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Resumo

Problemas de partição em grafos modelam diferentes tarefas do mundo real, como
alocação de recursos ou design de redes tolerantes a falhas. Geralmente, esse prob-
lemas são NP-difíceis, e projetar algoritmos cuja complexidade dependa apenas do
tamanho do grafo de entrada levam a tempos de execução impraticáveis. A complex-
idade parametrizada aborda esse desafio por meio do projeto de algoritmos que fun-
cionam bem em apenas algumas instâncias do problema. Nesta tese, cinco problemas
em teoria dos grafos foram estudados do ponto de vista da complexidade computacional:
coloração equilibrada, clique coloração, biclique coloração, d-corte, e reconhecimento
de grafos estrela.

Coloração equilibrada foi investigada em termos de grafos cordais, grafos bloco
e algumas subclasses. Foi provado que coloração equilibrada é W[1]-difícil para
grafos bloco de diâmetro limitado e para a união disjunta de grafos split, quando
parametrizado pelo número de cores e treewidth; e W[1]-difícil para grafos de intervalo
livres de K1,4 quando parametrizado por treewidth, número de cores e grau máximo,
generalizando os resultados de Fellows et al. (2011) por meio de reduções muito mais
simples. Usando resultados anteriores de Werra (1985), uma dicotomia para a complex-
idade de coloração equilibrada de grafos cordais baseada no tamanho da maior estrela
induzida foi estabelecida. Finalmente, é demonstrado que o problema de coloração
equilibrada é FPT quando parametrizada pelo treewidth do grafo complementar.

É apresentado o primeiro algoritmo O∗(2n) para biclique coloração, que faz uso
de propriedades associadas ao hipergrafo biclique e do princípio da inclusão exclusão.
Algoritmos parametrizados por diversidade de vizinhança são discutidos para os prob-
lemas de clique e biclique coloração, sendo esses os primeiros algoritmos parametrizados
para esses problemas. Biclique coloração foi apenas recentemente introduzida na liter-
atura, e muito do trabalho exploratório em diferentes classes de grafos ainda deve ser
feito.

Foi definido e investigado o problema d-corte, uma generalização natural do prob-
lema de corte emparelhado. São generalizados e, em alguns casos, melhorados, vários
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resultados do estado-da-arte para corte emparelhado. Em particular, são apresentados
reduções de NP-dificuldade para d-corte em grafos (2d+2)-regulares, um algoritmo poli-
nomial para grafos de grau máximo d+ 2, e um algoritmo exato exponencial marginal-
mente mais eficiente que a estratégia ingênua por força bruta, cuja complexidade é
O∗(2n). Em seguida, são dados algoritmos FPT para diversos parâmetros: número
máximo de arestas cruzando o corte, treewidth, distância para cluster e distância
para co-cluster. A principal contribuição é um kernel polinomial para d-corte quando
parametrizado pela distância para cluster; ao mesmo tempo, descartamos a existência
de um kernel polinomial quando parametrizado simultaneamente por treewidth, grau
máximo e número máximo de arestas cruzando o corte.

Por fim, grafos estrela - grafos de interseção das estrelas maximais de um grafo -
foram discutidos e definidos em termos de uma cobertura de arestas por cliques, com
o intuito de que tal classe possa ser uma ferramenta útil na investigação de grafos
biclique. Uma cota superior para o tamanho de pré-imagens minimais por uma função
quadrática do número de vertices do grafo estrela é apresentada, em seguida uma
caracterização de Krausz para essa classe de grafos é descrita; a combinação esses
resultados mostra o pertencimento do problema de reconhecimento em NP. Em seguida,
alguma propriedades de grafos estrela são apresentadas. Em particular, é mostrado que
todos os grafos dessa classe são biconexos e que toda aresta pertence a pelo menos um
triângulo; também são mostrados uma caracterização para as estruturas que devem
existir na pré-imagem para que o grafo estrela tenha vertices de grau dois, e que o
diâmetro de um grafo estrela é limitado por uma função do diâmetro de sua pré-
imagem. Por fim, um teorema de monotonicidade é apresentado, o qual é aplicado
para gerar todos os grafos estrela de até oito vértices e provar que a classe de grafos
estrela e quadrados de grafos não estão propriamente contidas uma na outra.
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Abstract

Graph partitioning problems are used to model many different real world tasks, such
as the allocation of resources or designing fault tolerant networks. Usually, however,
they are NP-hard problems, and designing algorithms with complexity solely dependent
on the size of the input graph leads to impractical running times. Parameterized
complexity approaches this challenge by designing algorithms that work well for some
instances of the problem. In this thesis, five graph theoretical problems were studied
from the complexity point of view: equitable coloring, clique coloring, biclique coloring,
d-cut, and star graph recognition.

Equitable coloring was investigated in terms of chordal graphs, block graphs and
some of its subclasses. It is proved that Equitable Coloring is W[1]-hard for block
graphs of bounded degree and for disjoint union of split graphs when parameterized by
the number of colors and treewidth; and W[1]-hard for K1,4-free interval graphs when
parameterized by treewidth, number of colors and maximum degree, generalizing a
result by Fellows et al. (2011) through a much simpler reduction. Using a previous
result due to Dominique de Werra (1985), a dichotomy for the complexity of equitable
coloring of chordal graphs based on the size of the largest induced star is established.
Finally, it is shown that Equitable Coloring is FPT when parameterized by the
treewidth of the complement graph. The first O∗(2n) time exact algorithm for biclique
coloring was presented, which makes use of properties of the associated biclique hy-
pergraph and the powerful inclusion-exclusion principle. Algorithms parameterized by
neighborhood diversity were discussed for both clique and biclique coloring, being the
first parameterized algorithms for these problems. Biclique coloring was only recently
introduced in the literature, and much of the exploratory work on different graph classes
remains to be done.

A natural generalization of the Matching Cut problem, called d-Cut is defined
and investigated. Namely, an NP-hardness reduction for d-Cut on (2d + 2)-regular
graphs is given, followed by a polynomial time algorithm for graphs of maximum degree
at most d+ 2. The degree bound in the hardness result is unlikely to be improved, as
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it would disprove a long-standing conjecture in the context of internal partitions. FPT

algorithms for several parameters are given: the maximum number of edges crossing
the cut, treewidth, distance to cluster, and distance to co-cluster. In particular, the
treewidth algorithm improves upon the running time of the best known algorithm for
Matching Cut. Our main technical contribution is a polynomial kernel for d-Cut

for every positive integer d, parameterized by the distance to a cluster graph. The
existence of polynomial kernels when parameterizing simultaneously by the number of
edges crossing the cut, the treewidth, and the maximum degree is also ruled out. An
exact exponential algorithm slightly faster than the naive brute force approach running
in time O∗(2n) is provided. We also discuss two other generalizations of Matching

Cut which appear to be considerably more challenging than d-Cut.
Finally, star graphs - intersection graph of maximal stars of a graph - were first

discussed and defined in terms of a characteristic edge clique cover, in the hope that
they could be a useful tool on the investigation of biclique graphs. A bound on the
size of minimal pre-images by a quadratic function on the number of vertices of the
star graph is presented, then a Krausz-type characterization for this graph class is de-
scribed; the combination of these results yields membership of the recognition problem
in NP. Some properties of star graphs are presented. In particular, it is shown that all
graphs in this class are biconnected, that every edge belongs to at least one triangle, a
characterization of the structures the pre-image must have in order to generate degree
two vertices, and the diameter of the star graph is bounded by a function of the di-
ameter of its pre-image. Finally, a monotonicity theorem is provided, which we apply
to generate all star graphs on at most eight vertices and prove that the classes of star
graphs and square graphs are not properly contained in each other.
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Chapter 1

Introduction and preliminaries

Graphs are a mathematical tool mainly used to model situations where objects have
some sort of interaction with each other. As such, they naturally arise on a plethora of
problems from the most varied domains, ranging from geographical data to computer
science, physics, chemistry and biology. Computer science, in particular, is heavily re-
liant on graphs and their many properties, being a core component of many database,
network and artificial intelligence algorithms. In the information age, which encom-
passes the later 20th and early 21st centuries, the development of communication
technologies has been a (if not the) focus point for human society. It is quite hard
to conceive a more fitting structure to the modeling of communication networks than
a graph; the schematics of such a network are pretty much a drawing of a graph. In
more recent years, the explosive popularity of online social networks has created a
demand for extremely efficient and scalable implementations of graph structures and
algorithms.

Beside their wide applicability range, graphs by themselves have been the subject
of countless investigations. Much of the foundation of modern graph theory was laid
by some of the greatest mathematicians of the nineteen hundreds, such as Bill Tutte,
Claude Berge, and Paul Erdős, with many milestone results in structural theory. Their
work transformed graph theory from a small topic in combinatorics into one of the un-
derpinning fields of applied mathematics, with connections to older, more established,
mathematical domains. Another growth spurt in the area is attributed to the rapid
expansion of computer science and its demands for efficient algorithms. Various com-
putational problems quickly became graph theoretical ones, leading to many profound
insights, which in turn presented new venues of investigation and even more important
questions in graph theory, creating an ongoing virtuous cycle of research.

Most of this thesis is devoted to the study of some graph theoretical problems
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2 Chapter 1. Introduction and preliminaries

belonging to the broad class of partitioning problems. Members of this family seek
a partition of the graph’s vertices and/or edges such that each part of the partition
satisfies some problem-specific properties. The focus of this work is on two branches
of partitioning problems: colorings and cuts. In a coloring problem, the goal is to
partition (i.e. color) the vertices (or edges) of a graph such that each set of the partition,
individually, satisfies some condition. For the classical Vertex Coloring problem,
the goal is to partition the graph’s vertex set such that, inside each member of the
partition there are no two adjacent vertices. By further desiring that the size of each
partition member be as close as possible to each other, the Equitable Coloring

problem, which appears to be much harder to solve even for graph classes where classical
vertex coloring is efficiently solvable, is generated. One may also impose the constraint
that no maximal induced subgraph be entirely contained in a single set of the partition.
For example, it may be required that no maximal clique or biclique (complete bipartite
graph) of the given graph may be monochromatic generating the problems known as
Clique Coloring and Biclique Coloring, respectively.

On the other hand, there are cut problems. While coloring problems are con-
cerned with each set of the partition, cut problems usually define properties among
different sets of the partition, usually involving the disconnection of a subset of ver-
tices. Certainly, the most well known cut problem is Minimum Cut, where the goal is
to disconnect a given pair of vertices through the removal of the smallest possible subset
of edges. This problem has been a component of numerous optimization algorithms,
usually as a subroutine of more sophisticated heuristics, cutting plane, or pricing tech-
niques. A lesser known relative of Minimum Cut is the Matching Cut problem; in
this case, a bipartition of the vertex set of a graph such that each vertex has at most
one neighbor across the cut is sought. Much work was done in this problem in recent
years, building upon results of the 1980s, specially in terms of parameterized complex-
ity. Many possible generalizations come to mind simply by looking at the definition.
For instance, one could ask for a multipartition of the vertex set so that between each
pair of sets there is a matching cut, or maybe a bipartition is still desired, but now
a vertex may have more neighbors across the cut. Another cut problem with degree
constraints and quite similar to the latter is known as Internal Partition, where
the goal is to find a bipartition of the vertices so that no vertex has more than half of
its neighbors across the cut.

A secondary object of study are graph classes defined as intersection graphs.
While it is known that every graph is the intersection graph of the subgraphs of some
graph, constraints on the intersecting subgraph family impose all sorts of properties
to the resulting graph. For example, the literature is rife with works on clique graphs
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– the intersection graph class of maximal cliques of some graph, with results ranging
from characterizations to other structural aspects; while biclique graphs are a far more
recently studied class. The intersection graphs of these maximal structures are usually
hard to characterize and provide few algorithmically useful insights on the topology of
the underlying graph. Nevertheless, their understanding was crucial to the development
of a consistent theory that is used to describe important classes, such as chordal graphs
(intersection graphs of subtrees of a tree), cographs (intersection graphs of paths of a
grid) and line graphs (intersection graphs of the edges of a graph).

In short, the study presented in this thesis, as many algorithmic graph theory
works, is done from the structural and complexity point of view. While the reported
results are mainly algorithms, hardness proofs, and kernelization techniques, most of
these are heavily reliant on structural aspects, either by supporting themselves on
previous results of the literature or by being structural themselves. Specifically, four
partitioning problems were investigated: equitable coloring, clique coloring, biclique
coloring, and a generalization of matching cut. For intersection graphs of maximal
structures, motivated by the difficulty in working with biclique graphs, star graphs
(intersection graphs of maximal stars of a graph) are introduced and investigated. The
following is a summary of the topics and results discussed in this thesis.

• The remainder of this chapter defines most of the notation used throughout this
work. It also revisits some of the main concepts employed throughout this thesis.

• Chapter 2 tackles coloring problems. For equitable coloring, some W[1]-hardness

results are provided: for block graphs of bounded diameter when parameterized
by treewidth and maximum number of colors, for K1,4-free interval graphs when
parameterized by treewidth, maximum number of colors and maximum degree,
and for disjoint union of complete multipartite graphs when parameterized by
treewidth and maximum number of colors. Some algorithms for equitable col-
oring are also described; in particular, it is shown that the problem admits an
XP algorithm for chordal graphs when a parameterized by the maximum number
of colors, a constructive polynomial time algorithm to equitably color claw-free
chordal graphs, and an FPT algorithm parameterized by the treewidth of the
complement graph. Also in this chapter, both clique and biclique colorings are
discussed. The first exact exponential time algorithm for biclique coloring, which
builds upon ideas used for clique coloring, is presented. Then, kernelization algo-
rithms for clique and biclique coloring when parameterized by neighborhood di-
versity are given; using results on covering problems, an FPT algorithm under the
same parameterization is obtained for clique coloring, which has optimal running
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time, up to the base of the exponent, unless the Exponential Time Hypothesis
fails. For biclique coloring, an FPT algorithm is given, but when simultaneously
parameterized by the maximum number of colors and neighborhood diversity.

• Chapter 3 discusses generalizations of the matching cut problem. Most of the
chapter is devoted to the study of the d-cut problem. Among the presented
results are included an NP-hardness proof for (2d+ 2)-regular graphs – which has
an important connection to a conjecture on the context of internal partitions –
as well as a polynomial time algorithm for graphs of maximum degree d+2. FPT

algorithms for several parameters are then given; namely: the maximum number
of edges crossing the cut, treewidth, distance to cluster, and distance to co-
cluster. The algorithm parameterized by treewidth improves upon the running
time of the best known algorithm for Matching Cut. Afterwards, building
on techniques employed for Matching Cut, a polynomial kernel for d-Cut

for every positive integer d, parameterized by the distance to a cluster graph is
shown. The existence of polynomial kernels when parameterizing simultaneously
by the number of edges crossing the cut, the treewidth, and the maximum degree
is ruled out. Also, an exact exponential algorithm slightly faster than the naive
brute force approach is described. We conclude the chapter with some remarks
on two other generalizations of Matching Cut, with some results in another
version, which we called `-Nested Matching Cut, and a brief discussion on a
much harder problem, namely p-Way Matching Cut.

• Chapter 4 deals with star graphs, the intersection graphs of the maximal stars
of a graph, and with star-critical graphs which are minimal with respect to the
star graph they generate. The chapter begins with a bound on the number of
vertices of star-critical graphs by a quadratic function of the size of its set of
maximal stars. Afterwards, a Krausz-type characterization is given; both results
are combined to show that the recognition problem belongs to NP. Then, a series
of properties of star graphs are proved. In particular, it is shown that they are
biconnected, that every edge belongs to at least one triangle, the structures that
the pre-image must have in order to generate degree two vertices are character-
ized, and a bound on the diameter of the star graph with respect to the diameter
of its pre-image is given. Finally, a monotonicity theorem is provided, which is
used to generate all star graphs on no more than eight vertices and prove that
the classes of star graphs and square graphs are not properly contained in each
other.
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The following table summarizes the submissions and collaborators of each chapter.

Chapter Title Venue Status Collaborators

2 Parameterized Complexity of Discrete Mathematics & Published Carlos V. Gomes &
Equitable Coloring Theoretical Computer Science Vinícius dos Santos

2 Algorithms for Clique and Under Carlos V. Gomes &
Biclique Coloring Preparation Vinícius dos Santos

3

Finding cuts of bounded International Symposium
degree: complexity, FPT on Parameterized and Exact Published Ignasi Sau
and exact algorithms, Computation
and kernelization

4
Intersection graph Discrete Applied Under Carlos V. Gomes &
of maximal stars Mathematics Review Marina Groshaus &

Vinícius dos Santos

Table 1: Submissions and Collaborators.

1.1 Basic definitions

We denote by [n] = {1, . . . , n}. A (multi)family is a (multi)set of sets. The power set
2S of a set S is the family of all subsets of S. A k-partition of S into k sets is denoted
by S ∼ {S1, . . . , Sk} such that Si ∩ Sj = ∅ and

⋃
i≤k Si = S. A k-(multi)cover of S is

a (multi)family {S1, . . . , Sk} of subsets of S such that
⋃
i∈[k] Si = S. A (multi)family

F satisfies the Helly condition or Helly property if and only if, for every pairwise
intersecting subfamily F ′ of F ,

⋂
F∈F ′ F 6= ∅. The intersection graph of a multifamily

F ⊆ 2S, denoted by G = Ω(F) is the graph of order |F| and, for every Fu, Fv ∈ F ,
uv ∈ E(G) ⇔ Fu ∩ Fv 6= ∅. Any F such that Ω(F) ' G is a set representation of
G. A known theorem states that every graph is the intersection graph of a family of
subgraphs of a graph [A. McKee and McMorris, 1999].

A simple graph of order (or size) n is an ordered pair G = (V (G), E(G)), where
V (G) is its vertex set of cardinality n and its edge set, E(G), is a family of pairs of
distinct elements of V (G). A graph is trivial if |V (G)| = 1. Instead of {u, v} ∈ E(G),
we denote an edge by uv, simply due to convenience. Moreover, when there is no
ambiguity, we denote V (G) by V , E(G) by E, |V | as n and |E| as m.

We say that two vertices u, v ∈ V are adjacent or neighbors if uv ∈ E. A graph
G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. If E ′ = {uv ∈ E | u, v ∈ V ′} we
say that V ′ induces G′, G′ = G[V ′] and that G′ is the induced subgraph of G by V . For
simplicity, we denote by G− v the graph G[V (G) \ {v}] and, similarly, for S ⊆ V (G),
G \ S is equivalent to G[V (G) \ S].
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The open neighborhood, or just neighborhood of a vertex v inG is given byNG(v) =

{u | uv ∈ E(G)}, its closed neighborhood by NG[v] = NG(v) ∪ {v} and its degree by
degG(v) = |NG(v)|. A vertex is simplicial if its neighbors are pairwise adjacent. For a
set S ⊆ V , we denote its open and closed neighborhood as NG(S) =

⋃
v∈S NG(v) \ S,

NG[S] = NG(S) ∪ S and degG(S) = |NG(S)|, respectively. The complement G of G is
defined as V (G) = V (G) and E(G) = {uv|uv /∈ E}. Given a graph G, we denote its
maximum degree by ∆(G) and minimum degree by δ(G).

Two vertices u, v are false twins if NG(u) = NG(v) and true twins if NG[u] =

NG[v]. u, v are of the same type if they are either true or false twins. Being of the same
type is an equivalence relation [Ganian, 2012], and the number of different types on a
graph G is called its neighborhood diversity, nd(G).

Two graphs G and H are isomorphic if and only if there is a bijection f : V (G) 7→
V (H) such that uv ∈ E(G)⇔ f(u)f(v) ∈ E(H). We denote isomorphism by G ' H.
A graph G is said to be free of a graph H, or H-free, if there is no induced subgraph
G′ of G such that G′ and H are isomorphic.

The path of length k, or Pk, is a graph with k vertices v1 . . . vk such that vivj ∈
E(Pk) if and only if j = i + 1. Moreover, we say that v1, vk are the extremities, or
endvertices, of Pk and all other vi are its inner vertices. The length of a path is the
number of edges contained in it, that is, Pk has length k − 1. An induced path of G
is a subgraph G′ of G that is isomorphic to a path. A cycle with k ≥ 3 vertices is a
path with k vertices plus the edge vkv1; analogously, the length of a cycle is defined as
the number of edges it contains. An induced cycle of G is an induced subgraph G′ of
G that is isomorphic to a cycle. A chord in a cycle C of length at least 4 is an edge
between two non-consecutive vertices of C. The girth of G, denoted by girth(G), is the
length of the smallest induced cycle of G. A hole is a chordless cycle of length at least
4; it is an even-hole if it has an even number of vertices, or an odd-hole, otherwise. An
anti-hole is the complement of a hole. G is acyclic if and only if there is no induced
cycle in G. A matching is a set of edges such no two share a common endpoint. A
maximum matching is said to be perfect if every vertex of the graph is contained in
one edge of the matching.

A graph G is connected if and only if there is an induced path between every pair
u, v ∈ V , and disconnected, otherwise. A connected component, or simply a component,
of G is a maximal connected induced subgraph of G. Given a graph G, the distance
distG(u, v) between two vertices u, v in G is the minimum number of edges in any path
between them. If u, v are in different components, we say that distG(u, v) = ∞. The
diameter of a connected graph G is defined as the length of the longest shortest path
between any pair of vertices u, v ∈ V (G). The k-th power Gk of a graph G is the graph
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where V (Gk) = V (G) and E(Gk) = {uv | distG(u, v) ≤ k}. When k = 2, G2 is also
called the square of graph G and G is called the square root of G2. The class of all
graphs that admit a square root is called square graphs. When the graph in question
is clear, we will omit the G subscript.

An articulation point, cut point or cut vertex of a connected graph G is a vertex
v such that G − v is disconnected. A bridge is an edge of G whose removal increases
the number of connected components of G. G is biconnected if G is connected and
does not have a cut vertex. A cutset of a connected graph G is a set S ⊂ V such that
G \ S is disconnected. In particular, a cut vertex is a cutset of size one.

The complete graph Kn of order n is a graph where every pair of vertices is
adjacent. A clique of G of size n is a set S ⊆ V such that G[S] is isomorphic to Kn.
Similarly, an independent set of G of size n is a set S ⊆ V such that G[S] is isomorphic
to Kn. We denote by ω(G) and α(G) the size of the maximum induced clique and
maximum independent set of a given G. An edge clique cover Q = {Q1, . . . , Qn} of a
graph G is a (multi)family of cliques of G such that every edge of G is contained in at
least one element of Q.

A graph is a cluster graph if all of its connected components are cliques. Analo-
gously, a graph is a co-cluster graph if its complement is a cluster graph. The distance
to cluster (resp. co-cluster) of a graph G, denoted by dc(G) (resp. dc(G)), is the
size of the smallest subset of vertices U of G such that G− U is a (co-)cluster graph.
These parameters can be computed in O

(
1.92dc(G)n2

)
time and O

(
1.92dc(G)n2

)
time,

respectively [Boral et al., 2016]. It is quite easy, however, to obtain a 3-approximation
for them in polynomial time, it suffices to note that a graph is a cluster graph if and
only if it is P3-free: while there is some P3 in the graph, it suffices to remove all three
vertices. The above values are examples of structural graph parameters. Determining
certain parameters of a generic graph G is efficient (such as ∆(G) and δ(G)); however,
others (such as ω(G) and α(G)) are widely believed to be hard to ascertain.

A graph G is bipartite if V (G) ∼ {X, Y } such that both X and Y are independent
sets. Such property implies that a graph is bipartite if and only if it is C2k+1-free, for
any k ≥ 1. A biclique Kn1,n2 is a bipartite graph with |X| = n1, |Y | = n2 and
uv ∈ E(G) for every pair u ∈ X and v ∈ Y . A star is a biclique with |X| = 1 and
|Y | ≥ 1 and its center is the vertex of maximum degree. Clearly, we can also define
induced bicliques and induced stars much like induced cliques. A graph is multipartite if
V (G) ∼ {X1, . . . , Xp} andXi is an independent set for all i; it is a complete multipartite
graph if uv ∈ E(G) whenever u ∈ Xi, v ∈ Xj and i 6= j.

A hypergraph H = (V, E) is a natural generalization of a graph. That is, V (H)

is its vertex set and E ⊆ 2V its hyperedge set [Berge, 1984]. A graph G is said to be
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a host of H if V (G) = V (H), every hyperedge of H induces a connected subgraph of
G and every edge of G is contained in at least one hyperedge of H. A hypergraph is
k-uniform if all of its hyperedges have the same size k.

A transversal of a hypergraphH is a setX ⊆ V (H) such that, for every hyperedge
ε ∈ E(H), X ∩ ε 6= ∅. If X is not a transversal we say that it is an oblique.

The clique hypergraph HC(G) of a graph G is the hypergraph on the same vertex
set of G and with hyperedge set equal to the family of maximal cliques of G. Similarly,
the biclique hypergraph HB(G) of a graph G is the hypergraph on the same vertex set
of G and with hyperedge set equal to the family of maximal bicliques of G.

A tree decomposition of a graph G is defined as the pair T =

(T,B = {Bj | j ∈ V (T )}), where T is a tree and B ⊆ 2V (G) is a family satisfying⋃
Bj∈B Bj = V (G) [Robertson and Seymour, 1986]; for every edge uv ∈ E(G) there

is some Bj such that {u, v} ⊆ Bj; for every i, j, q ∈ V (T ), if q is in the path between i
and j in T , then Bi ∩Bj ⊆ Bq. Each Bj ∈ B is called a bag of the tree decomposition.
The width of a tree decomposition is defined as the size of a largest bag minus one.
The treewidth tw(G) of a graph G is the smallest width among all valid tree decompo-
sitions of G [Downey and Fellows, 2013]. If T is a rooted tree, by Gx we will denote the
subgraph of G induced by the vertices contained in any bag that belongs to the subtree
of T rooted at bag x. An algorithmically useful property of tree decompositions is the
existence of a so called nice tree decompositions of width tw(G).

Nice tree decomposition A tree decomposition T of G is said to be nice if it is a
tree rooted at, say, the empty bag r(T ) and each of its bags is from one of the following
four types:

1. Leaf node: a leaf x of T with Bx = ∅.

2. Introduce node: an inner bag x of T with one child y such that Bx \By = {u}.

3. Forget node: an inner bag x of T with one child y such that By \Bx = {u}.

4. Join node: an inner bag x of T with two children y, z such that Bx = By = Bz.

1.2 Parameterized complexity

We discuss problems in different complexity classes; in particular, we work with the
usual classes P, NP, and the polynomial hierarchy [Stockmeyer, 1976]. We say that an
algorithm is efficient if its running time is bounded by a polynomial on the size of the
input and that a problem belonging to NP-hard is most likely intractable. As such, our
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complexity results will be given either by efficient algorithms or polynomial reductions
from NP-hard problems.

A problem being NP-hard means that we believe that exists no exact algorithm
that runs in polynomial time for all instances. Nevertheless, these hard problems are
usually the ones we are most interested in, as many of them model almost perfectly
practical problems such as vehicle routing [Toth and Vigo, 2001] and code compila-
tion [Aho et al., 2007]. To cope with this hardness, algorithm designers usually give
up on one of the three requirements of the perfect algorithm. If the optimality of the
feasible solution is not as crucial but we want to solve whichever instance comes our
way, we can make use of heuristics and metaheuristics [Talbi, 2009], which usually
yield no guarantee on the quality of the solution, or, if such a guarantee is desired,
approximation algorithms [Hochbaum, 1997]. On the other hand, if an exact solution
is a must have, we may give up on the polynomial time constraint and use some quite
powerful all-purpose tools such as integer linear optimization [Bertsimas and Tsitsiklis,
1998], or design ad-hoc exact exponential algorithms [Fomin and Kratsch, 2010] that
use clever tricks and problem properties to reduce the exponential factor as much as
possible.

All of the above areas have a rich literature with results on hundreds upon hun-
dreds of problems. A much newer field – known as parameterized complexity, or multi-
variate complexity – arises when we sacrifice the constraint to solve all instances with
a single algorithm in exchange for polynomial time and optimality. In parameterized
complexity, algorithms are designed and analyzed not only with respect to the size of
the input object, but also with other parameters of the input, which come in all sorts
of flavors. Many decision problems usually have some integer quantity representing a
constraint of the problem, such as the minimum/maximum size of a feasible solution;
such quantities are usually called the natural parameter of the problem. For instance,
Vertex Cover – one of the classical examples of success of parameterized complex-
ity – asks for a set of size at most k of vertices covering all the edges of the graph; in
this case, k is the natural parameter for Vertex Cover. Other parameters are less
problem specific and relate to the structure of the graph, such as diameter or maxi-
mum degree. The most prominent of these examples, however, is the graph parameter
treewidth, which played a pivotal role in the theory of graph minors. Other previously
discussed structural parameters include neighborhood diversity, distance to cluster and
distance to co cluster.

A problem is said to be fixed-parameter tractable (or FPT) when parameterized
by k if there is an algorithm with running time f(k)nO(1), where n is the size of the
input object. We denote complexities of this form by O∗(f(k)). In fact, we shall
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use O∗(·) to omit polynomial factors of the running time; that is, an algorithm with
complexity 2f(n)poly(n) is said to execute in O∗

(
2f(n)

)
. In a slight abuse of notation, k

is simultaneously the parameter we are working with and the value of such parameter.
An instance of a parameterized algorithm is, therefore, the pair (x, k), with x the
input object and k as previously defined. The class of all problems that admit an
FPT algorithm is the class FPT. If an algorithm has running time O

(
nf(k)

)
, for some

computable function on k, we say it is an XP (slicewise polynomial) algorithm, and the
corresponding problem it solves is in XP.

Much like classical univariate theory, some problems do not appear to admit an
FPT algorithm for certain parameterizations. In particular, its widely believed that
finding a clique of size k in a graph, parameterized by k, is not in FPT. In an analogue
to the classical case, hardness results are usually given by what are called parameterized
reductions.

Parameterized reduction A parameterized reduction from problem Π to problem Π′

is a transformation from an instance (x, k) of Π to an instance (x′, k′) of Π′ such that:

1. There is a solution to (x, k) if and only if there is a solution to (x′, k′);

2. k′ ≤ g(k) for some computable function g;

3. The transformation’s running time is O∗(f(k)).

Note that the constraints imposed by parameterized reductions are quite similar
to those imposed by polynomial reductions. We ask that k′ does not depend on |x|
- which doesn’t always happen with polynomial reductions - but, at the same time,
allow FPT time for the transformation, instead of the more restrictive polynomial time.
These differences imply that polynomial reductions and parameterized reductions are
incomparable, with some rare cases where the transformation is both polynomial and
parameterized.

Unlike the theory of NP-completeness, where most hard problems are equivalent
to each other under polynomial reductions, in parameterized complexity problems seem
to be distributed along a hierarchy of difficulty. Before handling the classes themselves,
we must first define the problems of parameterized complexity that play the same role
as Satisfiability for the classical theory.

The depth of a circuit is the length (in terms of number of gates) of the longest
path from any one variable to the output. The weft of a circuit is the the maximum
number of gates with more than 2 input variables in any path from any one variable
to the circuit’s output. The circuits with weft t and depth d, denoted by WCSt,d, will
be the fundamental problems of the t-th level of our hierarchy.
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weighted circuit Satisfiability of weft t and depth d (WCSt,d)

Instance: A Boolean circuit C with n variables, weft t and depth d.
Parameter: A positive integer k.
Question: Is C satisfiable with exactly k variables set to TRUE?

W-hierarchy For t ≥ 1, a parameterized problem Π is in W[t] if there is a parame-
terized reduction from wsct,d to it, for some d ≥ 1. Moreover,

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊂ XP

1.2.1 Kernelization

One of the broadest class of techniques to be found in the realm of computing is
perhaps that of pre-processing. Every real system, in one way or another, employs
routines that try to prune the search space or reduce the input instance as much as
possible before doing any heavy lifting. Such is the case with most optimization suites,
such as CPLEX and Gurobi, where dozens upon dozens of pre-processing methods are
readily available and in many cases successfully eliminate large chunks of the input
before trying to solve the integer program directly. Furthermore, in many cases, simple
heuristics or algorithms with terrible worst case running times perform surprisingly
well, and, in many cases, there was no theoretically sound approach to explain this
phenomenon. This lack of work on the subject is explained by the fact that, if an
instance of an NP-hard problem can be reduced in polynomial time to one of bounded
size, then P = NP [Fomin et al., 2019]. With the advent of parameterized algorithms,
however, the situation is changing drastically. Using this framework it has become
possible to derive upper an lower bounds on the sizes of the instances obtained after
a set of pre-processing rules have been applied. We define the notions of kernels and
kernelization below.

Kernelization A kernelization algorithm is an algorithm that takes as input an in-
stance (x, k) of a parameterized problem Π and its output is an equivalent instance
(x′, k′) of Π such that |x′| ≤ f(k) and k′ ≤ g(k), for some pair of computable functions
f, g; instance (x′, k′) is called the kernel of (x, k).

