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Resumo

Véıculos autônomos representam um grande avanço tecnológico. No entanto, o caminho

para alcançar plataformas completamente autônomas ainda está sendo traçado, contendo

inúmeros desafios que envolvem as áreas de controle, guiagem e estimação de estados. En-

tre os sistemas do véıculo, os sistemas de estimação de estados são componentes vitais em

um véıculo auto-guiado, uma vez que esses provem a informação utilizada pelos sistemas

de guiagem e controle. Contudo, estimar os estados de véıculos móveis não é uma tarefa

trivial, principalmente para aqueles que operam próximo ao solo, onde a degradação ou

até mesmo a ausência do sinal de sistemas de navegação global, como o GPS, interferem

diretamente na estimação. Além disso, para véıculos que executam manobras agressivas e

têm a possibilidade de realizar movimentos com 6 graus de liberdade, o problema é ainda

mais desafiador. Neste contexto, esta tese aborda o problema de estimação de estados de

sistemas móveis operando próximos ao solo, que apresentam as dificuldades mencionadas

acima, mas também permitem o uso de diferentes tipos de sensores, tais como câmeras

e LiDAR. Grande atenção é dada a véıculos aéreos equipados com tais sensores, sendo a

velocidade, posição e orientação os principais estados a serem estimados. Considerando a

natureza não linear do sistema, novos algoritmos de fusão sensorial baseados no filtro de

Kalman unscented são propostos para combinar dados de sensores heterogêneos de forma

robusta e ainda manter a restrição de norma unitária imposta na representação baseada

em quatérnios unitários da atitude do véıculo. Sendo capazes de se adaptar a variações

das incertezas dos dados sensoriais, os algoritmos propostos conseguem mitigar os efeitos

de erros de medição desconhecidos de forma a apresentar uma boa estimativa dos esta-

dos. Vários resultados experimentais com véıculos aéreos em situações de incerteza na

medição variantes no tempo, incluindo um avião de corrida equipado com câmera real-

izando manobras acrobáticas e um quadrirrotor equipado com sensor LiDAR voando em

uma floresta densa, são apresentados.
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Abstract

Autonomous vehicles represent an enormous technological advance. Nevertheless, the

road toward a completely autonomous vehicle platform is still being drawn, containing

numerous challenges that involve control, guidance, and state estimation. Among the

vehicle systems, the state estimation systems are vital components for self-guided vehicles,

since they provide information used by guidance and control systems. However, estimating

the vehicle states is not a trivial task, especially for those operating near the ground in

the presence of vegetation, buildings, and mountains, where degradation or even the

absence of the signal from global navigation systems, such as GPS, directly interferes in

the estimation. In addition, for vehicles that perform aggressive maneuvers and have the

ability to perform 6-degree of freedom movements, the problem is even more challenging.

In this context, this thesis addresses the problem of state estimation of mobile systems

operating near the ground, which presents the difficulties mentioned above, but also allows

for the use of different sensors, such as cameras and LiDARs. Special attention is given to

air vehicles equipped with such sensors, in which velocity, position, and orientation are the

main states to be estimated. Taking into account the nonlinear nature of the system, new

unscented Kalman filter-based sensor fusion algorithms are proposed to robustly merge

heterogeneous sensor data and still maintain the constraint of unitary norm imposed

on the unit quaternion representation of the vehicle attitude. Being able to adapt to

uncertainty time variations in sensor data, the proposed algorithms can mitigate the

effects of unknown measurement errors thus providing a good estimation of the states.

Several experimental results with air vehicles in situations of time-varying measurement

uncertainty, which include a race airplane equipped with camera performing acrobatic

maneuvers and a quadrotor equipped with planar LiDAR flying in a dense forest, are

presented.
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Chapter 1

Introduction

“Research is to see what everybody else has

seen, and think what nobody has thought.”

Arthur Schopenhauer

1.1 Motivation

The continuous advances in technology have made possible the use of several robotic

platforms in a large variety of activities. Due to these, the scientific and industrial com-

munities have given special attention to develop fully autonomous platforms. However,

the road towards the fully autonomous navigation systems gives rise to challenging prob-

lems, which require knowledge and integration of perception, estimation, guidance, and

control.

Estimation systems combine information from multiple uncertain sources, such as

sensor data and mathematic models, to provide accurate estimates of vehicle states. The

output of an estimation system, also referred to as navigation solution in the navigation

area, is used to guide and control the vehicle. The fulfillment of the autonomous mis-

sion is directly affected by estimates, making state estimation a critical component of

autonomous vehicles [Nonami et al., 2010, Kendoul, 2012].

Among the techniques to merge sensor data, probabilistic methods, mainly those based

on Bayes’ rule, have been applied with success in actual applications. The main Bayesian

approaches applied are particle filters (PF) [Gordon et al., 1993] and some approximations

based on the Kalman filter (KF) [Kalman, 1960], such as the extended Kalman filter

1
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(a) Waymo’s self-driving car. (b) Drone for delivering Amazon products.

Figure 1.1: Example of autonomous vehicles.

(EKF) [Jazwinski, 1970] and the unscented Kalman filter (UKF) [Julier and Uhlmann,

2004]. In fact, the essential tools for data fusion are reasonably well established, but

the development and use of these tools in realistic world applications are still under

development.

In the literature, authors propose Bayesian platforms that enable the fusion of hetero-

geneous sensors [Bachrach et al., 2010, Chambers et al., 2011, Tomic et al., 2012, Shen

et al., 2014, Song et al., 2016]. However, these platforms focus on showing the feasibil-

ity of the filtering approach, and other issues, such as measurement failures, are often

neglected or omitted. Missions that involve transition among different environments are

only possible if the filtering approach is able to combine information from a wide variety

of sensors and also is robust to the time-varying uncertainty of such data. Following

this proposition, we are interested in improving existing estimation techniques in order to

combine information from multiple sources, even in the presence of measurement failures.

The motivation for this work comes mainly from the applicability of autonomous

platforms in the most varied tasks. Examples of applications include air and urban traffic

supervision, management of natural hazards, intervention in hostile environments such as

nuclear power plants, inspection and maintenance of infrastructure, precision agriculture,

among others [Siciliano and Khatib, 2016]. In addition, impacting more directly the

civilians lives, self-driving cars, such as the ones developed by Waymo1, see Figure 1.1(a),

and the use of aerial vehicles, such as the drones used by Amazon2 for product delivery,

see Figure 1.1(b), are still in development.

1https://waymo.com, September 4th, 2019
2https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011, September 4th,

2019
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The use of global navigation satellite systems (GNSS), such as the global navigation

system (GPS), is the standard approach for localization. If the vehicle operates in outdoor

environments without satellite signal occlusion, such as the drone in Figure 1.1(b), which

operates the majority of time at high altitude, the GNSS solution works satisfactorily.

However, in missions near the ground, for instance, the autonomous car in Figure 1.1(a),

the GNSS signal may be damaged or even interrupted due to the proximity of construc-

tions and trees, or even because the mission is executed inside a building. In such cases, it

is essential to use other sensors, such as laser scanners [Bachrach et al., 2010, Shen et al.,

2011] and also vision camera [Weiss, 2012, Kottas et al., 2013, Schmid et al., 2013] to

acquire information about the vehicle movement. Thus, by combining information from

different sensors, sophisticated systems are able to estimate the location of the vehicle and

even map the environment simultaneously. In that sense, the complexity of perception

and state estimation systems significantly increases.

Each sensor performs differently depending on environmental conditions. For instance,

visual-based algorithms are sensitive to strong sunlight and laser-based approaches need

structured environments. To handle different types of uncertainty due to the operational

condition of sensors is a challenging task, principally by two aspects. First, the type of

information provided by the sensor may change the fusion scheme significantly. Second,

standard sensor fusion algorithms consider that the measurement uncertainties are con-

stant during the task accomplishment. In this work, the operational condition of sensors

is modeled as random unknown uncertainties that vary in time.

1.2 Problem Statement

A general system can be represented by a nonlinear stochastic discrete-time dynamic

system such as:

xk = f (xk−1, uk−1, qk−1, k − 1) , (1.1)

yk = h (xk, rk, k) , (1.2)

where f : Rnx × Rnu × Rnq × N → Rnx and h : Rnx × Rnr × N → Rny are the process

and observation models, respectively, xk ∈ Rnx is the state vector, uk−1 ∈ Rnu is the
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input vector, yk ∈ Rny is the measurement vector, qk−1 ∈ Rnq and rk ∈ Rnr are,

respectively, the process and measurement noise vectors, and k denotes discrete time.

Assume that, for all k ≥ 1, the known data are the measured outputs yk, the inputs uk−1,

and the probability density function ρ (x0), where x0 ∈ Rnx is the initial state vector.

The process and measurement disturbances are characterized by the probability density

functions (PDFs) ρ (qk−1) and ρ (rk), which are assumed to be partially known.

Under the stated assumptions, given the dynamic and measurement models (1.1)-

(1.2) and the sequence of past and present measured data u1:k−1 = {u1, ..., uk−1} and

y1:k = {y1, ..., yk}, the problem consists in estimating the mean x̂k and covariance P xx
k

that characterize the PDF ρ(xk|y1:k).

The state-estimation problem is challenging. First, for nonlinear systems, the PDF

ρ(xk|y1:k) is not completely characterized by its mean and covariance [Särkkä, 2013].

Second, the uncertainties in the probabilistic model are partially unknown and can be

time-varying, which means that it is a non-ergodic random process. Thus, in this thesis,

we want to take advantage of the well established estimation tools for nonlinear systems,

in order to find reliable estimates in the presence of time-varying uncertainty. Third, the

standard tools for estimation are established to Euclidean state spaces. For localization

problems, some state spaces are not Euclidean, such as the set of unit quaternions, that

are constrained to the unit norm in order to represent orientation. In that case, modifi-

cations must be made in order to deal with these constrained states and the time-varying

uncertainties related to them.

1.3 Research Objectives

Under the light of the previous statement, Sections 1.1 and 1.2, state estimation is an

important component to achieve autonomous navigation. This system must be able to

combine information from multiples heterogeneous sensors, in which the uncertainty of

measurements can vary depending on the environment and dynamical conditions that the

platform is exposed.

In this context, the main goal of this research is to develop state-estimation algorithms

that can combine information from multiple heterogeneous sources. Actually, we do not
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intend to engineer the problem by changing the platform hardware, but we wish to de-

velop general and reliable fusion algorithms that can handle time-varying uncertainty of

measurements in autonomous navigation systems. In addition, we do not intend that

the fusion algorithm is the only security level of estimation system, but an additional

one, which means that additional systems such as diagnosis of hardware failure can be

employed.

Although the developed algorithms are not limited to a specific type of system, we

have a special interest in aerial vehicles. These systems are versatile, being able to work

in indoor and outdoor environments, covering a large area. Thus, the main results shown

in this work were obtained from experiments performed by aerial vehicles.

In line with the main objectives, we list the following specific ones:

1. Study the state-estimation problem for navigation systems. Due to inherent non-

linear nature of theses systems, we wish to investigate approximations based on the

unscented Kalman filter.

2. Attitude estimation is important for navigation systems. Although unit quaternions

have good properties, the unit norm constraint add challenges to the state estimation

problem. Thus, to investigate estimation algorithms to handle this problem is one

of the objectives of this thesis.

3. In addition to the state estimation problem, real-world applications have additional

challenges regarding data-acquisition, parameter tuning, and also with respect to

the implementation of the solution in an actual mobile platform. Thus, we also

want to use some software tools, such as the Robot Operating System (ROS), that

enable a straightforward way to handle sensor data in robotic platforms.

1.4 Contributions

The present work has ushered in three major contributions to the area of sensor fusion.

Two of them are theoretical developments, whereas the third one refers to case studies, in

which state-estimation algorithms are applied to solve specific problems. We summarize

each theoretical contribution as follows:
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1. In Chapter 3, we investigate the nonlinear filtering algorithm based on unscented

Kalman filter. The standard algorithm is not able to handle time-varying uncer-

tainty of measurements. Thus, based on adaptive approaches, we propose two new

algorithms that are able to mitigate the influence of a time-varying uncertainty of

output measurements. The performance of the proposed algorithms are partially

illustrated in the publications:

(a) the problem of estimating the flight path of a fixed wing aerial vehicle perform-

ing aggressive maneuvers is addressed in [Chiella et al., 2016], and;

(b) the problem of state estimation of micro-aerial vehicles in forest environments

is addressed in [Chiella et al., 2019d, Chiella et al., 2019a].

2. In Chapter 4, we investigate the problem of attitude estimation parameterized as

unit quaternion. In such case, the unit norm constraint can not be ensured due

to operations of sum and weighting. Based on exponential and logarithm maps,

the filtering algorithms proposed in Chapter 3 are extended to deal with unit norm

constraint of unit quaternions. In addition, a new interacting multiple model filter

and a new Rauch-Tung-Stribel smoother for unit quaternions are proposed. The

performance of the proposed algorithm is illustrated in the problem of attitude

estimation using magnetic, angular rate, and gravity (MARG) sensors, whose is

addressed in [Chiella et al., 2018, Chiella et al., 2019c, Chiella et al., 2019b].

Experimental results regarding the application of the developed algorithms are pre-

sented in Chapters 5, 6, and 7.

1.5 Thesis Outline

This document is organized into eight chapters, as follows. In this chapter, we introduced

the motivation to investigate state estimation for autonomous vehicles.

In Chapter 2, the state of the art related to state estimation for navigation is presented.

First, we introduce the main motion estimation approaches. Then, the commonly used

data fusion approaches are presented. Finally, we quickly review some works and the

main concepts related to the time-varying uncertainty of measurements.
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In Chapter 3, the state estimation problem for nonlinear systems in Euclidian spaces is

presented. Related to the problem of time-varying uncertainty of measurements, adaptive

and some basic robust approaches are reviewed. Based on these approaches, extensions to

the standard UKF are proposed. Finally, considering that the state estimation procedure

can be performed offline, a smoother algorithm is reviewed.

The attitude of aerial vehicles is usually represented by unit quaternions. In Chapter 4

an unscented Kalman filter version for unit quaternions is reviewed. Then, we propose

four new robust adaptive unscented Kalman filters for quaternions. In addition, a new

interacting multiple model filter and unscented Rauch-Tung-Striebel smoother for unit

quaternions are proposed.

In Chapters 5, 6, and 7, the proposed algorithms are tested using experimental data.

Three study cases are presented: i) localization of an aerial vehicle performing aggressive

maneuvers; ii) localization of an aerial vehicle in a forest environment; and iii) attitude

estimation using MARG sensors.

In Chapter 8, some characteristics of the state estimation algorithms investigated

through this work are discussed. Conclusions with respect to the implemented approaches

are formulated.

In Appendix A, the general equation for computing Bayesian filtering solutions for

both linear- and nonlinear-Gaussian state-space models are presented. In addition, a

formulation of the multiple model approach is presented.





Chapter 2

Fundamental Principles and

Literature Review

“If I have seen further it is by standing on

the shoulders of giants.”

Isaac Newton

In this chapter, we review the main concepts related to integrated navigation systems

and state estimation, separating the main topics in five sections. First, in Section 2.1

the terminologies and categorization of navigation systems in two different types, dead

reckoning and fixed-point approaches, are presented. Then, in Section 2.1.1 and 2.1.2,

we briefly introduce different types of integrated navigation solutions reported in the

bibliography. State estimation techniques are the basis of navigation systems, being

responsible principally for combining information from multiple uncertain data sources. In

Section 2.2 the main algorithms reported in the navigation area are reviewed. Section 2.3

presents the main data fusion techniques and the related approaches to improve the

estimates and mitigate the effect of time-varying uncertainties. Related works necessary

to support more specific topics of the thesis will be surveyed wherever necessary.

2.1 Navigation Systems

Navigation, in the broad sense, is a method of determining and planning the movement

of a vehicle from one place to another [Titterton and Weston, 2004, Kendoul, 2012,

Groves, 2013]. In this work, except in specific cases, navigation only refers to a method

9
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of determining the vehicle states, such as position, orientation, and velocity with respect

to a known reference frame. The output of the navigation system is called the navigation

solution and can also include, in addition to vehicle states, the estimation errors.

Figure 2.1 illustrates a typical navigation system, which in turn has essentially two sub-

systems: sensing and state estimation subsystems. The sensing subsystem contains one

or more sensors, providing information about the internal system or surrounding environ-

ment, also referred to as proprioceptive and exteroceptive sensors, respectively [Siegwart

et al., 2011]. In some applications, the sensing subsystem provides preprocessed data,

called pseudo-measurements. The state estimation systems are responsible for processing

the sensor measurements, which are related to the vehicle states.

State estimator

x̂k

P xx
k

Sensing subsystem

Proprioceptive

IMU and
Encoders

Exteroceptive

GNSS
LIDAR
Vision...

uk−1

yk

Initial conditions

Figure 2.1: Essential subsystems of a navigation system: sensing and the state esti-
mation subsystems. The sensing subsystem comprises a set of sensors whose
output is used by the state estimation subsystem. The state estimation sub-
system processes the received information to provide an estimate of the vehicle
states.

Most navigation techniques are based on dead reckoning or/and position fixing tech-

niques. In the first class of methods, given a starting position, the vehicle states are

continually (except for hardware failure) estimated, by summing up the relative position

measurements. Each of these incremental motions is subject to an error, and conse-

quently, the error in the navigation solution can grow unbounded. In the second method,

the vehicle states are computed relative to reference points, whose location is known. The

navigation error is bounded in the position fixing method; however, due to possible loss

of signal, the solution is not continuous.

The aforementioned techniques are usually complementary. Thus, it is common to



2.1 Navigation Systems 11

combine the dead reckoning technique with one or more position fixing techniques in an

integrated navigation system to get the benefits of both techniques. Figure 2.2 illustrates

the combination of dead reckoning and position-fixing methods. During dead reckoning

estimation, the estimation uncertainty, represented by ellipses, grows unbounded, then

when position-fixing measurements are assimilated the uncertainty decreases.

Start position

Position
change
measurement

Error bounds

Estimated
Position

Known
landmarks

N

E

Figure 2.2: An integrated navigation system, where dead reckoning and position-fixing
are used to compute the vehicle position. Notice that, the navigation error is
unbounded for dead reckoning, but its limit is updated by the position-fixing
method.

2.1.1 Conventional Integrated Navigation Systems

Conventional navigation solutions are usually performed by combining data from global

navigation satellite systems (GNSS), such as Global Positioning System (GPS) and Glob-

alnaya Navigationnaya Sputnikovaya Sistema (GLONASS), with an inertial navigation

system (INS) and compass [Leutenegger and Siegwart, 2012]. An inertial navigation sys-

tem is a complete three-dimensional dead reckoning navigation system, comprising a set

of inertial sensors, accelerometers and gyrometers, known as inertial measurement unit

(IMU). INS and compass provide high-frequency information, but the errors in an iner-

tial navigation solution can grow with time as successive accelerometers and gyrometers

errors are integrated. On the other hand, GNSS provides accurate absolute position and

velocity at low frequency, which can be used to correct IMU-based information, forming
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a combination between dead-reckoning and position fixing techniques, see Figure 2.2.

The use of the GNSS solution (latitude, longitude, altitude, and velocity) in a sensor

fusion algorithm is referred to as a loosely coupled integration. The main advantages of

this approach in relation to techniques that use the GNSS raw data are simplicity and

redundancy since other navigation systems can be easily included. A drawback is that in

this approach one needs to know the covariance of the GNSS output error, which usually

is not a realistic information, as it is normally based on satellite availability. The tightly

coupled approach combines raw GNSS data, such as pseudo-range and pseudo-range-rate,

with IMU data in the fusion algorithm. It usually performs better than a loosely-coupled

approach, since the errors of raw data can be better described. However, the algorithm

complexity increases, as more data must be treated by the integration system [Groves,

2013].

Commercial aerial vehicles for civil purposes normally have an embedded navigation

solution based on GNSS and IMU. In such products, the raw GNSS measurements are

normally not available, making the loosely-coupled approach preferable. The fusion al-

gorithms developed in this work are tested in loosely-coupled approaches, see Sections 5

and 7, but, can be used in tightly-coupled approaches as well. The reader can find more

information about tightly and loosely coupled INS/GNSS integration in [Upadhyay et al.,

1993, Carvalho et al., 1997, Kendoul et al., 2010, Zhou et al., 2011, Hu et al., 2015]

and [Mulder et al., 1999, De Mendonça et al., 2007, Teixeira et al., 2011, Li et al., 2016],

respectively. In the aforementioned works, despite being a complete navigation solution,

INS/GNSS is used together with other sensors, such as barometer and differential pressure

sensor, in the localization problem.

2.1.2 Other Navigation Systems

As previously commented, localization by GNSS has become a standard approach in

outdoor conditions. On the other hand, for vehicles working near the ground, such as

land vehicles or aerial vehicles that flies at low altitude, the GNSS signal can be damaged

by different variables, which make this navigation solution unsuitable [Kendoul et al.,

2010]. Furthermore, some civilian GNSS have accuracy within several meters, which is

unacceptable for localizing small mobile vehicles [Siegwart et al., 2011]. In this way, to
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achieve integrity and accuracy requirements, other types of integrated solutions should

be provided, for instance, a vision-based and/or laser-based navigation solutions.

Camera images can yield rich information about the surrounding environment and can

be used to estimate the vehicle movement. Visual odometry (VO) is a technique that uses

a sequence of images to detect and track features of the environment, which estimates the

vehicle movement via dead-reckoning. In [Bay et al., 2006, Zhang et al., 2014] a monocular

camera is used to solve the six degrees of freedom (6DOF) estimation problem, but it may

require additional information to recover the image scale. On the other hand, stereo-vision

approaches, such as proposed in [Garcia and Solanas, 2004, Fraundorfer et al., 2012, Song

et al., 2016] have the advantage of direct scale the observation. Another option is to use

RGB-D sensors for VO [Shen et al., 2013a, Fang and Scherer, 2014, Tubman et al., 2016].

These sensors can measure the depth with high accuracy.

In some works other approaches are used to extract information from the camera.

