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Abstract

Sensor-based Human Activity Recognition (sensor-based HAR) provides valuable

knowledge to many areas, such as medical, military and security. Recently, wear-

able devices have gained space as a relevant source of data due to the facility of data

capture, the massive number of people who use these devices and the comfort and

convenience of the device. In addition, the large number of sensors present in these

devices provides complementary data as each sensor provides a di�erent information.

However, there are two issues: heterogeneity between the data from multiple sensors

and the temporal nature of the sensor data. We believe that mitigating these issues

might provide valuable information if we handle the data in the correct way. To handle

the �rst issue, we propose to processes each sensor separately, learning the features of

each sensor and performing the classi�cation before fusing with the other sensors. To

exploit the second issue, we use an approach to extract patterns in multiple temporal

scales of the data. This is convenient since the data are already a temporal sequence

and the multiple scales extracted provide meaningful information regarding the activi-

ties performed by the users. We extract multiple temporal scales using an ensemble of

Deep Convolution Neural Networks (DCNN). In this ensemble, we use a convolutional

kernel with a di�erent height for each DCNN. Considering that the number of rows

in the sensor data re�ects the data captured over time, each kernel height re�ects a

temporal scale from which we can extract patterns. Consequently, our approach is

able to extract both simple movement patterns such as a wrist twist when picking

up a spoon and complex movements such as the human gait. This multimodal and

multi-temporal approach outperforms previous state-of-the-art works in seven impor-

tant datasets using two di�erent protocols. We also demonstrate that the use of our

proposed set of kernels improves sensor-based HAR in another multi-kernel approach,

the widely employed inception network.

Palavras-chave: Human activity recognition, Multimodal data, CNN ensemble, Mul-

tiscale temporal data.
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Chapter 1

Introduction

The use of sensors provided by wearable devices to recognize human activities has

grown every year. As discussed by Lara and Labrador [2013], there are many reasons

for this growth: the increasing interest of several areas, such as medical, military, and

security applications; the convenience and comfort of using such devices (it does not

change or hinders the action due to their use); the feeling of privacy (as opposed to

monitoring with cameras where depending on the activity performed or the location,

the user feels uncomfortable); and it is already naturally inserted into people's lives,

facilitating the data capture.

An interesting feature of wearable devices is the increasing number of embed-

ded sensors. Figure 1.1 shows some of the sensors present in current smartphones.

This large range of sensors provides rich and complementary information regarding

the activities performed by users. For instance, the accelerometer, magnetometer, and

gyroscope can bring information regarding movement, the barometer can bring alti-

tude information, the GPS and WiFi provide location information, while heartbeat

sensors can bring information regarding the emotional state. However, sensors have

several dissimilarities between their signals, such as a di�erent number of axes, scales,

meanings, or data nature (e.g., angle, value, degree, frequency). Therefore, due to the

heterogeneous nature of the sensors, an important line of research that has gained at-

tention focuses on the investigation of how to combine (i.e., fuse) these distinct sensors

in order to improve human activity recognition Ha et al. [2015]; Ha and Choi [2016];

Yao et al. [2017].

Besides the sensor data heterogeneity, another issue that must be considered is

the multi-temporal scale nature of the data. An activity is composed of several complex

movements and di�erent durations, i.e., while some activities can only be distinguished

by small and fast movements, others need to be analyzed for longer periods of time to

1
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Figure 1.1: Sensors provided by the most common used smartphones.

be classi�ed. In this way, it is hard to recognize an activity only looking at a point in

the temporal space.

Figure 1.2 presents the standard pipeline of human activity recognition (HAR)

based on wearables sensors. In this �gure, we have two devices being wear by the user

in his/her daily activities, which are able to provide di�erent information regarding

the activities throughout their sensors. First, the raw data of these two sensors are

concatenated into a common matrix and then, features are extracted. Usually, there are

two types of methods to extract these features, handcrafted methods (using statistic

operations, such as average, minimum, maximum) or learned features (using deep

learning methods). At the end of the pipeline, the classi�cation is performed using

some machine learning algorithm.

In the last years, the most used method to extract and to classify sensor data
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Raw Signals

Activity Recognition Pipeline

Feature
Extraction Classi�cation Activity: 

Running

Raw Signals

Raw Signals

Figure 1.2: Standard human activity recognition pipeline using wearables sensors.

has been deep convolutional neural networks. In traditional DCNN methods Chen and

Xue [2015]; Jiang and Yin [2015]; Ha et al. [2015]; Ha and Choi [2016], a single kernel is

set for each layer, which discards all other possible temporal scales for that particular

layer. In these networks, each stacked convolutional layer learns features at a larger

semantic level than the previous one and, in the sensor context, a deeper convolutional

neural network would learn features in multiple temporal scales due to its depth (each

layer learns a higher temporal scale than the previous one). However, the convolutional

maps that go to the next layer are the activations for the kernel in the previous layer.

In this way, when one chooses a single kernel size for a speci�c layer, it might discard

important information in this layer which would only be selected by another kernel

size. Due to the deep convolutional neural network (DCNN) input format for sensors

(where columns refer to the sensor axes and rows to data-capture over time), the height
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of the convolutional kernel represents the size of the temporal window used to learn

activities patterns. Since there are several possibilities for the kernel height, we can

see each size as a temporal scale to extract potential patterns.

Based on the above discussion, we develop two hypotheses. The �rst is related to

learn several temporal scales simultaneously. The intuition is that employing multiple

kernel sizes (implemented with multiple convolutional layers) at each level of a convo-

lutional neural network would discriminate the human activities better than using the

traditional pipeline of setting only one kernel size per level. The second hypothesis re-

gards the processing of the sensors. We believe that processing the sensors separately is

a key step in heterogeneous sensor fusion since each sensor brings di�erent information

and might be more appropriate to extract this information before fusing with other

sensors. To validate our hypotheses, we propose a neural network composed of two

main strategies, each one designed based on the discussed premises, as follows.

1. A novel way to extract temporal information by employing an ensemble of tem-

poral scales implemented with multiple DCNNs. As each DCNN has a kernel

size that re�ects one scale of a pre-de�ned temporal scale range, we can extract

patterns of multiple sizes, ranging from short movements, such as a gentle twist

of the wrist, to large and complex motions, such as the human gait.

2. A multiple stream processing system, similar to the work of Yao et al. [2017], to

individually process the sensor data. More speci�cally, each stream is fed with

one sensor and employs a DCNN ensemble on the input to extract information

before fusing at the end of the pipeline in a late fusion way.

To evaluate this two main parts, we execute an extensive evaluation in seven

distinct datasets using the two most appropriate protocols for reporting results in

sensor-based HAR. The multimodal premise was evaluated against the work of Yao

et al. [2017] and our multiple kernels strategy was compared to an adaptation of the

Inception network Szegedy et al. [2015]. The experimental results demonstrate that

the separated versions of our approach surpass the baselines and also the employment

of our proposed kernels is more suitable for the sensor-based HAR than the kernels

originally proposed in the Inception module.

Our two strategies integrate a multimodal deep convolutional neural network en-

semble to learn individually the features of each sensor before performing the fusion and

to model multiple temporal scales of an action sequence. The proposed approach works

directly on the raw sensor data, with no pre-processing, which makes it general and
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minimizes engineering bias. According to experimental results, our approach outper-

forms previous methods, achieving, to the best of our knowledge, the state-of-the-art

performance in sensor-based human activity recognition.

