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ABSTRACT 

 

The advance in proteins secondary structure prediction produces directly impacts on health and 

biological processes knowledge. Despite the achievements and advances, the prediction of 

proteins structure remains a challenge. Considering this fact, we propose a de novo method for 

the prediction of alpha helix. Initially, we created a list of proteins with low identity between 

them, from the repository Protein Data Bank, using PISCES. Each protein was separated into 

fragments (of size 9) using the sliding window technique. From the obtained fragments, we 

classified them into the ones that were 100% a standard type alpha helix, the ones that were not a 

100% of the same type of secondary structure. For each fragment, we used a sliding window of 

size 3 to characterize them. These had a value associated with the occurrence of the alpha helix 

structure. It was possible to predict the secondary structure group, alpha helix, of an unknown 

protein/query. To accomplish our goals, we used modified logistic regression and constructed 

two methods for prediction of these structures. Tests of accuracy and specificity applied to the 

methods gave results greater than 70%. Unfortunately, the sensitivity did not show good results. 

One of the methods revealed to be a very promising application for the secondary structure 

prediction problem, and to a possible usage in other purpose. All methods were implemented in 

MatLab R2015b (2015). 

KEYWORDS: logistic regression, prediction, protein, structure. 



RESUMO 

 

O avanço na predição da estrutura secundária de proteínas produz diretamente impactos na saúde 

e no conhecimento de processos biológicos. Apesar das conquistas e avanços, a predição da 

estrutura de proteínas continua a ser um desafio. Neste trabalho, nós propomos um método de 

novo para a predição de alfa hélice. Primeiramente, criamos uma lista de proteínas com baixa 

identidade entre eles, a partir do Banco de dados Protein Data Bank, utilizando a ferramenta 

PISCES. Cada proteína foi separada em fragmentos de tamanho (9), utilizando a técnica de janela 

deslizante. Os fragmentos obtidos foram classificados em aqueles que são 100% alfa hélice do 

tipo padrão e aquelas que não têm 100% deste tipo de estrutura secundária. Para cada fragmento, 

utilizamos uma janela deslizante de tamanho 3 para caracterizar cada um. Estes tripletos têm um 

valor associado com a ocorrência da estrutura α hélice. Com isso, é possível prever a estrutura 

secundária de uma proteína desconhecida. Para isso, usamos regressão logística modificada e 

construídos dois métodos de predição. Testes de precisão, especificidade deram origem a 

resultados superiores a 70%. Infelizmente, a sensibilidade não teve um bom resultado. Um dos 

métodos criados revelou-se promissor, tanto para este problema quanto para os outros problemas. 

Todos os métodos foram implementados em Matlab R2015b (2015). 

PALAVRAS-CHAVES: regressão logística, predição, protein, structure. 
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1 Introduction 

1.1 General considerations 

We have all heard of proteins in different areas, from childhood. Proteins are the most 

abundant biological macromolecules, occurring in all cells. Protein functions are varied, and many 

are the basis of complex physiological processes such as oxygen transport, immune function and 

muscle contraction (Lehninger et al., 2005; Elliott e Elliott, 2009). 

The discovered of proteins and amino acids has decades, however, about a few years later 

it was confirmed that the relationship between then. It was Emil Fischer and Franz Hofmeister, in 

1902, who demonstrated that proteins are polypeptides (Jayanthi, 2010). 

The term protein is of Greek origin, proteios, meaning first, in origin. The Dutch chemist 

Gerrit Mulder (1802-1880) studying some organic compounds suggested that there was an 

important compound and they were present in many organisms. He also suggested that this 

compound would be synthesized in plants, and they were passed to the animal kingdom, through 

feeding. Mulder wrote to Jacob Berzelius (1779-1848) in 1838, reporting the identification of a 

central substance in various organisms. Jacob Berzelius was a famous Swiss chemist, best known 

for his contribution to the discovery of several chemical elements (Ramos, 2004). Berzelius 

responded by suggesting the name "protein" for the compound because it was the predominant of 

animal nutrition. Berzelius also helped with his fame, to disclose the concept of protein at the time. 

The first amino acid to be isolated was asparagine in 1806, by Vauquelin and Robiquet 

(Vauquelin e Robiquet, 1806). The last one to be found was threonine in 1938. All the amino acids 

have trivial or common names, in some cases derived from the source from which they were first 

isolated. Asparagine was isolated in asparagus, glutamate in wheat gluten and tyrosine from cheese 

(from Greek tyros, "cheese"). Glycine also has the name from Greek origin, because of the sweet 

taste that it has (Greek glykos, "sweet") (Lehninger et al., 2005).  

Pauling, Corey, and Branson (1951) defined the structure of alpha helix and β sheet for 

proteins; as a refinement of some previous works of Astbury and Bell (1941), Huggins (1943) and 

Bragg Kendrew and Perutz (1950). Linderstrom-Lang (1952) introduced the terms primary, 

secondary and tertiary to describe protein structure.  
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 Around 1955, Frederick Sanger completed the insulin sequence, working in component 

residues and development of sequencing techniques of this hormone. Various procedures were used 

to analyze protein primary structure, proving that all proteins have specific structures (Sanger, 

1988; Hodgman, 2000; Lehninger et al., 2005). 

In 1954, Anfinsen and his contributors studied the relation between the chemical structure 

and the catalytic activity of an enzyme. The studies were based on the folding of protein chains 

(Anfinsen et al., 1954; Anfinsen, 1972). 

The amino acid discovery is also important in various areas, for example, in astronomy. In 

August 2009, NASA scientists discovered the presence of glycine, a fundamental building block 

of life, in samples of comet Wild 2 returned by NASA's Stardust spacecraft. This glycine had an 

extraterrestrial carbon isotope signature, indicating that it originated on the comet. The dust 

captured by the probe, composed of primordial material was redirected back to Earth. A small 

portion of this sample was what brought these new results. These results corroborate the theory of 

cosmic panspermia that argues that some compounds on earth were formed in space and were 

delivered to Earth long ago by meteorite and comet impacts during his youth around the sun 

(http://www.nasa.gov/mission_pages/stardust/news/stardust_amino_acid.html). 

Nutritionally, for young adults, skeletal muscle accounts for approximately 45% of total 

body weight. The recommended dietary allowance (RDA) for adults is 0.8 grams of protein per 

kilogram of weight per day (Chernoff, 2004; Brasil, 2009). 

 

1.2 Proteins 

Proteins are dehydrated polymers, with one or more chains, which consist of a vast number 

of amino acids residues linked together (Lehninger et al., 2005; Elliott e Elliott, 2009). Every amino 

acid, except proline, has a carboxyl group and an amino group bonded to the same carbon atom, 

called α carbon (Figure 1). The link between two amino acids, called peptide bond (-CO-NH-), is 

a specific type of covalent bond (Figure 2).  
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To the α carbon is connected to an R group, which differ from each other in their chains. 

The R group varies in structure, size, electric charge and solubility in water. All the 20 standard 

amino acids (a term employed to distinguish them from less common amino acids that are residues 

modified after the protein has been synthesized) can be organized into five groups, according to 

their polarity (Lehninger et al., 2005). They are divided in nonpolar, aliphatic; aromatic; polar, 

uncharged; positively charged and negatively charged (Figure 3). 

 

 

 

 

Figure 1 – Schematic representation of an amino acid (Lehninger, Nelson e Cox, 2005). 

