UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM SANEAMENTO, MEIO AMBIENTE E RECURSOS HÍDRICOS

ANÁLISE DA ALTERAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS IMPACTADAS POR USINAS HIDRELÉTRICAS RECÉM IMPLANTADAS NA AMAZÔNIA

Matheus Ribeiro Coura

Belo Horizonte 2020

ANÁLISE DA ALTERAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS IMPACTADAS POR USINAS HIDRELÉTRICAS RECÉM IMPLANTADAS NA AMAZÔNIA

Matheus Ribeiro Coura

Matheus Ribeiro Coura

ANÁLISE DA ALTERAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS IMPACTADAS POR USINAS HIDRELÉTRICAS RECÉM IMPLANTADAS NA AMAZÔNIA

Dissertação apresentada ao Programa de Pósgraduação em Saneamento, Meio Ambiente e Recursos Hídricos da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Mestre em Saneamento, Meio Ambiente e Recursos Hídricos.

Área de concentração: Meio Ambiente.

Linha de pesquisa: Caracterização, prevenção e controle da poluição.

Orientadora: Sílvia Corrêa Oliveira.

Belo Horizonte Escola de Engenharia da UFMG 2020

C858a

Coura, Matheus Ribeiro.

Análise da alteração da qualidade das águas superficiais impactadas por usinas hidrelétricas recém implantadas na Amazônia [recurso eletrônico] / Matheus Ribeiro Coura. – 2020.

1 recurso online (xv, 228 f.: il., color.): pdf.

Orientadora: Sílvia Corrêa Oliveira.

Dissertação (mestrado) - Universidade Federal de Minas Gerais, Escola de Engenharia.

Apêndices: f. 133-228.

Bibliografia: f. 123-132.

Exigências do sistema: Adobe Acrobat Reader.

1. Engenharia sanitária - Teses. 2. Meio ambiente - Teses. 3. Água - Qualidade - Teses. 4. Reservatórios - Teses. 5. Usinas hidrelétricas - Teses. 6. Amazônia - Teses. I. Oliveira, Sílvia Maria Alves Corrêa. II. Universidade Federal de Minas Gerais. Escola de Engenharia. III. Título.

CDU: 628(043)

UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Escola de Engenharia

Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos Avenida Antônio Carlos, 6627 - 4º andar - 31270-901 - Belo Horizonte – BRASIL Telefax: 55 (31) 3409-1882 - posgrad@desa.ufmg.br http://www.smarh.eng.ufmg.br

FOLHA DE APROVAÇÃO

Análise da Alteração da Qualidade das Águas Superficiais Impactadas Por Usinas Hidrelétricas Recém Implantadas Na Amazônia

MATHEUS RIBEIRO COURA

Dissertação defendida e aprovada pela banca examinadora constituída pelos Senhores:

Profa Sílvia Maria Alves Corrêa Oliveira

Snacolivera

Prof. EDUARDO COUTINHO DE PAULA

Profa LENORA NUNES LUDOLF GOMES

Cr Cer Lus Prof. Cristiano Christofaro Matosinhos

. Aprovada pelo Colegiado do PG SMARH

Prof. Antonio Teixeira de Matos

Coordenador

Belo Horizonte, 28 de fevereiro de 2020.

Versão Final aprovada por

SNOCOLIVEIA
Prof^a. Sílvia Maria Alves Corrêa Oliveira

Orientadora

AGRADECIMENTOS

Agradeço a Deus e a toda forma de energia positiva existente, por me guiar pelo caminho correto, por sempre me orientar a fazer o bem e pela proteção.

Aos meus pais e às minhas irmãs pelo amor incondicional e por serem o meu porto seguro em todos os momentos da minha vida.

À minha família e meus amigos, em especial ao meu primo Halan, pelos incentivos, apoio e momentos de tranquilidade ao longo desses anos.

À professora e orientadora Sílvia Oliveira, pela transferência de conhecimento técnico científico, profissionalismo, liderança, ensinamentos, incentivo, paciência, e principalmente, pela confiança depositada na execução deste trabalho.

Às minhas amigas Ana, Aline, Gabi, Lívia, Marina, Karla, Kelly e Priscila do Grupo de Estudos para Tratamento Estatístico de Dados Ambientais (GETEDA), em especial, à minha grande amiga Josi, pelas trocas de experiências, conhecimentos, sugestões, recomendações e, principalmente, pelos momentos de descontração e risadas. Aprendi muito com cada uma de vocês.

Ao IC Dawber, pelo apoio na execução de algumas análises necessárias ao adequado desenvolvimento do projeto de pesquisa.

Aos membros da banca examinadora, por terem aceitado avaliar esta dissertação e por todas as contribuições importantes para aperfeiçoar o trabalho.

Ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) e às empresas responsáveis pelas usinas hidrelétricas, pela disponibilização dos dados de monitoramento.

Aos queridos colegas do IBAMA, pela ajuda em disponibilizar informações técnicas sobre os empreendimentos hidrelétricos e pelo apoio para o desenvolvimento do projeto.

RESUMO

A construção de barragens e reservatórios artificiais visa atender diversas finalidades humanas, tais como abastecimento de água, irrigação, controle de inundações, recreação, pesca e geração de energia elétrica. Embora a construção de reservatórios tenha o objetivo de promover o bem-estar social, muitos impactos ambientais estão associados à implantação de barragens, sendo a alteração da qualidade das águas superficiais um dos impactos mais notáveis. Este trabalho utilizou técnicas estatísticas para a avaliação da qualidade das águas superficiais em reservatórios e em trechos de rio a jusante de quatro importantes usinas hidrelétricas (UHEs) implantadas na Amazônia (Belo Monte, Jirau, Santo Antônio de Jari e Teles Pires). A técnica estatística multivariada utilizada (Análise de *Cluster*) foi eficiente para identificar distinções entre os dendogramas obtidos para as fases pré e pós-enchimento nos quatro empreendimentos, indicando alterações da qualidade das águas. O teste estatístico de hipóteses não-paramétrico U de Mann-Whitney (nível de significância de 5%) possibilitou a identificação dos parâmetros que mostraram alteração significativa pós-enchimento dos reservatórios. Considerando os quatro empreendimentos hidrelétricos, após a aplicação da etapa de sistematização e organização dos bancos de dados, um total de 45 pontos de monitoramento e 54 parâmetros de qualidade das águas distintos foram analisados. Foram identificados 36 parâmetros que apresentaram alteração significativa com maior frequência (em 40% ou mais de pontos de monitoramento de uma UHE). Dos 36 parâmetros, 14 alteraram significativamente com maior frequência em mais de uma UHE: temperatura da água, pH, oxigênio dissolvido, condutividade elétrica, potencial redox, transparência, sólidos dissolvidos totais, clorofila-a, coliformes termotolerantes, alcalinidade, fósforo total e os íons cálcio, sulfato e sulfeto. Estes parâmetros foram identificados como os mais importantes para explicar a alteração da qualidade das águas após os enchimentos dos reservatórios. Todos os pontos localizados nos reservatórios (41 pontos) e nos trechos de rio imediatamente a jusante das barragens (4 pontos) apresentaram alterações significativas da qualidade das águas. Assim, foram observados alterações nas águas superficiais em toda a extensão dos reservatórios e também a jusante dos barramentos. Pontos de monitoramento localizados em corpos d'água de menores dimensões na fase pré-enchimento, próximos à confluência com os rios principais, e que foram inundados pelos reservatórios na fase pós-enchimento (formando o início de braços ou regiões dendríticas nos reservatórios), destacaram-se quanto ao número de parâmetros da qualidade das águas que alteraram significativamente.

Palavras-chave: hidrelétrica, qualidade das águas, reservatórios, estatística, Amazônia

ABSTRACT

The construction of dams and artificial reservoirs aims to serve several human purposes, such as water supply, irrigation, flood control, recreation, fishing and electricity generation. Although the construction of reservoirs has the objective of promoting social well-being, many environmental impacts are associated with the implementation of dams, the alteration of the quality of surface water being one of the most notable impacts. This work used statistical techniques to assess surface water quality in reservoirs and downstream stretches of four major hydroelectric power plants (HPP) located in the Amazon (Belo Monte, Jirau, Santo Antonio de Jari and Teles Pires). The multivariate statistical technique used (Cluster Analysis) was efficient to identify distinctions between the dendrograms obtained for the pre and post-filling phases of the four projects, indicating changes in water quality. The Mann-Whitney U non-parametric statistical hypothesis test (5% significance level) allowed the identification of parameters that presented significant alteration after reservoir filling. Considering the four hydroelectric projects, after systematizing and organizing the database, a total of 45 monitoring points and 54 distinct water quality parameters were analyzed. Thirtysix parameters presented more frequently significant alteration (in 40% or more of monitoring points of an HPP). Of the 36 parameters, 14 significantly changed more frequently in more than one HPP: water temperature, pH, dissolved oxygen, electrical conductivity, redox potential, transparency, total dissolved solids, chlorophyll a, thermotolerant coliforms, alkalinity, total phosphorus and calcium, sulfate and sulfide ions. These parameters were considered the most important to explain the change in water quality after reservoir filling. All points located in the reservoirs (41 points) and river stretches immediately downstream of the dams (4 points) showed significant changes in water quality. Thus, impacts on surface waters along the whole length of the reservoirs and also on river stretches downstream of the dams were observed. Monitoring points located in smaller water bodies in the pre-filling phase, close to the confluence with the main rivers, and which were flooded by the reservoirs in the post-filling phase (forming the beginning of arms or dendritic regions in the reservoirs), stood out in terms of the number of water quality parameters that changed significantly.

Keywords: Hydroelectric, water quality, reservoirs, statistical techniques, Amazon

SUMÁRIO

Ll	ISTA	DE F	IGURAS	.viii
Ll	ISTA	DE T	ABELAS	xi
LI	ISTA	DE Q	UADROS	. xiv
Ll	ISTA	DE A	BREVIATURAS E SIGLAS	. xvi
1	INT	ГROD	UÇÃO	1
2	OB	JETIV	VOS	3
	2.1	Geral		3
	2.2	Espec	íficos	3
3	RE	VISÃ	O BIBLIOGRÁFICA	4
	3.1	Empr	eendimentos hidrelétricos como fonte de energia renovável no Brasil	e no
	mun	ıdo		4
	3.2	Impla	ntação de reservatórios de usinas hidrelétricas e consequente alteraçã	o da
	qua	lidade d	las águas	10
		3.2.1	Tempo de detenção hidráulica (TDH)	12
		3.2.2	Morfometria de reservatórios	13
		3.2.3	Retenção de sedimentos	16
		3.2.4	Estratificação térmica	17
		3.2.5	Eutrofização	19
		3.2.6	Operação de reservatórios	20
	3.3	Análi	se de dados de monitoramento da qualidade das águas por meio de técn	icas
	esta	tísticas .		21
		3.3.1	Estudos relacionados que utilizaram técnicas estatísticas na avaliação	o de
		dados	de qualidade das águas	25
4	ME	TOD	OLOGIA	29
	4.1	Defin	ição das usinas hidrelétricas a serem estudadas	29
		4.1.1	UHE Belo Monte	31
		4.1.2	UHE Jirau	34
		4.1.3	UHE Santo Antônio do Jari	36
		4.1.4	UHE Teles Pires	38

	4.2	Análi	se estatística dos dados de qualidade das águas superficiais	40
		4.2.1	Organização e sistematização dos bancos de dados	40
		4.2.2	Análise preliminar dos dados	42
		4.2.3	Análise comparativa entre os pontos de monitoramento com relação	às fases
		pré e p	pós-enchimento em cada reservatório	43
		4.2.4	Identificação dos parâmetros da qualidade das águas que sofreram a	alteração
		signif	icativa quando comparadas as fases pré e pós-enchimento e	m cada
		reserv	ratório	45
5	RE	SULT	ADOS E DISCUSSÃO	47
	5.1	UHE	Belo Monte	47
		5.1.1	Organização e sistematização do banco de dados	
		5.1.2	Análise descritiva do banco de dados	
		5.1.3	Aplicação das técnicas estatísticas	50
	5.2	UHE	Jirau	62
		5.2.1	Organização e sistematização do banco de dados	62
		5.2.2	Análise descritiva do banco de dados	65
		5.2.3	Aplicação das técnicas estatísticas	65
	5.3	UHE	Santo Antônio do Jari	81
		5.3.1	Organização e sistematização do banco de dados	81
		5.3.2	Análise descritiva do banco de dados	83
		5.3.3	Aplicação das técnicas estatísticas	83
	5.4	UHE	Teles Pires	92
		5.4.1	Organização e sistematização do banco de dados	92
		5.4.2	Análise descritiva do banco de dados	95
		5.4.3	Aplicação das técnicas estatísticas	96
	5.5	Análi	se integrada dos quatro empreendimentos hidrelétricos	114
6	CO	NSID	ERAÇÕES FINAIS E RECOMENDAÇÕES	120
RI	EFEI	RÊNC	'IAS	123
Al	PÊNI	DICE	I	133
Αl	PÊNI	DICE	II	224

LISTA DE FIGURAS

Figura 3-1 – Crescimento da energia hidrelétrica no mundo nas últimas décadas4
Figura 3-2 – Localizações dos empreendimentos hidrelétricos em operação no Brasil
Figura 3-3 – Número de usinas hidrelétricas implantadas no Brasil por década7
Figura 3-4 – Localizações dos empreendimentos hidrelétricos em operação na Amazônia 8
Figura 3-5 – Fluxograma das etapas do processo de licenciamento ambiental9
Figura 3-6 – Imagem de um reservatório artificial formado pela construção de uma usina hidrelétrica
Figura 3-7 – Principais componentes de um empreendimento hidrelétrico
Figura 3-8 – Topografia de fundo de um reservatório artificial
Figura 3-9 – Exemplo de reservatório muito dendrítico (a) e pouco dendrítico (b)14
Figura 3-10 – Compartimentação aquática de um reservatório artificial
Figura 3-11 – Estratificação térmica em um reservatório
Figura 4-1 – Mapa de localização das usinas hidrelétricas selecionadas
Figura 4-2 – Mapa de localização dos reservatórios e dos pontos de monitoramento da qualidade das águas – UHE Belo Monte
Figura 4-3 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Jirau
Figura 4-4 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Santo Antônio do Jari
Figura 4-5 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Teles Pires
Figura 4-6 – Fluxograma da etapa de organização e sistematização dos bancos de dados41
Figura 4-7 – Fluxograma da etapa de análise preliminar dos dados
Figura 4-8 – Fluxograma da Análise de <i>Cluster</i> aplicada aos conjuntos de dados pré e pósenchimento

Figura 4-9 – Fluxograma da aplicação do teste de hipóteses U de Mann-Whitney, comparando
os conjuntos de dados pré e pós-enchimento45
Figura 5-1 — Descrição das análises preliminares para a seleção dos parâmetros da qualidade das águas — UHE Belo Monte
Figura 5-2 – Dendogramas da Análise de <i>Cluster</i> referentes às fases pré-enchimento (a) e pós- enchimento (b) da UHE Belo Monte – 10 pontos de monitoramento e 33 parâmetros51
Figura 5-3 – Mapa simplificado com as localizações dos pontos de monitoramento – UHE Belo Monte
Figura 5-4 — Gráficos <i>box-plot</i> dos parâmetros que apresentaram elevação significativa com maior frequência — UHE Belo Monte
Figura 5-5 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram diminuição significativa com maior frequência – UHE Belo Monte
Figura 5-6 – Descrição das análises preliminares para a seleção dos parâmetros de qualidade das águas – UHE Jirau
Figura 5-7 – Dendogramas da Análise de <i>Cluster</i> referentes às fases pré-enchimento (a) e pós- enchimento (b) da UHE Jirau – 15 pontos de monitoramento e 34 parâmetros
Figura 5-8 — Mapa simplificado com as localizações dos pontos de monitoramento — UHE Jirau
Figura 5-9 — Gráficos <i>box-plot</i> dos parâmetros que apresentaram elevação significativa com maior frequência — UHE Jirau
Figura 5-10 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram diminuição significativa com maior frequência – UHE Jirau
Figura 5-11 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram elevação e diminuição significativa com maior frequência – UHE Jirau
Figura 5-12 — Descrição das análises preliminares para a seleção dos parâmetros de qualidade das águas — UHE Santo Antônio do Jari
Figura 5-13 – Dendogramas da Análise de <i>Cluster</i> referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Santo Antônio do Jari – 8 pontos de monitoramento e 23 parâmetros

Figura 5-14 - Mapa simplificado com as localizações dos pontos de monitoramento - UHE
Santo Antônio do Jari85
Figura 5-15 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram alteração significativa com maior frequência – UHE Santo Antônio do Jari
Figura 5-16 — Descrição das análises preliminares para a seleção dos parâmetros de qualidade das águas — UHE Teles Pires
Figura 5-17 – Dendogramas da Análise de <i>Cluster</i> referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Teles Pires – 11 pontos de monitoramento e 39 parâmetros97
Figura 5-18 — Mapa simplificado com as localizações dos pontos de monitoramento — UHE Teles Pires
Figura 5-19 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram elevação significativa com maior frequência – UHE Teles Pires
Figura 5-20 — Gráficos <i>box-plot</i> dos parâmetros que apresentaram diminuição significativa com maior frequência — UHE Teles Pires
Figura 5-21 – Gráficos <i>box-plot</i> dos parâmetros que apresentaram elevação e diminuição significativa com maior frequência – UHE Teles Pires

LISTA DE TABELAS

Tabela 3-1 – Principais países geradores de energia hidrelétrica e suas respectivas capacidades instaladas no ano de 2018
Tabela 3-2 – Usinas hidrelétricas previstas no Plano Decenal de Expansão de Energia até
Tabela 4-1 – Usinas hidrelétricas que foram selecionadas para o projeto de pesquisa30
Tabela 4-2 – Características do banco de dados de qualidade das águas da UHE Belo Monte33
Tabela 4-3 – Características do banco de dados de qualidade das águas da UHE Jirau35
Tabela 4-4 – Características do banco de dados de qualidade das águas da UHE Santo Antônio do Jari
Tabela 4-5 – Características do banco de dados de qualidade das águas da UHE Teles Pires 39
Tabela 5-1 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Belo Monte
Tabela 5-2 – Características dos pontos de monitoramento selecionados – UHE Belo Monte49
Tabela 5-3 – Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento – UHE Belo Monte
Tabela 5-4 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney (α = 5%) – UHE Belo Monte
Tabela 5-5 – Parâmetros que apresentaram alteração significativa com maior frequência – UHE Belo Monte
Tabela 5-6 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Belo Monte
Tabela 5-7 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Jirau
Tabela 5-8 – Características dos pontos de monitoramento selecionados – UHE Jirau

Tabela 5-9 – Valores de coeficiente de correlação cofenética obtidos para os diferentes
métodos de agrupamento aplicados aos conjuntos de dados da UHE Jirau65
Tabela 5-10 — Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney (α = 5%) — UHE Jirau
Tabela 5-11– Parâmetros que apresentaram alteração significativa com maior frequência – UHE Jirau
Tabela 5-12 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Jirau
Tabela 5-13 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Santo Antônio do Jari
Tabela 5-14 – Características dos pontos de monitoramento selecionados – UHE Santo Antônio do Jari
Tabela 5-15 — Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento aplicados aos conjuntos de dados da UHE Santo Antônio do Jari84
Tabela 5-16 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney (α = 5%) – UHE Santo Antônio do Jari
Tabela 5-17 – Parâmetros que apresentaram alteração significativa com maior frequência – UHE Santo Antônio do Jari
Tabela 5-18 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Santo Antônio do Jari
Tabela 5-19 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Teles Pires
Tabela 5-20 – Características dos pontos de monitoramento selecionados – UHE Teles Pires ———————————————————————————————————
métodos de agrupamento aplicados aos conjuntos de dados da UHE Teles Pires96

Tabela 5-22 – Resultados da comparação das concentrações dos parâmetros de qualidade da
águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney
= 5%) – UHE Teles Pires
Tabela 5-23 – Parâmetros que apresentaram alteração significativa com maior frequência
UHE Teles Pires
Tabela 5-24 – Lista e número de parâmetros que apresentaram alteração significativa po
ponto de monitoramento – UHE Teles Pires
Tabela 5-25 – Lista e porcentagens de parâmetros que apresentaram alteração significativ
com maior frequência por UHE11

LISTA DE QUADROS

Quadro 3-1 – Estudos de avaliação de dados de monitoramento da qualidade das águas superficiais em lagos e reservatórios, empregando técnicas estatísticas
Quadro 4-1 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Belo Monte
Quadro 4-2 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Jirau
Quadro 4-3 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Santo Antônio do Jari
Quadro 4-4 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Teles Pires40
Quadro 5-1 — Parâmetros de qualidade das águas que foram excluídos na etapa de organização e sistematização do banco de dados — UHE Belo Monte
Quadro 5-2 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Belo Monte
Quadro 5-3 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Jirau
Quadro 5-4 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Santo Antônio do Jari
Quadro 5-5 – Parâmetros de qualidade das águas que foram excluídos na etapa de organização e sistematização do banco de dados – UHE Teles Pires
Quadro 5-6 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Teles Pires
Quadro 5-7 – Total de parâmetros de qualidade das águas analisados, considerando os quatro empreendimentos hidrelétricos
Quadro 5-8 – Total de parâmetros de qualidade das águas analisados que são comuns as quatro UHEs115

Quadro 5-9 – Lista de parâmetros da qualidade das águas que alteraram s	significativamente
com maior frequência, considerando as quatro UHEs	117
Quadro 5-10 – Lista de parâmetros da qualidade das águas que alteraram s	significativamente
com maior frequência em mais de uma UHE	118

LISTA DE ABREVIATURAS E SIGLAS

α Nível de significância

μ Média aritmética
 σ Desvio-padrão
 AC Análise de Cluster

ACP Análise de Componentes Principais

AIQ Amplitude Interquartis

ANEEL Agência Nacional de Energia Elétrica

Alcal. Alcalinidade

Al_{diss} Alumínio dissolvido

 $egin{array}{lll} Ba_T & B{\'a}rio\ total \\ Br^- & \'{I}on\ brometo \\ Ca^{2+} & \'{I}on\ c{\'a}lcio \\ \end{array}$

CIT Carbono inorgânico total
COT Carbono orgânico total

COD Carbono orgânico dissolvido

Carb. total Carbono total

CE Condutividade elétrica

CGH Central Geradora Hidrelétrica
Cianof. Cianoficias ou cianobactérias

Cl- Íon cloreto
Cl-a Clorofila-a

CONAMA Conselho Nacional do Meio Ambiente

CT Coliformes totais

CTerm. Coliformes termotolerantes

Cu_{diss} Cobre dissolvido

DBO Demanda bioquímica de oxigênio
DQO Demanda química de oxigênio

E. coli Escherichia coli

EIA Estudo de Impacto Ambiental

F- Íon fluoreto Fe_{diss} Ferro dissolvido

 $\begin{array}{ll} \text{Fen} & \text{Fen\'ois} \\ \text{Fe}_{\text{T}} & \text{Ferro total} \end{array}$

IBAMA Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

IBGE Instituto Brasileiro de Geografia e Estatística

K⁺ Íon potássio

LD Limite de Detecção

LI Licença de Instalação

Li⁺ Íon lítio

LO Licença de Operação

 $\begin{array}{lll} LP & Licença Prévia \\ Mg^{2^+} & Íon magnésio \\ Mg_T & Magnésio total \\ Mn_T & Manganês total \end{array}$

Na⁺ Íon sódio

N-NH₄⁺ Nitrogênio amoniacal

N-NO₂ Nitrito N-NO₃ Nitrato

NTK Nitrogênio total Kjeldahl OD Oxigênio dissolvido

Ortof. Ortofosfato

PBA Projeto Básico Ambiental
PCH Pequena Central Hidrelétrica
pH Potencial Hidrogeniônico

PO₄³⁻ Fosfato

 $P_{org.}$ Fósforo orgânico P_{T} Fósforo total Redox Potencial redox

redox Totellelal redox

RIMA Relatório de Impacto Ambiental

S²- Íon sulfeto

SDT Sólidos dissolvidos totais

SiO₂ Sílica

SO₄²- Íon sulfato

SSI Sólidos suspensos inorgânicos SSO Sólidos suspensos orgânicos SST Sólidos suspensos totais

ST Sólidos totais
Temp. Temperatura

TR Termo de Referência

Transp. Transparência
Turb. Turbidez

UHE Usina hidrelétrica

Zn_T Zinco total

1 INTRODUÇÃO

A construção de barragens e reservatórios artificiais visa atender diversas finalidades humanas, tais como água para abastecimento público, geração de energia hidrelétrica, irrigação agrícola, pesca comercial e recreativa, aquicultura, navegação, água para resfriamento de efluentes de indústria, regulação fluvial, controle de inundação, lazer e esportes aquáticos (TUNDISI, 2018).

No Brasil, a construção de reservatórios para geração de energia elétrica tem sido extensivamente adotada, considerando que o país possui um dos maiores potenciais hidroelétricos do mundo.

Conforme à Agência Nacional de Energia Elétrica (ANEEL), cerca de 61% da matriz elétrica brasileira é proveniente de empreendimentos hidrelétricos, porcentagem muito superior à média mundial, que é de cerca de 15%. Aproximadamente 40% do potencial hidrelétrico brasileiro se encontra na bacia hidrográfica do rio Amazonas, região em que está prevista a implantação novas usinas hidrelétricas (UHEs) de grande porte (ANEEL, 2019).

Destaca-se que a Amazônia é um bioma de importância ambiental reconhecida nacional e internacionalmente, por possuir características ambientais essenciais em escala mundial, como a manutenção da biodiversidade, dos estoques de carbono e a ciclagem da água (OJEA *et al.*, 2012; GAUTHIER; MORAN, 2018; TUNDISI, 2018).

Embora a construção de reservatórios tenha o objetivo de promover o bem-estar social, muitos impactos ambientais estão associados à implantação de barragens, tais como alteração do regime hídrico, interrupção de rotas migratórias de peixes, alteração da paisagem, alteração da dinâmica do ecossistema aquático e realocação de comunidades. Um dos impactos mais notáveis é a alteração da qualidade das águas, resultante do aumento do tempo de detenção hidráulica (TDH); acúmulo de nutrientes e sedimentos nos reservatórios; inundação de extensas áreas com vegetação; e pelo processo de eutrofização.

Diante das potenciais alterações que a implantação de reservatórios de UHEs pode causar sobre os corpos d'água, torna-se imperativo o monitoramento adequado da qualidade das águas na região de implantação do empreendimento. Isso porque, a qualidade das águas

superficiais é uma das variáveis ambientais mais importantes para o gerenciamento de reservatórios (CHOU et al., 2018).

Contudo, avaliar alterações da qualidade das águas não é trivial, uma vez que são diversos os parâmetros aferidos em projetos de monitoramento, o que resulta, muitas vezes, em bancos de dados complexos e de difícil interpretação (WUNDERLIN *et al.*, 2001; MUANGTHONG; SHRESTHA, 2015; ACHIENG *et al.*, 2017; UNCUMUSAOĞLU; AKKAN, 2017).

Diante deste cenário, a aplicação de diferentes técnicas estatísticas multivariadas, como a Análise de *Cluster* (AC), ajuda na interpretação de matrizes de dados complexas, oferecendo uma ferramenta valiosa para o gerenciamento confiável dos recursos hídricos (HELENA *et al.*, 2000; WUNDERLIN *et al.*, 2001; SINGH *et al.*, 2005; HAIR *et al.*, 2009, ZHANG *et al.*, 2011; ZHAO *et al.*, 2011; WANG *et al.*, 2013).

Ressalta-se que diversas técnicas estatísticas têm sido amplamente aceitas e aplicadas para analisar e interpretar bancos de dados de qualidade das águas, compreender variações temporais e espaciais e identificar fontes de poluição de corpos d'água.

Esta pesquisa foi desenvolvida com o objetivo de avaliar as alterações na qualidade das águas superficiais em corpos d'água impactados por reservatórios de UHEs recentemente instaladas na Amazônia, buscando identificar os parâmetros de qualidade das águas que alteraram significativamente após o enchimento dos reservatórios. Destaca-se que as UHEs estudadas foram licenciadas pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA).

Pesquisas nessa temática são de extrema importância, pois permitem aprofundar o conhecimento sobre os impactos da formação de reservatórios em corpos d'água, contribuindo assim para o entendimento do potencial de alterações que a transformação do ambiente fluvial, de lótico para lêntico, podem causar sobre os parâmetros físico-químicos e biológicos das águas. Além disso, esta pesquisa pode contribuir para a implementação de projetos mais adequados de monitoramento da qualidade das águas em futuras UHEs. Ressalta-se que são raros os trabalhos acadêmicos que compararam dados de qualidade das águas obtidos nas fases pré e pós-enchimento de reservatórios observando vários parâmetros distintos, fato que justifica e reforça a importância deste trabalho.

2 OBJETIVOS

2.1 Geral

Avaliar a alteração da qualidade das águas superficiais impactadas por usinas hidrelétricas recentemente implantadas na Amazônia.

2.2 Específicos

Os objetivos específicos desta pesquisa são:

- Analisar individualmente os dados de monitoramento da qualidade das águas de cada empreendimento hidrelétrico.
- Efetuar uma análise comparativa entre os pontos de monitoramento com relação às fases pré e pós-enchimento em cada reservatório, considerando todos os parâmetros simultaneamente.
- Identificar os parâmetros de qualidade das águas que sofreram alteração significativa quando comparadas as fases pré e pós-enchimento em cada reservatório.
- Identificar os parâmetros que alteraram significativamente com maior frequência em cada empreendimento e quais desses são comuns às diferentes usinas hidrelétricas.

3 REVISÃO BIBLIOGRÁFICA

3.1 Empreendimentos hidrelétricos como fonte de energia renovável no Brasil e no mundo

A energia hidrelétrica é a principal fonte de energia renovável, contribuindo com cerca de 1/5 de toda a produção elétrica mundial (CHANG *et al.*, 2017). Em resposta à crescente demanda por energia, milhares de hidrelétricas estão em fase de planejamento, instalação ou de operação, principalmente em países com economias emergentes (ZARFL *et al.*, 2015).

De acordo com a Associação Internacional de Hidroeletricidade (AIH, 2019), a partir da década de 50 a implantação de empreendimentos hidrelétricos como fonte de energia elétrica cresceu significadamente em todo o mundo, alcançando em 2018 uma capacidade instalada total de cerca de 1.292 GW, conforme mostrado na Figura 3-1.

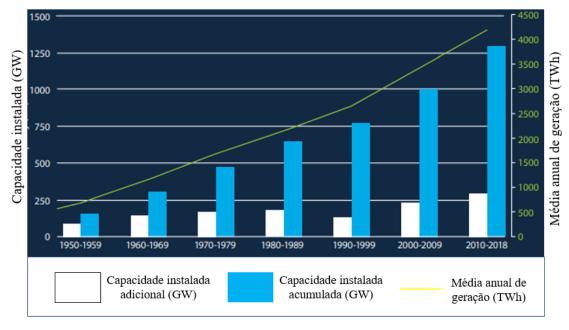


Figura 3-1 – Crescimento da energia hidrelétrica no mundo nas últimas décadas

Fonte: IHA, 2019.

O Brasil, juntamente com a China, Canadá e Estados Unidos, são os principais geradores de energia hidrelétrica, e são responsáveis por metade da produção hidrelétrica mundial. A geração desses países, quando somada a do Japão, Índia, Rússia, Noruega e Turquia representa 65% do total global (IHA, 2019), conforme apresentado na Tabela 3-1.

Tabela 3-1 – Principais países geradores de energia hidrelétrica e suas respectivas capacidades instaladas no ano de 2018

PAÍSES	CAPACIDADE INSTALADA (GW)
China	352
Brasil	104
Estados Unidos	103
Canadá	81
Japão	50
Índia	50
Rússia	49
Noruega	32
Turquia	28

Fonte: IHA, 2019.

No Brasil, cerca de 61% da energia elétrica produzida provêm de empreendimentos hidrelétricos. O potencial hidrelétrico brasileiro é de cerca de 245 GW, sendo que a capacidade instalada no país é de aproximadamente 104 GW (EPE, 2018).

De acordo com a Resolução Normativa ANEEL nº 673/2015, os empreendimentos hidrelétricos recebem a seguinte classificação: (i) central geradora hidrelétrica (CGH), com potência instalada inferior a 3 MW; (ii) pequena central hidrelétrica (PCH), com potência instalada entre 3 e 30 MW e área do reservatório inferior a 13 km²; e (iii) usina hidrelétrica (UHE), com potência instalada superior a 30 MW e área do reservatório superior a 13 km² (BRASIL, 2015). Encontram-se em operação no Brasil 1.339 empreendimentos hidrelétricos, sendo 221 UHEs, 430 PCHs e 688 CGHs, conforme Figura 3-2 (ANEEL, 2019).

Assim como ocorreu mundialmente, a partir da década de 50, ocorreu significativo crescimento de implantação de usinas no país, com destaque para a década de 2000-2010, em que entraram em operação 43 UHEs, conforme pode ser visualizado na Figura 3-3.

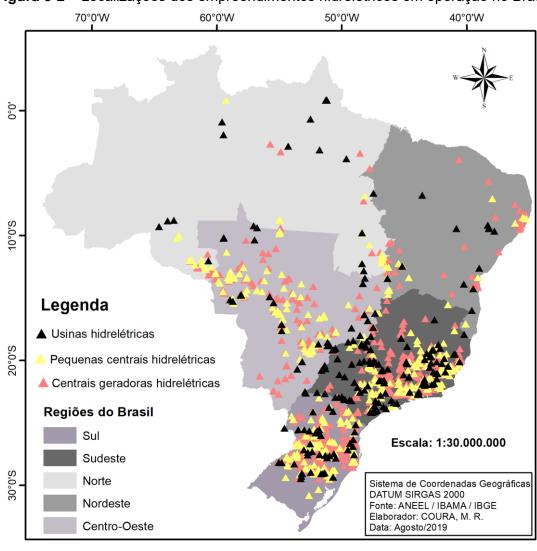


Figura 3-2 – Localizações dos empreendimentos hidrelétricos em operação no Brasil

As regiões Sudeste e Sul do Brasil têm grande parte de seus potenciais hidrelétricos já aproveitados, sendo essas regiões consideradas saturadas e com baixas perspectivas de novos empreendimentos. A região Nordeste tem baixo potencial, o que explica o número reduzido de empreendimentos hidrelétricos. Em contrapartida, as regiões Norte e Centro-Oeste, onde está inserida a Amazônia, têm grande potencial de implantação de novas hidrelétricas, pois grande parte dos seus potenciais inventariados ainda estão em fase de estudo ou de viabilidade ambiental (LESSA *et al.*, 2015).

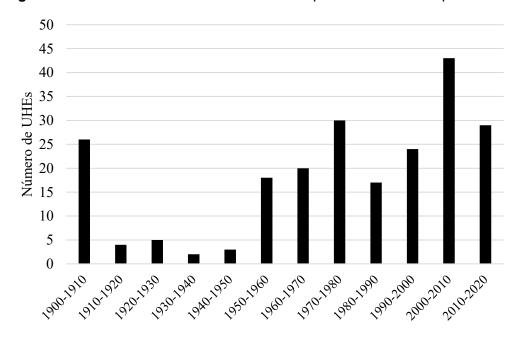


Figura 3-3 - Número de usinas hidrelétricas implantadas no Brasil por década

Fonte: ANEEL, 2019.

Cerca de 40% do potencial hidrelétrico brasileiro se encontra na bacia hidrográfica do rio Amazonas (ELETROBRÁS, 2018). Destaca-se que a Amazônia apresenta características ambientais essenciais em escala mundial, como a manutenção da biodiversidade, dos estoques de carbono e a ciclagem da água (OJEA *et al.*, 2012; GAUTHIER; MORAN, 2018; TUNDISI, 2018). O caráter dinâmico das interações entre os ecossistemas terrestre e aquático na Amazônia e as condições sazonais devido aos baixos e altos níveis da água (inundações periódicas de planícies) promovem trocas permanentes e dinâmicas entre a geomorfologia, o ciclo hidrológico e a biota (OHLY *et al.*, 1999; JUNK, 2013; TUNDISI, 2018).

Nesta região do Brasil, muitos empreendimentos hidrelétricos estão planejados ou inventariados (ZARFL *et al.*, 2015; WINEMILLER *et al.*, 2016) como parte das estratégias governamentais voltadas para aumentar a segurança energética e o crescimento econômico brasileiro (TIMPE; KAPLAN, 2017).

Na Amazônia, encontram-se em operação 105 empreendimentos hidrelétricos, sendo 22 UHEs, 46 PCHs e 37 CGHs, conforme Figura 3-4 (ANEEL, 2019).

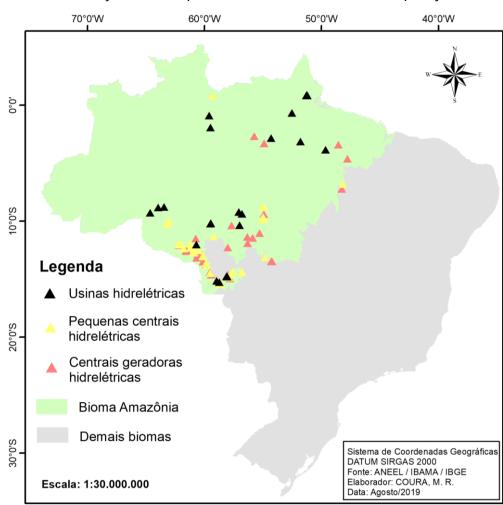


Figura 3-4 – Localizações dos empreendimentos hidrelétricos em operação na Amazônia

Em resposta à crescente demanda por energia, o governo brasileiro pretende ampliar a oferta energética no Sistema Interligado Nacional (SIN) até 2027, com a implantação de nove novas usinas hidrelétricas por meio do Plano Decenal de Expansão de Energia (MME, 2018). Dos nove empreendimentos, dois estão previstos para serem implantados na Amazônia, conforme mostrado na Tabela 3-2.

Tabela 3-2 – Usinas hidrelétricas previstas no Plano Decenal de Expansão de Energia até 2027

UHEs	POTÊNCIA (MW)	REGIÃO DO BRASIL	ANO PREVISTO PARA OPERAÇÃO	
Apertados	139	Sul	2024	
Castanheira	140	Centro-Oeste	2024	
Davinópolis	74	Centro-Oeste /Sudeste	2024	
Ercilândia	87	Sul	2024	

UHEs	POTÊNCIA (MW)	REGIÃO DO BRASIL	ANO PREVISTO PARA OPERAÇÃO
Tabajara	400	Norte	2024
Telêmeco Borda	118	Sul	2024
Comissário	140	Sul	2025
Itaocara I	150	Sudeste	2025
Bem Querer	650	Norte	2027

Fonte: MME, 2018.

Ressalta-se que para a implantação de usinas hidrelétricas no Brasil é necessária a execução de processo de licenciamento ambiental, que pode ser conduzido por órgão federal (IBAMA) ou órgãos estaduais (Secretarias de Meio Ambiente) e o cumprimento de uma série de etapas e fases, que são previstas em legislação (BRASIL, 1981; BRASIL, 1986; BRASIL, 1997) até culminar na licença de operação, assim viabilizando o início das atividades dos empreendimentos (SÁNCHEZ, 2013).

A Figura 3-5 apresenta um desenho esquemático das principais fases do processo de licenciamento ambiental de empreendimentos potencialmente poluidores.

Emissão de TR

EIA/RIMA

Audiência pública

Licença Prévia - LP

PBA

Licença Instalação - LI

Licença Operação - LO

Figura 3-5 – Fluxograma das etapas do processo de licenciamento ambiental

Fonte: IBAMA.

A partir do momento que o órgão licenciador emite a licença de instalação, cabe ao empreendedor, responsável pela implantação do empreendimento, iniciar a execução dos programas e projetos ambientais, incluindo o projeto de monitoramento da qualidade das águas — objeto de análise desta pesquisa. Portanto, o monitoramento da qualidade das águas é iniciado logo após a emissão da licença de instalação, sendo essa fase denominada de monitoramento pré-enchimento.

No caso de empreendimentos hidrelétricos, é na fase de operação, logo após a emissão da licença de operação, que se inicia o enchimento do reservatório. A fase de monitoramento da qualidade das águas, iniciada logo após o reservatório atingir a cota de operação, é denominada monitoramento pós-enchimento.

3.2 Implantação de reservatórios de usinas hidrelétricas e consequente alteração da qualidade das águas

Os reservatórios desempenham um papel importante no abastecimento de água, controle de inundação, navegação, pesca e geração de energia elétrica, assim contribuindo significativamente para o bem-estar social (CUNHA et al., 2013; LI et al., 2018; TUNDISI, 2018). No entanto, também podem causar impactos e consequências potencialmente negativas, como interrupção de rotas migratória de peixes, consideráveis variações no nível da água, submersão de extensas áreas, alterações do regime hídrico, aumento do tempo de detenção hidráulica, acúmulo de nutrientes e sedimentos e floração de cianobactérias nocivas (TUNDISI; STRAŠKRABA, 1999; VON SPERLING; SOUSA, 2007; BABEL et al., 2012; LU et al., 2012; PARK et al., 2014; XIN et al., 2015; LI et al., 2018).

Segundo Tundisi *et al.* (2012), existem mais de 60.000 barragens com altura superior a 15 metros já construídas no mundo. Van Cappellen e Maavara (2016) relataram que mais de 75.000 reservatórios com área de superfície superior a 0,1 km² já existem em todo o mundo, e esse número continuará aumentando no futuro.

A implantação de barramento em um corpo d'água, para criar um reservatório de água a montante (Figura 3-6), tem potencial de causar uma série de alterações nas condições físicas, químicas e biológicas das águas (LOBATO *et al.*, 2015; XIN *et al.*, 2015). A transformação de ambiente lótico para lêntico resulta em mudanças no regime hidrológico, na qualidade das águas e nas condições ecológicas que causam mudanças consideráveis na paisagem, no ciclo

hidrossocial e na hidroeconomia da área afetada (TUNDISI; STRAŠKRABA, 1999; TUNDISI; MATSUMURA-TUNDISI, 2003).

47'40'W 47'35'W 47'30'W 47'25'W 47'20'W 47'15'W 47'10'W

Fluxo

Barragem

Jusante ambiente lótico

Montante ambiente lêntico

Figura 3-6 – Imagem de um reservatório artificial formado pela construção de uma usina hidrelétrica

Os empreendimentos hidrelétricos são compostos, basicamente, por um barramento; uma casa de força, na qual a água é conduzida por condutos forçados (tomada d'água) até as unidades geradoras de energia elétrica; e vãos dos vertedores, que geralmente são vedados por comportas que controlam a vazão, conforme representado na Figura 3-7.

Comportas

Vertedor

Casa de força

Afluente

Barramento

Condutos forçados

Figura 3-7 – Principais componentes de um empreendimento hidrelétrico

Fonte: MEES, 2016.

Existem características e processos presentes em reservatórios que são importantes para causar alterações na qualidade das águas. Dentre os principais citam-se o tempo de detenção hidráulica; a morfometria do reservatório; a retenção de sedimentos; a estratificação térmica; a eutrofização; e a operação da usina.

3.2.1 Tempo de detenção hidráulica (TDH)

Segundo Mees (2016), o conceito de tempo de detenção hidráulica (TDH) ou tempo de residência em um reservatório diz respeito ao tempo de percurso de determinada massa de água desde o momento que aflui ao sistema até o momento de sua saída e pode ser expresso por:

$$TDH = \frac{V}{Q} \tag{3.1}$$

Sendo V o volume máximo do reservatório (m³); Q a vazão afluente (m³.s⁻¹); e TDH o tempo de detenção hidráulica.

Normalmente, a vazão utilizada para o cálculo do TDH é a vazão média de longo termo, mas pode ser utilizada também a vazão média do período de cheia ou do período de estiagem. A

importância de se conhecer o tempo de residência é fundamental para o entendimento da variação dos parâmetros físico-químicos da qualidade das águas no reservatório (TUNDISI; MATSUMURA-TUNDISI, 2008; MEES, 2016).

A construção de uma barragem implica no imediato aumento do tempo de residência da água do antigo ecossistema lótico. Essa transformação inicial é a principal responsável por uma série de alterações nas características limnológicas observadas nas áreas represadas, assim como a jusante das mesmas. Dentre os fatores que mais se alteram podem ser citados o comportamento térmico da coluna de água, os padrões de sedimentação e circulação das massas de água, a ciclagem de nutrientes e a estrutura das comunidades aquáticas (TUNDISI et al., 1993; RODRIGUES, 2002).

Tundisi (2018) dividiu os reservatórios em três classes principais: a) reservatórios de fluxo rápido: TDH < duas semanas; b) reservatórios com tempos de detenção intermediários: TDH entre duas semanas a um ano; c) reservatórios com tempos de detenção longos: TDH > um ano.

Ressalta-se que o TDH varia espacialmente (heterogeneidade espacial), sendo normalmente mais elevado nos pontos mais dendríticos (braços) e na região do reservatório mais próxima ao barramento (TUNDISI, 2018; DODDS; WHILES, 2020).

3.2.2 Morfometria de reservatórios

Ao contrário da maioria dos lagos naturais, os reservatórios são mais profundos perto da barragem e geralmente mais rasos perto dos rios que os alimentam (Figura 3-8). A forma de um reservatório é definida, principalmente, pelas bacias de drenagem dos rios e córregos que o circundam. Assim, um reservatório típico tem forma dendrítica ou semelhante a uma árvore (DODDS; WHILES, 2020).

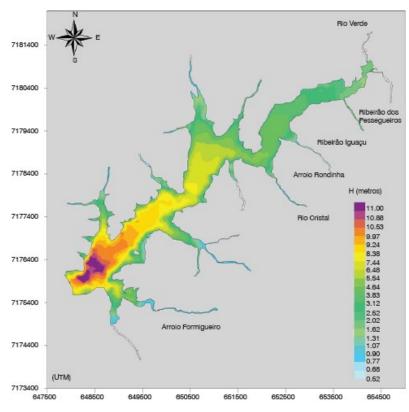


Figura 3-8 – Topografia de fundo de um reservatório artificial

Fonte: FERREIRA e CUNHA, 2013.

Os reservatórios maiores geralmente têm mais características físicas e biológicas semelhantes a lagos naturais nos pontos mais próximos ao barramento. Nas entradas rasas o fluxo do rio domina, entretanto, à medida que a velocidade da água e a turbulência diminuem com o aumento da largura e profundidade do reservatório, um ambiente lêntico é estabelecido (SERAFIM-JÚNIOR, 2016; DODDS; WHILES, 2020).

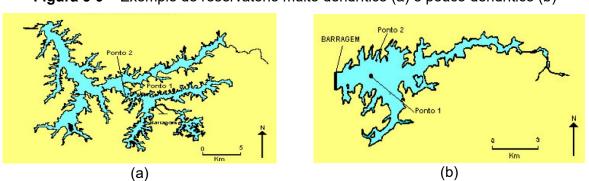


Figura 3-9 – Exemplo de reservatório muito dendrítico (a) e pouco dendrítico (b)

Fonte: COELHO-BOTELHO et al., 2006.

Queiroz Junior (2016) analisou a compartimentação aquática do reservatório da UHE Caçu, localizada em Goiás, por meio de variáveis limnológicas (sólidos em suspensão, clorofila-a e

transparência) e de dados radiométricos. A partir dos resultados o pesquisador concluiu que o reservatório apresentou três compartimentos definidos, lótico (fluvial), transição (intermediário) e lêntico A e B (lacustre), dadas as suas particularidades de padrões das variáveis limnológicas (Figura 3-10).

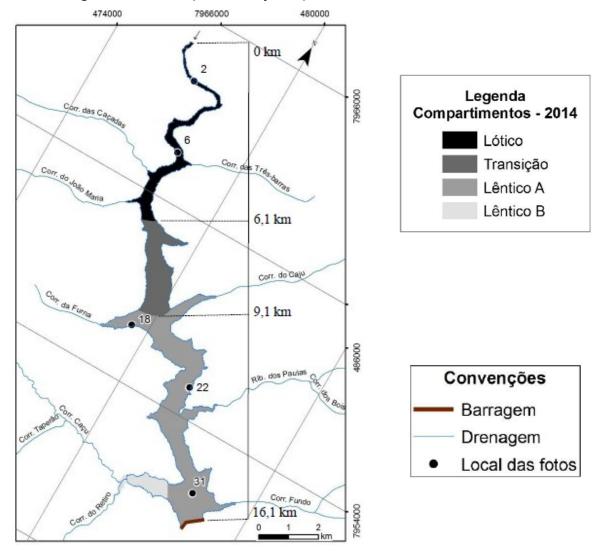


Figura 3-10 – Compartimentação aquática de um reservatório artificial

Fonte: QUEIROZ JUNIOR, 2016.

Park *et al.* (2014) analisaram os efeitos de fatores morfométricos sobre a qualidade das águas de 302 reservatórios distribuídos na Coréia do Sul. Os resultados indicaram que a qualidade das águas é fortemente dependente da morfometria dos reservatórios.

3.2.3 Retenção de sedimentos

Outra característica importante de reservatórios que pode contribuir para a alteração da qualidade das águas é a retenção de sedimentos (HUANG *et al.*, 2015; DĄBKOWSKI; BĄK, 2018; TUNDISI, 2018; ZARFL; LUCÍA, 2018; KRASA *et al.*, 2019).

Em rios os sedimentos são cruciais para a morfologia do canal, qualidade das águas, fornecer *habitat* para os organismos aquáticos, transportar nutrientes para a várzea e, finalmente, manutenção de deltas (ZARFL; LUCÍA, 2018).

Reservatórios são muito eficientes em reter sedimentos, sendo responsáveis por uma retenção global estimada de 50% das cargas naturais de material particulado que seria destinado aos oceanos (VÖRÖSMARTY *et al.*, 2003). Assim, o assoreamento é um sério desafio para a gestão de reservatórios, uma vez que pode resultar na redução da vida útil de empreendimentos hidrelétricos, diminuindo a capacidade de armazenamento de água nos reservatórios e causando, por consequência, prejuízos econômicos (ZARFL; LUCÍA, 2018).

Hargrove *et al.* (2010) registraram que grandes reservatórios nos EUA, que foram originalmente projetados para até 200 anos, sofreram redução da vida útil de 50 a 100 anos por consequência do processo de retenção de sedimentos.

Cálculos do modelo de retenção de sedimentos por barragens realizados para o rio Mekong (importante rio Asiático) mostraram que apenas 4% da carga total de sedimentos chegam ao delta do rio (KONDOLF *et al.*, 2014). Devido à falta de sedimentos e aumento do nível do mar, prevê-se que o delta do rio Mekong desapareça até o final do século (SCHMITT *et al.*, 2017).

Ressalta-se que a retenção de sedimentos nos reservatórios também pode resultar em impactos morfológicos a jusante da barragem, uma vez que as águas pobres em sedimentos vertidas pelo barramento apresentam maior potencial para causar erosão das margens, incisão (aprofundamento) do canal do rio, desconexão da planície de inundação e possíveis danos à infraestrutura existente (KONDOLF *et al.*, 2018).

Os sedimentos também desempenham um papel importante como portadores de poluentes. Os poluentes, especialmente substâncias hidrofóbicas, são adsorvidos e transportados como partículas que se depositam no reservatório devido à velocidade de fluxo reduzida (ZARFL;

LUCÍA, 2018). Isto pode, por um lado, implicar em "melhor" qualidade das águas a jusante do barramento (URBANIAK *et al.*, 2014). Por outro lado, os sedimentos contaminados podem atuar como uma fonte de poluição a longo prazo, uma vez que o aumento abrupto da descarga líquida do rio ou alterações físico-químicas das águas de fundo podem resultar na remobilização dos poluentes acumulados para a coluna d'água (FANNY *et al.*, 2013).

Wang *et al.* (2009), Tundisi (2018) e Krasa *et al.* (2019) afirmaram que reservatórios atuam como assimiladores de fósforo e metais, que podem ficar retidos nos sedimentos por adsorção. O fósforo adsorvido pode acumular-se na superfície do leito devido à deposição de sedimentos e, posteriormente, pode ser liberado por ressuspensão (HUANG *et al.*, 2015).

A capacidade de retenção de nutrientes que ocorre na maioria dos reservatórios é propiciada, basicamente, pela sedimentação de material particulado inorgânico, na qual ficam adsorvidos carbono orgânico, ferro, manganês, carbonato de cálcio e fósforo (THOMAZ *et al.*, 1997).

Van Cappellen e Maavara (2016) registraram que os fluxos de nutrientes dos rios são modificados por barragens. Com o acúmulo de sedimentos, o fósforo pode ser precipitado, alterando o tempo e a quantidade de liberação desse nutriente a jusante.

3.2.4 Estratificação térmica

A estratificação térmica é um fenômeno comum em lagos e reservatórios e tem uma influência significativa na dinâmica da qualidade das águas (LI, Y. *et al.*, 2018).

A entrada de calor por meio da radiação solar aquece as camadas superficiais da coluna d'água, criando, assim, um gradiente de temperatura entre as camadas inferiores e superiores do lago (KIRILLIN; SHATWELL, 2016). A estratificação térmica ocorre quando a água quente da superfície fica acima de águas mais densas e frias. A camada superficial quente de um reservatório termicamente estratificado é a epilímnion, a zona de transição de temperatura é o metalínion, e a zona mais profunda é o hipolímnion (TUNDISI; MATSUMURA-TUNDISI, 2008; NOORI, *et al.*, 2018; DODDS; WHILES, 2020). A Figura 3-11 apresenta um esquema de estratificação térmica em um reservatório.

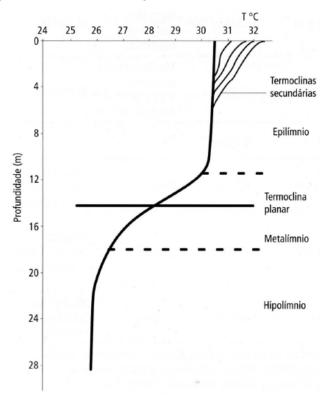


Figura 3-11 – Estratificação térmica em um reservatório

Fonte: TUNDISI e MATSUMURA-TUNDISI (2008).

Os reservatórios que se misturam apenas uma vez durante o ano são denominados monomíticos e são comuns em regiões subtropicais. Aqueles que nunca se misturam são meromáticos. Já os lagos polimíticos se estratificam ou se misturam várias vezes ao ano e são encontrados principalmente em regiões tropicais (KIRILLIN; SHATWELL, 2016; DODDS; WHILES, 2020).

Segundo Kirillin e Shatwell (2016), fatores importantes que determinam o regime de mistura de lagos e reservatórios são as condições climáticas, a morfologia e a transparência (penetração da luz na coluna d'água). Já Jorgensen *et al.* (2005) registraram que o TDH parece ser a variável mais útil para previsão da possibilidade de ocorrência da estratificação térmica.

A estratificação térmica tem um papel significativo na qualidade das águas de reservatórios, uma vez que influencia muitos processos físico-químicos e biológicos (ZHANG *et al.*, 2016; NOORI, *et al.*, 2018).

Longos períodos de anoxia no hipolíminio pode resultar em deterioração significativa da qualidade das águas, uma vez que nutrientes e metais pesados presentes nos sedimentos

podem se difundir para a coluna d'água (KIRILLIN; SHATWELL, 2016; LI, Y. et al., 2018). A presença significativa de nutrientes na coluna d'água, por sua vez, pode originar a eutrofização do corpo d'água e causar a proliferação prejudicial de algas que afetam negativamente a qualidade das águas e a vida aquática (VISSER et al., 2016; LIU et al., 2019).

3.2.5 Eutrofização

A formação de reservatórios artificiais também pode resultar na eutrofização dos corpos d'água, um sério problema com várias consequências ecológicas, econômicas e sociais (TUNDISI; MATSUMURA-TUNDISI, 2003; DOAN *et al.*, 2015; LOBATO *et al.*, 2015; VINÇON-LEITE; CASENAVE, 2019), uma vez que resulta no crescimento abundante de fitoplâncton, perifíton e macrófitas, produzindo uma perturbação indesejável no equilíbrio dos organismos aquáticos e na qualidade das águas (ISTVÁNOVICS, 2010).

De acordo com Vinçon-leite e Casenave (2019), a eutrofização dos ecossistemas aquáticos refere-se a um estado ecológico, em que processos biológicos impulsionados pelo aumento da carga de nutrientes podem levar à proliferação de produtores primários (algas, plantas aquáticas e cianobactérias).

Segundo Istvánovics (2010), quando se implanta um reservatório em um corpo d'água o TDH é aumentado, favorecendo o crescimento da biomassa sem qualquer enriquecimento adicional de nutrientes. Além disso, o aumento do TDH resulta em maior sedimentação no reservatório, incrementando assim a disponibilidade de luz na coluna d'água a montante e a jusante do barramento, o que favorece a conversão de carbono inorgânico em matéria orgânica por organismos autotróficos (ISTVÁNOVICS, 2010; VINÇON-LEITE; CASENAVE, 2019). Neste sentido, o barramento de um corpo d'água apresenta potencial para causar degradação da qualidade das águas a montante, na área de inundação do reservatório (HU *et al.*, 2014; XIN *et al.*, 2015; TUNDISI, 2018), e em trechos de rio a jusante da barragem (BALDWIN *et al.*, 2010; CHOW *et al.*, 2016; TUNDISI, 2018).

A eutrofização artificial pode ser considerada como uma reação em cadeia de causas e efeitos bem evidentes, cuja característica principal é a quebra relativa da estabilidade do ecossistema. Com a quebra do estado de equilíbrio, o ecossistema passa a produzir mais matéria orgânica do que é capaz de consumir e decompor, o que vem acompanhado de profundas mudanças no

metabolismo de todo o ecossistema. O processo de eutrofização é causado por um aumento da concentração de quase todos os elementos químicos essenciais à produtividade primária, sendo o fósforo o nutriente mais importante no processo de eutrofização artificial (ESTEVES, 2011).

Para Smith *et al.* (2006), a eutrofização tem sido uma das principais ameaças para a qualidade das águas de lagos e reservatórios desde a década de 1960. Elevadas concentrações de nutrientes são responsáveis por frequentes florescimentos de fitoplâncton, especialmente de cianobactérias, também conhecidas como cianofíceas, que podem excretar metabólitos tóxicos (BRASIL *et al.*, 2016; DALU; WASSERMAN, 2018; BUSTOS-DÍAZ *et al.*, 2019). Há uma profunda preocupação com esse problema, já que o Brasil foi o primeiro país do mundo a registrar mortes humanas causadas pela ingestão de cianotoxinas (VON SPERLING; SOUSA, 2007).

Embora a eutrofização seja geralmente reconhecida como um processo natural de envelhecimento dos lagos, as atividades humanas aceleram o processo de entrada de nutrientes nos ambientes aquáticos (ANSARI *et al.*, 2010; LIU *et al.*, 2012).

A morfometria principal do reservatório (profundidade e volume), características hidrológicas, tal como a descarga de tributários, e o uso e ocupação do solo da bacia hidrográfica, determinarão a vulnerabilidade do reservatório à eutrofização (VINÇON-LEITE; CASENAVE, 2019).

Segundo Lobato *et al.* (2015), os parâmetros físico-químicos da água tipicamente relacionados ao processo de eutrofização são clorofila-a, transparência, concentrações de nutrientes, condutividade elétrica, tempo de residência da água e concentrações de oxigênio dissolvido.

3.2.6 Operação de reservatórios

Ainda com relação às alterações na qualidade das águas decorrentes da implantação de UHEs, é importante citar os modelos de engenharia de construção e operação de reservatórios. Basicamente existem dois modelos principais: as usinas com reservatório de acumulação, que regulariza o fluxo do rio e acumula água na cheia para garantir maior geração de energia elétrica no período de seca, e as usinas a fio d'água, com reservatório reduzido, insuficiente para a regularização da vazão do rio (SOARES, I., 2017). As estratégias operacionais de um

reservatório estão ligadas aos seus usos e têm forte influência na qualidade da água a montante e a jusante (TUNDISI, 2018).

De acordo com a Resolução Normativa ANEEL nº 425/2011, empreendimentos hidrelétricos classificados como fio d'água são UHEs ou PCHs que utilizam reservatórios que acumulam água suficiente apenas para prover regularização diária ou semanal, ou que utilizam diretamente a vazão afluente do aproveitamento (BRASIL, 2011).

As usinas a fio d'água se tornaram a regra e não a exceção no Brasil, sendo que, desde 1985, o aumento da potência instalada das hidrelétricas deixou de ser acompanhado pelo aumento do volume de água armazenada nos reservatórios (GOLDEMBERG, 2015).

O fato é que as UHEs operadas a fio d'água possuem reservatórios com volumes reduzidos em relação àquelas que operam reservatórios de acumulação, consequentemente o TDH também é reduzido, o que possivelmente resulta em menores impactos sobre a qualidade das águas superficiais.

3.3 Análise de dados de monitoramento da qualidade das águas por meio de técnicas estatísticas

Existem vários métodos estatísticos para a avaliação e interpretação de dados de qualidade das águas, comumente adotados para monitorar a qualidade dos recursos hídricos. Devido à complexidade dos dados que incluem, usualmente, diversos pontos de monitoramento, vários parâmetros amostrados e longas séries históricas, torna-se necessária a aplicação de um conjunto de técnicas estatísticas para tratamento e interpretação do banco de dados.

Basicamente, as técnicas estatísticas podem ser classificadas como univariadas, bivariadas e multivariadas. A estatística univariada inclui todos os métodos de estatística descritiva que permitem a análise de cada variável separadamente e também métodos de inferência estatística para determinada variável podendo esta ser medida para uma ou mais amostras independentes. A estatística bivariada inclui métodos de análise de duas variáveis podendo ser ou não estabelecida uma relação de causa/efeito entre elas. E, finalmente, a estatística multivariada que inclui os métodos de análise das relações de múltiplas variáveis dependentes e/ou múltiplas variáveis independentes (REIS, 2001).

Como se sabe, a qualidade das águas é aferida por meio de múltiplos parâmetros (variáveis), o que resulta, muitas vezes, em bancos de dados extensos e complexos de serem analisados (WUNDERLIN *et al.*, 2001; MUANGTHONG; SHRESTHA, 2015; ACHIENG *et al.*, 2017; UNCUMUSAOĞLU; AKKAN, 2017).

Neste sentido, a adoção da estatística multivariada tornou-se popular para compreensão da qualidade das águas, dada a sua capacidade de tratar grandes volumes de dados espaciais e temporais simultaneamente. Na literatura científica, diferentes técnicas estatísticas multivariadas, incluindo a Análise de *Cluster* (AC), a Análise de Componentes Principais (ACP), a Análise Fatorial (AF) e a Análise de Discriminante (AD), são utilizadas para esse tipo de análise, uma vez que são capazes de avaliar a variabilidade da qualidade das águas e identificar potenciais fontes de contaminação (BARAKAT *et al.*, 2016).

Para a análise de dados de monitoramento da qualidade das águas, a Análise de *Cluster* (AC), também conhecida como Análise de Agrupamentos, é a mais comumente utilizada para verificar a existência de variações espaciais e temporais entre os dados, ou seja, para extrair informações sobre as diferenças entre períodos e locais monitorados (TRINDADE, 2013).

A AC tem como finalidade principal reunir objetos com base nas suas características, de modo que cada objeto é semelhante aos outros no *cluster* com relação a um critério de seleção predeterminado (SINGH *et al.*, 2004). Os *clusters* resultantes devem exibir alta homogeneidade interna e alta heterogeneidade externa (SHRESTHA; KAZAMA, 2007; ZHANG *et al.*, 2011; ZHAO *et al.*, 2011).

O processo de agrupamento pode ser sintetizado em cinco etapas. A primeira é a escolha da medida de dissimilaridade (geralmente utiliza-se a distância euclidiana), seguida pela escolha do método de agrupamento (hierárquico ou não-hierárquico). O terceiro passo é a escolha do algoritmo de agrupamento para o método escolhido, seguido pela decisão sobre o número de grupos, e, finalmente, a interpretação do resultado do agrupamento (SIMEONOV *et al.*, 2002).

É importante destacar que para que as diferentes unidades de medidas e escalas das variáveis não influenciem as análises multivariadas, é realizada, de forma preliminar, a padronização dos dados em escala Z. As observações são padronizadas pela subtração da média (μ) e divisão pelo desvio-padrão (σ) de cada variável ($Z = (X-\mu) / \sigma$)), o que resulta em variáveis

com média 0 e desvio-padrão 1, com a mesma escala. Assim, os dados tornam-se adimensionais (SIMEONOV *et al.*, 2003; SINGH *et al.*, 2004; ZHANG *et al.*, 2011; TRINDADE, 2013).

De acordo com Ferreira (2008), existem inúmeros métodos de agrupamento, entre eles, os hierárquicos (aglomerativos ou divisivos), no qual os objetos são classificados em grupos em diferentes etapas, de modo hierárquico. Nos métodos hierárquicos aglomerativos cada objeto é considerado inicialmente como um grupo, sendo que vão sendo aglomerados os dois grupos de menor distância em cada passo e repetindo o processo até que se tenha um único grupo com todos os n objetos. Já nos métodos hierárquicos divisivos ocorre na ordem inversa, considerando um único grupo inicial com n objetos e realizando divisões sucessivas em dois grupos de cada vez até que se tenha n grupos, cada um contendo um único objeto.

Dentre os métodos hierárquicos aglomerativos, citam-se os métodos ligação simples (single linkage), ligação completa (complete linkage), ligação média ou UPGMA (Unweighted Pair Group Method using Arithmetic averages), método de Ward, centróide (centroid) e mediana (median).

Ainda de acordo com Ferreira (2008), os referidos métodos hierárquicos aglomerativos podem ser descritos, resumidamente, da seguinte forma:

- No método da ligação simples, também conhecido como mínima distância ou vizinho mais próximo, a distância entre grupos é definida como a mínima distância entre os objetos dos grupos;
- No método da ligação completa, também conhecido como máxima distância ou vizinho mais distante, a distância entre grupos é definida como a máxima distância entre os objetos dos grupos;
- No método da ligação média (UPGMA) a distância entre grupos é definida como a média aritmética das distâncias entre os pares de objetos dos grupos;
- No método de Ward (1963), também conhecido como método do incremento das somas de quadrados ou da mínima variância, as somas de quadrados entre e dentro de grupos em relação às variáveis são utilizadas como critério de agrupamento. A ideia do método é aglomerar de forma a minimizar o incremento da soma de quadrados dentro dos grupos;

- No método do centróide a distância entre grupos é definida como a distância euclidiana quadrática entre os vetores de médias (centróides) dos grupos;
- E, por fim, o método da mediana, que é uma modificação do método do centróide para a independência da distância em relação ao tamanho dos grupos, já que no método do centróide se um dos grupos possuir número de objetos maior que o outro, o centróide resultante tende a se aproximar do centróide do grupo de maior peso (mais objetos).

Para ajudar a escolha do melhor método de agrupamento, Sokal e Rohlf (1962) definiram o coeficiente de correlação cofenética. Esta medida mostra a relação entre cada valor da matriz de semelhanças e um valor obtido a partir do dendograma, significando, em última instância, a medida em que o dendograma resultante da aplicação de um método hierárquico representa os valores da matriz de semelhanças/distâncias (REIS, 2001).

Barroso (2010) registrou que o coeficiente de correlação cofenética mede o grau de ajuste da matriz de dissimilaridade (matriz fenética) e a matriz resultante da simplificação proporcionada pelo método de agrupamento (matriz cofenética).

O valor do coeficiente varia entre -1 e +1, sendo que o valor zero significa que não existe correlação e quanto mais próximo de 1 menor será a distorção provocada pelo método de agrupamento (VALENTIN, 2000; ALBUQUERQUE, 2005; ABDELHADY; FÜRSICH, 2015; UKPATU *et al.*, 2015; ALBUQUERQUE *et al.*, 2016).

Gianesella *et al.* (2000), Wu *et al.* (2009), Barroso (2010), Abdelhady; Fürsich (2015), Ukpatu *et al.* (2015) e Albuquerque *et al.* (2016) utilizaram o coeficiente de correlação cofenética para validar os resultados dos métodos de agrupamento.

Para Ukpatu *et al.* (2015) o valor mínimo de coeficiente de correlação cofenética considerado aceitável para um bom agrupamento é de 0,60. Já para Barroso (2010) o valor mínimo aceitável a ser adotado é de 0,70.

Reis (2001) relatou ainda que outro critério para escolha do método de agrupamento é a utilização de vários métodos e a comparação posterior dos resultados obtidos. Se os resultados forem semelhantes, é possível concluir que, em princípio, qualquer método será de confiança e existem, de fato, grupos entre os indivíduos observados.

O resultado final da AC é ilustrado pelo dendograma (ou diagrama de árvore), que fornece um resumo visual do processo de agrupamento, apresentando os grupos e suas proximidades, com uma grande redução da dimensão dos dados originais (KAZI et al., 2009). Quando aplicada a dados de monitoramento de qualidade das águas, a AC permite agrupar os pontos de monitoramento por semelhança e dissemelhança, auxiliando na identificação de áreas afins (SINGH et al., 2005; RODRIGUES-FILHO et al., 2015; BARAKAT et al., 2016).

Ressalta-se que a AC é um método exploratório e a ideia é sobretudo gerar hipóteses, mais do que testá-las, sendo necessária uma validação posterior dos resultados encontrados por meio da aplicação de outros métodos estatísticos (REIS, 2001).

3.3.1 Estudos relacionados que utilizaram técnicas estatísticas na avaliação de dados de qualidade das águas

Ressalta-se que técnicas estatísticas, incluindo testes estatísticos de hipóteses e técnicas exploratórias multivariadas, têm sido amplamente aceitas e aplicadas para analisar e interpretar bancos de dados de qualidade das águas, compreender variações temporais/espaciais e identificar fontes de poluição de corpos d'água nas últimas décadas. O Quadro 3-1 apresenta um breve resumo de trabalhos publicados nos últimos anos, que avaliaram dados de monitoramento da qualidade das águas em lagos e reservatórios, empregando técnicas estatísticas.

Quadro 3-1 – Estudos de avaliação de dados de monitoramento da qualidade das águas superficiais em lagos e reservatórios, empregando técnicas estatísticas

REFERÊNCIA	ÁREA DE ESTUDO	DADOS ANALISADOS	OBJETIVOS	FERRAMENTAS UTILIZADAS	RESULTADOS
Çamdevýren <i>et</i> al., 2005	Reservatório de captação de água da cidade de Ancara - Turquia	3 pontos do monitoramento 16 parâmetros da qualidade das águas Período de monitoramento: jun/1995 a mai/1996	Estabelecer relação entre a presença de clorofila-a e 16 parâmetros físico-químicos e biológicos da qualidade das águas em um reservatório, por meio de ACP e modelo de regressão linear	ACP e RLM	O modelo foi capaz de prever a concentração de clorofila-a no reservatório com sucesso máximo de 90,8%, utilizando 76,1% dos parâmetros bióticos e abióticos estudados
Gholami; Srikantaswamy, 2009	Reservatório Krishna Raja Sagara e rio Cauvery, Karnataka - Índia.	13 pontos de monitoramento 21 parâmetros da qualidade das águas Período de monitoramento: verão e inverno de 2008	Avaliar a qualidade das águas do rio Cauvery e do reservatório Krishna Raja Sagara	AC	O estudo concluiu que a qualidade das águas é segura para o abastecimento público, pesca, irrigação e para fins industriais, já que a maioria dos parâmetros se mostraram dentro dos limites permitidos
Breda, 2011	Reservatório da UHE Funil – sudoeste Brasil	6 pontos de monitoramento 23 parâmetros da qualidade das águas Período de monitoramento: ago/2001 a dez/2009 (exceto 2004)	Avaliar a evolução da qualidade das águas face à implantação do barramento, e consequente formação de um reservatório, bem como os demais fatores que possam influenciar na qualidade das águas	MW	Os resultados indicaram que os parâmetros que sofreram influência significativa da implantação da barragem no curso d'água foram: CE, dureza total, pH, SS, ST e temp. Os parâmetros turbidez, clorofila-a, fósforo total, ortofosfato, N-NH ₄ +, fitoplâncton (riqueza e densidade) e zooplâncton (riqueza) também sofreram uma possível influência da instalação do barramento, verificada, segundo o pesquisador, através de análise gráfica
Cid et al., 2011	Reservatório da bacia do rio Quinto - Argentina	38 pontos de monitoramento 30 parâmetros da qualidade das águas Período de monitoramento: out/1998 a jun/2000	Obter uma representação geral das tendências espaciais e temporais dos parâmetros da qualidade das águas do reservatório	АСР	A técnica estatística multivariada mostrou-se uma ferramenta poderosa para entender as variações espaçotemporal da qualidade das águas no reservatório e suas causas
Varol <i>et al.</i> , 2012	Três grandes reservatórios na bacia do rio Tigre - Turquia	10 pontos de monitoramento 18 parâmetros da qualidade das águas Período de monitoramento: fev/2008 a jan/2009	Identificar parâmetros responsáveis por variações espaciais e temporais e determinar a influência de fontes de poluição sobre a qualidade das águas dos reservatórios	AC, ACP, AF e AD	As técnicas estatísticas multivariadas permitiram a redução da dimensionalidade do conjunto de dados e indicaram alguns parâmetros responsáveis por grandes variações da qualidade das águas nos reservatórios

REFERÊNCIA	ÁREA DE ESTUDO	DADOS ANALISADOS	OBJETIVOS	FERRAMENTAS UTILIZADAS	RESULTADOS
Zhao et al., 2012	Lago Baiyangdian - China	13 pontos de monitoramento 23 parâmetros da qualidade das águas Período de monitoramento: jan/2007 a dez/2008	Avaliar semelhanças e dissimilaridades existentes entre os vários parâmetros da qualidade das águas e a influência das fontes de poluição sobre os parâmetros	AC e ACP	A AC agrupou 13 estações de amostragem em cinco grupos com características semelhantes. A ACP ajudou a identificar os fatores ou fontes responsáveis pelas variações da qualidade das águas. A principal causa da degradação do lago é determinada pelas descargas industriais e agrícolas, esgotos domésticos lançados no rio Fuhe (a montante do lago)
Palma <i>et al.</i> , 2014	Reservatório Alqueva, bacia hidrográfica do rio Guadiana - Portugal	5 pontos de monitoramento 17 parâmetros da qualidade das águas Período de monitoramento: 2011 a 2012	Avaliar a dinâmica da qualidade das águas do reservatório e identificar os parâmetros mais importantes que influenciam o seu estado ecológico e químico	AC, ACP e AF	As técnicas multivariadas ajudaram a identificar que os principais parâmetros que explicam a variabilidade da qualidade das águas estão relacionados aos nutrientes na coluna d'água e aos elementos traços nos sedimentos. Além disso, vários parâmetros e observações indicam para o processo de eutrofização no reservatório
Qiuhua <i>et al.</i> , 2014	Reservatório Hongfeng - sudoeste da China	4 pontos de monitoramento 20 parâmetros da qualidade das águas Período de monitoramento: jan/2010	Identificar os principais parâmetros da qualidade das águas que causam alterações na clorofila-a e fitoplâncton e determinar a abundância destes no reservatório	ACP e RLM	Os modelos identificaram que os parâmetros OD, profundidade, temp., turbidez, pH, N-NH ₄ ⁺ e SST foram os mais importantes para regular a concentração de clorofila-a. Os parâmetros redox, Cl ⁻ , SO ₄ ² -e NT foram os principais fatores que afetaram a abundância de chlorophyta e cianobactérias. Já os parâmetros F ⁻ e Ca ²⁺ foram os principais fatores que influenciaram a abundância de Bacillariophyta
Chow <i>et al.</i> , 2016	Reservatório Fei- Tsui -Taiwan	14 pontos de monitoramento 19 parâmetros da qualidade das águas Período de monitoramento: 2005 a 2010	Obter informações sobre as semelhanças e as diferenças entre locais de amostragem; identificar os parâmetros responsáveis pelas variações espaciais e temporais da qualidade das águas; e determinar a influência de fontes (naturais e antrópicas)	AC, ACP e AF	A AC agrupou 14 pontos de monitoramento em três grupos: regiões com alto, moderado e baixo grau de poluição. As ACP e AF não resultaram em considerável redução do banco de dados, já que apontaram para 13

REFERÊNCIA	ÁREA DE ESTUDO	DADOS ANALISADOS	OBJETIVOS	FERRAMENTAS UTILIZADAS	RESULTADOS
			sobre os parâmetros da qualidade das águas do reservatório		parâmetros (68% do total) para explicarem 72,8% da variabilidade da qualidade das águas
Li et al., 2017	Lago Poyang – China	13 pontos de monitoramento 11 parâmetros da qualidade das águas Período de monitoramento: 2008 a 2014	Caracterizar a qualidade das águas e o estado trófico do lago Poyang e desenvolver um modelo preditivo de clorofila-a baseado nas condições físico-químicas das águas	AC, ACP, AD e KW	O modelo mostrou que os parâmetros temp. e profundidade foram os fatores mais importantes para variações de clorofila-a no lago do norte, enquanto os parâmetros transparência, temp. e profundidade foram os mais importantes no lago central
Anteneh et al., 2018	Bacias hidrográficas dos rios Legedadie e Dire – Etiópia Central	14 estações de monitoramento 30 parâmetros da qualidade das águas Período de monitoramento: 2014 a 2015	Examinar variações temporais e espaciais da qualidade das águas em seis rios e dois reservatórios	AC, ACP, AF e AD	As técnicas estatísticas multivariadas apontaram para 5 parâmetros (temp., pH, OD, salinidade e NT) para explicar 96,8% da variabilidade temporal da qualidade das águas e 7 parâmetros (pH, turbidez, NT, dureza total, Pb, Fe e Cu) para explicar 85,2% da variabilidade espacial
Li <i>et al.</i> , 2018	Lagos baixos (Alexandrina e Albert) – Austrália	22 estações de monitoramento 22 parâmetros da qualidade das águas Período de monitoramento: durante a seca (abril de 2008 a setembro de 2010) e pós-seca (outubro de 2010 e outubro de 2013)	Avaliar as semelhanças espaciais entre os pontos de amostragem durante os períodos de seca e pós-seca e identificar parâmetros da qualidade das águas responsáveis pelas variações espaciais e temporais	AC, ACP, AF e AD	A AC agrupou os lagos em três grupos distintos em relação ao nível de eutrofização (baixo, moderado e alto). A AD resultou em melhor redução da dimensionalidade do banco de dados. Já as ACP e AF apontaram para três fatores principais responsáveis pela qualidade das águas (dissolução mineral, erosão e fontes de poluição antropogênicas)

AC - Análise de *Cluster*; ACP - Análise de Componentes Principais; AF - Análise Fatorial; AD - Análise de Discriminante; MW - Teste de hipóteses U de Mann-Whitney; KW - Teste de Kruskal-Wallis; RLM - Regressão Linear Múltipla.

4 METODOLOGIA

4.1 Definição das usinas hidrelétricas a serem estudadas

O primeiro passo para execução do projeto foi determinar quais empreendimentos hidrelétricos, cujos projetos de monitoramento da qualidade das águas seriam analisados. Para isso, foram estabelecidos os seguintes critérios de seleção:

- Estar localizado no bioma Amazônia;
- ii. Possuir três licenças ambientais emitidas pelo IBAMA (licença prévia; licença de instalação; e licença de operação), ou seja, ser um processo de licenciamento ambiental trifásico e conduzido inteiramente pela autarquia federal;
- iii. Possuir programa de monitoramento da qualidade das águas superficiais;
- iv. Possuir potência instalada superior a 30 MW (megawatts) e área do reservatório superior a 13 km², o que exclui da pesquisa empreendimentos hidrelétricos de menor porte, tais como PCHs e CGHs;
- v. Possuir banco de dados da qualidade das águas em formato digital, disponibilizado pela empresa responsável pelo empreendimento hidrelétrico.

A escolha de empreendimentos hidrelétricos licenciados apenas por um órgão ambiental, no caso, o IBAMA, garante uma fonte única de dados da qualidade das águas, o que simplifica o processo de obtenção dos dados. E os processos de licenciamento trifásicos obedecem às diretrizes estabelecidas pela Resolução CONAMA nº 237/1997, o que assegura a implantação de programas e projetos ambientais, incluindo o projeto de monitoramento da qualidade das águas superficiais, durante as fases de instalação e operação das usinas hidrelétricas.

Já o projeto de monitoramento da qualidade das águas superficiais é imprescindível, por originar os dados que são objetos de análise do projeto de pesquisa.

A potência instalada de empreendimentos hidrelétricos superior a 30 MW e a área do reservatório superior a 13 km² são critérios estabelecidos para garantir que sejam analisados apenas projetos de monitoramento da qualidade das águas de UHEs. As UHEs possuem reservatórios de maior porte que as PCHs e CGHs e, consequentemente, maior potencial de causar alterações na qualidade das águas superficiais.

E, por fim, foi estabelecido o critério de possuir bancos de dados da qualidade das águas digitalizados e disponibilizados pelos empreendedores, assim evitando o moroso processo de digitalização de dados.

Após a aplicação dos critérios pré-estabelecidos na lista de processos de licenciamento ambiental de usinas hidrelétricas do IBAMA, foram selecionadas as UHEs apresentadas na Tabela 4-1.

Tabela 4-1 – Usinas hidrelétricas que foram selecionadas para o projeto de pesquisa

USINA HIDRELÉTRICA	RIO PRINCIPAL	ESTADOS ATINGIDOS	ANO DE INSTALAÇÃO	ANO DE OPERAÇÃO	POTÊNCIA INSTALADA (MW)	ÁREA DO RESERV. (km²)	VOLUME DO RESERV. (hm³)	TDH _{médio} * (dias)
UHE Belo Monte	Xingu	PA	2011	2016	11.233	359**	2.070**	3,0**
UHE Jirau	Madeira	RO	2009	2013	3.750	362	2.747	1,4
UHE Santo Antônio do Jari	Jari	AP/PA	2011	2014	373	32	133	1,5
UHE Teles Pires	Teles Pires	MT/PA	2011	2015	1.820	137	997	5,0

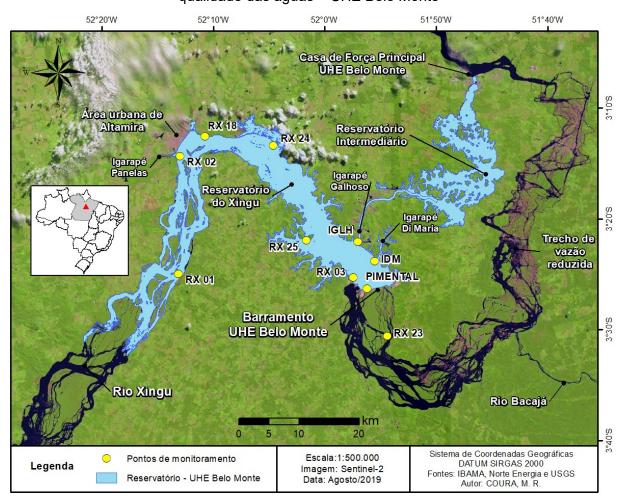
^{*} TDH_{médio} = obtido quando o reservatório está submetido à vazão média de longo termo.

Fonte: IBAMA.

Conforme informações contidas na Tabela 4-1, as 4 (quatro) UHEs selecionadas possuem por característica a entrada em operação em anos recentes. As usinas possuem potências instaladas, áreas e volumes dos reservatórios bastante distintos, o que garante a heterogeneidade dos empreendimentos selecionados. As localizações das UHEs selecionadas podem ser visualizadas na Figura 4-1.

^{**}Reservatório do Xingu

Figura 4-1 – Mapa de localização das usinas hidrelétricas selecionadas


Conforme mostra o mapa de localização na Figura 4-1, as quatro UHEs selecionadas estão distribuídas pela região Amazônica. Três usinas estão localizadas em tributários da margem direita do rio Amazonas (Jirau, Teles Pires e Belo Monte) e uma em tributário da margem esquerda (Santo Antônio do Jari).

4.1.1 UHE Belo Monte

A UHE Belo Monte está localizada no Estado do Pará, no rio Xingu, que é um importante afluente da margem direita do rio Amazonas, com vazão média de longo termo de cerca de 7.900 m³/s. O barramento principal está localizado nas coordenadas 3°26'9,742"S e 51°55'17,487"W (Sistema de Coordenadas Geográficas e Datum Sirgas 2000). Trata-se de uma das maiores usinas hidrelétricas do mundo, com capacidade instalada de 11.233,1 MW, que opera a fio d'água (NORTE ENERGIA, 2011).

O empreendimento compreende um barramento principal no rio Xingu, a cerca de 40 km a jusante da cidade de Altamira, de onde as vazões são derivadas por um canal para que a geração de energia possa ser realizada na casa de força principal. Resultante dessa configuração foram formados dois reservatórios (Xingu e Intermediário) com 478 km² de área total, cota de operação de 97 m e volume total de 4.802 x 10⁶ m³, e um trecho de vazão reduzida de cerca de 100 km de extensão a jusante do barramento principal. O reservatório do Xingu foi formado na calha do rio Xingu e possui área de 359 km² e volume de 2.070 x 10⁶ m³ (tempo de detenção hidráulica médio de 3,0 dias). Já o reservatório Intermediário foi formado em "terra firme" e possui área de 119 km² e volume de 2.732 x 10⁶ m³. As águas do reservatório do Xingu são oriundas quase que exclusivamente do rio Xingu, não possuindo, naquele trecho, tributários importantes. Apenas pequenos corpos d'água que cortam a cidade de Altamira e dois pequenos igarapés próximos ao barramento (Galhoso e Di Maria) desaguam no reservatório (NORTE ENERGIA, 2011).

O arranjo geral do projeto da UHE Belo Monte, bem como a localização dos reservatórios e dos pontos de monitoramento da qualidade das águas, podem ser visualizados na Figura 4-2.

Figura 4-2 – Mapa de localização dos reservatórios e dos pontos de monitoramento da qualidade das águas – UHE Belo Monte

A Tabela 4-2 resume as características do banco de dados do monitoramento da qualidade das águas executado no âmbito do processo de licenciamento ambiental da UHE Belo Monte.

Tabela 4-2 – Características do banco de dados de qualidade das águas da UHE Belo Monte

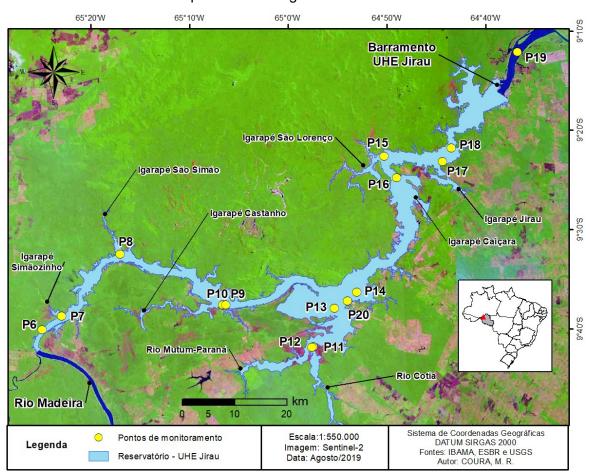
Período de	Pontos de Monitoramento	Campanhas	Campanhas Pós-	Total de	Frequência
Monitoramento	Selecionados	Pré-Enchimento	Enchimento	Parâmetros	
Dez/2011 a Out/2018	10	17	11	70	Trimestral

O enchimento dos reservatórios da UHE Belo Monte ocorreu no período de dezembro de 2015 a fevereiro de 2016, sendo que as campanhas da qualidade das águas realizadas neste período não foram analisadas. Destaca-se que as amostras da qualidade das águas analisadas foram coletadas na superfície da coluna d'água.

O Quadro 4-1 apresenta a lista do total de parâmetros do projeto de monitoramento da qualidade das águas implementado no âmbito do processo de licenciamento ambiental da UHE Belo Monte.

Quadro 4-1 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Belo Monte

Temperatura da água	Fluoreto	Alacloro	Paration
Condutividade elétrica	Cloreto	Aldrin/Dieldrin	Bifenilos policlorados
Sólidos dissolvidos totais	Nitrito	Atrazina	Pentaclorofenol
pН	Brometo	Clordano	Simazina
Potencial redox	Nitrato	Ácido diclorofenóxiacético	Alumínio dissolvido
Turbidez	Fosfato	Demeton	Cádmio total
Clorofila-a	Sulfato	Diclorodifeniltricloroetano	Chumbo total
Oxigênio dissolvido	Lítio	Endosulfan	Cobre dissolvido
Transparência	Sódio	Endrin	Cromo total
Alcalinidade	Nitrogênio amoniacal	Glifosato	Ferro dissolvido
Coliformes totais	Potássio	Gution	Manganês total
Escherichia coli	Magnêsio	heptacloro epóxido	Níquel total
Demanda Bioquímica de Oxigênio	Cálcio	Heptacloro	Zinco total
Nitrogênio total Kjeldahl	Óleos e graxas	Hexaclorobenzeno	Arsênio total
Fósforo total	Sólidos suspensos totais	Lindano	Selênio total
Cianoficeas	Sólidos suspensos inorgânicos	Malation	Mercúrio total
Fosfato inorgânico	Sólidos suspensos orgânicos	Metolacloro	
Fosfato orgânico	Acrilamida	Metoxicloro	


4.1.2 UHE Jirau

A UHE Jirau está localizada no Estado de Rondônia, no rio Madeira, que é o mais importante afluente da margem direita do rio Amazonas, em termos de descarga líquida (15%) e sólida (pouco mais de 50%). Portanto, trata-se de um rio de altas vazões (vazão média de longo termo de cerca de 22.000 m³/s) e que transporta grande carga de sedimentos, sendo considerado um rio de águas brancas. O barramento principal está localizado nas coordenadas 9°16'3,183"S e 64°38'46,122"W (Sistema de Coordenadas Geográficas e Datum Sirgas 2000). Também se trata de uma das maiores usinas hidrelétricas do mundo, com capacidade instalada de 3.750 MW, que opera a fio d'água (ESBR, 2009).

O empreendimento compreende um barramento principal no rio Madeira, a cerca de 120 km a montante da capital Porto Velho, formando um reservatório de 362 km², cota de operação 90 m e volume total 2.746,7 x 10⁶ m³ (tempo de detenção hidráulica médio de 1,4 dias). As águas do reservatório da UHE Jirau são oriundas, predominantemente, do rio Madeira, contudo deságuam no reservatório muitos outros corpos d'águas de menores dimensões, fazendo da

área de estudo da UHE Jirau um ambiente mais heterogêneo e complexo que as áreas das demais UHEs analisadas. Os tributários que se destacam são os rios Mutum-Paraná e Cotia. Outros corpos d'água de menores dimensões são os igarapés Simãozinho, São Simão, Castanho, São Lourenço, Caiçara e Jirau (ESBR, 2009).

O arranjo geral do projeto da UHE Jirau, bem como a localização do reservatório e dos pontos de monitoramento da qualidade das águas, podem ser visualizados na Figura 4-3.

Figura 4-3 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Jirau

A Tabela 4-3 resume as características do banco de dados do monitoramento da qualidade das águas executado no âmbito do processo de licenciamento ambiental da UHE Jirau.

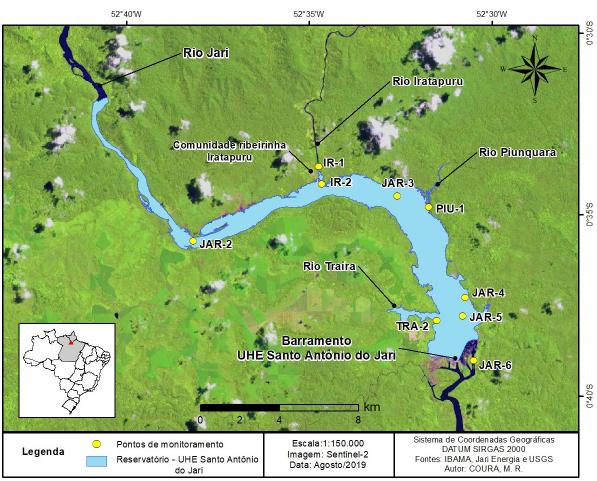
Tabela 4-3 – Características do banco de dados de qualidade das águas da UHE Jirau

Período de	Pontos de Monitoramento	Campanhas	Campanhas Pós-	Total de	Frequência
Monitoramento	Selecionados	Pré-Enchimento	Enchimento	Parâmetros	
Set/2009 – Jan/2018	15	12	16	34	Trimestral

O enchimento do reservatório da UHE Jirau ocorreu no período de outubro de 2012 a maio de 2014, sendo que as campanhas da qualidade das águas realizadas neste período não foram analisadas. As campanhas analisadas também foram as trimestrais e as amostras da qualidade das águas foram coletadas na superfície da coluna d'água.

