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Resumo

O tratamento de atributos categóricos com uma grande quantidade de categorias é um
problema recorrente em análise de dados. Existem poucas propostas na literatura para
lidar com este problema importante e recorrente. Introduzimos um modelo generativo,
que simultaneamente estima os parâmetros e o agrupamento do atributo categórico em
grupos. Nossa proposta é baseada em impor um grafo no qual os nós correspondem
a categorias e criando uma distribuição de probabilidade sobre partições deste grafo.
Sendo um modelo Bayesiano, somos capazes de fazer inferência a posteriori sobre os
seus parâmetros e o particionamento do atributo categórico. Comparamos nosso mod-
elo com métodos estado da arte e mostramos que obtemos uma capacidade preditiva
igualmente boa e melhor interpretação dos resultados obtidos.

Palavras-chave: Modelo Hierárquico, Regressão, Clusterização, Redução de dimen-
são.
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Abstract

A common difficulty in data analysis is how to handle categorical predictors with a large
number of levels or categories. There are few proposals developed in the literature to
handle this important and frequent problem. We introduce a generative model that
simultaneously carries out the model fitting and the aggregation of the categorical
levels into larger groups. Our approach is based on imposing a graph where the nodes
are categories and creating a probability distribution over meaningful partitions of this
graph. Being a Bayesian model, it allows the posterior inference, including uncertainty
measurement, on the estimated parameters and the categories partition. We compare
our method with the state-of-art methods showing that it has equally good predictive
performance and much better interpretation ability. Given the current concern on
balancing accuracy versus interpretability, our proposal reaches an excellent result.

Palavras-chave: Hierarchical Model, Regression, Clustering, Dimensionality Reduc-
tion.

xvii





List of Figures

2.1 Illustration of types of graph: (a) an undirected graph; (b) a directed graph;
(c) a disconnected graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 (a) A weighted graph; (b) a spanning tree; (c) a minimum spanning tree. . 10

3.1 A graph representation of a spatial categorical variable. . . . . . . . . . . 18
3.2 Graphical model representation of a PPRM. Hyper-parameters are in a

square gray box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 A neighbourhood graph for Munich (left) and New York (right) dataset.
Two districts/neighbourhood are connected if they are spatially neighbours.
Each district corresponds to a level of the categorical variable we are in-
terested in clustering. For the New York dataset we have 2 connected
components, neighbourhoods in the Manhattan island do not connect to
neighbourhoods in Brooklyn. . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Posterior means for the vertices effects in each Munich district using PPRM
(left) and Lasso (right). Effects are normalized using the min-max normal-
ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Posterior means for the vertices effects in each Seattle neighbourhood using
PPRM (upper left) and mean log price per night of stay (upper right). Mean
partial residual (Y − Xβ) for each region (lower left) and its respective
clustering (lower right) obtained in a MCMC iteration. . . . . . . . . . . 35

4.4 Posterior means for the vertices effects in each Toronto using PPRM (left)
and Lasso coefficients (right). . . . . . . . . . . . . . . . . . . . . . . . . . 36

xix





List of Tables

3.1 Computational complexity for each iteration . . . . . . . . . . . . . . . . . 25

4.1 Summary for each dataset. N is the number of samples, Nfixed number of
fixed samples, V number of levels in the categorical variable of interest, F
number of components in the input graph and Date compiled is the data in
which the inside Airbnb was compiled. . . . . . . . . . . . . . . . . . . . . 32

4.2 Mean Square error and standard deviation (MSE/SD), 95% highest poste-
rior density interval for the number of clusters under PPRM (HPD-C) and
the Lasso estimated number of clusters (LaC) for all different methods and
Munich house rent (Row 1) and Inside Airbnb (Rows 2-7) datasets. Relative
MSE difference against PPRM model in bracket. . . . . . . . . . . . . . . 34

4.3 Predictive accuracy of a Bayesian Linear Regression (1) with the categor-
ical feature (2) without the categorical feature and relative change of not
including the feature ∆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xxi





Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

2 Background and Theoretical Framework 5
2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Computational representation . . . . . . . . . . . . . . . . . . . 11
2.3.3 Modeling as graph problem . . . . . . . . . . . . . . . . . . . . 11

2.4 Product Partition Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Bayesian Linear Regression Model . . . . . . . . . . . . . . . . . . . . . 13
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Product Partition Regression Model 17
3.1 Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Gibbs sampler for the PPRM . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Computational complexity analysis . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Draw β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xxiii



3.3.2 Draw T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Draw π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Draw ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.5 Draw θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.6 Draw σ2

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Experimental Evaluation 29
4.1 Munich house rent dataset . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Inside Airbnb Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Posterior Predictive Inference . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Hyperparameters and Model Initialization . . . . . . . . . . . . . . . . 33
4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Conclusion 37

Bibliography 39

Appendix A Posterior full conditional distributions 43
A.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1 Inside Airbnb data cleaning . . . . . . . . . . . . . . . . . . . . 47
A.1.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . 48

A.2 Additional plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xxiv



Chapter 1

Introduction

A recurrent and difficult problem in predictive modeling is the presence of categorical
variables with a large number of levels or categories. For example, an educational in-
dividual outcome may be analyzed using the college student major as a feature. This
is a categorical variable with dozens of distinct and unordered categories. As another
example, risk analysis involving automobile insurance claims data have a variable in-
dicating the client car model involved in the event. This variable typically has about
one hundred different instances. Occupational disease analysis with individual data
uses the job occupation as a feature with a very large number of categories. Another
example is the analysis of credit risk over a large region that considers the client’s geo-
graphical location, such as the residence zip code. It is not uncommon for the location
variable to have from hundreds to thousands of different categories.

Using such features with their many levels leads to harmful consequences for the
machine learning algorithms. Usually, the feature is represented using the dummy-
coding or one-hot-encoding that requires to introduce an indicator variable for each
possible level of the categorical feature. Learned coefficients become very unstable
making the results hard to interpret. It is a rare situation when we are interested in
the effects of the feature-specific levels – such as specific car models or college majors.
It is more usual that we are more interested in broad categories or subgroups of majors.
However, it is not clear how to aggregate the levels into higher-level categories that are
interpretable and statistically efficient. Besides the interpretation issue, the inclusion
of categorical variables with many levels in a predictive model easily leads to a sparse
design matrix. Bateni et al. [2019] shows that the number of parameters in the first
layer in a neural network can dwarf the number of parameter in the remaining network
due to a categorical variable having too many levels. The consequence may be an
ill-conditioned optimization problem that results in an overfitted model.
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2 Chapter 1. Introduction

The most common strategy recommended by practitioners (e.g., Kaggle partic-
ipants) is to reduce the number of levels of the feature. When the feature levels are
naturally organized in a hierarchical tree structure, one crude way is to cut the hi-
erarchy at a high level. For example, considering a job occupation feature, one may
consider law clerks, paralegals, and legal secretaries as a broad category named legal
assistants, and web designer, web developer, network engineers and other computer
jobs as a single category. The disadvantages of this crude strategy is the need of a pre-
existing hierarchy and the arbitrary choice of a stopping level in a hierarchy, typically
decided in advance, without concerning to the response to be predicted and risking to
increase the model bias.

Another strategy is to reduce the encoding of the categorical variable based on
the response variable, called target encoding, as proposed by Micci-Barreca [2001]. One
may target encode the levels by replacing each category with its mean response and
hence substituting the categorical variable by a continuous one. Yet another strategy
is to sort the categories by their mean response and to retain only the categories that
are responsible for, let’s say, 90% of the examples, merging all remaining categories
in an “Other” category. This can lead to fewer categories as many levels may appear
only rarely. A difficulty with a response-based encoding is that any method using the
response to guide the feature engineering will be subject to overfitting and it will lead
to biased error bars for the coefficients and hypothesis testing.

Some more theoretically-based answers to this problem have been proposed re-
cently and are reviewed in section 2.6. A Lasso-constrained regression approach for
an analysis of variance proposed by [Bondell and Reich, 2009] aims at simultaneously
estimating coefficients and collapsing levels of a covariate. The important novelty is
to impose a Lasso-type regularization on pairwise coefficients’ differences rather than
the coefficients directly. Using a similar approach, Tutz and colleagues extended this
idea to several different models in a series of papers [Gertheiss and Tutz, 2011; Oelker
et al., 2014; Tutz and Berger, 2018]. Another proposal that is becoming popular was
suggested in the context of extreme boosting [Prokhorenkova et al., 2018]. It relies on
an artificial ordering of the training examples and it uses the “previous” examples in
order to estimate a target encoding variable.

In this work, we propose a principled Bayesian solution based on a generative
model with the categorical variable levels organized in a graph. The set of features
in our predictive model is partitioned into two classes. One contains the categorical
variables with many levels. The other class contains the usual continuous features
and the categorical features with a small number of levels. We propose a Bayesian
regression model that simultaneously estimates the parameters of the second class as
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well as aggregates the levels of the first class and estimates its coefficients.
More specifically, we propose a Product Partition Regression Model (PPRM)

induced by spanning trees to deal with linear regression analysis involving a categorical
covariate with a large number of levels. The model is represented in terms of graphs
with vertices representing the different levels of the categorical variable and edges
connecting neighbouring categories (a complete graph is allowed if no structure is
available). We assume that categories with similar impact on the response variable
should be merged thus reducing the dimension of the categorical covariate. The goal is
to simultaneously learn the regression coefficients and to infer the effect and grouping
of the categorical covariates. Our proposed model builds on the ideas proposed in
[Teixeira et al., 2015, 2019] to carry out spatial clustering based on stochastically
pruning spanning trees. Being a principled Bayesian solution, we obtain uncertainty
measures associated with the coefficients and the aggregation of the covariate levels in
the first class.

In Chapter 2 we review the technical background and previous related work.
Chapter 3, we describe the proposed model, integrating the product partition model
to aggregate levels of a categorical variable in a regression context. In Chapter 4, we
present the empirical evaluation of the proposed model and compare its results against
baselines strategies. Finally, chapter 5 concludes this thesis with final remarks and
directions for future work.





Chapter 2

Background and Theoretical
Framework

In this chapter we start by presenting concepts used in our proposed solution. Later,
we review the literature related to the problem.