We also evaluate our approach and the literature methods based on deep learning

regarding the number of epochs spent until convergence in training. This is a relevant

experiment since the next step to be explored in the task of recognizing human activities

in sensor data, is to embed the methods on mobile devices, therefore, requiring fast and

e�cient methods. We show that our approach is 3× faster than the second place in

this experiment and it can be trained with 10× less iterations than the average number

of epochs in the literature.

1.1 Motivation

Several areas are interested in classifying the activities performed by an individual.

The most common is health care. Within healthcare, an important application is the

detection of falls. With the average life expectancy of the population increasing, the

number of elderly living alone increases, and a fall without immediate assistance can be

critical in certain circumstances. Similarly, individuals with dementia or other mental

pathologies can be monitored to detect dangerous activities without invasion of their

privacy (as opposed to cameras). Another application within healthcare is patient

monitoring. For instance, patients with heart disease, obesity or diabetes are often

required to perform prede�ned physical training as a part of their treatment.

Another �eld of application for sensor-based HAR are the military and homeland

security. Accurate information on the activities performed by the soldiers, as well as

their health conditions, could improve the performance and safety in tactical situations.

The strategists can use this information in decision-making in both combat and training

scenarios.

Due to the aforementioned importance of the sensor-based human activity recog-

nition, the area has received many contributions in the last years. However, the prob-

lems in this area are not solved having plenty of room for new advances. One of

the possibilities of contributions is extracting multiple temporal scales from the sensor

data Chen and Shen [2017]. Another opening for exploration is the fusion of multi-

ples heterogeneous sensors available in the wearable devices to extract complementary

information regarding human activities.
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1.2 Contributions

During the development of this work, a technical paper entitled "Multiscale DCNN

Ensemble Applied to Human Activity Recognition Based on Wearable Sensors" con-

taining the contributions of this thesis was published in the proceedings of the 26th

European Signal Processing Conference (EUSIPCO) Sena et al. [2018]. Additionally,

we contribute as co-author in the journal paper "Human Activity Recognition based on

Wearable Sensor Data - A Benchmark", which created a signi�cant standardization of

metrics and protocols on seven important datasets and made an extensive evaluation

of several methods for human activity recognition based on wearable sensor domain.

Currently, this work is under major review in the IEEE Sensors Journal and pre-printed

in the arxiv.org database Jordao et al. [2018].

1.3 Work Organization

The remaining of this work is organized as follows. In Chapter 2 we introduce some

background concepts we �nd useful to better understand the explanation of the pro-

posed approach. We provide a review of human activity recognition based on wearable

sensors in the Chapter 3. In Chapter 4 we carefully describe each component of our

approach. We present, in Chapter 5, the experiments executed to validate the multi-

scale DCNN ensemble and we discuss the results obtained. Finally, Chapter 6 provides

the conclusions and direction to future works.



Chapter 2

Background

The goal of this chapter is to provide important background to understand the proposed

approach. We start by explaining deep convolutional neural networks and how some

properties and parameters correlate with the sensor-based human activity recognition

task. Then, we discuss two data fusion approaches as well as ensemble techniques and

their main characteristics.

2.1 Deep Convolutional Neural Network

Some of the most in�uential innovations in the �eld of computer vision, Convolutional

Neural Networks (CNN) [Krizhevsky et al., 2012] have also become an important tool

in sensor-based human activity recognition due to the possibility of modeling the in-

put signal as 2D matrices. The original idea, proposed by Fukushima [1980], is a

neural network architecture inspired by the structure and function of the mammalian

visual cortex. By proposing a mechanism invariable to shifting in the input patterns,

Fukushima [1980] mitigate some problems of the pre-existent algorithms, such as, poor

generalization and inability of learning patterns that might occur in di�erent parts of

the image. It is important to solve this issue since it is impossible to present to a

network all pattern variations of a chair, for instance. Therefore, the network has to

be able to learn from a small set of data and generalize to the real world.

The CNN name derives from the convolution operator used to extract features

from the input data preserving the spatial relationship and allowing di�erent parts of

the network to specialize in high-level features like a texture or a repeated pattern. This

process minimizes the number of parameters and reduces the over�tting. Established

by Lecun et al. [1998], the widely used concept of multiple layers of neurons allow

more complex features to be learned at deeper layers of the network. The following is

7
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a summary of the main concepts of the DCNN architecture, for further study please

refer to the work of Krizhevsky et al. [2012]; Zeiler and Fergus [2014]; Simonyan and

Zisserman [2014]; Szegedy et al. [2015]; He et al. [2016].

2.1.1 Architecture

The Convolutional Neural Network architecture is di�erent than regular Multilayer

Perceptron (MLP) network. As shown in the Figure 2.1, regular MLP uses a series of

hidden layers to extract patterns from an input. A set of neurons builds each hidden

layer and each neuron is fully connected to all neurons in the previous layer. Because of

that, the hidden layers of an MLP network are commonly called fully-connected layers.

At the end of the regular neural network, there is a last fully-connected layer, called

the output layer, that represents the predictions. The number of neurons in the last

layer is equal to the number of classes in the data and, given an input, each of these

neurons indicates the likelihood of the input to belong to one of the possible classes.

input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Figure 2.1: The multilayer perceptron architecture is composed of three or more layers
(an input layer and an output layer with one or more hidden layers). Since an MLP is
a fully connected network, each node in a layer connects to every node in the following
layer.
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Convolutional neural networks have di�erent properties, as illustrated in Fig-

ure 2.2. First, the layers are arranged in three dimensions: width, height, and depth.

Then, neurons in one layer only connect to a small portion of the layer ahead of it,

instead of connecting to all the neurons in the following layer. In addition, the �nal out-

put will be reduced to a single vector of probability scores, organized along the depth

dimension. Finally, the hidden layers in Convolutional Neural Networks are a combi-

nation of convolution layers, pooling layers, normalization layers, and fully-connected

layers.

.

.

Input
Convolutional

layer 1
Convolutional

layer 2

feature maps
feature maps

pooled
feature 

maps

pooled
feature maps

Pooling 1
Pooling 2

Fully-connected 1

Output

p(y|x)

Figure 2.2: CNN architectures are feed-forward arti�cial neural networks and are com-
posed of three main types of layers: convolutional layer, pooling layer, and fully con-
nected layer. Each layer has a speci�c purpose and together they create a shift-invariant
architecture most commonly applied to analyzing visual imagery.

The input of a Convolutional Neural Network is a n ×m × r matrix where n is

the height and m is the width of the matrix and r is the number of channels, e.g. an

RGB image has r = 3. One of the major CNN bene�ts is the ability of learning local

patterns in the signal since it explores the spatial-local correlation by enforcing each

neuron to connect to only a local region. The size of this connectivity is de�ned by

a hyper-parameter called kernel (also known as �lter) of size h × w × c where h and

w are smaller than the dimension of the image and c can either be the same as the

number of channels of the input or smaller and may vary for each kernel. The kernel

is used to detect what features, such as edges, are present throughout an image. A

kernel is composed of a matrix of values, called weights, that are trained to detect

speci�c features. The �lter slides over the whole image enhancing patterns that it

has been trained to capture. This operation (illustrated in the Figure 2.5), is called

convolution, an element-wise product and sum between two matrices that provides a

value indicating the presence of the information captured by the �lter in each location
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of the data. This means that the output matrix will present high values to the parts of

the image the feature is present, and low values to the parts where the feature is not.

