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hadas! Aos que sáıram antes, foram inspiração e esperança de que o fim chega. Aproveito
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Resumo

A modelagem estat́ıstica de dados pontuais é um problema comum e importante em di-

versas áreas do conhecimento. O processo pontual mais amplamente utilizado e o mais

comum é o processo de Poisson e, em particular, em uma de suas generalizações, sua

função de intensidade é considerada também como um processo estocástico. Este modelo

é conhecido como processo de Cox e diferentes opções para modelar a dinâmica da função

de intensidade dão origem a uma ampla gama de modelos. Apresentamos uma nova classe

de processos Cox unidimensionais, a qual é um processo de Poisson não-homogêneo em

que a função de intensidade se alterna entre diferentes formas funcionais paramétricas de

acordo com a trajetória de uma cadeia de Markov em tempo cont́ınuo. Nos referimos a

essa nova classe como processos de Cox com mudanças markovianas. Alguns resultados

e algoritmos já presentes na literatura são utilizados como base para desenvolver uma

metodologia Bayesiana para se realizar inferência exata, através de algoritmos MCMC.

A confiabilidade do algoritmo depende de uma variedade de especificações que são cuida-

dosamente abordadas. Estudos simulados e análise de dados reais são apresentados com

o objetivo de investigar a eficiência e aplicabilidade da metodologia proposta.

Palavras-chave: Inferência Bayesiana. Distribuição a posteriori exata. Processo de Cox.

Cadeia de Markov em tempo cont́ınuo.



Abstract

Statistical modelling of point patterns is an important and common problem in several

areas. Poisson process is the most common process used for this purpose and, in particular,

its generalisation considers a stochastic intensity function. This is called a Cox process

and different choices to model the dynamics of the intensity give raise to a wide range

of flexible models. We present a new class of unidimensional Cox processes in which the

intensity function is driven by parametric functional forms that switch among themselves

according to a continuous-time Markov chain. We refer to these as Markov switching Cox

processes (MSCP). Previous developments in the literature are used to develop a Bayesian

methodology to perform exact inference based on MCMC algorithms. The reliability of the

algorithm depends on a variety of specifications which are carefully addressed. Simulated

and real studies are presented in order to investigate the efficiency and applicability of

the proposed methodology.

Keywords: Bayesian inference. Exact posterior distributions. Cox process. Continuous-

time Markov chain.
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Chapter 1

Introduction

Statistical modelling of point patterns is an important and common problem in several

knowledge areas. Typically, the aim is to model the occurrences of a given event of interest

in a given region. The most widely used point process model is the Poisson process (PP),

which the number of events in a given region has Poisson distribution. This is the simplest

model, since the rate of event occurrences is constant over the observed region. That is,

the expected number of events in a sub-region is equal for any sub-region with the same

size. Furthermore, the observation points in non-overlapping regions are independent.

A possible generalisation of PP is the non-homogeneous Poisson process (NHPP), which

allows the rate to vary across the observed region. That is, the rate is a function of the

observed region and the expected number of events can be different for distinct sub-regions

with the same size. Note that in this process one sub-region may be more likely to have

more events than another. For NHPP’s, the rate is called intensity function (IF).

Several extensions for point processes have been developed to make flexible the rate

of events over the observed region, so that the model application becomes more realistic

with the problem. The Cox processes (Cox, 1955), also known doubly stochastic Poisson

processes, are an appealing generalisation of the Poisson process. A Cox process (CP) is

a non-homogeneous Poisson process in which the intensity function evolves stochastically.

While PP has a constant rate for event occurrences and the intensity function of NHPP is

a deterministic function, the CP is more flexible to model real data due to the stochastic

nature of its IF. These processes have been applied in different contexts, e.g., bursts of

rainfall (Smith & Karr, 1983), neuroscience (Amarasingham et al., 2006; Cunningham

et al., 2008), finances (Lando, 1998; Dassios & Jang, 2003) and others.
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A particular interesting example of a Cox process is the Markov Modulated Poisson

Process (MMPP) (Fischer & Meier-Hellstern, 1992), in which the intensity function is

driven by a finite state space continuous-time Markov chain (CTMC). This means that

a MMPP is a NHPP whose intensity function is a path of a CTMC, that is, the IF is

piecewise-constant and switches according to a CTMC transitions. Note that the possible

values for this intensity function are the constants in the CTMC state space. MMPP’s

have been applied in a variety of problems, e.g., web traffic (Scott & Smyth, 2003),

occurrence of a rare DNA motif (Fearnhead & Sherlock, 2006) and software reliability

(Landon et al., 2013).

An appealing and realistic generalisation of a MMPP is to allow the change of the

intensity function form over time, instead of switching only between different constants.

Thereby, we propose a novel Cox process model, based on MMPP. Rather than assuming

the state of a CTMC, the intensity function switches among different pre-defined para-

metric functional forms according to a CTMC transitions. We assume that the state

space of the CTMC only indicates which functional form the IF should adopt. We call

this as Markov switching Cox process (MSCP). Hence, while MMPP alternates stochas-

tically between homogeneous PP’s, a MSCP alternates stochastically between parametric

NHPP’s. Note that a MMPP is an specific case of a MSCP and the proposed model is

more flexible than MMPP due to the behaviour of its rate, which can change its form

over time. In this work we only consider point processes on R, therefore, the regions will

usually be interpreted as time.

We develop a Bayesian methodology to perform exact inference in these processes, via

MCMC algorithms. The term exact refers to the fact that no time discretisation approxi-

mation is assumed, only Monte Carlo errors that can be controlled. The challenging step

is to characterise the posterior distribution of the intensity function. Rao & Teh (2013)

developed a general MCMC sampling algorithm that can be applied to MMPP’s, which

is an exact and computationally efficient algorithm. Unfortunately, their algorithm can

not be applied to the class of MSCP proposed in this work. However, we shall develop

over the Rao & Teh (2013) algorithm form by adopting the same model augmentation

scheme considered by those authors, adding an auxiliary variable. Also, we propose an

improvement to sample this auxiliary variable from its posterior distribution.

This thesis is organised as follows. The Chapter 2 presents the proposed model and our
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methodology to perform inference. Also, we develop an extension of the first model and

make the necessary adjustments to perform inference, which are presented in Chapter 3.

In Chapter 4 the methodology is applied to simulated data sets, with different scenarios,

and to two real data sets to investigate its efficiency. Also, we compare our methodology

with a model that consider non-parametric forms for the intensity function. Final remarks

are presented in Chapter 5.

1.1 Markov modulated Poisson processes

The model developed in this thesis was devised from Markov modulated Poisson processes.

Therefore, here we present a brief review of this model, with its definition, an example

and Bayesian methodologies previously proposed to perform inference.

The definition of a MMPP is following.

Definition 1.1. A Markov modulated Poisson process Y := {Y (s)}s∈R+ is a non-homogeneous

Poisson process such that the intensity function λ := {λ(s)}s∈R+ is a continuous-time

Markov chain with state space E = {ǫ1, · · · , ǫ|E|}, ǫi ∈ R
+ ∀i, initial distribution π0 and

Q-matrix Q = {qij : i, j ∈ E}.

Figure 1.1 shows an example of a MMPP in [0, 100] in which the underlying CTMC

has state space {1, 3, 7}, uniform initial distribution and Q-matrix

Q =











−1/40 1/80 1/80

1/40 −1/20 1/40

1/40 1/40 −1/20











.

Also, Figure 1.1 shows the cumulative number of events over time and it is possible to

see that the rate of event occurrences is not constant over the entire interval. Furthermore,

for each observed change in the slope of the curve in the botton of Figure 1.1 may have

a change of the IF. This assumption can be confirmed with the hidden CTMC path that

generated these observations.

The transition dynamics of the CTMC is such that the chain remains on state i for

an exponentially distributed time with mean 1/|qii|. The transition probabilities among

the states are given by the normalised off-diagonal values, i.e., qij/|qii| is the transition

probability from state i to j.
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Figure 1.1: Intensity function and realisation of a MMPP. Top: the solid line is the IF
trajectory and the small circles are events of the PP. Bottom: Accumulated number of
events.

Methodologies to perform inference for MMPP have been developed and applications

in several areas show the importance of this model. Based on the observation of the

process in a compact time interval, the aim is to estimate the intensity function and the

parameters indexing the CTMC distribution. Under the Bayesian paradigm, inference

should be based on the posterior distribution of all the unknown quantities of the model.

Given the intractability of the posterior, MCMC is the most reasonable way to explore

this distribution.

Scott (1999) and Scott & Smyth (2003) propose a Gibbs sampling algorithm based

on a discrete time approximation. More specifically, the CTMC is only allowed to jump

at event times. The proposed methodology is then applied in examples with data from

banking transactions and web traffic.

Fearnhead & Sherlock (2006), on the other hand, propose an exact Gibbs sampler in

which the CTMC is sampled in two steps. First, it is sampled only at event times and

then in the intervals between them, conditional on the states at those times. The latter

is based on the algorithm to sample from CTMC bridges proposed in Hobolth & Stone

(2009). The proposed Gibbs sampling has as its main frailty the fact that its cost scales
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with the data size, which compromises its application to large datasets. The proposed

methodology is used to model the occurrence of a rare DNA motifs along the genome.

Finally, Rao & Teh (2013) develop an exact MCMC algorithm using a data augmen-

tation scheme based on uniformisation algorithm of Hobolth & Stone (2009). The main

advantage of this methodology if compared to that from Fearnhead & Sherlock (2006) is

that its cost does not scale with the data size, but rather with the smallest mean wait-

ing time of the CTMC. The CTMC is sampled in two steps. First, jump times of an

extended CTMC are sampled. Then, the transitions at those times are sampled using a

forward-filtering backward-sampling (FFBS) scheme.

The algorithm proposed in this thesis make use of the data augmentation idea from

Rao & Teh (2013), but has to deal with a complex sampling problem due to the fact that

a FFBS scheme is not viable.
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Chapter 2

Markov switching Cox processes

This chapter presents the proposed model and some of its properties as well as the method-

ology to perform exact Bayesian inference. We named the model as a Markov switching

Cox process (MSCP).