O Quadro 4-2 apresenta a lista de parâmetros do projeto de monitoramento da qualidade das águas implementado no âmbito do processo de licenciamento ambiental da UHE Jirau.

Quadro 4-2 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Jirau


	0 0	
Temperatura da água	Sólidos suspensos orgânicos	Dureza
Potencial redox	Clorofila-a	Sulfato
pН	Fósforo total	Sulfeto
Condutividade elétrica	Ortofosfato	Cloreto
Sólidos dissolvidos totais	Nitrogênio total Kjeldahl	Carbono inorgânico total
Oxigênio dissolvido	Nitrato	Carbono orgânico total
Transparência	Nitrito	Carbono total
Turbidez	Nitrogênio amoniacal	Sílica
Cor	Demanda bioquímica de oxigênio	Coliformes totais
Sólidos totais	Demanda química de oxigênio	Coliformes termotolerantes
Sólidos suspensos totais	Ferro total	
Sólidos suspensos inorgânicos	Alcalinidade	

4.1.3 UHE Santo Antônio do Jari

A UHE Santo Antônio do Jari está localizada na divisa dos Estados do Amapá e Pará, no rio Jari, que é um afluente da margem esquerda do rio Amazonas. A vazão média de longo termo do rio Jari é de cerca de 1.000 m³/s. O barramento principal está localizado nas coordenadas 0°38'26,93"S e 52°30'25"W (Sistema de Coordenadas Geográficas e Datum Sirgas 2000). Trata-se de uma usina hidrelétrica de pequeno porte quando comparada com as UHEs Belo Monte e Jirau, com capacidade instalada de 373 MW, que opera a fio d'água (Jari Energia, 2009).

O empreendimento compreende um barramento principal no rio Jari, a cerca de 150 km a montante da confluência com o rio Amazonas, formando um reservatório de 31,7 km², cota normal de operação de 30 m e volume total de 133,39 x 10⁶ m³ (tempo de detenção hidráulica médio de 1,5 dias). As águas do reservatório da UHE Santo Antônio do Jari são oriundas, principalmente, do rio Jari, entretanto também desaguam no reservatório tributários de menores dimensões, como os rios Iratapuru, Piunquara e Traíra (Jari Energia, 2009).

O arranjo geral do projeto da UHE Santo Antônio do Jari, bem como a localização do reservatório e dos pontos de monitoramento da qualidade das águas, podem ser visualizados na Figura 4-4.

Figura 4-4 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Santo Antônio do Jari

A Tabela 4-4 resume as características do banco de dados do monitoramento da qualidade das águas executado no âmbito do processo de licenciamento ambiental da UHE Santo Antônio do Jari.

Tabela 4-4 – Características do banco de dados de qualidade das águas da UHE Santo Antônio do Jari

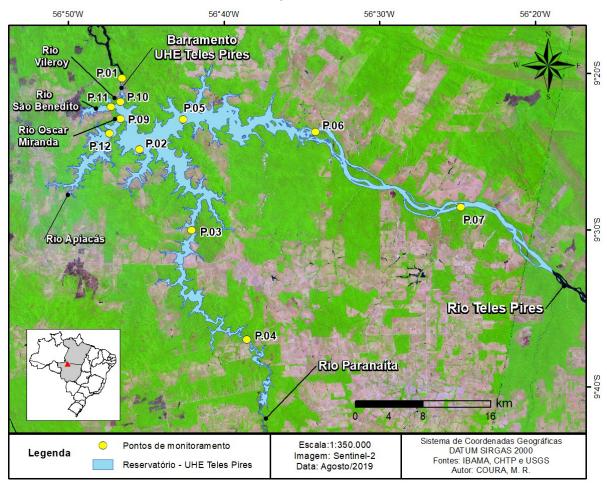
Período de	Pontos de Monitoramento	Campanhas	Campanhas Pós-	Total de	Frequência
Monitoramento	Selecionados	Pré-Enchimento	Enchimento	Parâmetros	
Jul/2011 — Mai/2018	9	12	16	24	Trimestral

O enchimento do reservatório da UHE Santo Antônio do Jari ocorreu no período de 19 a 24 maio de 2014, sendo que as campanhas da qualidade das águas realizadas neste período não

foram analisadas. Destaca-se que, também neste caso, as campanhas analisadas foram as trimestrais e as amostras da qualidade das águas foram coletadas na superfície da coluna d'água.

O Quadro 4-3 apresenta a lista de parâmetros do projeto de monitoramento da qualidade das águas implementado no âmbito do processo de licenciamento ambiental da UHE Santo Antônio do Jari.

Quadro 4-3 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Santo Antônio do Jari


Temperatura da água	Cor	Nitrogênio amoniacal
Transparência	Sólidos totais	Nitrogênio total Kjeldahl
Potencial redox	Sólidos suspensos totais	Demanda bioquímica de oxigênio
pН	Clorofila-a	Ferro total
Condutividade elétrica	Fósforo total	Sulfato
Sólidos dissolvidos totais	Ortofosfato	Cloreto
Oxigênio dissolvido	Nitrato	Coliformes totais
Turbidez	Nitrito	Coliformes termotolerantes

4.1.4 UHE Teles Pires

A UHE Teles Pires está localizada na divisa dos Estados do Mato Grosso e Pará, no rio Teles Pires, que é um importante afluente da margem direita do rio Amazonas com vazão média de longo termo de cerca de 2.300 m³/s. O barramento principal está localizado nas coordenadas 9°20′56,22″S e 56°46′46,28″W (Sistema de Coordenadas Geográficas e Datum Sirgas 2000). Trata-se de uma usina hidrelétrica de médio porte quando comparada às UHEs Belo Monte, Jirau e Santo Antônio do Jari, com capacidade instalada de 1.820 MW, que também opera a fio d'água (CHTP, 2011).

O empreendimento compreende um barramento principal no rio Teles, a cerca de 330 km a montante do encontro com o rio Juruena (juntos formam o rio Tapajós que desagua no rio Amazonas), resultando em um reservatório de 137 km², cota de operação de 220 m e volume total de 997,22 x 10⁶ m³ (tempo de detenção hidráulica médio de 5,0 dias). As águas do reservatório da UHE Teles Pires são oriundas, predominantemente, do rio Teles Pires, contudo existe um tributário importante que também desagua no reservatório, o rio Paranaíta. Outros tributários do reservatório de menores dimensões são os rios Oscar Miranda, Vileroy, São Benedito e Apiacás (CHTP, 2011).

O arranjo geral do projeto da UHE Teles Pires, bem como a localização do reservatório e dos pontos de monitoramento da qualidade das águas, podem ser visualizados na Figura 4-5.

Figura 4-5 – Mapa de localização do reservatório e dos pontos de monitoramento da qualidade das águas – UHE Teles Pires

A Tabela 4-5 resume as características do banco de dados do monitoramento da qualidade das águas executado no âmbito do processo de licenciamento ambiental da UHE Teles Pires.

Tabela 4-5 – Características do banco de dados de qualidade das águas da UHE Teles Pires

Período de	Pontos de Monitoramento	Campanhas	Campanhas Pós-	Total de	Frequência
Monitoramento	Selecionados	Pré-Enchimento	Enchimento	Parâmetros	
Abr/2012 – Jan/2018	11	31	26	60	Mensal

O enchimento do reservatório da UHE Teles Pires ocorreu no período de dezembro de 2014 a janeiro de 2015, sendo que as campanhas da qualidade das águas realizadas neste período não foram analisadas. Assim como nos demais empreendimentos, as amostras da qualidade das águas analisadas também foram coletadas na superfície da coluna d'água. Destaca-se que a

frequência de monitoramento é maior que nos demais empreendimentos, sendo frequência mensal.

O Quadro 4-4 apresenta a lista de parâmetros do projeto de monitoramento da qualidade das águas implementado no âmbito do processo de licenciamento ambiental da UHE Teles Pires.

Quadro 4-4 – Lista do total de parâmetros da qualidade das águas do banco de dados da UHE Teles Pires

Alcalinidade total	Cor	Ortofosfato
Alumínio dissolvido	Cromo total	Oxigênio dissolvido
Antimônio total	Demanda bioquímica de oxigênio	Pentaclorofenol
Arsênio total	Demanda química de oxigênio	pН
Bário total	Dureza	Potássio
Berílio total	Fenóis	Potencial redox
Bifenilas policloradas	Ferro dissolvido	Prata total
Boro total	Fluoreto	Selênio total
Cádmio total	Fósforo orgânico	Sílica
Cálcio total	Fósforo total	Sódio total
Carbono orgânico dissolvido	Lítio total	Sólidos totais
Carbono orgânico total	Magnésio total	Sólidos dissolvidos totais
Chumbo total	Manganês total	Sulfato
Cianeto	Mercúrio total	Sulfeto
Cloreto	Níquel total	Temperatura da água
Clorofila-a	Nitrato	Transparência
Cobalto total	Nitrito	Turbidez
Cobre dissolvido	Nitrogênio amoniacal	Urânio total
Coliformes termotolerantes	Nitrogênio orgânico	Vanádio total
Condutividade elétrica	Nitrogênio total	Zinco total

4.2 Análise estatística dos dados de qualidade das águas superficiais

4.2.1 Organização e sistematização dos bancos de dados

Para o desenvolvimento deste trabalho utilizou-se os bancos de dados brutos dos projetos de monitoramento da qualidade das águas superficiais executados no âmbito dos processos de licenciamento ambiental das usinas hidrelétricas selecionadas.

Cada banco de dados foi organizado e sistematizado individualmente, conforme mostrado na Figura 4-6.

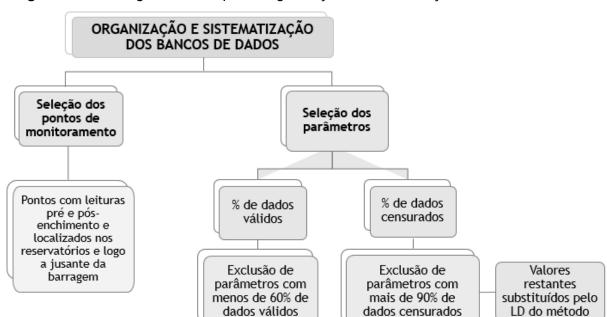


Figura 4-6 – Fluxograma da etapa de organização e sistematização dos bancos de dados

Para obter bancos de dados homogêneos foi realizada a transformação das unidades de medida dos parâmetros de qualidade das águas que se apresentavam distintas da Resolução CONAMA nº 357/2005 (BRASIL, 2005). Por exemplo, caso o parâmetro "fósforo total", em um projeto de monitoramento, se apresentasse na unidade de medida μg.L⁻¹, este foi convertido para mg.L⁻¹. A homogeneidade das unidades de medidas é importante para realizar análise comparativa entre os diferentes bancos de dados.

Outro tratamento prévio dos dados consistiu na seleção dos pontos monitoramento (unidades amostrais). Foram selecionados pontos que possuem dados pré e pós-enchimento e que estão localizados no interior da área de inundação dos reservatórios, já que são esses pontos que sofreram impacto direto da transformação do ambiente (enchimento dos reservatórios), e um ponto localizado após os barramentos, para se avaliar o impacto a jusante das UHEs.

Por fim, fez-se a seleção dos parâmetros que serão estudados, por meio das análises de dados válidos e censurados. Foram calculadas as porcentagens de dados válidos para os bancos de dados estabelecidos, sendo excluídos os parâmetros com menos de 60% de dados válidos, ou seja, mais de 40% de dados faltantes (TRINDADE, 2013). Foram excluídos também os parâmetros que apresentaram mais de 90% de dados censurados, ou seja, dados com valores inferiores ao limite de detecção (LD) do método analítico. Os valores restantes foram

substituídos pelo próprio LD, que já caracteriza o pior cenário possível (CALAZANS, 2015; SOARES, A., 2017).

4.2.2 Análise preliminar dos dados

Foi efetuada uma análise preliminar dos dados para cada parâmetro de qualidade das águas resultante da etapa de organização e sistematização dos bancos de dados, em todos os pontos de monitoramento, para cada uma das fases (pré e pós-enchimento dos reservatórios). A Figura 4-7 exibe um desenho esquemático da etapa de análise preliminar dos dados.

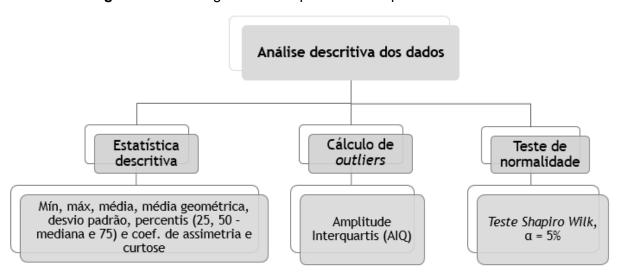


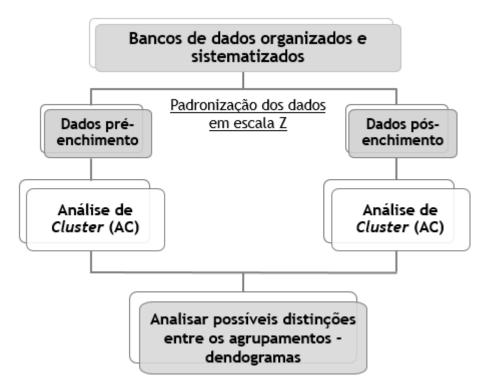
Figura 4-7 – Fluxograma da etapa de análise preliminar dos dados

Foram calculados os valores de mínimo e máximo, média, desvio-padrão, os percentis (25, 50 - mediana e 75%) e dos coeficientes de assimetria e curtose.

Para a identificação dos *outliers* foi utilizado o método exploratório da amplitude interquartis (AIQ), que é dada pela diferença entre Q_3 e Q_1 , respectivamente, o terceiro e o primeiro quartis. Assim, foi considerado *outlier* superior todo dado maior que ($Q_3+1,5AIQ$) e *outlier* inferior todo dado menor que ($Q_1-1,5AIQ$) (NAGHETTINI; PINTO, 2007).

Todas as ocorrências de *outliers* foram analisadas individualmente para a decisão de manutenção ou retirada desses das análises.

Por fim, foi aplicado o teste de normalidade de Shapiro-Wilk, ao nível de significância de 5%, para verificar se os dados seguem a distribuição normal.


4.2.3 Análise comparativa entre os pontos de monitoramento com relação às fases pré e pósenchimento em cada reservatório

A primeira fase da etapa de aplicação das técnicas estatísticas consistiu na execução da Análise de *Cluster* (AC) aos conjuntos de dados pré e pós-enchimento dos parâmetros de qualidade das águas selecionados na etapa de organização e sistematização dos bancos de dados. A AC foi utilizada como uma análise exploratória inicial para avaliar como os pontos de monitoramento se agruparam nas fases pré-enchimento (rio) e pós-enchimento (reservatório) e se ocorreram distinções entre os agrupamentos.

Para execução da AC, os conjuntos de dados pré e pós-enchimento foram padronizados em escala Z, ou seja, as observações foram uniformizadas pela subtração da média e divisão pelo desvio-padrão de cada variável, o que resultou em variáveis com média 0 e desvio-padrão 1, com a mesma escala. Conforme já referido, a padronização dos dados na escala Z é importante para evitar classificações errôneas devido às diferenças na dimensão dos dados, eliminando a possível influência de diferentes unidades de medida, tornando os dados adimensionais (SIMEONOV *et al.*, 2003).

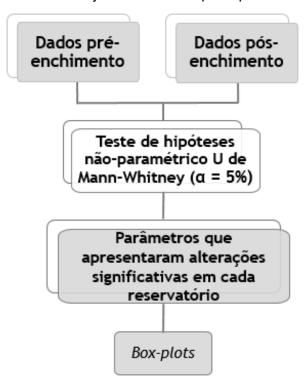
A AC foi executada para cada reservatório, de forma independente. Assim, para cada reservatório foram gerados dois dendogramas, um para a fase pré-enchimento e outro para a fase pós-enchimento, conforme fluxograma apresentado na Figura 4-8.

Figura 4-8 – Fluxograma da Análise de *Cluster* aplicada aos conjuntos de dados pré e pósenchimento

Seis métodos hierárquicos aglomerativos distintos foram avaliados, sendo: método da ligação simples, método da ligação completa, método da ligação média (UPGMA), método de Ward, método do centróide e, por fim, o método da mediana.

Para cada agrupamento formado foi calculado o coeficiente de correlação cofenética, conforme Sokal e Rohlf (1962), para se avaliar o grau de ajuste da matriz de distâncias original em relação à matriz resultante da simplificação proporcionada pelo método de agrupamento. Os valores do coeficiente de correlação cofenética foram considerados para se determinar o método de agrupamento selecionado.

Para a determinação da linha de corte nos dendogramas foram consideradas as maiores distâncias em que os agrupamentos foram formados (CALAZANS, 2015, SOARES, A., 2017), bem como a adequação dos grupos formados em função do conhecimento do pesquisador sobre os dados analisados.


Distinções entre os dendogramas e os grupos formados nas fases pré e pós-enchimento foram avaliadas como possíveis consequências associadas à implantação dos reservatórios.

4.2.4 Identificação dos parâmetros da qualidade das águas que sofreram alteração significativa quando comparadas as fases pré e pós-enchimento em cada reservatório

Após a realização da Análise de *Cluster* (AC), foi executada a segunda fase da etapa de aplicação das técnicas estatísticas, que consistiu em identificar os parâmetros da qualidade das águas que alteraram significadamente após o enchimento dos reservatórios. Para isso foi aplicado o teste estatístico não-paramétrico U de Mann-Whitney (nível de significância α de 5%), que comparou os conjuntos de dados das duas fases do ambiente aquático, préenchimento (rio) e pós-enchimento (reservatório).

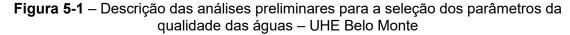
O teste U de Mann-Whitney é um teste de hipóteses não paramétrico para duas amostras independentes de tamanhos iguais ou diferentes (HOLLANDER *et al.*, 2013). A Figura 4-9 mostra o desenho esquemático dessa fase.

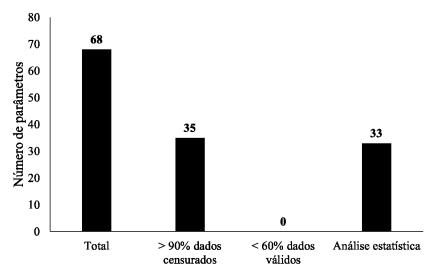
Figura 4-9 – Fluxograma da aplicação do teste de hipóteses U de Mann-Whitney, comparando os conjuntos de dados pré e pós-enchimento

Com o resultado do teste de hipóteses foi possível responder se as concentrações dos parâmetros da qualidade das águas foram significativamente maiores ou menores ou se não houve diferença significativa após o enchimento dos reservatórios.

Na sequência, de posse dos parâmetros que sofreram alterações significativas em cada reservatório foi possível identificar aqueles que alteraram com maior frequência em cada empreendimento e quais desses são comuns às diferentes UHEs.

Para os parâmetros que alteraram significativamente com maior frequência, ou seja, em maiores números de pontos de monitoramento, foram elaborados gráficos *box-plot*.


5 RESULTADOS E DISCUSSÃO


5.1 UHE Belo Monte

5.1.1 Organização e sistematização do banco de dados

Após a aplicação dos critérios de exclusão de parâmetros em função do percentual de dados válidos (abaixo de 60%) e de dados censurados (acima de 90%), foi gerado um novo banco de dados.

De um total de 68 parâmetros, 35 (51,5% do total) foram excluídos nesta etapa do estudo por apresentarem mais de 90% de dados censurados. Assim, foram selecionados para as etapas posteriores 33 parâmetros, conforme mostrado na Figura 5-1.

O Quadro 5-1 apresenta os parâmetros que foram excluídos nessa etapa do estudo. Com exceção do parâmetro óleos e graxas, os demais parâmetros excluídos são classificados como agrotóxicos (organoclorados, organofosforados e carbamatos) e metais pesados.

Quadro 5-1 – Parâmetros de qualidade das águas que foram excluídos na etapa de organização e sistematização do banco de dados – UHE Belo Monte

Parâmetros >90% de dados censurados	Parâmetros < 60% de dados válidos
Óleos e graxas, Acrilamida, Alacloro,	-
Aldrin/Dieldrin, Atrazina, Clordano, Ácido	
diclorofenoxiacético, Demeton,	
Diclorodifeniltricloroetano, Endosulfan, Endrin,	
Glifosato, Gution, heptacloro epóxido,	
Heptacloro, Hexaclorobenzeno, Lindano,	
Malation, Metolacloro, Metoxicloro, Paration,	

Bifenilos policlorados, Pentaclorofenol, Simazina, Alumínio dissolvido, Cádmio total, Chumbo total, Cobre dissolvido, Cromo total, Manganês total, Níquel total, Zinco total, Arsênio total, Selênio total e Mercúrio total.

A Tabela 5-1 exibe os 33 parâmetros selecionados para as etapas posteriores (aplicação das técnicas estatísticas), suas respectivas notações de referência, unidades de medida e valores máximos permitidos (VMPs) para águas doces classe 2, nos termos da Resolução Conama n. 357/2005.

Tabela 5-1 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Belo Monte

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Temperatura da água	Temp.	°C	-
Condutividade elétrica	CE	μS/cm	-
Sólidos dissolvidos totais	SDT	mg/L	500
pН	рН	-	6,0 a 9,0
Potencial redox	Redox	mV	-
Turbidez	Turb.	UNT	100
Clorofila-a	Cl-a	μg/L	30
Oxigênio dissolvido	OD	mg/L	≥ 5,0
Transparência	Transp.	m	-
Alcalinidade	Alcal.	mg CaCO ₃ /L	-
Coliformes totais	CT	NMP/100 mL	-
Escherichia coli	E. coli	NMP/100 mL	≤ 1.000
Demanda Bioquímica de Oxigênio	DBO	mg/L	≤ 5,0
Nitrogênio total Kjeldahl	NTK	mg/L	-
Fósforo total	\mathbf{P}_{T}	mg/L	0,1 (lótico) e 0,03 (lêntico)
Cianoficeas	Cianof.	cel/mL	Até 50.000
Fluoreto	$\mathbf{F}^{\text{-}}$	mg/L	1,4
Cloreto	Cl-	mg/L	250
Nitrito	$N-NO_2$	mg/L	1,0
Brometo	Br ⁻	mg/L	-
Nitrato	$N-NO_3^-$	mg/L	10
Fosfato	PO_4^{3-}	mg/L	-
Sulfato	SO_4^{2-}	mg/L	250
Lítio	Li^+	mg/L	2,5
Sódio	Na^+	mg/L	-
Nitrogênio amoniacal	N-NH ₄ ⁺	mg/L	3,7: pH ≤ 7,5 2,0: 7,5 <ph≤8,0 1,0: 8,0<ph≤8,5 0,5: pH > 8,5</ph≤8,5 </ph≤8,0
Potássio	K^+	mg/L	-
Magnésio	Mg^{2^+}	mg/L	-
Cálcio	Ca^{2+}	mg/L	-
Sólidos suspensos totais	SST	mg/L	-
Sólidos suspensos inorgânicos	SSI	mg/L	-
Sólidos suspensos orgânicos	SSO	mg/L	-
Ferro dissolvido	Fe_{diss}	mg/L	0,3

Foram selecionados dez pontos de monitoramento, sendo nove localizados na área de inundação do reservatório do Xingu e um localizado imediatamente a jusante do barramento. Ressalta-se que não foram selecionados pontos de monitoramento localizados na área de inundação do reservatório Intermediário, uma vez que este foi formado em "terra firme", ou seja, não existem dados de qualidade das águas na fase pré-enchimento. As características e localizações dos pontos de monitoramento podem ser consultadas na Tabela 5-2 e na Figura 4-2, respectivamente.

Tabela 5-2 - Características dos pontos de monitoramento selecionados - UHE Belo Monte

Coordenadas geográficas PONTOS (Datum SIRGAS 2000)		0 0	Características	Características
	Latitude	Longitude	Pré-enchimento	Pós-enchimento
IDM	3°23'45,49"S	51°55'32,12"W	igarapé Di Maria/rio Xingu	reservatório
IGLH	3°21'56,31"S	51°57'7,21"W	igarapé Galhoso	reservatório
PIMENTAL	3°26'9,757"S	51°56'12,444"W	rio Xingu	reservatório
RX 01	3°24'53,331"S	52°13'12,925"W	rio Xingu	reservatório
RX 02	3°24'58,041"S	52°13'8,25"W	rio Xingu	reservatório
RX 03	3°25'17,931"S	51°57'27,3"W	rio Xingu	reservatório
RX 18	3°12'20,815"S	52°10'46,916"W	rio Xingu	reservatório
RX 23	3°30'28,623"S	51°54'25,01"W	rio Xingu	jusante
RX 24	3°13'22,378"S	52°4'41,91"W	rio Xingu	reservatório
RX 25	3°22'4,779"S	52°1'39,903"W	rio Xingu	reservatório

5.1.2 Análise descritiva do banco de dados

A estatística descritiva, com os valores de média, mediana, desvio-padrão, coeficientes de assimetria e curtose, mínimo, máximo, percentis 25 e 75%, percentual de *outliers* e número de dados válidos, calculados para cada parâmetro de qualidade das águas em cada ponto de monitoramento e para cada fase (pré e pós-enchimento), são apresentados no Apêndice I (Tabelas I.1 a I.20).

O teste de normalidade de Shapiro-Wilk ao nível de significância α de 5% foi realizado para cada parâmetro de qualidade das águas em cada fase (pré e pós-enchimento).

Com relação aos *outliers*, nenhum dado foi excluído, já que foram considerados como passíveis de ocorrer. É importante destacar que dados ambientais, incluindo dados de qualidade das águas, podem apresentar alta variabilidade (NAGHETTINI; PINTO, 2007). A

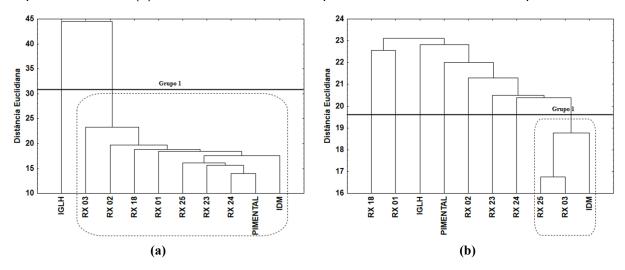
maior porcentagem de *outliers* em relação aos dados válidos encontrada no banco de dados da UHE Belo Monte foi de 27,3% para os parâmetros Br⁻ no ponto de monitoramento IGLH (fase pré-enchimento); e a mesma porcentagem para Na⁺ no ponto RX 25 (fase pós-enchimento).

A verificação de normalidade realizada por meio do teste de Shapiro-Wilk apontou que, com exceção dos parâmetros Redox na fase pré-enchimento, e OD, K⁺ e Mg²⁺ na fase pós-enchimento, os demais não seguem a distribuição normal. Isso justifica a aplicação de testes estatísticos não-paramétricos na etapa seguinte.

5.1.3 Aplicação das técnicas estatísticas

A primeira fase da etapa de aplicação das técnicas estatísticas consistiu na Análise de *Cluster* (AC), que foi aplicada para se avaliar como os pontos de monitoramento se agruparam nas fases pré-enchimento (rio) e pós-enchimento (reservatório) e se ocorreram distinções entre os agrupamentos.

Foram avaliados seis métodos de agrupamentos hierárquicos distintos e calculados os seus respectivos coeficientes de correlação cofenética, conforme registrado na Tabela 5-3.


Tabela 5-3 – Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento – UHE Belo Monte

Mátadas da agrupamenta	Coeficiente de correlação cofenética		
Métodos de agrupamento	Pré-enchimento	Pós-enchimento	
Ligação simples	0,996	0,674	
Ligação completa	0,994	0,456	
Ligação média (UPGMA)	0,996	0,717	
Ward	0,995	0,538	
Centróide	0,987	-0,434	
Mediana	0,991	0,391	

De acordo com a Tabela 5-3, na fase pré-enchimento os métodos de agrupamentos avaliados resultaram em elevados coeficientes de correlação cofenética. Contudo, na fase pósenchimento foram obtidos coeficientes mais baixos, sendo o método da ligação média ou UPGMA (*Unweighted Pair Group Method using Arithmetic averages*) aquele que sobressaiu na fase pós-enchimento. Assim, o método da ligação média (UPGMA) foi selecionado, por apresentar maiores coeficientes em ambas as fases (VALENTIN, 2000; WU *et al.*, 2009; ABDELHADY; FÜRSICH, 2015; UKPATU *et al.*, 2015).

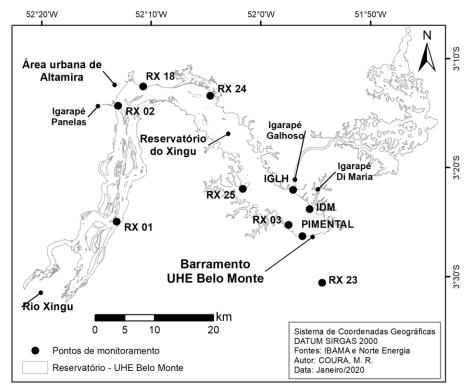

O dendograma mostrado na Figura 5-2 (a) se refere à fase pré-enchimento (rio), ou seja, na ausência do reservatório da UHE Belo Monte. Traçando-se a linha de corte, conforme critério adotado por Calazans (2015) e Soares (2017), que considera as maiores distâncias entre os agrupamentos, foi formado um grupo e apenas um ponto de monitoramento ficou isolado. O dendograma mostrado na Figura 5-2 (b) se refere à fase pós-enchimento (reservatório) e mostra a formação de um grupo, sendo que sete pontos ficaram isolados. Ressalta-se que o ponto RX 23 é o único ponto localizado fora do reservatório na fase pós-enchimento, situado logo a jusante do barramento da usina.

Figura 5-2 – Dendogramas da Análise de *Cluster* referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Belo Monte – 10 pontos de monitoramento e 33 parâmetros

A Figura 5-3 apresenta um mapa simplificado com as localizações dos pontos de monitoramento.

Os resultados da formação dos grupos indicam que na fase pré-enchimento os pontos de monitoramento localizados no mesmo corpo d'água (rio Xingu) se aglomeraram, possivelmente devido ao fato de o rio ser um ambiente lótico, com qualidade das águas homogêneas, e os pontos de monitoramento estarem relativamente próximos. Ressalta-se que o ponto IDM está localizado na confluência entre o rio Xingu e o igarapé Di Maria e considerando que o rio Xingu é um corpo d'água de dimensões muito superiores, pode explicar o fato de o ponto IDM apresentar similaridade com os demais pontos do Grupo 1. O ponto de monitoramento localizado em um corpo d'água distinto (IGLH) se apresentou distante dos demais, provavelmente por ter qualidade das águas distinta do rio Xingu.

Após o enchimento do reservatório, a similaridade entre pontos de monitoramento localizados no reservatório do Xingu diminuiu, resultando em maior número de pontos de monitoramento isolados na fase pós-enchimento (RX 18, RX 01, IGLH, PIMENTAL, RX 02, RX 23 e RX 24). É possível que na fase pós-enchimento as localizações dos pontos de monitoramentos e os prováveis TDHs distintos tenham sidos preponderantes para esse resultado. Rodrigues (2002), ao analisar alterações de características limnológicas resultantes da transformação rioreservatório da UHE Dona Francisca, localizada no rio Jacuí, Rio Grande do Sul, também

constatou heterogeneidade espacial para alguns parâmetros da qualidade das águas do início do reservatório até a barragem.

Ainda na fase pós-enchimento é importante destacar a formação do Grupo 1. Os pontos RX 25, RX 03 e IDM estão localizados na porção do reservatório mais próxima ao barramento, ou seja, em uma zona com possíveis características físicas e biológicas mais semelhantes à lacustre (ambiente lêntico) (QUEIROZ JUNIOR, 2016; SERAFIM-JÚNIOR, 2016; DODDS; WHILES, 2020). Um ponto que se esperava apresentar similaridade com o Grupo 1 é o PIMENTAL devido à proximidade, contudo nos agrupamentos formados isso não ocorreu. Uma hipótese para essa constatação pode ser o fato de o ponto PIMENTAL estar localizado próximo às estruturas da usina (tomada d'água e vertedores) e um provável aumento de velocidade da água naquele local causar mistura entre as primeiras camadas da coluna d'água, o suficiente para distinguir a qualidade das águas desse ponto em relação ao Grupo 1.

Além da formação dos grupos, é importante destacar as consideráveis diferenças entre os dendogramas (agrupamentos) observadas, que possivelmente estão associadas à transformação do ambiente aquático. Diante dessa constatação, a segunda fase da etapa de aplicação das técnicas estatísticas foi realizada com o objetivo de investigar as alterações na qualidade das águas superficiais, ou seja, identificar os parâmetros que alteraram significativamente após o enchimento do reservatório.

Para isso, o teste estatístico não-paramétrico U de Mann-Whitney, com nível de significância α de 5%, foi aplicado, comparando os conjuntos de dados pré e pós-enchimento correspondentes aos 33 parâmetros da qualidade das águas, para cada um dos 10 pontos de monitoramento.

A Tabela 5-4 exibe os resultados obtidos após a aplicação do teste, apontando se houve aumento (seta para cima) ou diminuição (seta para baixo) significativas das concentrações dos parâmetros após o enchimento do reservatório. Os p-valores obtidos em cada teste são apresentados no Apêndice II (Tabela I.1).

Tabela 5-4 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney ($\alpha = 5\%$) – UHE Belo Monte

Dauâmatuas	IDM	IGLH	PIMENTAL	RX 01	RX 02	RX 03	RX 18	RX 23	RX 24	RX 25
Parâmetros					Resulta					
Temp.	-	-	-	-	-	-	-	-	-	-
CE	-	-	-	-	-	-	-	-	-	\uparrow
SDT	-	-	-	-	-	-	-	-	-	\uparrow
pН	-	-	-	-	-	-	-	-	-	-
Redox	\uparrow									
Turb.	-	-	-	-	-	-	-	-	-	-
Cl-a	-	-	-	-	-	-	-	-	-	-
OD	-	-	-	-	-	\downarrow	-	-	-	-
Transp.	\uparrow									
Alcal.	-	-	-	-	-	-	-	-	-	-
CT	\downarrow	-	\downarrow	-	\downarrow	-	-	-	-	-
E. coli	\downarrow	\downarrow	\downarrow	-	-	\downarrow	-	\downarrow	-	-
DBO	-	-	-	-	-	-	-	-	\downarrow	-
NTK	-	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow
P_{T}	\downarrow	\downarrow	-	\downarrow	\downarrow	-	\downarrow	\downarrow	\downarrow	-
Cianof.	\uparrow	-	\uparrow							
F-	-	-	-	-	-	-	-	-	-	-
Cl-	-	-	-	-	-	-	\uparrow	-	-	-
$N-NO_2^-$	-	-	-	-	-	-	-	-	-	-
Br ⁻	-	-	-	-	-	-	-	-	-	-
$N-NO_3$	\uparrow	-	-	\uparrow	-	-	\uparrow	-	-	-
PO_4^{3-}	-	-	-	-	-	-	-	-	-	-
SO_4^{2-}	\uparrow	\uparrow	\uparrow	\uparrow	-	-	\uparrow	\uparrow	-	-
Li^+	-	-	-	-	-	-	-	-	-	-
Na^+	-	-	\uparrow	\uparrow	-	-	-	\downarrow	-	-
$N-NH_4^+$	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	\uparrow	\uparrow	\uparrow
K^+	-	\downarrow	-	-	\downarrow	-	-	-	-	-
Mg^{2^+}	\downarrow	\downarrow	-	\downarrow						
Ca^{2+}	-	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow
SST	\downarrow	\downarrow	\downarrow	-	\downarrow	-	-	-	-	-
SSI	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	-	-	\downarrow	-
SSO	\downarrow	-	-	-	-	-	-	-	-	-
Fe_{diss}	-	-	-	-	-	-	-	-	-	-

⁽⁻⁾ Não apresentou alteração significativa.

De acordo com os resultados apresentados na Tabela 5-4, dos 33 parâmetros analisados, 22 (66,7% do total) registraram alteração significativa em, pelo menos, um ponto de

^(↑) Aumento significativo da concentração. (↓) Diminuição significativa da concentração.

monitoramento, e 11 (33,3% do total) não registraram alteração significativa. O Quadro 5-2 resume todos os parâmetros que apresentaram e não apresentaram alteração significativa.

Quadro 5-2 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Belo Monte

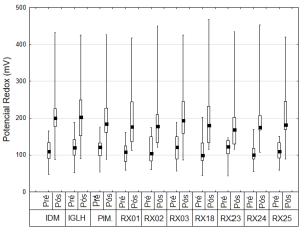
Parâmetros que apresentaram alteração significativa	Parâmetros que não apresentaram alteração significativa
CE, SDT, Redox, OD, Transp., CT, E. coli,	Temp., pH, Turb., Cl-a, Alcal., F-, N-NO ₂ -,
DBO, NTK, P _T , Cianof., Cl ⁻ , N-NO ₃ ⁻ , SO ₄ ²⁻ ,	Br-, PO ₄ ³⁻ , Li ⁺ e Fe _{diss} .
Na^{+} , $N-NH_{4}^{+}$, K^{+} , Mg^{2+} , Ca^{2+} , SST , $SSI\ e$	
SSO.	

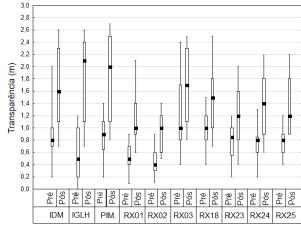
É importante destacar que o objetivo foi identificar os parâmetros que apresentaram alteração significativa com maior frequência. Assim, a discussão foi efetuada com foco nos parâmetros que sofreram alteração em 40% ou mais de pontos, supondo que são mais importantes para explicar a alteração da qualidade das águas após o enchimento do reservatório. A Tabela 5-5 destaca esses parâmetros e a porcentagem dos pontos em que registraram alteração significativa.

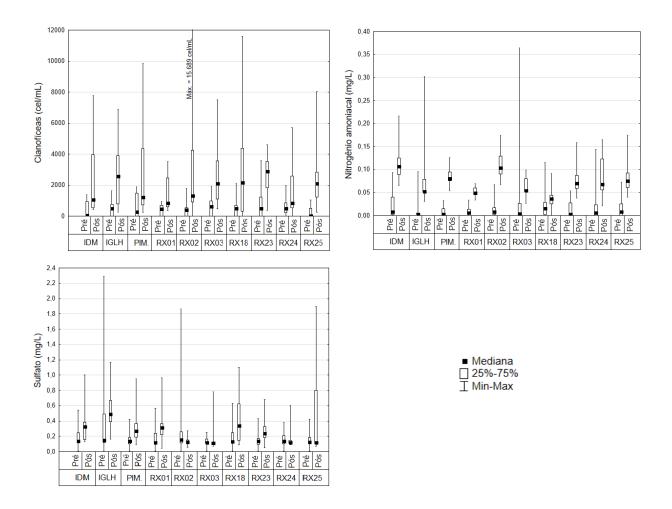
Tabela 5-5 – Parâmetros que apresentaram alteração significativa com maior frequência – UHE Belo Monte

Parâmetros	% de pontos de monitoramento que apresentaram alteração significativa								
	Total	Elevação	Diminuição						
Redox	100,0	100,0	-						
Transp.	100,0	100,0	-						
Cianof.	90,0	90,0	-						
$N-NH_4^+$	90,0	90,0	-						
Mg^{2^+}	90,0	-	90,0						
NTK	80,0	-	80,0						
\mathbf{P}_{T}	70,0	-	70,0						
Ca^{2^+}	70,0	-	70,0						
$\mathrm{SO_4}^{2\text{-}}$	60,0	60,0	-						
SSI	60,0	-	60,0						
E. coli	50,0	-	50,0						
SST	40,0	-	40,0						

Nas Figuras 5-4 e 5-5 são apresentados os gráficos *box-plot* dos 12 parâmetros que registraram alteração significativa com maior frequência, sendo respectivamente elevação e diminuição.

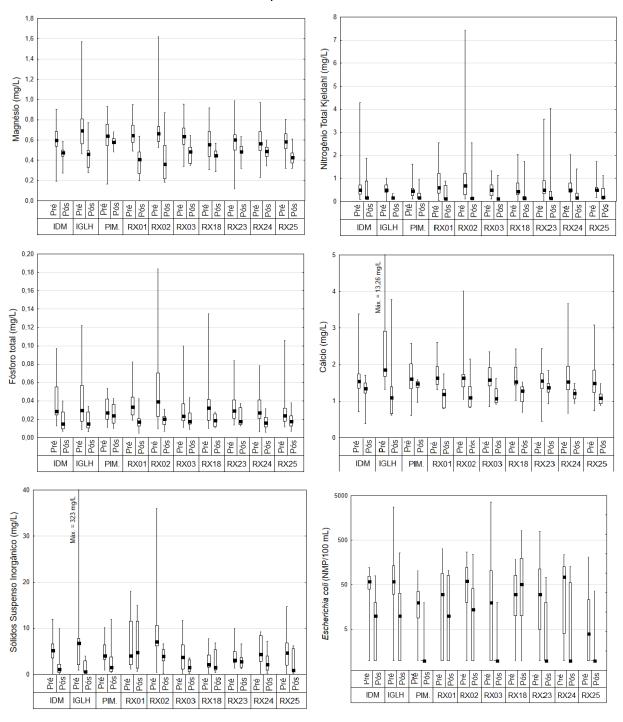

O potencial redox fornece uma descrição geral de muitas reações redox e pode ser visto como uma medida da capacidade geral de redução ou oxidação de um sistema (SØNDERGAARD,

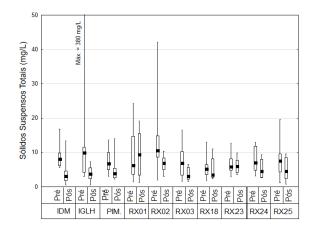

2009). A maior parte das reações redox em águas naturais é mediada biologicamente por uma biota diversa (WETZEL, 2001; BAIRD; CANN, 2011; STUMM; MORGAN, 2012), sendo que valores elevados de potencial redox (+100 a +500 mV) estão associados a um ambiente oxidante e promovem processos aeróbios, tais como a oxidação da matéria orgânica. Em contrapartida, valores de potencial redox mais baixos (-100 a -500 mV) estão associados a condições redutoras e promovem processos anaeróbios, tais como a metanogênese (VON SPERLING, 2005; VASCONCELLOS, 2015).


Conforme mostrado na Tabela 5-5, o parâmetro Redox apresentou elevação significativa em todos os 10 pontos de monitoramento, ou seja, a formação do reservatório da UHE Belo Monte criou condições ambientais mais favoráveis para o estabelecimento de reações oxidantes na superfície do corpo d'água.

O parâmetro transparência também registrou aumento significativo em todos os pontos de monitoramento. Além da transparência, foram observadas diminuições significativas das concentrações dos parâmetros SSI e SST, em 60% e 40% dos pontos de monitoramento, respectivamente. Esses resultados sugerem a ocorrência de sedimentação (retenção de sedimentos) no reservatório, corroborando os trabalhos de Vörösmarty *et al.* (2003), Huang *et al.* (2015), Dąbkowski e Bąk (2018), Tundisi (2018), Zarfl e Lucía (2018) e Krasa *et al.* (2019).

Figura 5-4 – Gráficos *box-plot* dos parâmetros que apresentaram **elevação significativa** com maior frequência – UHE Belo Monte


Outro resultado importante é a elevação da densidade de cianoficeas em 90% dos pontos de monitoramento. As cianoficeas, também conhecidas como cianobactérias, são organismos capazes de obter energia por meio da realização de fotossíntese e são considerados um grupochave responsável por problemas ambientais associados aos processos de eutrofização (BRASIL *et al.*, 2016; CREMONA *et al.*, 2018; DALU; WASSERMAN, 2018).


Os resultados levam a crer que a formação do reservatório da usina criou condições ambientais favoráveis para a proliferação desses organismos, por isso a sua maior densidade na fase pós-enchimento. Apesar disso, a densidade de cianofíceas no reservatório se encontra abaixo do estabelecido pelo Conama nº 357/2005 para águas doces de classe 2, que é até 50.000 cel/mL (BRASIL, 2005).

O nitrogênio amoniacal (N-NH₄⁺) apresentou elevação significativa de concentração em 90% dos pontos de monitoramento (pontos IDM, IGLH, PIMENTAL, RX 01, RX 02, RX 03, RX 23 e RX 25). Possivelmente, a elevação da concentração de N-NH₄⁺ está associada à inundação de áreas florestadas pelo reservatório e a consequente decomposição da matéria

orgânica afogada. Apesar das elevações, as concentrações de nitrogênio amoniacal estão muito abaixo do valor máximo permitido pela Resolução Conama n. 357/2005, que é até 3,7 mg/L para pH abaixo de 7,5 em águas doces e classe 2.

Figura 5-5 – Gráficos *box-plot* dos parâmetros que apresentaram **diminuição significativa** com maior frequência – UHE Belo Monte

O P_T registrou diminuição significativa de concentração em 70% dos pontos de monitoramento, tanto em pontos localizados no reservatório (IDM, IGLH, RX 01, RX 02, RX 18 e RX 24) quanto no ponto localizado a jusante do barramento (RX 23). Esse resultado parece convergir para as conclusões dos estudos de Wang *et al.* (2009), Van Cappellen e Maavara (2016), Tundisi (2018) e Krasa *et al.* (2019), que afirmaram que reservatórios atuam como assimiladores de fósforo, que pode ficar retido nos sedimentos por adsorção. Contudo, não se pode descartar também a hipótese da possível influência de eventos hidroclimáticos (relação chuva-vazão) na bacia hidrográfica.

Ainda sobre o P_T, observa-se no gráfico *box-plot* que existem valores de concentração que ultrapassam os limites preconizados pela Resolução Conama n. 357/2005 para águas doces de classe 2, sendo 0,1 mg/L para ambiente lótico (pré-enchimento) e 0,03 para ambiente lêntico (pós-enchimento). O não atendimento à legislação vigente ocorre principalmente na fase pós-enchimento, que é a fase mais crítica, considerando que o fósforo é o nutriente mais importante para o processo de eutrofização em reservatórios (ESTEVES, 2011).

A respeito do indicador biológico *E. coli*, registrou-se diminuição significativa de sua concentração em 50% dos pontos de monitoramentos. Os pontos de monitoramento que registram alteração do indicador biológico estão localizados em uma região que contou com intensa presença de trabalhadores e canteiros de obras na fase de instalação da UHE Belo Monte (pontos IDM, IGLH, PIMENTAL, RX 03 e RX 23) (NORTE ENERGIA, 2011). Isso pode ter contribuído para maiores concentrações de *E. coli* na água durante a fase préenchimento dada a provável contaminação pontual por esgotos domésticos.

Os íons Ca²⁺ e Mg²⁺ são os principais contribuintes para a dureza das águas e são encontrados em águas naturais originando-se, principalmente, do intemperismo de rochas. Já o íon SO₄²⁻ é

um dos íons mais abundantes na natureza e é encontrado em águas naturais originando-se, principalmente, da dissolução de solos e rochas e pela oxidação de sulfeto (CETESB, 2017).

O íon Ca^{2+} apresentou diminuição significativa de concentração em 70% dos pontos de monitoramento e o íon Mg^{2+} em 90%. O íon SO_4^{2-} registrou elevação significativa de concentração em 60% dos pontos.

Uma hipótese para a diminuição das concentrações de Ca²⁺ também pode estar associada à proliferação de cianofíceas e demais organismos fotossintetizantes, já que segundo Stumm e Morgan (2012), uma das consequências da fotossíntese é o consumo de CO₂ nas camadas superiores de lagos e oceanos, resultando na precipitação de Ca²⁺ na forma de carbonato de cálcio. Além disso, Feitosa *et al.* (2008) registraram que os sais de cálcio possuem moderada a elevada solubilidade, sendo muito comum precipitarem como CaCO₃.

O Mg²⁺ apresenta propriedades similares ao Ca²⁺, porém é mais solúvel e mais difícil de precipitar, sendo que, quando em solução, tem a tendência de nela permanecer (FEITOSA *et al.*, 2008). Assim, embora a hipótese de precipitação do Mg²⁺ na forma de MgCO₃ no reservatório da UHE Belo Monte não possa ser descartada, é possível que a alteração da concentração desse íon esteja mais relacionada a eventos hidroclimáticos na bacia.

Concernente à elevação de concentração de sulfato na fase pós-enchimento acredita-se que pode estar associada à atividade de microrganismos (oxidação do sulfeto em sulfato) e, principalmente, também a eventos hidroclimáticos (relação chuva-vazão) na Amazônia, contribuindo para inundação de extensas áreas (planícies) e, consequentemente, para a dissolução de solos e rochas na água.

O parâmetro NTK, que é composto pelas frações totais de nitrogênio orgânico e de nitrogênio amoniacal – N-NH₄⁺ (ESTEVES, 2011), apresentou diminuição significativa de concentração em 80% dos pontos de monitoramento. Conforme os gráficos *box-plot*, as concentrações de N-NH₄⁺ são muito menores que as de NTK, portanto conclui-se que a maior fração da concentração de NTK é composta por nitrogênio orgânico. Nesse sentido, foi o nitrogênio orgânico que registrou diminuição significativa de concentração após o enchimento do reservatório.

De acordo com Von Sperling (2014) e CETESB (2017), os esgotos sanitários são importantes fontes pontuais de nitrogênio orgânico devido à presença de proteínas ou aminoácidos. Neste sentido, é possível que a maior concentração de trabalhadores na região na fase de instalação do empreendimento (fase pré-enchimento), e a consequente maior contaminação das águas por esgotos domésticos nesse período, tenha contribuído para a menor concentração de nitrogênio orgânico pós-enchimento.

Por fim, a partir dos resultados do teste de hipóteses U de Mann-Whitney foi possível realizar também análise de alteração espacial da qualidade das águas após o enchimento do reservatório. A Tabela 5-6 resume quais e o número de parâmetros que alteraram significadamente por ponto de monitoramento.

Tabela 5-6 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Belo Monte

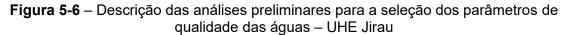
IDM	IGLH	PIMENTAL	RX 01	RX 02	RX 03	RX 18	RX 23	RX 24	RX 25
Redox	Redox	Redox	Redox	Redox	Redox	Redox	Redox	Redox	CE
Transp.	Transp.	Transp.	Transp.	Transp.	OD	Transp.	Transp.	Transp.	SDT
CT	E. coli	CT	NTK	CT	Transp.	NTK	E. coli	DBO	Redox
E. coli	NTK	E. coli	\mathbf{P}_{T}	NTK	E. coli	\mathbf{P}_{T}	P_{T}	NTK	Transp.
\mathbf{P}_{T}	\mathbf{P}_{T}	NTK	Cianof.	$P_{T} \\$	NTK	Cianof.	Cianof.	$P_{T} \\$	NTK
Cianof.	Cianof.	Cianof.	N-NO ₃ -	Cianof.	Cianof.	Cl-	SO ₄ ² -	N-NH4 ⁺	Cianof.
N-NO ₃ -	SO ₄ ²⁻	SO ₄ ² -	SO ₄ ² -	N-NH4 ⁺	N-NH ₄ ⁺	N-NO ₃ -	Na^{+}	$Mg^{2^{+}}$	$N-NH_4^+$
SO ₄ ² -	$N-NH_4^+$	Na^+	Na^+	K^{+}	Mg^{2+}	SO ₄ ² -	N-NH4 ⁺	Ca^{2+}	Mg^{2^+}
N-NH4 ⁺	\mathbf{K}^{+}	$N\text{-}NH_4{^+}$	N-NH4 ⁺	$Mg^{2^{+}}$	Ca^{2+}	Mg^{2+}	${\rm Mg^{2+}}$	SSI	Ca^{2+}
Mg^{2^+}	Mg^{2+}	SST	Mg^{2+}	Ca^{2+}	SSI	Ca^{2+}			
SST	Ca^{2+}	SSI	Ca^{2+}	SST					
SSI	SST			SSI					
SSO	SSI								
13	13	11	11	12	10	10	9	9	9

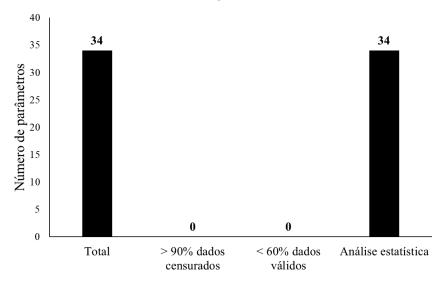
De acordo com as informações contidas na Tabela 5-6, os números de parâmetros que alteraram significadamente variaram entre 9 e 13 por ponto de monitoramento.

Os pontos que apresentaram maiores números de parâmetros que registraram alterações significativas foram IDM e IGLH, 13 parâmetros, e RX 02, 12 parâmetros. Os pontos IDM e IGLH estão localizados, na fase pré-enchimento, em corpos d'água de menores dimensões (igarapés Di Maria e Galhoso), próximos à confluência com o rio Xingu, e o ponto RX 02 está situado próximo ao encontro do rio Xingu com o igarapé Panelas, o que sugere uma

possível relação entre pontos localizados próximos às confluências entre o rio Principal com pequenos corpos d'água e alterações da qualidade das águas pós-enchimento do reservatório.

Destaca-se que o reservatório da UHE Belo Monte é pouco dendrítico, não havendo grandes braços, o que possivelmente explica o fato de não se observar um ponto de monitoramento que se destacasse muito em relação aos demais quanto à degradação da qualidade das águas (TUNDISI; MATSUMURA-TUNDISI, 2008; MEES, 2016; TUNDISI, 2018).


Outro resultado importante é que todos os pontos de monitoramento apresentaram parâmetros de qualidade das águas que se alteraram significativamente após o enchimento do reservatório, incluindo o ponto RX 23, situado logo a jusante do barramento. Esse resultado corrobora estudos que registraram que o barramento de um corpo d'água apresenta potencial para causar alteração da qualidade das águas na área de inundação do reservatório (HU *et al.*, 2014; XIN *et al.*, 2015; TUNDISI, 2018) e em trechos de rio a jusante da barragem (BALDWIN *et al.*, 2010; CHOW *et al.*, 2016; TUNDISI, 2018).


5.2 UHE Jirau

5.2.1 Organização e sistematização do banco de dados

No caso da UHE Jirau, nenhum parâmetro foi excluído, uma vez que não extrapolaram o limite de 90% de dados censurados ou de menos de 60% de dados válidos. Assim, foram selecionados para as etapas posteriores todos os 34 parâmetros do banco de dados, conforme mostrado na Figura 5-6.

62

A Tabela 5-7 exibe os 34 parâmetros selecionados para as etapas posteriores, suas respectivas notações de referência, unidades de medida e VMPs para águas doces classe 2, nos termos da Resolução Conama n. 357/2005.

Tabela 5-7 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Jirau

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Temperatura da água	Temp.	°C	-
Potencial redox	Redox	mV	-
pН	pН	-	6,0 a 9,0
Condutividade elétrica	CE	μS/cm	-
Sólidos dissolvidos totais	SDT	mg/L	500
Oxigênio dissolvido	OD	mg/L	≥ 5,0
Transparência	Transp.	m	-
Turbidez	Turb.	UNT	100
Cor	Cor	mg Pt-Co/L	75
Sólidos totais	ST	mg/L	-
Sólidos suspensos totais	SST	mg/L	-
Sólidos suspensos inorgânicos	SSI	mg/L	-
Sólidos suspensos orgânicos	SSO	mg/L	-
Clorofila-a	Cl-a	μg/L	30
Fósforo total	P_{T}	mg/L	0,1 (lótico) e 0,03 (lêntico)
Ortofosfato	Ortof.	mg/L	-
Nitrogênio total Kjeldahl	NTK	mg/L	-
Nitrato	$N-NO_3^-$	mg/L	10
Nitrito	$N-NO_2$	mg/L	1,0
Nitrogênio amoniacal	N-NH ₄ ⁺	mg/L	$3,7: pH \le 7,5$ $2,0: 7,5 < pH \le 8,0$ $1,0: 8,0 < pH \le 8,5$ 0,5: pH > 8,5
Demanda bioquímica de oxigênio	DBO	mg/L	≤ 5,0

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Demanda química de oxigênio	DQO	mg/L	-
Ferro total	Fe_T	mg/L	-
Alcalinidade	Alcal.	mg/L	-
Dureza	Dureza	mg/L	-
Sulfato	SO_4^{2-}	mg/L	250
Sulfeto	S^{2-}	mg/L	-
Cloreto	Cl ⁻	mg/L	250
Carbono inorgânico total	CIT	mg/L	-
Carbono orgânico total	COT	mg/L	-
Carbono total	Carb. total	mg/L	-
Sílica	SiO_2	mg/L	-
Coliformes totais	CT	NMP/100 mL	-
Coliformes termotolerantes	CTerm.	NMP/100ml	1000

Com relação aos pontos de monitoramento, foram selecionados quinze pontos, sendo quatorze localizados na área de inundação do reservatório e um localizado imediatamente a jusante do barramento. As características e localizações dos pontos de monitoramento podem ser consultadas na Tabela 5-8 e na Figura 4-3, respectivamente.

Tabela 5-8 – Características dos pontos de monitoramento selecionados – UHE Jirau

PONTOS			Características	Características
	Latitude	Longitude	Pré-enchimento	Pós-enchimento
P6	9°37'56,124"S	65°26'12,239"W	rio Madeira	reservatório
P7	9°36'35,214"S	65°24'15,116"W	igarapé Simãozinho/rio Madeira	reservatório
P8	9°30'45,937"S	65°17'57,625"W	igarapé São Simão/rio Madeira	reservatório
P9	9°36'18,789"S	65°7'22,047"W	rio Madeira	reservatório
P10	9°36'11,844"S	65°7'59,215"W	igarapé Castanho/rio Madeira	reservatório
P11	9°40'37,495"S	64°58'31,059"W	rio Mutum-Paraná	reservatório
P12	9°40'47,111"S	64°58'58,572"W	rio Cotia	reservatório
P13	9°36'56,64"S	64°56'27,938"W	área alagada do rio Mutum- Paraná	reservatório
P14	9°35'14,77"S	64°54'8,16"W	rio Madeira	reservatório
P15	9°21'55,479"S	64°50'52,802"W	igarapé São Lourenço/rio Madeira	reservatório
P16	9°24'2,301"S	64°49'36,642"W	igarapé Caiçara/rio Madeira	reservatório
P17	9°22'38,35"S	64°44'51,89"W	igarapé Jirau/rio Madeira	reservatório
P18	9°21'12,672"S	64°43'59,164"W	rio Madeira	reservatório
P19	9°11'58,318"S	64°36'56,108"W	rio Madeira	jusante
P20	9°36'17,40"S	64°55'6,31"W	rio Mutum-Paraná/rio Madeira	reservatório

5.2.2 Análise descritiva do banco de dados

A estatística descritiva, com os valores de média, mediana, desvio-padrão, coeficientes de assimetria e curtose, mínimo, máximo, percentis 25 e 75%, percentual de *outliers* e número de dados válidos, calculados para cada parâmetro de qualidade das águas em cada ponto de monitoramento e para cada fase (pré e pós-enchimento), são apresentados no Apêndice I (Tabelas II.1 e II.30).

O teste de normalidade de Shapiro-Wilk ao nível de significância α de 5% foi realizado para cada parâmetro de qualidade das águas em cada fase (pré e pós-enchimento).

Com relação aos *outliers*, nenhum dado foi excluído, já que foram considerados como passíveis de ocorrência. A maior porcentagem de *outliers* em relação aos dados válidos encontrada no banco de dados da UHE Jirau foi de 37,5% para o parâmetro Dureza nos pontos de monitoramento P11 e P12 (fase pós-enchimento).

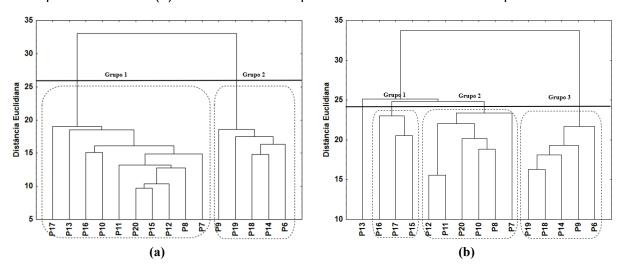
A verificação da normalidade realizada por meio do teste de Shapiro-Wilk apontou que, com exceção dos parâmetros Temp. e pH na fase pós-enchimento, os demais não seguem a distribuição normal. Isso justifica a aplicação de testes estatísticos não-paramétricos na etapa seguinte.

5.2.3 Aplicação das técnicas estatísticas

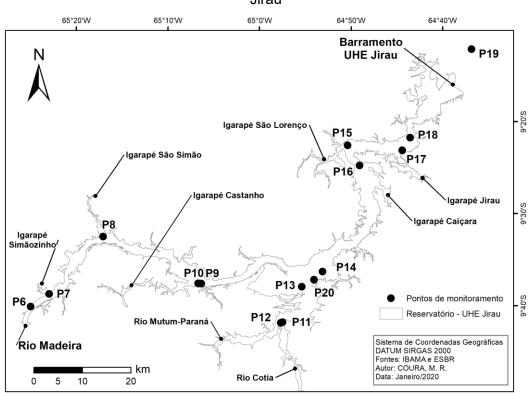
A primeira fase da etapa de aplicação das técnicas estatísticas consistiu na Análise de *Cluster* (AC), que foi aplicada para se avaliar como os pontos de monitoramento se agruparam nas fases pré-enchimento (rio) e pós-enchimento (reservatório) e se ocorreram distinções entre os agrupamentos.

Foram avaliados seis métodos de agrupamentos hierárquicos distintos e calculados os seus respectivos coeficientes de correlação cofenética, conforme mostrado na Tabela 5-9.

Tabela 5-9 – Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento aplicados aos conjuntos de dados da UHE Jirau.


Mátadas da agrupamenta	Coeficiente de correlação cofenética							
Métodos de agrupamento	Pré-enchimento	Pós-enchimento						
Ligação simples	0,985	0,906						
Ligação completa	0,982	0,905						
Ligação média (UPGMA)	0,985	0,912						
Ward	0,971	0,891						

Mátados do agrupamento	Coeficiente de correlação cofenética							
Métodos de agrupamento	Pré-enchimento	Pós-enchimento						
Centróide	0,974	0,353						
Mediana	0,976	0,283						


De acordo com a Tabela 5-9, os métodos de agrupamentos avaliados resultaram em elevados coeficientes de correlação cofenética em ambas as fases, com exceção dos métodos do centróide e da mediana na fase pós-enchimento. Assim como ocorreu na UHE Belo Monte, o método da ligação média (UPGMA) foi o selecionado, por apresentar os maiores coeficientes em ambas as fases (VALENTIN, 2000; WU *et al.*, 2009; ABDELHADY; FÜRSICH, 2015; UKPATU *et al.*, 2015).

O dendograma mostrado na Figura 5-7 (a) se refere à fase pré-enchimento (rio), ou seja, na ausência do reservatório da UHE Jirau. Traçando-se a linha de corte, conforme critério adotado por Calazans (2015) e Soares (2017), que considera as maiores distâncias entre os agrupamentos, foram formados dois grandes grupos. O dendograma mostrado na Figura 5-7 (b) se refere à fase pós-enchimento (reservatório) e mostra a formação de três grupos, sendo que um ponto ficou isolado. Ressalta-se que o ponto P19 é o único ponto localizado fora do reservatório na fase pós-enchimento, situado logo a jusante do barramento da usina.

Figura 5-7 – Dendogramas da Análise de *Cluster* referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Jirau – 15 pontos de monitoramento e 34 parâmetros

A Figura 5-8 apresenta um mapa simplificado com as localizações dos pontos de monitoramento.

Figura 5-8 – Mapa simplificado com as localizações dos pontos de monitoramento – UHE Jirau

Os resultados da formação dos grupos indicam que na fase pré-enchimento os pontos de monitoramento localizados na confluência do rio Madeira com corpos d'água de menores dimensões e aqueles localizados inteiramente nos pequenos corpos d'água se aglomeraram, formando o Grupo 1. Já os pontos localizados exclusivamente no rio Madeira se aglomeraram, formando o Grupo 2. Esse resultado sugere distinção entre a qualidade das águas do rio Madeira e a qualidade das águas dos rios e igarapés de menores dimensões.

Quanto à fase pós-enchimento é importante destacar a formação dos grupos 1, 2 e 3. Os pontos P15, P16 e P17, que formaram o Grupo 1, estão localizados na porção do reservatório mais próxima à barragem, em uma zona com possíveis características físicas e biológicas mais semelhantes à lacustre (QUEIROZ JUNIOR, 2016; SERAFIM-JÚNIOR, 2016; DODDS; WHILES, 2020). Ressalta-se que o ponto P18 também está localizado nessa porção do reservatório, mas provavelmente se distanciou do Grupo 1 por sofrer menor influência de pequenos corpos d'água.

Os pontos P7, P8, P10, P11, P12 e P20 formaram o Grupo 2, apresentando em comum o fato de estarem localizados na primeira metade do reservatório e também sofrerem influência direta de pequenos corpos d'água. Embora esses pontos sejam influenciados por corpos

d'água distintos, o resultado da formação de grupos sugere qualidade aproximada das águas entre os pontos.

O ponto P13 foi o único ponto que se mostrou isolado, embora a sua distância para os grupos 1 e 2 seja pequena. Portanto, o resultado propõe que a qualidade das águas nesse ponto é próxima aos grupos 1 e 2, embora na formação de grupos tenha ficado isolado.

Novamente, os pontos localizados no rio Madeira (P6, P9, P14, P18 e P19) se agruparam, formando o Grupo 3, evidenciando o distanciamento entre os pontos localizados no rio Madeira e aqueles localizados nos corpos d'água de menores dimensões. Assim, o dendograma referente à fase pós-enchimento sugere que mesmo após a formação do reservatório e a inundação do rio Madeira sobre os pequenos rios e igarapés, os corpos d'água de menores dimensões ainda influenciaram na qualidade das águas de alguns pontos de monitoramento.

Apesar de se constar algumas semelhanças entre os dendogramas das fases pré e pósenchimento, como por exemplo o agrupamento dos pontos localizados no rio Madeira em ambas as fases, também foram observadas diferenças que possivelmente estão associadas à transformação do ambiente aquático (formação do reservatório). Diante dessa constatação, a segunda fase da etapa de aplicação das técnicas estatísticas foi realizada com o objetivo de identificar os parâmetros que alteraram significativamente após o enchimento do reservatório.

Para isso, o teste estatístico não-paramétrico U de Mann-Whitney com nível de significância α de 5% foi aplicado, comparando os conjuntos de dados pré e pós-enchimento correspondentes aos 34 parâmetros de qualidade das águas, para cada um dos 15 pontos de monitoramento.

A Tabela 5-10 exibe os resultados obtidos após a aplicação do teste, apontando se houve aumento (seta para cima) ou diminuição (seta para baixo) significativa das concentrações dos parâmetros após o enchimento do reservatório. Os p-valores obtidos em cada teste são apresentados no Apêndice II (Tabela II.1).

Tabela 5-10 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney (α = 5%) – UHE Jirau

Parâmetros	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
rarametros							Re	esulta	dos						
Temp.	-	\uparrow	\uparrow	-	\uparrow	-	-	-	-	\uparrow	\uparrow	\uparrow	-	-	\uparrow

	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
Parâmetros	10		10		110			sulta		110	110	11,	110	11/	120
Redox	-	_	_	_	-	_	-	_	\downarrow	-	\downarrow	_	-	_	-
pН	-	_	\downarrow	_	_	\downarrow	_	_	_	-	\uparrow	\uparrow	\downarrow	\downarrow	-
CE	-	_	_	_	\uparrow	_	_	\uparrow	_	\uparrow	\uparrow	\uparrow	-	_	\uparrow
SDT	-	-	\uparrow	-	\uparrow	-	-	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	_	\uparrow
OD	-	_	\downarrow	_	\downarrow	\downarrow	\downarrow	\downarrow	_	\downarrow	-	\downarrow	-	\downarrow	\downarrow
Transp.	-	-	-	-	\downarrow	-	-	\downarrow	-	\downarrow	-	\downarrow	-	-	\downarrow
Turb.	-	-	-	-	-	\downarrow	-	\uparrow	-	\uparrow	-	\uparrow	-	-	\uparrow
Cor	-	-	-	-	-	-	-	\uparrow	-	-	-	-	-	-	-
ST	-	-	-	-	\uparrow	-	-	\uparrow	-	\uparrow	\uparrow	\uparrow	-	-	\uparrow
SST	-	-	-	-	-	-	-	-	-	\uparrow	-	-	-	-	\uparrow
SSI	-	-	-	-	-	-	-	-	-	\uparrow	-	\uparrow	-	-	\uparrow
SSO	-	-	-	-	-	-	-	-	\downarrow	-	-	-	\downarrow	-	-
Cl-a	-	-	\uparrow	-	\uparrow	-	-	-	-	\uparrow	\uparrow	\uparrow	-	-	\uparrow
P_T	\downarrow	-	-	-	-	-	-	-	-	-	-	-	\downarrow	\downarrow	-
Ortof.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NTK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
N-NO ₃ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$N-NO_2$	-	-	-	-	\downarrow	-	-	-	\downarrow	-	-	-	\downarrow	\downarrow	\downarrow
$N-NH_4^+$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DBO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DQO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fe_T	\downarrow	-	-	\downarrow	-	-	-	-	\downarrow	-	-	-	\downarrow	\downarrow	\downarrow
Alcal.	-	\uparrow	\uparrow	-	\uparrow	-	-	\uparrow	-	\uparrow	\uparrow	\uparrow	-	-	-
Dureza	-	-	-	-	-	-	-	\uparrow	-	\uparrow	\uparrow	\uparrow	-	-	-
SO_4^{2-}	\downarrow	-	-	-	-	-	-	\uparrow	\downarrow	\uparrow	\uparrow	-	\downarrow	\downarrow	-
S^{2-}	\downarrow	-	-	\downarrow	-	\downarrow	-	-	-	\downarrow	\downarrow	-	-	\downarrow	-
Cl-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CIT	-	\uparrow	\uparrow	-	\uparrow	\uparrow	\uparrow	-	-	\uparrow	\uparrow	\uparrow	-	-	\uparrow
COT	\downarrow	-	-	\downarrow	-	-	-	\downarrow	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow	-
Carb. total	\downarrow	-	\uparrow	\downarrow	-	\uparrow	-	\downarrow	-	\uparrow	-	-	-	\downarrow	\uparrow
SiO_2	\downarrow	-	-	\downarrow	-	-	-	\uparrow	-	-	-	-	-	\downarrow	-
CT	\uparrow	-	\uparrow	-	-	-	\uparrow	-	-	-	-	-	-	-	-
CTerm.	-	\downarrow	-	- -30 ci	↓ anifica	-	\downarrow	-	-	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow

⁽⁻⁾ Não apresentou alteração significativa.

De acordo com os resultados apresentados na Tabela 5-10, dos 34 parâmetros analisados, 27 (79,4% do total) registraram alteração significativa em, pelo menos, um ponto de monitoramento, e 7 (20,6% do total) não registraram alteração significativa. O Quadro 5-3 resume todos os parâmetros que apresentaram e não apresentaram alteração significativa.

^(↑) Aumento significativo da concentração. (↓) Diminuição significativa da concentração.

Quadro 5-3 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Jirau

Parâmetros que apresentaram alteração	Parâmetros que não apresentaram						
significativa	alteração significativa						
Temp., Redox, pH, CE, SDT, OD, Transp.,	Ortof., NTK, N-NO ₃ -, N-NH ₄ +, DBO, DQO e						
Turb., Cor, ST, SST, SSI, SSO, Cl-a, P _T , N-	Cl ⁻						
NO ₂ -, Fe _T , Alcal., Dureza, SO ₄ ² -, S ² -, CIT,							
COT, Carb. total, SiO ₂ , CT e CTerm.							

Como destacado, o objetivo foi identificar os parâmetros que apresentaram alteração significativa com maior frequência, ou seja, em maior número de pontos de monitoramento (em 40% ou mais de pontos). Esses são, supostamente, os parâmetros mais importantes para explicar a alteração da qualidade das águas após o enchimento do reservatório. A Tabela 5-11 destaca esses parâmetros e a porcentagem dos pontos em que registraram alteração significativa.

Tabela 5-11– Parâmetros que apresentaram alteração significativa com maior frequência – UHE Jirau

Parâmetros	% de pontos de monitoramento que apresentaram alteração significativa						
	Total	Elevação	Diminuição				
OD	60,0	-	60,0				
CIT	60,0	60,0	-				
COT	53,3	-	53,3				
Carb. total	53,3	26,7	26,7				
CTerm.	53,3	-	53,3				
SDT	53,3	53,3	-				
Temp.	46,7	46,7	-				
Alcal.	46,7	46,7	-				
SO_4^{2-}	46,7	20,0	26,7				
рН	40,0	13,3	26,7				
СE	40,0	40,0	-				
ST	40,0	40,0	-				
Cl-a	40,0	40,0	-				
Fe_T	40,0	<u>-</u>	40,0				
S^{2-}	40,0	-	40,0				

Nas Figuras 5-9, 5-10 e 5,11 são apresentados os gráficos *box-plot* dos 15 parâmetros que registraram alteração significativa com maior frequência.

De acordo com Esteves (2011) e Song *et al.* (2018), o carbono total presente na água é composto por carbono inorgânico total (CIT) e carbono orgânico total (COT). A principal forma inorgânica do carbono é o gás carbônico (CO₂) e suas origens no meio aquático são: atmosfera, chuva, água subterrânea, decomposição da matéria orgânica e respiração de

organismos. O carbono orgânico total se divide em duas categorias, carbono orgânico dissolvido (COD) e carbono orgânico particulado (COP). O COD tem origem na decomposição de plantas e animais e de suas fezes e compõem-se de proteínas, carboidratos, lipídios e compostos húmicos, sendo que águas eutrofizadas normalmente apresentam maiores concentrações de carbono orgânico dissolvido que não eutrofizadas. O COP, por sua vez, é composto por detritos orgânicos (restos de animais e plantas) em suspensão.

Conforme registrado na Tabela 5-11, os parâmetros CIT e COT apresentaram, respectivamente, elevação significativa em 60% e diminuição significativa em 53,3% dos pontos de monitoramento. Esses resultados sugerem que o equilíbrio entre decomposição (respiração) e síntese de matéria orgânica (fotossíntese) pela biota aquática presente no reservatório da UHE Jirau está mais deslocado para a decomposição, consumindo o carbono orgânico e produzindo carbono inorgânico (CO₂). Reforça essa hipótese o fato de o parâmetro OD ter apresentado diminuição significativa em 60% dos pontos de monitoramento (consumido, provavelmente, na respiração dos microrganismos), sendo que em 7 pontos ocorreram diminuição significativa de OD e elevação significativa de CIT (pontos P8, P10, P11, P12, P15, P17 e P20).

Ressalta-se que a diminuição significativa da concentração de OD na fase pós-enchimento representa importante deterioração da qualidade das águas, principalmente em alguns pontos localizados nos corpos d'água de menores dimensões, já que estes apresentaram, ainda na fase pré-enchimento, muitos valores de OD abaixo do limite estabelecido pela Resolução Conama n. 357/2005 para águas doces de classe 2 (maior ou igual a 5 mg/L).

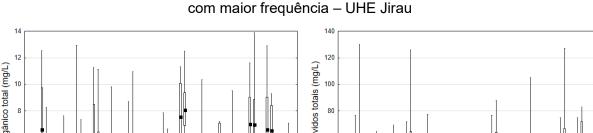
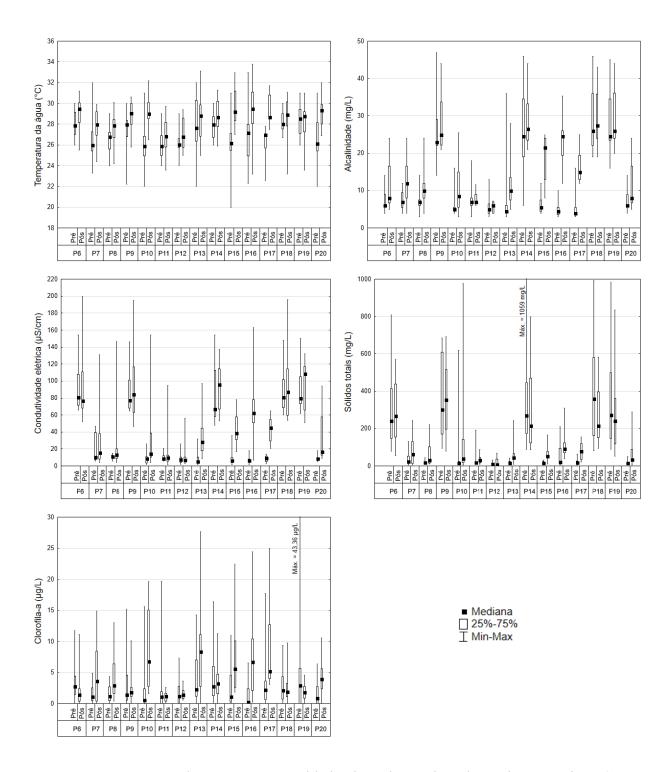



Figura 5-9 – Gráficos box-plot dos parâmetros que apresentaram elevação significativa

Sólidos dissolvidos totais (mg/L) Sarbono inorgânico total (mg/L) 60 40 Préside de la composition della composition dell P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P11 P12 P13 P14 P15 P16

O parâmetro SDT mede o peso por unidade de volume de substâncias orgânicas (íons orgânicos) e inorgânicas (carbonato, bicarbonato, cloreto, sulfato, fosfato, nitrato, cálcio, magnésio e sódio) contidas nas águas sob as formas moleculares, ionizadas e coloidais. Já o ST é a soma dos SDT e SST (WETZEL, 2001; LIBÂNIO, 2008).

Os parâmetros SDT e ST apresentaram elevações significativas em 53,3% e 40% dos pontos de monitoramento, respectivamente. No geral, a elevação da concentração de ST esteve

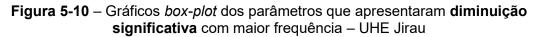
associada à elevação da concentração de SDT, uma vez que os pontos que apresentaram elevação de ST também apresentaram elevação de SDT e não apresentaram alteração significativa de SST. Exceções ocorreram apenas nos pontos P15 e P20, que registraram elevações significativas de SDT, SST e ST. Apesar das elevações, as concentrações de SDT estão muito abaixo do valor máximo permitido pela Resolução Conama n. 357/2005, que é até 500 mg/L para águas doces de classe 2.

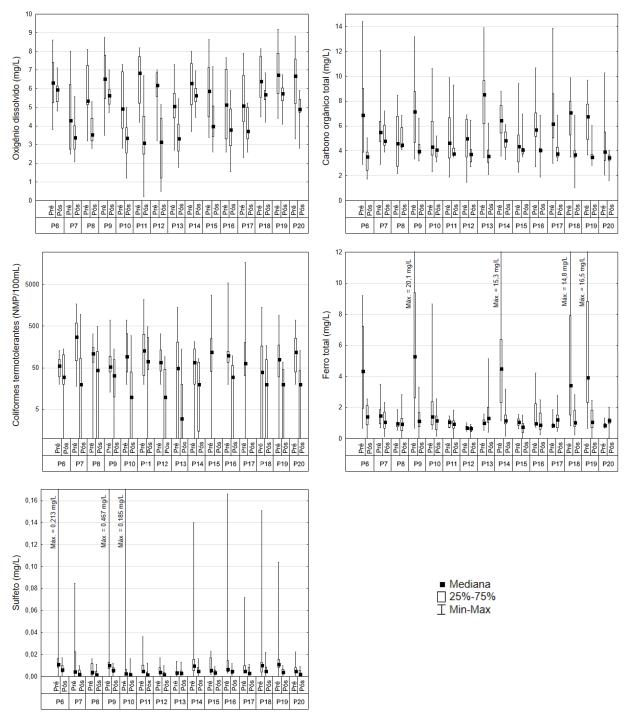
Ainda sobre os sólidos, é importante destacar que os resultados do teste U de Mann-Whitney apresentados na Tabela 5-10 sugerem que o processo de sedimentação no reservatório da UHE Jirau é menos pronunciado do que no reservatório da UHE Belo Monte, mesmo considerando o fato de o rio Madeira ser o principal tributário do rio Amazonas em termos de descarga sólida (ESBR, 2009). Acredita-se que, embora o reservatório da UHE Jirau seja de grande porte, a alta vazão média de longo termo do rio Madeira (cerca de 22.000 m³/s) e o baixo tempo de detenção hidráulica médio (1,4 dias) sejam os responsáveis por minimizar o processo de sedimentação.

Portanto, não se observou elevação significativa da transparência e diminuição significativa de SST em nenhum ponto de monitoramento, pelo contrário, constatou-se elevação de SST e diminuição da transparência em pontos localizados em corpos d'água de menores dimensões, o que deve ser o resultado da inundação do rio Madeira, que possui alta carga de sedimentos, sobre os pequenos corpos d'água pós-enchimento.

O parâmetro CE, que segundo Libânio (2008) e CETESB (2017) indica a capacidade da água de transmitir corrente elétrica em função da presença de substâncias dissolvidas (ânions e cátions), sendo, por consequência, correlacionado ao parâmetro SDT, também apresentou elevação significativa em 40% dos pontos de monitoramento. Destaca-se que todos os pontos que apresentaram elevação significativa de CE também apresentaram elevação significativa de SDT.

A temperatura da água (Temp.) apresentou elevação significativa em 46,7% dos pontos de monitoramento. Possivelmente, o enchimento do reservatório e o consequente aumento da área superficial do corpo d'água exposta à radiação solar tenha sido a causa principal para elevação da temperatura da água superficial. Segundo Kirillin e Shatwell (2016), a radiação solar aquece as camadas superficiais da coluna d'água, criando, assim, um gradiente de temperatura entre as camadas inferiores e superiores do reservatório, fenômeno conhecido

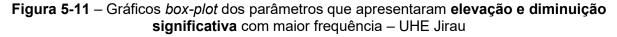

como estratificação térmica. Ressalta-se que Breda (2011), após avaliar a alteração espaçotemporal da qualidade das águas do reservatório da UHE Funil, localizado no rio Grande, Minas Gerais, também registrou elevação significativa da temperatura da água superficial.

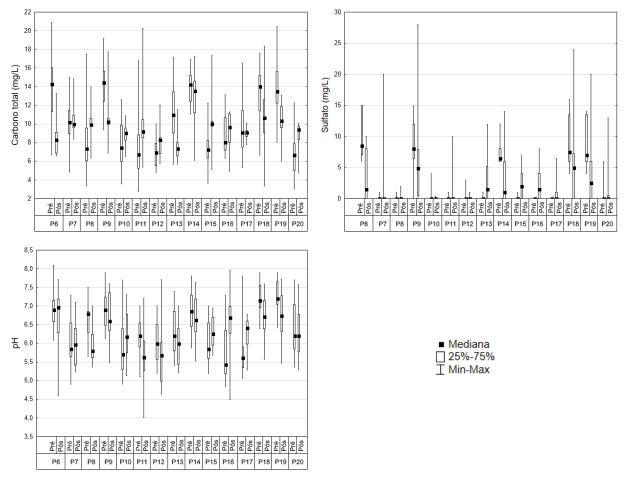

Rodrigues (2002) ao analisar alterações de características limnológicas resultantes da transformação rio-reservatório da UHE Dona Francisca, localizada no rio Jacuí, Rio Grande do Sul, também registrou a elevação de temperatura, condutividade elétrica e sólidos dissolvidos.

A Cl-a é um dos pigmentos responsáveis pelo processo fotossintético e indicador da biomassa algal, além disso, é uma das principais variáveis indicadoras de estado trófico dos ambientes aquáticos (WETZEL, 2001; ESTEVES, 2011; CETESB, 2017).

Conforme os resultados mostrados na Tabela 5-11, a Cl-a apresentou elevação significativa em 40% dos pontos de monitoramento, indicando que a formação do reservatório da UHE Jirau criou condições ambientais favoráveis para a proliferação de organismos fotossintetizantes, assim como se observou na UHE Belo Monte (cianobactérias). Breda (2011) também registrou elevação significativa da concentração de Cl-a após a formação do reservatório da UHE Funil.

Notou-se que em todos os pontos em que ocorreu elevação significativa de Cl-a também ocorreu elevação significativa de SDT, sugerindo uma possível relação entre a atividade de microrganismos fotossintetizantes e a elevação da concentração de sólidos dissolvidos na água. Destaca-se que, apesar da elevação, a concentração de Cl-a no reservatório da UHE Jirau mostrou-se abaixo do estabelecido pelo Conama nº 357/2005 para águas doces de classe 2 (até 30 μg/L), o que é um indicativo de que o lago da usina não se encontra eutrofizado (VINÇON-LEITE; CASENAVE, 2019). Exceção de valores superiores a 30 μg/L ocorreu em apenas uma campanha no ponto P19 na fase pré-enchimento, 43,36 μg/L.




Outro parâmetro que apresentou elevação significativa foi a alcalinidade (46,7% dos pontos). A alcalinidade das águas traduz a capacidade de neutralizar ácidos ou minimizar variações significativas de pH. Águas com pH entre 4,4 e 8,3 a alcalinidade será devido apenas bicarbonatos, pH entre 8,3 e 9,4 a carbonatos e bicarbonatos, e para pH maior que 9,4 a hidróxidos e carbonatos. Para maioria das águas naturais de superfície a alcalinidade decorre

apenas de bicarbonatos, principalmente de cálcio e magnésio (LIBÂNIO, 2008; BAIRD; CANN, 2011).

Segundo Libânio (2008), alterações de alcalinidade em águas superficiais podem estar associadas ao processo de decomposição da matéria orgânica e à atividade respiratória de microrganismos, com liberação e dissolução de CO₂ na água. Essa é uma hipótese provável para o reservatório da UHE Jirau, já que todos os pontos que apresentaram elevação significativa de alcalinidade também apresentaram elevação significativa de carbono inorgânico total, exceto o ponto P13. Outra hipótese está associada ao efeito de inundação do corpo d'água maior (rio Madeira) sobre os demais de menores dimensões devido à formação do reservatório. Isso porque se observa no gráfico *box-plot* que os pontos localizados no rio Madeira (P9, P14, P18 e P19) apresentam valores de alcalinidade superiores aos pontos localizados nos pequenos corpos d'água, o que pode ter contribuindo para a elevação da alcalinidade nos pontos P7, P8, P10, P13, P15, P16 e P17 na fase pós-enchimento.

O pH apresentou tanto elevação quanto diminuição significativa em 13,3 e 26,7% dos pontos de monitoramento, respectivamente, totalizando alteração significativa em 40% dos pontos. Segundo Libânio (2008), alterações do pH podem estar relacionadas à atividade de microrganismos (fotossíntese e respiração), à dissolução de rochas e ao lançamento de despejos domésticos e industriais. Assim, é possível que as alterações do pH no reservatório da UHE Jirau estejam mais relacionadas às atividades de microrganismos que se estabeleceram após o enchimento. Outra hipótese que pode ter contribuído para elevação do pH (nos pontos P16 e P17) é o efeito de inundação do rio Madeira sobre os igarapés Caiçara e Jirau, já que, conforme pode ser visualizado no gráfico *box-plot*, o pH dos pontos de monitoramento localizados no rio Madeira (P6, P9, P14, P18 e P19) apresentou valores mais elevados que nos pontos localizados nos pequenos corpos d'água.

O indicador biológico CTerm. apresentou diminuição significativa de sua concentração em 53,3% dos pontos de monitoramento. Esse resultado é semelhante ao observado na UHE Belo Monte, que apresentou diminuição significativa de *E. coli* em 50% dos pontos.

De acordo com PAIVA *et al.* (2009), o ferro é um metal que pode estar presente nas águas superficiais e subterrâneas tanto na sua forma dissolvida (Fe²⁺) quanto na sua forma particulada (Fe³⁺), sendo originado da dissolução de rochas e solos. O Fe²⁺ é imperceptível na água e não pode ser removido por uma filtração simples. O Fe³⁺ confere à água uma coloração avermelhada e turva, podendo ser removido por meio de sedimentação. É a forma de ferro mais simples de ser tratada e pode estar atrelada a matéria orgânica. A predominância de uma forma sobre a outra é dependente do pH, potencial redox e da temperatura da água. Além disso, o Fe²⁺ é instável na presença de oxigênio, podendo passar para a forma Fe³⁺ (FEITOSA *et al.*, 2008).

Nas águas superficiais, a concentração de ferro aumenta nas estações chuvosas devido ao carreamento de solos e a ocorrência de processos de erosão das margens. Também contribui para elevação da concentração de ferro o lançamento de efluentes industriais (CETESB, 2017).

Conforme resultados apresentados na Tabela 5-11, observou-se que, com exceção do ponto P20, os demais pontos que apresentaram diminuição significativa de ferro total são aqueles localizados no rio Madeira (P6, P9, P14, P18 e P19). Observou-se ainda que as concentrações de ferro total nos pontos localizados no rio Madeira (fase pré-enchimento) são muito maiores que nos pontos localizados nos corpos d'água de menores dimensões, conforme pode ser visualizado no gráfico *box-plot* mostrado na Figura 5-10. Uma hipótese para a diminuição significativa de ferro total é o possível aumento da precipitação da forma insolúvel desse metal por consequência da diminuição da velocidade das águas após o enchimento do reservatório e da atividade de microrganismos (oxidação de Fe²⁺ em Fe³⁺). Alterações significativas de temperatura e pH também podem ter colaborado para o predomínio da forma insolúvel do ferro. Outra hipótese que também pode ter contribuído são os eventos hidroclimáticos na bacia que, conforme referido, podem ser responsáveis por maiores ou menores concentrações de Fe_T na água.

O íon SO₄²⁻ apresentou tanto elevação quanto diminuição significativa em 20% e 26,7% dos pontos de monitoramento, respectivamente, totalizando alteração significativa em 46,7% dos pontos. O íon S²⁻ apresentou diminuição significativa em 40% dos pontos.

Conforme já referido, o íon SO₄²⁻ é um dos íons mais abundantes na natureza e é encontrado em águas naturais originando-se, principalmente, da dissolução de solos e rochas e pela oxidação de sulfeto (CETESB, 2017). Portanto, supõe-se que as alterações significativas desses dois íons podem estar associadas às atividades de microrganismos presentes na água (oxidação de sulfeto em sulfato) e também a eventos hidroclimáticos na bacia, contribuindo para maior ou menor dissolução de solos e rochas. Destaca-se que, assim como ocorreu para outros parâmetros, a concentração de SO₄²⁻ nos pontos localizados no rio Madeira (P6, P9, P14, P18 e P19) apresentou valores mais elevados que nos demais pontos, conforme pode ser visualizado no gráfico *box-plot* (Figura 5-11).

Por fim, a partir dos resultados do teste de hipóteses U de Mann-Whitney foi possível realizar também análise de alteração espacial da qualidade das águas no reservatório. A Tabela 5-12

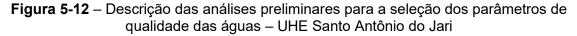
resume quais e o número de parâmetros que alteraram significativamente por ponto de monitoramento.

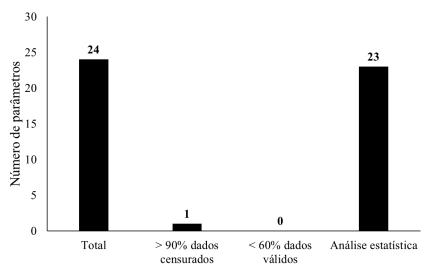
Os números de parâmetros que alteraram significativamente variaram entre 4 e 17 por ponto de monitoramento, o que é uma variação muito maior que a observada na UHE Belo Monte. Conforme referido, muitos corpos d'água de pequenas dimensões foram inundados, contribuindo para tornar o reservatório da UHE Jirau um ambiente mais heterogêneo e com mais pontos dendríticos do que o reservatório da UHE Belo Monte, o que deve ter sido o fator preponderante para a diferença de resultados.