Zeiler and Fergus [2014] propose an operation to visualize the di�erent levels

of information that are extracted by the kernels in di�erent layers of a deep convolu-

tion architecture. The general consensus is that in an optimally trained convolution

network, the �lters at the �rst layer become sensitive to basic edges and patterns. Like-

wise, the �lters in the deeper layers become sensitized to gradually higher orders of

shapes and patterns. Figure 2.3, extracted from the work of Zeiler and Fergus [2014],

summarizes the phenomenon.

As illustrated in Figure 2.4, the sensor data are measurements of the sensor

axes over time. Therefore, the sensor data is commonly stored in a matrix of size

t × a, where a is the number of axes of the sensor and t is the temporal axis, where

each row is a sample captured over time. For instance, a 5 seconds capture from a

100Hz accelerometer creates a 500×3 matrix since this sensor have three axes (x, y, z).

Employing this representation allows the use of the DCNN architecture to extract

patterns from the sensor data. As described above, a DCNN input is an n × m × r
matrix, in this way, a sensor data input for a DCNN architecture is a t× a× 1, since

the number of channels in sensor data is 1. Regarding the convolution operation, the

convolutional kernel height determines the size of the temporal pattern learned in the

sensor data, since the height of the input is the temporal axis. In a similar way, since

the width of the input is composed of the sensor axes, the convolutional kernel width

indicates the size of the correlation between axes that will be considered. In other

words, we can extract patterns of each axis separately, the width of the kernel is set to

1 (w = 1), or we can extract patterns of two or more axes simultaneously (w > 1).

To improve the detection capability of CNN's, pooling layers are used to add up

translation invariance. Additionally, by reducing memory consumption, the pooling

operation allows the employment of more convolutional layers, constructing a deeper

network. Each feature map generated by the kernel convolution is sub-sampled (usually

with max or average pooling) at a rate of p×q which reduces the feature maps in height

(at p rate) and in width (at q rate). As an illustration, in the image context (where

CNN is the most used) p and q ranges between 2 for small images (e.g. MNIST

dataset [LeCun and Cortes, 2010]) and is usually not more than 5 for larger inputs

(commonly p and q has the same value in this context).

In the sensor context, usually is used a rate of 2× 1 to preserve the sensor axes

along the convolutional layers and to sub-sample in time more smoothly since sensor

samples do not have long duration (from 1 to 10 seconds, leads to small heights in the

input matrix and if sub-sampled at a high rate will lead to vanishing of information
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Figure 2.3: Visualization of the features extracted by DCNN kernels in a fully trained
model. Figure extracted from the work of Zeiler and Fergus [2014].
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Figure 2.4: Matrix representation of the sensor data.

along the layers).

Finding a balance regarding the size of the pooling rate is very important since

the larger is the rate, the more information is condensed, which leads to slim networks

that �t more easily into GPU memory. However, if the pooling rate is too large,

much information will be lost and predictive performance might decrease. As shown

in Figure 2.6, this function progressively reduces the spatial size of the representation

which minimizes the number of parameters and computational cost in the network,

and also controls over�tting.

Either before or after the sub-sampling layer, an element-wise non-linearity are

applied to each feature map. The most typically used is Recti�ed Linear Unit (ReLU)

activation function, de�ned in the Equation 2.1.

relu(x) = max (0, x) (2.1)

ReLU is half recti�ed function: relu(x) is zero when x is less than zero and relu(x) is

equal to x when x is above or equal to zero. The issue of this function is setting all the

negative values to zero, which might decrease the ability of the model to �t or train

from the data properly since the negative values might not be mapped appropriately.

An interesting newly function being used lately, is the Scaled Exponential Linear Units
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Figure 2.5: Convolution operation refers to the mathematical combination of two func-
tions to produce a third function, merging two sets of information. In the case of a
CNN, the convolution is performed on the input data using a kernel to produce a fea-
ture map as output. The convolution is performed by sliding the kernel through the
input. Each location of the output, is the sum of all element-wise products between
each weight of the kernel and the corresponding location value of the input.

(SELU) [Klambauer et al., 2017], de�ned in Equation 2.2.

selu(x) = λ

x if x > 0

αεx − α if x ≤ 0
(2.2)

SELU has self-normalizing properties which make the learning highly robust and allows

to train networks that have many layers. Additionally, the learning speed is faster in

SELU compared to the ReLU activation function as shown in the work of Pedamonti

[2018].

Regularization layers are employed to normalize the inputs to a mean activation

of zero and a standard deviation of one. A commonly employed normalization is

batch normalization, where the normalization is performed not just in the input of the

network, but also in the inputs of each layer within the network. This regularization

technique receives this name because during training the normalization is applied to

activations of the previous layer for each batch. Thus, the mean and standard deviation

of the activations are maintained close to 0 and 1, respectively. Batch normalization

reduces the covariance shift of the hidden units which improves the generalization of the

network. Another regularization technique widely used is the dropout, where randomly
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Figure 2.6: Max pooling operation.

chosen neurons are ignored during the training process. Dropout reduces over�tting in

neural networks, avoiding exaggerated co-adaptations in the units of the training data.

2.2 Data Fusion

Multi-sensor data fusion is an approach used to combine the data from various sensors,

allowing a more reliable and accurate output. This integrates data and knowledge from

several sources to produce more consistent, accurate, and useful information than the

information provided by the sources separately. Commonly, this fusion is performed in

one of two stages: at the feature level, called early fusion, or at the decision level, called

late fusion. Regarding fusion of learning algorithms, it is common to call the fusion as

Ensemble and the literature propose many techniques to perform this fusion [Rokach,

2010]. We discuss ensemble techniques and the types of data fusion below.

2.2.1 Early and Late Fusion

As discussed in Snoek et al. [2005], early and late fusion di�er in the way they integrate

the features extracted from the data on the various modalities. Early fusion performs

the fusion at the feature level, combining the extracted features into a single repre-

sentation relying on supervised learning algorithms to classify semantic concepts. In

this way, early fusion can be de�ned as a fusion technique that integrate the features

before learning semantic concepts. A disadvantage of this method is that this type of
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approach has to deal with many heterogeneous features which are sometimes hard to

combine. The general steps of this approach are depicted in Figure 2.7.

Late fusion addresses the problem of combining the prediction scores of multiple

classi�ers. In this fusion technique, the features extracted from each input are classi�ed

separately and these scores are combined afterwards to yield a �nal classi�cation score

in a decision level fusion. Late fusion can be de�ned as a fusion technique that �rst turns

learned concepts into scores and then integrates the scores to learn complementary

concepts. Late fusion focuses on the individual strength of modalities. Instead of

yielding a jointly feature representation of modalities, late fusion provides a multimodal

semantic representation. The major disadvantage of this approach is the high cost in

terms of learning e�ort, since each modality requires a separate stage of supervised

learning. In addition, the combined representation requires an additional stage of

learning. The general steps of late fusion technique are illustrated in Figure 2.8.