For instance, in [Kendoul et al., 2009, Weiss et al., 2012, Bin et al., 2014] optic flow is

employed to estimate the vehicle velocity. In [Chiella et al., 2016], by using a priori map,

vision information can be used to identify known landmarks, then estimate the vehicle

pose relative to this marks. This approach provides a drift-free pose estimate since the

landmark has its position known. In Chapter 5, the localization problem of an aerial

vehicle, where the global position information comes from a vision system, is presented.

Similarly to INS/GNSS combination, INS/VO combination can be performed in loosely

or tightly coupled approaches. Loosely coupled approaches treat the inertial and vision

units as two separate modules running at different rates and exchanging information, while

the tightly coupled approach combines them into a single optimal filter. Loosely coupled

approaches are treated in some works such as [Armesto et al., 2004, Weiss, 2012, Shen

et al., 2013b, Chambers et al., 2014], while the tightly-coupled approach is considered

in [Baldwin et al., 2009, Jones and Soatto, 2011]. An advantage of loosely-coupled ap-

proaches is that the visual system can be treated as a black-box, abstracting the internal

algorithms, which allows more flexibility.

Due to the low cost, low energy consumption and rich information, vision-based odom-

etry is a good choice for providing additional measurements on small vehicles. However,

vision-based approaches are strongly influenced by the change in the environment lighting.
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In contrast, laser-based approaches are less influenced by the change in the environment

lighting, with the price of an increase in payload and energy consumption. In [Shen et al.,

2011, Tomic et al., 2012] a laser-based iterative closest point (ICP) approach is employed

to solve the navigation problem. In these works, the ICP algorithm is used to estimate

the position and heading of a UAV. However this approach is limited to indoor environ-

ments or tasks near the buildings that have vertical walls. In [Cui et al., 2014, Schultz

et al., 2016, Chiella et al., 2019d] a similar algorithm is used to navigate a UAV in a

forest. In this type of environment, due to dense tree canopy, the GNSS signal can be

damaged, making the navigation a challenging task. We also address the navigation in

forest environments using a laser-based approach in Chapter 7.

2.2 State Estimation in Navigation Systems

It is worthwhile to notice the localization problem can be seen as a particular case of

state estimation that is limited to estimate the vehicle pose, which consists of position

and orientation. The Kalman filter (KF) has been widely used for localization and path

reconstruction. As the navigation equations are usually nonlinear, approximations, like

the extended (EKF) and the unscented Kalman filters (UKF), are employed.

Traditionally, the navigation and inertial sensor errors are used as states, which is

commonly referred as an indirect form of KF or simply by error-state-KF (ErKF) [May-

beck, 1982, Titterton and Weston, 2004, Groves, 2013]. This approach takes the same

form of EKF, but instead of the system and measurement matrices being linearized about

the prior state estimate, they are linearized about a predetermined state value [Groves,

2013]. A drawback is that the transformations are reliable only when the error propa-

gation can be well described by first-order linearization approximations. For example,

in aviation applications, the attitude is usually approximated by small angle errors. If

an INS/GNSS integration is used, the heading error is weakly observable, requiring high

dynamics of the platform during the application to properly estimate the error states,

which is commonly called as in-motion alignment [Shin and El-Sheimy, 2004, Zhou et al.,

2011]. Furthermore, when the heading error is large, its product with other states is

not negligible. Because of this, first order approximations do not well describe the error
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evolution, requiring a system model that does not ignore higher order terms [Shin and

El-Sheimy, 2004]. Alternatively, in a UKF navigation solution, the nonlinear propagation

and observation models are directly employed in the filter, such that the nonlinearities

can be better handled [Shin and El-Sheimy, 2004, Crassidis, 2006, Li et al., 2016]. One

disadvantage of the UKF, if compared to the EKF, is its computational burden; however,

nowadays this is not a serious constraint for most applications. For instance, even for

micro aerial vehicles, where the computational resources are limited due to payload capa-

bilities, the onboard operation of UKF-based solutions can be demonstrated [Chambers

et al., 2014, Shen et al., 2014]. Furthermore, as presented in [Rosen and Medvedev, 2013]

Kalman-based and particle filters can be efficiently implemented in parallel on multicore

platforms.

Attitude estimation is usually performed by dedicated systems, such as attitude and

heading reference systems (AHRS). It is common to represent the attitude by parame-

terizations such as Euler angles or unit quaternions. When the span of vehicle angles is

large, what usually happens for aerial vehicles that make acrobatic maneuvers [Chiella

et al., 2016], the unit quaternion parametrization is attractive due to the absence of singu-

larities. However, KF-based algorithms pertain to the Euclidean spaces systematization,

performing sum and multiplication by scalar operations. Unit quaternions are not closed

under these operations, thus the unit norm constraint cannot be ensured [Choukroun

et al., 2006].

In order to circumvent the unit norm constraint of unit quaternion, an indirect form

of KF called multiplicative extended Kalman filter (MEKF) [Lefferts et al., 1982] was

created. As previously discussed, this approach is valid only for small estimation errors,

and outside of this region the error is not well represented by first-order approximations.

In such case, algorithms based on the unscented UKF as the unscented quaternion esti-

mator (USQUE) [Crassidis and Markley, 2003, Crassidis, 2006] yield better results, being

less sensitive to large initialization errors, although not solving completely the problem.

Since unit quaternions are constrained to a Riemannian manifold, using its logarithm

and exponential maps, as in [Sipos, 2008], can better preserve its properties, such as

the Riemannian metric [Menegaz et al., 2019]. A more general formulation of UKF for

unit quaternions, encompassing different unit quaternion parameterizations, can be found

in [Menegaz and Ishihara, 2018].
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In contrast to KF approaches, which adopt a probabilistic determination of the mod-

eled state, complementary filters (CF) are based on frequency analysis, being simplistic

and usually computationally more efficient. In [Euston et al., 2008], the authors proposed

an explicit complementary filter (ECF) for the orientation estimation of UAVs. Such

a filter utilizes a proportional-integral (PI) controller to estimate the bias of the gyro.

In [Madgwick et al., 2011], the authors present a computationally efficient gradient de-

scent algorithm given measurements from a magnetic, rate and gravity (MARG) sensor.

The proposed algorithm has low computational cost and is able to reduce the effect of the

magnetic disturbance. A similar algorithm is presented in [Madgwick, 2010], which also

estimates gyros’ bias. The problem of this algorithm is that the orientation estimated

using accelerometers suffer the influence of magnetic disturbances due to the coupling in

the gradient descent algorithm used. In [Valenti et al., 2015], quaternion measurement is

computed as the composition of two algebraic quaternion, which mitigates the influence

of magnetic distortion.

2.3 Time Varying Uncertainty and Measurement Fail-

ures

The standard GNSS-INS solution usually works well whenever the navigation is performed

in unobstructed environment, such as aerial vehicles flying at high altitudes in a leveled

flight. However, if the navigation takes place close to the ground, in the presence of build-

ings and mountains, or if the vehicle performs acrobatic maneuvers, the GNSS satellite

signal may be blocked, causing the data to be unreliable or even unavailable [Jin et al.,

2014]. As aforementioned in Section 2.1.2, in these situations, other types of information

sources must be used. However, all these types of navigation solutions are susceptible to

errors, whose characteristics are not well known and can be time-varying. The accuracy

of a navigation solution or sensor can degrade due to malfunctioning or even by a change

in the operational condition. Thus, the quality of measurements is affected by different

noise and/or bias amplitudes. When a measurement has an abnormal behavior, which

means that it deviates from an expected behavior, referred to as normal condition, we

assume we have a measurement fault [Gustafsson, 2008]. Computing this time-varying
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characteristics remains an open problem to robust state estimation [Cadena et al., 2016].

Fault detection methods are based on a comparison of measurements to a refer-

ence. In practice, this redundant information is derived in two different ways [Isermann,

2005, Gustafsson, 2008, Zug et al., 2012]. First, the current practice in the industry, e.g.

aircraft industry, is hardware redundancy, which uses multiple parallel sensors fulfilling

the same function. In that case, an increased effort in power supply and installation space

is needed. An alternative to component redundancy is analytical redundancy based on

a mathematical model, also referred to as model-based redundancy. Instead of compar-

ing several signals for the same variable such as in hardware redundancy, model-based

methods compare system output with analytically generated signals. A common way to

provide fault detection is to construct residuals from measurements, which are designed

to be zero in the fault-free case and nonzero otherwise.

Filtering algorithms are straightforward tools to provide analytical redundancy and

consequently generate residuals. The chi-square test is the conventional and commonly

used failure detection methodology to monitor dynamical systems and estimation algo-

rithms based on the KF [Da, 1994]. The chi-square test belongs to the class of statistical

hypothesis-testing mechanisms and is commonly used to examine whether the assumed

mean and covariance matrix match the actual settings or not. In [Chambers et al., 2014]

a chi-square test based on a single sampling time is used to reject outliers yielded by

VO and GPS. This approach can lead to false alarms, rejecting measurements with good

quality. To avoid false alarms, the test based on single sampling time can be replaced by

a test based on a moving average [Bar-Shalom et al., 2004]. Median-based approaches can

also be use to mitigate the outlier influence [Moghaddamjoo and Kirlin, 1989]. Another

common statistics tests are the Sequential Probability Ratio Test (SPRT) and Cumula-

tive Sum (CUMSUM), which is an especial case of the first one [Gustafsson, 2008]. In

[Sundvall and Jensfelt, 2006] the CUMSUM test was used to detect faults in the measured

pose provided by a laser-based odometry and a wheel-based odometry.

The performance of estimation algorithms based on KF are highly sensitive to param-

eters tuning [Tandeo et al., 2018, Shao et al., 2019], such as the process and measurement

covariance matrices, named in this work by Qk−1 and Rk, respectively. Some adaptive

approaches use the information of innovation to estimate the unknown inputs error covari-
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ance matrices. These matrices can be interpreted as a measurement of reliability of the

input data. For instance, the covariance Rk of the measurement yk describes how reliable

the measurement information is. One extreme case is Rk = 0 that says that measurement

is exact. In contrast, we have Rk → ∞ which means that the measurement is useless

and should be discarded. To improve its performance, one possible approach consists in

modifying their tuning parameters online, which is known as adaptive Kalman filtering.

Different schemes are employed in the literature to improve the performance of KF

estimating its parameters online. Covariance-matching-based (CM) approaches were em-

ployed in [Hide et al., 2004, Jwo et al., 2009, Chauhan and Gao, 2017]. These algorithms

improve the filter consistency by estimating the noise covariance matrices using a N -sized

window of innovation sequence. Alternatively, in [Hu et al., 2003, Hide et al., 2004, Ha-

jiyev and Soken, 2013, Hajiyev and Soken, 2016], the approach called covariance scaling

(CS) is used. In such a method, scaling factors are computed from the innovation se-

quence to adjust the noise covariance matrices. Algorithms based on multiple model

adaptive estimation (MMAE) and interacting multiple model (IMM) were investigated

in [Hide et al., 2004, Abuhashim et al., 2010, Lu et al., 2015, Jwo and Tseng, 2011] and

[Jwo et al., 2013], respectively. These algorithms run multiple filters in parallel, each

one with a different internal model, and the innovation behavior is used as an indicator

of how each filter represents the most likely operational mode. Among these methods,

the CM approaches yield improved results in the estimation of the covariance matrix for

Gaussian distribution, if compared to the CS approaches. CM also presents a greater sim-

plicity if compared to approaches based on multiple models. However, in the presence of

outliers, its performance can be damaged. In a more recent approach, [Sarkka and Num-

menmaa, 2009, Särkkä and Hartikainen, 2013] propose to use the variational Bayesian

approach to approximate the posterior distribution and then estimate the measurement

uncertainty. Numerical simulations showed performance similar to the IMM approach,

but with a lower computational burden. In addition, it is important to point out that,

like the KF, these adaptive approaches also belong to Euclidean systematization, thus

requiring modifications to be used with unitary quaternions.
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2.4 Chapter Summary

In this chapter, we review the main concepts related to navigation systems, such as the

principal integrated navigation approaches and the state estimation techniques reported

in the literature. For the navigation solution, Kalman filter-based approaches are by

far the main used state estimation techniques. These algorithms are very sensitive to

abnormal measurements, needing additional modifications, such as those based on robust

and adaptive techniques. All these algorithms presented in the literature are reported

with better results than the traditional KF-based algorithms. However, no extensions to

unit quaternions are explored in the aforementioned papers. For instance, the algorithms

based on covariance matching perform operations of sum and weighting with innovation

sequence, and the multiple model approaches reconstruct its estimates from the individual

results of each filter, which also involves these operations that are not closed in the set of

unit quaternions.

In the next chapter, robust and adaptive techniques are combined in order to improve

the performance of the UKF. Then, to handle properly the unit norm constraint of unit

quaternions, we present for these algorithms some modifications based on logarithm and

exponential maps. The performance of the proposed algorithms are shown by experiments

with actual data.





Chapter 3

Nonlinear State Estimation and

new Robust/Adaptive Algorithms

“The discovery of the Kalman filter came about through a sin-

gle, gigantic, persistent mathematical exercise. Just as Newton

was lucky having timed his birth so as to have Kepler’s laws

ready and waiting for him, I was lucky, too. The pieces of

the slumbering Newtonian revolution, which I needed for my

monster exercise, were available, scattered all around, partially

forgotten but ready to be picked up and reassembled again.”

Rudolph E. Kalman

This chapter presents a review of nonlinear filtering and smoothing estimators used

in this thesis (sections 3.2 and 3.5, respectively). Special emphasis is put on the un-

scented Kalman filter and the unscented Rauch-Tung-Striebel smoother, since they allow

straightforward handling of nonlinear equations through the unscented transform (UT).

The chapter is also intended to introduce and explain notations and some terminologies

used in the rest of the text, thus facilitating its understanding. Despite this work being

focused on the multisensor fusion problem of mobile vehicles, the reviewed algorithms are

presented in a general form, thus not restricting its application to this particular problem.

As introduced in the last chapters, in practical applications, the statistical properties

of measurement noise are unknown or partially known. In addition, the measurement

noise can be contaminated by spurious errors, such as outliers, that change its probabil-

ity distribution characteristics. These errors are prejudicial to state estimation, yielding

21
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inaccurate estimates. Sections 3.3 and 3.4 are dedicated to adaptive and robust tech-

niques. We pay special attention to the observation model, thus, the presented adaptive

and robust methods are addressed to characterize the measurement noise statistics and

to mitigate the effect of damaged data. Based on the reviewed methods, by combining

adaptive and outlier detection approaches, we present the first theoretical results of this

thesis in Section 3.6, a new family of nonlinear filtering algorithms.

3.1 The State Estimation Problem

Given the nonlinear stochastic discrete-time dynamic system (1.1)-(1.2). Assume that, for

all k ≥ 1, the known data are the measured outputs yk, the inputs uk−1, the initial estimate

x̂0 � E[x0] and the initial error-covariance P xx
0 � E[(x0− x̂0)(x0− x̂0)

T ], where x0 ∈ Rnx

is the initial state vector and E[·] denotes the expected value. Furthermore, the process

noise has unknown mean E[qk] = q̂k and known covariance matrix E[qkq
T
k ] = Qk, the

measurement noise has unknown mean E[rk] = r̂k and covariance matrix E[vkv
T
k ] = Rk.

The process and measurement noises are also assumed to be mutually independent. The

process and measurement noises are usually assumed to have zero mean, q̂k = 0 and

r̂k = 0, respectively. However, in this work, we assume a more general case in order to

treat the adaptive filtering.

Under the stated assumptions, given the dynamic and measurement models (1.1)-(1.2)

and the sequence of past and present measured data u0:k−1 and y1:k, the state-estimation

problem is to find the estimate x̂k = E[xk] and covariance P xx
k = E[(xk − x̂k)(xk − x̂k)

T ]

that characterize the a posteriori conditional probability density function ρ(xk|y1:k).

Let x̄k and P̄ xx
k , respectively, be given by

x̄k = E [xk|y1:k] , (3.1)

P̄ xx
k = E

�
(xk − x̄k) (xk − x̄k)

T |y1:k
�
, (3.2)

denote the true mean and covariance of ρ(xk|y1:k). In general, for nonlinear systems,

the solution to this problem can be quite complex, due to the fact that posterior PDF

could not be completely characterized by its mean x̄k and covariance P̄ xx
k . Moreover, the
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estimate x̂k and its covariance P xx
k are not necessarily equal to x̄k and P̄ xx

k , respectively.

Due to the nonlinear characteristics of the system (1.1)-(1.2), our proposition is to use as

basis to our approach the unscented Kalman filter [Julier and Uhlmann, 2004], presented

in Section 3.2.

In addition to nonlinearity, more complexity is added to this problem since the un-

certainty, represented by the covariance matrices Qk and Rk, may be partially or totally

unknown. Actually, in practical applications, the input uk and output yk measurements

can suffer abnormal behaviors, changing online their statistic properties. The time-varying

uncertainty of measurement drastically damage the state estimates, and thus, must be

treated properly.

3.2 Unscented Kalman Filter

The unscented Kalman filter is a suboptimal solution for the stochastic filtering problem

of a discrete-time dynamic system described by (1.1)-(1.2). Instead of analytically or

numerically linearizing the dynamic system and using the Kalman filter equations as is

done in the EKF, the unscented Kalman filter employs the unscented transform (UT)

[Julier and Uhlmann, 2004].

3.2.1 Unscented Transform

The unscented transform is the main core of UKF. It approximates the posterior mean

ẑ ∈ Rnz and the covariance matrix P zz ∈ Rnz×nz of a random variable z obtained from

the nonlinear transformation

z = g(x1, x2, c), (3.3)

where g : Rn1 × Rn2 × Rnc → Rnz is the nonlinear transformation, x1 ∈ Rn1 and x2 ∈
Rn2 are a priori random variables with known mean x̄1 and x̄2 and covariance matrices

P̄ x1x1 ∈ Rn1×n1 and P̄ x2x2 ∈ Rn2×n2 , respectively, and c is a deterministic variable assumed

to be known.
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We define the augmented state vector x̄ ∈ Rn as

x̄ �


 x̄1

x̄2


 , (3.4)

where n = n1 + n2, as well the augmented covariance matrix P̄ xx ∈ Rn×n

P̄ xx �


 P̄ x1x1 [0]n1×n2

[0]n2×n1
P̄ x2x2


 . (3.5)

The UT is based on a set of deterministically chosen vectors, known as sigma points

(SP). The SP Xj ∈ Rn and the associated weights wj, j = 1, ..., 2n can be chosen as

[Arasaratnam and Haykin, 2009]

X � [x̄]2n +
√
n
��
P̄ xx

� 1
2 −

�
P̄ xx

� 1
2

�
, (3.6)

wj �
1

2n
(3.7)

satisfying

2n�

j=1

wjXj = x̄, (3.8)

2n�

j=1

wj (Xj − x̄) (Xj − x̄)T = P̄ xx, (3.9)

2n�

j=1

wj = 1, (3.10)

where Xj is the jth column of the matrix X ∈ Rn×2n, and (·) 1
2 is the Cholesky square

root. The SP (3.6) can be partitioned as


X x1

X x2


 � X , (3.11)

where X x1 ∈ Rn1×2n and X x2 ∈ Rn2×2n. Then, each SP Xj is propagated through a
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transformation g yielding

Zj = g
�
X x1

j ,X x2
j , c

�
, (3.12)

where Zj ∈ Rnz is the jth column of the matrix Z ∈ Rnz×2n.

From (3.12), we obtain the mean ẑk, the covariance P
zz
k , and the cross-covariance P x1z

k ,

which are given by

ẑ =
2n�

j=1

wjZj, (3.13)

P zz =
2n�

j=1

wj (Zj − ẑ) (Zj − ẑk)
T . (3.14)

P x1z =
2n�

j=1

wj

�
X x1

j − x̄1

�
(Zj − ŷk)

T . (3.15)

In this work, for notational simplicity, we define the unscented transform as the func-

tion UT comprising the set of equations (3.6)-(3.7) and (3.12)-(3.15), that is,

{ẑ, P zz, P x1z} = UT
�
x̄, P̄ xx, c, g

�
, (3.16)

where x̄ and P̄ xx are given by (3.4) and (3.5). Alternative schemes for choosing sigma

points are reviewed in [Menegaz et al., 2015]. As point out by [Menegaz et al., 2015],

depending on the UT chosen, a variant of UKF can be generated, which can differ from

each other depending on how the transformed statistics are calculated and by the choice

of sigma representation. In the case of the process noise being non-additive, the system

state needs to be augmented with the noise random vectors [Haykin et al., 2001]. In the

special case where the process and measurement noise are purely additive, the state vector

do not need to be augmented and the covariances of noise source are incorporated into

the state covariance by an additive procedure [Särkkä, 2013]. In the Section 3.2.1 a UT

for non-additive process is presented. Example 3.2.1 illustrates the performance of UT

and first-order linearization approaches.

Example 3.2.1. Adapted from [Simon, 2006]. Let x =


 r

θ


 be a random vector, with
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r ∼ N (r̄, σ2
r) and θ ∼ N (θ̄, σ2

θ) undergoing the nonlinear transformation z =


 r cos θ

r sin θ


.

We aim to obtain the mean and covariance of z. Figure 3.1 compare the results of three

methods, first order linearization approach, unscented transformation and Monte Carlo

sampling, which is considered to be the ground truth. We use r̄ = 3, σr = 1, θ̄ = 0, and

σθ = 1. Compared to the Monte Carlo result, UT yields better results (regarding both

mean and covariance) than the analytical linearization approach. In general, UT and first

order linearization approach give similar results; however, the linearization approach is

influenced by the evaluated point, yielding sometimes worse results than UT. �
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Figure 3.1: (a) 5000 samples (green dots) of x ∈ R2 whose mean x̄ = [3 0]T and
covariance P̄ xx = I2×2 are assumed to be known. The sigma points are pre-
sented by (red ×). (b) Comparison of the approximated mean ẑ ∈ R2 and
covariance P̂ zz ∈ R2×2 of z using (i) Monte Carlo sampling (black circle and
black solid ellipsoid), (ii) analytical linearization approach (blue square and
blue dot-dashed ellipsoid), and (iii) unscented transform (red triangle and red
dashed ellipsoid).