The full model specification and some examples are presented in Section 2.1. Section

2.2 presents the inference problem and the general solution for that. A detailed description

of all the MCMC steps is presented in Section 2.3. Finally, Section 2.4 brings some

strategies to boost MCMC efficiency.

2.1 The proposed model

Let {X(s)}s∈R+ be a continuous-time Markov chain with Q-matrix Qθ, initial distribution

π0 and state space E = {1, 2, · · · , |E|}, |E| ∈ N, where θ is the vector of parameters

indexing Qθ. For cleanness of notation, we shall refer to the process {X(s)}s∈R+ as X.

Now define T = (T1, T2, · · · ) as the jump times of X and Z = (Z1, Z2, · · · ) as the

corresponding sequence of visited states, i.e., Zi = X(Ti), i ∈ N, and Z0 = X(0). The

triplet (Z0, Z, T ) completely characterises the CTMC trajectory.

Let h be the surjective function h : E → K, for K = {1, 2, · · · , |K|}, |K| ∈ N, that

assigns a functional form gk to each of the states of X. Finally, define {Y (s)}s∈R+ to

be a non-homogeneous Poisson process with intensity function {λ(s,X, ψ)}s∈R+ , where

λ(s,X, ψ) = ghs(s, δT (s), ψ), hs := h(X(s)), δT (s) = max
i≥0

{Ti : Ti ≤ s}, T0 = 0 and ψ

is a parameter vector indexing the functional forms gk. We shall use λ(s) := λ(s,X, ψ),

Y := {Y (s)}s∈R+ and λ := {λ(s)}s∈R+ for cleanness of notation.
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of a unit rate PP (see Gonçalves & Franklin, 2019; Andersen et al., 1993):

L(Z0, Z, T, ψ) =
dP

dP0

(Y )

∝ e−
∫ S

0 λ(s)ds

n
∏

i=1

λ(yi)

= exp

{

−

∫ S

0

ghs(s, δT (s), ψ)ds

} n
∏

i=1

ghyi (yi, δT (yi), ψ).

2.3 The MCMC algorithm

We devise a Gibbs sampling to (approximately) sample from the posterior in (2.6). The

following blocking scheme is considered:

{U,W}, {Z0, Z, T, U} , {θ} , {ψ}.

Now note that sampling (Z0, Z, T, U) from its full conditional posterior distribution is

equivalent to sampling from the distribution of (V0, V |y, θ, ψ,W ). This is the same block-

ing scheme adopted by Rao & Teh (2013), although it is not made explicit in the paper.

Finally, note that all the full conditional posterior densities are proportional to (2.6).

2.3.1 Sampling (U,W )

We have that

π(U,W |y, Z0, Z, T, θ, ψ) ∝ π(Z0, Z, T, U,W |θ) ∝ π(U,W |Z0, Z, T, θ).

Note, from (2.6), that the observations do not depend on the virtual jumps. Also, the full

conditional distribution of the virtual jumps depend only on the CTMC trajectory and

their parameters and not on the functions gk’s. From Rao & Teh (2013), we have that

π(U,W |Z0, Z, T, θ) ∝

[

J
∏

j=0

(Ω +QZj
)|Uj |

]

e−
∫ S

0 (Ω+QX(s))ds, (2.7)

where |Uj| is the number of virtual jumps in [Tj, Tj+1), with T0 = 0 and TJ+1 = S. To

simplify the notation, the diagonal elements of Qθ are denoted by Qi := [Qθ]ii.

The dominating measure in (2.7) is the probability measure of a unit rate PP and,



19

therefore, the full conditional distribution of (U,W ) is a non-homogeneous Poisson process

with intensity function Ω+QX(s). Moreover, for each interval [Tj, Tj+1), this distribution

is a homogeneous Poisson process with rate Ω +QZj
.

Although the augmented representation of the CTMC requires only Ω ≥ max
i

{|Qi|},

we actually need to have the strict inequality to guarantee the irreducibility of the MCMC

chain (see Rao & Teh, 2013). Details of the algorithm to sample from this full conditional

are presented in Appendix A.

2.3.2 Sampling (V0, V )

We have that

π(V0, V |y, θ, ψ,W ) ∝ L(V0, V,W, ψ)π0(V0)

|W |
∏

j=1

π(Vj|Vj−1, θ), (2.8)

where L(V0, V,W, ψ) = π(y|V0, V,W, ψ). Defining y[Wj ,Wj+1) as the observed events in

[Wj,Wj+1), with W|W |+1 = S. We can factorise the likelihood term as

π(y|V0, V,W, ψ) = π(y[W0,W1)|V0)π(y[W1,W2)|V0, V1) · · · π(y[W|W |,S)|V0, V1, · · · , V|W |) (2.9)

= L0(V0)L1(V0:1) · · ·L|W |(V0, V ),

where

Lj(V0:j) := exp











−

Wj+1
∫

Wj

λ(s)ds











∏

yi∈[Wj ,Wj+1)

λ(yi),

and all terms in (2.9) are conditional on W and ψ - suppressed for cleanness of notation.

Therefore,

π(V0, V |y, θ, ψ,W ) ∝ L0(V0)L1(V0:1) · · ·L|W |(V0, V )π0(V0)

|W |
∏

j=1

π(Vj|Vj−1, θ), (2.10)

where π0 and π are densities with respect to the counting measure.

For the Markov modulated Poisson Process, the likelihood terms are independent

for each interval [Wj,Wj+1), that is, L1(V0:1) = L1(V1), L2(V0:2) = L2(V2) and so on.

Therefore, a forward-filtering backward-sampling (FFBS) scheme can be devised to sample

from the full conditional distribution of (V0, V ), as it is done in Rao & Teh (2013).
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In the case of our Markov switching Cox process, the likelihood in the interval [Wj,Wj+1)

depends on the previous effective jump of the CTMC− knowing only Vj is not enough. Re-

member that the intensity function alternates between different functional forms gk’s and

these functions restarts whenever there is an effective jump in V . Therefore, conditioned

only on times W , the likelihood in [Wj,Wj+1) is different for each (V0:j) arrangement. As

a consequence, an FFBS scheme cannot be devised to sample from this full conditional

distribution.

Note, however, that this is a finite dimensional discrete distribution and, therefore,

it is analytically possible to compute its probability function. Nevertheless, this requires

the computation of the likelihood L(V0, V,W, ψ) for every possible path of V and, there-

fore, will typically have an extremely high computational cost - O(|E||W |). A detailed

description of this algorithm is presented in Appendix A.

As an alternative, we propose a Metropolis-Hastings (MH) step in which the pro-

posal distribution samples (Vj|V0:j−1, ·) from a probability vector which is proportional

to L(V0:j)π(Vj|Vj−1), therefore, it can be simulated forward in time, requiring, for each

time, the computation of one local likelihood term and one normalising constant. Fur-

thermore, the computation of those normalising constants directly returns the value of

the acceptance probability of the MH step. The proposal distribution is as follows.

q(V0, V ) = c0L0(V0)π0(V0)c1(V0)L1(V0:1)π(V1|V0)×

c2(V0:1)L2(V0:2)π(V2|V1) · · · c|W |(V0:(|W |−1))L|W |(V0, V )π(V|W ||V|W |−1)

= c0π
∗(V0)c1(V0)π

∗(V1|V0) · · · c|W |(V0:(|W |−1))π
∗(V|W ||V|W |−1), (2.11)

where π∗ is the product of the likelihood term and density π and cj is the normalising

constant of π∗(Vj|Vj−1). Note how the proposal uses information from the data through

the local likelihoods, making it a reasonable choice. The acceptance probability of the

algorithm is given by

α = 1 ∧
π(V ∗

0 , V
∗|·)

π(V0, V |·)
q(V0, V )

q(V ∗
0 , V

∗)
= 1 ∧

|W |
∏

j=1

cj
c∗j
, (2.12)

where cj = cj(V0:(j−1)) and c
∗
j = cj(V

∗
0:(j−1)).

Note that this MH sub-chain is an independent Metropolis since the proposal does
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not depend on the previous iteration of the chain and, therefore, it is either uniformly

ergodic or not even geometrically ergodic (Mengersen & Tweedie, 1996). The following

proposition establishes that the former is true.

Proposition 2.1. The Metropolis-Hastings sub-chain defined by (2.11) and (2.12) is uni-

formly ergodic.

Proof. As it is shown in (Mengersen & Tweedie, 1996), in order to establish uniform

ergodicity for an independent MH chain, it is enough to show that the ratio
q

π
is uniformly

bounded away from zero in the state space of π.

q

π
(V0, V ) =

1

κ

|W |
∏

j=0

cj >
β

κ
,

where κ > 0 is the normalising constant of (2.10), β = min
V

∏|W |
j=0 cj and V is the trajectory

space of V |W . The fact that cj > 0, ∀j, ∀V completes the proof.

Further details of the algorithm are presented in Appendix A.

2.3.3 Sampling θ

Let J be the number of jumps of X in [0, S] and define ∆i as the total time that the

CTMC remains in state i, i.e., ∆i =
∑J

j=1;X(Tj)=i
(Tj+1 − Tj) and let Ji be the number

of times that the Markov chain visits state i, so that
∑|E|

i=1 Ji − 1 = J . Finally, let

Ji· = (Jij : j = 1, · · · , |E|) be the vector of the number of jumps from state i to state j

and note that Jii = 0, ∀i.

The parameter vector θ is associated to all entries of the Q-matrix. We define θ· = {θi :

i = 1, · · · , |E|} as the rates of the waiting times and θi· = {θij : j = 1, · · · , |E| and j 6= i}

as the transition probabilities from i. Thus,

θ = (θ1, · · · , θ|E|, θ12, · · · , θ1|E|, θ21, · · · , θ2|E|, · · · , θ|E|1, · · · , θ|E|(|E|−1))

and the Q-matrix is given by

Q =











−θ1 θ1θ12 · · · θ1θ1|E|

. . .