2.2.2 Ensemble

Ensemble method is a well-known and widely used supervised learning algorithm that

intends to improve the predictive performance by combining multiple learning algo-

rithms. Ensemble learning has two interesting characteristics. First, results achieved

by using ensemble techniques are superior to the results obtained from any of the learn-

ing algorithms elements alone [Opitz and Maclin, 1999; Polikar, 2006; Rokach, 2010].

Fusion

Input

Hidden layers Output

Figure 2.7: Early fusion scheme where the fusion is performed at the feature level.
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Fusion

Input Hidden layers

Output

Figure 2.8: Late fusion scheme where the fusion is performed at the decision level.

Likewise, the premise of this work is that the use of multiple kernel sizes lead to better

modeling of the data than to use only one size of kernel. Second, ensemble methods

achieve better results when the methods to be merged show signi�cant diversity among

them [Kuncheva and Whitaker, 2003; Sollich and Krogh, 1996]. The main point of di-

versity in our approach is that each DCNN's of the ensemble has di�erent kernel sizes,

thus, each one learns di�erent patterns of the data. In addition, the extended version

of our approach (where we process the sensors independently) shows another point of

diversity: the diversity among the data of the sensors provided by the wearable devices

(as discussed in Chapter 1).

There are many ensemble techniques, among which we can cite Bootstrap aggre-

gating (bagging), Boosting and Stacking. In bagging, the models in the ensemble vote

with equal weight and each model is trained in a random subset of the training data to

promote variance. Boosting builds the ensemble incrementally, by training each new

model to focus on the instances misclassi�ed by the previous models. Lastly, stack-

ing (or stacked generalization) combines the prediction of the learning algorithms in

the ensemble and use this meta-data to make the �nal prediction, achieving the high-

est generalization accuracy among the ensemble methods [Wolpert, 1992]. Stacking is

usually employed to combine models built by di�erent learning algorithms and tries to

induce which are reliable and which are not [Rokach, 2010].
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Literature Review

In recent years, the employment of multiple sensors brought improvements in the ac-

curacy of sensor-based activitiy recognition. However, the fusion of sensors is still a

challenging task due to the heterogeneity of the data. To handle this, some works

perform fusion in the raw data (i.e., early fusion), concatenating the sensors into a

common matrix used as input for machine learning methods. Kwapisz et al. [2010] for

instance, extracted handcrafted features (i.e., average and standard deviation), also

known as engineered features, from the raw signal to represent the activities. The

authors examined three classi�ers, multilayer perceptron, decision tree (J48) and logis-

tic regression, to estimate the best one able to separate the categories of activities on

the features extracted. In their experiments, multilayer perceptron achieved the best

classi�cation results. Similarly, Chen and Xue [2015] used the raw data to feed a Deep

Convolutional Neural Network (DCNN) with three convolutional layers and used the

size of the kernel to extract temporal patterns and correlation between the axes. More

speci�cally, they extracted correlation between neighboring pairs of signal axes in the

�rst layer using a 12×2 convolutional kernel and extracted temporal information using

a kernel of 12× 1 in the remaining layers.

DCNNs are known by their power to automatically discover the best representa-

tions from raw data to perform classi�cation. This extraction technique is immune to

the bias present in the handcrafted feature where a human creates the feature based

on her/his knowledge of the data. Following this intuition, Jordao et al. [2017] em-

ployed the DCNN as the feature extraction step and applied a partial least squares

analysis on each max pooling layer of the network to reduce the dimensionality of the

representation. Then, they used the concatenation of the latent variables as a feature

to feed a multilayer perceptron classi�er. On the other hand, Jiang and Yin [2015]

applied a discrete Fourier Transform (DFT) to preprocess the input and used a DCNN

17
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composed by a stack of two convolutional layers, a fully connected and a softmax layer

to recognize the activities.

Our proposed approach use DCNNs to extracted features from the raw data since

the preprocess of the input does not show empirically improvements in the accuracy.

The di�erence is that we use the DCNN as an element of an ensemble to extract

multiples temporal scales at the same time. Each DCNN is set with a speci�c kernel

size to extract a speci�c temporal scale in the data. The hypothesis is that using

the standard DCNN pipeline where a single kernel is set for each layer, might discard

important information. We believe that this occurs because of the feature maps that

go to the next layer are the activations for the kernel in the previous layer. Since each

kernel learns patterns in a speci�c temporal scale (based on its height), all other possible

temporal scales for that particular layer will not be extracted, since this patterns would

only be selected by another kernel size. The general consensus is that each level (layer)

of the DCNN learns a high-level semantic pattern than the previous one. In this way,

discarding information at any level of the DCNN discards information that could be

useful to the next level.

Using the idea of extracting di�erent patterns from the data at the same time, a

remarkable work is the Inception network proposed by Szegedy et al. [2015]. The work

employed multiple kernels to recognize objects in the context of images. The idea is that

salient parts in the image can have extremely large variation in size. Consequently,

choosing the right kernel size for the convolution becomes di�cult. A larger kernel

is preferred for patterns that are distributed more globally while a smaller kernel is

preferred for patterns that are distributed more locally. Thus, their �lters with multiple

sizes operate on the same level, extracting di�erent patterns at the same time. They

used �lter sizes of 1× 1, 3× 3 and 5× 5.

Due to the multimodal nature of each sensor, merging the sensors in the raw data

may not be appropriate since, as discussed in Chapter 1, sensors have several dissim-

ilarities between them. To address this, some authors proposed to insert a padding

between the sensors to separate the data and to be able to extract features from the

sensors separately. For instance, Ha et al. [2015] preprocessed the matrix of sensors

adding a zero-padding between each sensor and used a DCNN with the same layer

structure as Jiang and Yin [2015]. However, this division is only e�ective in the �rst

layer since, from the second layer onward, the data from di�erent sensors are convoluted

together. In fact, in another work, Ha and Choi [2016] proposed to insert zero-padding

before each convolutional layer to avoid interference between sensors when a 2D con-

volutional kernel is applied. Despite this approach can separate in some way the data

before performing fusion, it used the same DCNN to learn features from all sensors
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simultaneously, which might overcharge the model since the kernels have to learn pat-

terns from di�erent data nature.

In a recent work, Yao et al. [2017] brought a new perspective on merging multi-

modal data to perform sensor-based human activity recognition. They built an archi-

tecture with three di�erent sequential blocks: an individual deep convolutional subnet

for each input sensor to learn local patterns, a common deep convolutional subnet that

concatenates all sensors and learns the high-level relationship among them and, at the

end of the architecture, a recurrent neural network (RNN) structure to learn mean-

ingful temporal features. Since the use of convolutional and recurrent networks are

already well-established in the sensor literature, the main advance of Yao et al. [2017]

is to go beyond of just placing a boundary between the sensors in the input matrix.

Instead, they separated the sensors from the beginning to extract features individually

and learn which patterns better classify human activities for each sensor before merging

and bene�ting from their complementarity. Our approach follows the intuition of Yao

et al. [2017] of extracting patterns from each sensor separately before performing the

fusion. However, in contrast with the fusion at the feature level performed in their

work, we execute the fusion at the decision level since empirical evaluations showed

it is more suitable to use the sensor data. Furthermore, we do not employ RNNs to

extract temporal data, instead, we propose a novel approach to handle temporality by

simultaneously processing multiples temporal scales of the data using an ensemble of

DCNNs.