3.2.2 The Unscented Kalman Filter Algorithm

Figure 3.2 illustrates the UKF algorithm. Henceforth, the notation x̂k|k−1 indicates an

estimate of xk at time k based on information available up to and including time k − 1.

Likewise, x̂k indicates an estimate of xk at time k based on information available up to and

including time k. Let the process noise vector be partitioned as qk−1 �
�
qT1,k−1 qT2,k−1

�T ∈
Rnq with covariance matrix Qk−1 � diag (Q1,k−1, Q2,k−1) ∈ Rnq×nq , where q1,k−1 ∈
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Rnq−nx is the non-additive noise related to the state vector and q2,k−1 ∈ Rnx is the

additive partition of noise. To improve the numerical stability of the filter [Xiong et al.,

2006], “small” additive noise is considered for all states.

Thus, the UKF forecast step, usually named prediction step in navigation literature,

is given by

�
x̂k|k−1, P̃

xx
k|k−1, ∅

�
= UT

�
ˆ̆xk−1, P

x̆x̆
k−1, uk−1, f

�
, (3.17)

P xx
k|k−1 = P̃ xx

k|k−1 +Q2,k−1. (3.18)

The augmented state vector ˆ̆xk−1 ∈ Rn̆ and the corresponding covariance matrix P x̆x̆
k−1 ∈

Rn̆×n̆ are respectively given by

ˆ̆xk−1 �


 x̂k−1

q̂1,k−1


,

P x̆x̆
k−1 �


 P xx

k−1 [0]nx×(nq−nx)

[0](nq−nx)×(nx)
Q1,k−1


,

with n̆ = nx + nq1 .

The state estimate and error covariance matrix is updated at time k using information

from yk in the data-assimilation step, also called update step, according to

�
ŷk|k−1, P̃

yy
k|k−1, P

xy
k|k−1

�
= UT

�
x̂k|k−1, P

xx
k|k−1, ∅, h

�
, (3.19)

P yy
k|k−1 = P̃ yy

k|k−1 +Rk, (3.20)

νk = yk − ŷk|k−1, (3.21)

Kk = P xy
k|k−1

�
P yy
k|k−1

�−1

, (3.22)

x̂k = x̂k|k−1 +Kkνk, (3.23)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k , (3.24)

where νk ∈ Rny is the innovation, P yy
k|k−1 ∈ Rny×ny is the covariance of innovation, and

Kk ∈ Rnx×ny is the Kalman gain. It is important to observe that, in actual applications

the forecast and data-assimilation steps do not happen in the same frequency, Thus,

equations (3.19)-(3.24) need to be computed only when a new measurement is available.
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Figure 3.2: Block diagram of the UKF. The filtering algorithm is performed in two
steps, forecast and data-assimilation steps. In the first step, the mean x̂k|k−1

and covariance P xx
k|k−1 are computed based on previous estimates x̂k−1 and

P xx
k−1. Then, based on measurements yk, the estimates are updated.

3.3 Adaptive Filtering Approaches

The original formulation of the Kalman filter, see appendix A.2, and its nonlinear ap-

proximations, such as the UKF presented in subsection 3.2.2, assume complete a priori

knowledge of the process and measurement noise statistics, namely mean and covariance.

However, in practical scenarios, the stochastic properties of the system vary depending

on factors like environmental and operational conditions. In such cases, the process Qk

and observation Rk covariance matrices, which reflect the uncertainties of the system,

might vary too. In this way, to improve the performance of the sensor fusion algorithms,

a possible approach is to modify online the parameters related to the stochastic inputs,

which is known as adaptive filtering.

In this section, the covariance matching (CM) and the interacting multiple models

(IMM) approaches are reviewed. The CM approaches use samples of the innovation se-

quence νk to empirically estimate the covariance matrices. In contrast, IMM approaches

employ a bank of filters running in parallel, where each filter can model a specific envi-

ronmental condition or a disturbance. Then, an estimate is computed by combining the

result of each filter.
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3.3.1 Covariance-Matching Approach

Based on the assumption that the observation covariance matrix Rk is constant during

a sliding sampling window with finite length N , the basic idea of CM is to make the

innovation νk consistent with its covariance P yy
k|k−1 � E[νkν

T
k ], computed by the filtering

algorithm. Thus, if the filter-based estimated innovation covariance is significantly larger,

or smaller, than the sample-based innovation covariance, the estimate of noise covariance

is increased or decreased, respectively.

The algorithm presented in [Mehra, 1972] considers that the actual covariance of νk

can be approximated by its sample covariance of the sequence of the N last innovation

values, that is

P yy
k|k−1 ≈

1

N

k�

j=k−N+1

νjν
T
j . (3.25)

Recall that, by definition, the UKF presented in section 3.2.2, approximates the inno-

vation covariance by

P yy
k|k−1 � P̃ yy

k|k−1 +Rk, (3.26)

where P̃ yy
k|k−1 is given by

P̃ yy
k|k−1 �

2n�

j=1

wj

�
Yj,k|k−1 − ŷk|k−1

� �
Yj,k|k−1 − ŷk|k−1

�T
. (3.27)

Hence, an estimator for Rk is given by

R̂k =
1

N

k�

j=k−N+1

νjν
T
j − P̃ yy

k|k−1. (3.28)

It is important to point out that the choice of the window size N has direct influence

on the estimation of Rk. In general, the tuning of N must take into account the system

dynamics. If Rk is not expected to change fast over time, then a larger window size N

could be chosen. Otherwise, the value of N should be tuned smaller.
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3.3.2 Interacting Multiple Model

The interacting multiple model (IMM) algorithm [Blom and Bar-Shalom, 1988] assumes

that the system is modeled from a set of M candidate switching models denoted by M.

As in [Li and Bar-Shalom, 1994], we assume that the observation model is described by a

set of models, where each model has a different noise level characterized by Ri
k, ∀i ∈ M.

Figure 3.3 illustrates the IMM algorithm. A mathematical derivation of this filtering

algorithm can be seen in appendix A.4. At each iteration, for i, j = 1...M , the mixing

probabilities w
i|j
k−1, are used to mix the prior state estimates x̂i

k−1 and the prior covariance

matrices P xx,i
k−1 . The mixed states x̂0,j

k−1 and covariance P xx,0,j
k−1 are used as inputs for a filter

bank, where each filter matches one of the M candidate models. The output of each filter

is the model-conditioned state estimate x̂j
k, the associated covariance P xx,j

k , the model-

conditioned innovation νj
k and its covariance P yy,j

k|k−1. The model-conditioned innovation

and its covariance are used to compute the likelihood function Λj
k = ρj(ν

j
k) of each model,

which in turn, is used to update the model probabilities γj
k|k−1. Finally, the updated model

probabilities are used to combine the model-conditioned estimates and covariances.

The IMM algorithm starts by initializing the filter bank with the initial estimates x̂i
0,

the covariance matrix P xx,i
0 and the model probabilities γi

0, ∀ i ∈ M. In practice, there

is no prior knowledge about the actual operating mode, thus the model probabilities γi
0

are set with the same probability.

The IMM algorithm can be performed in five steps. The first step is the computation

of the mixing probabilities, that are given by

w
i|j
k−1 =

1

c̄j
Πijγ

i
k−1, (3.29)

∀ i, j ∈ M, where

c̄j =
M�

i=1

Πijγ
i
k−1 (3.30)

is a normalization factor, and Π ∈ RM×M is Markov model transition probabilities. In the

literature, the diagonal values of Π usually vary from 0.9 to 0.98. However, as commented

in [Bar-Shalom et al., 2004, p. 471], the algorithm does not seem to be very sensitive to
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Figure 3.3: Block diagram of the IMM algorithm. The IMM estimator consist of five
steps. In the first step, the mixing probabilities w

i|j
k−1 are computed; in the

second step, the prior state estimates x̂i
k−1 and covariance matrix P xx,i

k−1 are

mixed; in the third step, the mixed states x̂0,j
k−1 and covariances P xx,0,j

k−1 are used
as inputs to the model-conditioned filter; in the fourth step, the probability
of each model γj

k|k−1 is updated; in the last step, called combination, the state

estimates x̂j
k and covariances P xx,j

k are combined (adapted from [Eras-Herrera
et al., 2019]).

the tuning of such parameter.

In the second step, the inputs x̂0j
k−1 and P xx,0j

k−1 , for each filter, are computed by mixing

the state estimates produced by all filters from a previous time step as

x̂0j
k−1 =

M�

i=1

w
i|j
k−1x̂

i
k (3.31)

P xx,0j
k−1 =

M�

i=1

w
i|j
k−1

�
P xx,i
k−1+

�
x̂i
k−1 − x̂0j

k−1

� �
x̂i
k−1 − x̂0j

k−1

�T�
, (3.32)
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∀ i, j ∈ M, where x̂i
k−1 and P xx,i

k−1 are the updated mean and covariance for model i at

time step k − 1. In the third step, the estimates x̂0j
k−1 and covariances P xx,0j

k−1 are used as

inputs to the filter matched to model M j
k . Therefore, the UKF presented in Section 3.2

is used for each model, forming a bank of filters [Teixeira et al., 2014]. In addition, the

likelihood associated to each one of the M filters is computed as:

ρj(ν
j
k) = Cj exp

�
−1

2
(νj

k)
T (P yy,j

k|k−1)
−1νj

k

�
, j = 1...M, (3.33)

where

Cj =
1�

(2π)ny det(P yy,j
k|k−1)

,

ny is the measurement vector dimension, and νj
k is the innovation of jth model with

covariance P yy,j
k|k−1. Then, the probability of each model γj

k at time step k is computed as

γj
k =

1

c
ρj(ν

j
k)c̄j, (3.34)

c =
M�

j=1

ρj(ν
j
k)c̄j, (3.35)

where c is a normalizing factor and c̄j is given by (3.30). The last step of the algorithm

is to combine the estimates and covariances, which are computed as

x̂k =
M�

j=1

γj
kx̂

j
k, (3.36)

P xx
k =

M�

j=1

γj
k

�
P xx,j
k +

�
x̂j
k − x̂k

� �
x̂j
k − x̂k

�T�
. (3.37)

3.4 Outlier Filtering

The UKF-based approaches do not perform adequately when the error statistics follow

a non-Gaussian distribution, particularly those with thicker tails and high probability of

large errors compared with the Gaussian distribution. In this sense, filtering approaches

that are insensitive to deviations in the assumed underlying probability distribution from

which the data is sampled, are called robust. Formal definitions of robust estimation can
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be found in [Hampel, 1971]. In this work, these errors are treated as outliers and are

assumed to have low probability to occur.

Outliers are spurious data that contaminate the statistical distribution, leading to

erroneous analysis. The contaminated measurements deviate significantly from the nor-

mal observations, which directly reflect in the innovation value νk, and, consequently, in

the covariance estimated by CM. In contrast, IMM approach can handle non-Gaussian

distribution by using the Gaussian sum methodology [Bar-Shalom et al., 2004].

We present now two ad-hoc techniques for dealing with observation data that do not

follow the assumed Gaussian distribution. These techniques are based on the chi-squared

test and the Hampel identifier. Instead of completely discarding a possible outlier, the

innovation data is processed by a statistical procedure, and the influence of the contami-

nated measurement is mitigated by some scale factor. Although simple, both techniques

can be effective to handle outliers.

3.4.1 Outlier Filtering Based on the Chi-Squared Test

To minimize the influence of outliers, a particular method is to judge each element of the

innovation [Gustafsson, 2008] with a χ2-test. Thus, for the ith element of the innovation

vector, at a sample time j, the normalized innovation squared can be computed as

�νj,i =
ν2
j,i

P yy
j−1|j−2,ii

. (3.38)

Notice that it is used the covariance at sample time j − 1|j − 2 instead of j|j − 1. In

this way, an abnormal measurement does not influence the estimation of the covariance

matrix at time j. Under the linear Gaussian assumption, the PDF of �νj,i ∼ χ2
1 is a chi-

square distribution with one degree of freedom. Then, for a significance level α ∈ [0, 1],

the probability of a “normal” measurement is ρ
�
�νj,i ≤ ζ

�
= 1 − α, where ζ ∈ R+ is a

value taken from the chi-square cumulative distribution function from the choice of α. If

the threshold ζ is exceed, then the innovation νj,i is scaled down according to

ν̂j = λjνj. (3.39)
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Figure 3.4: Graphical illustration of the weight factor behavior for one dimension.

The weight factor λj ∈ Rnr×nr is a diagonal matrix, being each element of main diagonal

computed as

λj,ii = min

�
1,

ζ

�νj,i

�
. (3.40)

Figure 3.4 illustrates the behavior of the innovation weight factor, in which for �νj,i ≤ ζ

the function returns unity value.

3.4.2 Outlier Filtering Based on Hampel Identifier

The Hampel identifier [Davies and Gather, 1993] is an outlier identification method re-

ported as extremely effective in practice [Pearson, 2002]. This method is a variation of

the three-sigma rule of statistics, in which the mean and standard deviation are replaced

by the median and the median absolute deviation (MAD).

Based on Hampel identifier, and following the same approach of Section 3.4.1, the gain

λj ∈ Rnr×nr is defined as

λj,ii � min

�
1,

nσsi
|νj,i −med{νj,i}N |

�
, (3.41)

where si = 1.4826med{|νj,i − med{νj,i}N |} is the scaled MAD, nσ is the number of

standard deviations (confidence region) by which the innovation sample must differ from

the local median, med is the median operator, {·}N is a moving window with size N ,
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j � k − N + 1 . . . k is an index for each element of the moving window, and i is the

index of each element of the innovation vector. Observe that gain λj is calculated for

each element of the moving window based on the current moving window. As before, the

weight factor mitigates the outlier influence by filtering the innovation, using (3.39).

3.5 Unscented Rauch-Tung-Stribel Smoother

So far we have only considered filtering algorithms. However, whenever all data are

available offline, it may be of interest to estimate the states conditioned to all obtained

measurements, thus solving the problem of trajectory reconstruction. Next, we present

the unscented Rauch-Tung-Stribel smoother (URTSS) [Särkkä, 2008].

The smoothing algorithm has two parts. First, a filtering algorithm (UKF of Sec-

tion 3.2.2, for instance) is run, yielding the filtering estimates x̂k and P xx
k for the time

interval k = k0 . . . kf , being k0 and kf the first and last time sample, respectively. Next,

the following algorithm runs backwards from kf − 1 to k0. This is the second part, whose

forecast step is given by

�
x̂k+1|k, P̃

xx
k+1|k, P

xy
k+1|k

�
= UT

�
ˆ̆xk, P

x̆x̆
k , uk, f

�
, (3.42)

P xx
k+1|k = P̃ xx

k+1|k +Q2,k, (3.43)

where the augmented state vector ˆ̆xk ∈ Rn̆ and the corresponding covariance matrix

P x̆x̆
k ∈ Rn̆×n̆ are respectively given by

ˆ̆xk �


 x̂k

q̂1,k−1


 ,

P x̆x̆
k �


 P xx

k [0]nx×(nq−nx)

[0](nq−nx)×nx
Q1,k


,
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with n̆ = nx + nq1 , and whose smoothing step is given by

µk = x̂s
k+1 − x̂k+1|k, (3.44)

Ks
k = P xy

k+1|k
�
P xx
k+1|k

�−1
, (3.45)

x̂s
k = x̂k +Ks

kµk, (3.46)

P xx,s
k = P xx

k +Ks
k

�
P xx,s
k+1 − P xx

k+1|k
�
(Ks

k)
T , (3.47)

with xs
kf

= x̂kf and P xx,s
kf

= P xx
kf
.

Observe that the terms x̂k and P xx
k are the UKF mean and covariance estimates. It

would also possible to store the values of x̂k+1|k, P xx
k+1|k, andKs

k during the filtering process,

avoiding recomputing them. Figure 3.5 illustrates the URTS smoother algorithm.
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Figure 3.5: Block diagram of the URTS smoother. The somoothing algorithm runs
backward in time, from kf to k0, and is performed in two steps, named forecast
and smoothing. In the first step, the mean x̂k+1|k and covariance P xx

k+1|k are
computed based on filter estimates x̂k and P xx

k . Then, the smoothed estimates
x̂s
k and covariance P xx,s

k are computed in the smoothing steps. The smoothed
states its covariance are initialized as x̂s

kf
= x̂kf and P xx,s

kf
= P xx

kf
, respectively.
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3.6 Robust Adaptive Unscented Kalman Filters: New

Algorithms

As the first contribution of this thesis we propose new robust adaptive estimation algo-

rithms. By combining the adaptive approaches in Section 3.3.1 and the outlier filtering

approaches presented in Section 3.4, we propose two new filtering approaches: i) robust

adaptive unscented Kalman filter by using covariance matching and χ2-test (RAUKF-

CMχ2); and ii) robust adaptive unscented Kalman filter by using covariance matching

and Hampel identifier (RAUKF-CMH).

The new filtering algorithms basically differ due to the outlier filtering approaches. In

this way, for the sake of conciseness, we present here only the equations of RAUKF-CMl,

where l ∈ {χ2, H}. Figure 3.6 illustrates the RAUKF-CMl algorithm.

The RAUKF-CMl forecast step is given by equations (3.17)-(3.18). The second step,

called here robust noise estimation, is given by equations (3.19), (3.21), and

R̂k = max

�
1

N

k�

j=k−N+1

λjνj (λjνj)
T − P̃ yy

k|k−1, R0

�
, (3.48)

P yy
k|k−1 = P̃ yy

k|k−1 + R̂k, (3.49)

where R0 is a lower threshold, given by the nominal measurement-noise covariance. The

data-assimilation step is given by (3.22), (3.24), and

x̂k = x̂k|k−1 +Kkλkνk, (3.50)

where the gain λk is given by (3.40), if l = χ2, or (3.41), if l = H.
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Figure 3.6: Block diagram of the RAUKF-CMl. The filtering algorithm is performed
in three steps, called forecast, robust noise estimation, and data-assimilation.
In the first step, the mean x̂k|k−1 and covariance P xx

k|k−1 are computed based
on previous estimates x̂k−1 and P xx

k−1. Then, the output measurement noise

covariance matrix R̂k is robust estimated based on sliding sampling window
{νk−N+1, ..., νk−1} and measurement yk. In the third step, the state estimates
are updated.

3.7 Chapter Summary

In this chapter, we review nonlinear extensions of the Kalman state estimators, called

unscented Kalman filter and unscented Rauch-Tung-Stribel smoother. We also review

two adaptive approaches, namely covariance matching and interacting multiple model

approach. To minimize the effect of spurious data that contaminate the statistical distri-

bution, we introduce two gain factors that identify measurement gross errors and mitigate

their effects.

Based on covariance matching and innovation filtering approaches, two new robust

adaptive algorithms were proposed. The new algorithms are able to adapt the measure-

ment covariance matrix and also mitigate the effect of measurement outliers online.



Chapter 4

Quaternion-based Kalman

Filtering

“Simplicity is the ultimate sophistication.”

Leonardo Da Vinci’s

As previously commented, the localization problem consists in estimating the vehicle

position and attitude. Generally, attitude is parameterized as Euler angles or unit quater-

nions. Although intuitive, Euler angles exhibit singularities in the kinematic description,

which is known as gimbal lock [Hanson, 2006]. Due to the absence of singularities, the

unit quaternion parameterization is preferred and discussed in this work.

We have presented in the last chapter state estimation algorithms for Euclidean state

spaces, which means that the estimate pertains to the Euclidean vector space. The unit

quaternion representation pertains to a Riemannian space. Then, the usual vector oper-

ations, such as weighted sum operations, common to most sensor fusion methodologies,

may violate the unit norm constraint of the quaternion [Menegaz, 2016].

In this chapter, the Euclidean state estimators presented in the last chapter are revised

in order to handle properly unit quaternion states. First, the unit quaternion algebra

and some concepts of random unit quaternions are revisited in Sections 4.1 and 4.1.4,

respectively. In Section 4.2, we review a modified version of unscented transform for unit

quaternion, the bases of the quaternion-based unscented Kalman filter, presented in the

same section. Based on quaternion operations defined in this chapter, new extensions

to four adaptive algorithms, reviewed in Section 4.3.1, are proposed. In addition, we

also propose new extensions to IMM and URTSS algorithms for the unit quaternion

39
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representation, in Sections 4.3.2 and 4.3.3, respectively.

4.1 Quaternion Operations

Quaternions are hypercomplex numbers developed by Sir William Rowan Hamilton (1805–

1865) [Hanson, 2006], in an attempt to generalize the concept of complex numbers from

2D to 3D space. Quaternions, represented by the set H, form a 4-dimensional algebra

over the real numbers and can be used to parameterize the rotation group SO(3).

As a rotation, quaternions are constrained to unit norm, being called unit quaternions,

which set is denoted by H1. The unit quaternion group is topologically a 3-sphere, denoted

by S3, embedded in the R4. This group is closed under multiplication, but not under sum

and weighting operations [Menegaz and Ishihara, 2018].

Next, we review some fundamentals of unit quaternion algebra and also construct some

basic tools for its statistic analysis. The following results are important in the construction

of UKF for unit quaternions and for adaptive approaches based on the sample mean and

covariance.

4.1.1 Fundamentals of Unit Quaternions Algebra

The unit quaternion e ∈ H1 can be represented as

e = e0 + [i j k]




e1

e2

e3


 , (4.1)

or in compact form as,

e = (v, n) , (4.2)

where v = e0 ∈ R and n = [e1 e2 e3]
T ∈ R3 are the real and imaginary parts, in analogy

with complex numbers. It is also common to represent quaternions in a 4-dimensional
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vector, which is performed by the vec(·) operator defined as




e0

e1

e2

e3



� vec(e), (4.3)

which can also be represented in a compact form by vec(e) = [v n]T ∈ R4.

The unit quaternion inverse operation is equal to its conjugate, given by e−1 = e∗ =

(v, −n). The product ⊗ between quaternions, preserves membership in S3, being defined

as

ea ⊗ eb �
�
vavb − nT

a nb, vanb + vbna + na × nb

�
, (4.4)

where ea = (va, na) ∈ H1, eb = (vb, nb) ∈ H1, and × denotes the cross-product. We can

observe that, due to the cross-product, the multiplication operation is not commutative,

in general.