−θ|E|











.
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In order to sample θ, we use a collapsed Gibbs sampling step in which the set of virtual

jumps U is integrated out from the full conditional distribution of θ. This is bound to

lead to an uniformly better algorithm (see Liu, 1994). We have that

π(θ|y, Z0, Z, T, ψ) ∝ π(Z0, Z, T |θ)π(θ)

∝ exp

{

−
J+1
∑

j=1

(Tj − Tj−1)θZj−1

}[

J
∏

j=1

θZj−1
θZj−1Zj

]

π(θ). (2.13)

Prior distributions

Defining θ = {θ·, θ··}, where θ· is the vector of all θi’s and θ·· is the vector of all θi·’s,
we assume prior independence between θ· and θ··, among the θi’s and among the θi·’s,
∀i ≤ |K|.

The prior density of θ is given by

π(θ) = π(θ·, θ··) = π(θ1, · · · , θ|E|, θ1·, · · · , θ|E|·)

=





|K|
∏

i=1

fG(θi;αi, βi)I
{

θi = θi+|K|

}

fD(θi·; γi1, · · · , γi|K|)I
{

θi(i+|K|) = θ(i+|K|)i

}



×





|K|
∏

i=1

|K|
∏

j=1,j 6=i

I
{

θij = θ(i+|K|)j

}

I
{

θi(j+|K|) = θ(i+|K|)(j+|K|) = 0
}



 ,

where fG is the probability density function of a Gamma distribution and fD is the

probability density function of a Dirichlet distribution. The indicator functions give the

dependence structure of θi’s and θi·’s when there is duplication of states to allow some

funcional form restart itself. For model parsimony and identifiability, the respective entries

of the Q-matrix are set to be zero so that a change between two different functional forms

is allowed only through one of the first |K| states in E.

In order to illustrate the use of those indicator functions, consider a MSCP with

K = {1, 2} and E = {1, 2, 3, 4}, where h(1) = h(3) = 1 and h(2) = h(4) = 2. The
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Q-matrix is then written as

















−θ1 θ1θ12 θ1θ13 0

θ2θ21 −θ2 0 θ2θ24

θ1θ13 θ1θ12 −θ1 0

θ2θ21 θ2θ24 0 −θ2

















.

It is expected that several of the models to be fitted will be likely to have few changes

in the underlying CTMC. This means that not much information about parameters θi’s

may be available in the data. In those cases, it is highly recommended to adopt reasonably

informative priors, based on the scale of the expected behavior of the waiting times, in

order to avoid a non-smooth posterior and, consequently, an unstable MCMC algorithm.

This issue will be illustrate in the simulated examples in Chapter 4.

The full conditional distributions

The prior independence of θ· and θ·· implies in their independence under the full condi-

tional measure. We then have that

π(θ·|y, Z0, Z, T, ψ) ∝





|K|
∏

i=1,i 6=e

θ
Ji+Ji+|K|+αi−1

i e−θi(∆i+∆i+|K|+βi)I{θi = θi+|K|}



×

θ
Je+Je+|K|+αe−2
e e−θe(∆e+∆e+|K|+βe)I{θe = θe+|K|},

where ge, e ≤ |K|, is the last visited functional form of the intensity function. If the

model does not allow for the IF to jump from gi to itself, we assume Ji+|K| = ∆i+|K| =

0. Therefore, the θi’s, i ≤ |K|, are conditionally independent with distribution θi|· ∼

Gamma(αi + Ji + Ji+|K|, βi + ∆i + ∆i+|K|), if i 6= e, θi|· ∼ Gamma(αe + Je + Je+|K| −

1, βe +∆e +∆e+|K|), if i = e.
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Furthermore,

π(θ··|y, Z0, Z, T, ψ) ∝

=





|K|
∏

i=1

|K|
∏

j=1,j 6=i

θ
Jij+J(i+|K|)j+γij−1

ij I
{

θij = θ(i+|K|)j

}

I
{

θi(j+|K|) = θ(i+|K|)(j+|K|) = 0
}



×





|K|
∏

i=1

θ
Ji(i+|K|)+J(i+|K|)i+γi(i+|K|)−1

i(i+|K|) I
{

θi(i+|K|) = θ(i+|K|)i

}



 .

If the model does not allow for the IF to jump from gi to itself, we assume Ji(i+|K|) =

J(i+|K|)i = Jj(i+|K|) = J(i+|K|)j = 0, for all j ≤ |K|. Then, the θi·’s, i ≤ |K|, are

conditionally independent with distribution θi·|· ∼ Dirichlet(Ji1+J(i+|K|)1+γi1, · · · , Ji|K|+

J(i+|K|)|K| + γi(|K|−1), Ji(i+|K|) + J(i+|K|)i + γi|K|).

The algorithms to sample from (2.13) are described in Appendix A.

2.3.4 Sampling ψ

We have that

π(ψ|y, Z0, Z, T, θ, U,W ) ∝ L(Z0, Z, T, ψ)π(ψ)

∝ e−
∫ S

0 λ(s)ds

[

n
∏

i=1

λ(yi)

]

π(ψ). (2.14)

We assume prior independence of the ψk’s, ∀k ∈ K and, if gk is a constant than

a Gamma(αk, βk) distribution is a conjugated prior for ψk. Otherwise, no conjugated

closed-form analysis is available and we will typically consider improper uniform priors.

The prior independence of the ψk’s implies in their independence under the full con-

ditional measure. We then have that, if gk is a constant,

π(ψk|·) = e−ψk(∆k+βk)ψnk+αk−1
k ∼ Gamma(nk + αk,∆k + βk),

where nk is the number of Poisson events occurring during the time period that the IF

assumes the functional form gk.

If gk is not a constant, it is sampled in a Gaussian random walk Metropolis step with

proposal covariance matrix Σk. The choice of this matrix is crucial to have a good mixing
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of the chain and we shall use a strategy based on an adaptive Metropolis algorithm pro-

posed in Roberts & Rosenthal (2009) and it is discussed in Appendix A. The acceptance

probability of a move from ψk to ψ∗
k is given by

α = 1 ∧
L(Z0, Z, T, ψ

∗
k)π(ψ

∗
k)

L(Z0, Z, T, ψk)π(ψk)
. (2.15)

2.4 Improving the proposed MCMC algorithm

The MCMC algorithm proposed in the previous section is liable to have serious mixing

problems as S increases. We propose two adaptations to overcome this issue. Firstly, we

propose an adaptation to the model augmentation based on uniformisation approach. Sec-

ondly, we adapt the sampling step for (V0, V ) by considering a carefully chosen (random)

partition of this vector.

2.4.1 Alternative model augmentation scheme

We propose an adaptation of the model augmentation scheme based on the uniformisation

representation of a CTMC. As it was mentioned before, in order to have an irreducible

MCMC algorithm, we require Ω > max
i

|Qi|. Now note that, the greater is the value of Ω,

the greater the expected number of virtual jumps is and, in turn, the better is the mixing

of the MCMC chain. On the other hand, the greater is the number of virtual jumps, the

higher is the computational cost to sample (V0, V ). Rao & Teh (2013) provide empirical

evidence to suggest that Ω = 2max
i

|Qi| is a reasonable choice. Note, however, that the

choice of Ω depends only on the state corresponding to the smallest expected waiting

time and, therefore, leads to different local mixing properties of the MCMC algorithm

with respect to different CTMC states. Based on that, we propose an alternative model

augmentation scheme, aiming at a global optimisation of the efficiency of the sampling

step for (V0, V ), that basically considers a state-wise adaptation of the uniformisation
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idea. More specifically, we define

V0 ∼ π0,

(W1|V0 = i) ∼ Exponential(Ωi),

(V1|V0 = i) ∼ Bi· = 1i +
1

Ωi

Qi·, (2.16)

(W2 −W1|V1 = j,W1) ∼ Exponential(Ωj),

(V2|V1 = j) ∼ Bj· = 1j +
1

Ωj

Qj·,

...

where Ωi ≥ |Qi|, Qi· is the i-th row of Qθ and Bi· is a probability vector such that 1i is

a vector of zeros with the i-th element being equal to one. Qi· is the i-th row of Qθ.

Proposition 2.2. For any Ωi ≥ |Qi|, the process (V0, V,W ) defined in (2.16) is a valid

augmented representation of the CTMC (Z0, Z, T ), which has Q-matrix Qθ and initial

distribution π0.

Proof. Let W(1) be the first non-virtual jump from W and V(1) the state of V at W(1).

The density of (W(1)|V0) with respect to the Lebesgue measure is

πW(1)|V0=i(t) =
+∞
∑

n=1

πW(1)
(t|V0:n−1 = i, Vn 6= i)P (V1:n−1 = i, Vn 6= i|V0 = i)

= e−ΩitΩi(1− Bii)
+∞
∑

k=0

(ΩitBii)
k

K!

= Ωi(1− Bii)e
−Ωi(1−Bii)t = |Qi|e

−|Qi|t ∼ Exponential(|Qi|), i ∈ E.

Analogous calculations lead to (W(j)−W(j−1)|V(j−1) = i) ∼ Exponential(|Qi|), i ∈ E, j ∈

J .

We also have that

P (V(1) = j|V0 = i) =
+∞
∑

n=1

P (Vn = j|V0:n−1 = i)P (V0:n−1 = i|V0 = i)

=
+∞
∑

n=1

BijB
n−1
ii = Bij

1

1− Bii

= −
Qij

Qii

, ∀j 6= i ∈ E

and analogous calculations establish the result for (V(n)|V(n−1)).
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Finally, note that the irreducibility of the MCMC chain is achieved by making Ωi >

|Qi|.

