach with different feature descriptors.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 26.3 (1.1) 57.4 (0.9) 72.8 (0.4) 81.3 (0.5) 86.4 (0.3)

LOMO + CNN 23.7 (1.5) 56.8 (1.8) 73.3 (1.0) 82.3 (0.8) 87.7 (0.9)

PCA Projection. In Table 5.19, we measured the influence of the projection into a

low-dimensional subspace on the obtained experimental results. Based on these results,

it is possible to conclude that the low-dimensional representation improves the obtained

results. We credit this performance gain to the reduction of the noise variations as we

keep only the significant information. More importantly, as we apply the PCA using

data from both cameras, we claim that it already focus on more stable features. Thus,

in the remaining experiments we will use the GoG representation projected into a

low-dimensional subspace computed using PCA.

Prototypes Size. An important parameter of the proposed model consists in the per-
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Table 5.19: Matching rates for different ranking positions on the VIPeR dataset using the
original GoG feature representation and a low-dimensional representation computed using
PCA.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG + PCA 26.3 (1.1) 57.4 (0.9) 72.8 (0.4) 81.3 (0.5) 86.4 (0.3)

GoG 16.8 (0.7) 47.2 (0.9) 62.2 (1.2) 72.5 (0.5) 81.2 (0.8)

centage of individuals from training set used at each prototype subset - the parameter

K. Using a small number of individuals, we take the risk of having similar individ-

uals in different classes (positive and negative) when learning the prototypes model.

Differently, if we have a huge number of individuals in the prototypes, it becomes too

heterogeneous that no subtle characteristic is learned. Therefore, the parameter K

must be carefully adjusted for each dataset.

Table 5.20 presents the obtained experimental results for different values of

parameter K. Based on these experimental results, we conclude that the percentage of

individuals that results in the best performance is 20%, which for the VIPeR dataset

corresponds to approximately 63 individuals. We also performed an experimental

evaluation of the parameter K in PRID450S and CUHK01 datasets reaching the

values of 30% and 15%, respectively.

Table 5.20: Matching rates for different ranking positions on the VIPeR dataset using different
percentage of prototypes subset.

Prototypes Size
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

10% 21.5 (2.1) 55.5 (2.6) 70.0 (1.5) 79.4 (1.9) 86.1 (0.4)

20% 26.3 (1.1) 57.4 (0.9) 72.8 (0.4) 81.3 (0.5) 86.4 (0.3)

30% 24.4 (1.5) 56.2 (1.2) 74.8 (1.0) 81.3 (1.0) 86.1 (0.6)

Aggregation Strategy. In this experiment, we validate our assumption that com-

bining probe- and gallery-based ranking lists we obtain an improved ranking of gallery

images. We tackle this problem using the Stuart ranking aggregation method [Stuart

et al., 2003]. Figure 5.7 presents some ranking results for probe- and gallery-based

methods. Based on these qualitative results, we can confirm that these ranking lists

are capturing complementary information. For instance, some individuals are only cor-

rectly ranked when we consider both list, such as the first and the third individuals.

Therefore, it is expected an improvement when aggregating these ranking lists.
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Table 5.21 presents the obtained experimental results for the probe- and gallery-

based results, and the final result reached aggregating both ranking lists. In fact, these

results corroborate with our assumption. For instance, we obtained an improvement

in the rank-1 of 2.6 percentage points when compare to the second best result.

Table 5.21: Matching rates for different ranking positions on the VIPeR dataset for the
probe-based, gallery-based and the aggregation strategies.

Strategy
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Aggregated 26.3 (1.1) 57.4 (0.9) 72.8 (0.4) 81.3 (0.5) 86.4 (0.3)

Probe-based 23.7 (2.0) 51.6 (1.8) 68.5 (1.0) 78.3 (0.7) 83.7 (0.5)

Gallery-based 22.9 (2.5) 56.0 (1.3) 70.0 (1.2) 77.7 (1.0) 83.1 (0.9)

Figure 5.7: The top ten individuals in gallery set ranked accordingly with the similarity with
probe images using probe-based (first three rows) and gallery-based (last three rows) ranking
lists. Individuals surrounded by a blue box correspond to the correct match for the probe
image in the gallery set.

Direct and Indirect Matching. The proposed method consists in an indirect match-

ing of probe and gallery images using prototypes. However, a common approach in
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literature corresponds to directly compare probe and gallery images using a learned

metric distance. Due to the different strategies, it is expected that the obtained re-

sults with the direct and indirect matching models are different and probably comple-

mentary. Therefore, we combined the obtained ranking list of KISSME metric learn-

ing [Koestinger et al., 2012] with the resulting ranking list of the proposed prototypes

model using Stuart ranking aggregation method.

Table 5.22 shows a substantial improvement in both KISSME and the proposed

Prototypes-based method when combined using ranking aggregation. For instance,

the rank-1 improved in 6.5 percentage points when compared to the second best per-

forming approach.

Table 5.22: Matching rates for different ranking positions in the VIPeR dataset for the
prototypes, KISSME and the final aggregation of direct and indirect matching models.

Strategy
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Final 35.0 (1.9) 71.5 (1.6) 84.3 (1.9) 91.0 (1.2) 94.3 (1.0)

KISSME 28.5 (1.3) 64.7 (1.5) 81.3 (1.0) 88.3 (1.0) 91.8 (0.7)

Prototypes 26.3 (1.1) 57.4 (0.9) 72.8 (0.4) 81.3 (0.5) 86.4 (0.3)

5.5 Cross-View Kernel PLS (X-KPLS)

In this section, we evaluate the influence of the main parameters related to the

X-KPLS model. First, we assess the performance of the proposed approach using the

evaluated descriptors and distinct values of the parameter sigma. Then, we define the

best number of latent factors. Finally, we present the performance gain due to the

nonlinear modeling.

Feature Descriptors. In this experiment, we compare the performance of the eval-

uated feature descriptors on the proposed X-KPLS model using VIPeR dataset. Ta-

ble 5.23 presents the obtained experimental results. Based on these results, we conclude

that the best performing feature descriptor is the GoG, which also holds for PRID450S

and CUHK01 datasets. Therefore, in the remaining experiments and datasets, we will

use the GoG descriptor.

Parameter σ. In Table 5.24, we present the rank-1 matching rates using the proposed

Cross-view Kernel PLS method with different values of sigma and the VIPeR dataset.
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Table 5.23: Matching rates for different ranking positions in the VIPeR dataset using the
X-KPLS approach with different feature descriptors.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 38.7 (2.0) 74.1 (1.8) 86.2 (1.3) 91.5 (1.3) 94.3 (1.0)

LOMO + CNN 34.9 (1.2) 69.0 (1.9) 81.2 (1.5) 86.7 (1.3) 90.3 (1.3)

According to these results, the best value of sigma is 2.0, which is the value that we

set for the following experiments.

Table 5.24: Rank-1 matching rates in the VIPER dataset using the X-KPLS method with
different values of parameter sigma.

Sigma
VIPeR (p=316)

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

Rank-1 30.4 (2.0) 38.7 (2.0) 38.1 (3.1) 37.7 (3.0) 36.9 (3.7)

Latent Factors Table 5.25 shows the obtained experimental results using X-KPLS

and different number of latent factors - the parameter f from Algorithm 8. Based on

these results, we conclude that using 200 components we reach the best results with

a reduced computational cost. We conducted similar experiments in PRID450S and

CUHK01 datasets to set the number of latent factors as 150 and 300, respectively.

Table 5.25: Rank-1 matching rates in the VIPeR dataset using the X-KPLS with different
numbers of latent factors.

Factors
VIPeR (p=316)

f = 50 f = 100 f = 200 f = 250 f = 300

rank-1 31.9 (1.7) 36.7 (2.0) 38.7 (2.0) 38.5 (2.1) 38.7 (1.6)

Nonlinear Mapping. Table 5.26 presents the obtained experimental results using

the proposed model with linear (PLS) and nonlinear (Kernel PLS) regression models.

Based on these results, it is possible to notice the improvement due to the nonlinear

mapping. For instance, the rank-1 increases 3.9 percentage points when using the

Kernel PLS model. Figure 5.8 presents some qualitative results comparing the

X-KPLS and PLS models. Observe that X-KPLS provides a higher ranking position

for the corresponding gallery image in the two first probe images. Differently, the third

gallery is not ranked between the top most similar individuals, which we relate to

the drastic appearance change caused by the different pose and illumination conditions.
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Figure 5.8: The top ten individuals in gallery set ranked accordingly with the similarity with
probe images using Cross-View KPLS (first three rows) and PLS (last three rows) regression
models. Individuals surrounded by a blue box correspond to the correct match for the probe
image in the gallery set.

Table 5.26: Matching rates for different ranking positions in the VIPeR dataset using the
X-KPLS with linear and nonlinear regression models.