Figure 2 – Reversible formation of a peptide bond by condensation (Lehninger, Nelson e Cox, 2005). 
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The six atoms of the peptide group lie in a single plane, with the oxygen atom of the 

carboxyl group and the hydrogen atom of the amide nitrogen trans to each other. The peptide bonds 

are unable to rotate freely because of their partial double-bond character. Rotation is permitted 

about the N-Cα and the Cα -C bonds. By convention, the angle bond for the first (N-Cα) is named  

(phi) and  (psi) for the Cα –C (Figure 4).  

Figure 3 – The 20 standard amino acids of proteins. The unshaded portions are those common to all 

the amino acids; the portions shaded in pink are the R group (Lehninger, Nelson e Cox, 2005). 
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1.3 Secondary structure of proteins 

The sequence of amino acids linked together covalently into a polypeptide backbone is 

called primary structure. The primary structure by itself does not say anything about the three-

dimensional space (Elliott e Elliott, 2009). 

The polypeptide backbone is arranged in a conformation known as the secondary structure, 

and this form organizes in a tertiary structure. The molecule formed by the primary, secondary and 

tertiary structures may be the final functional protein or can be a protein monomer or a subunit. 

This association is called the quaternary structure (Elliott e Elliott, 2009). However, several types 

of noncovalent bonds are critical in maintaining the three-dimensional structures of large molecules 

such as proteins and nucleic acids. Covalent and noncovalent bonds are responsible for the 

structure. 

The simplest arrangement of the polypeptide chain can assume with its rigid peptide bonds 

a helical structure, which is called the alpha helix (Figure 5). In this structure, the polypeptide 

backbone is highly wrapped around an imaginary axis drawn longitudinally through the middle of 

the helix. The R groups of the amino acid residues project to outside from the helical backbone and 

the carboxyl groups point in the direction of the axis of the helix. These groups are linked to the 

amino groups by hydrogen bond, generating a maximum bond strength and making the helix a very 

stable structure. The cross section of an alpha helix shows a virtual cylinder with all the R groups 

projecting to the outside (Lehninger et al., 2005; Elliott e Elliott, 2009). The left-handed one is 

more stable than the right-handed helix, and the number of amino acids per turn is 3.6 units that 

can be proven by X-ray (Figure 5). 

Figure 4 – The planar peptide group. The three bonds separate sequential α carbons in a polypeptide chain. 

The N-Cα and Cα-C bonds can rotate, with bond angles designated  and , respectively (Lehninger, Nelson 

e Cox, 2005). 
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Another secondary structure is the β sheet (Figure 6). The polypeptide chain extends into a 

zigzag pattern. In this conformation, the carboxyl and amino groups make a hydrogen bond to those 

of neighborhood chains. Several chains can form a polypeptide sheet, and it is gauffered because 

successive α-carbon atoms of the amino acids residues lie slightly above and below the plane of 

the β sheet alternately (Lehninger et al., 2005; Elliott e Elliott, 2009). The close polypeptide chains 

bonded together can run in the same direction (parallel) or opposite directions (antiparallel) (Figure 

6). 

 

 

 

 

 

Figure 5 – The four models of the α helix, in different aspects of its structure. (a) The planes of the 

rigid peptide bonds are parallel to a long axis of the helix. (b) The α helix as viewed from one end, looking 

down the longitudinal axis, with the R groups. (c) The model shows the atoms in the center of the α helix 

are very close. (d) The α helix as viewed from one end, looking down the longitudinal axis, with the 

numeration of carbon alpha (Lehninger, Nelson e Cox, 2005).  



Prediction of alpha helices in proteins using Modified Logistic Regression Model                                                    19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proteins with alpha helices and β sheets section are connected by an unstructured 

polypeptide sometimes known as random coils or connecting loops (Elliott e Elliott, 2009). 

 Some amino acids are better accommodated than other in the different types of secondary 

structures. Some biases are the presence of proline and glycine residues in β conformation and their 

privation in an alpha helix (Figure 7) (Lehninger et al., 2005). 

Figure 6 – The β conformation of polypeptide chain. (a) side view of β sheet. (b) antiparallel β sheet. (c) 

parallel β sheet (Lehninger, Nelson e Cox, 2005). 
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The bond angles  and  can have any value between -180º and +180º, but many values are 

prohibited by steric interference between atoms in the polypeptide backbone and amino acids side 

chains. Allowed values for  and   are graphically represented in a Ramachandran plot (Figure 

8). In this, alpha helix and β conformation fall within a restricted range of sterically allowed 

structure. Most values of these angles of known protein structures fall into the expected regions, 

near the predicted values (Lehninger et al., 2005). 

Kabsch and Sander (1983) defined a minimal helix as the two consecutive n-turns, in others 

words, a single hydrogen bond of type (i, i+n) between the residue i if there is an H-bond from CO 

(i) to NH (i+n).   

The alpha helix characterized by an (i, i+4) pattern, the 310 and the π helix by repeating (i, 

i+3) and (i, i+5) hydrogens bonds, respectively  (Kabsch e Sander, 1983)  (Fodje e Al-Karadaghi, 

2002). 

Figure 7 – Relative probabilities that a given amino acid will occur in the three types of secondary 

structure (Lehninger, Nelson e Cox, 2005). 

Figure 8 – Ramachandran plots for a variety of structures (Lehninger, Nelson e Cox, 2005). 
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1.4 Proteins secondary structure prediction 

Direct prediction of protein structure from sequence is a challenging problem, and it is a 

major step towards elucidating its three-dimensional structure, as well as its function. Proteins have 

covalent and noncovalent forces that help to form the architecture of the three-dimensional 

structure. Those structures for most proteins are determined by their one-dimensional sequences of 

amino acid residues. How to accurately predict three-dimensional structures from one-dimensional 

sequences has been an unsolved problem for the last half century. The problem lies in the challenge 

of developing an efficient technique to search for an astronomically large conformational space 

and a highly accurate energy function to rank and guide the conformational search, both of which 

are not yet available (Heffernan et al., 2015). 

Today, the methods and tools to predict the secondary structure of proteins are enormous, 

but the accuracy for large proteins remains a challenge. 

The Critical Assessment of Structure Prediction (CASP) is an organization that leads 

community-wide experiments to measure the state-of-the-art in the modeling of protein structures 

from amino acid sequences. The objective is to test these methods via the process of blind 

prediction. CASP happens every two years, since 1994. During these years, much online and off-

line software and databases of models were created and are available for all. The protein prediction 

accuracy was largely improved through a combination of refined methods (Moult et al., 2014). 

There are two computational approaches to protein three-dimensional structural modeling 

and prediction: methods independent of the mold structures (also called template free methods) 

and that include ab initio and de novo prediction; and methods based on template structures (also 

called template based) which include threading and comparative modeling (Xiong, 2006; Verli, 

2014). 

The ab initio approach is a simulation based method and predicts structures based on 

physicochemical principles governing protein folding without the use of structural templates. The 

de novo methods are those which use some structural information such as protein fragments, 

secondary structure prediction, and statistical potentials, from non-homologous protein to the target 

sequence (Xiong, 2006; Verli, 2014). 
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The principle behind comparative modeling is that if two proteins share enough high 

sequence similarity, they are likely to have very similar three-dimensional structures. If one of the 

protein sequences has a known structure, then the structure can be copied to the unknown protein 

with a high degree of confidence. Homology modeling produces an all-atom model based on 

alignment with template proteins. The homology-based methods do not depend only on the 

statistics of residues of a single sequence but on common secondary structural patterns conserved 

among multiple homologous sequences (Xiong, 2006; Verli, 2014). 