Another way of improving results is to employ ensemble techniques to classify

wearable sensor data. Catal et al. [2015], for example, proposed to apply a majority vote

technique to ensemble multilayer perceptron, decision tree (J48) and logistic regression

and compose the �nal predictor. They achieved a more accurate classi�cation when

compared with Kwapisz et al. [2010], which used the same features and same classi�ers

but analyzed the classi�ers separately. In a similar manner, Feng et al. [2015] employed

a weighted majority voting to ensemble these classi�ers. In their work, 179 handcrafted

features were extracted (167 time domain features and 12 frequency domain features)

from multiple sensors and seven random forest classi�ers with di�erent weights were

used as base classi�ers. On the other hand, Kim et al. [2012] used a bagging technique

to recognize human activities. They �rst divided the activity into a set of action

units and extracted handcrafted features (average and correlation) from each of them.

Then, they classi�ed each action units of the set using a bagging of decision trees.

Finally, based on the proportion of each action unit, they predicted to which activity

each action unit belonged. Similarly, Kim and Choi [2013] proposed to use another

ensemble technique, the boosting compose of decision trees but with a smaller number
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of action units. In contrast, Min and Cho [2011] created a system to dynamically

chose a subset of base-classi�ers using the class probabilities of an input activity. The

outputs of the chosen classi�ers are subsequently combined in a fusion step.

Di�erent from the discussed ensemble approaches, the diversity generated in our

ensemble resides in the feature extraction. Each element of our ensemble is a neu-

ral network composed of convolutional layers, that extract features, and a multilayer

perceptron, that is used as the classi�er. Each neural network has a di�erent kernel

size in its convolutional layers allowing the extraction of patterns from multiples scales

at the same time. The fusion occurs at the decision level of the network (after the

classi�cation of each DCNN) using a softmax layer in an end-to-end way, connecting

the entire pipeline from the input to the output. The idea of our proposed ensemble

is to learn the correct scale for each type of activity and create an ensemble for each

sensor to explore the individual characteristics before fusing and making use of the

complementarity between them.



Chapter 4

Methodology

In this work, we propose an approach to recognize human activities using data provided

by smartphones and smartwatches. This approach is based on two hypotheses: (i) the

use of multiples sensors might improve accuracy due to the complementarity between

the sensors, (ii) activities are best described using multiple temporal scales to extract

patterns. To test these hypotheses, our approach consists of three main steps. First, we

divide the sensors into di�erent inputs to process each one individually. Then, for each

sensor, we build an ensemble of temporal scales extracted through DCNN streams that

are subnets within our network. Finally, we use an approach based on late fusion to

merge the multi-modal and multi-temporal information. The following sections detail

each step of this process. Figure 4.1 summarizes an overview of our method.

4.1 DCNN Stream

Our approach is an end-to-end neural network composed of subnets integrated through

an ensemble technique. These subnetworks, for convenience, let us call them streams,

are Deep Convolutional Neural Networks composed of two parts, as illustrated in Fig-

ure 4.2.

The �rst block of the stream is a convolutional block with two convolutional layers

intercalated by two max-pooling layers. Convolutional layers allow us to learn patterns

in the temporal scale de�ned for each stream. Pooling layers control over�tting and

reduce the number of parameters and the computation cost. At the end of the subnet,

we have a fully-connected block consisting of a �atten layer, a fully-connected layer and

a softmax layer. We use scaled exponential linear units (SELUs) [Klambauer et al.,

2017] as the activation function of the fully connected block. While the convolutional

block provides a meaningful and invariant feature space, the fully-connected block is

21
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Figure 4.2: The deep convolution neural network stream.

learning a non-linear function in that space, which translates the features learned by

the convolutional block to the softmax scores.

4.2 DCNNs Ensemble

The sensor data is commonly stored in a matrix of size t × a, where a is the number

of axes of the sensor (for instance, three axes (x, y, z) on motion sensors) and t is the

temporal axis, where each row is a sensor sample at a given time instant. Therefore,

given a 2D kernel (h,w), our premise is that the height of the kernel (h) is responsible

for determining in which temporal scale we are learning the patterns. For instance, a

h equal to 25 in a matrix of 500 rows (a sample of size 5 captured at a frequency of

100Hz) learns patterns of 0.25 seconds while a h equal to 250 learns patterns of 2.5

seconds. Thus, the larger the kernel height, the larger the temporal pattern it captures.

Based on the aforementioned premise, we employ an ensemble of deep convolu-

tional streams with di�erent kernel sizes each, to extract information from multiple

temporal scales. The architecture of our multiscale ensemble is illustrated in Fig-

ure 4.3. The number of DCNNs in each ensemble is pre-de�ned as a parameter of our

architecture, called pool. The pool is a set of kernels K = {K1, K2, ..., Kj} containing
a variety of kernel sizes ranging from a small to a large kernel. For each kernel in

our pool, we add a DCNN in the ensemble and set its two convolutional layers with

the speci�c kernel. For instance, in Figure 4.3, we have a pool of j kernels where

three of them have their streams explicitly drawn in the �gure composing a kernel pool

K = {5× 2, 25× 2, ..., 250× 2}.
The multiscale ensemble is the most important contribution of this thesis since,
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Figure 4.3: The DCNN ensemble is composed of streams so that each stream extracts
patterns from a speci�c temporal scale and classi�es the sample for that scale. We
merge all scores into a late fusion approach which allows us to take advantage of the
complementarity between sensors and between temporal scales.

to the best of our knowledge, we are the �rst to extract patterns on sensor data using

multiple scales. As shown in the architecture of our main approach (Figure 4.1), an

ensemble is built for each sensor, so we have several ensembles, according to the number

of sensors processed (in the example illustrated in Figure 4.1, we have three sensors

and consequently, three ensembles of DCNNs).

4.3 Decision Level Fusion

At the end of the DCNN ensemble stage, we have an ensemble for each sensor, and each

ensemble is composed of j streams. Thus, it is necessary to merge this information to

take advantage of the complementarity provided by both the multiple sensors and the

multiple temporal scales. According to our experimental results, the best way to merge

these streams is by using meta-learning of the scores. Therefore, we concatenate all
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the scores of the streams (j × number of sensors) in a single feature vector and pass it

to a classi�cation layer (softmax).

The training of our network is performed in an end-to-end way, which optimizes

the weights of the entire network since it maps the input of all the modalities to a

single output. Consequently, the network dynamically learns which scales and sensors

are most appropriate for each activity.





Chapter 5

Experimental Results

The proposed multimodal DCNN ensemble (MDE) method is composed of two main

parts, the ensemble of convolutional neural networks and the individual processing of

the sensors. To evaluate the contribution of each part, we implemented two simpli�ed

versions of our proposed approach. The �rst, called DCNN Ensemble, is illustrated in

Figure 5.1. In this version, we do not separate the sensors, instead, we concatenate all

sensors into a single array, in the same way of the majority of works. Thus, we employ

only a single ensemble of kernels since we have only one input. The goal is to measure

the contribution of the multi-temporal scale approach implemented with the DCNN

ensemble, in a scenario without multimodal processing of sensors. Figure 5.2 shows

the second simpli�ed version of our approach, called Multimodal Stream that aims at

measuring the contribution of individual processing of the sensors. In this version, we

create a network following the multimodal hypothesis but without using the DCNN

ensemble approach. Instead, we employ only a single DCNN stream (see Figure 4.2)

for each sensor. In this DCNN stream, we empirically choose the value of 25× 2 to set

the kernel size.