Now note that, under this new augmentation scheme, we have that

π(U,W |Z0, Z, T ) =
π(Z0, Z, T, U,W )

π(Z0, Z, T )

=
π0(Z0)

[

∏J−1
j=0 π(U

j, Tj+1, Zj+1|Zj, Tj)
]

π(UJ , IS|ZJ , TJ)

π0(Z0)
[

∏J−1
j=0 π(Tj+1, Zj+1|Zj, Tj)

]

π(IS|ZJ , TJ)

=

[

∏J−1
j=0 π(Zj+1|Zj)π(Tj+1|Zj, Tj)π(U

j|Zj, Tj, Tj+1)
]

π(IS|ZJ , TJ)π(U
J |ZJ , TJ , IS)

[

∏J−1
j=0 π(Zj+1|Zj)π(Tj+1|Zj, Tj)

]

π(IS|ZJ , TJ)

=

[

J−1
∏

j=0

π(U j|Zj, Tj, Tj+1)

]

π(UJ |ZJ , TJ , IS), (2.17)

where Uj is the set of virtual jumps in [Tj, Tj+1) and IS := I(TJ+1 > S) so that P (IS =

1|TJ) = e−QZJ
(S−TJ ). Equation (2.17) establishes the conditional independence of U

among intervals [Tj, Tj+1). Furthermore, for j < J , the full conditional density of U j

w.r.t. the measure of a unit rate Poisson process is given by

π(U j|Zj, Tj, Tj+1) =
π(U j, Tj+1|Zj, Tj)

π(Tj+1|Zj, Tj)

=
Ω

|Uj |+1
Zj

e−ΩZj
(Tj+1−Tj)B

|Uj |
ZjZj

(1− BZjZj
)

e−(Tj+1−Tj)|QZj
|e−|QZj

|(Tj+1−Tj)

=
Ω

|Uj |+1
Zj

e−ΩZj
(Tj+1−Tj)

(

1−
|QZj

|

ΩZj

)|Uj | ( |QZj
|

ΩZj

)

e−(Tj+1−Tj)|QZj
|e−|QZj

|(Tj+1−Tj)

=
(

ΩZj
+QZj

)|Uj | e
−(ΩZj

+QZj)(Tj+1−Tj)

e−(Tj+1−Tj)
,

which implies that this is a homogeneous Poisson process with rate ΩZj
+ QZj

. For the



28

last interval [TJ , S], we have

π(UJ |ZJ , TJ , IS) =
π(UJ , IS|ZJ , TJ)

π(IS|ZJ , TJ)
=

Ω
|UJ |
ZJ

e−ΩZJ
(S−TJ )B

|UJ |
ZJZJ

e−(S−TJ )e−|QZJ
|(S−TJ )

= (ΩZJ
+QZJ

)|UJ | e
−(ΩZJ

+QZJ )(S−TJ )

e−(S−TJ )
,

which implies that this is a homogeneous Poisson process with rate ΩZJ
+ QZJ

. It is

then straightforward to adapt the Algorithm 1 in Appendix A to sample from the full

conditional distribution of (U,W ).

2.4.2 A blocking scheme to sample (V0, V )

Given that an independent proposal distribution is adopted for (V0, V ), the greater its

acceptance rate is, the better is the mixing properties of the algorithm. Nevertheless, such

rate is bound to get smaller as S gets bigger and, in turn, the efficiency of the MCMC

algorithm may be compromised. We mitigate this problem by sampling (V0, V ) in blocks,

defined by sub-intervals of [0, S]. This is not straightforward though. Firstly, there is a

trade off in terms of the number of sub-intervals to be considered since more blocks imply

in a higher autocorrelation of the chain. Secondly, a naive strategy to partition [0, S] may

defy the original purpose of the blocking strategy. For example, the partition must vary

along the iterations of the chain in order to guarantee irreducibility of the chain.

In order to take full computational advantage of the blocking scheme, we adopt two

strategies to guarantee that the full conditional distribution of each sub-interval depends

on the likelihood function only inside that interval. First, the partition of S is chosen so

that the sub-interval edges are of the form [W(b−1),W(b)), where W(b−1),W(b) ∈ T which

mean that the edges of the sub-intervals are effective jumps of the CTMC X. Second, the

proposal distribution has the restriction that W(b) is an actual change (i.e. not a virtual

jump). Details concerning when and how to partition [0, S] are discussed in Appendix A.

Figure 2.5 shows an example of how the complete observed interval could be split using

the first strategy.

LetB be the number of blocks, [W(b−1),W(b)) be the b-th block, V b = (V(b−1), · · · , V(b)−1)

and V −b = V \V b. If we consider the example in Figure 2.5, we have B = 3, [W(0),W(1)) =

[W0,W5), [W(1),W(2)) = [W5,W10), [W(2),W(3)) = [W10,W13) and V
2 = (V5, V6, V7, V8, V9).



29

0 T1 T2 T3 T4 S

W5 W6 W7 W8 W9 W10

W(0) W(1) W(2) W(3)

Figure 2.5: Example of a possible partition of the observed interval. Solid line is the IF,
the dotted lines define the partition and dots are the set W .

We have that

π(V b|y, θ, ψ,W, V −b) ∝

|W |
∏

j=(b−1)

Lj(V0:j)

(b)
∏

j=(b−1)

π(Vj|Vj−1, θ). (2.18)

The proposal distribution is the one in (2.11) but with the restriction V(b)−1 6= V(b),

i.e.,

q(V b) =





(b)−1
∏

j=(b−1)

cjπ
∗(Vj|Vj−1, θ)



 π(V(b)|V(b)−1, θ)I(V(b)−1 6= V(b)), (2.19)

where cj = cj(V0:j−1) is the normalising constant of π∗ and the last constant c(b)−1 nor-

malises the product π∗(V(b)−1|V(b)−2, θ)π(V(b)|V(b)−1, θ)I(V(b)−1 6= V(b)). The acceptance

probability of a move V b to V b∗ is then given by

α = 1 ∧

(b)−1
∏

j=(b−1)

cj
c∗j

(2.20)

and the uniform ergodicity of the new MH step is preserved.

Another possibility to sample from each block is to consider the direct computation

of the probability mass function of the respective full conditional distributions whenever

|E||Wb| is not too large.
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Chapter 3

Markov switching Cox processes

with varying starting value

The model described in Chapter 2 has the constraint that each functional form has a

unique (maybe unknown) starting value. In order to make the model more flexible for

real applications, we propose an extension of the MSCP proposed in Chapter 2 to allow

for the starting value of each functional form to vary.

3.1 The proposed model

We consider the same notation defined in the previous chapter and define the sequence of

starting values R = (R0, R1, · · · , RJ) of the IF, i.e., Rj = λ(Tj). Additionally, RT (s) :=

Rmax{i:Ti≤s}, that is, RT (s) is the starting value of the functional form assumed at time

s. The Markov switching Cox process with varying starting value (MSCPV) is defined as

follows:

Y ∼ NHPP(λ), (3.1)

λ(s) = ghs(s, δT (s), RT (s), ψ), (3.2)

h : E → K, (3.3)

(Rj|h(Zj) = k)
ind.
∼ πk, ∀j, k, (3.4)

X ∼ CTMC(π0, Qθ, E). (3.5)

where πk is some suitable prior for the starting values of gk.
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We consider an adaptation of the MH algorithm proposed in Chapter 2 with proposal

distribution given by

q(V0, V, R) = c0
π0(V0)

c0(V0)
c0(V0)L0(V0, R0)π(R0|V0, τ)×

|W |
∏

j=1

cj
π(Vj|Vj−1, θ)

cj(Vj)
cj(Vj)Lj(V0:j, R) (π(Rj|Vj, τ)I(Vj−1 6= Vj) + I(Vj−1 = Vj))

(3.8)

where cj(Vj) is the normalising constant of Lj(V0:j, R)π(Rj|Vj, τ) and cj is the normalising

constant of
π(Vj |Vj−1,θ)

cj(Vj)
. Note that when Vj corresponds to a virtual jump, there is no Rj

variable and cj(Vj) is the constant that normalises the corresponding likelihood term.

Unless Rj is the starting value of a constant function with a Gamma prior, the normal-

ising constants cj(Vj) will typically be intractable. For that reason, we consider Gamma

or discrete priors for the starting values of a constant gk and discrete priors for the re-

maining functional forms. Moreover, unless useful information is available, we assume

uniform discrete priors with supports chosen according to the scale of the IF.

We sample from (3.8) forward in time and accept a proposal (V ∗
0 , V

∗, R∗) with prob-

ability

α = 1 ∧
π(V ∗

0 , V
∗, R∗|·)

π(V0, V, R|·)
q(V0, V, R)

q(V ∗
0 , V

∗, R∗)
= 1 ∧

|W |
∏

j=1

cj
c∗j
. (3.9)

The algorithm to sample from (3.7) is described in Appendix A.

The same algorithm can be applied to blocks of (V0, V, R) defined by suitably chosen

sub-intervals. The blocks are defined in the same way as it is described in Section 2.4.

We define Rb = (R(b−1), · · · , R(b)−1) and R
−b = R \Rb. The proposal density is given by

q(V b, Rb) =

(b)−1
∏

j=(b−1)

cj
π(Vj|Vj−1, θ)

cj(Vj)
cj(Vj)Lj(V0:j, R) (π(Rj|Vj, τ)I(Vj−1 6= Vj) + I(Vj−1 = Vj))×

π(V(b)|V(b)−1, θ)I(V(b)−1 6= V(b)),

and the acceptance probability is the same as (3.9), considering the corresponding subset

of terms in the product.
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3.2.1 A more flexible approach

An extra level of hierarchy can be consider for the priors πk. In the case of the Gamma

prior, its parameters τk are assumed to be unknown and modeled according to some

suitable prior. A Gaussian random walk MH step can be used to sample from the full

conditional distribution of those parameters, which is proportional to π(R|Z0, Z, τ)π(τ).

In the case of discrete priors, we need to set the size of the support - say sk, so that

its elements τk = {τk1, . . . , τksk} are assumed to be unknown. A continuous joint prior

is adopted for τ with the truncation τk1 < . . . < τksk to avoid label switching problems.