Os pontos que apresentaram maiores números de parâmetros que alteraram significativamente foram P15 (17 parâmetros), P17 (15 parâmetros) e P20 (15 parâmetros). Assim como ocorreu na UHE Belo Monte, os pontos de monitoramento com os maiores números de parâmetros significativamente alterados estão localizados, na fase pré-enchimento, em corpos d'água de menores dimensões, próximos à confluência com o rio Madeira, sugerindo que o efeito de inundação do corpo d'água principal (rio Madeira) sobre os pequenos cursos d'água tenha contribuído para este resultado pós-enchimento.

Destaca-se que todos os pontos de monitoramento apresentaram parâmetros de qualidade das águas que se alteraram significativamente após o enchimento do reservatório, incluindo o ponto P19, situado logo a jusante do barramento. Esse resultado corrobora estudos que registraram que o barramento de um corpo d'água apresenta potencial para causar alteração da qualidade das águas na área de inundação do reservatório (HU *et al.*, 2014; XIN *et al.*, 2015; TUNDISI, 2018) e em trechos de rio a jusante da barragem (BALDWIN *et al.*, 2010; CHOW *et al.*, 2016; TUNDISI, 2018).

Tabela 5-12 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Jirau


P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
P_{T}	Temp.	Temp.	Fe_T	Temp.	pН	OD	CE	Redox	Temp.	Temp.	Temp.	pН	pН	Temp.
Fe_T	Alcal.	pН	S^{2-}	CE	OD	CIT	SDT	SDT	CE	Redox	pН	SSO	OD	CE
SO_4^{2-}	CIT	SDT	COT	SDT	Turb.	CT	OD	SSO	SDT	pН	CE	\mathbf{P}_{T}	P_{T}	SDT
S^{2-}	CTerm.	OD	Carb. total	OD	S^{2-}	CTerm.	Transp.	N-NO ₂ -	OD	CE	SDT	N-NO ₂ -	N-NO ₂ -	OD
COT		Cl-a	SiO_2	Transp.	CIT		Turb.	Fe_T	Transp.	SDT	OD	Fe_T	Fe_T	Transp.
Carb. total		Alcal.		ST	Carb. total		Cor	SO ₄ ²⁻	Turb.	ST	Transp.	SO ₄ ²⁻	SO ₄ ²⁻	Turb.
SiO_2		CIT		Cl-a			ST	COT	ST	Cl-a	Turb.	COT	S ²⁻	ST
CT		Carb. total		N-NO ₂ -			Alcal.		SST	Alcal.	ST		COT	SST
		CT		Alcal.			Dureza		SSI	Dureza	SSI		Carb. total	SSI
				CIT			SO ₄ ²⁻		Cl-a	SO ₄ ²⁻	Cl-a		SiO_2	Cl-a
				CTerm.			COT		Alcal.	S^{2-}	Alcal.		CTerm.	N-NO ₂ -
							Carb. total		Dureza	CIT	Dureza			Fe_T
							SiO_2		SO ₄ ²⁻	COT	CIT			CIT
									S ²⁻	CTerm.	COT			Carb. total
									CIT		CTerm.			CTerm.
									Carb. total					
									CTerm.					
8	4	9	5	11	6	4	13	7	17	14	15	7	11	15


5.3 UHE Santo Antônio do Jari

5.3.1 Organização e sistematização do banco de dados

Após a aplicação dos critérios de exclusão de parâmetros de qualidade das águas em função do percentual de dados válidos (abaixo de 60%) e de dados censurados (acima de 90%), foi gerado um novo banco de dados.

De um total de 24 parâmetros de qualidade das águas, apenas um (o íon sulfato) foi excluído nesta etapa do estudo por apresentar mais de 90% de dados censurados. Assim, foram selecionados para as etapas posteriores 23 parâmetros, conforme mostrado na Figura 5-12.

A Tabela 5-13 exibe os 23 parâmetros selecionados para as etapas posteriores, suas respectivas notações de referência, unidades de medida e VMPs para águas doces classe 2, nos termos da Resolução Conama n. 357/2005.

Tabela 5-13 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Santo Antônio do Jari

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Temperatura da água	Temp.	°C	-
Transparência	Transp.	m	-
Potencial redox	Redox	mV	-
pН	pН	-	6,0 a 9,0
Condutividade elétrica	ČE	μS/cm	-
Sólidos dissolvidos totais	SDT	mg/L	500
Oxigênio dissolvido	OD	mg/L	\geq 5,0
Turbidez	Turb.	UNT	100

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Cor	Cor	mg Pt-Co/L	75
Sólidos totais	ST	mg/L	-
Sólidos suspensos totais	SST	mg/L	-
Clorofila-a	Cl-a	μg/L	30
Fósforo total	P_{T}	mg/L	0,1 (lótico) e 0,03 (lêntico)
Ortofosfato	Ortof.	mg/L	-
Nitrato	$N-NO_3^-$	mg/L	10
Nitrito	$N-NO_2^-$	mg/L	1
Nitrogênio amoniacal	N-NH ₄ ⁺	mg/L	$3,7: pH \le 7,5$ $2,0: 7,5 < pH \le 8,0$ $1,0: 8,0 < pH \le 8,5$ 0,5: pH > 8,5
Nitrogênio total Kjeldahl	NTK	mg/L	-
Demanda bioquímica de oxigênio	DBO	mg/L	≤ 5,0
Ferro total	Fe_T	mg/L	-
Cloreto	Cl-	mg/L	250
Coliformes totais	CT	NMP/100 mL	-
Coliformes termotolerantes	CTerm.	NMP/100 mL	1000

Com relação aos pontos de monitoramento, foram selecionados nove pontos, sendo oito localizados na área de inundação do reservatório e um localizado imediatamente a jusante do barramento. As características e localizações dos pontos de monitoramento podem ser consultadas na Tabela 5-14 e na Figura 4-4, respectivamente.

Tabela 5-14 – Características dos pontos de monitoramento selecionados – UHE Santo Antônio do Jari

PONTOS		as geográficas RGAS 2000)	Características Pré-enchimento	Características Pós-enchimento	
	Latitude	Longitude	rre-enchimento	Pos-enchimento	
IR-1	0°33'41,255"S	52°34'44,609"W	rio Iratapuru	reservatório	
IR-2	0°34'8,572"S	52°34'37,381"W	rio Iratapuru/rio Jari	reservatório	
JAR-2	0°35'43,203"S	52°38'9,049"W	rio Jari	reservatório	
JAR-3	0°34'28,637"S	52°32'36,187"W	rio Jari	reservatório	
JAR-4	0°37'14,386"S	52°30'42,268"W	rio Jari	reservatório	
JAR-5	0°37'47,164"S	52°30'45,895"W	rio Jari	reservatório	
JAR-6	0°39'1,834"S	52°30'27,827"W	rio Jari	jusante	
PIU-1	0°34'46,862"S	52°31'41,923"W	rio Piunquara/rio Jari	reservatório	
TRA-2	0°37'52,630"S	52°31'32,580"W	rio Traíra/rio Jari	reservatório	

5.3.2 Análise descritiva do banco de dados

A estatística descritiva, com os valores de média, mediana, desvio-padrão, coeficientes de assimetria e curtose, mínimo, máximo, percentis 25 e 75%, percentual de *outliers* e número de dados válidos, calculados para cada parâmetro de qualidade das águas em cada ponto de monitoramento e para cada fase (pré e pós-enchimento), são apresentados no Apêndice I (Tabelas III.1 a III.18).

O teste de normalidade de Shapiro-Wilk ao nível de significância α de 5% foi realizado para cada parâmetro da qualidade das águas em cada fase (pré e pós-enchimento).

Com relação aos *outliers*, nenhum dado foi excluído, já que foram considerados como passíveis de ocorrer. A maior porcentagem de *outliers* em relação aos dados válidos encontrada no banco de dados da UHE Santo Antônio do Jari foi de 25% para os parâmetros CE, nos pontos de monitoramento IR-1 e IR-2 (fase pré-enchimento), e Cl⁻, no ponto PIU-1 (fase pré-enchimento).

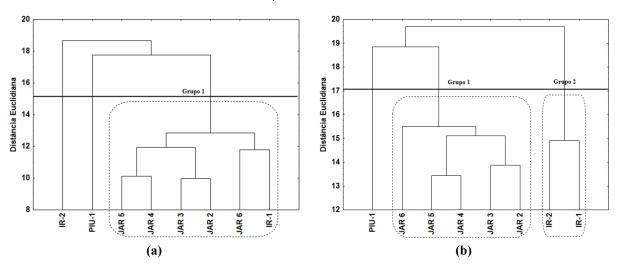
A verificação da normalidade realizada por meio do teste de Shapiro-Wilk apontou que, com exceção do parâmetro OD na fase pós-enchimento, os demais não seguem a distribuição normal. Isso justifica a aplicação de testes estatísticos não-paramétricos na etapa seguinte.

5.3.3 Aplicação das técnicas estatísticas

A primeira fase da etapa de aplicação das técnicas estatísticas consistiu na Análise de *Cluster* (AC), que foi aplicada para se avaliar como os pontos de monitoramento se agruparam nas fases pré-enchimento (rio) e pós-enchimento (reservatório) e se ocorreram distinções entre os agrupamentos.

Ressalta-se que o ponto de monitoramento TRA-2 não foi considerado na AC, uma vez que esse ponto somente foi adicionado à rede de monitoramento a partir da 5ª campanha da fase pré-enchimento. Assim, optou-se pela exclusão desse ponto devido à quantidade de dados faltantes. Ressalta-se ainda que o ponto TRA-2 foi mantido na segunda fase de aplicação das técnicas estatísticas (teste U de Mann-Whitney), já que sua localização (próximo a barragem) foi considerada importante para análise.

Foram avaliados seis métodos de agrupamentos hierárquicos distintos e calculados os seus respectivos coeficientes de correlação cofenética, conforme registrado na Tabela 5-15.


Tabela 5-15 – Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento aplicados aos conjuntos de dados da UHE Santo Antônio do Jari

Mátados do agrupamento	Coeficiente de correlação cofenética			
Métodos de agrupamento	Pré-enchimento	Pós-enchimento		
Ligação simples	0,926	0,854		
Ligação completa	0,931	0,865		
Ligação média (UPGMA)	0,939	0,878		
Ward	0,910	0,839		
Centróide	0,878	0,563		
Mediana	0,884	0,524		

De acordo com a Tabela 5-15, os métodos de agrupamentos avaliados resultaram em elevados coeficientes de correlação cofenética em ambas as fases, com exceção dos métodos do centróide e da mediana na fase pós-enchimento. Assim como ocorreu nas UHEs Belo Monte e Jirau, o método da ligação média (UPGMA) foi o selecionado, por apresentar os maiores coeficientes em ambas as fases (VALENTIN, 2000; WU *et al.*, 2009; ABDELHADY; FÜRSICH, 2015; UKPATU *et al.*, 2015).

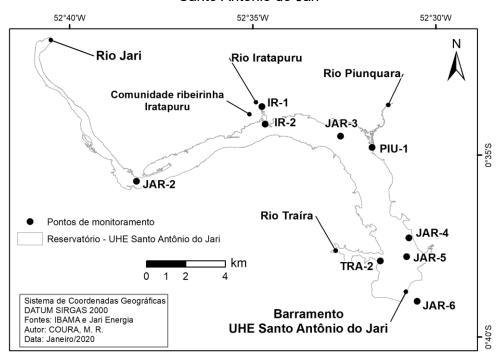

O dendograma mostrado na Figura 5-13 (a) se refere à fase pré-enchimento (rio), ou seja, na ausência do reservatório da UHE Santo Antônio do Jari. Traçando-se a linha de corte, conforme critério adotado por Calazans (2015) e Soares (2017), que considera as maiores distâncias entre os agrupamentos, foi formado um grupo e dois pontos de monitoramento ficaram isolados. O dendograma mostrado na Figura 5-13 (b) se refere à fase pós-enchimento (reservatório) e mostra a formação de dois grupos, sendo que apenas um ponto ficou isolado. Ressalta-se que o ponto JAR-6 é o único ponto localizado fora do reservatório na fase pós-enchimento, situado logo a jusante do barramento.

Figura 5-13 – Dendogramas da Análise de *Cluster* referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Santo Antônio do Jari – 8 pontos de monitoramento e 23 parâmetros

A Figura 5-14 apresenta um mapa simplificado com as localizações dos pontos de monitoramento.

Figura 5-14 – Mapa simplificado com as localizações dos pontos de monitoramento – UHE Santo Antônio do Jari

Os resultados da formação dos grupos indicam que na fase pré-enchimento os pontos de monitoramento localizados no rio Jari se aglomeraram (Grupo 1), possivelmente devido ao fato de o rio ser um ambiente lótico, com qualidade homogênea das águas, e os pontos de monitoramento estarem relativamente próximos. Exceção constatada é a presença do ponto

IR-1 no Grupo 1, localizado no rio Iratapuru, a montante da comunidade ribeirinha Iratapuru. Possivelmente, os rios Jari e Iratapuru possuem qualidade das águas semelhantes nessa região.

Os pontos de monitoramento IR-2 (confluência dos rios Jari e Iratapuru) e PIU-1 (confluência dos rios Jari e Piunquara) ficaram isolados, apresentando distância considerável dos demais pontos do Grupo 1. O ponto IR-2 está localizado a jusante da comunidade ribeirinha Iratapuru, o que possivelmente é um fator contribuidor para distinguir a qualidade das águas desse ponto em relação aos pontos do Grupo 1, devido a provável contaminação por esgotos domésticos oriunda daquela comunidade. Quanto ao ponto PIU-1, provavelmente se distanciou dos demais por sofrer influência do rio Piunquara.

Após o enchimento do reservatório, a similaridade entre os pontos de monitoramento localizados no rio Jari diminuiu, uma vez que a formação de grupos entre esses pontos na fase pós-enchimento somente ocorre para maiores distâncias. Apesar disso, os pontos localizados no rio Jari formaram o Grupo 1, sugerindo que a formação do reservatório não impactou a similaridade entre esses pontos de forma pronunciada. O ponto PIU-1 continuou isolado, indicando que o rio Piunquara é uma importante influência, mesmo após o enchimento do reservatório. De acordo com os dendogramas, o destaque na fase pós-enchimento é a similaridade entre os pontos IR-1 e IR-2, sugerindo impacto direto do enchimento do reservatório sobre a qualidade das águas superficiais desses pontos.

Ressalta-se que foram constatadas pequenas diferenças entre os dendogramas das fases pré e pós-enchimento, sugerindo alterações menos acentuadas da qualidade das águas em relação às observadas nas UHEs Belo Monte e Jirau. Apesar das pequenas diferenças entre os dendogramas, a segunda fase da etapa de aplicação das técnicas estatísticas foi realizada com o objetivo de investigar as alterações na qualidade das águas, ou seja, identificar os parâmetros que alteraram significativamente após o enchimento do reservatório, e, em seguida, avaliar se de fato o empreendimento hidrelétrico de menor porte foi o menos impactante.

Para isso, o teste estatístico não-paramétrico U de Mann-Whitney com nível de significância α de 5% foi aplicado, comparando os conjuntos de dados pré e pós-enchimento correspondentes aos 23 parâmetros de qualidade das águas, para cada um dos 9 pontos de monitoramento.

A Tabela 5-16 exibe os resultados obtidos após a aplicação do teste, apontando se houve aumento (seta para cima) ou diminuição (seta para baixo) significativa das concentrações dos parâmetros após o enchimento do reservatório. Os p-valores obtidos em cada teste são apresentados no Apêndice II (Tabela III.1).

Tabela 5-16 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney (α = 5%) – UHE Santo Antônio do Jari

Parâmetros	IR-1	IR-2	JAR-2	JAR-3	JAR-4	JAR-5	JAR-6	PIU-1	TRA-2
Parametros	Resultados								
Temp.	-	-	-	-	-	-	-	\uparrow	-
Transp.	\uparrow	-	\uparrow	\uparrow	-	\uparrow	\uparrow	\uparrow	\uparrow
Redox	\uparrow	\uparrow	\uparrow	-	\uparrow	-	\uparrow	-	-
pН	-	-	-	-	-	-	-	\uparrow	-
CE	-	-	-	-	-	-	-	-	-
SDT	-	-	\uparrow	-	-	\uparrow	\uparrow	\uparrow	-
OD	\downarrow	-	-	\downarrow	\downarrow	\downarrow	\downarrow	-	\uparrow
Turb.	-	-	-	-	-	-	-	\downarrow	-
Cor	-	-	-	-	-	-	-	-	\downarrow
ST	-	\uparrow	-	-	\uparrow	-	-	\uparrow	-
SST	-	-	-	-	-	-	-	-	-
Cl-a	-	-	-	-	-	-	-	\uparrow	-
P_{T}	\downarrow	\downarrow	\downarrow	-	-	-	\downarrow	-	\downarrow
Ortof.	-	-	-	-	-	-	-	-	\downarrow
N-NO ₃ -	-	-	-	-	-	-	-	-	-
$N-NO_2^-$	-	-	-	\uparrow	-	-	-	\uparrow	\uparrow
$N-NH_4^+$	-	-	-	-	-	-	-	-	-
NTK	-	-	-	-	-	-	-	-	-
DBO	-	-	-	-	-	\downarrow	\downarrow	-	\downarrow
Fe_T	-	-	-	-	-	-	-	\uparrow	-
Cl-	-	-	-	\uparrow	\uparrow	\uparrow	-	-	-
CT	\uparrow	-	-	-	-	-	-	-	-
CTerm.	-	-	-	-	-	-	-	-	-

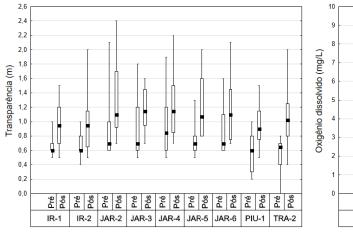
⁽⁻⁾ Não apresentou alteração significativa.

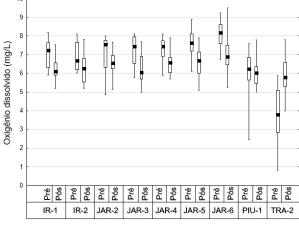
De acordo com os resultados apresentados na Tabela 5-16, dos 23 parâmetros analisados, 17 (73,9% do total) registraram alteração significativa em, pelo menos, um ponto de monitoramento, e 6 (26,1% do total) não registraram alteração significativa. O Quadro 5-4 resume todos os parâmetros que apresentaram e não apresentaram alteração significativa.

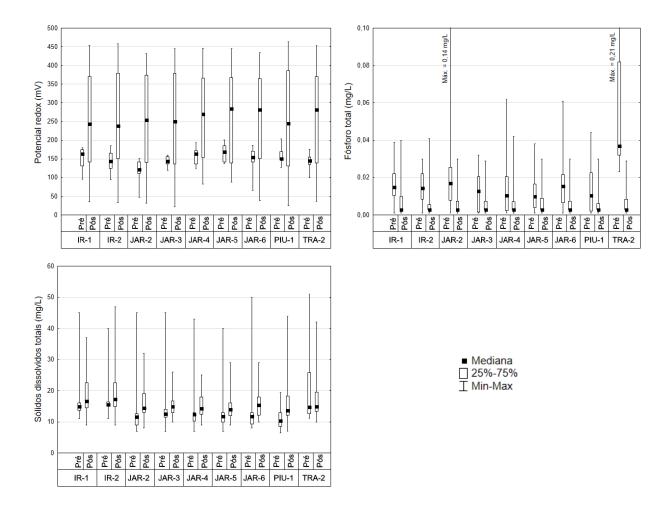
^(↑) Aumento significativo da concentração. (↓) Diminuição significativa da concentração.

Quadro 5-4 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Santo Antônio do Jari

Parâmetros que apresentaram alteração significativa	Parâmetros que não apresentaram alteração significativa
Temp., Transp., Redox, pH, SDT, OD, Turb.,	CE, SST, N-NO ₃ -, N-NH ₄ +, NTK e CTerm.
Cor, ST, Cl-a, P _T , Ortof., N-NO ₂ -, DBO, Fe _T ,	
Cl ⁻ e CT.	


Como já destacado, o objetivo foi identificar os parâmetros que apresentaram alteração significativa com maior frequência, ou seja, em maior número de pontos de monitoramento. Neste sentido, a discussão foi efetuada com foco nos parâmetros que sofreram alteração em 40% ou mais de pontos, supondo que são os mais importantes para explicar a alteração da qualidade das águas após o enchimento do reservatório. A Tabela 5-17 destaca esses parâmetros e a porcentagem dos pontos em que registraram alteração significativa.


Tabela 5-17 – Parâmetros que apresentaram alteração significativa com maior frequência – UHE Santo Antônio do Jari


Parâmetros		e monitoramento q alteração significat	
	Total	Elevação	Diminuição
Transp.	77,8	77,8	-
OD	66,7	11,1	55,6
Redox	55,6	55,6	-
P_{T}	55,6	-	55,6
SDT	44,4	44,4	_

Na Figura 5-15 são apresentados os gráficos *box-plot* dos 5 parâmetros que registraram alteração significativa com maior frequência.

Figura 5-15 – Gráficos *box-plot* dos parâmetros que apresentaram alteração significativa com maior frequência – UHE Santo Antônio do Jari

O parâmetro transparência registrou aumento significativo em 77,8% dos pontos de monitoramento. O aumento significativo da transparência ocorreu tanto em pontos localizados no reservatório (JAR-2, IR-1, JAR-2, JAR-3, JAR-5, PIU-1 e TRA-2) quanto no ponto localizado a jusante da barragem (JAR-6), o que é um resultando semelhante ao observado na UHE Belo Monte. Esse resultado sugere a ocorrência de sedimentação no reservatório, corroborando os trabalhos de Vörösmarty *et al.* (2003), Huang *et al.* (2015), Dąbkowski e bąk (2018), Tundisi (2018), Zarfl e Lucía (2018) e Krasa *et al.* (2019).

O P_T registrou diminuição significativa de concentração em 55,6% dos pontos de monitoramento, tanto em pontos localizados no reservatório (IR-1, IR-2, JAR-2 e TRA-2) quanto no ponto localizado a jusante do barramento (JAR-6). Esse resultado também é semelhante ao observado na UHE Belo Monte e parece convergir para as conclusões dos estudos de Wang *et al.* (2009), Van Cappellen e Maavara (2016), Tundisi (2018) e Krasa *et al.* (2019), que afirmaram que reservatórios atuam como assimiladores de fósforo, que pode ficar retido nos sedimentos por adsorção. Conforme mencionado também para a UHE Belo

Monte, não se pode descartar outra hipótese que é a possível influência de eventos hidroclimáticos na bacia hidrográfica.

Ainda sobre o P_T, observa-se no gráfico *box-plot* que existem valores de concentração que ultrapassam os limites preconizados pela Resolução Conama n. 357/2005 para águas doces de classe 2, sendo 0,1 mg/L para ambiente lótico (pré-enchimento) e 0,03 para ambiente lêntico (pós-enchimento). O não atendimento à legislação vigente ocorreu principalmente na fase pós-enchimento, que é a fase mais crítica, considerando que o fósforo é o nutriente mais importante para o processo de eutrofização em reservatórios (ESTEVES, 2011). Ressalta-se que na UHE Belo Monte também se observou concentração de fósforo acima dos limites estabelecidos pelo Conama em ambas as fases, notadamente na fase pós-enchimento.

Outro parâmetro que apresentou resultado semelhante ao observado na UHE Belo Monte é o Redox. Como já referido, o potencial redox fornece uma descrição geral de muitas reações redox e pode ser visto como uma medida da capacidade geral de redução ou oxidação de um sistema (WETZEL, 2001; SØNDERGAARD, 2009; BAIRD; CANN, 2011; STUMM; MORGAN, 2012).

Conforme mostrado na Tabela 5-17, o parâmetro Redox apresentou elevação significativa em 55,6% dos pontos de monitoramento, ou seja, a formação do reservatório da UHE Santo Antônio do Jari, assim como ocorreu no reservatório da UHE Belo Monte, criou em alguns pontos condições ambientais mais favoráveis para o estabelecimento de reações oxidantes na superfície do corpo d'água.

O parâmetro SDT, que de acordo com Wetzel (2001) e Libânio (2008) mede o peso por unidade de volume de substâncias orgânicas (íons orgânicos) e inorgânicas (carbonato, bicarbonato, cloreto, sulfato, fosfato, nitrato, cálcio, magnésio e sódio) contidas na água, apresentou elevação significativa em 44,4% dos pontos de monitoramento. Esse resultado é semelhante ao constatado na UHE Jirau. Apesar das elevações, as concentrações de SDT estão muito abaixo do valor máximo permitido pela Resolução Conama n. 357/2005, que é até 500 mg/L para águas doces de classe 2.

O parâmetro OD apresentou elevação e diminuição significativa em 11,1% e 55,6% dos pontos de monitoramento, totalizando alteração significativa em 66,7% dos pontos. A elevação significativa da concentração de OD foi registrada apenas no ponto TRA-2,

localizado na confluência dos rios Traíra e Jari. Como pode ser visualizado no gráfico *box- plot* mostrado na Figura 5-15, os pontos localizados no rio Jari apresentaram valores de concentração de OD maiores do que no ponto TRA-2. Portanto, a elevação de OD nesse ponto está associada, possivelmente, ao efeito de inundação do rio Jari sobre o rio Traíra.

Já a diminuição significativa da concentração de OD foi registrada nos pontos IR-1, JAR-3, JAR-4, JAR-5 e JAR-6, sendo um resultado semelhante ao observado na UHE Jirau. Provavelmente, a diminuição da concentração de OD está associada à atividade de microrganismos presentes na água (consumo de oxigênio durante a respiração). Ressalta-se que embora tenha sido constatada a diminuição significativa da concentração de OD nos pontos mencionados, não se observou, nestes pontos, violação do limite estabelecido pela Resolução Conama n. 357/2005 para águas doces de classe 2 (maior ou igual a 5 mg/L).

Rodrigues (2002) também registrou a diminuição significativa de OD em alguns pontos de monitoramento situados no reservatório da UHE Dona Francisca, localizada no rio Jacuí, Rio Grande do Sul.

É importante destacar que os resultados do teste U de Mann-Whitney apresentados indicam que a UHE Santo Antônio do Jari causou menores impactos sobre a qualidade das águas superficiais que as UHEs Belo Monte e Jirau, confirmando o proposto pela Análise de *Cluster*. Na UHE Santo Antônio do Jari foram identificados 5 parâmetros que apresentaram alteração significativa com maior frequência contra 12 e 15 identificados nas UHEs Belo Monte e Jirau, respectivamente.

A partir dos resultados do teste de hipóteses U de Mann-Whitney foi possível realizar também análise de alteração espacial da qualidade das águas no reservatório. A Tabela 5-18 resume quais e o número de parâmetros que alteraram significativamente por ponto de monitoramento.

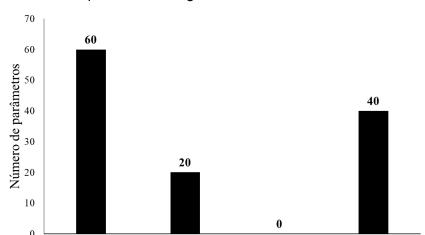
Tabela 5-18 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Santo Antônio do Jari

IR-1	IR-2	JAR-2	JAR-3	JAR-4	JAR-5	JAR-6	PIU-1	TRA-2
Transp.	Redox	Transp.	Transp.	Redox	Transp.	Transp.	Temp.	Transp.
Redox	ST	Redox	OD	OD	SDT	Redox	Transp.	OD
OD	$P_{T} \\$	SDT	N-NO ₂ -	ST	OD	SDT	pН	Cor
\mathbf{P}_{T}		\mathbf{P}_{T}	Cl-	Cl-	DBO	OD	SDT	P_{T}

IR-1	IR-2	JAR-2	JAR-3	JAR-4	JAR-5	JAR-6	PIU-1	TRA-2
CT					Cl-	\mathbf{P}_{T}	Turb.	Ortof.
						DBO	ST	N-NO ₂ -
							Cl-a	DBO
							N-NO ₂ -	
							Fe_T	
5	3	4	4	4	5	6	9	7

Conforme resultados mostrados na Tabela 5-18, os números de parâmetros que alteraram significativamente variaram entre 3 e 9 por ponto de monitoramento, números muito menores que os constatados nas UHEs Belo Monte e Jirau.

Os pontos que apresentaram maiores números de parâmetros que alteraram significativamente foram TRA-2 (9 parâmetros), PIU-1 (7 parâmetros) e JAR-6 (6 parâmetros). Os pontos TRA-2 e PIU-1 estão situados, na fase pré-enchimento, em corpos d'água de menores dimensões (rios Traíra e Piunquara), próximos à confluência com o rio Jari, sugerindo, mais uma vez, que o efeito de inundação do corpo d'água principal (rio Jari) sobre os pequenos cursos d'água tenha contribuído para este resultado pós-enchimento. Destaca-se que esse resultado é semelhante aos observados nas UHEs Belo Monte e Jirau.


Novamente, como observado nas usinas Belo Monte e Jirau, todos os pontos de monitoramento apresentaram parâmetros de qualidade das águas que se alteraram significativamente após o enchimento do reservatório, incluindo o ponto JAR-6, situado logo a jusante do barramento. Esse resultado corrobora estudos que registraram que o barramento de um corpo d'água apresenta potencial para causar alteração da qualidade das águas na área de inundação do reservatório (HU *et al.*, 2014; XIN *et al.*, 2015; TUNDISI, 2018) e em trechos de rio a jusante da barragem (BALDWIN *et al.*, 2010; CHOW *et al.*, 2016; TUNDISI, 2018).

5.4 UHE Teles Pires

5.4.1 Organização e sistematização do banco de dados

Após a aplicação dos critérios de exclusão de parâmetros de qualidade das águas em função do percentual de dados válidos (abaixo de 60%) e de dados censurados (acima de 90%), foi gerado um novo banco de dados.

De um total de 60 parâmetros de qualidade das águas, 20 foram excluídos nesta etapa do estudo por apresentarem mais de 90% de dados censurados. Assim, foram selecionados para as etapas posteriores 40 parâmetros, conforme mostrado na Figura 5-16.

Figura 5-16 – Descrição das análises preliminares para a seleção dos parâmetros de qualidade das águas – UHE Teles Pires

O Quadro 5-5 apresenta os parâmetros que foram excluídos nesta etapa. Com exceção dos parâmetros nitrogênio orgânico e nitrogênio total, os demais parâmetros excluídos são classificados como agrotóxicos (organoclorados) e metais pesados.

> 90% dados

censurados

Total

< 60% dados

válidos

Análise estatística

Quadro 5-5 – Parâmetros de qualidade das águas que foram excluídos na etapa de organização e sistematização do banco de dados – UHE Teles Pires

Parâmetros >90% de dados censurados	Parâmetros < 60% de dados válidos
Antimônio total, Arsênio total, Berílio total,	-
Bifenilas policloradas (PCBs), Boro total,	
Cádmio total, Chumbo total, Cianeto, Cobalto	
total, Cromo total, Lítio total, Mercúrio total,	
Níquel total, Nitrogênio orgânico, Nitrogênio	
total, Pentaclorofenol, Prata total, Selênio total,	
Urânio total e Vanádio total.	

A Tabela 5-19 exibe os 40 parâmetros selecionados para as etapas posteriores, suas respectivas notações de referência, unidades de medida e VMPs para águas doces classe 2, nos termos da Resolução Conama n. 357/2005.

Tabela 5-19 – Parâmetros de qualidade das águas selecionados na etapa de organização e sistematização do banco de dados – UHE Teles Pires

Parâmetros	Notação de	Unidade de	Valores máximos
	referência	medida	permitidos – Classe 2
Alcalinidade	Alcal.	mg/L	-

Parâmetros	Notação de referência	Unidade de medida	Valores máximos permitidos – Classe 2
Alumínio dissolvido	Aldiss	mg/L	0,1
Bário total	Ba_{T}	mg/L	0,7
Cálcio	Ca ²⁺	mg/L	0,7
Carbono orgânico dissolvido	COD	mg/L	-
Carbono orgânico total	COT		-
Carbono organico totar Cloreto	Cl ⁻	mg/L mg/L	250
Clorofila-a	Cl-a	μg/L	30
Cobre dissolvido	Cu _{diss}	μg/L mg/L	0,009
Coliformes termotolerantes	CTerm.	NMP/100 mL	1000
Condutividade elétrica	CTerm. CE	μS/cm	-
		•	75
Cor	Cor	mg Pt-Co/L	
Demanda bioquímica de oxigênio	DBO	mg/L	≤ 5,0
Demanda química de oxigênio	DQO	mg/L	-
Dureza	Dureza	mg/L	- 0.003
Fenóis	Fen	mg/L	0,003
Ferro dissolvido	Fediss	mg/L	0,3
Fluoreto	F-	mg/L	1,4
Fósforo orgânico	P _{org.}	mg/L	-
Fósforo total	P_{T}	mg/L	0,1 (lótico) e 0,03 (lêntico)
Magnésio total	Mg_T	mg/L	-
Manganês total	Mn_T	mg/L	0,1
Nitrato	N-NO ₃ -	mg/L	10
Nitrito	$N-NO_2$	mg/L	1
			$3,7: pH \le 7,5$
Nitrogênio amoniacal	$N-NH_4^+$	mg/L	2,0: 7,5 <ph≤8,0< td=""></ph≤8,0<>
Triangeline dimensiacus	111114	mg/ L	1,0: 8,0 <ph≤8,5< td=""></ph≤8,5<>
			0.5: pH > 8.5
Ortofosfato	Ortof.	mg/L	-
Oxigênio dissolvido	OD	mg/L	≥ 5,0
pН	pН	-	6,0 a 9,0
Potássio	\mathbf{K}^{+}	mg/L	-
Potencial redox	Redox	mV	-
Sílica	SiO_2	mg/L	-
Sódio	Na^+	mg/L	-
Sólidos totais	ST	mg/L	-
Sólidos dissolvidos totais	STD	mg/L	500
Sulfato	SO_4^{2-}	mg/L	250
Sulfeto	S^{2-}	mg/L	-
Temperatura da água	Temp.	°C	-
Transparência	Transp.	m	-
Turbidez	Turb.	UNT	100
Zinco total	Zn_T	mg/L	0,18

Com relação aos pontos de monitoramento, foram selecionados onze pontos, sendo dez localizados na área de inundação do reservatório e um localizado imediatamente a jusante do barramento. As características e localizações dos pontos de monitoramento podem ser consultadas na Tabela 5-20 e na Figura 4-5, respectivamente.

94

Tabela 5-20 – Características dos pontos de monitoramento selecionados – UHE Teles Pires

PONTOS		as geográficas (RGAS 2000)	Características Pré-enchimento	Características Pós-enchimento	
	Latitude	Longitude	r re-enchimento	1 0s-enchimento	
P.01	9°19'50,033"S	56°46'38,042"W	rio Teles Pires	jusante	
P.02	9°24'26,837"S	56°45'39,906"W	rio Teles Pires	reservatório	
P.03	9°29'38,676"S	56°42'15,953"W	rio Paranaíta	reservatório	
P.04	9°36'46,263"S	56°38'50,857"W	rio Paranaíta	reservatório	
P.05	9°22'34,001"S	56°42'44,795"W	rio Teles Pires	reservatório	
P.06	9°23'35,56"S	56°34'14,94"W	rio Teles Pires	reservatório	
P.07	9°28'26,289"S	56°24'51,721"W	rio Teles Pires	reservatório	
P.09	9°22'24,084"S	56°46'49,552"W	rio Oscar Miranda/rio Teles Pires	reservatório	
P.10	9°21'21,812"S	56°46'48,519"W	rio Vileroy/rio Teles Pires	reservatório	
P.11	9°21'42,032"S	56°47'21,706"W	rio São Benedito	reservatório	
P.12	9°23'22,802"S	56°47'26,369"W	rio Apiacás	reservatório	

5.4.2 Análise descritiva do banco de dados

A estatística descritiva, com os valores de média, mediana, desvio-padrão, coeficientes de assimetria e curtose, mínimo, máximo, percentis 25 e 75%, percentual de *outliers* e número de dados válidos, calculados para cada parâmetro de qualidade das águas em cada ponto de monitoramento e para cada fase (pré e pós-enchimento), são apresentados no Apêndice I (Tabelas IV.1 e IV.22).

O teste de normalidade de Shapiro-Wilk ao nível de significância α de 5% foi realizado para cada parâmetro da qualidade das águas em cada fase (pré e pós-enchimento).

Com relação aos *outliers*, um dado foi excluído por ser considerado não passível de ocorrer. Trata-se de um valor do parâmetro transparência de 88,9 metros registrado no ponto P.11 na fase pós-enchimento. As maiores porcentagens de *outliers* em relação aos dados válidos encontrada no banco de dados da UHE Teles Pires foram de 36,4% para o parâmetro F⁻, no ponto de monitoramento P.12 (fase pós-enchimento), e de 36,7% para o parâmetro Ortof., no ponto P.11 (fase pré-enchimento).

A verificação da normalidade realizada por meio do teste de Shapiro-Wilk apontou que nenhum parâmetro segue a distribuição normal. Isso justifica a aplicação de testes estatísticos não-paramétricos na etapa seguinte.

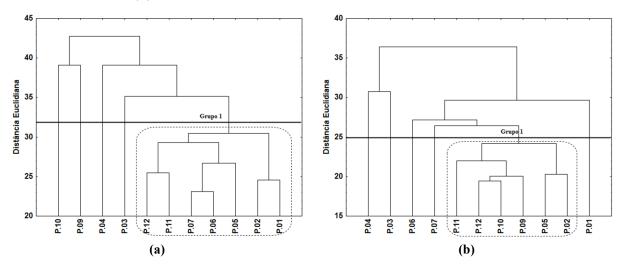
5.4.3 Aplicação das técnicas estatísticas

A primeira fase da etapa de aplicação das técnicas estatísticas consistiu na Análise de *Cluster* (AC), que foi aplicada aos conjuntos de dados pré e pós-enchimento do reservatório para se avaliar como os pontos de monitoramento se agruparam nas fases pré-enchimento (rio) e pós-enchimento (reservatório) e se ocorreram distinções entre os agrupamentos.

Ressalta-se que o parâmetro Transp. não foi considerado na AC, uma vez que foram observados muitos dados faltantes, embora possua mais de 60% de dados válidos. Assim, a inclusão desse parâmetro na AC causaria perda considerável de informação, o que motivou a sua exclusão. Ressalta-se, ainda, que o parâmetro Transp. foi mantido na segunda fase da aplicação das técnicas estatísticas (teste U de Mann-Whitney), dada a sua importância para a avaliação de alterações da qualidade das águas originárias da implantação de reservatórios.

Foram avaliados seis métodos de agrupamentos hierárquicos distintos e calculados os seus respectivos coeficientes de correlação cofenética, conforme Tabela 5-21.

Tabela 5-21 – Valores de coeficiente de correlação cofenética obtidos para os diferentes métodos de agrupamento aplicados aos conjuntos de dados da UHE Teles Pires


Mátadas da agrupamenta	Coeficiente de cor	relação cofenética
Métodos de agrupamento	Pré-enchimento	Pós-enchimento
Ligação simples	0,923	0,966
Ligação completa	0,910	0,970
Ligação média (UPGMA)	0,932	0,973
Ward	0,899	0,940
Centróide	0,879	0,916
Mediana	0,828	0,858

De acordo com a Tabela 5-21, os métodos de agrupamentos avaliados resultaram em elevados coeficientes de correlação cofenética em ambas as fases. Assim como ocorreu nas UHEs Belo Monte, Jirau e Santo Antônio do Jari, o método da ligação média (UPGMA) foi o selecionado, por apresentar os maiores coeficientes em ambas as fases (VALENTIN, 2000; WU *et al.*, 2009; ABDELHADY; FÜRSICH, 2015; UKPATU *et al.*, 2015).

O dendograma mostrado na Figura 5-17 (a) se refere à fase pré-enchimento (rio), ou seja, na ausência do reservatório da UHE Teles Pires. Traçando-se a linha de corte, conforme critério adotado por Calazans (2015) e Soares (2017), que considera as maiores distâncias entre os agrupamentos, foi formado um grande grupo e quatro pontos de monitoramento ficaram isolados. O dendograma mostrado na Figura 5-17 (b) refere-se à fase pós-enchimento

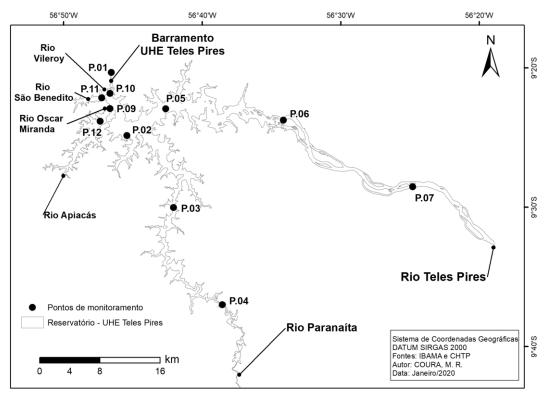

(reservatório) e também mostra a formação de um grande grupo, sendo que cinco pontos ficaram isolados. Ressalta-se que o ponto P.01 é o único ponto localizado fora do reservatório na fase pós-enchimento, situado logo a jusante do barramento da usina.

Figura 5-17 – Dendogramas da Análise de *Cluster* referentes às fases pré-enchimento (a) e pós-enchimento (b) da UHE Teles Pires – 11 pontos de monitoramento e 39 parâmetros

A Figura 5-18 apresenta um mapa simplificado com as localizações dos pontos de monitoramento.

Figura 5-18 – Mapa simplificado com as localizações dos pontos de monitoramento – UHE Teles Pires

Os resultados da formação dos grupos indicam que na fase pré-enchimento os pontos de monitoramento localizados no rio Teles Pires se aglomeraram (Grupo 1), possivelmente devido ao fato de o rio ser um ambiente lótico, com qualidade das águas homogêneas, e os pontos de monitoramento estarem relativamente próximos. Exceções observadas são as presenças dos pontos P.11 e P.12 no Grupo 1, localizados nos rios São Benedito e Apiacás, respectivamente. Possivelmente, os rios Teles Pires, São Benedito e Apiacás possuem qualidade das águas semelhantes nessa região.

Os pontos de monitoramento P.03 e P.04, situados no rio Paranaíta, ficaram isolados, apresentando-se distantes dos demais pontos do Grupo 1. Provavelmente, o rio Paranaíta apresenta qualidade das águas distinta do rio Teles Pires. Nas imediações do ponto P.04 existem muitas áreas desmatadas, o que pode ter contribuído para o afastamento deste ponto em relação ao ponto P.03.

Já os pontos P.09 (confluência dos rios Teles Pires e Oscar Miranda) e P.10 (confluência dos rios Teles Pires e Vileroy) também ficaram isolados, apresentando distâncias consideráveis em relação ao Grupo 1. Esse resultado sugere que os rios Oscar Miranda e Vileroy, apesar de serem de menores dimensões em relação ao Teles Pires, causaram influência sobre a qualidade das águas nos pontos P.09 e P.10 na fase pré-enchimento, distinguindo-se do rio Teles Pires.

Após o enchimento do reservatório, observou-se que os pontos de monitoramento localizados na porção mais próxima da barragem se aglomeraram, formando o Grupo 1 (pontos P.02, P.05, P.09, P.10, P.11 e P.12). De acordo com Queiroz Junior (2016), Serafim-júnior (2016) e Dodds e Whiles (2020), a região mais próxima da barragem apresenta características físicas e biológicas mais semelhantes de um lago (zona lacustre), o que provavelmente explica a formação do Grupo 1 na fase pós-enchimento.

Os pontos P.03 e P.04 continuaram isolados na fase pós-enchimento, indicando que a formação do reservatório não resultou na aproximação dos pontos quanto à qualidade das águas, o que ocorreu, por exemplo, com os pontos P.09 e P.10. Já os pontos P.06 e P.07, localizados na porção inicial do reservatório (ambiente mais próximo do fluvial), ficaram isolados.

O ponto P.01, situado a jusante da barragem, também ficou isolado, distante dos pontos que formam o Grupo 1. Esse resultado é distinto dos observados nas UHEs Jirau e Santo Antônio do Jari, porém semelhante ao observado na UHE Belo Monte. O trecho de jusante da UHE Teles Pires é de leito rochoso e encachoeirado, sendo um ambiente turbulento, o que possivelmente é o fator importante para diferenciar a qualidade das águas do ponto P.01 dos demais do Grupo 1. Além disso, o posicionamento da tomada d'água em relação ao nível da água do reservatório também pode ter contribuído, uma vez que a captação de água que é conduzida até as unidades geradoras pode ocorrer em uma certa profundidade, o suficiente para diferenciar a qualidade das águas do ponto P.01 do demais pontos do Grupo 1.

Além da formação dos grupos, é importante destacar as consideráveis diferenças observadas entres os dendogramas das fases pré e pós-enchimento, que possivelmente estão associadas à transformação do ambiente aquático e consequente alteração da qualidade das águas. Assim, a segunda fase da etapa de aplicação das técnicas estatísticas foi realizada com o objetivo de identificar os parâmetros que alteraram significativamente após o enchimento do reservatório.

Para isso, o teste estatístico não-paramétrico U de Mann-Whitney com nível de significância α de 5% foi aplicado, comparando os conjuntos de dados pré e pós-enchimento correspondentes aos 40 parâmetros de qualidade das águas, para cada um dos 11 pontos de monitoramento.

A Tabela 5-22 exibe os resultados obtidos após a aplicação do teste, apontando se houve aumento (seta para cima) ou diminuição (seta para baixo) significativa das concentrações dos parâmetros após o enchimento do reservatório. Os p-valores obtidos em cada teste são apresentados no Apêndice II (Tabela IV.1).

Tabela 5-22 – Resultados da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste U de Mann-Whitney ($\alpha = 5\%$) – UHE Teles Pires

Parâmetros	P.01	P.02	P.03	P.04	P.05	P.06	P.07	P.09	P.10	P.11	P.12
- arametros					R	esultac	los				
Alcal.	\downarrow	\downarrow	-	-	\downarrow	\downarrow	-	\downarrow	-	\downarrow	-
$\mathrm{Al}_{\mathrm{diss}}$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
\mathbf{Ba}_{T}	-	-	-	-	-	-	-	-	-	-	-
Ca^{2+}	\downarrow										
COD	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	-	\downarrow
COT	-	-	-	\downarrow	-	-	-	\downarrow	\downarrow	-	\downarrow
Cl ⁻	\downarrow										

	P.01	P.02	P.03	P.04	P.05	P.06	P.07	P.09	P.10	P.11	P.12
rarametros					R	esultac	los				
Cl-a	\downarrow	-	-	-	\downarrow						
$\mathrm{Cu}_{\mathrm{diss}}$	-	-	\downarrow	-	-	\downarrow	\downarrow	-	\downarrow	-	-
CTerm.	\uparrow	-	-	-	-	\uparrow	\uparrow	\downarrow	\downarrow	-	-
CE	\uparrow	-	-	-	-	-	-	\downarrow	\downarrow	\downarrow	\downarrow
Cor	-	-	-	-	-	-	-	-	-	-	-
DBO	-	-	-	-	-	-	-	-	-	-	-
DQO	-	-	-	-	-	-	-	-	-	-	-
Dureza	\downarrow	-	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow
Fen	-	-	\uparrow	-	\uparrow	-	-	-	-	-	-
Fe_{diss}	\downarrow	\downarrow	-	\downarrow	\downarrow	\downarrow	-	\downarrow	\downarrow	\downarrow	\downarrow
F-	-	-	-	-	-	-	-	-	-	-	-
$\mathrm{Po}_{\mathrm{rg.}}$	\uparrow										
P_T	\uparrow										
Mg_T	-	-	-	-	-	-	-	-	-	-	-
$\mathbf{M}\mathbf{n}_{\mathrm{T}}$	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-
N-NO ₃ -	\uparrow										
$N-NO_2$	-	-	-	-	-	-	-	-	-	-	-
$N-NH_4^+$	\uparrow	-	\uparrow	\uparrow	-	-	-	-	\uparrow	-	-
Ortof.	-	-	-	-	-	-	-	-	-	-	-
OD	-	-	-	-	\downarrow	\uparrow	-	-	-	-	-
pН	-	\downarrow	-	-	\downarrow	\downarrow	-	-	-	\downarrow	\downarrow
K^{+}	-	-	-	-	-	-	-	\uparrow	\downarrow	-	\downarrow
Redox	-	-	-	-	\uparrow	-	-	-	-	-	-
SiO_2	\downarrow	-	\downarrow								
Na^+	\downarrow										
ST	\downarrow										
SDT	\uparrow	-	\uparrow	-	-	-	-	\downarrow	\downarrow	\downarrow	-
$\mathrm{SO_4}^{2 ext{-}}$	-	-	-	-	-	-	-	-	-	-	-
S^{2-}	\downarrow										
Temp.	-	\uparrow	\uparrow	-	\uparrow						
Transp.	\uparrow	-	\uparrow								
Turb.	-	\downarrow	\downarrow	\downarrow	\downarrow	-	-	\downarrow	\downarrow	\downarrow	\downarrow
Zn_T	-	-	\uparrow	-	-	-	-	-	-	-	-

⁽⁻⁾ Não apresentou alteração significativa.

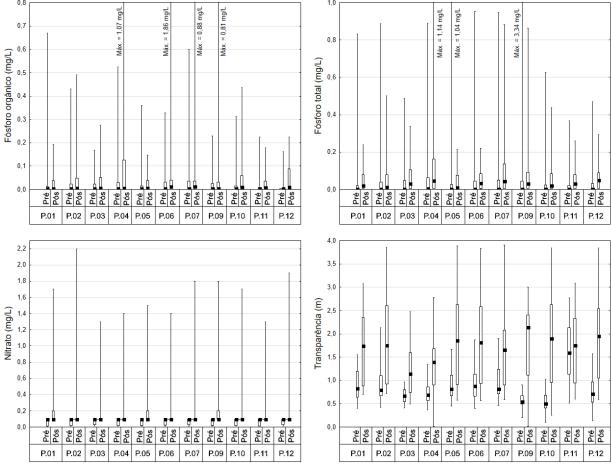
De acordo com os resultados apresentados na Tabela 5-22, dos 40 parâmetros analisados, 31 (77,5% do total) registraram alteração significativa em, pelo menos, um ponto de monitoramento, e 9 (22,5% do total) não registraram alteração significativa. O Quadro 5-6 resume todos os parâmetros que apresentaram e não apresentaram alteração significativa.

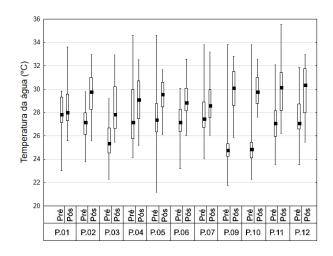
^(↑) Aumento significativo da concentração. (↓) Diminuição significativa da concentração.

Quadro 5-6 – Parâmetros que apresentaram e não apresentaram alteração significativa após o enchimento do reservatório – UHE Teles Pires

Parâmetros que apresentaram alteração	Parâmetros que não apresentaram						
significativa	alteração significativa						
Alcal., Al _{diss} , Ca ²⁺ , COD, COT, Cl ⁻ , Cl-a,	Ba _T , Cor, DBO, DQO, F-, Mg _T , N-NO ₂ -,						
Cudiss, CTerm., CE, Dureza, Fen, Fediss, Porg.,	Ortof. e SO ₄ ²						
P _T , Mn _T , N-NO ₃ -, N-NH ₄ +, OD, pH, K+,							
Redox, SiO ₂ , Na ⁺ , ST, SDT, S ²⁻ , Temp.,							
Transp., Turb. e Zn _T .							

Como já destacado, o objetivo é identificar os parâmetros que apresentaram alteração significativa com maior frequência, ou seja, em maior número de pontos de monitoramento (em 40% ou mais de pontos). Esses são, supostamente, os parâmetros mais importantes para explicar a alteração da qualidade das águas após o enchimento do reservatório. A Tabela 5-23 destaca esses parâmetros e a porcentagem dos pontos em que registraram alteração significativa.


Tabela 5-23 – Parâmetros que apresentaram alteração significativa com maior frequência – UHE Teles Pires


Parâmetros		monitoramento q lteração significati	
1 at affectios	Total	Elevação	Diminuição
Ca^{2+}	100,0	-	100,0
Cl ⁻	100,0	-	100,0
$\mathrm{Po}_{\mathrm{rg.}}$	100,0	100,0	-
P_{T}	100,0	100,0	-
N-NO ₃ -	100,0	100,0	-
Na^+	100,0	-	100,0
ST	100,0	-	100,0
S^{2-}	100,0	-	100,0
Al_{diss}	90,9	-	90,9
SiO_2	90,9	-	90,9
Transp.	90,9	90,9	-
COD	81,8	-	81,8
Fe_{diss}	81,8	-	81,8
Temp.	81,8	81,8	-
Cl-a	72,7	-	72,7
Dureza	72,7	-	72,7
Turb.	72,7	-	72,7
Alcal.	54,5	-	54,5
CTerm.	45,5	27,3	18,2
CE	45,5	9,1	36,4
pН	45,5	-	45,5
SDT	45,5	18,2	27,3

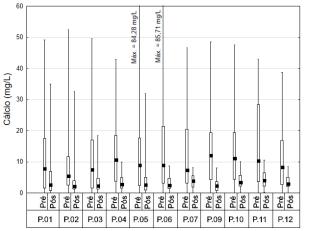
É importante observar que, conforme resultados apresentados na Tabela 5-23, o número de parâmetros que alteraram com maior frequência na UHE Teles Pires (22 parâmetros) é muito maior que os números constatados nas UHEs Belo Monte (12), Jirau (15) e Santo Antônio do Jari (5). Ressalta-se que dos quatro empreendimentos hidrelétricos analisados, a UHE Teles Pires é a única que adotou frequência mensal de monitoramento em ambas as fases (pré e pósenchimento). Além disso, o reservatório da UHE Teles Pires possui o maior tempo de detenção hidráulica médio entre as UHEs estudadas (5 dias). Possivelmente, esses fatores foram importantes para identificação de maior número de parâmetros de alteraram com maior frequência na UHE Teles Pires.

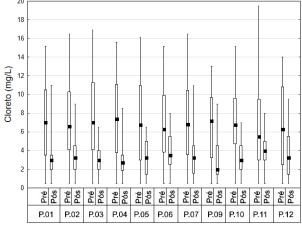
Nas Figuras 5-19, 5-20 e 5-21 são apresentados os gráficos *box-plot* dos 22 parâmetros que registraram alteração significativa com maior frequência.

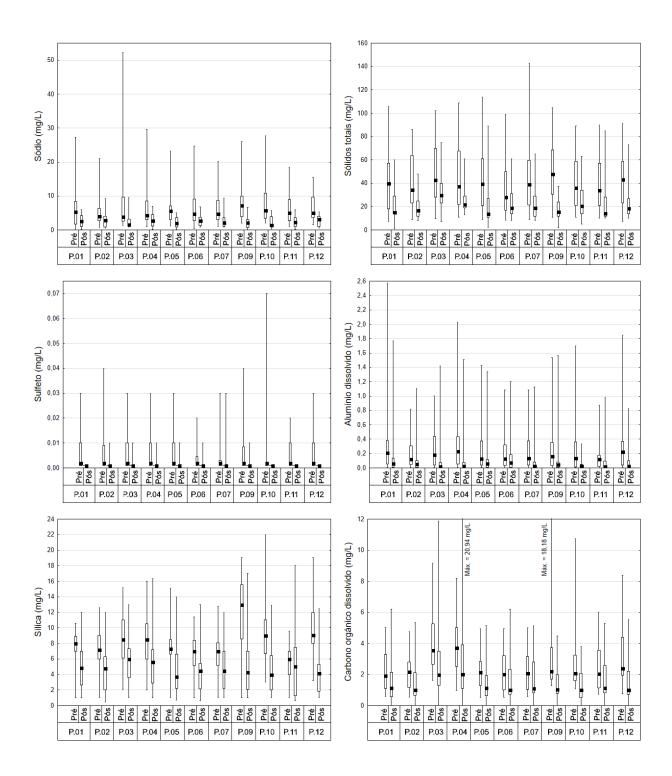
Figura 5-19 – Gráficos box-plot dos parâmetros que apresentaram elevação significativa com maior frequência – UHE Teles Pires

O parâmetro Transp. registrou aumento significativo tanto em pontos localizados no reservatório (P.02, P.03, P.04, P.05, P.06, P.07, P.09, P.10 e P.12) quanto no ponto situado a jusante da barragem (P.01), totalizando alteração significativa em 90,9% dos pontos de monitoramento. Além da transparência, foram observadas diminuições significativas das concentrações dos parâmetros ST e Turb., em 100% e 72,7% dos pontos de monitoramento, respectivamente. Esses resultados sugerem a ocorrência de sedimentação (retenção de sedimentos) no reservatório da UHE Teles Pires, corroborando os trabalhos de Vörösmarty *et al.* (2003), Huang *et al.* (2015), Dabkowski e bak (2018), Tundisi (2018), Zarfl e Lucía (2018) e Krasa *et al.* (2019). Destaca-se que a possibilidade de retenção de sedimentos no reservatório também foi observada nas UHEs Belo Monte e Santo Antônio do Jari.

O P_T e P_{Org.} apresentaram elevações significativas de concentração em todos os pontos de monitoramento. Estes resultados são distintos dos observados nas UHEs Belo Monte e Santo Antônio do Jari, que registraram diminuição significativa de fósforo total em alguns pontos dos reservatórios.


Por meio dos gráficos *box-plot* mostrados na Figura 5-19, verifica-se que as concentrações de fósforo total e orgânico são próximas, o que leva a concluir que a maior fração P_T é composta por P_{Org.}. Nesse sentido, a elevação significativa do P_T após o enchimento do reservatório foi influenciada pela elevação significativa de P_{Org.}. Acredita-se que a elevação significativa do fósforo orgânico e, consequentemente, do fósforo total esteja associada à inundação de área florestada pelo reservatório. Outra hipótese é o avanço do desmatamento na bacia, principalmente na região de Alta Floresta/MT (região onde foi implantada a UHE Teles Pires), que sabidamente é um território que sofre com a expansão da agricultura comercial (culturas de grãos e da pecuária), extração de madeira e garimpo (BONINI *et al.*, 2013).


Ainda sobre o P_T, observa-se no gráfico *box-plot* que existem valores de concentração que ultrapassam os limites preconizados pela Resolução Conama n. 357/2005 para águas doces de classe 2, sendo 0,1 mg/L para ambiente lótico (pré-enchimento) e 0,03 para ambiente lêntico (pós-enchimento). Ressalta-se que nas UHEs Belo Monte e Santo Antônio do Jari também foram observadas concentrações de fósforo acima dos limites estabelecidos pelo Conama em ambas as fases (pré e pós-enchimento).


A temperatura da água (Temp.) apresentou elevação significativa em 81,8% dos pontos de monitoramento. O enchimento do reservatório e o consequente aumento da área superficial do corpo d'água exposta à radiação solar possivelmente foi a causa principal para a elevação da temperatura da água superficial (KIRILLIN; SHATWELL, 2016). Ressalta-se que o aumento significativo da temperatura da água também foi observado na UHE Jirau.

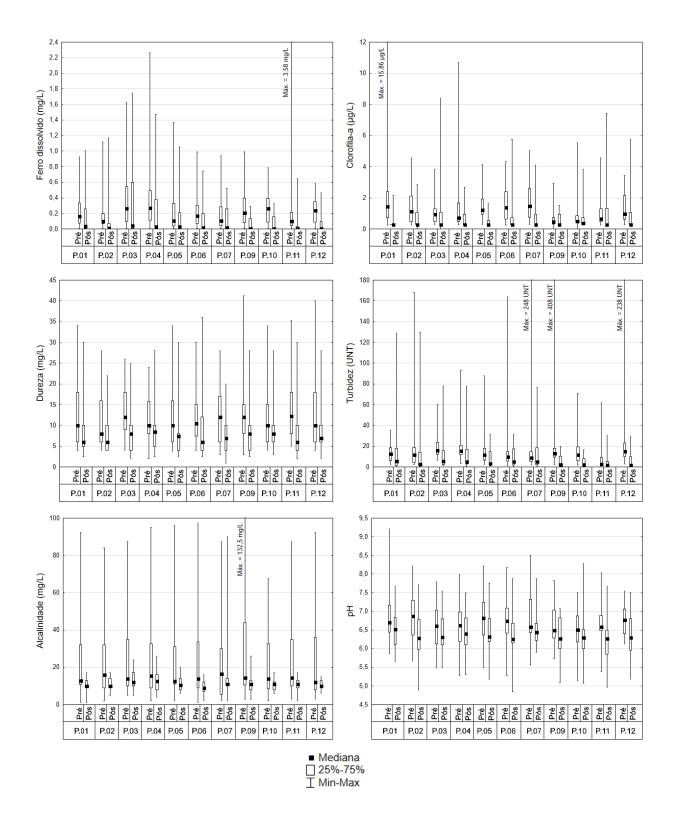

O parâmetro N-NO₃⁻ apresentou elevação significativa em todos os pontos de monitoramento. Sobre o nitrato é importante informar que foram observados no banco de dados da UHE Teles Pires muitos dados censurados, sendo que foram adotados no projeto de monitoramento da qualidade das águas limites de detecção (LD) distintos nas fases pré-enchimento (LD menor) e pós-enchimento (LD maior). Provavelmente essa questão analítica tenha sido importante para a detecção de elevação significativa de nitrato em todos os pontos, quando comparadas as fases pré e pós-enchimento. De todo modo, foram observados valores máximos de N-NO₃⁻ maiores na fase pós-enchimento, que podem estar associados ao avanço da agricultura comercial na bacia (BONINI *et al.*, 2013).

Figura 5-20 – Gráficos *box-plot* dos parâmetros que apresentaram **diminuição significativa** com maior frequência – UHE Teles Pires

O íon Ca²⁺ apresentou diminuição significativa em todos os pontos de monitoramento. Uma hipótese possível para a diminuição da concentração de Ca²⁺ é a atividade de organismos fotossintetizantes, contribuindo para a precipitação de cálcio na forma de carbonato de cálcio (STUMM; MORGAN, 2012). Além disso, os sais de cálcio possuem moderada a elevada solubilidade, sendo muito comum precipitarem como CaCO₃ (FEITOSA *et al.*, 2008).

A diminuição significativa da concentração de Ca²⁺ provavelmente contribuiu para a diminuição significativa dos parâmetros Dureza (72,7% dos pontos) e Alcal. (54,5%), uma vez que os principais contribuintes para a dureza das águas são os íons Ca²⁺ e Mg²⁺ e para maioria das águas naturais de superfície a alcalinidade decorre apenas de bicarbonatos, principalmente de bicarbonatos de cálcio e magnésio (LIBÂNIO, 2008; BAIRD; CANN, 2011; CETESB, 2017). Ressalta-se que a diminuição significativa de cálcio e alcalinidade também foram observadas nas UHEs Belo Monte e Jirau, respectivamente.

Breda (2011), após avaliar a alteração espaço-temporal da qualidade das águas do reservatório da UHE Funil, localizado no rio Grande, Minas Gerais, também constatou diminuição significativa de dureza total após o enchimento do reservatório.

Como, segundo Libânio (2008), a alcalinidade das águas traduz a capacidade de neutralizar ácidos ou minimizar variações significativas de pH, é possível que a diminuição de alcalinidade tenha sido o suficiente para não impedir a diminuição significativa de pH em 45,5% dos pontos de monitoramento. Reforça essa hipótese o fato de que todos os pontos que apresentaram diminuição significativa de pH também apresentaram diminuição significativa de Alcal., com exceção do ponto P.12. A diminuição significativa de pH também foi constatada na UHE Jirau.

O COD apresentou diminuição significativa de concentração em 81,9% dos pontos de monitoramento, resultado que é similar ao observado na UHE Jirau, que mostrou diminuição significativa de COT. Teoricamente, a concentração de COD foi reduzida pela atividade de microrganismos, por meio do processo de decomposição aeróbica da matéria orgânica (VON SPERLING, 2005).

O sódio (Na⁺) é um dos elementos mais abundantes na natureza (dissolução de rochas) e seus sais são altamente solúveis em água e de difícil precipitação, encontrando-se na forma iônica. O aumento das concentrações de sódio na água pode provir de lançamentos de esgotos domésticos e efluentes industriais. O cloreto (Cl⁻) faz-se presente nas águas naturais superficiais e subterrâneas em concentrações variáveis, sendo originário da dissolução de solos e rochas, da intrusão de águas salinas e também do lançamento de efluentes domésticos e industriais. Em geral, é muito solúvel e muito estável em solução, dificilmente precipita e não oxida e nem se reduz em águas naturais (FEITOSA *et al.*, 2008; LIBÂNIO, 2008; BAIRD; CANN, 2011; CETESB, 2017).

Conforme resultados mostrados na Tabela 5-23, os íons Na⁺ e Cl⁻ apresentaram diminuição significativa em todos os pontos de monitoramento. Como esses dois íons dificilmente se precipitam e não foram identificadas fontes importantes de esgotos domésticos e industriais na região de implantação da UHE, acredita-se que as reduções significativas de suas concentrações estejam mais associadas a eventos hidroclimáticos na bacia.

Como já mencionado, o íon SO₄²⁻ é um dos íons mais abundantes na natureza e é encontrado em águas naturais originando-se, principalmente, da dissolução de solos e rochas e pela oxidação de sulfeto (S²⁻) (CETESB, 2017). A formação S²⁻ se dá em ambientes anaeróbios (na ausência de oxigênio), pela ação de bactérias redutoras de SO₄²⁻, na presença de substâncias orgânicas, sejam elas de origem natural ou antropogênica. Esses microrganismos têm a capacidade de mediar a transferência de elétrons entre os doadores (matéria orgânica) e os receptores (sulfatos), oxidando os primeiros e reduzindo quimicamente os últimos (FAGNANI *et al.*, 2011).

Conforme resultados, o íon S²⁻ apresentou diminuição significativa em todos os pontos de monitoramento. Analisando o banco de dados da UHE Teles Pires, as concentrações de sulfeto são ínfimas em relação às concentrações de sulfato, sendo que foram observados muitos dados censurados (pouco mais de 80%). Assim como ocorreu para o N-NO3⁻, foram identificados LD distintos entre as fases pré (LD maior) e pós-enchimento (LD menor). Provavelmente essa questão analítica tenha sido importante para a detecção de diminuição significativa de S²⁻ em todos os pontos, quando comparadas as fases pré e pós-enchimento. Ainda assim, quando não censurados, foram observados valores maiores de S²⁻ na fase préenchimento, que podem estar associados a eventos hidroclimáticos (relação chuva-vazão) na Amazônia, contribuindo para inundação de extensas áreas (planícies) e, consequentemente, formando áreas úmidas próximas ao corpo d'água principal (ambientes reduzidos, com baixa concentração de OD).

De acordo com PAIVA *et al.* (2009), o ferro é um metal que pode estar presente nas águas superficiais e subterrâneas tanto na sua forma dissolvida (Fe²⁺) quanto na sua forma particulada (Fe³⁺), sendo originado da dissolução de rochas e solos. A predominância de uma forma sobre a outra é dependente do pH, potencial redox e da temperatura da água. Além disso, o Fe²⁺ é instável na presença de oxigênio, podendo passar para a forma Fe³⁺ (FEITOSA *et al.*, 2008).

Nas águas superficiais, a concentração de ferro aumenta nas estações chuvosas devido ao carreamento de solos e erosão das margens. Também contribuem para elevação da concentração de ferro o lançamento de efluentes industriais, principalmente indústrias metalúrgicas (CETESB, 2017).

O parâmetro Fe_{diss} (Fe²⁺) apresentou diminuição significativa em 81,8% dos pontos de monitoramento. Uma hipótese para a diminuição significativa de ferro dissolvido é a possível oxidação em ferro particulado (Fe³⁺) pela atividade de microrganismos na presença de oxigênio dissolvido, e a sedimentação da forma particulada por consequência da diminuição da velocidade das águas após o enchimento do reservatório. As alterações significativas de pH e temperatura também podem ter colaborado. Outra hipótese possível são os eventos hidroclimáticos na bacia que, conforme referido, podem ser responsáveis por maiores ou menores concentrações de ferro na água.

Conforme a CETESB (2017), o alumínio pode ocorrer em diferentes formas na água e é influenciado pelo pH, temperatura, presença de fluoretos, sulfatos e matéria orgânica. A solubilidade é baixa em pH entre 5,5 e 6,0. As concentrações de alumínio dissolvido em águas com pH neutro variam de 0,001 a 0,05 mg/L, mas aumentam para 0,5 a 1 mg/L em águas mais ácidas ou ricas em matéria orgânica. O aumento da concentração de alumínio está associado ao período de chuvas e, portanto, com a alta turbidez.

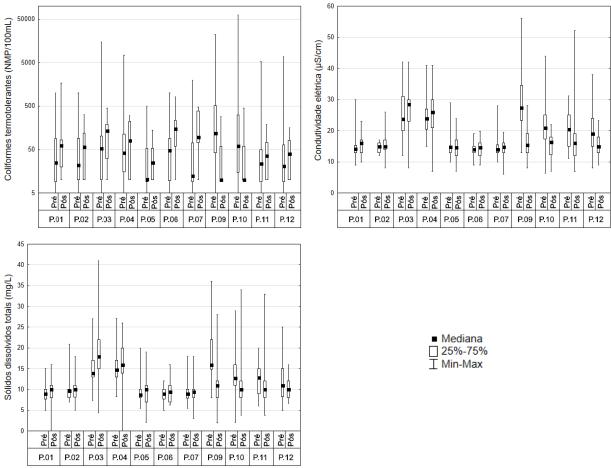
O parâmetro Al_{diss} apresentou diminuição significativa em 90,9% dos pontos de monitoramento. Provavelmente, a diminuição significativa de alumínio dissolvido está ligada ao processo de sedimentação que ocorreu no reservatório, uma vez que esse metal pode estar correlacionado à presença de material particulado na água. A diminuição de Al_{diss} pode estar ligada também à diminuição significativa de pH, que ocorreu em alguns pontos de monitoramento, provocando assim a diminuição da solubilidade do alumínio. Outra hipótese que também pode ter contribuído são os eventos hidroclimáticos na bacia, que, conforme referido, podem ser responsáveis por maiores ou menores concentrações de alumínio na água.

Ainda sobre o Al_{diss}, observa-se no gráfico *box-plot* que existem muitos valores de concentração, principalmente na fase pré-enchimento, que violam o limite preconizado pela Resolução Conama n. 357/2005 para águas doces de classe 2, que é de até 0,1 mg/L.

A combinação do oxigênio com o silício forma a sílica (SiO₂). O intemperismo de minerais de argila, aluminossilicatos e de feldspatos constituem como as principais fontes de sílica para as águas. Outra importante fonte de sílica é o quartzo (FEITOSA *et al.*, 2008).

A sílica ocorre em águas doces em duas formas principais, dissolvida, que representa as maiores concentrações encontradas em águas naturais, e particulada, que pode ser em material biológico, principalmente em algas diatomáceas, ou adsorvida em partículas inorgânica ou complexada organicamente. Diluição de sílica pode ocorrer durante percolação de águas de chuva ou degelo. É importante destacar que a sílica é considerada um dos nutrientes mais importantes para a produtividade primária das algas, notadamente das algas diatomáceas, que assimilam grande quantidade de silício e são responsáveis por modificar o fluxo de carga e o gradiente de sílica em lagos e rios (WETZEL, 2001; ESTEVES, 2011).

O parâmetro SiO₂ apresentou diminuição significativa em 90,9% dos pontos de monitoramento. É possível que o processo de sedimentação, que ocorreu no reservatório da UHE Teles Pires (aumento de transparência e diminuição de turbidez), tenha contribuído para a diminuição da concentração de sílica, considerando que este nutriente pode estar associado ao material particulado. Outra hipótese são os eventos hidroclimáticos na bacia hidrográfica, que podem diluir a concentração do nutriente. A diminuição de sílica na água por assimilação da biomassa algal, especialmente pelas diatomáceas, é menos provável, já que, como descrito a seguir, a concentração de clorofila- a (Cl-a) no reservatório da usina é baixa.


A Cl-a é um dos pigmentos responsáveis pelo processo fotossintético e indicador da biomassa algal, além disso, é uma das principais variáveis indicadoras de estado trófico dos ambientes aquáticos (WETZEL, 2001; ESTEVES, 2011; CETESB, 2017).

Conforme os resultados, a Cl-a apresentou diminuição significativa em 72,7% dos pontos de monitoramento, indicando que a formação do reservatório da UHE Teles Pires não criou condições ambientais favoráveis para a proliferação de organismos fotossintetizantes, diferentemente do que foi observado nas UHEs Belo Monte e Jirau.

Destaca-se que as concentrações de Cl-a no reservatório da UHE Teles Pires mostraram-se muito abaixo do estabelecido pelo Conama nº 357/2005 para águas doces de classe 2 (até 30 µg/L) em ambas as fases (pré e pós-enchimento), o que é um indicativo de que o rio Teles

Pires naquela região e o reservatório da usina não se encontram em processo avançado de eutrofização (VINÇON-LEITE; CASENAVE, 2019).

Figura 5-21 – Gráficos box-plot dos parâmetros que apresentaram elevação e diminuição significativa com maior frequência – UHE Teles Pires

O indicador biológico CTerm. apresentou elevação e diminuição significativa de concentração em 27,3% e 18,2% dos pontos de monitoramento, respectivamente, totalizando alteração significativa em 45,5% dos pontos. A diminuição de concentração de CTerm. após o enchimento do reservatório é um resultado semelhante aos observados nas UHEs Belo Monte e Jirau, que mostraram diminuição significativa de *E. coli* e CTerm, respectivamente.

A elevação significativa de CTerm. provavelmente está associada a fontes pontuais, como pequenas propriedades rurais existentes próximas aos pontos P.06 e P.07, e alojamento de trabalhadores nas estruturas da UHE, situado a montante do ponto P.01. Apesar das elevações constatadas, o conjunto de dados em cada ponto e em cada fase atende ao limite estabelecido pela Resolução Conama n. 357/2005 para águas doces de classe 2 (até 1.000 NMP/100mL em

80% ou mais de pelo menos seis amostras coletadas durante o período de um ano, com frequência bimestral).

O parâmetro SDT, que de acordo com Wetzel (2001) e Libânio (2008), mede o peso por unidade de volume de substâncias orgânicas (íons orgânicos) e inorgânicas (carbonato, bicarbonato, cloreto, sulfato, fosfato, nitrato, cálcio, magnésio e sódio) contidas na água, apresentou elevação e diminuição significativa em 18,2% e 27,3% dos pontos de monitoramento, totalizando alteração significativa em 45,5% dos pontos. Ressalta-se que alterações significativas de SDT também foram constatadas nas UHEs Jirau e Santo Antônio do Jari.

O parâmetro CE que indica a capacidade da água de transmitir corrente elétrica em função da presença de substâncias dissolvidas (ânions e cátions), sendo, por consequência, correlacionado ao parâmetro SDT (LIBÂNIO, 2008; CETESB, 2017), também apresentou elevação e diminuição significativa em 9,1% e 36,4% dos pontos de monitoramento, totalizando alteração significativa em 45,5% dos pontos. Destaca-se que todos os pontos que apresentaram alteração significativa de CE também apresentaram alteração significativa de SDT, exceto o ponto P.12.

Analisando os gráficos *box-plot* mostrados na Figura 5-21, é possível constatar que os valores de CE e SDT nos pontos de monitoramento localizados no rio Teles Pires (P.01, P.02, P.05, P.06 e P.07) são menores que nos demais pontos, que estão situados nos corpos d'água de menores dimensões. Assim, é provável que o efeito de inundação do rio Teles Pires sobre os rios Oscar Miranda, Vileroy, São Benedito e Apiacás tenha contribuído para a diminuição significativa de CE e SDT nos pontos P.09, P.10, P.11 e P.12. É possível também que alterações do uso e ocupação do solo e eventos hidroclimáticos na bacia tenham colaborado para as alterações significativas observadas para os dois parâmetros.

Destaca-se que as concentrações de SDT estão muito abaixo do valor máximo permitido pela Resolução Conama n. 357/2005, que é até 500 mg/L para águas doces de classe 2.

A partir dos resultados do teste de hipóteses U de Mann-Whitney foi possível realizar também análise de alteração espacial da qualidade das águas no reservatório. A Tabela 5-24 resume quais e o número de parâmetros que alteraram significativamente por ponto de monitoramento.

Tabela 5-24 – Lista e número de parâmetros que apresentaram alteração significativa por ponto de monitoramento – UHE Teles Pires

P.01	P.02	P.03	P.04	P.05	P.06	P.07	P.09	P.10	P.11	P.12
Alcal.	Alcal.	Aldiss	Aldiss	Alcal.	Alcal.	Aldiss	Alcal.	Al_{diss}	Alcal.	Aldiss
Al_{diss}	Al_{diss}	Ca^{2+}	Ca^{2+}	$Al_{diss} \\$	Ca^{2+}	Ca^{2+}	Al_{diss}	Ca^{2+}	Al_{diss}	Ca^{2+}
Ca^{2+}	Ca^{2+}	COD	COD	Ca^{2+}	COD	Cl-	Ca^{2+}	COD	Ca^{2+}	COD
COD	COD	Cl-	COT	COD	Cl-	Cl-a	COD	COT	Cl-	COT
Cl-	Cl-	Cl-a	Cl-	Cl-	Cl-a	Cu_{diss}	COT	Cl-	CE	Cl-
Cl-a	Cl-a	Cu_{diss}	Cl-a	Cl-a	Cu_{diss}	CTerm.	Cl ⁻	Cu_{diss}	Dureza	Cl-a
CTerm.	Fe_{diss}	Dureza	Fe_{diss}	Dureza	CTerm.	Dureza	CTerm.	CTerm.	Fe_{diss}	CE
CE	Porg.	Fen	Porg.	Fen	Dureza	Porg.	CE	CE	Porg.	Dureza
Dureza	\mathbf{P}_{T}	$\mathrm{Po}_{\mathrm{rg.}}$	\mathbf{P}_{T}	Fe_{diss}	Fe_{diss}	\mathbf{P}_{T}	Dureza	Fe_{diss}	\mathbf{P}_{T}	$Fe_{diss} \\$
$Fe_{\rm diss}$	Mn_T	P_{T}	N-NO ₃ -	Porg.	Porg.	N-NO ₃ -	Fediss	Porg.	N-NO ₃ -	Porg.
$Po_{\rm rg.}$	N-NO ₃ -	N-NO ₃ -	$N-NH_4^+$	P_{T}	P_T	SiO_2	$Po_{rg.}$	P_T	pН	\mathbf{P}_{T}
\mathbf{P}_{T}	pН	$N-NH_4^+$	SiO ₂	N-NO ₃ -	N-NO ₃ -	Na^+	\mathbf{P}_{T}	N-NO ₃ -	Na^+	N-NO ₃ -
$Mn_T \\$	SiO_2	SiO_2	Na^+	OD	OD	ST	N-NO ₃ -	$N-NH_4^+$	ST	pН
N-NO ₃ -	Na^+	Na^+	ST	pН	pН	S^{2-}	K^+	K^{+}	STD	K^{+}
$N-NH_4^+$	ST	ST	S ²⁻	Redox	SiO_2	Temp.	SiO_2	SiO_2	S^{2-}	SiO_2
SiO_2	S ²⁻	STD	Transp.	SiO_2	Na^+	Transp.	Na^+	Na^+	Temp.	Na^+
Na ⁺	Temp.	S ²⁻	Turb.	Na^+	ST		ST	ST	Turb.	ST
ST	Transp.	Temp.		ST	S^{2-}		STD	STD		S^{2-}
STD	Turb.	Transp.		S ²⁻	Temp.		S^{2-}	S^{2-}		Temp.
S^{2-}		Turb.		Temp.	Transp.		Temp.	Temp.		Transp.
Transp.		Zn_{T}		Transp.			Transp.	Transp.		Turb.
				Turb.			Turb.	Turb.		
21	19	21	17	22	20	16	22	22	17	21

Conforme resultados mostrados na Tabela 5-24, os números de parâmetros que alteraram significativamente variaram entre 16 e 22 por ponto de monitoramento, números muito maiores que os constatados nas UHEs Belo Monte, Jirau e Santo Antônio de Jari.

Os pontos que apresentaram maiores números de parâmetros que alteraram significativamente foram P.05, P.09 e P.10 (22 parâmetros cada um). Os pontos P.09 e P.10 estão situados, na fase pré-enchimento, em corpos d'água de menores dimensões (rios Oscar Miranda e Vileroy), próximos à confluência com o rio Teles Pires. Esse resultado é semelhante aos observados nas UHEs Belo Monte, Jirau e Santo Antônio do Jari, em que também ganharam destaque pontos de monitoramento localizados em corpos d'água de menores dimensões, próximos à confluência com o rio principal, e que foram inundados pelos reservatórios. Já o ponto P.05 está situado na porção do reservatório mais próxima da barragem, que, teoricamente, apresenta características físicas e biológicas mais semelhantes de um lago (zona lacustre) (QUEIROZ JUNIOR, 2016; SERAFIM-JÚNIOR, 2016; DODDS; WHILES, 2020).

Novamente, convergindo para o observado nas usinas Belo Monte, Jirau e Santo Antônio do Jari, todos os pontos de monitoramento apresentaram parâmetros de qualidade das águas que se alteraram significativamente após o enchimento do reservatório, incluindo o ponto P.01, situado logo a jusante do barramento. Esse resultado corrobora estudos que registraram que o barramento de um corpo d'água apresenta potencial para causar alteração da qualidade das águas na área de inundação do reservatório (HU *et al.*, 2014; XIN *et al.*, 2015; TUNDISI, 2018) e em trechos de rio a jusante da barragem (BALDWIN *et al.*, 2010; CHOW *et al.*, 2016; TUNDISI, 2018).

5.5 Análise integrada dos quatro empreendimentos hidrelétricos

Considerando os quatro empreendimentos hidrelétricos (UHEs Belo Monte, Jirau, Santo Antônio de Jari e Teles Pires), após a aplicação da etapa de sistematização e organização dos bancos de dados, um total de 45 pontos de monitoramento e 54 parâmetros de qualidade das águas distintos foram analisados. O Quadro 5-7 apresenta a lista de todos os parâmetros analisados pelo projeto de pesquisa.

Quadro 5-7 – Total de parâmetros de qualidade das águas analisados, considerando os quatro empreendimentos hidrelétricos

Total de	Total de parâmetros de qualidade das águas analisados			
Temp.	SDT	NTK	Cl-	
рН	SiO_2	N-NO ₃	F-	
OD	Carb. total	$N-NO_2^-$	Br ⁻	
CE	COT	$N-NH_4^+$	S^{2-}	
Redox	COD	\mathbf{P}_{T}	Fe_T	
Transp.	CIT	PO_4^{3-}	Mg_{T}	
Turb.	DBO	Ortof.	$\mathbf{M}\mathbf{n}_{\mathrm{T}}$	
Cor	DQO	$P_{org.}$	Zn_{T}	
Alcal.	Cianof.	Ca^{2+}	Fe_{diss}	
Dureza	Cl-a	${ m Mg^{2+}}$	$\mathrm{Al}_{\mathrm{diss}}$	
ST	CT	$\mathrm{SO_4}^{2\text{-}}$	$\mathrm{Cu}_{\mathrm{diss}}$	
SST	CTerm.	Na^+	Ba_{T}	
SSI	E. coli	\mathbf{K}^{+}		
SSO	Fen	Li^+		
54 parâmetros				

É importante destacar que dos 54 parâmetros analisados, apenas 15 (27,8% do total) são comuns as quatro UHEs, conforme mostrado no Quadro 5-8. Esse fato evidencia a falta de um padrão de monitoramento da qualidade das águas para os diferentes empreendimentos hidrelétricos e resultou em um fator limitante da pesquisa na tentativa de comparar os resultados de alterações da qualidade das águas dos quatro empreendimentos.

Quadro 5-8 – Total de parâmetros de qualidade das águas analisados que são comuns as quatro UHEs

Parâmetros comuns as quatro UHEs		
Temp.	DBO	
pН	Cl-a	
OD	N-NO ₃ -	
CE	$N-NO_2$	
Redox	$N-NH_4^+$	
Transp.	\mathbf{P}_{T}	
Turb.	Cl-	
SDT		
15 parâmetros		

Após a aplicação do teste de hipóteses não-paramétrico U de Mann-Whitney, foram identificados os parâmetros que apresentaram alteração significativa com maior frequência, totalizando 12, 15, 5 e 22 parâmetros supostamente mais importantes para explicar a alteração

da qualidade das águas nos reservatórios e a jusante das barragens das UHEs Belo Monte, Jirau, Santo Antônio do Jari e Teles Pires, respectivamente.

A Tabela 5-25 apresenta a lista de parâmetros que apresentaram alteração significativa com maior frequência por UHE, bem como a porcentagem desses parâmetros em relação ao total analisado em cada empreendimento. A porcentagem foi calculada para facilitar comparações, já que os números de parâmetros analisados por UHE são distintos.

Tabela 5-25 – Lista e porcentagens de parâmetros que apresentaram alteração significativa com maior frequência por UHE

U	HE Belo Monte	UHE Jirau	UHE Santo Antônio do Jari	UHE Teles Pires
	Redox	OD	Transp.	Ca^{2+}
	Transp.	CIT	OD	Cl ⁻
	Cianof.	COT	Redox	$\mathrm{Po}_{\mathrm{rg.}}$
	$N-NH_4^+$	Carb. total	P_{T}	P_{T}
	Mg^{2+}	CTerm.	SDT	N-NO ₃ -
	NTK	SDT	-	Na^+
	P_T	Temp.	-	ST
	Ca^{2+}	Alcal.	-	S^{2-}
	$\mathrm{SO_4}^{2\text{-}}$	SO_4^{2-}	-	$\mathrm{Al}_{\mathrm{diss}}$
	SSI	рН	-	SiO_2
	E. coli	CE	-	Transp.
	SST	ST	-	COD
	-	Cl-a	-	$\mathrm{Fe}_{\mathrm{diss}}$
	-	Fe_T	-	Temp.
	-	S^{2-}	-	Cl-a
	-	-	-	Dureza
	-	-	-	Turb.
	-	-	-	Alcal.
	-	-	-	CTerm.
	-	-	-	CE
	-	-	-	pН
			<u> </u>	SDT
1	12	15	5	22
1	33	34	23	40
	36,4	44,1	21,7	55,0

Conforme os resultados mostrados Tabela 5-25, a UHE Santo Antônio do Jari apresentou menor número (5) e porcentagem (21,7%) de parâmetros que alteraram significativamente com maior frequência. Tal resultado parece indicar que essa UHE causou menor impacto sobre a qualidade das águas superficiais após o enchimento do reservatório. O reservatório da

UHE Santo Antônio do Jari é pouco dendrítico e possui volume muito menor que das demais usinas, além de apresentar, junto com a UHE Jirau, os menores tempos de detenção hidráulica médios (ver Tabela 4-1). Provavelmente, esses fatores tenham sido importantes para a constatação de menor número e porcentagem de parâmetros que alteraram significativamente com maior frequência nessa UHE.

Outro resultado importante é o fato da UHE Teles Pires ter apresentado maior número (22) e porcentagem (55,0%) de parâmetros que alteraram significativamente com maior frequência. Cabe destacar que essa UHE é a única que adotou frequência mensal de monitoramento da qualidade das águas em ambas as fases (pré e pós-enchimento), sendo que as demais adotaram frequência trimestral. Adicionalmente, o reservatório da UHE Teles Pires possui o maior tempo de detenção hidráulica médio entre os reservatórios das UHEs estudadas.

É provável que a frequência de monitoramento mensal e o maior TDH_{médio} do reservatório tenham sido preponderantes para identificação de maior número de parâmetros que alteraram significativamente com maior frequência na UHE Teles Pires. Esse resultado sugere a importância da frequência de amostragem para aferir a variabilidade da qualidade das águas e, consequentemente, identificar as alterações dos parâmetros após a formação dos reservatórios, além de reforçar a notoriedade do TDH com uma variável importante para análise de impactos da formação de reservatórios sobre a qualidade das águas.

Considerando os quatro empreendimentos, foram identificados 36 parâmetros (66,7% do total analisado) que apresentaram alteração significativa com maior frequência, conforme Quadro 5-9.

Quadro 5-9 – Lista de parâmetros da qualidade das águas que alteraram significativamente com maior frequência, considerando as quatro UHEs

Temp.	Carb. total	N-NH ₄ ⁺
рН	COT	P_{T}
OD	COD	$\mathrm{Po}_{\mathrm{rg.}}$
CE	CIT	Ca^{2^+}
Redox	Cianof.	$egin{aligned} Po_{rg.} \ Ca^{2+} \ Mg^{2+} \ SO_4^{2-} \end{aligned}$
Transp.	Cl-a	$\mathrm{SO_4}^{2\text{-}}$
Turb.	CTerm.	Na^+
ST	E. coli	Cl ⁻
SST	Alcal.	S^{2-}
SSI	Dureza	Fe_T

36 parâmetros		
${ m SiO_2}$	N-NO ₃ -	$\mathrm{Al}_{\mathrm{diss}}$
SDT	NTK	Fe_{diss}

Dos 36 parâmetros, 14 alteraram significativamente com maior frequência em mais de um empreendimento hidrelétrico (Quadro 5-10).

Quadro 5-10 – Lista de parâmetros da qualidade das águas que alteraram significativamente com maior frequência em mais de uma UHE

	1	
Temp.	Cl-a	
рН	CTerm.	
OD	Alcal.	
CE	\mathbf{P}_{T}	
Redox	P_{T} Ca^{2+} SO_{4}^{2-} S^{2-}	
Transp.	SO_4^{2-}	
SDT	S^{2-}	
14 parâmetros		

Destaca-se que, embora os enchimentos dos reservatórios das UHEs sejam considerados neste trabalho como o principal fator contribuidor para a alteração da qualidade das águas superficiais dos corpos d'água impactados, outros fatores também podem ter contribuído, tais como a evolução do uso e ocupação do solo e eventos hidroclimáticos (relação chuva-vazão) nas bacias hidrográficas em que os empreendimentos hidrelétricos estão inseridos.

Neste sentido, como é complexo ser assertivo, ou seja, apontar exatamente para os fatores que contribuíram para a alteração significativa de cada parâmetro, é recomendável que os 36 parâmetros listados no Quadro 5-9 estejam presentes em monitoramentos da qualidade das águas de futuras UHEs.

Já os 14 parâmetros listados no Quadro 5-10 devem ser tratados como imprescindíveis em monitoramentos de futuras UHEs, já que foram identificados nesta pesquisa como os parâmetros mais importantes para explicar a alteração da qualidade das águas após o enchimento dos reservatórios.

No que se refere à análise espacial da alteração da qualidade das águas, observou-se que todos os pontos localizados nos reservatórios e nos trechos de rio imediatamente a jusante das barragens apresentaram alterações significativas. Assim, foram observados impactos nas águas superficiais em toda a extensão dos reservatórios, incluindo o trecho inicial dos

reservatórios, onde teoricamente prevalecem características físico-químicas e biológicas mais fluviais que lacustres (QUEIROZ JUNIOR, 2016; SERAFIM-JÚNIOR, 2016; DODDS; WHILES, 2020). Foram observadas também que, no geral, algumas alterações da qualidade das águas superficiais observadas nos reservatórios, principalmente na região mais próxima à barragem, estenderam-se para jusante dos barramentos.

Outra observação importante é que alguns pontos de monitoramento localizados em corpos d'água de menores dimensões na fase pré-enchimento, próximos à confluência com os rios principais, e que foram inundados pelos reservatórios no pós-enchimento (formando o início de braços ou pontos dendríticos nos reservatórios), destacaram-se quanto ao número de parâmetros da qualidade das águas que alteraram significativamente em todos os quatro empreendimentos hidrelétricos analisados.