Fragment-based approaches are a widely used de novo method in the prediction of 

secondary structures of proteins. The technique used for selecting the fragment is made by the 

similarity with the target sequence. The database needs to have a high number of fragments to 

increase the probability of choosing a correct fragment. A major problem for all fragment-based de 

novo approaches occurs when the fragment library for a given target does not contain good 

fragments for a particular region. In that case, low accuracy models will be generated regardless of 

the precision of the potentials being used and, in any situation, of the amount of computation time 

invested in the modeling routine (De Oliveira et al., 2015). 

The Rosetta method uses small protein sequences with known structure. The compact 

design of the generated protein is assembled by a random combination of these fragments, using 

the Monte Carlo simulated annealing search.  The structures are built using only nine residue 

fragments (9mers) (Simons et al., 1997). Rosetta method uses the torsion space of the skeleton of 

the protein, angles ,  and . The standard measure of this similarity is backbone - carbon root-

mean-squared deviation or CαRMSD (Holmes e Tsai, 2004; Rohl et al., 2004; De Oliveira et al., 

2015).  

Another method, it is the FRAGFOLD which is based on the assembly of super-secondary 

structural fragments taken from highly resolved protein structures using a simulated annealing 

algorithm (Jones e Mcguffin, 2003). The FRazor method (Li et al., 2008) introduced other 

structural information items, such as secondary structure, solvent accessibility, and contact 

capacity. The HHFRAG (Kalev e Habeck, 2011) differs by selecting fragments by generative 

models of local protein structure such as hidden Markov models. This approach does not have 

restriction caused by the size and diversity of a structure database, and it is possible to assess the 

probability of each fragment.  
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Another algorithm, QUARK, for ab initio protein structure prediction, selects features by a 

neural network. The full-length structure models are assembled from fragments using replica-

exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field 

(Xu e Zhang, 2012). 

Tools to predict the secondary structure alpha helix in proteins are numerous today (Koehler 

Leman et al., 2015). The majority use the support vector machine and neural networks (Heffernan 

et al., 2015). It is also possible to use other proteins features to predict the secondary structure. An 

integrative tool can be very handy to comprehend the prediction and to understand the sequence 

analysis better. We summarized a few tools and methods available to predict secondary structure 

(for further details, see Appendix A). A summary of some tools which are usually used for 

prediction of membrane proteins is in Koehler Leman, Ulmschneider and Gray (Koehler Leman et 

al., 2015).  

 

1.5 Logistic Regression 

The regression method is helpful to any data analysis concerned with describing the 

relationship between a response variable and one or more explanatory variables. The main focus 

of logistic regression analysis is a classification of individuals in different groups (Cokluk, 2010). 

The term logistic regression analysis comes from logit transformation, which is applied to 

the dependent variable. This case, at the same time, causes certain differences both in estimation 

and interpretation. Simple and multiple linear regression analysis are used to evaluate the 

mathematical correlation between dependent variables and independent variable(s) (Cokluk, 2010). 

A standard regression equation consists of true values of a few independent variables and 

weights produced by the model to predict the value of the dependent variable. The dependent 

variable is the predicted variable, while the independent variables are constants or categorical 

(Cokluk, 2010). 

In the logistic regression, the estimated value ranges from 0 to 1. Therefore, the logistic 

regression shows the possibility of appropriate consequences for each subject. The analysis 

produces a regression equation, which enables us to make an accurate estimation for the possibility 
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that an individual falls into one of the categories. (Cokluk, 2010) The outcome variable in logistic 

regression is binary or dichotomous (Hosmer e Lemeshow, 2000). 

Logistic regression is similar to both multiple regression and discriminant analysis. The 

main difference between the multiple linear regression analysis and logistic analysis is that the 

value of the dependent variable is estimated in the first analysis, while the possibility of occurrence 

of one of the values that the dependent variable might have, is estimated in logistic regression 

analysis. Moreover, the discriminate analysis aims to explain and to predict group membership 

using a group of independent variables. Logistic regression analysis, unlike discriminant analysis 

and multiple regression analysis, does not require to meet assumptions concerning the distribution 

of independent variables, like the normal distribution of independent variables, linearity and 

equality of variance-covariance matrix do not have to be met (Cokluk, 2010). 

The quantity is the mean value of the outcome variable, given the value of the independent 

value. This quantity is called the conditional mean and will be expressed as: 

 E(Y | x) (1) 

where Y denotes the outcome variable and x is the independent variable. The quantity E(Y | x) is 

the expected value of Y, given the value x. In multiple regression, it assumes that this mean is 

expressed as an equation in x, such as: 

 𝐸(𝑌|𝑥) =  𝛼𝑛+1 + ∑ 𝛼𝑖𝑥𝑖𝑖 , (2) 

where x can be extent between  −∞ 𝑡𝑜 + ∞. With dichotomous data, the conditional mean must 

be: 0 ≤ 𝐸(𝑌|𝑥) ≤ 1. 

Inspired by the diversity of methods, the present dissertation proposes a combination of the 

logistic regression method and sliding window technique for prediction of the standard type alpha 

helix. In our search for related papers in the literature, we could not find the conjugate use of this 

methodology for the purpose in question. In this dissertation, we propose a new method that 

contributes to the way of predicting alpha helix of proteins, with performance measures greater 

than 70%. The following flow chart (Figure 9) represents a simplified background of the problem 

in structural bioinformatics area and which, consequently, originated the motivation of carrying 

out this work. 
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2 Objectives 

 

2.1. General Objective 

2.1.1. To predict alpha helices in fragments with 9 residues, using modified logistic regression 

method. 

 

2.2. Specifics Objectives 

2.2.1. To search the PDB database for proteins with low identity to each other;  

2.2.2. To use the sliding window technique to generate fragments of sequence with nine residues;  

2.2.3. To apply the modified logistic regression method for the construction of alpha helices 

prediction model;  

2.2.4. To use accuracy, specificity, and sensitivity metrics to evaluate the proposed model; 

2.2.5. To use the MatLab environmental engineering to build and run the model of alpha helix 

prediction. 
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3 Methods 

3.1 Database preparation  

The model was built using available protein structures from the Protein Data Bank (PDB) 

(Berman et al., 2000). The secondary structure class was obtained from the secondary structure 

assignment as provided by the author of a PDB entry. To achieve a meaningful representation, a 

non-redundant set of proteins from the PDB, we employed the PISCES tool (Wang e Dunbrack, 

2003). The following features were used: sequence identity percentage less than or equal to 5; 

Resolution of 0.2 ~ 2.0; R-factor of 0.2; Sequence length of 40 ~ 10000; excluded Non X-ray 

entries and CA-only entries. The selection was made by entries, and the length was the shortest 

allowed by the program. Those parameters were chosen to guarantee a better resolution and 

diversity. 

With the PISCES software outcomes, we created a subset of proteins with low percentage 

sequence identity, high resolution, and desirable length cutoff. The sequences were provided by 

the Research Collaboratory for Structural Bioinformatics (RCSB), and the R-value data were also 

obtained from the Uniformity Project files. Some of the missing values were achieved from the 

PDB-FINDER database. To estimate sequence identity at longer evolutionary distances, PISCES 

uses the PSI-BLAST to calculate these identities, which were used locally to build a position-

specific scoring matrix (PSSM) or profile from homologous sequences in National Center for 

Biotechnology Information’s non-redundant protein sequence database. Three iterations were 

performed for each query, with an E-value cutoff of 0.0001 for inclusion in the profile (Wang e 

Dunbrack, 2003). 

 

3.2 The matrix 

In MatLab R2015b software, we wrote a script to construct the matrix that was used by the 

modified logistic regression method. All fragments, size nine, were generated by the sliding 

window technique through the sequence of the first chain and were placed in columns. They were 

considered individuals. The rows were all representations of the combinations of triplets residues 

(20 ^ 3 = 8000).  The number three in the sliding window to create tripeptides with all possible 

combinations was chosen to generate a reasonable and workable number of residues combinations 
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in our computers. We also considerate the work of our research group, which demonstrated that 

this size of sliding window generates better results (Couto et al., 2007). 