A central result in parameterized complexity is that a parameterized problem is
in FPT if and only if it admits a (possibly exponential) kernel Fomin et al. [2019]. Not
all kernels are equal, and a natural desire is for the best (i.e. smallest) possible kernel.
The size of the kernel is measured by the dependency of the kernel on the parameter
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– that is, a kernel that satisfies |x′| ≤ 4k is much better than a kernel with |x′| ≤ k2.
If this dependency is linear, we say that we have a linear kernel, if f(k) is a quadratic
function, than the kernel is quadratic, and so on. Let k be the natural parameter for
the following problems. Some famous examples of problems and their kernels include:
Vertex Cover, which admits a kernel of size 2k; Max 3-Satisfiability, which has
a kernel on 6k variables and 2k clauses; Independent Set on planar graphs, with a
kernel of size 4(k − 1); meanwhile, for Dominating Set on graphs of girth at least
five, there is a cubic kernel, but no known subcubic one [Cygan et al., 2015a; Fomin
et al., 2019].

The bound on the instance size, however, can be exponential. For instance,
Matching Cut parameterized by the number of edges crossing the cut does not have
a polynomial kernel [Komusiewicz et al., 2018]. For some time, there were no tech-
niques to prove that a parameterized problem does not admit a polynomial kernel;
this changed, however with the seminal work of Bodlaender et al. [2009], where the
composition and distillation techniques were first discussed, being was further deep-
ened by Hermelin and Wu [2012] and Bodlaender et al. [2014], where weak and cross-
compositions were described. All of these techniques, however, make use of some well
established hypothesis about classical complexity classes. For instance, distillation is
based on assumption that the polynomial hierarchy does not collapse to the third level;
weak-composition and cross-composition rely on the hypothesis that NP ⊆ coNP/poly.
Despite appearing strong assumptions, if either of these hypotheses fail the implica-
tions would reverberate through much of theoretical computer science, and not only
parameterized complexity.

For further reading and other more insightful discussions on the subjects of pa-
rameterized complexity and kernelization, we point to [Downey and Fellows, 2013;
Cygan et al., 2015a; Fomin et al., 2019] from where most of the given definitions come
from.

1.3 Explicit running time lower bounds

Both the theory of NP-completeness and W[1]-hardness give us evidence that no polyno-
mial or FPT algorithm may exist for a myriad of problems. However, simply assuming
that P 6= NP or that FPT 6= W[1] seems to not be enough to prove statements about
asymptotic lower bounds on the running time of an algorithm. All is not lost, but we
do need to make some additional complexity assumptions.

In their groundbreaking work, Impagliazzo and Paturi [2001] give many key in-
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sights and tools which have been broadly used across the field of algorithms and pa-
rameterized complexity to prove that long known algorithms are probably optimal.
Specifically, they prove what is known as the Sparsification Lemma, described below.
A logical formula φ on n variables an m clauses is in Conjunctive Normal Form (CNF)
if φ =

∧m
i=1Ci and every Ci is a disjunction of a subset of the 2n possible literals. A

formula is said to be in r-CNF if the size of each clause is no larger than r.

Sparsification Lemma For every ε > 0 and positive integer r, there is a constant
C = O

(
(n
ε
)3r
)
so that any r-CNF formula F with n variables, can be expressed as

F =
∨t
i=1 Yi, where t ≤ 2εn and each Yi is an r-CNF formula with every variables

appearing in at most C clauses. Moreover, this disjunction can be computed by an
algorithm running in time 2εnnO(1).

Essentially, the Sparsification Lemma implies that, when performing a polynomial
reduction r-Satisfiability, for fixed r, it suffices to assume the input instance on n
variables has O(n) clauses. Impagliazzo and Paturi then conjecture a cornerstone of
lower bound asymptotic analysis, the Exponential Time Hypothesis, commonly referred
to as ETH, and its strong version, known as SETH.

Exponential Time Hypothesis There is a real number s such that 3-

Satisfiability cannot be solved in 2sn(n+m)O(1) time.

Strong Exponential Time Hypothesis Satisfiability cannot be solved in (2 −
ε)n(n+m)O(1) time, for any ε > 0.

It is not hard to see that if ETH holds, then P 6= NP. From the moment they
were first claimed, both hypothesis have been successfully applied across the litera-
ture. Lokshtanov et al. [2013] survey some of these results. For instance, unless the
Exponential Time Hypothesis is false, there is no algorithm running in 2o(n) time for
Vertex 3-Coloring, Dominating Set, Independent Set, Vertex Cover, nor
Hamiltonian Path; Hamiltonian Cycle in planar graphs cannot be solved in
2o(
√
n)nO(1) time. Let k denote the natural parameter of each of the following prob-

lems. In terms of FPT algorithms, the existence of 2o(k)nO(1) was ruled out for Vertex

Cover, Feedback Vertex Set, and Longest Path, while no 2o(
√
k)nO(1) time al-

gorithm exists for Vertex Cover on planar graphs. ETH can also be used to give
algorithmic lower bound to problems not in FPT. Lokshtanov et al. [2013] neither
Dominating Set, Clique, Independent Set, nor their multicolored versions can
be solved in f(k)no(k).
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While most of the complexity theory community believes ETH to be true, the
same is not true for the Strong Exponential time Hypothesis [Pătraşcu and Williams,
2010]. The implications for SETH, however, as the name suggests, are quite powerful.
While ETH is generally used to prove assertions on the exponent of the running times
of many algorithms, SETH allows for a much finer-grained analysis, at the cost of much
more complex reductions and arguments, specially because the hypothesis of the Spar-
sification Lemma are not respected by Satisfiability. Lokshtanov et al. [2018] give
a series of reductions for many problems parameterized by treewidth. They show that
the best known algorithms parameterized by treewidth for Independent Set, Dom-

inating Set, Max Cut, Odd Cycle Transversal, Vertex q-Coloring (for
any q ≥ 3), Partition Into Triangles cannot be improved, unless SETH is false.
Recently, Abboud et al. [2019] proved what may surely be considered a breakthrough
result: by using a hypothesis on the running time of Satsifability (SETH), they
proved that the pseudo-polynomial dynamic programming algorithm given by Bellman
[1957] for Subset Sum is optimal.

1.4 Graph classes

Most problems in graph theory can be tackled with an arbitrary input, that is, there is
no particular property that we can exploit; this can happen if the considered application
is too broad or little is known about its domain. However, it might be possible to
guarantee certain characteristics for the given graph, either due to constraints of the
application [Pereira and Palsberg, 2005] or due to theoretical interest. Regardless, such
guarantees might be strong enough to provide an efficient algorithm to an otherwise
NP-hard problem. When constraining our analysis to certain graphs, we refer to the
family of all graphs that satisfy the same properties as a graph class. A subfamily of a
class that satisfies additional properties is referred to as a subclass. For (much) more
on graph classes, Brandstädt et al. [1999] give an extensive survey of much of the work
done on the field until the late 1990s.

In this section, we review some of the most studied classes and some of their
properties that will aid us in the design of our algorithms.

A graph is a tree T if it is a connected acyclic graph or, equivalently, the connected
graph such that, between every pair of vertices u and v, there exists a unique path.
The vertices of degree one of a tree are called its leaves, and all others are inner nodes.
A subtree T ′ of a tree T is a connected subgraph which, clearly, must also be a tree.
A rooted tree Tv is a tree with a special vertex v, called its root. Rooted trees offer a
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Figure 1: A tree.

straight forward ordering of the vertices of a tree and a nice way to decompose problems
into smaller instances and combine their solutions. A rooted subtree Tu of Tv is the
subgraph of Tv induced by u and all vertices of Tv whose path to v passes through
u. The vertices in Tu \ {u} are called the descendants of u and its neighbors are its
children.

A forest is a graph where every connected component is a tree. Many problems
which are usually quite hard for general graphs, or even some classes, usually have a
straightforward answer for forests, either using a greedy strategy or a slightly more
sofisticated dynamic programming idea.

Chordal graphs have many nice properties that enable the computation of dif-
ferent graph parameters in polynomial time [Golumbic, 2004]. A perfect elimination
ordering of a graph G is an ordering v1, . . . , vn of its vertices such that for the graph
G[{vi, . . . , vn}], vi is a simplicial vertex. As the name implies, chordal graphs are ex-
actly the graphs where every cycle of size at least 4 has at least one chord; more over,
the following statements are equivalent: (i) G is chordal; (ii) G is Ck-free, for every
k ≥ 4; (iii) every minimal cutset of G is a clique; (iv) G is the intersection graph of
subtrees of a tree; (v) there is a perfect elimination ordering of the vertices of G. For a
chordal graph G, its clique tree is a tree T (G) such that: its vertex set, each of which
is called a bag, is the set of maximal cliques of G, and, for every vertex v of G, the set
of bags which contains v induces a subtree of T (G). It can be shown that such a tree
satisfies property (iv). For more on clique trees and other chordal graph properties
please refer to [Blair and Peyton, 1993]. Figure 2 gives an example of a chordal graph
and its clique tree. Not surprisingly, many subclasses of chordal graphs have also been
studied, since even forests are chordal graphs. A block graph is a chordal graph where
every minimal cutset is a single vertex. An interval graph is the intersection graph of
a set of intervals over the real line. A split graph is a graph with a vertex set that can
be partitioned into a clique and an independent set.
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Figure 2: A chordal graph and its clique tree.

Cographs are the graphs G such that either G or its complement is disconnected.
At first glance, such property may not seem very helpful to the algorithm designer, but
it is equivalent to a very nice recursive definition, first given in [Corneil et al., 1981].
Given two graphs G and H, we define their disjoint union as the graph G ∪ H with
V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H), and their join as the
graph G⊗H with vertex set is V (G⊗H) = V (G) ∪ V (H) and edge set E(G⊗H) =

E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)}. In particular, the following statements
are equivalent: (i) G is a cograph; (ii) G is P4-free; (iii) G can be constructed from
isolated vertices by successively applying disjoint union and join operations. Figure 3
gives an example of a cograph.

Figure 3: A cograph.

Another important class on graph theory, and one with a very long history of
research, is the class of regular graphs. A graph G is regular if all of vertices of G have
the same degree, and is k-regular if deg(v) = k for all v ∈ V (G). Despite its simplicity,
regular graphs appear in many different scenarios, such as in the E∆CC conjecture
on Equitable Coloring, a conjecture for Internal Partitions [Ban and Linial,
2016], but even more in terms of algebraic graph theory [Godsil and Royle, 2013], a field
dedicated to the analysis of many graph parameters through algebraic methods, such
as spectral decompositions, graph polynomials, and interlacing. In particular, by using
the eigenvalues of the adjacency matrix of a graph, or its Laplacian matrix, it is possible
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to derive bounds for a large collection of parameters, such as independence number and
chromatic number, usually in polynomial time. Regular graphs, in particular, benefit
greatly from this approach, with stronger results for this class when compared to other
classes.





Chapter 2

Equitable, Clique, and Biclique
coloring

In a coloring problem, the goal is to partition (i.e. color) the vertices (or edges) of
a graph such that each set (color class) of the partition, individually, satisfies some
condition. For the classical Vertex Coloring problem, the goal is to partition the
graph’s vertex set such that, inside each member of the partition there are no two
adjacent vertices. Multiple additional constraints or properties may be added to the
desired partition. By further imposing that the size of each partition member be as close
as possible to each other, the Equitable Coloring problem, which appears to be
much harder to solve even for graph classes where classical vertex coloring is efficiently
solvable, is generated. Another possible modification to Vertex Coloring generates
the b-Coloring problem [Campos et al., 2013], where a coloring of the vertices such
that each color class has at least one vertex with one neighbor in each of the other classes
is sought. Much like Equitable Coloring appears to be considerably harder than
Vertex Coloring, List Coloring also exhibits a similar behavior; in this problem
each vertex has a list of admissible colors, and the goal is to color the graph respecting
these restrictions. List Assignment, however, takes things to a whole different level.
It asks if for a given graph, for every possible choice of list with exactly k colors to each
vertex of the graph, it is possible to find a list-coloring. In fact, this coloring version
is not even NP-complete being Πp

2-complete even for bipartite graphs [Gutner, 1996].
One may also impose the constraint that no maximal induced subgraph be entirely
contained in a single set of the partition. For example, it may be required that no
maximal clique, biclique (complete bipartite graph), or star of the given graph may
be monochromatic generating the problems known as Clique Coloring, Biclique

Coloring, and Star Coloring, respectively.

19
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In this chapter, we present results concerning the Equitable, Clique and Bi-

clique Coloring problems. We first formalize of many of the concepts we use in
our proofs, as well as present some related work on each of the problems and a brief
discussion on Vertex Coloring. We then proceed in earnest to our results. For
Equitable Coloring, our first results are W[1]-hardness proofs for some subclasses
of chordal graphs; namely, for block graphs of bounded diameter when parameterized
by treewidth and maximum number of colors, for K1,4-free interval graphs when pa-
rameterized by treewidth, maximum number of colors and maximum degree, and for
disjoint union of split graphs (which are also complete multipartite) when parameter-
ized by treewidth and maximum number of colors. We close the subject of Equitable

Coloring with some algorithms. We show that the problem admits an XP algorithm
for chordal graphs when parameterized by the maximum number of colors, a construc-
tive polynomial time algorithm to equitably color claw-free chordal graphs, and an
FPT algorithm parameterized by the treewidth of the complement graph. We then
turn to Clique Coloring and Biclique Coloring. The first exact exponential
time algorithm for biclique coloring, which builds upon ideas used for clique coloring,
is presented. Afterwards, we give kernelization algorithms for both problems when
parameterized by neighborhood diversity; using results on covering problems, an FPT

algorithm under the same parameterization is obtained for Clique Coloring, which
has optimal running time, up to the base of the exponent, unless the Exponential
Time Hypothesis fails. For Biclique Coloring, an FPT algorithm is given, but
when parameterized by maximum number of colors and neighborhood diversity.

2.1 Definitions and related work

A k-coloring of a graph G is a k-partition ϕ = {ϕ1, . . . , ϕk} of V (G). Each ϕi is a color
class and v ∈ V (G) is colored with color i if and only if v ∈ ϕi. In a slight abuse of
notation, we use ϕ(v) to denote the color of v and, forX ⊆ V (G), ϕ(X) =

⋃
v∈X{ϕ(v)}.

2.1.1 Proper coloring

A proper k-coloring of G is a k-coloring such that each ϕi is an independent set. In
the literature, proper coloring is usually referenced to as Vertex Coloring, a convention
we also adopt. If G has a proper k-coloring we say that G is k-colorable. The smallest
integer k such that G is k-colorable is called the chromatic number χ(G) of G. The
natural decision problem associated with vertex coloring simply asks whether or not a
given graph is k-colorable.
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Vertex Coloring

Instance: A graph G and a positive integer k.
Question: Is G k-colorable?

1

2

1 2

3

4

Figure 4: An optimal proper coloring.

Determining if a given instance of Vertex Coloring is a YES instance
is a classic problem in both graph theory and algorithmic complexity, being a
known NP-complete problem. Some particular cases of Vertex Coloring are still
NP-complete. For instance, even if we fix k = 3 or restrict the input to K3-free graphs
the problem does not get any easier [Garey and Johnson, 1979; Král’ et al., 2001].

It is worth to point out the subtle difference between the parameter k being part of
the input or being fixed. Informally, when k is fixed, we are willing to pay exponential
time only on k to solve our problem, whereas when k is part of the input, we are
not. Note that when we fix k and find an f(k)nO(1) time algorithm, we show that the
problem is in FPT when parameterized by k. The fact that 3-coloring is NP-complete

is evidence that Vertex Coloring parameterized by the number of colors is not in
FPT, otherwise we would have an f(3)nO(1) algorithm, which would imply that P = NP.

For an unconstrained input, Vertex Coloring is hard to approximate to a
factor of n1−ε, for any ε > 0, unless some complexity hypothesis fail (see [Feige and
Kilian, 1996] for more on the topic). On a brighter note, a celebrated theorem due
to Brooks in [Brooks, 1941] gives a nice upper bound for general graphs, and gives a
natural direction for research on tighter upper bounds on graph classes.

Theorem (Brooks’ Theorem). For every connected graph G which is neither complete
nor an odd-cycle χ(G) ≤ ∆(G).

These results motivated much of the research about Vertex Coloring. There
are polynomial time algorithms for a myriad of different classes, including chordal,
bipartite and cographs. More generally, there are known polynomial time algorithms
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for perfect graphs [Grötschel et al., 1984], which is a superclass of the aforementioned
ones. G is perfect if for every induced subgraph G′ of G, χ(G′) = ω(G′).

More particular cases for Vertex Coloring have also been analyzed. For
instance, Karthick et al. [2017] present some results for graph classes that have two
connected five-vertex forbidden induced subgraphs. There are some surveys on the
subject, as such we point to [Golovach et al., 2017] and [Paulusma, 2016] for more on
the classic Vertex Coloring problem, since it is not the focus of this thesis.

2.1.2 Equitable coloring

A k-coloring of an n vertex graph is said to be equitable if for every color class ϕi,⌊
n
k

⌋
≤ |ϕi| ≤

⌈
n
k

⌉
or, equivalently, if for, any two color classes ϕi and ϕj, ||ϕi|− |ϕj|| ≤

1. If G admits a proper equitable k-coloring, we say that G is equitably k-colorable.
Unlike other coloring variants previously discussed, an equitably k-colorable graph is
not necessarily equitably (k + 1)-colorable.

As such, two different parameters are defined: the smallest integer k such that G
is equitably k-colorable is called the equitable chromatic number χ=(G); the smallest
integer k′ such that G is equitably k-colorable for every k ≥ k′ is the equitable chromatic
threshold χ∗=(G) of G.

As with the previous coloring problems, we define the Equitable Coloring

decision problem.

Equitable Coloring

Instance: A graph G and a positive integer k.
Question: Is G equitably k-colorable?

2

2

2 2

2

1

3

3

4 2

2

1

Figure 5: A proper non-equitable coloring (left) and an equitable coloring (right).
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Equitable Coloring was first discussed by [Meyer, 1973], with an intended ap-
plication for municipal garbage collection, and later in processor task scheduling [Baker
and Coffman, 1996] and server load balancing [Smith et al., 2004].

Much of the work done over Equitable Coloring aims to prove an analogue
of Brooks’ theorem, known as the Equitable coloring conjecture (ECC). In terms of the
equitable chromatic threshold, however, we have the Hajnal-Szemerédi theorem [Hajnal
and Szemerédi, 1970].

Conjecture (ECC). For every connected graph G which is neither a complete graph
nor an odd-hole, χ=(G) ≤ ∆(G).

Theorem (Hajnal-Szmerédi Theorem). Any graph G is equitably k-colorable if k ≥
∆(G) + 1. Equivalently, χ∗=(G) ≤ ∆(G) + 1.

Chen et al. [1994] suggest that a stronger result than the Hajnal-Szmerédi theorem
may be achievable, presenting some classes where the Equitable ∆-coloring conjecture
(E∆CC) holds. Moreover, they prove that if E∆CC holds for every regular graph, then
it holds for every graph.

Conjecture (E∆CC). For every connected graph G which is not a complete graph, an
odd-hole nor K2n+1,2n+1, for any n ≥ 1, χ∗=(G) ≤ ∆(G) holds.

Quite a lot of effort was put into finding classes where E∆CC holds, even with the
knowledge that only proofs for regular graphs are required. A result given by de Werra
[1985], combined with Brooks’ Theorem, implies that every claw-free graph is equitably
k-colorable for every k ≥ χ(G). A very extensive survey on the subject was conducted
by Lih [2013], where many of the results of the past 50 years were assembled. Among
the many reported results, the E∆CC is known to hold for: bipartite graphs (with
the obvious exceptions, where the ECC holds) [Lih and Wu, 1996], planar graphs
with maximum degree at least nine [Nakprasit, 2012], split graphs [Chen et al., 1996],
outerplanar graphs (planar graphs with a drawing such that no vertex is within a
polygon formed by other vertices) [Kostochka, 2002], d-degenerate graphs (graphs such
that every induced subgraph has a vertex of degree at most d) [Kostochka et al.,
2005], non-trivial Kneser graphs (complement of the intersection graph of F ⊂ 2[n],
with every set of F containing exactly k elements, where n > 2k) [Chen et al., 2008],
interval graphs [Chen et al., 2009], and some forms of graph products [Chen et al.,
2009]. For the exact results please refer to the survey.

Almost all complexity results for Equitable Coloring arise from a related
problem, known as Bounded Coloring, an observation given by Bodlaender and
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Fomin [2004]. A k-coloring is said to be l-bounded if for every color class ϕi, |ϕi| ≤ l.
G is l-bounded k-colorable if it admits an l-bounded k-coloring.

Bounded Coloring

Instance: A graph G and two positive integers l and k.
Question: Is G l-bounded k-colorable?

Observation. A Graph G with n vertices is l-bounded k-colorable if and only if G′ =

G ∪Klk−n is equitably k-colorable.

In terms of computational complexity, however, neither problem was nearly as
explored as Vertex Coloring. Among the complexity results for Bounded Color-

ing and, consequently, Equitable Coloring, we have polynomial time solvability
for split graphs [Chen et al., 1996], complement of interval graphs [Bodlaender and
Jansen, 1995], forests [Baker and Coffman, 1996], trees [Jarvis and Zhou, 2001] and
complements of bipartite graphs [Bodlaender and Jansen, 1995].

For cographs, we have a polynomial time algorithm when k is fixed, otherwise
the problem is NP-complete [Bodlaender and Jansen, 1995], a situation similar to that
of bipartite and interval graphs [Bodlaender and Jansen, 1995]. A consequence of the
hardness result for cographs is that Equitable Coloring is NP-complete for graphs
of bounded cliquewidth.

On complements of comparability graphs (i.e. graphs representing a valid partial
ordering) however, even if we fix l, Bounded Coloring is still NP-complete [Lonc,
1992]. Fellows et al. [2011] show that, when parameterized by treewidth, Equitable

Coloring is W[1]-hard. Also in terms of treewidth, Bodlaender and Fomin [2004] give
a polynomial time algorithm for graphs of bounded treewidth. Note that for all of the
mentioned classes, Vertex Coloring is polynomially solvable.

A summary of the known complexities is available in Table 2.

2.1.3 Clique coloring

A k-clique-coloring of G is a k-coloring of G such that no maximal clique of G is entirely
contained in a single color class. We say that G is k-clique-colorable if G admits a k-
clique-coloring. The smallest integer k such that G is k-clique-colorable is called the
clique chromatic number χC(G) of G. Much like Vertex Coloring, there is a natural
decision problem associated with this coloring variant, which we refer to as Clique

Coloring.
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Class fixed k input k
Trees P P
Forests P P
Bipartite NP-complete NP-complete
Co-bipartite P P
Cographs P NP-complete
Bounded Cliquewidth NP-complete NP-complete
Bounded Treewidth P P
Chordal P∗ NP-complete
Block P∗ NP-complete∗

Split P P
Interval P NP-complete
Co-interval P P
General case NP-complete NP-complete

Table 2: Complexity results for Equitable Coloring. Entries marked with a * are
results established in this work.

Clique Coloring

Instance: A graph G and a positive integer k.
Question: Is G k-clique-colorable?

1

1

1 1

1

2

Figure 6: An optimal clique coloring.

Research on the topic is much more recent than what was done for Vertex

Coloring, with the first papers appearing in the early 1990s [Duffus et al., 1991]
and interest on the subject rising in the early 2000s. Even when k is fixed, Clique

Coloring is known to be ΣP
2 -complete, as shown by Marx [2011], with an O∗(2n)

algorithm being proposed by Cochefert and Kratsch [2014].
As with Vertex Coloring, Clique Coloring has been studied when re-

stricting the input graph to certain graph classes. Macêdo Filho et al. [2016] investigate
2-clique-coloring in terms of weakly chordal graphs (graphs free of any hole or anti-hole



26 Chapter 2. Equitable, Clique, and Biclique coloring

with more than 4 vertices), giving a series of results for the general case (ΣP
2 -complete)

and showing that, for some nested subclasses, there are NP-complete and P instances of
the problem. When dealing with unichord-free graphs (graphs that contain no induced
cycle with a unique chord), the problem is solvable in polynomial time [Macêdo Filho
et al., 2012].

Circular-arc graphs (intersection graphs of a set of arcs of a circle) are always 3-
clique-colorable, with a polynomial time algorithm to determine if the input is 2-clique-
colorable [Cerioli and Korenchendler, 2009]. When the given graph is odd-hole-free, it
is ΣP

2 -complete to decide whether it is 2-clique-colorable or not [Défossez, 2009]. Klein
and Morgana [2012] give a series of bounds on graphs that, in some sense, contain few
P4’s, showing that most them are either 2 or 3-clique-colorable.

For planar graphs (graphs that can be drawn on a plane with no crossing edges),
Mohar and Skrekovski [1999] show that they are 3-clique-colorable, and Kratochvíl and
Tuza [2002] present a polynomial time algorithm to decide whether a planar graph is
2-clique-colorable or not.

Some of these classes are subclasses of perfect graphs, and a conjecture sug-
gests that every perfect graph is 3-clique-colorable [Bacsó et al., 2004]. Also in terms
of perfect graphs, it is NP-complete to decide whether a perfect graph is 2-clique-
colorable [Kratochvíl and Tuza, 2002]. Défossez [2009] also give the observation that
every strongly perfect graph [Berge and Duchet, 1984] is 2-clique-colorable, a superclass
of both chordal graphs and cographs. For a summary of the mentioned results, please
refer to Table 3.

Class χC Complexity
Cograph = 2 P
Chordal = 2 P

Weakly Chordal ≤ 3∗ ΣP
2 -complete†

Unichord-free ≤ 3 P
Circular-arc ≤ 3 P†

Odd-hole-free ≤ 3∗ ΣP
2 -complete†

Few P4’s ≤ 2 or ≤ 3 P
Planar ≤ 3 P†

Perfect ≤ 3∗ NP-complete†

Strongly Perfect = 2 P
General case Unbounded ΣP

2 -complete

Table 3: Complexity and bounds for Clique Coloring. Entries marked with a ∗ are
conjectures. † indicates results for 2-clique-colorability.
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2.1.4 Biclique coloring

A k-biclique-coloring of G is a k-coloring of G such that no maximal biclique of G is
entirely contained in a single color class. We say that G is k-biclique-colorable if G
admits a k-biclique-coloring. The smallest integer k such that G is k-biclique-colorable
is called the biclique chromatic number χB(G) of G. Much like Clique Coloring,
there is a natural decision problem associated with this coloring variant, which we refer
to as Biclique Coloring.

Biclique Coloring

Instance: A graph G and a positive integer k.
Question: Is G k-biclique-colorable?

1

2

1 2

3

3

Figure 7: An optimal biclique coloring.

Biclique Coloring is an even more recent research topic than Clique Col-

oring, with the first results being a ΣP
2 -completeness proof due to Groshaus et al.

[2014] and the confirmation that verifying a solution to the problem is a coNP-complete

task [Macêdo Filho et al., 2015].
In terms of complexity results, very little is known about Biclique Coloring.

For unichord-free graphs, Macêdo Filho et al. [2012] give a polynomial time algorithm
to compute χB and show that the biclique chromatic number of unichord-free graphs is
either equal to or one greater than the size of the largest true twin class. Macêdo Filho
et al. [2015] present a polynomial time algorithm for powers of cycles and powers of
paths. Finally, Groshaus et al. [2014] give complexity results for H-free graphs, for
every H on three vertices, being polynomial for H ∈ {K3, P3, P3} and NP-complete

for K3-free graphs; moreover they show that the problem is NP-complete for diamond
(C4 plus one chord) free graphs and split graphs, and polynomial for threshold graphs
({2K2, P4, C4}-free). We summarize the presented results in Table 4.
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Class χB Complexity
Split Unbounded NP-complete

Threshold Unbounded P
Diamond-free Unbounded NP-complete

Cr
n ≤ 3 P

P r
n = 2 P

Unichord-free Bounded P
General case Unbounded ΣP

2 -complete

Table 4: Complexity and bounds for Biclique Coloring.

Figure 8: A (2, 4)-flower, a (2, 4)-antiflower, and a (2, 2)-trem.

Figure 9: equitable coloring instance built on Theorem 4 corresponding to the
Bin Packing instance A = {2, 2, 2, 2}, k = 3 and B = 4.

Both Clique Coloring and Biclique Coloring are, actually, colorings of
the hypergraphs arising from an underlying graph (a coloring of its vertices such that no
hyperedge is monochromatic), which is also an NP-complete task. However, in classical
hypergraph coloring problems, the hyperedge family is part of the input of the problem
and, as such, naively verifying a solution is polynomial on the size of the input.
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2.2 Hardness of Equitable Coloring for subclasses

of chordal graphs

All of our reductions involve the Bin Packing problem, which is NP-hard in the strong
sense [Garey and Johnson, 1979] and W[1]-hard when parameterized by the number of
bins [Jansen et al., 2013]. In the general case, the problem is defined as: given a set
of positive integers A = {a1, . . . , an}, called items, and two integers k and B, can we
partition A into k bins such that the sum of the elements of each bin is at most B? We
shall use a version of Bin Packing where each bin sums exactly to B. This second
version is equivalent to the first, even from the parameterized point of view; it suffices
to add kB −

∑
j∈[n] aj unitary items to A. For simplicity, by Bin Packing we shall

refer to the second version, which we formalize as follows.

bin-packing

Instance: A set of n items A and a bin capacity B.
Parameter: The number of bins k.
Question: Is there a k-partition ϕ of A such that, ∀i ∈ [k],

∑
aj∈ϕi

aj = B?

The idea for the following reductions is to build one gadget for each item aj of
the given Bin Packing instance, perform their disjoint union, and equitably k-color
the resulting graph. The color given to the circled vertices in Figure 8 control the bin
to which the corresponding item belongs to. Each reduction uses only one of the three
gadget types. Since every gadget is a chordal graph, their treewidth is precisely the
size of the largest clique minus one, that is, k, which is also the number of desired
colors for the built instance of equitable coloring.

2.2.1 Disjoint union of split graphs

Definition 1. An (a, k)-antiflower is the graph F−(a, k) = Kk−1⊕
(⋃

i∈[a+1] K1

)
, that

is, it is the graph obtained after performing the disjoint union of a + 1 K1’s followed
by the join with Kk−1.

Theorem 2. equitable coloring of the disjoint union of split graphs parameterized
by the number of colors is W[1]-hard.

Proof. Let 〈A, k,B〉 be an instance of Bin Packing and G a graph such that G =⋃
j∈[n] F−(aj, k). Note that |V (G)| =

∑
j∈[n] |F−(aj, k)| =

∑
j∈[n] k + aj = nk + kB.
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Therefore, in any equitable k-coloring of G, each color class has n + B vertices. De-
fine Fj = F−(aj, k) and let Cj be the corresponding Kk−1. We show that there is
an equitable k-coloring ψ of G if and only if ϕ = 〈A, k,B〉 is a YES instance of Bin

Packing.

Let ϕ be a solution to Bin Packing. For each aj ∈ A, we do ψ(Cj) = [k] \ {i}
if aj ∈ ϕi. We color each vertex of the independent set of Fj with i and note that
all remaining possible proper colorings of the gadget use each color the same number
of times. Thus, |ψi| =

∑
j|aj∈ϕi

(aj + 1) +
∑

j|aj /∈ϕi
1 =

∑
j|aj∈ϕi

(aj + 1) +
∑

j∈[n] 1 −∑
j|aj∈ϕi

1 = n+B.

Now, let ψ be an equitable k-coloring of G. Note that |ψi| = n + B and that
the independent set of an antiflower is monochromatic. For each j ∈ [n], aj ∈ ϕi if
i /∈ ψ(Cj). That is, n + B = |ψi| =

∑
j|i/∈Cj

(aj + 1) +
∑

j|i∈Cj
1 =

∑
j|i/∈Cj

(aj + 1) +∑
j∈[n] 1−

∑
j|i/∈Cj

1 =
∑

j|i/∈Cj
aj +n, from which we conclude that

∑
j|i/∈Cj

aj = B.

2.2.2 Block graphs

We now proceed to the parameterized complexity of block graphs. Conceptually, the
proof follows a similar argumentation as the one developed in Theorem 2; in fact, we
are able to show that even restricting the problem to graphs of diameter at least four
is not enough to develop an FPT algorithm, unless FPT = W[1].

Definition 3. An (a, k)-flower is the graph F (a, k) = K1 ⊕
(⋃

i∈[a+1] Kk−1

)
, that is,

it is obtained from the union of a+ 1 cliques of size k − 1 followed by a join with K1.

Theorem 4. equitable coloring of block graphs of diameter at least four param-
eterized by the number of colors and treewidth is W[1]-hard.