Supostamente, além das alterações na qualidade das águas oriundas da transformação do ambiente aquático (de lótico para lêntico), também ocorreram nesses pontos alterações relacionadas ao efeito de inundação do corpo d'água principal (onde foi implantada a barragem) sobre os corpos d'água menores, sendo que algumas características físico-químicas da qualidade das águas do corpo d'água principal passaram a prevalecer sobre os pequenos corpos d'água na fase pós-enchimento. Essa hipótese talvez explique o destaque desses pontos quanto ao número de parâmetros da qualidade das águas que alteraram significativamente pós-enchimento.

6 CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

Este trabalho utilizou técnicas estatísticas para a avaliação da qualidade das águas superficiais em reservatórios e em trechos de rio a jusante de quatro importantes usinas hidrelétricas implantadas na Amazônia (UHEs Belo Monte, Jirau, Santo Antônio de Jari e Teles Pires).

A técnica estatística multivariada utilizada (Análise de *Cluster*) foi eficiente para a identificar distinções entre os dendogramas obtidos para as fases pré e pós-enchimento nos quatro empreendimentos, sugerindo alterações da qualidade das águas após os enchimentos dos reservatórios.

O teste estatístico de hipóteses não-paramétrico U de Mann-Whitney possibilitou a identificação dos parâmetros que mostraram alteração significativa após os enchimentos dos reservatórios.

Considerando os quatro empreendimentos hidrelétricos estudados, após a aplicação da etapa de sistematização e organização dos bancos de dados, um total de 45 pontos de monitoramento e 54 parâmetros de qualidade das águas distintos foram analisados.

Dos 54 parâmetros analisados, apenas 15 (27,8% do total) são comuns as quatro UHEs, o que evidencia a falta de um padrão de monitoramento da qualidade das águas para os diferentes empreendimentos hidrelétricos.

Observaram-se menores impactos sobre a qualidade das águas superficiais na UHE Santo Antônio do Jari, que dispõe de um reservatório pouco dendrítico e com volume muito inferior aos reservatórios das demais UHEs analisadas, além de apresentar, junto com a UHE Jirau, os menores tempos de detenção hidráulica médios. Esse resultado sugere que reservatório de menor porte, pouco dendrítico e com baixo THD_{médio} é potencialmente menos impactante para a qualidade das águas superficiais.

Observou-se também maior número de parâmetros que alteraram significativamente com maior frequência na UHE Teles Pires, empreendimento que possui reservatório com volume muito menor que os reservatórios das UHEs Belo Monte e Jirau. Provavelmente, a frequência de monitoramento da qualidade das águas mensal e o maior TDH_{médio} do reservatório tenham sido preponderantes para identificação de maior número de parâmetros que alteraram significativamente com maior frequência na UHE Teles Pires. Esse resultado sugere a importância da frequência de amostragem para aferir a variabilidade da qualidade das águas e,

consequentemente, identificar as alterações dos parâmetros após a formação dos reservatórios, além de reforçar a notoriedade do TDH com uma variável importante para análise de impactos de reservatórios sobre a qualidade das águas.

Considerando os quatro empreendimentos, foram identificados 36 parâmetros que apresentaram alteração significativa com maior frequência (em 40% ou mais de pontos de monitoramento de uma UHE). Recomenda-se que esses parâmetros que alteraram significativamente com maior frequência estejam presentes em monitoramentos de futuras UHEs.

Dos 36 parâmetros, 14 alteraram significativamente com maior frequência em mais de uma UHE. São eles: temperatura da água, pH, oxigênio dissolvido, condutividade elétrica, potencial redox, transparência, sólidos dissolvidos totais, clorofila-a, coliformes termotolerantes, alcalinidade, fósforo total e os íons cálcio, sulfato e sulfeto. Esses parâmetros devem ser tratados como imprescindíveis em monitoramentos de futuras UHEs, já que foram identificados na presente pesquisa como os parâmetros mais importantes para explicar a alteração da qualidade das águas após os enchimentos dos reservatórios.

Todos os pontos localizados nos reservatórios (41 pontos) e nos trechos de rio imediatamente a jusante das barragens (4 pontos) apresentaram alterações significativas de qualidade das águas. Assim, foram observadas alterações nas águas superficiais em toda a extensão dos reservatórios e também em trechos de rio a jusante dos barramentos.

Pontos de monitoramento localizados em corpo d'água de menores dimensões na fase préenchimento, próximos à confluência com os rios principais, e que foram inundados pelos reservatórios no pós-enchimento (formando o início de braços ou pontos dendríticos nos reservatórios), destacaram-se quanto ao número de parâmetros da qualidade das águas que alteraram significativamente em todos os quatro empreendimentos hidrelétricos analisados. É recomendável que corpos d'água localizados próximos à confluência com o rio principal, onde serão formados braços em reservatórios de futuras UHEs, sejam devidamente monitorados em ambas as fases, pré e pós-enchimento.

Recomenda-se que os órgãos ambientais, responsáveis pelo processo de licenciamento ambiental, elaborem diretrizes mínimas para nortear o monitoramento da qualidade das águas de futuras UHEs, assim permitindo aferir de forma mais adequada e padronizada os impactos da formação de reservatórios artificiais sobre os corpos d'água.

Recomenda-se que em trabalhos acadêmicos futuros sejam exploradas as variáveis uso e ocupação do solo e eventos hidroclimáticos (relação chuva-vazão) na bacia hidrográfica em que o empreendimento hidrelétrico está inserido, com o objetivo de distinguir de forma mais assertiva os parâmetros que alteraram significativamente devido ao enchimento do reservatório daqueles que alteraram devido ao uso e ocupação do solo e aos eventos hidroclimáticos na bacia.

Por fim, recomenda-se que também em trabalhos acadêmicos futuros seja avaliado o impacto da frequência de monitoramento sobre os resultados de alteração da qualidade das águas. Acredita-se que a frequência de monitoramento mensal tenha sido importante para os resultados observados na UHE Teles Pires.

REFERÊNCIAS

ABDELHADY, A. A.; FÜRSICH, F. T. Palaeobiogeography of the Bajocian-Oxfordian macrofauna of Gebel Maghara (North Sinai, Egypt): implications for eustacy and basin topography. **Palaeogeography**, v. 417, p. 261-273, 2015.

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Sistema de Informações Geográficas do Setor Elétrico (SIGEL). Disponível em: https://sigel.aneel.gov.br/Down/. Acesso em 20 abr. 2019.

ALBUQUERQUE, Macio Augusto. Estabilidade em análise de agrupamento. 2005. 64 f. Dissertação (Mestrado em Biometria), Universidade Federal Rural de Pernambuco, Recife, 2005.

ALBUQUERQUE, M. A.; SILVA, E. L.; BARROS, K. N. N. O.; XAVIER JUNIOR, S. F. A. Comparação entre coeficientes similaridade uma aplicação em ciências florestais. **Matemática e Estatística em Foco**, v. 4, n. 2, p. 102-114, 2016.

ANSARI, A. A.; SINGH, G. S.; LANZA, G. R.; RAST, W. (Ed.). Eutrophication: causes, consequences and control. Springer Science & Business Media, 2010.

ANTENEH, Y.; ZELEKE, G.; GEBREMARIAM, E. Assessment of surface water quality in Legedadie and Dire catchments, Central Ethiopia, using multivariate statistical analysis. **Acta Ecologica Sinica**, v. 38, n. 2, p. 81-95, 2018.

BABEL, M. S.; DINH, C. N.; MULLICK, M. R. A.; NANDURI, U. V. Operation of a hydropower system considering environmental flow requirements: a case study in La Nga river basin, Vietnam. **Journal of Hydro-environment Research**, v. 6, n. 1, p. 63-73, 2012.

BAIRD, C.; CANN, M. Química ambiental. Bookman, 2011.

BALDWIN, D. S.; WILSON, J.; GIGNEY, H.; BOULDING, A. Influence of extreme drawdown on water quality downstream of a large water storage reservoir. **River research and Applications**, v. 26, n. 2, p. 194-206, 2010.

BARROSO, Natália Caixeta. **Categorização de dados quantitativos para estudos de diversidade genética**. 2010. 97 f. Dissertação (Mestrado em Estatística Aplicada e Biometria), Universidade Federal de Viçosa, Viçosa, 2010.

BENGRAÏNE, K.; MARHABA, T. F. Using principal component analysis to monitor spatial and temporal changes in water quality. **Journal of Hazardous Materials**, v. 100, n. 1-3, p. 179-195, 2003.

BRASIL. **Lei no 6.938, de 31 de agosto de 1981**. Institui a Política Nacional do Meio Ambiente. Brasília, DF: Presidência da República. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l6938.htm. Acesso em: 12 mai. 2019.

BRASIL. **Resolução Conama n. 001, de 23 de janeiro de 1986**. Estabelece as definições, as responsabilidades, os critérios básicos e as diretrizes gerais para uso e implementação da Avaliação de Impacto Ambiental como um dos instrumentos da Política Nacional do Meio Ambiente. Brasília, DF: Ministério do Meio Ambiente. Disponível em: http://www2.mma.gov.br/port/conama/res/res86/res0186.html. Acesso em: 12 mai. 2019.

BRASIL. Resolução Conama n. 237, de 19 de dezembro de 1997. Revisa os procedimentos e critérios utilizados no licenciamento ambiental, de forma a efetivar a utilização do sistema de licenciamento como instrumento de gestão ambiental, instituído pela Política Nacional do

- Meio Ambiente. Brasília, DF: Ministério do Meio Ambiente. Disponível em: http://www2.mma.gov.br/port/conama/res/res97/res23797.html. Acesso em: 12 mai. 2019.
- BRASIL. **Resolução Conama n. 357, de 17 de março de 2005**. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Brasília, DF: Ministério do Meio Ambiente. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Acesso em: 04 out. 2019.
- BRASIL. **Resolução Normativa ANEEL n. 425, de 01 de fevereiro de 2011**. Aprova os critérios para definição das instalações de geração de energia elétrica de interesse do sistema elétrico interligado e daquelas passíveis de descentralização das atividades de controle e fiscalização. Brasília, DF: Agência Nacional de Energia Elétrica. Disponível em: http://www.aneel.gov.br/documents/656877/14486448/bren2011425.pdf/7202b615-7335-48a2-bd44-ed68d9020e5a?version=1.0. Acesso em: 03 jul. 2019.
- BRASIL. **Resolução Normativa ANEEL n. 673, de 04 de agosto de 2015**. Estabelece os requisitos e procedimentos para a obtenção de outorga de autorização para exploração de aproveitamento de potencial hidráulico com características de Pequena Central Hidrelétrica PCH. Brasília, DF: Agência Nacional de Energia Elétrica. Disponível em: http://www2.aneel.gov.br/cedoc/ren2015673.pdf. Acesso em: 15 abr. 2019.
- BRASIL, J.; ATTAYDE, J. L.; VASCONCELOS, F. R.; DANTAS, D. D.; HUSZAR, V. L. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. **Hydrobiologia**, v. 770, n. 1, p. 145-164, 2016.
- BREDA, Luís de Souza. **Avaliação espaço-temporal da qualidade da água do reservatório da usina hidrelétrica de Funil Região Sul de Minas Gerais**. 2011. 294 f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2011.
- BONINI, I.; PESSOA, M. J. G.; JÚNIOR, S. S. Faces da produção agrícola na Amazônia mato-grossense: tipos de exploração, origem dos agricultores e impactos na conservação ambiental no município de Alta Floresta (MT). **Novos Cadernos NAEA**, v. 16, n. 1, 2013.
- BUSTOS-DÍAZ, E. D.; BARONA-GÓMEZ, F.; CIBRIÁN-JARAMILLO, A. Cyanobacteria in Nitrogen-Fixing Symbioses. In: **Cyanobacteria**. Academic Press, 2019. p. 29-42.
- CALAZANS, Giovanna Moura. Avaliação e proposta de adequação da rede de monitoramento da qualidade das águas superficiais das sub-bacias do Rio das Velhas e do Rio Paraopeba utilizando técnicas estatísticas multivariadas. 2015. 196 f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2015.
- ÇAMDEVÝREN, H.; DEMÝR, N.; KANIK, A.; KESKÝN, S. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. **Ecological Modelling**, v. 181, n. 4, p. 581-589, 2005.
- CHANG, J.; LI, Y.; YUAN, M.; WANG, Y. Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China. **Energy**, v. 135, p. 23-31, 2017.
- CHOU, J. S.; HO, C. C.; HOANG, H. S. Determining quality of water in reservoir using machine learning. **Ecological informatics**, v. 44, p. 57-75, 2018.
- CHOW, M. F.; SHIAH, F. K.; LAI, C. C.; KUO, H. Y.; WANG, K. W.; LIN, C. H.; CHEN, T. Y.; KOBAYASHI, Y.; KO, C. Y. Evaluation of surface water quality using multivariate

- statistical techniques: a case study of Fei-Tsui Reservoir basin, Taiwan. **Environmental Earth Sciences**, v. 75, n. 1, p. 6, 2016.
- CID, F. D.; ANTÓN, R. I.; PARDO, R.; VEGA, M.; CAVIEDES-VIDAL, E. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina. **Analytica chimica acta**, v. 705, n. 1-2, p. 243-252, 2011.
- COELHO-BOTELHO, M. J. C.; CARVALHO, M. C.; KUHLMANN, M. L.; SALVADOR, M. E. P.; DE SOUZA, R. R.; WATANABE, H. M.; GUERESCHI, R. M. Desenvolvimento de índices biológicos para o biomonitoramento em reservatórios do estado de São Paulo. **São Paulo: CETESB**, 2006.
- COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO (CETESB). **Apêndice E Significado Ambiental das Variáveis de Qualidade**. 2017. Disponível em: https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2018/06/Ap%C3%A Andice-E-Significado-Ambiental-das-Vari%C3%A1veis-de-Qualidade.pdf. Acesso em: 01 out. 2019.
- COMPANHIA HIDRELÉTRICA TELES PIRES (CHTP). **Projeto Básico Ambiental (PBA) UHE Teles Pires**. 2011. Disponível em: http://licenciamento.ibama.gov.br/Hidreletricas/Teles%20Pires/PBA/. Acesso em: 25 nov. 2019.
- CREMONA, F.; TUVIKENE, L.; HABERMAN, J.; NÕGES, P.; NÕGES, T. Factors controlling the three-decade long rise in cyanobacteria biomass in a eutrophic shallow lake. **Science of The Total Environment**, v. 621, p. 352-359, 2018.
- DĄBKOWSKI, S. L.; BĄK, Ł. The quantity of sand fraction sediment in reservoirs as the basis of an assessment of the bedload transport from a reservoir catchment. **International Journal of Sediment Research**, v. 33, n. 4, p. 385-394, 2018.
- DALU, T.; WASSERMAN, R. J. Cyanobacteria dynamics in a small tropical reservoir: understanding spatio-temporal variability and influence of environmental variables. **Science of the total environment**, v. 643, p. 835-841, 2018.
- DOAN, P. T. K.; NÉMERY, J.; SCHMID, M.; GRATIOT, N. Eutrophication of turbid tropical reservoirs: scenarios of evolution of the reservoir of Cointzio, Mexico. **Ecological informatics**, v. 29, p. 192-205, 2015.
- DODDS, W. K.; WHILES, M. R. Lakes and Reservoirs: Physiography. Freshwater Ecology, 2020. p.155-187.
- ELETROBRÁS. **Potencial Hidrelétrico Brasileiro por Bacias Dezembro de 2018**. 2018. Disponível em:
- https://eletrobras.com/pt/AreasdeAtuacao/geracao/sipot/Potencial%20Hidrel%C3%A9trico%20Brasileiro%20por%20Bacias%20-%20Dezembro%202018.pdf. Acesso em: 16 mai. 2019.
- EMPRESA DE PESQUISA ENERGÉTICA (EPE). **Balanço Energético Nacional 2018**. 2018. Disponível em: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-303/topico-419/BEN2018__Int.pdf. Acesso em: 25 mar. 2019.
- ENERGIA SUSTENTÁVEL DO BRASIL (ESBR). **Projeto Básico Ambiental UHE Jirau**. 2009. Disponível em: http://licenciamento.ibama.gov.br/Hidreletricas/Jirau%20-%2002001.002715_2008-88/. Acesso em: 21 nov. 2019.
- ESTEVES, F. A. Fundamentos de limnologia. 826p. 2011.

- FAGNANI, E.; GUIMARÃES, J. R.; MOZETO, A. A.; FADINI, P. S. Sulfetos volatilizáveis por acidificação e metais extraídos simultaneamente na avaliação de sedimentos de água doce. **Química Nova**, 2011.
- FANNY, C.; VIRGINIE, A.; JEAN-FRANÇOIS, F.; JONATHAN, B.; MARIE-CLAUDE, R.; SIMON, D. Benthic indicators of sediment quality associated with run-of-river reservoirs. **Hydrobiologia**, v. 703, n. 1, p. 149-164, 2013.
- FEITOSA, F. A. C.; MANOEL FILHO, J.; FEITOSA, E. C.; DEMETRIO, J. G. A. Hidrogeologia: conceitos e aplicações. rev. e ampl. **Rio de Janeiro: CPRM**, 2008.
- FERREIRA, D. F. Estatística multivariada. Lavras: Editora Ufla, 2008.
- FERREIRA, D. M.; CUNHA, C. Numerical simulation of the temperature dynamics at Rio Verde Reservoir. **Engenharia Sanitaria e Ambiental**, v. 18, n. 1, p. 83-93, 2013.
- GAUTHIER, C.; MORAN, E. F. Public policy implementation and basic sanitation issues associated with hydroelectric projects in the Brazilian Amazon: Altamira and the Belo Monte dam. **Geoforum**, v. 97, p. 10-21, 2018.
- GHOLAMI, S.; SRIKANTASWAMY, S. Statistical multivariate analysis in the assessment of river water quality in the vicinity of KRS Dam, Karnataka, India. **Natural resources research**, v. 18, n. 3, p. 235-247, 2009.
- GIANESELLA, S. M. F.; SALDANHA-CORRÊA, F. M. P.; TEIXEIRA, C. Tidal effects on nutrients and phytoplankton distribution in Bertioga Channel, São Paulo, Brazil. **Aquatic Ecosystem Health & Management**, v. 3, n. 4, p. 533-544, 2000.
- GOLDEMBERG, J. O estado atual do setor elétrico brasileiro. **Revista USP**, n. 104, p. 37-44, 2015.
- HAIR, J. F.; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E.; TATHAM, R. L. **Multivariate Data Analysis**. 816p. 2009.
- HARGROVE, W. L.; JOHNSON, D.; SNETHEN, D.; MIDDENDORF, J. From Dust Bowl to Mud Bowl: Sedimentation, conservation measures, and the future of reservoirs. **Journal of soil and water conservation**, v. 65, n. 1, p. 14A-17A, 2010.
- HELENA, B.; PARDO, R.; VEGA, M.; BARRADO, E.; FERNANDEZ, J. M.; FERNANDEZ, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. **Water research**, v. 34, n. 3, p. 807-816, 2000.
- HOLLANDER, M.; WOLFE, D. A.; CHICKEN, E. **Nonparametric statistical methods**. John Wiley & Sons, 2013.
- HU, M.; HUANG, G. H.; SUN, W.; LI, Y.; DING, X.; AN, C.; ZHANG, X.; LI, T. Multiobjective ecological reservoir operation based on water quality response models and improved genetic algorithm: A case study in Three Gorges Reservoir, China. **Engineering Applications of Artificial Intelligence**, v. 36, p. 332-346, 2014.
- HUANG, L.; FANG, H.; REIBLE, D. Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir. **Water research**, v. 85, p. 393-403, 2015.
- ISTVÁNOVICS, V. Eutrophication of lakes and reservoirs. Lake ecosystem ecology. Elsevier, San Diego, CA, p. 47-55, 2010.

- INTERNATIONAL HYDROPOWER ASSOCIATION (IHA). **Hydropower status report:** sector trends and insights. 2019. Disponível em: https://www.hydropower.org/sites/default/files/publications-docs/2019 hydropower status report 0.pdf. Acesso em: 02 jul. 2019.
- JARI ENERGIA (ECE Participações). **Estudo de Impacto Ambiental (EIA) UHE Santo Antônio do Jari**. 2009. Disponível em: http://licenciamento.ibama.gov.br/Hidreletricas/Santo%20Antonio%20(Rio%20Jari)/EIA_RIMA%20Agosto%202009/. Acesso em: 25 nov. 2019.
- JORGENSEN, S. E.; LOFFLER, H.; RAST, W.; STRASKRABA, M. Lake and reservoir management. Elsevier, 2005.
- JUNK, W. J. (Ed.). The central Amazon floodplain: ecology of a pulsing system. Springer Science & Business Media, 2013.
- KAZI, T. G.; ARAIN, M. B.; JAMALI, M. K.; JALBANI, N.; AFRIDI, H. I.; SARFRAZ, R. A.; BAIG J. A.; SHAH, Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. **Ecotoxicology and environmental safety**, v. 72, n. 2, p. 301-309, 2009.
- KIRILLIN, G.; SHATWELL, T. Generalized scaling of seasonal thermal stratification in lakes. **Earth-Science Reviews**, v. 161, p. 179-190, 2016.
- KRASA, J.; DOSTAL, T.; JACHYMOVA, B.; BAUER, M.; DEVATY, J. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs—Watershed analyses using WaTEM/SEDEM. **Environmental research**, v. 171, p. 470-483, 2019.
- KONDOLF, G. M.; GAO, Y.; ANNANDALE, G. W.; MORRIS, G. L.; JIANG, E.; ZHANG, J.; CAO, Y.; CARLING, P.; FU, K.; GUO, Q.; HOTCHKISS, R.; PETEUIL, C.; SUMIL, T.; WANG, H. W.; WANG, Z.; WEIL, Z.; WU, B.; WU, C.; YANG, C. T. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. **Earth's Future**, v. 2, n. 5, p. 256-280, 2014.
- KONDOLF, G. M.; SCHMITT, R. J.; CARLING, P.; DARBY, S.; ARIAS, M.; BIZZI, S.; CASTELLETTI, A.; COCHRANE, T. A.; GIBSON, S.; KUMMU, M.; OEURNG, C.; RUBIN, Z.; WILD, T. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. **Science of The Total Environment**, v. 625, p. 114-134, 2018.
- LESSA, A. C. R.; DOS SANTOS, M. A.; MADDOCK, J. E. L.; DOS SANTOS BEZERRA, C. Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: The case of Belo Monte hydroelectric plant. **Renewable and Sustainable Energy Reviews**, v. 51, p. 1728-1736, 2015.
- LI, B.; YANG, G.; WAN, R.; HÖRMANN, G.; HUANG, J.; FOHRER, N.; ZHANG, L. Combining multivariate statistical techniques and random forests model to assess and diagnose the trophic status of Poyang Lake in China. **Ecological Indicators**, v. 83, p. 74-83, 2017.
- LI, Y.; HUANG, T.; TAN, X.; ZHOU, Z.; MA, W. Destratification and oxygenation efficiency of a water-lifting aerator system in a deep reservoir: Implications for optimal operation. **Journal of Environmental Sciences**, v. 73, p. 9-19, 2018.
- LI, T.; LI, S.; LIANG, C.; BUSH, R. T.; XIONG, L.; JIANG, Y. A comparative assessment of Australia's Lower Lakes water quality under extreme drought and post-drought conditions

- using multivariate statistical techniques. **Journal of Cleaner Production**, v. 190, p. 1-11, 2018.
- LI, Z.; MA, J.; GUO, J.; PAERL, H. W.; BROOKES, J. D.; XIAO, Y.; FANG, F.; OUYANG, W.; LUNHUI, L. Water quality trends in the Three Gorges Reservoir region before and after impoundment (1992–2016). **Ecohydrology & Hydrobiology**, 2018.
- LIBÂNIO, M. Fundamentos de qualidade e tratamento de água. Átomo, 2008.
- LIU, M.; ZHANG, Y.; SHI, K.; ZHU, G.; WU, Z.; LIU, M.; ZHANG, Y. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. **Science of the Total Environment**, v. 651, p. 614-624, 2019.
- LIU, W.; LI, S.; BU, H.; ZHANG, Q.; LIU, G. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors. **Environmental Science and Pollution Research**, v. 19, n. 3, p. 858-870, 2012
- LOBATO, T. C.; HAUSER-DAVIS, R. A.; OLIVEIRA, T. F.; MACIEL, M. C.; TAVARES, M. R. M.; SILVEIRA, A. M.; SARAIVA, A. C. F. Categorization of the trophic status of a hydroelectric power plant reservoir in the Brazilian Amazon by statistical analyses and fuzzy approaches. **Science of the Total Environment**, v. 506, p. 613-620, 2015.
- LU, S.; WU, B.; WANG, H.; OUYANG, N.; GUO, S. Hydro-ecological impact of water conservancy projects in the Haihe River Basin. **Acta oecologica**, v. 44, p. 67-74, 2012.
- MEES, A. Qualidade de água em reservatórios. Unidade I. Brasília: ANA, 2016.
- MINISTÉRIO DE MINAS E ENERGIA (MME). **Plano Decenal de Expansão de Energia 2027**. 2018. Disponível em: http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/Documents/PDE%202027_aprovado_OFICIAL.pdf. Acesso em: 23 abr. 2019.
- MUANGTHONG, S.; SHRESTHA, S. Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. **Environmental monitoring and assessment**, v. 187, n. 9, p. 548, 2015.
- NAGHETTINI, M.; PINTO, E. J. Ciências da Terra para a Sociedade. CPRM ed. Belo Horizonte: 561p. 2007.
- NOORI, R.; BERNDTSSON, R.; ADAMOWSKI, J. F.; ABYANEH, M. R. Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran. **Journal of Hydrology: Regional Studies**, v. 19, p. 279-286, 2018.
- NORTE ENERGIA. **Projeto Básico Ambiental UHE Belo Monte**. 2011. Disponível em: http://licenciamento.ibama.gov.br/Hidreletricas/Belo%20Monte%20-%2002001.001848 2006-75/PBA/. Acesso em: 04 ago. 2019.
- OHLY, J. J.; JUNK, W. J. Multiple use of Amazonian flood plains: contining ecological conditions, requirements for environmental protection and socioeconomic needs. p. 283-300, in: Paduck (Ed.), Varzea: Diversity, Development and Conservation of Amazonia's Whitewater Floodplains, New York Botanical Gardens, p. 407, 1999.
- OJEA, E.; MARTIN-ORTEGA, J.; CHIABAI, A. Defining and classifying ecosystem services for economic valuation: the case of forest water services. **Environmental science & policy**, v. 19, p. 1-15, 2012.
- PAIVA, M. L.; WALLY, M. K.; BAUMGARTEN, M. G. Z. Especiação do ferro em águas subterrâneas: otimização do método espectrofotométrico na região da luz visível. **VIII MPU**, 2009.

- PALMA, P.; LEDO, L.; SOARES, S.; BARBOSA, I. R.; ALVARENGA, P. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal). **Science of the total environment**, v. 470, p. 780-790, 2014.
- PARK, Y. S.; KWON, Y. S.; HWANG, S. J.; PARK, S. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. **Environmental modelling & software**, v. 55, p. 214-221, 2014.
- QIUHUA, L.; LIHAI, S.; TINGJING, G.; LEI, Z.; TENG, O.; GUOJIA, H.; CHUAN, C.; CUNXIONG, L. Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of China. **Acta Ecologica Sinica**, v. 34, n. 1, p. 72-78, 2014.
- QUEIROZ JUNIOR, Vilson Sousa. **Compartimentação aquática em reservatório a partir de variáveis limnológicas e dados radiométricos**. 2016. 114 f. Dissertação (Mestrado em Geografia) Universidade Federal de Goiás, Jataí, 2016.
- REIS, E. Estatística multivariada aplicada. Edições Sílabo, 2001.
- RODRIGUES, Leon Maximiliano. Alterações de características limnológicas resultantes da transformação rio-reservatório (usina hidrelétrica Dona Francisca, RS, Brasil). 2002. 90 f. Dissertação (Mestrado em Ecologia) Universidade Federal do Rio Grande do Sul, Porto Alegre, 2002.
- RODRIGUES-FILHO, J. L.; ABE, D. S.; GATTI-JUNIOR, P.; MEDEIROS, G. R.; DEGANI, R. M.; BLANCO, F. P.; FARIA, C. R. L.; CAMPANELLI, L.; SOARES, F. S.; SIDAGIS-GALLI, C. V.; TUNDISI, J. E. M.; MATSMURA-TUNDISI, T.; TUNDISI, J. G.; TEIXEIRA-SILVA, V. Spatial patterns of water quality in Xingu River Basin (Amazonia) prior to the Belo Monte dam impoundment. **Brazilian Journal of Biology**, v. 75, n. 3, p. 34-46, 2015.
- SÁNCHEZ, L. E. **Avaliação de impacto ambiental**: conceitos e métodos. São Paulo: Oficina de textos. 2013.
- SCHMITT, R. J. P.; RUBIN, Z.; KONDOLF, G. M. Losing ground-scenarios of land loss as consequence of shifting sediment budgets in the Mekong Delta. **Geomorphology**, v. 294, p. 58-69, 2017.
- SERAFIM-JÚNIOR, M. Qualidade de água em reservatórios. Unidade II. Brasília: ANA, 2016.
- SHRESTHA, S.; KAZAMA, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. **Environmental Modelling & Software**, v. 22, n. 4, p. 464-475, 2007.
- SIMEONOV, V.; EINAX, J. W.; STANIMIROVA, I.; KRAFT, J. Environmetric modeling and interpretation of river water monitoring data. **Analytical and bioanalytical chemistry**, v. 374, n. 5, p. 898-905, 2002.
- SIMEONOV, V.; STRATIS, J. A.; SAMARA, C.; ZACHARIADISB, G.; VOUTSAC, D.; ANTHEMIDIS, A.; KOUIMTZISC, T. Assessment of the surface water quality in Northern Greece. **Water Research**, v. 37, n. 17, p. 4119-4124, 2003.
- SINGH, K. P.; AMRITA, M.; DINESH, M.; SARITA, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) a case study. **Water Research**, v. 38, n. 18, p. 3980-3992, 2004.

- SINGH, K. P.; MALIK, A.; SINHA, S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques A case study. **Analytica Chimica Acta**, v. 538, n. 1-2, p. 355-374, 2005.
- SMITH, V. H.; JOYE, S. B.; HOWARTH, R. W. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, v. 51, n. 1part2, p. 351-355, 2006.
- SOARES, Ana Luiza Cunha. Identificação dos corpos d'água mais impactados das bacias dos rios Piracicaba e Paraopeba e cálculo do risco relativo de violação aos limites preconizados pela legislação ambiental. 2017. 152 f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2017.
- SOARES, Igor Matos. Usina hidrelétrica a fio d'água ou reservatório? Subsídios à tomada de decisão por meio de análise custo-efetividade. 2017. 101 f. Dissertação (Mestrado em Gestão Econômica do Meio Ambiente) Departamento de Economia, Universidade de Brasília, Distrito Federal, 2017.
- SOKAL, R. R.; ROHLF, F. J. The comparison of dendrograms by objective methods. **Taxon**, v. 11, n. 2, p. 33-40, 1962.
- SØNDERGAARD, M. Redox potential. In: **Encyclopedia of Inland Waters**. Pergamon Press, 2009. p. 852-859.
- SONG, K.; WEN, Z.; SHANG, Y.; YANG, H.; LYU, L.; LIU, G.; FANG, C.; DU, J.; ZHAO, Y. Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. **Journal of environmental management**, v. 217, p. 391-402, 2018.
- STUMM, W.; MORGAN, J. J. Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons, 2012.
- THOMAZ, S. M.; BINI, L. M.; ALBERTI, S. M. Limnologia do reservatório de Segredo: padrões de variação espacial e temporal. **Reservatório de Segredo: bases ecológicas para o manejo**. Maringá: Eduem, p. 19-37, 1997.
- TIMPE, K.; KAPLAN, D. The changing hydrology of a dammed Amazon. **Science advances**, v. 3, n. 11, p. e1700611, 2017.
- TRINDADE, Ana Laura Cerqueira. Aplicação de técnicas estatísticas para avaliação de dados de monitoramento de qualidade das águas superficiais da porção mineira da bacia do rio São Francisco. Dissertação (Mestrado em Meio Ambiente, Saneamento e Recursos Hídricos). Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos, Belo Horizonte, Minas Gerais. 181 pg. 2013.
- TUNDISI, J. G. Reservoirs: New challenges for ecosystem studies and environmental management. **Water Security**, v. 4, p. 1-7, 2018.
- TUNDISI, J. G.; MATSUMURA-TUNDISI, T.; CALIJURI, M. do C. Limnology and management of reservoirs in Brazil. In: **Comparative reservoir limnology and water quality management**. Springer, Dordrecht, 1993. p. 25-55.
- TUNDISI, J. G.; MATSUMURA-TUNDISI, T. Integration of research and management in optimizing multiple uses of reservoirs: the experience in South America and Brazilian case studies. In: **Aquatic Biodiversity**. Springer, Dordrecht, 2003. p. 231-242.
- TUNDISI, J. G.; MATSUMURA-TUNDISI, T. Limnologia. 631p. 2008.

- TUNDISI, J. G.; STRASKRABA, M. (Ed.). Theoretical reservoir ecology and its applications. Ann Arbor: International Institute of Ecology, 1999.
- TUNDISI, J. G.; TUNDISI, T. M.; JORGENSEN, S. E. Handbook of inland aquatic ecosystem management. CRC Press, 2012.
- UKPATU, J.; UDOINYANG, E.; UDOH, J. P. The use of agglomerative hierarchical cluster analysis for the assessment of mangrove water quality of Okoro River Estuary, Southeastern Nigeria. **International Journal of Geology, Agriculture and Environmental Science**, v. 3, 2015.
- UNCUMUSAOĞLU, A. A.; AKKAN, T. Assessment of Stream Water Quality Using Multivariate Statistical Techniques. **Polish Journal of Environmental Studies**, v. 26, n. 4, 2017.
- URBANIAK, M.; KIEDRZYŃSKA, E.; ZIELIŃSKI, M.; TOŁOCZKO, W.; ZALEWSKI, M. Spatial distribution and reduction of PCDD/PCDF toxic equivalents along three shallow lowland reservoirs. **Environmental Science and Pollution Research**, v. 21, n. 6, p. 4441-4452, 2014.
- VALENTIN, J. L. Ecologia numérica: uma introdução à análise multivariada de dados ecológicos. Rio de Janeiro: Interciência, 2000.
- VAN CAPPELLEN, P.; MAAVARA, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. **Ecohydrology & Hydrobiology**, v. 16, n. 2, p. 106-111, 2016.
- VAROL, M.; GÖKOT, B.; BEKLEYEN, A.; ŞEN, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. **Catena**, v. 92, p. 11-21, 2012.
- VASCONCELLOS, Gabriel Rodrigues. Avaliação das condições de oxirredução em sistema alagado construído de escoamento horizontal subsuperficial. Dissertação (Mestrado em Meio Ambiente, Saneamento e Recursos Hídricos). Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos, Belo Horizonte, Minas Gerais. 110 pg. 2015.
- VINÇON-LEITE, B.; CASENAVE, C. Modelling eutrophication in lake ecosystems: A review. **Science of the Total Environment**, v. 651, p. 2985-3001, 2019.
- VISSER, P. M.; IBELINGS, B. W.; BORMANS, M.; HUISMAN, J. Artificial mixing to control cyanobacterial blooms: a review. **Aquatic Ecology**, v. 50, n. 3, p. 423-441, 2016.
- VON SPERLING, M. Introdução à qualidade das águas e ao tratamento de esgotos: princípios do tratamento biológico de águas residuárias. Belo Horizonte: UFMG, v. 1, p. 452, 2005.
- VON SPERLING, M. **Introdução à qualidade das águas e ao tratamento de esgotos**. 4. ed. Belo Horizonte: Editora UFMG, 2014, v.1, 472p.
- VON SPERLING, E.; SOUZA, A. D. Long-term monitoring and proposed diffuse pollution control of a tropical reservoir. **Water science and technology**, v. 55, n. 3, p. 161-166, 2007.
- VÖRÖSMARTY, C. J.; MEYBECK, M.; FEKETE, B.; SHARMA, K.; GREEN, P.; SYVITSKI, J. P. Anthropogenic sediment retention: major global impact from registered river impoundments. **Global and planetary change**, v. 39, n. 1-2, p. 169-190, 2003.

- WANG, Y.; SHEN, Z.; NIU, J.; LIU, R. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. **Journal of Hazardous Materials**, v. 162, n. 1, p. 92-98, 2009.
- WANG, Y.; WANG, P.; BAI, Y.; TIAN, Z.; LI, J.; SHAO, X.; MUSTAVICH, L. F.; LI, B. L. Assessment of surface water quality via multivariate statistical techniques: a case study of the Songhua River Harbin region, China. **Journal of Hydro-environment Research**, v. 7, n. 1, p. 30-40, 2013.
- WARD, J. H. Hierarchical grouping to optimize an objective function. **Journal of the American statistical association**, v. 58, n. 301, p. 236-244, 1963.
- WETZEL, R. G. Limnology: lake and river ecosystems. gulf professional publishing, 2001.
- WINEMILLER, K. O.; MCINTYRE, P. B.; CASTELLO, L.; FLUET-CHOUINARD, E.; GIARRIZZO, T.; NAM, S.; STIASSNY, M. L. J. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. **Science**, v. 351, n. 6269, p. 128-129, 2016.
- WU, M. L.; WANG, Y. S.; SUN, C. C.; WANG, H.; DONG, J. D.; HAN, S. H. Identification of anthropogenic effects and seasonality on water quality in Daya Bay, South China Sea. **Journal of Environmental Management**, v. 90, n. 10, p. 3082-3090, 2009.
- WUNDERLIN, D. A.; DIAZ, M. P.; AME, M. V.; PESCE, S. F.; HUED, A. C.; BISTONI, M. A. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquia river basin (Cordoba- Argentina). **Water Research**. 35, 2881–2894, 2001.
- XIN, X. K.; LI, K. F.; FINLAYSON, B.; YIN, W. Evaluation, prediction, and protection of water quality in Danjiangkou Reservoir, China. **Water Science and Engineering**, v. 8, n. 1, p. 30-39, 2015.
- ZARFL, C.; LUMSDON, A. E.; BERLEKAMP, J.; TYDECKS, L.; TOCKNER, K. A global boom in hydropower dam construction. **Aquatic Sciences**, v. 77, n. 1, p. 161-170, 2015.
- ZARFL, C.; LUCÍA, A. The connectivity between soil erosion and sediment entrapment in reservoirs. Current Opinion in Environmental Science & Health, v. 5, p. 53-59, 2018.
- ZEINALZADEH, K.; REZAEI, E. Determining spatial and temporal changes of surface water quality using principal component analysis. **Journal of Hydrology: Regional Studies**, v. 13, p. 1-10, 2017.
- ZHANG, X.; WANG, Q.; LIU, Y.; WU, J.; YU, M. Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. **Environmental Monitoring and Assessment**, v. 173, n. 1-4, p. 17-27, 2011.
- ZHANG, H.; RICHARDSON, P. A.; BELAYNEH, B. E.; RISTVEY, A.; LEA-COX, J.; COPES, W. E.; MOORMAN, G. W.; HONG, C. Recycling irrigation reservoir stratification and implications for crop health and production. **JAWRA Journal of the American Water Resources Association**, v. 52, n. 3, p. 620-631, 2016.
- ZHAO, J.; FU, G.; LEI, K.; LI, Y. Multivariate analysis of surface water quality in the Three Gorges area of China and implications for water management. **Journal of Environmental Sciences**, v. 23, n. 9, p. 1460-1471, 2011.
- ZHAO, Y.; XIA, X. H.; YANG, Z. F.; WANG, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. **Procedia Environmental Sciences**, v. 13, p. 1213-1226, 2012.

APÊNDICE I

Tabelas relacionadas ao Capítulo 5, subcapítulos 5.1.2, 5.2.2, 5.3.2 e 5.4.2 – Análise descritiva dos bancos de dados.

Tabela I.1: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto IDH) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	28,93	29,16	1,68	25,62	31,48	28,49	30,22	-0,64	-0,40	5,88
Condutividade elétrica (µS/cm)	17	23,53	20,00	12,25	12,00	53,00	15,00	27,00	1,57	1,98	11,76
Sólidos dissolvidos totais (mg/L)	17	14,24	12,00	7,50	7,00	32,00	9,00	16,00	1,52	1,80	11,76
pН	17	6,84	6,77	0,47	5,96	7,56	6,53	7,23	-0,15	-1,00	0,00
Potencial redox (mV)	17	110,1	110,0	34,5	48,0	166,1	90,7	134,1	-0,16	-0,42	0,00
Turbidez (UNT)	17	8,18	7,60	3,53	4,30	17,70	5,39	10,40	1,24	1,87	0,00
Clorofila-a (µg/L)	17	7,18	6,10	4,65	0,17	18,74	4,20	8,30	1,09	1,06	5,88
Oxigênio dissolvido (mg/L)	17	6,48	6,52	0,51	5,30	7,17	6,36	6,87	-1,02	0,86	11,76
Transparência (m)	17	0,86	0,80	0,37	0,20	2,00	0,70	1,00	1,59	5,19	11,76
Alcalinidade (mg CaCO ₃ /L)	17	7,89	8,42	2,53	3,56	12,57	6,06	9,90	-0,27	-0,56	0,00
Coliformes totais (NMP/100 mL)	17	4756	2934	6454	304	28272	2014	4839	3,36	12,47	5,88
Escherichia coli (NMP/100 mL)	17	56	60	31	1	121	40	78	0,25	-0,08	0,00
Demanda bioquímica de oxigênio (mg/L)	17	1,40	1,04	1,09	0,30	4,36	0,62	1,96	1,50	2,20	5,88
Nitrogênio total Kjeldahl (mg/L)	17	0,781	0,510	0,970	0,090	4,276	0,310	0,710	3,27	11,81	11,76
Fósforo total (mg/L)	17	0,039	0,029	0,023	0,013	0,097	0,025	0,055	1,32	1,36	0,00
Cianoficeas (cel/mL)	17	433	64	529	0	1375	0	956	0,71	-1,23	0,00
Fluoreto (mg/L)	17	0,054	0,040	0,045	0,008	0,178	0,030	0,066	1,79	3,18	11,76
Cloreto (mg/L)	17	1,153	0,725	0,839	0,280	3,091	0,649	1,505	1,23	0,41	5,88
Nitrito (mg/L)	17	0,001	0,000	0,002	0,000	0,005	0,000	0,002	2,03	4,20	5,88
Brometo (mg/L)	17	0,006	0,001	0,013	0,000	0,052	0,000	0,005	3,13	10,56	11,76
Nitrato (mg/L)	17	0,065	0,046	0,056	0,008	0,166	0,020	0,088	0,98	-0,26	0,00
Fosfato (mg/L)	17	0,002	0,000	0,004	0,000	0,015	0,000	0,001	2,99	9,60	23,53
Sulfato (mg/L)	17	0,183	0,142	0,121	0,005	0,540	0,120	0,248	1,53	4,02	5,88
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,38	5,17	17,65
Sódio (mg/L)	17	1,706	1,657	0,515	0,671	2,553	1,487	2,016	-0,14	-0,22	5,88
Nitrogênio amoniacal (mg/L)	17	0,026	0,009	0,029	0,000	0,093	0,002	0,040	1,19	0,41	0,00
Potássio (mg/L)	17	1,07	1,03	0,41	0,41	1,83	0,78	1,30	0,22	-0,84	0,00
Magnêsio (mg/L)	17	0,604	0,600	0,162	0,193	0,905	0,541	0,685	-0,61	1,74	11,76
Cálcio (mg/L)	17	1,69	1,55	0,63	0,71	3,39	1,36	1,74	1,40	2,55	23,53
Sólidos suspensos totais (mg/L)	17	8,58	8,20	3,17	5,60	16,80	6,20	9,80	1,34	1,54	5,88
Sólidos suspensos inorgânicos (mg/L)	17	5,41	5,25	2,80	0,00	12,00	3,60	6,60	0,67	1,35	5,88
Sólidos suspensos orgânicos (mg/L)	17	3,17	3,00	1,03	1,50	5,60	2,80	3,40	0,67	1,12	23,53
Ferro dissolvido (mg/L)	17	0,275	0,210	0,326	0,060	1,220	0,060	0,322	2,19	4,52	11,76

Tabela I.2: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto IDH) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,81	30,10	1,99	24,70	32,22	29,25	31,30	-1,77	4,35	9,09
Condutividade elétrica (µS/cm)	11	22,09	22,00	7,80	13,00	37,00	16,00	24,00	0,79	0,08	9,09
Sólidos dissolvidos totais (mg/L)	11	14,18	14,00	4,58	9,00	23,00	10,00	16,00	0,80	0,03	0,00
pН	11	6,71	6,55	0,60	6,04	7,80	6,30	7,41	0,86	-0,60	0,00
Potencial redox (mV)	11	219,4	201,1	91,7	88,6	432,0	176,8	226,0	1,36	2,43	27,27
Turbidez (UNT)	11	7,56	6,80	4,27	3,70	18,20	3,80	9,30	1,63	3,35	9,09
Clorofila-a (µg/L)	11	7,19	4,83	5,04	0,67	18,21	3,96	9,95	1,11	1,02	0,00
Oxigênio dissolvido (mg/L)	11	6,29	5,70	0,98	5,34	8,38	5,51	6,94	0,96	0,27	0,00
Transparência (m)	11	1,63	1,60	0,64	0,70	2,60	1,10	2,30	0,21	-1,42	0,00
Alcalinidade (mg CaCO ₃ /L)	11	7,55	8,00	2,44	0,80	10,30	7,30	8,90	-2,37	6,96	9,09
Coliformes totais (NMP/100 mL)	11	1746	1019	2571	52	9222	521	2023	2,92	9,01	9,09
Escherichia coli (NMP/100 mL)	11	18	10	24	1	79	1	20	1,90	3,40	9,09
Demanda bioquímica de oxigênio (mg/L)	11	0,76	0,76	0,42	0,18	1,46	0,39	1,11	0,27	-1,24	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,507	0,176	0,667	0,090	1,880	0,100	0,880	1,57	0,98	0,00
Fós foro total (mg/L)	11	0,019	0,015	0,011	0,007	0,040	0,010	0,028	1,01	-0,07	0,00
Cianoficeas (cel/mL)	11	2308	1075	2343	421	7780	537	3987	1,44	1,70	0,00
Fluoreto (mg/L)	11	0,036	0,036	0,013	0,007	0,051	0,029	0,049	-1,12	1,95	0,00
Cloreto (mg/L)	11	1,229	1,312	0,491	0,365	2,095	1,081	1,506	-0,41	0,58	9,09
Nitrito (mg/L)	11	0,001	0,000	0,001	0,000	0,002	0,000	0,002	0,24	-2,39	0,00
Brometo (mg/L)	11	0,005	0,000	0,008	0,000	0,024	0,000	0,009	1,83	3,32	9,09
Nitrato (mg/L)	11	0,109	0,116	0,039	0,044	0,170	0,081	0,129	-0,20	-0,28	0,00
Fosfato (mg/L)	11	0,002	0,000	0,002	0,000	0,005	0,000	0,004	0,88	-1,10	0,00
Sulfato (mg/L)	11	0,365	0,330	0,243	0,135	1,004	0,161	0,382	2,00	5,05	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	1,553	1,498	0,356	0,799	2,138	1,412	1,707	-0,32	1,55	9,09
Nitrogênio amoniacal (mg/L)	11	0,114	0,107	0,040	0,065	0,217	0,090	0,125	1,65	4,29	9,09
Potássio (mg/L)	11	0,88	0,97	0,26	0,24	1,26	0,76	1,00	-1,47	3,82	9,09
Magnêsio (mg/L)	11	0,456	0,480	0,085	0,273	0,589	0,441	0,503	-1,03	1,53	18,18
Cálcio (mg/L)	11	1,30	1,35	0,35	0,38	1,71	1,22	1,50	-2,04	5,29	9,09
Sólidos suspensos totais (mg/L)	11	4,10	3,20	3,41	0,60	13,43	1,80	4,60	2,29	6,39	9,09
Sólidos suspensos inorgânicos (mg/L)	11	1,95	1,20	2,81	0,00	10,00	0,40	2,20	2,76	8,33	9,09
Sólidos suspensos orgânicos (mg/L)	11	2,14	2,13	1,26	0,00	4,20	1,60	3,00	-0,34	-0,03	0,00
Ferro dissolvido (mg/L)	11	0,121	0,060	0,136	0,060	0,430	0,060	0,060	1,98	2,47	18,18

Tabela I.3: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto IGLH) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,00	29,58	1,97	25,11	31,85	27,85	30,38	-0,71	-0,47	0,00
Condutividade elétrica (µS/cm)	17	34,82	22,00	28,54	13,00	101,00	17,00	38,00	1,54	1,07	17,65
Sólidos dissolvidos totais (mg/L)	17	20,00	13,00	17,24	8,00	64,00	10,00	17,00	1,83	2,16	17,65
pН	17	6,67	6,68	0,49	5,58	7,41	6,40	7,01	-0,37	0,09	0,00
Potencial redox (mV)	17	118,8	121,0	37,4	52,2	189,7	100,2	141,8	-0,13	-0,18	0,00
Turbidez (UNT)	17	55,12	9,50	115,66	3,00	435,00	6,00	16,70	2,82	7,80	23,53
Clorofila-a (µg/L)	17	8,17	7,84	4,17	1,52	17,75	4,28	11,35	0,48	0,09	0,00
Oxigênio dissolvido (mg/L)	17	6,07	6,65	1,58	1,17	7,37	5,57	7,15	-2,06	5,24	5,88
Transparência (m)	17	0,61	0,50	0,43	0,00	1,20	0,20	1,00	0,13	-1,63	0,00
Alcalinidade (mg CaCO ₃ /L)	17	10,34	8,50	6,52	4,50	31,00	7,20	9,75	2,33	6,02	17,65
Coliformes totais (NMP/100 mL)	17	6491	2187	11563	63	48392	1204	6650	3,33	12,11	5,88
Escherichia coli (NMP/100 mL)	17	316	60	703	1	2758	31	134	3,08	9,88	17,65
Demanda bioquímica de oxigênio (mg/L)	17	1,48	1,22	1,08	0,21	4,32	0,76	1,53	1,67	2,65	11,76
Nitrogênio total Kjeldahl (mg/L)	17	0,566	0,510	0,289	0,000	1,018	0,410	0,709	0,12	-0,37	0,00
Fós foro total (mg/L)	17	0,044	0,030	0,034	0,008	0,122	0,018	0,057	1,12	0,38	5,88
Cianoficeas (cel/mL)	17	532	505	491	0	1655	15	763	0,71	0,09	0,00
Fluoreto (mg/L)	17	0,104	0,045	0,156	0,010	0,667	0,033	0,085	3,31	11,91	11,76
Cloreto (mg/L)	17	5,256	1,130	14,366	0,098	60,472	0,749	1,798	4,00	16,23	23,53
Nitrito (mg/L)	17	0,001	0,000	0,001	0,000	0,004	0,000	0,001	1,89	2,59	11,76
Brometo (mg/L)	17	0,019	0,002	0,030	0,000	0,089	0,000	0,024	1,41	0,50	17,65
Nitrato (mg/L)	17	0,138	0,104	0,146	0,007	0,556	0,036	0,160	1,72	3,22	5,88
Fosfato (mg/L)	17	0,002	0,000	0,005	0,000	0,020	0,000	0,001	3,17	10,50	23,53
Sulfato (mg/L)	17	0,456	0,155	0,626	0,005	2,291	0,120	0,490	2,08	3,96	17,65
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,11	-0,62	0,00
Sódio (mg/L)	17	2,277	1,989	1,769	0,301	8,330	1,537	2,517	2,65	9,17	5,88
Nitrogênio amoniacal (mg/L)	17	0,016	0,004	0,030	0,000	0,095	0,002	0,005	2,30	4,26	23,53
Potássio (mg/L)	17	1,66	1,32	1,18	0,66	5,01	0,83	1,88	1,80	3,18	11,76
Magnêsio (mg/L)	17	0,781	0,693	0,320	0,466	1,573	0,562	0,808	1,48	1,38	17,65
Cálcio (mg/L)	17	3,25	1,87	3,29	1,32	13,26	1,68	2,91	2,44	5,55	17,65
Sólidos suspensos totais (mg/L)	17	41,18	10,00	94,60	3,00	380,00	4,20	11,60	3,33	11,54	23,53
Sólidos suspensos inorgânicos (mg/L)	17	33,28	6,80	80,72	1,00	322,67	2,13	7,80	3,34	11,59	23,53
Sólidos suspensos orgânicos (mg/L)	17	7,90	3,20	13,89	1,60	57,33	2,20	4,00	3,28	11,19	23,53
Ferro dissolvido (mg/L)	17	0,568	0,178	0,706	0,060	2,000	0,060	0,823	1,27	0,08	11,76

Tabela I.4: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto IGLH) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	30,12	30,50	1,46	27,70	32,21	28,96	31,30	-0,38	-0,96	0,00
Condutividade elétrica (µS/cm)	11	22,64	22,00	7,93	14,00	38,00	16,00	24,00	1,09	0,45	9,09
Sólidos dissolvidos totais (mg/L)	11	14,27	14,00	4,69	9,00	24,00	11,00	16,00	1,03	0,67	9,09
pH	11	6,71	6,57	0,57	6,12	7,81	6,22	7,11	1,03	0,07	0,00
Potencial redox (mV)	11	216,2	203,4	94,9	90,9	425,0	151,9	249,0	1,14	1,35	9,09
Turbidez (UNT)	11	7,82	7,20	3,95	3,21	15,80	3,90	10,70	0,77	0,03	0,00
Clorofila-a (µg/L)	11	6,62	6,88	2,15	2,94	10,00	5,01	8,62	-0,10	-0,48	0,00
Oxigênio dissolvido (mg/L)	11	6,56	6,75	0,74	5,55	7,69	5,95	7,20	0,15	-1,45	0,00
Transparência (m)	11	1,75	2,10	0,73	0,70	2,60	1,10	2,40	-0,17	-2,00	0,00
Alcalinidade (mg CaCO ₃ /L)	11	7,74	8,20	2,39	0,80	9,70	8,00	8,70	-2,86	8,97	9,09
Coliformes totais (NMP/100 mL)	11	1810	1040	2480	158	8664	393	2143	2,50	6,68	9,09
Escherichia coli (NMP/100 mL)	11	40	10	79	1	260	1	32	2,64	7,18	18,18
Demanda bioquímica de oxigênio (mg/L)	11	1,31	1,07	1,11	0,15	4,20	0,82	1,30	1,98	4,58	18,18
Nitrogênio total Kjeldahl (mg/L)	11	0,169	0,176	0,075	0,090	0,330	0,090	0,190	0,97	0,82	0,00
Fósforo total (mg/L)	11	0,018	0,015	0,009	0,006	0,034	0,010	0,028	0,60	-0,95	0,00
Cianoficeas (cel/mL)	11	2803	2596	2175	247	6899	795	3922	0,85	-0,11	0,00
Fluoreto (mg/L)	11	0,045	0,048	0,017	0,009	0,065	0,037	0,055	-1,00	0,74	9,09
Cloreto (mg/L)	11	1,216	1,256	0,345	0,424	1,713	0,977	1,401	-1,08	2,02	0,00
Nitrito (mg/L)	11	0,001	0,000	0,001	0,000	0,002	0,000	0,002	0,37	-1,99	0,00
Brometo (mg/L)	11	0,007	0,008	0,004	0,000	0,014	0,006	0,008	-0,49	1,06	27,27
Nitrato (mg/L)	11	0,136	0,142	0,057	0,041	0,226	0,085	0,177	-0,31	-0,51	0,00
Fosfato (mg/L)	11	0,003	0,000	0,005	0,000	0,016	0,000	0,004	2,18	4,89	9,09
Sulfato (mg/L)	11	0,543	0,494	0,277	0,162	1,165	0,390	0,669	0,87	1,69	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	1,854	1,566	0,954	1,091	4,491	1,311	2,112	2,41	6,70	9,09
Nitrogênio amoniacal (mg/L)	11	0,079	0,053	0,076	0,030	0,303	0,050	0,079	3,09	9,91	0,00
Potássio (mg/L)	11	0,81	0,80	0,37	0,39	1,63	0,46	0,84	1,23	1,44	9,09
Magnêsio (mg/L)	11	0,469	0,464	0,152	0,280	0,772	0,329	0,499	0,75	0,44	9,09
Cálcio (mg/L)	11	1,34	1,10	0,90	0,62	3,78	0,65	1,39	2,29	6,08	9,09
Sólidos suspensos totais (mg/L)	11	4,00	3,80	2,01	0,60	7,33	2,40	5,50	-0,03	-0,72	0,00
Sólidos suspensos inorgânicos (mg/L)	11	1,56	0,60	1,40	0,20	4,00	0,40	3,00	0,61	-1,40	0,00
Sólidos suspensos orgânicos (mg/L)	11	2,44	2,40	0,98	0,40	3,75	1,80	3,33	-0,76	0,45	0,00
Ferro dissolvido (mg/L)	11	0,137	0,060	0,139	0,060	0,410	0,060	0,241	1,47	0,51	0,00

Tabela I.5: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto PIMENTAL) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	29,73	30,13	1,21	27,07	31,38	29,08	30,45	-1,08	0,50	0,00
Condutividade elétrica (µS/cm)	16	20,13	17,50	9,40	12,00	50,00	14,50	23,00	2,32	6,71	6,25
Sólidos dissolvidos totais (mg/L)	16	11,81	10,00	5,55	7,00	30,00	9,00	13,00	2,55	7,97	6,25
pН	16	6,77	6,73	0,49	5,73	7,54	6,53	7,18	-0,36	-0,03	0,00
Potencial redox (mV)	16	117,8	122,6	33,5	54,5	175,4	98,6	132,3	-0,37	0,22	0,00
Turbidez (UNT)	16	5,83	4,90	2,97	2,00	12,50	3,95	7,20	1,09	0,57	6,25
Clorofila-a (µg/L)	16	7,55	6,13	4,21	1,34	15,84	5,33	9,75	0,82	-0,25	0,00
Oxigênio dissolvido (mg/L)	16	6,57	6,66	0,63	5,34	7,39	6,10	7,08	-0,53	-0,65	0,00
Transparência (m)	16	0,86	0,90	0,35	0,20	1,40	0,65	1,10	-0,49	-0,47	0,00
Alcalinidade (mg CaCO ₃ /L)	16	7,17	7,58	1,93	3,94	9,88	5,75	8,59	-0,54	-0,84	0,00
Coliformes totais (NMP/100 mL)	16	3088	1578	3253	232	12098	1131	4316	1,84	3,22	6,25
Escherichia coli (NMP/100 mL)	16	27	20	31	1	104	9	36	1,82	2,69	12,50
Demanda bioquímica de oxigênio (mg/L)	16	0,97	0,94	0,89	0,15	3,89	0,39	1,13	2,49	8,14	6,25
Nitrogênio total Kjeldahl (mg/L)	16	0,481	0,458	0,360	0,102	1,629	0,260	0,560	2,31	6,90	6,25
Fós foro total (mg/L)	16	0,031	0,027	0,013	0,011	0,053	0,020	0,042	0,47	-0,98	0,00
Cianoficeas (cel/mL)	16	613	285	734	0	1902	3	1499	0,82	-1,22	0,00
Fluoreto (mg/L)	16	0,047	0,039	0,020	0,023	0,085	0,034	0,063	0,78	-0,72	0,00
Cloreto (mg/L)	16	0,799	0,725	0,373	0,202	1,814	0,611	0,960	1,11	2,89	6,25
Nitrito (mg/L)	16	0,000	0,000	0,001	0,000	0,002	0,000	0,000	2,22	3,84	18,75
Brometo (mg/L)	16	0,014	0,000	0,028	0,000	0,079	0,000	0,004	1,81	1,56	18,75
Nitrato (mg/L)	16	0,091	0,042	0,165	0,001	0,669	0,017	0,073	3,28	11,39	12,50
Fosfato (mg/L)	16	0,001	0,000	0,002	0,000	0,004	0,000	0,001	1,50	0,71	12,50
Sulfato (mg/L)	16	0,157	0,138	0,097	0,005	0,422	0,100	0,185	1,37	2,99	6,25
Lítio (mg/L)	16	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2,52	6,91	6,25
Sódio (mg/L)	16	1,739	1,766	0,528	0,392	2,479	1,532	2,101	-1,24	1,84	6,25
Nitrogênio amoniacal (mg/L)	16	0,009	0,003	0,011	0,000	0,033	0,001	0,015	1,29	0,22	0,00
Potássio (mg/L)	16	0,99	0,96	0,38	0,26	1,61	0,72	1,25	0,10	-0,53	0,00
Magnêsio (mg/L)	16	0,622	0,641	0,187	0,167	0,933	0,543	0,755	-0,75	1,21	6,25
Cálcio (mg/L)	16	1,67	1,62	0,50	0,60	2,59	1,35	2,03	-0,06	0,19	0,00
Sólidos suspensos totais (mg/L)	16	7,33	6,90	2,98	3,00	13,60	5,00	10,00	0,61	-0,40	0,00
Sólidos suspensos inorgânicos (mg/L)	16	4,54	4,11	2,39	1,00	10,20	3,30	6,40	0,68	0,71	0,00
Sólidos suspensos orgânicos (mg/L)	16	2,80	2,90	0,95	1,40	4,40	1,90	3,50	0,06	-1,12	0,00
Ferro dissolvido (mg/L)	16	0,238	0,150	0,308	0,060	1,300	0,060	0,320	3,02	10,39	6,25

Tabela I.6: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto PIMENTAL) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,81	29,80	1,37	27,52	31,70	28,66	30,91	-0,33	-0,96	0,00
Condutividade elétrica (µS/cm)	11	22,45	21,00	7,43	15,00	36,00	16,00	26,00	0,93	-0,07	0,00
Sólidos dissolvidos totais (mg/L)	11	14,18	14,00	4,29	9,00	22,00	10,00	17,00	0,81	-0,19	0,00
pН	11	6,87	6,65	0,64	6,19	7,92	6,34	7,73	0,84	-0,95	0,00
Potencial redox (mV)	11	210,9	185,1	93,2	88,6	426,0	161,3	227,0	1,35	2,16	18,18
Turbidez (UNT)	11	8,40	7,80	4,17	3,80	18,30	4,70	10,30	1,33	2,30	0,00
Clorofila-a (µg/L)	11	7,79	6,78	3,94	4,14	17,16	4,56	10,29	1,46	2,23	0,00
Oxigênio dissolvido (mg/L)	11	6,52	6,79	0,83	5,30	7,65	5,81	7,35	-0,23	-1,47	0,00
Transparência (m)	11	1,77	2,00	0,71	0,80	2,70	1,10	2,50	-0,10	-1,97	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,10	8,00	0,87	7,10	9,70	7,20	8,90	0,61	-0,66	0,00
Coliformes totais (NMP/100 mL)	11	1260	345	2310	20	7701	211	962	2,63	7,05	18,18
Escherichia coli (NMP/100 mL)	11	3	1	6	1	20	1	1	3,32	11,00	9,09
Demanda bioquímica de oxigênio (mg/L)	11	0,81	0,64	0,75	0,03	2,81	0,25	0,91	2,11	5,66	9,09
Nitrogênio total Kjeldahl (mg/L)	11	0,296	0,160	0,317	0,090	0,960	0,120	0,350	1,73	1,58	18,18
Fós foro total (mg/L)	11	0,025	0,024	0,011	0,010	0,043	0,016	0,036	0,36	-1,12	0,00
Cianoficeas (cel/mL)	11	2634	1236	2834	215	9860	731	4344	1,88	3,89	9,09
Fluoreto (mg/L)	11	0,045	0,044	0,017	0,012	0,075	0,035	0,058	-0,10	0,61	0,00
Cloreto (mg/L)	11	1,028	1,016	0,416	0,369	1,736	0,589	1,358	-0,05	-0,63	0,00
Nitrito (mg/L)	11	0,000	0,000	0,000	0,000	0,002	0,000	0,000	3,32	11,00	9,09
Brometo (mg/L)	11	0,001	0,000	0,002	0,000	0,005	0,000	0,005	1,19	-0,76	0,00
Nitrato (mg/L)	11	0,095	0,076	0,061	0,017	0,221	0,047	0,150	0,92	0,42	0,00
Fosfato (mg/L)	11	0,002	0,000	0,003	0,000	0,008	0,000	0,004	1,20	0,98	0,00
Sulfato (mg/L)	11	0,367	0,270	0,298	0,089	0,950	0,187	0,366	1,49	1,16	18,18
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	3,736	3,491	1,443	1,510	6,353	3,040	4,166	0,49	0,23	18,18
Nitrogênio amoniacal (mg/L)	11	0,084	0,081	0,020	0,054	0,126	0,075	0,095	0,64	1,26	9,09
Potássio (mg/L)	11	1,16	1,21	0,22	0,62	1,48	1,12	1,28	-1,50	4,06	9,09
Magnêsio (mg/L)	11	0,583	0,582	0,049	0,484	0,682	0,562	0,614	-0,01	1,95	9,09
Cálcio (mg/L)	11	1,42	1,49	0,17	0,96	1,59	1,38	1,53	-2,06	5,07	9,09
Sólidos suspensos totais (mg/L)	11	5,12	4,00	3,46	2,20	14,00	2,60	5,40	1,97	4,17	9,09
Sólidos suspensos inorgânicos (mg/L)	11	2,92	1,60	3,39	0,40	12,00	0,60	3,80	2,27	5,56	9,09
Sólidos suspensos orgânicos (mg/L)	11	2,21	2,00	0,78	1,00	4,00	1,80	2,66	1,12	2,18	9,09
Ferro dissolvido (mg/L)	11	0,119	0,060	0,135	0,060	0,442	0,060	0,060	2,07	3,09	18,18

Tabela I.7: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 01) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,69	30,13	1,26	27,29	31,49	29,00	30,43	-0,78	-0,39	0,00
Condutividade elétrica (µS/cm)	17	21,82	16,00	11,92	12,00	52,00	14,00	23,00	1,79	2,43	11,76
Sólidos dissolvidos totais (mg/L)	17	13,06	10,00	7,14	7,00	31,00	9,00	14,00	1,81	2,47	11,76
pН	17	6,85	6,90	0,72	5,02	8,04	6,64	7,20	-0,99	1,54	5,88
Potencial redox (mV)	17	107,1	109,0	31,6	59,1	161,0	82,6	124,4	0,15	-0,85	0,00
Turbidez (UNT)	17	8,06	5,10	6,30	1,20	22,90	3,70	10,30	1,19	0,49	5,88
Clorofila-a (µg/L)	17	8,48	6,11	7,80	1,06	30,51	4,10	8,51	1,80	3,16	17,65
Oxigênio dissolvido (mg/L)	17	6,96	7,20	0,76	5,22	7,78	6,60	7,58	-1,22	1,02	0,00
Transparência (m)	17	0,53	0,50	0,22	0,09	0,90	0,40	0,70	-0,15	-0,53	0,00
Alcalinidade (mg CaCO ₃ /L)	17	6,83	6,96	2,39	2,25	10,78	5,63	8,50	-0,14	-0,53	0,00
Coliformes totais (NMP/100 mL)	17	4163	3784	3389	134	12098	1866	5510	1,11	0,73	5,88
Escherichia coli (NMP/100 mL)	17	57	31	79	1	322	1	90	2,51	7,81	5,88
Demanda bioquímica de oxigênio (mg/L)	17	1,26	0,74	1,07	0,24	3,99	0,45	1,84	1,43	1,57	5,88
Nitrogênio total Kjeldahl (mg/L)	17	0,839	0,610	0,703	0,050	2,545	0,350	1,220	1,13	0,75	5,88
Fós foro total (mg/L)	17	0,040	0,034	0,020	0,019	0,083	0,025	0,044	1,17	0,69	11,76
Cianoficeas (cel/mL)	17	394	462	343	0	956	0	688	0,00	-1,62	0,00
Fluoreto (mg/L)	17	0,049	0,038	0,034	0,018	0,158	0,030	0,064	2,26	6,51	5,88
Cloreto (mg/L)	17	0,896	0,750	0,527	0,250	2,244	0,517	1,016	1,18	1,33	5,88
Nitrito (mg/L)	17	0,001	0,000	0,002	0,000	0,007	0,000	0,000	2,56	6,57	23,53
Brometo (mg/L)	17	0,009	0,000	0,024	0,000	0,079	0,000	0,002	2,66	5,92	11,76
Nitrato (mg/L)	17	0,042	0,021	0,045	0,002	0,154	0,012	0,044	1,46	1,24	17,65
Fosfato (mg/L)	17	0,001	0,000	0,002	0,000	0,007	0,000	0,000	4,00	16,25	5,88
Sulfato (mg/L)	17	0,177	0,119	0,132	0,005	0,566	0,107	0,239	1,75	3,93	5,88
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,001	0,000	0,000	3,79	14,99	5,88
Sódio (mg/L)	17	1,675	1,640	0,466	0,891	2,617	1,375	1,869	0,61	0,01	5,88
Nitrogênio amoniacal (mg/L)	17	0,009	0,007	0,009	0,000	0,034	0,003	0,014	1,33	1,92	5,88
Potássio (mg/L)	17	1,00	1,00	0,27	0,54	1,38	0,76	1,29	-0,03	-1,35	0,00
Magnêsio (mg/L)	17	0,668	0,649	0,124	0,494	0,950	0,577	0,749	0,84	0,14	0,00
Cálcio (mg/L)	17	1,74	1,65	0,36	1,32	2,62	1,46	1,94	1,13	0,79	0,00
Sólidos suspensos totais (mg/L)	17	9,38	6,34	7,49	1,40	24,25	3,70	14,74	0,98	-0,38	0,00
Sólidos suspensos inorgânicos (mg/L)	17	6,63	4,15	5,88	1,20	18,12	2,07	11,58	0,97	-0,41	0,00
Sólidos suspensos orgânicos (mg/L)	17	3,01	2,35	1,50	1,50	6,25	2,00	3,60	1,06	-0,18	5,88
Ferro dissolvido (mg/L)	17	0,186	0,060	0,158	0,060	0,508	0,060	0,250	0,86	-0,70	0,00

Tabela I.8: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 01) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	30,03	30,23	1,57	28,13	32,60	28,30	31,40	0,14	-1,37	0,00
Condutividade elétrica (µS/cm)	11	20,73	21,00	5,71	11,00	33,00	18,00	23,00	0,52	1,56	9,09
Sólidos dissolvidos totais (mg/L)	11	12,73	12,00	3,44	7,00	20,00	11,00	15,00	0,59	1,13	0,00
pН	11	6,85	6,80	0,56	6,06	7,60	6,36	7,56	0,23	-1,52	0,00
Potencial redox (mV)	11	199,5	177,9	88,0	113,0	417,0	136,0	244,0	1,72	3,19	9,09
Turbidez (UNT)	11	10,45	7,30	7,53	2,00	26,40	6,10	13,90	1,15	0,68	0,00
Clorofila-a (µg/L)	11	7,51	7,60	3,50	3,32	13,05	3,64	10,35	0,27	-1,29	0,00
Oxigênio dissolvido (mg/L)	11	6,51	6,40	0,63	5,44	7,33	6,18	7,10	-0,43	-0,85	0,00
Transparência (m)	11	1,14	1,00	0,44	0,60	2,10	0,90	1,40	1,00	1,30	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,44	7,80	1,94	6,40	12,80	7,00	9,00	1,42	1,59	9,09
Coliformes totais (NMP/100 mL)	11	4061	1789	5754	105	19863	121	5794	2,41	6,43	9,09
Escherichia coli (NMP/100 mL)	11	37	10	44	1	106	1	82	0,70	-1,33	0,00
Demanda bioquímica de oxigênio (mg/L)	11	0,74	0,63	0,55	0,08	1,74	0,20	1,25	0,54	-0,82	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,309	0,130	0,315	0,088	0,880	0,090	0,700	1,17	-0,55	0,00
Fós foro total (mg/L)	11	0,019	0,017	0,010	0,005	0,043	0,013	0,021	1,39	2,75	9,09
Cianoficeas (cel/mL)	11	1489	849	1107	365	3525	602	2450	0,88	-0,64	0,00
Fluoreto (mg/L)	11	0,052	0,051	0,022	0,023	0,092	0,032	0,059	0,60	-0,26	0,00
Cloreto (mg/L)	11	1,220	1,244	0,655	0,272	2,503	0,562	1,633	0,26	0,16	0,00
Nitrito (mg/L)	11	0,001	0,000	0,001	0,000	0,003	0,000	0,002	1,44	0,56	0,00
Brometo (mg/L)	11	0,001	0,000	0,003	0,000	0,006	0,000	0,005	1,21	-0,66	0,00
Nitrato (mg/L)	11	0,111	0,112	0,067	0,003	0,210	0,081	0,140	-0,19	-0,06	0,00
Fosfato (mg/L)	11	0,000	0,000	0,001	0,000	0,003	0,000	0,000	3,32	11,00	9,09
Sulfato (mg/L)	11	0,343	0,316	0,254	0,047	0,962	0,221	0,367	1,57	3,11	18,18
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	2,158	2,287	0,394	1,258	2,569	1,958	2,484	-1,23	1,51	0,00
Nitrogênio amoniacal (mg/L)	11	0,051	0,050	0,010	0,034	0,069	0,045	0,060	0,32	0,37	0,00
Potássio (mg/L)	11	0,82	0,86	0,13	0,61	1,09	0,73	0,88	0,04	0,90	0,00
Magnêsio (mg/L)	11	0,410	0,410	0,139	0,198	0,636	0,268	0,484	0,15	-0,54	0,00
Cálcio (mg/L)	11	1,17	1,20	0,31	0,80	1,75	0,82	1,33	0,47	-0,39	0,00
Sólidos suspensos totais (mg/L)	11	9,70	9,40	6,69	1,20	19,20	3,40	15,52	0,25	-1,58	0,00
Sólidos suspensos inorgânicos (mg/L)	11	6,46	4,80	5,31	0,60	15,00	1,40	11,60	0,50	-1,49	0,00
Sólidos suspensos orgânicos (mg/L)	11	3,25	2,80	2,08	0,60	7,60	2,00	4,70	0,88	0,48	0,00
Ferro dissolvido (mg/L)	11	0,133	0,060	0,173	0,060	0,599	0,060	0,060	2,46	5,77	0,00

Tabela I.9: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 02) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,53	29,19	1,86	26,51	32,79	28,25	30,79	0,17	-1,00	0,00
Condutividade elétrica (µS/cm)	17	23,18	20,00	12,85	12,00	55,00	14,00	24,00	1,70	2,30	11,76
Sólidos dissolvidos totais (mg/L)	17	13,71	12,00	8,07	7,00	35,00	9,00	14,00	1,99	3,33	11,76
pН	17	6,73	6,81	0,59	5,10	7,33	6,52	7,10	-1,54	2,57	5,88
Potencial redox (mV)	17	115,5	105,1	37,3	60,0	175,0	84,5	149,4	0,22	-1,25	0,00
Turbidez (UNT)	17	15,95	12,00	11,00	2,90	41,50	8,80	25,30	0,91	0,05	0,00
Clorofila-a (µg/L)	17	7,10	5,60	4,59	0,52	16,61	4,85	9,87	0,64	-0,33	0,00
Oxigênio dissolvido (mg/L)	17	6,52	6,72	1,01	3,92	7,54	6,01	7,40	-1,17	1,28	5,88
Transparência (m)	17	0,48	0,40	0,24	0,10	0,90	0,30	0,60	0,26	-1,07	0,00
Alcalinidade (mg CaCO ₃ /L)	17	6,95	6,90	2,36	3,26	10,69	4,76	8,90	-0,16	-1,24	0,00
Coliformes totais (NMP/100 mL)	17	3609	3152	3149	122	12098	1326	4128	1,49	2,46	11,76
Escherichia coli (NMP/100 mL)	17	81	61	80	1	270	20	121	0,93	0,21	0,00
Demanda bioquímica de oxigênio (mg/L)	17	1,31	1,18	0,82	0,13	3,35	0,79	1,84	0,79	1,02	0,00
Nitrogênio total Kjeldahl (mg/L)	17	1,412	0,700	2,062	0,100	7,430	0,300	1,215	2,34	4,90	11,76
Fós foro total (mg/L)	17	0,049	0,040	0,042	0,009	0,184	0,023	0,071	2,20	6,29	5,88
Cianoficeas (cel/mL)	17	417	398	448	0	1784	0	537	1,79	4,72	5,88
Fluoreto (mg/L)	17	0,059	0,039	0,046	0,014	0,177	0,034	0,066	1,64	2,06	11,76
Cloreto (mg/L)	17	1,458	0,995	1,134	0,283	4,217	0,710	1,574	1,49	1,38	17,65
Nitrito (mg/L)	17	0,001	0,000	0,001	0,000	0,005	0,000	0,000	2,13	3,50	23,53
Brometo (mg/L)	17	0,015	0,003	0,027	0,000	0,080	0,000	0,010	1,84	1,79	17,65
Nitrato (mg/L)	17	0,079	0,074	0,053	0,011	0,182	0,036	0,117	0,48	-0,60	0,00
Fosfato (mg/L)	17	0,001	0,000	0,002	0,000	0,007	0,000	0,001	2,15	3,81	17,65
Sulfato (mg/L)	17	0,289	0,158	0,435	0,005	1,867	0,117	0,260	3,36	12,25	11,76
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,58	1,32	5,88
Sódio (mg/L)	17	2,065	2,073	0,747	0,860	3,645	1,636	2,189	0,80	0,74	11,76
Nitrogênio amoniacal (mg/L)	17	0,014	0,008	0,018	0,000	0,067	0,002	0,016	2,03	4,36	11,76
Potássio (mg/L)	17	1,10	1,00	0,38	0,59	1,91	0,85	1,23	0,89	0,10	5,88
Magnêsio (mg/L)	17	0,710	0,667	0,251	0,524	1,620	0,588	0,732	3,29	12,20	5,88
Cálcio (mg/L)	17	1,79	1,64	0,69	1,05	4,02	1,40	1,74	2,52	7,09	11,76
Sólidos suspensos totais (mg/L)	17	13,81	10,60	9,71	2,00	42,20	8,67	14,80	1,75	3,75	11,76
Sólidos suspensos inorgânicos (mg/L)	17	10,18	7,20	8,79	0,40	36,00	6,20	10,60	1,81	3,82	17,65
Sólidos suspensos orgânicos (mg/L)	17	3,62	4,00	1,48	1,60	6,20	2,20	4,44	0,21	-1,05	0,00
Ferro dissolvido (mg/L)	17	0,258	0,150	0,271	0,060	0,907	0,060	0,362	1,45	1,04	5,88

Tabela I.10: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 02) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,89	30,73	1,71	26,30	31,61	28,79	31,36	-0,98	0,25	0,00
Condutividade elétrica (µS/cm)	11	21,18	20,00	6,01	11,00	35,00	18,00	24,00	0,82	2,59	9,09
Sólidos dissolvidos totais (mg/L)	11	13,18	13,00	3,60	7,00	21,00	11,00	15,00	0,59	1,72	0,00
pН	11	6,82	6,81	0,51	6,02	7,66	6,42	7,19	-0,04	-0,52	0,00
Potencial redox (mV)	11	198,6	178,0	91,1	121,1	450,0	134,0	210,1	2,39	6,68	9,09
Turbidez (UNT)	11	12,65	13,40	5,84	3,90	25,10	9,08	15,80	0,56	1,03	0,00
Clorofila-a (µg/L)	11	6,70	6,75	3,39	1,93	11,85	3,04	10,15	0,20	-1,06	0,00
Oxigênio dissolvido (mg/L)	11	6,20	5,99	0,73	5,15	7,20	5,52	6,95	0,03	-1,73	0,00
Transparência (m)	11	0,96	1,00	0,30	0,50	1,40	0,60	1,20	-0,22	-1,11	0,00
Alcalinidade (mg CaCO ₃ /L)	11	7,59	8,00	2,41	0,74	10,30	7,50	8,50	-2,59	8,05	18,18
Coliformes totais (NMP/100 mL)	11	1363	1368	995	268	3446	420	2035	0,75	0,33	0,00
Escherichia coli (NMP/100 mL)	11	40	14	72	1	244	1	41	2,69	7,68	9,09
Demanda bioquímica de oxigênio (mg/L)	11	1,11	1,00	0,54	0,26	2,11	0,75	1,50	0,32	-0,24	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,454	0,140	0,781	0,088	2,540	0,090	0,180	2,41	5,50	18,18
Fósforo total (mg/L)	11	0,019	0,020	0,007	0,007	0,031	0,014	0,023	-0,28	0,44	0,00
Cianoficeas (cel/mL)	11	3474	1332	4939	0	15689	903	4245	1,99	3,38	18,18
Fluoreto (mg/L)	11	0,038	0,036	0,015	0,020	0,077	0,025	0,041	1,60	4,03	9,09
Cloreto (mg/L)	11	0,995	1,144	0,466	0,378	1,726	0,488	1,304	-0,15	-1,39	0,00
Nitrito (mg/L)	11	0,000	0,000	0,001	0,000	0,002	0,000	0,002	1,20	-0,71	0,00
Brometo (mg/L)	11	0,003	0,004	0,003	0,000	0,009	0,000	0,006	0,26	-1,50	0,00
Nitrato (mg/L)	11	0,057	0,045	0,044	0,003	0,150	0,019	0,085	0,86	0,52	0,00
Fosfato (mg/L)	11	0,004	0,003	0,006	0,000	0,021	0,000	0,004	2,19	5,37	9,09
Sulfato (mg/L)	11	0,136	0,129	0,052	0,058	0,271	0,109	0,150	1,64	4,78	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	3,32	11,00	9,09
Sódio (mg/L)	11	1,719	1,593	0,367	1,303	2,615	1,458	1,900	1,52	2,92	9,09
Nitrogênio amoniacal (mg/L)	11	0,110	0,104	0,031	0,067	0,174	0,091	0,129	0,68	0,52	0,00
Potássio (mg/L)	11	0,74	0,72	0,18	0,54	1,08	0,57	0,89	0,58	-0,89	0,00
Magnêsio (mg/L)	11	0,406	0,363	0,198	0,186	0,870	0,220	0,546	1,27	2,08	0,00
Cálcio (mg/L)	11	1,21	1,10	0,40	0,83	2,16	0,84	1,40	1,36	2,03	0,00
Sólidos suspensos totais (mg/L)	11	6,92	7,00	2,23	3,00	10,44	5,00	8,40	-0,24	-0,39	0,00
Sólidos suspensos inorgânicos (mg/L)	11	3,76	4,00	2,10	0,20	6,67	3,00	5,40	-0,45	-0,19	0,00
Sólidos suspensos orgânicos (mg/L)	11	3,16	3,00	1,02	1,00	4,75	2,60	4,00	-0,60	0,85	0,00
Ferro dissolvido (mg/L)	11	0,153	0,060	0,161	0,060	0,452	0,060	0,358	1,26	-0,41	0,00

Tabela I.11: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 03) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,64	30,00	1,10	27,43	31,20	28,79	30,40	-0,69	-0,33	0,00
Condutividade elétrica (µS/cm)	17	21,47	18,00	11,08	12,00	50,00	15,00	22,00	2,03	3,48	11,76
Sólidos dissolvidos totais (mg/L)	17	12,82	11,00	6,69	7,00	30,00	9,00	13,00	2,03	3,56	11,76
pН	17	6,64	6,66	0,63	5,62	7,74	6,13	7,16	-0,24	-0,82	0,00
Potencial redox (mV)	17	119,8	122,3	35,9	56,1	189,0	89,2	149,1	-0,17	-0,33	0,00
Turbidez (UNT)	17	8,10	5,30	8,15	0,40	30,60	2,80	9,00	1,70	2,66	11,76
Clorofila-a (µg/L)	17	7,35	5,58	4,60	1,44	16,30	4,10	8,28	0,98	-0,19	17,65
Oxigênio dissolvido (mg/L)	17	6,83	6,97	0,57	5,53	7,90	6,50	7,10	-0,56	0,61	5,88
Transparência (m)	17	1,21	1,00	0,61	0,40	2,40	0,80	1,70	0,83	-0,46	0,00
Alcalinidade (mg CaCO ₃ /L)	17	7,02	7,40	2,13	3,38	9,77	5,44	8,50	-0,49	-0,88	0,00
Coliformes totais (NMP/100 mL)	17	4240	2064	4479	186	16254	1290	5405	1,64	2,21	11,76
Escherichia coli (NMP/100 mL)	17	304	20	881	1	3586	1	104	3,67	13,95	11,76
Demanda bioquímica de oxigênio (mg/L)	17	1,20	0,95	0,88	0,04	3,89	0,75	1,43	1,84	4,79	5,88
Nitrogênio total Kjeldahl (mg/L)	17	0,537	0,506	0,329	0,100	1,320	0,260	0,710	0,85	0,48	0,00
Fósforo total (mg/L)	17	0,033	0,024	0,024	0,011	0,100	0,018	0,037	1,77	2,93	11,76
Cianoficeas (cel/mL)	17	665	634	610	0	1926	0	978	0,43	-0,76	0,00
Fluoreto (mg/L)	17	0,050	0,037	0,035	0,015	0,161	0,029	0,057	2,31	6,35	5,88
Cloreto (mg/L)	17	0,714	0,670	0,246	0,213	1,336	0,593	0,831	0,49	2,02	11,76
Nitrito (mg/L)	17	0,001	0,000	0,002	0,000	0,008	0,000	0,001	2,09	4,04	23,53
Brometo (mg/L)	17	0,009	0,000	0,024	0,000	0,079	0,000	0,002	2,66	5,91	11,76
Nitrato (mg/L)	17	0,049	0,032	0,036	0,008	0,106	0,018	0,078	0,41	-1,54	0,00
Fosfato (mg/L)	17	0,000	0,000	0,001	0,000	0,003	0,000	0,000	3,46	12,40	23,53
Sulfato (mg/L)	17	0,128	0,121	0,064	0,005	0,252	0,110	0,167	-0,19	0,28	11,76
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,38	-0,12	23,53
Sódio (mg/L)	17	1,549	1,628	0,364	0,845	2,029	1,240	1,805	-0,57	-0,84	0,00
Nitrogênio amoniacal (mg/L)	17	0,033	0,004	0,087	0,000	0,365	0,001	0,027	3,90	15,63	5,88
Potássio (mg/L)	17	1,10	0,89	0,87	0,38	4,20	0,70	1,17	3,08	10,98	5,88
Magnêsio (mg/L)	17	0,637	0,640	0,138	0,339	0,954	0,559	0,718	0,17	1,35	0,00
Cálcio (mg/L)	17	1,66	1,59	0,42	0,86	2,35	1,42	1,91	0,11	-0,41	0,00
Sólidos suspensos totais (mg/L)	17	7,02	7,00	4,50	1,60	16,60	3,40	10,20	0,71	-0,40	0,00
Sólidos suspensos inorgânicos (mg/L)	17	4,61	3,80	3,56	0,00	11,80	1,20	6,40	0,59	-0,72	0,00
Sólidos suspensos orgânicos (mg/L)	17	2,41	2,10	1,20	0,80	4,80	1,60	3,80	0,71	-0,78	0,00
Ferro dissolvido (mg/L)	17	0,163	0,060	0,131	0,060	0,396	0,060	0,300	0,81	-1,12	0,00

Tabela I.12: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 03) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,66	29,40	1,17	27,44	31,10	28,80	30,82	-0,39	-0,56	0,00
Condutividade elétrica (µS/cm)	11	23,00	22,00	6,08	16,00	35,00	18,00	24,00	1,09	0,54	9,09
Sólidos dissolvidos totais (mg/L)	11	14,27	14,00	3,64	10,00	21,00	11,00	16,00	0,77	-0,05	0,00
pН	11	6,83	6,65	0,61	6,10	7,95	6,44	7,36	0,79	-0,42	0,00
Potencial redox (mV)	11	211,9	194,1	90,4	86,3	425,0	159,0	246,0	1,36	2,50	9,09
Turbidez (UNT)	11	8,12	6,99	4,29	3,70	16,10	4,40	12,50	0,78	-0,74	0,00
Clorofila-a (µg/L)	11	6,34	5,29	2,54	3,71	11,29	4,09	7,98	0,75	-0,43	0,00
Oxigênio dissolvido (mg/L)	11	6,18	6,02	0,83	5,07	7,33	5,55	7,01	0,23	-1,46	0,00
Transparência (m)	11	1,68	1,70	0,63	0,80	2,50	1,10	2,30	-0,05	-1,80	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,56	8,40	1,08	7,10	10,50	7,60	9,50	0,47	-0,57	0,00
Coliformes totais (NMP/100 mL)	11	3099	377	4927	98	15531	219	5818	1,96	3,63	9,09
Escherichia coli (NMP/100 mL)	11	4	1	8	1	20	1	1	1,92	2,04	18,18
Demanda bioquímica de oxigênio (mg/L)	11	0,91	0,63	0,69	0,20	2,53	0,43	1,38	1,38	1,97	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,224	0,130	0,306	0,090	1,140	0,090	0,170	3,25	10,66	9,09
Fósforo total (mg/L)	11	0,021	0,018	0,010	0,009	0,044	0,015	0,027	1,35	1,56	0,00
Cianoficeas (cel/mL)	11	2756	2128	2304	462	7488	1100	3568	1,28	0,75	9,09
Fluoreto (mg/L)	11	0,035	0,038	0,007	0,023	0,046	0,029	0,041	-0,36	-1,08	0,00
Cloreto (mg/L)	11	0,744	0,636	0,393	0,320	1,602	0,381	0,972	1,09	0,85	0,00
Nitrito (mg/L)	11	0,001	0,002	0,001	0,000	0,003	0,000	0,002	0,14	-1,86	0,00
Brometo (mg/L)	11	0,002	0,000	0,003	0,000	0,008	0,000	0,005	1,33	-0,03	0,00
Nitrato (mg/L)	11	0,025	0,023	0,015	0,007	0,062	0,011	0,033	1,34	2,67	0,00
Fosfato (mg/L)	11	0,002	0,003	0,002	0,000	0,006	0,000	0,003	0,39	-0,95	0,00
Sulfato (mg/L)	11	0,168	0,114	0,205	0,067	0,783	0,089	0,128	3,26	10,72	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	1,645	1,587	0,184	1,484	2,157	1,559	1,675	2,48	6,95	9,09
Nitrogênio amoniacal (mg/L)	11	0,061	0,054	0,021	0,026	0,099	0,051	0,080	0,46	0,15	0,00
Potássio (mg/L)	11	0,73	0,71	0,17	0,50	1,12	0,58	0,80	1,06	2,16	0,00
Magnêsio (mg/L)	11	0,472	0,489	0,101	0,348	0,647	0,369	0,529	0,30	-0,97	0,00
Cálcio (mg/L)	11	1,16	1,08	0,22	0,92	1,61	0,96	1,35	0,88	0,16	0,00
Sólidos suspensos totais (mg/L)	11	3,84	3,20	1,81	1,60	6,60	2,20	5,60	0,40	-1,42	0,00
Sólidos suspensos inorgânicos (mg/L)	11	1,82	1,60	1,27	0,20	3,60	0,60	3,20	0,03	-1,71	0,00
Sólidos suspensos orgânicos (mg/L)	11	2,02	2,00	0,90	0,20	3,40	1,40	2,80	-0,29	0,62	0,00
Ferro dissolvido (mg/L)	11	0,135	0,060	0,155	0,060	0,450	0,060	0,114	1,88	1,92	18,18