Method
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Kernel PLS 38.7 (2.0) 74.1 (1.8) 86.2 (1.3) 91.5 (1.3) 94.3 (1.0)

PLS 34.8 (2.4) 70.3 (1.4) 83.2 (1.4) 88.7 (0.9) 92.0 (0.6)

Attributes. The Cross-view KPLS model learns a nonlinear regression model for

each camera. In Table 5.27 experiments, we consider the addition of attributes label

in the response matrix Y. Similarly to the previous experiments, the attributes when

combined with the identity labels boost the matching rates for all the ranking positions.
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Table 5.27: Matching rates for different ranking positions in the VIPeR dataset using the
X-KPLS with linear and nonlinear regression models.

Method
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

Ident. 38.7 (2.0) 74.1 (1.8) 86.2 (1.3) 91.5 (1.3) 94.3 (1.0)

Attr. 21.6 (1.6) 48.5 (3.3) 61.6 (2.9) 69.0 (3.2) 74.6 (3.0)

Ident. + Attr. 39.5 (2.6) 76.0 (1.8) 87.4 (1.0) 92.1 (0.8) 94.8 (0.8)

5.6 Kernel Cross-View Collaborative Representation

based Classification

In the following sections, we evaluate the main parameters related to Kernel X-CRC

model. First, we present the matching rates for different feature descriptors. Then,

we assess the performance of the proposed method with different parameters values

and, linear and nonlinear kernel functions. Finally, we analyze the performance

improvement reached by working in a common and low-dimensional feature space.

Feature Descriptors. Table 5.28 presents the obtained experimental results, in

VIPeR dataset, for the analyzed feature descriptors. Based on these results, we can

notice that GoG achieves improved results when compared to LOMO+CNN. Simi-

larly, we also observed improved results when using GoG descriptor in PRID450S and

CUHK01 datasets. Therefore, we set GoG as the feature descriptor.

Table 5.28: Matching rates for different ranking positions in the VIPeR dataset using the
proposed Kernel X-CRC with different feature descriptors.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG 51.6 (2.0) 64.1 (2.3) 71.9 (2.7) 76.7 (2.4) 80.4 (2.4)

LOMO + CNN 45.5 (2.1) 76.4 (2.4) 86.7 (1.5) 91.3 (0.8) 94.4 (0.7)

Parameter σ. Table 5.29 shows the obtained rank-1 matching rates for different

values of sigma in CUHK01 dataset. Based on these results, we set the value of sigma

as 2.0, which is the value that we set for the following experiments.

Table 5.29: Rank-1 matching rates for different values of σ in the VIPeR dataset.

Parameter σ
VIPeR (p=316)

σ = 1 σ = 2 σ = 3 σ = 4

rank-1 51.4 (2.4) 51.6 (2.7) 51.6 (2.0) 50.5 (2.1)



5. Experimental Results - Pairwise Cameras 75

Parameter λ. In this experiment, we evaluate the proposed method with different

values of λ when the parameter τ is fixed as 1.0. The parameter λ, from Equation 3.8, is

the regularization parameter for the values of probe and gallery coding vectors (αp and

αg). Table 5.30 presents the obtained experimental results for different values of λ in

VIPeR dataset. Based on these results, we set λ as 0.01 for the following experiments.

Table 5.30: Rank-1 matching rates for different values of λ in the VIPeR dataset.

Parameter λ
VIPeR (p=316)

λ = 0.01 λ = 0.1 λ = 1 λ = 10

rank-1 51.6 (2.0) 50.6 (2.8) 47.8 (2.1) 46.4 (2.4)

Parameter τ . In this experiment, we evaluate the impact on the experimental results

of different values of τ , which is the parameter that multiplies the similarity term in

Equation 3.8. For these experiments, we maintained the parameter λ fixed accordingly

to the values defined in the previous experiment. Table 5.31 shows the obtained rank-1

matching rates for different values of τ . These results show that τ equals 1.0 corre-

sponds to the best trade-off between reconstruction and similarity terms and, therefore,

the highest rank-1 matching rate.

Table 5.31: Rank-1 matching rates for different values of τ in the VIPeR dataset.

Parameter τ
VIPeR (p=316)

τ = 0.01 τ = 0.1 τ = 1.0 τ = 10

rank-1 45.1 (2.4) 50.1 (2.1) 51.6 (2.0) 48.8 (1.6)

Nonlinear Mapping. We also evaluated the effect of the nonlinear mapping in

the obtained experimental results. To accomplish that, we evaluated the proposed

method using the RBF and linear kernel function. Table 5.32 presents the obtained

experimental results using both kernel functions. Based on these results, we can

conclude that the nonlinear mapping is important to improve the experimental results.

Subspace Learning. In Table 5.33, we compare the Kernel X-CRC using GoG

and low-dimensional representations obtained using methods from literature, such as

KCCA [Lisanti et al., 2014], XQDA [Liao et al., 2015] and MLAPG [Liao and Li,

2015]. Regarding these results, we conclude that a performance gain occurs only when

dealing with XQDA and MLAPG methods, which consider same and not-same image

pairs when learning the low-dimensional representation. For instance, using XQDA we



5. Experimental Results - Pairwise Cameras 76

Figure 5.9: The top ten individuals in gallery set ranked accordingly with the similarity
with probe images using Kernel X-CRC and the original GoG descriptor (first three rows) or
the low-dimensional representation learned using XQDA (last three rows) regression models.
Individuals surrounded by a blue box correspond to the correct match for the probe image
in the gallery set.

Table 5.32: Matching rates for different ranking positions in the VIPeR dataset using Kernel
X-CRC with nonlinear and linear kernel functions.

Kernel
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

RBF 51.6 (2.0) 64.1 (2.3) 71.9 (2.7) 76.7 (2.4) 80.4 (2.4)

Linear 49.6 (1.8) 77.5 (2.4) 87.9 (1.6) 91.9 (1.5) 94.2 (1.0)

improved the rank-1 matching rate in more than 5.0 percentage points. Differently,

KCCA computes a common subspace that only considers image pairs of the same in-

dividuals in the objective function, and, therefore, reduces the obtained experimental

results. Therefore, in the remaining experiments, we will focus on the proposed Kernel

X-CRC method using GoG descriptor projected into the XQDA feature space.
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Figure 5.9 shows some ranking results for the Kernel X-CRC using only GoG and

the low-dimensional representation computed using XQDA. Based on these results, it

is possible to observe that Kernel X-CRC ranks the gallery images between the ten

most similar individuals when using the GoG feature descriptor. Nonetheless, when

using the representation obtained using XQDA, it is able to better discriminate between

these individuals, improving the ranking position of the corresponding gallery image.

Table 5.33: Matching rates for different ranking positions in the VIPeR dataset using Kernel
X-CRC in the original and low-dimensional feature spaces.

Descriptors
VIPeR (p=316)

r = 1 r = 5 r = 10 r = 15 r = 20

GoG + XQDA 51.6 (2.7) 80.5 (2.0) 89.6 (1.5) 93.4 (1.2) 95.4 (0.8)

GoG + MLAPG 48.0 (2.0) 78.1 (1.1) 87.1 (1.2) 91.4 (0.8) 93.9 (0.7)

GoG 46.3 (1.5) 79.4 (1.9) 89.3 (1.4) 93.3 (1.1) 95.6 (1.1)

GoG + KCCA 42.9 (1.0) 79.0 (0.7) 89.7 (1.3) 94.0 (1.0) 96.0 (1.9)

GoG + PCA 46.5 (1.6) 79.6 (2.4) 89.6 (1.2) 93.3 (1.0) 95.7 (1.2)

5.7 State-of-the-art Comparisons

In this section, we compare the proposed approaches for subspace learning and indi-

rect matching with a large number of methods from state-of-the-art in the VIPeR ,

PRID450S and CUHK01 datasets. In the following tables, we report different methods

from person re-identification literature ranked according to the rank-1 matching rate.

In addition, we also present the obtained experimental results with the methods pro-

posed in lowest part of the table. As the methods from literature did not report the

standard deviation, we just present these values for our methods. The only exception

is the XQDA [Liao et al., 2015] that has the code online available.

VIPeR

Table 5.34 presents the matching rates from different approaches based on metric learn-

ing [Jose and Fleuret, 2016; Liao and Li, 2015; Huang et al., 2015], subspace learn-

ing [Lisanti et al., 2014; Liao et al., 2015; Zhang et al., 2016a; Chen et al., 2015] and

deep learning [Shangxuan et al., 2016; Cheng et al., 2016; Chen et al., 2016b].

Regarding the results in Table 5.34, we can conclude that the Kernel MBPLS

presents better results than the Kernel PLS for Subspace Learning model and the

Kernel HPCA. We attribute these results to nonlinear regression to the identity +

attribute labels, which allows a better separation of the data in the learned subspace
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and therefore, better generalization. Notice that all the proposed subspace learning

methods outperform the classical KCCA model. We relate this improvement to the

better feature representation and to the variance information that is considered only in

the proposed model. Table 5.34 also shows that the proposed subspace learning models

are outperformed by related approaches from literature as the Null Space [Zhang et al.,

2016a] and KMFA [Chen et al., 2015] that also handle person re-identification as a

common subspace learning problem. Nonetheless, these methods require the fine-tuning

of regularization parameters and are not scalable to scenarios with multiple surveillance

cameras. Otherwise, both models proposed do not depend on the regularization of

covariance matrices and, the Kernel HPCA and the Kernel MBPLS efficiently deal

with multiple surveillance cameras.