Finally, a Gaussian random walk MH step is performed to update the components of τk

that are actually assumed as values of the Rj’s in the current iteration of the MCMC

chain.
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Chapter 4

Simulated studies and data analysis

In this chapter we present some analyses for simulated and real data to investigate the

efficiency of the methodology developed in this thesis. The algorithms are coded in Ox

(Doornik, 2009) and run in a CPU Intel Core i7-3770, 3.40GHz x 8.

4.1 Markov switching Cox processes

We consider several scenarios to apply the proposed methodology. Table 4.1 presents the

specifications of the simulated data.

Time interval n K E gk’s

Scenario 1

A [0, 100] 346

{1, 2} {1, 2}
g1 = 1 + 0.2(s− δT (s))

g2 = 1
B [0, 200] 1158
C [0, 500] 3016
D [0, 1000] 5026

Scenario 2
A [0, 200] 592

{1, 2} {1, 2, 3}
g1 = 1 + 0.2(s− δT (s))

g2 = 1B [0, 500] 1922

Scenario 3
A
B

[0, 200]
[0, 500]

999
3209

{1, 2, 3} {1, 2, 3}
g1 = 1 + 0.2(s− δT (s))
g2 = 15− 0.2(s− δT (s))

g3 = 1

Scenario 4
A
B

[0, 200]
[0, 500]

1361
3821

{1, 2} {1, 2, 3, 4}
g1 = 0.2(s− δT (s))

g2 = 15− 0.2(s− δT (s))

Scenario 5
A
B

[0, 200]
[0, 500]

738
2204

{1, 2} {1, 2, 3, 4}
g1 = 1 + 0.1(s− δT (s))
g2 = 12e−0.1(s−δT (s))

Table 4.1: Specifications of the different scenarios to be considered.

As we have discussed in Section 2.3.3, informative priors for parameters θ· are usually
required to obtain good results. This is a way to mitigate the problem of having low

information about those parameters due to the fact that the intensity function visits
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each functional form only a few times. Those priors are informative in the sense of

simply setting the scale of the problem by basically avoiding very short visiting times and

parameter values for the ψk’s in total disagreement with the scale of the IF. For scenarios

with short time intervals ([0, 100] and [0, 200]) we used informative prior for at least one

of θk’s, in particular, we set a Gamma(1, 10) prior for those parameters. This means that,

at prior, the IF remains in its k-th functional form on average ten units of time. The

Figure B.21 in Appendix B shows the density of this prior.

For the examples presented here, the functional forms are chosen to be the same ones

used to generate the data. In a real data analysis we shall use the knowledge of an

expert or with no prior knowledge about the process, we recommend to base the model

specification on some empirical estimation of the IF.

To obtain the estimated IF we define a grid on the observed interval, with size 1000,

then the posterior mean and credibility interval are computed for each point in this grid.

Figures 4.1 and 4.2 show the estimated IF for scenario 1A and 5B, respectively. The

results for all the other scenarios can be found in Appendix B. Results show a good

recovery of the IF. It supports that our algorithm works well to estimate the IF of a

MSCP with different specifications.

Figure 4.1: Scenario 1A. Blue lines: posterior mean and 95% credibility interval for the
IF. Black line: true IF. Circles: data.

We assess the convergence properties of the MCMC chains through the autocorrelation

structure of suitable unidimensional chains. We compute the inefficiency factor for each
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Figure 4.2: Scenario 5B. Blue lines: posterior mean and 95% credibility interval for the
IF. Black line: true IF. Circles: data.

of these chains, which is given by

1 + 2
∞
∑

k=1

ρk, (4.1)

where ρk is the autocorrelation of lag k. The effective sample size of a chain of length n

is given by

neff =
n

1 + 2
∑∞

k=1 ρk
. (4.2)

Thus, neff represents the size of an i.i.d. sample which has the same variance for the

Monte Carlo estimator given by the ergodic average of the chain.

We perform the convergence analysis for the chain of the log posterior density, which

is a good unidimensional summary of the whole chain. To calculate the inefficiency factor

and the effective sample size we shall use the estimated autocorrelations and truncate the

summation term in (4.1) and (4.2) up to the highest lag with significant autocorrelation.

It is not possible to assert that there is a single feature that influences autocorrelation

of the chain and computational time. Naturally, the computational time is impacted by

number of observations and observed interval length. The total computational time spent

to obtain all estimates can be seen in Appendix B.

The highest autocorrelation structure was observed for scenario 5 with observed inter-

val [0, 500] (see Table 4.2 and Figure B.19). Other scenarios with high autocorrelations

are 1C, 1D, 4A and 4B (see the ACFs in Appendix B). Although the algorithm may gen-

erate chains with higher autocorrelations, this is compensated by the low computational
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Ineff. neff Time for 100 eff.

Scenario 1

A 36.585 820 2.94s
B 21.413 934 4.26s
C 72.539 965 14.98s
D 61.881 808 27.07s

Scenario 2
A 26.596 940 3.53s
B 16.892 888 6.41s

Scenario 3
A 49.342 912 7.61s
B 45.767 874 20.40s

Scenario 4
A 64.935 770 14.84s
B 40.706 737 32.95s

Scenario 5
A 46.536 967 6.86s
B 181.644 523 58.37s

Table 4.2: Statistics for all the scenarios: inefficiency factor (Ineff.), effective sample size
and computational time spent to obtain an effective sample size of 100, in seconds.

costs, making this feasible in many applications. For example, in scenario 5B, an effective

sample size of 100 is obtained in less than a minute (see Table 4.2).

The Table 4.3 presents some posterior statistics for all parameters of scenarios 1A

and 5B. In particular, we have: mean, standard deviation (SD), percentile 2.5 (CI0.025)

and 97.5 (CI0.975), respectively. In addition, in Appendix B, the Table B.1 presents these

posterior statistics for the remaining scenarios. Note that these estimates were obtained

with respect to the effective sample sizes present in Table 4.2. Generally, the initial

values of the gk’s have their posterior means different from their true values and high

standard deviations, due to the variance of a Poisson process. Nevertheless all IF’s were

satisfactorily recovered.

Scenario Parameter True value Mean SD CI0.025 CI0.975

ψ11 1 0.7489 0.3479 0.1941 1.5563

ψ12 0.2 0.2016 0.0254 0.1513 0.2520

1 A ψ21 1 1.1330 0.3855 0.3474 1.9464

θ1 0.025 0.0582 0.0339 0.0103 0.1404

θ2 0.05 0.3267 0.2963 0.0296 1.0834

ψ11 1 0.8156 0.1741 0.4893 1.1668

5 B ψ12 0.1 0.0995 0.0041 0.0914 0.1074

ψ21 0 0.0362 0.0504 -0.0313 0.1601

Table 4.3: Posterior statistics.
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Scenario Parameter True value Mean SD CI0.025 CI0.975

ψ22 12 10.3962 1.3980 7.7258 13.1853

ψ23 -0.1 -0.1050 0.0095 -0.1254 -0.0883

θ1 0.02 0.0123 0.0061 0.0034 0.0267

θ2 0.02 0.0296 0.0148 0.0080 0.0652

5 B θ12 0.5 0.6188 0.2050 0.2001 0.9567

θ13 0.5 0.3812 0.2050 0.0433 0.7999

θ21 0.5 0.6298 0.2129 0.1986 0.9717

θ24 0.5 0.3702 0.2129 0.0283 0.8014

Table 4.3: Posterior statistics.

As expected, the posterior standard deviations for CTMC transition probability pa-

rameters are high and their credibility interval are wide. The same is true for CTMC

waiting time parameters. This is due to the lack of information on the data. Comparing

processes with the same specifications, note how the length of the credibility intervals

decrease as the observed intervals increase. Trace plots in Appendix B, suggest good

convergence.

Generally speaking, the results obtained in this section strongly suggest that the pro-

posed methodology is very efficient to sample from the posterior distribution. It is efficient

in the sense of having good estimates and being a very fast algorithm.

4.2 Markov switching Cox processes with varying start-

ing values

We now consider examples with varying stating values. Scenario 6 considers the following:

time interval [0, 200], K = {1, 2}, E = {1, 2, 3, 4}, g1 = 1+0.2(s− δT (s)) and g2 = RT (s).

A data set with 1014 events was generated. We only allow the constant functional form to

have a varying stating values, for which a discrete uniform prior on {0.1, 0.3, · · · , 5.9, 6.1}

is assumed. Informative priors for θ are now imperative, give the extra level of model

flexibility. Remember that the priors are informative in the sense of simply setting the

scale of the observed interval and waiting times. In particular, we want to avoid lots of
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jumps among different constant levels of the IF.

The Figure 4.3 shows the real and estimated IF. The Table 4.4 presents the posterior

statistics for all the parameters. The same issue for the initial value of g1 as before is

observed here, but this does not affect the efficiency in estimating the IF.

Figure 4.3: Scenario 6. Blue lines: posterior mean and 95% credibility interval for the IF.
Black line: true IF. Circles: data.

Parameter True value Mean SD CI0.025 CI0.975
ψ11 1 1.2948 0.3107 0.7281 1.9460
ψ12 0.2 0.1911 0.0136 0.1649 0.2181
θ1 0.035 0.0254 0.0147 0.0052 0.0613
θ2 0.035 0.0366 0.0212 0.0074 0.0889
θ12 0.5 0.7542 0.1918 0.2995 0.9918
θ13 0.5 0.2458 0.1918 0.0082 0.7005
θ21 0.5 0.7532 0.1924 0.2939 0.9917
θ24 0.5 0.2468 0.1924 0.0083 0.7061

Table 4.4: Posterior statistics for scenario 6.

The MCMC presents high autocorrelation structure (see the ACF in Figure B.20).

The inefficiency factor was equal 82.54 and for a 100k MCMC samples of the log posterior

density the effective sample size was 1212. Although it presents high inefficiency factor,

the algorithm takes around 1.28 minutes to draw 100 effective samples, which is quite

good, specially given the high number of observations.
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4.3 Real data analysis

4.3.1 Coal mining disasters

We apply the proposed methodology to the classic coal mining disasters data of Jarrett

(1979), consisting of the dates of 191 explosions in coal mines that killed ten or more men

in Britain between 15th March 1851 and 22th March 1962 (rescaled to [0, 112], yearly).