We compare our approach and its simpli�ed versions with all methods evaluated

by Jordao et al. [2018]. Thereby, in addition to the methods mentioned in Chapter 3,

we also show results from three other handcrafted methods [Kwapisz et al., 2010; Catal

et al., 2015; Kim and Choi, 2013] surveyed by Jordao et al. [2018]. Usually, this family

of methods extracts statistical features and applies a classi�er to recognize activities.

We include them in our evaluation mainly because they present better results in some

datasets than approaches based on deep learning. Due to the multimodal nature, we

evaluate the MDE and Multimodal Stream only on datasets that contain more than

one sensor.

The remaining of this chapter is organized as follows. We start describing the
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Figure 5.1: DCNN Ensemble approach on previous concatenated sensors data

datasets and protocols employed in our work. Then, we discuss the evaluation of

fusion approaches that led to the employment of late fusion in our method. Finally,

we present the experiments, results, and discussions regarding our MDE method and

its simpli�cations.

5.1 Experimental Setup

One of the most latent problems in wearable sensor-based human activity recognition

is the lack of standardization of metrics, evaluation protocols, and datasets, which

makes it di�cult to compare the methods in the literature. While some works record

their own datasets to perform experiments, others use datasets from the literature but

do not clarify the evaluation protocol employed, which prevents the reproducibility of

the results. Recently, a work has endeavored to solve this issue by bringing the �rst

standardization to the domain. Jordao et al. [2018] performed a thorough study and

standardized seven datasets of the wearable sensor literature in four di�erent protocols.

In this section, we quickly describe the experimental setup employed in this work using

the framework proposed by Jordao et al. [2018] and then, we discuss the results achieved

by our proposed approach and its two simpli�cations.
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Figure 5.2: Multimodal stream approach. A simpli�ed version to evaluate one of the
main steps of our MDE approach. This version is based on the premise of processing
the sensors separately to extract meaningful features before fusion. We do not use the
DCNN ensemble in this version, instead, we use only one stream to process each sensor
and we set the kernel size as 25× 2.

5.1.1 Architecture Parameters

Most settings of our approach were discussed in Chapter 4 and we provide the imple-

mentation of our approach and its simpli�cations on GitHub1. However, we will add

some technical details to ensure the reproducibility of our approach.

We implement our approach and its simpli�cations using Keras Python library

running on top of the TensorFlow framework. Keras is a high-level neural networks API

and provides a clean, intuitive, modular and extensible interface that enables fast ex-

perimentation with deep neural networks. TensorFlow is a highly �exible and versatile

open source deep learning framework for creating arti�cial intelligence applications.

As pointed by Jordao et al. [2018], most of the works based on convolution net-

works omit some important parameters, hindering comparison between methods. To

handle this issue, the protocol created by Jordao et al. [2018] sets some parameters.

The maximum number of epochs was set to 200, and the method stops its training when

the loss function reaches a value less or equal than 0.2. These values were set empiri-

cally by observing the trade-o� between execution time and accuracy. Regarding deep

1https://github.com/jessicasena/mde
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Table 5.1: Main features of the datasets used in this work and previous reported
by Jordao et al. [2018]. Acc, Gyro, Mag and Temp indicate accelerometer, gyroscope,
magnetometer and temperature, respectively.

Dataset Frenquency (Hz) #Sensors #Activities #Samples

MHEALTH 50 3 (Acc, Gyro, Mag) 12 2555
PAMAP2 100 4 (Acc, Gyro, Mag, Temp) 10 7522
USCHAD 100 2 (Acc and Gyro) 12 9824

UTD-MHAD1 50 2 (Acc, Gyro) 21 3771
UTD-MHAD2 50 2 (Acc, Gyro) 5 1137
WHARF 32 1 (Acc) 12 3871
WISDM 20 1 (Acc) 7 20846

learning implementation decisions, we use cross-entropy as the loss function of our net-

work. Cross-entropy measures the performance of a classi�cation model whose output

is a probability value between 0 and 1. The loss increases as the predicted probability

diverge from the actual probability. We employ the RMSprop [LeCun et al., 2012] as

optimizer since it provides an e�cient execution time. As dropout layer, we use alpha

dropout [Klambauer et al., 2017] since it �ts well to scaled exponential linear units by

randomly setting activations to the negative saturation value. Alpha dropout keeps

the mean and variance of inputs to their original values, to ensure the self-normalizing

property even after dropout. We set the dropout rate to 0.1.

Regarding the ensemble implementation, it is important to mention that in the

DCNN stream (see Figure 4.2) we use 16 �lters in the �rst convolutional layer and 32

�lters in the second. In addition, the results shown in our experiments were performed

using K = {2× 2, 3× 3, 5× 2 12× 2 25× 2} as our pool of kernels.

5.1.2 Datasets

Jordao et al. [2018] conducted a survey in the literature and gathered seven important

datasets. This set of datasets composes an interesting diversity of number of samples,

types of activities performed and number of available sensors, making it possible to

evaluate the robustness of the methods in di�erent scenarios. The datasets were pro-

cessed and standardized with a sampling rate of 5 seconds, except for the datasets of

the UTD-MHAD family that had to be sampled at 1-second rate. We evaluate our

approach in these seven datasets following strictly the procedure de�ned by Jordao

et al. [2018] (Refer to Jordao et al. [2018] for more details regarding the evaluation

procedure). Next, we brie�y discuss the datasets selected by Jordao et al. [2018] and

used in our evaluation. Additionally, Table 5.1 summarizes the main features of these

datasets.
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WHARF [Bruno et al., 2015] This dataset consists only of accelerometer signals

sampled at a frequency 32Hz. WHARF is composed of 14 activities, however, the

framework of Jordao et al. [2018] only uses 12 activities because of the protocols applied.

USCHAD [Zhang and Sawchuk, 2012] A relevant dataset suitable for training

neural networks due to its large number of samples. Composed of accelerometer and

gyroscope data captured for 12 activities collected at 100Hz.

UTD-MHAD [Chen et al., 2015] This dataset is divided into two subsets, as rec-

ommended by the authors. The �rst subset, the UTD-MHAD1 consists of activities

where the sensor is positioned in the subject's right wrist, containing the largest num-

ber of activities (21) among the datasets used in this work. The second subset, the

UTD-MHAD2 is composed of activities performed with the sensor in the subject's

right thigh and consists of 5 activities. Both have accelerometer and gyroscope data

available.

WISDM [Lockhart et al., 2011] It is a challenging dataset due to the small sampling

rate used to capture the data. However, this dataset provides a large number of samples

and subjects (20846 samples and 36 subjects). It consists of only accelerometer data.

PAMAP2P [Reiss and Stricker, 2012] This dataset provides accelerometer, gy-

roscope, magnetometer, and temperature acquired at a sampling rate of 100Hz. It

is divided into two subsets, PAMAP2-Protocol and PAMAP2-Optional, that di�er in

the number of activities. Jordao et al. [2018] use PAMAP2-Protocol, which has 12

activities, in their experiments due to the protocol applied.