The indirect matching methods perform well in the person re-identification prob-

lem, as shown in Table 5.34, with the lowest results being reported by the prototype-

based approach. These results are consistent with our observation that discovering

the prototypes subset is a difficult task. Thus, X-KPLS greatly improves the obtained

matching rates as consequence of using the entire training set instead of a subset of

individuals. However, the Kernel X-CRC that achieves state-of-the-art results as con-

sequence of the adaptive matching of probe and gallery images using a multi-task

framework. Zhang et al. [2016b] also employs a specific model for each pair of probe

and gallery images. Nonetheless, their models are obtained using a mapping function

to relate feature descriptors to model parameters, which is very challenging for small

datasets such as VIPeR.

Based on Table 5.34, the Kernel X-CRC results are close to the baseline that

also uses the XQDA and GoG descriptor when considered the mean and the standard

deviation. Nonetheless, as these measures are obtained using the same partitions, a

better statistical analysis can be obtained using a paired t-test. In fact, performing this

study, we observed that there is a strong evidence that the Kernel X-CRC is superior to

the XQDA + GoG with a confidence interval of 95%. In fact, Kernel X-CRC results are

only lower than the SCSP [Chen et al., 2016a] that combines global and local spatial

matching models. However, SCSP [Chen et al., 2016a] did not provide the partition

used in their experiments and, therefore, the direct comparison between the obtained

results is not possible.

Figure 5.10 presents the top ten gallery images ranked accordingly the similarity

with the same probe image, where each row corresponds to the application of a proposed

similarity model. These results show that Kernel X-CRC model better discriminates the

correct gallery image. For instance, the prototype-based and the KPLS for Subspace

Learning did not return the correct image between the top most similar individuals.
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Figure 5.10: The first ten individuals in gallery set ranked accordingly with the similarity
with probe images using the proposed approaches. Individuals surrounded by a blue box
correspond to the correct match for the probe image in the gallery set.

PRID450S

In Table 5.35, we present the matching rates for different methods that address per-

son re-identification using PRID450S dataset. Based on these results, Kernel MBPLS

method reaches improved results when compared to Kernel PLS for Subspace Learning

and Kernel HPCA, which corroborates with our assumption that nonlinear regression

models perform better in person re-identification problem. However, both methods

are outperformed by subspace learning models from literature (XQDA and KMFA)

that consider same and not-same constraints and, therefore, are able to learn more

discriminative subspaces.

As in the previous section, X-KPLS obtained results superior to the prototypes-

based approach due to the representation using the entire training set instead of just

a subset of individuals. More importantly, Kernel X-CRC reaches improved results

when compared to the proposed methods, and the highest rank-1 matching rate when

compare to the methods from literature. As matter of fact, we performed a paired t-test

that shows with 95% of confidence that the ranking results from Kernel X-CRC are
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Method
Viper (p=316)

r = 1 r = 5 r = 10 r = 20 r = 30

KCCA [Lisanti et al., 2014] 37.0 - 85.0 93.0 -

Deep Ranking [Chen et al., 2016b] 38.4 69.2 81.3 90.4 94.1

LOMO + XQDA [Liao et al., 2015] 40.0 68.0 80.5 91.1 95.5

WARCA [Jose and Fleuret, 2016] 40.2 68.2 80.7 91.1 -

MLAPG [Liao and Li, 2015] 40.7 - 82.3 92.4 -

NLML [Huang et al., 2015] 42.3 71.0 85.2 94.2 -

Null Space [Zhang et al., 2016a] 42.3 71.5 82.9 92.1 -

Zhang et al. [2016b] 42.7 - 84.3 91.9 -

Mirror + KMFA [Chen et al., 2015] 43.0 75.8 87.3 94.8 -

Paisitkriangkrai et al. [2015] 45.9 77.5 88.9 95.8 -

MultiCNN [Cheng et al., 2016] 47.8 74.7 84.8 91.1 94.3

GoG + XQDA [Matsukawa et al., 2016] 48.2 (3.0) 77.3 (1.5) 87.6 (1.1) 91.5 (0.9) -

Shangxuan et al. [2016] 51.1 81.0 91.4 96.9 -

SCSP [Chen et al., 2016a] 53.5 82.6 91.5 96.6 -

Kernel X-CRC 51.2 (2.4) 79.9 (2.2) 89.9 (1.5) 95.5 (1.0) -

Kernel MBPLS 41.1 (1.7) 76.7 (2.6) 88.3 (2.0) 94.8 (1.1) -

Kernel HPCA 39.1 (2.0) 75.3 (2.6) 86.9 (1.8) 94.2 (1.3) -

X-KPLS 38.8 (2.2) 74.0 (2.3) 86.0 (1.4) 97.0 (0.8) -

KPLS Subs. 38.1 (2.2) 72.8 (2.6) 84.0 (2.2) 92.5 (1.3) -

Prototypes 33.7 (2.9) 70.3 (2.0) 84.0 (1.9) 97.0 (1.4) -

Table 5.34: Top ranked approaches on the VIPer dataset.

superior to our baseline (XQDA + GoG). We attribute this improvement to the better

representation obtained using GoG descriptor with XQDA [Matsukawa et al., 2016]

and the nonlinear computation of coding vectors. It is also important to highlight that

some methods that achieved interesting results in VIPeR dataset did not performed

well in PRID450S due to small number of training samples, such as WARCA [Jose and

Fleuret, 2016] and SCSP [Chen et al., 2016a]. Differently, the proposed Kernel X-CRC

achieves state-of-the-art results in both datasets.

CUHK01

Table 5.36 presents the reported experimental results for different methods in literature

that used the CUHK01 dataset considering the single-shot scenario. In addition, we also

present the obtained experimental results of the proposed methods. Based on these

results, we can notice that, similarly to the previous datasets evaluated, the Kernel

MBPLS model performs better than KPLS for Subspace Learning and Kernel HPCA.

Nonetheless, those methods are still worst than other subspace learning models from

literature (XQDA and KMFA). As mentioned before, these methods include equivalence
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Method
PRID450S (p=225)

r = 1 r = 5 r = 10 r = 20 r = 30

WARCA [Jose and Fleuret, 2016] 24.6 55.5 70.3 85.0 92.0

SCSP [Chen et al., 2016a] 44.4 71.6 82.2 89.8 93.3

Mirror + KMFA [Chen et al., 2015] 55.4 79.3 87.8 91.6 -

Zhang et al. [2016b] 60.5 - 88.6 93.6 -

LOMO + XQDA [Liao et al., 2015] 61.4 - 90.8 95.3 -

Shangxuan et al. [2016] 66.6 86.8 92.8 96.9 -

GoG + XQDA [Matsukawa et al., 2016] 66.2 (2.0) 87.8 (1.5) 92.6 (1.2) 95.2 (0.9) -

Kernel X-CRC 68.1 (1.8) 90.7 (1.4) 95.0 (1.3) 97.6 (0.8) -

Kernel MBPLS 47.3 (3.0) 75.4 (2.4) 86.0 (1.7) 94.2 (1.8) -

Kernel HPCA 46.9 (3.2) 75.7 (2.4) 86.2 (1.7) 94.2 (1.9) -

KPLS Subs. 46.4 (1.7) 72.8 (2.6) 84.0 (2.2) 92.5 (1.3) -

X-KPLS 46.3 (2.9) 75.4 (1.4) 86.4 (1.8) 94.4 (2.0) -

Prototypes 34.5 (3.6) 67.9 (2.0) 80.4 (1.9) 95.4 (1.6) -

Table 5.35: Top ranked approaches on the PRID450S dataset.

constraints in the learned subspace and, therefore, are more discriminative. However,

they do not address issues that are considered in the Kernel HPCA and Kernel MBPLS,

such as the scalability and small-sample-size problem.

Table 5.36 shows that, as in the previous datasets, the indirect matching models

perform well in the person re-identification problem. More importantly, Kernel X-CRC

reached 62.2% in the rank-1 matching rate, which is only inferior to the WARCA [Jose

and Fleuret, 2016] model. Actually, WARCA and MultiCNN models seem to heavily

depend on the number of training samples available as they performed considerable bet-

ter in CUHK01 dataset. Differently, due to the collaborative representation approach,

the proposed Kernel X-CRC performs well in both small and large scale datasets. Be-

sides, as these methods used different partitions of the data, the direct comparison is

not fair.
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Method
CUHK01 (p=485)

r = 1 r = 5 r = 10 r = 20 r = 30

Mirror + KMFA [Chen et al., 2015] 40.4 64.6 75.3 84.1 -

Paisitkriangkrai et al. [2015] 53.4 76.4 84.4 90.5 -

MultiCNN [Cheng et al., 2016] 53.7 84.3 91.0 96.3 98.3

GoG + XQDA [Matsukawa et al., 2016] 56.2 (1.0) 78.8 (1.4) 85.7 (1.4) 89.1 (1.3) 91.8 (1.2)

WARCA [Jose and Fleuret, 2016] 65.6 85.3 90.5 95.0 -

Kernel X-CRC 62.2 (1.8) 83.0 (2.1) 89.3 (1.2) 92.12 (1.1) 94.2 (0.9)

X-KPLS 44.0 (2.5) 70.0 (2.0) 79.1 (1.5) 86.7 (1.3) -

Kernel MBPLS 40.4 (2.6) 65.3 (2.1) 74.9 (1.2) 83.3 (1.0) -

Kernel HPCA 39.9 (2.5) 65.7 (1.7) 75.1 (1.7) 83.1 (1.6) -

Prototypes 35.2 (2.1) 62.1 (1.3) 70.0 (1.2) 78.7 (1.1) -

KPLS Subs. 32.5 (2.0) 54.6 (1.7) 64.4 (2.0) 73.3 (1.8) -

Table 5.36: Top ranked approaches on the CUHK01 dataset.