We observe an empirical estimation of the IF to define the functional forms and other

feature of the model to be fit (see Figure B.23 in Appendix B). The following is assumed:

K = {1, 2}, E = {1, 2, 3}, g1 = RT (s), g2 = ψ21 + ψ22(s − δT (s)), h(1) = h(3) = 1,

h(2) = 2 and (Rj|h(Zj) = 1) ∼ Uniform(0.1, 0.3, · · · , 2.9, 3.1). Thus, the model has a

constant functional form with varying value and a decreasing line with a fixed (unknown)

intercept. To avoid identifiability issues, we adopt suitable informative priors for θ and ψ’s,

more specifically: ψ21 ∼ Normal(3, 0.52), ψ22 ∼ Normal(−0.1, 0.022), θ1 ∼ Gamma(1, 10),

θ2 ∼ Gamma(1, 5). The priors for the θi·’s are Uniforms on the simplex. The densities

of these priors can be found in Figure B.21 in Appendix B. Although the priors for ψ’s

seem very informative, these choices have a reasonable variability for the intercept and

the slope according to the scale of the problem. It would be reasonable to also consider

some increasing functional form due to the behavior of the IF around times 60 and 85,

nevertheless, under the chosen specification, we can investigate how efficient the varying

constant g1 is to accommodate this behavior.

The MCMC chain runs for 50k iterations. The inefficiency factor of the log posterior

density is 20.08, leading to an effective sample size of 2490 (see the ACF in Figure B.25).

The algorithm takes around 5.52 seconds to draw 100 effective samples. The Table 4.5

and Figure B.25 (in Appendix B) present the posterior statistics and trace plots for the

parameters, respectively.

Parameter Mean SD CI0.025 CI0.975
ψ21 3.1205 0.6913 1.7872 4.4700
ψ22 -0.1098 0.0864 -0.3208 -0.0053
θ1 0.0270 0.0199 0.0025 0.0766
θ2 0.1643 0.1493 0.0150 0.5639

Table 4.5: Posterior statistics for the analysis of the coal mine data.

We compare the results obtained with the MSCPV to those obtained with a model

that assumes a non-parametric structure for the IF, proposed by Gonçalves & Gamerman
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(2018). More specifically, the IF is assumed to be a continuous function of a Gaussian

process trajectory. Whilst the autocorrelation of the log posterior density is considerably

lower for the non-parametric model, its computational cost is significantly higher, resulting

in a less computational efficient algorithm - 3.93 minutes to draw 100 effective samples.

This class of model allows the most flexible estimation for the IF and, on the other

hand, it has high computational costs. The Figure 4.4 shows the estimated IF for both

models. The estimates are similar and, naturally, smoother for the non-parametric model

for which, as expected, a better performance is observed to estimate the IF around times

70 and 100. If we consider the posterior mean of the integrated IF over the whole interval,

this is approximately 192 for both models.

Figure 4.4: Estimates of the IF for coal mine data - posterior means. Blue line: non-
parametric model. Red line: MSCPV. Circles: data.

4.3.2 Daily exchange rate variance

The second dataset that we apply the proposed methodology is the currency exchange

rate of United States dollar to Brazilian real. The dataset consists of 670 dates that the

daily exchange rate varied by more than 1%, between January 2009 and December 2018

(rescaled to [0, 120], monthly).

The following is assumed: K = {1, 2}, E = {1, 2}, g1 = RT (s) + ψ11(s − δT (s)),

such that ψ11 < 0, g2 = ψ21 + ψ22(s − δT (s)), such that ψ22 > 0, h(1) = 1, h(2) = 2

and (Rj|h(Zj) = 1) ∼ Uniform(6, 6.2, · · · , 10.8, 11). Thus, the model has a decreasing

line with varying starting value and a increasing line with a fixed (unknown) starting
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value. The empirical estimation of the IF can be seen in Figure B.26 (in Appendix

B). We adopted the following priors for θ and ψ’s: ψ11 ∼ Normal(−0.3, 0.12), ψ21 ∼

Normal(1, 0.52), ψ22 ∼ Normal(0.5, 0.12), θ1 ∼ Gamma(1, 15), θ2 ∼ Gamma(1, 20). The

priors for the θi·’s are Uniforms. The densities of these priors can be found in Figure B.22

in Appendix B.

The MCMC chain runs for 40k iterations (after burn-in) and the inefficiency factor

of the log posterior density is 66.57 (see the ACF in Figure B.27). The algorithm takes

around 1.49 minutes to draw 100 effective samples. Although it is a computational time

longer than that performed with previous data, it can also be considered quite fast, given

the high number of observations. The Table 4.6 and Figure B.27 (in Appendix B) present

the posterior statistics and trace plots for the parameters, respectively, where the trace

plots suggest a good convergence. The estimation of the IF is presented in Figure 4.5.

Parameter Mean SD CI0.025 CI0.975
ψ11 -0.3241 0.0380 -0.3903 -0.2321
ψ21 1.3887 0.5610 0.4348 2.5477
ψ22 0.5097 0.0525 0.4062 0.6117
θ1 0.0645 0.0288 0.0219 0.1330
θ2 0.1339 0.0707 0.0357 0.3049

Table 4.6: Posterior statistics for the analysis of the exchange rate data.

Figure 4.5: Estimate of the IF for exchange rate data. Blue line: posterior mean. Circles:
data.

With the proposed methodology it is also possible to make predictions, through the

posterior predictive distribution. To assess the model’s prediction we use the exchange
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rate data from January 2019 to November 2019 (11 months) for comparison. During this

time period, 49 dates in which the daily exchange rate varied by more than 1% were

observed. Note that these data are not used for the model estimation. The mean and

standard deviation of the posterior predictive distribution for the number of events in this

time period are 38.64 and 12.97, respectively. The prediction of the number of events for

a future period can be considered good, since the true value is less than one standard

deviation from the posterior predictive mean.
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Chapter 5

Final remarks

Motivated by the importance of modeling point pattern data, we proposed a novel class

of unidimensional Cox processes, referred to as Markov switching Cox process. This class

stems from the simpler, yet quite interesting, Markov modulated Poisson process. Whilst

the MMPP considers the intensity function of a non-homogeneous Poisson process to

switch among constant levels according to a continuous-time Markov chain, the MSCP

allows the IF to switch among pre-determined parametrised functional forms.

We developed a Bayesian methodology to perform exact inference in this class of point

process by devising an MCMC algorithm to sample from the posterior distribution. The

algorithm uses the data augmentation idea from Rao & Teh (2013), which is crucial for

the efficiency of the algorithm. We developed upon this idea to propose an strategy

to boost the efficiency of the algorithm. It was also proposed an extension to consider

varying starting values and provided the required adaptations from the previous MCMC

algorithm for this case.

Simulated studies were performed to investigate the efficiency of the proposed method-

ology, under different specifications. Results strongly suggested a very good performance

of the MCMC algorithm in terms of estimation and computational cost. In particular, the

computational cost is feasible to deal with very large data sets. For real data analysis, the

proposed methodology also leads to a very fast MCMC algorithm and it obtained good

results for prediction.

Although the form of the IF in the proposed models is not entirely smooth, due to

the switches, smooth estimates may be obtained through the posterior mean, since this

averages over the possible switches. This could be clearly noticed in some of the examples
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provided and in the comparison with a model that considers a continuous IF to fit a real

data set.
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Appendix A

Algorithm from Section 2.3.1

Algorithm 1 samples from the density in (2.7).

Algorithm 1 Full conditional of (U,W )

Input: S, (Z0, Z, T ), Qθ, Ω.
Output: U .
1: for j = 0 → J do

2: Sample |Uj| ∼ Poisson(Ω +QZj
).

3: Sample Uj from |Uj| independent Uniform(Tj, Tj+1) r.v.’s.

4: end for

return U = (U0 ∪ · · · ∪ UJ) (in increasing order).

Algorithm from Section 2.3.2

Algorithm 2 samples from the density in (2.10) directly. If a proposal (V0, V ) that leads

to a negative IF is sampled, this is immediately rejected.

Algorithm 2 Full conditional of (V0, V )

Input: y, (Z0, Z, T ), E, π0, gk’s, ψk’s, W , B.
Output: (V0, V ).
1: Define a (|E|1+|W |)× (1+ |W |) matrixM with all possible (V0, V ) arrangements (each

row represents a possible path).
2: for i = 1 → |E|1+|W | do

3: Compute λ(s), for all s ∈ [0, S], for (V0, V ) =Mi·.
4: if λ(s) < 0 for some s ∈ [0, S] then, make pi = 0.
5: else compute pi from (2.10), for (V0, V ) =Mi·.
6: end for

7: Sample V ′ ∼ Multinomial

(

1,
(p1,··· ,p|E|1+|W | )

∑|E|1+|W |

i=1 pi

)

.

return (V0, V ) =MV ′·.
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Algorithm 3 performs the MH step to sample from (2.10), with proposal (2.11) and

acceptance probability (2.12). The proposal is sampled forward in time, following the

sequence V ∗
j |V

∗
j−1, j = 1, · · · , |W |, and constants c∗j are computed along the way. Oc-

casionally, given the parameter vector ψ and V0:j−1, at Vj = i, for some i ∈ E, the

likelihood function may not be defined. For a proposal that defines a negative IF, we

define π∗(Vj = i|V ∗
j−1) = 0.

Algorithm 3 MH step for (V0, V )

Input: (V0, V ), y, (Z0, Z, T ), E, π0, gk, ψk’s, W , B.
Output: (V ∗

0 , V
∗).