First, Section 2.1 provides a brief review of clustering concepts. Then, section 2.2
reviews Markov Chain Monte Carlo (MCMC) sampling algorithms. Later, in Section
2.3 we present necessary concepts from graph theory and how the clustering task is
modeled as a graph partitioning problem. Next, sections 2.4 and 2.5, quickly review
concepts of product partition model and Bayesian linear regression, that will be ex-
tended in the proposed solution in Chapter 3. Finally, Section 2.6 provides a literature
review of related work.

2.1 Clustering

Cluster analysis (or Clustering) is the unsupervised classification of patterns (feature
vector, observations or data items) into groups (clusters) based on similarity. Clustering
is based on the intuitive sense that patterns within-cluster are more similar to each
other than to patterns in a distinct cluster.

Clustering models have been applied in a wide range of research communities
such as biology, geography, geology, psychology, marketing, information retrieval, and
pattern recognition. Typical applications of clustering analysis are to get insight about
the data or to preprocess the data for other algorithms.

Several techniques for clustering have been proposed. It is agreed on that clus-
tering techniques can be divided into two main categories: hierarchical and partitional.
Hierarchical clustering generates a sequence of partitions while partitional clustering

5



6 Chapter 2. Background and Theoretical Framework

splits the data into some number (usually specified) of clusters without the hierarchical
structure. An important concept is hard and fuzzy (soft) clustering. In hard clustering,
each object is assigned to only one cluster, whereas in fuzzy clustering each object can
belong to all clusters with a degree of membership.

There is also constrained clustering, where constraints are imposed for objects to
belong to the same cluster. A constrained version of k-means is proposed in Wagstaff
et al. [2001]. This work focuses on a constrained clustering problem with a hard
assignment to clusters.

A great survey on clustering algorithms was written by Xu and Wunsch [2005].

2.2 Markov Chain Monte Carlo

In this section, we introduce some important Markov Chain Monte Carlo (MCMC)
algorithms used in our solution. These algorithms, consists in constructing a Markov
Chain with a specific target distribution, whose samples are obtained by observing
samples from the specified Markov Chain. A comprehensive history review can be
found on Brooks et al. [2011] (Chapters 1 and 2).

We begin by first reviewing the Metropolis-Hastings (MH) and next we review
the Gibbs sampler, which is as a special case of MH.

2.2.1 Metropolis-Hastings

The Metropolis-Hasting algorithm is a general term for a useful family of methods to
draw samples from a probability distribution p(θ) (possibly multivariate), from which
directly sampling is not viable (e.g: does not exists a closed formula or intractable
integral). The required conditions for the convergence to the target distribution are
irreducibility and aperiodicity [Roberts and Smith, 1994]. The irreducibility condition
means that for every θa and θb in the domain of p(.), we must be able to move from θa

to θb in a finite number of steps with nonzero probability and the aperiodicity condition
means that the number of steps from any state must not be a multiple of some integer.

The Metropolis algorithm was first introduced in the work of Metropolis et al.
[1953]. It is an adaptation of a random walk, that uses an accepting/rejecting strategy
to better represent a target distribution [Gelman et al., 2004]. The algorithm consists
in defining a number of iterations S (length of the Markov Chain) and a symmetric
proposal distribution (or jumping distribution) q(θa|θb) = q(θb|θa), for every iteration
s.
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The pseudo-code 1 describes the steps of the Metropolis algorithm. It starts
by with a valid starting point θ(0), for which p(θ(0)) > 0. For a specified number of
iterations, it draws a new state from the proposal distribution q(.|.) and computes the
Metropolis ratio r. The proposed state is accepted with probability min(1, r), if the
proposed state is rejected the current state is used at the next iteration. It is important
to note that the chain may remain at the same state for many iterations.

Algorithm 1: Metropolis Algorithm
Initialize θ(0)

for s = 1 to S do
Draw θ̃ from q(θ̃|θ)
Compute r = min

(
1, p(θ̃)

p(θ(s−1))

)

Draw u ∼ U(0, 1)
if u ≤ r then

Set θ(s) = θ̃
else

Set θ(s) = θ(s−1)

return {θ(1), θ(2), ..., θ(S)}

The Metropolis-Hastings [Hastings, 1970] algorithm is a generalization of the
Metropolis for when the proposal distribution q is not symmetric. To correct for the
asymmetry, a correction term is introduced, thus replacing r to a ratio of ratios (2.1).
The ratio is always defined, since the denominator can only be zero if q(θ̃|θ) = 0 or
p(θ(s−1)) = 0. The first will never happen because it is not possible to propose a state
with probability density equals to 0 and the second will not happen because a state
with probability density equals to zero with probability one.

r = min

(
1,

p(θ̃)q(θ(s−1)|θ̃)
p(θ(s−1))q(θ̃|θ(s−1))

)
. (2.1)

A few remarks can be made. The proposal distribution q(.|.) has to have a
positive density on the support of the target distribution p(.). The probability densities
p(.) and q(.|.) in the ratio can be substituted by an unnormalized densities, since the
normalizing constant are common on both the numerator and denominator. In practice,
for numerical reasons, it is useful to consider the log of the ratio as defined in (2.2) and
accept the new state if log(u) ≤ rlog.
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rlog = min(0, log(p(θ̃))− log(p(θ(s−1))) + log(q(θ(s−1)|θ̃))− log(q(θ̃|θ(s−1))) (2.2)

2.2.2 Gibbs Sampler

The Gibbs Sampler (or Gibbs sampling) first introduced in Geman and Geman [1984]
is a widely used MCMC algorithm to sample from a multidimensional distribution. It
is know as Gibbs sampler, because it was used for a Bayesian study of a Gibbs random
field in the context of discrete image processing.

Gibbs sampler is a MCMC scheme where the transition kernel is formed by the
full conditional distributions. Let p(θ) be a distribution of interest, and the parameter
vector θ be divided into d components (θ1, θ2, ..., θd)

T where each component can be
a scalar, vector or matrix. Consider that the full conditional distribution for each
component is know or can be sampled from, that is, p(θi|θ−i) for i = 1, 2, ..., d is
available.

In a multidimensional problem, sampling directly from the target distribution
p(θ) can be complicated, costly or unavailable. Gibbs sampling provides an efficient
way to sample from the target distribution, by successively sampling from the full
conditional distributions. Let S be the number of iterations of the Gibbs sampler; each
iteration consists in cycling through each of the d components of θ and sampling from
its full conditional distribution:

θsi ∼ p(θ|θs−1
−i ) (2.3)

Where θs−1
−i = (θs1, . . . , θ

s
i−1, θ

s−1
i+1 , . . . , θ

s−1
d ) is the partially updated vector of pa-

rameters at iteration s. For every iteration, each parameter θi is updated given the
most recent sampled value for θ−i.

The Gibbs sampler is a special case of the Metropolis-Hastings. It consists in
defining iteration s to be a sequence of d updates, updates one parameter conditioned
in all other, with the proposal distribution as the full conditional distribution, such
that the metropolis ratio is always 1 and the jumping is accepted. A detailed proof
can be found on Brooks et al. [2011].

For complicated distributions, we might not be able to directly sample from
the full conditional distribution of some parameters. For those parameters, which
the FCD is not available, the Metropolis algorithm can be used. Thus, Gibbs and
Metropolis algorithm can be viewed as a building block to draw samples from complex



2.3. Graph representation 9

distributions, we avoid using the term Metropolis-within-Gibbs, since Gibbs is a special
case of a Metropolis algorithm.

It is known that Gibbs sampler can be computationally expensive and slow to
converge to the target distribution. To overcome these difficulties, some strategies
such as blocking and parameter collapsing are used. Blocked Gibbs sampler, consists
in sampling from one or more variable at the same step, conditioned on all other
variables, instead of sampling each one individually. Collapsing in Gibbs sampling,
consists in integrating out (marginalize over) some parameters from the FCD, this is
useful to increase the convergence rate of the sampler or making the sampling viable,
but care must be taken to maintain the correlation of the parameters of interest; for
more details we suggest Dyk and Park [2011].

2.3 Graph representation

In this section, we review basic concepts in graph theory used in our proposed solution
and how we model the clustering task as a graph problem.

2.3.1 Basic definitions

A graph G = (V,E), is a data structure composed by a set of nodes (or vertices)
V = {v1, v2, . . . , vn} and a set of edges E ⊆ V × V , where an edge e = (vi, vj) ∈ E

indicates that there exists a relationship between nodes vi and vj, we say that vi and
vj are neighbours in G. An undirected graph is a graph were the set of edges E is
unordered, that is, the relation between two vertices does not depends on the direction
of the edge. To our notation if G is undirected and (vi, vj) ∈ E, we can not have
(vj, vi) ∈ E. Unless explicitly specified to be a connected graph, a graph will reference
to a undirected graph. An example of an undirected and directed graph are show on
figure 2.1.

A walk in a graph G, of length k between two vertices v0 and vk is a finite non-null
alternating sequence of vertex and edges W = v0e1v1e2v2...ekvk, such that the end of
ei = (vi−1, vi), 1 ≤ i ≤ k. If the edges of a walk W are distinct, then W is called a trail.
In addition, if the vertex of a trail W are distinct we call W a path, it is not possible
for a path to start and end at the same vertex. A cycle is defined to be a trail in which
only the first and last vertex are equal.

Two vertices u and v in G are said to be connected, if there exists a path between
the vertices u and v in G. Let V k ⊆ V , we define G[V k] or Gk to be an vertex
induced subgraph of G, it is obtained by deleting the edges of G that are not in V k
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Figure 2.1. Illustration of types of graph: (a) an undirected graph; (b) a directed
graph; (c) a disconnected graph
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Figure 2.2. (a) A weighted graph; (b) a spanning tree; (c) a minimum spanning
tree.

and its incident edges. An equivalence relation V in V , such that uRv if vertex u and
v are connected in G defines a partition of the set of vertex V in non-empty subsets
V 1, V 2, . . . , V F . The sub-graphs induced by each subset Gi, 1 ≤ i ≤ F is called a
connected component. If F = 1, we call G a connected graph, otherwise we call G
disconnected. Connected and disconnected graphs are show in Figure 2.1.