We also perform the reverse sliding window to decrease the sparsity of the matrix. 

According to Deerwester et al. (1990), the best performance of any IR (irrational) system are 

problems with a reasonable size using a rich and high-dimensional representation. That is why we 

incremented with the reverse sliding windows. 

To apply the modified logistic regression model, we have to concatenate one line to the 

matrix, with the value of probability: the 0 value if the fragment was not 100% alpha helix default, 

and 1 if the fragment was 100%. MatLab considers only the secondary structure annotation done 

by 'Author Secondary Structure'.  

 

3.3 Singular Value Decomposition 

Presently, every area in society have an enormous amount of data stored in their databases, 

and it is a challenge to extract useful information. A technique for information retrieval, using 

linear algebra techniques, is the singular value decomposition (SVD). When the SVD is utilized in 

a matrix, it allows the matrix to be represented by a set of derived matrices, which can have 

different representations of data without loss in semantic meaning. In other words, it is possible to 

compute an approximate basis for this space using representatives subspaces (Berry et al., 1995; 

Élden, 2006) (Berry et al., 1995). 

A matrix using the SVD can be represented as: 

 A = UΣVT,  (3) 

where A is a matrix of real numbers or complex numbers composed of m rows by n columns. The 

U is an orthonormal m x m matrix and the eigenvectors of AA T; the Σ is an m x n matrix, known as 

the diagonal matrix, with real and non-negative numbers and contain the singular values of A. The 

matrix VT is known as a conjugate transpose, an n x n unit matrix with real or complex numbers. 

As the diagonal values of Σ are ordered in descending order, Σ is a direct function of matrix A and 

characterizes the singular values of this matrix, ordering them from the most significant to the least 
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significant values. Considering a subset of singular values of size k<n, we can obtain Ak, that is an 

approximate of matrix A: 

 Ak = UkΣkVk
T (4) 

  Thus, data approximation depends on how many singular values are used, with this k-

dimensional (Élden, 2006; Kumar et al., 2011; Santos et al., 2011). 

The possibility of extracting information based on less data is part of the reason for this 

technique’s success, as it allows data analysis, with an execution time that does not increase 

exponentially with increasing matrix size. A data set represented by a smaller number of singular 

values than the original full-size dataset has a tendency to group data items that would not be 

grouped if we used the original one. This strategy could explain why clusters derived from SVD 

can expose non-trivial relationships among the original data set items. This derived representation, 

which captures associations, is used for retrieval (Berry et al., 1995). 

The meaning representation in the reduced space representation is economical, in the sense 

that N original index features have been replaced by the k < N best surrogates by which they can 

be approximated. It is essential for the method that the derived k-dimensional factor space does not 

reconstruct the original term space perfectly. Our aim with this technique is to be able to represent 

features and fragments, in a way that escapes the unreliability, ambiguity, and redundancy of 

features. It is also important because it allowed working arrays on our computers. The beauty of an 

SVD, however, is that it allows a simple strategy for optimal approximate fit using smaller 

matrices. How to choose the appropriate number of dimensions is an open research issue 

(Deerwester et al., 1990). Everitt and Dunn (1991) proposed an alternative approach where singular 

values whose relative variance is less than 0.7/n, where n is the number of proteins in the document-

term matrix, must be ignored. If the singular values in S, are ordered by size, the first and largest k 

may be kept and the remaining smaller ones set to zero (Deerwester et al., 1990). 

It is important to note that for a square, symmetric matrix X, singular value decomposition 

is equivalent to diagonalization, or solution of the eigenvalue problem (Wall et al., 2003). 
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3.4 Clustering  

After setting up the matrix with the logistic regression values, we generated clusters using 

the k-medoid algorithm. This method minimizes the average dissimilarity of all objects of the data 

set the nearest centroid (Kaufman et al., 1987). The k-medoid method is based on average 

dissimilarities instead of the sum of squares of dissimilarity of the objects to the representative 

objects they are assigned to (Kaufman e Rousseeuw, 1987).  

Kaufman and Rousseeuw (1990) said that the main objective to find k clusters at medoid 

method is to show a high degree of similarity between them whereas objects belonging to different 

clusters are as diverse as possible. All the k objects should represent the various aspects of the 

structure of the data. The k must be chosen for the location in such a way that the sum of distances 

from all the objects of the data set to the nearest of these is as small as possible. The spot of the 

center is interpreted as the selection of the representative object. The centroid does not have to be 

one of the objects in the original data set, and it cannot be defined when the data is a set of 

dissimilarities not based on interval scaled measurement values (Kaufman e Rousseeuw, 1987).  

The medoids method uses the PAM (Partition Around Medoids) algorithm, which divides 

the data set into k clusters, where the integer k needs to be specified by the user. The algorithm 

proceeds through two phases. In the first phase, a representative set of k objects is found. The first 

object selected has the shortest distance to all other objects, which it is the center. An addition k-1 

objects are selected one at a time in such a manner that distance decrease as much as possible 

(Struyf et al., 1997). 

In the second phase, possible alternatives to the k objects selected in phase one, are 

considered iteratively. At each step, the algorithm considers all pairs of objects and make the swap 

(if any) which decreases the objective function the most. These iterations continue until 

convergence (Struyf et al., 1997). Normally, the number of clusters is not defined in a data set and 

fluctuates for each case (Kaufman, L. e Rousseeuw, P. J., 1990).  

Two of the most difficult tasks in cluster analysis are deciding on the appropriate number 

of clusters and deciding how to tell a bad cluster from a good one. Kaufman and Rousseeuw (1990) 

define a set of values called silhouettes that provide key information about both tasks. One way to 
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selecting a value of k is using the silhouette coefficient (Kaufman e Rousseeuw, 1987; Rousseeuw, 

1987) (Rousseeuw, 1987).  

The goal of k-means is to minimize a sum of squared Euclidean distances, implicitly 

assuming that each cluster has a spherical normal distribution. The k-medoids is robust because it 

minimizes a sum of unsquared dissimilarities. Moreover, PAM does not need initial guesses for 

the cluster centers, contrary to k-means (Struyf et al., 1997). We did not use k-means because it is 

sensitive to the selection of the initial partition and may converge to a local minimum or create an 

empty group (Macqueen, 1967). 

 

3.5 Modified Logistic Regression Model 

For the logistic regression the maximum likelihood is used, a general method of estimation 

that conducts to the sum of least squares. This method produces values for the unknown parameters, 

which maximize the probability of obtaining the observed set of data. First, it has to construct the 

function, the likelihood function, which expresses the probability of the observed data as a function 

of the unknown parameters (Hosmer e Lemeshow, 2000). 

In the logistic regression, the quantity 𝑃 = 𝐸(𝑌|𝑥) (1) is used to represent the conditional 

mean of Y given x when the logistic regression model we use is:  

 
𝑃(𝑥) =

𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖

1 −𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖
    

(5) 

The data obtained from PDB database is represented by matrix A, with m rows and n 

columns, with rows representing fragments and columns representing triplets. The value of each 

position xm,n represents the triplets of a fragment. We will omit the indication of row m in the 

elements of vector x. That is x = {x1, x2, …, xm} every time row m to which x refers to is evident 

in the context. Associated with each row m is Pi(x) = 0/1 that informs the secondary structure of 

the fragment (100% alpha helix/ 100% non-alpha helix).  