For e and e∗ ∈ H1,

e⊗ e∗ = e∗ ⊗ e =
�
1, [0]3×1

�
, (4.5)

which is the identity element [Hanson, 2006].

A vector xa ∈ R3 can be rotated by a unit quaternion e, as

(0, xb) = e⊗ (0, xa)⊗ e∗, (4.6)

where xb ∈ R3 is the rotated vector [Hanson, 2006].

4.1.2 Euclidean Tangent Space and Rotation Vector Parameter-

ization

The group S3 is a Riemannian manifold, whose elements can be mapped to the 3-

dimensional Euclidean tangent space TeS3. Many operations are defined in the Euclidean
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tangent space, such as the sample mean and covariance. These basic statistics to the

Riemannian manifold are the bases of the filtering algorithms developed here. Further-

more, there are direct and inverse mappings between the manifold and its tangent space,

S3 ←→ TeS3, with exponential and logarithm functions, respectively. This behavior can

also be seen as the exponential map between a Lie-Group and its Lie-Algebra [Sipos,

2008]. More precisely, for e = (v, n) ∈ H1 and r ∈ R3 the dual relations are

e = exp ((0, r)) ⇐⇒ (0, r) = log (e) . (4.7)

Given a rotation θ ∈ R and the unit vector w ∈ R3, the corresponding unit quaternion

is e =
�
cos

�
θ
2

�
, sin

�
θ
2

�
w
�
. Defined in this way, the unit quaternion covers the SO(3)

twice, which means that e = −e, called antipodal equivalence [Sipos, 2008]. Now, let

r = θw be a rotation vector representing a rotation θ about the unit axis w. The unit

quaternion to rotation vector mapping, called logarithm mapping, is given by [Chirikjian

and Kyatkin, 2001]:

r =





2 arccos (v) n
�n� , if �n� �= 0 and v ≥ 0 ,

−2 arccos (−v) n
�n� , if �n� �= 0 and v < 0 ,

[0]3×1 , if �n� = 0 ,

(4.8)

where v = cos
�
θ
2

�
, n = sin

�
θ
2

�
w. Observe that, the quaternion antipodal ambiguity

e = −e is treated by checking the signal of v [Kim et al., 2017, Chiella et al., 2019c].

The inverse mapping, called exponential mapping, is [Kraft, 2003]:

e =





�
cos

�
�r�
2

�
, sin

�
�r�
2

�
r

�r�

�
, if �r� �= 0 ,

(1, [0]3×1) , if �r� = 0 .
(4.9)

For brevity, logarithm (4.8) and exponential (4.9) mappings are written as e = R2Q(r)

and r = Q2R(e) operations, respectively.
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4.1.3 Subtraction, Sum, and Weighted Mean Operations

The difference between ea and eb ∈ H1 is defined as

ea � eb � Q2R (ea ⊗ e∗b) . (4.10)

The operation (4.10) is analogous in the Euclidean space, where given two vectors ξa and

ξb ∈ Rn, the difference between ξa and ξb is giving by ξa − ξb.

The sum of a unit quaternion ea ∈ H1 and a rotation vector r ∈ R3, is defined as

ea ⊕ r � R2Q (r)⊗ ea . (4.11)

Similarly, in the Euclidean space, the sum operation between ξa and ξb is giving by ξa+ξb.

Lastly, the weighted mean operation for a set of unit quaternions E = {ei}nw , i �
1 . . . nw, is given by

ê = WM(E,W ) , (4.12)

where W = {wi}nw is a set of corresponding weights. The quaternion mean ê ∈ H1 can

be computed in a closed form by using the relation

M �
nw�

i=1

wivec(ei)vec(ei)
T , (4.13)

where M ∈ R4×4, and the quaternion mean is the eigenvector of M corresponding to the

maximum eigenvalue [Markley et al., 2007]. Iterative algorithms can also be used, as the

gradient descent algorithm, proposed in [Pennec, 2006], and modified to unit quaternion

in [Kraft, 2003, Sipos, 2008]. In the Euclidean space, the weighted mean is computed by

ξ̂ =
�nw

i=1 wiξi.

Figure 4.1 illustrates graphically the operations of sum, subtraction, and weighted

mean for unit quaternions. From now on, we use the ⊗, �, ⊕, and WM operations for

Riemannian and Euclidean spaces. Therefore, for Euclidean state spaces, these operations

are seen as the usual multiplication, subtraction, sum, and weighted mean operations. In

addition, for a vector ξ ∈ Rnξ , vec(ξ) = ξ.
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eb

ea

ec

e
m

=
W
M
([e

a
e
b ] ,W

)ea = ec ⊕ rac

e
b
=

e
c
⊕

r
b
c

ea = e∗ba ⊗ eb

eb = eba ⊗ ea

e b
a
=
e b

⊗
e
∗
a

rac = ea � ec

rbc = eb � ec

ec

Figure 4.1: Example of quaternion operations on a 2-sphere, S2. The unit quaternions
ea, eb, ec, and em can be seen as points along the surface of S2. Observe
that, em is a result of weighted mean operation between ea and eb, choosing
W = [0.5]2×1. The subtraction operation between eb and ec, or, ea and ec,
yields rbc or rac, in the tangent space, respectively. The unit quaternions ea
or eb, can be recovered by sum operation between ec and rac, or, ec and rbc,
respectively.

4.1.4 Unit Quaternion Statistics

We have seen that a rotation can be described in terms of a unit quaternion or a rotation

vector, each having some advantages and disadvantages. Unit quaternions are free of

singularities but have constraints, thus belongs to the group S3. In contrast, rotation

vectors are free of constraints and can be treated as elements in a vector space, where

many useful statistic operations, such as sample mean and covariance, are defined, but

there are singularities.

Based on the unit quaternions tools presented in Section 4.1.1, we introduce our def-

initions of random variables and probability density functions for unit quaternions. The

random unit quaternion is defined as

e � ē⊕ δ, (4.14)
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where ē ∈ H1 is assumed be the noisy free component of our random unit quaternion,

which means that it remains on S3, and δ ∼ N
�
[0]3×1 , R3×3

�
∈ R3 is the noisy component.

This means that the PDF for δ will induce a PDF on S3. Thus,

δ � e� ē. (4.15)

We can observe that δ can be seen as the difference between e and ē, where the

distance is given by the magnitude of the angle of rotation, that is �δ� = �e � ē�. This

distance can be viewed as a Riemannian metric and is preserved in the unit quaternion

operations [Menegaz, 2016].

Now, let E = {ei}nw and W = {wi}nw , i � 1 . . . nw, be a set of random unit quater-

nions and weights, respectively, thus ei ∈ S3, and wi ∈ R. The sample mean of E is

defined as

E [e] � argmin
ē∈S3

nw�

i=1

wi (ei � ē) (ei � ē)T . (4.16)

The solution to (4.16) is given by (4.12). If there exists ē = E [e], then the sample

covariance P ee ∈ R3×3 of E respective to ē is defined as [Hauberg et al., 2013, Menegaz

et al., 2019]

P ee �
nw�

i=1

wi (ei � ē) (ei � ē)T . (4.17)

4.2 Quaternion-based State Estimation

Without loss of generality, let us assume that our dynamic system is modeled by the

nonlinear equations

xk = f(kk−1, uk−1, qk−1, k − 1) (4.18)

yk = h(xk, k)⊕ rk, (4.19)
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in which, ∀k ≥ 1, vec (xk) = [vec (xH,k) xE,k] ∈ Rnx is the system state vector, where

xH,k ∈ H1 and xE,k ∈ Rnx−4, the known data are the measured output yk ∈ H1 and input

uk−1 ∈ Rnu . It is also assumed that process noise qk−1 ∈ Rnq and measurement noise rk ∈
Rnr are mutually independent with covariance matrices Qk−1 ∈ Rnq×nq and Rk ∈ Rnr×nr ,

respectively. The state estimation problem aims at providing approximations for the

mean x̂k = E[xk] ∈ Rnx and covariance P xx
k = E[(xk � x̂k) (xk � x̂k)

T ] ∈ R(nx−1)×(nx−1)

that characterize the a posteriori PDF ρ(xk|y1:k). Notice that the covariance matrix P xx
k

has dimension (nx − 1)× (nx − 1). This is because the unit quaternion is represented by

a 4-dimensional vector, and the uncertainty is represented by a rotation vector, that is a

3-dimensional vector.

4.2.1 Quaternion Unscented Transform

The UT approximates the mean ẑ ∈ Rnz and its covariance P zz ∈ R(nz−1)×(nz−1) of a

random variable z obtained from the nonlinear transformation z = g(x1, x2, c), where

vec (x1) ∈ Rn1 and x2 ∈ Rn2 are random variables with mean x̄1 e x̄2 and covariance

matrices P̄ x1x1 ∈ R(n1−1)×(n1−1) and P̄ x2x2 ∈ Rn2×n2 , respectively, and c a known de-

terministic variable. In addition, assumes that the random variable x1 is composed by

a unit quaternion part x1,H and a unconstrained Euclidean part x1,E; thus vec (x1) ��
vec (x1,H)

T xT
1,E

�T
.

Now, we define the augmented state vector vec (x̄) ∈ Rn as

x̄ �


 x̄1

x̄2


 , (4.20)

where n = n1 + n2, as well as the augmented covariance matrix P̄ xx ∈ R(n−1)×(n−1)

P̄ xx =


 P̄ x1x1 [0](n1−1)×n2

[0]n2×(n1−1) P̄ x2x2


 . (4.21)

The sigma points vec (Xj) ∈ Rn and the associated weights wj, j = 1, . . . , 2(n−1) can
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be chosen as

X = [x̄]2(n−1) ⊕
√
n− 1

��
P̄ xx

� 1
2 −

�
P̄ xx

� 1
2

�
, (4.22)

wj =
1

2(n− 1)
, (4.23)

where Xj is the jth column of matrix vec (X ) ∈ Rn×2(n−1), and vec
�
[x̄]2(n−1)

�
∈ Rn×2(n−1)

is a matrix whose columns are equal to x̄. Notice that, the columns of the covariance

matrix P̄ xx can be seen as a perturbation variable, where the unit quaternion part is

parameterized as a rotation vector, which means that the covariance matrix is defined in

the tangent space, hence the n− 1 dimension. The SP (4.22) can be partitioned as


X x1

X x2


 � X , (4.24)

where vec (X x1) ∈ Rn1×2(n−1) and X x2 ∈ Rn2×2(n−1).

Then, each sigma point Xj is propagated through g:

Zj = g
�
X x1

j ,X x2
j , c

�
, (4.25)

where vec (Zj) =
�
vec (Zj,H)

T ZT
j,E

�T
∈ Rnz is the jth column of the matrix vec (Z) ∈

Rnz×2(n−1).

From (4.25), we obtain ẑ, P zz and P x1z as

ẑ = WM(Z,W ) , (4.26)

P zz =

2(n−1)�

j=1

wj (Zj � ẑ) (Zj � ẑ)T , (4.27)

P x1z =

2(n−1)�

j=1

wj

�
X x1

j � x1

�
(Zj � ẑ)T , (4.28)

where W = {wj}2(n−1).

As before, for notation simplicity, we define the quaternion unscented transform as

the function QUT(·) comprising the set of equations (4.22)-(4.28).
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4.2.2 Quaternion-based UKF

The quaternion-based unscented Kalman filter (QUKF) algorithm presented in this sec-

tion is based on the ones shown in [Sipos, 2008, Menegaz and Ishihara, 2018], which

are slightly modified to encompass direct unit quaternion measurements and multiplica-

tive noise in the process. Henceforth, we follow the same notation defined before, where

x̂k|k−1 indicates an estimate of xk at time k based on information available up to and

including time k − 1. Likewise, x̂k indicates an estimate of xk at time k based on in-

formation available up to and including time k. Let the process noise be partitioned as

qk−1 �
�
qT1,k−1 qT2,k−1

�T ∈ Rnq with covariance matrix Qk−1 � diag (Q1,k−1, Q2,k−1) ∈
Rnq×nq , where q1,k−1 ∈ Rnq−nx+1 is the multiplicative noise related to the state vector

and q2,k−1 ∈ Rnx−1 is the additive noise. Notice that, the dimension of process covariance

matrix is decreased by one.

Given these definitions, the modified UKF forecast step is given by

�
x̂k|k−1, P̃

xx
k|k−1, ∅

�
= QUT

�
ˆ̆xk−1, P

x̆x̆
k−1, uk−1, f

�
, (4.29)

P xx
k|k−1 = P̃ xx

k|k−1 +Q2,k−1. (4.30)

The augmented state vector vec
�
ˆ̆xk−1

�
∈ Rn̆ and the corresponding covariance matrix

P x̆x̆
k−1 ∈ R(n̆−1)×(n̆−1) are respectively given by

ˆ̆xk−1 �


 x̂k−1

q̂1,k−1


,

P x̆x̆
k−1 �


 P xx

k−1 [0](nx−1)×(nq−nx+1)

[0](nq−nx+1)×(nx−1) Q1,k−1


,

with n̆ = nq + 1.

The state estimate and error covariance matrix are updated using information from
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yk in the data-assimilation step, given by

�
ŷk|k−1, P̃

yy
k|k−1, P

xy
k|k−1

�
= QUT

�
x̂k|k−1, P

xx
k|k−1, ∅, h

�
, (4.31)

P yy
k|k−1 = P̃ yy

k|k−1 +Rk, (4.32)

νk = yk � ŷk|k−1, (4.33)

Kk = P xy
k|k−1

�
P yy
k|k−1

�−1

, (4.34)

x̂k = x̂k|k−1 ⊕Kνk, (4.35)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k , (4.36)

where νk is the innovation.

4.3 Quaternion-based Robust Adaptive State Esti-

mators: New Algorithms

In order to properly handle the time-varying measurement uncertainty and unit quater-

nion norm constraints, we propose now extensions to the RAUKF, IMM, and RTS smoother,

presented in the Sections 3.3.2, 3.5, and 3.6, respectively.

4.3.1 Quaternion-based Robust Adaptive Unscented

Kalman Filter

Based on QUKF, we extend the algorithms proposed in Section 3.6 to handle unit quater-

nion. The two new algorithms are: i) quaternion-based robust adaptive unscented Kalman

filter by using covariance matching and χ2-test (QRAUKF-CMχ2); and ii) quaternion-

based robust adaptive unscented Kalman filter by using covariance matching and Hampel

identifier (QRAUKF-CMH). As in Section 3.6, the new filtering algorithms basically dif-

fer from outlier filtering approaches. Then we present the next QRAUKF-CMl, where

l ∈ {χ2, H}.
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Quaternion-based Robust Adaptive Unscented Kalman by Covariance Match-

ing - l

The QRAUKF-CMl forecast step is given by equations (4.29)-(4.30). The second step,

called here robust noise estimation is given by equation (4.31), (4.33),

R̂k = max

�
1

N

k�

j=k−N+1

λjνj (λjνj)
T − P̃ yy

k|k−1, R0

�
, (4.37)

P yy
k|k−1 = P̃ yy

k|k−1 + R̂k, (4.38)

where R0 is a lower threshold, given by the nominal measurement-noise covariance. The

data-assimilation step is given by (4.34), (4.36), and

x̂k = x̂k|k−1 ⊕Kkλkνk, (4.39)

where the gain λ is given by (3.40) or (3.41).

4.3.2 Quaternion-based Interacting Multiple Model Filter

The mixing and combination steps of the classical IMM algorithm contain weighting and

displacement operations, which do not preserve the unit quaternion norm. Thus, based

on unit quaternion statistics, Section 4.1.4, we present now a new version of IMM that can

properly handle the unit quaternion constraints, called by quaternion-based interacting

multiple model filter (QIMM).

The QIMM algorithm starts by initializing the filter bank with the initial estimates x̂i
0,

the covariance matrix P xx,i
0 and the model probabilities γi

0, ∀ i ∈ M. Thus, the new IMM

algorithm can be performed in five steps, as follows. The first step is the computation of

the mixing probabilities, that are given by

w
i|j
k−1 =

1

c̄j
Πijγ

i
k−1, (4.40)
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∀ i, j ∈ M, where

c̄j =
n�

i=1

Πijγ
i
k−1 (4.41)

is a normalization factor, and Π ∈ RM×M is Markov model transition probabilities. In

the second step, the inputs x̂0j
k−1 and P xx,0j

k−1 , for each filter, are computed by mixing the

state estimates produced by all filters from a previous time step as

x̂0j
k−1 = WM

�
{x̂i

k}M , {wi|j
k−1}M

�
, (4.42)

P xx,0j
k−1 =

n�

i=1

w
i|j
k−1

�
P xx,i
k−1+

�
x̂i
k−1 � x̂0j

k−1

� �
x̂i
k−1 � x̂0j

k−1

�T�
, (4.43)

∀ i, j ∈ M, where x̂i
k−1 and P xx,i

k−1 are the updated mean and covariance for model i at

time step k − 1. In the third step, the estimates x̂0j
k−1 and covariances P xx,0j

k−1 are used as

inputs to the filter matched to model M j
k . Therefore, the UKF presented in Section 4.3.1

is used for each model, forming a bank of filters. In addition, the likelihood associated to

each one of the M filters is computed as

ρj(ν
j
k) = Cj exp

�
−1

2
(νj

k)
T (P yy,j

k|k−1)
−1νj

k

�
, (4.44)

j = 1 . . .M , where

Cj =
1�

(2π)(ny−1) det(P yy,j
k|k−1)

,

ny is the measurement vector dimension, νj
k with covariance P yy,j

k|k−1. Then, the probability

of each model at time step k is computed as

γj
k =

1

c
ρj(ν

j
k)c̄j, (4.45)

c =
M�

j=1

ρj(ν
j
k)c̄j, (4.46)

where c is a normalizing factor and c̄j is given by (4.41). The last step of the algorithm
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is to combine the estimates and covariances, which are computed as

x̂k = WM
�
{x̂j

k}M , {γj
k}M

�
, (4.47)

P xx
k =

n�

j=1

γj
k

�
P xx,j
k +

�
x̂j
k � x̂k

� �
x̂j
k � x̂k

�T�
. (4.48)

Notice that, the standard equations of IMM are modified to take into account of unit

quaternion states. In this way, the mixing and combination steps are performed by the

operations of subtraction (4.10) and weighted mean (4.12).

4.3.3 Quaternion-based Unscented Rauch-Tung-Stribel Smoother

We now can use the same quaternion tools to modify the URTS smoother to handle

the unit norm constraints. As presented in Section 3.5, the smoothing algorithm has

two parts. First, a filtering algorithm (QUKF of Section 4.2.2, for instance) is executed,

yielding the filtering estimates x̂k and P xx
k for the time interval k = k0 . . . kf . Next,

the quaternion-based unscented Rauch-Tung-Stribel smoother (QURTS) algorithm runs

backwards from kf − 1 to k0. This is the second part, whose forecast step is given by

�
x̂k+1|k, P̃

xx
k+1|k, P

xy
k+1|k

�
= QUT

�
ˆ̆xk, P

x̆x̆
k , uk, f

�
, (4.49)

P xx
k+1|k = P̃ xx

k+1|k +Q2,k, (4.50)

where the augmented state vector vec
�
ˆ̆xk

�
∈ Rn̆ and the corresponding covariance matrix

P x̆x̆
k ∈ R(n̆−1)×(n̆−1) are respectively given by

µk = xs
k+1 � x̂k+1|k,

ˆ̆xk �


 x̂k

q̂1,k−1


 ,

P x̆x̆
k �


 P xx

k [0](nx−1)×(nq−nx+1)

[0](nq−nx+1)×(nx−1) Q1,k


,



4.4 Chapter Summary 53

with n̆ = nq + 1; and whose smoothing step is given by

Ks
k = P xy

k+1|k
�
P xx
k+1|k

�−1
, (4.51)

x̂s
k = x̂k ⊕Ks

kµk, (4.52)

P xx,s
k = P xx

k +Ks
k

�
P xx,s
k+1 − P xx

k+1|k
�
(Ks

k)
T , (4.53)

with xs
kf

= xkf and P xx,s
kf

= P xx
kf
.

4.4 Chapter Summary

In this chapter, we reviewed an extension of the unscented Kalman filter for attitude repre-

sented by unit quaternion. Based on defined quaternion operations, four new state estima-

tor algorithms for unit quaternion were proposed, namely QRAUKF-CMχ2, QRAUKF-

CMH, QIMM, and QURTS smoother, respectively. In the next chapters, experimental

results with actual data are presented.





Chapter 5

Case Study: Localization of

Aerobatic Airplanes Equipped with

Cameras

5.1 Introduction

The Kalman filter has been widely used for localization and path reconstruction of aerial

vehicles. As previously discussed in Chapter 2, localization consists in estimating the

aircraft position and attitude, which is usually performed by combining data from global

navigation satellite systems, inertial navigation system and compass [Leutenegger and

Siegwart, 2012]. INS and compass provide high frequency information, but INS accuracy

deteriorates with time due to sensor biases and noise. On the other hand, GNSS provides

accurate absolute position and velocity at low frequency, which can be used to correct

inertial measurement unit based information.

The technological motivation for this case study comes from aerial races and aerobat-

ics competitions (see Figure 5.1) when, in addition to aggressive aerobatic maneuvers, the

presence of strong television signals may also jam the GNSS signal. On the other hand,

images from the same television system that causes such a problem could be a source of

information that may help on the localization effort once, some known landmarks may be

visible, since the vehicle flies at low altitude. It is worth to notice that localization is very

important in such competitions since a good flight path reconstruction is worthy infor-

mation for the pilots who want to improve their performance. In addition, the estimated

flight path can be used in TV transmissions, improving the illustration of the race.

55
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Figure 5.1: Camera providing an image similar to the pilot view. A vision system
detects the georeferenced landmarks (race gates), marked by green rectangles.

5.2 Problem Statement

We address the problem of flight path estimation of an aerial vehicle performing aggressive

and acrobatic maneuvers near the ground. This problem can be cast as a classical state

estimation problem, which can be solved by filtering or smoothing algorithms. The filter

approach is concerned with the estimation of the vehicle states, where the calculation of

state vector is based on measurements up to the present time. In contrast, smoothers

use all available measurements of a complete flight to calculate the state vector, which is

normally performed offline, in a post-flight data analysis.

