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RESUMO

O objetivo desta Tese é estudar as Distribuições Holomorfas de codimensão um
e grau d em P3 que são especiais ao longo de uma curva suave e irredutível
C ⊂P3. Primeiramente, definimos o resíduo de uma distribuição F ao longo de

C . Este resíduo é determinado via resíduo de Grothendieck em pontos isolados e pode
ser interpretado como a contribuição numérica que a curva C oferece ao ser deformada
em pontos singualres. O segundo objetivo é caracterizar tais distribuições através de seu
esquema singular.

Palavras-Chave: Distribuições Holomorfas, Distribuições Especiais, Resíduos.
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ABSTRACT

The aim of this Thesis is to study codimension one Holomorphic Distributions on
P3 of degree d which are special along the an irredicible smooth curve C ⊂ P3.
Firstly, we define residue of a distribution F along C . This residue is determined

via the Grothendieck’s residues at singular points and can be interpreted as a numerical
contribution offered by C when deformed into singular points. Secondly, we characterize
these distributions by their singular scheme.

Key words: Holomorphic Distribution, Special Distribution, Residues.
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INTRODUTION

In this thesis, we will study the codimension one holomorphic distributions F of
degree d in P3 which singular scheme contains a smooth irreducible curve C . The
main objectives of this work are: to define the residue F along C and characterize

such distributions via its singular scheme.

In the chapter 1, we describe briefly the tools used in the proofs of the results of this
work, always indicating the references for more details.

In the chapter 2, we define the main object of study of this work which are the
special Holomorphic Distributions along the curve C ⊂Sing(F ). We opened a parenthesis
to talk about the main motivation that led us to study this type of distribution. Let
F be a holomorphic foliation by curves on P3 of degree d induced by global section
X ∈ H0(P3,TP3(d−1)). If the singular scheme of F contains only isolated closed points

{p1, . . . , pk}, then, the number nF =
k∑

i=1
µ(F , pi), where µ(F , pi) denotes Milnor’s number

of F in each singularity is known (see [16]), to namely, nF = d3+d2+d+1. On the other
hand, suppose now that the singular scheme of F be the following disjoint union

Sing(F )=C ∪ {p1, . . . , pk}.

In this case, is it possible to get nF ? The answer is yes and was answered by Gilcione
Nonato Costa when the foliation of P3 is special along C (see [5]). Let π : P̃n −→ Pn

be the blow up morphism of Pn along C . We recall that a foliation by curves F on
Pn is special along C if the foliation F̃ on P̃n obtained by F via π has only isolated
singularities, and the exceptional divisor E is an invariant set of F̃ . The demonstration
consists of exploding P3 and obtaining a foliation on P̃3 whose singular scheme contains
only isolated points. In this case, the author showed that nF is the difference between
the total number of singularities of F̃ in P̃3 and the number of singularities of F̃ over
exceptional divisor E, because π : P̃3 −→P3 is biholomorphism in the complement of E.
In order to calculate all these numbers he also used the Baum-Bott formula (again, [16])
relates that the number of singularities of a foliation in P3 with the Chern classes of the
objects involved.

By dualizing the situation described above, Joanoulou (see [9], Proposition 2.26)
showed that the singular scheme of a codimension one foliation F of degree d on P3

induced by global section ω ∈ H0(P3,Ω1
P3(d+2)) always has a codimension two component

1
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and therefore, the foliation will never be special along this component. On the other hand,
non-integrable distributions on P3 can be special along curves similary to foliations by
curves. At this point, the question is:

Is it possible to dualize the work of [5]? That is, what we could say about nF when F

is a distribution? It is possible to define the residue of F along C ?

Izawa’s (see, [20], Theorem 2.2) papper plays a very important role in this part of the
work, which tells us how we can get the total sum of residues from F in each isolated
singularity. Thus, with the aid of this theorem, we define a residue of distribution F

along C and obtain an upper bound for this number. Morever, we give a upper bound
to nF . As not every global section ω ∈ H0(P3,Ω1

P3(d+2)) induces a special distribution
along curve, to get this upper bound, we need a result, which we call the Lemma of
Perturbation (see Lemma 2.14).

Lema of Perturbation. Let F be a non-integrable codimension one distribution on
P3 of degree d whose singular set is the following disjoint union of proper closed subsets

Sing(F )=C ∪ {p1, . . . .pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn.
Then there exists a one-parameter family of holomorphic distributions, denoted by Ft,
defined on P3 with t ∈D= D(0,ε), for ε> 0 sufficiently small such that

1) F0 =F e deg(Ft)= deg(F ), ∀t ∈D,

2) C ⊂Sing(Ft), ∀t ∈D,

3) Ft is special along C , ∀t ∈D\{0},

4) multC (Ft)=multC (F ) if F is dicritical or non dicritical,

5) multE(π∗Ft)=
{

multE(π∗F ), if F is non dicritical,
multE(π∗F )−1, if F is dicritical.

We will use the Perturbation Lemma to prove our first result:

Theorem I. Let F be a non integrable codimension one distribution on P3 of degree
d whose singular set is a disjoint union of proper closed subsets

Sing(F )=C ∪ {p1, . . . , pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn. Then

i)
n∑

i=1
Res(F , pi)≥ d3 +2d2 +2d− (`+3)χ(C )+deg(C )

[
(d+2)(3−3`2)+4`(`+1)

]
+ (

3`−`3)(χ(C )−4deg(C )
)−NG ,

2
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ii)

Res(F ,C )≤ (`+3)χ(C )−deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
− (

3`−`3)(χ(C )−4deg(C )
)+NG ,

where deg(C ), χ(C ), denote respectively , the degree and Euler’s characteristic of C ,
` is the order of annulment over an exceptional divisor and NG denote the number of
embedded closed points of C counted with multipilicities.

In chapter 3, motivated by the work of Araújo and Corrêa where the authors char-
acterize distributions in Pn uniquely determined by their singular scheme, (see [6],
theorems 1.2 and 1.4) we sought the characterization of special distributions via their
singular scheme. In order, to achieve this characterization, we need to guarantee the
vanishing of the certain cohomology groups and, for that, the following tools played
important roles in this part of the work : the projection formula, which allows us to
analyze the cohomology groups of the exploded variety P̃3 through the cohomology groups
of the base of the morphism of blow up, this is advantageous, because at the base, we
have some results that help us in vanishing such cohomology groups, as for example,
the Bott formula, and the regularity of Castelnuovo-Mumford. Thus we obtain such a
characterization through the following result:

Theorem II. Let F1 be a non integrable codimension one holomorphic distributions
on P3 of degree d such that its singular locus has just one non-zero dimensional compo-
nent which is integral and non-degenerated somooth curve C ⊂P3. Assume that F1 is
special along C . Let π : P̃3 −→P3 be the blow up of P3 along C and E be the exceptional
divisor. If F2 is another non integrable codimension one distribution of degree d on P3

and furthermore the following conditions occurs:

i) deg(C )≥ 2,

ii) d ≥ 2deg(C ),

iii) Sing(F1)⊂Sing(F2),

iv) Sing(F̃1|E)⊂Sing(F̃2|E),

v) `=multE(F̃1)= 1 or 2.

Then F1 =F2.

3
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1
PRELIMINARES

In this chapter, we will provide a brief description of the tools used in all this work. For

more details, we indicate the references.

1.1 Castelnuovo-Mumford Regularity

The reference for this section is [17], [19], [7] and [13].

The Cartan-Serre-Grothendieck theorems imply that all the cohomological subtleties

that may be associated with a coherent sheaf F on a projective space Pn disappear after

twisting by a sufficiently high multiple of the hyperplane line bundle. Specifically, for

m >> 0:

• The higher cohomology groups of F(m) vanish,

• F(m) is generated by global sections,

• The maps H0(Pn,F(m))⊗H0(Pn,OPn(k))−→ H0(Pn,F(m+k)) are surjectives for all

k > 0.

Castelnuovo-Mumford regularity gives a quantitative measure of how much one has

to twist in order that these properties take effect. As we shall see, regularity is also

well-adapted to arguments involving vanishing theorems.

Theorem 1.1. (Grothendieck) Let X be a noetherian topological space of dimension n.
Then for all i > n and all sheaves of abelian groups F on X , we have H i(X ,F )= 0.

5



CHAPTER 1. PRELIMINARES

Proof. See [19], Theorem 2.7. �

Theorem 1.2. (Serre) Let X be a projective scheme over a noetherian ring A, and let
OX (1) be a very ample invertible sheaf on X over Spec(A). Let F be a coherent sheaf on
X . Then:

a) For each i ≥ 0, H i(X ,F ) is a finitely generated A-module.

b) There is an integer n0, depending on F , such that for each i > 0 and each n ≥ n0,
H i(X ,F (n))= 0.

Proof. See [19], Theorem 5.2. �

Definition 1.3. Let F be a coherent sheaf on the projective space Pn, and let m be an
integer. One says that F is m-regular in the sense of Castelnuovo-Mumford if

H i(Pn,F (m− i))= 0,

for all i > 0.

By Theorems 1.1 and 1.2 with m = n0 +n we have that H i(Pn,F (m− i)) = 0 for all

i > 0. Therefore there is an integer m such that F is m-regular.

Definition 1.4. (Regularity of a sheaf) The Castelnuovo-Mumford regularity reg(F ) of a
coherent sheaf F F on Pn is the least integer m for which F is m-regular.

Theorem 1.5. Let F be a coherent sheaf on Pn. If F is m-regular, then

a) F is s-regular for all s ≥ m,

b) The natural homomorphism

H0(F (s))⊗H0(OPn(1))−→ H0(F (s+1)),

is surjective for all s ≥ m.

Proof. See [17], Theorem 1.8.3. �

(Bott’s Formula)

hq(Pn,Ωp
Pn(k))=



(k+n−p
k

)(k−1
p

)
, for q = 0, 0≤ p ≤ n, k > p,

1, for k = 0, 0≤ p = q ≤ n,(−k+p
−k

)(−k−1
n−p

)
, for q = n, 0≤ p ≤ n, k < p−n,

0, otherwise.

6



1.2. GROTHENDIECK RESIDUE

Example 1.6. 1) The line bundle OP3(k) is (−k)-regular.

2) The ideal sheaf IL ⊂OPn of a linear subspace L ⊂Pn is 1-regular.

3) Ω1
Pn is 2-regular by Bott’s formula.

We next use previous Theorem 1.5 to show that at least for vector bundles, regularity

has pleasant tensorial properties.

Proposition 1.7. (Regularity of tensor products). Let F be a coherent sheaf on Pn, and
let E be a locally free sheaf on Pn. If F is m-regular and E is `-regular, then E⊗F is
(`+m)-regular.

Proof. See [17], Proposition 1.8.9. �

Corollary 1.8. (Wedge and symmetric products). If E is an m-regular locally free sheaf,
then the p-fold tensor power T pE is (pm)-regular. In particular,

∧pE and SpE are
likewise (pm)-regular.

Proof. See [17], Corollary 1.8.10. �

We will now define Mumford’s regularity for a subvariety of a projective space.

Definition 1.9. (Regularity of a projective subvariety). We say that a subvariety (or
subscheme) X ⊂ Pn is m-regular if its ideal sheaf IX is. The regularity of X is the
regularity reg(IX ) of its ideal sheaf.

Then we close this section with a definition that will be widely used in chapter three.

Theorem 1.10. ( Regularity for curves). Let C ⊂ Pn be an irreducible (but possibly
singular) reduced curve of degree d. Assume that C is nondegenerate, i.e. that it doesn’t
lie in any hyperplanes. Then C is (d+2-n)-regular.

Proof. See [17], Theorem 1.8.46. �

1.2 Grothendieck Residue

The reference for this section is [13].

7



CHAPTER 1. PRELIMINARES

In this section we will be interested in maps f :Cn −→Cm and in its germs at points.

Let U ⊂Cn be a domain (open and connected set). Recall that if m = 1, then a differen-

tiable function f : U −→C is holomorphic provided f ′(z) exists for every for all z ∈U .

If we identify C'R2, z = x+ i y, z̄ = x− i y, f (z)= u+ iv and introduce the derivations:

∂

∂z
= 1

2
(
∂

∂x
− i

∂

∂y
),

and
∂

∂z̄
= 1

2
(
∂

∂x
+ i

∂

∂y
).

Then, f holomorphic is equivalent to

∂ f
∂z̄

= 0.

Definition 1.11. Let p ∈ Cn. A map germ (smooth or holomorphic) or germ at p is an
equivalence class of maps (smooth or holomorphic) where two maps are equivalent if they
agree on a neighborhood of p. We adopt f : (Cn, p)−→ (Cm, q) to denote the germ of f at p
with f (p)= q.

We denote by |z| the hermitian norm in Cn, |z| =
√

n∑
j=1

z j.z j .

Definition 1.12. Let f : (Cn, p)−→ (Cn,0) be a germ of holomorphic map with f −1(0)= {p}.
The index or Poincarè Hopf index of f at p, denoted by Ip( f ), is the degree of the smooth
map

f
| f | : S2n−1

ε (p)−→ S2n−1
1 (p),

where S2n−1
ε (p) is the euclidean sphere of radius ε> 0, S2n−1

ε (p) = {
z ∈ Cn : |z− p| = ε

}
and S2n−1

1 (p) is the unit sphere centered at 0 ∈Cn.

Remark 1.13. If ε is sufficiently small then the index is well defined and it does not
depend on ε.

An important result is

Proposition 1.14. Let f : (Cn, p)−→ (Cn,0) is the germ of a biholomorphism, then
Ip( f )= 1.

Proof. See [13], Proposition 2.1.13. �

8



1.2. GROTHENDIECK RESIDUE

Example 1.15. Let f (z1, z2)= (z2
1, z1 + z3

2). Then f −1(0)= {0} and the index I0( f ) is given
by the number of solutions of the equations z2

1 = ζ1 and z1+z3
2 = ζ2 where 0< |(ζ1,ζ2)| << ε.

Thus I0( f )= 6.

Let f = ( f1, . . . , fn) : U −→V be a finite holomorphic map of multiplicity µ and

g ∈O (U). Let us recall the multiplicity of a zero of a holomorphic function of one variable.