Chapter 6

Experimental Results - Multiple

Cameras

In this chapter, we present the experimental results with different parameters and con-

figurations considering the multiple cameras datasets WARD [Martinel and Micheloni,

2012] and RAID [Das et al., 2014]. These datasets contain more than two cameras and

are useful to analyze person re-identification methods that consider multiple cameras

model instead of the traditional camera pairwise models. Pairwise models capture nu-

ances of a specific camera pair but are not scalable with the number of surveillance

cameras. For instance, in a network with c connected cameras, we have c(c − 1)/2

pair of cameras. One can argue that is possible to use spatio-temporal reasoning to

cluster cameras in subsets [Loy et al., 2010]. Nonetheless, we would still have dozens

of cameras clusters in a realistic setting. Therefore, we claim that is crucial to tackle

the camera scalability problem when addressing the person re-identification problem.

In the following sections, we present experimental results for the three proposed

multiple camera methods: Kernel Hierarchical PCA (Section 6.1), Kernel Multiblock

PLS (Section 6.2) and the Cross-view Kernel PLS (Section 6.3). While the first learns

a subspace that correlates samples of the same individual captured in the camera net-

work, the last two are regression-based approaches and, therefore, include multiple

information in the response matrix Y. Particularly, we consider identity, attributes

and the concatenation of identity and attributes labels. To accomplish that we manu-

ally labelled 24 attributes for each individual in the WARD dataset, which are detailed

in Table 6.1. Despite being manually labeled, these attributes could be automatically

predicted using some state-of-the-art method [Schumann and Stiefelhagen, 2017]. Fig-

ure 6.1 shows some examples of annotated attributes for three subjects in the WARD

dataset.

83
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 Hassidebag 

 Blackshirt 

  Brightsidebag 

  Frontalpose 

  Darkcoat 

 

 Longsleeves 

  Darkhair 

 Brighttrousers 

 Brightshoes 

 Longhairs 

 Darkbackpack 

 Backpose 

  Darkcoat 

 Darkhair 

 

 Longsleeves 

 Brighttrousers 

 Brightshoes 

 Hasbackpack 

 

 Hassidebag 

 WhiteShirt 

  Darksidebag 

  Frontalpose 

 Brightcoat 

 

 Longsleeves 

  Darkhair 

 Darktrousers 

 Darkshoes 

 

Figure 6.1: Manually labeled attributes for three individuals in the WARD dataset.

Table 6.1: Manually annotated attributes and pose information in WARD dataset.

Colorshirt Blackshirt Whiteshirt Grayshirt Strippedshirt

Stampedshirt Hassidebag Darksidebag Brightsidebag Hasbackpack

Darkbackpack Brightbackpack Frontalpose Backpose Darkcoat

Brightcoat Darkhair Brighthair Blacktrousers Brighttrousers

Darkshoes Brightshoes Longhairs Longsleeves

Despite the different strategies for training (pairwise or multiple cameras models),

we keep the same testing protocol for a fair a comparison with state-of-the-art methods.

Specifically, we select one camera as probe and other camera as gallery when computing

the matching rates. Furthermore, when comparing different approaches, we use the

mean matching rate for all the camera pairs as a performance measure. These mean

matching rates are computed after running experiments on ten distinct partitions for

each pair of cameras.

In the following, we describe the two multi-cameras dataset and feature descrip-

tors evaluated.
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Datasets

We consider the multiple cameras setting in these experiments, which is a more real-

istic scenario. Particularly, we selected two widely used multi-camera re-identification

datasets: WARD [Martinel and Micheloni, 2012] and RAID [Das et al., 2014]. The

WARD considers three surveillance cameras in an outdoor environment with small

variations in the person’s pose (see Fig. 6.2). Differently, the RAID dataset is a four-

cameras dataset with indoor and outdoor cameras and large variations in pose and

illumination (see Fig. 6.3). The following paragraphs details these datasets.

WARD dataset. WARD [Martinel and Micheloni, 2012] consists of a collection of

4786 images of 70 individuals captured by three non-overlapping cameras, where each

individual has multiple images at each camera. The main challenges are related to the

strong variations in the image resolution and illumination conditions.

Figure 6.2: WARD dataset. Each row corresponds to images of the same individual captured
by three surveillance cameras (i.e., each triplet corresponds to a distinct camera).

RAID dataset. RAID [Das et al., 2014] dataset is composed by 43 persons asked to

walk through four surveillance cameras resulting in a total of 6920 annotated images.

To assess the impact of different illumination conditions, the authors used two indoors

and two outdoors cameras.
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Figure 6.3: RAID dataset. Each row corresponds to images of the same individual captured
by four surveillance cameras (i.e., each pair of images corresponds to a distinct camera).

Feature Descriptors

As the proposal of novel feature descriptors is not the focus of this work, we compared

two available feature descriptors in the person re-identification literature. Specifically,

we employed the GoG [Matsukawa et al., 2016] and the LOMO [Liao et al., 2015]

descriptors, which we extracted using the online available code provided by the authors.

To more information about the features and kernel functions, refer to Chapter 5.

Notice that we used in these experiments the LOMO alone instead of the fusion

of LOMO and CNN features (LOMO + CNN) [Shangxuan et al., 2016]. The main

reason for that is the fact that the authors did not make online available the code or

the features for WARD and RAID datasets.

In the following sections, we present experiments considering the distinct methods

proposed and these features descriptors.

6.1 Kernel Hierarchical PCA

In this section, we approach the multiple cameras person re-identification problem

using the Kernel HPCA model. We consider the different parameters of the proposed

method (Section 6.1.1) and the comparison between multiple and pairwise cameras

(Section 6.1.2). It is important to highlight that the Kernel HPCA does not consider the
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response matrix Y when computing the low-dimensional representation and, therefore,

we did not perform experiments including the attributes information.

6.1.1 Parameters Setting

In the following experiments, we consider different parameters that impact in the

matching rate of the proposed Kernel HPCA model. In particular, these parameters are

the feature descriptors, the distinct values of sigma (σ) and the number of latent factors.

Feature Descriptors. We performed experiments using the Kernel HPCA and the

two feature descriptors, LOMO and GoG. Table 6.2 and 6.3 present the obtained match-

ing rates for different ranking positions using WARD and RAID datasets, respectively.

Similarly to previous experiments, GoG outperformed the LOMO by a large margin.

For instance, the rank-1 is 4.9 and 8.6 percentage points higher in WARD and RAID

datasets, respectively. Thus, in the remaining experiments, we will employ the GoG

descriptor.

Table 6.2: GoG and LOMO descriptors evaluated using the proposed Kernel HPCA in the
WARD dataset.

Descriptors
WARD (p=35)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 73.1 (6.0) 83.1 (5.6) 88.9 (4.6) 92.2 (3.9) 94.0 (2.8)

LOMO 67.2 (7.9) 80.0 (8.6) 86.4 (6.4) 90.4 (4.8) 92.2 (4.0)

Table 6.3: GoG and LOMO descriptors evaluated using the proposed Kernel HPCA in the
RAID dataset.

Descriptors
RAID (p=20)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 76.8 (9.3) 88.5 (6.5) 93.5 (4.9) 95.9 (3.9) 97.8 (2.3)

LOMO 68.2 (8.8) 83.3 (5.4) 89.8 (4.9) 93.0 (4.2) 95.5 (3.6)

Parameter σ. Table 6.4 and 6.5 present the rank-1 matching rate for distinct values of

sigma in WARD and RAID dataset, which is the parameter related to the RBF-kernel

computation. Based on these results, it is possible to observe that suboptimal results

are obtained using sigma as 0.1 and 0.5. Differently, best results are obtained for values

closer to 1. Furthermore, we noticed that for values higher than 1.0 the experimental

results did not present high variations. Based on these results, we set sigma as 3.0 and

1.0 for WARD and RAID datasets, respectively.
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Table 6.4: Evaluation of different values of sigma using the Kernel HPCA method in the
WARD dataset.

Sigma
WARD (p=35)

σ = 0.1 σ = 0.5 σ = 1 σ = 3

Rank-1 4.1 (1.4) 53.2 (5.3) 70.9 (7.3) 73.1 (6.0)

Table 6.5: Evaluation of different values of sigma using the Kernel HPCA method in the
RAID dataset.