MHEALTH [Baños et al., 2014] This dataset consists of electrocardiogram, ac-

celerometer, gyroscope, and magnetometer captured data at 50Hz and contains 12 ac-

tivities (Similar to Jordao et al. [2018], we do not use electrocardiogram data because

a large number of samples of this data source is damaged).

5.1.3 Evaluation Protocols

According to Jordao et al. [2018], Leave-One-Subject-Out (LOSO) and Leave-One-

Trial-Out (LOTO) are the most appropriate for reporting results in sensor-based HAR.
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Figure 5.3: Leave One Subject Out (LOSO) protocol.

Leave-one-subject-out protocol As illustrated in Figure 5.3, in this protocol the

data is separated in training and test so that the test has only one subject at a time and

the training has the other subjects. LOSO represents the real scenario of applications

for wearables devices, where a method is trained in known subjects and applied to new

subjects later. This protocol also analyzes the generalization quality of the method

since the training and test data do not have the same distribution.

Leave-one-trial-out protocol In this protocol, a trial consists of an entire execution

of an activity until a transition to another activity. Thus, the data is separated into

trials where each trial contains only a continuous capture of an activity. Therefore,

the training is performed with all trials except one that is separated to be used during

test. The LOTO protocol has the bene�ts of generating a large number of samples and

certifying that the contents of a trial do not appear in the train and test at the same

time. Therefore, di�erent from the cross-validation protocols inappropriately used in

the literature, ensuring a correct evaluation of the performance. Figure 5.4 shows a

overview of this protocol.
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Figure 5.4: Leave One Trial Out (LOTO) protocol.

5.2 Comparison with Kernel Ensemble Baseline

To analyze the contribution of the pool of kernels and to evaluate the contribution

of our DCNN ensemble, we use the Inception network module proposed by Szegedy

et al. [2015] as a baseline. Although the inception was originally designed for object

detection in images, it is analogous to our approach since it also applies multiple kernels

to the same input to extract di�erent pattern sizes. We could not compare our DCNN

Ensemble with inception's full architecture because the available datasets to sensor-

based HAR do not have enough data to train a network the size of inception (in the

object detection domain the inception was trained using 1.2 million of images provided

by ImageNet dataset [Deng et al., 2009], in our context the dataset with the largest

number of samples used in our evaluation has 20,000 samples). One option would be to

use the network pre-trained on the ImageNet and perform transfer learning. However,

the pre-trained model is restricted to the use of three channels and requires a minimum

array of 139x139 pixels as input. The sensor data is composed of one channel, and our

largest dataset has a matrix of 500x10. Therefore, it is not possible to use the pre-

trained inception network without deforming our data.

Due to the aforementioned restrictions, we performed a study of the appropriate

number of inception modules that should be used for the context of wearable sensors.
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Figure 5.5: Inception module with dimension reductions. The image is from the original
paper [Szegedy et al., 2015].

Our experiments showed that the addition of more than one module deteriorate the

results. Therefore, all inception-based experiments in this work were executed by using

only one inception module.

Another important point is that we add to the inception module the fully con-

nected block used in our stream. This considerably increased the inception perfor-

mance, since the fully connected block is capable of fusing di�erent patterns extracted

by di�erent kernels sizes and also regularize the network since we use SELU activa-

tion function. We employed as baselines the two modules proposed by Szegedy et al.

[2015]: the naïve (Figure 5.5) and the dimensionality reduction module (Figure 5.6).

In addition, to evaluate our kernel pool, we adapt each type of inception module to

the wearable sensors domain by using the same pool of kernels used by our approach

instead of the kernels proposed in Szegedy et al. [2015].

Tables 5.2 and 5.3 shows the results obtained with the described approaches on

LOTO and LOSO protocols, respectively. According to the results, the use of our

pool of kernels improves the result of the inception original modules for all datasets.

This support our hypothesis that extracting multiple temporal scales is appropriate

for the sensor domain. Besides, our DCNN ensemble approach outperforms all four

inception-based methods using LOSO and LOTO on the seven datasets, which points

out that our ensemble is more suitable to employ multiple kernels to extract temporal

information in the context of wearables sensors.
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Figure 5.6: Inception module, naïve version. The image is from the original pa-
per [Szegedy et al., 2015]

Table 5.2: Comparison of our Multimodal DCNN Ensemble (MDE) and its simpli�ca-
tions (DCNN Ensemble and Multimodal Stream) to the state-of-the-art architectures
surveyed by Jordao et al. [2018] using LOTO on seven standardized datasets. Also, we
show the results of Yao et al. [2017] and the results of two inception modules [Szegedy
et al., 2015] using the original proposed kernels and our proposed pool of kernels. (A)
refers to the inception naïve module and (B) refers to the inception dimensionality
reduction module. Cells with the symbol �-� denote that it is not possible to execute
the method on the respective dataset, due to its architecture. Cells with the symbol
'×' denote that we do not evaluate multimodal methods in unimodal datasets.

LOTO (Accuracy (%))

Methods WHARF UTD1 UTD2 WISDM USCHAD MHEALTH PAMA

Kwapisz et al. [2010] 44.51 15.99 69.61 79.08 76.52 89.75 70.58
Catal et al. [2015] 64.84 47.80 81.37 80.52 87.77 91.84 81.03
Kim and Choi [2013] 61.12 50.98 75.27 56.26 85.70 91.51 78.08
Chen and Xue [2015] 72.55 - - 86.55 84.66 89.95 82.32
Jiang and Yin [2015] 70.79 - - 83.82 80.73 52.78 -
Ha et al. [2015] - - - - - 85.31 80.13
Ha and Choi [2016] - - - - - 82.75 71.19
Yao et al. [2017] × 12.70 22.41 × 81.34 31.35 70.59

Szegedy et al. [2015] (A) 43.98 50.87 76.27 83.02 - - -
Szegedy et al. [2015] (A) + pool 49.86 53.06 76.71 84.89 - - -
Szegedy et al. [2015] (B) 51.76 52.36 74.62 79.18 - - -
Szegedy et al. [2015] (B) + pool 60.74 56.66 78.62 86.83 - - -

DCNN Ensemble (our) 75.50 62.03 81.63 89.01 88.49 93.09 83.99
Multimodal Stream (our) × 48.90 79.82 × 85.95 83.17 79.62
MDE (our) × 69.61 83.78 × 90.08 84.61 76.35
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Table 5.3: Comparison of our Multimodal DCNN Ensemble (MDE) and its simpli�ca-
tions (DCNN Ensemble and Multimodal Stream) to the state-of-the-art architectures
surveyed by Jordao et al. [2018] using LOSO on seven standardized datasets. Also, we
show the results of Yao et al. [2017] and the results of two inception modules [Szegedy
et al., 2015] using the original proposed kernels and our proposed pool of kernels. (A)
refers to the inception naïve module and (B) refers to the inception dimensionality
reduction module. Cells with the symbol �-� denote that it is not possible to execute
the method on the respective dataset, due to its architecture. Cells with the symbol
'×' denote that we do not evaluate multimodal methods in unimodal datasets.