Proof. Let 〈A, k,B〉 be an instance of Bin Packing, ∀k ∈ [n], Fj = F (aj, k + 1),
F0 = F (B, k + 1) and, for j ∈ {0} ∪ [n], let yj be the universal vertex of Fj. Define
a graph G such that V (G) = V

(⋃
j∈{0}∪[n] V (Fj)

)
and E(G) = {y0yj | j ∈ [n]} ∪

E
(⋃

j∈{0}∪[n] E(Fj)
)
. Looking at Figure 9, it is easy to see that any minimum path

between a non-universal vertex of Fa and a non-universal vertex of Fb, a 6= b 6= 0 has
length four. We show that 〈A, k,B〉 is an YES instance if and only if G is equitably
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(k + 1)-colorable.

|V (G)| = |V (F0)|+
∑
j∈[n]

|V (Fj)| =k(B + 1) + 1 +
∑
j∈[n]

(1 + k(aj + 1))

= kB + k + n+ k2B + kn+ 1 =(k + 1)(kB + n+ 1)

Given a k-partition ϕ of A that solves our instance of Bin Packing, we construct
a coloring ψ of G such that ψ(yj) = i if aj ∈ ϕi and ψ(y0) = k + 1. Using a similar
argument to the previous theorem, after coloring each yj, the remaining vertices of G
are automatically colored. For ψk+1, note that |ψk+1| = 1+

∑
j∈[n](aj+1) = kB+n+1 =

|V (G)|
k+1

. It remains to prove that every other color class ψi also has |V (G)|
k+1

vertices.

|ψi| = B + 1 +
∑

j|yj /∈ψi

(aj + 1) +
∑

j|yj∈ψi

1 =B + 1 +
∑
j∈[n]

(aj + 1)−
∑

j|yj∈ψi

aj

= B + 1 + kB + n−B =kB + n+ 1

For the converse we take an equitable (k+ 1)-coloring of G and suppose, without
loss of generality, that ψ(y0) = k+1 and, consequently, for every other yi, ψ(yi) 6= k+1.
To build our k-partition ϕ of A, we say that aj ∈ ϕi if ψ(yj) = i. The following
equalities show that

∑
aj∈ϕi

aj = B for every i, completing the proof.

|ψi| = B + 1 +
∑

j|yj∈ψi

1 +
∑

j|yj /∈ψi

(aj + 1) =B + 1 +
∑
j∈[n]

(aj + 1)−
∑

j|yj∈ψi

aj

kB + n+ 1 = B + 1 + kB + n−
∑

j|yj∈ψi

aj ⇒B =
∑

j|yj∈ψi

aj

2.2.3 Interval graphs without some induced stars

Definition 5. Let Q = {Q1, Q
′
1, . . . , Qa, Q

′
a} be a family of cliques such that Qi '

Q′i ' Kk−1 and Y = {y1, . . . , ya} be a set of vertices. An (a, k)-trem is the graph
H(a, k) where V (H(a, k)) = Q ∪ Y and E (H(a, k)) = E

(⋃
i∈[a](Qi ∪Q′i)⊕ yi

)
∪

E
(⋃

i∈[a−1] yi ⊕Qi+1

)
.



32 Chapter 2. Equitable, Clique, and Biclique coloring

Theorem 6. Equitable Coloring of K1,4 free interval graphs parameterized by
treewidth, maximum number of colors and maximum degree is W[1]-hard.

Proof. Once again, let 〈A, k,B〉 be an instance of Bin Packing, define ∀j ∈ [n],
Hj = H(aj, k) and let Yj be the set of cut-vertices of Hj. The graph G is defined as
G =

⋃
j∈[n] V (Hj). By the definition of an (a, k)-trem, we note that the vertices with

largest degree are the ones contained in Yj \ {ya}, which have degree equal to 3(k− 1).
We show that 〈A, k,B〉 is an YES instance if and only if G is equitably k-colorable, but
first note that |V (G)| =

∑
j∈[n] |V (Hj)| =

∑
j∈[n] aj + 2aj(k− 1) = kB + 2(k− 1)kB =

k(2kB −B).
Given a k-partition ϕ of A that solves our instance of Bin Packing, we construct

a coloring ψ of G such that, for each y ∈ Yj, ψ(y) = i if and only if aj ∈ ϕi. Using a
similar argument to the other theorems, after coloring each Yj, the remaining vertices of
G are automatically colored, and we have |ψi| =

∑
j∈ϕi

aj+
∑

j /∈ϕi
2aj = B+2(k−1)B =

2kB −B.
For the converse we take an equitable k-coloring of G and observe that, for every

j ∈ [n], |ψ(Yj)| = 1. As such, to build our k-partition ϕ of A, we say that aj ∈ ϕi

if and only if ψ(Yj) = {i}. Thus, since |ψ| = 2kB − B, we have that 2kB − B =∑
j∈ϕi

aj+
∑

j /∈ϕi
2aj =

∑
j∈[n] aj−

∑
j∈ϕi

aj = 2kB−
∑

j∈ϕi
aj, from which we conclude

that B =
∑

j∈ϕi
aj.

2.3 Exact algorithms for Equitable Coloring

2.3.1 Chordal graphs

In this section we will make heavy use of the clique tree T (G) = (Q, F ) of our chordal
graph G, which we denote by T for simplicity. We also assume that Q = {Q1, . . . , Qr},
|V (G)| = n, that T is rooted at Q1 and that Ti is the subtree of T rooted at bag Qi.

Our dynamic programming algorithm explores the separability structure inherent
to chordal graphs, embodied by the clique tree, to combine every coloring of a subtree
that may yield an equitable coloring of the whole graph. To do so, we must keep track
of which bag, say Qi, we are currently exploring and which colors have been used at
the separator between Qi and T \Qi.

A k-color counter, or simply a counter for an n vertex graph is an element X ∈([⌈
n
k

⌉]
∪ {0}

)k, that is, the k-th Cartesian power of
[⌈

n
k

⌉]
∪ {0}. A counter X is

equitable if for every xi, xj ∈ X, |xi − xj| ≤ 1. For simplicity, denote S(n, k) =[⌈
n
k

⌉]
∪ {0}. The sum of two counters X, Y is defined as X + Y = (x1 + y1, . . . , xk +
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yk). We also define the sum of two families X ,Y of counters as Z = X + Y ={
X + Y ∈ S(n, k)k | X ∈ X , Y ∈ Y

}
, that is, the sum of all pairs of elements from

each family that belong to S(n, k)k.

Observation 7. If X ,Y ⊆ S(n, k)k and Z = X + Y, |Z| ≤ |S(n, k)|k.

Theorem 8. There is an O
(
n2k+2

)
time algorithm for Equitable Coloring on

chordal graphs where k is the maximum number of colors.

Proof. Let G be the input chordal graph of order n and T its clique tree, rooted at
bag Q1. Moreover, we assume that k ≥ ω(G), otherwise the answer is trivially NO.

For a bag Q, denote by p(Q) the parent clique of Q on T , I(Q) = Q ∩ p(Q) and
by U(Q) = Q \ p(Q) the set of vertices that first appeared on the path between Q and
the root Q1 (if Q = Q1, U(Q) = Q).

Given Q and a list of available colors L, define Π(Q,L) as the set of all colorings
of U(Q) using only the colors of L, β(Q,L, π) the list of colors used by L and π to
color I(Q) and Y (Q, π) as the counter where yi = 1 if and only if some vertex of U(Q)

was colored with color i in π.
We define our dynamic programming state f(Qi, L) as all colorings of Ti condi-

tioned to the fact that I(Qi) was colored with L. Intuitively, we will try every possible
coloring π of U(Q) and combine the solutions of each bag adjacent to Qi given the
colors used by π and L. Finally, there will be an equitable k-coloring of G if there is
an equitable counter in f(Q1, ∅).

f(Qi, L) =
⋃

π∈Π(Qi,[k]\L)

Y (Qi, π) +
∑

Qj∈NTi
(Qi)

f(Qj, β(Qj, L, π))


To prove the correctness of our algorithm, we will use induction on the size of

T . For the base case, where |V (T )| = 1, trivially, any proper coloring of G will be
equitable.

For the general case, suppose that Qi has at least one child, say Qj. Inductively,
for any list of colors R, f(Qj, R) holds every proper coloring of Tj \ I(Qj), given that
I(Qj) was colored with R. In particular, for every π ∈ Π(Qi, [k]\L) we have this guar-
antee. Note that, for each pair of children Qj, Ql of Qi, their solutions are completely
independent because Qj∩Ql ⊆ Qi (clique tree property) and Qi is entirely colored by π
and L. This implies that no vertex was counted more than once on each counter, since
their color is chosen exactly once for each possible π. Therefore, since the problems are
independent for each child of Qi, Z(π) =

∑
Qj∈NTi

(Qi)
f(Qj, β(Qj, L, π)) combines every

possible coloring of the children of Qi and Z(π)+Y (Qi, π) is the family of all colorings
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of Ti, given that Qi was colored with π and L. Finally,
⋃
π∈Π(Qi,[k]\L) Y (Q, π) + Z(π)

tries every possible coloring π of Qi, guaranteeing that f(Qi, L) has every possible col-
oring of Ti, given that I(Qi) used L. Since f(Qi, L) has every coloring of T〉 given L,
G will be equitably k-colorable if and only if there is an equitable counter at f(Q1, ∅).

In terms of complexity analysis, we first note that each sum of two counter
families X ,Y takes O(|X ||Y|). However, due to Observation 7, the size of X + Y
is at most |S(N, k)|k and, therefore,

∑
Qj∈NTi

(Qi)
f(Qj, β(Qj, L, π)) takes at most

O
(
n|S(n, k)|2k

)
= O

(
n
(⌈

n
k

⌉
+ 1
)2k
)
time; moreover, the addition of Y (Qi, π) to Z(π),

by the same argument, is O
(
|S(n, k)|k

)
.

For the outermost union, we have O(k!) possible colorings π for U(Qi), which
implies that computing each f(Qi, L) takes O

(
k!n
(⌈

n
k

⌉
+ 1
)2k
)
time. Since we have

r ≤ n bags and k! possible lists, there are O(nk!) states, therefore the total complexity
of our dynamic programming algorithm is O

(
k!2n2

(⌈
n
k

⌉
+ 1
)2k
)

= O
(
n2k+2

)
.

Corollary 9. Equitable Coloring of chordal graphs parameterized by the number
of colors is in XP.

As shown by Theorem 6, Equitable Coloring of K1,4-free interval graphs is
W[1]-hardwhen parameterized by treewidth, maximum number of colors and maximum
degree. The construction of the hard instance, however, has a massive amount of copies
of the claw (K1,3); determining the complexity of the problem for the class of claw-free
chordal graphs is, therefore, a direct question. Before answering it, we require a bit
more of notation. Given a partial k-coloring ϕ of G, let G[ϕ] denote the subgraph of G
induced by the vertices colored with ϕ, define ϕ− as the set of colors used b|V (G[ϕ])|/kc
times in ϕ and ϕ+ the remaining colors. If k divides |V (G[ϕ])|, we say that ϕ+ = ∅.
Our goal is to color G one maximal clique (say Q) at a time and keep the invariant
that the new vertices introduced by Q can be colored with a subset of the elements of
L−. To do so, we rely on the fact that, for claw-free graphs, the maximal connected
components of the subgraph induced by any two colors form either cycles, which cannot
happen since G is chordal, or paths. By carefully choosing which colors to look at, we
find odd length paths that can be greedily recolored to restore our invariant.

Lemma 10. There is an O(n2)-time algorithm to equitably k-color a claw-free chordal
graph or determine that no such coloring exists.

Proof. We proceed by induction on the number n of vertices of G, and show that G is
equitably k-colorable if and only if its maximum clique has size at most k. The case
n = 1 is trivial. For general n, take one of the leaves of the clique tree of G, say Q, a
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simplicial vertex v ∈ Q and define G′ = G \ {v}. By the inductive hypothesis, there
is an equitable k-coloring of G′ if and only if k ≥ ω(G′). If k < ω(G′) or k < |Q|, G
can’t be properly colored.

Now, since k ≥ ω(G) ≥ |Q|, take an equitable k-coloring ϕ′ of G′ and define
Q′ = Q \ {v}. If |ϕ′− \ ϕ′(Q′)| ≥ 1, we can extend ϕ′ to ϕ using one of the colors of
ϕ′−\ϕ′(Q′) to greedily color v. Otherwise, note that ϕ′+\ϕ′(Q′) 6= ∅ because k ≥ ω(G′).
Now, take some color c ∈ ϕ′−∩ϕ′(Q′), d ∈ ϕ′+ \ϕ′(Q′); by our previous observation, we
know that G′[ϕc ∪ ϕd] has C = {C1, . . . , Cl} connected components, which in turn are
paths. Now, take Ci ∈ C such that Ci has odd length and both endvertices are colored
with d; said component must exist since d ∈ ϕ′+ and c ∈ ϕ′−. Moreover, Ci ∩ Q′ = ∅,
we can swap the colors of each vertex of Ci and then color v with d; neither operation
makes an edge monochromatic.

As to the complexity of the algorithm, at each step we may need to select c and d
– which takes O(k) time – construct C, find Ci and perform its color swap, all of which
take O(n) time. Since we need to color n vertices and k ≤ n, our total complexity is
O(n2).

The above algorithm was not the first to solve Equitable Coloring for claw-
free graphs; this was accomplished by de Werra [1985] which implies that, for any
claw-free graph G, χ=(G) = χ∗=(G) = χ(G).

Theorem 11 (de Werra [1985]). If G is claw-free and k-colorable, then G is equitably
k-colorable.

However, [de Werra, 1985] is not easily accessible, as it is not in any online
repository. Moreover, the given algorithm has no clear time complexity and, as far as
we were able to understand the proof, its running time would be O(k2n), which, for
k = f(n), is worse than the algorithm we present in Lemma 10. Using Lemma 10 and
Theorem 6 we obtain the following.

Theorem 12. Let G be a K1, r-free chordal graph. If r ≥ 4, Equitable Coloring

of G parameterized by treewidth, number of colors and maximum degree is W[1]-hard.
Otherwise, the problem is solvable in polynomial time.

2.3.2 Clique partitioning

Since Equitable Coloring is W[1]-hard when simultaneously parameterized by many
parameters, we are led to investigate a related problem. Much like Equitable Col-

oring is the problem of partitioning G in k′ independent sets of size dn/ke and k− k′
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independent sets of size bn/kc, one can also attempt to partition G in cliques of size
dn/ke or bn/kc. A more general version of this problem is formalized as follows:

clique partitioning

Instance: A graph G and two positive integers k and r.
Question: Can G be partitioned in k cliques of size r and n−rk

r−1
cliques of size

r − 1?

We note that both maximum matching (when k ≥ n/2) and triangle pack-

ing (when k < n/2) are particular instances of clique partitioning, the latter
being FPT when parameterized by k [Fellows et al., 2005]. As such, we will only be
concerned when r ≥ 3. To the best of our efforts, we were unable to provide an FPT

algorithm for clique partitioning when parameterized by k and r, even if we fix
r = 3. However, the situation is different when parameterized by the treewidth of G,
and we obtain an algorithm running in 2tw(G)nO(1) time for the corresponding counting
problem, #clique partitioning.

The key ideas for our bottom-up dynamic programming algorithm are quite
straightforward. First, cliques are formed only when building the tables for forget
nodes. Second, for join nodes, we can safely consider only the combination of two
partial solutions that have empty intersection on the covered vertices (i.e. that have
already been assigned to some clique). Finally, both join and forget nodes can be com-
puted using fast subset convolution [Björklund et al., 2007]. For each node x ∈ T, our
algorithm builds the table fx(S, k′), where each entry is indexed by a subset S ⊆ Bx

that indicates which vertices of Bx have already been covered, an integer k′ recording
how many cliques of size r have been used, and stores how many partitions exist in Gx

such that only Bx \ S is yet uncovered. If an entry is inconsistent (e.g. S * Bx), we
say that f(S,K ′) = 0.

Theorem 13. There is an algorithm that, given a nice tree decomposition of an n-
vertex graph G of width tw, computes the number of partitions of G in k cliques of size
r and n−rk

r−1
cliques of size r − 1 in time O∗(2tw) time.

Proof. Leaf node: Take a leaf node x ∈ T with Bx = ∅. Since the only one way of
covering an empty graph is with zero cliques, we compute fx with:

fx(S, k
′) =

1, if k′ = 0 and S = ∅;

0, otherwise.
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Introduce node: Let x be a an introduce node, y its child and v ∈ Bx \ By. Due
to our strategy, introduce nodes are trivial to solve; it suffices to define fx(S, k′) =

fy(S, k
′). If v ∈ S, we simply define fx(S, k′) = 0.
Forget node: For a forget node x with child y and forgotten vertex v, we formulate

the computation of fx(S, k′) as the subset convolution of two functions as follows:

fx(S, k
′) = fy(S ∪ {v}, k′) +

∑
A⊆S

fy(S \ A, k′ − 1)gr(A, v) +
∑
A⊆S

fy(S \ A, k′)gr−1(A, v)

gl(A, v) =

1, if A is a clique of size l contained in N [v] and v ∈ A;

0, otherwise.

The above computes, for every S ⊆ Bx and every clique A (that contains v)
of size r or r − 1 contained in N [v] ∩ By ∩ S, if S \ A and some k′′ is a valid entry
of fy, or if v had been previously covered by another clique (first term of the sum).
Directly computing the last two terms of the equation, for each pair (S, k′), yields a
total running time of the order of

∑tw
|S|=0

(
tw
|S|

)
2|S| = (1 + 2)tw = 3tw for each forget

node. However, using the fast subset convolution technique described by Björklund
et al. [2007], we can compute the above equation in time O∗

(
2|Bx|

)
= O∗(2tw).

Correctness follows directly from the hypothesis that fy is correctly computed
and that, for every A ⊆ Bx, gr(A, v)gr−1(A, v) = 0. For the running time, we can
pre-compute both gr and gr−1 in O(2twr2), so their values can be queried in O(1) time.
As such, each forget node takes O(2twtw3k) time, since we can compute the subset
convolutions of fy ∗ gr and fy ∗ gr−1 in O(2twtw3) time each. The additional factor of
k comes from the second coordinate of the table index.

Join node: Take a join node x with children y and z. Since we want to partition
our vertices, the cliques we use in Gy and Gz must be completely disjoint and, conse-
quently, the vertices of Bx covered in By and Bz must also be disjoint. As such, we
can compute fx through the equation:

fx(S, k
′) =

∑
ky+kz=k′

∑
A⊆S

fy(A, ky)fz(S \ A, kz)

Note that we must sum over the integer solutions of the equation ky + kz = k′

since we do not know how the cliques of size r are distributed in Gx. To do that, we
compute the subset convolution fy(·, ky)∗fz(·, kz). The time complexity of O(2twtw3k2)

follows directly from the complexity of the fast subset convolution algorithm, the range
of the outermost sum and the range of the second parameter of the table index.
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For the root x, we have fx(∅, k) 6= 0 if and only if Gx = G can be partitioned in
k cliques of size r and the remaining vertices in cliques of size r − 1. Since our tree
decomposition has O(ntw) nodes, our algorithm runs in time O(2twtw4k2n).

To recover a solution given the tables fx, start at the root node with S = ∅,
k′ = k and let Q = ∅ be the cliques in the solution. We shall recursively extend Q in
a top-down manner, keeping track of the current node x, the set of vertices S and the
number k′ of Kr’s used to cover Gx. Our goal is to keep the invariant that fx(S, k′) 6= 0.

Introduce node: Due to the hypothesis that fx(S, k′) 6= 0 and the way that fx is
computed, it follows that fy(S, k′) 6= 0.

Forget node: Since the current entry is non-zero, there must be some A ⊆ S

such that exactly one of the products fy(S \A, k′−1)gr(A, v), fy(S \A, k′)gr−1(A, v) is
non-zero and, in fact, any such A suffices. To find this subset, we can iterate through
2S in O(2tw) time and test both products to see if any of them is non-zero. Note that
the chosen A ∪ {v} will be a clique of size either r or r − 1, and thus, we can set
Q ← Q∪ {A ∪ {v}}.

Join node: The reasoning for join nodes is similar to forget nodes, however, we
only need to determine which states to look at in the child nodes. That is, for each
integer solution to ky+kz = k′ and for eachA ⊆ S, we check if both fy(A, ky)fz(S\A, kz)
is non-zero; in the affirmative, we compute the solution for both children with the
respective entries. Any such triple (A, ky, kz) that satisfies the condition suffices.

Clearly, retrieving the solution takes O(2twk) time per node, yielding a running
time of O∗(2tw).

Corollary 14. Equitable coloring is FPT when parameterized by the treewidth of the
complement graph.

2.4 Clique and biclique coloring

Both Clique Coloring and Biclique Coloring are relaxations of the classical
Vertex Coloring problem, in the sense that monochromatic edges are allowed.
However, this freedom comes at the cost of validating a solution, which becomes a
coNP-complete task in both cases. One may think of Vertex Coloring as the task
of covering a graph’s vertices using a given number of independent sets. That is, there
cannot be a color class with an edge inside it. For Clique Coloring and Biclique

Coloring, the idea is quite similar. We want to forbid not edges, but maximal clique
or bicliques, respectively, inside our color classes. All of the following results establish
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families of sets that may safely be used to cover the given graph and describe how to
compute them.

Much of the following discussion will deal with the clique and biclique hyper-
graphs HC(G) and HB(G). As such, we denote by TC(G) (TB(G)) the family of all
transversals of the clique (biclique) hypergraph of G and by T∗C(G) (T∗B(G)) the fam-
ily of complements of transversals. Also, denote by OC(G) (OB(G)) the family of all
obliques of the clique (biclique) hypergraph of G. Finally, C(G) (B(G)) is the family
of maximal cliques (bicliques) of G.

In this chapter, we present algorithms that make heavy use of the algorithm
described by Björklund et al. [2009], which applies the inclusion-exclusion principle
to solve a variety of problems in 2nnO(1) time, including Vertex Coloring. Our
main results are an O∗(2n) algorithm for Biclique Coloring, an FPT algorithm for
Clique Coloring parameterized by neighbourhood diversity and an FPT algorithm
for Biclique Coloring parameterized by the number of colors and neighbourhood
diversity. To achieve them, we will rely on the following problems and results of the
literature.

Lemma 15 (Cochefert and Kratsch [2014]). For any family F , its down closure F↓ =

{X ⊆ V | ∃Y ∈ F , X ⊆ Y } can be enumerated in O∗(|F↓|) time.

Lemma 16 (Cochefert and Kratsch [2014]). A k-partition ϕ = {ϕ1, . . . , ϕk} is a k-
clique-coloring of G if and only if for every i, ϕi ∈ TC(G).

exact cover

Instance: A set A = {a1, . . . , an}, a covering family F ⊆ 2A and an integer k.
Question: Is it possible to k-partition A into ϕ such that ϕ ⊆ F?

Theorem 17 (Björklund et al. [2009]). There is a O∗(2n) time algorithm to solve
exact cover.

Theorem 18 (Cochefert and Kratsch [2014]). There is an O∗(2n) time algorithm for
Clique Coloring.

set multicover

Instance: A set A = {a1, . . . , an}, a covering family F ⊆ 2A, an integer k and a
coverage demand c : A 7→ N.
Question: Is it possible to k-cover A with ϕ ⊆ F and ∀aj, |{i | aj ∈ ϕi}| ≥ c(aj)?

Theorem 19 (Hua et al. [2009]). Set multicover can be solved in O∗((b+ 2)n), with b
the maximum coverage requirement.
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Figure 10: From left to right: a graph, one of its maximal bicliques, and a transversal.

2.4.1 Exact algorithm for Biclique Coloring

Drawing inspiration from Cochefert and Kratsch [2014], we first show the relationships
between hypergraph structures and colorings, and use these to build an O∗(2n)-time
algorithm for Biclique Coloring by stating it as an exact cover instance. Naturally,
the covering family must be carefully chosen such that any solution to the covering
problem produces a valid coloring. We first formalize the observation that, given a
color i, every maximal biclique of G must have one color other than i.

Lemma 20. A k-partition ϕ = {ϕ1, . . . , ϕk} is a k-biclique-coloring of G if and only
if for every i, ϕi ∈ TB(G).

Proof. Suppose that there exists some ϕi such that ϕi /∈ TB(G). This implies that
there exists some B ∈ B(G) such that B∩ϕi = ∅ and that B ⊆ ϕi; that is, |ϕ(B)| = 1,
which is a contradiction, since ϕ is a k-biclique-coloring.

For the converse, let ϕ be a k-partition of G with ϕi ∈ TB(G), but suppose that
ϕk is not a k-biclique-coloring. That is, there exists some maximal biclique B ∈ B(G)

such that B ⊆ ϕi for some i. This implies that B∩ϕi = ∅, and, therefore, ϕi /∈ TB(G),
which contradicts the hypothesis.

Simply testing for each X ∈ 2V (G) if X ∈ T∗B(G) is a costly task. A naive
algorithm would check, for each B ∈ B(G), if X ∩ B 6= ∅. With |B(G)| ∈ O

(
n3

n
3

)
(see Gaspers [2010] for the proof), such algorithm would takeO

(
n2n3

n
3

)
-time. The next

Lemma, along with Lemma 15, considerably reduces the complexity of enumerating
TB(G). We will enumerate OB(G) by generating its maximal elements and then use
the fact that OB(G) is closed under the subset operation.

Lemma 21. The maximal obliques of HB(G) are exactly the complements of the max-
imal bicliques of G.

Proof. Let X ∈ OB be a maximal oblique. By definition, there exists some B ∈ B(G)

such that X ∩ B = ∅, which implies that X ⊆ B. Note that, if X ⊂ B, there is some
v ∈ B \X, which implies that (X ∪{v})∩B = ∅ and that X is not a maximal oblique.



2.5. Algorithms parameterized by neighborhood diversity 41

Let B ∈ B(G). By definition, B ∈ OB and must be maximal because {B,B} is a
partition of V (G).

Corollary 22. Given a graph G = (V,E) and a subset X ⊆ V (G), there exists an
O(n(n− |X|))-time algorithm to determine if X is a maximal oblique.

Theorem 23. There is an O∗(2n)-time algorithm for Biclique Coloring.

Proof. Our goal is to make use of Theorem 17 to solve an instance of Exact Cover,
with A = V (G), F = T∗B(G) and k the partition size. Lemma 20 guarantees that there
is an answer to our instance of Biclique Coloring if and only if there is an answer
to the corresponding Exact Cover one. To compute T∗B(G), for each X ∈ 2V (G),
we use Lemma 21 and Corollary 22 to say whether or not X is a maximal oblique
of HB(G). Next, we compute OB(G) from its maximal elements using Lemma 15,
and use the fact that TB(G) = 2V (G) \ OB(G) and complement each transversal to
obtain T∗B(G). Clearly, this procedure takes O∗(2n)-time to construct T∗B(G) and an
additional O∗(2n)-time by Theorem 17.

2.5 Algorithms parameterized by neighborhood

diversity

As previously discussed, a type is a maximal set of vertices that are either true or false
twins to each other. Suppose that we are already given a partition {D1, . . . , Dnd(G)} of
V (G) in types. If Di is composed of true twins, we say that it is a true twin class Ti
and, by definition, G[Di] is a clique. Similarly, if Di is composed of false twins, it is a
false twin class Fi and G[Di] is an independent set. When |Di| = 1, we treat the class
differently depending on the problem. For the entirety of this section, we assume that
d = nd(G).

2.5.1 Biclique Coloring

For Biclique Coloring, if there is some Di with a single vertex we shall treat it as
a true twin class.

Observation 24. Given G and a true twin class Ti of G, any k-biclique-coloring ϕ of
G has |ϕ(Ti)| = |Ti|.

Lemma 25. Given G and a false twin class F ⊂ V (G), any k-biclique-coloring ϕ′ of
G can be changed into a k-biclique-coloring ϕ of G such that |ϕ(F )| ≤ 2.
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Figure 11: A graph, its B-projected and C-projected graphs

Proof. If |ϕ′(F )| ≤ 2, ϕ = ϕ′. Otherwise, there exists f1, f2, f3 ∈ F with three different
colors. Since every maximal biclique B of G that intercepts F has that F ⊂ B and
thus |ϕ′(B)| ≥ 3. By making ϕ(f1) = ϕ′(f1) and ϕ(f3) = ϕ(f2) = ϕ′(f2), we obtain
|ϕ(B)| ≥ |ϕ(F )| ≥ 2. Repeating this process until |ϕ(F )| = 2 does not make any
biclique monochromatic and completes the proof.

The central idea of our parameterized algorithm is to build an induced subgraph
H of G and, afterward, use the results established here and in Section 2.4.1 to show
that the solution to a particular instance of Set Multicover derived from H can be
transformed in a solution to Biclique Coloring of G.

Definition 26 (B-Projection and B-Lifting). Let Ti and Fj be as previously dis-
cussed. We define the following projection rules: ∀tqi ∈ Ti, ProjB(tqi ) = {t′i}; for
f 1
j ∈ Fj, ProjB(f 1

j ) = {f ′1j}; ∀f rj ∈ Fj \ {f 1
j }, ProjB(f rj ) = {f ′2j} and ProjB(X) =⋃

u∈X ProjB(u).
Lifting rules are defined as LiftB(t′i) = {ti}; LiftB(f ′1j) = {f 1

j }; LiftB(f ′2j) = Fj \
{f 1

j } and LiftB(Y ) =
⋃
u∈Y LiftB(u). Note that ProjB(LiftB(X)) = X, ∀X.

Definition 27 (B-Projected Graph). The B-projected graph H of G satisfies V (H) =

ProjB(V (G)) and v′iv′j ∈ E(H) if and only if there exist vi ∈ LiftB(v′i) and vj ∈ LiftB(v′j)

such that vivj ∈ E(G). H is an induced subgraph of G.

For the remainder of this section, G will be the input graph to Biclique Col-

oring and H the B-Projected graph of G. Our Set Multicover instance consists of
V (H) as the ground set, T∗B(H) as the covering family, the size k of the cover the same
as the coloring of G and c(t′i) = |Ti| for every true twin class Ti and c(f ′1j) = c(f ′2j) = 1

for each false twin class Fj. The next observation follows directly from the fact that
T∗B(H) is closed under the subset operation, while the subsequent results allow us to
move freely between T∗B(G) and T∗B(H).
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Observation 28. If there is a minimum k-multicover ψ of V (H) by T∗B(H), then there
exists a minimum k-multicover ψ′ = {ψ1, . . . , ψk} such that |{j | u ∈ ψj}| = c(u) for
every u ∈ V (H).

Lemma 29. If B′ ∈ B(H) then B = LiftB(B′) ∈ B(G). Conversely, if B ∈ B(G) and
B is not contained in any true twin class, then B′ = ProjB(B) ∈ B(H).

Proof. Note that B is a biclique by the definition of LiftB and the fact that B′ is a
biclique. By the contrapositive, suppose that B /∈ B(G) and that u ∈ V (G) is such
that B ∪ {u} is a (not necessarily maximal) biclique of G. Note that either: (i) if
u ∈ Fj then Fj * B and ProjB(u) /∈ B′, because u /∈ LiftB(f ′1j) or u /∈ LiftB(f ′2j); or
(ii) if u ∈ Ti then Ti ∩ B = ∅, which implies that ProjB(u) /∈ B′. Since B ∪ {u} is a
biclique, ProjB(u) is adjacent to only one partition of B′. The fact that ProjB(u) /∈ B′

implies that ProjB(B ∪ {u}) = ProjB(B) ∪ ProjB(u) = B′ ∪ ProjB(u) is a biclique of H
and B′ is not maximal.

Conversely, by the definition of ProjB, B′ = (X, Y ) must be a biclique of H. By
the contrapositive, there is u′ ∈ V (H) such that B′∪{u′} is a (not necessarily maximal)
biclique of H, and let u ∈ LiftB(u′). By the definition of LiftB, it follows that u can
only be adjacent to one of partition of B, say LiftB(X). Thus, u′ ∈ Y and, for each
v ∈ LiftB(Y ), uv /∈ E(G), otherwise there would be v′ ∈ ProjB(v) with u′v′ ∈ E(H).
Hence, B ∪ {u} is a biclique of G and B is not maximal.

Theorem 30. X ⊆ V (H) is in T∗B(H) if and only if LiftB(X) ∈ T∗B(G).

Proof. Recall that X ∈ T∗B(H) if and only if no maximal biclique of H is contained in
X. It is clear that, for every B′ ∈ B(H), B′ * X implies that LiftB(B′) * LiftB(X),
since no two vertices of H are lifted to the same vertex of G, and LiftB(B′) ∈ B(G)

due to Lemma 29. Moreover, no biclique of G entirely contained in a true twin class
can be a subset of LiftB(X). As such, LiftB(X) contains a maximal biclique B only if
ProjB(B) ⊆ X and ProjB(B) /∈ B(H), which is impossible due to Lemma 29 and the
assumption that B is maximal.

Taking the contrapositive, X /∈ T∗B(H) implies that there is some maximal bi-
clique B′ of H such that B′ ⊆ X. This implies that LiftB(B′) ⊆ LiftB(X), and, since
LiftB(B′) is a maximal biclique of G due to Lemma 29, it holds that LiftB(X) is not a
complement of transversal of G.