A tree graph is a connected graph with no cycles. A tree has several properties,
but the properties used in this work are: (1) any two vertices in a tree are connected
by a unique path; (2) the number of edges in a tree is equal to the number of vertices
minus one; (3) every edge is a cut edge, that is, the removal of any edge creates a new
component. A spanning tree of a graph G is a spanning subgraph of G, that is a tree.
That is a tree T = (V,E ′) is a spanning tree of G = (V,E), if E ′ ⊆ E, thus T contains
all vertices in G and the minimum number of edges of G to be connected.

Let w(u, v) be a weight function for the edge connecting vertices u and v. A
minimum-weight spanning tree (MST) is a spanning tree with the minimal sum of
weights. There can be several spanning tree with a minimum sum of weights. Figure
2.2 shows a weighted connected graph, a spanning tree and a minimum spanning tree.
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A minimum spanning forest (MSF),is a generalization of MST for disconnected
graphs. It is defined as the union of minimum spanning trees of each component of a
disconnected graph.

2.3.2 Computational representation

A graph structure is commonly represented by an adjacency matrix or an adjacency
list. An adjacency matrix is a square matrix A, with rows and columns labeled by the
vertices in a graph G. The matrix index A(i,j) = 1, if vertices vi and vj are neighbours
in G and it is 0 otherwise. The adjacent matrix is symmetric for undirected graphs
and its diagonal elements are all equal to 0. An adjacency list A is a list of list. Each
element Ai is a list containing the index of the vertices that are neighbor of the vertex
vi. Unless otherwise stated, we use an adjacency list to represent a graph.

2.3.3 Modeling as graph problem

We model the task of clustering levels of a categorical variable as a graph problem.
Consider a categorical variable with V distinct levels, we model that variable as a
graph with V vertices, where each vertex corresponds to a level. A prior-knowledge
of clustering of two levels of the categorical variable is introduced by adding an edge
connecting their respective vertices in G, therefore if there exists a path between two
vertices, they can be clustered (belong to the same component). Thus, the task of
clustering the levels of a categorical variable is to find a partitioning of the set of
vertices of a graph.

For a more formal definition, let G be a graph, with F ≥ 1 components (possibly
disconnected), that represents the prior clustering knowledge of a categorical variable.
As previously described, a connected component in G defines an equivalence class,
thus it defines a partitioning of G, we define each connected component to be a cluster.
Thus, a partitioning of G in c components corresponds to a clustering of a categorical
variable in c clusters.

2.4 Product Partition Model

The product partition model (PPM) is a probabilistic model for cluster identification
introduced in A. Hartigan [1990] and later extended in Barry and Hartigan [1992] to the
study of a change point identification problem. The PPM is a convenient framework
to allow the data to weight partitions that are likely to hold.
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Initially, we present the PPM for contiguous cluster identification that is useful
in change point analysis. Assume a sequence Y = (y1, y2, . . . , yn) of n observations and
let I = {1, . . . , n} ∪ {0}. Denote by π be a random partition of I into c contiguous
blocks with endpoints ij, 1 ≤ j ≤ c. Let Gj be the cluster [ij−1 + 1, . . . , ij] such that

Y =
(
(y1, y2, . . . , yi1), (yi1+1, yi1+2, . . . , yi2), . . . , (yic−1+1, yic−1+2, . . . , yic)

)
.

The random quantity (π,Y ) is said to be a PPM if the following conditions are
satisfied:

(i) The prior distribution for the partition π = {G1, G2, . . . , Gc} is the following
product distribution:

p(π) = K
c∏

k=1

c(Gk), (2.4)

where c(Gk) is the prior cohesion for the cluster Gk and K is a normalization
constant. The prior cohesion c(Gk) is a non-negative component, subjectively
chosen, that measures the strength of one priors beliefs that the elements in Gk

should be in the same cluster.

(ii) Let Y Gk be the set of observations corresponding to block Gk. Given the par-
tition π = {G1, G2, . . . , Gc} in c blocks, the observation in different blocks are
independent

p(Y |π) =
c∏

k=1

pGk(Y Gk).

where pGk is the joint density of the random vector Y Gk = (yk,1, yk,2, . . . , yk,nk)

The element pGk is called data factor.

A product partition distribution can be defined to more general objects, other
than contiguous clusters Hartigan [1990], such as hierarchical (trees) and ordered ob-
jects (spatial, temporal).

A more general PPM [Barry and Hartigan, 1992, 1993] assumes the following
parametric approach which is considered in our work. In this more general model, each
observation yi has an associated parameter θi, 1 ≤ i ≤ n. The random partition π =
{G1, G2, . . . , Gc} induces the random clustering of Y by partitioning θ = (θ1, θ2, . . . , θn)

in c clusters such that θi = θGk ,∀i ∈ Gk, that is the parameter θi is constant within
the cluster Gk. In this model, the joint density of the observations and parameters is
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expressed as the following product distribution:

p(θ,Y |π) =
c∏

k=1

p(Y Gk |θGk)p(θGk),

where

p(Y Gk |θGk) =
∏

i∈Gk
p(yi|θGk).

and p(θGk), is the prior distribution for the cluster parameters θGk .

For a given cluster Gk, the joint density of the data factor Y Gk is

p(Y Gk) =

∫
p(Y Gk |θGk)p(θGk)dθGk .

Given the observations, the conditional distribution of parameters and partition,
is also a product distribution with posterior density given by (2.5) and (2.6), respec-
tively.

p(θGk |Y Gk) =
p(θGk)

[∏
i∈Gk p(yi|θGk)

]

p(Y Gk)
, (2.5)

and

p(π|Y ) ∝
c∏

k=1

c(Gk)p(Y Gk). (2.6)

The PPM provides us a convenient framework to make inference in a probabilistic
way about the clustering of the parameters based on observations. In this work, we
use the clustering structure of the PPM to group levels of a categorical variable. More
details are given in the description of the proposed model in chapter 3.

2.5 Bayesian Linear Regression Model

A Bayesian linear regression model, consists in modelling the observed outcome Y ∈
Rn×1, assumed in this work to be continuous, as a function that depends on the data
X ∈ Rn×D that can be discrete or continuous. The normal linear model 2.7, in which
the observed outcome is normally distributed given the data is the most widely used
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version of the model.
Y | β, σ2

y,Σy ∼ N (Xβ, σ2
yΣy). (2.7)

A common choice is to consider the observation errors to be independent and
have equal variance. That is, the co-variance matrix Σy is set to be equals to I, where
I is a n× n identity matrix.

The parameters β ∈ RD×1 and σ2
y ∈ R>0 are unknown. Common prior choice

for β and σ2
y are normal and inverse-gamma distribution respectively. The model is

hierarchically represented as follows:

yi = X iβ + εi

εi | σ2
y ∼ N (0, σ2

y)

β|σ2
y ∼ N (µβ, σ

2
yΣβ)

σ2
y ∼ IG(γ, η)

Where µβ ∈ RD×1,Σβ ∈ RD×D are the prior mean and co-variance for β and
γ ∈ R>0, η ∈ R>0 are the prior shape and rate for σ2

y. Posterior distribution of the
parameters is used to analyze the Bayesian linear model. Samples from the posterior
distribution are typically obtained using MCMC.

A indicator variable is often used to include a categorical variable in the regression
model. This allows the model to separate the effect of each level of the categorical
variable. For a binary variable, a single 0/1 indicator variable suffices. For a categorical
with V levels, a common choice is to use the dummy coding, that is V − 1 indicator
variables in addition to a constant term. That consists in choosing a level as a reference,
coefficients related to each indicator represents the change in the response of that level
in comparison to the base base level maintaining everything else constant. Another
approach, is to use the one-hot-encoding (OHE) of the categorical variable, that consists
to use V indicator variables. The OHE should be used with caution, since it contains
redundancy and can lead to multicollinearity problems, for example if used without
removing the constant term.

We commend Gelman et al. [2004] (chapters 14 & 15) for a detailed presentation
of a Bayesian linear regression.
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2.6 Related Work

A popular question in blogs and question-and-answer websites is how to deal with
categorical features with a large number of levels in machine learning models Jerry
[2013]; Zumel [2012]; shadowtalker [2017]; Ferreira [2019], where a common suggested
strategy is to encode the categorical features using a one-hot or dummy encoding of the
features, since most models require features to be continuous rather than categorical.
These representations make the input feature vector to be high dimensional since it
increases linearly with the number of levels in the categorical feature. An intuitive
approach to reduce the dimension of the encoded feature is to pre-process the data
aggregating categories in a priori basis, however, this approach is prone to poorer
learning performance.

These problem called the attention of some researchers. Target coding was sug-
gested by Micci-Barreca [2001]. If Y is the response variable and Z is a categorical
feature with V levels z1, . . . , zV , substitute zk by a numerical value W (k), such as
W (k) = E(Y |Z = zk). This is implemented in Python in the scikit-learn category-
encoders library [McGinnis, 2019] and in the R package Vtreat [John Mount, 2019].
However, we do not favor this approach as it is prone to overfitting (target leakage)
and lacks a theoretical basis. CatBoost proposed by Prokhorenkova et al. [2018] is an
extension of the Extreme Gradient Boosting model Chen and Guestrin [2016], that is
specialized to categorical features and has gained popularity. To avoid the bias in-
troduced by the usual target coding CatBoost resorts to an artificial ordering of the
examples and treating them as a data stream. At each data point, previous examples
in their ordering are treated as the history of the process alleviating the bias problem.

A regularization approach was proposed using the Lasso penalty. Usually, Lasso
penalization is used for feature selection, where irrelevant regression coefficients are set
to be zero Tibshirani [1996]. In Analysis of Variance (ANOVA), it is of interest to
identify differences between levels of a factor. A Lasso-based penalty strategy was pro-
posed by Bondell and Reich [2009] to force pairs of estimated coefficients of categorical
factor to be equal in an ANOVA type of identification of differences. An extension to
a regression type problem was proposed by Gertheiss and Tutz [2011], where predictive
accuracy is of interest. Equally estimated coefficients corresponds to a cluster of cate-
gorical levels. The objective is to aggregate the levels with the same effect at the same
time we fit the model, rather than aggregating them in an ad-hoc way before model
fitting. In practice, to achieve consistent results, the Gertheiss and Tutz [2011] method
depends on adaptive weights Zou [2006], a two-step procedure to compute the weights
used for the Lasso penalization. These weights are based on the pairwise difference be-
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tween the estimated coefficients from a first-step ordinary least squares regression. This
approach of clustering categorical features, while also estimating other coefficients has
been extended to various contexts in Oelker et al. [2014] and Tutz and Berger [2018].
Also, the Lasso penalization strategy was used by Hallac et al. [2015] to cluster nodes
in a social graph.