The estimated states x̂ are compounded by the vehicle position p ∈ R3 and the ori-

entation e ∈ H1 (represented by unit quaternion) relative to the north-east-down (NED)

reference frame and the vehicle velocity v ∈ R3 relative to the body reference frame.

Thus, by properly combining the aircraft kinematic model f with a set of sensor data

measuring the input u, and output y signals, the state x, and, implicitly, the flight path
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Gyros

Acceler.

AHRS

Diff. press.

Barometer

GPS

Vision
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Data-
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Figure 5.2: Architecture of the flight path estimator. Blocks in the left represent the
set of sensors that provide measurement information. In the right, the gray
block represent filtering algorithms. The dashed border white blocks represent
the sub-steps of filtering algorithm. The UT block represents a preprocessing
step, where the measured attitude in Euler angles and geodetic coordinates
are converted to unit quaternion and Cartesian coordinate, respectively. Al-
ternatively, a smoother can be used to yield x̂s

k and P xx,s
k

.

of the vehicle can be estimated, yielding the state estimate x̂ with covariance P xx.

Figure 5.2 illustrates the architecture of the state estimator based on the available

sensors. In this work, we assume that data are measured from: 3-axis accelerometer

measuring linear accelerations ax,m, ay,m and az,m; 3-axis gyroscope measuring the angular

velocity components ωx,m, ωy,m and ωz,m; barometer measuring the absolute pressure and,

consequently, the altitude Hm; differential pressure sensor measuring the airspeed VTAS,m;

attitude and heading reference system (AHRS) providing the orientation angles φm, θm

and ψm, which are converted to unit quaternion em using the unscented transform; GNSS

measuring the latitude ϕ and longitude λ, which are converted to Cartesian position in

north xN,m and east yE,m directions using the UT; and camera providing images similar

to the pilot view. From the camera data, absolute position in north and east directions,

xN,g and yE,g, are recovered by detecting the instant in which the airplane passes nearby

georeferenced landmarks, as illustrated in Figure 5.1. In this figure, the camera is used

to detect the gates of an air race.

The UT is employed to transform the indirect measurements to direct ones. In this

way, we avoid augmenting the state vector to handle the nonadditive noise and conse-

quently decrease the computational burden of the filtering process.



58 5.3 Mathematical Modeling

GNSS measurements are strongly affected by aggressive flight maneuvers and by tele-

vision broadcast signals. Then, adaptive approaches are employed to address the time-

varying uncertainty of the corresponding measurements. It is important to point out that

the GNSS receptor can also provide altitude measurements. However, in our experiments,

we observed more stable measurements from the barometer and decided to use them.

5.3 Mathematical Modeling

In this section the stochastic models used in the state estimators are presented. First, we

present the process model f , which is based on the kinematic equations of the aircraft.

Then, we show the observation model h, relating the measured output data y to the states

x.

5.3.1 Process Model

The temporal evolution of a six-degree-of-freedom vehicle is described by three sets of

nonlinear first-order ordinary differential equations (ODE) relative to a local NED ref-

erence frame, in which is considered a non-rotating and flat earth. These are plausible

assumptions, since the vehicle flies in a small region of the planet, and therefore for short

distances. For these equations, both the translational accelerations a = [ax ay az]
T ∈ R3

and body rotation rates ω = [ωx ωy ωz]
T ∈ R3 are the process model’s inputs u [Mulder

et al., 1999, Teixeira et al., 2011].

The first set of equations describes how the translational velocity components along

the rigid body, given by v = [vx vy vz]
T ∈ R3, evolve with time (argument t is omitted on

the right-hand side for brevity)

v̇(t) = v × ω +
�
RNED

b

�T
g + a , (5.1)

where g = [0 0 gz]
T ∈ R3 is the gravity acceleration vector with gz = 9.81m/s2, and RNED

b

is the orthogonal rotation matrix that represents the rotation of the body reference frame
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in relation to the NED reference frame as follows [Beard and McLain, 2012, p. 256],

RNED
b =



e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e1e0)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23


 , (5.2)

where e0, e1, e2, and e3 are components of a unit quaternion.

The set of equations that relates the center of gravity position, p = [xN yE zD]
T ∈ R3,

relative to the NED reference frame is given by

ṗ(t) = RNED
b v . (5.3)

Aiming at discrete-time state estimators, the continuous-time dynamic equations (5.1)

and (5.3) are discretized by integrating over time interval [(k − 1)T, kT ], where t = kT

relates continuous time to the discrete index and T > 0 is the sampling period. In this

case, only the right-hand end-point of [(k−1)T, kT ] given by xk � x(kT ) is used. In this

case study, the 4th order Runge Kutta integration with fixed step is used for discretization;

[Simon, 2006, p. 26].

Finally, the attitude is represented by a unit quaternion, which forms a four-dimensional

algebra, denoted byH1, over the real numbers. Thus, the attitude process function is given

in its discretized form as [Crassidis and Markley, 2003]

vec (ek) = Ak−1vec (ek−1) , (5.4)

where

Ak−1 � cos

�
T

2
�ω�

�
I4×4 +

1

�ω�sin
�
T

2
�ω�

�
Ω(ω) ,

Ω(ω) �




0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



.
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All inertial instruments exhibit practical errors, such as random noise, bias, scale

factor, and cross-coupling. In most cases, the bias is the dominant term in the over-

all errors [Groves, 2013]. Then, it is considered that the measured input vector uk =
�
aTk ωT

k

�T ∈ R6 is corrupted by bias and random noise and is modeled as

um,k = uk + βk + qu,k , (5.5)

where “m” denotes the onboard measurements, um,k = [axm aym azm ωxm ωym ωzm ]
T ∈

R6 are the accelerations and angular rates measured by the accelerometers and gyro-

scopes, respectively, βk = [βax βay βaz βωx βωy βωz ]
T ∈ R6 are the bias terms, and

qu,k ∼ N ([0]6×1, Qu) ∈ R6 is the input noise vector. In (5.1)-(5.4), in order to use the

onboard measurements, we set uk = um,k − βk − qu,k.

Accelerometer and gyroscope drifts, given by the parameter vector βk, are modeled as

the random-walk process,

βk = βk−1 + qβ,k−1 , (5.6)

where qβ ∼ N ([0]6×1, Qβ) ∈ R6. The bias components can be jointly estimated with

vehicle states, yielding the joint state vector vec (xk) ∈ R16 defined as

xk �
�
vTk pTk ek βT

k

�T
. (5.7)

Equations (5.1), (5.3), (5.4), and (5.6) compose the process model of the vehicle, which

can be compactly recast as

xk = f (xk−1, uk−1, qk−1, k − 1) , (5.8)

where f denotes a nonlinear function of state vector xk, input vector uk−1, and process

noise vector qk−1 �
�
qTu,k−1 qTβ,k−1

�T ∈ R12.
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5.3.2 Observation Model

The observation model relates the components of the state vector xk to the measured

output variables vec (yk) ∈ R10 given by

yk � [em VTAS,m xE,m yE,m Hm xN,g yE,g]
T . (5.9)

An AHRS provides the orientation estimates in Euler angles, which can be transformed

to quaternion and used directly as a measurement of attitude. The nonlinear transfor-

mation from Euler angles to unit quaternions is given by [Beard and McLain, 2012, p.

259]

vec (em) =




cos
�
ψm

2

�
cos

�
θm
2

�
cos

�
φm

2

�
+ sin

�
ψm

2

�
sin

�
θm
2

�
sin

�
φm

2

�

cos
�
ψm

2

�
cos

�
θm
2

�
sin

�
φm

2

�
− sin

�
ψm

2

�
sin

�
θm
2

�
cos

�
φm

2

�

cos
�
ψm

2

�
sin

�
θm
2

�
cos

�
φm

2

�
+ sin

�
ψm

2

�
cos

�
θm
2

�
sin

�
φm

2

�

sin
�
ψm

2

�
cos

�
θm
2

�
cos

�
φm

2

�
− cos

�
ψm

2

�
sin

�
θm
2

�
sin

�
φm

2

�



. (5.10)

Since the Euler angles estimates are uncertain, we perform the propagation through the

nonlinear functions by means of the unscented transform (reviewed in the Section 3.2.1),

using a preprocessing similar to the one used in [Terra et al., 2014]. As in [Kraft,

2003, Vartiainen et al., 2014], we assume that the measured unit quaternion vec (em,k) =

[e0,m e1,m e2,m e3,m] ∈ R4 is a random variable, in which the random noise is incor-

porated in the model by means of quaternion multiplication, preserving the unit norm

constraint. Then, the attitude measurement equation is given by

em = e⊕ re , (5.11)

where re ∼ N
�
[0]3×1 , Re

�
∈ R3 is the measured quaternion noise parameterized as ro-

tation vector. The transformation between unit quaternion and rotation vector was pre-

sented in Section 4.1.2.

The true air speed VTAS,m is measured from a differential pressure sensor. The resultant
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air velocity components along the axes of the rigid body is given by

VTAS,m =
�
v2x + v2y + v2z + rVTAS

, (5.12)

where rVTAS
∼ N (0, RVTAS

) ∈ R is the measurement noise, VTAS,m =
�
2Pdif,mρ is the

indirect measured airspeed, ρ = 1.225kg/m3 is the air density at vehicle location, and

Pdif,m is the measured differential pressure.

The GNSS sensor provides absolute position in terms of latitude and longitude. As

the presented mathematical models rely on a Cartesian system, where the earth surface

is assumed to be flat and non-rotate, this geodetic information must be transformed to

a local Cartesian coordinate system. In this thesis, the Universal Transverse Mercator

coordinate system (UTM) [Snyder, 1987] is used to transform from geodetic information

into east and north directions. As before, the UT is used to perform this transformation.

In doing so, we obtain the linear measurement model


xN,m

yE,m


 =


xN

yE


+


 rxN

ryE


 , (5.13)

where [rxN
ryE ]

T ∼ N
�
[x̄N ȳE]

T , RGNSS

�
∈ R2 is the measurement noise, in which

[x̄N ȳE] ∈ R2 represents an unknown offset in the measurement. We assume that the

time-varying errors in the GNSS measurements can be taken into account by properly

estimating the unknown offset and the corresponding covariance.

Altitude is inferred from the atmospheric pressure provided by barometer, yielding

Hm = −zD + rH , (5.14)

where rH ∼ N (0, RH) ∈ R, Hm = Pm/ρgz is the indirect measured altitude, Pm is the

absolute pressure, and ρ is the air density at vehicle location.

Finally, the vision system yields absolute position information, which is obtained by

identifying the instant in which the vehicle passes through the georeferenced landmarks.
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The corresponding model is given by


xN,g

yE,g


 =


xN

yE


+


 rxN,g

ryE,g


 , (5.15)

where
�
rxN,g

ryE,g

�T ∼ N
�
[0]T2×1 , Rg

�
∈ R2, and the subscript “g” denotes vision infor-

mation.

Equations (5.11)-(5.15) form the observation model, which can be written in its com-

pact form as

yk = h (xk, rk, k) , (5.16)

where h denotes a nonlinear function of state xk and measurement noise rk ∼ N (r̄k, Rk) ∈
R(ny−1), ny is the dimension of the measurement vector. Notice that, the measurement

frequency vary depending on each sensor, yielding a different measurement vector for each

time instant.

5.4 Experimental Results

We now present results of both localization and path reconstruction problems from two

sets of experimental flight data collected during different sessions of the Red Bull Air

Race (RBAR). The RBAR World Championship is an international series of races with

the participation of at least eight pilots at each race. The objective is to navigate in

an aerial racetrack, delimited by air-filled pylons, called air gates, in the fastest possible

way. The engines and propellers are standard for all teams. Thus, the pilots and their

team dedicate their efforts to perfect airframe aerodynamics, improving the pilot skills

and planing the best trajectory to follow during the race.

In this work, filtering and smoothing algorithms are used to estimate the aircraft flight

path. At this point, the importance of the adaptive approach and the inclusion of vision

information must be clarified. During the air race, the GNSS-information is damaged

or even interrupted due to aggressive aerobatic maneuvers. In such cases, the adaptive

filtering methods must take into account the variation in the reliability of the GNSS,
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updating its corresponding noise covariance matrix. If the measurement uncertainty in-

creases, more weight is put into the prediction. Thus, the global information yielded by

the vision system plays an important role to improve the accuracy and convergence of the

state estimation.

The two datasets used in this section were collected during the races at Abu Dhabi

and Croatia in 2014, referred here by dataset-1 and dataset-2, respectively. Both datasets

contain information from takeoff to landing. The duration of the flight tests are 907s for

dataset-1 and 847s for dataset-2.

5.4.1 Filtering and Smoothing Application

We applied the state estimators presented in Chapter 4 to localize and reconstruct the path

of the aerial vehicle described in Section 5.2. The robust part of the filtering algorithms

presented in Section 4.3.1 are not employed. Thus, we call this algorithm by quaternion-

based adaptive unscented Kalman filter using covariance matching (QAUKF-CM). In

addition, we test another algorithm based on mean and covariance matching, called by

quaternion-based adaptive unscented Kalman filter using mean and covariance matching

(QAUKF-MCM). All the algorithms were implemented from scratch using MATLAB. In

this work, the adaptive algorithms are only used to deal with the variable uncertainty of

the GNSS measurements. At this point, it is important to clarify how each one of the

methods previously discussed tackle the variable uncertainty of the GNSS measurements.

For the algorithms based on covariance scaling, only the entries of the noise covariance

matrix related to the GNSS are adapted online. The covariance matrix adaptation is

performed whenever a new GNSS measurement is available. In contrast, the IMM based

algorithm runs two filters in parallel and combines their estimates. Likewise, the mode

probability, γk, is updated whenever a new GNSS measurement is available. The smooth-

ing algorithm uses the states estimated by the four filtering algorithms and then work

backwards from the final sample to the first.

All algorithms are parameterized based on experiments performed with dataset-1.

Matrix Q1,k−1 ∈ R3×3 is defined as a diagonal matrix, whose elements are related to

the angular rate noise of gyrometers and are given by σω = [0.05, 0.02, 0.015]T rad/s.

The diagonal matrix Q2,k−1 ∈ R15×15 is the covariance matrix of the process additive
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noise, whose standard deviations were empirically adjusted as σv = [0.5, 0.5, 0.5]Tm/s,

σp = [0.7071, 0.7071, 0.7071]Tm, σq = [0.008, 0.008, 0.008]T rad, σβa = 10−6 [0.4, 0.4,

0.4]Tm/s2, and σβω = 10−10 [1, 1, 1]T rad/s. The covariance matrix Rk is a diagonal ma-

trix whose entries are set according to the information provided by the instrumentation

as follows. The estimated standard deviation of the AHRS, differential pressure, GNSS,

barometer, and vision system measurements are σAHRS = [0.008, 0.008, 0.008]T rad, σVTAS
=

0.3m/s, σGNSS = [2, 2]Tm, σbar = 0.5m, and σgate = [2, 2]Tm, respectively. The AHRS

data, used as output measurement, have errors correlated with the process input mea-

surements. It happens because the commercial AHRS use the same set of sensors both

to compute the attitude and to provide acceleration and angular velocities. Thus, in this

work, the estimated uncertainty of Euler angles σAHRS is slightly enlarged. This simplis-

tic approach reduces the Kalman gain and then mitigate the effects of correlation. The

GNSS standard deviation was chosen based on error information available on a known

data sheet of another equipment. However, it is only a lower bound value, since the

adaptive algorithm may increase it. The initial conditions x̂0 �
�
x̂T
0 , β̂

T
0

�T
are defined

according to the the first measurements of the datasets with assumed zero bias. For the

adaptive algorithms based on covariance matching we assume that the GNSS measure-

ment uncertainty is approximately constant for 2 seconds, then the moving window is set

to N = 10. For the QIMM, two models are used, one to represent the standard condition

of measurement and another to represent an unreliable measurement condition. The dif-

ference between the two models is in the covariance matrix of the GNSS measurements,

which is multiplied by the factor 400 in the second model to represent the case in which

GNSS is unreliable. Finally, we assume no prior knowledge on the actual operating mode

γ0 = [0.5, 0.5]T and low transition probability between operating modes are set as

Π =


0.96 0.04

0.04 0.96


 .

5.4.2 Comparison Between Filters and Smoothers

Figure 5.3 shows the aircraft flight path during the race estimated by the quaternion-based

adaptive unscente Kalman filter by covariance matching QAUKF-CM and QAUKF-CM-

Smoother algorithms for dataset-1 and dataset-2. Since both vision system and GNSS
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Figure 5.3: 2D flight path using QAUKF-CM/smoother algorithms. (a) Dataset-1 and
(b) Dataset-2. GNSS data (black dot ), smoother algorithm (in solid green
line), filter algorithm (in solid blue line), and visual landmarks (orange bars
and orange dot).
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Figure 5.4: Window of data corresponding to the position xN, in thin solid line, and
plus and minus three standard deviation ±3σxN

, in thick solid line, where

σi �
�

P xx
k|k,ii. The results were estimated by QAUKF-CM (green line) and

QAUKF-CM-Smoother (blue line).

provides information in low rate, the estimates yielded by the filtering algorithms suffer

sudden corrections. As can be seen in gates 6 and 7 in Figure 5.3(a) and almost all gates

in Figure 5.3(b), the inclusion of vision information yields large corrections in the position

estimates. Figure 5.4 shows a window of data corresponding to position xN and plus and

minus three standard deviations. Note that, unlike the cases in which filters are used,

the smoother algorithm mitigates the abrupt changes on the position estimates and also

improves the estimate uncertainty.

5.4.3 Adaptability of Filters

Figures 5.5(a) and 5.5(c) show the position xN and its standard deviation for the first

lap of the race, estimated from dataset-1. Figures 5.5(b) and 5.5(d) show the position

yE and its standard deviation for the second lap of the race, estimated from dataset-2.

These selected intervals illustrate some erroneous GNSS measurements and also outages

of GNSS signal (gray-shaded regions). During the GNSS outages, the uncertainty with

respect to localization grows for all filtering algorithms due to the fact that the estimations
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are based only on the forecast step. Notice that, for adaptive algorithms, the uncertainty

for position estimates grows between the gates and decreases whenever vision information

is assimilated, while, for the QUKF, it remains almost constant. This behavior shows

that the estimates are more uncertain during the race and that the adaptive algorithms

are more sensitive to this variability. The adaptive filters were able to detect sudden

jumps in GNSS measurements; see Figure 5.5(a) approximately from 515s to 517s. These

filters were also able to detect the gradual failures of the GNSS measurements, such as

in Figure 5.5(b) approximately from 455s to 458s and from 470s to 474s. Notice that,

the QUKF does not adapt to the time-varying uncertainty of the GNSS measurements.

Thus, if the measurement is contaminated, then the estimates may be affected in data-

assimilation step, which can be observed by the jumps in the position estimates yielded

by the QUKF.

Conversely, as shown in Figure 5.5(b) from 473s to 485s, the adaptive algorithms

consider some GNSS measurements, that are not erroneous, with high uncertainty. This

is due to previous discrepancies in localization, which is propagated ahead. It is also

noted that the algorithm QAUKF-MCM yielded biased estimates, which can be seen due

to a discrepancy between the estimated position at the starting of the race. In all of

these cases, information provided by the vision system plays an important role, providing

additional information.

5.4.4 Discussion

All adaptive algorithms were sensitive to changes in the GNSS measurement reliability,

which happened during aggressive and aerobatic maneuvers of the vehicle. On the other

hand, in some cases due to previous errors in the position estimates, these algorithms

assigned low reliability to possibly good GNSS measurements. In such cases, vision infor-

mation played an important role, yielding redundant information to correct the position

estimates.

Despite the adaptive algorithms yielded similar results during the race, QAUKF-CM

seems to be the preferable choice. During the experiments, QAUKF-MCM yielded biased

estimates, which was noted by a discrepancy between the estimated position during the

start of the race. In such case, the biased estimate was improved by the vision information
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(b) Estimated position yE from dataset-2.
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(d) Estimated standard deviation σyE in xN di-
rection from dataset-2.

Figure 5.5: Estimated position and corresponding standard deviation, where σi ��
P xx
k|k,ii, using different algorithms. The gray-shaded regions illustrate some

contaminated GNSS measurements or outages of the GNSS signal.

during the race. For QIMM, modeling different operating modes seems to be more difficult

and require more experience than parameterizing the data window for the covariance

matching approach.

Finally, the modified version of the QRTS smoother was employed. The smoothing

algorithm improves the flight path estimated by filtering algorithms and mitigates the

sudden corrections caused by low GNSS and vision rates.



70 5.5 Concluding Remarks

5.5 Concluding Remarks

In this case study, we addressed the problem of state estimation for an aerial vehicle flying

near the ground and performing aerobatic maneuvers. Since the attitude is modeled using

unit quaternions, the algorithms developed in Chapter 4 are used, however the outilier

rejection approaches are not employed. We also investigate the inclusion of vision infor-

mation obtained from the vehicle’s onboard camera to improve the localization, especially

when GNSS information is unreliable or unavailable and for the case in which aggressive

maneuvers are performed.

Lastly, this chapter illustrates the use of the developed adaptive algorithms to deal with

erroneous GNSS measurements. In addition, some characteristics of such algorithms are

investigated. However, the lack of a true flight path limits the performance comparison

among the algorithms. Based on our experiments, the QAUKF-CM algorithm yielded

better results and seems to be preferable in relation to the others. The setup of this

algorithm seems to be less difficult than the QIMM algorithm and did not yield biased

estimates as the QAUKF-MCM algorithm.



Chapter 6

Case Study: Attitude Estimation

6.1 Introduction

Attitude estimation is a crucial task for a variety of applications, such as human mo-

tion tracking [Vartiainen et al., 2014], augmented reality [Michel et al., 2017], satellite

control [Gui and de Ruiter, 2017] and navigation and control of aerial [Pereira et al.,

2008], and sub-aquatic vehicles [Costanzi et al., 2016]. In these applications, orientation

information is usually provided by an attitude and heading reference system (AHRS).