Tabela I.13: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 18) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,94	30,35	1,89	26,17	32,45	29,04	31,20	-0,53	-0,51	0,00
Condutividade elétrica (µS/cm)	17	22,47	19,00	12,36	12,00	54,00	14,00	24,00	1,80	2,64	11,76
Sólidos dissolvidos totais (mg/L)	17	13,41	11,00	7,40	7,00	32,00	9,00	14,00	1,78	2,51	11,76
pН	17	6,75	6,75	0,57	5,23	7,47	6,45	7,11	-0,97	1,93	5,88
Potencial redox (mV)	17	110,5	100,1	42,8	45,3	202,0	86,0	132,2	0,77	0,47	5,88
Turbidez (UNT)	17	5,82	3,90	4,36	1,30	18,20	3,00	7,50	1,57	2,87	5,88
Clorofila-a (µg/L)	17	7,32	6,60	3,68	0,82	16,27	5,68	9,07	0,81	1,30	5,88
Oxigênio dissolvido (mg/L)	17	6,65	6,86	0,72	5,17	7,47	6,40	7,19	-0,93	0,00	5,88
Transparência (m)	17	1,00	1,00	0,30	0,40	1,50	0,80	1,20	-0,26	-0,02	0,00
Alcalinidade (mg CaCO ₃ /L)	17	6,88	7,00	2,10	3,38	9,77	5,82	8,40	-0,46	-1,05	0,00
Coliformes totais (NMP/100 mL)	17	4324	2072	4545	253	15402	928	7025	1,29	0,81	0,00
Escherichia coli (NMP/100 mL)	17	51	31	53	1	187	10	82	1,16	1,09	0,00
Demanda bioquímica de oxigênio (mg/L)	17	1,46	1,09	1,25	0,07	4,35	0,37	2,07	0,91	0,15	0,00
Nitrogênio total Kjeldahl (mg/L)	17	0,590	0,440	0,495	0,000	2,036	0,300	0,810	1,67	3,60	5,88
Fós foro total (mg/L)	17	0,037	0,033	0,029	0,010	0,135	0,019	0,042	2,67	8,96	5,88
Cianoficeas (cel/mL)	17	564	505	596	0	2128	0	696	1,24	1,65	5,88
Fluoreto (mg/L)	17	0,051	0,042	0,029	0,013	0,113	0,034	0,066	0,95	0,12	0,00
Cloreto (mg/L)	17	0,936	0,850	0,577	0,361	2,339	0,480	0,972	1,39	1,48	11,76
Nitrito (mg/L)	17	0,001	0,000	0,001	0,000	0,004	0,000	0,000	2,00	2,75	23,53
Brometo (mg/L)	17	0,009	0,000	0,023	0,000	0,079	0,000	0,004	2,64	5,87	11,76
Nitrato (mg/L)	17	0,086	0,067	0,069	0,006	0,210	0,019	0,119	0,64	-0,83	0,00
Fosfato (mg/L)	17	0,003	0,000	0,009	0,000	0,038	0,000	0,004	3,90	15,66	5,88
Sulfato (mg/L)	17	0,196	0,132	0,160	0,005	0,633	0,110	0,247	1,61	2,76	11,76
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,97	3,00	11,76
Sódio (mg/L)	17	1,716	1,703	0,561	0,744	2,964	1,410	2,111	0,35	0,21	0,00
Nitrogênio amoniacal (mg/L)	17	0,024	0,015	0,031	0,000	0,115	0,002	0,029	1,97	4,08	11,76
Potássio (mg/L)	17	0,95	0,87	0,39	0,59	1,73	0,67	0,98	1,21	0,27	17,65
Magnêsio (mg/L)	17	0,590	0,560	0,169	0,309	0,915	0,441	0,687	0,32	-0,50	0,00
Cálcio (mg/L)	17	1,67	1,53	0,42	1,03	2,43	1,45	1,93	0,38	-0,59	0,00
Sólidos suspensos totais (mg/L)	17	5,38	5,20	2,74	1,80	13,00	3,50	6,40	1,24	2,57	5,88
Sólidos suspensos inorgânicos (mg/L)	17	3,02	2,20	2,02	0,20	7,80	1,60	4,20	0,85	0,35	0,00
Sólidos suspensos orgânicos (mg/L)	17	2,36	2,20	0,95	1,00	5,20	1,80	2,67	1,58	4,18	5,88
Ferro dissolvido (mg/L)	17	0,241	0,170	0,325	0,060	1,410	0,060	0,321	3,23	11,69	5,88

Tabela I.14: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 18) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	30,27	30,70	1,74	27,74	32,60	28,90	31,80	-0,08	-1,66	0,00
Condutividade elétrica (µS/cm)	11	20,55	20,00	5,68	11,00	34,00	17,00	23,00	0,97	3,18	9,09
Sólidos dissolvidos totais (mg/L)	11	12,73	13,00	3,00	7,00	19,00	11,00	14,00	0,21	1,96	9,09
pН	11	6,74	6,61	0,59	6,01	7,70	6,27	7,15	0,61	-0,88	0,00
Potencial redox (mV)	11	201,0	180,6	97,2	115,1	467,0	134,0	232,0	2,32	6,37	9,09
Turbidez (UNT)	11	9,06	8,28	4,81	3,10	16,10	5,60	14,70	0,39	-1,29	0,00
Clorofila-a (µg/L)	11	6,64	6,33	2,86	2,46	12,38	5,04	6,96	0,97	0,84	18,18
Oxigênio dissolvido (mg/L)	11	6,47	6,68	0,78	5,25	7,72	5,67	7,00	-0,27	-0,83	0,00
Transparência (m)	11	1,45	1,50	0,58	0,70	2,50	1,00	1,80	0,39	-0,48	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,14	8,00	1,21	6,50	10,70	7,50	9,10	0,76	0,92	0,00
Coliformes totais (NMP/100 mL)	11	2634	1406	2539	292	8164	646	5206	1,25	0,72	0,00
Escherichia coli (NMP/100 mL)	11	167	52	265	1	822	10	194	2,00	3,40	18,18
Demanda bioquímica de oxigênio (mg/L)	11	0,85	0,82	0,44	0,17	1,56	0,46	1,31	0,23	-0,84	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,331	0,150	0,502	0,090	1,750	0,090	0,210	2,72	7,61	18,18
Fós foro total (mg/L)	11	0,019	0,019	0,006	0,011	0,028	0,012	0,026	0,09	-1,66	0,00
Cianoficeas (cel/mL)	11	3152	2181	3736	0	11588	322	4373	1,57	1,72	9,09
Fluoreto (mg/L)	11	0,037	0,040	0,012	0,013	0,054	0,032	0,042	-0,86	0,60	9,09
Cloreto (mg/L)	11	1,295	1,234	0,499	0,483	2,538	0,995	1,424	1,31	4,20	9,09
Nitrito (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	3,08	9,70	18,18
Brometo (mg/L)	11	0,003	0,005	0,003	0,000	0,006	0,000	0,005	-0,20	-2,43	0,00
Nitrato (mg/L)	11	0,234	0,149	0,221	0,018	0,845	0,111	0,275	2,42	6,89	9,09
Fosfato (mg/L)	11	0,003	0,003	0,003	0,000	0,010	0,000	0,006	0,86	0,30	0,00
Sulfato (mg/L)	11	0,448	0,342	0,341	0,086	1,105	0,145	0,626	1,08	0,22	0,00
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	1,695	1,665	0,257	1,211	2,266	1,617	1,759	0,60	2,80	18,18
Nitrogênio amoniacal (mg/L)	11	0,038	0,037	0,024	0,000	0,092	0,026	0,044	0,89	1,91	9,09
Potássio (mg/L)	11	0,80	0,85	0,18	0,44	1,13	0,67	0,88	-0,30	1,45	0,00
Magnêsio (mg/L)	11	0,446	0,451	0,074	0,290	0,569	0,432	0,492	-0,76	1,44	9,09
Cálcio (mg/L)	11	1,22	1,29	0,26	0,69	1,52	0,98	1,39	-0,75	-0,23	0,00
Sólidos suspensos totais (mg/L)	11	5,50	3,60	3,21	2,40	11,00	2,80	8,20	0,67	-1,22	0,00
Sólidos suspensos inorgânicos (mg/L)	11	3,02	1,60	2,43	0,40	6,80	1,00	5,40	0,44	-1,74	0,00
Sólidos suspensos orgânicos (mg/L)	11	2,48	2,20	1,16	1,40	5,60	2,00	2,80	2,16	5,61	9,09
Ferro dissolvido (mg/L)	11	0,123	0,060	0,143	0,060	0,465	0,060	0,060	2,07	3,10	18,18

Tabela I.15: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 23) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	30,11	30,36	1,24	27,85	32,65	28,98	30,97	0,04	-0,25	0,00
Condutividade elétrica (µS/cm)	16	23,38	20,50	13,33	9,00	55,00	15,00	25,00	1,65	2,16	12,50
Sólidos dissolvidos totais (mg/L)	16	14,25	12,00	8,00	7,00	33,00	9,00	15,00	1,70	1,99	12,50
pН	16	6,89	6,77	0,74	5,32	8,14	6,40	7,40	-0,13	-0,06	0,00
Potencial redox (mV)	16	113,9	123,5	30,1	44,0	147,0	103,3	139,1	-1,15	0,89	6,25
Turbidez (UNT)	16	6,03	5,40	3,59	1,50	15,20	3,60	8,45	1,09	1,37	0,00
Clorofila-a (µg/L)	16	7,27	6,48	3,45	2,01	13,24	4,69	10,60	0,30	-1,10	0,00
Oxigênio dissolvido (mg/L)	16	6,62	6,73	0,82	4,62	7,65	6,33	7,26	-1,10	1,27	6,25
Transparência (m)	16	0,76	0,85	0,29	0,20	1,20	0,55	1,00	-0,65	-0,50	0,00
Alcalinidade (mg CaCO ₃ /L)	16	8,22	8,23	3,66	3,94	19,05	5,88	9,24	1,70	4,55	6,25
Coliformes totais (NMP/100 mL)	16	4208	1965	4620	211	15402	1025	5375	1,42	1,14	12,50
Escherichia coli (NMP/100 mL)	16	97	31	196	1	798	5	113	3,44	12,71	6,25
Demanda bioquímica de oxigênio (mg/L)	16	1,46	1,44	1,09	0,12	3,98	0,58	1,62	1,09	0,65	12,50
Nitrogênio total Kjeldahl (mg/L)	16	0,710	0,510	0,825	0,000	3,564	0,330	0,911	3,04	10,72	6,25
Fós foro total (mg/L)	16	0,033	0,030	0,017	0,014	0,084	0,021	0,041	1,76	4,48	6,25
Cianoficeas (cel/mL)	16	844	521	1054	0	3600	0	1236	1,39	1,73	6,25
Fluoreto (mg/L)	16	0,050	0,047	0,023	0,021	0,096	0,033	0,069	0,66	-0,66	0,00
Cloreto (mg/L)	16	0,953	0,950	0,533	0,165	2,029	0,485	1,148	0,63	-0,19	0,00
Nitrito (mg/L)	16	0,001	0,000	0,001	0,000	0,005	0,000	0,002	1,34	0,64	0,00
Brometo (mg/L)	16	0,006	0,000	0,020	0,000	0,079	0,000	0,001	3,97	15,83	18,75
Nitrato (mg/L)	16	0,058	0,034	0,078	0,002	0,306	0,007	0,071	2,44	6,88	6,25
Fosfato (mg/L)	16	0,001	0,000	0,002	0,000	0,008	0,000	0,000	3,92	15,54	18,75
Sulfato (mg/L)	16	0,151	0,141	0,099	0,005	0,435	0,093	0,174	1,55	3,87	6,25
Lítio (mg/L)	16	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,31	0,21	0,00
Sódio (mg/L)	16	1,865	1,897	0,627	0,337	2,912	1,549	2,332	-0,67	1,17	6,25
Nitrogênio amoniacal (mg/L)	16	0,013	0,004	0,017	0,000	0,054	0,000	0,028	1,19	0,30	0,00
Potássio (mg/L)	16	1,03	1,13	0,36	0,17	1,44	0,89	1,29	-1,36	1,50	6,25
Magnêsio (mg/L)	16	0,591	0,605	0,197	0,119	0,989	0,501	0,653	-0,32	1,84	12,50
Cálcio (mg/L)	16	1,56	1,56	0,45	0,45	2,44	1,34	1,75	-0,45	1,76	12,50
Sólidos suspensos totais (mg/L)	16	6,68	5,90	2,60	2,94	12,80	4,80	8,20	0,97	0,64	0,00
Sólidos suspensos inorgânicos (mg/L)	16	3,93	3,20	2,13	1,41	10,00	2,60	4,91	1,68	3,47	6,25
Sólidos suspensos orgânicos (mg/L)	16	2,74	2,60	0,97	0,80	4,50	2,26	3,58	-0,06	-0,19	0,00
Ferro dissolvido (mg/L)	16	0,149	0,060	0,122	0,060	0,399	0,060	0,249	1,06	-0,23	0,00

Tabela I.16: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 23) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,33	28,94	1,22	27,27	31,66	28,45	30,10	0,28	0,14	0,00
Condutividade elétrica (µS/cm)	11	26,45	23,00	11,52	13,00	54,00	17,00	32,00	1,41	2,52	0,00
Sólidos dissolvidos totais (mg/L)	11	16,91	15,00	7,26	8,00	35,00	11,00	21,00	1,57	3,53	0,00
pН	11	6,65	6,58	0,51	6,13	7,89	6,21	6,90	1,40	2,64	0,00
Potencial redox (mV)	11	194,6	170,0	93,8	115,0	435,0	130,0	202,2	1,97	4,19	9,09
Turbidez (UNT)	11	9,23	8,00	4,20	3,70	17,90	6,10	12,80	0,81	0,14	0,00
Clorofila-a (µg/L)	11	8,76	7,32	5,08	4,24	22,64	6,10	9,75	2,32	6,31	9,09
Oxigênio dissolvido (mg/L)	11	6,53	6,35	0,92	4,60	7,84	6,10	7,22	-0,55	0,80	0,00
Transparência (m)	11	1,25	1,20	0,50	0,40	2,00	0,80	1,60	0,07	-0,39	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,52	8,30	0,94	7,10	10,30	8,00	8,90	0,67	0,29	9,09
Coliformes totais (NMP/100 mL)	11	2535	1374	2454	498	7701	910	3609	1,43	0,97	9,09
Escherichia coli (NMP/100 mL)	11	14	1	24	1	74	1	20	2,08	4,04	9,09
Demanda bioquímica de oxigênio (mg/L)	11	0,97	1,23	0,64	0,08	1,97	0,26	1,35	-0,14	-1,36	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,590	0,150	1,172	0,090	4,030	0,110	0,440	3,04	9,50	18,18
Fós foro total (mg/L)	11	0,022	0,018	0,009	0,012	0,038	0,014	0,032	0,77	-0,93	0,00
Cianoficeas (cel/mL)	11	2651	2890	1225	387	4608	1838	3546	-0,19	-0,34	0,00
Fluoreto (mg/L)	11	0,041	0,041	0,017	0,015	0,080	0,031	0,050	1,01	2,56	9,09
Cloreto (mg/L)	11	1,066	1,055	0,402	0,440	1,843	0,805	1,268	0,40	0,41	0,00
Nitrito (mg/L)	11	0,001	0,002	0,002	0,000	0,005	0,000	0,002	1,50	2,58	9,09
Brometo (mg/L)	11	0,001	0,000	0,004	0,000	0,014	0,000	0,000	3,31	10,97	18,18
Nitrato (mg/L)	11	0,078	0,070	0,047	0,006	0,145	0,056	0,136	0,09	-0,77	0,00
Fosfato (mg/L)	11	0,002	0,000	0,002	0,000	0,007	0,000	0,003	1,54	1,72	0,00
Sulfato (mg/L)	11	0,262	0,241	0,163	0,053	0,683	0,182	0,329	1,77	4,57	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	3,32	11,00	9,09
Sódio (mg/L)	11	1,401	1,372	0,258	1,036	1,866	1,160	1,568	0,28	-0,72	0,00
Nitrogênio amoniacal (mg/L)	11	0,076	0,070	0,031	0,038	0,159	0,059	0,087	2,10	5,87	9,09
Potássio (mg/L)	11	0,91	0,90	0,13	0,70	1,17	0,84	0,98	0,43	0,72	0,00
Magnêsio (mg/L)	11	0,490	0,489	0,086	0,324	0,633	0,466	0,541	-0,56	0,63	9,09
Cálcio (mg/L)	11	1,37	1,37	0,24	0,93	1,84	1,25	1,48	0,00	1,28	9,09
Sólidos suspensos totais (mg/L)	11	6,23	6,00	2,01	3,56	9,86	4,20	7,71	0,39	-0,71	0,00
Sólidos suspensos inorgânicos (mg/L)	11	3,02	2,80	1,68	1,23	6,60	1,60	3,71	1,07	0,65	0,00
Sólidos suspensos orgânicos (mg/L)	11	3,21	3,40	1,16	1,40	4,80	2,20	4,20	-0,07	-1,43	0,00
Ferro dissolvido (mg/L)	11	0,151	0,060	0,175	0,060	0,523	0,060	0,184	1,78	1,69	18,18

Tabela I.17: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 24) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,87	29,74	1,57	27,17	32,97	28,57	30,57	0,20	-0,30	0,00
Condutividade elétrica (µS/cm)	17	22,00	20,00	12,09	12,00	53,00	14,00	22,00	2,01	3,45	11,76
Sólidos dissolvidos totais (mg/L)	17	13,06	12,00	7,25	7,00	31,00	9,00	13,00	1,98	3,33	11,76
pН	17	6,99	6,93	0,50	6,23	8,06	6,60	7,35	0,30	-0,38	0,00
Potencial redox (mV)	17	106,8	101,5	30,9	55,0	170,0	90,0	118,2	0,65	0,20	11,76
Turbidez (UNT)	17	7,21	6,40	4,07	2,40	16,50	4,80	8,70	1,27	1,35	11,76
Clorofila-a (µg/L)	17	7,95	5,81	7,24	1,23	27,11	3,08	10,62	1,60	2,02	5,88
Oxigênio dissolvido (mg/L)	17	6,59	6,73	0,71	4,81	7,41	6,42	7,00	-1,22	1,39	11,76
Transparência (m)	17	0,74	0,80	0,25	0,20	1,30	0,60	0,85	-0,22	1,13	11,76
Alcalinidade (mg CaCO ₃ /L)	17	6,85	7,30	2,02	3,75	9,77	5,44	8,30	-0,45	-1,18	0,00
Coliformes totais (NMP/100 mL)	17	4025	2290	3824	456	12033	1408	5962	1,31	0,47	0,00
Escherichia coli (NMP/100 mL)	17	76	75	76	1	233	4	126	0,86	-0,10	0,00
Demanda bioquímica de oxigênio (mg/L)	17	1,32	1,16	0,91	0,50	4,36	0,85	1,41	2,60	8,13	11,76
Nitrogênio total Kjeldahl (mg/L)	17	0,665	0,509	0,541	0,000	2,036	0,410	0,810	1,64	2,42	11,76
Fósforo total (mg/L)	17	0,033	0,027	0,019	0,006	0,078	0,021	0,041	1,24	1,28	5,88
Cianoficeas (cel/mL)	17	677	505	632	0	1988	215	838	1,03	0,15	11,76
Fluoreto (mg/L)	17	0,043	0,038	0,020	0,019	0,085	0,025	0,053	0,74	-0,46	0,00
Cloreto (mg/L)	17	0,845	0,798	0,430	0,280	1,752	0,551	1,208	0,59	-0,48	0,00
Nitrito (mg/L)	17	0,001	0,000	0,001	0,000	0,006	0,000	0,000	2,80	8,21	23,53
Brometo (mg/L)	17	0,009	0,000	0,024	0,000	0,079	0,000	0,001	2,62	5,74	23,53
Nitrato (mg/L)	17	0,050	0,033	0,043	0,008	0,150	0,021	0,059	1,37	0,96	11,76
Fosfato (mg/L)	17	0,000	0,000	0,001	0,000	0,004	0,000	0,000	3,65	13,92	17,65
Sulfato (mg/L)	17	0,161	0,141	0,095	0,005	0,380	0,100	0,208	0,66	0,39	5,88
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,49	1,22	0,00
Sódio (mg/L)	17	1,680	1,926	0,583	0,632	2,449	1,164	2,064	-0,61	-1,03	0,00
Nitrogênio amoniacal (mg/L)	17	0,020	0,007	0,035	0,000	0,143	0,000	0,023	3,01	10,09	5,88
Potássio (mg/L)	17	0,98	0,94	0,41	0,31	1,50	0,70	1,47	-0,05	-1,34	0,00
Magnêsio (mg/L)	17	0,576	0,566	0,209	0,231	0,967	0,497	0,683	0,13	0,14	5,88
Cálcio (mg/L)	17	1,65	1,54	0,70	0,68	3,67	1,32	1,95	1,43	3,62	5,88
Sólidos suspensos totais (mg/L)	17	7,87	7,05	3,58	3,20	13,00	4,93	11,80	0,24	-1,54	0,00
Sólidos suspensos inorgânicos (mg/L)	17	5,00	4,40	2,99	0,20	9,20	2,80	8,40	0,17	-1,40	0,00
Sólidos suspensos orgânicos (mg/L)	17	2,87	2,80	0,74	1,40	3,80	2,40	3,41	-0,32	-0,66	0,00
Ferro dissolvido (mg/L)	17	0,146	0,060	0,105	0,060	0,323	0,060	0,180	0,72	-1,16	0,00

Tabela I.18: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 24) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	30,19	30,10	1,26	28,04	31,90	29,30	31,22	-0,40	-1,02	0,00
Condutividade elétrica (µS/cm)	11	21,00	20,00	5,18	15,00	34,00	17,00	23,00	1,59	3,70	9,09
Sólidos dissolvidos totais (mg/L)	11	21,27	14,00	26,22	10,00	100,00	12,00	15,00	3,27	10,76	9,09
pН	11	6,77	6,71	0,48	6,00	7,64	6,50	7,16	0,49	-0,09	0,00
Potencial redox (mV)	11	199,8	176,4	90,5	108,0	453,0	168,0	208,1	2,49	7,33	9,09
Turbidez (UNT)	11	9,57	7,40	3,61	6,10	15,60	6,70	13,90	0,69	-1,37	0,00
Clorofila-a (µg/L)	11	6,53	5,96	3,30	2,50	13,10	4,36	7,32	1,14	0,65	18,18
Oxigênio dissolvido (mg/L)	11	6,17	6,23	0,75	5,14	7,57	5,33	6,57	0,23	-0,49	0,00
Transparência (m)	11	1,37	1,40	0,49	0,60	2,20	0,90	1,80	0,10	-0,89	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,05	7,90	1,22	6,60	10,00	7,00	9,10	0,45	-1,41	0,00
Coliformes totais (NMP/100 mL)	11	2971	1031	5027	249	17329	402	4352	2,77	8,10	9,09
Escherichia coli (NMP/100 mL)	11	28	1	40	1	126	1	55	1,67	2,72	0,00
Demanda bioquímica de oxigênio (mg/L)	11	0,64	0,59	0,30	0,14	1,15	0,42	0,93	-0,03	-0,47	0,00
Nitrogênio total Kjeldahl (mg/L)	11	0,309	0,180	0,375	0,088	1,400	0,110	0,350	2,91	9,00	9,09
Fósforo total (mg/L)	11	0,017	0,016	0,007	0,006	0,032	0,011	0,022	0,58	0,04	0,00
Cianoficeas (cel/mL)	11	1743	860	1873	0	5717	527	2579	1,29	0,80	9,09
Fluoreto (mg/L)	11	0,030	0,031	0,010	0,012	0,043	0,024	0,037	-0,36	-0,15	0,00
Cloreto (mg/L)	11	0,899	0,824	0,467	0,239	1,839	0,587	1,005	0,95	0,68	9,09
Nitrito (mg/L)	11	0,001	0,002	0,001	0,000	0,004	0,000	0,002	0,38	0,66	0,00
Brometo (mg/L)	11	0,003	0,005	0,003	0,000	0,008	0,000	0,006	-0,06	-2,18	0,00
Nitrato (mg/L)	11	0,069	0,030	0,111	0,001	0,392	0,021	0,074	2,93	9,07	9,09
Fosfato (mg/L)	11	0,002	0,003	0,002	0,000	0,007	0,000	0,004	0,45	-0,86	0,00
Sulfato (mg/L)	11	0,162	0,120	0,147	0,089	0,603	0,106	0,143	3,23	10,57	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	3,32	11,00	9,09
Sódio (mg/L)	11	1,748	1,815	0,190	1,310	2,010	1,635	1,872	-1,18	1,94	0,00
Nitrogênio amoniacal (mg/L)	11	0,085	0,068	0,047	0,022	0,165	0,056	0,123	0,60	-0,88	0,00
Potássio (mg/L)	11	0,84	0,77	0,16	0,63	1,17	0,72	0,93	0,83	0,45	0,00
Magnêsio (mg/L)	11	0,482	0,493	0,066	0,345	0,601	0,439	0,528	-0,38	1,44	0,00
Cálcio (mg/L)	11	1,21	1,22	0,16	0,94	1,48	1,06	1,31	-0,15	-0,25	0,00
Sólidos suspensos totais (mg/L)	11	5,25	4,60	2,45	2,60	9,33	2,80	8,00	0,53	-1,23	0,00
Sólidos suspensos inorgânicos (mg/L)	11	2,78	2,20	2,25	0,20	7,20	1,00	4,00	0,94	0,16	0,00
Sólidos suspensos orgânicos (mg/L)	11	2,47	2,40	1,09	1,20	5,40	1,80	2,40	2,12	5,71	9,09
Ferro dissolvido (mg/L)	11	0,153	0,060	0,136	0,060	0,405	0,060	0,281	1,00	-0,75	0,00

Tabela I.19: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 25) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	17	29,55	29,59	1,11	27,46	31,22	28,77	30,23	-0,39	-0,55	0,00
Condutividade elétrica (µS/cm)	17	21,82	18,00	11,90	12,00	54,00	15,00	22,00	2,00	3,50	11,76
Sólidos dissolvidos totais (mg/L)	17	13,24	11,00	7,27	7,00	33,00	9,00	14,00	1,99	3,51	11,76
рН	17	6,84	7,12	0,82	5,02	8,09	6,57	7,26	-0,91	0,33	11,76
Potencial redox (mV)	17	110,3	110,0	28,6	59,0	151,0	91,5	133,7	-0,33	-0,94	0,00
Turbidez (UNT)	17	6,35	5,80	5,38	0,20	21,40	2,40	7,80	1,50	2,80	5,88
Clorofila-a (µg/L)	17	9,93	7,28	7,89	2,55	35,95	4,67	12,14	2,43	7,36	5,88
Oxigênio dissolvido (mg/L)	17	6,81	6,90	0,57	5,48	7,61	6,49	7,13	-0,83	0,57	5,88
Transparência (m)	17	0,77	0,80	0,24	0,40	1,20	0,60	0,90	0,17	-0,37	0,00
Alcalinidade (mg CaCO ₃ /L)	17	7,79	8,00	2,56	4,13	11,69	5,63	9,79	-0,18	-1,27	0,00
Coliformes totais (NMP/100 mL)	17	3052	2374	3076	108	12098	1204	3340	1,82	3,80	11,76
Escherichia coli (NMP/100 mL)	17	32	4	55	1	209	1	23	2,41	6,21	23,53
Demanda bioquímica de oxigênio (mg/L)	17	1,22	0,90	1,26	0,17	5,21	0,54	1,22	2,38	6,13	11,76
Nitrogênio total Kjeldahl (mg/L)	17	0,616	0,510	0,352	0,180	1,731	0,440	0,611	2,11	6,05	17,65
Fós foro total (mg/L)	17	0,031	0,024	0,024	0,012	0,106	0,018	0,032	2,43	6,38	11,76
Cianoficeas (cel/mL)	17	283	21	363	0	1053	0	505	1,00	-0,33	0,00
Fluoreto (mg/L)	17	0,043	0,038	0,020	0,015	0,078	0,029	0,059	0,40	-1,04	0,00
Cloreto (mg/L)	17	0,994	0,692	0,852	0,298	3,966	0,544	1,289	2,93	9,95	5,88
Nitrito (mg/L)	17	0,001	0,000	0,002	0,000	0,006	0,000	0,000	1,75	1,65	23,53
Brometo (mg/L)	17	0,012	0,000	0,026	0,000	0,079	0,000	0,003	1,95	2,25	17,65
Nitrato (mg/L)	17	0,043	0,038	0,037	0,004	0,137	0,011	0,079	1,03	0,60	0,00
Fosfato (mg/L)	17	0,000	0,000	0,000	0,000	0,001	0,000	0,000	2,76	6,88	17,65
Sulfato (mg/L)	17	0,157	0,125	0,112	0,005	0,424	0,108	0,182	1,09	0,91	17,65
Lítio (mg/L)	17	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,39	0,70	0,00
Sódio (mg/L)	17	1,558	1,564	0,459	0,641	2,504	1,228	1,860	0,09	0,10	0,00
Nitrogênio amoniacal (mg/L)	17	0,016	0,008	0,021	0,000	0,072	0,000	0,026	1,50	1,91	5,88
Potássio (mg/L)	17	0,89	0,79	0,33	0,38	1,55	0,67	1,11	0,57	-0,35	0,00
Magnêsio (mg/L)	17	0,573	0,585	0,126	0,322	0,804	0,518	0,662	-0,50	0,12	0,00
Cálcio (mg/L)	17	1,62	1,50	0,60	0,74	3,08	1,24	1,85	1,06	1,20	5,88
Sólidos suspensos totais (mg/L)	17	7,49	7,60	4,60	1,20	19,56	4,40	9,60	1,03	1,71	5,88
Sólidos suspensos inorgânicos (mg/L)	17	4,98	4,71	3,77	0,00	14,67	2,00	6,80	0,97	1,36	5,88
Sólidos suspensos orgânicos (mg/L)	17	2,51	2,60	1,12	0,40	4,89	1,80	3,20	0,03	0,03	0,00
Ferro dissolvido (mg/L)	17	0,257	0,176	0,370	0,060	1,620	0,060	0,326	3,47	13,20	5,88

Tabela I.20: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Belo Monte (ponto RX 25) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	11	29,66	29,80	1,33	27,04	31,49	28,53	30,91	-0,52	-0,14	0,00
Condutividade elétrica (µS/cm)	11	26,82	24,00	9,54	16,00	44,00	21,00	35,00	1,06	-0,13	0,00
Sólidos dissolvidos totais (mg/L)	11	16,64	15,00	6,27	10,00	29,00	12,00	20,00	1,19	0,43	0,00
pН	11	6,98	6,90	0,70	6,00	7,97	6,42	7,72	0,26	-1,58	0,00
Potencial redox (mV)	11	207,1	182,8	83,7	89,2	420,0	169,7	246,0	1,68	4,32	9,09
Turbidez (UNT)	11	8,77	9,05	3,77	3,20	16,20	5,40	11,70	0,51	-0,01	0,00
Clorofila-a (µg/L)	11	8,36	6,10	3,91	4,94	15,13	5,48	11,95	0,98	-0,67	0,00
Oxigênio dissolvido (mg/L)	11	6,16	6,11	0,91	5,00	7,56	5,13	7,21	0,19	-1,09	0,00
Transparência (m)	11	1,36	1,20	0,46	0,90	2,20	0,90	1,80	0,70	-0,79	0,00
Alcalinidade (mg CaCO ₃ /L)	11	8,50	8,50	1,23	7,00	10,80	7,50	9,00	0,91	-0,03	0,00
Coliformes totais (NMP/100 mL)	11	4355	661	7406	82	24196	450	5794	2,32	5,51	9,09
Escherichia coli (NMP/100 mL)	11	7	1	13	1	36	1	1	1,94	2,18	18,18
Demanda bioquímica de oxigênio (mg/L)	11	0,75	0,63	0,68	0,04	2,52	0,29	1,08	1,87	4,40	9,09
Nitrogênio total Kjeldahl (mg/L)	11	0,368	0,190	0,372	0,088	1,140	0,110	0,570	1,37	0,64	0,00
Fós foro total (mg/L)	11	0,019	0,018	0,009	0,007	0,038	0,012	0,024	0,80	0,69	0,00
Cianoficeas (cel/mL)	11	2831	2106	2640	247	8027	1238	2837	1,43	1,08	18,18
Fluoreto (mg/L)	11	0,039	0,040	0,007	0,027	0,048	0,031	0,044	-0,37	-0,88	0,00
Cloreto (mg/L)	11	1,019	0,940	0,564	0,257	1,938	0,371	1,487	0,07	-1,23	0,00
Nitrito (mg/L)	11	0,001	0,002	0,001	0,000	0,003	0,000	0,002	-0,05	-2,16	0,00
Brometo (mg/L)	11	0,003	0,000	0,004	0,000	0,009	0,000	0,007	0,37	-2,01	0,00
Nitrato (mg/L)	11	0,041	0,038	0,028	0,002	0,104	0,019	0,059	0,98	1,41	0,00
Fosfato (mg/L)	11	0,001	0,000	0,003	0,000	0,008	0,000	0,004	1,76	2,30	0,00
Sulfato (mg/L)	11	0,440	0,119	0,581	0,068	1,897	0,101	0,799	1,91	3,41	9,09
Lítio (mg/L)	11	0,000	0,000	0,000	0,000	0,001	0,000	0,000	1,92	2,04	18,18
Sódio (mg/L)	11	1,822	1,484	1,122	1,044	5,129	1,404	1,638	3,06	9,74	27,27
Nitrogênio amoniacal (mg/L)	11	0,089	0,075	0,044	0,040	0,174	0,061	0,092	1,36	0,93	18,18
Potássio (mg/L)	11	0,80	0,75	0,20	0,56	1,25	0,63	0,83	1,24	1,28	9,09
Magnêsio (mg/L)	11	0,440	0,429	0,088	0,321	0,609	0,374	0,472	0,82	0,24	0,00
Cálcio (mg/L)	11	1,13	1,09	0,21	0,89	1,49	0,94	1,19	0,84	-0,12	0,00
Sólidos suspensos totais (mg/L)	11	5,16	4,60	3,28	0,80	9,60	2,40	8,60	0,24	-1,75	0,00
Sólidos suspensos inorgânicos (mg/L)	11	2,56	1,00	2,51	0,20	6,20	0,50	5,60	0,53	-1,73	0,00
Sólidos suspensos orgânicos (mg/L)	11	2,60	2,60	1,07	0,60	4,00	1,80	3,60	-0,29	-0,53	0,00
Ferro dissolvido (mg/L)	11	0,131	0,060	0,163	0,060	0,539	0,060	0,060	2,18	3,88	18,18

Tabela II.1: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P6) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	28,1	27,9	1,3	26,0	30,0	27,1	29,1	0,27	-0,76	0,00
Potencial redox (mV)	12	142,8	150,5	79,4	-9,2	287,0	120,5	181,0	-0,38	0,83	25,00
pН	12	6,99	6,90	0,58	6,09	8,10	6,59	7,15	0,80	0,50	16,67
Condutividade elétrica (µS/cm)	12	91,96	81,00	27,98	66,00	154,00	71,50	107,75	1,23	0,76	0,00
Sólidos dissolvidos totais (mg/L)	12	46,12	40,00	13,84	33,00	77,00	36,00	55,20	1,22	0,71	0,00
Oxigênio dissolvido (mg/L)	12	6,34	6,32	1,43	3,80	8,60	5,25	7,40	-0,21	-0,67	0,00
Transparência (m)	12	0,08	0,05	0,07	0,05	0,30	0,05	0,08	3,07	9,82	8,33
Turbidez (UNT)	12	423,33	393,50	325,75	66,80	998,00	156,50	582,50	0,79	-0,44	0,00
Cor (mg Pt-Co/L)	12	103,08	96,50	49,55	21,00	193,00	73,50	138,00	0,21	-0,26	0,00
Sólidos totais (mg/L)	12	313,95	243,00	230,39	80,00	809,00	148,50	414,50	1,26	0,74	0,00
Sólidos suspensos totais (mg/L)	12	286,61	205,00	252,48	25,00	771,00	95,50	490,65	0,88	-0,57	0,00
Sólidos suspensos inorgânicos (mg/L)	12	247,25	171,50	236,61	23,00	715,00	55,00	419,50	0,97	-0,30	0,00
Sólidos suspensos orgânicos (mg/L)	12	39,36	39,50	29,51	2,00	85,30	12,00	64,50	0,13	-1,53	0,00
Clorofila-a (µg/L)	12	3,48	2,80	3,29	0,00	11,70	1,49	4,44	1,57	2,86	8,33
Fós foro total (mg/L)	12	0,347	0,300	0,237	0,068	0,831	0,174	0,453	1,01	0,19	0,00
Ortofos fato (mg/L)	12	0,093	0,025	0,142	0,001	0,408	0,007	0,136	1,61	1,28	16,67
Nitrogênio total Kjeldahl (mg/L)	12	1,397	0,820	1,248	0,550	4,820	0,670	1,545	2,25	5,24	8,33
Nitrato (mg/L)	12	0,958	0,950	0,365	0,500	1,600	0,600	1,250	0,19	-1,16	0,00
Nitrito (mg/L)	12	0,002	0,002	0,002	0,000	0,007	0,002	0,003	1,75	4,52	33,33
Nitrogênio amoniacal (mg/L)	12	0,788	0,450	0,706	0,120	2,550	0,325	1,280	1,58	2,49	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,52	1,15	1,02	0,60	3,90	0,85	1,75	1,57	1,94	8,33
Demanda química de oxigênio (mg/L)	12	11,33	10,00	8,93	0,00	28,00	5,00	15,00	0,91	0,03	0,00
Ferro total (mg/L)	12	4,477	4,355	2,863	0,660	9,200	1,960	7,200	0,24	-1,43	0,00
Alcalinidade (mg/L)	12	30,25	27,00	9,62	20,00	47,00	22,50	36,50	0,72	-0,84	0,00
Dureza (mg/L)	12	41,33	38,00	9,62	30,00	56,00	34,00	51,00	0,63	-1,21	0,00
Sulfato (mg/L)	12	10,25	8,50	3,84	6,00	15,00	7,00	15,00	0,36	-1,88	0,00
Sulfeto (mg/L)	12	0,035	0,011	0,062	0,000	0,213	0,009	0,016	2,61	6,71	16,67
Cloreto (mg/L)	12	0,625	0,000	0,829	0,000	2,000	0,000	1,250	0,82	-1,09	0,00
Carbono inorgânico total (mg/L)	12	7,00	6,62	3,26	2,62	12,55	4,26	9,73	0,40	-1,07	0,00
Carbono orgânico total (mg/L)	12	6,98	6,91	3,32	2,93	14,40	3,90	9,03	0,80	0,80	0,00
Carbono total (mg/L)	12	13,97	14,28	4,21	6,70	20,91	11,36	16,05	-0,11	-0,22	0,00
Sílica (mg/L)	12	21,85	13,90	26,10	1,20	93,00	7,20	21,90	2,22	5,10	16,67
Coliformes totais (NMP/100 mL)	12	1708	155	4530	20	16000	110	900	3,39	11,60	8,33
Coliformes termotolerantes (NMP/100ml)	12	61	57	36	20	130	30	80	0,64	-0,41	0,00

Tabela II.2: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P6) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	29,0	29,5	1,7	25,5	31,2	28,2	30,1	-0,93	0,19	0,00
Potencial redox (mV)	16	132,4	141,5	88,1	-25,8	367,0	77,5	165,9	0,78	2,76	6,25
pН	16	6,72	6,97	0,76	4,59	7,72	6,29	7,19	-1,46	3,20	6,25
Condutividade elétrica (µS/cm)	16	94,87	77,00	41,07	52,00	200,00	68,15	111,20	1,51	1,62	6,25
Sólidos dissolvidos totais (mg/L)	16	54,65	46,50	24,98	27,30	130,00	42,75	58,05	2,08	5,07	12,50
Oxigênio dissolvido (mg/L)	16	5,88	5,95	0,63	4,80	7,11	5,30	6,15	0,37	0,00	0,00
Transparência (m)	16	0,08	0,05	0,09	0,05	0,40	0,05	0,05	3,47	12,59	18,75
Turbidez (UNT)	16	381,80	342,50	220,74	35,30	900,00	243,50	494,00	0,77	0,78	6,25
Cor (mg Pt-Co/L)	16	177,53	95,00	202,00	14,00	726,00	44,00	285,50	1,69	2,50	6,25
Sólidos totais (mg/L)	16	293,46	266,70	159,15	56,00	570,00	154,65	437,50	0,39	-1,05	0,00
Sólidos suspensos totais (mg/L)	16	227,15	210,30	142,80	25,67	457,50	106,00	340,00	0,43	-1,18	0,00
Sólidos suspensos inorgânicos (mg/L)	16	225,70	186,50	151,57	21,00	496,00	98,25	382,83	0,46	-1,25	0,00
Sólidos suspensos orgânicos (mg/L)	16	18,70	12,00	17,71	4,67	74,00	6,85	26,30	2,23	6,03	6,25
Clorofila-a (µg/L)	16	2,18	1,40	2,83	0,00	11,11	0,43	2,35	2,41	6,56	12,50
Fós foro total (mg/L)	16	0,175	0,162	0,134	0,000	0,386	0,059	0,291	0,32	-1,31	0,00
Ortofos fato (mg/L)	16	0,044	0,034	0,042	0,000	0,103	0,003	0,086	0,22	-1,89	0,00
Nitrogênio total Kjeldahl (mg/L)	16	2,009	0,925	3,235	0,000	10,600	0,605	1,220	2,43	4,67	12,50
Nitrato (mg/L)	16	0,864	0,900	0,333	0,200	1,400	0,700	1,100	-0,65	0,19	0,00
Nitrito (mg/L)	16	0,004	0,000	0,009	0,000	0,030	0,000	0,005	2,27	4,76	12,50
Nitrogênio amoniacal (mg/L)	16	0,734	0,755	0,459	0,000	1,890	0,445	0,905	0,88	1,68	6,25
Demanda bioquímica de oxigênio (mg/L)	16	1,34	1,25	0,68	0,20	2,50	0,80	1,80	0,29	-0,73	0,00
Demanda química de oxigênio (mg/L)	16	9,71	8,50	5,37	3,00	18,00	4,55	14,50	0,27	-1,36	0,00
Ferro total (mg/L)	16	1,466	1,425	0,766	0,000	2,550	0,900	2,120	-0,27	-0,71	0,00
Alcalinidade (mg/L)	16	27,51	24,00	9,82	6,00	50,00	23,25	33,79	0,28	1,71	12,50
Dureza (mg/L)	16	34,13	32,00	11,94	6,00	62,00	28,00	39,00	0,15	2,64	12,50
Sulfato (mg/L)	16	3,63	1,50	4,02	0,00	10,00	0,00	8,00	0,41	-1,81	0,00
Sulfeto (mg/L)	16	0,007	0,007	0,004	0,001	0,017	0,004	0,010	0,58	0,54	0,00
Cloreto (mg/L)	16	0,211	0,000	0,749	0,000	3,000	0,000	0,000	3,91	15,44	18,75
Carbono inorgânico total (mg/L)	16	5,00	4,90	1,00	3,37	8,27	4,59	5,20	2,28	8,42	12,50
Carbono orgânico total (mg/L)	16	3,32	3,55	0,94	1,75	5,03	2,45	3,90	-0,12	-0,84	0,00
Carbono total (mg/L)	16	8,32	8,30	1,66	6,58	13,30	6,90	9,10	1,74	4,82	6,25
Sílica (mg/L)	16	6,92	7,50	5,83	0,00	22,31	2,00	10,00	1,01	1,97	6,25
Coliformes totais (NMP/100 mL)	16	3898	545	6313	110	17000	295	4300	1,61	0,93	18,75
Coliformes termotolerantes (NMP/100ml)	16	51	30	47	0	140	20	104	0,61	-1,16	0,00

Tabela II.3: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P7) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,5	26,0	2,1	23,3	32,0	25,4	27,3	1,60	4,57	0,00
Potencial redox (mV)	12	144,2	127,0	78,5	34,0	310,0	84,5	198,5	0,77	0,27	0,00
рН	12	6,06	5,85	0,67	4,90	7,30	5,66	6,55	0,38	-0,08	0,00
Condutividade elétrica (µS/cm)	12	20,00	10,50	16,74	6,00	47,00	7,50	39,50	0,80	-1,44	0,00
Sólidos dissolvidos totais (mg/L)	12	10,12	5,50	8,84	2,00	25,00	3,50	20,50	0,80	-1,40	0,00
Oxigênio dissolvido (mg/L)	12	4,65	4,31	1,92	2,50	8,00	2,75	6,24	0,48	-1,03	0,00
Transparência (m)	12	0,63	0,65	0,55	0,05	1,60	0,10	1,00	0,55	-0,95	0,00
Turbidez (UNT)	12	34,58	19,40	39,27	6,00	139,00	12,56	38,00	2,12	4,37	16,67
Cor (mg Pt-Co/L)	12	77,00	68,50	29,43	35,00	148,00	59,50	93,50	1,20	2,20	8,33
Sólidos totais (mg/L)	12	38,62	25,00	36,70	6,00	132,00	13,50	51,70	1,76	3,10	8,33
Sólidos suspensos totais (mg/L)	12	28,50	15,50	31,33	4,00	112,00	8,50	39,50	2,01	4,26	8,33
Sólidos suspensos inorgânicos (mg/L)	12	19,50	7,00	29,00	2,00	104,00	4,00	23,50	2,62	7,45	8,33
Sólidos suspensos orgânicos (mg/L)	12	9,00	7,00	7,48	0,00	25,00	4,50	10,50	1,35	1,15	16,67
Clorofila-a (µg/L)	12	1,55	1,09	1,49	0,00	4,85	0,45	2,49	1,11	0,72	0,00
Fós foro total (mg/L)	12	0,038	0,022	0,045	0,000	0,128	0,001	0,056	1,26	0,40	0,00
Ortofos fato (mg/L)	12	0,022	0,005	0,036	0,000	0,116	0,000	0,041	1,96	3,87	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,700	0,580	0,444	0,180	1,500	0,380	1,035	0,78	-0,76	0,00
Nitrato (mg/L)	12	0,692	0,650	0,281	0,400	1,300	0,450	0,800	1,04	0,72	0,00
Nitrito (mg/L)	12	0,003	0,002	0,003	0,000	0,011	0,002	0,003	2,37	6,66	33,33
Nitrogênio amoniacal (mg/L)	12	0,517	0,355	0,436	0,080	1,300	0,185	0,855	1,00	-0,61	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,35	0,85	0,86	0,50	2,80	0,75	2,25	0,78	-1,28	0,00
Demanda química de oxigênio (mg/L)	12	7,75	8,00	4,27	0,00	15,00	4,50	11,00	-0,14	-0,32	0,00
Ferro total (mg/L)	12	1,564	1,475	0,797	0,690	3,500	0,940	1,855	1,30	2,17	8,33
Alcalinidade (mg/L)	12	7,58	7,00	2,57	4,00	12,00	5,50	9,50	0,52	-0,76	0,00
Dureza (mg/L)	12	8,50	7,00	6,93	0,00	24,00	4,00	11,00	1,13	1,03	8,33
Sulfato (mg/L)	12	0,08	0,00	0,29	0,00	1,00	0,00	0,00	3,46	12,00	8,33
Sulfeto (mg/L)	12	0,017	0,005	0,025	0,001	0,085	0,003	0,023	2,27	5,41	8,33
Cloreto (mg/L)	12	0,708	0,000	0,940	0,000	2,500	0,000	1,500	0,84	-0,88	0,00
Carbono inorgânico total (mg/L)	12	4,04	4,21	1,37	1,29	5,89	3,21	5,10	-0,62	-0,11	0,00
Carbono orgânico total (mg/L)	12	6,05	5,54	2,48	2,93	12,10	4,78	6,40	1,45	2,58	16,67
Carbono total (mg/L)	12	10,10	10,18	2,64	4,85	15,00	9,01	11,48	-0,23	0,86	8,33
Sílica (mg/L)	12	8,38	9,25	3,28	3,00	13,10	5,60	10,70	-0,28	-1,10	0,00
Coliformes totais (NMP/100 mL)	12	2918	745	5074	170	17000	465	1950	2,45	5,74	16,67
Coliformes termotolerantes (NMP/100ml)	12	440	280	490	18	1700	75	595	1,73	3,32	8,33

Tabela II.4: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P7) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	27,8	28,0	1,6	24,4	29,9	27,0	29,2	-0,71	-0,16	0,00
Potencial redox (mV)	16	148,7	173,1	80,0	27,7	349,0	78,6	185,5	0,73	1,22	6,25
pН	16	6,00	5,98	0,63	5,23	7,10	5,42	6,40	0,41	-0,81	0,00
Condutividade elétrica (µS/cm)	16	28,43	15,65	34,04	4,00	131,30	8,00	38,25	2,19	5,05	6,25
Sólidos dissolvidos totais (mg/L)	16	15,31	9,38	16,97	2,00	64,80	5,00	20,20	1,99	4,00	6,25
Oxigênio dissolvido (mg/L)	16	3,50	3,40	0,96	2,08	5,60	2,75	4,02	0,64	-0,03	0,00
Transparência (m)	16	0,45	0,45	0,39	0,05	1,20	0,10	0,65	0,73	-0,63	0,00
Turbidez (UNT)	16	78,16	25,70	97,57	4,00	365,00	11,40	137,00	1,87	4,06	6,25
Cor (mg Pt-Co/L)	16	96,14	60,50	108,78	1,00	425,00	30,85	103,00	2,14	5,11	12,50
Sólidos totais (mg/L)	16	84,15	62,73	78,37	5,60	245,10	12,85	132,70	0,91	-0,25	0,00
Sólidos suspensos totais (mg/L)	16	56,83	30,34	69,82	0,60	218,00	6,35	89,50	1,41	1,10	6,25
Sólidos suspensos inorgânicos (mg/L)	16	55,67	17,50	70,80	0,00	201,00	1,65	102,45	1,06	-0,32	0,00
Sólidos suspensos orgânicos (mg/L)	16	10,47	7,50	10,04	0,30	30,67	2,45	16,00	1,03	-0,02	0,00
Clorofila-a (µg/L)	16	4,72	3,66	4,74	0,00	14,89	0,40	8,44	0,66	-0,61	0,00
Fós foro total (mg/L)	16	0,082	0,028	0,121	0,000	0,347	0,000	0,087	1,56	0,98	18,75
Ortofos fato (mg/L)	16	0,020	0,005	0,027	0,000	0,070	0,000	0,049	0,98	-0,95	0,00
Nitrogênio total Kjeldahl (mg/L)	16	1,499	0,480	2,819	0,000	8,900	0,175	0,880	2,44	4,71	12,50
Nitrato (mg/L)	16	0,530	0,650	0,360	0,000	1,200	0,200	0,800	-0,14	-0,88	0,00
Nitrito (mg/L)	16	0,014	0,001	0,033	0,000	0,130	0,000	0,012	3,34	11,95	12,50
Nitrogênio amoniacal (mg/L)	16	0,424	0,270	0,329	0,000	1,140	0,170	0,730	0,73	-0,52	0,00
Demanda bioquímica de oxigênio (mg/L)	16	1,44	1,40	0,54	0,70	3,00	1,10	1,65	1,47	4,02	6,25
Demanda química de oxigênio (mg/L)	16	11,79	9,50	6,25	3,00	23,00	7,10	17,00	0,56	-0,98	0,00
Ferro total (mg/L)	16	1,158	1,080	0,669	0,121	2,330	0,660	1,710	0,23	-1,01	0,00
Alcalinidade (mg/L)	16	12,57	12,00	5,73	4,00	24,00	8,00	16,53	0,51	-0,53	0,00
Dureza (mg/L)	16	10,81	8,00	7,19	4,00	28,00	5,00	15,50	1,07	0,60	0,00
Sulfato (mg/L)	16	1,27	0,00	5,00	0,00	20,00	0,00	0,00	4,00	15,99	18,75
Sulfeto (mg/L)	16	0,004	0,002	0,003	0,001	0,010	0,001	0,006	1,04	-0,32	0,00
Cloreto (mg/L)	16	0,008	0,000	0,031	0,000	0,123	0,000	0,000	3,96	15,74	12,50
Carbono inorgânico total (mg/L)	16	5,35	5,25	0,97	3,23	7,66	5,00	5,75	0,23	2,25	12,50
Carbono orgânico total (mg/L)	16	5,23	4,82	1,09	3,90	7,22	4,45	6,06	0,61	-0,98	0,00
Carbono total (mg/L)	16	10,58	9,98	1,67	8,37	14,88	9,60	10,95	1,51	2,12	12,50
Sílica (mg/L)	16	7,58	7,45	4,22	0,00	16,20	5,97	10,00	0,08	0,76	6,25
Coliformes totais (NMP/100 mL)	16	5290	1850	6648	140	17000	475	10460	1,10	-0,64	0,00
Coliformes termotolerantes (NMP/100ml)	16	129	20	265	0	958	0	86	2,70	6,89	12,50

Tabela II.5: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P8) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,5	26,8	1,3	24,0	29,0	25,6	27,2	-0,06	0,51	0,00
Potencial redox (mV)	12	137,6	142,0	74,3	39,0	315,0	83,5	170,0	0,94	2,15	8,33
pН	12	6,63	6,80	0,49	5,65	7,50	6,30	6,86	-0,48	0,53	0,00
Condutividade elétrica (µS/cm)	12	10,96	11,00	2,61	6,00	15,00	9,00	13,00	-0,45	-0,31	0,00
Sólidos dissolvidos totais (mg/L)	12	5,32	5,00	1,42	3,00	7,00	4,00	6,90	-0,06	-1,40	0,00
Oxigênio dissolvido (mg/L)	12	5,90	5,36	1,41	3,20	8,10	5,15	7,26	-0,08	-0,27	0,00
Transparência (m)	12	0,83	0,75	0,48	0,30	1,80	0,35	1,05	0,72	-0,09	0,00
Turbidez (UNT)	12	19,42	14,55	21,58	5,00	85,40	8,78	18,00	3,02	9,80	8,33
Cor (mg Pt-Co/L)	12	53,58	46,00	23,82	26,00	102,00	37,50	70,00	0,96	-0,07	0,00
Sólidos totais (mg/L)	12	20,32	17,50	9,13	12,00	44,00	14,00	23,00	1,82	3,55	8,33
Sólidos suspensos totais (mg/L)	12	15,25	13,00	8,28	7,00	37,00	10,00	18,00	1,84	3,91	8,33
Sólidos suspensos inorgânicos (mg/L)	12	8,92	7,00	4,72	3,00	19,00	5,50	12,00	0,82	0,21	0,00
Sólidos suspensos orgânicos (mg/L)	12	6,33	5,50	5,79	0,00	23,00	3,50	7,00	2,39	7,10	8,33
Clorofila-a (µg/L)	12	1,59	1,15	1,62	0,00	4,37	0,50	2,72	1,00	-0,62	0,00
Fós foro total (mg/L)	12	0,018	0,019	0,014	0,000	0,040	0,004	0,026	0,18	-1,03	0,00
Ortofos fato (mg/L)	12	0,007	0,002	0,011	0,000	0,029	0,000	0,010	1,57	1,27	16,67
Nitrogênio total Kjeldahl (mg/L)	12	0,461	0,455	0,121	0,260	0,670	0,370	0,550	0,02	-0,58	0,00
Nitrato (mg/L)	12	0,558	0,550	0,250	0,200	1,100	0,350	0,700	0,65	0,64	0,00
Nitrito (mg/L)	12	0,003	0,002	0,002	0,001	0,007	0,002	0,003	2,06	5,62	8,33
Nitrogênio amoniacal (mg/L)	12	0,244	0,235	0,121	0,040	0,470	0,205	0,295	0,04	0,43	25,00
Demanda bioquímica de oxigênio (mg/L)	12	1,71	1,25	1,24	0,30	4,50	0,95	2,55	1,11	0,89	0,00
Demanda química de oxigênio (mg/L)	12	10,50	9,50	6,65	0,00	23,00	5,50	15,50	0,25	-0,47	0,00
Ferro total (mg/L)	12	0,966	0,975	0,345	0,540	1,870	0,750	1,055	1,61	4,06	8,33
Alcalinidade (mg/L)	12	7,17	7,00	2,62	3,00	14,00	6,00	7,50	1,45	4,36	16,67
Dureza (mg/L)	12	7,88	7,00	7,10	0,60	26,00	3,00	9,00	1,70	3,27	8,33
Sulfato (mg/L)	12	0,08	0,00	0,29	0,00	1,00	0,00	0,00	3,46	12,00	8,33
Sulfeto (mg/L)	12	0,006	0,004	0,006	0,000	0,016	0,002	0,012	0,67	-1,21	0,00
Cloreto (mg/L)	12	0,458	0,000	0,620	0,000	1,500	0,000	1,000	0,87	-1,01	0,00
Carbono inorgânico total (mg/L)	12	3,36	2,20	3,29	0,95	12,92	1,63	4,25	2,56	7,34	8,33
Carbono orgânico total (mg/L)	12	4,82	4,63	2,26	2,16	8,46	2,76	6,77	0,53	-1,12	0,00
Carbono total (mg/L)	12	8,19	7,34	3,69	3,36	17,48	6,05	9,56	1,35	3,06	8,33
Sílica (mg/L)	12	8,18	8,90	2,42	3,00	11,60	7,05	9,70	-1,02	0,71	8,33
Coliformes totais (NMP/100 mL)	12	2731	570	5160	20	17000	175	1750	2,43	5,64	16,67
Coliformes termotolerantes (NMP/100ml)	12	130	110	93	0	330	68	155	1,03	1,00	8,33

Tabela II.6: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P8) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	27,5	27,9	1,6	24,2	30,1	26,7	28,5	-0,69	-0,03	0,00
Potencial redox (mV)	16	159,7	180,7	88,5	0,9	345,0	88,1	204,7	0,12	-0,05	0,00
pН	16	5,94	5,80	0,50	5,37	7,00	5,61	6,25	1,14	0,59	0,00
Condutividade elétrica (µS/cm)	16	23,66	13,50	34,96	4,00	147,00	9,00	20,10	3,34	11,82	12,50
Sólidos dissolvidos totais (mg/L)	16	12,70	7,35	16,32	2,00	69,50	5,50	11,50	3,20	11,04	12,50
Oxigênio dissolvido (mg/L)	16	3,81	3,55	0,82	2,80	5,30	3,20	4,40	0,68	-0,69	0,00
Transparência (m)	16	0,64	0,55	0,40	0,05	1,20	0,28	1,00	0,00	-1,41	0,00
Turbidez (UNT)	16	47,48	13,85	88,69	5,29	349,00	8,06	22,00	3,02	9,74	18,75
Cor (mg Pt-Co/L)	16	44,77	40,50	24,65	11,00	91,00	24,50	59,00	0,50	-0,62	0,00
Sólidos totais (mg/L)	16	63,28	32,60	59,97	11,78	221,00	16,15	103,45	1,34	1,65	0,00
Sólidos suspensos totais (mg/L)	16	36,16	15,95	55,35	2,30	213,64	7,40	29,17	2,62	7,22	18,75
Sólidos suspensos inorgânicos (mg/L)	16	35,42	13,13	47,20	1,00	173,64	6,00	55,50	1,97	4,09	6,25
Sólidos suspensos orgânicos (mg/L)	16	13,24	3,33	22,95	0,60	89,00	1,59	13,00	2,79	8,38	12,50
Clorofila-a (µg/L)	16	4,45	2,95	3,95	0,43	12,97	1,62	6,37	1,31	0,78	0,00
Fós foro total (mg/L)	16	0,035	0,017	0,051	0,000	0,175	0,000	0,050	1,93	3,37	12,50
Ortofos fato (mg/L)	16	0,019	0,001	0,035	0,000	0,105	0,000	0,020	2,07	3,25	12,50
Nitrogênio total Kjeldahl (mg/L)	16	1,076	0,335	1,954	0,000	6,400	0,200	0,615	2,43	4,73	18,75
Nitrato (mg/L)	16	0,529	0,430	0,468	0,000	1,900	0,250	0,700	1,71	4,18	6,25
Nitrito (mg/L)	16	0,003	0,001	0,005	0,000	0,020	0,000	0,003	2,79	8,16	12,50
Nitrogênio amoniacal (mg/L)	16	0,389	0,300	0,375	0,000	1,340	0,150	0,430	1,71	2,56	12,50
Demanda bioquímica de oxigênio (mg/L)	16	1,60	1,70	0,66	0,30	3,00	1,20	1,91	0,12	0,45	6,25
Demanda química de oxigênio (mg/L)	16	10,94	9,50	6,63	3,00	24,50	6,00	14,50	0,83	-0,27	0,00
Ferro total (mg/L)	16	1,022	0,960	0,722	0,000	2,840	0,510	1,290	0,99	1,46	6,25
Alcalinidade (mg/L)	16	10,94	10,05	5,16	4,00	24,00	8,00	12,00	1,47	2,31	12,50
Dureza (mg/L)	16	9,88	8,00	7,46	4,00	28,00	4,00	10,00	1,69	2,18	12,50
Sulfato (mg/L)	16	0,17	0,00	0,52	0,00	2,00	0,00	0,00	3,41	12,01	18,75
Sulfeto (mg/L)	16	0,003	0,002	0,003	0,001	0,011	0,001	0,005	1,61	1,90	6,25
Cloreto (mg/L)	16	0,012	0,000	0,045	0,000	0,180	0,000	0,000	3,98	15,88	12,50
Carbono inorgânico total (mg/L)	16	5,15	5,50	1,27	1,91	7,37	4,23	5,90	-0,98	1,86	0,00
Carbono orgânico total (mg/L)	16	5,02	4,48	1,04	4,10	6,87	4,30	5,86	0,95	-0,77	0,00
Carbono total (mg/L)	16	10,17	9,95	1,55	6,36	13,96	9,75	10,55	0,12	3,78	18,75
Sílica (mg/L)	16	8,35	9,20	2,87	0,00	11,70	7,15	10,45	-1,69	3,91	6,25
Coliformes totais (NMP/100 mL)	16	5841	2850	6507	285	17000	1400	10700	1,12	-0,59	0,00
Coliformes termotolerantes (NMP/100ml)	16	93	44	134	0	490	0	125	2,04	4,54	6,25

Tabela II.7: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P9) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	27,5	28,0	2,1	22,2	30,0	26,8	28,4	-1,54	3,67	8,33
Potencial redox (mV)	12	135,9	159,5	80,0	-8,9	276,0	83,5	182,0	-0,40	0,03	0,00
pH	12	6,92	6,90	0,52	6,12	7,90	6,49	7,25	0,40	-0,33	0,00
Condutividade elétrica (µS/cm)	12	87,92	77,50	25,27	65,00	146,00	68,00	101,00	1,32	1,16	0,00
Sólidos dissolvidos totais (mg/L)	12	44,88	39,50	12,70	34,00	72,00	34,50	54,75	1,02	0,07	0,00
Oxigênio dissolvido (mg/L)	12	6,37	6,55	1,69	3,50	8,76	5,45	7,80	-0,42	-0,68	0,00
Transparência (m)	12	0,08	0,05	0,05	0,05	0,20	0,05	0,10	1,71	2,23	8,33
Turbidez (UNT)	12	523,43	502,00	384,04	62,00	1278,00	202,50	732,00	0,64	-0,29	0,00
Cor (mg Pt-Co/L)	12	96,50	104,50	46,21	18,00	169,00	55,50	134,00	-0,20	-0,93	0,00
Sólidos totais (mg/L)	12	362,29	302,25	223,56	94,00	686,00	172,00	608,50	0,36	-1,65	0,00
Sólidos suspensos totais (mg/L)	12	317,40	257,50	232,95	40,00	650,00	128,00	573,90	0,32	-1,67	0,00
Sólidos suspensos inorgânicos (mg/L)	12	264,77	205,00	210,57	32,00	605,00	81,50	439,10	0,52	-1,31	0,00
Sólidos suspensos orgânicos (mg/L)	12	52,63	36,00	55,61	1,00	205,00	18,50	73,80	2,07	5,13	8,33
Clorofila-a (µg/L)	12	3,15	1,44	4,25	0,00	15,17	0,53	4,58	2,34	6,28	8,33
Fós foro total (mg/L)	12	0,396	0,330	0,268	0,081	0,975	0,195	0,570	0,93	0,37	0,00
Ortofos fato (mg/L)	12	0,121	0,019	0,194	0,000	0,444	0,005	0,242	1,31	-0,34	0,00
Nitrogênio total Kjeldahl (mg/L)	12	1,157	0,745	0,984	0,330	3,450	0,590	1,185	1,82	2,34	16,67
Nitrato (mg/L)	12	1,208	1,100	0,610	0,500	2,600	0,750	1,600	1,11	1,09	0,00
Nitrito (mg/L)	12	0,003	0,003	0,002	0,000	0,006	0,002	0,004	0,48	0,29	8,33
Nitrogênio amoniacal (mg/L)	12	0,840	0,420	1,022	0,070	3,250	0,270	0,935	1,83	2,36	16,67
Demanda bioquímica de oxigênio (mg/L)	12	1,36	1,25	0,76	0,40	2,70	0,75	1,85	0,49	-0,65	0,00
Demanda química de oxigênio (mg/L)	12	11,33	10,50	8,64	0,00	30,00	4,50	16,50	0,84	0,50	0,00
Ferro total (mg/L)	12	6,754	5,300	5,677	0,680	20,100	2,620	9,375	1,25	1,51	8,33
Alcalinidade (mg/L)	12	25,92	23,00	8,68	14,00	47,00	22,00	29,00	1,35	2,43	8,33
Dureza (mg/L)	12	41,50	39,00	12,18	24,00	64,00	32,00	50,00	0,54	-0,54	0,00
Sulfato (mg/L)	12	8,50	8,00	4,50	0,00	15,00	6,50	12,00	-0,20	-0,18	0,00
Sulfeto (mg/L)	12	0,050	0,011	0,132	0,000	0,467	0,007	0,013	3,41	11,69	16,67
Cloreto (mg/L)	12	0,667	0,000	0,913	0,000	2,500	0,000	1,250	1,02	-0,32	0,00
Carbono inorgânico total (mg/L)	12	7,00	6,06	2,37	3,54	11,30	5,62	8,51	0,73	-0,35	0,00
Carbono orgânico total (mg/L)	12	7,10	7,17	2,93	3,37	13,20	4,68	8,80	0,50	0,30	0,00
Carbono total (mg/L)	12	14,10	14,43	2,63	9,36	19,20	12,47	15,63	0,01	0,39	0,00
Sílica (mg/L)	12	26,33	16,05	26,00	2,80	80,00	7,60	40,30	1,19	0,20	0,00
Coliformes totais (NMP/100 mL)	12	437	315	473	20	1700	131	490	2,00	4,40	8,33
Coliformes termotolerantes (NMP/100ml)	12	135	53	206	13	700	40	94	2,40	5,43	16,67

Tabela II.8: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P9) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,8	29,1	1,5	25,8	30,6	28,0	30,0	-0,75	-0,39	0,00
Potencial redox (mV)	16	114,3	136,8	67,9	-22,9	260,0	66,6	146,9	-0,14	0,71	0,00
pН	16	6,70	6,60	0,65	5,48	7,60	6,35	7,36	-0,27	-0,70	0,00
Condutividade elétrica (µS/cm)	16	96,73	84,60	42,83	46,00	195,00	63,00	116,90	1,10	0,50	0,00
Sólidos dissolvidos totais (mg/L)	16	56,44	50,12	25,93	27,60	126,00	38,85	64,65	1,49	2,34	6,25
Oxigênio dissolvido (mg/L)	16	5,63	5,65	0,58	4,74	7,02	5,18	5,95	0,72	0,78	0,00
Transparência (m)	16	0,07	0,05	0,04	0,05	0,20	0,05	0,05	2,41	5,20	18,75
Turbidez (UNT)	16	491,55	369,00	389,86	60,90	1608,00	230,50	617,50	1,73	3,56	6,25
Cor (mg Pt-Co/L)	16	166,93	60,50	240,23	12,00	939,00	28,70	224,00	2,54	7,16	6,25
Sólidos totais (mg/L)	16	374,22	354,30	205,76	78,33	693,00	196,20	518,50	0,14	-1,33	0,00
Sólidos suspensos totais (mg/L)	16	280,20	302,00	172,44	13,67	545,00	122,50	421,08	-0,06	-1,26	0,00
Sólidos suspensos inorgânicos (mg/L)	16	280,74	295,00	186,18	8,33	585,00	112,75	434,25	-0,07	-1,29	0,00
Sólidos suspensos orgânicos (mg/L)	16	28,45	22,60	28,00	3,00	113,00	10,17	34,00	2,15	5,26	12,50
Clorofila-a (µg/L)	16	2,33	1,82	2,27	0,00	10,06	1,14	2,61	2,88	9,82	6,25
Fós foro total (mg/L)	16	0,232	0,198	0,185	0,016	0,660	0,112	0,333	1,02	0,68	0,00
Ortofos fato (mg/L)	16	0,046	0,041	0,042	0,000	0,123	0,004	0,075	0,51	-0,92	0,00
Nitrogênio total Kjeldahl (mg/L)	16	1,334	0,660	1,773	0,000	5,900	0,410	1,220	2,27	4,16	12,50
Nitrato (mg/L)	16	1,078	1,100	0,599	0,200	2,100	0,560	1,550	0,12	-1,09	0,00
Nitrito (mg/L)	16	0,005	0,000	0,012	0,000	0,044	0,000	0,005	2,69	7,71	12,50
Nitrogênio amoniacal (mg/L)	16	0,646	0,605	0,368	0,000	1,270	0,370	0,945	0,25	-0,81	0,00
Demanda bioquímica de oxigênio (mg/L)	16	0,95	0,95	0,59	0,00	2,00	0,50	1,31	0,11	-0,82	0,00
Demanda química de oxigênio (mg/L)	16	8,86	8,50	6,41	1,00	23,00	3,00	12,50	0,80	-0,02	0,00
Ferro total (mg/L)	16	1,368	1,150	0,942	0,000	3,300	0,770	1,675	1,01	0,27	12,50
Alcalinidade (mg/L)	16	28,50	25,00	7,38	21,00	44,00	22,25	33,73	0,90	-0,40	0,00
Dureza (mg/L)	16	37,88	35,00	8,28	28,00	54,00	32,00	41,00	0,88	-0,06	0,00
Sulfato (mg/L)	16	5,97	4,86	7,40	0,00	28,00	0,50	7,91	1,99	4,67	6,25
Sulfeto (mg/L)	16	0,006	0,006	0,003	0,001	0,012	0,004	0,008	0,18	-0,61	0,00
Cloreto (mg/L)	16	0,214	0,000	0,750	0,000	3,000	0,000	0,000	3,88	15,24	18,75
Carbono inorgânico total (mg/L)	16	6,37	6,21	1,67	2,19	11,12	6,15	6,45	0,58	6,86	18,75
Carbono orgânico total (mg/L)	16	4,24	4,00	0,83	3,20	6,61	3,75	4,54	1,65	3,56	6,25
Carbono total (mg/L)	16	10,61	10,25	2,17	6,87	17,73	9,95	10,60	2,29	8,66	18,75
Sílica (mg/L)	16	8,25	8,20	5,43	0,10	20,08	3,43	10,70	0,55	0,33	0,00
Coliformes totais (NMP/100 mL)	16	1926	900	2635	40	9200	178	2600	1,80	2,84	6,25
Coliformes termotolerantes (NMP/100ml)	16	45	33	43	0	140	10	78	0,77	-0,23	0,00

Tabela II.9: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P10) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	26,2	25,9	2,4	22,0	31,0	25,0	26,9	0,63	0,92	25,00
Potencial redox (mV)	12	147,1	123,0	84,6	31,0	330,0	81,0	212,0	0,87	0,46	0,00
pH	12	5,90	5,70	0,79	4,90	7,70	5,30	6,40	0,96	0,98	0,00
Condutividade elétrica (µS/cm)	12	8,92	8,50	6,57	2,00	26,00	3,50	11,00	1,64	3,68	8,33
Sólidos dissolvidos totais (mg/L)	12	4,65	4,00	3,65	1,00	14,80	3,00	5,50	2,13	5,75	8,33
Oxigênio dissolvido (mg/L)	12	5,20	4,95	1,63	2,80	7,30	3,90	6,91	-0,15	-1,32	0,00
Transparência (m)	12	1,03	1,00	0,56	0,20	1,90	0,65	1,50	-0,06	-1,01	0,00
Turbidez (UNT)	12	41,10	6,86	111,00	3,70	393,00	6,15	13,50	3,44	11,90	16,67
Cor (mg Pt-Co/L)	12	56,08	56,00	17,14	26,00	93,00	44,00	63,50	0,47	1,19	8,33
Sólidos totais (mg/L)	12	67,23	16,50	174,32	5,00	620,00	10,50	23,90	3,45	11,91	8,33
Sólidos suspensos totais (mg/L)	12	62,75	10,50	173,79	4,00	614,00	7,50	20,00	3,45	11,93	8,33
Sólidos suspensos inorgânicos (mg/L)	12	52,50	4,00	167,41	0,00	584,00	2,50	7,00	3,46	11,99	8,33
Sólidos suspensos orgânicos (mg/L)	12	10,25	7,00	8,87	1,00	30,00	4,00	13,50	1,36	1,10	8,33
Clorofila-a (µg/L)	12	2,45	0,55	4,45	0,00	15,60	0,22	2,38	2,76	8,07	16,67
Fós foro total (mg/L)	12	0,054	0,020	0,113	0,000	0,406	0,004	0,046	3,28	11,04	8,33
Ortofos fato (mg/L)	12	0,008	0,002	0,011	0,000	0,029	0,000	0,015	1,17	-0,29	0,00
Nitrogênio total Kjeldahl (mg/L)	12	0,765	0,650	0,416	0,280	1,620	0,470	1,055	0,87	0,02	0,00
Nitrato (mg/L)	12	0,650	0,550	0,454	0,200	1,900	0,400	0,650	2,18	5,39	16,67
Nitrito (mg/L)	12	0,003	0,003	0,002	0,000	0,009	0,001	0,003	1,79	4,64	8,33
Nitrogênio amoniacal (mg/L)	12	0,515	0,335	0,454	0,080	1,420	0,155	0,955	0,86	-0,59	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,28	1,20	0,80	0,40	2,90	0,60	1,75	0,82	-0,05	0,00
Demanda química de oxigênio (mg/L)	12	8,67	7,50	5,43	0,00	18,00	5,50	13,50	0,16	-0,69	0,00
Ferro total (mg/L)	12	2,086	1,425	2,175	0,590	8,650	0,880	2,380	2,89	9,13	8,33
Alcalinidade (mg/L)	12	6,00	5,00	3,25	4,00	16,00	5,00	5,50	3,12	10,19	33,33
Dureza (mg/L)	12	7,83	6,00	5,69	2,00	22,00	4,00	10,00	1,52	2,68	8,33
Sulfato (mg/L)	12	0,42	0,00	1,16	0,00	4,00	0,00	0,00	3,14	10,13	16,67
Sulfeto (mg/L)	12	0,019	0,003	0,052	0,001	0,185	0,002	0,006	3,43	11,82	16,67
Cloreto (mg/L)	12	0,750	0,000	1,234	0,000	3,500	0,000	1,500	1,44	0,83	0,00
Carbono inorgânico total (mg/L)	12	2,85	2,10	2,38	1,20	9,80	1,68	2,66	2,65	7,55	16,67
Carbono orgânico total (mg/L)	12	5,20	4,35	2,51	2,34	10,62	3,67	6,39	1,19	0,71	8,33
Carbono total (mg/L)	12	8,06	7,47	2,81	3,56	12,62	5,97	9,86	0,28	-0,71	0,00
Sílica (mg/L)	12	8,68	8,25	5,02	1,30	20,40	5,55	11,25	0,89	1,82	8,33
Coliformes totais (NMP/100 mL)	12	728	700	826	20	2800	73	865	1,62	2,86	8,33
Coliformes termotolerantes (NMP/100ml)	12	219	94	251	20	700	40	330	1,31	0,51	16,67

Tabela II.10: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P10) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	29,2	29,0	1,5	26,5	32,2	28,6	30,1	0,09	0,26	0,00
Potencial redox (mV)	16	155,8	151,0	73,1	69,7	360,0	109,5	178,0	1,51	3,13	6,25
pН	16	6,23	6,19	0,70	5,13	7,31	5,74	6,78	0,08	-0,98	0,00
Condutividade elétrica (µS/cm)	16	32,57	14,75	41,13	4,00	154,50	10,48	38,60	2,14	4,52	12,50
Sólidos dissolvidos totais (mg/L)	16	17,74	8,27	21,70	2,00	77,40	6,00	19,75	1,97	3,22	12,50
Oxigênio dissolvido (mg/L)	16	3,16	3,35	1,07	1,20	5,00	2,55	3,93	-0,38	-0,39	0,00
Transparência (m)	16	0,55	0,35	0,52	0,05	1,60	0,13	0,90	0,96	-0,30	0,00
Turbidez (UNT)	16	69,80	15,30	137,35	3,73	546,00	5,38	50,45	3,16	10,77	18,75
Cor (mg Pt-Co/L)	16	66,27	40,00	65,18	12,00	245,00	25,90	94,00	1,75	2,83	6,25
Sólidos totais (mg/L)	16	128,34	40,00	237,74	5,60	976,00	17,35	141,75	3,40	12,44	6,25
Sólidos suspensos totais (mg/L)	16	74,21	16,67	161,88	1,67	640,00	7,30	29,50	3,26	11,25	18,75
Sólidos suspensos inorgânicos (mg/L)	16	75,31	9,60	155,13	0,00	606,00	2,04	88,25	3,03	10,04	6,25
Sólidos suspensos orgânicos (mg/L)	16	14,17	4,80	18,68	1,67	65,00	2,80	18,25	1,86	2,83	12,50
Clorofila-a (µg/L)	16	8,68	6,81	6,37	1,60	19,63	2,80	15,08	0,42	-1,46	0,00
Fós foro total (mg/L)	16	0,051	0,021	0,080	0,000	0,280	0,002	0,057	2,21	4,48	12,50
Ortofos fato (mg/L)	16	0,010	0,000	0,021	0,000	0,082	0,000	0,015	3,07	10,43	6,25
Nitrogênio total Kjeldahl (mg/L)	16	1,122	0,535	1,408	0,000	4,800	0,305	1,295	2,07	3,51	12,50
Nitrato (mg/L)	16	0,569	0,450	0,444	0,000	1,800	0,300	0,800	1,41	2,92	6,25
Nitrito (mg/L)	16	0,002	0,000	0,005	0,000	0,020	0,000	0,002	2,89	8,54	12,50
Nitrogênio amoniacal (mg/L)	16	0,559	0,410	0,440	0,000	1,580	0,285	0,815	1,06	0,50	0,00
Demanda bioquímica de oxigênio (mg/L)	16	1,83	1,63	0,91	0,60	4,50	1,25	2,30	1,65	4,22	6,25
Demanda química de oxigênio (mg/L)	16	13,49	12,60	6,71	4,00	25,00	8,75	18,50	0,05	-0,89	0,00
Ferro total (mg/L)	16	1,101	1,155	0,626	0,170	2,540	0,575	1,450	0,57	0,30	0,00
Alcalinidade (mg/L)	16	10,94	8,50	7,01	3,00	25,52	5,50	15,00	1,01	-0,01	0,00
Dureza (mg/L)	16	11,06	7,00	8,93	4,00	30,00	4,00	16,00	1,07	-0,15	0,00
Sulfato (mg/L)	16	0,02	0,00	0,09	0,00	0,37	0,00	0,00	3,99	15,97	12,50
Sulfeto (mg/L)	16	0,003	0,002	0,004	0,000	0,016	0,001	0,003	3,31	12,10	6,25
Cloreto (mg/L)	16	0,009	0,000	0,034	0,000	0,135	0,000	0,000	3,96	15,79	12,50
Carbono inorgânico total (mg/L)	16	4,80	5,20	0,99	2,30	5,70	4,00	5,50	-1,35	1,15	0,00
Carbono orgânico total (mg/L)	16	4,00	4,10	0,62	3,10	5,20	3,50	4,16	0,47	0,01	6,25
Carbono total (mg/L)	16	8,80	9,07	1,14	6,51	10,90	8,25	9,55	-0,68	0,77	0,00
Sílica (mg/L)	16	7,37	5,83	3,89	0,00	13,80	5,05	10,25	0,12	-0,60	0,00
Coliformes totais (NMP/100 mL)	16	2389	733	4467	78	17000	380	1950	2,87	8,28	12,50
Coliformes termotolerantes (NMP/100ml)	16	47	10	95	0	297	0	40	2,38	4,50	12,50

Tabela II.11: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P11) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,0	25,9	1,5	24,0	29,0	25,0	26,9	0,55	-0,08	0,00
Potencial redox (mV)	12	144,5	141,5	73,3	19,4	295,0	119,5	186,5	0,21	0,87	8,33
pH	12	6,19	6,20	0,53	5,10	7,00	5,90	6,55	-0,47	0,41	0,00
Condutividade elétrica (µS/cm)	12	10,33	8,50	4,21	6,00	21,00	8,00	12,00	1,69	3,03	8,33
Sólidos dissolvidos totais (mg/L)	12	5,26	4,00	2,44	3,00	12,10	4,00	6,00	2,27	5,90	8,33
Oxigênio dissolvido (mg/L)	12	6,50	6,85	1,41	4,20	8,20	5,23	7,72	-0,58	-1,14	0,00
Transparência (m)	12	0,70	0,70	0,15	0,40	1,00	0,60	0,80	0,00	1,53	0,00
Turbidez (UNT)	12	33,57	17,85	48,31	13,00	185,00	15,80	22,60	3,31	11,20	16,67
Cor (mg Pt-Co/L)	12	70,50	68,00	23,15	42,00	120,00	53,50	84,50	0,86	0,42	0,00
Sólidos totais (mg/L)	12	35,59	19,00	51,24	11,00	193,00	14,50	23,55	3,12	10,04	16,67
Sólidos suspensos totais (mg/L)	12	30,33	13,00	51,76	6,00	189,00	8,00	19,50	3,10	9,92	16,67
Sólidos suspensos inorgânicos (mg/L)	12	16,17	7,50	26,25	2,00	97,00	4,50	13,50	3,12	10,18	8,33
Sólidos suspensos orgânicos (mg/L)	12	14,17	4,00	25,77	2,00	92,00	3,00	9,00	2,97	9,15	16,67
Clorofila-a (µg/L)	12	2,70	1,09	5,56	0,00	19,72	0,00	1,93	3,07	9,89	16,67
Fós foro total (mg/L)	12	0,020	0,016	0,022	0,000	0,081	0,005	0,023	2,29	6,39	8,33
Ortofos fato (mg/L)	12	0,005	0,000	0,009	0,000	0,030	0,000	0,005	2,54	6,85	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,510	0,530	0,205	0,150	0,860	0,360	0,665	-0,10	-0,57	0,00
Nitrato (mg/L)	12	0,475	0,500	0,122	0,300	0,700	0,400	0,550	0,21	-0,41	0,00
Nitrito (mg/L)	12	0,003	0,002	0,003	0,000	0,009	0,002	0,003	1,78	2,64	16,67
Nitrogênio amoniacal (mg/L)	12	0,260	0,270	0,172	0,050	0,640	0,115	0,355	0,75	0,67	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,43	1,00	1,13	0,10	4,00	0,80	1,70	1,50	1,65	16,67
Demanda química de oxigênio (mg/L)	12	8,00	7,00	6,86	2,00	28,00	3,50	8,50	2,53	7,54	8,33
Ferro total (mg/L)	12	1,014	1,065	0,259	0,690	1,460	0,735	1,205	0,05	-1,24	0,00
Alcalinidade (mg/L)	12	7,67	7,00	3,60	3,00	18,00	6,00	8,00	2,30	7,12	8,33
Dureza (mg/L)	12	6,83	5,00	5,42	0,00	18,00	4,00	9,00	1,14	0,64	8,33
Sulfato (mg/L)	12	0,17	0,00	0,39	0,00	1,00	0,00	0,00	2,06	2,64	16,67
Sulfeto (mg/L)	12	0,009	0,005	0,010	0,003	0,036	0,004	0,011	2,32	5,84	8,33
Cloreto (mg/L)	12	0,250	0,000	0,500	0,000	1,500	0,000	0,250	1,96	3,02	16,67
Carbono inorgânico total (mg/L)	12	2,50	1,83	2,22	0,83	8,70	1,29	2,49	2,34	5,87	16,67
Carbono orgânico total (mg/L)	12	5,06	4,66	2,43	1,90	9,90	3,41	6,66	0,71	-0,16	0,00
Carbono total (mg/L)	12	7,58	6,72	3,72	2,73	16,80	5,26	8,82	1,47	2,69	8,33
Sílica (mg/L)	12	6,70	6,65	2,63	3,10	10,60	4,10	8,95	-0,10	-1,39	0,00
Coliformes totais (NMP/100 mL)	12	3232	900	5081	68	17000	330	3900	2,21	4,87	8,33
Coliformes termotolerantes (NMP/100ml)	12	331	130	606	20	2200	33	315	3,13	10,26	8,33

Tabela II.12: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P11) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	26,8	26,9	1,6	23,6	29,7	25,8	28,2	-0,25	-0,47	0,00
Potencial redox (mV)	16	161,6	170,6	65,8	50,9	231,0	101,6	225,0	-0,56	-1,11	0,00
pН	16	5,65	5,63	0,76	4,00	7,21	5,28	6,07	-0,15	0,97	6,25
Condutividade elétrica (µS/cm)	16	14,66	10,00	21,87	2,00	95,00	6,00	13,03	3,73	14,47	0,00
Sólidos dissolvidos totais (mg/L)	16	8,65	6,00	13,40	1,00	58,00	3,50	7,38	3,76	14,64	6,25
Oxigênio dissolvido (mg/L)	16	3,36	3,10	1,63	0,20	6,69	2,50	4,51	0,31	0,39	0,00
Transparência (m)	16	0,74	0,70	0,35	0,20	1,50	0,50	0,95	0,48	-0,03	0,00
Turbidez (UNT)	16	17,10	12,40	13,26	3,04	55,00	11,00	18,40	2,03	4,22	12,50
Cor (mg Pt-Co/L)	16	62,43	66,16	27,57	21,00	134,00	43,00	77,50	0,83	1,94	6,25
Sólidos totais (mg/L)	16	35,14	32,00	24,30	9,22	89,00	16,17	45,30	1,10	0,52	0,00
Sólidos suspensos totais (mg/L)	16	12,10	9,17	7,91	3,40	30,00	5,80	17,67	0,94	0,03	0,00
Sólidos suspensos inorgânicos (mg/L)	16	11,50	7,83	10,46	1,00	38,00	4,00	16,65	1,40	1,71	6,25
Sólidos suspensos orgânicos (mg/L)	16	8,10	2,67	14,64	1,40	51,00	2,00	3,87	2,57	5,64	18,75
Clorofila-a (µg/L)	16	1,16	1,20	0,80	0,00	2,57	0,43	1,68	0,32	-1,11	0,00
Fós foro total (mg/L)	16	0,014	0,000	0,026	0,000	0,100	0,000	0,019	2,81	8,93	6,25
Ortofos fato (mg/L)	16	0,003	0,000	0,005	0,000	0,014	0,000	0,007	1,28	-0,01	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,984	0,305	1,739	0,000	5,630	0,190	0,670	2,39	4,54	12,50
Nitrato (mg/L)	16	0,371	0,400	0,256	0,000	0,930	0,200	0,500	0,30	0,24	0,00
Nitrito (mg/L)	16	0,003	0,000	0,005	0,000	0,020	0,000	0,004	2,68	7,62	12,50
Nitrogênio amoniacal (mg/L)	16	0,393	0,255	0,357	0,000	1,150	0,175	0,520	1,29	0,65	12,50
Demanda bioquímica de oxigênio (mg/L)	16	1,07	0,90	0,97	0,10	4,00	0,40	1,45	1,98	5,14	6,25
Demanda química de oxigênio (mg/L)	16	10,02	8,00	7,79	2,00	32,00	3,50	15,15	1,51	3,09	0,00
Ferro total (mg/L)	16	0,924	0,935	0,414	0,000	1,840	0,675	1,135	0,09	1,65	6,25
Alcalinidade (mg/L)	16	7,69	7,00	1,63	6,00	11,59	6,50	9,00	1,01	0,60	0,00
Dureza (mg/L)	16	5,13	4,00	3,86	2,00	18,00	4,00	5,00	2,75	8,79	37,50
Sulfato (mg/L)	16	0,63	0,00	2,50	0,00	10,00	0,00	0,00	4,00	16,00	18,75
Sulfeto (mg/L)	16	0,003	0,002	0,003	0,001	0,012	0,001	0,004	2,11	4,97	6,25
Cloreto (mg/L)	16	0,022	0,000	0,084	0,000	0,336	0,000	0,000	3,99	15,97	12,50
Carbono inorgânico total (mg/L)	16	5,47	5,45	2,13	1,64	10,97	4,88	6,30	0,60	2,47	18,75
Carbono orgânico total (mg/L)	16	4,27	3,80	1,39	3,50	9,29	3,67	4,21	3,53	13,31	6,25
Carbono total (mg/L)	16	9,73	9,20	3,30	5,38	20,26	8,52	10,45	2,18	7,11	12,50
Sílica (mg/L)	16	6,81	6,90	2,50	1,50	13,10	5,95	7,90	0,36	2,68	12,50
Coliformes totais (NMP/100 mL)	16	3603	1200	5632	130	17000	845	2150	2,03	2,84	18,75
Coliformes termotolerantes (NMP/100ml)	16	153	73	177	0	490	45	265	1,15	-0,40	0,00

Tabela II.13: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P12) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,1	26,1	1,3	24,0	29,0	25,8	26,6	0,33	1,82	25,00
Potencial redox (mV)	12	173,5	175,0	64,7	62,5	299,0	135,5	212,0	0,10	0,22	0,00
pН	12	6,04	6,00	0,57	5,20	7,00	5,57	6,50	-0,03	-0,93	0,00
Condutividade elétrica (µS/cm)	12	9,00	7,50	7,16	2,00	26,00	4,00	10,50	1,45	2,02	8,33
Sólidos dissolvidos totais (mg/L)	12	4,48	3,50	3,77	0,00	12,00	1,50	6,00	0,99	0,28	0,00
Oxigênio dissolvido (mg/L)	12	6,07	6,20	1,08	3,20	7,00	5,60	6,85	-1,85	4,23	8,33
Transparência (m)	12	1,09	1,05	0,31	0,80	1,90	0,85	1,20	1,74	4,11	8,33
Turbidez (UNT)	12	10,46	9,96	2,87	6,20	15,00	8,09	13,00	0,19	-1,40	0,00
Cor (mg Pt-Co/L)	12	58,00	45,50	26,41	30,00	106,00	40,00	75,50	1,01	-0,33	0,00
Sólidos totais (mg/L)	12	13,32	11,50	7,29	5,00	33,00	9,50	15,50	1,90	4,78	8,33
Sólidos suspensos totais (mg/L)	12	8,42	6,00	8,22	1,00	30,00	3,00	10,50	1,88	3,90	8,33
Sólidos suspensos inorgânicos (mg/L)	12	4,00	2,50	4,00	1,00	14,00	1,00	5,50	1,72	2,74	8,33
Sólidos suspensos orgânicos (mg/L)	12	4,42	2,00	6,57	0,00	24,00	1,00	5,50	2,78	8,50	8,33
Clorofila-a (µg/L)	12	1,82	1,19	2,16	0,00	7,33	0,00	2,73	1,60	3,01	8,33
Fós foro total (mg/L)	12	0,005	0,002	0,006	0,000	0,017	0,000	0,009	1,20	0,77	0,00
Ortofos fato (mg/L)	12	0,001	0,000	0,002	0,000	0,005	0,000	0,000	2,12	3,09	16,67
Nitrogênio total Kjeldahl (mg/L)	12	0,537	0,470	0,482	0,160	2,010	0,325	0,510	3,01	9,84	8,33
Nitrato (mg/L)	12	0,392	0,350	0,131	0,200	0,600	0,300	0,500	0,47	-0,97	0,00
Nitrito (mg/L)	12	0,003	0,003	0,001	0,001	0,006	0,002	0,004	0,82	0,74	8,33
Nitrogênio amoniacal (mg/L)	12	0,312	0,185	0,542	0,000	2,010	0,100	0,200	3,31	11,23	8,33
Demanda bioquímica de oxigênio (mg/L)	12	1,33	1,05	0,93	0,20	3,30	0,85	1,85	1,01	0,47	0,00
Demanda química de oxigênio (mg/L)	12	6,58	5,00	4,91	0,00	16,00	3,00	9,00	0,93	0,15	0,00
Ferro total (mg/L)	12	0,695	0,695	0,148	0,480	1,000	0,580	0,805	0,51	0,06	0,00
Alcalinidade (mg/L)	12	6,00	5,00	2,86	3,00	13,00	4,00	6,50	1,65	2,53	8,33
Dureza (mg/L)	12	6,33	5,00	4,66	0,00	18,00	4,00	8,00	1,37	2,93	8,33
Sulfato (mg/L)	12	0,33	0,00	0,89	0,00	3,00	0,00	0,00	2,95	8,88	16,67
Sulfeto (mg/L)	12	0,006	0,004	0,005	0,001	0,017	0,002	0,008	1,51	1,95	8,33
Cloreto (mg/L)	12	0,208	0,000	0,498	0,000	1,500	0,000	0,000	2,26	4,15	16,67
Carbono inorgânico total (mg/L)	12	2,04	1,74	1,25	0,90	5,50	1,40	2,16	2,19	5,60	8,33
Carbono orgânico total (mg/L)	12	4,82	5,00	1,78	1,45	6,88	3,52	6,56	-0,40	-0,81	0,00
Carbono total (mg/L)	12	6,87	6,93	1,61	4,72	10,02	5,55	7,95	0,32	-0,31	0,00
Sílica (mg/L)	12	5,12	5,15	2,21	1,70	9,30	3,60	6,75	0,18	-0,23	0,00
Coliformes totais (NMP/100 mL)	12	427	360	448	20	1700	135	465	2,32	6,45	8,33
Coliformes termotolerantes (NMP/100ml)	12	100	68	87	20	330	43	135	1,82	3,99	8,33