Theorem 31. ψ is a k-multicover of H if and only if G is k-biclique-colorable.

Proof. Recall that a k-partition is a k-biclique-coloring if and only if all elements of
the partition belong to T∗B(G). By the construction of our set multicover instance,
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we have that, for each ψi, ψi ∈ T∗B(H). By making ϕ = {LiftB(ψ1), . . . , LiftB(ψk)},
and recalling Observation 28, we have that each vertex u ∈ V (H) is covered exactly
c(u) times; moreover, since true twins appear multiple times and types are equivalence
relations, we can attribute to each tqi any of the |Ti| colors available, as long as no two
receive the same color. Therefore, ϕ, after properly allocating the true twin classes, is a
k-partition of V (G). Due to Theorem 30, every LiftB(ψi) is a complement of transversal
and therefore ϕ is a valid k-biclique-coloring of G.

For the converse, we first make use of Lemma 25 to guarantee that every false
twin class is in at most two color classes. In particular, if two colors are required we
force f 1

j to have the smallest color and Fj \ {f 1
j } to have the other one. Afterwards,

for every color class ϕi, we take ψi = ProjB(ϕi). Note that, each color class has at
most one element of each Ti. Also, for each Fj and any two distinct color classes ϕl, ϕr,
ProjB(ϕl)∩ProjB(ϕr)∩ProjB(Fj) = ∅, since f 1

j has a different color from Fj\{f 1
j }. These

observations guarantee that LiftB(ψi) = ϕi and, because of Theorem 30, ψi ∈ T∗B(H).
Finally, ψ = {ψ1, . . . , ψk} will be a valid k-multicover of H because every vertex of
V (H) will be covered the required amount of times.

Note that the size of the largest true twin class is exactly the largest coverage
requirement b of our Set Multicover instance. Moreover, since we need at least b
colors to biclique color G, it holds that b ≤ k.

Theorem 32. Biclique Coloring can be solved in O∗
(
(k + 2)2d

)
.

Proof. Start by computing the type partition of G in O(n3) time and building H

in O(n + m). Afterwards, solve the corresponding Set Multicover instance in
O∗
(
(b+ 2)2d

)
time using Theorem 19 and lift the multicover using the construction

described in the proof of Theorem 31 in O(n).

Another option would be not to contract true twin classes, keeping all such ver-
tices in the projected graph, which would effectively yield a kernel linear on the product
kd. The brute force approach would yield a running time of O∗

(
kkd3kd/3

)
: we could

verify if one of the kkd possible colorings is a proper k-biclique-coloring by checking if
none of the O

(
3kd/3

)
maximal bicliques is monochromatic. We could refine our algo-

rithm and use Theorem 23 to solve the problem in O∗
(
2kd
)
, which is no better than

(k + 2)2d ≈ k2d = 22d log k.



2.5. Algorithms parameterized by neighborhood diversity 45

2.5.2 Clique Coloring

For Clique Coloring, a type class with a single vertex is treated as a false twin
class. Unlike Biclique Coloring, both true and false twin classes are well behaved,
one of the reasons we get a much better algorithm for this problem.

Lemma 33. Given G and a false twin class F ⊂ V (G), any k-clique-coloring ϕ′ can
be changed into a k-clique-coloring ϕ such that |ϕ(F )| = 1.

Proof. If |ϕ′(F )| = 1, we are done. Otherwise, there exists f1, f2 ∈ F such that ϕ′(f1) 6=
ϕ′(f2). For every maximal clique C1 where f1 ∈ C1, define C ′ = C \{f1} and note that
C2 = C ′∪{f2} is also a maximal clique. Since ϕ′ is an coloring |ϕ′(C ′)∪{ϕ′(f1)}| ≥ 2.
Therefore, making ϕ(f2) = ϕ(f1) = ϕ′(f1) does not make |ϕ(C2)| = 1. Repeating
this until |ϕ(F )| = 1 does not make any clique that intercepts F monochromatic and
completes the proof.

Lemma 34. Given G and a true twin class T ⊆ V (G), any k-clique-coloring ϕ′ can
be changed into a k-clique-coloring ϕ such that |ϕ(T )| ≤ 2.

Proof. If |ϕ′(T )| ≤ 2, we are done. Otherwise, there exists t1, t2, t3 ∈ T with different
colors. Note that, for every maximal clique C that intercepts T , C ⊆ T . Therefore,
|ϕ′(C)| ≥ |ϕ′(T )| ≥ 3. By making ϕ(t1) = ϕ′(t1) and ϕ(t3) = ϕ(t2) = ϕ′(t2) we have
|ϕ(C)| ≥ |ϕ(T )| ≥ 2. Repeating this process until |ϕ(T )| ≤ 2 does not make any clique
that intercepts T monochromatic and the proof follows.

Definition 35 (C-Projection and C-Lifting). Let Ti be any true twin class and Fj be
any false twin class. We define the following projection rules: for t1i ∈ Ti, ProjC(t1i ) =

{t′1i }, ∀t
q
i ∈ Ti \ {t1i }, ProjC(tqi ) = {t′2i }, ∀f rj ∈ Fj, ProjC(f rj ) = {f ′j} and ProjC(X) =⋃

u∈X ProjC(u).
Lifting rules are defined as LiftC(t′1i ) = {t1i }, LiftC(t′2i ) = Ti\{t1i }, LiftC(f ′j) = {f 1

j }
and LiftC(Y ) =

⋃
u′∈Y LiftC(u′). Note that ProjC(LiftC(X)) = X, ∀X.

Definition 36 (C-Projected Graph). The C-projected graph H of G satisfies V (H) =

ProjC(V (G)) and v′iv′j ∈ E(H) if and only if there exist vi ∈ LiftC(v′i) and vj ∈ LiftC(v′j)

such that vivj ∈ E(G). H is an induced subgraph of G.

For the remainder of this section, G will be the input graph to Clique Coloring

and H the C-Projected graph of G. We show, using Lemma 37 and Theorem 38, that
Clique Coloring parameterized by neighborhood diversity has a linear kernel. Note
that our results imply that χC(G) ≤ 2d. A straightforward brute force approach would
yield an O∗

(
4dd2d32d/3

)
-time algorithm: for each of the k2d ≤ (2d)2d possible colorings
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of H, we check if none of the O
(
32d/3

)
maximal cliques of H are monochromatic,

returning YES if none are, otherwise NO. Instead, we use Theorem 18 and obtain an
O∗
(
22d
)
-time algorithm.

Lemma 37. If C ′ ∈ C(H) then LiftC(C ′) ∈ C(G). Conversely, if C ∈ C(G) then
ProjC(C) ∈ C(H).

Proof. Note that C = LiftC(C ′) is a clique due to the definition of LiftC and the fact
that C ′ is a clique. By the contrapositive, suppose that C is not a maximal clique.
In this case, there is some vertex u ∈ V (G) such that C ∪ {u} is a (not necessarily
maximal) clique of G. Note that either: (i) if u ∈ Ti, Ti * C and u /∈ LiftC(t′1i ) or
u /∈ LiftC(t′2i ), thus ProjC(u) /∈ C ′; (ii) if u ∈ Fj, Fj ∩ C = ∅ and ProjC(u) /∈ C ′. Since
no two vertices of H are lifted to the same vertex of G and ProjC(u) /∈ C ′, it follows
that ProjC(C ∪{u}) = ProjC(C)∪ProjC(u) = C ′∪ProjC(u) is a clique by the definition
of ProjC .

Clearly, C ′ = ProjC(C) is a clique of H, due to the definition of ProjC . Suppose,
however, that C ′ /∈ C(H), which implies that there is some u′ ∈ V (H) such that
C ′ ∪ {u′} is a clique of H and let u ∈ LiftC(u′). By the definition of LiftC , C ⊆ N(u)

if and only if ProjC(C) ⊆ N(u′), which implies that C ′ is not maximal only if C is not
maximal. A contradiction that completes the proof.

Theorem 38. G is k-clique-colorable if and only if H is k-clique-colorable.

Proof. Let ϕG be a k-clique-coloring of G that complies with Lemmas 33 and 34.
Without loss of generality, for every Ti, we color t1i with one color and Ti \ {t1i } with
the other, if it exists, otherwise color every vertex of Ti with the same color. We define
the k-clique-coloring ofH as ϕH(u′) = ϕG(u ∈ LiftC(u′)), for every u′ ∈ V (H). Suppose
now that there exists some C ′ ∈ C(H) such that |ϕH(C ′)| = 1. By Lemma 37, LiftC(C ′)

is a maximal clique of G and, since |ϕG (LiftC(C ′)) | = 1, it holds that LiftC(C ′) is a
monochromatic maximal clique of G and ϕG is not a valid k-clique-coloring, which
contradicts the hypothesis.

Now, let ϕH be a k-clique-coloring of H, and define ϕG(u) = ϕH(u′ ∈ ProjC(u)).
By assuming that there exists some C ∈ C(G) such that |ϕG(C)| = 1 and using
Lemma 37, it is clear that |ϕH(ProjC(C))| = 1 which is impossible, since ϕH is a valid
k-clique-coloring of H.

Theorem 39. There is an O∗
(
22d
)
-time algorithm for Clique Coloring.
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Figure 12: Construction for the formula ϕ(x,y) = (x1∧x2∧ y1)∨ (x2∧ y1∧ y2)∨ (x1∧
x2 ∧ y2).

Proof. Start by computing the optimal type partition of G in O(n3)-time and building
H in O(n+m). Then color H in O∗

(
22d
)
-time by Theorem 18 and lift the coloring

using the construction described in Theorem 38 in O(n).

2.5.3 A lower bound under ETH

We now proceed to show that the algorithm described in Theorem 39 is optimal, up to
a constant in the exponent, under the assumption that ETH holds. Before proceeding,
we recall the canonical problem associated with the ΣP

2 class.

2-Quantified Satisfability (QSAT2)

Instance: An n1 + n2 variable 3DNF formula ϕ(x,y), on x and y.
Question: Is there x ∈ {0, 1}n1 such that for every y ∈ {0, 1}n2 , ϕ(x,y) = 1?

Lemma 40. There is no O∗
(
2o(n1+n2)

)
algorithm for an instance of QSAT2 on n1 +n2

variables if ETH holds.

Proof. By the counter-positive, suppose that there is an algorithm
∏

for QSAT2 with
complexity O∗

(
2o(n1+n2

)
and let 〈x,y, ϕ(x,y)〉 be an instance of QSAT2 as in the

definition of QSAT2. With
∏

in hand, we can solve ¬ (∃x∀yϕ(x,y)) ≡ ∀x∃y¬ϕ(x,y)

simply by negating the output of
∏
. Note that, since ϕ(x,y) is in 3DNF, ¬ϕ(x,y)

is in 3CNF. The case where n1 = 0 is precisely 3sat, and we have an algorithm that
solves it in O∗

(
2o(n2)

)
, implying that ETH is false.

Theorem 41. If ETH holds, there is no O∗
(
2o(d)

)
time algorithm for clique 2-

coloring parameterized by the neighborhood diversity d of the graph.
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Proof. Let Φ = 〈x,y, ϕ(x,y)〉 be an instance of QSAT2 as in the problem’s definition.
We construct the graph G for Clique bicoloring as follows: For each xi ∈ x, G
has 4 vertices xi, x′i, x′i, xi and the edges xix′i, x′ix′i, x′ixi. For each yj ∈ y, G also has
4 vertices yj, y′j, y′j, yj but only the edges yjy′j, yjy′j. Vertices xi, xi, yj, yj form a clique
minus the edges between a literal and its negation. For each clause pl ∈ ϕ(x,y), add
two vertices pl, p′l to G and an edge between pl and xi (xi) if xi (xi) is in clause pl.
If neither xi nor xi are in clause pl, connect pl to both xi and xi. The same is done
between pl and each yj. Vertex p′m is adjacent to every y′j and every y′j; furthermore,
p1p
′
1 . . . pmp

′
m is an induced path of G. By Marx [2011], G is a YES instance if and only

if Φ is also a YES instance. For an example of the constructed graph, please refer to
Figure 12. We now show that nd(G) is linearly bounded by the size of Φ.

Define η = {x1, x1, . . . , xn1 , y1, y1, . . . , yn2
} and P =

⋃
l≤m{pl, p′l}, η′ =

{x′1, x′1, . . . , x′n1
, y′1, y

′
1, . . . , y

′
n2
}, P = {pl | l ≤ m} and P ′ = {p′l | l ≤ m} For any

{a, b} ⊆ η∪η′, it is straightforward to verify that N(a)\N(b), N [a]\N [b], N(b)\N(a)

and N [b] \ N [a] are non-empty, which implies that a and b are neither false nor true
twins. For any a ∈ η′ and any b ∈ P ∪P ′, it is easy to see that a and b cannot be of the
same type. If a ∈ η and b ∈ P , since ϕ(x,y) is in 3DNF, there is at least one variable
not adjacent to b which is adjacent to a, since η induces a clique minus a matching and,
consequently, a and b are not of the same type. If a ∈ η ∪P and b ∈ P ′ or {a, b} ⊆ P ′,
it is trivial to verify that a and b are neither true nor false twins. For {a, b} ⊆ P , since
no two clauses are equal, it follows that a and b are not of the same type.

As such, we conclude that each vertex of G is in a different type and, consequently,
it has d = nd(G) = 4(n1 +n2)+2m which is O∗(n1 + n2 +m) and implies that there is
no O∗

(
2o(d)

)
time algorithm for clique 2-coloring parameterized by neighborhood

diversity unless ETH fails.

2.6 Concluding remarks

In this chapter, we investigated three partitioning problems that belong to the class of
coloring problems. Namely, Equitable Coloring, Clique Coloring, Biclique

Coloring. For Equitable Coloring, we developed novel parameterized reductions
from Bin Packing, which is W[1]-hard when parameterized by number of bins. These
reductions showed that Equitable Coloring is W[1]− hard in three more cases: (i)
if we restrict the problem to block graphs and parameterize by the number of colors,
treewidth and diameter; (ii) on the disjoint union of split graphs, a case where the
connected case is polynomial; (iii) equitable coloring of K1,r interval graphs, for
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any r ≥ 4, remains hard even if we parameterize by the number of colors, treewidth and
maximum degree. This, along with a previous result by de Werra [1985], establishes
a dichotomy based on the size of the largest induced star: for K1,r-free graphs, the
problem is solvable in polynomial time if r ≤ 2, otherwise it is W[1] − hard. These
results significantly improve the ones by Fellows et al. [2011] through much simpler
proofs and in very restricted graph classes. Since the problem remains hard even for
many natural parameterizations, we resorted to a more exotic one – the treewidth of the
complement graph. By applying standard dynamic programming techniques on tree
decompositions and the fast subset convolution machinery of Björklund et al. [2007],
we obtain an FPT algorithm when parameterized by the treewidth of the complement
graph. We also presented an XP algorithm parameterized by number of colors when
the input graph is known to be chordal. Natural future research directions include the
identification and study of other uncommon parameters that may aid in the design of
other FPT algorithms. Revisiting Clique Partitioning when parameterized by k

and r is also of interest, since its a related problem to Equitable Coloring and the
complexity of its natural parameterization is yet unknown.

As to the other problems, we showed that, much like Clique Coloring, Bi-

clique Coloring can be solved in O∗(2n)-time using the inclusion-exclusion princi-
ple. Also of interest is the nice behavior Clique Coloring presents when param-
eterized by neighborhood diversity, which enabled us to apply very simple reduction
rules and obtain an O∗

(
22d
)
-time FPTalgorithm. Moreover, said algorithm has optimal

running time, assuming that ETH holds. For Biclique Coloring, however, we were
unable to provide an FPT algorithm when considering solely neighborhood diversity
and had to include the size of the largest true twin class – which is a lower bound to
the biclique chromatic number – to obtain a parameterized algorithm. As such, we are
led to believe that Biclique Coloring parameterized by neighborhood diversity is
not in FPT. Much of the exploratory work on different graph classes and parameters
remains to be done for Biclique Coloring, and it may be an interesting venue for
future work.





Chapter 3

Finding Cuts of bounded degree

Unlike coloring problems, cut problems enforce properties between sets. The most
famous cut problem is, most likely, Minimum Cut (or Min Cut), where the objec-
tive is to find a subset of edges of minimum cardinality whose removal disconnects
a specified pair of vertices. A celebrated theorem, known as the Max-Flow Min-Cut
theorem [FORD and FULKERSON, 1962], a special case of strong linear programming
duality [Bertsimas and Tsitsiklis, 1998], states that the capacity of a minimum s, t is
precisely the value of the maximum flow between s and t; when all edges have unit
capacity, we simply seek a cut of minimum cardinality. Other cases of cut problems in
the literature include, for instance, Maximum Cut, Max Cut for short. As the name
implies, the goal is to find an s, t cut of the graph with the maximum number of edges
between them; however, unlike Min Cut, Max Cut is NP-hard; in fact, the value of
the cut optimal cannot be arbitrarily approximated by a polynomial time approxima-
tion scheme unless P = NP, i.e. it is APX-hard [Hochbaum, 1997]. Naturally, one can
ask whether or not there is a set of edges whose removal causes the disconnection of
some vertices, but not others. Some research has been dedicated to this topic under the
name of Multicut-Uncut, especially in terms of parameterized complexity [Marx
et al., 2010; Marx, 2006], with powerful meta-theorems guaranteeing fixed parameter
tractability for any class whose membership is hereditary and decidable. Aside from
constraints on which vertices are separated or the size of the separation, some cutting
problems impose restrictions on the “shape" of the edges crossing the cut. Such is the
case of Matching Cut and the generalizations we discuss further on.

After some additional definitions and related work, we generalize several results
for the d-Cut problem, which, to the best of our knowledge, we are the firsts to formally
describe and investigate. First, by using a reduction inspired by Chvátal’s [Chvátal,
1984], we show that for every d ≥ 1, d-Cut is NP-complete even when restricted
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to (2d + 2)-regular graphs and that, if ∆(G) ≤ d + 2, finding a d-cut can be done
in polynomial time. The degree bound in the NP-hardness result is unlikely to be
improved: if we had an NP-hardness result for d-Cut restricted to (2d + 1)-regular
graphs, this would disprove the conjecture about the existence of internal partitions
on r-regular graphs [DeVos, 2009; Ban and Linial, 2016; Shafique and Dutton, 2002]
for r odd, unless every problem in NP could be solved in constant time. Afterwards,
we present a simple exact exponential algorithm that, for every d ≥ 1, runs in time
O∗(cnd) for some constant cd < 2, hence improving over the trivial brute-force algorithm
running in time O∗(2n).

We then proceed to analyze the problem in terms of its parameterized complexity.
Section 3.3 begins with a proof, using the treewidth reduction technique of Marx et al.
[2010], that d-Cut is FPT parameterized by the maximum number of edges crossing
the cut. Afterwards, we present a dynamic programming algorithm for d-Cut param-
eterized by treewidth running in time O∗

(
2tw(G)+1(d+ 1)2tw(G)+2

)
; in particular, for

d = 1 this algorithm runs in time O∗
(
8tw(G)

)
and improves the one given by Aravind

et al. [2017] for Matching Cut, running in time O∗
(
12tw(G)

)
. By employing the

cross-composition framework of Bodlaender et al. [2011], and using a reduction similar
to the one given by Komusiewicz et al. [2018], we show that, unless NP ⊆ coNP/poly,
there is no polynomial kernel for d-Cut parameterized simultaneously by the number
of crossing edges, the maximum degree, and the treewidth of the input graph. We then
present a polynomial kernel and an FPT algorithm when parameterizing by the distance
to cluster. This polynomial kernel is our main technical contribution, and it is strongly
inspired by the technique presented by Komusiewicz et al. [2018] for Matching Cut.
Finally, we give an FPT algorithm parameterized by the distance to co-cluster, denoted
by dc(G). These results imply fixed-parameter tractability for d-Cut parameterized
by τ(G). Finally, we conclude with an exact exponential algorithm for another gen-
eralization of Matching Cut and a brief discussion on a third related problem of
interest.

3.1 Definitions and related work

A cut of a graph G = (V,E) is a bipartition of its vertex set V (G) into two non-empty
sets, denoted by (A,B). The set of all edges with one endpoint in A and the other in B
is the edge cut, or the set of crossing edges, of (A,B). In a slight abuse of notation, we
also denote the set of crossing edges by (A,B). A matching cut is a (possibly empty)
edge cut that is a matching, i.e., its edges are pairwise vertex-disjoint. Equivalently,
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(A,B) is a matching cut of G if and only if every vertex is incident to at most one
crossing edge of (A,B) [Graham, 1970; Chvátal, 1984], that is, it has at most one
neighbor across the cut. The Matching Cut problem is, thus, the task of deciding
whether a graph admits a matching cut. Figure 13 gives an example of a graph with
a matching cut.

Matching Cut

Instance: A graph G.
Question: Does G have a matching cut?

Figure 13: Example of a matching cut. Square vertices would be assigned to A, circles
to B.

Motivated by an open question posed by Komusiewicz et al. [2018] during the
presentation of their article, we investigate a natural generalization that arises from
this alternative definition. For a positive integer d ≥ 1, a d-cut is a cut (A,B) such
that each vertex has at most d neighbors across the partition, that is, every vertex in
A has at most d neighbors in B, and vice-versa. Note that a 1-cut is a matching cut.
As expected, not every graph admits a d-cut, and the d-Cut problem is the problem
of, for a fixed integer d ≥ 1, deciding whether or not an input graph G has a d-cut.

d-Cut

Instance: A graph G.
Question: Does G admit a d-cut?

When d = 1, the problem is known as Matching Cut. Graphs with no match-
ing cut first appeared in Graham’s manuscript [Graham, 1970] under the name of
indecomposable graphs, presenting some examples and properties of decomposable and
indecomposable graphs, leaving their recognition as an open problem. In answer to
Graham’s question, Chvátal [1984] proved that the problem is NP-hard for graphs of
maximum degree at least four and polynomially solvable for graphs of maximum degree
at most three; in fact, as shown by Moshi [1989], every graph of maximum degree three
and at least eight vertices has a matching cut.

Chvátal’s results spurred a lot of research on the complexity of the problem [Ko-
musiewicz et al., 2018; Aravind et al., 2017; Kratsch and Le, 2016; Le and Le, 2016;
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Bonsma, 2009; Patrignani and Pizzonia, 2001; Le and Randerath, 2003]. In particular,
Bonsma [2009] showed that Matching Cut remains NP-hard for planar graphs of
maximum degree four and for planar graphs of girth five; Le and Randerath [2003]
gave an NP-hardness reduction for bipartite graphs of maximum degree four; Le and
Le [2016] proved that Matching Cut is NP-hard for graphs of diameter at least three,
and presented a polynomial-time algorithm for graphs of diameter at most two. Beyond
planar graphs, Bonsma [2009] also proves that the matching cut property is expressible
in monadic second order logic and, by Courcelle’s Theorem [Courcelle, 1990], it follows
that Matching Cut is FPT when parameterized by the treewidth of the input graph;
he concludes with a proof that the problem admits a polynomial-time algorithm for
graphs of bounded cliquewidth.

Kratsch and Le [2016] noted that Chvátal’s original reduction also shows that,
unless the Exponential Time Hypothesis fails, there is no algorithm solving Match-

ing Cut in time 2o(n) on n-vertex input graphs. Also in [Kratsch and Le, 2016],
the authors provide a first branching algorithm, running in time O∗

(
2n/2

)
, a single-

exponential FPT algorithm when parameterized by the vertex cover number τ(G),
and an algorithm generalizing the polynomial cases of line graphs [Moshi, 1989] and
claw-free graphs [Bonsma, 2009]. Kratsch and Le [2016] also asked for the existence
of a single-exponential algorithm parameterized by treewidth. In response, Aravind
et al. [2017] provided a O∗

(
12tw(G)

)
algorithm for Matching Cut using nice tree

decompositions, along with FPT algorithms for other structural parameters, namely
neighborhood diversity, twin-cover, and distance to split graph.

The natural parameter – the number of edges crossing the cut – has also been
considered. Indeed, Marx et al. [2010] tackled the Stable Cutset problem, to which
Matching Cut can be easily reduced via the line graph, and through a breakthrough
technique showed that this problem is FPT when parameterized by the maximum size
of the stable cutset. Recently, Komusiewicz et al. [2018] improved on the results of
Kratsch and Le [2016], providing an exact exponential algorithm for Matching Cut

running in time O∗(1.3803n), as well as FPT algorithms parameterized by the distance
to a cluster graph and the distance to a co-cluster graph, which improve the algorithm
parameterized by the vertex cover number, since both parameters are easily seen to be
smaller than the vertex cover number. For the distance to cluster parameter, they also
presented a quadratic kernel; while for a combination of treewidth, maximum degree,
and number of crossing edges, they showed that no polynomial kernel exists unless
NP ⊆ coNP/poly.

A problem closely related to d-Cut is that of Internal Partition, first studied
by Thomassen [1983]. In this problem, we seek a bipartition of the vertices of an input
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graph such that every vertex has at least as many neighbors in its own part as in the
other part. Such a partition is called an internal partition. Usually, the problem is
posed in a more general form: given functions a, b : V (G)→ Z+, we seek a bipartition
(A,B) of V (G) such that every v ∈ A satisfies degA(v) ≥ a(v) and every u ∈ B satisfies
degB(u) ≥ b(u), where degA(v) denotes the number of neighbors of v in the set A. Such
a partition is called an (a, b)-internal partition.

Originally, Thomassen asked in [Thomassen, 1983] whether for any pair of positive
integers s, t, a graph G with δ(G) ≥ s + t + 1 has a vertex bipartition (A,B) with
δ(G[A]) ≥ s and δ(G[B]) ≥ t. Stiebitz [1996] answered that, in fact, for any graph
G and any pair of functions a, b : V (G) → Z+ satisfying deg(v) ≥ a(v) + b(v) + 1 for
every v ∈ V (G), G has an (a, b)-internal partition. Following Stiebitz’s work, Kaneko
[1998] showed that if G is triangle-free, then the pair a, b only needs to satisfy deg(v) ≥
a(v)+b(v). More recently, Ma and Yang [2019] proved that, if G is {C4, K4, diamond}-
free, then deg(v) ≥ a(v) + b(v)− 1 is enough. Furthermore, they also showed, for any
pair a, b, a family of graphs such that deg(v) ≥ a(v) + b(v)− 2 for every v ∈ V (G) that
do not admit an (a, b)-internal partition.

It is conjectured that, for every positive integer r, there exists some constant nr for
which every r-regular graph with more than nr vertices has an internal partition [DeVos,
2009; Ban and Linial, 2016] (the conjecture for r even appeared first in [Shafique and
Dutton, 2002]). The cases r ∈ {3, 4} have been settled by Shafique and Dutton [2002];
the case r = 6 has been verified by Ban and Linial [2016]. This latter result implies
that every 6-regular graph of sufficiently large size has a 3-cut.

3.2 NP-hardness, polynomial cases, and exact

exponential algorithm

In this section we focus on the classical complexity of the d-Cut problem, and on exact
exponential algorithms. Namely, we provide the NP-hardness result in Section 3.2.1,
the polynomial algorithm for graphs of bounded degree in Section 3.2.2, and a simple
exact exponential algorithm in Section 3.2.3.

3.2.1 NP-hardness for regular graphs

Before stating our NP-hardness result, we need some definitions and observations.

Definition 42. A set of vertices X ⊆ V (G) is said to be monochromatic if, for any
d-cut (A,B) of G, X ⊆ A or X ⊆ B.
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Observation 43. For fixed every d ≥ 1, if u and v have at least 2d+1 common neigh-
bors, the set {u, v} is monochromatic. In particular, the graph Kd+1,2d+1 is monochro-
matic. Moreover, if a vertex v has at least d + 1 neighbors in the monochromatic set
S, {v} ∪ S is monochromatic.

Definition 44 (Spool). For n, d ≥ 1, a (d, n)-spool is the graph obtained from n copies
of Kd+1,2d+2 such that, for every 1 ≤ i ≤ n, one vertex of degree d+ 1 of the i-th copy
is identified with one vertex of degree d+ 1 of the (i+ 1 mod n)-th copy, so that the
two chosen vertices in each copy are distinct. The exterior vertices of a copy are those
of degree d+ 1 that are not used to interface with another copy. The interior vertices
of a copy are those of degree 2d+ 2 that do not interface with another copy.

An illustration of a (2, 3)-spool is shown in Figure 14.

Figure 14: A (2, 3)-spool. Circled vertices are exterior vertices.

Observation 45. For fixed d ≥ 1 and every n ≥ 1, a (d, n)-spool is monochromatic.

Proof. Let S be a (d, n)-spool. If n = 1, the observation follows by combining the
two statements of Observation 43. Now let X, Y ( S be two copies of Kd+1,2d+2 that
share exactly one vertex v. By Observation 43, X ′ = X \ {v} and Y ′ = Y \ {v} are
monochromatic. Since v has d+1 neighbors in X ′ and d+1 in Y ′, it follows that X∪Y
is monochromatic. By repeating the same argument for every two copies of Kd+1,2d+2

that share exactly one vertex, the observation follows.

Chvátal [1984] proved that Matching Cut is NP-hard for graphs of maximum
degree at least four. In the next theorem, whose proof is inspired by the reduction
of Chvátal [1984], we prove the NP-hardness of d-cut for (2d + 2)-regular graphs.
In particular, for d = 1 it implies the NP-hardness of Matching Cut for 4-regular
graphs.
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Theorem 46. For every integer d ≥ 1, d-cut is NP-hard even when restricted to
(2d+ 2)-regular graphs.

Proof. Our reduction is from the 3-Uniform Hypergraph Bicoloring problem,
which is NP-hard; see Lovász [1973].

3-Uniform Hypergraph Bicoloring

Instance: A hypergraph H with exactly three vertices in each hyperedge.
Question: Can we 2-color V (H) such that no hyperedge is monochromatic?

Throughout this proof, i is an index representing a color, j and k are redundancy
indices used to increase the degree of some sets of vertices, and ` and r are indices used
to refer to separations of sets of exterior vertices.

Given an instance H of 3-Uniform Hypergraph Bicoloring, we proceed to
construct a (2d+2)-regular instance G of d-Cut as follows. For each vertex v ∈ V (H),
add a (d, 4deg(v) + 1)-spool to G. Each set of exterior vertices receives an (arbitrarily
chosen) unique label from the following types: S(v∗) and S(v, e, i, j), such that i, j ∈ [2]

and e ∈ E(H) with v ∈ e. Separate each of the labeled sets into two parts of equal
size (see Figure 14). For the first type, we denote the sets by S(v∗, i), i ∈ [2]; for
the second type, by S`(v, e, i, j), ` ∈ [2]. For each set S(v∗, i), we choose an arbitrary
vertex and label it with s(v∗, i). To conclude the construction of vertex gadgets, add
every edge between S1(v, e, i, j) and S2(v, e, i, j), and form a perfect matching between
S(v∗, 1)\{s(v∗, 1)} and S(v∗, 2)\{s(v∗, 2)}. Note that all inner vertices of a spool have
degree 2d + 2, every vertex labeled s(v∗, i) has d + 1 neighbors, every other vertex in
S(v∗, i) has d + 2, and every vertex in S(v, e, i, j) has degree equal to 2d + 1. For an
example of the edges between exterior vertices of the same vertex gadget, see Figure 15.

S1(v, e, i, 2) S2(v, e, i, 2)

s(v∗, 1) s(v∗, 2)

S(v∗, 1) S(v∗, 2)

Figure 15: Relationships between exterior vertices of a vertex gadget (d = 3).

For each color i ∈ [2], add a (d, n + 2m)-spool to G, where n = |V (H)| and
m = |E(H)|. Much like the exterior vertices of the vertex gadgets, we attribute unique
labels: C(v, i), for each v ∈ V (H), and C(e, i, j), for each e ∈ E(H) and j ∈ [2]. Now,
split the remaining vertices of each labeled set into two equal-sized parts C1(·), C2(·) and
label one vertex of each C`(e, i, j) with the label c`(e, i, j) and one of each C`(v, i) with
c`(v, i). To conclude, add all edges from c`(v, i) to C`(v, i), add the edge c`(v, i)c3−`(v, i),
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make each C`(e, i, j)\{c`(e, i, j)} into a clique, and, between C`(e, i, j)\{c`(e, i, j)} and
Cr(e, i, k) \ {cr(e, i, k)}, add edges to form a perfect matching, for `, j, r, k ∈ [2]. That
is, each C`(e, i, j) forms a perfect matching with three other sets of exterior vertices. So
far, each c`(v, i) has degree (d+ 1) + (d−1) + 1 = 2d+ 1, other vertices of C`(v, i) have
degree d+2, each vertex in C`(e, i, j)\{c`(e, i, j)} has degree (d+1)+(d−2)+3 = 2d+2,
and each vertex labeled c`(e, i, j) has degree d+ 1.