A Bayesian approach to fuse levels of categorical predictors in a regression type
model was proposed by Pauger and Wagner [2019]. To allow for sparse modelling of
the categorical predictors, the authors proposed a finite Normal mixture, that shrinks
of coefficients to zero or to non-zero with a clustering of the coefficients. That is,
coefficients are fused if they are assigned to the same mixture component.

A product partition model was proposed by Smith and Allenby [2019] in the
context of demand models. The goal is to forecast the product demand given prices
for all related goods and other product specific covariates. A clustering structure is
introduced to cluster the coefficients of price elasticity of related goods. To navigate
the space of partitions a random walk Metropolis-Hasting was used. In our task we
are interested in the effect of a level in the response and not in the cross elasticity.

Lastly, an information-theoretic approach was proposed in Bateni et al. [2019] for
binary classification. In recommendation tasks such as click-through rate prediction,
categorical variables usually contains hundreds to millions of levels. For example, the
Criteo click prediction dataset CriteoLabs [2014] contains about 28 million categorical
values, resulting in an embedding layer (interaction between input and first layer) with
more than 1 billion parameters. The work in Bateni et al. [2019], proposed an efficient
greedy algorithm to cluster levels of a categorical variable in a pre-specified number
of clusters that maximizes the mutual information between the clustered feature and
target binary label. The utility of the model was illustrated by using the learned
clustering (compression) of the categorical features as a pre-processing step to fit a
neural network with a reduced number of parameters in the embedding layer, thus
using the model for feature extraction.

We design a Bayesian linear regression model, with a clustering of the effect of
a categorical variable by including a product partition model. Our designed model is
flexible to include constraints in the clustering structure. Being a Bayesian approach
we can access uncertainty about the model estimated parameters.



Chapter 3

Product Partition Regression Model

In this chapter we present the Product Partition Regression Model (PPRM) for categor-
ical variables. The Product Partition Model (PPM) was first introduced in A. Hartigan
[1990]. It assumes that the partition of the data is a random quantity and partitions
that are likely to hold are weighted by the data. The PPM model was first used to
model spatial data in Hegarty and Barry [2008]. Recently, Teixeira et al. [2015, 2019]
proposed a spatial product partition model based on spanning tree (SPPM-ST), as a
tool to explore the space of possible partitions.

We start by describing the proposed model (section 3.1). Next, we describe the
sampling scheme for model parameters (section 3.2). Last, we perform a complexity
analysis (section 3.3) to draw from the full conditional distribution of each parameter.

3.1 Proposed model

Let G = (V,E), be an undirected graph with V vertices {v1, v2, ..., vV } and edges e =

(vi, vj) connecting neighbour vertices. We use the graph G to represent a categorical
variable with V levels, where each vertex in G represents a categorical variable and
there exists an edge between two vertices if there exists an an priori knowledge that
the represented categorical level should be clustered.

An illustration of a graph representing a spatial categorical variable is given
in figure 3.1, where two districts are connected if they are spatially neighbours. A
complete graph could be used where non spatially neighbours nodes would be allowed
to be clustered. Even tough a complete graph can lead to a smaller number of estimated
cluster obtained clusters would be harder to interpreter and most likely would have a
lower predictive performance.

17
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Figure 3.1. A graph representation of a spatial categorical variable.

By the definition above, two categorical levels can be clustered if there exists a
path in G connecting their representative vertex. It might be the case that the graph
G contains some restriction about the set of possible clustering that yields a graph
with multiple connected components (e.g: a graph connecting political parties where
left and right aligned parties are not allowed to be clustered). We factorize a graph
with with F components as G = {G1, G2, ..., GF}, where there is no path between a
vertex u ∈ Gi and v ∈ Gj if i 6= j. For instance, if we were interested on clustering a
categorical variable called "job", we could restrict the set of jobs that can be clustered
for example healthcare and IT jobs.

Consider n subjects independently observed in G. We denote Y = (y1, . . . , yn)T ,
as the vector of dependent variables, where yi is the response for ith subject. Assume
that D covariates are measured and letX i = (xi,1, . . . , xi,D) be the vector of covariates
for the ith subject such thatX = (XT

1 , . . . ,X
T
n )T is a n×D, that might include quan-

titative or dummy encoding of categorical variables with a small number of categories.
We also denote β = (β1, . . . , βD)T as the D-dimensional vector of regression coefficients
that are assumed to be equals for all subjects.

To include the effect of the categorical variable that we are interested to cluster,
we assume that part of the variability in Y is also due to a vertex’s effect. Let Zi =

(zi,1, . . . , zi,V ) be a one-hot encoding of a categorical variable indicating the vertex that
subject i belongs to, that is, the coordinate zi,r = 1 if subject i belongs to vertex
r, and is zero otherwise. Let Z be the n × V matrix (ZT

1 , . . . ,Z
T
n )T . Consider the

V -dimensional column vector θ = (θ1, . . . , θV )T , where θv is the effect of belonging to
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vertex v and is shared by all responses Yi, i ∈ vr for r = 1, ..., V . We also assume
that the vertex effect is additive and that for all subject i there is a linear relationship
between yi and X i such that:

yi = X iβ +Ziθ + εi, (3.1)

From equation (3.1), we have that for every observation in a given vertex V ,
E(yi |X i,Zi) = X iβ+θr , r = 1, . . . , V . We assume that the errors εi are independent
and identically distributed (iid) as N (0, σ2

y). The matrix representation of 3.1 is given
by Y = Xβ +Zθ + ε, where ε ∼ N (0, σ2

yI).

The clustering of the categorical variable is attained by introducing a clus-
tering structure on θ. Consider the set of labels I = {1, 2, ..., V }, related to the
graph G = {G1, G2, ..., GF}. Let π = {π1,π2, ...,πF}, be a random partition,
πf = {Gf

1 , G
f
2 , ..., G

f
c(f)} is a partition of the connected component Gf in c(i) clus-

ters, we have that π is a partition of I and G in c =
∑F

f=1 c(f) clusters. The number
of possible partitions π is huge, for a special case where there are no restriction about
the partitioning of G, the number of partitions is given by the Bell number BV (e.g.
for V = 20 we have B20 ≈ 5× 1013).

To make it feasible to explore the space of possible partitions, we use the strategy
proposed in Teixeira et al. [2015], to introduce a random spanning tree T of G in the
modelling. Since we can have a disconnected graph G, we extend T = {T 1, T 2, ..., T F}
to be a random spanning forest G, where T f is a random spanning tree of the connected
component Gf . We say that a partition π is compatible with a spanning forest T ,
denoted by π ≺ T , if π can be obtained by removing edges from T . It follows that
π ≺ T ⇔ πf ≺ T f , i = 1, 2, ...,F . Given T f , the induced subgraph by the set of
vertex in Gf

i , i = 1, 2, ..., c(f) is a connected component in Gf , which we call a cluster.

Given π = {π1,π2, . . . ,πF} and T such that π ≺ T , for every component,
we assume that there are common effects for all vertices in cluster Gf

k are equal to a
common cluster parameter θGk , that is

θr = θGfk
,∀r ∈ Gf

k , f = 1, 2, ...,F

It is important to note that the dimension of the vector θ is not changing. Let
ϕf : V f → {1, 2, ..., c(f)}, be a function that maps the index of a vertex in Gf to its
partition id in πf , we define ϕ : V → {1, 2, ..., c} as
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ϕ(i) =





ϕ1(i) if i ∈ G1

ϕ2(i) + c(1) if i ∈ G2

...

ϕF(i) +
∑F−1

i=1 c(i) if i ∈ Gf

Therefore, given a partition π, we have that the coordinates of θ are given by
θ = (θGϕ(1) , θGϕ(2) , . . . , θGϕ(V )

)T . Thus, instead of having V distinct values, θ, has (at
most) c distinct values. Consequently, given a partition π = {π1,π2, ...,πF} we can
write that π = {G1, G2, . . . , Gc}. An important assumption is that given π ≺ T ,
θGk , k = 1, ...., c are iid.

Let Y Gk , XGk and ZGk be the nk × 1 vector of responses, the nk ×D matrix of
covariates and the nk × V the vertex indicators, related to subjects belonging to the
nodes in cluster Gk , where nk is the sample size at cluster Gk. The Product Partition
Regression Model (PPRM) induced by a spanning tree, denoted by (θ,π,β, σ2

y) ∼
PPRM-ST, is the joint distribution of (θ,β, σ2

y ,π, T ,D) that satisfies the following
conditions:

(i) Given T = {T 1, T 2, ..., T F},π = {G1, G2, ..., Gc} ≺ T ,θ,β, σ2
y, the set of obser-

vations Y Gk and XGk are independent for each cluster k = 1, 2, ..., c. The joint
distribution for Y Gk is given by:

Y Gk |π, T ,θ,β, σ2
y ,XGk ,ZGk ∼ N (XGkβ +ZGkθ, σ

2
yI)

Where ZGkθ = θGk1nk and 1nk is a column vector with dimension nk and its
elements equals to 1.

(ii) Given T , π = {G1, G2, ..., Gc} ≺ T and σ2
y, the common parameters

θG1 , θG2 , . . . , θGc are iid such that θGk |σ2
y,π, T

iid∼ N (µθ, vθσ
2
y) for k = 1, 2, ..., c,

where µθ ∈ R is the prior mean effect common to all areas and vθ is a positive
constant that partially quantifies the prior degree of uncertainty about θGk

(iii) Given T and a hyperparameter ρ, the prior distribution of π is the product
distribution

p(π = {π1,π2, ...,πF}) =
F∏

f=1

p(πf |T f )

p(π = {π1,π2, ...,πF}}) = p(π = {G1, G2, ..., Gc})
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Tf πf

ρ

θ YG X

βσ2
y Z

κ ψ γ η µβ Σβ

µθ vθ

f = 1, ...,F

Figure 3.2. Graphical model representation of a PPRM. Hyper-parameters are
in a square gray box.

p(π = {G1, G2, ..., Gc}|T ) =

∏c
k=1 cGk(ρ)∑

C(T )

∏c
k′=1 cGk′ (ρ)

I[π ≺ T ]

where I[·] is the indicator function, cGk(ρ) ≥ 0 is the prior cohesion associated to
the sub-graph Gk and measure how likely vertices in Gk are clustered a priori
and C(T ) is the set of all the partitions compatible with the specific spanning
forest T in which we are conditioning.