Suppose f : U −→C is a holomorphic function defined in a neighborhood U ⊂C of a point

ζ and such that f (ζ)= 0. Expanding f in power series around ζ we get

f (z)=
∞∑
µ=k

ak(z−ζ)= (z−ζ)µg(z),

where aµ = g(ζ) 6= 0, g is holomorphic and g(z) =
∞∑
µ+ j

(z − ζ) j. The number µ = µ( f ,ζ)

is the multiplicity of the zero ζ of f . Now, suppose ζ is a regular value of f and let

f −1(ζ)= {ξ1, . . .ξµ}.

Consider the sum
µ∑

i=1

g(ξi)
det J f (ξi)

,

where

J f (ξi)= det
(∂ fk

∂z j
(ξk)

)
1≤k, j≤n

.

Definition 1.16. The residue at 0 of g relative to f is the limit

Res0(g, f )= lim
ζ→0

µ∑
i=1

g(ξi)
det J f (ξi)

.

The next result shows that the above limit exists.

Theorem 1.17. Let ε= (ε1, . . .εn), εi > 0 and consider the n-real cycle
Γε = {z ∈U , | f i(z)| = εi, 1≤ i ≤ n} with orientation prescribed by the n-form
darg f1 ∧ . . . ,∧darg fn. If ε is suffciently close to 0 then,

Res0(g, f )=
( 1
2πi

)n ∫
Γε

g dz1 . . . ,dzn

f1 . . . fn
.

Proof. See [13], Theorem 3.2.2. �

Let us see now some properties of residues. Again, for more details, see [13].

Property 1. If a,b ∈C and g,h ∈O (U) then

Res0(ag+bh, f )= aRes0(g, f )+bRes0(h, f ).

9



CHAPTER 1. PRELIMINARES

Property 2. Res0(det(D f ), f )= I0( f ).

Property 3. If f is a biholomorphism, then

Res0(g, f )= g(0)
detD f (0)

.

Property 4. If g ∈ I f the ideal generated by f1, · · · , fn then Res0(g, f )= 0.

Example 1.18. Consider the open sets U ,V of C2 containing the origin and f : U −→V a
holomorphic map defined by f = ( f1, f2)= (z2 + z2

1, z2
1 + z2

2). Let us calculate the Res0(g, f ),
where g = J f .

Consider the polydisk ∆(0,ε) such that ∆(0,ε)∩ f −1(0)= {0}. For a change of variable
we have:

Res0(g, f ) = 1
(2πi)2

∫
Γ(0,0)

gdz1 ∧dz2

f1, f2
= 1

(2πi)2

∫
Γ(0,0)

g
detJ( f1, f2)

.
d f1 ∧d f2

f1. f2
.

Note that in this case, f2 = (z1 − iz2)(z1 + iz2). Then:

Res0(g, f ) = 1
(2πi)2

∫
Γ(0,0)

(
g

detJ( f1, f2)
d f1 ∧d(z1 − iz2)

f1.(z1 − iz2)
+ g

detJ( f1, f2)
d f1 ∧d(z1 + iz2)

f1.(z1 + iz2)

)
.

Denoting g = J( f1, f2), we get:

Res0(g, f ) = 1
(2πi)2

∫
Γ1

(0,0)

d f1 ∧d(z1 − iz2)
f1.(z1 − iz2)

+ 1
(2πi)2

∫
Γ2

(0,0)

d f1 ∧d(z1 + iz2)
f1.(z1 + iz2)

= 1+1= 2,

where Γ1
(0,0) = {| f1| = ε1, |z1 − iz2| = ε2} and Γ2

(0,0) = {| f1| = ε1, |z1 + iz2| = ε2}.

1.3 Blowing Up Submanifolds

The reference for this section is [7].

In this section, we will write about Blow up or quadratic transformations of a polydisc

along a coordinate plane.

Let ∆ be a n-dimensional polydisc with holomorphic coordinates z1, . . . , zn and V ⊂∆
be the locus z1 = ·· · = zk = 0. Let [l1, . . . , lk] be the homogeneous coordinates on Pk−1 and

set

∆̃⊂∆×Pk−1,

10



1.3. BLOWING UP SUBMANIFOLDS

be the smooth variety defined by the relations

∆̃= {(z, [l]), zi l j = z j l i, 1≤ i, j ≤ k}.

The projection π : ∆̃−→∆ on the first factor is an isomorphism away from V , while

the inverse image of a point z ∈ V is a projective space Pk−1. The manifold ∆̃ together

with the map π : ∆̃−→∆ is called blow up or quadratic transformation of ∆ along V . The

inverse image E =π−1(V ) is called the exceptional divisor of the blow up.

The set ∆̃ has a natural structure of n-dimensional complex manifold. For each

j ∈ {1,2, . . . ,k}, let U j = {[l1, . . . lk] : l j 6= 0}⊂Pk−1 be the standard open cover, then

Ũ j = {(z, [ζ]) ∈ ∆̃, [ζ] ∈U j},

with holomorphic coordinates σ(ζ1, . . . ,ζn)= (z1, . . . , zn) give by:

1) zi = ζi for i = j or i > k,

2) zi = ζiζ j for i = 1, . . . , ĵ, . . . ,k.

The coordinates ζ ∈Cn are affine coordinates on each fiber π−1(p)'Pk−1.

We can generalize this construction. Let S ⊂ M be a submanifold of dimension n−k.

Let {φα,Uα} be a collection of local charts covering S and φα : Uα −→∆α, where ∆α is a

n-dimensional polydisc. We may suppose that Vα =φα(X∩Uα) is given by z1 = ·· · = zk = 0.

Let πα : ∆̃α −→∆α be the blow up of ∆̃α along Vα. Then, we have isomorphisms

παβ :π−1
α [φα(Uα∩Uβ)]−→π−1

β [φβ(Uα∩Uβ)],

and using them, we can patch together the blow up ∆̃πα to form a manifold ∆̃=∪παβ∆̃α

with the map π : ∆̃−→∪∆̃α.

Finally, since π is an isomorphism away from the exceptional divisor, we can take

M̃ = (M−S)∪π ∆̃, together with the map π : M̃ −→ M, extending π on ∆̃ and the identity

on M−S, is called the blow up of M along S. The blow up has the following properties :

1) The exceptional divisor E is fiber over S with fiber Pk−1. Indeed, π|E : E −→ S is

naturally identified with the projectivization P(NS/M) of the normal bundle NS/M

of S in M. If M is an algebraic threefold and S a regular compact curve, the

exceptional divisor E will be a ruled surface,

11
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2) For any variety Y ⊂ M, we may define the proper transform Ỹ in the blow up M̃S

to be the closure in M̃S of the inverse image

π−1(Y −S)=π−1(Y )−E,

of Y away from the exceptional divisor E. The intersection Ỹ ∩E ⊂P(NS/M) corre-

sponds to the image in NS/M of the tangent cones Tp(Y )⊂ Tp(M) to Y at point of

Y ∩S. In particular, for Y ⊂ M, a divisor we have

Ỹ =π−1(Y )−mE,

where m =multS(Y ) is the multiplicity of Y at a generic point of S.

1.3.1 The Cohomology of Blow up

let ρF : F −→ S be a complex vector bundle with transition functions

{gαβ} : Uα∩Uβ −→GL(r,C).

We write Fp for the fiber over p. The projectivization of F,

ρF :P(F)−→ S,

is by definition the fiber bundle whose fiber at a point p in S is the projective space P(Fp)

and whose transition functions

gαβ : Uα∩Uβ −→PGL(r,C),

are induced from gαβ. Thus a point of P(F) is a line `p in the fiber Fp. On P(F) there are

several tautological bundles : the pullback π−1
F F, the universal bundle also called the

tautological line bundle T ⊂ ρ−1
F (F) and the universal quotient bundle Q. The cohomology

ring H∗(P(F)) is via the pullback map

H∗(S)
ρ∗F−→ H∗(P(F)),

an algebra over the ring H∗(S). A complete description of H∗(P(F)) is given in these

terms by following proposition:

Proposition 1.19. For S any compact oriented C∞ manifold, F −→ S any complex vector
bundle of rank r, the cohomology ring H∗(P(F)) is generated as an H∗(S)-algebra by the
Chern class ζ= c1(T) of tautological bundle, with the single relation

ζr −ρ∗F c1(F)ζr−1 +·· ·+ (−1)r−1ρ∗F cr−1(F)ζ+ (−1)rρ∗F cr(F)= 0.

12
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Proof. See [7] page 606. �

Now, we give a brief description of Chern class of a blow up. For more details, again, we

recommend [7].

Our objective is to compare c(TM̃) with π∗C(TM). Let i : S −→ M, j : E −→ M̃ be the

inclusions. We write N = NS/M and c(M), c(M̃) and c(S) for c(TM), c(TM̃) and c(TS)

respectively. Then, we have that:

Theorem 1.20 (Porteous). With the above notation and ζ= c1(T), we have:

c(M̃)−π∗c(M)= j∗(π∗
E c(S).α),

where
α= 1

ζ

r∑
i=0

[1− (1−ζ)(1+ζ)i]π∗
E cr−i(N).

In this expression, the term in brackets as a polynomial in ζ and α is the polynomial on
obtains after formally dividing by ζ and r is the rank of N.

Proof. The proof can be found in [8]. �

Can be shown, for example, (see [6], section 2.2) that

c1(P̃3)= 4π∗h−E. (1.1)

c2(P̃3)= 6π∗h2 −E2 −π∗
E c1(TC ) ·E. (1.2)

c3(P̃3)= 4π∗h3 −π∗c2(N) ·E−π∗c1(N) ·E.2 +E3. (1.3)

where h is the hyperplane class on P3.

13
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SPECIAL DISTRIBUTIONS

In this chapter, we will define the main object of study of this work, which are Special

Holomorphic Distributions along a curve of singularities.

2.1 Holomorphic Distributions

The reference for this section is [15].

Definition 2.1. Let X be smooth a complex manifold.

i) A codimension r distribution F on X is given by an exact sequence

F : 0−→ TF
ϕ−→ TX

π−→ NF −→ 0, (2.1)

where TF is a coherent sheaf of rank s := dim(X )− r and NF is a torsion free sheaf.
The sheaves TF and NF are called respectivelly the tangent and the normal sheaves
of F .

ii) Sing(F )= {x ∈ X , (NF )x is not a free OX ,x module} is the singular set of the distri-
bution F .

Definition 2.2. A foliation is an integrable distribution, that is, a distribution

F : 0−→ TF
ϕ−→ TX

π−→ NF −→ 0,

15
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whose tangent sheaf is closed under the Lie Bracket of vector fields, i.e,
[ϕ(TF ),ϕ(TF )]⊂ϕ(TF ).

Remark 2.3. When r = 1, the normal sheaf being a torsion free sheaf of rank 1, must
be the twisted ideal sheaf IZ/X ⊗det(TX )⊗det(TF )∨ of a closed subscheme Z ⊂ X of
codimension at least 2, which is precisely the singular scheme of F .

2.2 Codimension one Distributions on P3

We are interested in codimension on distributions on P3 of degree d. In this case, by

remark 2.3 we have NF =IZ/P3(d+2) where Z is the singular scheme of F . Therefore,

the sequence 2.1 now reads

F : 0−→ TF
ϕ−→ TX

π−→IZ/P3(d+2)−→ 0, (2.2)

where TF is a rank 2 reflexive sheaf.

A codimension one distribution of degree d on P3 can also represented by a section

ω ∈ H0(P3,Ω1
P3(d+2)) given by the dual of the morphism π : TP3 −→IZ/P3(d+2).

On the other hand, such section yields a sheaf map ω : OP3 −→Ω1
P3(d+2). Taking duals,

we get a cosection

ω∨ :
(
Ω1
P3(d+2))

)∨ = TP3(−(d+2))−→OP3 ,

whose image is the ideal sheaf IZ/P3 of the singular scheme. The kernel of ω∨ is the

tangent sheaf of distribution F twisted by OP3(−(d+2)). From this point of view the

integrability condition is equivalent to ω∧dω= 0.

The 1-form ω can be written down in homogeneous coordinates

ω=
3∑

i=0
Pidzi,

with Pi ∈ H0(P3,OP3(d+1)), where [z0 : z1 : z2 : z3] are the homogeneous coordinates of

P3.

In addition, the coefficients Pi must satisfiy the condition

iRω=
3∑

i=0
ziPi = 0,

where iR denotes the inner product of the vector field R =
3∑

i=0
zi

∂

∂zi
with differential

forms.
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Before we start talking about Special Distributions, let us first talk about motivation

for this work. Let F be a codimension one distribution on P3 of degree d induced by

global section ω ∈ H0(P3,ΩP3(d+2)).

Proposition 2.4. For integrable ω, the singular set must contain a codimension two
component.

Proof. See [9], Proposition 2.6. �

The Jouanolou’s Proposition is not valid for distributions, i.e, there are codimension one

distributions on P3 such that the singular scheme has only isolated points, as shown in

the example below.

Example 2.5 (see [15], example 8.2). Consider the distribution F on P3 induced by

ω= (ξ2
0 +ξ2

1 +ξ2
2)dξ3 − (ξ3ξ0 +ξ2ξ1)dξ0 + (ξ2ξ0 −ξ3ξ1)dξ1 −ξ3ξ2dξ2.

The singular scheme of F is
{

2[i :−1 : 0 : 0],2[i : 1 : 0 : 0], [0 : 0 : 0 : 1]
}

.

In the above example, using the Grothendieck residue Theorem, we can determine the

residue at each point, and hence, the sum of these residues for such distribution.

This is just what Izawa’s Theorem tells us. More precisely

Theorem 2.6 (Izawa’s Theorem). Let ω be a codimension one singular distribution with
G rank one locally free subsheaf of ΩX and ( f j

1 , . . . , f j
n) a local coefficients of ω near p j.

Then we have

∫
X

cn(ΩX ⊗G∨)=
k∑

j=1
Resp j

[
d f j

1 ∧ . . . ∧ d f j
n

f j
1 . . . f j

n

]
,

where Sing(F )= {p1, . . . , pk} and the residue above is the Grothendieck Residue.

Proof. See [20], Theorem 2.2. �

Returning to the Example 2.5, in the affine open set U3 =
{

[ξ] ∈P3 ξ3 6= 0
}

with coordi-

nates (zi), where zi = ξi

ξ3
for i = 0,1,2. We have

ω=−(z0 + z2z1)dz0 + (z2z0 − z1)dz1 − z2dz2. (2.3)

17
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where f0 =−z0 − z2z1 f1 = z2z0 − z1 and f2 =−z2.