The logistic regression consists of finding a vector α = (α0, α1, …, αn) to fit the set of the 

equation (4). We observed that when 𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖  drops to zero, Pi (x) also goes to zero. On the 
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other hand, if  𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖  tends to infinity, Pi(x) approximates one. Viewing Pi (x) as the 

probability, the odds Ci(x) are given by: 

 

𝐶𝑖(x) =  
𝑃(𝑥)

1−𝑃(𝑥)
=

𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖

1 −𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖

1 −
𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖

1 −𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖

=  𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖    

(6) 

To implement the method, we use Ĉi (x) ≈ Ci (x) = (0.99999 / (1-0.99999)) instead of Ci 

(x) when the odds are related to Pi (x) = 1. When Pi (x) = 0, we consider Ĉi (x) ≈ Ci (x)= (0.00001 

/ (1-0.00001)). 

Doing the logit transformation in equation (6), as: 

 𝐶𝑖(x) =  𝑂𝑑𝑑𝑠(x) = ln [
𝑃(𝑥)

1−𝑃(𝑥)
] = ln[𝑒∑ 𝛼𝑖𝑥𝑖+𝛼𝑛+1𝑖 ]  =  ∑ 𝛼𝑖𝑥𝑖 + 𝛼𝑛+1𝑖 ,  (7) 

a linear algebraic model is created to determine α:  

 bi = α0 + α1x1 + α2x2 + ...+ αnxn (8) 

This logit transformation can have the desirable properties of the linear regression model, 

like the parameters that may be continuous and may range from −∞ 𝑡𝑜 + ∞ (Hosmer e Lemeshow, 

2000). 

For i = 1, 2, …, m, let ē = (1, …, 1)T be a vector of m ones and b = [b1, b2,…, bm]T. The 

system of linear equations (8) may be represented by: 

 Bα =  b, with B =  [ē A] (9) 

The system (7) has an infinite number of solutions, since n + 1 >> m. It is usual to 

circumvent this difficulty by pruning the model and keeping only a small subset of n fragments. 

This procedure resembles the features selection in data mining. We propose the usage of a 

stabilizing term in the logistic regression model found in the works of Linnik (1961) and Golub 

(1965) and later by Abreu et al. (2008) and Menard (2010). It allows the assignment of values to α 

parameters by minimizing the square sum of the residuals (equation 9) summed to the squares of 

α, thus letting the system to have a unique solution. Therefore, to assign a solution to (equation 7), 

we are considering that, minimize f (α): 
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 f (α) = αTα + (Bα - b)T *(Bα - b), (10) 

As f (α) is a convex function, the argument α* that minimizes (equation 10) is given by the 

derivative of f (α) in α and making it equals zero. This results in the following system of linear 

equations: 

 (I + BTB) α = BTb, (11) 

where I is an identity matrix of dimension n. One should note that the identity matrix does not 

allow the rank to become deficient. The optimal solution α* of (10) is obtained by the solution of 

(9) and is unique. So, given a query q = [q1, q2, …, qm] with the fragment with nine residues levels 

of expression of n triplets, the probability of q to be 100% alpha helix or 100% non-alpha helix is 

given by: 

 P (q) =  g (q) / (1 + g (q)), (12) 

where g (q) = exp ([1 qT] α). 

Suppose that the sample of n independent observations of the pair (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑛,  

where 𝑦𝑖 is the value of a dichotomous outcome variable and 𝑥𝑖 is the independent variable for the 

𝑖𝑡ℎ subject. In the linear regression, the method used often for estimating unknown parameters, 𝛽0 

and 𝛽1, is least squares, which minimize the sum of square derivations of the observed values of Y 

from the predicted values based upon the model. Unfortunately, in the method of least squares with 

a dichotomous outcome, the estimators have no longer the same properties (Hosmer e Lemeshow, 

2000). 

 

3.6 Project and calculate the odds of an unknown query  

Firstly, it was necessary to project the query utilizing the eigenvalue of U, of the singular 

value decomposition (equation 2), being k=30: 

 U(: ,1: 30)𝑇 ∗ U(: ,1: 30) ∗  q̃ = U(: ,1: 30) ∗  q ⟺ U(: ,1: 30)𝑇 ∗  q  (13) 

The equation 13, a linear equation, which minimizes the sum of squared residuals, gives us 

the query in the dimension and the pattern of the matrix.  
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Now that we had a query with 30 dimensions, we calculated the distance between it and the 

medoids of the matrix A1. The medoid, which has the shortest distance, was selected and multiplied 

by the query. With that, the size was the same (8000x1) and we multiplied by the alpha value and 

calculated the value of probability. We used the equation 13 in this step. 

After the matrix was constructed, it was possible to assemble several models. Initially, we 

thought four methods for building models: small and near clusters method (conventional and 

reverse sliding window technique), medoids method, direct distance method and residue analysis 

method. These methods were designed not only for the protein secondary structure problem but, 

also, with the perspective of data mining problems. The amount of information and scalability of a 

model is a relationship that we wanted to build. The direct distance method is similar to the search 

engines, like Google (Cilibrasi e Vitanyi, 2007). It would use the hierarchical clustering and a 

distance parameter to define the secondary structure of the query. The search is done through tree 

using a parameter distance. The residue analysis method would analyze all the residues of the 

fragments generated, in particular, the 5th. According to Pauling (1951), the 1st residue binds to 

the 4th, in an alpha-helix. Therefore, it would be interesting to study this residue, these positions. 

The other two methods will be detailed below. They were chosen to be tested because they 

are different and have the capability of being scalable to a diversity of applications. 

 

3.6.1 Small and near clusters method 

Briefly, we decomposed the matrix and grouped it hierarchically (dendrogram). In the first, 

the aim was to promote the approach of analogous individuals and minimize the noise. While the 

second step (clustering with the dendrogram), allowed creating groups with similar individuals in 

the same cluster. 

The degree of granulometry will be low, and the differences between the alpha-helix 

individuals and not 100% alpha helix will be more significant.  

The dendrograms for both matrices were made in Matlab. For the A0 matrix (with fragment 

100% non-alpha helix) the following parameters were chosen: Partitioning algorithm – k-medoids; 

the number of nodes per level - 5; maximum number of individuals per cluster - 5000. For A1 
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matrix (with fragments 100% alpha helix) have the following parameters: Partitioning algorithm – 

k-medoids; the number of nodes per level - 5; maximum number of individuals per cluster - 1000. 

These parameters are summarized in Table 1. 

 

To calculate which cluster that the query belongs, we verified which medoid in the last level 

of A1 was closer, by calculating the cosine. We tested all distance types available in MatLab 

(euclidean, squared euclidean, cityblock, hamming, jaccard, and cosine) and the most appropriate 

to our problem was cosine distance.  

Given the medoid, we selected the cluster it belonged. For the A0 matrix, we calculated the 

nearest medoid in the last level, related to the selected medoids of A1, and selected the cluster that 

includes. (Figure 10). 

  

Table 1 - Parameters of the dendrograms. 

PARAMETERS PAM 

algorithm 
distance Nº max/cluster Nodes 

MATRIX 

A0 k-medoids cosine 5000 5 

A1 k-medoids cosine 1000 5 

Source: Author 
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After we have the two cluster selected, which is the matrixes of each are concatenated. 

Then, we applied the modified logistic regression method. From the established method, we 

calculated the probability of the fragment (query) being or not a 100% alpha-helix (default). 

  

30x90915 

    

30x530284

< cosine 

< cosine 

A0 

A1 

query 

Figure 10 - Didactic scheme of the small and near clusters method: 1 - project the query in A1 and 

select the medoid closest and the cluster that it belongs; 2 - select the closest medoid of A0 and the cluster 

that it belongs. 
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A0 

A1 

Figure 11 – Didactic scheme of the Small and near clusters method. The blue circle is a medoid. 