(iv) Given σ2
y , the regression coefficients have prior β | σ2

y ∼ N (µβ, σ
2
yΣβ), where

µβ ∈ RD is the known vector of prior means and Σβ is a D × D symmetric,
positive definite matrix.

(v) The prior distribution of the model variance σ2
y is an inverse-gamma distribution

with parameters γ > 0 and η > 0, denoted by σ2
y ∼ IG(γ, η), with mean η(γ −

1)−1, if γ > 1, and variance η[(γ − 1)2(γ − 2)]−1, if γ > 2;

(vi) The prior distribution of a spanning tree T is uniform on the space of spanning
trees of the original graph G, that is p(T ) ∝ 1.

A graphical representation of the proposed model is given on Figure 3.2.
The clustering effect on the categorical variable θ is by conditioning its distri-

bution on π. Note that, if the edge set of the input graph G is empty, a clustering
structure is not used, we reduce the model to a standard Bayesian linear regression.

To generate a partition of a graph G we remove its edges such that a set of
disjoint connected sub-graphs are obtained. By conditioning on the structure of a
spanning forest, this task is substantially simplified. To generate a partition of G into
c clusters, we only have to remove c−F edges among the V −F edges in the spanning
forest. Thus, a natural approach is to set the prior cohesion to be a function of the
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edges weights, such as its probability of being removed. With this in mind we assume
that edges are independently removed with probability ρ ∈ (0, 1), common to all edges,
the prior cohesion of sub-graph Gk is a function of ρ and is given by

c(Gk) =





(1− ρ)|E(Gk)|−1ρ if k < c

(1− ρ)|E(Gk)|−1 if k = 1
(3.2)

where |E(Gk)| is the number of edges not removed in Gk. Hence, the prior expectation
for the number of clusters is given by:

E[C] = (V −F)E(ρ) + F .

Thus, if the prior distribution for ρ is centered in high values or is non-informative,
a priori we are expecting a high number of clusters in G. To complete the model
specification, we assume that ρ has a conjugate beta prior distribution with parameters
κ > 0 and ψ > 0, denoted by

ρ ∼ Beta(κ, ψ).

Considering the likelihood (i), the prior distributions (ii)-(vi), and the prior cohesion
(3.2), the joint distribution p(β,θ, σ2

y,π, ρ, T ) is proportional to:

c∏

k=1

[
p(Y Gk | β, θGk , σ2

y,π, T )p(θGk | σ2
y,π)

]
p(β | σ2

y)p(π | ρ, T )p(σ2
y)p(ρ). (3.3)

Next we describe the MCMC scheme to sample from the posterior distribution.

3.2 Gibbs sampler for the PPRM

The goal is to sample from the joint distribution of the model unknown parameter
Ω = (β,θ, σ2

y,π, ρ, T ) conditioned on D = (Y ,Z,X, G). The posterior distribution
3.3 does not have a closed formula. To sample from the posterior distribution we use
the Gibbs Sampler. Thus, we need the full conditional distribution (fcd) for each model
parameter.

Sample parameters with known fcd: The posterior fcd for β,θ, σ2
y and ρ

has a closed formula. Thus, samples from their posterior distribution are obtained by
Gibbs sampling. Let S̃ = (XTX + Σ−1

β )−1, rGk =
∑

i∈Gk(yi − xiβ), Ỹ = (Y −Xβ −
Zθ)T (Y −Xβ − Zθ), β̃ = (β − µβ)TΣ−1

β (β − µβ) and θ̃ = 1
vθ

∑c
k=1(θGk − µθ)2 we
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have the following fcd:

β | θ, σ2
y ,D ∼ N (S̃(XT (Y −Zθ) + Σ−1

β µβ), σ2
yS̃)

θGk | β, σ2
y,π,D ∼ N

(vθrGk + µθ
vθnk + 1

,
vθσ

2
y

vθnk + 1

)
, k = 1, 2, . . . , c

ρ | π, T ∼ Beta(κ+ (c−F), ψ + (V − c))

σ2
y | β,θ,π, T ,D ∼ Inv-Gamma

(
γ +

1

2
(n+D + c), η +

1

2
(Ỹ + β̃ + θ̃)

)

Sample the tree: To sample (T | π),π ≺ T , we use an extension of the
approach used in Teixeira et al. [2015]. Provided that the input graph G can have
multiple connected components, instead of sampling a minimum spanning tree, we
sample a minimum spanning forest. The weighing scheme for the edges is the same
as it was defined in Teixeira et al. [2015]. Assuming the prior cohesion in (3.2), the
posterior full conditional distribution of these valid trees is a uniform distribution over
the set of trees compatible with the current partition. Let w be the weight of each
edge of the input graph G. A pseudo-code to sample a spanning tree (or forest) is
given in algorithm 2. For edges connecting vertices in the same cluster a weight is
draw from a uniform distribution with lower values (eg: (0, 1)), otherwise a weight is
draw from a uniform distribution with higher values (eg: (10, 20)). The idea is that
edges connecting vertices in the same component will be selected before edges connect
vertices in distinct components.

Algorithm 2: Algorithm to sample a minimum spanning forest
Initialize(w)
for (u, v) ∈ E do

if ϕ(u) equals to ϕ(v) then
wu,v ∼ U(0, 1)

else
wu,v ∼ U(10, 20)

T ← Prim(G,w)
return (T = {T 1, T 2, ..., T F})

Sampling the partition: A random partition π ≺ T is represented by an
(V −F)-dimensional random vector U = (U1, . . . , UV−F), where Ul = 0 if the l-th edge
is removed from the spanning tree and Ul = 1, otherwise. Thus, following Teixeira
et al. [2015], samples from the posterior of π are obtained sampling from the posterior
of U by using a Partially Collapsed Gibbs sampler as follows. Initialize the partition
π at step 0 by creating a (V −F)-dimensional vector assigning 0 for each coordinate.
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For example, we can assume that, at step zero, the original graph is not partitioned by
setting U(0) = (0, . . . , 0). To generate from the posterior of Ul of U, at the step s of
the algorithm, we need to calculate the ratio:

Rl =
p(Ul = 1|U1, . . . , Ul−1, U

(s−1)
l+1 , . . . , U

(s−1)
V−1 , σ

2
y,β,θ, T , ρ,D)

p(Ul = 0|U1, . . . , Ul−1, U
(s−1)
l+1 , . . . , U

(s−1)
V−1 , σ

2
y,β,θ, T , ρ,D)

(3.4)

The partitions in the numerator and denominator of (3.4) have a single dif-
ference. Assume that, given the partition in the numerator, U1, . . . , Ul−1, Ul =

1, U
(s−1)
l+1 , . . . , U

(s−1)
V−1 , the cluster Gk contains the nodes connected by edge l. The parti-

tion in the denominator assumes that cluster Gk is split in two by disconnecting edge
l, creating new clusters G∗k and G∗∗k . All other clusters are shared by both partitions.
These two partitions induced different configurations for θ. Thus, to make possible
the sampling of π via Gibbs sampler, we must integrate θ out in expression (3.4).
Numerical stability and faster convergence ratio is attained if we also integrate out ρ.

Rl =
ψ + V − c− 1

κ+ c−F ×
[

(vθnk∗ + 1)(vθnk∗∗ + 1)

(vθnk + 1)

] 1
2

× exp

{−1

2σ2
y

(−ψ − φ(Gk) + φ(G∗k) + φ(G∗∗k ))

}

where φ(Gk) =
(
µθ
vθ

+ rGk

)2 (
nk + 1

vθ

)−1

, nk = nk∗ + nk∗∗ , rGk =
∑

i∈Gk(yi − xiβ) and
c is the number of clusters in the partition in the numerator when computing the ratio
Rl. Details derivation of Rl is available in the appendix Section A.

The Ratio Rl is a balance between the graph clustering tendency (first term) and
the predictive of the components (second and third terms). The first term depends on
how many clusters are in the graph in proportion to the number of edges, it does not
depend on the nodes (components) that the edge is connecting. In the other hand,
the second term strongly depends on the model predictive of the component that is
obtained by keeping the edge versus the model predictive by the components obtained
by removing the l − th edge.

We sample from the distribution of Ul by sampling a value u ∼ U(0, 1) with the
following accept-reject criterion:

Ui =





1 if Ri ≥ u
1−u

0 otherwise

Lastly, at a given iteration s, the binary vector U is initialized, with values
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compatible with the previous partition. That is, we assign Ul = 1, if the vertices that
the edge i connects were in the same cluster in the previous iteration and Ul = 0

otherwise.

Algorithm 3: MCMC scheme to draw S samples from the posterior dis-
tribution

Input: D, S
Initialize (σ

2(0)
y ,β(0), ρ(0), T (0),π(0),θ(0));

for s = 1 to S do
β(s) ∼ p(β|θ(s−1), σ2

y
(s−1)

,D);
T (s) ∼ p(T |π(s−1),D);
π(s) ∼ p(π|β(s), σ2

y
(s−1)

, T (s),D);
ρ(s) ∼ p(ρ|π(s), T (s),D);
for k = 1 to c(s) do

θGk ∼ p(θGk |σ2
y

(s−1)
,β(s),π(s),D);

for v ∈ Gk do
θ

(s)
v = θGk ;

σ2
y

(s) ∼ p(σ2
y|β(s),θ(s),D);

3.3 Computational complexity analysis

In this section, we provide a complexity analysis to draw from the fcd of each model
parameter along with some implementation details. Algorithm 3, shows the order
we sample from the posterior distribution. The computational complexity for each
operation is at table 3.1.