Sigma
RAID (p=20)

σ = 0.1 σ = 0.5 σ = 1 σ = 3

Rank-1 9.1 (2.3) 43.2 (4.9) 76.8 (9.3) 76.2 (8.7)

Latent Factors. Table 6.6 and 6.7 show the rank-1 matching rates using WARD and

RAID datasets with different number of factors in the Kernel HPCA model. For both

datasets, we observed that adding too many components degrades the performance

while increasing the computational cost. Thus, we achieved the best results using 30

and 20 components for WARD and RAID, respectively. We set these values for the

remaining experiments.

Table 6.6: Evaluation of different number of factors using the Kernel HPCA in the WARD
dataset.

Factors
WARD (p=35)

f = 10 f = 20 f = 30 f = 50

Rank-1 56.0 (7.8) 68.6 (6.7) 73.1 (6.0) 54.2 (5.3)

Table 6.7: Evaluation of different number of factors using the Kernel HPCA in the RAID
dataset.

Factors
RAID (p=20)

f = 10 f = 20 f = 30 f = 50

Rank-1 72.9 (9.8) 76.8 (9.3) 74.4 (7.2) 67.5 (9.0)

6.1.2 Multiple Cameras

In this section, we compare the Kernel HPCA in a multiple camera setting, where a

single model is learned for the entire camera network, with the pairwise counterpart

that learns a model specific for each camera pair. It is important to emphasize that
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the multiple cameras model has the advantage of being scalable, but has to deal with

all cameras at once. Differently, the pairwise learns subtle characteristics present at

each camera pair and is limited to a scenario with only few cameras.

Table 6.8 presents the mean matching rate for different ranking positions when

considering all possible combination of probe and gallery cameras. It is a common

metric when assessing the overall performance of the proposed method in the surveil-

lance system. Based on these results, it is possible to conclude that the proposed

Kernel HPCA in a multiple camera setting is not just scalable, but also more discrim-

inative than the pairwise model. We attribute these results to a better generalization

of the learned low-dimensional representation when considering more cameras. Ta-

ble 6.9 details these results for each pair of cameras. Notice that the multiple cameras

outperforms the pairwise model for all camera pairs.

Table 6.8: Matching rates for multiple and pairwise cameras using the Kernel HPCA models
in WARD dataset. These results are detailed for each pair of cameras.

Training Strategy r = 1 r = 2 r = 3

Multiple Cameras 73.1 (6.0) 83.1 (5.6) 88.9 (4.6)

Pairwise Cameras 69.5 (6.5) 81.6 (5.3) 87.0 (4.0)

Table 6.9: Matching rates for multiple and pairwise cameras using the Kernel HPCA models
in WARD dataset. These results are the mean matching rates when considering all the camera
pairs.

Training Strategy Probe/Gallery r = 1 r = 2 r = 3

Multiple Cameras

A/B 81.4 (5.8) 89.7 (5.7) 94.0 (4.4)

B/C 71.1 (6.5) 81.7 (5.7) 88.3 (4.6)

A/C 66.6 (5.6) 77.7 (5.2) 84.3 (4.9)

Pairwise Cameras

A/B 75.1 (7.4) 88.6 (4.0) 92.3 (4.1)

B/C 67.7 (4.7) 77.1 (7.3) 83.7 (5.2)

A/C 65.7 (7.3) 77.1 (7.3) 83.7 (5.2)

Table 6.10 presents a similar analysis for the RAID dataset. In this case, better

results were obtained using the pairwise model. In fact, the RAID dataset shows large

variations of pose and illumination conditions than the WARD dataset, which can be

better captured when considered each pair independently instead of using a unique

that has to capture all the data variation at once.
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Table 6.10: Matching rates for multiple and pairwise cameras Kernel HPCA models in RAID
dataset.

Training Strategy r = 1 r = 2 r = 3

Multiple Cameras 76.8 (9.3) 88.5 (6.5) 93.5 (4.9)

Pairwise Cameras 80.0 (7.3) 89.9 (4.8) 94.9 (3.4)

6.2 Kernel Multiblock PLS

In this section, we consider the proposed Kernel Multiblock PLS in a multiple cam-

era setting. We first evaluate the different parameters of the proposed method (Sec-

tion 6.2.1) and, then, we present the comparison between multiple cameras and pairwise

settings (Section 6.2.2). While in these first experiments we use only identity informa-

tion as the regression matrix Y, Section 6.2.3 considers the impact on the matching as

consequence of the addition of attributes labels.

6.2.1 Parameters Setting

In this section, we perform experiments considering different parameters that impact

in the matching rate of the proposed Kernel Multiblock PLS. Specifically, we evaluate

the the feature descriptors, distinct values of sigma and the number of latent factors.

In these experiments, we set the matrix Y using only the identity information.

Feature Descriptors. Table 6.11 presents the experimental results obtained using

the proposed Kernel MBPLS using two widely used feature descriptors (GoG and

LOMO) in the WARD dataset. These results demonstrate the superiority of the GoG

when compared to LOMO. Similarly, we observe improved results in the RAID dataset

when using GoG (see Table 6.12). Based on these improved results, we set the feature

descriptor as the GoG for the remaining experiments.

Table 6.11: GoG and LOMO descriptors evaluated using the proposed Kernel MBPLS in the
WARD dataset.

Descriptors
WARD (p=35)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 76.5 (5.1) 86.8 (5.8) 92.1 (4.7) 94.5 (3.9) 95.8 (3.6)

LOMO 69.8 (6.0) 84.0 (5.2) 91.1 (3.2) 94.3 (2.4) 95.7 (2.8)

Parameter σ. Tables 6.13 and 6.14 present the experimental results using the pro-

posed Kernel MBPLS method with different values of sigma in WARD and RAID
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Table 6.12: GoG and LOMO descriptors evaluated using the proposed Kernel MBPLS in the
RAID dataset.

Descriptors
RAID (p=20)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 78.4 (7.8) 89.7 (6.3) 94.4 (3.8) 97.1 (3.1) 98.4 (2.4)

LOMO 71.4 (8.2) 85.8 (6.7) 92.3 (4.6) 95.5 (3.3) 96.9 (2.9)

datasets, respectively. These results demonstrate that the performance declines for

values lower than 1.0. More importantly, the best results are achieved for sigma equals

3 and 1 for WARD and RAID datasets, respectively. We set sigma using these values

in the remaining experiments.

Table 6.13: Evaluation of different values of sigma (σ) using the Kernel MBPLS in the WARD
dataset.

Sigma
WARD (p=35)

σ = 0.1 σ = 0.5 σ = 1 σ = 3

Rank-1 7.1 (3.4) 60.2 (7.3) 74.7 (6.4) 79.0 (5.6)

Table 6.14: Evaluation of different values of sigma (σ) using the Kernel MBPLS in the RAID
dataset.

Sigma
RAID (p=20)

σ = 0.1 σ = 0.5 σ = 1 σ = 3

Rank-1 10.6 (6.0) 71.3 (8.9) 78.4 (7.8) 78.2 (8.4)

Latent Factors. Table 6.15 and 6.16 show the obtained experimental results when

using the Kernel MBPLS model with distinct number of factors in WARD and RAID

datasets, respectively. Based on these results, we can notice that using a small number

of components (i.e. 10 components) or large number (i.e. 70 components) we obtain

suboptimal results. In fact, the best performance is achieved when using 50 and 30

components for WARD and RAID datasets, respectively.

6.2.2 Multiple Cameras

In this section, we assess the robustness of the proposed Kernel MBPLS to the addition

of multiple surveillance cameras. To accomplish that, we compare the matching rates
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Table 6.15: Evaluation of different number of factors using the Kernel MBPLS in the WARD
dataset.

Factors
WARD (p=35)

f = 10 f = 30 f = 50 f = 70

Rank-1 53.9 (6.6) 75.3 (6.0) 76.5 (5.1) 63.9 (20.9)

Table 6.16: Evaluation of different number of factors using the Kernel MBPLS in the RAID
dataset.

Factors
RAID (p=20)

f = 10 f = 30 f = 50 f = 70

Rank-1 71.3 (9.8) 78.4 (7.8) 75.3 (6.8) 75.0 (8.3)

obtained in a pairwise (i.e., a specific model for each pair of cameras) and multiple

cameras (i.e., a single model for the camera network) settings with the Kernel MBPLS.

Table 6.17 presents the obtained matching rates for different ranking positions

when considering each camera pair in the WARD dataset. Differently, Table 6.18 uses

the mean matching rate to summarizes the results obtained for each camera pair in

RAID dataset. Based on these results, it is possible to observe that the Kernel MBPLS

is robust to the addition of cameras as there is just a small reduction in the matching

rates when compared to the pairwise setting.

Table 6.17: Matching rates for multiple and pairwise cameras using the Kernel MBPLS
models in WARD dataset. These results are detailed for each pair of cameras.

Training Strategy Probe/Gallery r = 1 r = 2 r = 3

Multiple Cameras

A/B 83.7 (5.0) 92.9 (5.9) 96.0 (5.3)

B/C 74.9 (5.0) 85.7 (5.5) 92.0 (4.4)

A/C 70.9 (5.2) 81.7 (5.9) 88.3 (4.4)

Pairwise Cameras

A/B 83.4 (6.3) 93.1 (5.9) 96.3 (4.5)

B/C 78.0 (5.9) 87.1 (5.4) 93.7 (4.0)

A/C 74.9 (6.8) 86.3 (5.8) 91.7 (3.9)

6.2.3 Attributes

Table 6.19 presents the obtained experimental results in the WARD dataset with and

without attributes information. For these results, it is possible to conclude that the

attributes produces worst results than the identity information when both are used
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Table 6.18: Matching rates for multiple and pairwise cameras using the Kernel MBPLS
models in RAID dataset. These results are the mean matching rates when considering all the
camera pairs.