We now add edges between vertices of different color gadgets. In particular, we
add every edge between C1(v, 2)\{c1(v, 2)} and C2(v, 1)\{c2(v, 1)}. This increases the
degree of these vertices to 2d+ 1. An example when d = 3 is illustrated in Figure 16.

c1(e, i, 1)
c2(e, i, 1)

C1(e, i, 1) C2(e, i, 1)

c1(v, 1)
c2(v, 1)

C1(v, 1) C2(v, 1)

c1(e, i, 2)
c2(e, i, 2)

C1(e, i, 2) C2(e, i, 2)

c1(v, 2)
c2(v, 2)

C1(v, 2) C2(v, 2)

Figure 16: Relationships between exterior vertices of color gadgets (d = 3).

As a first step to connect color gadgets and vertex gadgets, we add every edge
between s(v∗, i) and Ci(v, i), every edge between S(v∗, i) \ {s(v∗, i)} and Ci(v, i) \
{ci(v, i)}, a perfect matching between S(v∗, i) \ {s(v∗, i)} and C3−i(v, i) \ {c3−i(v, i)},
and the edge s(v∗, i)ci(v, 3 − i). Note that this last edge is fundamental, not only
because it increases the degrees to the desired value, but also because, if both color
gadgets belong to the same side of the cut, every s(v∗, i) will have the same color
and, since spools are monochromatic, so would be the entire graph, as discussed in
more detail below. Also note that, aside from s(v∗, i), no other vertex has more than
d neighbors outside of its spool. The edges described in this paragraph increase the
degree of every s(v∗, i) by d + 1, yielding a total degree of 2d + 2, of every vertex in
S(v∗, i)\{s(v∗, i)} to (d+2)+(d−1)+1 = 2d+2, of every vertex in Ci(v, i)\{ci(v, i)} to
(d+2)+d = 2d+2, of every vertex in Ci(v, 3− i)\{ci(v, 3− i)} to (2d+1)+1 = 2d+2,
and of every c`(v, i) to (2d + 1) + 1 = 2d + 2. Figure 17 gives an example of these
connections.

For the final group of gadgets, namely hyperedge gadgets, for each {x, y, z} ∈
E(H), each color i, and each pair j, ` ∈ [2], we add one additional vertex c′`(e, i, j)
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c1(v, 1)
c2(v, 1)

C1(v, 1) C2(v, 1)

s(v∗, 1)
c1(v, 2)

S(v∗, 1) C1(v, 2)

Figure 17: Relationships between exterior vertices of color and vertex gadgets (d = 3).

adjacent to c`(e, i, j), S`(x, e, i, j), S`(y, e, i, j), and c′3−`(e, i, j); finally, we add every
edge between c`(e, i, j) and S`(z, e, i, j). See Figure 18 for an illustration. Note that
c′`(e, i, j) has degree 2d+ 2; the degree of c`(e, i, j) increased from d+ 1 to 2d+ 2, and
the degree of each vertex of S`(x, e, i, j) increased from 2d+1 to 2d+2. This concludes
our construction of the (2d+ 2)-regular graph G.

c1(e, i, j)
c′1(e, i, j)

S1(x, e, i, j) S1(y, e, i, j)

S1(z, e, i, j)

c2(e, i, j)
c′2(e, i, j)

S2(x, e, i, j) S2(y, e, i, j)

S2(z, e, i, j)

Figure 18: Hyperedge gadget (d = 3).

Now, suppose we are given a valid bicoloring ϕ of H, and our goal is to construct
a d-cut (A,B) of G. Put the gadget of color 1 in A and the other one in B. For
each vertex v ∈ V (H), if ϕ(v) = 1, put the gadget corresponding to v in A, otherwise
put it in B. In the interface between these gadgets, no vertex from the color gadgets
has more than d neighbors in a single vertex gadget, therefore none violates the d-cut
property. As to the vertices coming from the vertex gadgets, only s`(v∗, i) has more
than d neighbors outside of its gadget; however, it has d neighbors in the color gadget
for color i and only one in color 3 − i. Since each color gadget is in a different side
of the partition, s`(v∗, i) does not violate the degree constraint. For each hyperedge
e = {x, y, z}, put c′`(e, i, j) in the same set as the majority of its neighbors, this way,
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it will not violate the property – note that its other neighbor, c′3−`(e, i, j), will be in
the same set because it will have the exact same amount of vertices on each side of the
partition in its neighborhood. So, if ϕ(x) = ϕ(y) = 1, c′`(e, i, j) ∈ A; however, since
e is not monochromatic, ϕ(z) = 2, so c`(e, i, j) has at most d neighbors in the other
set. The case where ϕ(x) 6= ϕ(y) is similar. Thus, we conclude that (A,B) is indeed a
d-cut of G.

Conversely, take a d-cut (A,B) of G and construct a bicoloring of H such that
ϕ(v) = 1 if and only if the spool corresponding to v is in A. Suppose that this process
results in some hyperedge e = {x, y, z} ∈ E(H) begin monochromatic. That is, there is
some hyperedge gadget where S`(x, e, i, j), S`(y, e, i, j), and S`(z, e, i, j) are in A, which
implies that c′`(e, i, j) ∈ A and, consequently, that c`(e, i, j) ∈ A for every `, i, j ∈ [2].
However, since c`(e, 1, j) and c`(e, 2, j) are in A and a color gadget is monochromatic,
both color gadgets belong to A, which in turn implies that every s(v∗, i) has d + 1

neighbors in A and, therefore, must also be in A by Observation 43. Moreover, since
spools are monochromatic, every vertex gadget is in A, implying that the entire graph
belongs to A, contradicting the hypothesis that (A,B) is a d-cut of G.

The graphs constructed by the above reduction are neither planar nor bipartite,
but they are regular, a result that we were unable to find in the literature for Match-

ing Cut. Note that every planar graph has a d-cut for every d ≥ 5, so only the
cases d ∈ {2, 3, 4} remain open, as the case d = 1 is known to be NP-hard Bonsma
[2009]. Concerning graphs of bounded diameter, Le and Le Le and Le [2016] prove
the NP-hardness of Matching Cut for graphs of diameter at least three by reducing
Matching Cut to itself. It can be easily seen that the same construction given by
Le and Le Le and Le [2016], but reducing d-Cut to itself, also proves the NP-hardness
of d-Cut for every d ≥ 1.

Corollary 47. For every integer d ≥ 1, d-Cut is NP-hard for graphs of diameter at
least three.

We leave as an open problem to determine whether there exists a polynomial-time
algorithm for d-Cut for graphs of diameter at most two for every d ≥ 2, as it is the
case for d = 1 Le and Le [2016].

3.2.2 Polynomial algorithm for graphs of bounded degree

Our next result is a natural generalization of Chvátal’s algorithm Chvátal [1984] for
Matching Cut on graphs of maximum degree three.



3.2. NP-hardness, polynomial cases, and exact exponential algorithm61

Theorem 48. For any graph G and integer d ≥ 1 such that ∆(G) ≤ d + 2, it can be
decided in polynomial time if G has a d-cut. Moreover, for d = 1 any graph G with
∆(G) ≤ 3 and |V (G)| ≥ 8 has a matching cut, for d = 2 any graph G with ∆(G) ≤ 4

and |V (G)| ≥ 6 has a 2-cut, and for d ≥ 3 any graph G with ∆(G) ≤ d+2 has a d-cut.

Proof. We may assume that G is connected, as otherwise it always admits a d-cut. If
G is a tree, any edge is a cut edge and, consequently, a d-cut is easily found. So let C
be a shortest cycle of G. If d = 1 we use Chvátal’s result [Chvátal, 1984] together with
the size bound of eight observed by Moshi [1989]; hence, we may assume that d ≥ 2.
In the case that V (G) = C, we may pick any vertex v and note that ({v}, C \ {v}) is
a d-cut.

Suppose first that |C| = 3 and d = 2. If (C, V (G) \ C) is a 2-cut, we are
done. Otherwise, there is some vertex v /∈ C with three neighbors in C (since by the
hypothesis on ∆(G), every vertex in C has at most two neighbors in G − C) and,
consequently, Q := C ∪ {v} induces a K4. If V (G) = Q, we can arbitrarily partition
Q into two sets with two vertices each and get a 2-cut of G. Also, if no other u /∈ Q
has three neighbors in Q, (Q, V (G) \ Q) is a 2-cut of G. If there is such a vertex u,
let R := Q ∪ {u}. If V (G) = R, then clearly G has no 2-cut. Note that |Q| = 5, and
this will be the only case in the proof where G does not have a d-cut. Otherwise, if
V (G) 6= R, (R, V (G) \ R) is a 2-cut, because no vertex outside of R can be adjacent
to more than two vertices in R, and we are done.

If |C| = 3 and d ≥ 3, then clearly (C, V (G) \C) is a d-cut, and we are also done.
Otherwise, that is, if |C| ≥ 4, we claim that (C, V (G) \ C) is always a d-cut.

For v ∈ C, note that deg(v) ≤ d + 2, hence v has at most d neighbors in G − C. For
v ∈ V (G) \ C, if |C| ≥ 5, necessarily degC(v) ≤ 1, as otherwise we would find a cycle
in G shorter than C, and therefore (C, V (G) \C) is a d-cut. By a similar argument, if
|C| = 4, then degC(v) ≤ 2, and the theorem follows as we assume that d ≥ 2.

Theorems 46 and 48 settle the complexity of d-Cut for a wide range of graphs,
based on the maximum degree. Specifically, for ∆(G) ∈ {d + 3, . . . , 2d + 1}, the
complexity of the problem remains unknown. However, we believe that most, if not all,
of these open cases can be solved in polynomial time; see the discussion in Section 3.5.

3.2.3 Exact exponential algorithm

To conclude this subsection, we present a simple exact exponential algorithm which,
for every d ≥ 1, runs in time O∗(cnd) for some constant cd < 2. For the case d = 1, the
currently known algorithms Kratsch and Le [2016]; Komusiewicz et al. [2018] exploit
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structures that appear to get out of control when d increases, and so has a better
running time than the one described below.

When an instance of size n branches into t subproblems such that the i-th
subproblem has size at most n − si, the vector (s1, . . . , st) is called the branch-
ing vector of the branching rule, and the unique positive real root of the equation
xn −

∑
i∈[t] x

n−si = 0 is called the branching factor of the rule. The total complexity
of a branching algorithm is given by O∗(αn), where α is the largest branching factor
among all rules of the algorithm. For more on branching algorithms, we refer to Fomin
and Kratsch [2010].

Theorem 49. For every fixed integer d ≥ 1 and n-vertex graph G, there is an algorithm
that solves d-Cut in time O∗(cnd), for some constant 1 < cd < 2.

Proof. Our algorithm takes as input G and outputs a d-cut (A,B) of G, if it exists.
To do so, we build a branching algorithm that maintains, at every step, a tripartition
of V (G) = A∪̇B∪̇D such that (A,B) is a d-cut of G \D. The central idea of our rules
is to branch on small sets of vertices (namely, of size at most d+ 1) at each step such
that either at least one bipartition of the set forces some other vertex to choose a side
of the cut, or we can conclude that there is at least one bipartition that violates the
d-cut property. First, we present our reduction rules, which are applied following this
order at the beginning of each recursive step.

R1 If (A,B) violates the d-cut property, output NO.

R2 If D = ∅, we have a d-cut of G. Output (A,B).

R3 If there is some v ∈ D with degA(v) ≥ d+ 1 and degB(v) ≥ d+ 1, output NO.

R4 While there is some v ∈ D with degA(v) ≥ d+ 1 (resp. degB(v) ≥ d+ 1), add v
to A (resp. B).

Our branching rules, and their respective branching vectors, are listed below.

B1 If there is some v ∈ A∪B with degD(v) ≥ d+ 1, choose a set X ⊆ ND(v) of size
d and branch on all possible bipartitions of X. Note that, if all vertices of X are
in the other side of v, at least one vertex of ND(v) \X must be in the same side
as v. As such, this branching vector is of the form {d+ 1} × {d}2d−1.

B2 If there is some v ∈ A (resp. B) such that degB(v) + degD(v) ≥ d + 1 (resp.
degA(v) + degD(v) ≥ d+ 1), choose a set X ⊆ ND(v) of size s = d+ 1− degB(v)

(resp. s = d + 1 − degA(v)) and branch on every possible bipartition of X.
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Since rule B1 was not applied, we have that degD(v) ≤ d, degB(v) ≥ 1 (resp.
degA(v) ≥ 1), and s ≤ d. If all vertices of X were placed in B (resp. A), we
would violate the d-cut property and, thus, do not need to investigate this branch
of the search. In the worst case, namely when s = d, this yields the branching
vector {d}2d−1.

We now claim that, if none of the above rules is applicable, we have that (A∪D,B)

is a d-cut of G. To see that this is the case, suppose that there is some vertex v ∈ V (G)

that violates the d-cut property; that is, it has a set Y of d + 1 neighbors across the
cut.

Suppose that v ∈ B. Then Y ⊆ A ∪D, so we have degA(v) + degD(v) ≥ d + 1,
in which case rule B2 could be applied, a contradiction. Thus, we have that v /∈ B, so
Y ⊆ B and either v ∈ A or v ∈ D; in the former case, again by rule R1, (A,B) would
not be a d-cut. In the latter case, we would have that degB(v) ≥ d + 1, but then rule
R4 would still be applicable. Consequently, v /∈ A ∪ B ∪D = V (G), so such a vertex
does not exist, and thus we have that (A∪D,B) is a d-cut of G. Note that a symmetric
argument holds for the bipartition (A,B ∪D). Before executing the above branching
algorithm, we need to ensure that A 6= ∅ and B 6= ∅. To do that, for each possible pair
of vertices u, v ∈ V (G), we execute the entire algorithm starting with A := {u} and
B := {v}.

As to the running time of the algorithm, for rule B2 we have that the unique
positive real root of xn − (2d − 1)xn−d = 0 is of the closed form x = d

√
2d − 1 < 2. For

rule B1, we have that the polynomial associated with the recurrence relation, pd(x) =

xn − (2d − 1)xn−d − xn−d−1, verifies pd(1) = 1− 2d < 0 and pd(2) = 2n−d−1 > 0. Since
it is a continuous function and pd(x) has a unique positive real root cd, it holds that
1 < cd < 2. The final complexity of our algorithm is O∗(cnd), with d

√
2d − 1 < cd < 2,

since pd
(

d
√

2d − 1
)

= −(2d − 1)
n−d−1

d < 0.

Table 5 presents the branching factors for some values of d for our two branching
rules.

d 1 2 3 4 5 6 7
B1 1.6180 1.8793 1.9583 1.9843 1.9937 1.9973 1.9988
B2 1.0000 1.7320 1.9129 1.9679 1.9873 1.9947 1.9977

Table 5: Branching factors for some values of d.
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3.3 Parameterized algorithms and kernelization

In this section we focus on the parameterized complexity of d-Cut. More precisely, in
Subsection 3.3.1 we consider as the parameter the number of edges crossing the cut,
in Subsection 3.3.2 the treewidth of the input graph, in Subsection 3.3.3 the distance
to cluster (in particular, we provide a quadratic kernel), and in Subsection 3.3.4 the
distance to co-cluster.

3.3.1 Crossing edges

In this subsection we consider as the parameter the maximum number of edges crossing
the cut. In a nutshell, our approach is to use as a black box one of the algorithms
presented by Marx et al. [2010] for a class of separation problems. Their fundamental
problem is G-MinCut, for a fixed class of graphs G, which we state formally, along
with their main result, below.

G-MinCut

Instance: A graph G, vertices s, t, and an integer k.
Parameter: The integer k.
Question: Is there an induced subgraph H of G with at most k vertices such
that H ∈ G and H is an s− t separator?

Theorem 50 (Theorem 3.1 in Marx et al. [2010]). If G is a decidable and hereditary
graph class, G-MinCut is FPT.

To be able to apply Theorem 50, we first need to specify a graph class to which,
on the line graph, our separators correspond. We must also be careful to guarantee
that the removal of a separator in the line graph leaves non-empty components in the
input graph. To accomplish that, for each v ∈ V (G), we add a private clique of size 2d

adjacent only to it, choose one arbitrary vertex v′ in each of them, and our algorithm
will ask for the existence of a “special” separator of the appropriate size between every
pair of chosen vertices of two distinct private cliques. We assume henceforth that these
private cliques have been added to the input graph G.

For each integer d ≥ 1, we define the graph class Gd as follows.

Definition 51. A graph H belongs to Gd if and only if its maximum clique size is at
most d.

Note that Gd is clearly decidable and hereditary for every integer d ≥ 1.
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Lemma 52. G has a d-cut if and only if L(G) has a vertex separator belonging to Gd.

Proof. Let H = L(G), (A,B) be a d-cut of G, and F ⊆ V (H) be the set of vertices
such that euv ∈ F if and only if u ∈ A and v ∈ B, or vice-versa. The fact that F is
a separator of H follows directly from the hypothesis that (A,B) is a cut of G. Now,
to show that H[F ] ∈ Gd, suppose for contradiction that H[F ] contains a clique Q with
more than d vertices. That is, there are at least d + 1 edges of G that are pairwise
intersecting and with one endpoint in A and the other in B. Note, however, that for at
least one of the parts, say A, there is also at most one vertex with an edge in Q ⊆ E(G),
as otherwise there would be two non-adjacent vertices in the clique Q ⊆ V (H). As
such, A has only one vertex and we conclude that every edge in Q has an endpoint in
A, but this, on the other hand, implies that A has d+ 1 neighbors in B, contradicting
the hypothesis that (A,B) is a d-cut of G.

For the converse, take a vertex separator S ⊆ V (H) such that H[S] ∈ Gd and
let ES be the edges of G corresponding to S. Let G′ be the graph where each vertex
corresponds to a connected component of G−ES and two vertices are adjacent if and
only if there is an edge in ES between vertices of the respective components. Let Qr

be an arbitrarily chosen connected component of G − ES. Now, for each component
at an odd distance from Qr in G′, add that component to B; all other components are
placed in A. We claim that (A,B) is a d-cut of G. Let F ⊆ ES be the set of edges
with one endpoint in A and the other in B. Note that G − F is disconnected due to
the construction of A and B. If there is some v ∈ A with more than d neighbors in B,
we obtain that there is some clique of equal size in H[S], contradicting the hypothesis
that this subgraph belongs to Gd.

Theorem 53. For every d ≥ 1, there is an FPT algorithm for d-Cut parameterized
by k, the maximum number of edges crossing the cut.

Proof. For each pair of vertices s, t ∈ V (G) that do not belong to the private cliques,
our goal is to find a subset of vertices S ⊆ V (L(G)) of size at most k that separates
s and t such that L(G)[S] ∈ Gd. This is precisely what is provided by Theorem 50,
and the correctness of this approach is guaranteed by Lemma 52. Since we perform a
quadratic number of calls to the algorithm given by Theorem 50, our algorithm still
runs in FPT time.

As to the running time of the FPT algorithm given by Theorem 53, the treewidth
reduction technique of Marx et al. [2010] relies on the construction of a monadic second
order logic (MSOL) expression and Courcelle’s Theorem Courcelle [1990] to guarantee
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fixed-parameter tractability, and therefore it is hard to provide an explicit running time
in terms of k.

3.3.2 Treewidth

We proceed to present an algorithm for d-Cut parameterized by the treewidth of the
input graph that, in particular, improves the running time of the best known algorithm
for Matching Cut Aravind et al. [2017]. For the definitions of treewidth we refer
to Robertson and Seymour [1986]; Cygan et al. [2015b]. We state here an adapted
definition of nice tree decomposition which shall be useful in our algorithm.

Definition 54. (Nice tree decomposition) A tree decomposition (T,B) of a graph G
is said to be nice if it T is a tree rooted at an empty bag r(T ) and each of its bags is
from one of the following four types:

1. Leaf node: a leaf x of T with |Bx| = 2 and no children.

2. Introduce node: an inner node x of T with one child y such that Bx \ By = {u},
for some u ∈ V (G).

3. Forget node: an inner node x of T with one child y such that By \Bx = {u}, for
some u ∈ V (G).

4. Join node: an inner node x of T with two children y, z such that Bx = By = Bz.

In the next theorem, note that the assumption that the given tree decomposition
is nice is not restrictive, as any tree decomposition can be transformed into a nice one
of the same width in polynomial time Kloks [1994].

Theorem 55. For every integer d ≥ 1, given a nice tree decomposition of G of width
tw(G), d-Cut can be solved in time O∗

(
2tw(G)+1(d+ 1)2tw(G)+2

)
.

Proof. As expected, we will perform dynamic programming on a nice tree decomposi-
tion. For this proof, we denote a d-cut of G by (L,R) and suppose that we are given a
total ordering of the vertices of G. Let (T,B) be a nice tree decomposition of G rooted
at a node r ∈ V (T ). For a given node x ∈ T , an entry of our table is indexed by a triple
(A,α, t), where A ⊆ Bx, α ∈ ({0} ∪ [d])tw(G)+1, and t is a binary value. Each coordi-
nate ai of α indicates how many vertices outside of Bx the i-th vertex of Bx has in the
other side of the partition. More precisely, we denote by fx(A,α, t) the binary value
indicating whether or not V (Gx) has a bipartition (Lx, Rx) such that Lx ∩ Bx = A,
every vertex vi ∈ Bx has exactly ai neighbors in the other side of the partition (Lx, Rx)
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outside of Bx, and both Lx and Rx are non-empty if and only if t = 1. Note that G
admits a d-cut if and only if fr(∅,0, 1) = 1. Figure 19 gives an example of an entry in
the dynamic programming table and the corresponding solution on the subtree.

Vx 0

2

1

Figure 19: Example of dynamic programming state and corresponding solution on the
subtree. Square vertices belong to A, circles to B. Numbers indicate the respective
value of αi (d = 3).

We say that an entry (A,α, t) for a node x is valid if for every vi ∈ A, |N(vi) ∩
(Bx \ A)| + ai ≤ d, for every vj ∈ Bx \ A, |N(vi) ∩ A| + aj ≤ d, and if Bx \ A 6= ∅
then t = 1; otherwise the entry is invalid. Moreover, note that if fx(A,α, t) = 1, the
corresponding bipartition (Lx, Rx) of V (Gx) is a d-cut if and only if (A,α, t) is valid
and t = 1.

We now explain how the entries for a node x can be computed, assuming recur-
sively that the entries for their children have been already computed. We distinguish
the four possible types of nodes. Whenever (A,α, t) is invalid or absurd (with, for
example, ai < 0) we define fx(A,α, t) to be 0, and for simplicity we will not specify
this in the equations stated below.

• Leaf node: Since |Bx| = 2, for every A ⊆ Bx, we can set fx(A,0, t) = 1 with
t = 1 if and only if Bx \A 6= ∅. These are all the possible partitions of Bx, taking
O(1) time to be computed.

• Introduce node: Let y be the child of x and Bx \ By = {vi}. The transition is
given by the following equation, where α∗ has entries equal to α but without the
coordinate corresponding to vi. If ai > 0, fx(A,α, t) is invalid since vi has no
neighbors in Gx −Bx.

fx(A,α, t) =

{
fy(A \ {v},α∗, t), if A = Bx or A = ∅.
maxt′∈{0,1} fy(A \ {v},α∗, t′), otherwise.

For the first case, Gx has a bipartition (which will also be a d-cut if t = 1)
represented by (A,α, t) only if Gy has a bipartition (d-cut), precisely because,
in both Gx and Gy, the entire bag is in one side of the cut. For the latter case,
if Gy has a bipartition, regardless if it is a d-cut or not, Gx has a d-cut because
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Bx is not contained in a single part of the cut, unless the entry is invalid. The
computation for each of these nodes takes O(1) time per entry.

• Forget node: Let y be the child of x and By \Bx = {vi}. In the next equation, α′

has the same entries as α with the addition of entry ai corresponding to vi and, for
each vj ∈ A∩N(vi), a′j = aj−1. Similarly, for α′′, for each vj ∈ (Bx \A)∩N(vi),
a′′j = aj − 1.

fx(A,α, t) = max
ai∈{0}∪[d]

max{fy(A,α′, t), fy(A ∪ {vi},α′′, t)}.

Note that α′ and α′′ take into account the forgetting of vi; its neighbors get
an additional neighbor outside of Bx that is in the other side of the bipartition.
Moreover, since we inspect the entries of y for every possible value of ai, if at least
one of them represented a feasible bipartition of Gy, the corresponding entry on
fy(·) would be non-zero and, consequently, fx(A,α, t) would also be non-zero.
Computing an entry for a forget node takes O(d) time.

• Join node: Finally, for a join node x with children y and z, a splitting of α is a
pair αy,αz such that for every coordinate aj of α, it holds that the sum of j-th
coordinates of αy and αz is equal to aj. The set of all splittings is denoted by
S(α) and has size O

(
(d+ 1)tw(G)+1

)
. As such, we define our transition function

as follows.

fx(A,α, t) = max
t≤ty+tz≤2t

max
S(α)

fy(A,αy, ty) · fz(A,αz, tz).

The condition t ≤ ty + tz ≤ 2t enforces that, if t = 1, at least one of the graphs
Gy, Gz must have a d-cut; otherwise, if t = 0, neither of them can. When iterating
over all splittings of α, we are essentially testing all possible counts of neighbors
outside of By such that there exists some entry for node z such that αy+αz = α.
Finally, fx(A,α, t) is feasible if there is at least one splitting and ty, tz such that
both Gy and Gz admit a bipartition. This node type, which is the bottleneck of
our dynamic programming approach, takes O

(
(d+ 1)tw(G)+1

)
time per entry.

Consequently, since we have O(tw(G)) · n nodes in a nice tree decomposition,
spend O(tw(G)2) to detect an invalid entry, have O

(
2tw(G)+1(d+ 1)tw(G)+1

)
entries per

node, each taking at most O
(
(d+ 1)tw(G)+1

)
time to be computed, our algorithm runs

in time O
(
tw(G)32tw(G)+1(d+ 1)2tw(G)+2 · n

)
, as claimed.
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From Theorem 55 we immediately get the following corollary, which improves
over the algorithm given by Aravind et al. [2017].

Corollary 56. Given a nice tree decomposition of G of width tw(G), Matching Cut

can be solved in time O∗
(
8tw(G)

)
.

3.3.3 Kernelization and distance to cluster

The proof of the following theorem consists of a simple generalization to every d ≥ 1

of the construction given by Komusiewicz et al. [2018] for d = 1.

Theorem 57. For any fixed d ≥ 1, d-Cut does not admit a polynomial kernel when
simultaneously parameterized by the number of crossing edges k, the maximum degree
∆, and treewidth tw(G), unless NP ⊆ coNP/poly.

Proof. We show that the problem cross-composes into itself. Start with t instances
G1, . . . , Gt of d-Cut. First, pick an arbitrary vertex vi ∈ V (Gi), for each i ∈ [t].
Second, for i ∈ [t− 1], add a copy of K2d, call it K(i), every edge between vi and K(i),
and every edge between K(i) and vi+1. This concludes the construction of G, which
for d = 1 coincides with that presented by Komusiewicz et al. [2018].

Suppose that (A,B) is a d-cut of some Gi and that vi ∈ A. Note that (G\B,B) is
a d-cut ofG since the only edges in the cut are those between A and B. For the converse,
take some d-cut (A,B) of G and note that every vertex in the set {vt}

⋃
i∈[t−1]{vi}∪K(i)

is contained in the same side of the partition, say A. Since B 6= ∅, for any edge uv
crossing the cut, there is some i such that {u, v} ∈ V (Gi), which implies that there is
some i (possibly more than one) such that (A∩V (Gi), B∩V (Gi)) must also be a d-cut
of Gi.

That the treewidth, maximum degree, and number of edges crossing the partition
are bounded by n, the maximum number of vertices of the graphs Gi, is a trivial
observation.

We now proceed to show that d-Cut admits a polynomial kernel when parame-
terizing by the distance to cluster parameter, denoted by dc. A cluster graph is a graph
such that every connected component is a clique; the distance to cluster of a graph G
is the minimum number of vertices we must remove to obtain a cluster graph. Our
results are heavily inspired by the work of Komusiewicz et al. [2018]. Indeed, most of
our reduction rules are natural generalizations of theirs. However, we need some extra
observations and rules that only apply for d ≥ 2, such as Rule 8.
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We denote by U = {U1, . . . , Ut} a set of vertices such that G − U is a cluster
graph, and each Ui is called a monochromatic part or monochromatic set of U , and we
will maintain the invariant that these sets are indeed monochromatic. Initially, we set
each Ui as a singleton. In order to simplify the analysis of our instance, for each Ui of
size at least two, we will have a private clique of size 2d adjacent to every vertex of Ui,
which we call Xi. The merge operation between Ui and Uj is the following modification:
delete Xi∪Xj, set Ui as Ui∪Uj, Uj as empty, and add a new clique of size 2d, the new
Xi, which is adjacent to every element of the new Ui. We say that an operation is safe
if the resulting instance is a YES instance if and only if the original instance was.

Observation 58. If Ui ∪ Uj is monochromatic, merging Ui and Uj is safe.

It is worth mentioning that the second case of the following rule is not needed
in the corresponding rule in Komusiewicz et al. [2018]; we need it here to prove the
safeness of Rules 7 and 8.

Reduction Rule 1. Suppose that G− U has some cluster C such that

1. (C, V (G) \ C) is a d-cut, or

2. |C| ≤ 2d and there is C ′ ⊆ C such that (C ′, G \ C ′) is a d-cut.

Then output YES.

After applying Rule 1, for every cluster C, C has some vertex with at least d+ 1

neighbors in U , or there is some vertex of U with d+ 1 neighbors in C. Moreover, note
that no cluster C with at least 2d + 1 vertices can be partitioned in such a way that
one side of the cut is composed only by a proper subset of vertices of C.

The following definition is a natural generalization of the definition of the set
N2 given by Komusiewicz et al. [2018]. Essentially, it enumerates some of the cases
where a vertex, or set of vertices, is monochromatic, based on its relationship with U .
However, there is a crucial difference that keeps us from achieving equivalent bounds
both in terms of running time and size of the kernel, and which makes the analysis and
some of the rules more complicated than in [Komusiewicz et al., 2018]. Namely, for a
vertex to be forced into a particular side of the cut, it must have at least d+1 neighbors
in that side; moreover, a vertex of U being adjacent to 2d vertices of a cluster C implies
that C is monochromatic. Only if d = 1, i.e., when we are dealing with matching cuts,
the equality d + 1 = 2d holds. This gap between d + 1 and 2d is the main difference
between our kernelization algorithm for general d and the one shown in [Komusiewicz
et al., 2018] for Matching Cut, and the main source of the differing complexities we
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obtain. In particular, for d = 1 the fourth case of the following definition is a particular
case of the third one, but this is not true anymore for d ≥ 2. For an example of what
the set induced by Definition 59 looks like, please refer to Figure 20.

Definition 59. For a monochromatic part Ui ⊆ U , let N2d(Ui) be the set of vertices
v ∈ V (G) \ U for which at least one of the following holds:

1. v has at least d+ 1 neighbors in Ui.

2. v is in a cluster C of size at least 2d+ 1 in G−U such that there is some vertex
of C with at least d+ 1 neighbors in Ui.

3. v is in a cluster C of G− U and some vertex in Ui has 2d neighbors in C.

4. v is in a cluster C of G−U of size at least 2d+ 1 and some vertex in Ui has d+ 1

neighbors in C.

Ui

Figure 20: The four cases that define membership in N2d(Ui) for d = 2.

Observation 60. For every monochromatic part Ui, Ui ∪N2d(Ui) is monochromatic.

The next rules aim to increase the size of monochromatic sets. In particular,
Rule 2 translates the transitivity of the monochromatic property, while Rule 3 identifies
a case where merging the monochromatic sets is inevitable.

Reduction Rule 2. If N2d(Ui) ∩N2d(Uj) 6= ∅, merge Ui and Uj.

Reduction Rule 3. If there is a set of 2d + 1 vertices L ⊆ V (G) with two common
neighbors u, u′ such that u ∈ Ui and u′ ∈ Uj, merge Ui and Uj.

Proof of safeness of Rule 3. Suppose that in some d-cut (A,B), u ∈ A and u′ ∈ B,
this implies that at most d elements of L are in A and at most d are in B, which is
impossible since |L| = 2d+ 1.
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We say that a cluster is small if it has at most 2d vertices, and big otherwise.
Moreover, a vertex in a cluster is ambiguous if it has neighbors in more than one Ui. A
cluster is ambiguous if it has an ambiguous vertex, and fixed if it is contained in some
N2d(Ui).

Observation 61. If G is reduced by Rule 1, every big cluster is ambiguous or fixed.

Proof. Since Rule 1 cannot be applied, every cluster C has either one vertex v with at
least d+ 1 neighbors in U or there is some vertex of a set Ui with d+ 1 neighbors in C.
In the latter case, by applying the fourth case in the definition of N2d(Ui), we conclude
that C is fixed. In the former case, either v has d + 1 neighbors in the same Ui, in
which case C is fixed, or its neighborhood is spread across multiple monochromatic
sets, and so v and, consequently, C are ambiguous.