Table 3.1. Computational complexity for each iteration

Method Draw β Draw T Draw π Draw ρ Draw θ Draw σ2
y

Complexity for
iteration s O(n(D + V ) +D3) O(|E| log(V )) O(V 2) O(1) O(V 2) O(n(D + V ) +D2)

3.3.1 Draw β

To draw from the fcd of β at iteration s, we have to compute its fcd mean and co-
variance. Since S̃ and Σ−1

β µβ are constant during the MCMC, we cache their val-
ues before starting the MCMC, if we do not cache them, it would add an additional
O(nD2 +D3) operations per iteration. To compute the mean S̃(XT (Y −Zθ)+Σ−1

β µβ),
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we have 3 matrix multiplications with a total cost of O(n(V +D) +D2). To compute
the co-variance σ2

yS̃, we need O(D2) operations. We use the R package MASS, 1 to
sample from a D-variate normal distribution. The package uses the eigendecomposition
method, which has a cost of O(D3) operations. Thus, the total cost to draw from the
posterior of β is O(n(V +D) +D3).

We can cache the partial residuals for each level of the categorical variable we
are interested to cluster, this caching significantly improves the model performance.
Before starting the MCMC chain, we can pre-process the input data to create a list
Lx = [Xr1 ,Xr2 , ...,XrR ], where Xri contains the design matrix of the elements that
belongs to the i-th level, similarly we can create Ly and Ln that contains the response
variable and number of samples for each level. Next we create a list of partial residuals
Lv = [(Y r1 −Xr1β), (Y r2 −Xr2β), ..., (Y rV −XrV β)] for each level, the total cost to
pre-process the data is O(nRD). The cached partial residuals are invalidated on every
iteration after sampling β, thus we have to update their values, the update is done in∑V

i=1(nriD + nri) = O(nD) operations. Note that it does not increases the order of
complexity to sample the model betas.

3.3.2 Draw T
To draw a spanning tree T at iteration s, we assign a weight for each edge in G following
the rule in Algorithm 3.2, which is performed in O(|E|) operations. Next, to find a
MST we use R package igraph. 2 The library implements the Prim’s algorithm with a
binary heap, which has a time complexity of O(|E| log(V )).

3.3.3 Draw π

To draw a partition π at iteration s, we start by initializing the partition as the current
spanning tree, which is done in O(V ) operations, since the spanning tree has at most
V − 1 edges. Next, we initialize the partition by keeping or deleting its edges. This is
accomplished in at most V 2 operations because we can remove at most V edges from
a partition that is represented by an adjacent list graph.

After initializing the partition at the given iteration we need to compute the ratio
Ri for each edge in the spanning tree. For this we have to find the set of vertices that
belongs to G∗k and G∗∗k , which is done by performing two DFS in the spanning tree,
thus it is achieved in O(V ) operations. Next we need to compute the residuals rG∗k and
rG∗∗k . If we use memoization to cache the partial residuals, we can find rG∗k in linear

1https://www.rdocumentation.org/packages/MASS/versions/7.3-51.4/topics/mvrnorm
2https://www.rdocumentation.org/packages/igraph/versions/1.2.4/topics/mst
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time in V . If we do not use the memoization we have to subset the data that belongs
to G∗k and G∗∗k and compute its residuals, which is done in O(nDR).

After drawing the partition, we update the number of clusters and clustering id
of each vertex in G, that is achieved in O(V ) operations by performing a DFS in the
partition. Thus, the total cost to sample a partition is O(V 2) with memoization, if we
do not use memoization the cost should be substituted by O(V 2nD) per iteration.

3.3.4 Draw ρ

To sample ρ at iteration s, we have to lookup the values of n, V and c, that is a
constant operation. We use the r-base function rbeta to sample a single value from
a beta distribution. That function uses an accept rejection criterion, 3 thus we can
assume is it is done in a constant number of operations. Thus, the time complexity to
sample ρ at iteration s is O(1).

3.3.5 Draw θ

To draw θ at iteration s, we need to compute the fcd mean and variance for each
cluster. The posterior mean and variance can be computed in O(V ) operations using
the cache or in O(nDR) without the cache. Since the number of clusters is always
smaller or equal to the number of vertices in G, we have a time complexity of O(V 2)

to compute the fcd mean for all clusters using cache or O(V 2nD) without cache. Next,
in a linear time in V we assign θv = θGk ,∀v ∈ Gk for k = 1, ...c. Thus, the total cost
to sample θ is O(V 2).

3.3.6 Draw σ2
y

To draw σ2
y at iteration s, we need to compute the sum of squared of the residuals

Ỹ = (Y −Xβ − Zθ)T (Y −Xβ − Zθ) which is done in O(n(D + V )) operations,
β̃ = (β − µβ)TΣ−1

β (β − µβ) and θ̃ = v−1
θ

∑C
i=1(θGi − µθ)

2 which are computed in
O(D2+V ) operations. To sample from a single value from a inverse gamma distribution
we use an wrapper function to an r-base function to sample from a gamma distribution.
It uses an accept rejection criterion method that we can assume to be done in a constant
number of operations. Thus, the total complexity per iteration is O(n(D + V ) + D2)

if Σ−1
β is cached or O(n(D + V ) +D3) if it is not cached.

3https://www.rdocumentation.org/packages/stats/versions/3.5.3/topics/Beta





Chapter 4

Experimental Evaluation

We evaluate our model using the Munich house rent dataset used in Gertheiss and
Tutz [2011] and Inside Airbnb datasets for different locations around the globe.
Their examples are addresses and the response variable indicates its monetary mar-
ket value. The datasets have a spatial categorical variable indicating the neighbour-
hood/district/region where a sample is located. It is widespread knowledge among real
estate agents that the three most important factors determining a house price are loca-
tion, location, and location. For all datasets, we analyze the clustering of this spatial
predictor by restricting the set of possible clustering to spatially contiguous regions.
This is achieved by creating an input graph G, where each level of the categorical
variable is mapped to a node and an edge between two nodes is created if they are
spatially adjacent. An example of a input graph is given in figure 4.1.

4.1 Munich house rent dataset

The Munich rent dataset is available in the V package catdata Gunther Schauberger
[2014] and it was used previously by Gertheiss and Tutz [2011]. It contains 2053
observations collected in sampled personal interviews from residents in Munich in 2003.
There is a spatial variable indicating in which of the 25 districts the home is located in
addition to 9 predictor variables. We transformed the predictors to categorical variables
as described in Gertheiss and Tutz [2011]. The response variable is the monthly rent
in Euros.

29
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Figure 4.1. A neighbourhood graph for Munich (left) and New York (right)
dataset. Two districts/neighbourhood are connected if they are spatially neigh-
bours. Each district corresponds to a level of the categorical variable we are
interested in clustering. For the New York dataset we have 2 connected compo-
nents, neighbourhoods in the Manhattan island do not connect to neighbourhoods
in Brooklyn.

4.2 Inside Airbnb Datasets

Airbnb is an online accommodation platform, where people can list their property or
spare room for renting. We use data from Inside Airbnb,1 an independent platform
that compiles Airbnb listings by geographic areas. The data contains publicly available
information such as the price per night of stay, number of reviews, amenities and
neighbourhood of the places available for rent. The exact latitude-longitude coordinates
of a listing is masked by Airbnb. The reported location in the dataset is a region
containing the address. The difference is within 450 feet (150 meters) between the
actual address and the region centroid.2

We selected 10 popular locations on Airbnb (Amsterdam, Barcelona, Chicago,
Hawaii, London, Montreal, New York, San Francisco, Seattle, Toronto). We pre-
processed the dataset by selecting only listings with at least one review and rentals
of a full house or apartment. We removed outliers using a conservative approach: far-
ther than 3 Median Absolute Deviation (MAD) score criterion as suggested in Leys
et al. [2013]. We transformed all the features into categorical ones (a detailed descrip-
tion is available in the appendix section A.1.1). We also used the spatial neighbourhood
that is provided by Inside Airbnb to create the input graph G, connecting adjacent
regions. The response variable is logarithm of the price per night of stay.

1http://insideairbnb.com/
2http://insideairbnb.com/about.html
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4.3 Posterior Predictive Inference

To evaluate the model fit, we consider the model predictive performance. Let X̃ i

and Z̃i be, respectively, the covariates and the vertex indicator related to a future
response ỹi. Assume the the future observation is independent of the past ones, given
the parameters and covariates. To estimate ỹi, we consider E(ỹi |, X̃ i, Z̃i), the mean
of the posterior predictive distribution, which is given by:

E(ỹi |, X̃ i, Z̃i) =

∫
E(ỹi | X̃, Z̃,Ω)P (Ω | D)dΩ. (4.1)

It is intractable to compute 4.1, thus this is approximated by using samples
collected in the MCMC chain:

ŷi =
1

S

S∑

s=1

ŷ
(s)
i ,

where

ŷ
(s)
i ∼ N (X̃ iβ

(s) + Z̃iθ
(s), σ2

y
(s)).

4.4 Experimental set-up

We use a 5-fold cross-validation to evaluate the models predictive accuracy. Some of
cities of the Airbnb dataset have neighbourhoods with less than 5 samples. To avoid
to discarding these neighbourhoods and its samples, we perform a 5-fold-cv with a
modification.

We denote de dataset D = Dfixed

⋃
Drotation, where Dfixed contains samples that

belong to a region with less than 5 samples and Drotation, contains all the remaining
samples. The rotation dataset is split in five D1

rotation, D
2
rotation, ..., D

5
rotation (sampling

is stratified by the categorical variable we are interested to cluster). We create five
training and validation datasets as follows Di

train = Dfixed

⋃
(
⋃
i 6=j D

j
rotation) and Di

val =

Di
rotation, for 1 ≤ i ≤ 5.

Table 4.1 shows the number of samples, regions and connected components for
each dataset.

The model predictive performance is estimated using the mean squared error
(MSE). Let ni be the number of samples in the validation folder Di

val, the MSEi, i =

1, . . . , 5 is computed as defined in 4.2, where the model parameters are estimated using
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Table 4.1. Summary for each dataset. N is the number of samples, Nfixed

number of fixed samples, V number of levels in the categorical variable of interest,
F number of components in the input graph and Date compiled is the data in
which the inside Airbnb was compiled.