Training Strategy r = 1 r = 2 r = 3

Pairwise Cameras 83.1 (7.0) 93.5 (4.4) 97.0 (2.7)

Multiple Cameras 78.4 (7.8) 89.7 (6.3) 94.4 (3.8)

isolated. It can be explained by the low-resolution images, different illumination con-

ditions and the subjectivity of some attributes (e.g., dark or bright hair). More impor-

tantly, identity and attribute are complementary information. For instance, when using

identity + attributes we improve 4.8 percentage points in the rank-1 when compared

to the identity only result.

Table 6.19: Evaluation of the proposed Kernel MBPLS in the WARD dataset using the
Identity, Attributes and Identity + Attributes settings.

Method
WARD (p=35)

r = 1 r = 5 r = 10 r = 15 r = 20

Ident. 76.5 (5.1) 86.8 (5.8) 92.1 (4.7) 94.5 (3.9) 95.8 (3.6)

Attr. 67.4 (8.3) 81.2 (7.8) 86.5 (6.5) 90.8 (5.5) 93.0 (4.6)

Ident. + Attr. 81.3 (6.4) 90.3 (5.4) 94.2 (4.8) 96.6 (2.9) 97.6 (2.6)

6.3 Cross-view Kernel PLS (X-KPLS)

In this section, we consider the proposed Cross-view Kernel PLS (X-KPLS) in a mul-

tiple camera setting. Differently from the previous approaches (i.e., Kernel MBPLS

and Kernel HPCA) that learned projections to a low-dimensional space jointly, X-

KPLS learns them independently using non-linear regression models. Nonetheless, as

a unique projection is learned for each camera, this model also scales with the number

of surveillance cameras.

In the following, we first evaluate the different parameters of the proposed method

(Section 6.3.1) and, then, we present experiments regarding the inclusion of attributes

information (Section 6.3.2). Notice that we did not compare the pairwise and multiple

camera models as the X-KPLS does not learn projections jointly and, therefore, there

is no difference between these settings.
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6.3.1 Parameters Setting

In this section, we consider the different parameters that impact in the matching

rate of the proposed X-KPLS model. In particular, these parameters are the feature

descriptors, the distinct values of sigma and the number of latent factors of the

nonlinear regression model. In these experiments, we define the responses matrix Y

using only the identity information.

Feature Descriptors. We evaluate the LOMO and GoG descriptors using the X-

KPLS model in WARD and RAID datasets. Table 6.20 presents the matching rates

for different ranking positions in WARD, while Table 6.21 shows the results in RAID.

Based on these results, it is possible to determine that the GoG outperforms the LOMO

for all ranking positions and in both datasets. Therefore, in the following experiments,

we will use the GoG representation.

Table 6.20: GoG and LOMO descriptors evaluated using the proposed X-KPLS in the WARD
dataset.

Descriptors
WARD (p=35)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 76.4 (7.0) 86.1 (6.3) 91.0 (4.6) 93.7 (3.8) 95.6 (3.1)

LOMO 70.5 (6.1) 83.4 (5.5) 88.0 (5.0) 92.7 (3.8) 94.6 (3.1)

Table 6.21: GoG and LOMO descriptors evaluated using the proposed X-KPLS in the RAID
dataset.

Descriptors
RAID (p=20)

r = 1 r = 2 r = 3 r = 4 r = 5

GoG 79.5 (8.4) 89.3 (5.9) 94.9 (4.0) 97.3 (3.4) 98.8 (2.3)

LOMO 72.4 (7.9) 86.3 (6.1) 92.4 (4.5) 96.1 (3.1) 97.3 (2.9)

Parameter σ. We evaluate different values of sigma when computing the RBF kernel

in WARD and RAID dataset. The obtained rank-1 matching rates are presented

in Table 6.22 and Table 6.23, respectively. Similarly to the previous methods, we

observed a decline in the matching rates for values smaller than 1.0, while higher

values are achieved when using sigma values equal or higher than 1.0. Based on these

experiments, we define sigma equals 2.0 and 1.0 for WARD and RAID, respectively.

Latent Factors. We evaluate the number of factors used in the X-KPLS method. It is

important to emphasize that one model is learned for each camera and that we set the

same number of components for all models. Table 6.24 presents the number of factors
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Table 6.22: WARD dataset Kernel XPLS with different values of parameter sigma.

Sigma
WARD (p=35)

σ = 0.5 σ = 1 σ = 2 σ = 3

Rank-1 56.1 (6.7) 72.0 (7.5) 76.4 (7.0) 76.1 (7.0)

Table 6.23: RAID dataset Kernel XKPLS with different values of parameter sigma.

Sigma
RAID (p=20)

σ = 0.5 σ = 1 σ = 2 σ = 3

Rank-1 70.9 (9.0) 79.5 (8.4) 79.3 (7.4) 79.3 (7.4)

for WARD dataset, while, in Table 6.25, we show these results in the RAID dataset.

Observe that using few or too many components results in suboptimal results. It can

be related to the overfitting or underfitting problems, respectively. More importantly,

we find that best rank-1 matching rates are achieved when using 30 components in

both datasets.

Table 6.24: Evaluation of different number of factors using the X-KPLS in the WARD dataset.

Factors
WARD (p=35)

f = 10 f = 20 f = 30 f = 50

Rank-1 51.8 (6.3) 71.3 (7.8) 76.4 (7.0) 76.0 (6.1)

Table 6.25: Evaluation of different number of factors using the X-KPLS in the RAID dataset.

Factors
RAID (p=20)

f = 10 f = 20 f = 30 f = 50

Rank-1 67.4 (9.4) 77.3 (8.4) 79.5 (8.4) 79.5 (8.0)

6.3.2 Attributes

In this section, we evaluate the proposed X-KPLS considering three different settings:

identity only, attributes only and attributes + identity information. To accomplish

that, we used the manually labeled attributes information in WARD dataset, as already

mentioned. As shown in Table 6.26, we observed improved results due to the better

low-dimensional representation of the data when using attributes complementary to

the identity information.
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Table 6.26: Evaluation of the proposed Kernel X-KPLS in the WARD dataset using the
Identity, Attributes and Identity + Attributes settings.

Method
WARD (p=35)

r = 1 r = 5 r = 10 r = 15 r = 20

Ident. 76.4 (7.0) 86.1 (6.3) 91.0 (4.6) 93.7 (3.8) 95.6 (3.1)

Attr. 66.7 (9.0) 80.9 (6.4) 87.5 (5.8) 91.0 (5.8) 92.5 (5.9)

Ident. + Attr. 80.9 (6.6) 91.8 (5.4) 95.0 (5.0) 96.6 (3.8) 97.9 (2.6)

6.4 State-of-the-art Comparisons

In this section, we compare the proposed methods with state-of-the-art approaches in

the WARD and RAID datasets. To the best of our knowledge, there is no other meth-

ods in literature that address person re-identification as a multiple camera problem.

Therefore, we compare the proposed multi-cameras methods with pairwise models.

Table 6.27 shows these methods categorized in metric learning and subspace learning

approaches. In addition, Table 6.27 presents that the multi-camera models grow lin-

early with the number of cameras, while the pairwise model are not scalable as we need

to learn a different model for each one of the c(c-1)/2 pair of cameras.

When considering the proposed methods, we used the best configuration of pa-

rameters discussed in the previous sections. In addition, in the regression-based meth-

ods (Kernel MBPLS and X-KPLS), we used the identity and attributes labels as re-

sponse matrix Y.

Table 6.27: State-of-the-art approaches categorized in pairwise and multiple cameras models.
In addition, we represent the methods complexity as function of the number of cameras c.

Strategy Models Methods Complexity

Pairwise

Metric Learning
XQDA, KISSME,

MLAPG
O(c2)

Subspace Learning CCA, Kernel CCA O(c2)

Multi-camera Subspace Learning
Kernel HPCA, Kernel MBPLS,

Cross-view Kernel PLS
O(c)

WARD

Table 6.28 presents the rank-1 matching rates of the methods analyzed in the different

camera pairs of WARD dataset. These methods are grouped based on the scalability
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constraints in pairwise and multiple cameras models.

Regarding the multiple cameras models, we observe a superior performance of

the Kernel MBPLS and the X-KPLS when compared to the Kernel HPCA. It can be

explained by the better separability of the data when using identity and attributes

labels in the response matrix Y. Between the Kernel MBPLS and X-KPLS, the lat-

ter presents slightly better performance, which is not statistically significant when we

consider the standard deviations. In fact, both methods have a lot in common with

the main difference being the factor that the X-KPLS computes each camera projec-

tion independently while in the Kernel MBPLS they are computed jointly in a single

framework.