After selecting the cluster A1, we selected the nearest cluster in A0. With the two matrices concatenated, 

it is possible to construct the model. 
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3.6.2 Medoids method 

After clustering both A0 and A1 matrix using the k-medoids algorithm, we obtained a 

medoids list.  Since a medoid is the element that represents each cluster, we extracted these 

individuals and built a model only with them. The goal was to concatenate all representatives and 

build a model (Figure 12). 
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Figure 12 – Didactic scheme of the medoids method. 
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3.7 Cross-validation and performance Measures 

Cross-validation is a popular strategy for algorithm selection, to calculate the risk of new 

models. The main idea was to split data, once or several times, for estimating the risk of each 

algorithm: part of the data (the test sample) was used for training each algorithm, and the remaining 

part (the validation sample) was used for estimating the risk of the algorithm. Then, we calculated 

the sensitivity and specificity to estimate the risk (Arlot e Celisse, 2010). For each of the K 

experiments, we used K-1 folds for training and the remaining one for testing.  

The advantage of K-Fold Cross-validation is that all the examples in the dataset are 

alternatively used for both training and testing. It only assumes that the data are identically 

distributed, and test/validation samples are independent. The design of this strategy is shown in 

figure 13. 

 

 

 

  

Figure 13 - Didactic scheme of the method K-fold cross validation. 
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3.7.1 Sensitivity (also known as the true positive rate) and specificity (also known as the true 

negative rate) 

To evaluate the effectiveness of our proposed methodology, we calculated the sensitivity 

(equation 13), specificity (equation 14) and accuracy (equation 15) (Kurgan e Homaeian, 2006; 

Dehzangi et al., 2014).  

The sensitivity measures the proportion of correct predictions of proteins compared to the 

whole number of samples, which are classified as correct and is calculated as follows: 

 Sensitivity = (TP/(TP + FN)) × 100,  (13) 

where TP is the number of correct predictions (true positive), while FN is the number of incorrect 

predictions (false negative) (Kurgan e Homaeian, 2006; Dehzangi et al., 2014).  In our study, true 

positive meant that it was truly an alpha helix. 

The specificity measures the proportion of the number of correct rejected samples compared 

to the whole number of rejected samples and is calculated as follows: 

 Specificity = (TN /(TN + FP))× 100,  (14) 

where TN is the number of correctly rejected (true negative) samples while FP is the number of 

incorrectly accepted samples (false positive). In our study, true negative meant that, in effect, it 

was not an alpha helix. These two parameters are associated with the prediction error, which is 

100% sensitive and specific, consequently as a perfect predictor (Kurgan e Homaeian, 2006; 

Dehzangi et al., 2014). 

The accuracy is defined as the ratio between the number of correct predictions and n, which 

is the total number of predictions (proteins) (Kurgan e Homaeian, 2006):  

 accuracy = ((TP+TN)/n) x 100,  (15) 
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4 Results and Discussion 

4.1 Database preparation  

With our strategy, we obtained 3098 entries in July 2015, which were imported into MatLab 

software for analysis. Inspired by the Rosetta method, the length of the sliding window was nine. 

When the window slid through the sequence, it generated fragments with nine residues. A fragment 

was classified as a default alpha helix structure only if 100% of it was in this conformation. 

 

4.2 The matrix 

It was generated 621176 fragments. Where 90,915 were associated with the value b0 = 1, 

and 530,261 were related to b0 = 0. There were no fragments associated with two values of b0. We 

can consider a sample of PDB due to our chosen strategy and, consequently, this number of 

fragments generated. 

In theory, the number of combinations is 5.12 x 1012 (20 ^ 9), whereas the number of the 

nature of fragments is much lower due to affinities and preferably contacts. 
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Figure 14 – Flowchart of the creation of the matrix. 
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4.3 Singular Value Decomposition 

To reduce the dimensions designed to the 3D plot we utilized the script done by Marcolino 

et al. (2010), which utilizes SVD recursively. 

We plotted the relative S in a decreasing magnitude order and chose 30 singular values, 

where there were no longer significant variations. The product of the resulting matrices was a 

matrix X that was only approximately equal to X, and was of rank k. It can be shown that the new 

matrix X is the matrix of rank k, which is closest to X. The presented graphics are only for the 

conventional windows. The behavior with the reverse window was similar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15– Plot of S relative of matrix A0. 

Figure 16 – Plot of S relative of matrix A1. 
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4.4 Clustering 

After considering the parameters described in Table 1, we obtained the following results 

medoids/clusters described in Table 2. 

Table 2 – Number of medoids. 

TOTAL 

Medoids medoids/last level 

MATRIX 

A0 (conventional sliding window) 395 313 

A1 (conventional sliding window) 330 265 

A0 (reverse sliding window) 370 297 

A1 (reverse sliding window) 335 269 

Source: Author 

Clusters were well grouped (Figure 17 and 18). We plotted the first model with 

conventional and reverse sliding window, as an example. These techniques originated similar 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17– Plot 3D of the 1st model, with conventional sliding window. 
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4.5 Modified Logistic Regression Model 

4.5.1 Small and near clusters method 

Firstly, we used the equation for calculating the value of alpha (equation 11) of all features 

(triplets) for all models generated. Therefore, we did it 265 times for conventional sliding window 

technique and 269 for the reverse one. 

 As an example, we plotted the first model of the two techniques (Figures 19 and 20). As we 

can see, in both plots, alpha values are well distributed by 8000 triplets, varying only in magnitude. 

  

 

 

  

Figure 18– Plot 3D of the 1st model, with reverse sliding window. 
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Figure 19– Alpha values of the 1st model, with conventional sliding window. 

Figure 20– Alpha values of the 1st model, with reverse sliding window. 
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The graphs of the value of P (equation 12), using the two techniques, were well defined and 

separated (Figures 21 and 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 21– P values of the 1st model, with conventional sliding window. 

Figure 22– P values of the 1st model, with reverse sliding window. 
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The value of the norm of the model evaluated must be close to zero (equation 11). If it is 

not, we multiplied by a value that favored the remainder instead of the sum of the squares (Figures 

23 and 24).  

  

Figure 23– Plot of norm with conventional sliding window. 

Figure 24– Plot of norm with reverse sliding window. 
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However, it was not necessary to multiply by any value because the worst norm (the 

highest) generated an acceptable model in both techniques (Figures 25 and 26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.2 Medoids method 

The matrices A0 and A1 had, with a conventional sliding windows technique, 395 and 330 

medoids, respectively. The purpose was to extract the representatives of each cluster and 

concatenate them. Separately, the same procedure was done in the other matrices, which used the 

reverse sliding window technique. In this last case, we had 335 and 370 medoids, in A1 and A0, 

respectively. Once again, the purpose was to extract the representatives of each cluster and 

concatenate them. However, the built model was not good since there was no adequate separation 

Figure 25– Plot of a model with a high norm, using conventional sliding window. 

 Figure 26– Plot of a model with a high norm, using reverse sliding window. 
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of individuals. Probably, we can infer that making a sample of a sampling was not the correct 

approach. 

4.6 Cross-validation and performance measures 

4.6.1 Small and near clusters method 

As the only valid method was the small cluster and near cluster method, the cross-validation 

was done only for this method with the conventional window. The behavior with the reverse 

window was similar. 

We chose the method K-fold cross-validation, where k is equal to 10% of the population. 