Tabela II.14: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P12) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	27,1	26,8	1,5	25,0	29,4	25,8	28,6	0,12	-1,50	0,00
Potencial redox (mV)	16	152,1	166,4	60,9	39,0	224,5	90,9	205,0	-0,41	-1,30	0,00
pН	16	5,69	5,68	0,87	4,63	7,72	4,99	6,03	1,14	1,07	6,25
Condutividade elétrica (µS/cm)	16	10,50	6,80	12,64	3,00	56,00	5,00	10,50	3,49	13,09	6,25
Sólidos dissolvidos totais (mg/L)	16	6,03	3,90	7,63	1,00	33,00	2,50	7,00	3,27	11,90	6,25
Oxigênio dissolvido (mg/L)	16	2,92	3,15	1,58	0,50	5,14	1,20	4,42	-0,29	-1,43	0,00
Transparência (m)	16	0,91	1,10	0,35	0,30	1,20	0,60	1,20	-0,91	-0,88	0,00
Turbidez (UNT)	16	10,57	8,61	7,41	4,92	36,00	6,64	11,30	3,01	10,27	6,25
Cor (mg Pt-Co/L)	16	42,60	37,65	26,35	5,00	98,00	21,50	63,00	0,69	-0,42	0,00
Sólidos totais (mg/L)	16	22,08	9,40	21,54	3,67	67,43	7,79	37,00	1,23	0,14	0,00
Sólidos suspensos totais (mg/L)	16	7,14	3,90	9,67	0,43	32,67	2,34	5,57	2,32	4,31	12,50
Sólidos suspensos inorgânicos (mg/L)	16	5,64	1,13	12,54	0,00	44,00	0,45	2,17	2,69	6,47	12,50
Sólidos suspensos orgânicos (mg/L)	16	7,06	2,25	10,41	0,43	32,00	1,63	5,37	1,90	2,23	18,75
Clorofila-a (µg/L)	16	1,61	1,40	0,89	0,55	3,64	0,82	2,14	0,84	0,17	0,00
Fósforo total (mg/L)	16	0,011	0,000	0,019	0,000	0,059	0,000	0,016	1,87	2,58	12,50
Ortofos fato (mg/L)	16	0,007	0,000	0,018	0,000	0,072	0,000	0,003	3,62	13,68	18,75
Nitrogênio total Kjeldahl (mg/L)	16	1,296	0,340	2,468	0,000	7,570	0,230	0,560	2,39	4,48	18,75
Nitrato (mg/L)	16	0,299	0,300	0,191	0,000	0,670	0,200	0,400	0,31	-0,31	0,00
Nitrito (mg/L)	16	0,004	0,003	0,005	0,000	0,020	0,000	0,005	2,47	6,95	6,25
Nitrogênio amoniacal (mg/L)	16	0,380	0,290	0,387	0,000	1,660	0,200	0,375	2,70	8,49	12,50
Demanda bioquímica de oxigênio (mg/L)	16	1,04	0,75	0,78	0,20	3,00	0,45	1,48	1,16	1,20	0,00
Demanda química de oxigênio (mg/L)	16	10,88	11,00	6,30	1,00	23,00	7,00	13,55	0,51	-0,23	0,00
Ferro total (mg/L)	16	0,593	0,650	0,276	0,000	0,930	0,445	0,790	-0,92	0,32	0,00
Alcalinidade (mg/L)	16	5,77	6,00	1,36	4,00	7,26	4,00	7,00	-0,41	-1,73	0,00
Dureza (mg/L)	16	4,56	4,00	2,48	2,00	12,00	4,00	4,50	2,02	5,13	37,50
Sulfato (mg/L)	16	0,07	0,00	0,25	0,00	1,00	0,00	0,00	3,83	14,90	18,75
Sulfeto (mg/L)	16	0,003	0,002	0,003	0,000	0,010	0,002	0,004	1,56	2,06	18,75
Cloreto (mg/L)	16	0,015	0,000	0,056	0,000	0,224	0,000	0,000	3,99	15,92	12,50
Carbono inorgânico total (mg/L)	16	4,14	4,40	0,97	1,98	5,55	3,73	4,75	-1,01	0,47	6,25
Carbono orgânico total (mg/L)	16	3,79	3,74	0,90	2,73	6,46	3,12	4,10	1,73	4,65	6,25
Carbono total (mg/L)	16	7,94	8,30	1,47	5,71	12,01	6,83	8,50	1,15	3,09	6,25
Sílica (mg/L)	16	4,91	5,33	1,99	0,00	7,90	3,75	6,45	-0,88	0,94	0,00
Coliformes totais (NMP/100 mL)	16	6058	1950	7542	98	17000	335	16500	0,85	-1,40	0,00
Coliformes termotolerantes (NMP/100ml)	16	23	10	30	0	93	0	45	1,16	0,44	0,00

Tabela II.15: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P13) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	27,9	27,7	2,9	22,0	32,0	26,4	30,3	-0,43	0,08	0,00
Potencial redox (mV)	12	169,4	152,0	82,4	0,0	329,0	140,0	221,0	-0,15	1,26	8,33
pH	12	6,33	6,20	0,67	5,40	7,40	5,80	6,87	0,60	-0,87	0,00
Condutividade elétrica (µS/cm)	12	8,42	5,50	8,24	2,00	32,00	4,00	10,50	2,45	6,70	8,33
Sólidos dissolvidos totais (mg/L)	12	4,13	2,50	4,56	1,00	17,60	2,00	5,00	2,71	8,06	8,33
Oxigênio dissolvido (mg/L)	12	5,06	5,07	1,27	2,70	7,30	4,45	5,74	-0,10	0,28	0,00
Transparência (m)	12	1,40	1,35	0,27	1,00	1,90	1,25	1,55	0,55	-0,10	0,00
Turbidez (UNT)	12	10,69	7,14	8,16	4,00	29,00	6,00	11,00	1,79	2,06	16,67
Cor (mg Pt-Co/L)	12	51,33	50,50	17,96	20,00	79,00	38,50	63,50	0,22	-0,42	0,00
Sólidos totais (mg/L)	12	18,80	16,50	10,70	5,00	43,00	11,50	22,80	1,21	1,33	8,33
Sólidos suspensos totais (mg/L)	12	14,67	11,00	11,40	4,00	42,00	8,00	16,00	1,65	2,29	16,67
Sólidos suspensos inorgânicos (mg/L)	12	7,58	5,50	6,47	1,00	25,00	3,50	10,50	1,97	4,57	8,33
Sólidos suspensos orgânicos (mg/L)	12	7,08	4,50	7,19	2,00	26,00	3,00	7,00	2,14	4,19	16,67
Clorofila-a (µg/L)	12	4,58	2,30	4,98	0,00	14,25	1,17	6,98	1,24	0,27	0,00
Fós foro total (mg/L)	12	0,062	0,006	0,183	0,000	0,642	0,001	0,021	3,44	11,86	8,33
Ortofos fato (mg/L)	12	0,039	0,000	0,130	0,000	0,452	0,000	0,004	3,46	11,99	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,758	0,655	0,333	0,460	1,620	0,540	0,840	1,86	3,62	8,33
Nitrato (mg/L)	12	0,425	0,450	0,142	0,200	0,600	0,300	0,550	-0,07	-1,55	0,00
Nitrito (mg/L)	12	0,002	0,002	0,002	0,000	0,006	0,001	0,004	0,97	0,59	0,00
Nitrogênio amoniacal (mg/L)	12	0,399	0,340	0,259	0,120	1,140	0,270	0,395	2,41	6,82	16,67
Demanda bioquímica de oxigênio (mg/L)	12	1,40	1,35	0,77	0,40	3,00	0,75	1,95	0,57	0,03	0,00
Demanda química de oxigênio (mg/L)	12	14,92	14,50	9,73	0,00	37,00	10,00	20,00	0,64	1,60	8,33
Ferro total (mg/L)	12	1,052	1,005	0,294	0,550	1,590	0,925	1,200	0,29	0,24	0,00
Alcalinidade (mg/L)	12	7,50	4,50	9,11	3,00	36,00	4,00	6,00	3,29	11,09	8,33
Dureza (mg/L)	12	4,58	3,00	4,60	0,00	16,00	2,00	6,00	1,65	2,56	8,33
Sulfato (mg/L)	12	0,17	0,00	0,39	0,00	1,00	0,00	0,00	2,06	2,64	16,67
Sulfeto (mg/L)	12	0,004	0,004	0,004	0,000	0,014	0,002	0,004	1,67	2,59	16,67
Cloreto (mg/L)	12	0,292	0,000	0,689	0,000	2,000	0,000	0,000	2,16	3,44	16,67
Carbono inorgânico total (mg/L)	12	3,07	2,41	2,09	0,92	7,88	1,52	4,15	1,24	1,20	0,00
Carbono orgânico total (mg/L)	12	8,15	8,53	2,91	3,45	13,90	6,19	9,64	0,14	0,23	0,00
Carbono total (mg/L)	12	11,22	11,00	3,44	5,70	17,20	9,07	13,48	0,17	-0,42	0,00
Sílica (mg/L)	12	5,20	5,15	2,24	1,00	8,30	3,75	7,45	-0,24	-0,61	0,00
Coliformes totais (NMP/100 mL)	12	3129	295	6497	0	17000	10	1200	2,03	2,57	16,67
Coliformes termotolerantes (NMP/100ml)	12	214	49	399	0	1400	0	205	2,79	8,35	8,33

Tabela II.16: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P13) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,6	28,8	2,2	25,0	33,1	26,9	29,9	0,17	-0,18	0,00
Potencial redox (mV)	16	145,0	129,9	68,7	53,5	256,0	95,8	193,6	0,61	-0,83	0,00
pH	16	5,98	5,99	0,54	5,21	7,00	5,43	6,40	0,14	-1,09	0,00
Condutividade elétrica (µS/cm)	16	33,93	28,50	22,92	9,00	97,00	18,05	44,30	1,51	2,69	6,25
Sólidos dissolvidos totais (mg/L)	16	20,63	18,00	13,98	6,00	57,00	10,03	27,73	1,32	1,67	6,25
Oxigênio dissolvido (mg/L)	16	3,44	3,33	1,08	1,80	5,46	2,65	4,09	0,14	-0,65	0,00
Transparência (m)	16	0,46	0,35	0,28	0,10	1,00	0,23	0,70	0,51	-0,93	0,00
Turbidez (UNT)	16	53,45	32,45	62,61	4,84	248,00	12,20	68,40	2,29	6,01	6,25
Cor (mg Pt-Co/L)	16	105,23	90,00	72,51	25,00	276,00	46,50	147,50	1,08	0,50	0,00
Sólidos totais (mg/L)	16	64,01	45,35	58,19	9,00	244,00	34,15	67,09	2,31	5,91	12,50
Sólidos suspensos totais (mg/L)	16	20,77	19,00	12,53	5,00	49,33	10,80	29,60	0,62	-0,14	0,00
Sólidos suspensos inorgânicos (mg/L)	16	18,69	13,65	17,02	0,33	53,00	4,70	23,27	1,01	-0,11	6,25
Sólidos suspensos orgânicos (mg/L)	16	21,57	5,35	48,28	1,80	195,00	4,07	7,75	3,52	12,92	18,75
Clorofila-a (µg/L)	16	8,62	8,32	7,45	0,00	27,63	2,75	11,13	1,27	1,81	6,25
Fós foro total (mg/L)	16	0,045	0,020	0,046	0,000	0,112	0,005	0,095	0,53	-1,68	0,00
Ortofos fato (mg/L)	16	0,012	0,000	0,026	0,000	0,100	0,000	0,012	2,87	8,87	12,50
Nitrogênio total Kjeldahl (mg/L)	16	1,896	0,785	3,245	0,000	10,300	0,450	1,035	2,38	4,47	18,75
Nitrato (mg/L)	16	0,865	0,700	0,814	0,000	2,800	0,300	1,025	1,67	2,34	12,50
Nitrito (mg/L)	16	0,006	0,000	0,017	0,000	0,068	0,000	0,003	3,75	14,49	18,75
Nitrogênio amoniacal (mg/L)	16	0,644	0,575	0,538	0,000	2,230	0,350	0,815	1,75	4,46	6,25
Demanda bioquímica de oxigênio (mg/L)	16	1,56	1,31	1,00	0,30	3,50	0,80	2,40	0,67	-0,76	0,00
Demanda química de oxigênio (mg/L)	16	16,98	14,55	9,06	6,00	33,00	11,00	23,50	0,80	-0,60	0,00
Ferro total (mg/L)	16	1,648	1,315	1,108	0,410	5,140	1,040	2,015	2,25	6,44	6,25
Alcalinidade (mg/L)	16	12,07	10,00	7,30	5,00	28,00	7,50	13,50	1,39	0,93	12,50
Dureza (mg/L)	16	12,75	9,00	8,88	6,00	32,00	6,00	15,00	1,40	0,61	12,50
Sulfato (mg/L)	16	2,92	1,50	3,63	0,00	12,00	0,00	5,16	1,31	1,07	0,00
Sulfeto (mg/L)	16	0,004	0,003	0,004	0,001	0,013	0,003	0,005	1,53	1,70	12,50
Cloreto (mg/L)	16	0,027	0,000	0,104	0,000	0,416	0,000	0,000	4,00	15,98	12,50
Carbono inorgânico total (mg/L)	16	3,85	3,80	1,15	1,54	6,65	3,57	4,40	0,26	2,14	18,75
Carbono orgânico total (mg/L)	16	3,66	3,60	0,99	2,10	6,21	3,08	4,08	1,03	1,89	6,25
Carbono total (mg/L)	16	7,51	7,37	1,40	5,70	11,58	6,55	8,00	1,59	4,00	6,25
Sílica (mg/L)	16	8,97	8,30	4,02	0,10	17,00	6,25	11,95	-0,07	0,75	0,00
Coliformes totais (NMP/100 mL)	16	5659	1700	7372	10	17000	330	16000	0,87	-1,38	0,00
Coliformes termotolerantes (NMP/100ml)	16	21	3	37	0	140	0	20	2,59	7,21	12,50

Tabela II.17: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P14) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	27,8	28,0	1,4	26,0	30,0	26,8	28,8	0,38	-0,97	0,00
Potencial redox (mV)	12	177,2	168,0	105,6	-3,9	393,0	154,0	220,5	0,20	1,04	25,00
pН	12	6,85	6,86	0,56	5,88	7,80	6,45	7,30	-0,11	-0,65	0,00
Condutividade elétrica (µS/cm)	12	82,56	67,00	34,99	48,00	154,00	58,50	112,85	1,01	-0,25	0,00
Sólidos dissolvidos totais (mg/L)	12	41,29	34,00	17,33	24,00	77,00	29,00	58,25	0,99	-0,29	0,00
Oxigênio dissolvido (mg/L)	12	6,19	6,30	1,47	3,70	8,00	5,15	7,35	-0,48	-0,92	0,00
Transparência (m)	12	0,08	0,05	0,05	0,05	0,20	0,05	0,10	1,71	2,23	8,33
Turbidez (UNT)	12	402,42	315,00	363,69	80,00	1406,00	155,50	534,50	2,13	5,37	8,33
Cor (mg Pt-Co/L)	12	78,58	79,50	43,04	19,00	146,00	39,00	107,50	0,06	-0,98	0,00
Sólidos totais (mg/L)	12	356,04	271,50	274,01	89,00	1059,00	173,50	447,50	1,73	3,30	8,33
Sólidos suspensos totais (mg/L)	12	314,75	225,00	280,42	63,00	1028,00	125,00	414,50	1,69	3,07	8,33
Sólidos suspensos inorgânicos (mg/L)	12	267,38	174,50	266,40	50,00	979,00	73,50	379,50	1,95	4,30	8,33
Sólidos suspensos orgânicos (mg/L)	12	47,37	35,00	40,11	6,00	126,00	13,50	86,20	0,74	-0,73	0,00
Clorofila-a (µg/L)	12	4,15	2,73	4,69	0,00	16,38	1,28	6,03	1,85	3,69	8,33
Fós foro total (mg/L)	12	0,319	0,270	0,195	0,100	0,770	0,173	0,438	1,14	1,14	0,00
Ortofosfato (mg/L)	12	0,092	0,015	0,144	0,000	0,420	0,005	0,135	1,68	1,72	16,67
Nitrogênio total Kjeldahl (mg/L)	12	1,196	1,160	0,691	0,440	3,000	0,635	1,425	1,67	3,81	8,33
Nitrato (mg/L)	12	0,925	1,050	0,433	0,200	1,500	0,550	1,300	-0,28	-1,27	0,00
Nitrito (mg/L)	12	0,003	0,003	0,003	0,000	0,011	0,002	0,004	1,81	3,70	16,67
Nitrogênio amoniacal (mg/L)	12	0,888	0,875	0,784	0,000	2,800	0,315	1,125	1,33	2,23	8,33
Demanda bioquímica de oxigênio (mg/L)	12	1,25	1,20	0,78	0,30	3,10	0,60	1,45	1,19	1,98	8,33
Demanda química de oxigênio (mg/L)	12	8,83	6,50	6,32	0,00	18,00	3,50	15,00	0,20	-1,75	0,00
Ferro total (mg/L)	12	5,118	4,500	3,951	1,180	15,300	2,340	6,350	1,67	3,42	8,33
Alcalinidade (mg/L)	12	25,92	24,50	10,71	6,00	46,00	19,00	34,50	0,17	0,28	0,00
Dureza (mg/L)	12	40,33	40,00	9,75	28,00	56,00	31,00	48,00	0,39	-1,16	0,00
Sulfato (mg/L)	12	7,46	6,50	2,06	6,00	12,00	6,00	8,00	1,49	1,29	8,33
Sulfeto (mg/L)	12	0,030	0,010	0,051	0,000	0,140	0,006	0,016	2,02	2,55	16,67
Cloreto (mg/L)	12	0,542	0,250	0,656	0,000	1,500	0,000	1,250	0,69	-1,40	0,00
Carbono inorgânico total (mg/L)	12	7,47	7,59	2,59	3,90	11,31	5,14	10,07	0,21	-1,50	0,00
Carbono orgânico total (mg/L)	12	6,42	6,47	1,65	3,59	8,80	5,45	7,65	-0,28	-0,66	0,00
Carbono total (mg/L)	12	13,89	14,22	1,77	11,07	16,96	12,45	15,17	-0,04	-0,76	0,00
Sílica (mg/L)	12	17,94	12,10	20,07	3,00	68,00	6,45	15,00	2,01	3,27	16,67
Coliformes totais (NMP/100 mL)	12	1137	295	1677	0	5400	104	1400	1,93	3,31	16,67
Coliformes termotolerantes (NMP/100ml)	12	85	68	75	0	210	20	140	0,56	-0,85	0,00

Tabela II.18: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P14) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,8	28,7	1,5	25,9	31,3	27,8	30,2	-0,03	-0,85	0,00
Potencial redox (mV)	16	106,5	103,0	62,1	-21,0	199,9	80,0	152,3	-0,37	-0,17	0,00
pН	16	6,68	6,63	0,63	5,52	7,64	6,32	7,20	-0,10	-0,48	0,00
Condutividade elétrica (µS/cm)	16	91,55	96,10	28,73	53,00	137,40	67,25	114,25	0,20	-1,20	0,00
Sólidos dissolvidos totais (mg/L)	16	54,11	52,13	17,06	23,70	88,00	42,43	64,00	0,20	-0,21	0,00
Oxigênio dissolvido (mg/L)	16	5,65	5,65	0,57	4,46	6,97	5,30	6,00	0,26	1,42	0,00
Transparência (m)	16	0,07	0,05	0,04	0,05	0,20	0,05	0,08	2,15	4,11	12,50
Turbidez (UNT)	16	459,91	374,00	319,15	55,10	1236,00	203,50	711,00	0,94	0,58	0,00
Cor (mg Pt-Co/L)	16	215,24	104,00	280,39	4,00	1128,00	47,50	327,00	2,53	7,65	6,25
Sólidos totais (mg/L)	16	306,89	215,50	216,12	85,70	799,00	123,99	470,50	0,92	-0,08	0,00
Sólidos suspensos totais (mg/L)	16	203,65	122,35	185,07	23,67	673,75	63,80	329,00	1,25	1,18	0,00
Sólidos suspensos inorgânicos (mg/L)	16	224,62	143,84	190,28	15,67	660,00	60,67	372,00	0,88	-0,04	0,00
Sólidos suspensos orgânicos (mg/L)	16	21,03	9,26	22,93	4,33	89,00	7,33	28,00	2,13	4,72	6,25
Clorofila-a (µg/L)	16	3,50	3,26	2,74	0,00	11,30	1,59	4,75	1,35	3,51	6,25
Fós foro total (mg/L)	16	0,195	0,124	0,165	0,016	0,498	0,064	0,337	0,68	-1,06	0,00
Ortofosfato (mg/L)	16	0,050	0,022	0,064	0,000	0,236	0,000	0,088	1,77	3,86	6,25
Nitrogênio total Kjeldahl (mg/L)	16	2,007	0,865	3,571	0,000	11,210	0,295	1,350	2,40	4,56	12,50
Nitrato (mg/L)	16	1,123	1,135	0,690	0,199	3,000	0,600	1,350	1,31	2,57	6,25
Nitrito (mg/L)	16	0,004	0,000	0,008	0,000	0,027	0,000	0,000	2,29	4,35	18,75
Nitrogênio amoniacal (mg/L)	16	0,666	0,550	0,534	0,000	1,830	0,200	1,080	0,60	-0,43	0,00
Demanda bioquímica de oxigênio (mg/L)	16	0,94	0,70	0,96	0,00	3,90	0,40	1,20	2,16	5,92	6,25
Demanda química de oxigênio (mg/L)	16	8,43	7,00	5,86	3,00	23,00	3,55	12,50	1,08	0,87	0,00
Ferro total (mg/L)	16	1,308	1,165	0,739	0,160	3,180	0,935	1,515	1,11	1,75	6,25
Alcalinidade (mg/L)	16	29,02	26,50	6,98	21,00	44,00	23,50	33,18	0,81	-0,09	0,00
Dureza (mg/L)	16	35,75	35,00	8,45	22,00	54,00	30,00	39,00	0,77	0,38	6,25
Sulfato (mg/L)	16	3,54	1,00	4,91	0,00	14,00	0,00	5,91	1,28	0,26	0,00
Sulfeto (mg/L)	16	0,006	0,005	0,004	0.001	0.016	0,004	0,008	1,12	1,84	6,25
Cloreto (mg/L)	16	0,209	0,000	0,749	0,000	3,000	0,000	0,000	3,92	15,53	18,75
Carbono inorgânico total (mg/L)	16	8,05	8,10	2,27	2,79	12,50	6,90	9,37	-0,13	1,40	6,25
Carbono orgânico total (mg/L)	16	4,87	4,85	0,80	3,33	6,10	4,30	5,50	0,04	-0,66	0,00
Carbono total (mg/L)	16	12,92	13,58	2,76	6,12	17,30	11,20	14,58	-0,69	1,24	6,25
Sílica (mg/L)	16	7,58	7,35	5,61	0,00	22,41	3,55	9,10	1,32	2,41	6,25
Coliformes totais (NMP/100 mL)	16	1643	1100	1752	5	5400	335	2150	1,32	0,91	12,50
Coliformes termotolerantes (NMP/100ml)	16	34	20	31	0	82	2	68	0,40	-1,53	0,00

Tabela II.19: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P15) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose %	Outliers
Temperatura da água (°C)	12	26,2	26,2	2,6	20,0	31,0	25,5	27,1	-0,78	3,47	16,67
Potencial redox (mV)	12	142,8	118,5	72,9	59,2	317,0	98,8	184,0	1,35	1,80	8,33
pН	12	6,02	5,85	0,62	5,20	7,00	5,60	6,55	0,52	-0,97	0,00
Condutividade elétrica (µS/cm)	12	9,08	6,50	8,99	2,00	36,00	4,50	10,00	2,81	8,76	8,33
Sólidos dissolvidos totais (mg/L)	12	4,68	3,00	5,39	1,00	21,20	2,00	4,50	3,06	9,96	8,33
Oxigênio dissolvido (mg/L)	12	5,88	5,89	1,64	3,40	8,63	4,50	7,15	0,12	-1,04	0,00
Transparência (m)	12	0,90	0,80	0,47	0,30	1,80	0,53	1,15	0,88	-0,20	0,00
Turbidez (UNT)	12	16,98	17,35	6,16	7,50	26,00	12,85	21,95	-0,11	-1,01	0,00
Cor (mg Pt-Co/L)	12	64,25	61,00	19,55	35,00	109,00	51,50	73,00	0,90	1,37	8,33
Sólidos totais (mg/L)	12	17,77	16,00	7,87	7,00	32,20	12,50	24,00	0,46	-0,66	0,00
Sólidos suspensos totais (mg/L)	12	12,83	11,00	6,48	5,00	24,00	7,50	18,50	0,56	-0,99	0,00
Sólidos suspensos inorgânicos (mg/L)	12	7,33	6,00	4,81	0,00	18,00	5,00	8,00	1,19	1,68	25,00
Sólidos suspensos orgânicos (mg/L)	12	5,50	5,50	3,73	0,00	14,00	3,00	7,50	0,73	1,49	0,00
Clorofila-a (µg/L)	12	2,70	1,14	3,55	0,00	10,92	0,27	4,55	1,47	1,30	0,00
Fós foro total (mg/L)	12	0,017	0,017	0,015	0,000	0,039	0,001	0,029	0,17	-1,26	0,00
Ortofos fato (mg/L)	12	0,006	0,003	0,009	0,000	0,030	0,000	0,008	2,15	5,25	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,452	0,375	0,275	0,060	1,010	0,300	0,665	0,57	0,04	0,00
Nitrato (mg/L)	12	0,475	0,450	0,191	0,200	0,800	0,350	0,600	0,05	-0,86	0,00
Nitrito (mg/L)	12	0,003	0,002	0,001	0,000	0,005	0,002	0,003	0,42	0,91	25,00
Nitrogênio amoniacal (mg/L)	12	0,293	0,245	0,222	0,010	0,810	0,145	0,445	1,05	1,42	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,47	1,05	0,97	0,50	3,50	0,90	1,80	1,36	0,86	16,67
Demanda química de oxigênio (mg/L)	12	7,17	5,50	5,27	0,00	17,00	3,50	11,50	0,75	-0,53	0,00
Ferro total (mg/L)	12	1,066	1,060	0,274	0,620	1,540	0,860	1,275	0,05	-0,69	0,00
Alcalinidade (mg/L)	12	6,50	5,50	2,68	4,00	12,00	4,50	7,50	1,16	0,44	0,00
Dureza (mg/L)	12	6,67	6,00	4,70	0,00	18,00	4,00	9,00	1,14	2,23	8,33
Sulfato (mg/L)	12	0,08	0,00	0,29	0,00	1,00	0,00	0,00	3,46	12,00	8,33
Sulfeto (mg/L)	12	0,009	0,006	0,007	0,002	0,023	0,004	0,017	0,77	-1,10	0,00
Cloreto (mg/L)	12	0,417	0,000	0,875	0,000	2,500	0,000	0,250	2,01	2,80	16,67
Carbono inorgânico total (mg/L)	12	2,82	2,60	1,44	1,34	6,28	1,80	3,26	1,42	2,00	8,33
Carbono orgânico total (mg/L)	12	4,61	4,36	1,95	2,30	9,42	3,13	5,29	1,34	2,47	8,33
Carbono total (mg/L)	12	7,43	7,27	2,07	3,64	12,25	6,38	8,27	0,69	2,56	8,33
Sílica (mg/L)	12	6,53	7,10	1,88	3,00	9,00	5,00	7,75	-0,61	-0,59	0,00
Coliformes totais (NMP/100 mL)	12	880	580	855	0	2800	305	1200	1,36	1,23	8,33
Coliformes termotolerantes (NMP/100ml)	12	361	120	780	0	2800	41	250	3,29	11,07	8,33

Tabela II.20: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P15) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose %	6 Outliers
Temperatura da água (°C)	16	29,6	29,2	1,8	27,0	33,0	28,4	31,2	0,12	-0,87	0,00
Potencial redox (mV)	16	133,7	133,7	77,9	-10,1	305,0	115,3	181,6	-0,02	0,85	18,75
pН	16	6,30	6,26	0,42	5,68	6,95	5,95	6,70	0,04	-1,41	0,00
Condutividade elétrica (µS/cm)	16	44,20	39,00	17,92	17,00	78,20	31,40	58,00	0,51	-0,52	0,00
Sólidos dissolvidos totais (mg/L)	16	26,31	26,00	8,40	11,00	39,10	18,66	33,50	-0,10	-1,08	0,00
Oxigênio dissolvido (mg/L)	16	4,30	4,00	1,12	2,60	7,20	3,45	5,06	1,06	1,70	0,00
Transparência (m)	16	0,34	0,18	0,38	0,05	1,50	0,08	0,45	2,11	5,14	6,25
Turbidez (UNT)	16	61,65	61,95	40,38	4,97	139,00	26,00	81,70	0,57	-0,22	0,00
Cor (mg Pt-Co/L)	16	144,10	81,00	262,08	23,33	1112,00	51,50	100,00	3,80	14,84	12,50
Sólidos totais (mg/L)	16	64,32	52,20	39,23	9,59	166,00	41,10	78,38	1,34	2,03	6,25
Sólidos suspensos totais (mg/L)	16	31,68	29,25	22,05	0,60	87,86	14,88	44,00	1,10	1,46	6,25
Sólidos suspensos inorgânicos (mg/L)	16	30,89	26,13	30,36	0,40	129,00	11,42	41,00	2,41	7,43	6,25
Sólidos suspensos orgânicos (mg/L)	16	10,22	4,13	13,27	0,20	41,79	3,32	8,50	1,78	1,73	18,75
Clorofila-a (µg/L)	16	7,28	5,57	6,24	1,82	22,48	2,60	10,06	1,51	1,67	6,25
Fós foro total (mg/L)	16	0,043	0,043	0,033	0,000	0,092	0,014	0,070	-0,03	-1,55	0,00
Ortofos fato (mg/L)	16	0,023	0,001	0,031	0,000	0,100	0,000	0,043	1,27	0,98	0,00
Nitrogênio total Kjeldahl (mg/L)	16	3,948	0,525	9,536	0,000	30,870	0,255	0,825	2,55	5,29	12,50
Nitrato (mg/L)	16	0,548	0,450	0,517	0,000	2,030	0,121	0,750	1,64	3,67	6,25
Nitrito (mg/L)	16	0,010	0,000	0,021	0,000	0,080	0,000	0,008	2,89	8,51	12,50
Nitrogênio amoniacal (mg/L)	16	0,429	0,340	0,387	0,000	1,400	0,160	0,540	1,36	1,63	6,25
Demanda bioquímica de oxigênio (mg/L)	16	1,40	1,20	0,95	0,00	3,00	0,70	2,00	0,51	-0,84	0,00
Demanda química de oxigênio (mg/L)	16	11,38	10,15	7,52	3,00	27,00	5,00	14,85	1,07	0,55	0,00
Ferro total (mg/L)	16	0,749	0,765	0,474	0,000	1,530	0,380	0,965	0,22	-0,71	0,00
Alcalinidade (mg/L)	16	18,82	21,50	6,28	8,00	25,00	13,00	24,08	-0,69	-1,14	0,00
Dureza (mg/L)	16	19,19	24,00	8,14	6,00	30,00	10,00	24,50	-0,52	-1,41	0,00
Sulfato (mg/L)	16	2,14	2,00	2,28	0,00	7,00	0,00	4,00	0,81	-0,42	0,00
Sulfeto (mg/L)	16	0,004	0,004	0,002	0,001	0,009	0,002	0,006	0,53	-0,76	0,00
Cloreto (mg/L)	16	0,141	0,000	0,499	0,000	2,000	0,000	0,000	3,91	15,43	18,75
Carbono inorgânico total (mg/L)	16	5,97	6,10	1,68	1,54	10,38	5,65	6,25	-0,02	5,93	12,50
Carbono orgânico total (mg/L)	16	4,21	4,10	0,82	3,50	6,98	3,75	4,23	2,83	9,56	6,25
Carbono total (mg/L)	16	10,17	10,05	2,29	5,12	17,36	9,80	10,30	1,53	8,29	12,50
Sílica (mg/L)	16	8,52	7,75	2,93	4,05	16,00	6,75	10,50	0,99	1,55	0,00
Coliformes totais (NMP/100 mL)	16	3856	580	6497	1	17000	155	3750	1,63	0,94	18,75
Coliformes termotolerantes (NMP/100ml)		10	0	16	0	45	0	20	1,58	1,39	0,00

Tabela II.21: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P16) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,9	27,2	2,7	22,3	33,0	25,0	28,0	0,54	1,42	8,33
Potencial redox (mV)	12	179,4	177,0	90,3	40,0	323,0	102,5	246,5	0,11	-1,24	0,00
рН	12	5,74	5,43	0,74	4,84	7,30	5,20	6,35	0,94	0,01	0,00
Condutividade elétrica (µS/cm)	12	7,47	6,50	3,91	2,00	18,00	5,50	8,30	1,80	4,98	8,33
Sólidos dissolvidos totais (mg/L)	12	3,39	3,00	1,65	1,00	7,00	2,00	4,35	0,77	0,69	0,00
Oxigênio dissolvido (mg/L)	12	5,17	5,15	1,98	2,60	7,66	3,30	7,03	0,01	-2,03	0,00
Transparência (m)	12	0,67	0,55	0,54	0,10	1,40	0,15	1,20	0,28	-1,82	0,00
Turbidez (UNT)	12	58,10	16,15	75,38	6,50	237,00	9,35	99,00	1,59	1,66	8,33
Cor (mg Pt-Co/L)	12	79,00	71,00	34,90	49,00	170,00	52,00	86,00	1,83	3,75	8,33
Sólidos totais (mg/L)	12	52,89	20,50	63,48	6,00	211,00	9,50	94,00	1,64	2,45	0,00
Sólidos suspensos totais (mg/L)	12	49,67	19,00	62,43	4,00	207,00	7,00	88,00	1,70	2,72	0,00
Sólidos suspensos inorgânicos (mg/L)	12	38,83	11,00	56,72	2,00	184,00	3,50	58,00	1,88	3,18	8,33
Sólidos suspensos orgânicos (mg/L)	12	10,83	7,50	12,56	2,00	46,00	3,00	11,00	2,35	5,92	8,33
Clorofila-a (µg/L)	12	1,40	0,27	2,14	0,00	6,55	0,00	2,37	1,62	1,89	8,33
Fós foro total (mg/L)	12	0,060	0,011	0,097	0,000	0,305	0,000	0,090	1,84	2,84	8,33
Ortofos fato (mg/L)	12	0,015	0,000	0,033	0,000	0,115	0,000	0,015	2,95	9,20	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,931	0,755	0,634	0,230	2,260	0,425	1,430	0,93	0,01	0,00
Nitrato (mg/L)	12	0,750	0,600	0,547	0,200	2,000	0,400	1,100	1,24	1,07	0,00
Nitrito (mg/L)	12	0,001	0,001	0,001	0,000	0,003	0,001	0,002	0,26	-1,00	0,00
Nitrogênio amoniacal (mg/L)	12	0,631	0,480	0,564	0,120	1,960	0,205	0,860	1,45	1,63	8,33
Demanda bioquímica de oxigênio (mg/L)	12	1,39	1,10	0,90	0,30	2,80	0,65	2,20	0,44	-1,34	0,00
Demanda química de oxigênio (mg/L)	12	10,83	11,00	7,83	0,00	20,00	3,50	18,00	-0,05	-2,02	0,00
Ferro total (mg/L)	12	1,602	0,965	1,127	0,720	4,220	0,870	2,240	1,45	1,30	0,00
Alcalinidade (mg/L)	12	5,00	4,50	2,13	3,00	10,00	3,50	5,50	1,42	1,75	8,33
Dureza (mg/L)	12	8,12	8,00	5,20	0,00	18,00	4,00	10,00	0,53	0,05	0,00
Sulfato (mg/L)	12	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00
Sulfeto (mg/L)	12	0,022	0,007	0,046	0,003	0,166	0,005	0,015	3,27	10,96	16,67
Cloreto (mg/L)	12	0,417	0,000	0,875	0,000	2,500	0,000	0,250	2,01	2,80	16,67
Carbono inorgânico total (mg/L)	12	2,52	2,53	1,25	0,90	4,91	1,42	3,26	0,42	-0,62	0,00
Carbono orgânico total (mg/L)	12	6,21	5,70	2,26	2,73	10,67	5,15	7,06	0,86	0,61	16,67
Carbono total (mg/L)	12	8,85	8,04	2,25	6,30	13,15	7,20	10,66	0,81	-0,54	0,00
Sílica (mg/L)	12	5,25	5,55	2,41	1,30	8,60	3,05	7,35	-0,32	-1,24	0,00
Coliformes totais (NMP/100 mL)	12	1754	270	2877	92	9200	170	2350	2,00	3,57	8,33
Coliformes termotolerantes (NMP/100ml)	12	542	101	1531	20	5400	68	125	3,45	11,95	16,67

Tabela II.22: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P16) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	29,4	29,5	2,4	23,2	33,8	28,1	31,1	-0,69	1,97	6,25
Potencial redox (mV)	16	117,2	99,2	43,2	78,4	252,0	90,8	134,3	2,25	6,03	6,25
рН	16	6,58	6,69	0,79	4,49	7,96	6,27	7,00	-0,99	2,53	6,25
Condutividade elétrica (µS/cm)	16	66,47	62,35	39,61	7,00	163,00	51,00	78,20	0,93	1,55	18,75
Sólidos dissolvidos totais (mg/L)	16	39,12	34,50	24,65	4,00	105,00	26,27	50,00	1,13	2,35	6,25
Oxigênio dissolvido (mg/L)	16	3,92	3,80	1,23	1,56	5,90	2,95	4,90	-0,24	-0,56	0,00
Transparência (m)	15	0,23	0,15	0,18	0,05	0,60	0,10	0,30	1,42	1,02	0,00
Turbidez (UNT)	16	90,19	70,20	81,16	5,71	301,00	33,65	113,90	1,52	2,19	12,50
Cor (mg Pt-Co/L)	16	95,33	79,00	81,16	20,61	364,00	48,50	112,50	2,63	8,46	6,25
Sólidos totais (mg/L)	16	111,85	91,65	68,23	40,60	309,00	71,65	123,03	2,01	4,26	12,50
Sólidos suspensos totais (mg/L)	16	56,61	41,14	54,32	2,60	188,00	21,15	59,33	1,56	1,73	12,50
Sólidos suspensos inorgânicos (mg/L)	16	54,61	40,50	54,23	0,20	171,00	13,74	78,25	1,32	0,86	0,00
Sólidos suspensos orgânicos (mg/L)	16	17,20	6,09	33,34	2,20	139,00	4,00	15,50	3,67	14,06	6,25
Clorofila-a (µg/L)	16	7,63	6,72	7,19	0,27	24,43	2,09	10,38	1,25	0,90	6,25
Fós foro total (mg/L)	16	0,077	0,049	0,069	0,000	0,190	0,019	0,145	0,58	-1,40	0,00
Ortofos fato (mg/L)	16	0,028	0,002	0,043	0,000	0,133	0,000	0,046	1,58	1,49	6,25
Nitrogênio total Kjeldahl (mg/L)	16	1,491	0,585	2,187	0,070	7,410	0,415	1,410	2,27	4,24	12,50
Nitrato (mg/L)	16	0,699	0,750	0,376	0,049	1,200	0,350	1,015	-0,30	-1,12	0,00
Nitrito (mg/L)	16	0,011	0,000	0,022	0,000	0,087	0,000	0,016	3,20	11,31	6,25
Nitrogênio amoniacal (mg/L)	16	0,620	0,410	0,573	0,040	1,820	0,220	1,025	1,15	0,29	0,00
Demanda bioquímica de oxigênio (mg/L)	16	1,28	1,10	0,92	0,20	3,20	0,60	1,46	1,05	0,52	12,50
Demanda química de oxigênio (mg/L)	16	11,21	9,60	7,04	1,00	26,10	6,50	15,50	0,70	-0,08	0,00
Ferro total (mg/L)	16	1,124	0,880	0,704	0,270	2,490	0,610	1,645	0,83	-0,53	0,00
Alcalinidade (mg/L)	16	23,27	24,50	5,33	12,00	35,36	19,50	26,00	0,06	1,33	0,00
Dureza (mg/L)	16	25,38	27,00	7,18	6,00	34,00	22,00	31,00	-1,32	2,26	6,25
Sulfato (mg/L)	16	2,17	1,50	2,63	0,00	8,00	0,00	4,00	1,06	0,09	0,00
Sulfeto (mg/L)	16	0,005	0,005	0,003	0,001	0,012	0,003	0,006	0,86	1,05	6,25
Cloreto (mg/L)	16	0,028	0,000	0,108	0,000	0,433	0,000	0,000	4,00	15,98	12,50
Carbono inorgânico total (mg/L)	16	5,10	5,30	2,00	1,09	7,20	3,62	7,10	-0,77	-0,39	0,00
Carbono orgânico total (mg/L)	16	4,15	4,05	0,97	1,90	6,87	3,94	4,20	0,83	5,48	18,75
Carbono total (mg/L)	16	9,24	9,65	2,16	4,95	11,30	8,06	11,10	-0,98	-0,30	0,00
Sílica (mg/L)	16	8,19	7,37	4,87	0,00	18,40	5,80	11,65	0,19	0,09	0,00
Coliformes totais (NMP/100 mL)	16	2778	360	5623	78	17000	216	1700	2,39	4,49	12,50
Coliformes termotolerantes (NMP/100ml)	16	35	30	34	0	98	0	57	0,56	-0,92	0,00

Tabela II.23: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P17) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	26,2	27,0	1,5	22,6	27,8	25,7	27,1	-1,55	1,93	8,33
Potencial redox (mV)	12	157,2	166,0	81,9	42,0	341,0	108,3	191,5	0,72	1,25	8,33
pН	12	5,86	5,61	0,87	5,06	7,80	5,35	5,90	1,61	1,77	16,67
Condutividade elétrica (µS/cm)	12	8,61	9,16	3,50	3,00	14,00	5,50	11,50	-0,22	-1,08	0,00
Sólidos dissolvidos totais (mg/L)	12	4,31	4,85	1,92	1,00	7,00	2,50	6,00	-0,44	-1,02	0,00
Oxigênio dissolvido (mg/L)	12	5,40	5,10	1,79	2,30	7,91	4,23	6,72	-0,13	-0,78	0,00
Transparência (m)	12	0,70	0,65	0,37	0,20	1,20	0,43	1,05	0,15	-1,37	0,00
Turbidez (UNT)	12	20,01	11,20	21,77	4,80	82,70	8,50	26,50	2,51	6,94	8,33
Cor (mg Pt-Co/L)	12	80,83	76,50	23,28	54,00	135,00	63,00	93,00	1,21	1,37	0,00
Sólidos totais (mg/L)	12	22,98	19,50	17,12	5,00	64,00	11,00	26,00	1,51	2,17	8,33
Sólidos suspensos totais (mg/L)	12	19,00	15,00	17,07	3,00	62,00	8,00	21,00	1,78	3,10	16,67
Sólidos suspensos inorgânicos (mg/L)	12	11,67	6,00	16,18	0,00	59,00	3,50	11,50	2,67	7,66	16,67
Sólidos suspensos orgânicos (mg/L)	12	7,33	6,00	5,16	1,00	18,00	3,00	12,00	0,77	-0,21	0,00
Clorofila-a (µg/L)	12	3,36	2,18	4,80	0,00	17,75	0,64	3,64	2,82	8,81	8,33
Fósforo total (mg/L)	12	0,026	0,021	0,028	0,000	0,101	0,006	0,035	1,90	4,61	8,33
Ortofos fato (mg/L)	12	0,007	0,000	0,012	0,000	0,034	0,000	0,008	1,80	1,96	16,67
Nitrogênio total Kjeldahl (mg/L)	12	0,706	0,565	0,343	0,380	1,300	0,445	0,970	0,93	-0,73	0,00
Nitrato (mg/L)	12	0,667	0,600	0,380	0,200	1,600	0,400	0,800	1,48	2,48	8,33
Nitrito (mg/L)	12	0,002	0,002	0,001	0,000	0,003	0,002	0,002	-1,05	2,06	16,67
Nitrogênio amoniacal (mg/L)	12	0,498	0,370	0,341	0,180	1,170	0,230	0,670	1,19	0,29	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,43	1,55	0,80	0,40	3,10	0,80	1,75	0,69	0,25	0,00
Demanda química de oxigênio (mg/L)	12	9,25	9,50	5,12	0,00	18,00	6,00	12,00	-0,07	-0,10	0,00
Ferro total (mg/L)	12	0,981	0,855	0,341	0,700	1,870	0,820	0,940	2,10	4,03	16,67
Alcalinidade (mg/L)	12	5,50	4,00	3,55	3,00	16,00	4,00	5,50	2,75	8,07	16,67
Dureza (mg/L)	12	7,17	6,00	4,30	0,00	16,00	6,00	10,00	0,45	0,62	0,00
Sulfato (mg/L)	12	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00
Sulfeto (mg/L)	12	0,012	0,005	0,019	0,003	0,072	0,004	0,010	3,17	10,42	8,33
Cloreto (mg/L)	12	0,417	0,000	0,634	0,000	1,500	0,000	1,000	1,01	-0,88	0,00
Carbono inorgânico total (mg/L)	12	2,74	2,09	2,28	1,10	9,52	1,40	2,98	2,74	8,34	8,33
Carbono orgânico total (mg/L)	12	6,90	6,20	2,92	3,01	13,85	5,06	8,58	1,19	1,82	8,33
Carbono total (mg/L)	12	9,65	9,10	3,08	5,32	16,48	7,51	11,48	0,83	0,75	0,00
Sílica (mg/L)	12	6,56	6,60	2,54	2,20	10,10	4,60	8,65	-0,28	-0,86	0,00
Coliformes totais (NMP/100 mL)	12	2278	330	4870	110	17000	140	1320	2,98	9,19	16,67
Coliformes termotolerantes (NMP/100ml)	12	1506	65	4881	0	17000	33	199	3,46	11,98	8,33

Tabela II.24: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P17) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	15	29,4	28,7	1,4	27,5	31,7	28,5	30,8	0,60	-1,19	0,00
Potencial redox (mV)	15	124,0	123,4	53,7	19,2	225,0	113,2	137,2	-0,21	1,25	26,67
pН	15	6,30	6,41	0,43	5,29	6,78	5,98	6,60	-1,13	0,76	0,00
Condutividade elétrica (µS/cm)	15	43,31	45,30	14,30	21,00	65,00	29,70	55,00	-0,03	-1,24	0,00
Sólidos dissolvidos totais (mg/L)	15	25,55	24,00	9,08	12,00	40,00	16,00	33,00	0,09	-1,15	0,00
Oxigênio dissolvido (mg/L)	15	3,90	3,72	0,89	2,60	5,23	3,30	4,99	0,26	-1,33	0,00
Transparência (m)	15	0,22	0,15	0,19	0,05	0,70	0,05	0,30	1,55	2,14	6,67
Turbidez (UNT)	15	76,86	63,00	57,27	8,17	213,20	32,00	105,40	1,06	0,85	0,00
Cor (mg Pt-Co/L)	15	90,55	80,00	51,76	21,00	205,00	45,90	134,00	0,81	0,19	0,00
Sólidos totais (mg/L)	15	76,23	78,20	47,49	22,40	154,00	34,50	119,78	0,46	-1,23	0,00
Sólidos suspensos totais (mg/L)	15	29,01	20,50	20,65	7,00	70,00	9,50	45,00	0,55	-0,96	0,00
Sólidos suspensos inorgânicos (mg/L)	15	29,74	29,30	27,01	4,80	105,00	7,00	38,67	1,65	3,40	6,67
Sólidos suspensos orgânicos (mg/L)	15	15,80	5,00	30,25	1,40	119,00	3,00	13,00	3,27	11,20	13,33
Clorofila-a (µg/L)	15	8,22	5,20	6,61	3,10	24,93	4,00	12,70	1,64	1,88	0,00
Fós foro total (mg/L)	15	0,051	0,037	0,050	0,000	0,144	0,013	0,100	0,83	-0,81	0,00
Ortofos fato (mg/L)	15	0,013	0,001	0,023	0,000	0,077	0,000	0,021	2,12	3,97	13,33
Nitrogênio total Kjeldahl (mg/L)	15	3,300	0,580	7,256	0,100	22,440	0,400	0,870	2,42	4,52	13,33
Nitrato (mg/L)	15	0,617	0,600	0,441	0,000	1,750	0,400	0,800	1,00	1,99	6,67
Nitrito (mg/L)	15	0,010	0,001	0,018	0,000	0,060	0,000	0,010	2,17	4,02	13,33
Nitrogênio amoniacal (mg/L)	15	0,544	0,480	0,348	0,080	1,360	0,290	0,670	0,76	0,84	6,67
Demanda bioquímica de oxigênio (mg/L)	15	2,18	1,97	1,13	0,80	4,30	1,20	2,50	0,93	-0,19	0,00
Demanda química de oxigênio (mg/L)	15	14,06	11,00	6,56	6,00	28,00	9,00	20,00	0,93	-0,14	0,00
Ferro total (mg/L)	15	1,217	1,220	0,588	0,490	2,770	0,710	1,500	1,21	2,35	6,67
Alcalinidade (mg/L)	15	16,66	15,00	4,18	12,00	25,00	13,00	19,50	0,86	-0,31	0,00
Dureza (mg/L)	15	17,73	16,00	5,90	8,00	32,00	14,00	20,00	1,00	1,51	6,67
Sulfato (mg/L)	15	1,17	0,00	2,15	0,00	6,50	0,00	1,00	1,78	1,91	20,00
Sulfeto (mg/L)	15	0,005	0,003	0,004	0,001	0,011	0,002	0,008	0,47	-1,46	0,00
Cloreto (mg/L)	15	0,026	0,000	0,097	0,000	0,376	0,000	0,000	3,87	14,97	13,33
Carbono inorgânico total (mg/L)	15	4,89	5,20	0,92	3,11	5,80	4,23	5,70	-0,92	-0,47	0,00
Carbono orgânico total (mg/L)	15	4,07	3,80	0,90	3,20	6,87	3,50	4,30	2,38	6,85	6,67
Carbono total (mg/L)	15	8,97	9,10	0,67	7,77	10,11	8,67	9,30	-0,53	0,09	0,00
Sílica (mg/L)	15	9,45	7,50	7,30	4,34	35,00	6,30	9,08	3,46	12,77	6,67
Coliformes totais (NMP/100 mL)	15	2001	790	4239	45	17000	260	1700	3,61	13,48	6,67
Coliformes termotolerantes (NMP/100ml)	15	20	0	38	0	130	0	20	2,25	4,79	13,33

Tabela II.25: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P18) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	28,2	28,0	1,1	26,7	30,0	27,6	29,0	0,51	-0,62	0,00
Potencial redox (mV)	12	140,4	153,5	76,3	-7,6	296,0	125,5	167,0	-0,20	1,75	25,00
pН	12	7,21	7,16	0,42	6,39	7,90	6,95	7,55	-0,25	-0,09	0,00
Condutividade elétrica (µS/cm)	12	89,28	81,00	27,29	60,00	148,00	68,50	101,70	1,09	0,52	0,00
Sólidos dissolvidos totais (mg/L)	12	45,63	41,00	14,12	31,00	75,00	35,00	54,75	0,99	0,03	0,00
Oxigênio dissolvido (mg/L)	12	6,52	6,40	1,32	4,50	8,14	5,54	7,75	-0,27	-1,25	0,00
Transparência (m)	12	0,08	0,05	0,04	0,05	0,15	0,05	0,13	0,80	-1,27	0,00
Turbidez (UNT)	12	491,92	355,00	483,52	66,50	1782,00	133,00	673,50	1,90	4,29	8,33
Cor (mg Pt-Co/L)	12	101,50	100,50	46,16	30,00	178,00	73,50	132,50	0,04	-0,91	0,00
Sólidos totais (mg/L)	12	397,71	360,50	277,63	82,00	993,00	163,00	581,50	0,85	0,23	0,00
Sólidos suspensos totais (mg/L)	12	352,25	319,50	285,85	33,00	950,00	111,50	547,50	0,76	-0,03	0,00
Sólidos suspensos inorgânicos (mg/L)	12	296,00	257,00	266,09	8,00	896,00	74,00	465,50	1,03	0,85	0,00
Sólidos suspensos orgânicos (mg/L)	12	56,25	55,50	46,43	2,00	155,00	20,00	74,00	0,92	0,53	0,00
Clorofila-a (µg/L)	12	3,05	2,15	3,19	0,00	9,36	0,68	4,30	1,19	0,50	0,00
Fós foro total (mg/L)	12	0,394	0,321	0,301	0,077	1,020	0,110	0,640	0,77	-0,15	0,00
Ortofos fato (mg/L)	12	0,090	0,031	0,133	0,000	0,393	0,004	0,130	1,60	1,40	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,725	0,620	0,405	0,280	1,750	0,485	0,765	1,79	3,25	16,67
Nitrato (mg/L)	12	0,992	0,950	0,456	0,400	1,900	0,700	1,200	0,59	-0,07	0,00
Nitrito (mg/L)	12	0,003	0,002	0,002	0,000	0,007	0,002	0,003	1,36	1,82	25,00
Nitrogênio amoniacal (mg/L)	12	0,525	0,400	0,437	0,110	1,550	0,300	0,505	1,73	2,31	16,67
Demanda bioquímica de oxigênio (mg/L)	12	0,77	0,70	0,38	0,20	1,50	0,55	0,90	0,80	0,37	8,33
Demanda química de oxigênio (mg/L)	12	9,58	12,00	6,56	0,00	20,00	3,50	14,00	-0,01	-1,33	0,00
Ferro total (mg/L)	12	4,983	3,445	4,297	0,820	14,800	1,525	7,900	1,09	0,86	0,00
Alcalinidade (mg/L)	12	29,75	26,00	9,37	19,00	46,00	22,00	36,00	0,71	-0,88	0,00
Dureza (mg/L)	12	38,32	37,00	15,71	3,80	66,00	32,00	42,00	-0,22	1,99	25,00
Sulfato (mg/L)	12	9,17	7,50	4,17	4,00	16,00	6,00	13,50	0,62	-1,31	0,00
Sulfeto (mg/L)	12	0,024	0,011	0,043	0,000	0,151	0,004	0,013	2,84	8,34	16,67
Cloreto (mg/L)	12	0,542	0,000	1,076	0,000	3,000	0,000	0,500	1,84	2,09	16,67
Carbono inorgânico total (mg/L)	12	7,30	7,01	2,67	3,11	11,63	5,50	9,04	0,38	-0,60	0,00
Carbono orgânico total (mg/L)	12	6,74	7,08	1,90	3,52	9,90	5,28	7,99	-0,26	-0,60	0,00
Carbono total (mg/L)	12	13,22	14,05	2,94	6,68	17,57	11,41	15,22	-0,87	0,98	0,00
Sílica (mg/L)	12	23,03	9,05	25,65	5,40	71,50	6,30	36,80	1,32	-0,09	0,00
Coliformes totais (NMP/100 mL)	12	763	260	1514	0	5400	10	595	3,07	9,89	8,33
Coliformes termotolerantes (NMP/100ml)	12	181	40	394	0	1400	0	165	3,18	10,48	8,33

Tabela II.26: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P18) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,7	28,9	2,1	23,2	31,1	27,9	30,2	-1,28	2,24	6,25
Potencial redox (mV)	16	126,7	134,4	76,1	-21,2	279,4	87,0	153,2	0,13	0,63	18,75
pН	16	6,70	6,72	0,59	5,57	7,60	6,39	7,15	-0,19	-0,38	0,00
Condutividade elétrica (µS/cm)	16	92,89	87,05	38,27	54,00	196,00	59,50	114,50	1,35	2,20	0,00
Sólidos dissolvidos totais (mg/L)	16	56,09	52,94	24,35	29,00	127,00	37,50	67,00	1,67	3,92	6,25
Oxigênio dissolvido (mg/L)	16	5,65	5,70	0,58	4,19	6,85	5,40	5,90	-0,53	2,30	12,50
Transparência (m)	16	0,08	0,05	0,09	0,05	0,40	0,05	0,05	3,87	15,21	12,50
Turbidez (UNT)	16	413,51	388,80	276,22	52,80	963,00	225,00	597,00	0,71	-0,18	0,00
Cor (mg Pt-Co/L)	16	197,41	116,00	277,30	15,00	1110,00	36,65	251,00	2,68	8,17	6,25
Sólidos totais (mg/L)	16	280,12	216,50	164,85	94,00	582,00	152,60	396,00	0,72	-0,82	0,00
Sólidos suspensos totais (mg/L)	16	179,07	136,30	149,19	17,00	464,00	50,00	292,00	0,81	-0,63	0,00
Sólidos suspensos inorgânicos (mg/L)	16	197,54	147,83	151,17	13,00	459,00	63,42	325,50	0,53	-1,10	0,00
Sólidos suspensos orgânicos (mg/L)	16	20,48	19,35	16,15	3,00	59,00	5,59	31,50	0,78	0,27	0,00
Clorofila-a (µg/L)	16	2,51	1,89	2,50	0,00	9,75	1,14	3,21	1,80	3,98	6,25
Fós foro total (mg/L)	16	0,168	0,131	0,153	0,016	0,531	0,043	0,286	1,09	0,47	0,00
Ortofos fato (mg/L)	16	0,039	0,026	0,042	0,000	0,124	0,001	0,076	0,71	-0,93	0,00
Nitrogênio total Kjeldahl (mg/L)	16	2,128	0,865	3,775	0,000	12,200	0,470	1,235	2,46	4,80	12,50
Nitrato (mg/L)	16	1,147	1,100	0,682	0,099	2,500	0,600	1,550	0,55	-0,01	0,00
Nitrito (mg/L)	16	0,002	0,000	0,006	0,000	0,020	0,000	0,000	2,72	7,49	18,75
Nitrogênio amoniacal (mg/L)	16	0,658	0,635	0,363	0,000	1,150	0,410	0,995	-0,27	-1,02	0,00
Demanda bioquímica de oxigênio (mg/L)	16	1,15	1,00	0,68	0,30	3,10	0,80	1,35	1,62	3,71	6,25
Demanda química de oxigênio (mg/L)	16	6,50	5,50	3,65	1,00	13,00	4,35	9,00	0,48	-0,68	0,00
Ferro total (mg/L)	16	1,278	1,029	0,811	0,220	2,850	0,750	1,815	0,75	-0,14	0,00
Alcalinidade (mg/L)	16	29,16	27,50	7,20	19,00	43,00	24,00	35,81	0,56	-0,86	0,00
Dureza (mg/L)	16	36,50	34,00	9,28	28,00	52,00	29,00	43,00	0,89	-0,79	0,00
Sulfato (mg/L)	16	5,75	5,00	6,23	0,00	24,00	0,00	7,25	1,76	4,22	6,25
Sulfeto (mg/L)	16	0,007	0,005	0,005	0,001	0,022	0,004	0,009	1,88	4,92	6,25
Cloreto (mg/L)	16	0,178	0,000	0,625	0,000	2,500	0,000	0,000	3,89	15,30	18,75
Carbono inorgânico total (mg/L)	16	7,13	7,00	2,91	2,30	13,90	5,20	8,85	0,47	0,67	0,00
Carbono orgânico total (mg/L)	16	3,69	3,70	1,20	1,01	6,87	3,47	4,00	0,38	4,06	18,75
Carbono total (mg/L)	16	10,82	10,65	3,76	3,31	18,40	9,10	12,60	0,01	0,69	12,50
Sílica (mg/L)	16	8,95	7,65	8,45	0,00	33,80	3,65	9,55	1,89	4,38	12,50
Coliformes totais (NMP/100 mL)	16	2790	665	5420	78	17000	320	1550	2,41	4,56	18,75
Coliformes termotolerantes (NMP/100ml)	16	42	20	52	0	170	0	78	1,23	0,81	0,00

Tabela II.27: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P19) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	28,4	28,6	1,6	26,0	31,0	27,1	29,4	-0,06	-0,88	0,00
Potencial redox (mV)	12	137,8	146,5	76,9	-6,8	295,0	114,0	170,5	-0,11	1,49	25,00
рН	12	7,26	7,20	0,44	6,42	7,90	7,05	7,65	-0,29	-0,27	0,00
Condutividade elétrica (µS/cm)	12	90,38	80,00	27,06	62,00	150,00	73,50	105,30	1,25	0,82	0,00
Sólidos dissolvidos totais (mg/L)	12	45,46	40,50	13,86	31,00	75,00	36,50	54,75	1,12	0,33	0,00
Oxigênio dissolvido (mg/L)	12	6,77	6,75	1,42	4,40	9,20	5,75	7,90	0,10	-0,64	0,00
Transparência (m)	12	0,07	0,05	0,03	0,05	0,15	0,05	0,10	1,46	1,39	0,00
Turbidez (UNT)	12	435,16	323,00	401,36	62,90	1462,00	136,00	644,50	1,65	3,16	8,33
Cor (mg Pt-Co/L)	12	104,42	109,50	39,78	39,00	156,00	74,00	135,00	-0,42	-0,91	0,00
Sólidos totais (mg/L)	12	347,49	273,50	260,79	90,00	985,00	147,00	499,50	1,45	2,17	0,00
Sólidos suspensos totais (mg/L)	12	302,03	222,00	267,52	37,00	945,00	98,00	468,00	1,35	1,86	0,00
Sólidos suspensos inorgânicos (mg/L)	12	257,37	162,70	250,41	32,00	891,00	83,00	378,50	1,62	2,89	8,33
Sólidos suspensos orgânicos (mg/L)	12	44,67	37,50	42,03	0,00	153,00	16,50	55,50	1,66	3,44	8,33
Clorofila-a (µg/L)	12	6,62	2,88	12,13	0,00	43,36	0,00	5,67	2,96	9,31	8,33
Fósforo total (mg/L)	12	0,403	0,306	0,352	0,072	1,263	0,175	0,533	1,57	2,29	8,33
Ortofos fato (mg/L)	12	0,099	0,020	0,173	0,000	0,559	0,009	0,084	2,24	4,57	16,67
Nitrogênio total Kjeldahl (mg/L)	12	0,901	0,690	0,444	0,200	1,810	0,640	1,235	0,61	0,13	0,00
Nitrato (mg/L)	12	0,867	0,700	0,360	0,500	1,500	0,550	1,150	0,65	-1,04	0,00
Nitrito (mg/L)	12	0,002	0,002	0,002	0,000	0,005	0,001	0,004	0,45	-0,73	0,00
Nitrogênio amoniacal (mg/L)	12	0,668	0,485	0,439	0,100	1,510	0,305	1,040	0,60	-0,75	0,00
Demanda bioquímica de oxigênio (mg/L)	12	1,02	0,90	0,51	0,40	1,90	0,65	1,35	0,82	-0,62	0,00
Demanda química de oxigênio (mg/L)	12	9,67	9,50	7,02	1,00	25,00	3,50	14,00	0,76	0,38	0,00
Ferro total (mg/L)	12	5,799	3,955	4,694	0,650	16,500	2,335	8,825	1,07	0,88	0,00
Alcalinidade (mg/L)	12	28,50	24,50	8,54	16,00	45,00	23,50	34,50	0,73	-0,20	0,00
Dureza (mg/L)	12	42,07	46,00	17,89	2,80	68,00	31,00	55,00	-0,81	0,73	0,00
Sulfato (mg/L)	12	8,67	7,00	3,89	4,00	14,00	6,00	13,50	0,59	-1,56	0,00
Sulfeto (mg/L)	12	0,022	0,011	0,030	0,000	0,104	0,008	0,016	2,37	5,38	16,67
Cloreto (mg/L)	12	0,333	0,000	0,749	0,000	2,500	0,000	0,250	2,64	7,17	16,67
Carbono inorgânico total (mg/L)	12	7,40	6,60	2,81	3,43	12,90	5,56	9,06	0,66	-0,14	0,00
Carbono orgânico total (mg/L)	12	6,51	6,79	1,84	3,67	9,70	4,93	7,75	-0,10	-0,75	0,00
Carbono total (mg/L)	12	13,91	13,51	3,08	8,06	20,47	12,27	15,61	0,27	1,54	0,00
Sílica (mg/L)	12	26,58	10,90	29,28	4,50	100,50	7,65	37,90	1,75	2,85	8,33
Coliformes totais (NMP/100 mL)	12	1746	330	4513	40	16000	116	700	3,40	11,67	16,67
Coliformes termotolerantes (NMP/100ml)		165	80	256	0	920	30	175	2,73	8,07	8,33

Tabela II.28: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P19) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	16	28,2	28,8	1,9	23,6	31,0	27,3	29,2	-1,15	1,08	6,25
Potencial redox (mV)	16	105,5	102,7	71,4	-24,4	293,0	57,6	142,4	0,75	2,46	6,25
pН	16	6,76	6,75	0,61	5,47	7,73	6,31	7,28	-0,26	-0,19	0,00
Condutividade elétrica (µS/cm)	16	97,45	108,80	27,31	51,00	132,10	65,95	117,00	-0,65	-1,20	0,00
Sólidos dissolvidos totais (mg/L)	16	56,88	57,50	16,49	26,60	83,00	42,03	72,00	-0,17	-0,96	0,00
Oxigênio dissolvido (mg/L)	16	5,67	5,75	0,60	4,11	6,76	5,35	6,05	-0,91	2,35	6,25
Transparência (m)	16	0,09	0,05	0,14	0,05	0,60	0,05	0,08	3,86	15,17	6,25
Turbidez (UNT)	16	438,79	378,00	296,65	64,70	951,00	217,00	661,90	0,64	-0,95	0,00
Cor (mg Pt-Co/L)	16	171,04	85,50	237,44	12,00	936,00	32,40	217,00	2,58	7,36	6,25
Sólidos totais (mg/L)	16	288,95	241,60	228,97	53,00	836,00	118,19	363,00	1,30	1,05	6,25
Sólidos suspensos totais (mg/L)	16	194,33	174,33	157,28	11,50	527,50	58,84	333,00	0,71	-0,42	0,00
Sólidos suspensos inorgânicos (mg/L)	16	204,91	163,17	197,97	6,00	720,00	41,70	309,00	1,36	1,85	6,25
Sólidos suspensos orgânicos (mg/L)	16	22,80	12,92	28,70	3,67	116,00	6,25	24,00	2,68	7,77	12,50
Clorofila-a (µg/L)	16	1,87	1,81	1,33	0,00	4,60	0,84	2,78	0,39	-0,47	0,00
Fós foro total (mg/L)	16	0,169	0,135	0,131	0,014	0,453	0,060	0,257	0,71	-0,25	0,00
Orto fos fato (mg/L)	16	0,033	0,032	0,036	0,000	0,117	0,001	0,040	1,12	0,59	6,25
Nitrogênio total Kjeldahl (mg/L)	16	1,852	0,640	3,232	0,020	10,200	0,310	1,420	2,38	4,48	12,50
Nitrato (mg/L)	16	1,199	1,010	0,693	0,168	3,100	0,800	1,400	1,45	2,89	6,25
Nitrito (mg/L)	16	0,005	0,000	0,014	0,000	0,052	0,000	0,000	3,15	10,43	18,75
Nitrogênio amoniacal (mg/L)	16	0,654	0,430	0,564	0,020	2,010	0,250	1,070	1,15	0,62	0,00
Demanda bioquímica de oxigênio (mg/L)	16	0,87	0,95	0,73	0,00	2,00	0,20	1,40	0,22	-1,44	0,00
Demanda química de oxigênio (mg/L)	16	7,76	5,50	5,47	2,00	21,00	4,00	12,50	1,11	0,52	0,00
Ferro total (mg/L)	16	1,245	1,070	0,676	0,010	2,470	0,711	1,845	0,12	-0,75	0,00
Alcalinidade (mg/L)	16	29,26	26,00	7,34	20,00	44,00	24,00	36,07	0,71	-0,83	0,00
Dureza (mg/L)	16	36,63	36,00	7,44	26,00	52,00	31,00	42,00	0,60	-0,38	0,00
Sulfato (mg/L)	16	4,06	2,50	5,37	0,00	20,00	0,00	6,00	1,98	4,51	6,25
Sulfeto (mg/L)	16	0,005	0,004	0,003	0,001	0,010	0,004	0,007	0,35	-0,15	0,00
Cloreto (mg/L)	16	0,146	0,000	0,501	0,000	2,000	0,000	0,000	3,83	14,94	18,75
Carbono inorgânico total (mg/L)	16	6,65	6,55	2,04	1,55	9,30	6,10	8,43	-1,14	1,67	6,25
Carbono orgânico total (mg/L)	16	3,69	3,50	0,68	2,82	6,01	3,49	3,70	2,89	10,40	18,75
Carbono total (mg/L)	16	10,34	10,35	1,80	6,00	13,10	9,60	11,86	-0,84	1,11	6,25
Sílica (mg/L)	16	7,77	6,10	8,67	0,00	33,80	2,07	9,10	2,07	5,12	12,50
Coliformes totais (NMP/100 mL)	16	1183	790	1013	45	3500	455	1550	1,28	0,62	6,25
Coliformes termotolerantes (NMP/100ml)	16	24	20	22	0	68	0	45	0,36	-1,00	0,00

Tabela II.29: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P20) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	26,5	26,2	2,4	22,0	31,0	25,4	28,2	0,05	0,64	0,00
Potencial redox (mV)	12	157,3	146,0	77,1	32,8	303,0	104,0	206,5	0,08	-0,20	0,00
рН	12	6,36	6,20	0,75	5,36	7,70	5,85	7,05	0,44	-0,94	0,00
Condutividade elétrica (µS/cm)	12	8,83	8,50	3,59	5,00	18,00	6,50	10,00	1,49	3,21	8,33
Sólidos dissolvidos totais (mg/L)	12	4,00	3,00	2,00	2,00	9,00	3,00	5,00	1,55	2,66	8,33
Oxigênio dissolvido (mg/L)	12	6,47	6,70	1,67	3,30	8,81	5,21	7,60	-0,31	-0,37	0,00
Transparência (m)	12	0,81	0,70	0,34	0,30	1,70	0,70	0,90	1,51	3,93	16,67
Turbidez (UNT)	12	16,34	14,45	5,52	9,50	27,00	12,40	20,00	0,68	-0,41	0,00
Cor (mg Pt-Co/L)	12	66,58	65,00	25,28	29,00	116,00	45,50	80,00	0,48	-0,12	0,00
Sólidos totais (mg/L)	12	17,50	15,50	11,41	7,00	49,00	10,00	20,00	2,08	5,43	8,33
Sólidos suspensos totais (mg/L)	12	13,67	12,50	9,66	4,00	40,00	7,00	16,50	1,97	5,01	8,33
Sólidos suspensos inorgânicos (mg/L)	12	6,75	8,00	4,14	0,00	13,00	3,00	9,50	-0,17	-1,03	0,00
Sólidos suspensos orgânicos (mg/L)	12	6,92	6,00	7,18	0,00	27,00	2,00	7,00	2,25	5,94	8,33
Clorofila-a (µg/L)	12	1,77	0,90	2,24	0,00	6,37	0,00	2,73	1,29	0,45	0,00
Fós foro total (mg/L)	12	0,012	0,015	0,008	0,000	0,022	0,004	0,019	-0,59	-1,23	0,00
Orto fos fato (mg/L)	12	0,004	0,000	0,005	0,000	0,013	0,000	0,007	0,94	-0,67	0,00
Nitrogênio total Kjeldahl (mg/L)	12	0,503	0,455	0,202	0,260	0,930	0,390	0,550	1,20	1,03	16,67
Nitrato (mg/L)	12	0,508	0,500	0,173	0,300	1,000	0,400	0,500	2,25	6,67	8,33
Nitrito (mg/L)	12	0,003	0,003	0,001	0,000	0,006	0,002	0,003	0,70	2,58	16,67
Nitrogênio amoniacal (mg/L)	12	0,312	0,240	0,264	0,060	0,850	0,140	0,355	1,50	1,29	16,67
Demanda bioquímica de oxigênio (mg/L)	12	1,27	0,90	0,94	0,40	3,30	0,55	1,85	1,22	0,53	0,00
Demanda química de oxigênio (mg/L)	12	7,17	4,00	6,31	0,00	19,00	2,50	12,00	0,79	-0,75	0,00
Ferro total (mg/L)	12	0,904	0,865	0,179	0,660	1,330	0,795	0,990	1,22	1,98	8,33
Alcalinidade (mg/L)	12	7,33	6,00	2,90	4,00	14,00	5,50	9,00	1,26	1,22	0,00
Dureza (mg/L)	12	8,33	4,00	8,65	2,00	30,00	3,00	12,00	1,76	2,70	8,33
Sulfato (mg/L)	12	0,58	0,00	1,73	0,00	6,00	0,00	0,00	3,31	11,14	16,67
Sulfeto (mg/L)	12	0,007	0,005	0,006	0,001	0,022	0,004	0,008	1,88	3,76	8,33
Cloreto (mg/L)	12	0,458	0,000	0,722	0,000	2,000	0,000	1,000	1,26	0,24	0,00
Carbono inorgânico total (mg/L)	12	2,15	1,57	1,38	0,91	5,82	1,31	2,79	1,94	4,28	8,33
Carbono orgânico total (mg/L)	12	4,58	3,95	2,21	2,07	10,27	3,25	5,52	1,63	3,39	8,33
Carbono total (mg/L)	12	6,72	6,68	2,41	2,98	12,28	5,02	7,87	0,82	1,63	8,33
Sílica (mg/L)	12	6,31	6,95	2,08	2,60	8,80	4,40	8,05	-0,55	-1,03	0,00
Coliformes totais (NMP/100 mL)	12	1519	1020	2523	20	9200	135	1500	2,99	9,59	8,33
Coliformes termotolerantes (NMP/100ml)	12	190	120	208	20	700	40	260	1,63	2,33	8,33

Tabela II.30: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Jirau (ponto P20) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose %	6 Outliers
Temperatura da água (°C)	16	29,2	29,4	1,4	26,9	32,0	28,0	29,9	0,24	-0,10	0,00
Potencial redox (mV)	16	138,1	137,4	48,8	48,3	243,2	108,0	172,6	-0,03	0,60	0,00
pН	16	6,27	6,20	0,65	5,28	7,58	5,78	6,78	0,32	-0,43	0,00
Condutividade elétrica (µS/cm)	16	30,75	16,75	26,63	9,00	94,10	12,80	57,90	1,23	0,33	0,00
Sólidos dissolvidos totais (mg/L)	16	17,38	8,83	14,71	5,00	47,30	7,50	29,41	1,10	-0,42	0,00
Oxigênio dissolvido (mg/L)	16	4,87	4,90	0,77	2,80	5,90	4,72	5,44	-1,26	2,40	6,25
Transparência (m)	16	0,28	0,30	0,19	0,05	0,70	0,13	0,35	0,60	0,32	6,25
Turbidez (UNT)	16	104,07	47,60	130,48	11,50	456,00	33,60	100,80	1,93	2,86	18,75
Cor (mg Pt-Co/L)	16	90,39	75,50	62,57	10,00	253,00	45,25	128,00	1,18	1,63	6,25
Sólidos totais (mg/L)	16	75,43	35,13	85,46	5,80	290,00	23,00	89,80	1,63	1,63	18,75
Sólidos suspensos totais (mg/L)	16	45,11	20,63	58,36	7,60	187,00	14,20	37,75	1,92	2,44	18,75
Sólidos suspensos inorgânicos (mg/L)	16	46,51	17,13	60,77	5,20	172,00	12,05	47,50	1,63	0,98	18,75
Sólidos suspensos orgânicos (mg/L)	16	10,47	5,04	13,23	2,30	50,00	2,90	11,50	2,31	5,17	12,50
Clorofila-a (µg/L)	16	4,44	3,97	2,80	0,00	10,57	2,35	5,62	0,84	0,47	6,25
Fós foro total (mg/L)	16	0,047	0,016	0,068	0,000	0,230	0,000	0,075	1,80	2,78	6,25
Ortofos fato (mg/L)	16	0,023	0,001	0,043	0,000	0,165	0,000	0,034	2,69	8,17	6,25
Nitrogênio total Kjeldahl (mg/L)	16	1,529	0,520	2,870	0,000	9,200	0,205	0,970	2,45	4,77	12,50
Nitrato (mg/L)	16	0,623	0,500	0,492	0,000	2,100	0,300	0,840	1,84	4,90	6,25
Nitrito (mg/L)	16	0,002	0,000	0,003	0,000	0,010	0,000	0,001	2,38	4,43	12,50
Nitrogênio amoniacal (mg/L)	16	0,485	0,340	0,466	0,000	1,860	0,205	0,645	1,92	4,39	6,25
Demanda bioquímica de oxigênio (mg/L)	16	1,37	1,52	0,65	0,30	2,20	0,80	2,00	-0,44	-1,14	0,00
Demanda química de oxigênio (mg/L)	16	9,18	8,00	5,66	3,00	24,00	5,30	13,00	1,14	1,66	0,00
Ferro total (mg/L)	16	1,153	1,159	0,464	0,030	2,030	0,960	1,295	-0,13	2,36	18,75
Alcalinidade (mg/L)	16	11,27	8,00	6,31	5,00	24,00	6,65	16,50	0,93	-0,59	0,00
Dureza (mg/L)	16	11,88	6,00	9,37	4,00	28,00	4,00	19,00	0,79	-1,02	0,00
Sulfato (mg/L)	16	1,46	0,00	3,46	0,00	13,00	0,00	0,51	2,89	8,81	18,75
Sulfeto (mg/L)	16	0,004	0,002	0,003	0,001	0,009	0,002	0,006	0,99	-0,42	0,00
Cloreto (mg/L)	16	0,024	0,000	0,095	0,000	0,380	0,000	0,000	4,00	15,97	12,50
Carbono inorgânico total (mg/L)	16	5,41	5,75	1,24	2,28	7,10	5,11	6,15	-1,35	1,98	12,50
Carbono orgânico total (mg/L)	16	3,35	3,45	0,56	1,61	4,05	3,18	3,65	-2,13	6,25	6,25
Carbono total (mg/L)	16	8,76	9,40	1,48	4,76	10,10	8,29	9,75	-1,66	2,67	6,25
Sílica (mg/L)	16	6,73	6,70	3,32	0,00	12,70	5,30	8,85	-0,21	0,06	0,00
Coliformes totais (NMP/100 mL)	16	5278	1750	6928	52	17000	700	9750	1,19	-0,52	0,00
Coliformes termotolerantes (NMP/100ml)	16	26	20	33	0	130	0	43	2,19	6,29	6,25

Tabela III.1: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto IR-1) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	27,3	27,1	1,7	25,0	30,4	26,1	28,1	0,69	-0,29	0,00
Transparência (m)	10	0,67	0,60	0,18	0,50	1,00	0,60	0,70	1,37	0,64	20,00
Potencial redox (mV)	10	152,4	164,5	28,4	96,0	180,0	132,0	175,0	-0,89	-0,20	0,00
pH	12	6,96	7,15	0,44	6,09	7,46	6,75	7,25	-1,07	0,21	0,00
Condutividade elétrica (µS/cm)	12	36,40	33,00	17,17	18,00	88,00	31,00	34,85	2,79	9,04	25,00
Sólidos dissolvidos totais (mg/L)	12	17,22	15,00	8,92	11,00	45,00	13,75	16,05	3,22	10,83	8,33
Oxigênio dissolvido (mg/L)	12	7,07	7,24	0,78	5,90	8,20	6,30	7,65	-0,23	-1,28	0,00
Turbidez (UNT)	12	11,97	9,90	6,78	4,09	25,20	6,67	16,84	0,62	-0,41	0,00
Cor (mg Pt-Co/L)	12	81,33	85,50	38,16	25,00	129,00	46,00	118,00	-0,29	-1,42	0,00
Sólidos totais (mg/L)	12	36,48	36,22	14,21	20,49	65,00	24,90	40,00	0,93	0,38	8,33
Sólidos suspensos totais (mg/L)	12	15,89	15,50	8,19	5,70	28,00	7,00	23,25	0,07	-1,72	0,00
Clorofila-a (µg/L)	10	0,52	0,55	0,38	0,00	1,09	0,27	0,82	0,12	-0,91	0,00
Fós foro total (mg/L)	12	0,016	0,015	0,011	0,001	0,039	0,011	0,022	0,58	0,72	0,00
Ortofos fato (mg/L)	12	0,005	0,005	0,003	0,001	0,011	0,002	0,008	0,52	-0,67	0,00
Nitrato (mg/L)	12	0,440	0,450	0,206	0,129	0,800	0,250	0,600	0,05	-0,83	0,00
Nitrito (mg/L)	12	0,008	0,002	0,014	0,001	0,040	0,001	0,003	2,07	2,81	16,67
Nitrogênio amoniacal (mg/L)	12	0,401	0,360	0,266	0,080	1,110	0,220	0,490	1,76	4,40	8,33
Nitrogênio total Kjeldahl (mg/L)	12	1,041	1,072	0,446	0,018	1,610	0,821	1,390	-0,95	1,32	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	1,58	1,45	1,17	0,10	4,50	0,70	2,05	1,35	2,79	8,33
Ferro total (mg/L)	10	0,89	0,93	0,33	0,44	1,42	0,61	1,14	-0,06	-0,92	10,00
Cloreto (mg/L)	12	3,80	3,75	1,92	0,50	8,00	2,50	4,58	0,49	1,33	8,33
Coliformes totais (NMP/100 mL)	12	894	550	890	53	2420	165	1550	0,84	-0,75	0,00
Coliformes termotolerantes (NMP/100ml)	12	72	73	46	18	131	27	123	0,17	-1,67	0,00

Tabela III.2: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto IR-1) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	27,9	28,3	3,1	19,6	32,3	26,5	29,6	-1,20	2,41	6,25
Transparência (m)	16	0,96	0,95	0,30	0,50	1,50	0,70	1,20	0,47	-0,57	0,00
Potencial redox (mV)	16	260,4	244,5	125,4	35,8	454,8	141,8	370,3	-0,10	-1,25	0,00
pН	16	6,76	6,71	0,45	6,03	7,61	6,42	7,16	0,01	-0,70	0,00
Condutividade elétrica (µS/cm)	16	31,68	30,85	10,15	14,00	57,00	26,10	35,50	1,05	2,05	6,25
Sólidos dissolvidos totais (mg/L)	16	19,66	16,77	8,12	9,00	37,00	14,55	22,50	1,15	0,45	12,50
Oxigênio dissolvido (mg/L)	16	6,24	6,11	0,60	5,20	7,53	5,90	6,57	0,47	0,13	0,00
Turbidez (UNT)	16	11,07	9,38	6,19	4,14	29,70	7,88	13,30	1,88	4,96	6,25
Cor (mg Pt-Co/L)	16	57,00	51,50	34,53	13,00	137,00	29,50	73,00	1,06	0,68	0,00
Sólidos totais (mg/L)	16	48,63	45,00	19,61	17,00	88,00	33,50	65,50	0,31	-0,49	0,00
Sólidos suspensos totais (mg/L)	16	19,58	15,50	18,26	1,80	66,00	3,00	30,78	1,07	1,13	0,00
Clorofila-a (µg/L)	16	1,54	0,55	2,27	0,00	8,19	0,50	1,37	2,30	4,91	18,75
Fós foro total (mg/L)	16	0,008	0,003	0,010	0,001	0,040	0,003	0,010	2,49	6,58	12,50
Ortofos fato (mg/L)	16	0,005	0,003	0,005	0,001	0,018	0,002	0,004	2,20	4,16	12,50
Nitrato (mg/L)	16	0,506	0,400	0,309	0,100	1,300	0,300	0,650	1,32	1,61	6,25
Nitrito (mg/L)	16	0,003	0,003	0,003	0,001	0,011	0,001	0,004	1,82	4,02	6,25
Nitrogênio amoniacal (mg/L)	16	0,454	0,410	0,292	0,030	0,980	0,180	0,665	0,37	-1,00	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,934	0,838	0,540	0,133	2,180	0,582	1,206	0,77	0,61	6,25
Demanda Bioquímica de Oxigênio (mg/L)	16	0,89	0,70	0,74	0,03	2,20	0,20	1,50	0,54	-1,04	0,00
Ferro total (mg/L)	16	0,74	0,83	0,40	0,12	1,23	0,34	1,14	-0,43	-1,34	0,00
Cloreto (mg/L)	16	4,72	4,25	2,50	1,50	10,50	3,00	6,25	0,84	0,42	0,00
Coliformes totais (NMP/100 mL)	16	7519	2350	7759	110	16000	330	16000	0,25	-2,19	0,00
Coliformes termotolerantes (NMP/100ml)	16	285	140	485	20	2000	30	345	3,31	11,93	6,25

Tabela III.3: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto IR-2) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	27,5	27,5	1,6	25,3	30,2	26,1	28,5	0,47	-0,78	0,00
Transparência (m)	10	0,68	0,60	0,20	0,40	1,00	0,60	0,80	0,66	-0,36	0,00
Potencial redox (mV)	10	143,8	145,0	28,6	94,0	185,0	125,0	165,0	-0,25	-0,67	0,00
pН	12	6,88	6,85	0,42	6,00	7,39	6,74	7,24	-0,85	0,37	0,00
Condutividade elétrica (µS/cm)	12	34,74	32,90	15,78	18,00	82,00	31,50	33,65	2,72	8,92	25,00
Sólidos dissolvidos totais (mg/L)	12	17,20	15,55	7,36	11,00	40,00	15,00	16,40	3,16	10,62	16,67
Oxigênio dissolvido (mg/L)	12	6,92	6,70	0,81	6,00	8,12	6,20	7,66	0,37	-1,58	0,00
Turbidez (UNT)	12	10,81	11,05	5,15	3,75	18,70	6,03	14,58	-0,14	-1,21	0,00
Cor (mg Pt-Co/L)	12	84,58	94,00	39,65	25,00	126,00	46,50	122,50	-0,30	-1,82	0,00
Sólidos totais (mg/L)	12	33,25	28,90	14,65	20,00	73,00	23,50	38,00	2,02	4,81	8,33
Sólidos suspensos totais (mg/L)	12	12,52	12,08	6,69	5,00	26,00	7,50	14,60	1,09	0,44	8,33
Clorofila-a (µg/L)	10	0,94	0,31	1,90	0,00	6,28	0,27	0,55	3,04	9,40	20,00
Fós foro total (mg/L)	12	0,015	0,015	0,010	0,001	0,030	0,009	0,022	0,11	-0,73	0,00
Ortofos fato (mg/L)	12	0,004	0,004	0,003	0,001	0,009	0,001	0,007	0,59	-1,30	0,00
Nitrato (mg/L)	12	0,494	0,450	0,253	0,200	1,100	0,300	0,609	1,16	1,86	8,33
Nitrito (mg/L)	12	0,006	0,001	0,011	0,001	0,036	0,001	0,002	2,36	4,89	16,67
Nitrogênio amoniacal (mg/L)	12	0,382	0,440	0,173	0,100	0,590	0,205	0,510	-0,55	-1,35	0,00
Nitrogênio total Kjeldahl (mg/L)	12	1,062	1,146	0,429	0,000	1,582	0,845	1,385	-1,38	2,49	8,33
Demanda Bioquímica de Oxigênio (mg/L)	12	1,53	1,25	1,24	0,20	3,60	0,50	2,75	0,56	-1,32	0,00
Ferro total (mg/L)	10	0,92	1,04	0,32	0,44	1,29	0,53	1,19	-0,62	-1,38	0,00
Cloreto (mg/L)	12	4,04	3,50	1,45	2,50	7,50	3,25	4,47	1,44	2,05	8,33
Coliformes totais (NMP/100 mL)	12	5685	4450	5792	45	16000	812	9200	0,91	-0,34	0,00
Coliformes termotolerantes (NMP/100ml)	12	1216	399	2591	20	9200	48	745	3,14	10,22	16,67

Tabela III.4: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto IR-2) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	16	28,1	28,5	3,1	20,1	32,6	27,0	30,3	-1,12	1,99	6,25
Transparência (m)	16	0,94	0,95	0,38	0,50	2,00	0,65	1,15	1,26	2,76	6,25
Potencial redox (mV)	16	254,5	239,0	133,3	33,1	458,7	150,8	379,8	-0,09	-1,38	0,00
pН	16	6,88	6,85	0,47	6,14	7,54	6,53	7,27	-0,02	-1,16	0,00
Condutividade elétrica (µS/cm)	16	35,65	32,15	15,91	14,00	75,00	27,20	36,75	1,71	2,86	12,50
Sólidos dissolvidos totais (mg/L)	16	20,56	17,32	9,93	9,00	47,00	15,00	22,50	1,73	2,80	12,50
Oxigênio dissolvido (mg/L)	16	6,27	6,28	0,81	5,20	7,82	5,55	6,80	0,40	-0,76	0,00
Turbidez (UNT)	16	10,79	9,77	5,29	2,57	26,00	8,08	13,05	1,44	4,01	6,25
Cor (mg Pt-Co/L)	16	64,63	59,00	32,42	12,00	144,00	43,00	81,50	0,79	1,23	6,25
Sólidos totais (mg/L)	16	49,38	45,00	19,31	22,00	82,00	31,50	65,00	0,35	-1,10	0,00
Sólidos suspensos totais (mg/L)	16	21,03	20,60	17,85	1,40	60,00	3,30	32,70	0,60	-0,42	0,00
Clorofila-a (µg/L)	16	1,87	0,68	2,65	0,00	9,56	0,50	1,91	2,09	4,13	18,75
Fós foro total (mg/L)	16	0,007	0,003	0,010	0,001	0,041	0,003	0,006	2,94	9,30	18,75
Ortofos fato (mg/L)	16	0,004	0,003	0,006	0,001	0,022	0,001	0,003	2,68	6,95	12,50
Nitrato (mg/L)	16	0,575	0,500	0,238	0,300	0,900	0,400	0,850	0,37	-1,59	0,00
Nitrito (mg/L)	16	0,003	0,003	0,003	0,001	0,010	0,002	0,005	1,38	1,92	6,25
Nitrogênio amoniacal (mg/L)	16	0,451	0,375	0,298	0,090	1,170	0,210	0,630	0,96	0,62	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,920	0,772	0,488	0,180	1,770	0,636	1,363	0,34	-0,94	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	0,88	0,95	0,47	0,03	1,70	0,65	1,20	-0,44	-0,31	0,00
Ferro total (mg/L)	16	0,82	0,88	0,36	0,15	1,21	0,54	1,16	-0,62	-0,92	0,00
Cloreto (mg/L)	16	4,69	3,75	2,53	1,50	10,50	2,75	6,50	1,02	0,46	0,00
Coliformes totais (NMP/100 mL)	16	7427	4450	7238	78	16000	460	16000	0,30	-1,97	0,00
Coliformes termotolerantes (NMP/100ml)	16	393	155	848	20	3500	53	245	3,72	14,30	12,50