1: Compute c = (c0, · · · , c|W |) from (2.11), for the current trajectory (V0, V ).
2: Define p = c∗0(π

∗(V0 = 1), · · · , π∗(V0 = |E|)).
3: Sample V ∗

0 ∼ Multinomial(1, p).
4: for j = 1 → |W | do
5: if gh(i)(s, δ(s, T ), ψ) < 0, for some s ∈ [Wj,Wj+1), given ψ and the sequence V0:j−1

then Set π∗(Vj = i|V ∗
j−1) = 0.

6: Define p = c∗j(π
∗(Vj = 1|V ∗

j−1), · · · , π
∗(Vj = |E| |V ∗

j−1)).
7: Sample V ∗

j ∼ Multinomial(1, p).

8: end for

9: Sample u ∼ Uniform(0, 1).

10: if u <
(

1 ∧
∏|W |

j=1
cj
c∗j

)

then return (V ∗
0 , V

∗
1 , · · · , V

∗
|W |).

11: else return (V0, V ).

In order to avoid numerical problems when computing the acceptance probability in

Algorithm 3, we compute the logarithm of this probability as follows.

ln cj = ln





|E|
∑

i=1

exp {ln cji − ln cjm}



+ ln cjm.

where cjm = max{cj1, · · · , cj|E|} and cji = π∗(Vj = i|Vj−1).

Algorithm from Section 2.3.3

Algorithm 4 samples from the density in (2.13) in the general case in which jumps between

the same functional form is allowed.
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Algorithm 4 Full conditional of θ

Input: S, (Z0, Z, T ), α = {αi : i ∈ K}, β = {βi : i ∈ K}, γ = {γij : i ∈ K, j ∈ K}.
Output: θ.
1: for i = 1 → |K| do
2: Define ∆i =

∑J

j=1 (Tj+1 − Tj) (I{Zj = i}+ I{Zj = i+ |K|}).

3: Define Ji =
∑J

j=0 (I{Zj = i}+ I{Zj = i+ |K|}).

4: Define Ji· =
(

∑J

j=1 (I{Zj = 1|Zj−1 = i}+ I{Zj = 1|Zj−1 = i+ |K|}) , · · · ,
∑J

j=1 (I{Zj = |K||Zj−1 = i}+ I{Zj = |K||Zj−1 = i+ |K|}) ,
∑J

j=1 (I{Zj = i+ |K||Zj−1 = i}+ I{Zj = i|Zj−1 = i+ |K|})
)

.

5: if VJ = i or VJ = i+ |K| then Sample θi ∼ Gamma(αi + Ji − 1, βi +∆i).
6: else Sample θi ∼ Gamma(αi + Ji, βi +∆i).

7: Sample θ∗
i· ∼ Dirichlet(Ji· + γi·).

8: if i+ |K| ∈ E then

9: Set θ(i+|K|)i = θi(i+|K|).
10: for j = 1 → |K| do
11: Set θ(i+|K|)j = θij.
12: Set θi(j+|K|) = θ(i+|K|)(j+|K|) = 0.

13: end for

return θ = (θ·, θ··).

Algorithm from Section 2.3.4

Each ψk is sampled separately. If gk is a constant function, the full conditional distribution

of ψk is a Gamma distribution. For the other cases, ψk is sampled in a Gaussian random

walk MH step as described in Algorithm 5. If a proposal ψk that leads to a negative IF

is sampled, this is immediately rejected.

Algorithm 5 MH step for ψk

Input: ψk, proposal covariance matrix Σk, y, S, (Z0, Z, T ).
Output: ψk.
1: Sample ψ∗

k ∼ Normal(ψk,Σk).
2: if gk(s, δ(s, T ), ψ

∗
k) < 0, for some s ∈ Sk then Set L(Z0, Z, T, ψ

∗
k) = 0.

3: Sample u ∼ Uniform(0, 1).

4: if u <
(

1 ∧
L(Z0,Z,T,ψ

∗
k
)π(ψ∗

k
)

L(Z0,Z,T,ψk)π(ψk)

)

then return ψ∗
k.

5: else return ψk.

The choice of the covariance matrix is based on an adaptive random walk Metropolis

algorithm proposed in Roberts & Rosenthal (2009). We calibrate the MH proposal to

obtain nearly reasonable acceptance rates - from around 0.44 in one dimension to around

0.234 in high (>4) dimensions.
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Basically, the covariance matrix of the proposal is calibrated to be proportional to the

empirical covariance matrix of the last N iterations of the chain, for some suitable N .

This is done until a reasonable acceptance rate is achieved.

Algorithm from Section 2.4.2

The partition of the observed time interval to sample (V0, V ) is based on the MH global

acceptance rate. First, we draw N MCMC iterations sampling (V0, V ) over the whole

time interval and compute the empirical acceptance rate. If this is less than 0.25, we

make B = B + 1 and run another N MCMC iterations. This strategy is repeated until

an acceptance rate greater than 0.25 is achieved. Depending on the example a threshold

other than 0.25 may be more suitable.

In order to define a partition with B blocks, we take the Tj’s which are the closest to the

Wi’s with respective values of i that are the closest to |W |/B, 2|W |/B, . . . , (B−1)|W |/B.

Algorithm details of Section 3.2

Algorithm 6 MH step for (V0, V, R)

Input: (V0, V, R), y, E, π0, gk, ψk’s, τk’s, W , B.
Output: (V0, V, R).
1: Compute the vector c = (c0, · · · , c|W |) from (3.8) for the current values of (V0, V, R).
2: for k = 1 → |K| do
3: Compute c∗0(V0 = k).

4: end for

5: Define p = c∗0

(

π0(V0=1)
c0(V0=1)

, · · · , π0(V0=|K|)
c0(V0=|K|)

)

.

6: Sample V ∗
0 ∼ Multinomial(1, p).

7: Sample R∗
0 from the density or probability vector c0(V0)L0(V0, R0)π(R0|V0, τ).

8: for j = 1 → |W | do
9: for k = 1 → |K| do
10: Compute c∗j(Vj = k).

11: end for

12: Define p = c∗j

(

π(Vj=1|Vj−1,θ)

cj(Vj=1)
, · · · ,

π(Vj=|K||Vj−1,θ)

cj(Vj=|K|)

)

.

13: Sample V ∗
j ∼ Multinomial(1, p).

14: Sample R∗
j from the density or probability vector

cj(Vj)Lj(V0:j, R)(π(Rj|Vj, τ)I(Vj−1 6= Vj) + I(Vj−1 = Vj)).

15: end for

16: Sample u ∼ Uniform(0, 1).

17: if u <
(

1 ∧
∏|W |

j=1
cj
c∗j

)

then return (V ∗
0 , V

∗
1 , · · · , V

∗
|W |, R

∗
1, · · · , R

∗
J).

18: else return (V0, V, R).
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Appendix B

This appendix presents some results from the simulation studies and real data discussed

in Chapter 4.

The Table B.1 presents the posterior statistics for all the parameters of each scenario.

Tables B.2 − B.6 show some results of the algorithm specifications - the number of itera-

tions to calibrate the random walk proposals; the number of blocks obtained from splitting

the observed time interval; acceptance rates for (V0, V ) and ψk’s after calibration; total

number of iterations; burn-in ; total computational time. Note that if there is more than

one interval, we report the acceptance rate of V b for each interval.

Scenario Parameter True value Mean SD CI0.025 CI0.975

ψ11 1 0.7489 0.3479 0.1941 1.5563

ψ12 0.2 0.2016 0.0254 0.1513 0.2520

1 A ψ21 1 1.1330 0.3855 0.3474 1.9464

θ1 0.025 0.0582 0.0339 0.0103 0.1404

θ2 0.05 0.3267 0.2963 0.0296 1.0834

ψ11 1 0.6581 0.2443 0.2548 1.1985

ψ12 0.2 0.1947 0.0109 0.1724 0.2160

1 B ψ21 1 1.0976 0.2791 0.5790 1.6855

θ1 0.025 0.0412 0.0205 0.0105 0.0898

θ2 0.05 0.2831 0.2215 0.0418 0.8567

ψ11 1 0.6970 0.3434 0.2036 1.5264

ψ12 0.2 0.2095 0.0064 0.1971 0.2224

1 C ψ21 1 1.0300 0.0806 0.8765 1.1931

Table B.1: Posterior statistics.
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Scenario Parameter True value Mean SD CI0.025 CI0.975

θ1 0.025 0.0234 0.0110 0.0073 0.0500

θ2 0.05 0.0360 0.0256 0.0082 0.1047

ψ11 1 0.7328 0.2930 0.2465 1.3551

ψ12 0.2 0.2034 0.0052 0.1934 0.2135

1 D ψ21 1 1.0417 0.0531 0.9392 1.1463

θ1 0.025 0.0214 0.0075 0.0093 0.0384

θ2 0.05 0.0269 0.0110 0.0108 0.0534

ψ11 1 1.3918 0.6141 0.4191 2.7641

ψ12 0.2 0.2176 0.0312 0.1682 0.2938

ψ21 1 1.1485 0.1335 0.8995 1.4167

2 A θ1 0.035 0.0621 0.0308 0.0174 0.1352

θ2 0.035 0.0480 0.0341 0.0095 0.1363

θ12 0.5 0.6362 0.2366 0.1550 0.9837

θ13 0.5 0.3638 0.2366 0.0163 0.8450

ψ11 1 1.7559 0.4479 1.0238 2.7733

ψ12 0.2 0.1981 0.0106 0.1775 0.2185

ψ21 1 1.0422 0.0765 0.9054 1.1889

2 B θ1 0.035 0.0353 0.0132 0.0144 0.0651

θ2 0.035 0.0256 0.0121 0.0078 0.0543

θ12 0.5 0.6549 0.1976 0.2464 0.9723

θ13 0.5 0.3451 0.1976 0.0277 0.7535

ψ11 1 0.7171 0.4950 0.0727 1.9143

ψ12 0.2 0.2345 0.0205 0.1926 0.2729

ψ21 15 14.1803 0.8781 12.4642 15.8678

ψ22 -0.2 -0.1878 0.0233 -0.2313 -0.1415

ψ31 1 1.0082 0.1592 0.6984 1.3255

θ1 0.025 0.0449 0.0278 0.0067 0.1117

3 A θ2 0.025 0.0356 0.0247 0.0044 0.0974

θ3 0.05 0.0690 0.0502 0.0117 0.1985

Table B.1: Posterior statistics.
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Scenario Parameter True value Mean SD CI0.025 CI0.975