Therefore, we conducted 10 experiments with the selected cluster. Then, we calculated the 

sensitivity and specificity of each experiment and the respective average. The results of the first 

cluster A1 (one cluster of the 265's) are shown in the next figure (Figure 27). The cut-off was 0.5. 
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Figure 27 – Ten folds of cross-validation, using a model with conventional sliding window. 
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As the results of cross-validation were satisfactory, it was possible to proceed to the test 

with the unknown query (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 Comparing with another tool 

Although we can predict only one type of secondary structure, it is necessary to compare 

the results obtained with another method. The QUARK tool, which uses fragments with a size of 

20 residues, was the chosen tool for comparing. QUARK had a good performance in CASP 

(http://predictioncenter.org). 

Table 3 - Results of performance measures of a model with conventional sliding 

window. 

Test Accuracy Sensibility Specificity 

1 0,963504 1 0,960159 

2 0,974453 1 0,972 

3 0,98374 0,967742 0,986047 

4 0,98913 0,970588 0,991736 

5 0,985401 0,891892 1 

6 0,992701 0,969697 0,995851 

7 0,992674 0,969697 0,995833 

8 0,992701 0,969697 0,995851 

9 0,989051 0,941176 0,995833 

10 0,992701 0,983051 0,995349 

 �̅� 0,985625 0,964809 0,988617 

Source: Author 
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The comparison is still very limited, and therefore we only used the sensitivity metric. A 

fragment classified as negative, by our method, can still contain residues in alpha-helix. The PDB 

file (Berman et al., 2000) randomly chosen was ID: 3etj to be tested with the QUARK tool and our 

method. The resources of PDBsum (Laskowski et al., 1997) and PDB (Berman et al., 2000) were 

used to generate elucidatory images about the secondary structure of 3etj (Figure 28 and 29). 

Figure 28 - Image generated by PDBsum with the PDB ID 3etj (Laskowski et al., 1997). 

Figure 29 – Image of secondary structure of PDB ID 3etj (Berman et al., 2000). 
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The QUARK tool only accepts size fragments with 20 residues. Thus, we inserted the 

sequence containing the alpha-helix, as highlighted in Table 4. The overall sensitivity was 67,61%. 

 

Table 4 - Results of the comparison with QUARK tool. Blue highlight - alpha-helix; Yellow 

highlight - remaining fragment. 

Fragment with 20 

residues containing 

the alpha helix 

(PDB ID: 3etj) 

C-coil;H-helix;E-sheet;T-beta turn number of 

correctly 

predicted 

residues 

HELICE 1: 

QVCVLGNGQLG

RMLRQAGEP  

 

 

1 Q E 

2 V E 

3 C E 

4 V E 

5 L E 

6 G C 

7 N C 

8 G C 

9 Q H 

10 L H 

11 G H 

12 R H 

13 M H 

14 L H 

15 R H 

16 Q H 

17 A C 

18 G C 

19 E C 

20 P C 

8/10 

HELICE 7: 

NRDVFPIIADRLT

QKQLFDK 

  

1 N C 

2 R C 

3 D C 

4 V H 

5 F H 

6 P H 

7 I H 

8 I H 

9 A H 

10 D H 

11 R H 

12 L H 

13 T H 

14 Q H 

15 K H 

16 Q H 

17 L H 

18 F H 

19 D C 

20 K C 

8/10 

HELICE12: 

ANAQQQARAEE

MLSAIMQEL 

1 A C 

2 N C 

3 A H 

4 Q H 

5 Q H 

6 Q H 

7 A H 

8 R H 

9 A H 

10 E H 

11 E H 

12 M H 

13 L H 

14 S H 

15 A H 

16 I H 

17 M H 

18 Q H 

19 E H 

20 L C 

17/18 

HELICE15: 

QFELHLRAITDL

PLPQPVVN 

   1   C    

   2 F C    

   3 E E    

   4 L E    

   5 H E    

   6 L E    

   7 R E    

   8 A E    

   9 I H    

  10 T C    

  11 D C    

  12 L C    

  13 P C    

  14 L C    

  15 P C    

  16 Q C    

  17 P C    

  18 V C    

  19 V C    

  20 N C    

1/9 

HELICE 17: 

GHLNLTDSDTSR

LTATLEAL 

1 G C 

2 H C 

3 L C 

4 N C 

5 L C 

6 T C 

7 D C 

8 S C 

9 D C 

10 T H 

11 S H 

12 R H 

13 L H 

14 T H 

15 A H 

16 T H 

17 L H 

18 E H 

19 A H 

20 L C 

10/11 

HELICE20: 

ALIPLLP PEY 

ASGVIWAQSK 

1 A C 

2 L C 

3 I C 

4 P C 

5 L C 

6 L C 

7 P C 

8 P H 

9 E H 

10 Y H 

11 A H 

12 S C 

13 G C 

14 V E 

15 I E 

16 W E 

17 A E 

18 Q E 

19 S C 

20 K C 

4/13 

TOTAL  48/71 

(67,61%) 

Source: Author   
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4.8 Project and calculate the odds of an unknown query 

4.8.1 Small and near clusters method 

After constructing all models by Small and near clusters method, we tested it with unknown 

queries i.e., to calculate the odds of biomolecules randomly selected from PDB. In the first step of 

the tests, we chose only enzymes (one of each enzyme family). This step worked as a preliminary 

test to evaluate the performance of the method. For each tested biomolecule, we verified if it was 

not present in the sample that was created of the databank initially. The same procedure was done 

with the conventional sliding window and the reverse one. The result value P is shown in Figure 

30. The behavior of the reverse window was similar. 
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Figure 30 - Results of P values of the six tested queries, using conventional sliding window. 

P value of 1q7z P value of 1NSJ 

P value of 1WRM P value of 3P8Y 

P value of 4PN3 P value of 3ETJ 



Prediction of alpha helices in proteins using Modified Logistic Regression Model                                                    57 

Considering a reference cut-off of 0.70, the results of sensibility (equation 13), specificity 

(equation 14), and accuracy (equation 15), is described in Table 5. 

As can be seen, the specificity had good values, i.e., the method could identify fragments 

created 100% non alpha-helix. However, sensibility was low. This behavior was consistent among 

the tested proteins. Therefore, we chose to stop here. We believed that it was an indication that 

something was wrong and to test more biomolecules would not provide more useful information. 

We made several tests on the clusters, such as number variation and maximum size. We 

also inverted the starting point to A0 matrix and combined the distance metrics. However, the 

behavior of the tested biomolecules did not vary in both techniques of sliding windows.  

In our efforts, we found the possible mistake when we checked how many triplets coincided 

between the queries and the model. The number of triplets that matched should have been 7 but 

were nevertheless 2-3. This classification would be difficult because it is necessary seven 

overlapping triplets associated with the alpha value to calculate the odds of the fragment (equation 

12). Thus, we understand the results of sensitivity and specificity we got.  

Table 5 - Results of the tested queries. 

ID PDB Enzyme Classification Sensibility Specificity Accuracy 

1Q7Z Transferase 6/41 = 0.20 277/305 = 0.91 283/346 = 0.82 

1NSJ Isomerase 4/14 = 0.30 151/182 = 0.83 155/196 = 0.79 

1WRM Hidrolase 2/37 = 0.10 118/119 = 0.99 120/156 = 0.77 

3P8Y Ligase 8/52 = 0.15 198/233 = 0.85 206/285 = 0.72 

4PN3 Oxidoreductase 0/73 = 0 173/181 = 0.96 173/254 = 0.68 

3ETJ Lyase 7/41 = 0.17 252/305 = 0.83 259/346 = 0.75 

 �̅�  0.15 0.90 0.76 

Source: Author 
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5 Final Considerations  

This work had many and different stages. Working with the PDB database proved to be a 

more complex task than one could predict due to the quantity of information and the failure of the 

same. 