LOSO (Accuracy (%))

Methods WHARF UTD1 UTD2 WISDM USCHAD MHEALTH PAMA

Kwapisz et al. [2010] 42.19 13.04 66.67 75.31 70.15 90.41 71.27
Catal et al. [2015] 46.84 32.45 74.67 74.96 75.89 94.66 85.25
Kim and Choi [2013] 51.48 38.05 64.60 50.22 64.20 93.90 78.08
Chen and Xue [2015] 61.94 - - 83.89 75.58 88.67 83.06
Jiang and Yin [2015] 65.35 - - 79.97 74.88 51.46 -
Ha et al. [2015] - - - - - 88.34 73.79
Ha and Choi [2016] - - - - - 84.23 74.21
Yao et al. [2017] × 11.45 22.40 × 71.52 31.88 72.61

Szegedy et al. [2015] (A) 36.64 40.71 72.55 78.64 - - -
Szegedy et al. [2015] (A) + pool 41.14 41.44 72.46 81.99 - - -

Szegedy et al. [2015] (B) 42.07 39.62 68.34 73.86 - - -
Szegedy et al. [2015] (B) + pool 49.97 42.23 72.96 80.99 - - -

DCNN Ensemble (our) 69.79 46.75 79.38 86.22 82.66 96.27 87.59
Multimodal Stream (our) × 36.99 74.59 × 79.68 90.20 80.58
MDE (our) × 57.13 81.99 × 83.40 88.97 77.70

5.3 Comparison with Multimodal Baseline

Yao et al. [2017] brought advances to sensor fusion employing multiple streams to pro-

cess each sensor separately. To the best of our knowledge, that is the only multimodal

method using multiple streams that have been proposed so far in the context of wear-

ables sensors. Our multimodal stream and MDE explore this intuition. It is important

to note that due to the multimodal premise of the approaches, we do not evaluate

the work of Yao et al. [2017] and our multimodal approaches (MDE and Multimodal

Stream) on WHARF and WISDM datasets since they consider only the accelerometer

sensor.

The approach proposed by Yao et al. [2017] shows poor results both on LOTO

(Table 5.2) and LOSO (Table 5.3) protocols reporting accuracy lower than very simple

approaches such as handcrafted methods, in all datasets evaluated. Particularly, their

approach performs poorly in UTD-MHAD family and MHEALTH datasets. We believe

this is because the network proposed by Yao et al. [2017] has a very complex structure

which can cause over�tting since these datasets do not have a large number of samples.

In addition, in the datasets of the UTD-MHAD family, the sample size does not allow
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it to be divided into time-steps to fed the network, which it is essential to the approach

of Yao et al. [2017] since it uses recurrent neural network (RNN).

In contrast to the approach proposed by Yao et al. [2017], our method showed

superior results even using only the multimodal hypothesis through our multimodal

stream approach (without DCNN ensemble as explained in the beginning of this chap-

ter). Furthermore, using the multimodal DCNN ensemble, we solve the temporality

issue in an apparently more e�cient way since it does not use RNNs and still is able

to surpass more sophisticated approaches such as Yao et al. [2017].

5.4 State-of-the-art Comparison

Table 5.2 (LOTO protocol) and Table 5.3 (LOSO protocol) show the results of our

main approach, the multimodal DCNN ensemble (MDE), and its two simpli�cations,

the DCNN ensemble and the multimodal stream (both explained at the beginning

of this chapter). Our approaches overcome the results of our two baselines (inception

module [Szegedy et al., 2015] and Yao et al. [2017]), as discussed before, and all methods

of the literature surveyed by Jordao et al. [2018]. Our method, achieves to the best

of our knowledge, the state-of-the-art in the seven datasets evaluated. We reiterate

that many e�orts have been done to achieve modest improvements in HAR based on

wearable sensor data, which reinforces that the Multimodal DCNN Ensemble and the

DCNN Ensemble provide notable improvements.

According to the results, in the MHEALTH and PAMAP2P datasets, the DCNN

ensemble shows superior results when compared to the multimodal DCNN ensemble

in both protocols tested. We believe this is occurring because we had to reduce the

number of parameters in the MDE network for these two datasets due to the limited

computational resources available to run our experiments. Thus, we use a smaller pool

of kernels and a fully connected with fewer neurons in the stream fusion block in these

datasets.

5.5 Methods Convergence

Since the sensor data to recognize human activities is mostly provided by smartphones

and smartwatches, the next frontier in this task is to run the methods directly on these

devices. A relevant feature regarding the satisfaction of the wearable device users is the

suitability of the model to the particularities of the user since there are di�erent ways of

executing the activities. The data provided by the current datasets do not statistically
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Table 5.4: Average number of epochs until the methods convergence using LOSO pro-
tocol and all the seven datasets described in this chapter.

Methods #

Chen and Xue [2015] 70.01

Jiang and Yin [2015] 131.15

Ha and Choi [2016] 48.06

Ha et al. [2015] 28.68

Yao et al. [2017] 200.0

DCNN Ensemble (ours) 20.24

Multimodal Stream (ours) 75.83

MDE (ours) 9.28

represent these ways. On the contrary, the dataset with the largest number of subjects

is WISDM with only 36 individuals. To better �t the model with the particularity of

the user, we can retrain the network in the device through interaction with the user,

where he/she does some activity and annotate (ground truth) the activity performed.

This allows the system to adjust to the particularities of the user. Therefore, it is

crucial that systems run fast and with high performance, since the user wants a quick

and reliable response.

We evaluate the number of epochs until the convergence of the methods since

the time spend at training is directly linked to the number of epochs used to train a

network. It is important to empathize that the number of epochs is not an integer

because the value refers to the average of the methods in all datasets using LOSO

protocol. Table 5.4 shows the results of this evaluation. Also it is important to remind

that the maximum number of epochs was set as 200, and the method stops its training

when the loss function reaches a value less or equal to 0.2.

The worst method was Yao et al. [2017] that did not converge within the es-

tablished maximum of 200 epochs and so had stopped the training. The method of

the literature that performed better on this experiment was Ha et al. [2015]. They

take 28.68 epochs to converge. We evaluate our main approach as well as its two sim-

pli�cations. The version using only multi streams performed poorly compared to our

approach and the best performance of the literature. The version using only the DCNN

ensemble performed superiorly to the literature by 8.44 percentage points. Our best

result (and by far the best result of the entire experiment) was for the MDE method

which takes only 9.28 epochs to train its whole network. Therefore, our MDE approach

is 3× faster than the best placed method of the literature, Ha et al. [2015], and 10×
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faster than the average number of epochs in the previous state-of-the-art deep learning

methods to sensor-based human activity recognition.





Chapter 6

Conclusions and Future Works

In this work, we proposed a multiscale ensemble-based approach of deep convolutional

neural networks to address sensor-based human activity recognition (HAR). Our ap-

proach is able to learn individually the features of each sensor before performing the

fusion and to model multiple temporal scales of an activity sequence. We demonstrate

its suitability for HAR on wearable sensor data by performing an evaluation on seven

important datasets. Our approach outperforms previous state-of-the-art results and

an Inception module network adaptation used as a baseline to our convolutional kernel

ensemble premise. We demonstrate that our approach works directly on the raw sensor

data, with no pre-processing, which makes it general and minimizes engineering bias.

As future work, we intend to study a dynamically way to choose the kernels employed

in the ensemble.
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