Tabela III.5: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-2) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	28,1	28,0	1,8	25,6	31,8	27,1	29,2	0,68	0,10	0,00
Transparência (m)	10	0,91	0,70	0,48	0,60	2,10	0,60	1,00	2,06	4,37	10,00
Potencial redox (mV)	10	119,5	122,0	29,3	47,0	151,0	112,0	142,0	-1,77	4,35	10,00
pН	12	7,07	6,89	0,41	6,57	7,90	6,78	7,39	0,79	-0,37	0,00
Condutividade elétrica (µS/cm)	12	30,00	25,50	18,95	15,00	87,00	20,59	31,10	2,84	8,98	8,33
Sólidos dissolvidos totais (mg/L)	12	13,80	11,71	10,17	7,00	45,00	9,05	12,57	3,06	9,97	8,33
Oxigênio dissolvido (mg/L)	12	7,09	7,55	0,99	4,87	8,02	6,32	7,77	-1,25	0,65	0,00
Turbidez (UNT)	12	9,29	8,86	5,96	2,36	23,60	4,67	12,54	1,19	1,89	0,00
Cor (mg Pt-Co/L)	12	66,08	52,50	42,77	13,00	128,00	32,50	113,00	0,42	-1,58	0,00
Sólidos totais (mg/L)	12	30,19	24,06	15,58	14,20	61,00	19,46	36,50	1,16	0,40	0,00
Sólidos suspensos totais (mg/L)	12	13,32	13,50	6,58	2,10	23,00	8,35	18,50	-0,01	-0,85	0,00
Clorofila-a (µg/L)	10	0,84	0,64	0,67	0,00	2,18	0,37	1,21	1,02	0,39	0,00
Fós foro total (mg/L)	12	0,026	0,017	0,037	0,001	0,140	0,008	0,026	3,04	9,96	8,33
Ortofos fato (mg/L)	12	0,006	0,002	0,007	0,001	0,023	0,001	0,012	1,41	1,43	0,00
Nitrato (mg/L)	12	0,394	0,400	0,232	0,100	0,700	0,155	0,607	-0,03	-1,58	0,00
Nitrito (mg/L)	12	0,015	0,002	0,038	0,001	0,134	0,001	0,003	3,20	10,50	16,67
Nitrogênio amoniacal (mg/L)	12	0,317	0,310	0,165	0,090	0,550	0,175	0,455	0,07	-1,16	0,00
Nitrogênio total Kjeldahl (mg/L)	12	0,948	0,971	0,545	0,000	2,000	0,642	1,303	0,15	0,19	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	1,93	1,90	1,38	0,10	4,50	0,70	2,70	0,45	-0,78	0,00
Ferro total (mg/L)	10	0,78	0,76	0,31	0,43	1,21	0,50	1,10	0,18	-1,90	0,00
Cloreto (mg/L)	12	2,71	2,47	2,07	0,50	7,00	1,00	3,50	1,00	0,51	0,00
Coliformes totais (NMP/100 mL)	12	761	245	973	45	2420	128	1450	1,23	-0,42	0,00
Coliformes termotolerantes (NMP/100ml)	12	51	20	77	18	291	19	48	3,20	10,59	8,33

Tabela III.6: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-2) – fase pósenchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,6	29,1	3,4	19,3	32,9	27,0	31,4	-1,32	2,60	6,25
Transparência (m)	16	1,29	1,10	0,54	0,70	2,40	0,93	1,70	0,97	-0,37	0,00
Potencial redox (mV)	16	253,4	255,0	130,4	32,0	432,1	140,0	373,9	-0,22	-1,26	0,00
pН	16	6,98	7,12	0,52	6,00	7,98	6,58	7,29	-0,27	-0,19	0,00
Condutividade elétrica (µS/cm)	16	33,21	25,75	21,16	14,00	91,00	21,55	33,00	2,14	3,96	12,50
Sólidos dissolvidos totais (mg/L)	16	16,62	14,44	6,36	8,00	32,00	13,03	19,00	1,17	1,08	6,25
Oxigênio dissolvido (mg/L)	16	6,53	6,58	0,62	5,14	7,67	6,25	6,95	-0,39	0,79	6,25
Turbidez (UNT)	16	8,35	8,57	4,97	1,19	19,47	3,91	11,45	0,36	0,10	0,00
Cor (mg Pt-Co/L)	16	53,63	57,00	34,43	3,00	135,00	25,00	73,00	0,57	0,58	0,00
Sólidos totais (mg/L)	16	41,81	42,50	22,34	4,00	75,00	25,50	60,50	-0,34	-0,87	0,00
Sólidos suspensos totais (mg/L)	16	16,83	9,50	14,59	0,40	48,00	6,20	26,80	0,86	-0,38	0,00
Clorofila-a (µg/L)	16	2,13	1,09	2,35	0,00	8,66	0,55	3,00	1,65	2,79	6,25
Fós foro total (mg/L)	16	0,006	0,003	0,008	0,001	0,030	0,003	0,008	2,21	4,89	12,50
Ortofos fato (mg/L)	16	0,003	0,003	0,004	0,001	0,013	0,001	0,003	2,19	4,19	12,50
Nitrato (mg/L)	16	0,469	0,350	0,247	0,100	0,900	0,300	0,700	0,41	-1,21	0,00
Nitrito (mg/L)	16	0,003	0,003	0,003	0,001	0,012	0,002	0,004	2,51	8,05	6,25
Nitrogênio amoniacal (mg/L)	16	0,313	0,365	0,224	0,010	0,740	0,115	0,430	0,31	-0,67	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,796	0,840	0,455	0,092	1,480	0,451	1,234	-0,08	-1,19	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	1,31	1,20	0,84	0,30	2,90	0,65	1,75	0,53	-0,67	0,00
Ferro total (mg/L)	16	0,66	0,80	0,35	0,13	1,16	0,33	0,92	-0,35	-1,29	0,00
Cloreto (mg/L)	16	3,69	3,25	1,99	1,50	7,50	2,00	5,25	0,71	-0,68	0,00
Coliformes totais (NMP/100 mL)	16	6476	595	7725	18	16000	125	16000	0,50	-1,95	0,00
Coliformes termotolerantes (NMP/100ml)) 16	57	45	34	18	120	33	73	0,63	-0,54	0,00

Tabela III.7: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-3) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	28,6	28,0	2,1	26,1	33,1	27,0	29,9	0,99	0,35	0,00
Transparência (m)	10	0,88	0,70	0,42	0,50	1,80	0,60	1,20	1,37	1,28	0,00
Potencial redox (mV)	10	144,2	144,5	12,4	120,0	160,0	136,0	156,0	-0,56	-0,09	0,00
pH	12	6,81	6,83	0,55	5,83	7,60	6,43	7,23	-0,29	-0,74	0,00
Condutividade elétrica (µS/cm)	12	29,84	26,90	19,00	12,00	87,00	21,42	29,70	2,82	9,07	8,33
Sólidos dissolvidos totais (mg/L)	12	14,80	12,55	9,77	7,00	45,00	11,45	14,10	3,13	10,43	16,67
Oxigênio dissolvido (mg/L)	12	7,22	7,45	0,85	5,77	8,10	6,55	7,95	-0,83	-0,81	0,00
Turbidez (UNT)	12	11,89	11,63	6,78	3,34	25,20	7,00	16,30	0,56	-0,31	0,00
Cor (mg Pt-Co/L)	12	74,58	74,50	38,59	23,00	128,00	38,00	113,00	0,18	-1,61	0,00
Sólidos totais (mg/L)	12	29,87	23,93	16,15	16,00	65,00	17,00	36,00	1,32	0,89	8,33
Sólidos suspensos totais (mg/L)	12	12,00	11,25	7,58	1,80	23,00	5,33	19,50	0,11	-1,64	0,00
Clorofila-a (µg/L)	10	1,50	1,13	1,04	0,36	3,82	0,91	1,91	1,30	1,86	10,00
Fós foro total (mg/L)	12	0,013	0,013	0,011	0,001	0,032	0,002	0,021	0,28	-1,16	0,00
Ortofos fato (mg/L)	12	0,004	0,001	0,006	0,001	0,019	0,001	0,005	2,02	3,68	8,33
Nitrato (mg/L)	12	0,488	0,550	0,308	0,100	1,200	0,250	0,600	0,90	1,39	0,00
Nitrito (mg/L)	12	0,014	0,001	0,037	0,001	0,130	0,001	0,002	3,28	10,94	16,67
Nitrogênio amoniacal (mg/L)	12	0,403	0,440	0,181	0,150	0,680	0,230	0,530	0,02	-1,44	0,00
Nitrogênio total Kjeldahl (mg/L)	12	1,071	1,131	0,579	0,000	2,000	0,656	1,422	-0,05	-0,26	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	1,73	1,25	1,42	0,10	4,40	0,55	2,80	0,64	-0,87	0,00
Ferro total (mg/L)	10	0,89	0,91	0,25	0,46	1,20	0,77	1,04	-0,71	-0,33	0,00
Cloreto (mg/L)	12	2,46	2,49	1,79	0,50	6,50	0,75	3,50	0,83	0,85	0,00
Coliformes totais (NMP/100 mL)	12	641	260	860	45	2420	99	700	1,77	1,87	16,67
Coliformes termotolerantes (NMP/100ml)	12	65	45	47	18	140	19	109	0,44	-1,60	0,00

Tabela III.8: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-3) – fase pósenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,8	28,9	3,6	18,7	33,3	27,5	31,9	-1,41	2,94	6,25
Transparência (m)	16	1,20	1,15	0,29	0,70	1,60	0,95	1,45	-0,03	-1,20	0,00
Potencial redox (mV)	16	256,0	250,3	132,0	22,9	445,2	136,3	379,6	-0,13	-1,29	0,00
pН	16	6,89	6,90	0,52	6,05	7,95	6,55	7,24	0,00	-0,22	0,00
Condutividade elétrica (µS/cm)	16	28,92	28,30	8,67	15,00	51,00	23,65	30,50	1,05	1,79	6,25
Sólidos dissolvidos totais (mg/L)	16	15,86	14,96	4,52	10,00	26,00	13,00	16,70	1,29	1,06	12,50
Oxigênio dissolvido (mg/L)	16	6,23	6,06	0,82	5,00	7,70	5,70	6,90	-0,02	-0,91	0,00
Turbidez (UNT)	16	7,18	7,14	3,71	1,82	15,80	4,08	8,65	0,74	0,66	6,25
Cor (mg Pt-Co/L)	16	46,81	52,50	23,48	4,00	77,00	31,50	67,00	-0,48	-0,86	0,00
Sólidos totais (mg/L)	16	39,38	38,50	15,31	14,00	64,00	28,50	49,00	0,28	-0,69	0,00
Sólidos suspensos totais (mg/L)	16	14,88	15,50	12,26	0,60	38,00	3,55	25,00	0,40	-1,17	0,00
Clorofila-a (µg/L)	16	2,03	1,09	1,85	0,27	7,10	0,96	3,14	1,61	2,54	6,25
Fós foro total (mg/L)	16	0,007	0,003	0,008	0,001	0,029	0,003	0,008	1,94	3,22	18,75
Ortofos fato (mg/L)	16	0,003	0,003	0,003	0,001	0,010	0,001	0,003	1,68	2,78	12,50
Nitrato (mg/L)	16	0,394	0,300	0,235	0,100	0,900	0,250	0,550	0,86	-0,12	0,00
Nitrito (mg/L)	16	0,004	0,003	0,003	0,001	0,011	0,002	0,003	1,89	3,12	18,75
Nitrogênio amoniacal (mg/L)	16	0,332	0,380	0,223	0,010	0,730	0,150	0,470	0,19	-1,02	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,772	0,737	0,470	0,091	1,481	0,451	1,173	0,10	-1,27	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	1,24	1,20	0,65	0,30	2,50	0,70	1,45	0,50	-0,18	0,00
Ferro total (mg/L)	16	0,64	0,76	0,35	0,10	1,13	0,32	0,91	-0,35	-1,30	0,00
Cloreto (mg/L)	16	3,72	3,75	1,47	1,00	6,00	2,75	4,75	-0,08	-0,50	0,00
Coliformes totais (NMP/100 mL)	16	4982	1050	6750	18	16000	130	10700	1,10	-0,67	0,00
Coliformes termotolerantes (NMP/100ml)	16	86	20	127	18	470	19	86	2,30	5,23	18,75

Tabela III.9: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-4) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	28,7	28,2	2,0	26,3	32,4	27,0	30,1	0,77	-0,52	0,00
Transparência (m)	10	0,93	0,85	0,44	0,50	1,90	0,60	1,20	1,20	1,37	0,00
Potencial redox (mV)	10	156,4	164,0	24,2	123,0	195,0	136,0	172,0	-0,08	-1,16	0,00
pН	12	6,83	6,81	0,80	5,01	8,00	6,52	7,27	-0,71	1,44	8,33
Condutividade elétrica (µS/cm)	12	28,70	26,00	18,97	10,00	86,00	22,07	28,10	2,85	9,29	16,67
Sólidos dissolvidos totais (mg/L)	12	14,17	12,49	9,33	7,00	43,00	10,22	13,00	3,13	10,41	8,33
Oxigênio dissolvido (mg/L)	12	7,26	7,45	0,70	5,89	8,10	6,90	7,74	-1,00	0,10	0,00
Turbidez (UNT)	12	8,75	6,05	7,00	1,03	22,00	3,19	14,14	0,78	-0,71	0,00
Cor (mg Pt-Co/L)	12	75,50	75,00	39,86	25,00	139,00	38,50	111,00	0,21	-1,31	0,00
Sólidos totais (mg/L)	12	29,18	24,76	14,78	13,55	58,00	18,50	34,50	1,12	0,45	0,00
Sólidos suspensos totais (mg/L)	12	11,77	12,50	6,24	2,66	21,00	6,10	16,00	-0,11	-1,04	0,00
Clorofila-a (µg/L)	10	1,06	0,80	0,76	0,36	2,73	0,55	1,37	1,40	1,55	10,00
Fós foro total (mg/L)	12	0,015	0,011	0,017	0,001	0,062	0,003	0,021	2,10	5,47	8,33
Ortofos fato (mg/L)	12	0,004	0,001	0,005	0,001	0,018	0,001	0,004	2,31	5,13	16,67
Nitrato (mg/L)	12	0,381	0,400	0,204	0,100	0,700	0,166	0,522	-0,20	-1,21	0,00
Nitrito (mg/L)	12	0,015	0,003	0,037	0,001	0,131	0,002	0,007	3,29	11,05	16,67
Nitrogênio amoniacal (mg/L)	12	0,434	0,325	0,534	0,080	2,080	0,180	0,410	3,11	10,25	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,954	0,892	0,659	0,000	2,782	0,632	1,051	1,95	6,06	16,67
Demanda Bioquímica de Oxigênio (mg/L)	12	1,85	1,80	1,21	0,10	4,60	0,90	2,40	0,89	1,32	0,00
Ferro total (mg/L)	10	0,82	0,92	0,34	0,21	1,17	0,49	1,07	-0,73	-0,77	0,00
Cloreto (mg/L)	12	2,06	1,87	1,70	0,50	6,00	0,50	2,74	1,18	1,30	0,00
Coliformes totais (NMP/100 mL)	12	526	101	902	18	2420	33	480	1,90	2,19	16,67
Coliformes termotolerantes (NMP/100ml)	12	40	20	36	18	130	18	56	1,78	2,60	8,33

Tabela III.10: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-4) – fase pósenchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	16	28,6	28,7	3,5	19,2	32,7	27,3	31,8	-1,27	2,28	6,25
Transparência (m)	16	1,23	1,15	0,43	0,70	2,20	0,85	1,50	0,82	0,10	0,00
Potencial redox (mV)	16	265,9	270,8	116,8	83,2	445,7	153,8	366,3	-0,09	-1,17	0,00
pН	16	6,76	6,79	0,61	5,53	7,83	6,34	7,14	-0,03	0,08	0,00
Condutividade elétrica (µS/cm)	16	26,57	24,80	8,21	14,00	53,00	22,50	29,05	2,23	7,61	6,25
Sólidos dissolvidos totais (mg/L)	16	15,53	14,43	4,53	9,00	25,00	12,43	18,01	0,83	-0,06	0,00
Oxigênio dissolvido (mg/L)	16	6,56	6,60	0,62	5,70	7,90	6,05	6,84	0,54	-0,05	0,00
Turbidez (UNT)	16	8,41	8,21	4,39	1,05	20,00	5,78	10,55	0,89	2,43	6,25
Cor (mg Pt-Co/L)	16	50,50	52,50	25,05	11,00	100,00	35,00	65,00	0,19	-0,31	0,00
Sólidos totais (mg/L)	16	61,50	39,50	82,78	16,00	366,00	28,00	59,00	3,74	14,56	6,25
Sólidos suspensos totais (mg/L)	16	17,02	11,50	15,94	1,20	47,00	3,65	29,00	0,70	-0,97	0,00
Clorofila-a (µg/L)	16	2,39	1,50	3,32	0,00	13,65	0,80	2,32	2,97	9,68	12,50
Fós foro total (mg/L)	16	0,007	0,003	0,011	0,001	0,042	0,003	0,007	2,69	7,83	18,75
Ortofos fato (mg/L)	16	0,004	0,003	0,004	0,001	0,015	0,001	0,003	2,32	4,75	12,50
Nitrato (mg/L)	16	0,419	0,350	0,223	0,100	0,900	0,250	0,600	0,60	-0,38	0,00
Nitrito (mg/L)	16	0,003	0,003	0,002	0,001	0,011	0,002	0,004	2,31	6,52	12,50
Nitrogênio amoniacal (mg/L)	16	0,318	0,350	0,206	0,010	0,700	0,165	0,425	0,21	-0,87	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,720	0,587	0,419	0,104	1,515	0,430	1,105	0,57	-0,79	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	1,10	1,05	0,65	0,10	2,30	0,60	1,65	0,22	-0,78	0,00
Ferro total (mg/L)	16	0,70	0,80	0,33	0,14	1,18	0,38	0,94	-0,55	-0,90	0,00
Cloreto (mg/L)	16	3,44	3,00	1,54	1,50	6,00	2,50	4,75	0,48	-0,92	0,00
Coliformes totais (NMP/100 mL)	16	2536	330	5330	18	16000	105	1320	2,38	4,45	18,75
Coliformes termotolerantes (NMP/100ml)	16	40	45	20	18	80	20	45	0,73	0,19	0,00

Tabela III.11: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-5) – fase préenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	28,9	28,7	1,8	25,8	32,4	27,6	30,2	0,32	0,01	0,00
Transparência (m)	10	0,75	0,70	0,26	0,50	1,30	0,60	0,80	1,36	1,23	10,00
Potencial redox (mV)	10	167,8	169,0	23,6	138,0	201,0	142,0	185,0	0,05	-1,53	0,00
pН	12	6,97	6,93	0,72	5,36	8,10	6,71	7,37	-0,63	1,46	8,33
Condutividade elétrica (µS/cm)	12	27,48	24,50	17,67	11,00	81,00	20,28	27,95	2,88	9,38	8,33
Sólidos dissolvidos totais (mg/L)	12	13,56	11,79	8,53	7,00	40,00	10,00	13,00	3,17	10,60	8,33
Oxigênio dissolvido (mg/L)	12	7,61	7,64	0,79	6,10	8,90	7,19	8,13	-0,32	0,01	0,00
Turbidez (UNT)	12	10,67	9,25	7,73	1,40	22,68	3,55	16,95	0,43	-1,33	0,00
Cor (mg Pt-Co/L)	12	73,67	72,00	39,78	28,00	127,00	36,00	116,50	0,23	-1,77	0,00
Sólidos totais (mg/L)	12	29,77	26,50	14,83	12,37	63,00	19,89	37,50	1,15	0,98	0,00
Sólidos suspensos totais (mg/L)	12	12,78	11,50	7,40	1,30	26,00	9,55	16,50	0,17	-0,18	0,00
Clorofila-a (µg/L)	10	1,12	1,24	0,63	0,00	1,91	0,59	1,64	-0,38	-0,68	0,00
Fós foro total (mg/L)	12	0,012	0,010	0,011	0,001	0,038	0,004	0,017	1,38	2,02	8,33
Ortofos fato (mg/L)	12	0,004	0,002	0,004	0,001	0,012	0,001	0,007	1,15	0,22	0,00
Nitrato (mg/L)	12	0,472	0,400	0,317	0,100	1,100	0,200	0,600	0,89	0,00	0,00
Nitrito (mg/L)	12	0,007	0,002	0,013	0,001	0,039	0,001	0,003	2,20	3,74	16,67
Nitrogênio amoniacal (mg/L)	12	0,326	0,305	0,217	0,090	0,870	0,150	0,440	1,44	2,80	0,00
Nitrogênio total Kjeldahl (mg/L)	12	1,002	0,866	0,547	0,342	2,000	0,604	1,286	0,91	-0,15	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	2,18	2,00	1,62	0,10	5,00	0,65	3,20	0,38	-0,85	0,00
Ferro total (mg/L)	10	0,86	1,01	0,36	0,17	1,20	0,53	1,16	-0,92	-0,43	0,00
Cloreto (mg/L)	12	2,09	2,45	1,49	0,50	5,50	0,50	2,84	0,83	1,12	0,00
Coliformes totais (NMP/100 mL)	12	1015	635	1024	20	2800	176	1910	0,77	-0,99	0,00
Coliformes termotolerantes (NMP/100ml)	12	38	20	37	17	121	18	40	1,87	2,19	16,67

Tabela III.12: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-5) – fase pósenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,3	28,7	3,5	18,9	32,4	26,5	31,2	-1,32	2,27	6,25
Transparência (m)	16	1,19	1,08	0,43	0,80	2,00	0,80	1,60	0,76	-0,96	0,00
Potencial redox (mV)	16	261,7	285,4	125,2	88,0	445,1	139,4	367,3	-0,09	-1,59	0,00
pН	16	6,86	6,93	0,64	5,77	7,88	6,29	7,30	-0,04	-0,77	0,00
Condutividade elétrica (µS/cm)	16	26,70	25,30	9,58	15,00	60,00	23,00	27,60	3,02	11,07	12,50
Sólidos dissolvidos totais (mg/L)	16	15,10	14,04	5,00	9,00	29,00	12,00	16,06	1,74	3,36	12,50
Oxigênio dissolvido (mg/L)	16	6,58	6,70	0,78	5,10	7,90	6,00	7,15	-0,22	-0,59	0,00
Turbidez (UNT)	16	8,52	9,16	4,34	1,48	17,52	4,93	11,25	0,11	-0,26	0,00
Cor (mg Pt-Co/L)	16	48,25	48,50	22,34	9,00	96,00	34,00	62,00	0,23	0,15	0,00
Sólidos totais (mg/L)	16	41,31	40,50	19,67	12,00	70,00	22,50	59,00	-0,04	-1,24	0,00
Sólidos suspensos totais (mg/L)	16	18,38	10,50	15,53	0,80	41,50	5,48	36,25	0,45	-1,69	0,00
Clorofila-a (µg/L)	16	1,56	0,96	2,01	0,00	8,19	0,27	1,91	2,60	8,19	6,25
Fós foro total (mg/L)	16	0,007	0,003	0,009	0,001	0,030	0,003	0,009	1,81	2,57	12,50
Ortofos fato (mg/L)	16	0,003	0,003	0,003	0,001	0,011	0,001	0,003	2,14	4,69	12,50
Nitrato (mg/L)	16	0,406	0,350	0,224	0,100	0,900	0,300	0,550	0,73	0,12	0,00
Nitrito (mg/L)	16	0,003	0,003	0,002	0,001	0,010	0,002	0,004	1,50	2,87	6,25
Nitrogênio amoniacal (mg/L)	16	0,321	0,365	0,223	0,010	0,780	0,140	0,460	0,25	-0,53	0,00
Nitrogênio total Kjeldahl (mg/L)	16	0,710	0,667	0,471	0,002	1,470	0,407	1,018	0,23	-1,02	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	0,80	0,75	0,60	0,03	2,00	0,25	1,10	0,47	-0,53	0,00
Ferro total (mg/L)	16	0,67	0,80	0,36	0,10	1,24	0,31	0,96	-0,25	-1,24	0,00
Cloreto (mg/L)	16	3,81	3,75	1,82	1,50	7,50	2,25	4,75	0,46	-0,45	0,00
Coliformes totais (NMP/100 mL)	16	3483	460	6263	18	16000	240	2220	1,71	1,14	18,75
Coliformes termotolerantes (NMP/100ml)	16	37	30	22	18	78	18	57	0,72	-1,06	0,00

Tabela III.13: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-6) – fase préenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	12	28,1	27,8	1,7	25,9	30,9	26,7	29,7	0,55	-1,17	0,00
Transparência (m)	10	0,85	0,70	0,34	0,60	1,60	0,60	1,10	1,52	1,53	0,00
Potencial redox (mV)	10	148,8	155,0	34,2	66,0	186,0	142,0	171,0	-1,70	3,62	10,00
pН	12	7,14	7,16	0,47	6,02	7,80	6,96	7,49	-0,93	1,98	8,33
Condutividade elétrica (µS/cm)	12	29,77	26,00	19,64	10,00	89,00	21,75	28,75	2,84	9,19	16,67
Sólidos dissolvidos totais (mg/L)	12	14,90	11,84	11,52	8,00	50,00	9,30	13,00	3,03	9,63	16,67
Oxigênio dissolvido (mg/L)	12	8,10	8,19	0,74	6,74	9,23	7,60	8,60	-0,40	-0,37	0,00
Turbidez (UNT)	12	11,83	10,33	8,08	2,00	27,05	4,63	18,08	0,47	-0,84	0,00
Cor (mg Pt-Co/L)	12	74,92	74,50	40,20	20,00	130,00	39,50	117,00	0,11	-1,63	0,00
Sólidos totais (mg/L)	12	30,19	27,00	15,91	15,20	63,00	18,55	32,00	1,50	1,34	16,67
Sólidos suspensos totais (mg/L)	12	12,78	12,50	5,68	4,50	21,00	7,75	17,00	0,09	-1,26	0,00
Clorofila-a (µg/L)	10	1,28	1,09	1,12	0,00	3,90	0,46	1,64	1,46	2,82	10,00
Fós foro total (mg/L)	12	0,017	0,016	0,016	0,001	0,061	0,007	0,022	2,04	5,54	8,33
Ortofos fato (mg/L)	12	0,003	0,001	0,003	0,001	0,009	0,001	0,006	1,13	-0,23	0,00
Nitrato (mg/L)	12	0,397	0,400	0,226	0,031	0,700	0,200	0,600	-0,27	-1,37	0,00
Nitrito (mg/L)	12	0,007	0,001	0,012	0,001	0,038	0,001	0,004	2,23	4,02	16,67
Nitrogênio amoniacal (mg/L)	12	0,478	0,390	0,416	0,120	1,630	0,215	0,535	2,19	5,54	8,33
Nitrogênio total Kjeldahl (mg/L)	12	0,934	0,856	0,640	0,000	2,230	0,611	1,358	0,39	0,34	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	2,23	1,90	1,25	0,10	4,50	1,50	3,40	0,35	-0,31	0,00
Ferro total (mg/L)	10	0,88	0,93	0,32	0,27	1,20	0,59	1,17	-0,87	-0,35	0,00
Cloreto (mg/L)	12	2,36	2,50	1,36	0,50	5,00	1,25	3,21	0,09	-0,02	0,00
Coliformes totais (NMP/100 mL)	12	830	375	937	20	2420	120	1470	1,06	-0,59	0,00
Coliformes termotolerantes (NMP/100ml)	12	38	32	22	18	78	18	47	0,93	-0,24	0,00

Tabela III.14: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto JAR-6) – fase pósenchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,3	28,6	3,1	19,1	32,0	27,0	30,7	-1,69	4,16	6,25
Transparência (m)	16	1,16	1,10	0,45	0,70	2,10	0,75	1,45	0,79	-0,29	0,00
Potencial redox (mV)	16	255,3	281,7	126,7	37,6	434,3	151,1	364,4	-0,19	-1,38	0,00
pН	16	6,90	7,05	0,53	6,10	7,70	6,42	7,23	-0,12	-1,21	0,00
Condutividade elétrica (µS/cm)	16	30,44	26,75	11,98	15,00	56,00	23,25	31,70	1,37	1,08	18,75
Sólidos dissolvidos totais (mg/L)	16	16,02	15,42	5,00	10,00	29,00	12,20	18,00	1,37	2,05	6,25
Oxigênio dissolvido (mg/L)	16	6,96	6,90	0,96	5,24	9,50	6,45	7,50	0,87	2,54	6,25
Turbidez (UNT)	16	8,61	8,67	3,85	2,79	16,07	5,82	10,70	0,43	-0,10	0,00
Cor (mg Pt-Co/L)	16	51,38	56,50	21,77	13,00	83,00	31,50	70,00	-0,15	-1,20	0,00
Sólidos totais (mg/L)	16	39,81	39,50	18,41	9,00	72,00	25,50	56,50	0,20	-0,95	0,00
Sólidos suspensos totais (mg/L)	16	13,94	8,20	13,65	1,00	39,00	2,70	24,73	0,83	-0,76	0,00
Clorofila-a (µg/L)	16	2,09	1,23	2,97	0,00	10,92	0,33	2,46	2,24	5,00	12,50
Fós foro total (mg/L)	16	0,006	0,003	0,007	0,001	0,030	0,003	0,008	2,66	7,92	6,25
Ortofos fato (mg/L)	16	0,004	0,003	0,004	0,001	0,015	0,001	0,003	2,25	4,29	12,50
Nitrato (mg/L)	16	0,463	0,400	0,219	0,100	0,900	0,300	0,650	0,33	-0,58	0,00
Nitrito (mg/L)	16	0,003	0,003	0,002	0,001	0,011	0,002	0,004	2,60	8,85	6,25
Nitrogênio amoniacal (mg/L)	16	0,454	0,380	0,452	0,020	1,820	0,120	0,630	1,98	4,99	6,25
Nitrogênio total Kjeldahl (mg/L)	16	0,863	0,912	0,535	0,101	1,821	0,413	1,282	0,19	-0,94	0,00
Demanda Bioquímica de Oxigênio (mg/L)) 16	1,19	1,05	1,03	0,03	3,90	0,50	1,25	1,54	2,20	12,50
Ferro total (mg/L)	16	0,73	0,80	0,33	0,17	1,16	0,45	0,98	-0,51	-0,96	0,00
Cloreto (mg/L)	16	3,69	3,00	1,96	1,00	7,00	2,50	5,25	0,58	-0,84	0,00
Coliformes totais (NMP/100 mL)	16	1980	465	4021	18	16000	150	1700	3,22	11,11	12,50
Coliformes termotolerantes (NMP/100ml)) 16	43	40	30	18	130	20	45	2,01	4,47	12,50

Tabela III.15: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto PIU-1) — fase préenchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtos e	% Outliers
Temperatura da água (°C)	12	26,3	25,9	1,2	25,1	28,8	25,4	27,0	0,98	-0,02	0,00
Transparência (m)	10	0,59	0,60	0,28	0,20	1,00	0,30	0,80	0,02	-1,67	0,00
Potencial redox (mV)	10	158,2	151,0	24,7	128,0	204,0	147,0	169,0	0,90	0,09	10,00
pH	12	6,32	6,39	0,67	4,52	7,30	6,15	6,66	-1,70	4,99	8,33
Condutividade elétrica (µS/cm)	12	22,39	21,50	7,99	12,00	40,00	16,00	27,25	0,76	0,70	0,00
Sólidos dissolvidos totais (mg/L)	12	11,55	10,46	4,19	6,47	19,40	8,50	13,00	0,92	0,16	0,00
Oxigênio dissolvido (mg/L)	12	6,00	6,25	1,41	2,45	7,60	5,64	6,87	-1,52	2,94	8,33
Turbidez (UNT)	12	16,16	14,18	10,37	4,70	35,90	7,47	22,50	0,82	-0,35	0,00
Cor (mg Pt-Co/L)	12	80,92	66,00	54,86	8,00	176,00	35,50	133,50	0,34	-1,22	0,00
Sólidos totais (mg/L)	12	25,92	23,87	9,40	18,00	49,00	19,18	27,25	1,67	2,56	8,33
Sólidos suspensos totais (mg/L)	12	12,21	10,50	6,03	6,80	29,00	8,80	13,83	2,19	5,69	8,33
Clorofila-a (µg/L)	10	0,67	0,55	0,54	0,00	1,68	0,28	1,09	0,57	-0,31	0,00
Fós foro total (mg/L)	12	0,014	0,011	0,013	0,001	0,044	0,002	0,023	1,00	0,76	0,00
Ortofos fato (mg/L)	12	0,005	0,002	0,005	0,001	0,013	0,001	0,009	0,96	-0,78	0,00
Nitrato (mg/L)	12	0,463	0,500	0,167	0,100	0,700	0,400	0,550	-0,68	0,92	8,33
Nitrito (mg/L)	12	0,007	0,001	0,013	0,001	0,039	0,001	0,003	2,20	3,73	16,67
Nitrogênio amoniacal (mg/L)	12	0,373	0,400	0,200	0,110	0,690	0,180	0,545	0,03	-1,37	0,00
Nitrogênio total Kjeldahl (mg/L)	12	1,038	1,141	0,431	0,187	1,590	0,771	1,342	-0,78	-0,20	0,00
Demanda Bioquímica de Oxigênio (mg/L)	12	1,78	1,65	0,77	0,90	3,00	1,10	2,35	0,48	-1,08	0,00
Ferro total (mg/L)	10	1,66	1,46	0,89	0,41	2,90	1,03	2,53	0,21	-1,54	0,00
Cloreto (mg/L)	12	2,73	2,61	1,47	0,50	6,00	2,25	3,28	0,51	1,63	25,00
Coliformes totais (NMP/100 mL)	12	758	475	757	130	2420	230	940	1,53	1,41	16,67
Coliformes termotolerantes (NMP/100ml)	12	157	102	184	18	700	57	190	2,69	8,10	8,33

Tabela III.16: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto PIU-1) — fase pósenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	28,6	28,1	3,6	19,7	33,7	26,9	31,8	-0,77	1,17	0,00
Transparência (m)	16	0,95	0,90	0,29	0,50	1,50	0,75	1,15	0,51	-0,59	0,00
Potencial redox (mV)	16	257,4	245,0	141,3	25,6	464,0	131,5	385,5	-0,16	-1,36	0,00
pН	16	6,80	6,74	0,56	5,90	7,98	6,40	6,98	0,89	0,91	12,50
Condutividade elétrica (µS/cm)	16	29,63	25,05	18,06	12,00	86,00	21,50	29,50	2,46	6,50	12,50
Sólidos dissolvidos totais (mg/L)	16	17,36	13,78	10,56	7,00	44,00	12,08	18,22	2,03	3,45	12,50
Oxigênio dissolvido (mg/L)	16	6,06	6,04	0,76	5,00	7,80	5,45	6,36	0,64	0,53	6,25
Turbidez (UNT)	16	8,44	7,69	4,51	1,40	17,60	5,11	11,80	0,53	-0,29	0,00
Cor (mg Pt-Co/L)	16	41,75	39,50	23,50	8,00	81,00	18,50	63,00	0,14	-1,39	0,00
Sólidos totais (mg/L)	16	41,63	35,50	21,17	5,00	100,00	32,50	50,00	1,29	3,25	12,50
Sólidos suspensos totais (mg/L)	16	17,91	12,00	18,54	0,80	71,25	3,80	26,50	1,66	3,56	6,25
Clorofila-a (µg/L)	16	2,68	1,09	4,00	0,00	16,38	0,80	2,87	3,04	10,19	12,50
Fós foro total (mg/L)	16	0,006	0,003	0,008	0,001	0,030	0,003	0,006	2,48	6,26	12,50
Ortofos fato (mg/L)	16	0,004	0,003	0,004	0,001	0,016	0,001	0,003	2,36	5,17	12,50
Nitrato (mg/L)	16	0,500	0,450	0,316	0,100	1,200	0,300	0,700	0,78	0,08	0,00
Nitrito (mg/L)	16	0,003	0,003	0,002	0,001	0,009	0,002	0,003	1,58	1,89	18,75
Nitrogênio amoniacal (mg/L)	16	0,523	0,450	0,480	0,040	1,960	0,145	0,710	1,86	4,69	6,25
Nitrogênio total Kjeldahl (mg/L)	16	0,996	0,827	0,656	0,139	2,193	0,487	1,435	0,43	-0,94	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	1,18	1,15	0,82	0,10	2,90	0,50	1,60	0,65	-0,29	0,00
Ferro total (mg/L)	16	0,79	0,86	0,42	0,10	1,78	0,49	0,99	0,34	1,00	6,25
Cloreto (mg/L)	16	3,91	3,50	1,73	1,50	7,00	2,50	5,50	0,43	-1,08	0,00
Coliformes totais (NMP/100 mL)	16	2851	410	5315	40	16000	215	2300	2,22	3,82	12,50
Coliformes termotolerantes (NMP/100ml)	16	105	68	127	18	490	19	112	2,30	5,43	12,50

Tabela III.17: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto TRA-2) – fase préenchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	8	28,3	28,5	2,3	24,3	32,0	27,1	29,6	-0,22	0,69	0,00
Transparência (m)	8	0,54	0,65	0,26	0,00	0,80	0,40	0,70	-1,38	1,77	0,00
Potencial redox (mV)	8	143,5	146,0	21,9	100,0	176,0	135,5	154,5	-0,84	2,22	12,50
pН	8	6,37	6,42	0,25	6,00	6,64	6,16	6,57	-0,67	-0,86	0,00
Condutividade elétrica (µS/cm)	8	42,45	32,00	26,91	17,00	101,00	27,50	51,30	1,77	3,21	12,50
Sólidos dissolvidos totais (mg/L)	8	21,07	14,87	13,66	11,00	51,00	12,60	25,80	1,85	3,31	12,50
Oxigênio dissolvido (mg/L)	8	3,78	3,80	1,66	0,80	5,90	2,85	5,10	-0,61	0,09	0,00
Turbidez (UNT)	8	9,84	8,05	6,37	4,17	23,30	5,49	12,08	1,60	2,49	12,50
Cor (mg Pt-Co/L)	8	115,38	93,00	60,59	57,00	214,00	66,00	167,00	0,78	-1,02	0,00
Sólidos totais (mg/L)	8	42,46	38,50	27,37	12,00	94,00	21,99	56,35	0,99	0,55	0,00
Sólidos suspensos totais (mg/L)	8	14,50	14,45	9,39	3,33	30,00	5,90	21,00	0,45	-0,82	0,00
Clorofila-a (µg/L)	8	16,87	5,04	29,04	0,28	86,01	2,20	17,11	2,46	6,22	12,50
Fós foro total (mg/L)	8	0,067	0,037	0,066	0,023	0,210	0,032	0,082	1,90	3,04	12,50
Orto fos fato (mg/L)	8	0,041	0,012	0,070	0,001	0,210	0,010	0,037	2,56	6,69	12,50
Nitrato (mg/L)	8	0,475	0,450	0,225	0,200	0,800	0,300	0,650	0,61	-0,91	0,00
Nitrito (mg/L)	8	0,001	0,001	0,001	0,001	0,004	0,001	0,001	2,83	8,00	12,50
Nitrogênio amoniacal (mg/L)	8	0,534	0,480	0,203	0,320	0,850	0,385	0,685	0,99	-0,52	0,00
Nitrogênio total Kjeldahl (mg/L)	8	1,303	1,006	0,659	0,670	2,650	0,962	1,585	1,54	1,77	12,50
Demanda Bioquímica de Oxigênio (mg/L)) 8	2,88	2,65	1,17	1,60	5,00	1,95	3,60	0,71	0,02	0,00
Ferro total (mg/L)	8	1,29	1,18	0,68	0,33	2,17	0,76	1,97	0,07	-1,57	0,00
Cloreto (mg/L)	8	2,31	2,00	1,46	0,50	5,00	1,25	3,25	0,77	0,24	0,00
Coliformes totais (NMP/100 mL)	8	2668	595	5422	130	16000	410	1600	2,76	7,69	12,50
Coliformes termotolerantes (NMP/100ml)) 8	251	19	588	18	1700	18	108	2,79	7,81	12,50

Tabela III.18: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Santo Antônio do Jari (ponto TRA-2) – fase pósenchimento

Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Temperatura da água (°C)	16	30,5	31,6	3,8	21,0	34,6	29,0	32,9	-1,36	1,30	6,25
Transparência (m)	16	1,05	1,03	0,44	0,40	2,00	0,80	1,25	0,53	0,17	6,25
Potencial redox (mV)	16	256,6	282,0	138,0	35,0	454,1	139,6	369,9	-0,23	-1,41	0,00
pН	16	6,53	6,63	1,02	3,27	7,80	6,25	7,11	-2,26	7,36	6,25
Condutividade elétrica (µS/cm)	16	30,04	27,55	11,26	16,00	66,00	23,15	34,00	2,27	7,00	6,25
Sólidos dissolvidos totais (mg/L)	16	17,38	15,05	7,49	10,00	42,00	13,45	19,50	2,56	8,14	6,25
Oxigênio dissolvido (mg/L)	16	5,93	5,80	0,97	4,00	7,80	5,30	6,60	0,17	0,09	0,00
Turbidez (UNT)	16	9,44	6,91	5,26	4,69	24,10	5,92	12,09	1,66	2,90	6,25
Cor (mg Pt-Co/L)	16	52,81	45,00	33,06	13,00	140,00	27,00	67,50	1,38	2,08	6,25
Sólidos totais (mg/L)	16	39,69	40,00	15,15	13,00	64,00	26,50	52,50	-0,17	-1,18	0,00
Sólidos suspensos totais (mg/L)	16	16,43	9,75	14,14	1,17	38,00	4,00	32,00	0,45	-1,72	0,00
Clorofila-a (µg/L)	16	5,97	5,73	2,99	1,04	12,56	4,19	6,98	0,86	1,10	12,50
Fós foro total (mg/L)	16	0,007	0,003	0,008	0,001	0,029	0,003	0,009	1,88	2,96	12,50
Ortofos fato (mg/L)	16	0,004	0,003	0,006	0,001	0,022	0,001	0,003	2,78	7,73	12,50
Nitrato (mg/L)	16	0,431	0,350	0,215	0,100	0,900	0,300	0,600	0,68	-0,13	0,00
Nitrito (mg/L)	16	0,003	0,003	0,002	0,001	0,007	0,002	0,003	0,98	1,40	12,50
Nitrogênio amoniacal (mg/L)	16	0,381	0,375	0,280	0,070	1,210	0,190	0,495	1,74	4,44	6,25
Nitrogênio total Kjeldahl (mg/L)	16	0,810	0,749	0,430	0,220	1,573	0,472	1,177	0,44	-1,05	0,00
Demanda Bioquímica de Oxigênio (mg/L)	16	1,10	1,10	0,78	0,03	2,40	0,30	1,60	0,09	-1,09	0,00
Ferro total (mg/L)	16	0,84	0,86	0,45	0,17	2,16	0,67	0,96	1,40	4,67	18,75
Cloreto (mg/L)	16	3,97	4,00	2,05	1,00	7,00	2,25	5,75	0,06	-1,52	0,00
Coliformes totais (NMP/100 mL)	16	3281	170	6323	18	16000	62	1170	1,76	1,25	18,75
Coliformes termotolerantes (NMP/100ml)	16	53	18	77	18	300	18	45	2,67	7,20	18,75

Tabela IV.1: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.01) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	31	25,46	13,00	24,69	1,00	92,50	10,80	32,00	1,64	1,78	12,90
Alumínio dissolvido (mg/L)	31	0,34	0,21	0,48	0,01	2,57	0,06	0,39	3,64	16,43	3,23
Bário total (mg/L)	31	0,040	0,021	0,045	0,003	0,178	0,005	0,065	1,36	1,37	3,23
Cálcio (mg/L)	31	11,90	7,84	12,35	0,08	49,15	1,60	17,42	1,45	1,93	3,23
Carbono orgânico dissolvido (mg/L)	30	2,21	1,92	1,24	0,61	5,02	1,11	3,29	0,69	-0,51	0,00
Carbono orgânico total (mg/L)	30	2,39	2,06	1,33	0,65	5,36	1,24	3,35	0,80	-0,31	0,00
Cloreto (mg/L)	31	7,04	7,05	4,38	0,50	15,20	3,50	10,50	0,17	-0,84	0,00
Clorofila-a (µg/L)	31	2,03	1,44	2,78	0,24	15,86	0,72	2,40	4,34	21,57	3,23
Cobre dissolvido (mg/L)	31	0.005	0,003	0,003	0,001	0,016	0,003	0,005	1,86	3,30	19,35
Coliformes termotolerantes (NMP/100ml)	31	112	25	249	0	1000	9	90	3,22	9,85	9,68
Condutividade elétrica (µS/cm)	31	14,47	14,14	3,36	9,00	30,00	13,00	15,25	3,27	15,78	6,45
Cor (mg Pt-Co/L)	31	53,84	41,00	45,39	4,00	181,00	20,00	76,00	1,25	0,78	3,23
Demanda Bioquímica de Oxigênio (mg/L)	31	1,84	1,70	1,06	0,40	4,50	0,90	2,40	0,82	0,18	0,00
Demanda Química de Oxigênio (mg/L)	31	5,45	5,00	2,53	1,00	14,00	4,00	7,00	1,03	3,14	3,23
Dureza (mg/L)	31	12,31	10,00	7,74	4,00	34,00	6,00	18,00	1,24	1,00	0,00
Fenóis (mg/L)	31	0,013	0,003	0,021	0,001	0.076	0,001	0,013	2,32	4,46	12,90
Ferro dissolvido (mg/L)	31	0,23	0,16	0,21	0,01	0,92	0,08	0,33	1,64	2,82	3,23
Fluoreto (mg/L)	31	0,08	0,04	0,11	0,02	0,56	0,04	0,06	3,66	14,62	12,90
Fósforo orgânico (mg/L)	31	0,043	0,004	0,128	0,004	0,670	0,004	0,013	4,38	20,44	19,35
Fósforo total (mg/L)	31	0,059	0,003	0,161	0,003	0,833	0,003	0,022	4,18	19,08	16,13
Magnésio total (mg/L)	31	1,24	0,48	1,59	0,04	6,30	0,40	1,36	2,08	3,43	12,90
Manganês total (mg/L)	31	0,028	0,009	0,034	0,004	0,100	0,007	0,046	1,38	0,30	0,00
Nitrato (mg/L)	31	0,06	0,10	0,04	0,00	0,10	0,01	0,10	-0,33	-1,91	0,00
Nitrito (mg/L)	31	0,004	0,001	0,008	0,001	0,031	0,001	0,002	2,71	6,81	19,35
Nitrogênio amoniacal (mg/L)	31	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,33	3,65	12,90
Ortofos fato (mg/L)	31	0,040	0,023	0,065	0,005	0,303	0,005	0,023	3,13	10,07	12,90
Oxigênio dissolvido (mg/L)	31	7,40	7,30	1,26	5,00	9,82	6,48	8,50	0,16	-0,74	0,00
pH	31	6,85	6,70	0,65	5,86	9,21	6,44	7,16	1,60	4,69	3,23
Potássio (mg/L)	31	0,94	0,89	0,79	0,02	2,43	0,11	1,66	0,25	-1,42	0,00
Potencial redox (mV)	31	233,1	236,0	56,2	126,0	319,0	201,0	273,0	-0,36	-0,87	0,00
Sílica (mg/L)	31	7,51	8,00	2,01	1,00	10,60	7,00	8,90	-1,52	3,09	9,68
Sódio (mg/L)	31	6,89	5,40	6,22	0,05	27,23	1,70	8,34	1,59	2,90	6,45
Sólidos totais (mg/L)	31	41,71	40,00	25,64	7,00	106,00	18,00	57,00	0,74	0,18	0,00
Sólidos dissolvidos totais (mg/L)	31	8,95	9,00	1,77	4,95	15,00	7,70	10,00	0,86	3,72	3,23
Sulfato (mg/L)	31	1,38	1,00	1,43	0,10	8,00	1,00	2,00	3,40	15,70	3,23
Sulfeto (mg/L)	31	0,007	0,002	0,009	0,001	0,030	0,001	0,010	1,39	0,53	3,23
Temperatura da água (°C)	31	27,8	27,9	1,6	23,0	29,8	27,1	29,3	-0,99	1,18	3,23
Transparência (m)	31	0,90	0,83	0,33	0,40	1,56	0,64	1,20	0,52	-0,73	0,00
Turbidez (NTU)	31	13,62	12,80	8,24	1,99	35,30	6,38	18,50	0,77	0,26	0,00
Zinco total (mg/L)	31	0,30	0,01	1,43	0,01	8,02	0,01	0,09	5,56	30,90	3,23

Tabela IV.2: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.01) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	26	10,54	10,00	3,73	1,00	17,00	9,00	13,00	-0,22	0,32	3,85
Alumínio dissolvido (mg/L)	26	0,22	0.06	0,45	0,01	1,77	0,01	0,14	2,69	6,47	11,54
Bário total (mg/L)	26	0,043	0,028	0,047	0,005	0,215	0,007	0,063	2,14	6,11	3,85
Cálcio (mg/L)	26	4,77	2,69	6,88	0,08	35,05	0,82	6,99	3,61	15,73	3,85
Carbono orgânico dissolvido (mg/L)	26	1,76	1,13	1,77	0,01	6,20	0,58	2,13	1,41	1,03	15,38
Carbono orgânico total (mg/L)	26	2,34	1,61	2,01	0,01	7,88	0,71	3,38	1,15	0,85	3,85
Cloreto (mg/L)	26	3,21	3,00	2,26	0,50	11,00	2,00	3,50	2,05	5,19	11,54
Clorofila-a (µg/L)	26	0,49	0,30	0,52	0,24	2,16	0,30	0,30	2,79	7,09	30,77
Cobre dissolvido (mg/L)	26	0,005	0,003	0,007	0,003	0,030	0,003	0,003	3,08	9,08	15,38
Coliformes termotolerantes (NMP/100ml)	26	128	62	326	10	1710	20	84	4,91	24,63	7,69
Condutividade elétrica (µS/cm)	26	15,65	16,00	3,24	10,00	23,00	13,00	17,00	0,42	0,21	0,00
Cor (mg Pt-Co/L)	26	77,62	48,95	70,14	4,00	260,00	16,60	127,40	0,90	0,26	0,00
Demanda Bioquímica de Oxigênio (mg/L)	26	2,14	2,00	0,96	0,58	4,10	1,58	2,90	0,24	-0,61	0,00
Demanda Química de Oxigênio (mg/L)	26	7,35	5,00	5,91	2,00	21,00	3,00	12,00	1,10	0,05	0,00
Dureza (mg/L)	26	8,29	6,00	6,14	2,50	30,00	5,00	10,00	2,25	5,74	11,54
Fenóis (mg/L)	26	0,026	0,003	0,044	0,002	0,185	0,003	0,040	2,37	6,04	7,69
Ferro dissolvido (mg/L)	26	0,17	0,04	0,25	0,01	1,01	0,01	0,26	2,03	4,18	7,69
Fluoreto (mg/L)	26	0,06	0,04	0,05	0,01	0,21	0,04	0,08	1,88	3,20	11,54
Fós foro orgânico (mg/L)	26	0,028	0,005	0,043	0,000	0,194	0,005	0,039	2,71	8,71	7,69
Fósforo total (mg/L)	26	0,053	0,022	0,064	0,005	0,238	0,005	0,078	1,47	1,59	3,85
Magnésio total (mg/L)	26	1,17	0,74	1,35	0,02	5,28	0,27	1,83	1,84	3,14	7,69
Manganês total (mg/L)	26	0.098	0,022	0,259	0,005	1,053	0,015	0,035	3,39	10,49	11,54
Nitrato (mg/L)	26	0,26	0,10	0,39	0,10	1,70	0,10	0,20	2,91	8,20	19,23
Nitrito (mg/L)	26	0.007	0,001	0,009	0,001	0,030	0,001	0,011	1,42	0,67	3,85
Nitrogênio amoniacal (mg/L)	26	0,16	0,02	0,29	0,02	1,31	0,02	0,15	2,87	9,36	15,38
Ortofos fato (mg/L)	26	0,026	0,005	0,030	0,004	0,084	0,005	0,058	0,96	-0,87	0,00
Oxigênio dissolvido (mg/L)	26	7,48	7,43	0,55	6,67	8,64	7,17	7,80	0,33	-0,43	0,00
рН	26	6,55	6,53	0,47	5,64	7,68	6,10	6,84	0,30	0,10	0,00
Potássio (mg/L)	26	0,87	0,74	1,00	0,09	5,62	0,52	0,85	4,60	22,65	3,85
Potencial redox (mV)	26	237,0	237,5	69,5	98.0	420,0	206,0	267,0	0,34	1,67	15,38
Sílica (mg/L)	26	5,18	4,85	3,20	1,00	12,00	2,63	7,00	0,68	-0,45	0,00
Sódio (mg/L)	26	2,68	2,67	1,75	0,09	5,98	1,00	4,14	0,30	-1,27	0,00
Sólidos totais (mg/L)	26	20,85	15,00	13,70	1,00	60,00	14,00	29,00	1,43	1,71	3,85
Sólidos dissolvidos totais (mg/L)	26	10,06	10,08	3,29	0,05	16,00	8,00	11,00	-0,83	2,40	7,69
Sulfato (mg/L)	26	1,41	1,22	0,49	0,77	2,00	0,99	2,00	0,18	-1,85	0,00
Sulfeto (mg/L)	26	0,001	0,001	0,000	0,001	0,001	0,001	0,001	-, -	0,00	0,00
Temperatura da água (°C)	26	28,5	28,0	1,9	25,6	33,6	27,3	29,6	0,84	0,82	3,85
Transparência (m)	26	1,71	1,74	0,82	0,69	3,08	0,88	2,35	0,22	-1,41	0,00
Turbidez (NTU)	26	18,78	5,86	31,83	0,16	129,00	1,57	18,20	2,68	7,02	11,54
Zinco total (mg/L)	26	0,03	0,03	0,02	0,01	0,07	0,02	0,05	0,33	-1,04	0,00

Tabela IV.3: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.02) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	30	23,69	16,00	22,52	2,00	84,00	9,00	32,00	1,53	1,65	10,00
Alumínio dissolvido (mg/L)	30	0,20	0,13	0,20	0,01	0,82	0,05	0,31	1,58	2,39	3,33
Bário total (mg/L)	30	0.031	0,015	0,034	0,003	0,115	0,005	0,058	1,06	-0,10	0,00
Cálcio (mg/L)	30	10,57	5,58	13,07	0,08	52,49	2,53	11,67	2,20	4,78	10,00
Carbono orgânico dissolvido (mg/L)	30	2,19	2,19	1,09	0,55	4,75	1,18	2,79	0,47	-0,47	0,00
Carbono orgânico total (mg/L)	30	2,38	2,27	1,19	0,57	5,03	1,27	3,24	0,59	-0,35	0,00
Cloreto (mg/L)	30	6,83	6,60	4,46	0,50	16,50	4,10	10,30	0,29	-0,83	0,00
Clorofila-a (µg/L)	30	1,52	1,13	1,19	0,24	4,56	0,48	2,10	0,86	-0,19	3,33
Cobre dissolvido (mg/L)	30	0,005	0,003	0,003	0,001	0,013	0,003	0,008	1,01	0,09	0,00
Coliformes termotolerantes (NMP/100ml)	30	112	22	216	0	1000	10	90	2,96	9,73	16,67
Condutividade elétrica (µS/cm)	30	14,48	14,95	1,49	12,00	17,00	13,00	16,00	-0,30	-1,10	0,00
Cor (mg Pt-Co/L)	30	49,43	33,00	44,35	5,00	194,00	18,00	62,00	1,64	2,78	6,67
Demanda Bioquímica de Oxigênio (mg/L)	30	2,12	2,00	1,39	0,10	5,80	1,20	2,90	0,81	0,97	3,33
Demanda Química de Oxigênio (mg/L)	30	7,10	6,50	4,64	1,00	20,00	4,00	10,00	0,77	0,63	3,33
Dureza (mg/L)	30	11,45	8,00	7,73	4,00	28,00	6,00	16,00	1,05	-0,20	0,00
Fenóis (mg/L)	30	0.013	0,003	0,021	0,001	0,077	0,001	0,011	2,06	3,12	16,67
Ferro dissolvido (mg/L)	30	0,18	0,10	0,22	0,01	1,13	0,07	0,19	3,05	11,24	13,33
Fluoreto (mg/L)	30	0,09	0,04	0,16	0,01	0,82	0,04	0,06	3,96	17,03	23,33
Fósforo orgânico (mg/L)	30	0,040	0,004	0,095	0,004	0,430	0,004	0,024	3,39	11,50	10,00
Fósforo total (mg/L)	30	0,056	0,003	0,166	0,003	0,887	0,003	0,039	4,70	23,61	10,00
Magnésio total (mg/L)	30	1,29	0,40	1,59	0,04	5,82	0,40	1,51	1,92	2,99	13,33
Manganês total (mg/L)	30	0,024	0,007	0,035	0,004	0,151	0,007	0,021	2,44	6,07	20,00
Nitrato (mg/L)	30	0,07	0,10	0,04	0,01	0,10	0,02	0,10	-0,60	-1,63	0,00
Nitrito (mg/L)	30	0,004	0,001	0,006	0,001	0,022	0,001	0,002	2,21	3,75	20,00
Nitrogênio amoniacal (mg/L)	30	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,27	3,39	13,33
Ortofos fato (mg/L)	30	0,022	0,023	0,024	0,005	0,129	0,005	0,023	3,49	14,74	6,67
Oxigênio dissolvido (mg/L)	30	7,14	6,89	1,02	5,96	10,82	6,58	7,51	1,85	4,81	6,67
pH	30	6,87	6,88	0,67	5,67	8,22	6,36	7,30	0,04	-0,32	0,00
Potássio (mg/L)	30	0,91	0,81	0,76	0,02	2,28	0,16	1,72	0,41	-1,24	0,00
Potencial redox (mV)	30	228,9	240,5	56,7	99,0	311,0	192,0	270,0	-0,73	-0,35	0,00
Sílica (mg/L)	30	7,12	7,20	2,87	1,00	12,60	6,00	9,00	-0,41	0,09	6,67
Sódio (mg/L)	30	5,67	4,10	5,19	0,73	21,15	2,81	6,33	2,10	4,04	10,00
Sólidos totais (mg/L)	30	41,96	34,50	24,86	9,00	86,00	23,00	64,00	0,56	-1,02	0,00
Sólidos dissolvidos totais (mg/L)	30	9,77	9,68	2,53	7,00	20,90	8,00	10,00	3,13	12,98	3,33
Sulfato (mg/L)	30	1,48	1,00	1,41	0,10	8,00	1,00	2,00	3,45	16,00	3,33
Sulfeto (mg/L)	30	0,005	0,002	0,008	0,001	0,040	0,001	0,009	2,89	9,57	3,33
Temperatura da água (°C)	30	26,9	27,2	1,7	23,8	29,8	26,1	28,0	-0,28	-0,65	0,00
Transparência (m)	30	0,91	0,80	0,37	0,42	2,13	0,67	1,10	1,68	3,63	6,67
Turbidez (NTU)	30	17,60	11,70	29,85	2,38	168,00	4,26	18,80	4,72	24,06	6,67
Zinco total (mg/L)	30	0,27	0,01	1,27	0,01	6,97	0,01	0,08	5,46	29,83	6,67

Tabela IV.4: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.02) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	26	10,73	10,00	3,11	5,00	17,00	9,00	14,00	0,21	-0,37	0,00
Alumínio dissolvido (mg/L)	26	0,10	0,06	0,21	0,01	1,11	0,01	0,11	4,65	22,84	3,85
Bário total (mg/L)	26	0,040	0,029	0,040	0,005	0,213	0,020	0,055	3,29	13,79	3,85
Cálcio (mg/L)	26	3,80	2,25	6,19	0,08	32,69	1,25	3,97	4,37	20,75	3,85
Carbono orgânico dissolvido (mg/L)	26	1,70	1,01	1,57	0,01	5,37	0,68	2,10	1,14	0,15	11,54
Carbono orgânico total (mg/L)	26	2,13	1,32	1,61	0,01	5,39	0,91	3,70	0,77	-0,81	0,00
Cloreto (mg/L)	26	3,57	3,25	2,07	0,50	9,00	2,00	4,50	1,03	0,77	3,85
Clorofila-a (µg/L)	26	0,69	0,30	0,71	0,00	2,88	0,30	1,07	1,67	2,23	3,85
Cobre dissolvido (mg/L)	26	0,012	0,003	0,044	0,003	0,230	0,003	0,003	5,10	25,97	7,69
Coliformes termotolerantes (NMP/100ml)	26	76	57	72	10	320	10	120	1,60	3,86	3,85
Condutividade elétrica (µS/cm)	26	15,43	15,00	4,14	8,00	26,00	14,00	17,00	0,64	1,01	15,38
Cor (mg Pt-Co/L)	26	58,11	40,00	58,81	4,00	256,00	15,80	100,50	1,76	3,85	3,85
Demanda Bioquímica de Oxigênio (mg/L)	26	1,78	1,65	0,96	0,18	3,70	0,90	2,60	0,39	-0,83	0,00
Demanda Química de Oxigênio (mg/L)	26	8,23	4,00	10,22	1,00	48,00	3,00	11,00	2,86	9,25	7,69
Dureza (mg/L)	26	7,88	6,00	4,39	4,00	22,00	4,00	10,00	1,52	2,80	3,85
Fenóis (mg/L)	26	0,021	0,003	0,030	0,003	0,111	0,003	0,032	1,71	2,16	7,69
Ferro dissolvido (mg/L)	26	0,10	0,01	0,24	0,01	1,17	0,01	0,07	4,09	18,45	19,23
Fluoreto (mg/L)	26	0,07	0,04	0,05	0,01	0,22	0,04	0,08	2,11	4,03	7,69
Fósforo orgânico (mg/L)	26	0,044	0,008	0,097	0,000	0,491	0,005	0,049	4,27	19,94	3,85
Fós foro total (mg/L)	26	0,066	0,014	0,106	0,005	0,501	0,005	0,079	3,03	11,30	3,85
Magnésio total (mg/L)	26	0,99	0,66	1,12	0,03	4,31	0,14	1,25	1,50	1,86	7,69
Manganês total (mg/L)	26	0,046	0,023	0,111	0,007	0,587	0,010	0,037	4,94	24,86	3,85
Nitrato (mg/L)	26	0,27	0,10	0,46	0,10	2,20	0,10	0,10	3,51	13,01	23,08
Nitrito (mg/L)	26	0,007	0,001	0,010	0,001	0,032	0,001	0,013	1,39	0,69	3,85
Nitrogênio amoniacal (mg/L)	26	0,22	0,02	0,37	0,02	1,51	0,02	0,31	2,24	5,23	11,54
Ortofosfato (mg/L)	26	0,028	0,008	0,030	0,005	0,090	0,005	0,059	0,87	-0,89	0,00
Oxigênio dissolvido (mg/L)	26	6,68	6,50	0,72	5,65	8,12	6,20	7,21	0,56	-0,93	0,00
рН	26	6,33	6,29	0,59	4,90	7,72	5,98	6,78	-0,03	0,69	0,00
Potássio (mg/L)	26	1,26	0,73	2,59	0,11	13,77	0,61	0,87	4,86	24,26	26,92
Potencial redox (mV)	26	247,4	242,0	60,9	115,0	404,0	216,0	263,0	0,51	1,28	15,38
Sílica (mg/L)	26	4,92	4,80	3,14	0,44	12,00	2,00	6,30	0,52	-0,37	0,00
Sódio (mg/L)	26	2,88	2,87	2,13	0,52	9,32	0,92	4,12	1,08	1,63	3,85
Sólidos totais (mg/L)	26	20,49	17,00	11,37	8,00	48,00	12,00	25,00	1,22	0,86	7,69
Sólidos dissolvidos totais (mg/L)	26	10,28	10,00	3,51	5,00	18,00	8,15	11,00	0,93	0,46	11,54
Sulfato (mg/L)	26	1,35	1,22	0,42	0,81	2,00	1,00	1,61	0,51	-1,13	0,00
Sulfeto (mg/L)	26	0,002	0,001	0,002	0,001	0,010	0,001	0,001	3,37	10,16	7,69
Temperatura da água (°C)	26	29,5	29,8	1,8	25,6	33,0	28,3	31,0	-0,11	-0,44	0,00
Transparência (m)	26	1,89	1,75	0,90	0,72	3,85	0,93	2,60	0,25	-1,10	0,00
Turbidez (NTU)	26	12,54	3,07	25,48	0,68	130,00	1,50	14,00	4,22	19,63	3,85
Zinco total (mg/L)	26	0,04	0,04	0,02	0,01	0,08	0,03	0,05	-0,25	-0,41	0,00

Tabela IV.5: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.03) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	31	26,79	14,00	23,92	5,00	87,50	10,00	35,00	1,34	0,59	6,45
Alumínio dissolvido (mg/L)	31	0,31	0,18	0,32	0,01	1,01	0,05	0,44	1,03	-0,22	0,00
Bário total (mg/L)	31	0,053	0,019	0,060	0,003	0,196	0,006	0,097	1,09	-0,03	0,00
Cálcio (mg/L)	31	11,79	7,57	13,79	0,02	49,67	1,60	17,04	1,73	2,46	9,68
Carbono orgânico dissolvido (mg/L)	31	4,21	3,57	1,94	1,60	9,15	2,66	5,27	0,83	0,11	0,00
Carbono orgânico total (mg/L)	31	4,49	4,04	2,08	1,63	10,13	2,81	5,51	0,96	0,50	3,23
Cloreto (mg/L)	31	7,25	7,02	4,57	0,50	16,90	4,10	11,30	0,31	-0,77	0,00
Clorofila-a (µg/L)	31	1,04	0,96	0,83	0,30	3,84	0,48	1,28	1,90	4,06	6,45
Cobre dissolvido (mg/L)	31	0,006	0,003	0,005	0,001	0,025	0,003	0,009	2,14	5,32	3,23
Coliformes termotolerantes (NMP/100ml)	31	627	53	2679	0	15000	10	101	5,50	30,43	19,35
Condutividade elétrica (µS/cm)	31	25,01	23,80	6,98	12,00	42,00	20,00	31,00	0,59	0,22	0,00
Cor (mg Pt-Co/L)	31	78,11	83,00	48,80	0,00	205,00	36,00	110,00	0,59	-0,02	0,00
Demanda Bioquímica de Oxigênio (mg/L)	31	2,48	2,10	1,33	0,50	5,60	1,50	3,30	0,96	0,21	0,00
Demanda Química de Oxigênio (mg/L)	31	8,08	8,00	3,95	1,00	20,00	6,00	10,00	0,87	1,49	3,23
Dureza (mg/L)	31	13,43	12,00	5,99	4,00	26,00	9,00	18,00	0,63	-0,62	0,00
Fenóis (mg/L)	31	0,009	0,002	0,015	0,001	0,062	0,001	0,005	2,46	5,54	19,35
Ferro dissolvido (mg/L)	31	0,40	0,26	0,40	0,01	1,62	0,09	0,54	1,48	1,73	6,45
Fluoreto (mg/L)	31	0,08	0,04	0,08	0,02	0,43	0,04	0,06	3,08	10,68	19,35
Fós foro orgânico (mg/L)	31	0,022	0,004	0,038	0,004	0,169	0,004	0,024	2,64	7,24	16,13
Fós foro total (mg/L)	31	0,044	0,003	0,095	0,003	0,489	0,003	0,047	3,85	17,08	9,68
Magnésio total (mg/L)	31	1,32	0,62	1,22	0,40	4,30	0,40	1,90	1,34	0,68	3,23
Manganês total (mg/L)	31	0,075	0,011	0,177	0,004	0,970	0,007	0,068	4,62	23,43	9,68
Nitrato (mg/L)	31	0,07	0,10	0,04	0,01	0,10	0,03	0,10	-0,55	-1,62	0,00
Nitrito (mg/L)	31	0,004	0,001	0,006	0,001	0,027	0,001	0,002	3,02	9,23	22,58
Nitrogênio amoniacal (mg/L)	31	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,33	3,65	12,90
Ortofos fato (mg/L)	31	0,040	0,023	0,071	0,005	0,312	0,005	0,023	3,42	11,17	12,90
Oxigênio dissolvido (mg/L)	31	5,93	6,01	1,42	1,85	7,86	5,20	7,12	-0,92	0,98	3,23
pН	31	6,61	6,62	0,58	5,49	7,79	6,13	7,04	-0,10	-0,60	0,00
Potássio (mg/L)	31	1,71	1,69	1,40	0,03	6,07	0,52	2,21	1,13	1,86	3,23
Potencial redox (mV)	31	227,0	232,0	67,4	91,0	334,0	201,0	269,0	-0,38	-0,47	6,45
Sílica (mg/L)	31	8,75	8,50	3,38	2,00	15,20	6,10	11,00	-0,04	-0,48	0,00
Sódio (mg/L)	31	7,80	3,90	10,11	1,34	52,23	2,58	9,63	3,21	12,38	6,45
Sólidos totais (mg/L)	31	47,59	43,00	25,43	9,50	102,00	28,00	69,64	0,40	-0,82	0,00
Sólidos dissolvidos totais (mg/L)	31	15,19	14,00	4,54	7,32	27,00	13,00	17,00	0,64	0,49	6,45
Sulfato (mg/L)	31	1,69	1,00	1,66	0,10	9,00	1,00	2,00	2,98	12,20	6,45
Sulfeto (mg/L)	31	0,007	0,002	0,009	0,001	0,030	0,001	0,010	1,39	0,53	3,23
Temperatura da água (°C)	31	25,6	25,4	1,7	22,3	29,2	24,6	26,7	0,17	-0,32	0,00
Transparência (m)	31	0,68	0,67	0,15	0,41	0,97	0,55	0,80	0,17	-0,74	0,00
Turbidez (NTU)	31	18,38	16,00	10,51	6,68	60,00	12,20	23,50	2,22	7,25	3,23
Zinco total (mg/L)	31	0,04	0,01	0,06	0,01	0,31	0,01	0,08	2,67	8,71	3,23

Tabela IV.6: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.03) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	26	13,31	12,00	4,68	5,00	24,00	10,00	17,00	0,44	-0,40	0,00
Alumínio dissolvido (mg/L)	26	0,17	0,02	0,37	0,01	1,42	0,01	0,08	2,88	7,64	15,38
Bário total (mg/L)	26	0,061	0,049	0,045	0,012	0,206	0,035	0,068	2,37	5,87	7,69
Cálcio (mg/L)	26	3,48	2,44	3,74	0,09	18,39	1,30	4,80	2,73	9,75	3,85
Carbono orgânico dissolvido (mg/L)	26	2,94	2,00	2,62	0,01	11,89	1,30	3,50	1,92	4,54	7,69
Carbono orgânico total (mg/L)	26	4,02	2,88	3,60	0,01	18,55	1,91	5,28	2,78	10,36	3,85
Cloreto (mg/L)	26	3,08	3,00	1,50	0,50	6,50	2,00	4,00	0,32	-0,64	0,00
Clorofila-a (µg/L)	26	1,03	0,30	1,74	0,00	8,41	0,30	1,07	3,49	13,53	11,54
Cobre dissolvido (mg/L)	26	0,003	0,003	0,000	0,003	0,003	0,003	0,003		0,00	0,00
Coliformes termotolerantes (NMP/100ml)	26	136	135	114	10	453	31	193	1,10	1,47	3,85
Condutividade elétrica (µS/cm)	26	27,14	28,50	7,47	8,00	42,00	23,00	30,00	-0,40	0,84	7,69
Cor (mg Pt-Co/L)	26	94,40	91,80	72,20	3,00	284,00	28,10	154,50	0,74	0,16	0,00
Demanda Bioquímica de Oxigênio (mg/L)	26	1,87	1,68	0,95	0,74	4,00	1,00	2,40	0,73	-0,39	0,00
Demanda Química de Oxigênio (mg/L)	26	11,65	6,50	15,23	2,00	79,00	4,00	14,00	3,72	16,17	3,85
Dureza (mg/L)	26	9,25	8,00	6,93	2,00	25,00	4,00	10,00	1,24	0,49	15,38
Fenóis (mg/L)	26	0,025	0,003	0,041	0,002	0,146	0,003	0,016	1,91	2,62	23,08
Ferro dissolvido (mg/L)	26	0,34	0,05	0,49	0,01	1,75	0.01	0,60	1,67	2,47	7,69
Fluoreto (mg/L)	26	0.09	0,05	0,09	0,02	0,36	0,04	0,10	2,19	4,25	11,54
Fósforo orgânico (mg/L)	26	0,040	0,008	0,066	0,000	0,275	0,005	0,050	2,43	5,99	15,38
Fós foro total (mg/L)	26	0,075	0,033	0,098	0,005	0,338	0,005	0,106	1,58	1,56	7,69
Magnésio total (mg/L)	26	1,02	0,82	0,90	0,04	3,88	0,40	1,50	1,50	2,66	3,85
Manganês total (mg/L)	26	0,046	0,032	0,040	0,007	0,202	0,022	0,060	2,51	8,60	3,85
Nitrato (mg/L)	26	0,25	0,10	0,34	0,10	1,30	0,10	0,10	2,34	4,46	23,08
Nitrito (mg/L)	26	0,007	0,001	0,010	0,001	0,032	0,001	0,014	1,41	0,67	0,00
Nitrogênio amoniacal (mg/L)	26	0,17	0,02	0,26	0,02	0,94	0,02	0,31	1,64	1,89	3,85
Ortofos fato (mg/L)	26	0,035	0,017	0,052	0,005	0,255	0,005	0,058	3,30	13,25	3,85
Oxigênio dissolvido (mg/L)	26	6,08	6,17	1,31	2,20	8,73	5,66	6,70	-0,87	2,31	11,54
рН	26	6,40	6,32	0,51	5,49	7,55	6,10	6,80	0,18	-0,10	0,00
Potássio (mg/L)	26	2,08	1,47	2,46	0,15	10,23	0,86	2,08	2,85	7,84	7,69
Potencial redox (mV)	26	226,4	244,5	82,9	0,0	350,0	195,0	275,0	-1,21	1,80	7,69
Sílica (mg/L)	26	5,83	6,01	3,30	1,00	13,00	3,60	7,30	0,37	-0,34	3,85
Sódio (mg/L)	26	2,68	1,64	2,19	0,90	9,48	1,26	3,20	1,75	2,74	11,54
Sólidos totais (mg/L)	26	31,69	30,00	14,89	7,00	75,00	23,00	40,00	0,85	1,62	3,85
Sólidos dissolvidos totais (mg/L)	26	18,79	18,00	6,94	4,40	41,00	15,00	22,00	1,25	3,68	7,69
Sulfato (mg/L)	26	1,31	1,18	0,51	0,53	2,00	0,94	2,00	0,25	-1,34	0,00
Sulfeto (mg/L)	26	0,001	0,001	0,002	0,001	0,010	0,001	0,001	5,10	26,00	3,85
Temperatura da água (°C)	26	28,5	27,9	1,9	25,5	32,9	26,7	30,2	0,45	-0,48	0,00
Transparência (m)	26	1,26	1,15	0,55	0,49	2,48	0,75	1,60	0,57	-0,58	0,00
Turbidez (NTU)	26	12,23	5,63	16,43	1,30	78,10	2,33	15,70	2,89	10,11	3,85
Zinco total (mg/L)	26	0,18	0,05	0,68	0,01	3,50	0,03	0,06	5,09	25,94	3,85

Tabela IV.7: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.04) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	32	25,78	15,50	25,94	2,00	95,00	9,00	32,50	1,45	0,89	9,38
Alumínio dissolvido (mg/L)	32	0,35	0,23	0,43	0,01	2,03	0,05	0,44	2,28	6,54	6,25
Bário total (mg/L)	32	0,073	0,043	0,101	0,003	0,525	0,007	0,110	3,04	12,33	3,13
Cálcio (mg/L)	32	13,45	10,70	12,16	0,08	42,80	3,78	18,51	1,08	0,47	6,25
Carbono orgânico dissolvido (mg/L)	32	3,83	3,73	1,76	0,99	8,18	2,51	5,01	0,48	0,14	0,00
Carbono orgânico total (mg/L)	32	4,13	4,02	1,73	1,13	8,64	2,78	5,30	0,55	0,06	0,00
Cloreto (mg/L)	32	7,32	7,40	4,75	0,50	15,60	3,80	11,10	0,22	-1,00	0,00
Clorofila-a (µg/L)	32	1,42	0,72	1,96	0,30	10,68	0,48	1,68	3,79	16,77	6,25
Cobre dissolvido (mg/L)	32	0,005	0,003	0,005	0,001	0,029	0,003	0,009	3,17	13,13	3,13
Coliformes termotolerantes (NMP/100ml)	32	375	42	1332	0	7500	16	115	5,27	28,76	15,63
Condutividade elétrica (µS/cm)	32	24,26	24,00	5,85	15,00	41,00	20,50	27,00	0,76	0,97	3,13
Cor (mg Pt-Co/L)	32	71,19	59,00	43,54	16,00	167,00	37,50	102,00	0,74	-0,48	0,00
Demanda Bioquímica de Oxigênio (mg/L)	32	2,69	2,60	1,74	0,10	6,57	1,25	3,50	0,54	-0,25	0,00
Demanda Química de Oxigênio (mg/L)	32	8,09	6,50	4,62	1,00	18,00	5,00	10,50	0,87	-0,03	0,00
Dureza (mg/L)	32	11,62	10,00	5,87	2,00	24,00	8,00	15,70	0,85	-0,30	0,00
Fenóis (mg/L)	32	0,020	0,003	0,038	0,001	0,189	0,001	0,018	3,31	13,25	18,75
Ferro dissolvido (mg/L)	32	0,47	0,27	0,58	0,01	2,27	0,11	0,49	2,03	3,35	12,50
Fluoreto (mg/L)	32	0,11	0,04	0,20	0,02	1,10	0,04	0,09	4,29	20,46	12,50
Fósforo orgânico (mg/L)	32	0,044	0,005	0,102	0,004	0,526	0,004	0,030	3,87	16,70	18,75
Fósforo total (mg/L)	32	0,090	0,005	0,200	0,003	0,889	0,003	0,064	3,13	9,94	15,63
Magnésio total (mg/L)	32	1,25	0,93	1,03	0,40	4,04	0,40	1,91	1,15	0,62	0,00
Manganês total (mg/L)	32	0,049	0,018	0,058	0,004	0,204	0,007	0,087	1,38	1,09	0,00
Nitrato (mg/L)	32	0,07	0,10	0,04	0,01	0,10	0,02	0,10	-0,61	-1,67	0,00
Nitrito (mg/L)	32	0,004	0,001	0,005	0,001	0,023	0,001	0,002	2,45	5,57	18,75
Nitrogênio amoniacal (mg/L)	32	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,38	3,91	12,50
Ortofos fato (mg/L)	32	0,112	0,023	0,477	0,005	2,723	0,014	0,027	5,62	31,73	12,50
Oxigênio dissolvido (mg/L)	32	6,18	6,56	1,64	1,86	9,00	5,37	7,10	-0,78	0,92	6,25
pH	32	6,61	6,63	0,57	5,27	7,99	6,19	6,98	0,08	0,34	0,00
Potássio (mg/L)	32	1,67	1,40	1,33	0,03	5,94	0,84	2,28	1,25	2,36	3,13
Potencial redox (mV)	32	218,0	233,0	67,5	77.0	333,0	159,5	265,5	-0,41	-0,80	0,00
Sílica (mg/L)	32	8,45	8,50	3,15	2,00	16,00	6,00	10,50	0,08	-0,07	0,00
Sódio (mg/L)	32	7,20	4,38	6,58	0,96	29,63	3,04	8,56	1,99	3,83	9,38
Sólidos totais (mg/L)	32	46,18	37,50	28,38	11,00	109,00	22,00	67,50	0,74	-0,46	0,00
Sólidos dissolvidos totais (mg/L)	32	15,30	14,76	4,21	8,25	27,00	13,00	17,00	0,79	1,01	6,25
Sulfato (mg/L)	32	1,62	2,00	1,60	0,10	9,00	1,00	2,00	3,21	14,69	3,13
Sulfeto (mg/L)	32	0,006	0,002	0,008	0,001	0,030	0,001	0,010	1,56	1,24	3,13
Temperatura da água (°C)	32	28,2	27,2	3,1	24,2	34,6	25,7	30,0	0,72	-0,59	0,00
Transparência (m)	32	0,72	0,69	0,22	0,37	1,34	0,57	0,87	0,62	0,70	3,13
Turbidez (NTU)	32	17,67	15,50	15,23	3,49	93,30	11,90	20,80	4,12	20,62	3,13
Zinco total (mg/L)	32	0,06	0,02	0,08	0,01	0.36	0,01	0,09	2,18	5,34	6,25

Tabela IV.8: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.04) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	26	12,27	12,50	5,50	4,00	26,00	8,00	16,00	0,54	0,08	0,00
Alumínio dissolvido (mg/L)	26	0.18	0,03	0,40	0,01	1,51	0,01	0,07	2,61	5,82	15,38
Bário total (mg/L)	26	0,059	0,048	0,059	0,005	0,248	0,023	0,067	2,48	6,34	7,69
Cálcio (mg/L)	26	3,46	2,83	2,60	0,04	9,97	1,60	4,89	1,02	0,87	3,85
Carbono orgânico dissolvido (mg/L)	26	3,08	2,02	3,99	0,01	20,94	1,10	3,92	3,83	17,06	3,85
Carbono orgânico total (mg/L)	26	3,65	2,36	4,36	0,01	23,01	1,75	4,35	3,75	16,50	3,85
Cloreto (mg/L)	26	2,87	2,75	1,70	0,50	8,50	1,90	3,50	1,59	3,87	7,69
Clorofila-a (µg/L)	26	0,66	0,30	0,58	0,24	2,67	0,30	0,96	2,06	4,87	3,85
Cobre dissolvido (mg/L)	26	0,003	0,003	0,002	0,003	0,011	0,003	0,003	5,10	26,00	3,85
Coliformes termotolerantes (NMP/100ml)	26	114	82	104	10	307	10	222	0,55	-1,23	0,00
Condutividade elétrica (µS/cm)	26	26,22	26,00	8,08	7,00	41,00	21,00	30,00	-0,23	0,12	3,85
Cor (mg Pt-Co/L)	26	74,82	49,70	75,33	3,00	292,00	15,90	105,00	1,33	1,29	3,85
Demanda Bioquímica de Oxigênio (mg/L)	26	1,81	1,80	0,92	0,50	3,80	1,10	2,40	0,55	-0,38	0,00
Demanda Química de Oxigênio (mg/L)	26	10,15	7,00	8,46	2,00	32,00	3,00	16,00	0,96	0,02	0,00
Dureza (mg/L)	26	10,04	8,50	6,81	2,50	28,00	5,00	10,00	1,40	1,53	15,38
Fenóis (mg/L)	26	0,024	0,005	0,046	0,003	0,223	0,003	0,032	3,59	14,70	7,69
Ferro dissolvido (mg/L)	26	0.27	0,03	0,43	0,01	1,47	0,01	0,38	1,76	2,21	11,54
Fluoreto (mg/L)	26	0,07	0,04	0,06	0,01	0,29	0,04	0,10	2,26	5,68	7,69
Fósforo orgânico (mg/L)	26	0,143	0,008	0,309	0,000	1,074	0,005	0,126	2,50	5,13	11,54
Fós foro total (mg/L)	26	0,169	0,047	0,321	0,005	1,137	0,005	0,162	2,44	5,04	11,54
Magnésio total (mg/L)	26	1,08	0,91	1,09	0,04	5,28	0,51	1,31	2,46	8,30	7,69
Manganês total (mg/L)	26	0,062	0,038	0,114	0,007	0,610	0,024	0,058	4,76	23,56	3,85
Nitrato (mg/L)	26	0,23	0,10	0,35	0,10	1,40	0,10	0,10	2,86	7,48	19,23
Nitrito (mg/L)	26	0,005	0,001	0,008	0,001	0,028	0,001	0,007	1,86	2,25	15,38
Nitrogênio amoniacal (mg/L)	26	0,18	0,02	0,31	0,02	1,09	0,02	0,14	1,94	2,60	19,23
Ortofosfato (mg/L)	26	0.029	0,015	0,028	0,002	0,078	0,005	0,061	0,59	-1,44	0,00
Oxigênio dissolvido (mg/L)	26	5,95	5,90	0,81	4,40	7,72	5,53	6,41	0,13	0,18	0,00
рН	26	6,44	6,41	0,49	5,30	7,49	6,10	6,82	0,14	0,27	0,00
Potássio (mg/L)	26	2,62	1,12	4,97	0,13	19,92	0,87	1,83	3,28	9,76	7,69
Potencial redox (mV)	26	229,7	238,5	58,2	89,0	326,0	210,0	269,0	-0,76	0,32	3,85
Sílica (mg/L)	26	5,78	5,60	3,76	1,00	16,30	2,88	7,20	0,94	0,85	3,85
Sódio (mg/L)	26	2,94	2,77	2,11	0,18	6,88	1,23	4,51	0,39	-1,15	0,00
Sólidos totais (mg/L)	26	27,35	22,00	12,06	13,00	61,00	19,00	29,00	1,48	1,72	11,54
Sólidos dissolvidos totais (mg/L)	26	16,27	16,00	5,94	0,05	26,00	14,00	20,00	-0,49	0,87	3,85
Sulfato (mg/L)	26	1,29	1,20	0,53	0,33	2,20	0,94	1,70	0,15	-0,99	0,00
Sulfeto (mg/L)	26	0,002	0,001	0,002	0,001	0,010	0,001	0,001	3,37	10,16	7,69
Temperatura da água (°C)	26	29,2	29,1	2,1	25,2	32,5	27,5	30,7	-0,03	-1,04	0,00
Transparência (m)	26	1,36	1,40	0,64	0,01	2,78	0,90	1,68	0,21	0,23	0,00
Turbidez (NTU)	26	12,22	5,03	16,83	0,63	77,90	2,77	17,21	2,72	8,86	3,85
Zinco total (mg/L)	26	0,03	0,03	0,02	0,01	0,07	0,01	0,04	0,71	0,09	0,00

Tabela IV.9: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.05) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	30	24,94	12,50	24,70	2,00	96,00	11,00	31,00	1,76	2,38	10,00
Alumínio dissolvido (mg/L)	30	0,29	0,13	0,38	0,01	1,43	0,04	0,38	1,98	3,48	10,00
Bário total (mg/L)	30	0.039	0,022	0,040	0,003	0,140	0,005	0,067	0,89	-0,11	0,00
Cálcio (mg/L)	30	15,07	8,92	19,60	0,03	84,28	2,40	17,65	2,16	4,85	13,33
Carbono orgânico dissolvido (mg/L)	30	2,24	2,13	1,12	0,51	4,94	1,29	2,84	0,63	-0,20	0,00
Carbono orgânico total (mg/L)	30	2,53	2,33	1,16	0,53	5,03	1,62	3,60	0,47	-0,30	0,00
Cloreto (mg/L)	30	7,05	6,76	4,88	0,50	16,10	3,00	11,00	0,22	-1,05	0,00
Clorofila-a (µg/L)	30	1,61	1,24	1,12	0,30	4,16	0,96	1,92	1,04	0,01	6,67
Cobre dissolvido (mg/L)	30	0,009	0,003	0,017	0,001	0,075	0,003	0,009	3,44	11,45	6,67
Coliformes termotolerantes (NMP/100ml)	30	61	11	124	0	500	9	53	3,27	10,20	10,00
Condutividade elétrica (µS/cm)	30	14,51	14,80	3,33	10,00	29,00	13,00	15,00	2,85	12,33	6,67
Cor (mg Pt-Co/L)	30	55,50	39,50	45,91	4,00	199,00	19,00	88,00	1,40	1,96	3,33
Demanda Bioquímica de Oxigênio (mg/L)	30	2,12	2,15	1,15	0,10	4,60	1,20	2,70	0,12	-0,36	0,00
Demanda Química de Oxigênio (mg/L)	30	5,54	5,00	2,99	1,00	14,00	4,00	6,00	1,14	1,26	10,00
Dureza (mg/L)	30	11,86	10,00	7,08	3,80	34,00	6,00	16,00	1,30	1,98	3,33
Fenóis (mg/L)	30	0.011	0,003	0,020	0,001	0,075	0,001	0,010	2,40	5,13	13,33
Ferro dissolvido (mg/L)	30	0,24	0,11	0,32	0,01	1,37	0,04	0,33	2,20	5,27	6,67
Fluoreto (mg/L)	30	0,06	0,04	0,05	0,01	0,24	0,04	0,05	3,02	9,07	23,33
Fós foro orgânico (mg/L)	30	0,029	0,004	0,076	0,004	0,360	0,004	0,015	3,78	14,21	13,33
Fós foro total (mg/L)	30	0,063	0,004	0,199	0,003	1,043	0,003	0,026	4,58	22,05	10,00
Magnésio total (mg/L)	30	1,33	0,83	1,31	0,40	5,77	0,40	1,74	1,77	3,35	3,33
Manganês total (mg/L)	30	0.035	0.010	0,043	0,004	0,162	0,007	0,056	1,50	1,35	3,33
Nitrato (mg/L)	30	0.07	0,10	0,04	0,01	0,10	0,02	0,10	-0,57	-1,67	0,00
Nitrito (mg/L)	30	0,004	0,001	0,006	0,001	0,020	0,001	0,002	2,08	2,97	20,00
Nitrogênio amoniacal (mg/L)	30	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,27	3,39	13,33
Ortofosfato (mg/L)	30	0,035	0,023	0,089	0,005	0,503	0,005	0,023	5,38	29,28	3,33
Oxigênio dissolvido (mg/L)	30	7,31	7,17	1,13	5,30	11,04	6,66	7,90	0,91	2,94	3,33
рН	30	6,80	6,83	0,63	5,50	8,22	6,36	7,24	0,26	-0,01	0,00
Potássio (mg/L)	30	1,01	1,11	0,81	0,02	2,75	0,14	1,41	0,26	-0,96	0,00
Potencial redox (mV)	30	207,2	205,5	58,1	89,0	293,0	165,0	269,0	-0,13	-1,07	0,00
Sílica (mg/L)	30	7,35	7,30	2,39	1,00	15,10	6,60	8,50	0,34	4,18	10,00
Sódio (mg/L)	30	6,27	5,69	4,59	1,23	23,29	3,02	7,11	2,06	5,81	6,67
Sólidos totais (mg/L)	30	43,51	39,50	28,29	9,00	114,00	21,00	61,00	0,91	0,06	0,00
Sólidos dissolvidos totais (mg/L)	30	9,19	8,81	2,55	5,50	20,00	8,00	10,00	2,74	10,88	3,33
Sulfato (mg/L)	30	1,82	1,50	1,77	0,10	8,00	1,00	2,00	2,33	6,31	6,67
Sulfeto (mg/L)	30	0,006	0,002	0,008	0,001	0,030	0,001	0,010	1,67	1,83	3,33
Temperatura da água (°C)	30	27,3	27,4	2,5	21,2	34,6	26,3	28,8	0,19	2,35	6,67
Transparência (m)	30	0,88	0,82	0,27	0,45	1,67	0,67	1,11	0,91	0,96	0,00
Turbidez (NTU)	30	14,97	11,70	15,38	2,35	88,10	6,46	17,90	3,91	18,48	3,33
Zinco total (mg/L)	30	0,06	0,02	0,07	0,01	0,24	0,01	0,10	1,20	0,42	3,33

Tabela IV.10: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.05) – fase pós-enchimento