Dataset N Nfixed V F Date compiled

Munich 2053 0 25 1 NA

Amster. 10741 0 22 2 08 April, 2019
Barcelona 5043 27 64 1 10 April, 2019
Chicago 2484 46 64 1 12 March, 2019
Hawaii 4518 4 30 6 03 May, 2019
London 24573 0 33 1 09 April, 2019
Montreal 7103 15 30 1 13 April, 2019
New York 11695 12 77 2 03 May, 2019
San Fran. 1920 1 35 1 03 May, 2019
Seattle 2878 24 88 2 15 April, 2019
Toronto 4340 83 136 1 08 April, 2019

Di
train. We report the average MSE and standard deviation of mean squared obtained

across the five folds.

MSEi =
1

ni

∑

yi∈Dival

(yi − ŷi)2 (4.2)

4.5 Baselines

We compare the predictive accuracy of our model against four different baseline com-
petitors: (a) the usual Bayesian Linear Regression (Bayes), with dummy coding of the
categorical variable using one level for each region (without any clustering); (b) the
Lasso penalization strategy from Gertheiss and Tutz [2011]; (c) a finite mixture regres-
sion model (Fusion) from Pauger and Wagner [2019] to cluster effects of a categorical
variable; (d) the CatBoost state of the art gradient boosting model from Prokhorenkova
et al. [2018], which proposed a novel approach to compute the target statistics. We
also compare the estimated number of clusters against the Lasso penalization method
to fuse effects of a categorical variable.

Except for the Bayes model that we implemented, we used openly available
packages in R for Lasso (Oelker [2015]), Fusion (Pauger et al. [2019]) and CatBoost
(Prokhorenkova et al. [2017]). Details of fine tuning for each model are available in the
appendix material (A.1.2).
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Figure 4.2. Posterior means for the vertices effects in each Munich district
using PPRM (left) and Lasso (right). Effects are normalized using the min-max
normalization.

4.6 Hyperparameters and Model Initialization

To analyze the data we consider the prior distributions previously mentioned with
weakly informative prior hyperparameters µβ = 0, µθ = 0, vβ = 1× 104 vθ = 1× 104,
γ = 0.1, η = 0.1, κ = 4 and ψ = 6.

We initialize the MCMC chain for each parameter with valid values as follows:
σ2
y

(0)
= 1, β(0) ∼ N (0, σ2

y
(0)
I), ρ(0) ∼ Beta(κ, ψ). To initialize the spanning tree T (0),

for each edge in the graph G we sample a weight from a uniform distribution U(0, 1)

and we run the Prim’s algorithm to find the minimum spanning tree. We start the
partition π(0) with V components, that is, letting Ul = 0, l = 1, . . . , V − F . We
initialize θi(0) ∼ N (0, σ2

y
(0)

) for i = 1, 2, ..., V .

We run chains of size 20, 000, discarding the first 10, 000 iterations as the burn-in
period and taking lag 5 sampled values to avoid strong auto-correlation, thus obtaining
an sample size of 2, 000 samples.

4.7 Results

Figure 4.2 (left) shows the estimated posterior mean coefficients of the categorical
clustering for each district provided by our method in the Munich dataset. We learn
that the location effect can be summarized into 3 spatial clusters, with the 95% highest
posterior density interval (HPD) for the number of cluster collapsed at [3, 3]. The model
is uncertain about the clustering of some districts (e.g: large district in the center),
thus their vertex effect is a mix of the vertex effect of its possible clustering). This is
in sharp contrast with the 13 clusters estimated by the Lasso method. (see Figure 4.2
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(right)). It is important to note that even though, our model is indicating a smaller
number of parameters (3) in comparison to the frequentist approach Lasso (13) there
is no substantial difference in its MSE, despite Lasso being tuned for best predictive
accuracy in the Munich dataset.

Table 4.2 shows the results of the MSE (with their standard errors) for all meth-
ods. PPRM presents the best results in the linear models (Bayes, Lasso, Fusion). In
most datasets CatBoost had smaller MSE, but the difference between the methods are
not significant at 95% level using the non-parametric Mann-Whitney U-test. Therefore,
in practice, there is no empirical evidence of real difference between the algorithms in
terms of predictive power. Our intuition for the MSE to be similar for PPRM, Lasso
and Fusion is that all of them are linear models and the obtained residuals were nor-
mally distributed indicating that a linear model is fitting the data set well. The only
difference between the linear models are in the number of parameters.

Table 4.2. Mean Square error and standard deviation (MSE/SD), 95% highest
posterior density interval for the number of clusters under PPRM (HPD-C) and
the Lasso estimated number of clusters (LaC) for all different methods and Mu-
nich house rent (Row 1) and Inside Airbnb (Rows 2-7) datasets. Relative MSE
difference against PPRM model in bracket.

Dataset PPRM Bayes Lasso Fusion CatBoost HPD-C La-C

Munich 4.044/0.21 4.053/0.198 (0.22%) 4.06/0.21 (0.4%) 4.229/0.254 (4.57%) 4.052/0.224 (0.2%) [3, 3] 13

Amster. 0.076/0.001 0.076/0.001 (0%) 0.076/0.001(0%) 0.076/0.003 (0%) 0.075/0.002 (-1.32%) [7,8] 7
Barcel. 0.14/0.006 0.138/0.005 (-1.43%) 0.141/0.006(0.71%) 0.14/0.004 (0%) 0.129/0.005 (-7.86%) [3,5] 17
Chicago 0.139/0.005 0.137/0.006 (-1.44%) 0.146/0.008(5.04%) 0.142/0.01 (2.16%) 0.135/0.008 (-2.88%) [4,6] 7
Hawaii 0.142/0.008 0.141/0.008 (-0.7%) 0.142/0.008(0%) 0.142/0.003 (0%) 0.137/0.004 (-3.52%) [9,11] 17
London 0.081/0.001 0.081/0.001 (0%) 0.081/0.001(0%) 0.081/0.002 (0%) 0.08/0.001 (-1.23%) [11,13] 13
Montreal 0.117/0.002 0.116/0.002 (-0.85%) 0.117/0.005(0%) 0.118/0.006 (0.85%) 0.115/0.001 (-1.71%) [4,6] 11
New York 0.079/0.003 0.079/0.003 (0%) 0.082/0.003(3.8%) 0.079/0.003 (0%) 0.08/0.003 (1.27%) [9,12] 15
San Fran. 0.103/0.008 0.103/0.008 (0%) 0.111/0.01(7.77%) 0.105/0.009 (1.94%) 0.108/0.01 (4.85%) [3,5] 4
Seattle 0.109/0.006 0.108/0.004 (-0.92%) 0.124/0.01(13.76%) 0.113/0.004 (3.67%) 0.11/0.006 (0.92%) [6,7] 5
Toronto 0.1/0.009 0.101/0.01 (1%) 0.11/0.005(10%) 0.102/0.004 (2%) 0.103/0.01 (3%) [4,6] 3

Table 4.3 shows the effect of including the categorical predictor for each dataset.
The first row (1) displays the MSE/SD for a Bayesian Linear Regression with the
categorical predictor and the second row (2) displays results without the predictor.
Errors were estimated using a paired 5-fold-cv with same set of hyperparameters. The
feature impact on MSE has distinct impacts in each dataset, the lowest being the
Munich (1.6%) and the highest New York (45%).

It is intuitive to cluster the effects of the categorical predictor using the marginal
distribution as in Bateni et al. [2019]. In figure 4.3 (right), is not clear that there is
a spatial clustering in the effect of the Seattle neighbourhood. On the other hand,
in 4.3 (upper/lower left), when controlling for effects such a number of bathrooms,
bedrooms and obtaining the partial residuals (that is Y −Xβ) a spatial clustering
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Table 4.3. Predictive accuracy of a Bayesian Linear Regression (1) with the
categorical feature (2) without the categorical feature and relative change of not
including the feature ∆.

Munich Amsterdam Barcelona Chicago Hawaii London Montreal New York San Fran. Seattle Toronto

(1) 4.053/0.198 0.076/0.001 0.138/0.005 0.137/0.006 0.141/0.008 0.081/0.001 0.116/0.002 0.079/0.003 0.103/0.008 0.108/0.004 0.101/0.01
(2) 4.118/0.195 0.084/0.002 0.147/0.007 0.157/0.009 0.178/0.009 0.098/0.001 0.126/0.005 0.115/0.001 0.113/0.01 0.126/0.009 0.113/0.006
∆ 1.6% 10.53% 6.52% 14.6% 26.24% 20.99% 8.62% 45.57% 9.71% 16.67% 11.88%

Figure 4.3. Posterior means for the vertices effects in each Seattle neighbourhood
using PPRM (upper left) and mean log price per night of stay (upper right). Mean
partial residual (Y −Xβ) for each region (lower left) and its respective clustering
(lower right) obtained in a MCMC iteration.

pattern appears. From the learned model clustering 4.3 (lower right), we observe that
there is a distinct effect for the most touristic area (city centre) and its surround areas.

Examples in which there was a significant difference between our model and Lasso
are show in 4.4. We have our model estimated coefficients (left) and Lasso (right). In
the first row, we have the Lasso coefficients for the Toronto dataset. The method had
numerical instability because of the adaptive weights and it is indicating 3 clusters
having a predictive performance similar as not including the categorical predictor.
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Figure 4.4. Posterior means for the vertices effects in each Toronto using PPRM
(left) and Lasso coefficients (right).

In the second row, we have the coefficients obtained in the Barcelona dataset. The
coefficients obtained by our model are spatially contiguous and easy to interpret (
yellow color coefficients are Barcelona downtown, orange close to the beach, blue are
residential area farther from touristic areas), whereas the coefficients obtained by Lasso
are not spatially contiguous and it is hard to interpret.