Let us to consider the germ f : (C3,0) −→ (C3,0) defined by f = ( f0, f1, f2) and note that

f −1(0)= {0}. The Jacobian matrix is given by

D f =


−1 −z2 −z1

z2 −1 z0

0 0 −1

 .

Thus, the Jacobian is : J(D f )=−(1+ z2
2).

As J(D f )(0)=−1, then f is a germ of a biholomorphism.

Therefore, by Proposition 1.14 and the Property (2) of residues, we have Res0(J(D f ), f )=
1.

The points (±i,0,0) belong to the open affine set U0 =
{

[ξ] ∈P3,ξ0 6= 0
}

. In this case,

the 1-form is given by

ω= (1+ z2
1 + z2

2)dz3 + (z2 − z3z1)dz1 − z3z2dz2. (2.4)

Consider the germ h : (C3,0)−→ (C3,0) defined by h1 = z2 − z3z1 h2 =−z3z2 and

h3 = 1+ z2
1 + z2

2. In this case, the Jacobian matrix is given by

Dh =


−z3 1 −z1

0 −z3 −z2

0 2z2 0

 .

J(Dh)=−2(z2
1z3 + z2

2z3 + z2z1). The residue is

Res(J(Dh), f )= 1
(2πi)3

∫
Γ

2(z2
1z3 + z2

2z3 + z2z1)dz1 ∧dz2 ∧dz3

(z2 − z3z1)(1+ z2
1 + z2

2)z3z2
(2.5)

where Γ is real 3-cycle around singularity (−i,0,0). Let us make a translation

z1 −→ z1 + i to calculate the residue at the origin.

2((z1 + i)2z3 + z2
2z3 + z2(z1 + i))

(z2 − z3(z1 + i))(1+ (z1 + i)2 + z2
2)z3z2

= 2(−z3 + iz2 +2iz1z3 + z2
1z3 + z2

2z3 + z1z2

(z2 − z3(z1 + i))(1+ (z1 + i)2 + z2
2)z3z2

. (2.6)

by simplifying the equation (2.6), we have the following integrals

18
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Res(J(Dh), f ) = 1
(2πi)3

∫
Γ

(
2

(z2 − iz3 − z1z3)z2
+ 2

(z2 − iz3 − z1z3)(2iz1 + z2
1 + z2

2)z2

)
(2.7)

+ 1
(2πi)3

∫
Γ

(
2

(z2 − iz3 − z1z3)(2iz1 + z2
1 + z2

2)z3
+ 2z1

(z2 − iz3 − z1z3)(2iz1 + z2
1 + z2

2)z3

)
.

The value of each triple integral (2.7) is respectively: 0,1,1,0. Therefore Res(J(Dh), f )= 2.

Similarly, after the translation z1 −→ z1 − i, we calculate the residue at the point (i,0,0)

which is also equal to 2. Thus,

3∑
i=1

Res(ω, pi)= 2+2+1= 5.

After this example we can ask: What happens if the singular scheme of a distribution

contains a curve? What can we say about the residue of the distribution along this curve?

Motivated by these questions, we seek the answer to a certain type of distribution,

namely the special distributions along a curve.

2.3 Special Distributions along a Regular Curve

In this section, we will define the main object of study of this work, which are Special

Holomorphic Distributions along a curve of singularities.

Let F be a non-integrable codimension one distribution on P3 of degree d whose

singular set is the following disjoint union of proper closed subsets

Sing(F )=C ∪{
p1, · · · , pn

}
,

where C is a smooth irreducible curve and isolated points p1, · · · pn.

Notice that, once the curve C is regular, by the local submersion Theorem, for each

point p ∈C , there is an open U ⊂C3 and a biholomorphism ϕ : U −→ V ⊂C3 such that

the image of C for ϕ is given by C ∩U = {z1 = z2 = 0}. So, if f is a function that vanish

over C curve, we can write

f (z)= z1 f1(z)+ z2 f2(z). (2.8)

If f1 and f2 also vanish on the z3-axis, we can apply (2.8) again to all of them. Thus, the

function f can be written as
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f (z)= z2
1 f2,0(z1, z2, z3)+ z1z2 f1,1(z1, z2, z3)+ z2

2 f0,2(z1, z2, z3). (2.9)

By repeating this process until we find some function f i, j that does not cancel along the

z3-axis, we can then write:

f (z)= ∑
i+ j=m

zi
1z j

2 f i, j(z), (2.10)

in that for some pair i, j, f i, j(0,0, z3) 6= 0.

Definition 2.7. The number m in (2.10) is called multiplicity of f over C and will be
denoted for multC ( f ).

Remark 2.8. The multC ( f ) is independent of the coordinate system choosen (see [5]).

Thus, in the open V ⊂C3 the distribution F is given for 1-form

ω= P(z)dz1 +Q(z)dz2 +R(z)dz3, (2.11)

with multC (P)= m, multC (Q)= n and multC (R)= p.


P(z) = zm

1 P0(z)+ zm−1
1 z2P1(z)+·· · z1zm−1

2 Pm−1(z)+ zm
2 Pm(z),

Q(z) = zn
1Q0(z)+ zn−1

1 z2Q1(z)+·· · z1zn−1
2 Qn−1(z)+ zn

2Qn(z),

R(z) = zp
1 R0(z)+ zp−1

1 z2R1(z)+·· · z1zp−1
2 Rp−1(z)+ zp

2 Rp(z).

(2.12)

Definition 2.9. The algebraic multiplicity of the distribution F over C , denoted by
multC (F ) will be the minimum of the numbers m, n and p.

Lemma 2.10. Let F be a codimension one distribution on P3 with C ⊂Sing(F ) where
C is a regular curve. Then, for each point p ∈ C exists a neighborhood U of p and a
holomorphic coordinates w = (w1,w2,w3) ∈C3 such that w(0)= 0 ∈C3 and
U ∩C = {w1 = w2 = 0} and F is defined in U by the following 1-form:

ω=
3∑

i=1
Pidwi,

where Pi are given as in (2.12) with:

i) multC (Pi)=multC (F )= m1 for i = 1,2,

ii) multC (P3)= m3,
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iii) m1 ≤ m3.

Proof. For a holomorphic change of coordinates, we know that the curve C can be locally

given by z1 = z2 = 0. In this neighborhood, the distribution F is induced by the following

1-form:

ω=
3∑

i=1
Q idzi,

Let A = (ai, j) ∈ GL(3,C) be a matrix such that ai3 = 0 for 1 ≤ i ≤ 2. Consequently

B = A−1 = (bi, j) has the same property, i.e, bi3 = 0 for 1≤ i ≤ 2. Thus, the linear transfor-

mation z = Aw preserves the w3-axis. Then

A∗ω=Q1 ◦ A(w)(a11dw1 +a12dw2)+Q2 ◦ A(w)(a21dw1 +a22dw2)

+Q3 ◦ A(w)(a31dw1 +a32dw2 +a33dw3). (2.13)

By doing Q i ◦ A(w)= Pi, we have

A∗ω= (a11P1 +a21P2 +a33P3)dw1 + (a12P1 +a22P2 +a32P3)dw2 +a33P3dw3. (2.14)

Adjusting some coefficients, if necessary, the distribution F is induced by

ω=
3∑

i=1
Pidwi,

where each Pi satisfies the conditions of the Lemma. �

Let us do the blowing up of P3 along C , using the chart σ0 in Ṽ0 with coordinates

(u1,u2,u3) ∈C3, such that : σ0(u1,u2,u3)= (u1,u1u2,u3)= (z1, z2, z3). So:

P(u1,u1u2,u3) =
m∑

i=0
um−i

1 (u1u2)iPi(u1,u1u2,u3),

= um
1

m∑
i=0

ui
2Pi(u1,u1u2,u3). (2.15)

Notice that:

Pi(u1,u1u2,u3)= Pi(0,0,u3)+u1P̃i(u1,u2,u3)= pi(u3)+u1P̃i(u). (2.16)

By replacing (2.16) in (2.15), we have
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P(u1,u1u2,u3) = um
1

m∑
i=0

ui
2

[
pi(0,0,u3)+u1P̃i(u)

]
,

= um
1

[ m∑
i=0

ui
2 pi(u3)+u1

m∑
i=0

ui
2P̃i(u)

]
,

= um
1

[ m∑
i=0

ui
2 pi(u3)+u1P1(u)

]
, (2.17)

where P1(u)=∑m
i=0 ui

2P̃i(u).

Similarly, we have

Q(u1,u1u2,u3) = un
1

[ n∑
i=0

ui
2qi(u3)+u1Q1(u)

]
. (2.18)

R(u1,u1u2,u3) = up
1

[ p∑
i=0

ui
2r i(u3)+u1R1(u)

]
. (2.19)

Finally, since that z2 = u1u2 and dz2 = u1du2 +u2du1, we have:

π∗(ω)=
(
um

1

[ m∑
i=0

ui
2 pi(u3)+u1P1(u)

])
du1 +

(
un

1

[ p∑
i=0

ui
2qi(u3)+u1Q1(u)

])(
u1du2 +u2du1

)
+

(
up

1

[ p∑
i=0

ui
2r i(u3)+u1R1(u)

])
du3, (2.20)

π∗(ω)=
(
um

1

[ m∑
i=0

ui
2 pi(u3)+u1P1(u)

])
du1 +

(
un+1

1

[ p∑
i=0

ui
2qi(u3)+u1Q1(u)

])
du2

+
(
un

1 u2

[ p∑
i=0

ui
2qi(u3)+u1Q1(u)

])
du1 +

(
up

1

[ p∑
i=0

ui
2r i(u3)+u1R1(u)

])
du3, (2.21)

π∗(ω)=
(
um

1

[ m∑
i=0

ui
2 pi(u3)+u1P1(u)

]
+un

1 u2

[ p∑
i=0

ui
2qi(u3)+u1Q1(u)

])
du1

+
(
un+1

1

[ p∑
i=0

ui
2qi(u3)+u1Q1(u)

])
du2 +

(
up

1

[ p∑
i=0

ui
2r i(u3)+u1R1(u)

])
du3. (2.22)

Notice that, in this chart σ0, the exceptional divisor E = π−1(C ) is given by u1 = 0

and that π∗(ω) vanish over E. The distribution induced by F via π, what we denoted by

F̃ is given by π∗(ω) after the division of 2.22 by an adequate power of u1.
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By Lemma 2.10, we can suppose that m = n ≤ p. So

First case: Non-dicritical curve of singularities

Se n = m and
n∑

i=0
ui

2

[
[pi(u3)+u2qi(u3)

]
6≡ 0,

We have to analyze the following sub-cases:

a) p = n.

Dividing (2.22) by un
1 , we have:

ω̃=
( n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
+u1

(
u2Q1(u)+P1(u)

))
du1

+u1

( p∑
i=0

ui
2qi(u3)+u1Q1(u)

)
du2 +

( p∑
i=0

ui
2r i(u3)+u1R1(u)

)
du3. (2.23)

The singularities over the exceptional divisor, E = {u1 = 0}, is the set of zeros of the

equations below


n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
= 0,

p∑
i=0

ui
2r i(u3)= 0.

(2.24)

Generically, since there are two equations with two unknowns, the system (2.24)

has isolated singularities over E.

b) p > n.

Dividing (2.22) by un
1 , we have

ω̃=
( n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
+u1

(
u2Q1(u)+P1(u)

))
du1

+u1

( p∑
i=0

ui
2qi(u3)+u1Q1(u)

)
du2 +up−n

1

( p∑
i=0

ui
2r i(u3)+u1R1(u)

)
du3. (2.25)

In this case, the singularities over E = {u1 = 0} are determined by the set of zeros

of the following equation:
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n∑
i=0

ui
2

[
pi(u3)+u2qi(u3)

]
= 0. (2.26)

in this case, over E, there will be curves of singularities.

Second case: Dicritical curve of singularities.

If n = m and
n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
≡ 0.

From (2.22), we have

π∗ω̃= un+1
1

(
P1(u)+u2Q1(u)

)
du1 +un+1

1

( n∑
i=0

ui
2qi(u3)+u1Q1(u)

)
du2 (2.27)

+up
1

( n∑
i=0

ui
2r i(u3)+u1R1(u)

)
du3.

Now let us to analyze at the following sub cases

a) p = n+1.

Dividing (2.27) by up
1 , we have

ω̃=
(
P1(u)+u2Q1(u)

)
du1 +

( n∑
i=0

ui
2qi(u3)+u1Q1(u)

)
du2 (2.28)

+
( n∑

i=0
ui

2r i(u3)+u1R1(u)
)
du3. (2.29)

On exceptional divisor, the singularities are the solutions of the system of equations

below



P1(u)+u2Q1(u)= 0,
n∑

i=0
ui

2qi(u3)= 0,
n∑

i=0
ui

2r i(u3)= 0.

(2.30)

b) p = n.

In this case, the singularities over E = {
u1 = 0

}
are determined by the set zeros of

the following equation
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n∑
i=0

ui
2r i(u3)= 0. (2.31)

On the exceptional divisor E will be curves of singularities.

c) p > n+1.

Dividing (2.27) by un+1
1 , we have

ω̃=
(
P1(u)+u2Q1(u)

)
du1 +

( n∑
i=0

ui
2qi(u3)+u1Q1(u)

)
du2 (2.32)

+up−(n+1)
1

( n∑
i=0

ui
2r i(u3)+u1R1(u)

)
du3.

The singularities on the exceptional divisor are the solutions of the following

equation system


P1(u)+u2Q1(u)= 0,
n∑

i=0
ui

2qi(u3)= 0.
(2.33)

Again, generically, the system (2.33) has isolated singularities.

Definition 2.11. Let F be a non integrable codimension one distribution on P3

whose singular set

Sing(F )=C ∪{
p1, · · · , pn

}
,

where C is a smooth irreducible curve and isolated points p1, · · · , pn. We say that
F is

I) Non dicritical, if n ≤ m and
n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
6≡ 0,

II) Dicritical, if n = m and
n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
≡ 0.

The sum
n∑

i=0
ui

2

[
pi(u3)+u2qi(u3)

]
is called tangent cone.