With the raising of small flying vehicles, also known as drones, small and inexpensive

AHRS have populated the market. For such systems, it is common to estimate the ori-

entation by combining information from a magnetic, rate and gravity (MARG) sensor,

also known as inertial measurement unit (IMU), usually composed of micromechanical

(MEMS) three-axis gyroscope and accelerometer and a three-axis magnetometer [Jang

and Liccardo, 2007]. The standard approach for attitude estimation is to compute the

three components of inertial orientation by integrating the gyroscope measurements, and

use the gravity projection and heading angle estimated by the accelerometers and mag-

netometers to correct the angles estimated with the gyro. Although theoretically simple,

naive implementations of this approach may not be precise because magnetometer mea-

surements are easily influenced by ferrous material in its vicinity, and accelerometers

measure not only the gravitational direction but also linear acceleration. In these cases, it

is difficult to dissociate magnetic field perturbation and linear acceleration from both the

magnetic field of the earth and gravity to compute the attitude accurately, which can lead

to poor estimates [Groves, 2013]. To present an alternative solution to these problems is

one of the main objectives of this case study.

71
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In this chapter, the algorithms proposed in Chapter 4 for attitude estimation are

evaluated. The performance of the proposed algorithms are confronted against the non-

adaptive QUKF, the open source algorithm based on complementary filter proposed

in [Madgwick, 2010] and the commercial algorithm embedded in the MARG device used

in our experiments, which were executed using a manipulator robot for validation pur-

poses. The results presented in this chapter were partially published in [Chiella et al.,

2019c, Chiella et al., 2019b].

6.2 Mathematical Modeling

6.2.1 Kinematic Model of Attitude

Assuming that angular rates ωk ∈ R3, measured by a 3-axis gyros form the input vector

uk of the dynamic system, the discrete-time attitude model is given by expression (5.4).

We assume that uk = ωk ∈ R3 is corrupted by random noise and bias terms, modeled

as um,k = uk + βk + qu,k, in which “m” denotes a measured variable, um,k = [ωxm ωym

ωzm ]
T ∈ R3 are angular rates measured by a 3-axis gyro, βk = [βωx βωy βωz ]

T ∈ R3 are

bias terms, and qu,k ∼ N ([0]3×1, Qu) ∈ R3 is the input random noise. To directly use

the measured inputs in (5.4), bias terms and random noise are estimated and subtracted

from the measurement. Then, uk = um,k − βk − qu,k.

As in Equation (5.6), bias terms βk are modeled as a random walk process, where

qβ ∼ N ([0]3×1, Qβ) ∈ R3 and are jointly estimated with the other system states, yielding

a joint state vector vec (xk) �
�
vec (ek)

T βT
k

�T
∈ R7 .

Equations (5.4) and (5.6) compose the process model, which can be compactly pre-

sented as

xk = f (xk−1, qk−1, uk−1, k − 1) , (6.1)

where f denotes a nonlinear function of previous state xk−1, with input uk−1, and process

noise qk−1 �
�
qTu,k−1 qTβ,k−1

�T
.
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6.2.2 Observation Model

The observation model relates the components of state vector xk with the output mea-

surement vector yk ∈ H1, defined as yk � em. Measurements are corrupted by random

errors and modeled as em = ek ⊕ rk, where rk ∼ N ([0]3×1, Rk) ∈ R3 is the measurement

noise parameterized as a rotation vector. Therefore, the observation model may be written

as

yk = h (xk, rk, k) . (6.2)

In this chapter, the measured acceleration am,k = [ax ay az]
T ∈ R3 and magnetic field

bm,k = [bx by bz]
T ∈ R3 are used to compute the unit quaternion em ∈ H1. Assuming

normalized measurements such that �am,k� = 1 and �bm,k� = 1, the unit quaternion

representing the body attitude can be computed as [Valenti et al., 2015, Valenti et al.,

2016]:

e∗m = eacc ⊗ emag , (6.3)

eacc =





�
λ1,

�
− ay

2λ1

ax
2λ1

0
�T�

, az ≥ 0

�
− ay

2λ2
,
�
λ2 0

ax
2λ2

�T�
, az < 0,

(6.4)

emag =





�
λ3√
2Γ
,
�
0 0 λ3√

2Γ

�T�
, lx ≥ 0

�
ly√
2λ4

,
�
0 0 λ4√

2Γ

�T�
, lx < 0,

(6.5)

where λ1 =
�

(az + 1)/2, λ2 =
�
(1− az)/2, Γ = l2x + l2y, λ3 =

�
Γ+ lx

√
Γ, λ4 =

�
Γ− lx

√
Γ and lm,k = [lx ly lz]

T such that(0, lm,k) = e∗acc (0, bm,k) eacc.

Because these equations are nonlinear, the unscented transform, presented in sec-

tion (4.2.1), is used to propagate the measured acceleration am,k and magnetic field bm,k

errors through equations (6.3)–(6.5). These errors are modeled as zero mean random
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Figure 6.1: Experimental setup using the MicroStrain 3DM-GX1� IMU and the Comau
Smart Six robot.

errors. In so doing, we obtain em used in (6.2).

6.3 Experimental Results and Discussion

In this section we compare the performance of the proposed QRAUKF-CMl, and QIMM

algorithms with the classical QUKF algorithm for quaternions, the complementary fil-

ter (CF) proposed in [Madgwick, 2010], and the commercial algorithm embedded in the

MicroStrain 3DM-GX1� IMU. We implemented RAUKF and QIMM using Matlab. Our

code is available at https://bitbucket.org/coroufmg/raukf_cm. Five disturbance sce-

narios were evaluated: (i) abrupt and (ii) slow varying magnetic disturbances; (iii) linear

accelerations; iv) individual axis rotation about the origin; and v) simultaneous axes

rotations about the origin. The last two experiment, scenarios (iv)-(v), suffer linear ac-

celerations due to the lever arm between the robot end effector and IMU1. Actual data

was collected at 40Hz from the IMU, which was mounted on the end effector of a Comau

Smart Six manipulator, used to perform controlled movements and to provide accurate

orientation information. Figure 6.1 illustrates our setup.

To set QUKF and QRAUKF-CMl, we have assumed that the covariance matrix

Q1,k−1 ∈ R3×3 is diagonal with elements related to the angular rates measured by the

gyros. This matrix was estimated as σω = [0.4584 0.3724 0.4927]T deg/s. The pro-

cess additive noise was represented by the diagonal matrix Q2,k−1 ∈ R6×6. This ma-

1Videos showing the experiments are found at: https://goo.gl/mtFSqG
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Table 6.1: Root Mean Square Error (RMSE) in degrees for disturbance scenarios (i)
and (ii). The lowest RMSE results are highlighted in bold.

Abrupt magnetic Slow magnetic

Algorithm φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃

QRAUKF-CMχ2 0.3 0.9 0.53 0.07 0.09 1.85

QRAUKF-CMH 0.3 0.9 0.48 0.07 0.09 1.84

QIMM 0.3 0.9 0.06 0.06 0.09 11.33

QUKF 0.3 0.9 0.62 0.99 0.51 13.03

CF 0.3 0.9 0.6 9.22 11 28.9

3DM-GX1 0.34 1 0.54 0.13 0.09 11.28

Table 6.2: Root Mean Square Error (RMSE) in degrees for disturbance scenarios (iii),
(iv), and (v). The lowest RMSE results are highlighted in bold.

Linear acceleration Individual rotations Simultaneous rotations

Algorithm φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃ φ̃ θ̃ ψ̃

QRAUKF-CMχ2 0.29 0.9 0.17 1.1 1.32 0.97 2.9 1.99 1.39

QRAUKF-CMH 0.89 0.17 0.16 1.08 1.31 0.91 2.88 1.94 1.37

QIMM 0.2 0.9 0.15 1.07 1.34 0.85 2.89 1.95 1.39

QUKF 4.0 3.78 2.37 1.97 1.73 2.23 2.76 2.08 4.20

CF 1.87 1.60 0.53 1.17 1.61 1.17 2.97 2.54 2.03

3DM-GX1 0.38 1 0.4 1.08 1.34 1.37 2.88 2.17 2.06

trix is related to the attitude, parametrized as a rotation vector, and the bias terms of

the gyros. The standard deviations were empirically set as σv = [57.3× 10−20]3×1 deg

and σβ = [57.3× 10−9]3×1 deg/s, for attitude and bias terms, respectively. The co-

variance matrix of measurements Rk is computed by the UT. The measured accelera-

tion and magnetic field are propagated through the nonlinear function represented by

equations (6.3)-(6.5). Standard deviations of accelerometer and magnetometer are σa =

[0.0361 0.0455 0.0330]Tm/s2 and σm = [11 9.8 98]T ×10−4Gauss [G], respectively, which

were estimated from a temporal window of collected data with a steady-state behavior.

The standard deviations σω, σa, and σm were estimated from experimental data. For

this, we have used a window of approximately 20 s. During this calibration process, the

MARG sensor was kept stationary (steady-state behavior). The tuning parameters were

estimated before performing the main state estimation experiments, during which they
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remain unaltered. Observe that the measurement covariance matrix Rk is updated on-

line, in contrast with the process covariance matrices Q1,k−1 and Q2,k−1, that also remain

unaltered. Although we used a simplistic parameter estimation approach, the parameter-

ization seems to be appropriate, even for different experiments.

The sliding window size of QRAUKF-CMl, l ∈ {χ2,H}, was empirically set to be

N = 20 samples, which represents a period of 0.5 s during which the noise covariance is

assumed to be constant, the confidence region nσ = 3 standard deviations for RAUKF-

CMH, and ζ = 7.8 for RAUKF-CMχ2.

For the QIMM, three models are used: i) standard condition of measurement; ii)

unreliable measurement condition of all angles; iii) and unreliable heading measurement.

The difference between the three models are in the covariance matrices of the attitude

measurements, which are multiplied by the factor Gi ∈ R3×3, i � 1 . . . 3, set as

G3 =




1 0 0

0 1 0

0 0 1


 , G2 =




104 0 0

0 104 0

0 0 104


 , G3 =




1 0 0

0 1 0

0 0 104


 .

The measurement standard deviation is around 0.005 rad, which means that we are

considering that the standard deviation during abnormal measurements is around 0.5

rad or approximately 28.5 degrees. It is important to observe that, if the measurements

are independent, then we will have eight possible models. This is not the case, once

the roll and pitch angles have an influence on heading angle measurement. During our

experiments, we try to use eight models, but the operating mode always converged to one

of the three above.

We assume no prior knowledge on the actual operating mode γ0 =
�
1
3

1
3

1
3

�T
and low

transition probability between operating modes are set as the transition probability

Π =




0.96 0.02 0.02

0.02 0.96 0.02

0.02 0.02 0.96


 .

CF has two parameters, the gain that quantifies the gyro measurement noise, set as
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βCF = 0.007, and the gain that quantifies the bias terms, set as ζCF = 0.01. These values

follows the authors recommendations [Madgwick, 2010].

The accuracy of state estimate x̂k over a time interval k = k0...kf is quantified by the

root mean square error (RMSE) index

RMSE �

���� 1

kf − k0 + 1

kf�

i=k0

(xk − x̂k)
2, (6.6)

where xk is the true value of state.

6.3.1 Magnetic Field Distortion

In our first experiment, the magnetic brakes of the manipulator robot are turned on and

off a few times, thus causing an abrupt variation in the magnetic field that is perceived

by the magnetometers. The left column of Figure 6.2 shows the linear acceleration and

the magnetic field in the xyz axes. Observe that jumps in the magnetic field were gen-

erated, influencing the measurement of heading angle ψ, see Figure 6.2(f). Due to the

shaking caused by the release of the brakes, some spikes of acceleration also appear. The

right column of Figure 6.2 shows the estimation error for each algorithm. Notice that,

QUKF and CF algorithms are more sensitive to the perturbations, converging quickly

to measurements even with abnormal behavior. In contrast, QRAUKF-CMl, QIMM,

and 3DM-GX1 estimates converge slowly to measurements in the presence of abnormal

behavior. However, QRAUKF-CMl and QIMM are less sensitive to short duration pertur-

bations and converge faster than other algorithms to the measurement as the disturbance

is over. Figure 6.3 shows the QIMM operation mode. Observe that, the operation mode

adequately converges to the expected mode of operation, γ1 in normal operation, γ2 for

abnormal measurements in all angles, which is due to linear acceleration, and γ3 for

abnormal measurement in heading angle, which is due to magnetic disturbance.

In a second experiment, shown in Figure 6.4, the magnetic field was artificially and

slowly disturbed with a magnetic material. This kind of perturbation is usually difficult

to detect and can damage the estimation. Notice that QRAUKF-CMl is the less sensitive

to the slow varying abnormal measurement. CF, yields the worst results as shown by
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Figure 6.2: Results for abrupt magnetic disturbances experiment, scenario (i). In the
left column, linear acceleration am and magnetic field bm measurements, in the
right column, the attitude error.

RMSE in Table 6.1. The abnormal behavior of magnetic field affects the bias estimates

of angular rate in the z-direction for QUKF and in all directions for CF. The experiment

also shows that the QIMM algorithm is sensitive to slow varying disturbance. In fact, the

mode operating γi converges to an unexpected mode at the beginning of the experiment,

as shown in Figure 6.6.
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Figure 6.3: QIMM mode of operation for abrupt magnetic disturbances experiment. γ1
represents a normal measurement behavior, γ2 represents abnormal measure-
ment of all angles, and γ3 abnormal measurement of heading angle.

6.3.2 Linear Acceleration Disturbance

Roll (φ) and pitch (θ) angles are computed by the projection of the gravity vector, which

is measured by the accelerometer. However, the accelerometer measures the linear body

acceleration together with the gravity vector, which masks the gravity vector observation

disturbed by linear acceleration. Thus, the linear acceleration disturbs the observation of

φ, θ, and consequently the heading angle ψ.

To test the behavior of the algorithms against the perturbation of linear accelerations,

the manipulator executed independent translational movements in each axis. The left

column of Figure 6.7 shows the linear acceleration and the magnetic field in the xyz

axes. We observed that, even the movements being executed separately in each axis,

linear accelerations appear in all axis. This is probably due to a small angle in the

link joining the IMU and the robot end effector. The right column of Figure 6.7 shows

the estimation error for each algorithm. Table 6.2 shows the values of RMSE for this

and other experiments. Notice that, the QUKF provides the worst results. In contrast,

QRAUKF-CMHl and QIMM have the best results. Figure 6.9 shows the QIMM operating

mode. Observe that, during the majority of the experiment, the mode changes from γ1

to γ2, which represents a normal measurement condition and abnormal measurements in

all angles, respectively.

Figure 6.8 shows angular rate measurements in x and y directions. It is possible to see

that the measurement noise vary during the linear movement of robot end effector. This
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Figure 6.4: Results for slow varying magnetic disturbances experiment, scenario (i). In
the left column, linear acceleration am and magnetic field bm measurements,
in the right column, the attitude error.

type of errors are not handled by the algorithms and directly damage the estimation.
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Figure 6.5: Results for abrupt magnetic disturbances experiment, scenario (i). In the
left column, linear acceleration am and magnetic field bm measurements, in the
right column, the attitude error.
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Figure 6.6: QIMM mode of operation for slow varying magnetic disturbances experi-
ment. γ1 represents a normal measurement behavior, γ2 represents abnormal
measurement of all angles, and γ3 abnormal measurement of heading angle.

6.3.3 Rotations Around the Origin

In our last two experiments, presented in Figures 6.10 and 6.11, rotations about the origin

in each axis separately and simultaneously were performed. In these cases, estimates are

influenced by linear accelerations that appear due to a lever arm between the IMU and

the robot end effector. Figures 6.10a and 6.11a show the actual movement performed

by the manipulator. Again, the proposed algorithms yield better results, as shown by

Table 6.2. Notice by Figure 6.10 that QRAUKF-CMl, QIMM, and 3DM-GX1 algorithm

have similar errors, however, QRUKF-CMl and QIMM converge faster to measurement

after the perturbation finishes. The poor performance of QUKF and CF is due to bias
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Figure 6.7: Results for linear acceleration disturbance experiment, scenario (iii). In the
left column, linear acceleration am and magnetic field bm measurements, in the
right column, the attitude error.

estimates that are influenced by linear acceleration.
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Figure 6.8: Angular rate ωx and ωy, respectively, measured by the gyros for third ex-
periment, scenario (ii).
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Figure 6.9: QIMM mode of operation for linear acceleration disturbances experiment.
γ1 represents a normal measurement behavior, γ2 represents abnormal mea-
surement of all angles, and γ3 abnormal measurement of yaw angle.

6.4 Conclusions

The proposed algorithms in Chapter 4 were compared to a nonadaptive version of QUKF,

a complementary filter, and commercial algorithm embedded in the IMU. Some exper-

iments were performed to verify the performance of the algorithms in situations were

distorted magnetic field and linear accelerations exist. The proposed algorithms have

better RMSE results in all situations tested.
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Figure 6.10: Results for individual axis rotation about the origin, scenario (iv). Figure
(a) shows actual orientation for individual axis movements; Figures (b), (c)
and (d) show the estimation error for φ, θ and ψ angles, respectively.
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Figure 6.11: Results for simultaneous axes rotation about the origin, scenario (v). Fig-
ure (a) shows actual orientation for simultaneous axis movements; Figures
(b), (c) and (d) show the estimation error for φ, θ and ψ angles, respectively.





Chapter 7

Case Study: Localization of

Aerial Vehicles in Forest

Environments

7.1 Introduction

Robot navigation in forests is a big challenge, mainly due to the several obstacles exis-

tent in such environments, such as tree trunks, bushes and uneven or swamped terrains.

Ground robots that are able to navigate in forests are usually expensive due to their com-

plex and adaptive locomotion systems [Freitas et al., 2010, Morita et al., 2018]. In this

scenario, autonomous micro air vehicles (MAVs), such as electric drones, thus appear as

viable and cost-effective alternative for such robots, since they are able to fly below the

canopies of the trees and execute several missions such as exploration [Belbachir et al.,

2015], search and rescue [Karma et al., 2015], ecological research [Arroyo-Mora et al.,

2019] and forest management [Krisanski et al., 2018]. Although the terrain of the forest

has low or no influence in the motion of the MAVs, forest environments may be GNSS

denied environments, which prevents the use of standard and commercial localization

systems.

A prerequisite for autonomous navigation is the accurate estimation of the vehicle

states, enabling position and velocity control. In this thesis, we consider state estimation

of an aerial vehicle, such as the one in Figure 7.1, flying in a forest environment. In such

environments, the solutions based on the global navigation satellite systems (GNSS) are

unreliable or unavailable.

87
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Figure 7.1: The quadrotor Matrice 100 DJI used in the state estimation experiment.
The vehicle is commercialized with built-in AHRS and GNSS, and was
equipped with a Hokuyo UTM-30LX-EW planar LiDAR.

Due to their complementary characteristics, the combination of inertial and GNSS

measurements is the standard approach for most navigation solutions for drones and

other small flying vehicles. However, for long drop-out periods of the GNSS, the lower

grade attitude and heading reference systems (AHRS), which are normally embedded in

these aerial vehicles, are not sufficient to estimate the position and velocity. Therefore, it

is necessary to combine information from other exteroceptive sensors such as cameras and

laser detection and ranging (LiDAR) sensors [Shen et al., 2014, Chambers et al., 2014].

Localization in forests was studied in [Jutila et al., 2007], where a procedure to extract

landmarks is proposed. In the same work, a ground vehicle is used to collect data and

process a SLAM algorithm offline. In [Cui et al., 2013, Cui et al., 2014] the navigation

of an aerial vehicle in a forest is considered. The authors propose a laser-odometry (LO)

algorithm and use the estimated velocity as a measurement in the update step of the KF.

No treatment to the time-varying uncertainty of the LO measurements is proposed.

Combination of inertial and visual/LiDAR odometry for state estimation is commonly

divided into loosely and tightly coupled approaches. The first one jointly estimates the

vehicle states and visual landmarks position [Strelow and Singh, 2004]. The second ap-

proach computes the vehicle motion by comparing sequential image/scans [Shen et al.,

2011, Tang et al., 2015], and, then, the estimated motion is used in the fusion algorithm.
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In the present work, loosely-coupled LO is used due to its smaller computational burden.

However, in addtion two challenges arise in this strategy: the first is how LO and GNSS

errors are modeled in the standard Kalman filter-based fusion algorithms, since they are

usually corrupted with time varying noise, such as outliers and slow drift, which are not

easily modeled by Gaussian variables. This problem can be handled by one of adaptive

algorithms proposed in this thesis; the second is how to combine relative information from

LO with absolute information from GNSS system into a fusion architecture;

For the problem of combining relative and absolute measurements, there are typically

three approaches in the literature: using LO measurements as pseudo-global informa-

tion [Shen et al., 2011]; numerical differentiating the relative motion to compute veloc-

ity [Cui et al., 2014]; and applying the so-called stochastic cloning approach [Roumeliotis

et al., 1998]. In practice, pseudo-global position drifts with time, and the numerically com-

puted velocity is a poor approximation of the actual velocity. Thus, some authors [Shen

et al., 2014, Chambers et al., 2014, Song et al., 2016] advise that one should rather con-

sider LiDAR-odometry as a relative measurement and use stochastic cloning. This is

basically a state augmentation technique, where two instances of the same states, at dif-

ferent time instants, are concatenated in the state vector. These two instances are then

used to define a measurement model that explicitly considers relative information given

by LO. Our strategy uses the stochastic cloning approach with a UKF.