Our next goal is to bound the number of vertices outside of U .

Reduction Rule 4. If there are two clusters C1, C2 contained in some N2d(Ui), then
add every edge between C1 and C2.

Proof of safeness of Rule 4. It follows directly from the fact that C1 ∪ C2 is a larger
cluster, C1∪C2 ⊆ N2d(Ui), and that adding edges between vertices of a monochromatic
set preserves the existence of a d-cut.

The next lemma follows from the pigeonhole principle and exhaustive application
of Rule 4.

Lemma 62. If G has been reduced by Rules 1 through 4, then G has O(|U |) fixed
clusters.

Reduction Rule 5. If there is some cluster C with at least 2d+ 2 vertices such that
there is some v ∈ C with no neighbors in U , remove v from G.

Proof of safeness of Rule 5. That G has a d-cut if and only if G−v has a d-cut follows
directly from the hypothesis that C is monochromatic in G and the fact that |C\{v}| ≥
2d+ 1 implies that C \ {v} is monochromatic in G− v.

By Rule 5, we now have the additional property that, if C has more than 2d+ 1

vertices, all of them have at least one neighbor in U . The next rule provides a uniform
structure between a big cluster C and the sets Ui such that C ⊆ N2d(Ui).

Reduction Rule 6. If a cluster C has at least 2d+1 elements and there is some Ui such
that C ⊆ N2d(Ui), remove all edges between C and Ui, choose u ∈ Ui, {v1, . . . , vd+1} ⊆
C and add the edges {uvi}i∈[d+1] to G.
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Proof of safeness of Rule 6. Let G′ be the graph obtained after the operation is ap-
plied. If G has some d-cut (A,B), since Ui ∪ N2d(Ui) is monochromatic, no edge
between Ui and C crosses the cut, so (A,B) is also a d-cut of G′. For the converse,
take a d-cut (A′, B′) of G′. Since C has at least 2d+1 vertices and there is some u ∈ Ui
such that |N(u) ∩ C| = d + 1, C ∈ N2d(Ui) in G′. Therefore, no edge between C and
Ui crosses the cut and (A′, B′) is also a d-cut of G.

We have now effectively bounded the number of vertices in big clusters by a
polynomial in U , as shown below.

Lemma 63. If G has been reduced by Rules 1 through 6, then G has O(d|U |2) ambigu-
ous vertices and O(d|U |2) big clusters, each with O(d|U |) vertices.

Proof. To show the bound on the number of ambiguous vertices, take any two vertices
u ∈ Ui, u′ ∈ Uj. Since we have

(|U |
2

)
such pairs, if we had at least (2d+1)

(|U |
2

)
ambiguous

vertices, by the pigeonhole principle, there would certainly be 2d+ 1 vertices in V \ U
that are adjacent to one pair, say u and u′. This, however, contradicts the hypothesis
that Rule 3 has been applied, and so we have O(d|U |2) ambiguous vertices.

The above discussion, along with Lemma 62 and Observation 61, implies that the
number of big clusters is O(d|U |2). For the bound on their sizes, take some cluster C
with at least 2d + 2 vertices. Due to the application of Rule 5, every vertex of C has
at least one neighbor in U . Moreover, there is at most one Ui such that C ⊆ N2d(Ui),
otherwise we would be able to apply Rule 2.

Suppose first that there is such a set Ui. By Rule 6, there is only one u ∈ Ui that
has neighbors in C; in particular, it has d+ 1 neighbors. Now, every v ∈ Uj, for every
j 6= i, has at most d neighbors in C, otherwise C ⊆ N2d(Uj) and Rule 2 would have
been applied. Therefore, we conclude that C has at most (d+1)+

∑
v∈U\Ui

|N(v)∩C| ≤
(d+ 1) + d|U | ∈ O(d|U |) vertices.

Finally, suppose that there is no Ui such that C ⊆ N2d(Ui). A similar analysis
from the previous case can be performed: every u ∈ Ui has at most d neighbors in C,
otherwise C ⊆ N2d(Ui) and we conclude that C has at most

∑
u∈U |N(u)∩C| ≤ d|U | ∈

O(d|U |) vertices.

We are now left only with an unbounded number of small clusters. A cluster C
is simple if it is not ambiguous, that is, if for each v ∈ C, v has neighbors in a single
Ui. Otherwise, C is ambiguous and, because of Lemma 63, there are at most O(d|U |2)

such clusters. As such, for a simple cluster C and a vertex v ∈ C, we denote by U(v)

the monochromatic set of U to which v is adjacent.
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Reduction Rule 7. If C is a simple cluster with at most d + 1 vertices, remove C
from G.

Proof of safeness of Rule 7. Let G′ = G− C. Suppose G has a d-cut (A,B) and note
that A * C and B * C since Rule 1 does not apply. This implies that (A \ C,B \ C)

is a valid d-cut of G′. For the converse, take a d-cut (A′, B′) of G′, define CA = {v ∈
C | U(v) ⊆ A}, and define CB similarly; we claim that (A′ ∪ CA, B′ ∪ CB) is a d-cut
of G. To see that this is the case, note that each vertex of CA (resp. CB) has at most
d edges to CB (resp. CA) and, since C is simple, CA (resp. CB) has no other edges to
B′ (resp. A′).

After applying the previous rule, every cluster C not yet analyzed has size d+2 ≤
|C| ≤ 2d which, in the case of the Matching Cut problem, where d = 1, is empty.
To deal with these clusters, given a d-cut (A,B), we say that a vertex v is in its
natural assignment if v ∪ U(v) is in the same side of the cut; otherwise the vertex is
in its unnatural assignment. Similarly, a cluster is unnaturally assigned if it has an
unnaturally assigned vertex, otherwise it is naturally assigned.

Observation 64. Let C be the set of all simple clusters with at least d + 2 and no
more than 2d vertices, and (A,B) a partition of V (G). If there are d|U |+ 1 edges uv,
v ∈ C ∈ C and u ∈ U , such that uv is crossing the partition, then (A,B) is not a d-cut.

Proof. Since there are d|U | + 1 edges crossing the partition between C and U , there
must be at least one u ∈ U with d+ 1 neighbors in the other set of the partition.

Corollary 65. In any d-cut of G, there are at most d|U | unnaturally assigned vertices.

Our next lemma limits how many clusters in C relate in a similar way to U ; we say
that two simple clusters C1, C2 have the same pattern if they have the same size s and
there is a total ordering of C1 and another of C2 such that, for every i ∈ [s], v1

i ∈ C1

and v2
i ∈ C2 satisfy U(v1

i ) = U(v2
i ). Essentially, clusters that have the same pattern

have neighbors in exactly the same monochromatic sets of U and the same multiplicity
in terms of how many of their vertices are adjacent to a same monochromatic set Ui.
Note that the actual neighborhoods in the sets Ui’s do not matter in order for two
clusters to have the same pattern. Figure 21 gives an example of a maximal set of
unnaturally assigned clusters; that is, any other cluster with the same pattern as the
one presented must be naturally assigned, otherwise some vertex of U will violate the
d-cut property.
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U2

U1

Figure 21: Example of a maximal set of unassigned clusters. Square vertices would be
assigned to A, circles to B (d = 4).

Lemma 66. Let C∗ ⊆ C be a subfamily of simple clusters, all with the same pattern,
with |C∗| > d|U | + 1. Let C be some cluster of C∗, and G′ = G − C. Then G has a
d-cut if and only if G′ has a d-cut.

Proof. Since by Rule 1 no subset of a small cluster is alone in a side of a partition and,
consequently, U intersects both sides of the partition, if G has a d-cut, so does G′.

For the converse, let (A′, B′) be a d-cut of G′. First, by Corollary 65, we know
that at least one of the clusters of C∗ \ {C}, say Cn, is naturally assigned. Since all
the clusters in C∗ have the same pattern, this guarantees that any of the vertices of a
naturally assigned cluster cannot have more than d neighbors in the other side of the
partition.

Let (A,B) be the bipartition of V (G) obtained from (A′, B′) such that u ∈ C

is in A (resp. B) if and only if U(u) ⊆ A (resp. U(u) ⊆ B); that is, C is naturally
assigned. Define CA = C ∩ A and CB = C ∩ B. Because |C| = |Cn| and both belong
to C∗, we know that for every u ∈ CA, it holds that |N(u) ∩ CB| ≤ d; moreover, note
that N(u) ∩ (B \ C) = ∅. A symmetric analysis applies to every u ∈ CB. This implies
that no vertex of C has additional neighbors in the other side of the partition outside
of its own cluster and, therefore, (A,B) is a d-cut of G.

The safeness of our last rule follows directly from Lemma 66.

Reduction Rule 8. If there is some pattern such that the number of simple clusters
with that pattern is at least d|U |+ 2, delete all but d|U |+ 1 of them.
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Lemma 67. After exhaustive application of Rules 1 through 8, G has O
(
d|U |2d

)
small

clusters and O
(
d2|U |2d+1

)
vertices in these clusters.

Proof. By Rule 7, no small cluster with less than d + 2 vertices remains in G. Now,
for the remaining sizes, for each d+ 2 ≤ s ≤ 2d, and each pattern of size s, by Rule 8
we know that the number of clusters with s vertices that have the same pattern is at
most d|U | + 1. Since we have at most |U | possibilities for each of the s vertices of a
cluster, we end up with O(|U |s) possible patterns for clusters of size s. Summing all
of them up, we get that we have O

(
|U |2d

)
patterns in total, and since each one has at

most d|U | + 1 clusters of size at most 2d, we get that we have at most O
(
d2|U |2d+1

)
vertices in those clusters.

The exhaustive application of all the above rules and their accompanying lem-
mas are enough to show that indeed, there is a polynomial kernel for d-Cut when
parameterized by distance to cluster.

Theorem 68. When parameterized by distance to cluster dc(G), d-Cut ad-
mits a polynomial kernel with O

(
d2dc(G)2d+1

)
vertices that can be computed in

O
(
d4dc(G)2d+1(n+m)

)
time.

Proof. The algorithm begins by finding a set U such that G − U is a cluster graph.
Note that |U | ≤ 3dc(G) since a graph is a cluster graph if and only if it has no induced
path on three vertices: while there is some P3 in G, we know that at least one its
vertices must be removed, but since we don’t know which one, we remove all three;
thus, U can be found in O(dc(G)(n+m)) time. After the exhaustive application
of Rules 1 through 8, by Lemma 63, V (G) \ U has at most O(d2dc(G)3) vertices in
clusters of size at least 2d + 1. By Rule 7, G has no simple cluster of size at most
d+ 1. Ambiguous clusters of size at most 2d, again by Lemma 63, also comprise only
O(d2dc(G)2) vertices of G. Finally, for simple clusters of size between d + 2 and 2d,
Lemmas 66 and 67 guarantee that there are O

(
d2dc(G)2d+1

)
vertices in small clusters

and, consequently, this many vertices in G.
As to the running time, first, computing and maintaining N2d(Ui) takes

O(ddc(G)n) time. Rule 1 is applied only at the beginning of the kernelization, and
runs in O

(
22dd(n+m)

)
time. Rules 2 and 3 can both be verified in O(ddc(G)2(n+m))

time, since we are just updating N2d(Ui) and performing merge operations. Both are
performed only O(dc(G)2) times, because we only have this many pairs of monochro-
matic parts. The straightforward application of Rule 4 would yield a running time of
O(n2). However, we can ignore edges that are interior to clusters and only maintain
which vertices belong together; this effectively allows us to perform this rule in O(n)
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time, which, along with its O(n) possible applications, yields a total running time of
O(n2) for this rule. Rule 5 is directly applied in O(n) time; indeed, all of its applica-
tions can be performed in a single pass. Rule 6 is also easily applied in O(n+m) time.
Moreover, it is only applied O(dc(G)) times, since, by Lemma 63, the number of fixed
clusters is linear in dc(G); furthermore, we may be able to reapply Rule 6 directly to
the resulting cluster, at no additional complexity cost. The analysis for Rule 7 follows
the same argument as for Rule 5. Finally, Rule 8 is the bottleneck of our kernel, since
it must check each of the possible O

(
dc(G)2d

)
patterns, spending O(n) time for each of

them. Each pattern is only inspected once because the number of clusters in a pattern
can no longer achieve the necessary bound for the rule to be applied once the excessive
clusters are removed.

In the next theorem we provide an FPT algorithm for d-Cut parameterized by
the distance to cluster, running in time O

(
4d(d+ 1)dc(G)2dc(G)dc(G)n2

)
. Our algorithm

is based on dynamic programming, and is considerably simpler than the one given by
Komusiewicz et al. [2018] for d = 1, which applies four reduction rules and an equivalent
formulation as a 2-SAT formula. However, for d = 1 our algorithm is slower, namely
O∗
(
4dc(G)

)
compared to O∗

(
2dc(G)

)
.

Recall that minimum distance to cluster sets and minimum distance to co-cluster
sets can be computed in 1.92dc(G)·O(n2) time and 1.92dc(G)·O(n2) time, respectively Bo-
ral et al. [2016]. Thus, in Theorems 69 and 70 we can safely assume that we have these
sets at hand.

Theorem 69. For every integer d ≥ 1, there is an algorithm that solves d-Cut in
time O

(
4d(d+ 1)dc(G)2dc(G)dc(G)n2

)
.

Proof. Let U be a set such that G − U is a cluster graph, Q = {Q1, . . . , Qp} be the
family of clusters of G − U and Qi =

⋃
i≤j≤pQj. Essentially, the following dynamic

programming algorithm attempts to extend a given partition of U in all possible ways
by partitioning clusters, one at a time, while only keeping track of the degrees of
vertices that belong to U . Recall that we do not need to keep track of the degrees of
the cluster vertices precisely because G− U has no edge between clusters.

Formally, given a partition U = A ∪̇ B, our table is a mapping f : [p] × Z|A| ×
Z|B| → {0, 1}. Each entry is indexed by (i,dA,dB), where i ∈ [p], dA is a |A|-
dimensional vector with the j-th coordinate begin denoted by dA[j]; dB is defined
analogously. Our goal is to have f(i,dA,dB) = 1 if and only if there is a partition
(X, Y ) of U ∪Qi where A ⊆ X, B ⊆ Y and vj ∈ A (u` ∈ B) has at most dA[j] (dB[`])
neighbors in Qi.
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We denote by Pd(i,dA,dB) the set of all partitions L ∪̇ R = Qi such that every
vertex v ∈ L has dB∪R(v) ≤ d, every u ∈ R has dA∪L(u) ≤ d, every vj ∈ A, dR(vj) ≤
dA[j] and every u` ∈ B, dL(u`) ≤ dB[`]; note that, due to this definition, (L,R) 6=
(R,L). In the following equations, which give the computations required to build our
table, dA(R) and dB(L) are the updated values of the vertices of A and B after R is
added to Y and L to X, respectively.

f(i,dA,dB) = 0
∨

(L,R)∈Pd(i,dA,dB)

f(i+ 1,dA(R),dB(L)) (3.1)

f(p,dA,dB) = 1, if and only if Pd(i,dA,dB) 6= ∅. (3.2)

We proceed to show the correctness of the above by induction. For the base
case, i.e., when |Q| = p = 1, we have that for vj ∈ A (ul ∈ B), dA[j] = d − dB(vj)

(dB[j] = d−dA(ul)) and a partition of V (G) exists if and only if there is some partition
(L,R) ∈ Pd(1,dA,dB), where. This case is covered by Equation (3.2).

So let p > 1 and (i,dA,dB) be an entry of our table. First, if |Qi| ≥ 2d + 1, Qi

is monochromatic, which implies that |Pd(i,dA,dB)| ≤ 2. Therefore, we may assume
that, |Pd(i,dA,dB)| ≤ 22d. Pd(i,dA,dB) = ∅ implies that any partition (L,R) of Qi

causes a vertex in L (R) to have more than d neighbors in B∪R (A∪L), which is easily
checked for in O(n|U |)-time, or some vertex vj ∈ A (ul ∈ B) has dY ∪R(vj) > dA[j]

(dX∪L(ul) > dB[l]). Either way, we have that no matter how we partition Qi, the
available degree of some vertex is not enough, Equation (3.1) yields the correct answer.

However, if Pd(i,dA,dB) 6= ∅, the subgraph induced by U ∪ Qi has a d-cut
separating A and B and respecting the limits of dA and dB if and only if there is some
(L,R) ∈ Pd(i,dA,dB) such that U ∪ Qi+1 has a d-cut and each vertex of A (B) has
the size of its neighborhood in Qi+1 bounded by the respective coordinate of dA(R)

(dB(L)). By the inductive hypothesis, there is such a partition of Qi+1 if and only
if f(i + 1,dA(R),dB(L)) = 1, concluding the proof of correctness. Clearly, there is
a d-cut separating A and B if f(1,dA,dB) = 1 where for every vj ∈ A (ul ∈ B),
dA[j] = d− dB(vj) (dB[j] = d− degA(u`)).

The complexity analysis is straightforward. Recalling that |Pd(i,dA,dB)| ≤ 22d,
we have that each f(i,dA,dB) can be computed in time O

(
4d|U |n

)
and, since we have

O
(
(d+ 1)|A|+|B|p

)
∈ O

(
(d+ 1)|U |p

)
, given a partition (A,B) of U , we can decide if

there is d-cut separating A and B in O
(
4d(d+ 1)|U ||U |n2

)
-time. To solve d-Cut itself,

we guess all 2|U | partitions of U and, since |U | ∈ O(dc(G)), we obtain a total running
time of O

(
4d(d+ 1)dc(G)2dc(G)dc(G)n2

)
.
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3.3.4 Distance to co-cluster

A graph is a co-cluster graph if only if it is the complement of a cluster graph; that
is, if it is a complete multipartite graph. Our next theorem complements the results
of our previous section and shall help establish the membership in FPT of d-Cut

parameterized by the vertex cover number.

Theorem 70. For every integer d ≥ 1, there is an algorithm solving d-Cut in time
O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2

)
.

Proof. Let U ⊆ V (G) be a set of O(dc(G)) vertices such that G − U is a co-cluster
graph with color classes ϕ = {F1, . . . , Ft}. Define F =

⋃
i∈[t] Fi and suppose we are

given a d-cut (A,B) of G[U ]. First, note that if t ≥ 2d + 1, we have that some of the
vertices of F form a clique Q of size 2d+1, which is a monochromatic set; furthermore,
every vertex v ∈ F but not in Q has at least d + 1 neighbors in Q. This implies that
Q ∪ {v} is monochromatic and, thus, F is a monochromatic set. Checking if either
(A ∪ F , B) or (A,B ∪ F) is a d-cut can be done in O(n2) time.

If the above does not apply, we have that t ≤ 2d.

• Case 1: If |F| ≤ 4d we can just try to extend (A,B) with each of the 2|F|

bipartitions of F in O
(
16dn2

)
time.

So now, let ϕ1 ∪̇ ϕ2 = ϕ be a bipartition of the color classes, Fi = {v ∈ Fj | Fj ∈
ϕi}, and, for simplicity, suppose that |F1| ≤ |F2|.

• Case 2: If |F1| ≥ d + 1 and |F2| ≥ 2d + 1, we know that there is a set Q ⊆
F forming a (not necessarily induced) complete bipartite subgraph Kd+1,2d+1,
which is a monochromatic set. Again, any v /∈ Q has at least dQ(v) ≥ d + 1,
from which we conclude that Q∪ {v} is also monochromatic, implying that F is
monochromatic.

If Case 2 is not applicable, either |F1| ≤ d and |F2| ≥ 2d + 1, or |F2| ≤ 2d. For
the latter, note that this implies |F| ≤ 4d, which would have been solved by Case 1.
For the former, two cases remain:

• Case 3: Every Fi ∈ ϕ2 has |Fi| ≤ 2d. This implies that every F ∈ ϕ has size
bounded by 2d and that |F| ≤ 4d2; we can simply try to extend (A,B) with each
of the O

(
2d

2
)
partitions of F , which can be done in O

(
2d

2
n2
)
time.

• Case 4: There is some Fi ∈ ϕ2 with |Fi| ≥ 2d + 1. Its existence implies that
|F| − |Fi| ≤ d, otherwise we would have concluded that F is a monochromatic
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set. Since F\Fi has at most d vertices, the set of its bipartitions has size bounded
by 2d. So, given a bipartition FA ∪̇ FB = F \ F , we define A′ := A ∪ FA and
B′ := B ∪ FB. Finally, note that G \ (A′ ∪ B′) is a cluster graph where every
cluster is a single vertex; that is, dc(G) ≤ dc(G) + d. In this case, we can apply
Theorem 69, and obtain the running time of O

(
4d(d+ 1)dc(G)+d(dc(G) + d)n2

)
;

we omit the term 2dc(G)+d since we already have an initial partial d-cut (A′, B′).

For the total complexity of the algorithm, we begin by guessing the initial parti-
tion of U into (A,B), spending O(n2) time for each of the O

(
2dc(G)

)
possible biparti-

tions. If t ≥ 2d+ 1 we give the answer in O(n2) time. Otherwise, t ≤ 2d. If |F| ≤ 4d,
then we spend O

(
16dn2

)
time to test all partitions of F and return the answer. Else,

for each of the O
(
4d
)
partitions of ϕ, if one of them has a part with d+ 1 vertices and

the other part has 2d+ 1 vertices, we respond in O(n2) time. Finally, for the last two
cases, we either need O

(
2d

2
n2
)
time, or O

(
8d(d+ 1)dc(G)+d(dc(G) + d)n2

)
. This yields

a final complexity of O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2

)
.

Using Theorems 69, 70, and the relation τ(G) ≥ max{dc(G), dc(G)} Komusiewicz
et al. [2018], we obtain fixed-parameter tractability for the vertex cover number τ(G).

Corollary 71. For every d ≥ 1, d-Cut parameterized by the vertex cover number is
in FPT.

3.4 Other generalizations for Matching Cut

In this section, we describe two other generalizations of Matching Cut that we have
investigated. For the first, `-Nested Matching Cut, we present an exponential
time algorithm and an attempt at using algorithms for Matching Cut as a black box
for this problem. Most results given for d-Cut and Matching Cut can be adapted
for this problem, but the arguments are very similar and do not appear to provide
additional insights on the problem. The second problem we discuss here has been
dubbed as p-way Matching Cut. Unlike d-Cut and `-Nested Matching Cut,
this version is much more challenging, and we limit ourselves to some attempts on
tackling the problem.

3.4.1 Nested cuts

We have already discussed d-Cut at length throughout this chapter, so this section
will detail some other directions we attempted to explore. Recall the definition of a
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matching cut: we would like each vertex of the graph, on the cut (A,B), to have at
most one neighbor across the cut. This can be rephrased to the following: a cut (A,B)

is a matching cut if and only if each vertex has at most one neighbor outside of its
part. Through this perspective, there is nothing special about the number of parts we
want to partition our graph into. A cut on ` parts satisfying the above is called an
`-nested matching cut, and the decision problem for this generalization is dubbed the
`-Nested Matching Cut problem.

`-Nested Matching Cut

Instance: A graph G.
Question: Does G admit an `-nested matching cut?

Let ϕ = (A1, . . . , A`) be a partition of V (G) and border(Ai) be the vertices of Ai
with one neighbor outside of Ai. The following observation gives some intuition as to
the structure of the positive instances of `-Nested Matching Cut.

Observation 72. Let G be a graph and ` ≥ 3 an integer. G admits an `-nested
matching cut ϕ if and only if there is an (`−1)-nested matching cut ϕ′ = {A′1, . . . , A′`−1}
with one A′i such that the subgraph induced by the vertices in A′i admits a matching cut
(B1, B2) where, for every v ∈ border(A′i), it holds that N [v] ⊆ B1 or N [v] ⊆ B2.

Proof. We shall build ϕ′ from ϕ as follows: for every i ∈ [` − 2], A′i = Ai, and
ϕ′`−1 = ϕ`−1 ∪ ϕ`. That ϕ′ is an (` − 1)-nested matching cut of G and the subgraph
induced by the vertices of ϕ′`−1 has a matching cut is a straightforward observation.
Now, for each v ∈ border(ϕ′`−1), note that v ∈ border(ϕ`−1)∪border(ϕ`). Consequently,
every neighbor of v is in either the same side of the cut (ϕ`−1, ϕ`) as v, as we wanted.

For the converse, it suffices to note that border(B1) ∩ border(ϕ′i) = ∅ and
border(B2) ∩ border(ϕ′i) = ∅ precisely because of the constraint that N [v] ⊆ B1

or N [v] ⊆ B2. As such, we can construct the desired `-nested matching cut as
ϕ = {ϕ′1, . . . , ϕ′`−2, B1, B2}.

Observation 72 is a first step towards an algorithm for `-Nested Matching

Cut. Ideally, we would use the algorithms for Matching Cut as a black box, and
then choose one of the available parts of the cut and repeat the process. What is
problematic is that there may be multiple possible matching cuts at a given step, and
testing all of them would be quite expensive. As such, since we still do not know how
to exploit Observation 72, we turn our attention to an exact exponential algorithm,
through a similar approach used by Komusiewicz et al. [2018]. Our algorithm consists
of four stopping rules, seven reduction and nine branching rules. At every step of the
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algorithm we have the sets {A1, . . . , A`, F} such that ϕ = (A1, . . . , A`) (unless rule R3
applies) is a `-nested matching cut of the vertices of V (G)\F . For simplicity, we assume
that δ(G) ≥ 2. Most of the arguments presented here work with slight modifications to
graphs of minimum degree one, but they would unnecessarily complicate the description
of the algorithm.

S1 If there is some v ∈ F and i, j ∈ [`] such that degAi
(v) ≥ 2 and degAj

(v) ≥ 2,
STOP: there is no `-nested matching cut extending ϕ.

S2 If there is a vertex v ∈ F with neighbors in three different parts of ϕ, STOP:
there is no `-nested matching cut extending ϕ.

S3 If there is an edge uv with u ∈ Ai and v ∈ Aj such that N(u) ∩ N(v) ∩ F 6= ∅,
STOP: there is no `-nested matching cut extending ϕ.

S4 If there is some v ∈ Ai with two neighbors outside of Ai ∪ F , STOP: there is no
`-nested matching cut extending ϕ.

R1 If there exists some v ∈ Ai such that N(v) ⊇ {x, y} and x, y ∈ F and xy ∈ E(G),
add x, y to Ai.

R2 If there exists v ∈ F and a unique i ∈ [`] with degAi
(v) ≥ 2, add v to Ai.

R3 For every edge uv with u ∈ Ai and v ∈ Aj, add N(u)∩ F to Ai and N(v)∩ F to
Aj.

R4 If there is a pair u, v ∈ F with N(u) = N(v) = {x, y} with x ∈ Ai and y ∈ Aj,
add u to Ai and v to Aj.

R5 If there is a pair u, v ∈ F with N(u) = N(v) = {x, y} with x ∈ Ai and y ∈ F ,
add x to Ai.

R6 If there is a vertex v ∈ F with N(v) = {x, y}, x ∈ Ai, y ∈ Aj, N(x) ⊆ Ai ∪ {v},
and N(y) ⊆ Aj ∪ {v}, add u to Ai.

R7 If there are vertices u, v, w ∈ F with deg(u) = deg(v) = deg(w) arranged as in
Figure 22, add {u, v} to Ai and w to Aj.

For our branching rules, we follow the configurations given by Figure 23, and
always branch on vertex v1. We set the size of the instance as the size of the set F ,
that is, how many free vertices are assigned to one of the parts.
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u

v Ai v′

w Aj w′

Figure 22: Rule 7 configuration.

B1 If we put v1 in Aj, j 6= i, we infer that v3, and v4 must also be added to Aj, and
that v2 must be added to Ai. Otherwise, v1 is in Ai, which does not given us any
additional information. Our branching vector is, thus, of the form {1} × {4}`−1.

B2 Note that v1 must be placed in either Ai or Aj. For the first case, we conclude
that v4 must also be in Ai, while for the later, v4 must be added to Aj and v2 to
Ai, yielding the branching vector (2, 3) and the branching factor 1.3247.

B3 Again, v1 is in either Ai or Aj. In either case, we conclude that v2 must be in the
same part as v1, resulting in the branching vector (2, 2), which has a branching
factor of

√
2.

B4 and B4’ By adding v1 to Ai, we conclude that v2 must also be placed in Ai; a similar
analysis is performed when v1 is added to Aj. Otherwise, if we add v1 to Ak, at
most one of v2 and v3 may be added to a set different from Ak. If both are in
Ak, we have that v′2 belongs in Ai and v′3 in Aj. Otherwise, if v2 is added to Ai,
we conclude that v3, v4 belong in Ak and that v′3 belongs in Aj; similarly if v3 is
assigned to Aj. This results in a branching vector of the form {2}2×{5}3`−6, with
unique positive real root of the polynomial associated with it satisfying α` ≤ 3

√
`.

Rule B4’ clearly has a better branching factor than B4, but rule B4 dominates
the running time of B4’.

B5 In case we assign v1 to Ai, we have that both v2, and v3 must also be in Ai; if
v1 is assigned to Aj, nothing else can be inferred; for all other Ak, we have that
both v2 and v3 must be assigned to Ak, and that v′2 and v′3 belong in Ai. The
branching vector for this rule is given by {1} × {3} × {5}`−2, which, for large
values of `, has a branching factor of at most 3

√
`. Again, it can be verified that,

for each `, it holds that the branching factor for this rule is ≤ 3
√
`.

B6 If v1 is assigned to Ai (resp. Aj), we have that both v2, and v3 (resp. v4, and
v5) must also be assigned to Ai (resp. Aj); otherwise, for every other Ak, either
{vp}p∈[5] belongs to Ak, in which case the vertices {v′p}p∈{2,3,4,5} are assigned to
the same set as their neighbor, or at most one vp ∈ {v2, v3, v4, v5} is not assigned
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to Ak, in which case the set to which v′p should be assigned is not determined.
This rule produces a branching vector of the form {3}2 × {8}4`−8 × {9}`−2,

B7 Once again, we only have two options for v1. So, if v1 is added to Ai, we have
that v3 must be added to Aj, otherwise v1 is added to Aj and v2 to Ai. This
rule’s branching vector is (2, 2), with factor equal to

√
2.

B8 If v1 is assigned to Ai, we are done; otherwise, if v1 is assigned to Ak, with k 6= i,
we have that v2 belongs in Ai and v3 in Ai. This yields the branching vector
{1} × {3}`−1, and branching factor 3

√
` ≤ α` ≤

√
`.

v1Aiv2
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v1Aiv2
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v4(B2)

v1v2
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v1Ai v3

v2 Aj
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Figure 23: Branching configurations for `-Nested Matching Cut.

Given all of the above rules, we must show that, if none of them are applicable, we
have an `-nested matching cut. In order to do so, we require some additional definitions:
let A′i = {v ∈ Ai | degF (v) ≥ 2}, F ′i = F ∩ N(A′i), F ′′i = {v ∈ F | degF ′i (v) ≥ 2}, and
F ∗ = F \

⋃
i∈`(F

′
i ∪ F ′′i ). Also, we say that Ai is final if, for all v ∈ F ′i , deg(v) = 2.

Lemma 73. If there is some Ai of ϕ which is not final and no Stopping/ Reduction
Rule is applicable, then configurations B1, or B2 exist in the partitioned graph.

Proof. Let v1 be a degree three vertex of F ′i , ai its neighbor in A′i and v2 the other
neighbor of A′i in F . We know that vv′ /∈ E(G), otherwise rule R1 would be appli-
cable. Now, let v3, v4 be two of the other neighbors of v. If both are in F , we have
a configuration B1; otherwise at most one of them is not in F ∪ Ai, say v3, since we
would have applied rule S2 or rule R2 if this observation did not hold, implying that a
configuration B2 is present.
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We may now assume that every Ai is final, and that no reduction or stopping
rule is applicable. Our goal is to show that, if none of our branching configurations
exist, then ϕ∗ = (A1∪F ′1∪F ′′1 , . . . , A`−1∪F ′`−1∪F ′′`−1, A`∪F ′` ∪F ′′` ∪F ∗) is an `-nested
matching cut of G. Before proving that, however, we have to guarantee that the sets
F ′i , F

′′
i are a partition of F .

Lemma 74. If there exists i, j ∈ [`] with F ′i ∩ F ′j 6= ∅, then rule B7 is applicable.

Proof. Let v1 ∈ F ′i ∩ F ′j ; since A′i and A′j are final, deg(v1) = 2 and its two neighbors,
ai, aj, have one extra neighbor each, say v2 and v3. If v2 = v3, however, v2 ∈ F ′i , and
has degree equal to two; but this implies that N(v1) = N(v2) = {ai, aj}, and rule R4
could have been applied. All that remains now is the case where v2 6= v3, but this is
precisely configuration B7, as desired.

Lemma 75. If Ai and Aj are final, F ′i ∩ F ′′j = ∅.

Proof. Suppose that there is some v ∈ F ′i ∩F ′′j . By the definitions of F ′i and F ′′j , v has
degree two, one neighbor in Ai, and two neighbors in F ′j , a contradiction.