The following show us a special distribution along a curve.
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Example 2.12. Let F be a codimension one distribution and degree m on P3 induced by

ω ∈ H0(P3,Ω1
P3(m+2)) where on the affine open set: U3 =

{
[z0 : z1 : z2 : z3] ∈P3; z3 6= 0

}
, we

write

ω= P(x, y, z)dx+Q(x, y, z)d y+R(x, y, z)dz,

P(x, y, z)= Am(x, y)+ (αy+βz)Gm(x, y),

Q(x, y, z)= Bm(x, y)+ (γz−αx)Gm(x, y),

R(x, y, z)= Cm(x, y)− (βx+γy)Gm(x, y),

and

Am(x, y)=
m∑

i=0
aixm−i yi,

Bm(x, y)=
m∑

i=0
bixm−i yi,

Cm(x, y)=
m∑

i=0
cixm−i yi,

Gm(x, y)=
m∑

i=0
g ixm−i yi,

α,β,γ ∈C and Am, Bm, Cm, Gm are homogeneous polynomials of degree m and
gdc(Am,Bm,Cm,Gm)= 1.

Let us note that C = {x = y = 0} ⊂ Sing(F ). By doing the blown-up of P3 along C , in

26



2.3. SPECIAL DISTRIBUTIONS ALONG A REGULAR CURVE

the chart σ(u1,u2,u3)= (u1,u1u2,u3)= (x, y, z), we have

π∗(ω)= [
Am(u1,u2u1)+ (αu2u1 +βu3)Gm(u1,u2u1)

]
du1

+ [
Bm(u1,u2u1)+ (γu3 −αu1)Gm(u1,u2u1)

]
(u2du1 +u1du2)

+ [
Cm(u1,u2u1)− (βu1 +γu2u1)Gm(u1,u2u1)

]
du3,

π∗(ω)= um
1

[
a(u2)+ (αu2u1 +βu3)g(u2)

]
du1

+um+1
1

[
b(u2)+ (γu3 −αu1)g(u2)

]
du2

+u2um
1

[
b(u2)+ (γu3 −αu1)g(u2)

]
du1

+um
1

[
c(u2)−u1(β+γu2)g(u2)

]
du3,

π∗(ω)= um
1

[
a(u2)+ (αu1 +βu3)g(u2)+u2b(u2)+u2(γu3 −α)g(u2)

]
du1

+um+1
1

[
b(u2)+ (γu3 −αu1)g(u2)

]
du2

+um
1

[
c(u2)−u1(β+γu2)g(u2)

]
du3,

ω̃= [
a(u2)+u2b(u2)+u3(β+γu2)g(u2)

]
du1

+u1
[
b(u2)+ (γu3 −αu1)g(u2)

]
du2

+ [
c(u2)−u1(β+γu2)g(u2)

]
du3.

where:

a(u2)=
m∑

i=0
aiui

2, (2.34)

b(u2)=
m∑

i=0
biui

2, (2.35)

c(u2)=
m∑

i=0
ciui

2, (2.36)

g(u2)=
m∑

i=0
g iui

2, (2.37)

are polynomials of degree m.

The singularities on the exceptional divisor E = {u1 = 0}, are the system solutions
below.

{
a(u2)+u2b(u2)+u3(β+γu2)g(u2) = 0,

c(u2) = 0.
(2.38)

27



CHAPTER 2. SPECIAL DISTRIBUTIONS

From the second system equation (2.38), we have c(u2)= 0, then u2 = ui
2 with

i = 1,2, . . .m. By replacing this in the first equation of (2.38) we get

ui
3 =−a(ui

2)−ui
2b(ui

2)

(β+γui
2)g(ui

2)

with ui
2 6=

−β
γ

and γ 6= 0. Thus, we have m solutions on the exceptional divisor.

Let us also note that we can not have simultaneously{
u1 = 0,

b(u2)(γu3 −α)g(u2) = 0.
(2.39)

In fact, suppose that worth the equalities of (2.39) are valid. So we would have

ui
3 = − b(ui

2)

γg(ui
2)

with i = 1,2, . . .m. As u2 = ui
2, by replacing this in the first equation of

(2.38) we have

a(ui
2)+ui

2
−b(ui

2)

γg(ui
2)

(β+γui
2)g(ui

2)= 0, (2.40)

γa(ui
2)+������

βγui
2b(ui

2)−γβb(ui
2)−������

βγui
2b(ui

2)= 0, (2.41)

γ(a(ui
2)−βb(ui

2))= 0. (2.42)

As γ 6= 0, we must have

a(ui
2)+βb(ui

2)= 0. (2.43)

The last equation has no solution, since we are assuming by hypothesis that

gdc(a(u2),b(u2), c(u2), g(u2))= 1.

Let us now to find out the singularities in the complementary to the exceptional divisor
E. For this, let us analyze the following system of equations.


a(u2)+u2b(u2)+u3(β+γu2)g(u2) = 0,

b(u2)+ (γu3 −αu1)g(u2) = 0,

c(u2)−u1(β+γu2)g(u2) = 0.

(2.44)
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From the second and third equations of (2.44) we have respectively that

u3 =−a(u2)+u2b(u2)
(β+γu2)g(u2)

. (2.45)

u1 = c(u2)
(β+γu2)g(u2)

. (2.46)

By replacing (2.45) and (2.46) in the first equation of (2.44), and simplifying

βb(u2)−γa(u2)−αc(u2)= 0. (2.47)

Therefore we have on the complementary E m solutions.

As codim(Sing(ω)) ≥ 2, by Hartog’s Theorem, ω it extends to holomorphic 1-form on P3,
which we will continue to call ω.

Now, doing x = z0

z3
, y= z1

z3
e z = z2

z3
, we have

1. dx = z3dz0 − z0dz3

z2
3

,

2. d y= z3dz1 − z1dz3

z2
3

,

3. dz = z3dz2 − z2dz3

z2
3

.

Thus:

ω=
[

z3Am(z0, z1)+ (αz1 +βz2)Gm(z0, z1)
]
dz0 +

[
z3Bm(z0, z1)+ (γz2 −αz0)Gm(z0, z1)

]
dz1

+
[

z3Cm(z0, z1)− (βz0 +γz1)Gm(z0, z1)
]
dz2 −

[
z0Am(z0, z1)+ z1Bm(z0, z1)+ z2Cm(z0, z1)

]
dz3.

Let us now look at the singularities in the hyperplane at infinity H∞ =
{

z3 = 0
}

relative
to the U3.
In this case, writing : z3 = 0, z2 = 1, u = z0

z2
, v = z1

z2
e w = z3

z2
:

ω=
[
(αv+β)Gm(u,v)

]
du+

[
(γ−αu)Gm(u,v)

]
dv

−
[
uAm(u,v)+vBm(u,v)+Cm(u,v)

]
dw.
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Using the chart: σ1(ν1,ν2,ν3)= (ν1,ν1ν2,ν3)= (u,v,w), we have

π∗ω= νm
1

[
(β+γν2)gm(ν2)

]
dν1 +νm+1

1

[
(γ−αν1)gm(ν2)

]
dν2

−νm
1

[
ν1am(ν2)+ν2bm(ν2)+ cm(ν2)

]
dν3.

π∗ω=
[
(β+γν2)gm(ν2)

]
dν1 +ν1

[
(γ−αν1)gm(ν2)

]
dν2

−
[
ν1am(ν2)+ν2bm(ν2)+ cm(ν2)

]
dν3.

On the exceptional divisor whose equation is ν1 = 0, we have{
(β+γν2)gm(ν2) = 0,

cm(ν2) = 0.
(2.48)

The system has no solution, because the second equation gives us ν2 = νi
2 with

i = 1,2, · · · ,m, i.e, m roots. In the first equation, we have a polynomial degree m+1 in the
variable ν2.

Now, for ν1 6= 0, we have:

ν1 =− cm(ν2)
am(ν2)+bm(ν2)

.

So we have m solutions ν1 = νi
1, with i = 1,2, · · · ,m.

As p(u2)= a(u2)+u2b(u2)+u3(β+γu2)g(u2) 6≡ 0, and Sing(F )= {
p1, · · · , p3m

}
ω induces

a special distribution F along the curve C = {z0 = z1 = 0}.

Thus, we can define the main object of study of our work, which are the special distribu-

tions along a curve of singularities.

Definition 2.13. Let F be a non-integrable codimension one distribution on P3 of degree
d whose singular set is the following disjoint union of proper closed subsets

Sing(F )=C ∪ {p1, . . . , pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn. Let π : P̃3 −→P3 be the
blow up morphism of P3 along C with exceptional divisor E. We say that a distribution
F is special along C if
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1) F is non-dicritical at C ,

2) The singular set of the distribution F̃ induced by F via π, denoted b Sing(F̃ ) has
only isolated singularities.

We have seen before that not every global section ω ∈ H0(P3,Ω1
P3(d+2)) induces a

special distribution.

In The next Lemma, one of the main results of this chapter, will show how we can obtain

a special distribution along a curve, preserving the invariants of the original distribution.

Lemma 2.14 (Perturbation Lemma). Let F be a non-integrable codimension one dis-
tribution on P3 of degree d which singular set is the following disjoint union of proper
closed subsets

Sing(F )=C ∪ {p1, . . . , pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn.

Then there exists an one-parameter family of holomorphic distribuions Ft defined in P3

with t ∈D= D(0,ε), for ε> 0 sufficiently small such that

1) F0 =F e deg(Ft)= deg(F ), ∀t ∈D,

2) C ⊂Sing(Ft), ∀t ∈D,

3) Ft is special along C , ∀t ∈D\{0},

4) multC (Ft)=multC (F ),

5)

multE(π∗Ft)=
{

multE(π∗F ), if F is not dicritical,
multE(π∗F )−1, if F is dicritical.

∀t ∈D\{0}.

Proof. Let F be a distribution induced by global section

ω ∈ H0(P3,Ω1
P3(d+2)) and C = Z( f , g) a theoretic complete intersection set, where f and

g are two polynomials. Since C is smooth curve for each p ∈ C there is an open set

U ⊂Ui for some affine open set Ui of P3 such that

d f (z)∧dg(z) 6= 0,

for all z ∈C ∩U .
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Therefore, without loss of generality, we can admit that:

∂ f (z)
∂z1

∂g(z)
∂z2

− ∂ f (z)
∂z2

∂g(z)
∂z1

6= 0, (2.49)

for all z = (z1, z2, z3) ∈U .

Let F : U −→V ⊂C3 be a locally biholomorphism defined as follows

F(z)= ( f (z), g(z), z3)= (u,v,w).

So the image of F(C ∩U) = CV = {u = v = 0} is the w-axis restricted to V . We can then

describe the pushforward of F∗F in V as follows

θ = F∗(F )= F∗(ω)= L(u,v,w)du+M(u,v,w)dv+N(u,v,w)dw. (2.50)

where L, M and N written as in (2.12), and multC (L)= `1, multC (M)= m1 and

multC (N)= n1.

Let us build a small perturbation θt for the 1-form θ. By Lemma 2.10 we can assume

that m = `1 = m1 ≤ n1. Thus

θt = θ+ t
[
Am(u,v)+ (αv+βw)Gm(u,v)

]
du

+ t
[
Bm(u,v)+ (γw−αu)Gm(u,v)

]
dv

+ t
[
Cm(u,v)− (βu+γv)Gm(u,v)

]
dw. (2.51)

where Am =
m∑

i=0
aium−ivi, Bm =

m∑
i=0

bium−ivi, Cm =
m∑

i=0
cium−ivi and Gm =

m∑
i=0

g ium−ivi

are homogeneous polynomials of degree m and gdc(Am,Bm,Cm,Gm) = 1 and α,β,γ ∈C
and also ai,bi, ci ∈C. By construction CV ⊂Sing(θt) for all t ∈D.

Let π : Ũ −→U be the blowing up of U centered on w-axis with exceptional divisor E. In

the chart σ1(s)= (u,v,w) and also using (2.15), (2.19) and (2.18) for the functions L, M
and N we have that

π∗θ̃t =
(
sm

1

[
m∑

i=0
si

2L i(s3)+ s1L1(s)

])
ds1 +

(
sm

1

[
m∑

i=0
si

2Mi(s3)+ s1M1(s)

])
(s2ds1 + s1ds2)

+
(
sn1

1

[
n1∑
i=0

si
2Ni(s3)+ s1N1(s)

])
ds3 + t

[
sm

1 a(s2)+ (αs1 +βs3)sm
1 g(s2)

]
ds1

+ t
[
sm

1 b(s2)+ (γs3 −αs1)g(s2)
]
(s1ds2 + s2ds1)+ t

[
sm

1 cn1(s2)− sm+1
1 (β+γs2)g(s2)

]
ds3.
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where a(s2)=
m∑

i=0
aisi

2, b(s2)=
m∑

i=0
bisi

2, c(s2)=
m∑

i=0
cisi

2, g(s2)=
m∑

i=0
g isi

2.

π∗θ̃t =
(
sm

1

[
m∑

i=0
si

2L i(s3)+ s1L1(s)

]
+ sm

1 s2

[
m1∑
i=0

si
2Mi(s3)+ s1M1(s)

]
(2.52)

+ tsm
1

[
(a(s2)+ s2b(s2))+ s3(γs2 +β)g(s2)

])
ds1

+
(
sm+1

1

[
m∑

i=0
si

2Mi(s3)+ s1M1(s)

]
+ tsm+1

1

[
b(s2)+ (γs3 −αs1)g(s2)

])
ds2

+
(
sn1

1

[ n1∑
i=0

si
2Ni(s3)+ s1N1(s)

]
+ tsm

1

[
c(s2)− s1(β+γs2)g(s2)

])
ds3.

π∗θ̃t = sm
1

( m∑
i=0

(
si

2(L i(s3)+ s2Mi(s3)
)
+ s1

(
L1(s)+ s2M1(s)

)
(2.53)

+ t
[(

a(s2)+ s2b(s2)
)
+ s3

(
γs2 +β)g(s2

)])
ds1

+ sm+1
1

([ m∑
i=0

si
2Mi(s3)+ s1M1(s)

]
+ t

[
b(s2)+ (γs3 −αs1)g(s2)

])
ds2

+
(
sn1

1

(
n1∑
i=0

(Ni(s3)+ s1N1(s)

)
+ tsm

1

[
c(s2)− s1(β+γs2)g(s2)

])
ds3.

Dividing (2.53) by sm
1 , we have

θ̃t =
[ m∑

i=0
si

2
(
L i(s3)+ tai)+ s2(Mi(s3)+ tbi

)+ s1
(
L1(s)+ s2M1(s)

)+ ts3
(
γs2 +β

)
g(s2)

]
ds1

+ s1

([ m∑
i=0

si
2Mi(s3)+ s1M1(s)

]
+ t

[
b(s2)+ (γs3 −αs1)g(s2)

])
ds2

+
(
sn1−m

1

(
n1∑
i=0

(Ni(s3)+ s1N1(s)

)
+ t

[
c(s2)− s1(β+γs2)g(s2)

])
ds3.