The pairwise models demonstrate that metric learning approaches present supe-

rior performance when compared to the subspace learning methods (CCA and KCCA).

It is an indicative that working with similarities and dissimilarities is better than with

correlation. As matter of fact, XQDA and KISSME outperforms the proposed methods

in most of the cameras but have the disadvantage of being pairwise models.

Table 6.28: Mean Rank-1 matching rate for different approaches on WARD dataset.

Models Methods
Probe/Gallery Cameras

A/B A/C B/C

Pairwise

XQDA 88.3 (6.1) 82.6 (4.6) 89.4 (4.7)

MLAPG 72.0 (7.1) 67.6 (6.3) 76.9 (7.3)

KISSME 88.6 (5.4) 84.3 (6.1) 89.1 (3.5)

CCA 80.3 (8.0) 62.9 (5.0) 70.0 (8.0)

KCCA 82.6 (7.2) 65.4 (3.4) 70.9 (6.7)

Multiple

Ker. HPCA 81.1 (6.2) 64.0 (4.3) 71.7 (8.0)

Ker. MBPLS 86.6 (5.2) 77.1 (4.5) 83.7 (5.6)

X-KPLS 88.9 (3.7) 78.3 (4.1) 84.9 (6.0)

RAID

Table 6.29 presents the rank-1 matching rates for each pair of cameras in the RAID

datasets. These methods are divided in two subsets, the first subset consists of methods

that are pairwise, while the second subset is composed by the proposed multiple camera

models.
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Considering the multiple camera models, we can observe that the Kernel MBPLS

and X-KPLS have a mean value slightly superior to the Kernel HPCA, corroborating

with the results observed in the RAID dataset. Nonetheless, it is not a strong evidence

due to the large variation of the obtained results in all methods compared.

Similarly to the RAID dataset, in the pairwise models, we can see improved results

in the metric learning methods (XQDA, KISSME and MLAPG) when compared to the

subspace learning approaches (CCA and KCCA). In particular, the XQDA outperforms

the remaining approaches by a large margin. This superior performance when compared

to the multiple camera models can be related to the camera pair nuances that are

learned when dealing with pairwise models. Nonetheless, while we have to train six

XQDA models (i.e., one for each pair of cameras), we just need to learn a single multiple

camera model.

Table 6.29: State-of-the-art approaches compared in the RAID dataset. The methods are cat-
egorized in pairwise (first lines) and multiple camera (last lines) models to better distinguish
the scalability constraints.

Method
Probe/Gallery Cameras

A/B A/C A/D B/C B/D C/D

XQDA 99.5 (1.7) 80.5 (8.2) 93.2 (3.6) 81.6 (8.3) 97.9 (2.7) 90.0 (4.6)

KISSME 99.5 (1.7) 70.5 (7.5) 85.8 (7.9) 77.4 (5.6) 95.8 (4.8) 82.6 (2.5)

MLAPG 98.9 (2.2) 74.2 (7.2) 82.6 (11.4) 77.4 (9.9) 95.3 (3.9) 81.6 (4.5)

CCA 87.4 (7.9) 66.8 (6.6) 76.8 (5.7) 71.0 (7.9) 83.7 (9.1) 83.2 (9.2)

KCCA 87.4 (6.7) 67.4 (6.9) 80.5 (9.3) 72.1 (7.5) 86.3 (5.7) 80.0 (8.5)

Ker. HPCA 87.0 (8.6) 65.5 (9.3) 79.5 (2.8) 70.5 (7.2) 92.0 (6.3) 81.0 (5.2)

Ker. MBPLS 95.0 (5.3) 66.5 (7.8) 81.0 (8.1) 72.5 (7.9) 91.5 (7.1) 81.0 (5.2)

X-KPLS 94.0 (6.1) 66.5 (7.8) 81.0 (7.7) 70.0 (8.2) 91.5 (7.8) 81.0 (7.7)



Chapter 7

Conclusions

In this chapter, we present a summary of the the main contributions of this work.

Specifically, we discuss the cross-view matching models proposed regarding its main

advantages and drawbacks (Section 7.1). Finally, we discuss some future works that

have potential to tackle open issues in the person re-identification problem (Section 7.2).

7.1 Summary

In this dissertation, we address the person re-identification problem tackling some im-

portant issues that are still neglected by the person re-identification community as

the different camera conditions, the ambiguity between individual’s clothes and the

scalability with respect to the number of surveillance cameras. To accomplish that,

we proposed six approaches that handle the problem as common subspace learning

or an indirect matching problem. In the following paragraphs, we highlight the main

contributions of this work.

We tackle the camera transition problem using a common subspace learning strat-

egy. In this way, we learn a common subspace that highlights features that are stable

to the different camera transitions. Specifically, we proposed three common subspace

learning models: the Kernel PLS for Subspace Learning, the Kernel Hierarchical PCA

and the Kernel Multiblock PLS. These models have the advantage of being nonlinear

and robust to datasets with a reduced number of training samples. In addition, the

hierarchical formulations of the Kernel HPCA and the Kernel MBPLS allows a linear

growth of the number of models with respect to the number of cameras.

Experimental results obtained using the proposed subspace learning models val-

idate the proposed strategies: nonlinear modelling and hierarchical formulation. For

instance, when using the nonlinear mapping, we noticed an improvement in the rank-1

99



7. Conclusions 100

positions of all methods. In addition, the experiments using multiple cameras demon-

strate that the models performance is only slightly diminished when more cameras are

added during the training. Besides, superior results where observed when compared

to classical subspace learning methods from literature. Nonetheless, these results are

still lower than methods based on metric learning, which are constrained to a pair of

cameras (e.g., XQDA).

A different solution to the camera transition consists of not performing the direct

comparison between feature descriptors from distinct cameras. Instead, the comparison

between probe and gallery samples occurs indirectly by using the similarity with train-

ing samples. Three proposed approaches explore this line of research: the Prototype-

Based Person Re-identification, the Cross-view Kernel PLS and the Kernel Cross-view

Collaborative Representation based Classification. Experimental results corroborate

our claims with improved results when compared to baseline approaches, mainly for

the Kernel X-CRC method. In fact, the experiments demonstrate that key strategies

as the nonlinear mapping, the multitask formulation and the initial projection in a

common subspace boost the Kernel X-CRC performance.

Finally, we also tackle the ambiguity between individuals wearing similar clothes

by introducing attributes information that guide a better separation between individu-

als. Specifically, we include attributes labels in the nonlinear regression models Kernel

MBPLS and X-KPLS and demonstrate improved results in a pairwise (VIPeR) and

multicameras (WARD) database.

7.2 Future Works

In this work, we tackle the person re-identification problem in datasets with a reduced

number of training samples. We focused on this scenario as the human labor necessary

for the annotation of individuals identities in large cameras network is extremely high.

In this scenario, deep learning approaches obtain suboptimal results as a consequence

of the lack of generalization of such models. Therefore, we tackle the camera transition,

ambiguity between individuals and scalability problems using subspace learning and

indirect matching approaches that are learned using handcrafted descriptors.

Similar problems are present in different research areas where the cost of obtaining

or annotating samples is high. For instance, when using multimodal biometrics, we

usually have available only small collections due to the high cost of collecting the

data and the privacy concerns. Therefore, as future works, we intend to evaluate the

proposed methods in such settings.
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Roth, P. M., Hirzer, M., Köstinger, M., Beleznai, C., and Bischof, H. (2014). Maha-

lanobis distance learning for person re-identification. In Person Re-Identification,

pages 247--267. Springer.

Sarfraz, M. S., Schumann, A., Eberle, A., and Stiefelhagen, R. (2018). A pose-sensitive

embedding for person re-identification with expanded cross neighborhood re-ranking.

In Proc. CVPR, pages 420--429.

Satta, R. (2013). Appearance descriptors for person re-identification: a comprehensive

review. CoRR, abs/1307.5748.

Schölkopf, B., Smola, A., and Müller, K.-R. (1998). Nonlinear component analysis as

a kernel eigenvalue problem. Neural computation, 10(5):1299--1319.

Schumann, A. and Stiefelhagen, R. (2017). Person re-identification by deep learning

attribute-complementary information. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 20--28.



Bibliography 110

Schwartz, W. and Davis, L. (2009a). Learning discriminative appearance-based models

using partial least squares. pages 322–329. ISSN 1550-1834.

Schwartz, W. and Davis, L. (2009b). Learning discriminative appearance-based models

using partial least squares. In Computer Graphics and Image Processing, 2009 XXII

Brazilian Symposium on, pages 322–329. ISSN 1550-1834.

Schwartz, W. R., Kembhavi, A., Harwood, D., and Davis, L. S. (2009). Human de-

tection using partial least squares analysis. In Computer vision, 2009 IEEE 12th

international conference on, pages 24--31. IEEE.

Shangxuan, W., Ying-Cong, C., Xiang, L., Jin-Jie, Y., and Wei-Shi, Z. (2016). An

enhanced deep feature representation for person re-identification. In WACV2016:

IEEE Winter Conference on Applications of Computer Vision.

Sharma, A. and Jacobs, D. W. (2011). Bypassing synthesis: Pls for face recognition

with pose, low-resolution and sketch. In Computer Vision and Pattern Recognition

(CVPR), 2011 IEEE Conference on, pages 593--600. IEEE.