θ12 0.5 0.3080 0.2350 0.0112 0.8649

θ13 0.5 0.6920 0.2350 0.1351 0.9888

θ21 0.5 0.4034 0.2750 0.0155 0.9490

θ23 0.5 0.5966 0.2750 0.0510 0.9845

θ31 0.5 0.6582 0.2256 0.1655 0.9825

θ32 0.5 0.3418 0.2256 0.0175 0.8345

ψ11 1 1.1197 0.3279 0.5508 1.8495

ψ12 0.2 0.2102 0.0104 0.1893 0.2304

ψ21 15 15.2679 0.5536 14.1510 16.3505

ψ22 -0.2 -0.2100 0.0141 -0.2374 -0.1810

ψ31 1 0.9998 0.1098 0.7854 1.2151

θ1 0.025 0.0296 0.0131 0.0095 0.0603

3 B θ2 0.025 0.0191 0.0109 0.0040 0.0453

θ3 0.05 0.0438 0.0260 0.0110 0.1071

θ12 0.5 0.4711 0.1943 0.1251 0.8551

θ13 0.5 0.5289 0.1943 0.1449 0.8749

θ21 0.5 0.4946 0.2521 0.0500 0.9503

θ23 0.5 0.5054 0.2521 0.0497 0.9500

θ31 0.5 0.6989 0.1985 0.2552 0.9832

θ32 0.5 0.3011 0.1985 0.0168 0.7448

ψ11 0 0.3122 0.1893 0.0249 0.7396

ψ12 0.2 0.1990 0.0149 0.1689 0.2282

ψ21 15 13.5801 0.7167 12.1284 14.9576

ψ22 -0.2 -0.1855 0.0315 -0.2499 -0.1282

4 A θ1 0.035 0.0306 0.0179 0.0063 0.0748

θ2 0.035 0.0463 0.0272 0.0099 0.1127

θ12 0.5 0.4793 0.2249 0.0829 0.9008

θ13 0.5 0.5207 0.2249 0.0992 0.9171

θ21 0.5 0.4229 0.2248 0.0646 0.8862

Table B.1: Posterior statistics.
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Scenario Parameter True value Mean SD CI0.025 CI0.975

θ24 0.5 0.5771 0.2248 0.1138 0.9354

ψ11 0 0.2996 0.1765 0.0331 0.6902

ψ12 0.2 0.2042 0.0089 0.1851 0.2203

ψ21 15 14.2334 0.4240 13.3766 15.0505

ψ22 -0.2 -0.1799 0.0117 -0.2022 -0.1563

4 B θ1 0.035 0.0261 0.0103 0.0098 0.0498

θ2 0.035 0.0235 0.0103 0.0079 0.0475

θ12 0.5 0.6426 0.1823 0.2655 0.9456

θ13 0.5 0.3574 0.1823 0.0544 0.7345

θ21 0.5 0.5915 0.2071 0.1838 0.9488

θ24 0.5 0.4085 0.2071 0.0512 0.8162

ψ11 1 0.5760 0.2628 0.1244 1.1158

ψ12 0.1 0.1089 0.0073 0.0944 0.1229

ψ21 0 0.0591 0.0823 -0.0641 0.2578

ψ22 12 8.6111 2.7194 4.2712 14.4711

ψ23 -0.1 -0.1076 0.0190 -0.1496 -0.0737

5 A θ1 0.02 0.0148 0.0106 0.0018 0.0412

θ2 0.02 0.0337 0.0240 0.0041 0.0945

θ12 0.5 0.6557 0.2385 0.1500 0.9863

θ13 0.5 0.3443 0.2385 0.0137 0.8500

θ21 0.5 0.6567 0.2383 0.1531 0.9866

θ24 0.5 0.3433 0.2383 0.0134 0.8469

ψ11 1 0.8156 0.1741 0.4893 1.1668

ψ12 0.1 0.0995 0.0041 0.0914 0.1074

ψ21 0 0.0362 0.0504 -0.0313 0.1601

ψ22 12 10.3962 1.3980 7.7258 13.1853

ψ23 -0.1 -0.1050 0.0095 -0.1254 -0.0883

5 B θ1 0.02 0.0123 0.0061 0.0034 0.0267

θ2 0.02 0.0296 0.0148 0.0080 0.0652

Table B.1: Posterior statistics.
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Scenario Parameter True value Mean SD CI0.025 CI0.975

θ12 0.5 0.6188 0.2050 0.2001 0.9567

θ13 0.5 0.3812 0.2050 0.0433 0.7999

θ21 0.5 0.6298 0.2129 0.1986 0.9717

θ24 0.5 0.3702 0.2129 0.0283 0.8014

Table B.1: Posterior statistics.

B.1 Scenario 1

A B C D
iterations 5k 11k 5k 7k

interval blocks 1 2 2 2

accept. rate (V0, V ) 0.3523
1st: 0.5401

2nd: 0.4714
1st: 0.58750

2nd: 0.73839
1st: 0.4831

2nd: 0.4850
accept. rate ψ 0.2597 0.2975 0.3440 0.3393

iterations MCMC 30k 25k 70k 60k
burn-in 0 5k 0 10k

Total computational time 24.11s 39.79s 2m24.57s 3m38.71s

Table B.2: Computational results for scenario 1.
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(a) Trace plot and ACF for the log posterior density.

(b) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.1: Results for scenario 1A.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The
black line is the true IF.

(b) Trace plot and ACF for the log posterior density.

(c) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.2: Results for scenario 1B.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

(c) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.3: Results for scenario 1C.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

(c) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.4: Results for scenario 1D.
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B.2 Scenario 2

A B
iterations 7k 5k

interval blocks 2 2
accept. rate (V0, V ) 1st: 0.6082; 2nd: 0.6499 1st: 0.6125; 2nd: 0.6554

accept. rate ψ 0.3198 0.3571
iterations MCMC 25k 25k

burn-in 0 10k
Total computational time 33.14s 56.94s

Table B.3: Computational results for scenario 2.

(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.5: Results for scenario 2A.
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Figure B.6: Results for scenario 2A: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.

Figure B.7: Results for scenario 2B: Posterior mean and 95% credibility interval (blue
lines) for the IF. The black line is the true IF.
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(a) Trace plot and ACF for the log posterior density.

(b) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.8: Results for scenario 2B.
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B.3 Scenario 3

A B
iterations 9k 9k

interval blocks 1 1
accept. rate (V0, V ) 0.4595 0.3369

accept. rate ψ ψ1: 0.3129; ψ2: 0.3520 ψ1: 0.3184; ψ2: 0.3782
iterations MCMC 45k 55k

burn-in 0 15k
Total computational time 1m09.40s 2m58.27s

Table B.4: Computational results for scenario 3.

(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.9: Results for scenario 3A.



63

Figure B.10: Results for scenario 3A: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.11: Results for scenario 3B.
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Figure B.12: Results for scenario 3B: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.

B.4 Scenario 4

A B
iterations 15k 17k

interval blocks 1 2
accept. rate (V0, V ) 0.5168 1st: 0.6420; 2nd: 0.6540

accept. rate ψ ψ1: 0.3738; ψ2: 0.3042 ψ1: 0.2705; ψ2: 0.3510
iterations MCMC 55k 50k

burn-in 5k 20k
Total computational time 1m54.26s 4m02.81s

Table B.5: Computational results for scenario 4.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.13: Results for scenario 4A.



67

Figure B.14: Results for scenario 4A: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.15: Results for scenario 4B.
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Figure B.16: Results for scenario 4B: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.

B.5 Scenario 5

A B
iterations 11k 5k

interval blocks 1 1
accept. rate (V0, V ) 0.7580 0.5653

accept. rate ψ ψ1: 0.3731; ψ2: 0.3574 ψ1: 0.3921; ψ2: 0.3555
iterations MCMC 50k 100k

burn-in 5k 5k
Total computational time 1m06.38s 5m05.27s

Table B.6: Computational results for scenario 5.
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(a) Posterior mean and 95% credibility interval (blue lines) for the IF. The black line is the
true IF.

(b) Trace plot and ACF for the log posterior density.

Figure B.17: Results for scenario 5A.
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Figure B.18: Results for scenario 5A: Trace plots for parameters ψ and θ. The red line is
the parameter true value and the blue line is the posterior mean.
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(a) Trace plot and ACF for the log posterior density.

(b) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.19: Results for scenario 5B.
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B.6 Scenario 6

(a) Trace plot and ACF for the log posterior density.

(b) Trace plots for parameters ψ and θ. The red line is the parameter true value and the
blue line is the posterior mean.

Figure B.20: Results for scenario 6.
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B.7 Prior specifications

(a) Gamma(1, 10). (b) Gamma(1, 5).

(c) Normal(3, 0.52). (d) Normal(−0.1, 0.022).

Figure B.21: Probability densities.
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(a) Gamma(1, 15). (b) Gamma(1, 20).

(c) Normal(−0.3, 0.12). (d) Normal(1, 0.52).

(e) Normal(0.5, 0.12).

Figure B.22: Probability densities.
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B.8 Real data analysis

Figure B.23: Empirical estimation of the IF for coal mine data.

Figure B.24: Trace plot and ACF for the log posterior density using a non-parametric
model for the coal mine data.



77

(a) Trace plot and ACF for the log posterior densities.

(b) Trace plots for parameters ψ and θ. The blue line is the posterior mean.

Figure B.25: Results for the coal mine data.
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Figure B.26: Empirical estimation of the IF for exchange rate data.

(a) Trace plot and ACF for the log posterior densities.

(b) Trace plots for parameters ψ and θ. The blue line is the posterior mean.

Figure B.27: Results for the exchange rate data.
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