In order to determine the singular set of θ̃t we have two situations to consider. To

namely non-dicritical and dicritical curves of singularities.

First Situation: Non-dicritical curve of singularities.

If m = m1 e
[ m∑

i=0
L i(s3)+ s2Mi(s3)

]
6≡ 0.

We have two sub-cases
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a) m = n1.

The singularities on the exceptional divisor E = {s1 = 0} are the solutions of the

system of equations below


m∑

i=0
si

2

(
(L i(s3)+ tai)+ s2(Mi(s3)+ tbi)

)
+ ts3

(
γs2 +β

)
g(s2)

)
= 0,

m∑
i=0

(
Ni(s3)+ tci(s2)

)
= 0.

(2.54)

Generically, since there are two equations and two unknowns, the system (2.54)

has isolated singularities over E.

b) n1 > m.


m∑

i=0

(
L i(s3)+ s2Mi(s3)

)
si

2 + t
[
(a(s2)+ s2b(s2))+ s3(γs2 +β)g(s2)

]
= 0,

tc(s2)= 0.
(2.55)

where a(s2), b(s2), c(s2) and g(s2) are polynomials of degree m in variable s2

written as (2.34), (2.35), (2.36) and (2.37), respectively.

Analogous to the previous item, in a generic manner, on the exceptional divisor E we have

only isolated singularities. The other case, m > n1 is discussed in a manner analogous to

this.

Second Situation: Dicritical curve of singularities.

If m = m1 e
[ m∑

i=0
L i(s3)+ s2Mi(s3)

]
≡ 0.

Again, we will analyze the following two sub-cases:

a) n1 > m.


m∑

i=0
si

2

(
(L i(s3)+ tai)+ s2(Mi(s3)+ tbi)

)
+ s3

(
γs2 +β

)
g(s2)

)
= 0

tcm(s2)= 0
(2.56)

But, in this situation , for appropriate choices of Am, Bm and Cm, we have

m∑
i=0

si
2

(
(L i(s3)+ tai)+ s2(Mi(s3)+ tbi

)
= t

(
a(s2 + s2b(s2)

)
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i.e. θ̃t is non-dicritical distribution for all t ∈D.

From the first equation of (2.56), we have

s3 = f (s2)=−

(
am(s2)+ s2bm(s2)

)
(β+γs2)gm(s2)

. (2.57)

The second equation of (2.56) gives m-solutions s2 = s j
2, with j = 1,2, · · · ,m.

Therefore, on the exceptional divisor, we generically have only isolated singularities.

b) n1 = m.

In this case, the singularities over the exceptional divisor E are given by solutions

of the system


t
[
(am(s2)+ s2bm(s2))+ s3(γs2 +β)gm(s2)

]
= 0,

m∑
i=0

(si
2Ni(s3)+ tci(s2))= 0.

(2.58)

From the first equation of (2.58), we have again, the equation (2.57).

Now, by replacing (2.57) in the second equation of the same system, we get the

following analytic function:

Ψ(s2)=
m∑

i=0
(si

2Ni( f (s2)+ tci(s2)),

which zero set contains only isolated points.

In case it is necessary to disturb the coefficients, we can assume that ωt is special along

C . Let ωt = F∗θt be a polynomial 1-form on U . By Hartog’s Theorem we can extend it to

all P3.
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ωt =
(
`1∑
i=0

f (z)`1−i g(z)iL i( f (z), g(z), z3)

)(
3∑

i=1

∂ f
∂zi

dzi

)

+ t
[

An1( f (z), g(z))+ (αg(z)+βz)Gn1( f (z), g(z))
](

3∑
i=1

∂ f
∂zi

dzi

)

+
(

m1∑
i=0

f (z)m1−i g(z)iMi( f (z), g(z), z)

)(
3∑

i=1

∂g
∂zi

dzi

)

+ t
[
Bn1( f (z), g(z))+ (γz3 −α f (z))Gn1( f (z), g(z))

](
3∑

i=1

∂g
∂zi

dzi

)

+
( n1∑

i=0
f (z)n1−i g(z)iNi( f (z), g(z), z3)

)
dz3

+ t
[
Cn1( f (z), g(z))− (β f (z)+γg(z))Gn1( f (z), g(z))

]
dz3. (2.59)

By construction the scalars α, β and γ are chosen in order to deg(Ft) = deg(F ), for

t ∈D\{0}, showing (1). The affirmative (2) is immediate. Shrinking ε if necessary we can

admit that ωt is special along C suffice for that a perturbation of the coefficients ai, bi

and ci.

Also by constrution we have multC (F ) = multC (Ft) and multE(π∗F ) = multE(π∗Ft) if

F is non-dicritical and multE(π∗F )−1=multE(π∗Ft) if F is dicritical distribution.

�

In the P̃3 the normal bundle of the distribution F̃ is determined by

N∨
F̃
'π∗(N∨

F )⊗O
P̃3(`E). (2.60)

where the symbol ∨ denotes the dual of a sheaf and ` is the order annulment of the

pullback distribution π∗(F ) at E and π the blow up morphism with exceptional divisor

E.

Lemma 2.15. Let F be a non integrable codimension one distribution on P3 of degree d
whose singular set is a disjoint union of proper subsets Sing(F )=C ∪{

p1, · · · , pn
}
. If F

is special along C then
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n∑
i=1

Res(F , pi)≥ d3 +2d2 +2d− (`+3)χ(C )+deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
+ (

3`−`3)(χ(C )−4deg(C )
)
.

where deg(C ) and χ(C ) denote, the degree, Euler characteristic of the curve C respectivelly
and ` is the annulment order of π∗F on the exceptional divisor E.

Proof. By (2.60), we have

N∨
F̃
'π∗(N∨

F )⊗O
P̃3(ξE).

By Lemma 2.14 (of Perturbation) item (5), we can write

ξ=
{

`=multE(π∗F ), if F is non-dicritical,

`−1=multE(π∗F ), if F is dicritical.

The dicritical case, just replace ` by `−1.

Let π : P̃3 → P3 be blow-up morphism of P3 along C . By hypothesis, ω is special along

C and by definition, we have that Sing(ω̃) is finite. By Theorem 2.6 (of Izawa’s) we can

write

∑
p̃i∈Sing(F̃ )

Res(ω̃, p̃i)=
∫
P̃3

c3(Ω1
P̃3

⊗L ). (2.61)

L ' NF̃

' NF̃ 'π∗(OP3(d+2))⊗O
P̃3(−`E). (2.62)

But, as π : P̃3\E −→P3\C is a biholomorphism, we have

∑
Res(ω, pi)=

∑
pi 6∈ E

Res(ω̃, p̃i)=
∑

Res(ω̃, p̃i)−
∑

pi ∈ E
Res(ω̃, p̃i). (2.63)

Let F̃1 = �F |E be restriction of distribution F̃ over the exceptional divisor E.

The annihilator (see [21], page 178) of F̃1 is defined by

�
F (a)

1 = {v ∈X(TE);〈v,ω̃〉 = 0}, (2.64)

we therefore have the following inclusion
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Sing(ω̃)|E ⊂Sing(�F (a)
1 ). (2.65)

Indeed, if p ∈Sing(ω̃)|E then ω̃(p)= 0, thus 〈v(p),ω̃(p)〉 = 0.

So:

n∑
i=1

pi∈E

Res(ω̃, p̃i)≤
∫

E
c2(Ω1

E ⊗L ). (2.66)

So we can rewrite the equation, (2.63) as

n∑
i=1

Res(ω, pi)≥
∫
P̃3

c3(Ω1
P̃3

⊗L )−
∫

E
c2(Ω1

E ⊗L ). (2.67)

We now calculate each the integrals above. For this, we use the following equalities that

can be found at [6].

I)
∫
P̃3
π∗h3 =

∫
P3

h3 = 1,

II)
∫
P̃3
π∗h2 ·E=

∫
E
π∗h2 =

∫
C

h2 = 0,

III)
∫
P̃3
π∗h ·E2 =

∫
E
π∗h ·E= (−1)

∫
C

h=−deg(C ),

IV)
∫
P̃3

E3 =
∫

E
E2 = χ(C )−4deg(C )= (2−2g−4deg(C )) , where g denotes the genus of

the curve C .

c3

(
Ω1
P̃3

⊗L
)
= c3(Ω1

P̃3
)+ c2(Ω1

P̃3
).c1(L )+ c1(Ω1

P̃3
).c2

1
(L )+ c3

1
(L ). (2.68)

From equation (2.60) we can write

1) c1(L )= (d+2)π∗h−`E,

2) c2
1
(L )= (d+2)2π∗h2 −2(d+2)`π∗h ·E+`2E2,

3) c3
1
(L )= (d+2)2π∗h3 −3(d+2)2`π∗h2.E+3(d+2)`2π∗h ·E2 −`3E3.

∫
P̃3

c3
1
(L )= (d+2)3

∫
P̃3
π∗h3 −3(d+2)2`

∫
P̃3
π∗h2 ·E+3(d+2)`2

∫
P̃3
π∗h ·E2 −`3

∫
P̃3

E3,∫
P̃3

c3
1
(L )= (d+2)3 −3(d+2)`2deg(C )−`3 (2−2g−4deg(C )) . (2.69)
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From (1.1) we get c1(P̃3). The next term of (2.68) is given by

c1(Ω
P̃3) · c2

1
(L )=

[
4π∗h−E

]
·
[
(d+2)2π∗h2 −2` (d+2)π∗h ·E+`2 ·E2

]
. (2.70)

By integrating each term of the equation (2.70) , we have

∫
P̃3

c1(T
P̃3) · c2

1
(L )= 4(d+2)2 −4`2deg(C )− (2−2g−4deg(C ))`2 −2` (d+2)deg(C ).

(2.71)

Now, integrating c2(T
P̃3) · c1(L ) and using (1.2) for c2(�TP3), we have

c2(T
P̃3) · c1(L )=

[
6π∗h2 ·E2 −π∗

E c1(TC ) ·E
]
·
[
(d+2)π∗h−` ·E

]
. (2.72)

we have

∫
P̃3

c2(T
P̃3) · c1(L )= 6(d+2)+ (d+2)deg(C )+` (2−2g−4deg(C ))−` (2−2g) (2.73)

Finally, using the (1.3) and integrating c3(T
P̃3), we get∫

P̃3
c3(�TP3)= 4+χ(C ). (2.74)

Therefore

∫
P̃3

c3

(
Ω1
P̃3

⊗L
)
= d3 +2d2 +2d+ (

`+`2 −`3)(χ(C )−4deg(C )
)− (`+1)χ(C )

+ (d+2)deg(C )
(
2`+−3`2 +1

)+4`2deg(C ). (2.75)

In order to determine the singularities on the exceptional divisor E we will computation

the following integral

∫
E

c2

(
Ω1

E ⊗L
)= ∫

E
c2

(
Ω1

E
)+∫

E
c1

(
Ω1

E
)
c1(L )+

∫
E

c1(L )2. (2.76)

We know that c1(T
P̃3)= c1(TF̃ )+ c1(NF̃ ). Now, restricting the exceptional divisor, we

can write

c1(T
P̃3)|E = c1(TE)+ c1(NE)= c1(TE)+ [E]= c1(TE)+E.
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So,

π∗c1(TP3)−E= c1(TE)+E,

and

c1(TE)= 4π∗h−2E. (2.77)

From the Whitney Formula we have

c(T
P̃3)= c(TE) · c(E)

= (1+ c1(TE)+ c2(TE))(1+ c1(E)). (2.78)

Then

c2(T
P̃3)= c1(TE) ·E+ c2(TE)

c2(TE)=π∗c2(T
P̃3)F −π∗c1(TC ) ·E−4π∗h ·E+2E2

=π∗c2(T
P̃3)−π∗c1(TC ) ·E−4π∗h ·E+E2. (2.79)

Integrating each term of equation (2.79), we have∫
E

c2(TE)= 6
∫

E
π∗h2 −

∫
E
π∗(TC ) ·E−4

∫
E

h ·E+
∫

E
E2. (2.80)

Then ∫
E

c2(TE)= χ(C )−4deg(C )+χ(C )+4deg(C )= 2χ(C ). (2.81)

From (2.77) we can write

c1(TE) · c1(L )= (
4π∗h−2E

) · ((d+2)π∗h−`E
)
. (2.82)

Now by integrating each terms of the equations (2.82) and using (1) we have

∫
E

c1(TE) · c1(L )= 4(d+2)
∫

E
π∗ ·h2−4`

∫
E
π∗h ·E−2(d+2)

∫
E
π∗h ·E+2`

∫
E

E2. (2.83)

So ∫
E

c1(TE)= 4`deg(C )+2(d+2)deg(C )+2`
(
χ(C )−4deg(C )

)
. (2.84)
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c2
1
(L )= (d+2)2π∗h2 −2(d+2)`π∗h ·E+`2E2. (2.85)

By integrating each term of the equation (2.85), and again using (1) we have

∫
E

c2
1(L )= 2` (d+2)deg(C )+`2 (

χ(C )−4deg(C )
)
. (2.86)

So from the equations (2.85) and (2.83) we get the equality

∫
E

c2(Ω1
E ⊗L )= 2χ(C )−4deg(C )−2(d+2)deg(C )−2`

(
χ(C )−4deg(C )

)
+2` (d+2)deg(C )+`2 (

χ(C )−4deg(C )
)
. (2.87)

Therefore, from (2.67) we get the inequality

n∑
i=1

Res(F , pi)≥ d3 +2d2 +2d− (`+3)χ(C )+deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
+ (

3`−`3)(χ(C )−4deg(C )
)
.

�

2.4 Non-Special Holomorphic Distributions along a
Regular Curve

The main result of this section will tell us that we can display an upper bound for the

residue of a singular holomorphic distribution along a curve. Before enunciating this

result, we shall define this residue. After that, we will demonstrate that the residue of a

distribution F along a curve of singularities is well defined.

Definition 2.16. Let F be a codimension one distribution on P3 of degree d which
singular set is a disjoint union of proper closed subsets

Sing(F )=C ∪ {p1, . . . , pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn. We define the residue
of F along C by
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Res(ω,C ) := lim
t→0

∑
lim
t→0

pt
i ∈C

Res(ωt, pt
i), (2.88)

where ωt is a generic perturbation of ω.

Proposition 2.17. The residue Res(F ,C ) is well defined.