				•					· · · · · · · · · · · · · · · · · · ·		
Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	26	11,12	10,50	4,14	6,00	20,00	8,00	14,00	0,69	-0,24	0,00
Alumínio dissolvido (mg/L)	26	0,14	0,06	0,29	0,00	1,34	0,01	0,12	3,48	12,58	7,69
Bário total (mg/L)	26	0,050	0,030	0,052	0,005	0,212	0,019	0,067	2,08	4,52	7,69
Cálcio (mg/L)	26	4,22	2,73	6,18	0,08	32,05	0,93	5,01	3,90	17,59	3,85
Carbono orgânico dissolvido (mg/L)	26	1,55	1,14	1,39	0,01	5,17	0,63	1,94	1,22	0,74	11,54
Carbono orgânico total (mg/L)	26	2,01	1,55	1,42	0,01	6,10	1,04	2,95	1,23	1,40	3,85
Cloreto (mg/L)	26	3,21	3,25	1,79	0,50	6,50	1,50	5,00	0,23	-1,19	0,00
Clorofila-a (µg/L)	26	0,59	0,30	0,46	0,24	1,68	0,30	0,53	1,34	0,16	23,08
Cobre dissolvido (mg/L)	26	0,003	0,003	0,001	0,003	0,008	0,003	0,003	3,45	10,95	7,69
Coliformes termotolerantes (NMP/100ml)	26	37	25	37	10	140	10	53	1,53	1,62	7,69
Condutividade elétrica (µS/cm)	26	14,84	14,71	3,93	7,00	24,00	12,00	17,00	0,40	0,48	0,00
Cor (mg Pt-Co/L)	26	66,49	42,60	64,35	4,00	240,00	20,00	92,70	1,32	0,97	3,85
Demanda Bioquímica de Oxigênio (mg/L)	26	1,75	1,86	0,95	0,10	3,30	1,00	2,40	-0,07	-0,84	0,00
Demanda Química de Oxigênio (mg/L)	26	9,08	6,00	7,62	1,00	26,00	3,00	12,00	1,09	0,22	3,85
Dureza (mg/L)	26	8,23	7,50	5,81	2,50	30,00	4,00	8,00	2,37	7,34	7,69
Fenóis (mg/L)	26	0,029	0,003	0,040	0,003	0,118	0,003	0,041	1,26	-0,05	7,69
Ferro dissolvido (mg/L)	26	0,14	0,03	0,25	0,01	1,06	0,01	0,21	2,58	7,36	7,69
Fluoreto (mg/L)	26	0.07	0,04	0,07	0,01	0.30	0,04	0,06	2,33	4,95	15,38
Fósforo orgânico (mg/L)	26	0,027	0,006	0,040	0,000	0,148	0,005	0,037	2,15	3,92	11,54
Fósforo total (mg/L)	26	0,051	0,010	0,068	0,005	0,212	0,005	0,077	1,44	0,87	7,69
Magnésio total (mg/L)	26	1,08	0,76	1,05	0,04	4,29	0,17	1,47	1,50	2,42	3,85
Manganês total (mg/L)	26	0,068	0,022	0,231	0,003	1,199	0,011	0,035	5,07	25,76	3,85
Nitrato (mg/L)	26	0,27	0,10	0,39	0.10	1,50	0,10	0,20	2,65	6,35	19,23
Nitrito (mg/L)	26	0,006	0,001	0,008	0,001	0,029	0,001	0,007	1,71	1,72	15,38
Nitrogênio amoniacal (mg/L)	26	0,15	0,02	0,26	0.02	1,02	0,02	0,25	2,22	4,71	7,69
Ortofos fato (mg/L)	26	0.036	0,009	0,075	0,005	0,381	0,005	0,040	4,25	19,81	3,85
Oxigênio dissolvido (mg/L)	26	6,64	6,78	0,76	4,61	7,76	6,38	7,10	-0,96	0,94	7,69
рН	26	6,39	6,32	0,63	5,18	7,76	6,19	6,81	0,16	0,18	7,69
Potássio (mg/L)	26	1,56	0,60	3,33	0.07	14,44	0,44	0,80	3,41	11,02	11,54
Potencial redox (mV)	26	255,3	242,5	65,3	102,0	427,0	228,0	305,0	0,13	1,27	7,69
Sílica (mg/L)	26	4,97	3,70	3,57	0,72	14,00	2,20	6,60	0,96	0,14	3,85
Sódio (mg/L)	26	2,30	2,08	1,56	0,11	5,12	0,92	3,60	0,16	-1,30	0,00
Sólidos totais (mg/L)	26	22,12	14,00	21,14	2,00	89,00	11,00	27,00	2,44	5,84	7,69
Sólidos dissolvidos totais (mg/L)	26	9,86	10,00	3,84	2,00	19,00	7,00	11,00	0,51	0,51	7,69
Sulfato (mg/L)	26	1,40	1,30	0,42	0,86	2,00	1,03	2,00	0,42	-1,31	0,00
Sulfeto (mg/L)	26	0,002	0,001	0,002	0,001	0,010	0,001	0,001	3,37	10,16	7,69
Temperatura da água (°C)	26	29,3	29,6	1,7	26,1	31,7	28,5	30,6	-0,42	-0,55	0,00
Transparência (m)	26	1,89	1,86	0,92	0,58	3,89	0,91	2,63	0,16	-1,08	0,00
Turbidez (NTU)	26	8,82	3,51	9,07	1,17	31,80	1,59	14,70	1,07	0,17	0,00
Zinco total (mg/L)	26	0,03	0,02	0,02	0,01	0.08	0,01	0.05	0,67	-0,93	0,00
Zinco total (liig/L)	20	0,03	0,02	0,02	0,01	0,00	0,01	0,05	0,07	-0,33	0,00

Tabela IV.11: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.06) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	32	25,03	14,00	24,90	1,00	97,50	9,05	33,50	1,66	1,97	9,38
Alumínio dissolvido (mg/L)	32	0,21	0,13	0,25	0,00	1,09	0,03	0,32	2,14	5,21	6,25
Bário total (mg/L)	32	0,038	0,029	0,039	0,003	0,164	0,005	0,061	1,31	2,11	3,13
Cálcio (mg/L)	32	16,29	9,06	19,14	0,08	85,71	3,20	21,44	2,00	4,71	9,38
Carbono orgânico dissolvido (mg/L)	32	2,20	2,03	1,21	0,53	4,95	1,03	3,21	0,50	-0,80	0,00
Carbono orgânico total (mg/L)	32	2,37	2,19	1,26	0,59	5,08	1,14	3,31	0,47	-0,75	0,00
Cloreto (mg/L)	32	7,00	6,33	4,23	0,50	15,20	3,85	9,95	0,17	-0,89	0,00
Clorofila-a (µg/L)	32	1,60	1,39	1,12	0,24	4,32	0,63	2,40	0,69	-0,45	0,00
Cobre dissolvido (mg/L)	32	0,008	0,003	0,007	0,001	0,026	0,003	0,010	1,39	1,39	9,38
Coliformes termotolerantes (NMP/100ml)	32	134	48	251	0	1000	10	90	2,75	6,99	12,50
Condutividade elétrica (µS/cm)	32	13,93	14,00	2,04	9,00	19,00	13,00	15,00	-0,15	0,93	6,25
Cor (mg Pt-Co/L)	32	44,81	27,50	41,04	4,00	158,00	17,00	57,50	1,45	1,23	9,38
Demanda Bioquímica de Oxigênio (mg/L)	32	2,49	2,00	1,82	0,10	7,00	1,15	3,36	0,90	0,20	3,13
Demanda Química de Oxigênio (mg/L)	32	6,44	6,00	4,21	0,70	18,00	3,50	8,50	0,90	0,66	3,13
Dureza (mg/L)	32	11,90	10,50	6,22	4,00	30,00	7,40	15,00	1,02	1,01	3,13
Fenóis (mg/L)	32	0,024	0,003	0,048	0,001	0,234	0,001	0,023	3,12	11,47	18,75
Ferro dissolvido (mg/L)	32	0,21	0,17	0,21	0,01	0,99	0,07	0,31	1,93	5,50	3,13
Fluoreto (mg/L)	32	0,08	0,04	0,08	0,01	0,32	0,04	0,09	1,95	2,89	12,50
Fósforo orgânico (mg/L)	32	0,031	0,004	0,065	0,004	0,328	0,004	0,031	3,55	14,20	12,50
Fós foro total (mg/L)	32	0,072	0,003	0,179	0,003	0,952	0,003	0,045	4,16	19,68	18,75
Magnésio total (mg/L)	32	1,41	0,40	1,64	0,04	6,85	0,40	1,92	1,97	3,76	6,25
Manganês total (mg/L)	32	0,036	0,008	0,045	0,004	0,164	0,007	0,052	1,55	1,42	6,25
Nitrato (mg/L)	32	0,07	0,10	0,04	0,01	0,10	0,03	0,10	-0,69	-1,50	0,00
Nitrito (mg/L)	32	0,003	0,002	0,004	0,001	0,016	0,001	0,003	2,42	5,15	18,75
Nitrogênio amoniacal (mg/L)	32	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,38	3,91	12,50
Ortofos fato (mg/L)	32	0,050	0,023	0,143	0,005	0,811	0,005	0,023	5,18	27,87	9,38
Oxigênio dissolvido (mg/L)	32	6,52	6,50	1,65	2,55	11,41	5,65	7,48	0,39	2,08	6,25
рН	32	6,75	6,75	0,72	5,27	8,17	6,42	7,09	0,03	-0,06	6,25
Potássio (mg/L)	32	0,95	1,03	0,72	0,01	2,46	0,11	1,47	0,08	-1,04	0,00
Potencial redox (mV)	32	231,9	229,0	69,2	96,0	382,0	174,0	282,0	0,11	-0,10	0,00
Sílica (mg/L)	32	6,66	7,00	2,31	1,00	11,40	5,15	8,40	-0,42	0,12	0,00
Sódio (mg/L)	32	6,44	4,73	5,34	0,47	24,75	2,71	9,04	1,69	3,32	3,13
Sólidos totais (mg/L)	32	36,79	28,00	25,41	8,50	99,00	17,00	50,00	1,15	0,56	0,00
Sólidos dissolvidos totais (mg/L)	32	8,69	9,00	1,46	4,95	12,00	7,75	10,00	-0,18	0,29	0,00
Sulfato (mg/L)	32	1,22	1,00	1,44	0,10	8,00	0,11	2,00	3,47	16,01	3,13
Sulfeto (mg/L)	32	0,005	0,002	0,006	0,001	0,020	0,001	0,005	1,78	1,78	21,88
Temperatura da água (°C)	32	27,2	27,2	1,8	23,2	30,1	26,4	28,3	-0,31	-0,16	3,13
Transparência (m)	32	0,95	0,88	0,37	0,40	1,87	0,66	1,14	0,80	0,12	3,13
Turbidez (NTU)	32	19,30	9,93	34,55	1,00	164,00	5,62	15,15	3,61	12,75	9,38
Zinco total (mg/L)	32	0,07	0,01	0,08	0,01	0,30	0,01	0,12	1,33	0,86	3,13

Tabela IV.12: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.06) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef Curtose	% Outliers
Alcalinidade (mg/L)	26	9,77	9,00	3,57	2,00	16,00	7,00	12,00	0,11	-0,54	0,00
Alumínio dissolvido (mg/L)	26	0,20	0,08	0,32	0,01	1,20	0,01	0,19	2,25	4,41	15,38
Bário total (mg/L)	26	0,035	0,028	0,022	0,005	0,095	0,021	0,054	0,88	0,63	0,00
Cálcio (mg/L)	26	3,13	2,56	2,42	0,08	8,61	1,45	4,80	0,70	-0,35	0,00
Carbono orgânico dissolvido (mg/L)	26	1,66	1,02	1,56	0,01	6,21	0,73	2,33	1,54	1,89	3,85
Carbono orgânico total (mg/L)	26	2,12	1,51	1,69	0,01	6,43	0,98	3,10	1,13	0,42	3,85
Cloreto (mg/L)	26	3,83	3,50	1,98	0,50	8,00	2,50	5,50	0,40	-0,17	0,00
Clorofila-a (µg/L)	26	0,74	0,30	1,14	0,24	5,77	0,30	0,72	3,85	16,21	7,69
Cobre dissolvido (mg/L)	26	0,004	0,003	0,004	0,003	0.020	0,003	0,003	3,74	13,95	11,54
Coliformes termotolerantes (NMP/100ml)	26	174	152	163	10	810	60	233	2,45	8,78	3,85
Condutividade elétrica (µS/cm)	26	14,28	14,62	2,54	9,00	19,92	12,00	16,00	0,00	-0,08	0,00
Cor (mg Pt-Co/L)	26	71,46	46,15	56,95	3,00	183,00	22,00	113,00	0,63	-0,94	0,00
Demanda Bioquímica de Oxigênio (mg/L)	26	1,88	1,90	0,91	0,50	3,80	1,10	2,51	0,03	-0,63	0,00
Demanda Química de Oxigênio (mg/L)	26	6,84	3,90	6,19	2,00	21,00	3,00	8,00	1,42	0,62	15,38
Dureza (mg/L)	26	9,33	6,00	7,57	2,50	36,00	4,00	12,00	2,11	5,26	3,85
Fenóis (mg/L)	26	0,021	0,003	0,033	0,002	0,115	0,003	0,035	1,83	2,47	3,63 7,69
Ferro dissolvido (mg/L)	26	0,021	0,003	0,20	0,002	0,113	0,003	0,033	1,88	2,47	11,54
, - /		0,13	0,02	· · · · · · · · · · · · · · · · · · ·	0,01		0,01				
Fluoreto (mg/L)	26 26		0,04	0,06	0,000	0,27		0,10	2,11	5,09	3,85
Fósforo orgânico (mg/L)		0,103	,	0,362	,	1,864	0,005	0,041	4,99	25,21	15,38
Fósforo total (mg/L)	26	0,060	0,035	0,067	0,004	0,222	0,005	0,084	1,07	-0,06	3,85
Magnésio total (mg/L)	26	1,06	0,74	1,16	0,04	4,80	0,43	0,97	2,13	4,53	15,38
Manganês total (mg/L)	26	0,043	0,022	0,103	0,007	0,547	0,017	0,030	5,02	25,45	3,85
Nitrato (mg/L)	26	0,25	0,10	0,38	0,10	1,40	0,10	0,10	2,50	4,87	23,08
Nitrito (mg/L)	26	0,005	0,001	0,008	0,001	0,032	0,001	0,007	2,11	4,00	11,54
Nitrogênio amoniacal (mg/L)	26	0,15	0,02	0,24	0,02	0,80	0,02	0,35	1,71	1,99	0,00
Ortofos fato (mg/L)	26	0,069	0,020	0,196	0,005	1,020	0,005	0,068	4,91	24,65	3,85
Oxigênio dissolvido (mg/L)	26	7,09	7,16	0,68	5,40	8,84	6,76	7,50	-0,09	1,43	7,69
pН	26	6,42	6,26	0,67	4,84	7,87	6,15	6,68	0,11	0,70	11,54
Potássio (mg/L)	26	0,65	0,68	0,29	0,05	1,15	0,48	0,81	-0,32	-0,26	0,00
Potencial redox (mV)	26	249,6	246,0	75,1	90,0	451,0	214,0	281,0	0,35	1,61	11,54
Sílica (mg/L)	26	4,85	4,50	3,42	0,66	13,00	2,15	5,40	1,18	0,99	11,54
Sódio (mg/L)	26	2,66	2,74	1,57	0,81	6,80	1,36	3,74	0,73	0,11	0,00
Sólidos totais (mg/L)	26	23,60	19,00	13,71	8,00	61,00	14,00	31,00	1,31	1,36	3,85
Sólidos dissolvidos totais (mg/L)	26	9,36	9,50	2,26	6,23	16,00	7,00	11,00	0,82	1,39	0,00
Sulfato (mg/L)	26	1,32	1,25	0,41	0,86	2,00	0,95	1,59	0,62	-1,00	0,00
Sulfeto (mg/L)	26	0,002	0,001	0,002	0,001	0,010	0,001	0,001	3,37	10,16	7,69
Temperatura da água (°C)	26	29,0	28,9	1,5	26,0	32,6	28,1	30,1	0,29	0,19	0,00
Transparência (m)	26	1,77	1,82	0,87	0,57	3,83	0,94	2,58	0,44	-0,58	0,00
Turbidez (NTU)	26	10,22	5,18	10,12	0,69	31,70	2,01	17,60	0,82	-0,78	0,00
Zinco total (mg/L)	26	0,04	0,04	0,02	0,01	0,08	0,03	0,06	0,36	-1,08	0,00

Tabela IV.13: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.07) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef Curtose	% Outliers
Alcalinidade (mg/L)	32	21,75	16,50	22,64	2,00	87,50	5,50	30,00	1,76	2,76	9,38
Alumínio dissolvido (mg/L)	32	0,25	0,14	0,27	0,00	1,09	0,04	0,38	1,45	2,10	3,13
Bário total (mg/L)	32	0,034	0,031	0,032	0,003	0,142	0,005	0,052	1,40	2,83	3,13
Cálcio (mg/L)	32	12,18	7,37	12,35	0,08	46,64	3,14	20,41	1,28	1,21	3,13
Carbono orgânico dissolvido (mg/L)	32	2,22	2,09	1,20	0,58	5,01	1,06	3,17	0,62	-0,43	0,00
Carbono orgânico total (mg/L)	32	2,33	2,24	1,22	0,59	5,05	1,10	3,25	0,56	-0,59	0,00
Cloreto (mg/L)	32	6,81	6,81	4,32	0,59	16,50	3,60	10,45	0,24	-0,79	0,00
Clorofila-a (µg/L)	32	1,74	1,47	1,20	0,30	5,04	0,76	2,60	0,86	0,46	0,00
Cobre dissolvido (mg/L)	32	0,005	0,003	0,004	0,001	0,022	0,003	0,008	2,01	5,34	3,13
Coliformes termotolerantes (NMP/100ml)	32	199	13	518	0,001	,	9	72	3,09	8,63	*
Condutividade elétrica (µS/cm)	32			3,15		2000		15,50			15,63 3,13
3 /		14,48	14,07		10,00	28,00	13,00	,	2,51	10,58	-
Cor (mg Pt-Co/L)	32	44,59	22,50	44,18	5,10	193,00	17,00	66,50	1,84	3,43	6,25
Demanda Bioquímica de Oxigênio (mg/L)	32	1,82	1,70	1,26	0,10	6,00	1,00	2,47	1,32	2,87	3,13
Demanda Química de Oxigênio (mg/L)	32	5,47	5,00	3,17	1,00	13,00	3,00	7,50	0,72	-0,15	0,00
Dureza (mg/L)	32	12,88	12,00	7,06	3,00	28,00	6,00	17,00	0,67	-0,62	0,00
Fenóis (mg/L)	32	0,014	0,004	0,033	0,001	0,187	0,001	0,013	4,87	25,74	9,38
Ferro dissolvido (mg/L)	32	0,20	0,11	0,21	0,01	0,94	0,05	0,29	1,93	4,42	6,25
Fluoreto (mg/L)	32	0,06	0,04	0,05	0,01	0,26	0,04	0,05	3,05	10,16	21,88
Fósforo orgânico (mg/L)	32	0,039	0,004	0,108	0,004	0,598	0,004	0,035	4,85	25,17	9,38
Fósforo total (mg/L)	32	0,069	0,003	0,184	0,003	0,947	0,003	0,049	4,10	17,90	12,50
Magnésio total (mg/L)	32	1,36	0,90	1,37	0,04	5,60	0,40	1,70	1,73	2,66	9,38
Manganês total (mg/L)	32	0,028	0,014	0,029	0,004	0,108	0,007	0,038	1,39	1,22	6,25
Nitrato (mg/L)	32	0,07	0,10	0,04	0,01	0,10	0,03	0,10	-0,52	-1,71	0,00
Nitrito (mg/L)	32	0,004	0,002	0,008	0,001	0,037	0,001	0,003	3,22	11,38	15,63
Nitrogênio amoniacal (mg/L)	32	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,38	3,91	12,50
Ortofosfato (mg/L)	32	0,030	0,023	0,059	0,005	0,349	0,005	0,023	5,37	29,80	6,25
Oxigênio dissolvido (mg/L)	32	6,72	6,43	0,99	4,22	8,56	6,01	7,34	-0,05	-0,11	0,00
рН	32	6,81	6,59	0,72	5,56	8,51	6,44	7,32	0,42	-0,30	0,00
Potássio (mg/L)	32	0,82	0,77	0,73	0,02	2,52	0,12	1,38	0,55	-0,81	0,00
Potencial redox (mV)	32	232,8	240,5	74,6	87,0	381,0	180,5	288,5	-0,35	-0,49	0,00
Sílica (mg/L)	32	6,74	7,00	2,50	1,00	12,80	5,15	8,05	-0,01	0,34	3,13
Sódio (mg/L)	32	6,65	4,75	4,91	1,04	20,19	3,05	8,64	1,29	1,14	6,25
Sólidos totais (mg/L)	32	45,13	38,99	30,94	9,00	143,00	21,50	59,50	1,29	1,86	3,13
Sólidos dissolvidos totais (mg/L)	32	8,94	9,00	2,06	5,50	18,00	7,98	10,00	2,68	11,78	3,13
Sulfato (mg/L)	32	1,31	1,00	1,57	0,10	9,00	0,56	2,00	3,95	19,40	3,13
Sulfeto (mg/L)	32	0,005	0,002	0,007	0,001	0,030	0,001	0,003	2,44	5,87	21,88
Temperatura da água (°C)	32	27,7	27,5	2,1	24,0	33,8	26,7	28,9	0,53	1,22	3,13
Transparência (m)	32	0,95	0,83	0,36	0,46	1,90	0,72	1,24	0,73	-0,08	0,00
Turbidez (NTU)	32	18,10	8,80	42,56	2,00	248,00	5,10	14,85	5,41	30,03	6,25
Zinco total (mg/L)	32	0,05	0.03	0,06	0,01	0,28	0,01	0,06	2,58	8,57	6,25

Tabela IV.14: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.07) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef Curtose	% Outliers
Alcalinidade (mg/L)	26	13,65	11,00	15,87	2,00	90,00	10,00	14,00	4,79	23,86	7,69
Alumínio dissolvido (mg/L)	26	0,13	0,03	0,26	0,01	1,13	0,01	0,09	2,91	8,54	15,38
Bário total (mg/L)	26	0,037	0,033	0,024	0,005	0,088	0,019	0,052	0,67	-0,31	0,00
Cálcio (mg/L)	26	3,86	4,01	2,37	0,08	8,21	1,95	5,53	0,22	-0,86	0,00
Carbono orgânico dissolvido (mg/L)	26	1,88	1,12	1,58	0,01	5,14	0,84	2,81	0,99	-0,28	0,00
Carbono orgânico total (mg/L)	26	2,37	1,92	1,72	0,01	6,41	1,00	3,04	0,88	-0,20	3,85
Cloreto (mg/L)	26	3,50	3,25	2,41	0,50	11,00	1,60	4,50	1,66	3,17	7,69
Clorofila-a (µg/L)	26	0,78	0,30	0,86	0,24	4,09	0,30	0,96	2,58	8,25	3,85
Cobre dissolvido (mg/L)	26	0,006	0,003	0,015	0,003	0,079	0,003	0,003	5,10	26,00	3,85
Coliformes termotolerantes (NMP/100ml)	26	188	98	161	10	473	73	381	0,57	-1,37	0,00
Condutividade elétrica (µS/cm)	26	14,37	14,81	2,91	6,00	19,56	13,00	16,00	-0,66	1,59	3,85
Cor (mg Pt-Co/L)	26	70,85	48,50	69,13	4,00	276,00	17,00	113,00	1,26	1,42	3,85
Demanda Bioquímica de Oxigênio (mg/L)	26	2,04	1,79	1,03	0,50	4,70	1,38	2,55	0,77	0,35	3,85
Demanda Química de Oxigênio (mg/L)	26	8,23	5,50	7,11	1,00	28,00	3,00	10,00	1,59	1,91	7,69
Dureza (mg/L)	26	8,31	7,00	4,83	1,00	20,00	4,00	10,00	0,84	0,18	3,85
Fenóis (mg/L)	26	0,023	0,003	0,034	0,003	0,144	0,003	0,039	2,17	5,20	3,85
Ferro dissolvido (mg/L)	26	0,13	0,003	0,17	0,003	0,53	0,01	0,26	1,17	0,02	0,00
Fluoreto (mg/L)	26	0,07	0,04	0,06	0,01	0,24	0,04	0,07	2,25	4,85	11,54
Fósforo orgânico (mg/L)	26	0,082	0,013	0,211	0,000	0,882	0,005	0,035	3,32	10,43	15,38
Fós foro total (mg/L)	26	0,119	0,045	0,208	0,005	0,882	0,005	0,136	2,90	8,47	7,69
Magnésio total (mg/L)	26	1,03	0,68	1,00	0,003	4,32	0,41	1,87	1,72	3,41	3,85
Manganês total (mg/L)	26	0,031	0,020	0,055	0,007	0,296	0,016	0,028	4,84	24,19	3,85
Nitrato (mg/L)	26	0,25	0,10	0,39	0,10	1,80	0,10	0,020	3,19	10,54	23,08
Nitrito (mg/L)	26	0,007	0,001	0,014	0,001	0,063	0,001	0,008	3,28	12,09	11,54
Nitrogênio amoniacal (mg/L)	26	0,16	0,001	0,30	0,001	1,34	0,001	0,000	2,82	9,17	19,23
Ortofosfato (mg/L)	26	0,037	0,021	0,042	0,005	0,185	0,005	0,072	1,89	4,76	3,85
Oxigênio dissolvido (mg/L)	26	7,06	7,24	0,59	5,54	7,90	6,80	7,48	-0,84	0,18	3,85
()	26	6,56	6,45	0,47	5,90	7,90 7,87	6,22	6,68	1,32	1,42	5,65 7,69
pH Potássio (mg/L)	26	0,73	0,70	0,62	0,08	3,45	0,45	0,84	3,49	15,37	3,85
Potencial redox (mV)	26	244,2	247,0	66,5	102,0	429,0	202,0	263,0	0,61	1,96	3,63 11,54
` /	26		-		,						
Sílica (mg/L)	26 26	5,11 2,74	4,50	3,38 2,07	1,00	12,00	2,20 1,00	7,00 3,65	0,55 1,62	-0,64 2,99	0,00 3,85
Sódio (mg/L)			2,16	*	0,87	9,35					
Sólidos dissolvidos totais (mg/L)	26	23,77	19,00	16,26	8,00	65,00	12,00	29,00	1,33	0,94	11,54
Sólidos dissolvidos totais (mg/L)	26	9,21	9,50	3,05	3,00	18,00	8,00	10,00	0,55	2,64	15,38
Sulfato (mg/L)	26	1,45	1,35	0,57	0,77	3,00	1,00	2,00	0,92	0,41	0,00
Sulfeto (mg/L)	26	0,002	0,001	0,006	0,001	0,030	0,001	0,001	5,10	26,00	3,85
Temperatura da água (°C)	26	28,8	28,6	1,7	26,1	33,2	27,6	30,0	0,76	0,46	0,00
Transparência (m)	26	1,64	1,66	0,83	0,59	3,91	0,90	2,08	0,87	0,62	3,85
Turbidez (NTU)	26	14,28	5,26	17,91	0,50	77,20	2,63	18,60	2,13	5,26	7,69
Zinco total (mg/L)	26	0,04	0,04	0,02	0,01	0,07	0,03	0,05	-0,24	-0,77	0,00

Tabela IV.15: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.09) – fase pré-enchimento

				•					· · · · · · · · · · · · · · · · · · ·		
Parâmetros	N° de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	32	27,95	14,50	28,41	3,00	132,50	10,50	43,75	2,02	4,77	3,13
Alumínio dissolvido (mg/L)	32	0,25	0,16	0,33	0,00	1,54	0,03	0,36	2,36	6,89	6,25
Bário total (mg/L)	32	0,065	0,053	0,063	0,003	0,215	0,009	0,097	0,97	0,08	0,00
Cálcio (mg/L)	32	14,34	12,09	12,57	0,08	48,50	4,25	19,32	1,11	0,91	6,25
Carbono orgânico dissolvido (mg/L)	32	3,52	2,21	3,40	1,28	18,18	1,71	3,73	3,05	11,03	12,50
Carbono orgânico total (mg/L)	32	3,94	2,66	3,57	1,38	19,92	2,08	4,44	3,27	12,94	6,25
Cloreto (mg/L)	32	6,59	7,22	3,68	0,50	13,00	3,25	9,67	-0,20	-0,99	0,00
Clorofila-a (µg/L)	32	0,64	0,48	0,54	0,01	2,93	0,32	0,72	2,90	10,33	6,25
Cobre dissolvido (mg/L)	32	0,005	0,003	0,006	0,001	0,028	0,003	0,005	3,23	10,31	18,75
Coliformes termotolerantes (NMP/100ml)	32	1224	118	3987	0	22000	43	515	4,94	25,70	15,63
Condutividade elétrica (µS/cm)	32	29,31	27,40	9,05	13,00	56,00	23,25	34,50	0,81	1,14	3,13
Cor (mg Pt-Co/L)	32	89,34	50,00	157,89	10,00	909,00	31,00	81,00	4,84	25,20	9,38
Demanda Bioquímica de Oxigênio (mg/L)	32	2,08	2,15	1,28	0,20	4,85	1,00	2,95	0,15	-0,79	0,00
Demanda Química de Oxigênio (mg/L)	32	5,86	4,50	3,41	2,00	15,00	3,00	8,00	0,92	0,30	0,00
Dureza (mg/L)	32	13,03	12,00	7,97	3,00	41,20	8,00	15,00	1,88	4,44	9,38
Fenóis (mg/L)	32	0,018	0,004	0,030	0,001	0,117	0,002	0,017	2,11	3,65	15,63
Ferro dissolvido (mg/L)	32	0,25	0,21	0,21	0,01	0,99	0,08	0,40	1,34	2,98	3,13
Fluoreto (mg/L)	32	0,07	0,05	0,06	0,02	0,33	0,04	0,06	3,24	11,64	12,50
Fósforo orgânico (mg/L)	32	0,023	0,004	0,047	0,004	0,229	0,004	0,026	3,36	12,29	9,38
Fósforo total (mg/L)	32	0,154	0,004	0,594	0,003	3,336	0,003	0,046	5,31	29,02	15,63
Magnésio total (mg/L)	32	1,36	0,99	1,36	0,40	6,80	0,40	1,69	2,42	7,55	3,13
Manganês total (mg/L)	32	0.052	0,012	0,065	0,004	0,266	0,007	0,086	1,66	2,57	3,13
Nitrato (mg/L)	32	0,07	0,10	0,04	0,01	0,10	0,02	0,10	-0,63	-1,61	0,00
Nitrito (mg/L)	32	0,005	0,002	0,009	0,001	0,028	0,001	0,002	2,02	2,57	21,88
Nitrogênio amoniacal (mg/L)	32	0.03	0,02	0,03	0,02	0,10	0,02	0,02	2,38	3,91	12,50
Ortofosfato (mg/L)	32	0,061	0,023	0,212	0,005	1,219	0,023	0,027	5,58	31,41	31,25
Oxigênio dissolvido (mg/L)	32	6,92	6,88	1,22	4,46	9,83	6,12	7,52	0,28	0,09	3,13
pH	32	6,62	6,50	0,56	5,73	7,82	6,29	7,04	0,25	-0,70	0,00
Potássio (mg/L)	32	2,52	2,26	2,09	0,04	8,27	1,17	3,41	1,15	1,25	6,25
Potencial redox (mV)	32	228,1	231,5	52,3	126,0	318,0	183,0	270,0	-0,20	-1,09	0,00
Sílica (mg/L)	32	11,70	13,00	4,75	1,00	19,00	8,55	15,55	-0,66	-0,46	0,00
Sódio (mg/L)	32	7,87	7,23	5,18	2,08	26,04	3,88	9,92	1,69	3,94	6,25
Sólidos totais (mg/L)	32	52,12	48,00	24,87	11,00	104,40	30,50	68,50	0,48	-0,57	0,00
Sólidos dissolvidos totais (mg/L)	32	18,55	16,00	5,77	8,00	36,00	14,87	22,00	0,93	1,34	3,13
Sulfato (mg/L)	32	1,53	1,50	1,60	0,10	9,00	0,56	2,00	3,34	15,49	3,13
Sulfeto (mg/L)	32	0,006	0,002	0,009	0,001	0,040	0,001	0,009	2,14	4,73	18,75
Temperatura da água (°C)	32	25,2	24,8	2,5	21,8	33,8	24,2	25,3	2,32	6,37	15,63
Transparência (m)	24	0,55	0,55	0,16	0,20	0,90	0,49	0,67	-0,10	0,26	4,17
Turbidez (NTU)	32	35,99	13,40	82,15	2,61	408,00	9,34	17,80	3,92	15,53	15,63
Zinco total (mg/L)	32	0,06	0,03	0,07	0,01	0,27	0,01	0.08	1,72	2,44	6,25
Zinco total (nig/L)	34	0,00	0,03	0,07	0,01	0,47	0,01	0,00	1,/∠	∠, '1'1	0,23

Tabela IV.16: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.09) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	26	11,42	11,00	5,06	3,00	26,00	8,00	13,00	1,25	1,96	7,69
Alumínio dissolvido (mg/L)	26	0,13	0,05	0,31	0,01	1,56	0,01	0,08	4,27	19,52	11,54
Bário total (mg/L)	26	0,034	0,032	0,022	0,005	0,076	0,015	0,053	0,17	-1,16	0,00
Cálcio (mg/L)	26	2,68	2,45	2,21	0,08	8,00	0,80	3,65	0,91	0,52	3,85
Carbono orgânico dissolvido (mg/L)	26	1,54	1,05	1,30	0,01	4,49	0,80	1,99	1,06	0,09	11,54
Carbono orgânico total (mg/L)	26	1,93	1,37	1,46	0,01	5,19	1,00	2,45	1,07	0,00	7,69
Cloreto (mg/L)	26	3,09	2,00	2,09	0,50	9,00	1,50	4,50	1,33	1,40	0,00
Clorofila-a (µg/L)	26	0,59	0,30	0,42	0,24	1,50	0,30	0,96	1,07	-0,28	0,00
Cobre dissolvido (mg/L)	26	0,003	0,003	0,002	0,003	0,013	0,003	0,003	5,10	26,00	3,85
Coliformes termotolerantes (NMP/100ml)	26	51	10	73	10	288	10	60	2,40	5,56	7,69
Condutividade elétrica (µS/cm)	26	16,19	15,50	4,55	8,00	28,00	13,00	19,00	0,69	0,66	0,00
Cor (mg Pt-Co/L)	26	56,87	47,00	49,61	4,00	167,00	10,60	97,00	0,58	-0,77	0,00
Demanda Bioquímica de Oxigênio (mg/L)	26	1,75	1,63	0,87	0,30	3,60	1,10	2,30	0,41	-0,34	0,00
Demanda Química de Oxigênio (mg/L)	26	9,04	6,00	8,35	1,00	30,00	3,00	11,00	1,39	1,05	11,54
Dureza (mg/L)	26	7,92	8,00	5,40	2,50	28,00	4,00	10,00	2,13	6,81	3,85
Fenóis (mg/L)	26	0,020	0,003	0,029	0,002	0,121	0,003	0,031	2,05	4,65	3,85
Ferro dissolvido (mg/L)	26	0,07	0,01	0,09	0,01	0,29	0,01	0,13	1,11	-0,02	0,00
Fluoreto (mg/L)	26	0,07	0,04	0,06	0,01	0,26	0,04	0,10	2,01	4,16	3,85
Fós foro orgânico (mg/L)	26	0,065	0,005	0,167	0,000	0,814	0,005	0,031	4,03	17,34	23,08
Fósforo total (mg/L)	26	0,090	0,033	0,181	0,005	0,865	0,005	0,093	3,60	14,37	7,69
Magnésio total (mg/L)	26	1,07	0,74	0,95	0,04	3,37	0,29	1,48	1,17	0,72	7,69
Manganês total (mg/L)	26	0,024	0,020	0,023	0,007	0,115	0,011	0,025	2,78	9,08	7,69
Nitrato (mg/L)	26	0,28	0,10	0,44	0,10	1,80	0,10	0,20	2,61	6,06	15,38
Nitrito (mg/L)	26	0,005	0,001	0,009	0,001	0,028	0,001	0,003	1,90	2,08	19,23
Nitrogênio amoniacal (mg/L)	26	0,14	0,02	0,26	0,02	1,22	0,02	0,24	3,07	11,08	3,85
Ortofos fato (mg/L)	26	0,032	0,017	0,032	0,005	0,107	0,005	0,058	0,79	-0,64	0,00
Oxigênio dissolvido (mg/L)	26	6,81	6,86	0,61	5,75	7,90	6,40	7,30	0,07	-0,79	0,00
рН	26	6,32	6,27	0,51	5,09	7,07	6,00	6,82	-0,41	-0,19	0,00
Potássio (mg/L)	26	0,84	0,73	0,58	0,05	2,53	0,53	0,93	1,51	2,73	11,54
Potencial redox (mV)	26	243,4	253,0	63,0	89,6	412,0	211,0	280,0	-0.05	1,92	7,69
Sílica (mg/L)	26	5,50	4,30	4,27	1,00	17,00	2,10	7,00	1,38	1,44	7,69
Sódio (mg/L)	26	2,37	2,23	1,90	0,06	6,71	0,77	3,09	0,64	-0,40	3,85
Sólidos totais (mg/L)	26	17,75	15,50	9,02	2,00	37,50	12,00	24,00	0,68	0,04	0,00
Sólidos dissolvidos totais (mg/L)	26	11,09	10,96	5,29	2,00	28,00	8,00	12,00	1,44	3,49	11,54
Sulfato (mg/L)	26	1,29	1,04	0,44	0,62	2,00	1,00	1,59	0,76	-0,85	0,00
Sulfeto (mg/L)	26	0,001	0,001	0,002	0,001	0,010	0,001	0,001	5,10	26,00	3,85
Temperatura da água (°C)	26	29,9	30,1	1,8	25,9	32,8	28,6	31,5	-0,41	-0,58	0,00
Transparência (m)	26	1,82	2,14	0,82	0,01	3,00	1,11	2,40	-0,56	-0,73	0,00
Turbidez (NTU)	26	5,70	2,54	6,15	0,23	20,10	1,03	10,60	1,10	-0,08	0,00
Zinco total (mg/L)	26	0.09	0.03	0,28	0,01	1,48	0,02	0,04	5,05	25,67	7,69
Zinco total (liig/1)	20	0,07	0,00	0,20	0,01	1,70	0,02	0,01	2,02	22,01	1,07

Tabela IV.17: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.10) – fase pré-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	32	22,21	14,00	20,06	2,00	67,50	8,50	32,50	1,11	-0,15	0,00
Alumínio dissolvido (mg/L)	32	0,28	0,14	0,39	0,01	1,70	0,01	0,36	2,33	5,70	6,25
Bário total (mg/L)	32	0,055	0,046	0,054	0,003	0,187	0,007	0,076	1,07	0,13	3,13
Cálcio (mg/L)	32	13,26	11,21	12,13	0,08	47,61	4,36	19,34	1,13	0,99	3,13
Carbono orgânico dissolvido (mg/L)	32	2,99	2,09	2,38	1,07	10,73	1,62	3,26	2,32	5,29	12,50
Carbono orgânico total (mg/L)	32	3,43	2,62	2,76	1,40	14,34	1,84	3,51	2,79	8,50	12,50
Cloreto (mg/L)	32	6,74	6,78	3,91	0,50	15,20	4,75	9,63	0,05	-0,66	0,00
Clorofila-a (µg/L)	32	0,80	0,51	0,98	0,01	5,54	0,41	0,84	4,11	18,94	6,25
Cobre dissolvido (mg/L)	32	0,011	0,003	0,019	0,001	0,085	0,003	0,009	3,27	10,49	12,50
Coliformes termotolerantes (NMP/100ml)	32	2486	61	10988	0	62000	15	316	5,46	30,38	9,38
Condutividade elétrica (µS/cm)	32	21,89	21,00	7,45	6,25	44,00	17,35	25,00	1,10	2,58	6,25
Cor (mg Pt-Co/L)	32	78,22	56,50	77,60	4,00	357,00	25,00	101,00	2,15	5,47	6,25
Demanda Bioquímica de Oxigênio (mg/L)	32	1,86	1,70	1,12	0,10	5,62	1,15	2,35	1,20	2,96	3,13
Demanda Química de Oxigênio (mg/L)	32	5,68	4,50	4,05	1,00	15,00	3,00	7,50	1,14	0,39	6,25
Dureza (mg/L)	32	11,66	10,00	7,43	4,00	34,00	6,00	15,00	1,40	1,54	3,13
Fenóis (mg/L)	32	0,019	0,004	0,043	0,001	0,230	0,001	0,015	4,11	19,07	15,63
Ferro dissolvido (mg/L)	32	0,26	0,26	0,21	0,01	0,79	0,09	0,39	0,80	0,25	0,00
Fluoreto (mg/L)	32	0,06	0,04	0,04	0,03	0,24	0,04	0,07	3,30	13,56	9,38
Fós foro orgânico (mg/L)	32	0,029	0,004	0,066	0,004	0,314	0,004	0,014	3,33	11,67	18,75
Fós foro total (mg/L)	32	0,057	0,003	0,129	0,003	0,628	0,003	0,025	3,31	12,38	21,88
Magnésio total (mg/L)	32	1,18	0,67	1,06	0,04	3,85	0,40	1,80	1,17	0,19	0,00
Manganês total (mg/L)	32	0,040	0,014	0,049	0,004	0,214	0,007	0,067	1,93	4,16	3,13
Nitrato (mg/L)	32	0,07	0,10	0,04	0,01	0,10	0,02	0,10	-0,58	-1,67	0,00
Nitrito (mg/L)	32	0,005	0,002	0,007	0,001	0,023	0,001	0,003	2,03	2,71	21,88
Nitrogênio amoniacal (mg/L)	32	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,38	3,91	12,50
Ortofos fato (mg/L)	32	0,031	0,023	0,040	0,005	0,194	0,023	0,023	3,19	10,34	34,38
Oxigênio dissolvido (mg/L)	32	6,96	7,07	1,01	4,84	8,72	6,30	7,80	-0,41	-0,68	0,00
рН	32	6,50	6,51	0,56	5,14	7,50	6,18	6,88	-0,51	0,31	0,00
Potássio (mg/L)	32	2,24	1,76	2,00	0,02	7,23	1,00	2,90	1,26	0,92	12,50
Potencial redox (mV)	32	222,4	214,5	51,7	139,0	321,0	178,0	262,0	0,26	-0,80	0,00
Sílica (mg/L)	32	9.03	9,00	3,90	3,00	22,00	6,70	11,05	1,02	2,70	3,13
Sódio (mg/L)	32	8,13	5,85	6,34	1,98	27,78	3,45	10,85	1,61	2,59	6,25
Sólidos totais (mg/L)	32	42,16	36,00	24,77	11,00	89,00	21,00	59,00	0,55	-0,93	0,00
Sólidos dissolvidos totais (mg/L)	32	13,56	12,80	5,50	2,00	29,00	11,00	16,00	0,83	1,91	9,38
Sulfato (mg/L)	32	1,93	1,00	2,55	0,10	10,00	0,56	2,00	2,44	5,32	9,38
Sulfeto (mg/L)	32	0,006	0,002	0,013	0,001	0,070	0,001	0,002	4,44	21,87	21,88
Temperatura da água (°C)	32	25,1	24,9	2,2	22,3	33,8	24,1	25,5	2,32	7,71	9,38
Transparência (m)	22	0,53	0,50	0,23	0,10	1,03	0,41	0,68	0,37	0,66	0,00
Turbidez (NTU)	32	15,34	11,90	13,69	1,80	71,10	6,22	19,20	2,48	8,29	6,25
Zinco total (mg/L)	32	0,04	0,01	0,06	0,01	0,26	0,01	0,06	2,55	6,49	9,38
Zinco total (liig/L)	J4	0,07	0,01	0,00	0,01	0,20	0,01	0,00	4,00	0,77	7,50

Tabela IV.18: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.10) – fase pós-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef Curtose	% Outliers
Alcalinidade (mg/L)	26	10,58	11,00	2,84	6,00	17,00	8,00	12,00	0,43	-0,19	0,00
Alumínio dissolvido (mg/L)	26	0,05	0,03	0,08	0,01	0,33	0,01	0,05	2,97	8,60	7,69
Bário total (mg/L)	26	0,036	0,029	0,025	0,005	0,095	0,017	0,058	0,68	-0,39	0,00
Cálcio (mg/L)	26	3,87	3,50	2,55	0,08	10,15	2,20	5,66	0,58	-0,08	0,00
Carbono orgânico dissolvido (mg/L)	26	1,38	1,01	1,12	0,01	3,82	0,52	2,09	0,93	-0,24	0,00
Carbono orgânico total (mg/L)	26	1,85	1,57	1,22	0,01	4,58	0,94	2,68	0,80	0,07	0,00
Cloreto (mg/L)	26	3,28	3,00	1,76	0,50	7,00	2,00	4,50	0,50	-0,52	0,00
Clorofila-a (µg/L)	26	0,71	0,39	0,77	0,24	3,84	0,30	0,72	3,02	10,65	11,54
Cobre dissolvido (mg/L)	26	0,003	0,003	0,001	0,003	0,008	0,003	0,003	5,10	26,00	3,85
Coliformes termotolerantes (NMP/100ml)		55	10	94	10	448	10	60	3,25	12,42	15,38
Condutividade elétrica (µS/cm)	26	15,48	16,42	3,57	7,00	22,00	12,35	18,00	-0,41	-0,20	0,00
Cor (mg Pt-Co/L)	26	55,00	39,45	50,54	4,00	165,00	15,10	74,10	1,07	0,06	3,85
Demanda Bioquímica de Oxigênio (mg/L)	26	1,89	2,08	0,96	0,30	3,63	1,03	2,70	-0,03	-1,00	0,00
Demanda Química de Oxigênio (mg/L)	26	8,12	4,50	8,17	1,00	33,00	3,00	9,00	1,69	2,30	19,23
	26	8,52	4,30 8,00	5,22	3,00	-	6,00	10,00		2,30 7,06	3,85
Dureza (mg/L) Fenóis (mg/L)	26	0,018	0,003	0,028		28,00	0,003	0,020	2,25 2,52	7,00	19,23
()			-	,	0,002	0,125					
Ferro dissolvido (mg/L)	26	0,08	0,01	0,10	0,01	0,33	0,01	0,16	1,35	0,56	0,00
Fluoreto (mg/L)	26	0,07	0,04	0,07	0,01	0,31	0,04	0,07	2,61	6,90	11,54
Fósforo orgânico (mg/L)	26	0,053	0,011	0,101	0,000	0,438	0,005	0,060	3,06	9,48	7,69
Fós foro total (mg/L)	26	0,078	0,020	0,114	0,005	0,438	0,005	0,085	2,06	3,99	11,54
Magnésio total (mg/L)	26	1,01	0,69	0,96	0,01	3,84	0,28	1,83	1,10	1,24	0,00
Manganês total (mg/L)	26	0,018	0,016	0,010	0,005	0,041	0,007	0,027	0,49	-0,79	0,00
Nitrato (mg/L)	26	0,25	0,10	0,40	0,10	1,70	0,10	0,10	3,10	9,11	23,08
Nitrito (mg/L)	26	0,004	0,001	0,006	0,001	0,023	0,001	0,005	1,82	2,25	15,38
Nitrogênio amoniacal (mg/L)	26	0,18	0,02	0,31	0,02	1,12	0,02	0,25	2,13	3,78	11,54
Ortofos fato (mg/L)	26	0,039	0,009	0,049	0,005	0,200	0,005	0,057	1,73	3,39	3,85
Oxigênio dissolvido (mg/L)	26	6,96	6,90	0,58	5,83	8,53	6,70	7,25	0,36	1,31	7,69
pН	26	6,34	6,30	0,63	5,06	8,28	6,00	6,51	1,06	3,09	11,54
Potássio (mg/L)	26	0,71	0,65	0,43	0,09	1,99	0,46	0,89	1,04	1,73	3,85
Potencial redox (mV)	26	236,9	236,5	83,8	22,0	424,0	215,0	287,0	-0,60	1,81	11,54
Sílica (mg/L)	26	4,82	4,00	3,23	1,00	12,90	2,02	6,40	0,84	0,08	0,00
Sódio (mg/L)	26	2,19	1,47	1,57	0,27	5,84	1,00	3,90	0,86	-0,46	0,00
Sólidos totais (mg/L)	26	25,62	20,50	16,02	5,00	63,00	14,00	34,00	0,89	-0,20	0,00
Sólidos dissolvidos totais (mg/L)	26	10,86	10,08	5,49	3,85	34,00	8,00	12,00	3,17	13,00	3,85
Sulfato (mg/L)	26	1,37	1,20	0,49	0,64	2,15	1,00	2,00	0,31	-1,51	0,00
Sulfeto (mg/L)	26	0,001	0,001	0,000	0,001	0,001	0,001	0,001		0,00	0,00
Temperatura da água (°C)	26	30,0	29,8	1,4	27,6	32,6	28,8	31,0	0,30	-0,94	0,00
Transparência (m)	26	1,89	1,91	0,98	0,25	3,84	0,96	2,63	0,24	-0,65	0,00
Turbidez (NTU)	26	5,26	2,56	5,52	0,45	16,60	1,10	8,12	1,13	-0,22	0,00
Zinco total (mg/L)	26	0,07	0,03	0,19	0,01	1,02	0,02	0,06	5,00	25,28	3,85

Tabela IV.19: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.11) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coof Curtoso	% Outliers
Alcalinidade (mg/L)	30	25,50	14,50	23,99	3,00	87,50	10,00	35,00	1,30	0,49	3,33
Alumínio dissolvido (mg/L)	30	0,15	0,12	0,18	0,00	0,87	0,02	0,18	2,46	7,92	6,67
Bário total (mg/L)	30	0,041	0,033	0,036	0,003	0,121	0,006	0,065	0,59	-0,91	0,00
Cálcio (mg/L)	30	15,27	10,34	13,68	0,003	42,95	3,64	28,36	0,80	-0,80	0,00
Carbono orgânico dissolvido (mg/L)	30	2,40	2,06	1,48	0,73	6,03	1,14	3,58	0,80	-0,36	0,00
Carbono orgânico total (mg/L)	30	2,40	2,16	1,45	0,73	6,05	1,14	3,63	0,79	-0,37	0,00
Cloreto (mg/L)	30	6,69	5,53	4,66	0,50	19,50	3,00	9,50	0,79	0,36	3,33
Clorofila-a (µg/L)	30	1,08	0,68	*	0,30	-	0,48	1,28			10,00
" E /		· · ·	,	1,03		4,56			2,17	4,72	*
Cobre dissolvido (mg/L)	30	0,004	0,003	0,002	0,001	0,009	0,003	0,004	1,39	1,53	26,67
Coliformes termotolerantes (NMP/100ml)	30	222	24	963	0	5300	9	50	5,40	29,41	6,67
Condutividade elétrica (µS/cm)	30	20,49	20,50	6,27	11,00	31,20	15,00	25,00	0,18	-1,12	0,00
Cor (mg Pt-Co/L)	30	39,20	30,00	39,27	2,00	150,00	14,00	47,00	1,70	2,15	13,33
Demanda Bioquímica de Oxigênio (mg/L)	30	1,66	1,55	0,90	0,20	3,30	0,90	2,30	0,37	-0,91	0,00
Demanda Química de Oxigênio (mg/L)	30	5,57	4,50	4,24	1,00	18,00	3,00	8,00	1,73	3,32	6,67
Dureza (mg/L)	30	14,86	12,30	8,18	5,00	35,30	8,00	18,00	1,13	0,61	6,67
Fenóis (mg/L)	30	0,013	0,003	0,028	0,001	0,148	0,001	0,013	4,23	20,12	10,00
Ferro dissolvido (mg/L)	30	0,27	0,10	0,65	0,01	3,58	0,05	0,21	4,94	25,81	13,33
Fluoreto (mg/L)	30	0,07	0,04	0,06	0,02	0,27	0,04	0,06	2,24	4,28	20,00
Fósforo orgânico (mg/L)	30	0,021	0,004	0,046	0,004	0,224	0,004	0,009	3,66	14,39	23,33
Fós foro total (mg/L)	30	0,037	0,003	0,090	0,003	0,367	0,003	0,020	3,35	10,53	13,33
Magnésio total (mg/L)	30	1,42	0,52	1,37	0,20	4,80	0,40	2,31	1,14	0,31	0,00
Manganês total (mg/L)	30	0,029	0,010	0,036	0,004	0,144	0,007	0,048	1,84	3,04	6,67
Nitrato (mg/L)	30	0,07	0,10	0,04	0,01	0,10	0,01	0,10	-0,56	-1,70	0,00
Nitrito (mg/L)	30	0,004	0,002	0,007	0,001	0,033	0,001	0,002	3,44	12,67	13,33
Nitrogênio amoniacal (mg/L)	30	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,27	3,39	13,33
Ortofosfato (mg/L)	30	0,027	0,023	0,032	0,005	0,153	0,023	0,023	3,31	10,88	36,67
Oxigênio dissolvido (mg/L)	30	6,78	6,73	1,00	4,85	8,37	6,09	7,79	-0,16	-0,92	0,00
рН	30	6,72	6,59	0,51	5,38	8,03	6,48	6,89	0,28	1,69	13,33
Potássio (mg/L)	30	1,02	0,93	0,90	0,01	3,60	0,10	1,76	0,75	0,51	0,00
Potencial redox (mV)	30	238,1	243,5	59,4	87.0	326,0	223,0	287,0	-0,90	0,41	6,67
Sílica (mg/L)	30	5,58	6,00	2,28	1,00	9,60	4,00	7,00	-0,44	-0,54	0,00
Sódio (mg/L)	30	6,45	5,01	5,00	1,00	18,54	2,70	9,03	1,07	0,31	3,33
Sólidos totais (mg/L)	30	41,59	34,00	24,62	10,00	90,00	21,00	57,00	0,71	-0,55	0,00
Sólidos dissolvidos totais (mg/L)	30	12,37	12,85	3,96	6,00	20,00	9,00	15,00	0,12	-0,86	0,00
Sulfato (mg/L)	30	1,20	1,00	1,64	0,10	9,00	0,11	2,00	3,91	18,58	3,33
Sulfeto (mg/L)	30	0,005	0,002	0,005	0,001	0,020	0,001	0,010	1,80	2,66	0,00
Temperatura da água (°C)	30	27,3	27,1	2,0	23,5	32,1	26,0	28,2	0,60	1,02	6,67
	30	1,64	1,60		0,52	-	*		*	-0,91	0,00
Transparência (m)		,	,	0,61		2,77	1,14	2,13	0,14		
Turbidez (NTU)	30	9,93	2,91	14,80	1,70	62,00	2,38	8,81	2,45	5,68	16,67
Zinco total (mg/L)	30	0,05	0,01	0,08	0,01	0,25	0,01	0,04	1,68	1,22	20,00

Tabela IV.20: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.11) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	22	10,45	11,00	4,18	2,00	17,00	9,00	13,00	-0,69	0,15	9,09
Alumínio dissolvido (mg/L)	22	0,09	0,02	0,21	0,01	0,98	0,01	0,10	4,00	17,01	9,09
Bário total (mg/L)	22	0,038	0,038	0,016	0,010	0,068	0,027	0,053	-0,08	-0,63	0,00
Cálcio (mg/L)	22	4,20	4,14	2,70	0,19	10,50	2,17	6,45	0,41	-0,06	0,00
Carbono orgânico dissolvido (mg/L)	22	1,78	1,14	1,39	0,01	5,29	0,83	2,60	1,22	0,59	4,55
Carbono orgânico total (mg/L)	22	2,29	1,73	1,73	0,06	5,85	0,99	3,05	1,03	-0,07	0,00
Cloreto (mg/L)	22	4,05	4,00	1,88	0,50	8,00	3,00	5,00	0,04	-0,13	0,00
Clorofila-a (µg/L)	22	1,06	0,30	1,60	0,24	7,45	0,30	1,34	3,33	12,69	4,55
Cobre dissolvido (mg/L)	22	0,003	0,003	0,001	0,003	0,007	0,003	0,003	4,69	22,00	4,55
Coliformes termotolerantes (NMP/100ml)	22	51	36	49	10	189	10	73	1,33	1,54	4,55
Condutividade elétrica (µS/cm)	22	17,27	16,00	9,34	7,00	52,10	12,00	19,00	2,64	9,17	4,55
Cor (mg Pt-Co/L)	22	56,04	41,10	46,53	4,00	148,00	17,60	89,00	0,61	-1,08	0,00
Demanda Bioquímica de Oxigênio (mg/L)	22	1,90	2,01	0,97	0,40	3,50	1,10	2,60	-0,04	-0,99	0,00
Demanda Química de Oxigênio (mg/L)	22	7,82	8,50	5,31	1,00	18,00	3,00	11,00	0,45	-1,00	0,00
Dureza (mg/L)	22	7,89	6,00	6,20	2,00	30,00	4,00	10,00	2,42	7,22	4,55
Fenóis (mg/L)	22	0,024	0,003	0,035	0,003	0,125	0,003	0,031	1,84	2,63	13,64
Ferro dissolvido (mg/L)	22	0,08	0,01	0,18	0,01	0,65	0,01	0,03	2,49	5,35	18,18
Fluoreto (mg/L)	22	0,05	0,04	0,03	0,04	0,14	0,04	0,04	2,67	6,38	22,73
Fós foro orgânico (mg/L)	22	0,030	0,010	0,043	0,000	0,178	0,005	0,035	2,39	6,20	13,64
Fós foro total (mg/L)	22	0,056	0,031	0,067	0,005	0,259	0,005	0,079	1,66	2,76	4,55
Magnésio total (mg/L)	22	1,00	0,60	1,09	0,03	4,52	0,13	1,84	1,78	4,04	4,55
Manganês total (mg/L)	22	0,023	0,023	0,012	0,006	0,048	0,018	0,031	0,48	0,00	0,00
Nitrato (mg/L)	22	0,24	0,10	0,35	0,10	1,30	0,10	0,10	2,76	6,70	22,73
Nitrito (mg/L)	22	0,007	0,001	0,010	0,001	0,037	0,001	0,008	1,86	2,57	18,18
Nitrogênio amoniacal (mg/L)	22	0,17	0,02	0,30	0,02	1,14	0,02	0,28	2,22	4,73	9,09
Ortofos fato (mg/L)	22	0,033	0,022	0,030	0,005	0,081	0,005	0,065	0,39	-1,65	0,00
Oxigênio dissolvido (mg/L)	22	6,80	6,94	0,77	4,21	7,86	6,56	7,20	-1,89	5,35	4,55
рН	22	6,24	6,27	0,56	4,96	7,68	5,85	6,49	0,19	1,66	4,55
Potássio (mg/L)	22	0,84	0,76	0,58	0,05	2,17	0,56	0,87	1,27	1,21	18,18
Potencial redox (mV)	22	248,2	235,0	70,2	104,0	410,0	215,0	279,0	0,22	0,64	9,09
Sílica (mg/L)	22	5,77	5,06	5,07	0,65	18,00	1,29	7,50	1,18	0,83	9,09
Sódio (mg/L)	22	2,59	2,34	1,72	0,17	5,99	1,02	3,68	0,78	-0,35	0,00
Sólidos totais (mg/L)	22	22,59	14,50	18,07	10,00	85,00	12,00	28,00	2,30	6,03	4,55
Sólidos dissolvidos totais (mg/L)	22	10,63	10,00	5,57	3,85	33,00	8,00	12,00	3,24	13,25	4,55
Sulfato (mg/L)	22	1,20	1,12	0,46	0,47	2,00	0,82	1,46	0,48	-0,69	0,00
Sulfeto (mg/L)	22	0,001	0,001	0,000	0,001	0,001	0,001	0,001	~, . ~	0,00	0,00
Temperatura da água (°C)	22	29,9	30,2	2,3	26,2	35,6	28,2	31,4	0,41	0,47	0,00
Transparência (m)	21	1,74	1,75	0,73	0,60	3,09	0,95	2,33	0,09	-1,19	0,00
Turbidez (NTU)	22	4,89	1,88	7,13	0,50	30,40	1,10	5,41	2,68	7,71	13,64
Zinco total (mg/L)	22	0,03	0,02	0,02	0,01	0,09	0,02	0,04	1,60	2,46	9,09
Zinco total (lig/L)		0,03	0,02	0,02	0,01	0,07	0,02	0,07	1,00	۷,⊤∪	2,07

Tabela IV.21: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.12) – fase pré-enchimento

Parâmetros	N° de dados	Média	Mediana	Desvio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria	Coef. Curtose	% Outliers
Alcalinidade (mg/L)	30	25,31	12,00	27,23	3,00	92,50	8,00	36,00	1,38	0,47	10,00
Alumínio dissolvido (mg/L)	30	0,32	0,23	0,40	0,01	1,85	0,05	0,37	2,31	6,74	10,00
Bário total (mg/L)	30	0,036	0,020	0,034	0,003	0,128	0,005	0,064	0,88	-0,08	0,00
Cálcio (mg/L)	30	12,19	8,31	11,53	0,08	38,70	2,65	16,89	0,98	-0,18	3,33
Carbono orgânico dissolvido (mg/L)	30	3,29	2,38	2,11	0,75	8,37	1,97	4,37	1,05	0,16	3,33
Carbono orgânico total (mg/L)	30	3,52	2,56	2,16	0,83	8,83	2,20	4,79	1,06	0,25	3,33
Cloreto (mg/L)	30	6,76	6,29	4,24	0,50	14,00	2,50	10,80	0,01	-1,26	0,00
Clorofila-a (µg/L)	30	1,38	0,98	0,97	0,30	3,43	0,64	2,16	0,73	-0,73	0,00
Cobre dissolvido (mg/L)	30	0,004	0,003	0,003	0,001	0,011	0,003	0,005	1,34	1,01	13,33
Coliformes termotolerantes (NMP/100ml)	30	377	21	1355	0	6900	9	64	4,40	20,13	10,00
Condutividade elétrica (µS/cm)	30	19,69	19,05	7,43	8,00	38,00	15,00	24,00	0,82	0,34	3,33
Cor (mg Pt-Co/L)	30	73,00	55,00	54,36	10,00	236,00	29,00	115,00	1,06	1,07	0,00
Demanda Bioquímica de Oxigênio (mg/L)	30	2,05	1,85	1,41	0,10	7,00	1,00	2,70	1,52	4,06	3,33
Demanda Química de Oxigênio (mg/L)	30	6,90	7,00	3,80	1,00	15,00	4,00	9,00	0,16	-0,57	0,00
Dureza (mg/L)	30	12,29	10,00	7,51	4,00	40,00	6,00	18,00	1,81	5,07	3,33
Fenóis (mg/L)	30	0,011	0,004	0,015	0,001	0,060	0,001	0,009	1,98	3,17	16,67
Ferro dissolvido (mg/L)	30	0,23	0,24	0,17	0,01	0,59	0,09	0,36	0,42	-0,88	0,00
Fluoreto (mg/L)	30	0,06	0,04	0,05	0,01	0,22	0,04	0,05	2,94	8,49	20,00
Fósforo orgânico (mg/L)	30	0,019	0,004	0,039	0,004	0,162	0,004	0,005	2,84	7,40	16,67
Fós foro total (mg/L)	30	0,038	0,003	0,095	0,003	0,471	0,003	0,033	3,78	15,60	10,00
Magnésio total (mg/L)	30	1,09	0,40	1,14	0,04	5,30	0,40	1,90	2,08	5,28	3,33
Manganês total (mg/L)	30	0,034	0,008	0,044	0,004	0,165	0,007	0,054	1,66	1,86	6,67
Nitrato (mg/L)	30	0,07	0,10	0,04	0,01	0,10	0,03	0,10	-0,71	-1,33	0,00
Nitrito (mg/L)	30	0,005	0,001	0,010	0,001	0,045	0,001	0,002	3,01	8,76	16,67
Nitrogênio amoniacal (mg/L)	30	0,03	0,02	0,03	0,02	0,10	0,02	0,02	2,27	3,39	13,33
Ortofos fato (mg/L)	30	0,024	0,023	0,015	0,005	0,074	0,023	0,023	1,87	5,50	33,33
Oxigênio dissolvido (mg/L)	30	7,14	7,40	1,46	3,35	10,47	6,35	8,00	-0,52	1,56	6,67
рН	30	6,76	6,78	0,41	6,13	7,55	6,40	7,06	0,30	-0,86	0,00
Potássio (mg/L)	30	1,41	1,66	0,93	0,02	3,43	0,52	2,15	-0,11	-0,82	0,00
Potencial redox (mV)	30	242,2	248,5	49,0	125,0	323,0	216,0	285,0	-0,56	-0,01	0,00
Sílica (mg/L)	30	9,78	9,10	3,28	3,20	19,00	8,00	12,00	0,67	1,03	3,33
Sódio (mg/L)	30	6,73	5,11	4,15	1,65	15,49	3,56	9,71	0,96	-0,26	0,00
Sólidos totais (mg/L)	30	43,30	43,50	23,65	7,00	91,00	23,00	59,00	0,39	-0,80	0,00
Sólidos dissolvidos totais (mg/L)	30	12,08	11,05	4,94	5,00	25,00	8,25	15,00	0,74	0,22	0,00
Sulfato (mg/L)	30	1,43	1,00	1,50	0,10	8,00	0,11	2,00	2,99	12,74	3,33
Sulfeto (mg/L)	30	0,006	0,002	0,008	0,001	0,030	0,001	0,010	1,71	1,96	3,33
Temperatura da água (°C)	30	27,5	27,1	1,9	23,5	31,9	26,6	28,8	0,19	0,29	0,00
Transparência (m)	30	0,73	0,72	0,33	0,14	1,58	0,54	0,97	0,36	0,22	0,00
Turbidez (NTU)	30	28,53	15,00	46,46	2,92	238,00	9,96	23,10	3,75	15,20	10,00
Zinco total (mg/L)	30	0,05	0,02	0,07	0,01	0,23	0,01	0,05	1,67	1,44	20,00

Tabela IV.22: Estatística descritiva do banco de dados da qualidade das águas superficiais da UHE Teles Pires (ponto P.12) – fase pós-enchimento

Parâmetros	Nº de dados	Média	Mediana	Des vio padrão	Mínimo	Máximo	Percentil 25	Percentil 75	Coef. Assimetria		
Alcalinidade (mg/L)	22	10,45	10,00	2,77	6,00	15,00	9,00	13,00	0,25	-1,06	0,00
Alumínio dissolvido (mg/L)	22	0,11	0,03	0,19	0,01	0,83	0,01	0,10	2,92	9,21	13,64
Bário total (mg/L)	22	0,043	0,041	0,021	0,013	0,088	0,028	0,056	0,63	-0,05	0,00
Cálcio (mg/L)	22	3,62	2,98	2,39	0,09	8,52	2,13	5,02	0,78	-0,21	0,00
Carbono orgânico dissolvido (mg/L)	22	1,69	1,03	1,55	0,01	5,55	0,72	2,19	1,36	0,85	9,09
Carbono orgânico total (mg/L)	22	2,23	1,75	1,54	0,70	6,08	1,00	3,39	1,21	0,69	0,00
Cloreto (mg/L)	22	3,52	3,25	2,32	0,50	9,50	1,50	5,50	0,85	0,38	0,00
Clorofila-a (µg/L)	22	0,94	0,30	1,34	0,24	5,77	0,30	1,07	2,77	8,22	9,09
Cobre dissolvido (mg/L)	22	0,003	0,003	0,001	0,003	0,006	0,003	0,003	4,69	22,00	4,55
Coliformes termotolerantes (NMP/100ml)	22	51	40	44	10	160	10	80	1,10	0,47	0,00
Condutividade elétrica (µS/cm)	22	15,36	15,00	3,47	9,00	23,30	12,99	18,00	0,32	-0,05	0,00
Cor (mg Pt-Co/L)	22	61,01	33,30	62,53	4,00	235,00	14,00	108,80	1,29	1,20	0,00
Demanda Bioquímica de Oxigênio (mg/L)	22	1,89	1,66	1,08	0,40	4,30	1,00	2,90	0,66	-0,45	0,00
Demanda Química de Oxigênio (mg/L)	22	8,95	5,50	8,57	1,00	38,00	3,00	13,00	2,03	5,39	4,55
Dureza (mg/L)	22	7,98	7,00	5,57	2,00	28,00	6,00	10,00	2,28	7,55	4,55
Fenóis (mg/L)	22	0,019	0,003	0,027	0,003	0,107	0,003	0,018	2,14	4,48	18,18
Ferro dissolvido (mg/L)	22	0,07	0,01	0,12	0,01	0,47	0,01	0,10	2,27	4,94	13,64
Fluoreto (mg/L)	22	0,05	0,04	0,03	0,01	0,14	0,04	0,04	2,12	4,83	36,36
Fósforo orgânico (mg/L)	22	0,047	0,012	0,068	0,000	0,225	0,005	0,088	1,79	2,45	9,09
Fós foro total (mg/L)	22	0,066	0,050	0,079	0,005	0,295	0,005	0,089	1,51	1,96	4,55
Magnésio total (mg/L)	22	0,67	0,55	0,69	0,04	3,00	0,22	0,86	2,11	5,47	9,09
Manganês total (mg/L)	22	0,023	0,023	0,010	0,007	0,049	0,016	0,028	0,76	0,60	4,55
Nitrato (mg/L)	22	0,32	0,10	0,54	0,10	1,90	0,10	0,10	2,32	4,02	18,18
Nitrito (mg/L)	22	0,006	0,001	0,008	0,001	0,024	0,001	0,010	1,47	0,80	4,55
Nitrogênio amoniacal (mg/L)	22	0,16	0,02	0,23	0,02	0,83	0,02	0,33	1,53	1,68	4,55
Ortofos fato (mg/L)	22	0,040	0,021	0,049	0,005	0,225	0,005	0,058	2,67	9,28	4,55
Oxigênio dissolvido (mg/L)	22	6,93	7,01	0,79	5,61	8,78	6,39	7,51	0,16	-0,04	0,00
рН	22	6,37	6,30	0,61	5,18	7,51	5,96	6,81	-0,10	-0,30	0,00
Potássio (mg/L)	22	0,77	0,65	0,54	0,05	2,43	0,52	0,84	1,98	4,64	9,09
Potencial redox (mV)	22	258,9	261,0	67,8	108,0	419,0	227,0	282,0	-0,01	1,79	18,18
Sílica (mg/L)	22	4,67	4,16	3,50	1,00	12,50	1,83	5,30	1,27	0,92	13,64
Sódio (mg/L)	22	2,86	3,13	1,52	0,64	5,42	1,08	4,00	-0,15	-1,22	0,00
Sólidos totais (mg/L)	22	24,04	18,50	16,40	10,00	73,00	14,00	27,00	2,04	3,99	9,09
Sólidos dissolvidos totais (mg/L)	22	10,05	10,00	2,55	6,60	16,00	8,00	12,00	0,52	-0,35	0,00
Sulfato (mg/L)	22	1,33	1,05	0,53	0,83	2,70	0,93	1,72	1,11	0,41	0,00
Sulfeto (mg/L)	22	0,001	0,001	0,000	0,001	0,001	0,001	0,001	-,	0,00	0,00
Temperatura da água (°C)	22	29,9	30,4	2,1	25,5	33,0	28,0	31,8	-0,55	-0,54	0,00
Transparência (m)	22	1,93	1,96	0,94	0,59	3,84	1,05	2,54	0,30	-0,67	0,00
Turbidez (NTU)	22	6,84	1,94	8,27	0,36	29,90	1,09	9,74	1,54	1,78	9,09
Zinco total (mg/L)	22	0,03	0.03	0,02	0,01	0,07	0,02	0,05	0,35	-0,92	0,00
Zinco total (lig/L)		0,05	0,05	0,02	0,01	0,07	0,02	0,00	0,55	0,72	0,00

APÊNDICE II

Tabelas relacionadas ao Capítulo 5, subcapítulos 5.1.3, 5.2.3, 5.3.3 e 5.4.3 – p-valores do teste de hipóteses não paramétrico U de Mann-Whitney ($\alpha = 5\%$).

Tabela I.1: P-valores da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste de hipóteses U de Mann-Whitney ($\alpha = 5\%$) – UHE Belo Monte

- A	IDM	IGLH	PIMENTAL	RX 01	RX 02	RX 03	RX 18	RX 23	RX 24	RX 25
Parâmetros					p-valo					
Temp.	0,121	0,121	0,863	0,466	0,466	0,869	0,707	0,064	0,621	0,814
CE	0,851	0,707	0,199	0,466	0,760	0,115	0,707	0,208	0,438	0,048
SDT	0,525	0,851	0,054	0,312	0,335	0,060	0,410	0,145	0,078	0,046
pН	0,452	0,814	1,000	0,869	0,944	0,672	0,760	0,256	0,301	0,962
Redox	0,000	<u>0,001</u>	<u>0,001</u>	<u>0,000</u>	<u>0,001</u>	<u>0,000</u>	<u>0,001</u>	<u>0,003</u>	<u>0,000</u>	<u>0,000</u>
Turb.	0,438	0,259	0,080	0,335	0,851	0,371	0,060	0,054	0,095	0,074
Cl-a	0,962	0,301	0,980	0,605	0,962	0,851	0,572	0,474	0,672	0,925
OD	0,480	0,572	0,961	0,067	0,173	<u>0,038</u>	0,510	0,693	0,158	0,070
Transp.	<u>0,001</u>	<u>0,001</u>	<u>0,002</u>	<u>0,000</u>	<u>0,001</u>	<u>0,046</u>	<u>0,036</u>	<u>0,008</u>	<u>0,001</u>	<u>0,000</u>
Alcal.	0,672	0,510	0,312	0,082	0,480	0,054	0,240	0,444	0,259	0,541
CT	<u>0,019</u>	0,051	<u>0,010</u>	0,359	<u>0,034</u>	0,090	0,424	0,570	0,074	0,424
E. Coli	0,003	0,023	<u>0,002</u>	0,541	0,082	<u>0,041</u>	0,410	<u>0,046</u>	0,067	0,145
DBO	0,121	0,510	0,474	0,269	0,589	0,301	0,359	0,227	<u>0,005</u>	0,259
NTK	0,090	<u>0,000</u>	<u>0,032</u>	<u>0,011</u>	<u>0,029</u>	<u>0,001</u>	<u>0,016</u>	0,109	<u>0,006</u>	<u>0,029</u>
P_{T}	0,005	<u>0,016</u>	0,267	<u>0,001</u>	<u>0,013</u>	0,074	<u>0,019</u>	<u>0,036</u>	<u>0,008</u>	0,090
Cianof.	<u>0,005</u>	<u>0,001</u>	<u>0,008</u>	<u>0,003</u>	<u>0,003</u>	<u>0,002</u>	<u>0,018</u>	<u>0,002</u>	0,110	<u>0,000</u>
F	0,510	0,480	0,863	0,452	0,424	0,480	0,279	0,444	0,121	0,925
Cl¯	0,371	0,888	0,160	0,132	0,452	0,888	<u>0,019</u>	0,444	0,707	0,541
N-NO ₂	0,925	0,541	0,361	0,888	0,888	0,605	0,724	0,604	0,100	0,557
Br	0,742	0,510	0,675	0,851	0,397	0,851	0,452	0,554	0,410	0,888
N-NO ₃	0,021	0,397	0,089	<u>0,021</u>	0,259	0,158	<u>0,011</u>	0,057	0,888	0,925
PO_4^{3}	1,000	0,672	0,416	0,424	0,132	0,078	0,410	0,402	0,121	0,541
SO_4^{2-}	0,006	<u>0,034</u>	<u>0,013</u>	<u>0,043</u>	0,424	0,279	<u>0,024</u>	<u>0,025</u>	0,510	0,672
$\mathrm{Li}^{^{+}}$	0,888	0,814	0,767	0,589	0,452	0,981	0,814	0,416	0,452	0,814
Na^+	0,347	0,301	<u>0,001</u>	<u>0,014</u>	0,121	0,851	1,000	<u>0,011</u>	0,605	1,000
$\mathrm{N-NH_4}^+$	<u>0,000</u>	<u>0,001</u>	<u>0,000</u>	<u>0,000</u>	<u>0,000</u>	<u>0,001</u>	0,082	<u>0,000</u>	<u>0,000</u>	<u>0,000</u>
K^{+}	0,347	<u>0,007</u>	0,132	0,132	<u>0,006</u>	0,132	0,572	0,057	0,397	0,672
Mg^{2+}	<u>0,005</u>	<u>0,001</u>	0,336	<u>0,000</u>	<u>0,001</u>	<u>0,003</u>	<u>0,030</u>	<u>0,046</u>	<u>0,034</u>	<u>0,007</u>
Ca ²⁺	0,090	<u>0,002</u>	0,175	<u>0,000</u>	<u>0,004</u>	<u>0,002</u>	<u>0,003</u>	0,098	<u>0,019</u>	<u>0,008</u>
SST	<u>0,000</u>	<u>0,006</u>	<u>0,026</u>	0,832	<u>0,007</u>	0,054	0,981	0,748	0,057	0,204
SSI	0,001	<u>0,002</u>	<u>0,032</u>	0,925	<u>0,013</u>	<u>0,043</u>	0,778	0,227	<u>0,038</u>	0,063
SSO	0,041	0,110	0,160	0,888	0,397	0,525	0,981	0,416	0,057	0,814
Fe _{diss}	0,126	0,090	0,167	0,290	0,204	0,510	0,138	0,675	0,944	0,165

^{*} Valores destacados apontam para p-valores significativos (p-valor < 0,05).

Tabela II.1: P-valores da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste de hipóteses U de Mann-Whitney ($\alpha = 5\%$) – UHE Jirau

Parâmetros	P6	P7	P8	Р9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20
1 at affect tos]	p-valo	r						
Temp.	0,086	0,029	<u>0,035</u>	0,063	0,002	0,178	0,150	0,642	0,144	<u>0,000</u>	<u>0,008</u>	<u>0,000</u>	0,157	0,944	<u>0,002</u>
Redox	0,693	0,981	0,236	0,236	0,659	0,353	0,562	0,390	<u>0,024</u>	0,889	<u>0,043</u>	0,223	0,341	0,109	0,390
pН	0,763	0,944	<u>0,004</u>	0,403	0,202	<u>0,024</u>	0,082	0,265	0,610	0,178	<u>0,009</u>	<u>0,022</u>	<u>0,016</u>	<u>0,026</u>	0,781
CE	0,816	0,501	0,330	0,944	<u>0,007</u>	0,835	0,926	<u>0,000</u>	0,318	<u>0,000</u>	<u>0,000</u>	<u>0,000</u>	0,816	0,531	<u>0,000</u>
SDT	0,246	0,286	<u>0,020</u>	0,210	<u>0,005</u>	0,562	0,693	<u>0,000</u>	<u>0,043</u>	<u>0,000</u>	<u>0,000</u>	<u>0,000</u>	0,255	0,067	<u>0,000</u>
OD	0,275	0,157	<u>0,000</u>	0,120	<u>0,003</u>	<u>0,000</u>	<u>0,000</u>	<u>0,002</u>	0,210	<u>0,009</u>	0,144	<u>0,026</u>	0,060	<u>0,023</u>	<u>0,007</u>
Transp.	0,853	0,417	0,430	0,562	<u>0,026</u>	0,944	0,577	<u>0,000</u>	0,728	<u>0,001</u>	0,054	<u>0,000</u>	0,219	0,745	<u>0,000</u>
Turb.	0,981	0,501	0,693	0,781	0,296	<u>0,035</u>	0,330	0,002	0,472	<u>0,001</u>	0,126	<u>0,002</u>	0,981	0,728	<u>0,000</u>
Cor	0,981	0,610	0,365	0,626	0,390	0,458	0,114	0,039	0,390	0,318	0,835	0,788	0,981	0,763	0,501
ST	0,816	0,219	0,060	0,871	0,048	0,417	0,889	<u>0,001</u>	0,626	0,000	0,012	<u>0,001</u>	0,318	0,472	<u>0,004</u>
SST	0,944	0,745	0,745	0,728	0,516	0,246	0,365	0,202	0,186	0,005	0,365	0,213	0,099	0,255	<u>0,017</u>
SSI	0,853	0,745	0,202	0,871	0,210	0,944	0,120	0,109	0,626	0,001	0,157	0,012	0,501	0,562	0,000
SSO	0,104	0,944	0,710	0,219	0,676	0,067	0,546	0,318	0,041	0,871	0,926	0,942	<u>0,041</u>	0,090	0,501
Cl-a	0,157	0,186	<u>0,007</u>	0,871	0,001	0,610	0,659	0,131	0,835	0,009	0,001	0,002	0,781	0,341	0,009
P_{T}	0,043	0,816	0,963	0,082	0,853	0,126	0,816	0,157	0,063	0,057	0,150	0,252	0,035	0,033	0,516
Ortof.	0,610	0,981	0,871	0,816	0,642	0,889	0,444	0,693	0,642	0,444	0,458	0,626	0,417	0,593	0,330
NTK	0,763	0,562	0,194	0,516	0,642	0,236	0,390	0,626	0,246	0,693	0,798	0,884	0,286	0,516	0,728
N-NO ₃	0,626	0,444	0,458	0,745	0,516	0,171	0,164	0,095	0,610	0,963	0,908	0,845	0,676	0,114	0,763
N-NO ₂	0,131	0,610	0,074	0,054	0,048	0,150	0,390	0,090	0,012	0,486	0,963	0,807	<u>0,011</u>	0,031	<u>0,005</u>
$N-NH_4^+$	0,659	0,676	0,577	0,516	0,593	0,562	0,051	0,086	0,659	0,403	0,763	0,575	0,210	0,798	0,307
DBO	0,889	0,286	0,728	0,227	0,090	0,378	0,390	0,853	0,120	0,763	0,871	0,079	0,063	0,610	0,516
DQO	0,889	0,164	0,944	0,486	0,109	0,444	0,070	0,853	0,763	0,126	0,816	0,102	0,307	0,562	0,194
Fe_T	<u>0,004</u>	0,186	0,944	<u>0,001</u>	0,126	0,286	0,531	0,054	0,000	0,054	0,202	0,367	<u>0,006</u>	<u>0,001</u>	<u>0,015</u>
Alcal.	0,798	0,015	0,012	0,403	0,023	0,501	0,562	0,002	0,318	0,000	0,000	0,000	0,853	0,693	0,054
Dureza	0,051	0,365	0,318	0,458	0,516	0,365	0,286	0,002	0,227	0,000	0,000	0,000	0,330	0,194	0,178
SO ₄ ²⁻	0,003	0,676	0,676	0,082	0,798	0,981	1,000	0,017	0,013	0,004	0,006	0,083	0,035	0,005	0,546
S^{2-}	0,023	0,104	0,236	0,026	0,114	0,003	0,109	0,853	0,070	0,043	0,035	0,102	0,126	<u>0,004</u>	0,060
Cl ⁻	0,265	0,131	0,131	0,265	0,275	0,501	0,798	0,798	0,131	0,693	0,501	0,294	0,693	0,710	0,275
CIT	0,099	0,012	0,002	0,710	0,001	0,001	0,000	0,090	0,501	0,001	0,002	0,000	0,798	0,763	0,000
COT	0,002	0,378	0,763	0,022	0,150	0,365	0,090	0,000	0,012	0,853	0,002	0,001	0,000	0,000	0,150
Carb. total	0,001	0,944	0,010	0,001	0,365	0,031	0,051	0,004	0,275	0,001	0,486	0,864	0,054	0,001	0,006
SiO_2	0,022	0,610	0,659	0,024	0,642	0,963	0,889	0,004	0,078	0,090	0,078	0,242	0,131	0,017	0,763
CT	0,043	0,444	0,026	0,131	0,227	0,486	0,023	0,109	0,186	0,926	0,642	0,643	0,054	0,051	0,104
CTerm.	0,390	0,011	0,114	0,219	0,002	0,444	0,001	0,157	0,114	0,000	0,001	0,003	0,390	0,011	0,002

^{*} Valores destacados apontam para p-valores significativos (p-valor < 0,05).

Tabela III.1: P-valores da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste de hipóteses U de Mann-Whitney ($\alpha = 5\%$) – UHE Santo Antônio do Jari

D2	IR-1	IR-2	JAR-2	JAR-3	JAR-4	JAR-5	JAR-6	PIU-1	TRA-2
Parâmetros ·					p-valor				
Temp.	0,255	0,307	0,417	0,390	0,610	0,944	0,353	0,012	0,066
Transp.	<u>0,011</u>	0,069	0,020	0,023	0,087	0,003	<u>0,031</u>	<u>0,014</u>	<u>0,004</u>
Redox	<u>0,037</u>	<u>0,033</u>	0,009	0,087	<u>0,037</u>	0,206	<u>0,048</u>	0,120	0,081
pН	0,194	0,926	0,908	0,798	0,676	0,593	0,318	<u>0,041</u>	0,126
CE	0,307	1,000	0,763	0,562	1,000	0,693	0,626	0,255	0,209
SDT	0,157	0,219	0,018	0,063	0,054	<u>0,041</u>	<u>0,039</u>	<u>0,027</u>	0,927
OD	<u>0,011</u>	0,067	0,067	<u>0,007</u>	<u>0,016</u>	<u>0,003</u>	<u>0,002</u>	0,626	0,003
Turb.	0,835	0,763	0,728	0,082	0,763	0,593	0,444	<u>0,043</u>	0,976
Cor	0,109	0,296	0,531	0,060	0,104	0,157	0,144	0,067	<u>0,006</u>
ST	0,067	<u>0,015</u>	0,131	0,095	<u>0,027</u>	0,120	0,114	<u>0,006</u>	0,927
SST	0,908	0,403	0,981	0,816	0,763	0,693	0,501	0,926	0,976
Cl-a	0,399	0,097	0,140	0,813	0,216	0,958	0,916	<u>0,035</u>	0,878
P_{T}	<u>0,033</u>	<u>0,026</u>	0,033	0,236	0,150	0,219	<u>0,024</u>	0,131	<u>0,000</u>
Ortof.	0,501	0,562	0,763	0,318	0,318	0,926	0,430	0,835	<u>0,011</u>
N-NO ₃	0,835	0,378	0,486	0,531	0,728	0,798	0,531	0,981	0,668
N-NO ₂	0,275	0,082	0,286	0,024	0,981	0,157	0,286	<u>0,046</u>	0,027
$N-NH_4^+$	0,676	0,593	0,908	0,286	0,981	0,926	0,659	0,486	0,111
NTK	0,365	0,318	0,472	0,171	0,255	0,202	0,908	0,781	0,092
DBO	0,099	0,318	0,318	0,676	0,090	0,020	<u>0,012</u>	0,060	<u>0,001</u>
Fe_T	0,461	0,477	0,343	0,058	0,304	0,179	0,197	<u>0,007</u>	0,134
Cl	0,501	0,781	0,194	<u>0,043</u>	<u>0,020</u>	<u>0,016</u>	0,067	0,131	0,071
CT	<u>0,035</u>	0,610	0,265	0,144	0,137	0,889	0,908	1,000	0,221
CTerm.	0,109	0,531	0,171	0,659	0,227	0,593	0,763	0,246	0,713

^{*} Valores destacados apontam para p-valores significativos (p-valor < 0,05).

Tabela IV.1: P-valores da comparação das concentrações dos parâmetros de qualidade das águas entre as fases pré e pós-enchimento realizada por meio do teste de hipóteses U de Mann-Whitney ($\alpha = 5\%$) – UHE Teles Pires

•		,									
Parâmetros	P.01	P.02	P.03	P.04	P.05	P.06	P.07	P.09	P.10	P.11	P.12
1 ar ame tros						p-valor					
Alcal.	<u>0,006</u>	0,020	0,079	0,107	0,012	0,002	0,294	<u>0,006</u>	0,074	<u>0,017</u>	0,265
Al_{diss}	<u>0,011</u>	<u>0,005</u>	<u>0,001</u>	0,003	<u>0,021</u>	0,224	<u>0,012</u>	<u>0,016</u>	<u>0,001</u>	0,039	<u>0,005</u>
Ba_T	0,545	0,116	0,069	0,595	0,222	0,605	0,364	0,137	0,606	0,697	0,154
Ca^{2+}	0,015	<u>0,004</u>	0,013	<u>0,000</u>	0,011	0,001	0,013	<u>0,000</u>	0,001	<u>0,001</u>	<u>0,005</u>
COD	0,038	0,033	0,003	<u>0,006</u>	0,012	0,033	0,144	<u>0,000</u>	0,000	0,060	0,001
COT	0,397	0,203	0,085	0,016	0,052	0,264	0,667	<u>0,000</u>	0,002	0,389	<u>0,008</u>
Cl	0,001	0,005	0,000	0,000	0,003	0,003	0,003	0,000	0,001	0,045	<u>0,006</u>
Cl-a	<u>0,000</u>	<u>0,001</u>	0,018	0,005	<u>0,000</u>	<u>0,000</u>	<u>0,000</u>	0,274	0,187	0,102	0,002
Cu_{diss}	0,642	0,138	<u>0,016</u>	0,052	0,086	0,040	0,021	0,128	0,013	0,309	0,428
CTerm.	0,028	0,130	0,131	0,347	0,358	0,003	0,000	<u>0,000</u>	<u>0,035</u>	0,155	0,144
CE	0,031	0,354	0,142	0,191	0,592	0,571	0,729	<u>0,000</u>	0,000	0,020	0,025
Cor	0,553	0,993	0,543	0,403	0,844	0,068	0,260	0,356	0,226	0,214	0,165
DBO	0,223	0,393	0,078	0,061	0,194	0,398	0,340	0,280	0,633	0,354	0,725
DQO	0,891	0,488	0,930	0,981	0,276	0,489	0,284	0,413	0,555	0,157	0,780
Dureza	0,013	0,113	0,004	0,220	0,029	0,030	0,011	0,002	0,093	0,000	0,025
Fen	0,175	0,180	0,003	0,124	0,010	0,110	0,064	0,438	0,465	0,068	0,128
Fe_{diss}	0,014	0,001	0,060	0,006	0,030	0,019	0,092	0,000	0,000	0,000	0,000
F-	0,560	0,538	0,393	0,779	0,899	0,740	0,743	0,607	0,924	0,275	0,274
$Po_{rg.}$	0,012	0,009	0,008	0,017	0,009	0,020	0,015	0,007	0,002	0,004	0,000
P_{T}	0,002	0,002	0,002	0,011	<u>0,011</u>	0,008	0,001	0,009	0,002	0,001	0,001
Mg_T	0,916	0,460	0,600	0,555	0,497	0,875	0,672	0,460	0,232	0,297	0,183
Mn_T	0,049	0,014	0,149	0,242	0,419	0,231	0,717	0,956	0,747	0,187	0,082
N-NO ₃	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
N-NO ₂	0,856	0,723	0,936	0,826	0,634	0,395	0,332	0,366	0,302	0,887	0,909
N-NH ₄ ⁺	0,049	0,056	0,049	0,043	0,115	0,093	0,093	0,093	0,043	0,121	0,053
Ortof.	0,087	0,856	0,492	0,578	0,370	0,936	0,573	0,736	0,542	0,624	0,969
OD	0,614	0,053	0,841	0,214	0,012	0,031	0,096	0,821	0,563	0,781	0,279
pН	0,075	0,002	0,173	0,197	0,021	0,039	0,118	0,058	0,081	0,001	0,019
\mathbf{K}^{+}	0,654	0,928	0,994	0,496	0,388	0,073	0,821	0,000	0,000	0,670	0,022
Redox	0,911	0,599	0,773	0,584	<u>0,006</u>	0,477	0,919	0,369	0,186	0,963	0,389
SiO_2	0,003	0,006	0,003	0,004	0,003	0,004	0,034	0,000	0,000	0,369	0,000
Na ⁺	0,002	0,010	0,000	0,002	0,000	0,001	0,000	0,000	0,000	0,001	0,000
ST	0,001	0,000	0,018	0,015	0,000	0,046	0,002	0,000	0,007	0,001	0,002
SDT	0,017	0,612	0,010	0,273	0,442	0,290	0,330	0,000	0,005	0,032	0,167
SO_4^{2-}	0,592	0,873	0,832	0,477	0,874	0,227	0,069	0,779	0,793	0,245	0,880
S^{2-}	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Temp.	0,305	0,000	0,000	0,083	0,000	0,000	0,027	0,000	0,000	0,000	0,000
Transp.	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,745	0,000
Turb.	0,126	0,014	0,001	0,004	0,013	0,137	0,277	0,000	0,000	0,012	0,000
Zn_T	0,568	0,094	0,021	0,900	0,481	0,301	0,364	0,882	0,276	0,324	0,223
1						*			*	*	

^{*} Valores destacados apontam para p-valores significativos (p-valor < 0,05).