7.2 Problem Statement

In this chapter we address the problem of localization of an aerial vehicle in forest

environments. We assume that the platform is equipped with an attitude and head-

ing reference system, a global navigation satellite system, which may fail when the

vehicle is flying inside a forest, and a LiDAR based odometry. From these measure-

ments systems, our solution uses the following information whenever they are avail-

able: i) AHRS, providing the attitude of the vehicle represented as the unit quaternion

vec (em) = [e0,m e1,m e2,m e3,m]
T ∈ R4, with respect to the north-east-down (NED) coor-

dinate frame, and acceleration am = [ax,m ay,m az,m]
T with respect to the vehicle’s body

reference frame; ii) GNSS, providing global position pm = [pN,m pE,m pD,m]
T and velocity
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Figure 7.2: Block diagram of the proposed navigation solution. Data from the avail-
able sensors are combined using a robust and adaptive version of UKF
(RAUKF) [Chiella et al., 2019c].

vm = [vN,m vE,m vD,m]
T with respect to NED; and iii) LO, providing relative position mea-

surements δm = [δN,m δE,m]
T with respect to NED. In our notation “m” denotes onboard

measurements. Figure 7.2 shows a block diagram of the proposed solution. Basically, the

information provided by sensors is combined by an UKF-based fusion algorithm. Fortu-

nately, most of the drones found in the market today are equipped with AHRS, GNSS

or some combination of both that will deliver the data required by our approach. In the

sequence, the LiDAR-based odometry, which is still not a popular drone accessory, will

be described.

7.3 LiDAR-Based Motion Estimation in Forests

LiDAR-based odometry is a motion estimation technique that uses the matching between

consecutive laser scan data to estimate the incremental motion of the vehicle. In a forest,

raw laser measurements do not have much information, once most of the measurement

beams do not hit any obstacle. In such a way, more information can be extracted from

measurements by detecting environmental features. If done efficiently, the detection of fea-

tures can decrease considerably the amount of data to be processed for motion estimation,

thus reducing the computational burden of the entire system. The proposed feature-based

laser-odometer algorithm is mainly composed of two steps: i) feature extraction; and ii)

incremental motion estimation.

Feature extraction is the first step towards accurate motion estimation. Considering
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that the operating environment is a forest, the centers of tree trunks seem to be natural

choices for features. To detect the trunks in the LiDAR data we have three steps. First, the

range measurements are constrained to minimum and maximum values. This is necessary

to reduce the influence of noise in the measurements, which increases with distance, and

to eliminate beams that hit parts of the vehicle. In the second step, laser scans are

segmented using edge points, detected as discontinuities in the scan:

Δi =
ri+1 − ri−1

2
, (7.1)

where ri is the ith range beam, for i = 2, . . . , nr−1 where nr maximum number of beams.

Figure 7.4(a) shows the original scan, represented by a sequence of range values ri and

the detected discontinuities Δi. A tree trunk is probably found between the peaks down

and up of the signal.

The third step of the feature extraction algorithm assumes that all trunks are cylin-

drical and estimates the radius rc of the tree trunk. Figure 7.3 illustrates the radius

estimation method used in our work. This method follows the procedure proposed in [Ju-

tila et al., 2007], where the radius is computed as

rc =
rm sin(ψc)

1− sin(ψc)
, (7.2)

where ψc = (ψb − ψa) /2 is the angle of the beam that hits the center of the tree, and

ψa and ψb are the angles of edges. Figure 7.4(b) shows some trees (red circles) estimated

using this method. To eliminate possible wrong features, such as bushes, we only consider

tree trunks with radius larger than 0.1m and smaller than 1.5m.

Before the estimation of the circles that model the trees, range information from the

LiDAR was transformed from the body coordinate frame to the NED coordinate frame.

Thus, the positions of the centers of the circles are represented in NED. These centers

are then considered as features and used in an ICP algorithm [Rusinkiewicz and Levoy,

2001]. This algorithm is used to establish the correspondence between the features just

found with the ones found in a previous instant of time. Thus, for a set of features

D = {d1, d2, . . . , dnd
} at time step k and M = {m1, m2, . . . , mnm} at time step l < k,

where di, mj ∈ R2 are centers of the fitted circles and nd and nm are the numbers of
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Figure 7.3: Procedure to compute the radius of tree trunk.
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Figure 7.4: a) Original laser scan in blue and the detected discontinuities in red. The
blue dots represent the laser beams, and the tree trunks are represented by
red circles.

features extracted, the problem is to find an alignment, rotation R and translation ρ,

that minimizes the distance between the two sets of points. This can be formulated as:

�(R, ρ) =
nc�

i=1

���Rdi + ρ−mi

���
2

, (7.3)

(R∗, ρ∗) = argmin
R,ρ

�(R, ρ) , (7.4)

where �(R, ρ) is called ICP metric fit error, and nc is the number of common features

between the current feature set D and the past feature set M. The closed-form solution



7.4 Mathematical Modeling 93

for the least-squares problem of (7.4) in 2D is given by [Lu and Milios, 1997]:

R∗ = R(ψ) ,

ρ∗ = m̄−R∗ d̄ ,

where R(ψ) is a 2D rotation matrix that represents the vehicle rotation of angle ψ about

the vertical axis, m̄ � 1
nc

�nc

i mi, d̄ � 1
nc

�nc

i di, and

ψ = arctan

�
S12 − S21

S11 + S22

�

with Sij being the element ij of the covariance matrix S � 1
nc

�nc

i (di − d̄)(mi − m̄)T .

7.4 Mathematical Modeling

7.4.1 Process Model

The temporal evolution of the vehicle dynamics is described by two sets of nonlinear first-

order ordinary differential equations relative to a local NED coordinate frame. The set of

equations that relate the center of gravity position, p = [pN pE pD]
T ∈ R3, with respect

to NED coordinate frame is given by

ṗ(t) = v(t). (7.5)

The set of equations that describes how the linear velocity components along the rigid

body, given by v = [vN vE vD]
T ∈ R3, evolve with time is given by

v̇(t) = RNED
b (e)a(t) + g, (7.6)

where g = [0 0 gz]
T ∈ R3 is the gravity acceleration vector with gz = 9.81m/s2, and RNED

b

is the orthogonal rotation matrix that represents the rotation of the body coordinate frame

with respect to the NED coordinate frame, equation (5.2). Similar to the previous chapter,

this rotation matrix is computed using the attitude provided by the AHRS. In systems for
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which this information is not provided, such attitude information needs to be estimated

together with the other vehicle states. Also, it is important to mention that, for the case of

high velocities, a term corresponding to the Coriolis effect may be added in equation (7.6).

In this work, we assume the vehicle achieves small enough velocities. As before, the

continuous-time dynamic equations (7.5) and (7.6) are discretized by integrating over

time interval [(k − 1)T, kT ].

It is also considered that the measured input vector uk =
�
aTk vec (ek)

T
�T

∈ R7 is

corrupted by bias βa,k and random noise qk, and are modeled as

am,k = ak + βa,k + qa,k, (7.7)

em,k = ek ⊕ qe,k, (7.8)

where qa ∼ N ([0]3×1, Qa) ∈ R3 and qe ∼ N ([0]3×1, Qe) ∈ R3.

The accelerometer bias βa,k is modeled as a random-walk process:

βa,k = βa,k−1 + qβ,k−1 , (7.9)

where qβ ∼ N ([0]3×1, Qβ) ∈ R3. The bias components are jointly estimated with vehicle

states, yielding the joint state vector x̌k ∈ R9 defined as

x̌k �
�
pTk vTk βT

a,k

�T
, (7.10)

In our work, LiDAR-based odometry (LO) yields relative measurements, which means

that it depends on past states. Therefore, the state vector (7.10) is augmented with a

“clone”, p̀cl = [pcN pcE]
T ∈ R2, of the position states projected in the xy-plane as estimated

in time step l < k, p̀l = [pN pE]
T ∈ R2. Here the term clone (represented by the superscript

“c”) is used to define a simple and exact copy of a past state, as is done by [Roumeliotis and

Burdick, 2002]. After a new LO measurement is obtained and used to correct the system

estimates (see Section 3.2.2), the cloned states are updated with the newest estimate of

p̀k. The equation that describes the evolution of the cloned states with respect to time is
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given by

p̀ck = p̀ck−1. (7.11)

Notice that there is no noise in this model, indicating that the cloned states remain the

same until they are replaced by a new clone. We define the augmented state vector

xk ∈ R11 as

xk �
�
x̌T
k (p̀ck)

T
�T

. (7.12)

The discretized version of (7.5) and (7.6) together with (7.9) and (7.11) compose the

process model of the vehicle, which can be compactly recast as

xk = f (xk−1, uk−1, qk−1, k − 1) . (7.13)

7.4.2 Observation Model

The observation model relates the components of the state vector xk with the measured

output variables yk ∈ R8 given by

yk � [pm,k vm,k δm,k]
T . (7.14)

Global position and velocity are given by the GNSS system and are modeled as

pm,k = pk + rp,k , (7.15)

vm,k = vk + rv,k , (7.16)

where rp,k ∼ N ([0]3×1, Rp) ∈ R3 and rv,k ∼ N ([0]3×1, Rv) ∈ R3 are the position and

velocity noises, respectively.

LiDAR-odometry gives incremental displacement δm,k ∈ R2 in the xy-plane, which

means that the measurement depends both on the current p̀k and the past states, stored

as clone p̀ck (see Equation (7.12)). The augmentation of the state vector with a copy
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(clone) of the past state is the approach known as stochastic cloning [Roumeliotis and

Burdick, 2002]. Then, assuming that the state vector is augmented with the position

states p̀ck, the relative measurement model is given by

δm,k = p̀k − p̀ck + rδ,k, (7.17)

where rδ,k ∼ N ([0]2×1, Rδp) ∈ R2.

The complete observation model may be written as

yk = h (xk, rk, k) , (7.18)

where h is a function of random noise rk and the current xk states given by (7.15), (7.16)

and (7.17).

During the filtering process, after measurement update, the estimate of cloned states

ˆ̀pck are replaced with a new copy of current state estimate ˆ̀pk and a new covariance matrix

P xx
k is computed, as [Chambers et al., 2014]

P xx
k = C

�
P x̌x̌
k

�
CT , (7.19)

C =




I3×3 [0]3×3 [0]3×3

[0]3×3 I3×3 [0]3×3

[0]3×3 [0]3×3 I3×3�
I2×2 [0]2×1

�
[0]2×3 [0]2×3




.

Notice that, the operations with the cloned states are performed only when new relative

measurement is available.

7.5 Offline Experimental Results with Actual Data

This section presents an experiment with the customized commercial aerial vehicle shown

in Figure 7.1. Our DJI Matrice 100 quadrotor, which is commercialized with built-in

AHRS and GNSS, was equipped with a Hokuyo UTM-30LX-EW planar LiDAR. AHRS

and GNSS are, in fact, a DJI’s proprietary navigation solution that runs at the low-level
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hardware and delivers attitude, global position and velocity information in a fairly high

frequency, that is 100Hz for AHRS and 50Hz for GNSS. Our experiment was performed

in a forest environment in the main campus of the Universidade Federal de Minas Gerais.

Figure 7.5 shows a satellite view of the environment and, in blue, the path followed by

the robot.

Figure 7.5: Satellite view of the forest where our experiments were executed. Image
provided by Google Maps.

During the experiment, the vehicle flew in a manual mode and the data was recorded in

a bag file1. The entire algorithm was developed in C++ using the robot operating system

(ROS) as the middleware. In the sequence, we present the results of our experiment.

Due to tree canopies, while the vehicle was flying inside the forest, the drone’s GNSS

signal was damaged. Signal blockages however, did not last long enough to influence the

GNSS position estimation but caused a velocity estimate of 0m/s. Figure 7.6 shows a 2D

image illustrating the path executed by the vehicle as given by the DJI’s GNSS solution,

by our laser-odometry solution and by the fusion of both, as proposed in sections 7.3

and 3.6, respectively. Figure 7.7 shows a comparison between the velocity estimates from

the proprietary GNSS and our fusion algorithm. Notice that, even with the abnormal

GNSS velocity measurements, the fusion algorithm was able to constantly estimate the

velocity.

To access the robustness of our RAUKF-CMχ2 strategy when it faces abnormal sensors

measurements, GNSS and laser-odometry estimates were artificially contaminated with

two different types of errors that are likely to happen in practice. The first one was

1File format to store ROS messages, http://wiki.ros.org/Bags
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Figure 7.6: Two dimensional path estimated by the proposed RAUKF-CMχ2 algo-
rithm, DJI’s proprietary GNSS solution and laser-odometry (LO).
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Figure 7.7: Velocity in East direction estimated by our algorithm and by DJI’s GNSS
solution.
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the addition of relative position outliers, which may be caused in practice by a wrong

data association and a consequent error in the computed transformation. The second

error simulated satellite signal blocking. We have observed experimentally that, before

a complete signal blocking, DJI’s GNSS position estimate drifts slowly and the velocity

estimate goes to zero immediately.

Thus, four abnormal measurements are artificially generated: i) during the 10–17 s

period, laser-odometer estimates were contaminated with outliers of amplitudes 25cm,

50cm, and 1m; ii) between 20 and 40 s, the GNSS position and velocity were removed;

iii) during the period of 50–60 s, GNSS position was contaminated with a drift of 0.5m/s

slope while the GNSS velocity remained in zero, and; iv) during time 90–95s the GNSS

and LO measurements were removed.

RAUKF-CMχ2 RAUKF-CMχ2 - Abnormal measurements
UKF- Abnormal measurements
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Figure 7.8: Two dimensional path estimated by the RAUKF-CMχ2 both, with nor-
mal and without abnormal measurements, and by the UKF with abnormal
measurements.
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RAUKF-CMχ2 RAUKF-CMχ2 - Abnormal measurements
UKF- Abnormal measurements

0 20 40 60 80 100
-5

0

5

10

15

20

25

Figure 7.9: Position in the East direction estimated by the RAUKF-CMχ2 both, with
normal and abnormal measurements, and by the UKF with abnormal mea-
surements.
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Figure 7.10: Three standard deviation σE =
�

P xx
k,ii of position estimate in East direc-

tion.

Figure 7.9 shows the estimated north direction position for the proposed RAUKF-

CMχ2 algorithm and the standard UKF. RAUKF-CMχ2 estimates without the artificial

errors in GNSS and LO is also showed. Notice that, RAUKF-CMχ2 is robust to outliers
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3σ Innovation
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Figure 7.11: Innovation in the East direction regarding to the GNSS measurement, νE,
and its uncertainty given by three standard deviation σE =

�
P yy
ii . The

discontinuity in data is associated with GNSS data drop out.
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Figure 7.12: Innovation in the East direction regarding to the GNSS measurement, νN,
and its uncertainty given by three standard deviation σN =

�
P yy
ii . The

discontinuity in data is associated with GNSS data drop out.

in the LO measurements. It is possible to see that, on the other hand, during the periods

of 20–40s, the standard UKF is highly influenced by those outliers, due to the absence

of GNSS measurement during this period. It is also possible to notice that the RAUKF-
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CMχ2 is less influenced by the slow drift in the GNSS position estimate from 50 to 60 s.

This is due of the adaptive part of the algorithm, which is sensitive to a slow-growing

error in the measurement as shown in Figure 7.11 and 7.12. When the drift error is

interrupted, the GNSS measurement is not in fault anymore, but the measured absolute

position is distant from the estimated position. Thus, the filter continues to adapt the

covariance of GNSS measurement, see Figure 7.12 from 50 to 60 s.

Due to noise and abnormal behavior of sensor measurements, it is expected that the

state estimates present errors. Thus, the state covariance matrix P xx
k must capture the

uncertainty growth during these periods. Figure 7.10 shows the RAUKF-CMχ2 uncer-

tainty estimation during the periods of 20–40 s and 90–95 s when the GNSS measurements

are removed. Notice that the uncertainty in the estimate grows less in the first period due

to the relative position estimates given by LO. In the second period, the LO estimates

were also removed, which explains a large growth in the covariance. This behavior is

consistent with the assumption that relative measurements accumulate error with time.

It is also possible to see that, the covariance matrix capture the abnormal behavior of the

GNSS measurement the 50–60 s time interval.

7.6 Onboard Experimental Results

In this experiment, the quadrotor flies autonomously between trees. The forest environ-

ment has sparse trees, which means that the distance between each of the trees is sufficient

to allow our quadrotor navigates. Figure 7.13 shows a block diagram of our complete nav-

igation solution. In our navigation system, the filter output at 100 Hz is used to feedback

the motion control system, which consists of a path planner and a velocity controller. The

path planner computes the vehicle path and uses the information from LiDAR to con-

struct a local map for collision avoidance. Then, the velocity controller drives the vehicle

through the planned path. The complete system runs on the onboard computer Odroid

XU4 with an octa-core ARM processor, 2GB of RAM, running Ubuntu Mate 16.04. The

entire navigation system was developed in C++ using ROS as middleware.

The experiment was performed in a forest environment in the main campus of the Uni-

versidade Federal de Minas Gerais. Figure 7.14 shows a satellite view of the environment
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Figure 7.13: Block diagram of the proposed navigation solution. Data from the avail-
able sensors are combined using a robust and adaptive version of UKF
(RAUKF-CMχ2). The filter output feeds the motion control system, which
consists of a path planner and velocity controller.

and the vehicle path as estimated by RAUKF-CMχ2. In this figure, GNSS was not avail-

able in the yellow parts of the path. In what follows we discuss the main characteristics

and behavior of the proposed navigation system during this experiment.

Due to tree canopies, while the vehicle is flying inside the forest, the drone’s GNSS

signal can be damaged. In our experiment, it did not happen. Therefore, to assess the

robustness of our navigation system during GNSS failures, we artificially blocked the

GNSS signal in the following periods, from 40-50 s, from 70-80 s, and from 100-120 s,

which was done via software while the vehicle flew autonomously. Figure 7.15 shows the

desired task (black curve) and RAUKF-CMχ2 estimates (red curve) in 3D.

From Figure 7.15 we observe that our system was able to combine GNSS and relative

LO measurements adequately. In addition, even in the absence of global measurements,

RAUKF-CMχ2 estimates position and velocity, allowing the vehicle motion control. No-

tice that the desired curve was not followed accurately, which is expected, once the initial

plan did not considered obstacles in the environment.

Figures 7.16(a) and (b) show the position and velocity in the East direction. The

blockage periods of GNSS signal are delimited by gray-shaded regions. We observe that

RAUKF-CMχ2 position and velocity estimates tend to converge to GNSS position and ve-

locity measurements. This behavior is expected, once GNSS is an absolute measurement,
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Figure 7.14: Satellite view of the forest where our onboard experiments were executed.
Image provided by Google Maps. The path estimated by RAUKF-CMχ2

is shown in red, when AHRS, LO, and GNSS were available and in yellow
GNSS was unavailable.

which is not the case for the LO.

Figures 7.16(c) and (d) show the three standard deviations of position and velocity

estimates in the East direction, respectively. Notice that, when only the LO relative

measurements are used in the data-assimilation step, the uncertainty grows unbounded,

reflecting the error integration effect and unobservability of global position. On the other

hand, the availability of relative measurements, make the estimated velocity uncertainty

bounded, which means that the velocity is observable.
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Figure 7.15: Three-dimensional path estimated by RAUKF-CMχ2 (red), for the target
surveillance path represented by the black curve. Observe that the estimated
path deviates from the target one due to the presence of trees, represented
by brown cylinders. It is important to mention that, since the diameter and
position of the trees are not known, those cylinders are coarse approximations
of the actual forest, used for visualization only.

7.7 Conclusions

This chapter presented a localization solution for aerial vehicles navigating inside a for-

est. The proposed solution is based on combining LiDAR-based odometry, GNSS and

AHRS information using a robust adaptive sensor fusion algorithm based on UKF. The

LiDAR-based odometry relies on the fact that trees are easy identified in a laser scan.

Tree detection highly increases the efficiency of the method, allowing it to run in simple

onboard hardware. The performance of the proposed algorithm was shown through two

experiments using actual data.

In the first experiment, data was collected during a flight of the aerial vehicle in manual

mode. Then, offline tests with artificially abnormal measurements were performed on a

personal computer. The proposed RAUKF-CMχ2 is able to deal with some abnormal
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Figure 7.16: (a) and (b) Position and velocity in the East direction; (c) and (d) three
standard deviation σE =

�
P xx
k,ii of position and velocity estimates in the East

direction.

information, both in relative and global measurements.

In the second experiment, the proposed fusion algorithm runs online on an onboard

computer embedded in the vehicle. The navigation solution was used to feed the path

planner and controller in a fully closed-loop system. The experiment was performed in

a sparse forest, where the GNSS signal did not suffer substantial blockages. Thus, we

artificially dropout the GNSS signal in order to test the behavior of the system. The

experiment performed in a sparse forest environment shows that the fusion algorithm is

able to adequately combine global and relative measurements in real-world problems.



Chapter 8

Conclusion and Future Work

8.1 Concluding Remarks

State estimators are fundamental to the navigation of autonomous vehicles. Among the

state estimation techniques, Kalman-based state estimators are normally the standard

solution adopted. Although the estimation theory is well established, standard algorithms,

such as the UKF, are not able to adequately handle real-world issues, such as time-varying

uncertainty of measurements. The state estimation problem is even more challenging in

the presence of constrained states, such as unit quaternions.

In this thesis, we address the problem of state estimation of vehicles performing 6-

degrees of freedom maneuvers, in which attitude is represented by unit quaternions and

the available measurements have time-varying uncertainty. We propose state estimators

that are able to mitigate the influence of measurement failures by using robust adaptive

filtering techniques. In our approach, the uncertainty in the measurements is modeled

by random noise with unknown statistic parameters, namely, mean and covariance. The

main concern of this work was the state estimation problem for vehicles operating in

environments with damaged GNSS measurements. However, the proposed algorithms

can also be used for other types of systems. In addition, the proposed algorithms were

tested in real-world problems.

In Chapter 3, the unscented Kalman filter algorithm is revised. To handle the time-

varying uncertainty, adaptive approaches based on covariance matching and interacting

multiple model approach are investigated. The first adaptive approach, although simple,

can estimate online the measurement error covariance. Two methods to detect and miti-

gate the influence of outliers were also reviewed. One is based on the chi-square test, and a

107
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second is based on the Hampel identifier. In addition, the unscented Rauch-Tung-Striebel

smoother was also presented. Based on the reviewed approaches, two new robust adaptive

unscented Kalman filters were proposed, namely robust adaptive unscented Kalman filter

by using covariance matching and Hampel identifier - RAUKF-CMH and robust adap-

tive unscented Kalman filter by using covariance matching and χ2-test - RAUKF-CMχ2.