Proof. Let ωt
1 and ωt

2 be two generic perturbations of ω with deg(ωt
1)= deg(ωt

2)= d such

that:

Sing(ωt
1)= {pt

1, . . . , pt
k},

Sing(ωt
2)= {qt

1, . . . , qt
s}.

So, we can write

Res(ω, pi) := lim
t→0

∑
lim
t→0

pt
i 6∈C

Res(ωt
1, pt

i)

=∑
Res(ωt

1, pt
i)− lim

t→0

∑
lim
t→0

pt
i ∈C

Res(ωt
1, pt

i). (2.89)

We can also write

∑
Res(ω, pi) := lim

t→0

∑
lim
t→0

qt
j 6∈C

Res(ωt
2, qt

j)

=∑
Res(ωt

2, qt
j)− lim

t→0

∑
lim
t→0

qt
j ∈C

Res(ωt
2, qt

j). (2.90)

Subtracting equations (2.89) and (2.90), we have

lim
t→0

∑
lim
t→0

qt
j ∈C

Res(ωt
2, qt

j)= lim
t→0

∑
lim
t→0

pt
i ∈C

Res(ωt
1, pt

i). (2.91)

By Izawa’s Theorem we have∑
Res(ωt

1, pt
i)=

∑
Res(ωt

2, qt
j)= d3 +2d2 +2d.
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since by hypothesis we have deg(ωt
1)= deg(ωt

2)= d. Thus, the residue along curve C is

well defined.

�

Theorem 2.18. Let F be a non integrable codimension one distribution on P3 of degree
d which singular set is a disjoint union of proper closed subsets

Sing(F )=C ∪ {p1, . . . , pn},

where C is a smooth irreducible curve and closed points p1, . . . , pn. Then

i)

n∑
i=1

Res(F , pi)≥ d3 +2d2 +2d− (`+3)χ(C )+deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
+ (

3`−`3)(χ(C )−4deg(C )
)−NG ,

ii)

Res(F ,C )≤ (`+3)χ(C )−deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
− (

3`−`3)(χ(C )−4deg(C )
)+NG ,

where deg(C ), χ(C ), denote respectively , the degree and Euler characteristic of C and
NG the number of embedded closed points of C counted with multipilicities.

Proof. Let F be a codimension one distribution on P3 of degree d induced by global

section ω ∈ H0(P3,ΩP3(d+2)) and π : P̃3 −→P3 the blow up morphism of P3 along C with

exceptional divisor E. Suppose that F is non-dicritical. The dicritical case, just replace `

by `−1.

Again, we have two cases to consider.

i) First case: If F is special along C , then the result follows from lemma 2.15 doing

NG = 0.

Second case : If F is not special along C , then there exists a special distribution

along C induced by ωt for all t ∈D∗. Then
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∑
Res(ω, pi)=

∑
lim
t→0

pt
i 6∈C

Res(ωt , pt
i). (2.92)

Since that π : P̃3 \ E −→P3 \C is a biholomorphism, we can write

∑
lim
t→0

p̃t
i 6∈C

Res(ωt , pt
i)=

∑
lim
t→0

p̃t
i 6∈ E

Res(ω̃t , p̃t
i). (2.93)

∑
lim
t→0

p̃t
i 6∈ E

Res(ω̃t , p̃t
i)=

∑
p̃t

i∈Sing(ω̃t )

Res(ω̃t , p̃t
i)−

∑
p̃t

i∈E

Res(ω̃t , p̃t
i)−

∑
lim
t→0

p̃t
i ∈ E

p̃t
i 6∈E

Res(ω̃t , p̃t
i).

(2.94)

As ωt is special along C , from (2.61) e (2.66), we get

∑
pt

i∈Sing(ω̃t )

Res(ω̃t , p̃t
i)=

∫
P̃3

c3(Ω
P̃3 ⊗L ). (2.95)

∑
pt

i∈E

Res(ω̃t , p̃t
i)≤

∫
E

c2(Ω
P̃3 ⊗L ). (2.96)

Using (2.67) (2.93), (2.95) , (2.96) and doing

NG = ∑
lim
t→0

p̃t
i ∈ E

p̃t
i 6∈E

Res(ω̃t , p̃t
i). (2.97)

we get the inequality

n∑
i=1

Res(F , pi)≥ d3 +2d2 +2d+ (
`+`2 −`3)(χ(C )−4deg(C )

)− (`+1)χ(C )

+ (d+2)deg(C )
(
2`−3`2 +1

)+4`2deg(C )−NG .

ii) Let ωt be a generic perturbation of ω such that deg(ω)= deg(ωt). Now by Izawa’s

Theorem, we can write
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∑
pt

i ∈Sing(ωt)
Res(ωt, pt

i)= d3 +2d2 +2d. (2.98)

We have two possibilities: lim
t→0

pt
i 6∈C or lim

t→0
pt

i ∈C .

By definition (2.16) we can write

Res(ω,C )= lim
t→0

∑
lim
t→0

pt
i ∈C

Res(ωt, pt
i). (2.99)

If lim
t→0

pt
i 6∈C then lim

t→0
pt

i = pi for some i.

k∑
i=1

Res(ω, pi)= lim
t→0

∑
lim
t→0

pt
j = pi

Res(ωt, pt
j). (2.100)

By adding the equations (2.99) and (2.100), we have

Res(F ,C )+∑
Res(ω, pi)= lim

t→0

n∑
j=1

pt
j ∈Sing(ωt, pt

j)

Res(ωt)= d3 +2d2 +2d. (2.101)

Thus:

Res(F ,C )= d3 +2d2 +2d−
k∑

i=1
Res(ω, pi). (2.102)

by the previous item (i), we can write

Res(F ,C )≤ (`+3)χ(C )−deg(C )
[
(d+2)(3−3`2)+4`(`+1)

]
− (

3`−`3)(χ(C )−4deg(C )
)+NG .

we get, then the desired inequality, thus showing the item (ii).

�
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Example 2.19 (Non-Dicritical Case). Consider the non-integrable distribution F on P3

induced by

ω= (z2
0 + z2

1)dz3 − z3(z0dz0 + z1dz1)+ z1(z0dz2 − z2dz0).

See example 8.4 of [15].

First, as we can see the curve C =
{

z0 = z1 = 0
}
⊂Sing(F ).

In the affine open set U3 =
{

[z] ∈P3, z3 6= 0
}

with coordinates x = z0

z3
, y= z1

z3
and z = z2

z3
,

the distribution is rewritten as

The singular set of F is given by following system

ω= (−x− yz)dx− yd y+ xydz.


−x− yz = 0,

y= 0,

xy= 0.

It is not hard to see that Sing(F )∩U3 is only the z-axis.

Now we looking for the singularities in the hyperplane at infinity H∞ = {
z3 = 0

}
.

z2
0 + z2

1 = 0,

z1 = 0.

Thus, with z2 = 1, we have p = [0 : 0 : 1 : 0] ∈ Sing(F ) with multiplicity equal to 2 and
there are no other singularities. We also note that p ∈C . So

Sing(F )=
{

z0 = z1 = 0
}
∪

{
2[0 : 0 : 1 : 0]

}
.

Let π : P̃3 −→P3 be the blow up centered at C .
In the chart σ1(u)= (u1,u1u2,u3)= (x, y, z) we have
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π∗ω= (−u1 −u1u2u3)du1 −u1u2

(
u2du1 +u1du2

)
+u2

1u2du3

= (−u1 −u1u2u3 −u1u2
2)du1 −u2

1u2du2 +u2
1u2du3

= u1(−1−u2u3 −u2
2)du1 −u2

1u2du2 +u2
1u2du3

ω̃= (−1−u2u3 −u2
2)du1 −u1u2du2 +u1u2du3.

(2.103)

As p(u1,u2,u3)= 1+u2u3 +u2
2 6≡ 0, F is non-dicritical distribution.

The singular set of F restricted to the exceptional divisor E = {
u1 = 0

}
is given by

−1−u2u3 −u2
2 = 0,

i.e. there are no isolated singularities in E. Consequently ω does not induce a special
distribution in P3 along C .

By Lemma of Perturbation there exists a special distribution Ft along C induced by
following 1-form :

ωt =ω+ t
[

A1(x, y)+ (
αy+βz

)
G1(x, y)

]
dx

+ t
[
B1(x, y)+ (

γz−αx
)
G1(x, y)

]
d y

+ t
[
C1(x, y)− (

βx+γy
)
G1(x, y)

]
dz.

for all t ∈ D(0,ε). Thus

ωt =
((−x− yz

)+ t
[

A1(x, y)+ (
αy+βz

)
G1(x, y)

])
dx

+
(
−y+ t

[
B1(x, y)+ (

γz−αx
)
G1(x, y)

])
d y

+
(
xy+ t

[
C1(x, y)− (

βx+γy
)
G1(x, y)

])
dz.

where A1, B1, C1 and G1 are homogeneous polynomials of degree one and non identically
null with gdc(A1,B1,C1,G1)= 1 and α,β,γ ∈C.

In the chart σ1, we have
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π∗ωt =
(
−u1 −u1u2u3 + t

[
u1a(u2)+u1

(
αu1u2 +βu3

)
g(u2)

])
dx

+
(
−u1u2 + t

[
u1b(u2)+u1

(
γu3 −αu1

)
g(u2)

])(
u2du1 +u1du2

)
+

(
u2u2

1 + t
[
u1c(u2)−u2

1
(
β+γλ)

g(u2)
])

dz. (2.104)

where a(u2)= A1(1,u2), b(u2)= B1(1,u2) and c(u2)= C1(1,u2). in this way

π∗ωt = u1

(
−1−u2u3 −u2

2 + t
(
a(u2)+u2b(u2)

)
+ tu3

(
β+λγ

)
g(u2)

)
du1

+u2
1

(
−u2 + t

(
b(u2)+

(
γu3 −αu1

)
g(u2)

)
du2

+u1

(
u1u2 + t

(
c(u2)−u1

(
β+γλ

))
du3. (2.105)

Dividing (2.105) by u1, we get

ω̃t =
(
−1−u2u3 −u2

2 + t
(
a(u2)+u2b(u2)

)
+ tu3

(
β+λγ

)
g(u2)

)
du1

+u1

(
−u2 + t

(
b(u2)+

(
γu3 −αu1

)
g(u2)

)
du2

+
(
u1u2 + t

(
c(u2)−u1

(
β+γλ

))
du3. (2.106)

In this case, the singularities over the exceptional divisor are given by the set of zero of the
following equations system

(
−1−u2u3 −u2

2 + t
(
a(u2)+u2b(u2)

)
+ tu3

(
β+λγ

)
g(u2)

)
= 0,

tc(u2)= 0.

From the second equation, we have u2 = u1
2, because t 6= 0 and since c(u2) is an affine

linear function. By replacing this in the first equation, we have:

u1
3 =

(
u1

2 +1
)
− t

[
a(u1

2)+u1
2b(u1

2)
]

t
(
β+γλ

)
g(u1

2)−u1
2

Thus, there exists at least one singularity over the exceptional divisor defined by (0,u1
2,u1

3).
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Let us suppose that u1 6= 0. In this case, the singular set of Ft is given by

(
−1−u2u3 −u2

2 + t
(
a(u2)+u2b(u2)

)
+ tu3

(
β+λγ

)
g(u2)

)
= 0,

u1

(
−u2 + t

(
b(u2)+

(
γu3 −αu1

)
g(u2)

)
= 0,(

u1u2 + t
(
c(u2)−u1

(
β+γλ

))
= 0.

From the third and first equations, respectively, of the system above, we can write

u1

[
u2 − t

(
β+γu2

)
g(u2)

]
=−tc(u2). (2.107)

u3

[
u2 − t

(
β+γu2

)
g(u2)

]
=−1−u2

2 + t
(
a(u2)+u2b(u2)

)
. (2.108)

Now, from the second equation, we have

t
(
γu3 −αu1

)
= u2 − tb(u2). (2.109)

From (2.107) and (2.108), we get

tg(u2)
[
−γ−γu2

2 +γt
(
a(u2 +u2b(u2)

)
−αtc(u2)

]
=

(
u2 − tb(u2)

)[
u2 − t

(
β+γu2

)
g(u2)

]
.

(2.110)

From the equality in (2.110) we get a polynomial of degree two in the variable u2.
Therefore, in the complement of the exceptional divisor E we have two singularities which
we will call pt

1 and pt
2.

Since ωt is a polinomyal 1-form, the Hartogs’ Theorem allows us to extend ωt to all P3. So,

ωt =
(
−z0z3 − z1z2 + t

[
z3A1(z0, z1)+

(
αz1 +βz2

)
G1(z0, z1)

])
dz0

+
(
−z1z3 + t

[
z3B1(z0, z1)+

(
γz2 −αz0

)
G1(z0, z1)

])
dz1

+
(
z0z1 + t

[
z3C1(z0, z1)−

(
βz0 +γz1

)
G1(z0, z1)

])
dz2

+
(
z2

0 + z2
1 − t

[
z0A1(z0, z1)+ z1B1(z0, z1)+ z2C1(z0, z1)

])
dz3. (2.111)

We will looking for the singularities in the hyperplane at infinity.
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a) let us do z3 = 0 e z2 = 1.

In this case, we have


−z1 + t

(
αz1 +β

)
G1(z0, z1)= 0,

t
(
γ−αz0

)
G1(z0, z1)= 0,

z2
0 + z2

1 − t
[
z0A1(z0, z1)+ z1B1(z0, z1)+C1(z0, z1)

]
= 0.

As G1(z0, z1) 6≡ 0 from the second equation we have z0 = γ

α
. So, replacing this in the

first and third equations of the system, we will obtain two equations of the second
degree in the variable z1. Generically these equations do not have the same roots.
Therefore this system has no solution.

b) Let us do z3 = z2 = 0 and z1 = 1.


αtg(z0)= 0,

z0 − t
(
βz0 +γ)g(z0)= 0,(

1− ta0

)
z2

0 − t
(
a1 +b0

)
z0 + tb1 +1= 0.

Where g(z0)=G1(z0,1), A1(z0,1)= a0z0 +a1 and B1(z0,1)= b0z0 +b1. For
sufficiently small t and fixed a0, a1, b0 and b1 the third equation has no solution.
So this system has no solution.

c) z3 = z2 = z1 = 0 and z0 = 1.

In this case, it is not difficult to see that the point p = [1 : 0 : 0 : 0] 6∈Sing(Ft).