Lemma 76. If there exists i, j ∈ [`] with F ′′i ∩ F ′′j 6= ∅, rule B6 is applicable.

Proof. Let v1 a vertex of F ′′i ∩ F ′′j . By the previous lemma and the definition of F ′′i , it
is straightforward to check that v1 has four distinct neighbors: v2, v3, v4, v5, such that
v2, v3 ⊆ F ′i and v4, v5 ⊆ F ′j . Let ai be the neighbor of v2 in Ai, v′2 the other neighbor
of ai in F . Define a′i and v′3 similarly for v3; aj and v′4 for v4; and a′j and v′5 for v5.
Note that v′2 6= v′3 (resp. v′4 6= v′5), or rule R2 would be applicable. Consequently,
{v1, v2, ai, v

′
2, v3, a

′
i, v
′
3, v4, aj, v

′
4, v5, a

′
j, v
′
5} form a configuration B6.

These last few results prove that ϕ∗ is a partition of V (G). Define A∗i = Ai ∪
F ′i ∪ F ′′i and A∗` = A` ∪ F ′` ∪ F ′′` ∪ F ∗. What remains to be shown is that it is, in fact,
an `-nested matching cut of G.

Lemma 77. If no more branching rules are applicable, then for every i and every
v ∈ Ai, degV (G)\A∗i

(v) ≤ 1.

Proof. First, v has at most one neighbor in
⋃
j 6=iAj, otherwise rule S4 would have

stopped the algorithm. The case where v has one neighbor in Aj and one neighbor
u ∈ F , since rule S3 is not applicable, by rule R3, u must have been added to Ai, and
so u does not exist. Thus, the only possibility is that v has more than one neighbor in
F , implying NF (v) ⊆ F ′i , but F ′i is in the same part as v.
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Lemma 78. If no more branching rules are applicable, then for every i and every
v ∈ F ′i , degV (G)\A∗i

(v) ≤ 1.

Proof. Trivial due to the hypothesis that F ′i is final.

Lemma 79. If no more branching rules are applicable, then for every i and every
v ∈ F ′′i , degV (G)\A∗i

(v) ≤ 1.

Proof. If v has a neighbor in Aj, rule B5 is applicable, since v ∈ F ′′i . On the other
hand, if v has a neighbor in F , we can apply rule B4’ with v = v1.

Lemma 80. If no more branching rules are applicable, then for every v ∈ F ∗,
degV (G)\A∗`

(v) ≤ 1.

Proof. We know that v does not have two neighbors in some Aj, but it could be the
case that v has neighbors ai ∈ Ai, aj ∈ Aj. Note that if v ai cannot have a second
neighbor in F , otherwise v would be in F ′i . As such, if deg(v) = 2, we can still apply
rule R6. Otherwise, if deg(v) ≥ 3, configuration B3 shows up with v = v1. This allows
us to conclude that v does not have a neighbor in more than one Ai. Suppose now
that u ∈ F \ F ∗ is a neighbor of v, and aj ∈ Aj ∩N(v). If u ∈ F ′i (i may be equal to
j), it follows that rule B8 is applicable with v = v3 and u = v1. If, on the other hand,
u ∈ F ′′i , we have configuration B4’ where u = v1 and v = v4. Consequently, v has no
neighbor in Aj, for j 6= `.

Now, it must be the case that both neighbors x, y of v are in F \ F ∗. Note that
{x, y} * F ′i , otherwise v ∈ F ′′i . For now, suppose that x ∈ F ′i and y ∈ F ′j . If deg(v) = 2,
rule R7 may be applied (with u = v); so deg(v) ≥ 3 and we have configuration B4,
again, with v = v1. Suppose, then that x is actually in F ′′i ; by the exact same argument,
it holds that B4’ is applicable with v = v4 and x = v1. The case where x and y are in
F ′′i and F ′′j , respectively, is identical.

Theorem 81. If no Stopping, Reduction, or Branching rule is applicable, ϕ∗ is an
`-nested matching cut of G. Moreover, `-Nested Matching Cut can be solved in
O∗(αn` ), with α` ≤

√
` for a graph on n vertices.

3.4.2 Multiway cuts

The previous section dealt with partitions ϕ such that each vertex has at most one
neighbor in another part. We may relax this constraint, and ask that each vertex has
at most one neighbor in each part other than its own. Equivalently, given the integer
p ≥ 2, we want a p-partition of the vertices of the graph such that (Ai, Aj) is a matching
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cut of G[Ai ∪ Aj]. A cut that satisfies this property is called a p-Way matching cut,
with the problem of deciding whether or not a graph admits such a partition defined
below.

p-Way Matching Cut

Instance: A graph G
Question: Does G admit a p-Way matching cut?

It is not hard to adapt either of the reductions given by Chvátal [1984] or us
to this generalization, although a bit more of care must be taken when designing
color selection gadgets. The hard part, however, is finding an FPT algorithm for
p-Way Matching Cut when parameterized by the number of edges crossing the
cut. The powerful machinery provided by Marx et al. [2010] does not appear to be
capable of handling the constraint of each pair of parts is a matching cut. Whenever
we attempted to give a graph class that captured this notion, we were either unable
to reconstruct the cut on the original graph, or we found counter-examples that the
treewidth reduction technique could produce that did not represent a p-way matching
cut of the graph. Adapting the exact exponential algorithm of Komusiewicz et al. [2018]
also seems a challenging task; while we were successful for nested cuts, the structures
used as branching rules appear to explode rapidly with the growth of p, a similar
phenomenon is observed when trying to devise a kernelization algorithm. Aside from
these challenging questions, most parameterized algorithms for Matching Cut can be
adapted for p-Way Matching Cut, such as the ones parameterized by treewidth or
distance to cluster, without much difficulty, but, much like d-Cut all such algorithms
have exponential dependencies on p, and asserting whether this is necessary or not
would be nice.

3.5 Concluding remarks

We presented a series of algorithms and complexity results; many questions, however,
remain open. For instance, all of our algorithms have an exponential dependency
on d on their running times. While we believe that such a dependency is an intrinsic
property of d-cut, we have no proof for this claim. Similarly, the existence of a uniform
polynomial kernel parameterized by the distance to cluster, i.e., a kernel whose degree
does not depend on d, remains an interesting open question.

Also in terms of running time, we expect the constants in the base of the exact
exponential algorithm to be improvable. However, exploring small structures that yield
non-marginal gains as branching rules, as done by Komusiewicz et al. [2018] for d = 1
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does not seem a viable approach, as the number of such structures appears to rapidly
grow along with d.

The distance to cluster kernel is hindered by the existence of clusters of size
between d+ 2 and 2d, an obstacle that is not present in the Matching Cut problem.
Aside from the extremal argument presented, we know of no way of dealing with
them. We conjecture that it should be possible to reduce the total kernel size from
O
(
d2dc(G)2d+1

)
to O

(
d2dc(G)2d

)
, matching the size of the smallest known kernel for

Matching Cut Komusiewicz et al. [2018].
We also leave open to close the gap between the known polynomial and NP-hard

cases in terms of maximum degree. We showed that, if ∆(G) ≤ d + 2 the problem is
easily solvable in polynomial time, while for graphs with ∆(G) ≥ 2d+ 2, it is NP-hard.
But what about the gap d+ 3 ≤ ∆(G) ≤ 2d+ 1? After much effort, we were unable to
settle any of these cases. In particular, we are very interested in 2-Cut, which has a
single open case, namely when ∆(G) = 5. After some weeks of computation, we found
no graph with more than 18 vertices and maximum degree five that had no 2-cut, in
agreement with the computational findings of Ban and Linial [2016]. Interestingly,
all graphs on 18 vertices without a 2-cut are either 5-regular or have a single pair of
vertices of degree 4, which are actually adjacent. In both cases, the graph is maximal
in the sense that we cannot add edges to it while maintaining the degree constraints.
We recall the initial discussion about the Internal Partition problem; closing the
gap between the known cases for d-Cut would yield significant advancements on the
former problem.

Finally, the smallest d for which G admits a d-cut may be an interesting additional
parameter to be considered when more traditional parameters, such as treewidth, fail
to provide FPT algorithms by themselves. Unfortunately, by Theorem 46, computing
this parameter is not even in XP, but, as we have shown, it can be computed in FPT

time under many different parameterizations.



Chapter 4

On the intersection graph of
maximal stars

Intersection graphs form the basis for much of the theory on graph classes. For instance,
the class of chordal graphs, which is one of the most fundamental and broadly studied
classes Brandstädt et al. [1999], can be defined as precisely the family of intersection
graphs of all subtrees of some tree. Interval graphs, in turn, are defined as the family of
intersection graphs of subpaths of some path. Line graphs are the intersection graphs
of the edges of some graph. Unlike chordal graphs, there are known characterizations
for line graphs that make use of a finite family of forbidden induced subgraphs [Rous-
sopoulos, 1973]. Moreover, line graphs were one of the first classes to be characterized
in terms of edge clique covers that satisfy some properties pertinent to the intersection
definition; results of this form are known as Krausz-type characterizations.

All of the aforementioned classes are easily recognizable in polynomial
time Brandstädt et al. [1999]; Naor and Novick [1990]. The complexity of recognizing
clique graphs – the intersection graphs of the maximal cliques of some graph – was
an open problem for decades, with a very complicated argument, due to Alcón et al.
[2009], showing that the problem is NP-complete. Many other aspects of clique graphs
have been investigated in the literature. Such is the case for, clique-critical graphs –
graphs whose clique graph is different from the clique graph of all of its proper in-
duced subgraphs. This graph class has its own characterizations Escalante and Toft
[1974] and bounds Alcón [2006] which were central in the proof of the complexity of the
clique graph recognition problem. Another common line of investigation on intersection
graphs is the study of iterated intersection graphs, i.e., of the behavior of a graph that
undergoes the operation multiple consecutive times. Results of this flavor usually come
in the form of convergence, divergence, and periodicity theorems, relating properties

89
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of the input graph to the behavior of the limit graph (after applying the operator an
infinite number of times). A closely related intersection class to star graphs is that
of biclique graphs – the intersection graph of the maximal induced complete bipartite
graphs of a graph. The introductory paper by Groshaus and Szwarcfiter [2010] gives
a Krausz-type characterization of the class and some properties of its members; these
results, however, are not very useful from the algorithmic point of view, and appear to
not yield many insights on the recognition problem, which remains open.

Star graphs and biclique graphs coincide for C4-free graphs and our initial hope
was that results on the former would yield advancements on the latter. While we were
unable to achieve our original goal, we present an introductory study of the intersection
graphs of maximal stars, providing answers to some difficulties we encountered when
working with the class. After some standard definitions of the theory of intersection
graphs, we begin the discussion with a bound on the number of vertices of star-critical
graphs by a quadratic function of the size of its set of maximal stars. Afterwards,
we give a Krausz-type characterization, which, when combined to the previous result,
shows that the recognition problem belongs to NP. We then shift the focus, to proper-
ties of star graphs. In particular, we show that they are biconnected, that every edge
belongs to at least one triangle, we characterize the structures that the pre-image must
have in order to generate degree two vertices, and bound the diameter of the star graph
with respect to the diameter of its pre-image. Finally, we give a monotonicity theorem,
which is used to generate all star graphs on no more than eight vertices and prove that
the classes of star graphs and square graphs are not properly contained in each other.

4.1 Intersection graphs

Some interesting intersection graphs are usually defined in terms of the intersection
of structures of other graphs. For instance, line graphs are precisely the graphs that
are the intersection graphs of the edges of a graph; clique graphs are the intersection
graphs of the maximal induced cliques of a graph. Both of these classes, however
have nice characterizations in terms of edge clique covers, which are commonly called
Krausz-type characterizations.

Line Graph G is a line graph if and only if there is an edge clique cover Q of G such
that both conditions hold:

(i) Every vertex of G appears in exactly two members of Q;

(ii) Every edge of G is in only one member of Q.
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Clique Graph G is a clique graph if and only if it there is an edge clique cover of G
satisfying the Helly property.

a

b

c

d

abd

bcd

ab

bccd

ad

bd

abc

dbc bd

Figure 24: A graph, its clique graph, its line graph, and its star graph

The recognition of line graphs is known to be efficient [Degiorgi and Simon, 1995;
Roussopoulos, 1973; Naor and Novick, 1990]. For clique graphs, however, the situation
was not so simple, and the complexity of clique graph recognition was left open for
several years, finally being proven to be NP-complete by Alcón et al. [2009] with a quite
complicated argument.

Aside from the complexity point of view, many different properties of intersection
graphs have been investigated in the literature. For instance, clique-critical graphs
– graphs whose clique graph is different from the clique graph of all of its proper
induced subgraphs – have different characterizations [Escalante and Toft, 1974] and
bounds [Alcón, 2006] which were crucial in the proof of the complexity of the recognition
problem. Another common line of investigation on intersection graphs is the behaviour
of iterated applications of the operators. For instance, Frías-Armenta et al. [2004], and
Larrión and Neumann-Lara [2002] study iterated applications of the clique operator.
Biclique graphs – the intersection graph of the maximal induced complete bipartite
graphs of a graph – were first characterized and studied by Groshaus and Szwarcfiter
[2010]. Their results, however, are not very useful from the algorithmic point of view,
and appear to not yield many insights on the recognition problem. Nevertheless, they
study the behavior of biclique graphs, showing that every edge is contained either in
a diamond or a 3-fan and specialize their general characterization for biclique graphs
of bipartite graphs. As was done for clique graphs, the iterated biclique operator
has also been studied by Groshaus et al. in multiple papers [Groshaus and Montero,
2013; Groshaus et al., 2016], with results ranging from characterizations of divergence,
divergence type verification algorithms, and other structural results.
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For other classical results in the area we point to [A. McKee and McMorris, 1999],
from where most of the given definitions come from.

4.1.1 Maximal stars

Regarding stars, previous work handled the intersection graphs of (not necessarily
maximal) substars of a tree [Joos, 2014] and of a star [Cerioli and Szwarcfiter, 2006].
For the first, a minimal infinite family of forbidden induced subgraphs was given,
while, for the latter, a series of characterizations were shown (including a finite family
of forbidden induced subgraphs). Stars are a particular case of bicliques, and both the
biclique graph and star graph coincide for C4-free graphs. In fact, this relationship was
successfully applied to determine the complexity of biclique coloring [Groshaus et al.,
2014], as discussed in Chapter 2. To the best of our knowledge, these are the main
topics discussed in the literature that involve maximal stars in some way. The central
object of study in this chapter is the intersection graph of maximal stars, which we
formally define in Definition 82.

Definition 82. Let G be the set of all finite graphs and S(H) be the set of all induced
maximal stars of a graph H. The star operator is the function KS : G 7→ G such that,
KS(H) = Ω(S(H)). If G = KS(H), we say that H is a pre-image of G and that G is
the star graph of H. The iterated star operator Ki

S is defined as K1
S(H) = KS(H) and

Ki
S(H) = KS(Ki−1

S (H)).

When detailing which vertices belong to a star s, we shall describe it by s =

{v1}{v2, . . . , vp+1}, with v1 being its center, denoted by c(s) = v1, and the other p
vertices its leaves. Unless noted, G will be our star graph and H the pre-image of G.
By Definition 82, two stars sa, sb intersect if they share at least one vertex, with the
possible cases being: (i) the centers of sa and sb coincide; (ii) the center of sa is a leaf
of sb; or (iii) sa and sb share at least one leaf. Note that conditions (i) and (iii) may be
simultaneously satisfied. For an example of the intersection possibilities, please refer
to Figure 25.

We say that star sa absorbs star sb if, by removing one leaf of sb, it becomes a
substar of sa. A vertex v is said to be star-critical if its removal changes the resulting
star graph; that is, the star graph ofH and the star graph ofH\{v} are not isomorphic.
Similarly to clique-critical graphs [Escalante and Toft, 1974; Alcón, 2006], a graph is
star-critical if all of its vertices are star-critical. All vertices of Figure 26 are star-
critical; in particular, the removal of x does not cause the absorption of any star, but
the intersection of two maximal induced stars is precisely x, i.e., there is an edge of
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Figure 25: (i) The stars {c}{a, e} and {c}{b, d} intersect only at their center; (ii) the
center of {u}{w, v} is a leaf of star {v}{u, z}; (iii) the star centered at u intersects the
star centered at v only at their leaves.
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Figure 26: A star-critical graph. Vertex x is star-critical as its removal would cause
the stars {a}{b, x} and {d}{c, x} to not intersect.

the star graph that depends on x to exist. It is not hard to see that the only vertices
which may be non-star-critical are simplicial vertices; for example, if there is a class of
non-adjacent simplicial vertices that have the same neighborhood, all but one of them
are certainly non-star-critical.

When detailing which vertices belong to a star, we shall describe it by
{v1}{v2, . . . , vn+1}, with v1 being its center and the other n vertices its leaves. If
the star is a single edge, choose one of the vertices to be the center and the other to
be the leaf arbitrarily. Unless noted, G will be our star graph and H the pre-image of
G. The family of all maximal stars of G is denoted by S(G). For the entirety of this
work, we assume that all of our graphs are connected.

Figure 27: A triangle-free graph (left), its square (center) and its star graph (right).
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Figure 28: A graph (left) and its star graph (right).

Before proceeding to the main results of this chapter, we make the following
remark.

Observation 83. Every vertex of degree at least two in a K3-free graph is the center
of exactly one maximal star.

The above observation immediately leads us to the property that every star graph
of a triangle-free graph is closely related to the square of one of its induced subgraphs.

Observation 84. If H is a K3-free graph with at least 3 vertices, D are its vertices of
degree at least 2 and G = KS(H), it holds that G ' H[D]2.

As such, every hardness result or polynomial time algorithm for the recognition
of squares of triangle-free graphs immediately applies to the class of star graphs of
triangle-free graphs. For an illustration of the previous observation, we refer to Fig-
ure 27. For a far more complicated star graph, we refer to Figure 28.

However, star graphs appear to be natural generalizations of square
graphs [Bondy and Murty, 1976] in the sense that, when applying the squaring opera-
tion, for each vertex v only the largest, non-induced star centered at v is selected, and
the intersection graph of these stars is generated. On the other hand, for star graphs,
every maximal induced star is used in the construction of the intersection graph. De-
spite the classes of star graphs and biclique graphs being equivalent when restricting
the pre-image domain to C4-free graphs, we were unable to deepen the study of biclique
graphs; our efforts were hindered by some of the questions posed and developed upon
in this work.
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4.2 A bound for star-critical pre-images

Our first result is an upper bound on the number of vertices of a star-critical graph in
terms of its number of maximal stars. For a graph H the difference |V (H)| − |S(H)|
could be arbitrarily large, but some vertices of H would have to be non-star-critical for
such a property to occur (e.g. if H ' K1,r there are r− 1 non-star-critical vertices). In
a sense, star-critical graphs are minimal with respect to the star graph obtained with
the application of the star operator. Recall that a maximal star sa absorbs a maximal
star sb if, by removing one leaf of sb, it becomes a substar of sa.

Theorem 85. If H is an n-vertex star-critical graph, n ≤ 1
2

(3|S(H)|2 − |S(H)|).

Proof. We begin by partitioning V (H) in K =
⋃
sa∈S(H){c(sa)} and I = V (H) \ K,

which is a subset of its simplicial vertices. Note that I is an independent set of H,
otherwise there would be an edge with endpoints {u, v} ⊆ I and either u or v would
be in K. I is further partitioned in IA and IE: a vertex is in IA if its removal causes
the absorption of at least one star, while the removal of a vertex in IE causes the
disappearance of at least one edge of the star graph.

Note that |K| ≤ |S(H)| holds because each maximal star has a center. To bound
|I|, we divide the analysis in the two situations where a vertex is star-critical.

1. Suppose that the removal of some z ∈ IA causes sa, with u = c(sa), to be absorbed
by sb. One of two possibilities arise: if z has only one neighbor then z is the only
neighbor of u with this property; therefore there are at most |K| such vertices.
Otherwise, if z has at least two neighbors, there is some v ∈ N(z) ∩ N(u) with
v ∈ sb \ sa. However, since I is an independent set, v ∈ K and, moreover, u, z
are the only neighbors of v in sa, otherwise sa \ {z} cannot be a substar of sb.
Therefore, for each maximal star sa, since H is star-critical, there is at most one
different z ∈ IA for each v ∈ (N(u) ∩ N(z) ∩ K) \ sa ⊆ K preventing v from
being added to sa. This implies that the number of vertices required to avoid
absorption is at most |S(H)|(|K \ {u}|) ≤ 2

(|S(H)|
2

)
.

2. For the other condition, each z ∈ IE could be responsible for the intersection of a
different pair of stars of H; i.e., there exists sa, sb ∈ S(H) such that sa∩sb = {z}.
Since we have

(|S(H)|
2

)
pairs, we may have as many vertices in IE.

Summing both cases, we have |I| ≤ 3
(|S(H)|

2

)
and since n = |K| + |I|, it holds that

n ≤ 3|S(H)|2−|S(H)|
2

.

Corollary 86. If H is star-critical and has no simplicial vertex, |V (H)| ≤ |S(H)|. If
the only simplicial vertices of H are leaves, |V (H)| ≤ 2|S(H)|.
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Proof. The first statement follows directly from the case where |I| is empty in the proof
of Theorem 85. The second statement is a consequence of the hypothesis that every
vertex of IA has degree one and IE = ∅.

Improvements to the bound given by Theorem 85 appear to require a complete
characterization of non-star-critical vertices. Also, a better understanding of vertices
that are required only for the intersection of some stars to be non-empty seems neces-
sary in order to approach the problem through induction. We believe that the bound
on the size of the pre-image is actually linear, however our current analysis falls short
of it. In fact, we conjecture that the constant is actually two, as formalized below.

Conjecture 1. If H is an n-vertex star-critical graph, then n ≤ 2|S(H)|.

If this result indeed holds, it would configure an important difference from other
intersection graphs. For instance, there are clique graphs which require a clique-critical
pre-image with a quadratic number of vertices Alcón [2006].

4.3 Characterization

Throughout this section, we shall denote an edge clique cover of G by Q =

{Q1, . . . , Qn}. The usual strategy in a Krausz-type characterization is to use each clique
as a vertex of the pre-image; this is also our approach. Since each vertex a ∈ V (G)

must be a star in H, it is reasonable to partition each clique as Qi ∼ {Qc
i , Q

f
i }, that is,

the vertices a ∈ Qc
i correspond to the stars of G with center in vi ∈ V (H), while the

vertices a ∈ Qf
i correspond to the stars of G where vi ∈ V (H) is a leaf. We call such

an edge clique cover a star-partitioned edge clique cover of Q.
To simplify our notation, with a slight abuse, for each a ∈ V (G), we denote its

center by c(a), i.e. c(a) is the unique i such that a ∈ Qc
i , its leaf set by F (a) = {i |

a ∈ Qf
i } and its cover by Q(a) = F (a) ∪ {c(a)}. For each pair of cliques Qi, Qj ∈ Q,

their leaf-leaf intersection is given by ff(i, j) = Qf
i ∩Q

f
j and its center-leaf intersection

by cf(i, j) =
(
Qc
i ∩Q

f
j

)
∪
(
Qf
i ∩Qc

j

)
.

Definition 87 (Star-compatibility). Given a graph G and a star-partitioned edge
clique cover Q of G, we say that Q is star-compatible if, for every a ∈ V (G), |Q(a)| ≥ 2,
∃! i such that a ∈ Qc

i and if, for every Qi, Qj ∈ Q, if Qi ∩Qj 6= ∅, either cf(i, j) = ∅ or
ff(i, j) = ∅.
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Definition 88 (Star-differentiability). Given a graph G and a star-partitioned edge
clique cover Q of G, we say that Q is star-differentiable if for every Qi ∈ Q and for
every pair {a, a′} ⊆ Qi the following conditions hold:

1. If {a, a′} ⊆ Qc
i , there exists Qj, Qk ∈ Q such that a ∈ Qf

j , a′ ∈ Qf
k , a /∈ Qf

k ,
a′ /∈ Qf

j and cf(j, k) 6= ∅. Moreover, if Qc
i ∩Q

f
j ∩Q

f
k = ∅, cf(j, k) 6= ∅.

2. If a ∈ Qc
i , a′ ∈ Qc

k and a /∈ Qf
k , then there is some j ∈ F (a) with cf(j, k) 6= ∅,

j /∈ Q(a′) and, for every j′ ∈ F (a) with cf(j′, k) = ∅, Qc
i ∩
⋂
j′ ff(j′, k) 6= ∅.

3. If a ∈ Qc
i , a′ ∈ Qc

k and a ∈ Qf
k , for every j ∈ F (a) \ {k}, cf(j, k) = ∅.

4. If {a, a′} ⊆ Qf
i and j = c(a) 6= c(a′) = k, then either Qc

i ∩ ff (j, k) 6= ∅ or
cf (j, k) 6= ∅.

Figures 29 and 30 show the four cases of Definition 88 as seen on the pre-image
of the star graph we build from Q during the proof of Theorem 90.

ij k

a a′

j′

ij k

a

a′

j′

i
jk a

a′

Figure 29: The first three cases of Definition 88, from left (first) to right (third).

i

k1j1

a′1a1

i
j2 k2

a2 a′2

Figure 30: The fourth case of Definition 88.

We emphasize that: (i) star-compatibility translates the structural properties of
stars; and (ii) star-differentiability enumerates the possible ways that two stars that
share at least one vertex are different. Note that, the “missing case”, where {a, a′} ∈ Qf

i

and c(a) = c(a′) = k is exactly the same case as 1, but with {a, a′} ∈ Qc
k instead of Qc

i .

Lemma 89. Let G be a graph and Q a star-partitioned edge clique cover of G. If Q
is star-compatible and star-differentiable then, for every pair {a, a′} ⊆ V (G), Q(a) *
Q(a′) and Q(a′) * Q(a).
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Proof. If a and a′ do not share any clique, the statement holds. Otherwise they do
share some clique, say Qi. If the pair a, a′ satisfies properties 1, 2, or 4 of Definition 88,
since i ∈ Q(a)∩Q(a′), we conclude that there exists j ∈ Q(a), k ∈ Q(a′) but j /∈ Q(a′)

and k /∈ Q(a), implying Q(a) * Q(a′) and Q(a′) * Q(a).
For property 3, however, we first conclude that there is some j ∈ Q(a) but

j /∈ Q(a′), otherwise we would have cf(j, k) 6= ∅ and ff(j, k) 6= ∅. Consequently,
Q(a) * Q(a′). To see that Q(a′) * Q(a), note that {a, a′} ⊆ Qk and, following the
same argument, we conclude that there is some j′ ∈ Q(a′) but j′ /∈ Q(a), completing
the proof.

We now present a Krausz-type characterization for the class of star graphs.

Theorem 90. An n-vertex graph G is the star graph of some graph H if and only if
there is a star-compatible and star-differentiable star-partitioned edge clique cover Q of
G with at most 1

2
(3n2 − n) cliques.

Proof. In this proof, we assume that H has m vertices, denoted by vi, and that star
sa ∈ S(H) corresponds to the vertex a ∈ V (G).

For the first direction of the statement, assume H is a star-critical pre-image of
G. For each vi ∈ V (H), let S(vi) = {sa ∈ S(H) | vi ∈ sa}, that is, the maximal stars of
H that contain vi. Clearly, we can partition these sets as S(vi) ∼ {Sc(vi), Sf (vi)}, that
is, the stars where vi is the center and where it is a leaf, respectively. Our goal is to
show that Q = {Q1, . . . , Qm}, with Qc

i = Sc(vi) and Qf
i = Sf (vi) is a star-partitioned

edge clique cover of G satisfying star-compatibility and star-differentiability which. By
Theorem 85, this is all that remains is to be proven, since |Q| = |V (H)| ≤ 1

2
(3n2 − n).

To verify that Q is a star-partitioned edge clique cover of G, first note that every
Qi is a clique of G, since the corresponding stars share at least vi ∈ V (H). For the
coverage part, every aa′ ∈ E(G) has two corresponding stars sa, sa′ ∈ S(H), which
share at least one vertex, say vi ∈ V (H), since G ' KS(H). By the construction of Q,
there is some Qi ∈ Q which corresponds to every maximal star that contains vi; this
guarantees that aa′ is covered by at least one clique of Q.

For the other properties, first take two vertices vi, vj ∈ V (H) with vivj /∈ E(H)

but S(vi)∩ S(vj) 6= ∅. Clearly, no star in S(vi)∩ S(vj) may have vi and vj in different
sides of its bipartition, thus S(vi)∩ S(vj) = Sf (vi)∩ Sf (vj). Now, suppose that vivj ∈
E(H); since they are adjacent, any star in S(vi)∩S(vj) must have vi and vj in opposite
sides of the bipartition and, thus, we have that S(vi) ∩ S(vj) =

(
Sc(vi) ∩ Sf (vj)

)
∪(

Sf (vi) ∩ Sc(vj)
)
. Since each star has a single center, the above analysis shows that Q

satisfies star-compatibility.
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For star-differentiability, let {sa, sa′} ⊆ S(vi). We break our analysis in the same
order as the one given in Definition 88.

1. If {sa, sa′} ⊆ Sc(vi) there must be at least one leaf in each star, say vj and vk,
respectively, not in the other and these leaves must be adjacent to each other,
otherwise at least one of the stars would not be maximal. That is, {a, a′} ∈ Qc

i

imply that there is Qj, Qk ∈ Q with a ∈ Qf
j , a′ ∈ Qf

k , a /∈ Qf
k , a /∈ Qf

j and
cf(j, k) 6= ∅.

2. If sa ∈ S(vi)
c, sa′ ∈ S(vk)

c and sa /∈ S(vk)
f , vivk ∈ E(H) and to keep vk from

being a leaf of sa, one leaf of sa, say vj, must also be adjacent to vk and not a leaf
of sa′ , since vi is. Now, for every vj′ ∈ sa and not adjacent to vk, there is a clear
P3 = vkvivj′ , which must be part of some maximal star. Moreover, the set of all
vj′ non-adjacent to vk will form a maximal star centered around vi along with
vk. Thus, a ∈ Qc

i , a′ ∈ Qc
k and a /∈ Qf

k , imply that there is some j ∈ F (a) with
cf(j, k) 6= ∅, j /∈ Q(a′) and, for j′ ∈ F (a) with cf(j′, k) = ∅, Qc

i ∩
⋂
j′ ff(j′, k) 6= ∅.

3. If sa ∈ S(vi)
c, sa′ ∈ S(vk)

c and sa ∈ S(vk)
f , we know that sa = {vi}{vk, . . . } and,

since vk is not adjacent to any other leaf vj of sa, we know that S(vj) ∩ S(vk) =

Sf (vj) ∩ Sf (vk) and, since vk is the center of sa′ , vj is not one of its leaves.
Therefore, a ∈ Qc

i , a′ ∈ Qc
k and a ∈ Qf

k , implies that for every j ∈ F (a) \ {k},
cf(j, k) = ∅.

4. If {sa, sa′} ⊆ Qf
i and sa ∈ Sc(vj), sa′ ∈ Sc(vk), either vjvk /∈ E(H), which induces

the existence a star {vi}{vj, vk, . . . }, or vjvk ∈ E(H), which must be part of a
star with either vj or vk as center and the other as a leaf. Hence, {a, a′} ⊆ Qf

i

and j = c(a) 6= c(a′) = k, implies that either Qc
i ∩ ff (j, k) 6= ∅ or cf (j, k) 6= ∅.

The above shows that Q is also star-differentiable, which completes this part of the
proof.

For the converse, take Q a star-partitioned edge clique cover of G satisfying star-
compatibility and star-differentiability of size at most 1

2
(3n2−n) and let H be a graph

with V (H) = {vi | Qi ∈ Q} and E(H) = {vivj | cf(i, j) 6= ∅} and let us prove that
G ' KS(H).

Take a ∈ V (G) with c(a) = i. Due to star-compatibility and the construction
of H, we know that H[{vj | j ∈ F (a)}] is an independent set of H and that sa =

{vi}{vj | j ∈ F (a)} is a star of H. Suppose, however, that sa is not maximal, that is,
there is some vk ∈ V (H) such that vivk ∈ E(H) and sb = sa ∪ {vk} is a star of H. By
the construction of H, either there is some a′ ∈ V (G) such that Q(a) ⊆ Q(a′), which
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is impossible due to Lemma 89, or some a′ ∈ cf(i, k), which we analyze below. The
following is based on the first two cases of Definition 88; the other two are impossible,
since k /∈ Q(a) and a ∈ Qc

i .

1. If a′ ∈ Qc
i , there is some Qj ∈ Q such that a ∈ Qf

j and cf(j, k) 6= ∅, which implies
that vjvk ∈ E(H) and sb is not a star of H.

2. If a′ ∈ Qc
k and a /∈ Qf

k , at least one j ∈ F (a) satisfies cf(j, k) 6= ∅ and j /∈ Q(a′).
This gives us that vjvk ∈ E(H) and sb is not a star of H.

Therefore, we conclude that a′ cannot exist, that sa is maximal and, consequently
that V (G) ⊆ V (KS(H)).