These algorithms represent the first theoretical contribution of this thesis (Section 3.6).

The localization of a vehicle is a particular state estimation problem. It is usual

to parameterize vehicle attitude by unit quaternions. This parameterization brings a

particular challenge to the state estimation problem, once the unit norm of quater-

nions must be maintained. In Chapter 4, probabilistic tools for unit quaternions are

reviewed. In order to handle the time-varying uncertainty and also ensure the unit norm

constraint, RAUKF-CMl, IMM, and URTS smoother, investigated in Chapter 3, are

extended. The new class of estimation algorithms are called quaternion-based robust

adaptive unscented Kalman filter by using covariance matching and Hampel identifier-

QRAUKF-CMH, quaternion-based robust adaptive unscented Kalman filter by using

covariance matching and χ2-test-QRAUKF-CMχ2, quaternion-based interacting multi-

ple model filter-QIMM, and quaternion-based unscented Rauch-Tung-Stribel smoother-

QURTS. This set of new algorithms represent the second theoretical contribution of this

thesis (Section 4.3).

In Chapter 5, the localization and flight path reconstruction problem of aerial vehicles

performing aggressive maneuvers is addressed. The motivation for this case study comes

from aerial races, in which the aerobatic maneuvers and television signals may jam the

GNSS signal. In this work, experimental flight data collected during different sessions of

the Red Bull Air Race are used to test the performance of adaptive algorithms, without

the robust part, developed in Section 4.3. The results show that the adaptive algorithms

are able to detect and mitigate time-varying uncertainty in the GNSS measurements. In

addition, the QRTS smoother improves the flight path estimation, mitigating the abrupt

changes in the position estimates and also decreasing the uncertainty of estimates.

In Chapter 6, we investigate the attitude estimation with MARG sensors. In this study

case, five abnormal measurement scenarios are tested with actual data collected from a

commercial MARG sensor. The results show a superior performance of the proposed
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algorithms faced with linear acceleration disturbs, and abrupt and slow varying changes

in the magnetic field.

In Chapter 7, the problem of state estimation of a micro aerial vehicle flying in a forest

environment is presented. In this case, GNSS and laser-based odometer measurements

with time-varying uncertainty are investigated. This study case presents two experiments.

First, collected data is used to test the performance of RAUKF-CMχ2 faced with two types

of abnormal measurements, outliers in the laser-based odometer and slow drift in GNSS

measurements. Then, in the second experiment, the proposed estimator algorithm is used

in a complete navigation solution, where its estimates are used to feed a path planner

and velocity control. The results show that the proposed algorithm is able to adequately

merge heterogeneous data.
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Automática, 2016, Vitória. Anais do XXI Congresso Brasileiro de Automática

(CBA’16), 2016. p. 1-6.

8.2 Future Work

Important theoretical investigations need to be addressed in future work. In this work,

ad-hoc techniques were proposed to modify the UKF in order to handle failures in mea-

surement data. The proposed solutions do not explicitly consider the non-Gaussian distri-

bution for filtering approach. More recent approaches, such as [Sarkka and Nummenmaa,

2009], use the variational Bayesian approach to approximate the posterior distribution.

These algorithms also consider Euclidean state spaces and thus need to be extended in

order to estimate states pertaining to non-Euclidean spaces.

As illustrated in the attitude estimation case study in Section 6, the adaptive algo-

rithms directly influence the bias estimates. In addition, in our work, only the measure-

ment covariance estimation is addressed in the adaptive estimation methods. A question

that remains is about the observability of states and parameters that are estimated. This

needs to be addressed in order to investigate the influence of adaptive approaches in the

state estimate and the possibility to simultaneously estimate both the process and ob-

servation covariance matrices. In addition, it is also expected that the inclusion of more

sensors leads to better observability. However, the effect of individual sensors in the ob-

servability properties remains unexplored. The information about observability properties

could be beneficial to a motion planning system, in order to perform risk assessment of a

task.

In practical implementations of filtering algorithms, measurements from different sen-

sors can arrive out-of-sequence due to different sensor processing times and transmission

latencies. This means that an incoming measurement can be older than the current state.

A classical form to try to overcome this problem is by saving a buffer with all necessary

variable, and use the measurement in its respective time instant, then to reprocess the
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filter. This procedure is sometimes very time-consuming. Thus, investigations, in order

to combine adaptive algorithms with techniques to treat out of sequence measurements

need to be addressed.

As the reliability of autonomous systems improves, deployment of multiple vehicles in

more complex missions, in a collaborative way, becomes feasible. In this regard, heteroge-

neous systems, such as ground and aerial vehicles, could share information, improving the

navigation performance. This is also a challenging problem that needs to be addressed in

future investigations.
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Appendix A

Gaussian Bayesian Filtering and

Smoothing

In this chapter, we derive the Bayesian filtering equations, which are the general equation

for computing filtering solutions for both linear and nonlinear state-space models. We also

present the Kalman filter and smoother equations which give the solution to the linear

Gaussian Bayesian filtering and smoothing problems. The formulation of the multiple

model approach, which assumes hybrid systems, is also presented. The contents of this

appendix are mainly based on the works of [Candy, 2011], [Särkkä, 2013], and [Bar-

Shalom et al., 2004].

A.1 Recursive Bayesian Approach

The recursive Bayesian processes consider that the state space model, defined in Sec-

tion 3.1, is a probabilistic state space model, which consists of a sequence of conditional

probability distributions:

xk ∼ ρ (xk|xk−1, uk−1) , (A.1)

yk ∼ ρ (yk|xk) , (A.2)

where k ∈ N denotes the discrete time, xk ∈ Rnx is the system state, uk−1 ∈ Rnu and

yk ∈ Rny are the known input and output measurements, respectively, ρ (xk|xk−1, uk−1)

is the dynamic model describing the evolution of state conditioned to the previous state

xk−1 and input uk−1, and ρ (yk|xk) is the measurement model, which is the distribution

of measurements conditioned to the state.
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It is assume that the probabilistic state space model(A.1)-(A.2) is constrained to the

following Markov properties:

Property A.1.1. Markov property of states

The state sequence x0:kf = {x0, ..., xkf} form a Markov sequence, where kf ∈ N. The state

xk and the whole future states xk+1:kf = {xk+1, ..., xkf}, given the state xk−1 and the input

uk−1, are independent of anything that has happened before the time step k − 1. Also, all

the past states xk−1:0 are independent of the future states xk+1:kf and inputs uk+1:kf , given

the present state xk and input uk.

Property A.1.2. Conditional independence of measurements

Given the current state xk, the current measurement yk is conditionally independent of

the whole measurement y1:k−1 and state x0:k−1 histories.

Due the property of conditional independence of measurements and the Markov prop-

erty of states we have that ρ(yk|y1:k−1, x1:k) = ρ(yk|xk) and ρ(xk|x1:k−1, u0:k−1, y1:k−1) =

ρ(xk|xk−1, uk−1). Then, for a given instant N ∈ �, the joint prior distribution of states

and the joint likelihood of the measurements are, respectively

ρ
�
x0:kf |u0:kf−1

�
= ρ (x0)

kf�

k=1

ρ (xk|xk−1, uk−1) , (A.3)

ρ
�
y1:kf |x0:kf

�
=

kf�

k=1

ρ (yk|xk) . (A.4)

By using the Bayes theorem, the a posteriori PDF can be written as

ρ(x0:kf |y1:kf , u0:kf−1) =
ρ(y1:kf |x0:kf , u0:kf−1)ρ(x0:kf |u0:kf−1)

ρ(y1:kf |u0:kf−1)
(A.5)

=
ρ(y1:kf |x0:kf )ρ(x0:kf |u0:kf−1)

ρ(y1:kf )
. (A.6)

As new observations arrived, the number of computations of the Equation (A.6) in-

creases, which is not feasible for real-time applications. Then, the a posteriori PDF is

marginalized in order to have algorithms with constant number of computations per time

step. Two marginal distributions are considered here: the marginal distribution of the cur-

rent state xk given the current and previous output measurements y1:k, ρ (xk|u0:k−1, y1:k),
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referred to as Bayesian filter, and; the marginal distribution of state xk given a certain

interval kf > k of the measurements y1:kf , ρ
�
xk|y1:kf

�
, referred to as Bayesian smoother.

For simplicity, from now on, we disregard the input measurements u0:k−1.

The Bayes Filter

The purpose of filtering is to compute the marginal a posteriori PDF of state ρ (xk|y1:k).
By applying the Bayes theorem to the problem defined in Section 3.1, one tries to obtain

recursive equations for the a posteriori probability density of state xk, based on available

observations y1:k
1

ρ(xk|y1:k) =
ρ(y1:k|xk)ρ(xk)

ρ(y1:k)

=
ρ(yk,y1:k−1|xk)ρ(xk)

ρ(yk, y1:k−1)

=
ρ(yk|y1:k−1, xk)ρ(y1:k−1|xk)ρ(xk)

ρ(yk|y1:k−1)ρ(y1:k−1)
(A.7)

=
ρ(yk|xk)ρ(xk|y1:k−1)

ρ(yk|y1:k−1)
. (A.8)

The recursive estimation process, commonly known as Bayes filter comprises two es-

sential steps [Candy, 2011]: prediction or forecast and update or data-assimilation. Figure

A.1 illustrates the two steps sequential Bayesian filter, wherein the a posteriori density

function is given by

ρ(xk, |y1:k) = Wk|k−1ρ(xk|y1:k−1), (A.9)

where the weight W is defined by

Wk|k−1 =
ρ(yk|xk)

ρ(yk|y1:k−1)
. (A.10)

The forecast step of the Bayes filter consists in the calculation of the prior distribution

ρ(xk|y1:k−1). Thus, given the posterior distribution ρ(xk−1|y1:k−1) from the previous time

k−1, the prior distribution can be obtained by solving the Chapman-Kolmogorov equation

1The following conditional probability rules are applied: ρ(A,B|C) = ρ(A|B,C)ρ(B|C) and ρ(A,B) =
ρ(A|B)ρ(B).
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given by

ρ(xk|y1:k−1) =

�
ρ(xk|xk−1)ρ(xk−1|y1:k−1)dxk−1, (A.11)

where ρ(xk|xk−1) is given by the state transition equation (1.1) and the know statistics of

the process noise.

The data-assimilation step consists in calculating the posterior PDF ρ(xk, |y1:k). In

this step, the most recent measurement yk can be incorporated, reducing the uncertainty

of the estimate x̂k. Therefore, the term ρ(yk|xk) denotes the measurement probability,

which is also commonly known as likelihood function. Finally, the evidence (normalizing

factor) can be calculated by the law of total probability, given by

ρ(yk|y1:k−1) =

�
ρ(yk|xk)ρ(xk|y1:k−1)dxk, (A.12)

which is a function of measurements y1:k. Note that the current measurement yk is

assimilated into the prior PDF ρ(xk|y1:k−1) obtained during the forecast step.

Forecast� Data-assimilation

Wk|k−1

yk

ρ(xk−1|y1:k−1)

ρ(xk|y1:k)ρ(xk|y1:k−1)

Figure A.1: Sequential Bayesian filtering.

For most applications, the analytic solutions of (A.11) and (A.12) are intractable.

Nevertheless, by admitting some restrictions on the utilized PDFs, e.g. if they can be

represented by a finite number of parameters such as mean and covariance, the so-called

parametric filters or Gaussian filters implementations of Bayes filter can be performed.

Kalman-based filters are example of practical Bayesian algorithms (Appendix A.2).
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A.2 The Kalman Filter

Let the probabilistic state space model be a linear Gaussian model, then

xk = Ak−1xk−1 + Bk−1uk−1 +Gk−1qk−1 (A.13)

yk = Ckxk + rk, (A.14)

where xk ∈ Rnx is the state, yk ∈ Rny is the output measurement, qk−1 ∈ Rnq is the

process noise, and rk−1 ∈ Rny is the output measurement noise. Assume that, for all

k ≥ 1 the matrices Ak−1 ∈ Rnx×nx , Bk−1 ∈ Rnx×nu , Gk−1 ∈ Rnx×nq , Ck ∈ Rny×nx , the

inputs uk−1, and the outputs yk are known. Also, the process noise qk−1 and the output

measurement noise rk are assumed to be Gaussian, zero-mean, and mutually independent,

with covariance matrices Qk−1 ∈ Rnq×nq and Rk ∈ Rny×ny , respectively, that is

ρ (qk−1) = N
�
[0]nq×1 , Qk−1

�
(A.15)

ρ (rk) = N
�
[0]ny×1 , Rk

�
. (A.16)

The initial state vector x0 ∈ Rnx is assumed to be Gaussian with initial estimate x̂0 �
E [x0] and and error-covariance P xx

0 � E
�
(x0 − x̂0) (x0 − x̂0)

T
�
, that is,

ρ (x0) = N (x̂0, P
xx
0 ) . (A.17)

Under the linear-Gaussian assumption, the prior distribution, the probabilistic process

and measurement models are:

ρ (xk−1|y1:k−1) = N
�
x̂k−1, P

xx
k−1

�
, (A.18)

ρ (xk | xk−1) = N (Ak−1xk−1 + Bk−1uk−1, Qk−1) , (A.19)

ρ (yk | xk) = N (Ckxk, Rk) , (A.20)

where x̂k−1 is the prior estimate with prior covariance matrix P xx
k−1,
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From (A.11), the forecast PDF is given by:

ρ (xk|y1:k−1) = N
�
x̂k|k−1, P

xx
k|k−1

�
, (A.21)

ρ (yk | y1:k−1) = N
�
ŷk|k−1, P

yy
k|k−1

�
, (A.22)

where x̂k|k−1 is the forecast estimate, ŷk|k−1 is the forecast output estimate, and the

forecast error covariance P xx
k|k−1, innovation covariance P yy

k|k−1, and cross covariance P xy
k|k−1

are defined by:

P xx
k|k−1 � E

��
xk − x̂k|k−1

� �
xk − x̂k|k−1

�T�
, (A.23)

P yy
k|k−1 � E

��
yk − ŷk|k−1

� �
yk − ŷk|k−1

�T�
, (A.24)

P xy
k|k−1 � E

��
xk − x̂k|k−1

� �
yk − ŷk|k−1

�T�
. (A.25)

From (A.9), the solution to the state estimate problem for linear systems is given in

the data-assimilation step by

ρ(xk, |y1:k) = N (x̂k, P
xx
k ) , (A.26)

where x̂k is the state estimate and P xx
k is the error covariance matrix of estimate, defined

as

P xx
k � E

�
(xk − x̂k) (xk − x̂k)

T
�
. (A.27)

The Kalman Filter Algorithm

Thus, for the linear system (A.13)-(A.14), the forecast step of Kalman filter is given by:

x̂k|k−1 = Ak−1x̂k−1 + Bk−1uk−1, (A.28)

P xx
k|k−1 = Ak−1P

xx
k−1A

T
k−1 +Gk−1Qk−1G

T
k−1. (A.29)
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The data-assimilation step is given by:

ŷk|k−1 = Ckx̂k|k−1, (A.30)

P yy
k|k−1 = CkP

xx
k|k−1C

T
k +Rk, (A.31)

P xy
k|k−1 = P xx

k|k−1C
T
k (A.32)

x̂k = x̂k|k−1 +Kk

�
yk − ŷk|k−1

�
, (A.33)

P xx
k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k , (A.34)

where the Kalman gain Kk ∈ Rnx×ny is defined as

Kk � P xy
k|k−1

�
P yy
k|k−1

�−1

. (A.35)

A.3 The Raunch-Tung-Striebel Smoother Algorithm

First, a filtering algorithm (Appendix A.2) is run, yielding the filtering estimates x̂k and

P xx
k for the time interval k = k0 . . . kf . Then, the two steps smoother algorithm runs

backwards from kf − 1 to k0. The first step, also called forecast step given by:

x̂k+1|k = Akx̂k + Bkuk, (A.36)

P xx
k+1k = AkP

xx
k AT

k +GkQkG
T
k . (A.37)

The second step, called smoothing step is given by:

Ks
k = P xx

k AT
k

�
P xx
k+1|k

�−1
, (A.38)

x̂s
k = x̂k +Ks

k

�
xs
k+1 − x̂k+1|k

�
, (A.39)

P xx,s
k = P xx

k +Ks
k

�
P xx,s
k+1 − P xx

k+1|k
�
(Ks

k)
T , (A.40)

with xs
kf

= xkf and P xx,s
kf

= P xx
kf
.
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A.4 Multiple Model Approach

The multiple model (MM) approach assumes that the system can be suitably described

by a finite number of models. Such systems are called hybrid, since they have both analog

states whose dynamics are modeled by difference stochastic equations and digital states

(modes) which are usually modeled by a finite Markov chain [Hwang et al., 2006].

The correct model selection depends on the type of output data available. The inno-

vation of different filters for each model are used as functions that reflect the likelihood

that estimates of each of different models is the correct one.

The Bayesian framework is used to obtain the corresponding a posteriori probabilities

[Bar-Shalom et al., 2004, Simon, 2006]. Thus, assume that the measurement equation

(1.2) is rewritten with model-dependent measurement noise2,

yk = h(xk, k) + vjk, ∀ j ∈ M, (A.41)

where j denote a discrete set of r models, denoted by M = {M1, ..., M r}. Note that the
difference between (1.2) and (A.41) is the mode-dependent noise, so the stochastic hybrid

system has different measurement noise statistics from model to model.

Thus, let the sth sequence of models up to and including time k − 1 be denoted by

Mk−1,s = {M i
1,s, ...,M

i
k−1,s}, s = 1, ..., rk−1 and ∀ i ∈ M, (A.42)

where the model i is in effect at time k − 1. Hence, the lth sequence, with model j in

effect at time k is denoted by

Mk,l = {Mk−1,s, M
j
k}, l = 1, ..., rk and ∀ j ∈ M. (A.43)

It is assumed that the switchings are governed by a Markov process with known model

transition probabilities

Pr{M j
k |M i

k−1} � Πij, ∀ i, j ∈ M, (A.44)

2In a general formulation of MM approach, multiple models can represent the process and observation
equations.
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where Πij is the transition probability from model i to model j, and Pr{·} denotes the

probability of an event.

Using the total probability theorem with respect to set (A.43), the conditional PDF of

state xk is obtained by a Gaussian mixture with exponential increasing number of terms

ρ(xk|y1:k) =
rk�

l=1

ρ(xk|Mk,l, y1:k)Pr{Mk,l|y1:k}, (A.45)

where ρ(xk|Mk,l, y1:k) is obtained by constructing an estimator as in Section 3.2 based

upon (1.1) and (1.2), whose system parameters are matched to the Markov chain se-

quence (A.43) [Tugnait, 1982]. The a posteriori probability of lth sequence given the

measurement data up to k, is obtained by using the Bayes’ rule as

γk,l � Pr{Mk,l|y1:k}

= Pr{Mk,l|yk, y1:k−1}

=
ρ(yk|Mk,l, y1:k−1)Pr{Mk,l|y1:k−1}

ρ(yk|y1:k−1)

=
1

c
ρ(yk|Mk,l, y1:k−1)Pr{Mk,l|Mk−1,s, y1:k−1}Pr{Mk−1,s|y1:k−1}

=
1

c
ρ(yk|Mk,l, y1:k−1)Πijγk−1,s, (A.46)

where c is a normalization constant, i is the last model of sequence s and j is the last

model of sequence l.

Notice that the computational requirements grow exponentially with time, O(rk).

Unfortunately, the optimal estimator has no practical feasibility. Thus, suboptimal es-

timation schemes with fixed computational cost are proposed. A simple way to obtain

a suboptimal algorithm is to keep a fixed number of models sequences, discard the rest

and normalize the probabilities to sum up to unity [Bar-Shalom et al., 2004]. Among

the major suboptimal algorithms, are the Generalized Pseudo-Bayesian (GPB) [Ackerson

and Fu, 1970] and the Interacting Multiple Model (IMM) [Blom and Bar-Shalom, 1988, Li

and Bar-Shalom, 1994]. The last one, has become one of the most popular maneuvering

target tracking approaches [Mallick et al., 2012].

The IMM approach considers all the possible models in the last two sampling time,
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i.e k − 1 and k. Therefore, (A.45) is rewritten as

ρ(xk|y1:k) =
r�

j=1

ρ(xk|M j
k , y1:k)Pr{M j

k |y1:k}. (A.47)

The mode-conditioned a posteriori PDF of the state xk is given by

ρ(xk|M j
k , y1:k) = ρ(xk|M j

k , yk, y1:k−1)

=
ρ(yk|M j

k , xk)

ρ(yk|M j
k , y1:k−1)

ρ(xk|M j
k , y1:k−1). (A.48)

Then, it applies the total probability theorem in the mode-conditioned a priori

ρ(xk|M j
k , y1:k−1) =

r�

i=1

ρ(xk|M j
k ,M

i
k−1, y1:k−1)Pr{M i

k−1|M j
k , y1:k−1}

≈
r�

i=1

ρ(xk|M j
k ,M

i
k−1, x̂

i
k−1|k−1, P

xx,i
k−1|k−1)w

i|j
k−1|k−1, (A.49)

where w
i|j
k−1|k−1 = Pr{M i

k−1|M j
k , y1:k−1} are the mixing probabilities. Equation (A.49) is

a mixture with a different weight w
i|j
k−1|k−1 for each model M j

k . This equation is the core

of the IMM algorithm and reflects the fact that the past can be summarized by r mode-

conditioned means and covariances. The mixture is assumed to be a mixture of Gaussian

PDFs and then approximated by moment matching.

The model probability is defined as

γj
k � Pr{M j

k |y1:k}

= Pr{M j
k |yk, y1:k−1}

=
1

c
ρ(yk|M j

k , y1:k−1)Pr{M j
k |y1:k−1} (A.50)

=
1

c
Λj

k

r�

i=1

Pr{M j
k |M i

k−1, y1:k−1}γi
k−1 (A.51)

where Λj
k = ρ(yk|M j

k , y1:k−1), γ
i
k−1 = Pr{M i

k−1|y1:k−1} and c is a normalization constant,

given by

c �
r�

j=1

Λj
k

r�

i=1

Πijγ
i
k−1. (A.52)
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