Thus

Sing(ωt)=C ∪
{

pt
1, pt

2

}
. (2.112)

We know that Sing(F ) =
{

z0 = z1 = 0
}
∪

{
2[0 : 0 : 1 : 0]

}
and π : P̃3 \ E −→ P3 \ C is a

biholomorphism. Therefore, from the (2.112) we concluded that pt
1 and pt

2 are embedding
closed points of distribution F , so NG = 2, because when t −→ 0 we have ωt −→ω.
Thus, we have deg(F )= 1, `t =multE(π∗Ft)=multE(π∗F )= 1 for all t ∈D\{0}, χ(C )= 2.
By Theorem 2.18 we get

Res(F ,C )≤ 6. (2.113)
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2.4. NON-SPECIAL HOLOMORPHIC DISTRIBUTIONS ALONG A
REGULAR CURVE

Example 2.20 (Dicritical Case). Consider the non-integrable distribution F induced by

ω=
[
µz1z2

3 +a0z2
0z3 + (a1z3 +a3z2) z0z1 + (a2z3 +a4z2) z2

1

]
dz0

+
[
−µz0z2

3 + (b0z3 −a3z2) z2
0 + (b1z3 −a4z2) z0z1 +b2z2

1z3

]
dz1

+
[
c0z2

0z3 + c1z0z1z3 + c2z2
1z3

]
dz2

+
[
−a0z3

0 −a1z2
0z1 −a2z0z2

1 −b0z2
0z1 +b2z3

1 − z2
(
c0z2

0 + c1z0z1 + c2z2
1
)]

dz3.

with ai ∈C, b j ∈C, ck ∈C and 0 6=µ ∈C and i = 0, . . . ,4 and k, j = 0,1,2

and gdc(a(λ),b(λ), c(λ))= 1 where a(λ)=
2∑

i=0
aiλ

i b(λ)=
2∑

i=0
biλ

i and c(λ)=
2∑

i=0
ciλ

i.

In the open affine set U3 :=
{

[z] ∈P3 : z3 6= 0
}

, with coordinates x = z0

z3
, y= z1

z3
and z = z2

z3
the distribution is write as

ω=
[
µy+a0x2 + (a1 +a2z) xy+ (a3 +a4z) y2

]
dx

+
[
−µx+ (b0 −a2z) x2 + (b1 −a4z) xy+b2 y2

]
d y+

[
c0x2 + c1xy+ c2 y2

]
dz.

First note that multC (F ) = 1. Also, note that the curve C =
{

z0 = z1

}
⊂ Sing(F ). The

singular set of F is obtained, solving the following equations of system.
µy+a0x2 + (a1 +a2z) xy+ (a3 +a4z) y2 = 0,

−µx+ (b0 −a2z) x2 + (b1 −a4z) xy+b2 y2 = 0,

c0x2 + c1xy+ c2 y2 = 0.

(2.114)

Since by hypothesis gdc(a(λ),b(λ), c(λ)) = 1 on the affine chart U3, there are no other
singularities but the z-axis.

Let us now look at the singularities in the hyperplane at infinity H∞ = {
z3 = 0

}
.

First: Let us do z2 = 1 and z3 = 0.


a3z0z1 +a4z2

1 = 0, ,

−a3z2
0 −a4z0z1 = 0

−a0z3
0 −a1z2

0z1 −a2z0z2
1 −b0z2

0z1 +b2z3
1 −

(
c0z2

0 + c1z0z1 + c2z2
1
)= 0.

(2.115)
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Making z1 =λz0 and considering z0 6= 0 and z1 6= 0, we have:


z2

0
(
a3λ+a4λ

2)= 0,

z2
0 (−a3 −a4λ)= 0,

z2
0

[
z0

(
−a0 −a1λ−a2λ

2 −b0λ+b2λ
3
)
− (

c0 + c1λ+ c2λ
2)]= 0.

(2.116)

From the second equation of (2.116), we have

λ=−a3

a4
.

From the third equation, we get:

z0 = c2(λ)
p3(λ)

,

where c2(λ)= c0+ c1λ+ c2λ
2 and p3(λ)=−a0− (a1 +b0)λ−a2λ

2+b2λ
3. Thus, we have

point p1 = [z0 :λz0 : 1 : 0]

Second: Let us do z3 = z2 = 0 and z1 = 1.

a0z3
0 + (a3 +b0) z2

0 +a2z0 −b2 = 0. (2.117)

If a0 6= 0, the singular set of F contains three more points, p2, p3, p4, which are the roots of
the equation (2.117). However, if a0 = 0, we have two roots plus the point p4 = [1 : 0 : 0 : 0],
which in this case will also be an element of Sing(F ). So, the singular set is the following
union :

Sing(F )=C ∪ {p1, . . . , p4}.

Again, considering the open affine set U3 and by blowing up along the curve C and using
the chart σ1(ς1,ς2,ς3)= (ς1,ς1ς2,ς3)= (x, y, z), we have

π∗ω=
[
µς2ς1 +a0ς

2
1 + (a1 +a3ς3)ς2ς

2
1 + (a2 +a4ς3)ς2

2ς
2
1

]
dς1

+
[
−µς1 + (b2 −a3ς3)ς2

1 + (b1 −a4ς3)ς2ς
2
1 +b2ς

2
2ς

2
1

](
ς2dς1 +ς1dς2

)
+ς2

1

[
c0 + c1ς2 + c2ς

2
2

]
dς3. (2.118)
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π∗ω=
[
µς2ς1 +ς2

1

(
a0 + (a1 +a3ς3)ς2 + (a2 +a4ς2)ς2

2

)
−µς1ς2

+ς2
1

(
(b2 −a3ς3)ς2 + (b1 −a4ς3)ς2

2 +b2ς
3
2

]
dς1

+ς2
1

[
−µ+ (b2 −a4ς3)ς1 + (b1 −a4ς3)ς2ς1 +b2ς1ς

2
2

]
dς2 +ς2

1

[
c0 + c1ς2 + c2ς

2
2

]
dς3.

(2.119)

π∗ω= ς2
1

[
a0 + (a1 +b2)ς2 + (a2 +b1)ς2

2 +b2ς
3
2

]
dς1

+ς2
1

[
−µ+ (b2 −a4ς3)ς1 + (b1 −a4ς3)ς1ς2 +b2ς

2
2ς1

]
dς2 +ς2

1

[
c0 + c1ς2 + c2ς

2
2

]
dς3.

(2.120)

Dividing the equation (2.120) by ς2
1, we have:

ω̃= (
a0 + (a1 +b2)ς2 + (a2 +b1)ς2

2 +b2ς
3
2
)
dς1

+ (−µ+ (b2 −a4ς3)ς1 + (b1 −a4ς3)ς1ς2 +b2ς
2
2ς1

)
dς2 +

(
c0 + c1ς2 + c2ς

2
2
)
dς3. (2.121)

The solutions of the following system below are the singularities of ω̃ on the exceptional
divisor E = {ς1 = 0}.


a0 + (a1 +b2)ς2 + (a2 +b1)ς2

2 +b2ς
3
2 = 0,

−µ+ (b2 −a4ς3)ς1 + (b1 −a4ς3)= 0,

c0 + c1ς2 + c2ς
2
2 = 0.

we generically can choose the coefficients ai, bi and ci so that the system above has no
solution. Thus, over the exceptional divisor, we have no singularities.
Again, in the hyperplane at infinity H∞ = {

z3 = 0
}

we have

ω= (
a3z0z1 +a4z2

1
)
dz0 −

(
a3z2

0 +a4z0z1
)
dz1

−
[
a0z3

0 −a3z2
0z1 −a2z0z2

1 −b0z2
0z1 +b2z3

1 −
(
c0z2

0 + c1z0z1 + c1z2
1
)]

z3. (2.122)

Making the explosion along the curve C = {z0 = z1 = 0}, with z1 = uz0, we have:
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π∗ω= z2
0
(
a3u+a4u2)dz0 − z2

0 (a3 +a4u) (udz0 + z0du)

+ z2
0

[
z0

(−a0 − (a3 +b0)u−a3u2 +b2u3)− (
c0 + c1u+ c2u2)]dz3

π∗ω= z2
0

[(
a3u+a4u2)− (

a3u+a4u2)]dz0 − z3
0 (a3 +a4u)du

+ z2
0 (z0 p(u)− c(u))dz3

π∗ω=−z3
0 (a3 +a4u)du+ z2

0 (z0 p(u)− c(u))dz3

ω̃= z0 (a3 +a4u)du+ (z0 p(u)− c(u))dz3. (2.123)

where p(u)=−a0 − (a3 +b0)u−a3u2 +b2u3 and c(u)= c0 + c1u+ c2u2.

So, over exceptional divisor E = {z0 = 0} we have c(u) = 0, thus u = ui, i = 1,2. Then,
two singularities.
As π : P̃3 \ E −→P3 \C is a biholomorphism, we have

Sing(F̃ )= {p1, p2, p3, p4, p̃5, p̃6} .

Let ωt be a small perturbation of ω. By Lemma of Perturbation, ωt is special along C for
all t ∈D\{0}.

1) `t =multE(π∗Ft)=multE(π∗F )= 2−1= 1, for all t ∈ D(0,ε)\{0}.

2) deg(F )= deg(Ft)= 2, for all t ∈ D(0,ε)\{0}.

So by item (1) above and by Lemma of Perturbation item (5) we have that F is a dicritical
distribution.
By Theorem 2.18 and replacing items (1) and (2) above in (2.75) and (2.87), we have

Remark 2.21. In this case, notice that, over exceptional divisor, we have∑
pt

i∈E
Res(F̃t, p̃t

i)=
∫

E
c2(Ω1

E ⊗L)= 2.

4=
4∑

i=1
Res(F , pi)= 18−2−NG =⇒ NG = 12

which results

Res(F ,C )= 16.
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3
SPECIAL DISTRIBUTION DETERMINED BY THEIR

SINGULAR SCHEME

Our goal in this section is to study the special distributions that are uniquely determined

by their singular scheme for a certain fixed annulment order. The references are [3], [7]

and [19].

The following results will allow us to demonstrate the main result of this chapter.

Remark 3.1. For any holomorpic vector bundle E of rank r;

k∧
E '

r−k∧
E∨⊗det(E).

By the previous Remark, we can write:

Remark 3.2.

2∧
TP3 '

3−2∧
T∨
P3 ⊗det(TP3),

'Ω1
P3 ⊗ω∨

P3 ,

'Ω1
P3 ⊗OP3(4). (3.1)

Remark 3.3.

3∧
TP3 'OP3(4). (3.2)
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Proposition 3.4 (Projection Formula). If f : (X ,OX )−→ (Y ,OY ) is a morphism of ringed
spaces, if F is an OX -module, and if G is a locally free OY -module of finite rank, then there
is a natural isomorphism f∗

(
F⊗OX f ∗G

)' f∗(F)⊗OY G.

Proposition 3.5. Let f : X −→Y be an affine morphism of schemes with X noetherian
and let F be a quasi-coherent sheaf on X . If R i f∗F = 0 for all i > 0, then

H i(X ,F )' H i(Y , f∗F ),

for each i ≥ 0.

Proof. See [4] proposition 3.26. �

Remark 3.6 (Direct Image by Blow up). Let π : P̃3 −→ P3 be the blowing-up along
a irreducible smooth curve C ⊂ P3 with exceptional divisor E. For this purpose, the
following result is valid:

π∗O
P̃3(−nE)=I⊗n

C /P3 .

where IC /P3 is the ideal sheaf of C .

For more details, see [10].

Making E =Ω1
Pn in remark (3.1), we have

Proposition 3.7. (Vector Bundle Isomorphism)

(Ωp
Pn)∨ 'Ωn−p

Pn ⊗ (Ωn
Pn)∨.

In our case, as we are blowing up X =P3 along the curve C, the dualizing sheaf of X̃ is

given by:

Lemma 3.8 (Dualizing Sheaf).

ω
P̃3 'π∗(ωP3)⊗O

P̃3 ((k−1)E) ,

where k is the codimension of center of blow up.

In our case, as we are blowing up X =P3 along the curve C, the dualizing sheaf of X̃ is

given by: ω
P̃3 'π∗(ωP3)⊗O

P̃3(E).

In the proof of our main result, we are going to use the following results.
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Lemma 3.9 (see [1], Lemma 1.4). Let X ⊂ M be a smooth codimension e subvariety of a
smooth variety M. Let f : P = BlX −→ M be the blowing-up of M along of X and let E ⊂ P
be the exceptional divisor. If 0≤ t ≤ e−1, then:

H i(P, f ∗F ⊗OP (tE))' H i(M,F),

for all i and for any locally free sheaf F on M.

Theorem 3.10 ([2], Theorem 1.1). Let X be a smooth projective variety and E and G be
locally free sheaves on X of rank e and g, respectively. Let ϕ : E −→ G be a generically
surjective morphism. Denote by ωϕ ∈ H0(X ,

∧g(E ∗)⊗det(G )) the associated global section
and by Z its zero scheme. Suppose that the following conditions hold:

i) Z has pure codimension : e− g+1.

ii) For every i ∈ {1, . . . , e− g}

H i(X ,
g∧

(E ∗)
i+1∧

E ⊗Si(G∗))= 0.

If ω ∈ H0(X ,
∧g(E ∗)⊗det(G )) is such that ω|Z = 0, then there is an endomorphism

α ∈End(
∧g(E ∗)) such that ω=α◦ωϕ.

Let us state our main result.

Theorem 3.11. Let F1 be a non integrable codimension one holomorphic distributions on
P3 of degree d such that its singular locus has just one non-zero dimensional component
which is integral and non-degenerated somooth curve C . Assume that F1 is special along
C . Let π : P̃3 −→ P3 be the blowup of P3 along C and E the exceptional divisor. If F2 is
another non integrable codimension one distribution of degree d on P3 and furthermore
the following conditions are satisfied :

i) deg(C )≥ 2,

ii) d ≥ 2deg(C ),

iii) Sing(F1)⊂Sing(F2),

iv) Sing(F̃1|E)⊂Sing(F̃2|E),

v) `=multE(F̃1)= 1 or 2,

57



CHAPTER 3. SPECIAL DISTRIBUTION DETERMINED BY THEIR SINGULAR
SCHEME

Then F1 =F2 .