The hierarchical clustering using the k and medoid algorithm could satisfactorily separate 

database. 

Validation of small and near method obtained good results in the cross-validation. This 

method was the method chosen by us, not only by the results close to satisfactory but also for its 

potential. With it, we can classify the fragments 100% non alpha-helix.  

Logistic regression provided a useful method for classification by modeling the probability 

of relationship of a class based on linear combinations of exploratory variables. One particular 

problem was multicollinearity: the estimated equations had no unique solution. The modified 

logistic regression model proposed in this work is a solution to this problem, with no need for 

previous feature selection nor matrix dimensionality reduction. Based on the work of Linnik (1961) 

and Golub (1965) we modified the classical logistic regression model to include a stabilizing term 

(equations 11) that allowed for the assignment of values to alpha parameters by minimizing the 

square sum of the residuals (Bα - b) summed to the squares of alpha. 

Although our outcomes were not as expected, it was a great learning experience to acquire 

knowledge of the proposed topic. At the end of this work, we have a method (small and near method 

cluster) with strong evidence that might be a potential method of predicting secondary structure. 

However, this method has a versatile and scalable properties to be applied to other problems. 
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6 Perspectives 

With our hypothesis unrepresentative, we could use all PDB data bank to create another 

database or to extract just one family of biomolecules. It is also necessary, to make other models 

using fragments with different percentages of alpha-helix. As well as, models for beta sheet and 

coils. 

After implementing those improvements described above, we can publish this work in the 

form of an article. With the resources that MatLab offers, it will also be possible to provide an 

extension to the scientific community for predicting secondary structure. 

Another perspective, it is to use the small method and near method in other data mining 

problems, considering the scalable features of the model. 
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8 Appendix A 



Table - Tools and method to predict the secondary structure of protein. 

Name 
Author 

(citation) 
Main features 

 

TOOLS 

C8-SCORPION 
(Yaseen e Li, 

2014) 

The authors constructed the templates for 8-state 

secondary structure, from structural information of chains 

with certain sequence similarity. The structural templates 

are then incorporated as features with sequence and 

evolutionary information to train two-stage neural 

networks. In the case of structural templates absence, 

heuristic structural information is incorporated instead. 

NEUROSVM 
(Ghanty et al., 

2013) 

It is a hybrid system consisting of neural networks and 

support vector machines for classification of secondary 

structures, using position-specific probability-based 

features and position-independent probability-based 

features. This method uses the position-specific scoring 

matrices (PSSM) derived from PSI-BLAST. 

JPred4 

(Cuff et al., 

1998) 

(Drozdetskiy et 

al., 2015) 

This server is a combination of six secondary structure 

prediction algorithms that exploit evolutionary 

information from multiple sequences. 

FLOPRED 
(Saraswathi et 

al., 2012) 

It uses neural network-based extreme learning machine 

and advanced particle swarm optimization, using the 

information from CATH (Protein Structure 

Classification) database. 



sS2 
(Sormanni et 

al., 2015) 

It is based on the NMR chemical shifts that provide 

quantitative information about the probability 

distributions of secondary-structure elements in 

disordered states. 

BCL::ScoreProtein 
(Woetzel et al., 

2012) 

It uses the topology, considering that the majority of well-

structured domains for the assembly of the secondary 

structure elements, in three-dimensional space defines the 

domain topology. It defines an amino acid pair potential, 

an amino acid environment potential, a secondary 

structure element packing potential, a β-strand pairing 

potential, a loop length potential, a radius of gyration 

potential, a contact order potential, and a secondary 

structure formation potential. This scoring function is 

specialized to evaluate the loop-less protein topology as 

defined by the secondary structure elements.  

BCL::Fold 
(Karakas et al., 

2012) 

The algorithm uses the Monte Carlo Metropolis 

simulated annealing folding simulation. It optimizes a 

knowledge-based potential of BCL::Score. 

Discontinuation of the protein chain favors sampling of 

non-local contacts and the thereby creation of complex 

protein topologies. 

DISSPred 
(Kountouris e 

Hirst, 2009) 

DISSPred predicts both the secondary structure and the 

backbone dihedral angles independently and combine the 

results. 

SVM-PB-Pred 

(Suresh e 

Parthasarathy, 

2014) 

It is the support vector machine which is used to predict 

the protein block, with the input sequence profile 

(Position-Specific Scoring Matrix) and secondary 

structures from different methods. 

RKS_PPSC 
(Yang et al., 

2010) 

The RKS_PPSC predict protein structural classes 

particularly for low-homology amino acid sequences, 

based on features extracted from the predicted secondary 



structures of proteins rather than directly from their 

amino acid sequences 

Phyre2 
(Kelley et al., 

2015) 

It uses remote homology detection methods to build 3D 

models, predict ligand binding sites and analyze the effect 

of amino acid variants (single nucleotide polymorphism). 

 

METHODS: 

 (Wang et al., 

2015) 

This method proposes a prediction  for low-similarity 

datasets using reduced PSSM and position-based 

secondary structural features. 

 (Zhang et al., 

2014) 

This a method to predict the structural class of proteins, 

especially for low-similarity sequences, combining 

PSIPRED, feature selection, and support vector machine 

model. 

 (Kong e Zhang, 

2014) 

This method uses 27 features that characterize general 

contents and spatial arrangements, using the support 

vector machine to implement the prediction. 

 

INTEGRATIVE TOOLS: 

MULTICOM 

toolbox 

(Cheng et al., 

2012) 

This has a set of protein structure and structural feature 

prediction tools, including secondary structure 

prediction, solvent accessibility prediction, disorder 

region prediction, protein domain boundary prediction, 

protein contact map prediction, protein disulfide bond 

prediction, protein beta-sheet structure prediction, protein 

fold recognition, multiple template combination, 

template-based structure modeling, protein model quality 

assessment, and protein mutation analysis. 

SCRATCH 
(Cheng et al., 

2005) 

This software includes predictors for secondary structure, 

relative solvent accessibility, disordered regions, 



domains, disulfide bridges, single mutation stability, 

residue contacts versus average, individual residue 

contacts, and tertiary structure. The user simply provides 

an amino acid sequence and selects the desired 

predictions, then submits to the server. 

PredictProtein 
(Yachdav et al., 

2014) 

The PredictProtein aggregates a large number of tools to 

predict the secondary structure. It features prediction for 

secondary structure, solvent accessibility, 

transmembrane helices, globular regions, coiled-coil 

regions, structural switch regions, B-values, disorder 

regions, intra-residue contacts, protein-protein, and 

protein-DNA binding sites, sub-cellular localization, 

domain boundaries, beta-barrels, cysteine bonds, metal 

binding sites and disulfide bridges. 

MESSA 
(Cong and 

Grishin, 2012) 

It predicts the secondary structure, local sequence 

features, domain architecture, and function for a given 

protein sequence.  

RaptorX 
(Wang et al., 

2011) 

RaptorX uses conditional neural fields to predict 8-class, 

taking as input PSSM generated by PSIBLAST, the 

physicochemical properties of amino acids and their 

statistical properties to predict secondary structure. 

ItFix-SPEED 
(Debartolo et 

al., 2010) 

It is also possible coupling tools, which predicts 

secondary and tertiary structure. 

I-TASSER 
(Roy et al., 

2011) 

This server matches the predicted 3D models to the 

proteins in 3 independent libraries which consist of 

proteins of known enzyme classification number, gene 

ontology vocabulary, and ligand-binding sites. 

 