To show that V (KS(H)) ⊆ V (G), take s = {vi}L, with s ∈ S(H), and suppose
that there is some j, k ∈ L and that for every pair a ∈ cf(i, j) and a′ ∈ cf(i, k), a /∈ Qk

and a′ /∈ Qj. That is, Qi ∩Qj ∩Qk = ∅, due to star-compatibility and the hypothesis
that jk /∈ E(H). Once again, we analyze the possibilities in terms of Definition 88.

1. If c(a) = c(a′) = i, we have that cf(j, k) 6= ∅, implying that vjvk ∈ E(H),
contradicting the hypothesis that s exists.

2. If c(a) = i and c(a′) = k, there is some j′ ∈ Q(a) with cf(j, k) 6= ∅. To conclude
that j = j′, we note that, if j 6= j′, it would be required that Qc

i ∩ ff(j, k) 6= ∅,
which is impossible since Qi ∩ Qj ∩ Qk = ∅. Once again, contradicting the
hypothesis that such an s exists.

3. Trivially impossible since Qi ∩Qj ∩Qk = ∅.

4. If j = c(a) 6= c(a′) = k, either Qc
i ∩ ff(j, k) 6= ∅, which is impossible since

Qi ∩ Qj ∩ Qk = ∅, or cf(j, k) 6= ∅, implies that vjvk ∈ E(H) and that s is not a
star.

The above allows us to conclude that there is no s ∈ S(H) generated by cliques
not pairwise intersecting. Such intersection has a unique vertex of G in it due to
Lemma 89, which allows us to conclude V (KS(H)) ⊆ V (G) and, consequently, that
V (KS(H)) = V (G).

To show that E(G) ⊆ E(KS(H)), we first take an edge ab ∈ E(G). Since Q
is a star-partitioned edge clique cover of G, there is some i such that {a, b} ⊆ Qi

and, because V (G) = V (KS(H)) and the construction of H, there are corresponding
stars sa, sb ∈ S(H) with vi ∈ sa ∩ sb which guarantee that ab ∈ E(KS(H)). For
E(KS(H)) ⊆ E(G), take two intersecting stars sa, sb ∈ S(H) and note that, since
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a, b ∈ KS(H) = V (G) and Q is a star-partitioned edge clique cover of G, ab ∈ E(G)

and we conclude that E(G) = E(KS(H)), completing the proof.

We now pose a version of the decision problem for star graph recognition, which
we call Star Graph Recognition. We will further require that the output for any
algorithm for Star Graph Recognition is already star-partitioned.

Star Graph Recognition

Instance: A graph G.
Question: Is there a star-partitioned edge clique cover Q of G satisfying star-
compatibility and star-differentiability?

Theorem 91 provides a straightforward verification algorithm to check if a star-
partitioned edge clique cover is star-compatible and star-differentiable.

Theorem 91. Given a graph G of order n, there is an O(max{n2m,m2}n2m) algo-
rithm to decide if a star-partitioned family Q ⊆ 2V (G) of size m is an edge clique cover
of G satisfying star-compatibility and star-differentiability.

Proof. The first task is to determine whether or not Q is a star-partitioned edge clique
cover of G. The usual n2 algorithm that tests if each Qi is a clique suffices. To check
if Q is an edge clique cover, for each of the O(n2) edges, we test if one of the n cliques
contains it. This simple test takes O(n2m) time.

To check for star-compatibility: first, for each vertex a of G and each clique Qi,
verify if there is a single i such that a ∈ Qc

i and at least one j with a ∈ Qf
j ; afterwards,

for each pair of intersecting cliques Qi, Qj, test if cf(i, j) = ∅ or ff(i, j) = ∅. The entire
process takes O(nm2) time.

For star-differentiability, we assume that every pairwise intersection of Q has
already been computed in time O(nm2), and each query cf(j, k) and ff(j, k) takes O(1)

time. Now, for each clique Qi and for each pair of vertices {a, a′} ∈ Qi, we must check
one of the four conditions as follows.

1. If c(a) = c(a′) = i, for each pair j ∈ Q(a), k ∈ Q(a′), check if a′ /∈ Qf
j , a /∈ Qf

k

and cf(j, k) 6= ∅; this case takes O(n2).

2. If c(a) = i, c(a′) = k and a /∈ Qf
k , for each j ∈ F (a), check if either cf(j, k) 6= ∅

and j /∈ Q(a′) or cf(j, k) = ∅ and Qc
i ∩ ff(j, k) 6= ∅; this case takes O(n2m) time.

3. If c(a) = i, c(a′) = k and a ∈ Qf
k , check for each j ∈ F (a) \ {k}, if cf(j, k) = ∅,

taking O(n) time.
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4. If j = c(a) 6= c(a′) = k, we check if Qc
i ∩ ff(j, k) 6= ∅ in O(n) time, and if cf(j, k)

in O(1) time.

In the worst case scenario, we will spend O(maxn2m,m2) time for each Qi and each
pair {a, a′} ⊆ Qi, of which there are O(n2m) combinations, and conclude that the
whole algorithm takes no more than O(max{n2m,m2}n2m) time.

Together with Theorems 85 and 90, Theorem 91 implies that deciding whether
or not a graph is a star graph is in NP.

Theorem 92. Star Graph Recognition is in NP.

4.4 Properties

The next theorem uses the known result, due to Moon and Moser [1965], that a graph
of order n has at most 3n/3 maximal independent sets.

Theorem 93. If G is the star graph of an n vertex graph H, then |V (G)| ≤ n3∆(H)/3.

Proof. For every v ∈ V (H), define Hv = H[N(v)] and note that each maximal in-
dependent set of Hv might induce a maximal star of H centered around v. Since
|V (Hv)| ≤ ∆(H), we have that Hv has at most 3∆(H)/3 maximal independent sets and,
therefore, H has at most 3∆(H)/3 maximal stars centered around v. Summing for every
v ∈ V (H) we arrive at the n3∆(H)/3 bound.

The observation made in the proof of the previous theorem is quite useful when
one wants to generate S(H). In fact, we can do that with polynomial delay, i.e., the
time between outputting two maximal stars is upper bounded by a polynomial on the
size of the graph. To do so, we employ the polynomial delay algorithm for maximal
independent sets of Johnson et al. [1988].

Theorem 94. There exists an algorithm that, given a graph H on n vertices, generates
S(H) such that the time between the output of two successive members of S(H) is
bounded by a polynomial in n.

Proof. Let i(n) denote the delay between the generation of two maximal independent
sets on a graph with n vertices. First, we can test for each edge uv ∈ E(H) if {u}{v}
is a maximal star of H: this is the case if and only if u and v are a pair of true twin
vertices. After this step is done, we have all maximal stars of size two and, since there
is a polynomial number of stars of this size, we have polynomial delay. Now for each
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vertex v ∈ V (H) we use the polynomial delay algorithm of Johnson et al. [1988] to
generate all the maximal independent sets of Hv = H[N(v)], discarding all generated
independent sets of size one. Essentially, this step generates all maximal induced stars
of size at least three centered at v and, moreover, the delay between the output of two
distinct stars is at most i(n)n, since Hv may only have independent sets of size one.
Finally, this delay of i(n)n may occur for roughly each Hv, yielding a total delay of the
order i(n)n2.

Theorem 95. If G is a connected star graph, G has no cut-vertex.

Proof. If |V (G)| ≤ 4, we are done as there are only 5 graphs that satisfy these con-
straints and none of them contain a cut-vertex. They are K1, K2, K3, K4 and K4

with one missing edge (the diamond). The first three are trivial, while the last two are
shown in Figure 35.

For graphs with 5 or more vertices, suppose that there is some cut-vertex x ∈ G,
that A,B are two of the connected components obtained after removing x from G and
take a pair of vertices a ∈ V (A) ∩ N(x), b ∈ V (B) ∩ N(x). Suppose now that G =

KS(H) for some H and take the stars sa, sb, sx corresponding to a, b, x, respectively.
Since ab /∈ E(G) and ax, bx ∈ E(G), it holds that sa ∩ sx 6= ∅ and sb ∩ sx 6= ∅ but
sa ∩ sb = ∅.

If c(a) = c(x) = i and k = c(b) 6= c(x), sx and sb share at least one leaf, say vj,
since they intercept at some vertex, and vj /∈ sa. However, there is no leaf vj′ ∈ sa

adjacent to vj, otherwise there would be an edge vjvj′ ∈ E(H) and, consequently, some
star sy, corresponding to vertex y ∈ V (G), that keeps A,B connected and intercepts
sa, sb, sx. Therefore, we conclude that no leaf of sa is adjacent to vj and, since c(a) =

c(x) and vivj ∈ E(H), we conclude that vj ∈ sa, otherwise it would not be maximal,
and, consequently, vj ∈ sa ∩ sb and ab ∈ E(H), which contradicts the hypothesis that
A,B are disconnected after removing x. The case where c(x) = c(b) 6= c(a) follows the
exact same argument.

Now if c(a) 6= c(x) = i and c(x) 6= c(b), it is easy to see that vi cannot be a leaf
of both sa and sb simultaneously, otherwise vi ∈ sa ∩ sb and ab ∈ E(H). So we have
two cases to analyze:

1. If vi is a leaf of sa, vj ∈ sx ∩ sb and k = c(b), clearly sy = {vj}{vi, vk, . . . } is a
maximal star ofH that intercepts sa, sb, sx, keepingA,B from being disconnected.
The case where vi is a leaf sb is the same, and we omit it for brevity.

2. If vi not a leaf of neither sa nor sb, c(a) = j and c(b) = k, we have leaves
vj′ ∈ sa ∩ sx , vk′ ∈ sb ∩ sx which form at least two intercepting maximal stars,
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sa′ = {vj′}{vi, vj, . . . } and sb′ = {vk′}{vi, vk, . . . }, such that sa′ ∩ sa ∩ sx 6= ∅ and
sb′ ∩ sb ∩ sx 6= ∅.

These cases allow us to conclude that A,B remains connected no matter the
configuration of the intersection of the corresponding stars in H. Consequently, x
cannot exist and we complete the proof.

Theorem 96. Every edge of a star graph G is contained in at least one triangle if
|V (G)| ≥ 3.

Proof. The only connected star graph with 3 vertices is K3, so take G with |V (G)| ≥ 4.
Take a pre-image H of G, ab ∈ E(G), sa, sb ∈ S(H) the corresponding stars to a, b,
and assume that ab is not contained in any triangle of G. Since G is connected, there
is at least one x ∈ V (G) adjacent to (w.l.o.g) a, but not to b, and a corresponding
maximal star sx of H. Below, we analyze the possible intersections between sa and sb
and conclude that there is always some star sy that shares one vertex with sa and sb.

1. If c(a) = c(b) = i and the center of sx is a leaf of sa, clearly vi is not a leaf of
sx, otherwise sx ∩ sb 6= ∅, therefore there is some leaf vj ∈ sx with vivj ∈ E(H),
which must be part of at least one maximal star sy of H, from which we conclude
that sa ∩ sb ∩ sy 6= ∅, sa ∩ sx ∩ sy 6= ∅ and both ab and ax are in a triangle of G.

2. If c(a) = c(b) = i and a leaf vj of sx is a leaf of sa, either the center vk of sx is
adjacent to vi, in which case vivk ∈ E(H) and we follow the same argument as
in the previous case, or they are not adjacent, implying that there is a maximal
star sy = {vj}{vi, vk, . . . } which intercepts sa, sb, sx, which allows us to conclude
that sa, sb, sx, sy is a clique of G.

3. if i = c(a) 6= c(b) = k, there is some leaf vj ∈ sa ∩ sb. Clearly, if vivk ∈ E(H),
there is a star that intercepts both sa and sb; otherwise, vivk /∈ E(H) and we
conclude that sy = {vj}{vi, vk, . . . } ∈ S(H) intercepts sa and sb and creates a
triangle that contains ab.

The previous theorem implies that the minimum degree of any connected star
graph on at least three vertices is at least two. A natural question arises about the
vertices of degree two and the structures on the pre-image that generate them.

A pending-P4 {u, v, w, z} is an induced path on four vertices that satisfies d(u) =

1, N(v) = {u,w}, N(w) = {v, z} and N(z) is an independent set of H. A terminal
triangle is a set {u, v, z} such that N [u] = N [v] = {u, v, z}, and no other pair of
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vertices in N(z) is adjacent. In both cases, z is called the anchor of the structure. Our
next result shows that for nearly all star graphs, their degree two vertices are either
generated by pending-P4’s or terminal triangles.

Lemma 97. If H is star-critical, G = KS(H) is connected, and G is not isomorphic
to a diamond, then every vertex of degree two of G is generated by a pending-P4, or by
a terminal triangle. Moreover, for every degree two vertex a ∈ V (G), it holds that a
has a neighbor a′ which is not adjacent to another vertex of degree two.

Proof. If |V (G)| ≤ 3 the result holds, so suppose |V (G)| ≥ 4, let a be a degree two
vertex of G with N(a) = {b, d}, sa be the corresponding maximal star of H, c(sa) = v,
and u ∈ sa be one of its leaves. Since dG(a) = 2, neither v nor any of its leaves can be
contained in any other maximal star of H, aside possibly from b and d.

Suppose that sa = {u, v}. In this case, we have that both u and v are true twins,
with w ∈ NH(u). If u is simplicial, |NH(u)| = 2, otherwise a would have more than two
neighbors. If NH(u)\{v} is not an independent set, it has at least two adjacent vertices
w, z forming a K4 with u and v; regardless of the neighborhood of w and z, at least
four distinct maximal stars contain either u or v, implying dG(a) ≥ 3. If NH(u) \ {v}
is an independent set, we have two options:

1. NH(u) ⊇ {v, w, z}, in which case at least one of w or z, say w, has a neighbor other
than u and v, since H is star-critical. This configuration, however, generates a K5

in G: two stars centered at w, sa, one centered at v containing all its neighbors,
except u, and one centered at u with all its neighbors except v.

2. Otherwise, NH(u) = {v, w}. Since |V (G)| ≥ 4, w necessarily has an additional
neighbor. If NH(w) \ {u, v} is not an independent set of H, w has a pair of
adjacent neighbors x, y, which are not adjacent to u nor v. However, note that
there are at least four stars centered at w that intersect sa, contradicting the
hypothesis that a has only two neighbors in G.

From the above, we conclude that if |sa| = 2, it corresponds to an edge of a terminal
triangle.

On the other hand, suppose now that sa ⊇ {u, v, w}, and that c(sa) = v. Towards
showing that NH(v) is an independent set, suppose that v has at least one edge in its
neighborhood.

3. If no such edge is incident to u or w, then there are two maximal stars centered at
v containing {u, v, w} but, in this case, neither u nor w may have a star centered
at it and, consequently, one of them is non-star-critical.
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4. If w is adjacent to some z ∈ NH(v) but zu /∈ E(H), again there are two stars
centered at v (sa and another one containing {u, v, z}) both being adjacent to
any star that includes the edge wz. For sa to have only two neighbors, neither
u, nor v, nor w may be in another star. Since G is connected and has at least
four vertices, z must have another neighbor x. We subdivide our analysis on the
neighborhood of x:

a) If xv ∈ E(H), either x or z must be part of another maximal star; actually,
x cannot be the center of another star (note that x is part of sa, or it would
be in another star that intersects sa), so z must be part of another star, that
is, it has a neighbor y not adjacent to x; but, in this case, {z, x, y} intersects
sa, increasing the degree of a to at least three.

b) So xv /∈ E(H) and there is a star centered at z containing {v, z, x} which
does not contain w, this implies that sa intersects at least three stars.

5. If z is adjacent to both u and w, sa already intersects two maximal stars –
one containing vz and another containing {u, z, w}. Note that neither w nor u
may have another neighbor, as that would inevitably generate a third star that
intersects sa. The only possibility would be that z is part of a maximal star that
does not contain neither u, nor v, nor w. That is, every star that contains z has
it as one of its leaves (otherwise we would have leaves adjacent to u, v, and w).
This implies that NH(z) \ {u, v, w} is an independent set. However, either u or
w is non-star-critical, since its removal does not change the intersection graph, a
contradiction.

To realize that NH(v) = {u,w}, note that at most two of the neighbors of v may
have a single star centered at each of them, all others would be of degree one and,
consequently, non-star-critical.

We now show that one of the neighbors of v has degree one. To see that this is the
case, note that, if neither has degree one, both have at least one neighbor not adjacent
to v and, thus, centers of maximal stars containing v. However, neither may be in
any other star, as this would increase the degree of sa to more than two, but this is
impossible, since at least one of u and w must be in another star for G to have at least
four vertices and remain connected. For the remainder of the proof, suppose that u has
degree one. Together with the fact that v only has two neighbors, we conclude that w
must be in precisely two maximal stars, one of them with w being its center, since no
neighbor of w may be adjacent to v. This implies that NH(w) is either an independent
set or that it has at most one edge. If NH(w) has an edge xy, however, neither x



4.4. Properties 107

nor y may have a neighbor not adjacent to w, otherwise we would have another star
containing w and sa would intersect three stars. In this case, G would be precisely a
diamond. So now we have that NH(w) is also an independent set and, furthermore,
NH(w) = {z, v}, since H is star-critical. Now, the only way for w to be in more than
two stars is if there is more than one star centered at z containing w; which is possible
only if z is part of a triangle; so we also conclude that N(z) is an independent set.
This configuration is precisely a pending-P4.

To show that every vertex a ∈ V (G) with exactly two neighbors b, d has a neighbor
not adjacent to another vertex of degree two, suppose that a was generated by a
terminal triangle. In this case, the two neighbors are stars centered at the anchor of
the triangle; however, any star that intersects sb must necessarily intersect sd, since the
symmetric difference between them is precisely the vertices of sa. Thus, since G is not
a diamond, no degree two vertex may be adjacent to only one of b or d. On the other
hand, if a was generated by a pending-P4, one its neighbors, say b, is not centered at
the anchor of the structure; moreover any neighbor of b must also be adjacent to d.
Thus, regardless of the structure that generated a, either a degree two vertex touches
both b and d, or at least one of them is not adjacent to another vertex of degree two.
Towards a contradiction, suppose that there is some a′ ∈ V (G) of degree two satisfying
N(a) = N(a′). We have three possible cases:

6. If both a and a′ belong to pending-P4’s. Note that, if sa is generated by the P4

{u, v, w, z}, we have that sa′ must be formed by the P4 {u′, v′, z, w}, since sa′
must intersect the star centered at z and the star centered at w. However, this
implies that H is isomorphic to P6, since the degree of every vertex, except u and
u′, is two, and we have that G is a diamond, contradicting the hypothesis.

7. If sa belongs to a pending-P4 {u, v, w, z} and sa′ belongs to a terminal triangle,
the anchor z of the pending-P4 cannot be the same as the anchor of the terminal
triangle, as it would violate the requirement that N(z) is an independent set.
This, however, makes it impossible for a′ to be adjacent to the neighborhood of
a.

8. If both stars belong to terminal triangles, a similar analysis as the previous case
follows.

Finally, we conclude that at most one of the neighbors of a degree two vertex has
another degree two neighbor.
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Lemma 98. Let E2(G) = {uv ∈ E(G) | dG(u) = 2 or dG(v) = 2} be the set of edges
incident to at least one degree two vertex of the star graph G. Unless G is isomorphic
to a diamond or a triangle E2(G) ≤ min

{
|V (G)| − 1, 4

7
|E(G)|

}
. The bound is tight.

Proof. Let V2(G) = {v ∈ V (G) | dG(v) = 2}. By the previous lemma, we have
that for each vertex of degree two there is another vertex non-adjacent to another
degree two vertex. As such, each pair of edges of E2(G) with a common endpoint is
in one-to-one correspondence with a degree two vertex and its exclusive neighbor, i.e.,
|E2(G)| ≤ 2|V2(G)| ≤ |V (G)|−1. For the second case, for each degree two vertex v, its
exclusive neighbor has at least two other edges, otherwise the non-exclusive neighbor
would be a cut-vertex, but these edges may be between exclusive neighbors. As such,
we have that |E2(G)|+ 1

2
|E2(G)|+ 1

4
|E2(G)| ≤ |E(G)|, implying |E2(G)| ≤ 4

7
|E(G)|. For

the tightness of the bounds, the star graph of P7, the gem, satisfies both conditions.

We conclude this section with a result about the diameter of a star graph. In fact,
when considering the iterated star operator, it appears that the diameter converges to
either three or four, depending on the graph from which the process began, even though
the sequence formed by the iterated star graphs itself does not seem to converge. We
highlight that the bound of Theorem 99 is tight, as shown by the example of Figure 31.

Figure 31: Problematic case of Theorem 99. The pre-image on the left and star graph
on the right.

Theorem 99. If H is a graph with diameter k and its star graph G is not a clique,
then it holds that the diameter of G is at most

⌊
k
2

⌋
+ 2.

Proof. Let PG = {s1, . . . , sk+1} be a diametrical path of G. For the following argu-
mentation, we need to guarantee that the endpoints of the path in G have at least
two vertices in a shortest path between their corresponding centers in the pre-image
H. Note that, in the case presented in Figure 31, neither of the degree two vertices of
the star graph satisfy the aforementioned condition. Let u = c(s2), v = c(sk), PH be
a shortest path between u, v ∈ V (H) of length r. If r ≥ 2k − 3, we are done, as we
would certainly have a path in G between u and v of length at least

⌈
2k−3

2

⌉
= k − 2

and, by adding stars s1 and sk+1, we would have a path of length at least k. Otherwise,
r < 2k − 3, which directly implies that there is a path between s2 and sk of length at
most k − 3, contradicting the hypothesis that PG is a diametrical path.
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Corollary 100. If H is a graph of diameter d and Gk = Kk
S(H), for every k ≥

dlog(d+ 4)e, the diameter of Gk is either three or four, unless Gk−1 is a clique, in
which case the diameter of G is one.

4.5 Small star graphs

By the observations made in Section 4.1.1, star graphs and square graphs are quite sim-
ilar, and even coincide under specific conditions, which is the case when the pre image
is K3-free. A natural question that thus arises is if the classes are actually the same.
To see that there are star graphs which are not square graphs, Figure 32 presents a
small example of such a graph.

Figure 32: The star graph of K4 is not a square graph.

Despite not coinciding for many classes of pre-images, it could be the case that
every square graph also is a star graph, albeit for a different pre-image. The smallest
example we found of a square graph which is not a star graph is shown in Figure 33:
the square of the net. When attempting to show such a fact, without additional tools
the combinatorial explosion of possible cases rapidly becomes intractable. At the same
time, testing all graphs up to the bound given by Theorem 85 in search of a pre-image
would be completely unfeasible, as we would need to test all connected graphs with up
to 51 vertices. However, Theorem 85 presents what we believe is a very loose value for
the size of a pre-image, a claim we support with Theorem 101, its corollary, and some
experiments we performed.

Figure 33: The square of the net is not a star graph.

Theorem 101. Let H be an n-vertex graph with at least one non-star-critical vertex.
For any H ′ with n+ 1 vertices such that H is an induced subgraph of H ′, at least one
of the following holds:
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1. H ′ has non-star-critical vertices; or

2. |S(H ′)| ≥ |S(H)|+ 1.

Proof. Since H is a proper induced subgraph of H ′, let y be the vertex in V (H ′)\V (H).
If y is not a simplicial vertex, at least one star centered at y is lost, so condition 2 holds;
if y is non-star-critical or if there is some other vertex x ∈ V (H) that is non-star-critical
in H ′, condition 1 holds. So now we may safely assume that y is a star-critical simplicial
vertex. Suppose that the statement is false, i.e. that every vertex of H ′ is star-critical
and |S(H ′)| = |S(H)|; in particular, vertex x ∈ V (H), which is non-star-critical on H,
is star-critical in H ′. Before proceeding, note that if yx ∈ E(H ′), at least one of y or
x must be the center of a star containing this edge and, therefore, we have a new star
in H ′ and condition 2 is satisfied. For the remainder of the proof, let H ′′ = H \ {x}
and H∗ = H ′′ ∪ {y}. We divide our analysis in the two cases that make x star-critical
in H ′.

1. Suppose that the removal of x from H ′ causes the absorption of s′a ∈ S(H ′)

by some s∗a ∈ S(H∗), that is, (s′a \ {x}) /∈ S(H∗); this implies that |S(H∗)| <
|S(H ′)|. By the assumption that |S(H)| = |S(H ′)|, there is some sa ∈ S(H)

satisfying sa ⊆ s′a, otherwise s′a would be a new star generated by the addition of
y. Moreover, (sa \{x}) ∈ S(H ′′), since x is non-star-critical in H, and |S(H ′′)| =
|S(H)| = |S(H ′)|. However, |S(H ′′)| ≤ |S(H∗)| < |S(H ′)|, a contradiction. For
a clearer view of the double counting involved in this part of the proof, please
refer to Figure 34.

2. There are two stars s′a, s′b ∈ S(H ′) such that s′a ∩ s′b = {x}. Note that, at least
one of s′a and s′b contains y, say s′b, and we have that (s′b \{y}) /∈ S(H), otherwise
s′a, s

′
b ∈ S(H) and x would be star-critical in H. Therefore, s′b is absorbed after

the removal of y, implying |S(H ′)| > |S(H)|.

To the best of our knowledge, analogous results to Theorem 101 are not known
for clique or biclique graphs. These types of monotonicity properties are particularly
useful when looking for small examples; the following statement is a direct corollary.

Corollary 102. Let G be a k-vertex graph and Hn(k) be the set of all graphs on n

vertices that have k maximal stars. If G is not isomorphic to the star graph of any
star-critical H ∈ Hr(k) for any r < n, and every H ∈ Hn(k) is non-star-critical, then
G is not a star graph.



4.6. Concluding remarks 111

H ′′

H∗

H

H ′
−y

−x

−x

−y

Figure 34: Relationship between the graphs used in the first case of Theorem 101. The
dashed arc indicates that at least one star was absorbed and thick arcs that no stars
were absorbed.

Figure 35: The two four-vertex star graphs.

Figure 36: The four five-vertex star graphs.

The above results allowed us to implement a procedure using McKay’s Nauty
package McKay and Piperno [2014]. Instead of only looking for the square of the net
graph, we generated every star graph on k ≤ 8 vertices. In fact, for each k, no graph in
H2k+1(k) was star-critical. Figures 35, 36, and 37 present every star graph on four, five
and six vertices, respectively. There are 46 star graphs on seven vertices, and 201 star
graphs on eight vertices. Let H∗(k) denote the set of all star-critical pre-images for star
graphs on k vertices. Our procedure also listed H∗(k) for every k ≤ 8. In particular,
there are 190 graphs in H∗(4), 1056 in H∗(5), 8876 in H∗(6), 76320 in H∗(7), and
892170 in H∗(8).

4.6 Concluding remarks

This chapter introduced the class of star graphs – the intersection graphs of the induced
maximal stars of some graph. We presented various results, such as a Krausz-type
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Figure 37: The fourteen six-vertex star graphs.
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characterization for the class, a quadratic bound on the size of potential pre-images,
membership of the recognition problem in NP and a monotonicity theorem for graphs
which are not star-critical. We also presented a series of properties the members of the
class must satisfy, such as being biconnected and that every edge must belong to some
triangle. We leave two main open questions. The first, and perhaps more challenging
of the two, is the complexity of the recognition problem; for example, the complexity
of the clique graph recognition problem was left open for many decades, only being
settled recently Alcón et al. [2009] through a series of non-intuitive gadgets and other
novel characterizations. The second is a complete characterization of both star-critical
and non-star-critical vertices; in particular, non-star-critical vertices seem the biggest
obstacle one must overcome to achieve a linear bound on the size of star-critical pre-
images.

Despite our special interests in the above questions, many other directions are
available for investigation. In terms of the class of all star graphs, our best mem-
bership checking tool at the moment is generating pre-image candidates and apply
Corollary 102 of Theorem 101 to prune the search space; if our hypothesis that the
recognition problem is NP-hard is indeed true, and thus unlikely solvable in polynomial
time, then what is the best way to verify membership? In a more general context, is
there a polynomial delay algorithm that generates all star graphs of a certain order? We
have also only begun the study of the iterated star operator, and various inquiries can be
made about its properties, such as convergence/divergence criteria or other structural
parameters, like maximum/minimum degree and connectivity. A strongly related but
significantly different open topic is that of edge-star graphs, i.e., the edge-intersection
graph of the maximal stars. Edge-biclique graphs have very recently been studied
by Legay and Montero Legay and Montero [2019] and present significant differences
from the vertex-intersection biclique graph of Groshaus et al. Groshaus and Szwarcfiter
[2010]; Perhaps the interplay between the edge-star and edge-biclique graphs can yield
useful observations for both classes.





Chapter 5

Final remarks

This thesis dealt mainly with graph partitioning problems. Counted among them, are
three coloring problems, multiple generalizations of the matching cut problem, and a
broad study on a novel class of intersection graphs. The presented results vary quite
a bit in nature: there are hardness reductions, exact, parameterized and polynomial
algorithms, kernels, characterizations, and structural properties; connections with other
problems and graph classes were established, and some previous results in the literature
were significantly strengthened. The final section of the previous chapters gave an
overview of the results presented in this thesis. We summarize in this last chapter
some open problems and further research directions.

With respect to coloring problems, we presented a series of W[1]-hardness reduc-
tions for Equitable Coloring on different subclasses of chordal graphs, managing
to present a hardness result for block graphs of diameter at least four. The notable
difficulty of Equitable Coloring was already known, so our results do not come
as so surprising. Problems that are still hard when parameterized by treewidth (e.g.
List Coloring) usually have constraints beyond structural aspects of the input graph.
The search for parameterizations that allow FPT algorithms is still necessary, and it ap-
pears that reasonable such parameterizations require some parameter that captures this
non-topological flavor of the problem. Clique Coloring and Biclique Coloring,
on the other hand, haven’t been very explored in the literature, mostly because their
placement on the second level of the polynomial hierarchy makes non-parameterized al-
gorithmic analysis quite bleak, offering little to no hope of solving interesting instances
in a feasible amount of time. These last two problems are, consequently, nice targets
for further research on parameterized algorithms. Actually, W[1]-hardness proofs are
far from trivial for these problems; by their very definitions, finding a clique or biclique
coloring implies on guaranteeing that a quite large, and some time ill behaved, family
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of subsets of vertices satisfies the desired coloring constraint.
For cut problems, despite adapting many results from Matching Cut, and

even improving some of them, we leave many open questions related to d-Cut. First,
we would like to close the gap between the known polynomial and NP-hard cases
in terms of maximum degree, i.e., for each graph with maximum degree satisfying
d + 3 ≤ ∆(G) ≤ 2d + 1, we would like to how hard is it to find a d-cut. After much
effort, we were unable to settle any of these cases. We are particularly interested
in 2-Cut, where the only open case is for graphs of maximum degree equal to five.
We recall the initial discussion about the Internal Partition problem; closing the
gap between the known cases for d-Cut would yield significant advancements on the
internal partitions conjecture. As to the presented algorithms, all of them, in some
way or another, have an exponential dependency on d. Answering whether or not this
is necessary is interesting by itself, and merits further work; in particular, we would
like to know if the kernel we presented can be improved. For `-Nested Matching

Cut, we did not present nearly as many results as we did with d-Cut, but we do give
a non-trivial exact exponential algorithm. Proving analogous results would be quite
nice, but the real challenge in this problem is using the fact that what we are looking
for is actually a special matching cut, where at least one of the parts admits even more
matching cuts. Lastly, for p-Way Matching Cut, we only offer a brief discussion,
since most of the techniques we would use to prove results are analogous to the ones
we described for d-Cut. As the central open question for this problem, we highlight
the complexity of the algorithm parameterized by the number of edges crossing the
cut, for which we were unable to either provide even an XP algorithm.

Finally, we also discussed the intersection graphs of maximal stars, which we
called star graphs. We presented a series of properties of the class, a Krausz-type char-
acterization, a bound on the size of minimal pre-images, membership of the recognition
problem in NP, and even dabbled, albeit very briefly, on the iterated star operator. As
mentioned in the conclusions of Chapter 4, we have two particular interests on future
work on this graph class: (i) completely settling the complexity of the recognition
problem, which we believe to be NP-complete, and (ii) finding a linear upper bound on
the size of star-critical pre-images. This last problem is backed by our computational
experiments, where for each value 1 ≤ k ≤ 8 of maximal stars, no star-critical graph on
more than 2k vertices exists. To achieve this, we require a more thorough understand-
ing of what star-critically implies and how we can identify non-star-critical vertices.
Aside from these two problems, many other questions remain unanswered. Iterated
biclique graphs have attracted attention recently Groshaus and Montero [2013], and
iterated star graphs might benefit greatly from the reasoning strategies used in these
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studies. Also of interest is the study of the star operator under restrictions either on
the pre-image or on the image of the operator; as discussed, working on triangle-free
pre-images is all about working on square graphs. On the other hand, if we only con-
sider C4-free pre-images, we are working on (possibly part of) the intersection between
biclique and star graphs.
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