Proof. Let d = deg(F1)= deg(F2). The distributions F1 and F2 are induced, respectively,

by ω1,ω2 ∈ H0(P3,Ω1
P3 ⊗OP3(d+2)). Similarly the distributions F̃1 and F̃2 are induced,

respectively, by ω̃1,ω̃2 ∈ H0(P̃3,π∗Ω1
P3 ⊗π∗OP3(d+2)⊗O

P̃3(−`E)).

Let us show that

ω̃1 =λω̃2. (3.3)

Let Sing(ω̃1)= Z(ω̃1) and Sing(ω̃2)= Z(ω̃2).

Firstly, by biholomorphism π : P̃3 \ E −→P3 \C , we have the following inclusion:

Z(ω̃1)⊂ Z(ω̃2). (3.4)

Now, by item (iv), we have that inclusion above is valid in P̃3.

In P̃3 \ E the morphism of locally free sheaves ϕω̃1 :π∗(TP3)−→ NF̃ induced by global

section ω̃1 is surjective and by definition, the degeneracy scheme of ϕω̃1 it is given by

Sing(ϕω̃1)= Z(ω̃1).

By hypothesis, asω1 is special along C , then Z(ω̃1) is a nonempty and zero-dimensional

scheme. By taking in theorem (3.10), E =π∗(TP3) and G = NF̃ whose ranks are 3 and 1,

respectively, we can write:

Codim(Sing(ϕω̃1))=Codim(Z(ω̃1))= rank(π∗(E ))−rank(G )+1= 3−1+1= 3. (3.5)

Now, let us show that the following vanishing of cohomology each other out:

H i(P̃3,π∗(TP3)∨⊗
i+1∧

π∗(TP3)⊗Si(N∨
F̃

))

where Si(N∨
F̃

) denotes the its i-th symmetric power, with i = 1,2.

By hypothesis, item (v); we are interested in the case `= 1,2. Let us make, then, both

cases.

First Case: `= 1.

In this case, we have:

N∨
F̃
'π∗(N∨

F )⊗O
P̃3(E),

'π∗(OP3(−(d+2)))⊗O
P̃3(E). (3.6)
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a) i = 1.

Note also that:

S1(N∨
F̃

)= N∨
F̃

,

=π∗(OP3(−(d+2)))⊗O
P̃3(E). (3.7)

In order to simplify the notation, we do:

H1 = H1(P̃3,π∗(TP3)∨⊗∧2π∗(TP3)⊗S1(N∨
F̃

)).

H1 ' H1(P̃3,π∗(TP3)∨⊗
2∧
π∗(TP3)⊗π∗(OP3(−(d+2)))⊗O

P̃3(E)),

' H1(P̃3,π∗(Ω1
P3)⊗π∗(

2∧
TP3)⊗π∗(OP3(−(d+2)))⊗O

P̃3(E)),

' H1(P̃3,π∗(Ω1
P3)⊗π∗(Ω1

P3 ⊗OP3(4))⊗π∗(OP3(−(d+2)))⊗O
P̃3(E)),

' H1(P̃3,π∗(Ω1
P3 ⊗Ω1

P3 ⊗OP3(4))⊗π∗(OP3(−(d+2)))⊗O
P̃3(E)),

' H1(P̃3,π∗(Ω2
P3 ⊗OP3(2−d))⊗O

P̃3(E)).

(3.8)

where in the second isomorphism of (3.8), we use the Remark 3.2. By Lemma 3.9

we can write:

H1 ' H1(P3,Ω2
P3 ⊗OP3(2−d)),

' H1(P3,Ω2
P3(2−d)). (3.9)

By Bott’s formula, H1(P3,Ω2
P3(2−d))= 0.

b) i = 2.

In this case we have

S2(N∨
F̃

)= (N∨
F )⊗ (N∨

F ),

=π∗(OP3(−2(d+2)))⊗O
P̃3(2E). (3.10)

H2 = H2(P̃3,π∗(TP3)∨⊗∧3π∗(TP3)⊗S2(N∨
F̃

)).
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H2 ' H2(P̃3,π∗(TP3)∨⊗
3∧
π∗(TP3)⊗π∗(OP3(−2(d+2)))⊗O

P̃3(2E)),

' H2(P̃3,π∗(Ω1
P3)⊗π∗(OP3(4))⊗π∗(OP3(−2(d+2)))⊗O

P̃3(2E)),

' H2(P̃3,π∗(Ω1
P3)⊗OP3(−2d)))⊗O

P̃3(2E)).

(3.11)

where in the second isomorphism of (3.11), we use the Remark 3.3. In this case, we

cannot use Lemma (3.9), because t = 2. We will use Serre’s duality (see [3]).

So,

H2 ' H1
(
P̃3,

[
π∗(Ω1

P3 ⊗OP3(−2d))⊗O
P̃3(2E))

]∨
⊗ω

P̃3

)
. (3.12)

Let us do it now, F =
[
π∗(Ω1

P3 ⊗OP3(−2d))⊗O
P̃3(2E))

]
. Thus

F∨ =
[
π∗(Ω1

P3)⊗OP3(−2d))⊗O
P̃3(2E))

]∨
,

=π∗(Ω1
P3 ⊗OP3(−2d))∨⊗O

P̃3(2E)∨,

=π∗((Ω1
P3)∨⊗OP3(−2d)))⊗O

P̃3(2E)∨. (3.13)

By Proposition (3.7) we have

(Ω1
P3)∨ 'Ω2

P3 ⊗ (Ω3
P3)∨. (3.14)

We know that

Ω3
P3 =

3∧
Ω1
P3 = det(Ω1

P3),

=ωP3 =OP3(−4). (3.15)

Therefore

(Ω3
P3)∨ =OP3(4). (3.16)
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From (3.14) we have

(Ω1
P3)∨ 'Ω2

P3 ⊗OP3(4). (3.17)

From (3.13) and (3.14) , the isomorphism (3.12) can be written like this

H2 ' H1(P̃3,π∗(Ω2
P3 ⊗OP3(4)⊗OP3(2d))⊗O

P̃3(−2E)⊗π∗(ωP3)⊗O
P̃3(E)),

' H1(P̃3,π∗(Ω2
P3 ⊗OP3(4)⊗OP3(2d))⊗π∗OP3(−4))⊗O

P̃3(−E)),

' H1(P̃3,π∗(Ω2
P3 ⊗OP3(4)⊗OP3(2d))⊗OP3(−4))⊗O

P̃3(−E)),

' H1(P̃3,π∗(Ω2
P3(2d))⊗O

P̃3(−E)), (3.18)

It follows from the projection formula that and by Lemma 3.9, we have

H1(P̃3,π∗(Ω2
P3(2d))⊗O

P̃3(−E))' H1(P3,Ω2
P3 ⊗OP3(2d)⊗IC )

' H1(P3,Ω2
P3 ⊗IC (2d)). (3.19)

We have that

Remark 3.12. • Ω1
P3 is 2-regular by Bott’s formula,

• Ω2
P3 :=∧2Ω1 is 4-regular by Corollary 1.8,

• IC is (deg(C )−1)-regular by Theorem 1.10.

Therefore Ω2
P3 ⊗IC is (deg(C )+3)-regular by Proposition 1.7. Now, by definition of

Castelnuovo-Mumford’s regularity, the vanishing of (3.19) is thus obtained since

that:

H1(P3,Ω2
P3 ⊗IC (2d))= H1(P3,Ω2

P3 ⊗IC ((2d+1)−1))= 0,

because

2d+1≥ (deg(C )+3),

2d ≥ (deg(C )+2),

d ≥ 1
2

(deg(C )+2). (3.20)
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Second Case: `= 2.

In This case, we have

N∨
F̃
'π∗(N∨

F )⊗O
P̃3(2E),

'π∗(OP3(−(d+2)))⊗O
P̃3(2E). (3.21)

a) i = 1.

Again, making H1 = H1(P̃3,π∗(TP3)∨⊗∧2π∗(TP3)⊗S1(N∨
F̃

)) and from item (a) of

the previous case, we have

H1 ' H1(P̃3,π∗(TP3)∨⊗
2∧
π∗(TP3)⊗π∗(OP3(−(d+2)))⊗O

P̃3(2E)),

' H1(P̃3,π∗(Ω1
P3)⊗π∗(

2∧
TP3)⊗π∗(OP3(−(d+2)))⊗O

P̃3(2E)),

' H1(P̃3,π∗(Ω1
P3)⊗π∗(Ω1

P3 ⊗OP3(4))⊗π∗(OP3(−(d+2)))⊗O
P̃3(2E)),

' H1(P̃3,π∗(Ω1
P3 ⊗Ω1

P3 ⊗OP3(4))⊗π∗(OP3(−(d+2)))⊗O
P̃3(2E)),

' H1(P̃3,π∗(Ω2
P3 ⊗OP3(2−d))⊗O

P̃3(2E)). (3.22)

Again, by Proposition 3.7 we can write

(Ω2
P3)∨ 'Ω1

P3 ⊗ (Ω3
P3)∨,

'Ω1
P3 ⊗OP3(4). (3.23)

From (3.23) and again for the Serre’s duality

H1 ' H2(P̃3,π∗(Ω1
P3 ⊗OP3(4)⊗OP3(d−2))⊗O

P̃3(−2E)⊗π∗(OP3(−4))⊗O
P̃3(E)),

' H2(P̃3,π∗(Ω1
P3 ⊗OP3(d−2))⊗O

P̃3(−E)). (3.24)

By projection formula

H2(P3,Ω1
P3 ⊗OP3(d−2))⊗IC )= H2(P3,Ω1

P3 ⊗IC (d−2)). (3.25)
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According to the remark 3.12 we have Ω1
P3 ⊗IC is (deg(C )+1)-regular.

So, for H2(P3,Ω1
P3 ⊗IC (d−2))= 0, we must have

d ≥ (deg(C )+1). (3.26)

b) i = 2.

In this case, we note that

S2(N∨
F̃

)'π∗(OP3(−2(d+2)))⊗O
P̃3(4E). (3.27)

Simirlarly, we take H2 = H2(P̃3,π∗(TP3)∨⊗∧3π∗(TP3)⊗S2(N∨
F̃

)).

H2 ' H2(P̃3,π∗(TP3)∨⊗
3∧
π∗(TP3)⊗π∗(OP3(−2(d+2)))⊗O

P̃3(4E))

' H2(P̃3,π∗(Ω1
P3)⊗π∗(OP3(4))⊗π∗(OP3(−2(d+2)))⊗O

P̃3(4E))

' H2(P̃3,π∗(Ω1
P3 ⊗OP3(−2d))⊗O

P̃3(4E)).

(3.28)

By Serre’s duality:

H2 ' H1(P̃3, [π∗(Ω1
P3 ⊗OP3(−2d))⊗O

P̃3(4E))]∨⊗ω
P̃3)

H2 ' H1(P̃3,π∗(Ω2
P3 ⊗OP3(4))⊗OP3(2d)))⊗O

P̃3(−4E))⊗π∗(OP3(−4))⊗O
P̃3(E))

' H1(P̃3,π∗(Ω2
P3 ⊗OP3(2d))⊗O

P̃3(−3E)). (3.29)

By projection formula and by remark 3.6, we can write.

H2 ' H1(P3,Ω2
P3 ⊗I⊗3

C (2d)). (3.30)

We already know that Ω2
P3 is 4-regular and by Proposition 1.7 we have that I⊗3

C
is

3(deg(C )−1)= (3deg(C )−3)-regular. So, Ω2
P3 ⊗I⊗3

C
is (3deg(C )+1)-regular.

So, for H1(P3,Ω2
P3 ⊗I⊗3

C
(2d))= H1(P3,Ω2

P3 ⊗I⊗3
C

((2d+1)−1)), we must have

2d+1≥ (3deg(C )+1),

d ≥ 3
2

deg(C ). (3.31)
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By equation (3.4) we have: ω̃2|Z(ω̃1) = 0. Thus, the conclusion of theorem (3.10) allows

us to write:

ω̃1 =α◦ ω̃2. (3.32)

where α ∈End(π∗(TP3)∨).

α ∈End(π∗(TP3)∨)' H0(P̃3, (π∗(TP3)∨)∨⊗π∗(TP3)∨),

' H0(P̃3,π∗(TP3)⊗π∗(TP3)∨),

' H0(P3,TP3 ⊗T∨
P3),

' H0(P3,OP3)'C. (3.33)

where the penultimate isomorphism in (3.33) was obtained by the projection formula.

Then, there exist λ ∈C∗ such that ω̃1 =λω̃2.

By projection, we have ω1 =λω2 and therefore F1 =F2. �

The next example shows that a hypothesis about the degree of the curve can not be

removed.

Example 3.13. As we saw in example 2.12 the following global section,ω ∈ H0
(
P3,Ω1

P3(d+2)
)

given by:

ω=
[

z3Am(z0, z1)+ (αz1 +βz2)Gm(z0, z1)
]
dz0 +

[
z3Bm(z0, z1)+ (γz2 −αz0)Gm(z0, z1)

]
dz1

+
[

z3Cm(z0, z1)− (βz0 +γz1)Gm(z0, z1)
]
dz2 −

[
z0Am(z0, z1)+ z1Bm(z0, z1)+ z2Cm(z0, z1)

]
dz3.

(3.34)

induces a special distribution F on P3 along curve C =
{

[z] ∈P3; z0 = z1 = 0
}

.

Let Ft be a codimension one holomorphic distribution of degree one on P3 with t ∈C
induced by:
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ω=
[

z3(z0 + (−1− t)z1)+
(
(4− t)

11
z1 + 2

11
z2

)(
−88

3
z0 − 44

3
z1

)]
dz0

+
[

z3(tz0 +2z1)+
(
− 3

11
z2 − (4− t)

11
z0

)(
−88

3
z0 − 44

3
z1

)]
dz1

+
[

z3(3z0 −2z1)−
(

2
11

z0 − 3
11

z2

)(
−88

3
z0 − 44

3
z1

)]
dz2

−
[
z0(z0 + (−1− t)z1)+ z1(tz0 +2z1)+ z2(3z0 −2z1)

]
dz3. (3.35)

Comparing (3.35) with (3.34), its not hard to see that distribution Ft is special along C

for all t ∈C.

One can check that Sing(Ft) is the disjoint union of the curve C =
{
[z] ∈P3; z0 = z1 = 0

}
and the closed points p1 = [1 : 1 :−2 : 4], p2 = [−7 : 14 : 11 : 0] for all t ∈C. Thus, we obtain
a one-parameter family of pairwise distinct distributions, with the same singular scheme
for all t ∈C.
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