Shi, H., Zhu, X., Liao, S., Lei, Z., Yang, Y., and Li, S. Z. (2015). Constrained deep

metric learning for person re-identification. arXiv preprint arXiv:1511.07545.

Siarohin, A., Sangineto, E., Lathuilière, S., and Sebe, N. (2018). Deformable gans for

pose-based human image generation. In CVPR 2018-Computer Vision and Pattern

Recognition.

Stuart, J. M., Segal, E., Koller, D., and Kim, S. K. (2003). A gene-coexpression network

for global discovery of conserved genetic modules. science, 302(5643):249--255.

Turk, M. A. and Pentland, A. P. (1991). Face recognition using eigenfaces. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

586--591.

Vapnik, V. N. (1998). Statistical learning theory. Adaptive and learning systems for

signal processing, communications, and control. Wiley, New York. ISBN 0-471-03003-

1.

Varior, R. R., Shuai, B., Lu, J., Xu, D., and Wang, G. (2016). A siamese long short-

term memory architecture for human re-identification. In European Conference on

Computer Vision, pages 135--153. Springer.



Bibliography 111

Vezzani, R., Baltieri, D., and Cucchiara, R. (2013). People reidentification in surveil-

lance and forensics: A survey. ACM Computing Surveys (CSUR), 46(2):29.

Wang, C., Zhang, Q., Huang, C., Liu, W., and Wang, X. (2018). Mancs: A multi-

task attentional network with curriculum sampling for person re-identification. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 365--

381.

Wang, G., Lin, L., Ding, S., Li, Y., and Wang, Q. (2016). Dari: Distance metric and

representation integration for person verification. arXiv preprint arXiv:1604.04377.

Wang, T., Gong, S., Zhu, X., and Wang, S. (2014). Person re-identification by video

ranking. In European Conference on Computer Vision, pages 688--703. Springer.

Wang, X. (2013). Intelligent multi-camera video surveillance: A review. Pattern recog-

nition letters, 34(1):3--19.

Wei-Shi, Z., Shaogang, G., and Tao, X. (2011). Person re-identification by probabilistic

relative distance comparison. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 203--208.

Westerhuis, J. A., Kourti, T., and MacGregor, J. F. (1998). Analysis of multiblock and

hierarchical pca and pls models. Journal of chemometrics, 12(5):301--321.

Wold, H. (1985). Encyclopedia of Statistical Sciences, volume 6. John Wiley & Sons.

Wolf, L., Hassner, T., and Taigman, Y. (2009). The one-shot similarity kernel. In

International Conference on Computer Vision (ICCV).

Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., and Yan, S. (2010). Sparse

representation for computer vision and pattern recognition. Proceedings of the IEEE,

98(6):1031--1044.

Xiong, F., Gou, M., Camps, O., and Sznaier, M. (2014). Person re-identification using

kernel-based metric learning methods. In European Conference on Computer Vision

(ECCV), pages 1--16. Springer.

Yan, Y., Ni, B., Song, Z., Ma, C., Yan, Y., and Yang, X. (2016). Person re-identification

via recurrent feature aggregation. In European Conference on Computer Vision,

pages 701--716. Springer.

Yang, J., Shi, Z., and Vela, P. (2011). Person reidentification by kernel pca based

appearance learning. In CRV.



Bibliography 112

Yang, Y., Liao, S., Lei, Z., and Li, S. Z. (2016). Large scale similarity learning using

similar pairs for person verification. In Thirtieth AAAI Conference on Artificial

Intelligence.

Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., and Li, S. Z. (2014). Salient color names

for person re-identification. In Computer Vision–ECCV 2014, pages 536--551.

Yi, D., Lei, Z., Liao, S., and Li, S. Z. (2014). Deep metric learning for person re-

identification. In Pattern Recognition (ICPR), 2014 22nd International Conference

on, pages 34--39. IEEE.

You, J., Wu, A., Li, X., and Zheng, W.-S. (2016). Top-push video-based person re-

identification. arXiv preprint arXiv:1604.08683.

Zajdel, W., Zivkovic, Z., and Krose, B. J. A. (2005). Keeping track of humans: Have i

seen this person before? In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, pages 2081–2086. ISSN 1050-4729.

Zeng, M., Wu, Z., Tian, C., Zhang, L., and Hu, L. (2015). Efficient person re-

identification by hybrid spatiogram and covariance descriptor. In IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pages 48--56.

Zhang, L., Xiang, T., and Gong, S. (2016a). Learning a discriminative null space for

person re-identification. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1239--1248.

Zhang, L., Yang, M., Feng, X., Ma, Y., and Zhang, D. (2012). Collaborative represen-

tation based classification for face recognition. arXiv preprint arXiv:1204.2358.

Zhang, Y., Li, B., Lu, H., Irie, A., and Ruan, X. (2016b). Sample-specific svm learn-

ing for person re-identification. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Zhao, R., Ouyang, W., and Wang, X. (2013). Unsupervised salience learning for person

re-identification. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3586--3593.

Zheng, L., Huang, Y., Lu, H., and Yang, Y. (2017a). Pose invariant embedding for

deep person re-identification. arXiv preprint arXiv:1701.07732.

Zheng, L., Yang, Y., and Hauptmann, A. G. (2016). Person re-identification: Past,

present and future. arXiv preprint arXiv:1610.02984.



Bibliography 113

Zheng, Z., Zheng, L., and Yang, Y. (2017b). A discriminatively learned cnn embedding

for person reidentification. ACM Transactions on Multimedia Computing, Commu-

nications, and Applications (TOMM), 14(1):13.

Zheng, Z., Zheng, L., and Yang, Y. (2017c). Unlabeled samples generated by gan im-

prove the person re-identification baseline in vitro. arXiv preprint arXiv:1701.07717,

3.

Zheng, Z., Zheng, L., and Yang, Y. (2018). Pedestrian alignment network for large-

scale person re-identification. IEEE Transactions on Circuits and Systems for Video

Technology.

Zhong, Z., Zheng, L., Cao, D., and Li, S. (2017). Re-ranking person re-identification

with k-reciprocal encoding. In Computer Vision and Pattern Recognition (CVPR),

2017 IEEE Conference on, pages 3652--3661. IEEE.

Zhong, Z., Zheng, L., Zheng, Z., Li, S., and Yang, Y. (2018). Camera style adaptation

for person re-identification. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5157--5166.

Zhu, X., Jing, X.-Y., Wu, F., and Feng, H. (2016). Video-based person re-identification

by simultaneously learning intra-video and inter-video distance metrics. In Interna-

tional Joint Conference on Artificial Intelligence.


	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Hypotheses
	1.3 Objectives
	1.4 Contributions
	1.5 Outline
	1.6 Publications

	2 Related Works
	2.1 Single-Shot Person Re-Identification
	2.1.1 Labeled Samples
	2.1.2 Feature Descriptors
	2.1.3 Cross-View Matching

	2.2 Multiple-Shot Person Re-Identification
	2.3 Video-Based Person Re-Identification
	2.4 Complementary Information for Person Re-Identification

	3 Subspace Learning
	3.1 Kernel PLS for Subspace Learning
	3.1.1 Partial Least Squares for Subspace Learning
	3.1.2 Proposed Method

	3.2 Kernel Hierarchical PCA
	3.2.1 Hierarchical PCA (HPCA)
	3.2.2 Proposed Method

	3.3 Kernel Multiblock Partial Least Squares
	3.3.1 Multiblock PLS (MBPLS)
	3.3.2 Proposed Method

	3.4 Final Remarks

	4 Indirect Matching
	4.1 Prototype-Based Person Re-Identification
	4.1.1 Prototype Discovery
	4.1.2 Prototype Modeling
	4.1.3 Sample Ranking

	4.2 Cross-View Kernel PLS
	4.2.1 Kernel Partial Least Squares (KPLS)
	4.2.2 Proposed Method

	4.3 Kernel Cross-View Collaborative Representation based Classification
	4.3.1 Collaborative Representation based Classification
	4.3.2 Proposed Approach

	4.4 Final Remarks

	5 Experimental Results - Pairwise Cameras
	5.1 Kernel PLS for Subspace Learning
	5.2 Kernel Hierarchical PCA
	5.3 Kernel Multiblock PLS
	5.4 Prototype-Based Person Re-Identification
	5.5 Cross-View Kernel PLS (X-KPLS)
	5.6 Kernel Cross-View Collaborative Representation based Classification
	5.7 State-of-the-art Comparisons

	6 Experimental Results - Multiple Cameras
	6.1 Kernel Hierarchical PCA
	6.1.1 Parameters Setting
	6.1.2 Multiple Cameras

	6.2 Kernel Multiblock PLS
	6.2.1 Parameters Setting
	6.2.2 Multiple Cameras
	6.2.3 Attributes

	6.3 Cross-view Kernel PLS (X-KPLS)
	6.3.1 Parameters Setting
	6.3.2 Attributes

	6.4 State-of-the-art Comparisons

	7 Conclusions
	7.1 Summary
	7.2 Future Works

	Bibliography