Overall, our model was able to reduce the dimensionality of the categorical vari-
able, by clustering levels with similar impact in the response variable, while carrying
uncertainty about others coefficients. From the experimental results, it was able to
maintain the predictive performance even when indicating a reduction in the number
of variables (e.g: NY, Seattle, Toronto). A priori clustering knowledge was introduced
by considering to cluster only spatially neighbour regions. This achieve our goals to
reduce the dimensionality of the model in a data driven way without losing the pre-
dictive performance and including a prior knowledge about the clustering structure.
More examples of clustering obtained is available in the appendix A.2.
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Conclusion

A generative model for the common practical problem of dealing with categorical vari-
ables with a large number of levels in predictive models was proposed. We illustrated
our approach in the specific context of regression models, but it can be adapted to other
contexts such as supervised classification. We represent the possible clustering of the
covariate levels as a graph partitioning problem. The graph can be a complete graph
if no structure is assumed or a more constrained one, as the spatial case in used in
this project. A complete graph might lead to a smaller number of estimated clusters,
but obtained clusters would be harder to interpret. Our PPRM model is especially
suited when we have prior knowledge of how the levels might be clustered, as in the
real estate examples we used. This prior knowledge is based on domain knowledge.
PPRM showed to perform well, even without parameter tuning. The posterior density
for the number of clusters were concentrated ex: Amsterdam [7, 8]. In comparison to
Lasso and Fusion, our model achieved a better MSE in all datasets. Most importantly,
it produces interpretable results in terms of the effect of each cluster of covariate levels.
Additionally, it provides an uncertainty measure in terms of the posterior distribution
for those effects as well as the clustering.

In contrast with methods such as [Prokhorenkova et al., 2018], we avoid the
encoding of the categorical data using a target coding approach, which may overfit due
to the target leakage problem or underfit due to prediction shift. The Lasso methods
proposed by Gertheiss and Tutz [2011]; Oelker et al. [2014] do not provide inference
about the clustering structure, in contrast with PPRM. Additionally, its performance
strongly depends on adaptive weights, which uses a wij weight equals to inverse of the
absolute difference between the ordinary least squares coefficients. When the difference
is very small, numerical instabilities plague the calculation, a problem we faced in our
Airbnb datasets.

37



38 Chapter 5. Conclusion

For a spatial categorical variable, which is well known to have a clustering ten-
dency, our model showed to be able to obtain the same predictive power than other
competing methods but it provided much more interpretable results (in terms of the
resulting spatial clusters) and it significantly reduced the number of parameters (from
77 to [9, 12] parameters in New York considering the 95% HPD. That is a reduction
of about 80% without compromising the predictive performance.

There are several directions for future work. The most promising are to extend
the model for binomial and multinomial type of response. These extensions can be
included in the MCMC scheme by using data augmentation strategy [Albert and Chib,
1993; Holmes and Held, 2006]. Also, a possible extension is to handle outliers in the
data, which leads coefficients to be biased. This extension can be achieved by allowing
the distribution of the residuals to have a more flexible distribution other than the
normal. For example it is possible to use data augmentation to extend the residuals to
a normal independent class of distributions [Lange and Sinsheimer, 1993], that includes
t-distribution, which has wider tails. Last, an analysis using the proposed model for
feature extraction to be used for more complex model would aggregate value to the
model by showing an end-to-end machine learning task. For example it would be useful
for the Kaggle community. To achieve this, we need to select a strategy to post- process
the model to find a clustering from the MCMC chain.
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Appendix A

Posterior full conditional
distributions

In this chapter, we provide details on the calculations of the posterior full conditional
distributions (fcd) that are required to sample from the posterior distributions.

Posterior fcd of β

p(β|θ, σ2
y,π, T , ρ,D) ∝ p(Y |β,θ, σ2

y,π, T , ρ,X,Z)p(β|σ2
y)

∝ exp
{−1

2σ2
y

(Y −Xβ −Zθ)T (Y −Xβ −Zθ) + (β − µβ)TΣ−1
β (β − µβ)

}

∝ exp
{−1

2σ2
y

(βTXTXβ − 2βTXT (Y −Zθ) + βTΣ−1
β β − 2βTΣ−1

β µβ)
}

∝ exp
{−1

2σ2
y

(βT (XTX + Σ−1
β )β − 2βT (XT (Y −Zθ) + Σ−1

β µβ)
}

∝ N
(

(XTX + Σ−1
β )−1(XT (Y −Zθ) + Σ−1

β µβ), σ2
y(X

TX + Σ−1
β )−1

)

Posterior fcd of θ related to cluster Gk

Let θGk be a vector of dimension nGk × 1 with all its values equals to θGk , in other
words θGk = θGk1nGk×1
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p(θGk |β, T ,π, ρ, σ2
y,D) ∝ p(Y |β,θ, σ2

y,π, T , ρ,X,Z)p(θGk |π, σ2
y)

∝ exp
{−1

2σ2
y

(∑

i∈Gk
(yi − xiβ − θGk)2 +

1

vθ
(θGk − µθ)2

)}

∝ exp
{−1

2σ2
y

(∑

i∈Gk
(θ2

Gk
− 2θGkyi + 2θGkxiβ) +

1

vθ
(θ2

Gk
− 2θGkµθ)

)}

∝ exp
{−1

2σ2
y

(
nGkθ

2
Gk
− 2θGk

∑

i∈Gk
(yi − xiβ) +

θ2
Gk

vθ
− 2θGkµθ

vθ

)}

∝ exp
{−1

2σ2
y

(
θ2
Gk

(nGk +
1

vθ
)− 2θGk(

∑

i∈Gk
(yi − xiβ) +

µθ
vθ

)
)}

∼ N
(∑

i∈Gk(yi − xiβ) + µθ
vθ

nGk + 1
vθ

,
σ2
y

nGk + 1
vθ

)

Posterior fcd of ρ

p(ρ|π, T ,θ,β, σ2
y,D) ∝ p(ρ)p(T )p(π|ρ, T )

∝ ρκ−1(1− ρ)ψ−1ρc−F(1− ρ)V−c

∝ ρ(κ+c−F)−1(1− ρ)(ψ+V−c)−1

∼ Beta(κ+ (c−F), ψ + V − c)

Posterior fcd of σ2
y

p(σ2
y|β,θ, T , ρ,π,D) ∝ p(Y |β,θ, σ2

y ,π, T , ρ,X,Z)p(σ2
y)p(θ|σ2

y)p(β|σ2
y)

∝ (σ2
y)
−a− 1

2
(n+D+c)−1 exp

{−1

σ2
y

(
b+

1

2
(Ỹ + β̃ + θ̃)

)}

∼ IG

(
a+

1

2
(n+D + c), b+

1

2
(Ỹ + β̃ + θ̃)

)

Where Ỹ = (Y − Xβ − Zθ)T (Y − Xβ − Zθ), β̃ = (β − µβ)TΣ−1
β (β − µβ) and

θ̃ = 1
vθ

∑c
k=1(θGk − µθ)2

Posterior fcd of the partition π

Under the proposed model assumptions, given a partition, the likelihood based on
the complete data is decomposed as the product of likelihoods related to each cluster.
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Denote the likelihood by L(Y |U) =
∏c

k=1 L(Y Gk). Assuming that the edge Ul discon-
nects the cluster Gk generating two clusters G∗k and G∗∗k if Ul = 0. To generate a new
partition via Gibbs sampler, we must calculate the ratio Rl =

p(Ul=1|U−l,σ2
y ,θ,β,ρ,T )

p(Ul=0|U−l,σ2
y ,θ,β,ρ,T )

.

p(Ul = t|U−l, σ2
y ,β,θ, T , ρ,D) ∝ L(Y |U)p(σ2

y)p(β|σ2
y)p(θ|Ul = t, U−l, σ

2
y)p(ρ)p(π|ρ,U),

(A.1)

where p(θ|Ul = 1, U−l, σ2
y) = p(θGk |σ2

y)
∏

i 6=k p(θGi |σ2
y) and p(θ|Ul = 0, U−l, σ2

y) =

p(θG∗k |σ2
y)p(θG∗∗k |σ2

y)
∏

i 6=k p(Gi|σ2
y). Expanding the terms in (A.1) we have:

Rl =
L(Y Gk)

∏
i 6=k L(Y Gi)p(θGk |σ2

y)
∏

i 6=k p(θGi |σ2
y)p(σ

2
y)

L(Y G∗k)L(Y G∗∗k )
∏

i 6=k L(Y Gi)p(θG∗k |σ2
y)p(θG∗∗k |σ2
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i 6=k p(θGi |σ2
y)p(σ

2
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×p(β|σ
2
y)

p(β|σ2
y)

∫
p(π|ρ, Ul = 1, U−l)p(ρ)dρ∫
p(π|ρ, Ul = 0, U−l)p(ρ)dρ

.

To achieve a numerical stable solution, we integrate ρ out of the equation (A.1).

∫
p(π|ρ,U)p(ρ)dρ =

Γ(κ+ ψ)

Γ(κ)Γ(ψ)

∫
ρ(κ+c−F)−1(1− ρ)(ψ+V−c)−1dρ
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Γ(κ+ ψ)

Γ(κ)Γ(ψ)

Γ(κ+ c−F)Γ(ψ + V − c)
Γ(κ+ ψ + V −F)

,

where c is the number of clusters in the partition spanned by the binary vector U .

By canceling out common elements on the numerator and denominator and com-
puting the integral over ρ we obtain:
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As ZGkθ and ZT
Gk
θT are, respectively, a column vector and a row vector with all

of its elements equals to θGk , we can write L(Y Gk)p(θGk |σ2
y) in terms of θGk as follows:

L(Y Gk)p(θGk |σ2
y) = exp

{−1

2σ2
y

(
Y T

Gk
Y Gk + βTXT

Gk
XGkβ − 2βTXT
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2
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− 2
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2
( 1

vθ

) 1
2
,

where rGk =
∑

i∈Gk(yi− xiβ)) is the sum of partial residuals of the cluster Gk, that is,
it corresponds to the residuals in the linear regression fitted to data in Gk without the
vertices effects θ. Working only with the elements inside the second exponential that
depends on θGk we obtain that
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=
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.

Replacing this result in L(Y Gk)p(θGk |σ2
y) and integrating out θ, we have that

∫
L(Y Gk)p(θGk |σ2
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which can be rewritten as

∫
L(Y Gk)p(θGk)dθGk =

( 1

2πσ2
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2
( 1

vθnGk + 1

) 1
2×

exp
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(
SSE(Gk) + λ− φ(Gk)
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,

where SSE(Gk) = (YGk −XGkβ)T (YGk −XGkβ), λ =
µ2θ
vθ
, φ(Gk) = (µθ

vθ
+ rGk)

2(nGk +
1
vθ

)−1. Using the fact that Gk = G∗k
⋃
G∗∗k and G∗k

⋂
G∗∗k = ∅ we have that SSE(Gk) =

SSE(G∗k) + SSE(G∗∗k ) and nGk = nG∗k + nG∗∗k we have that the ratio is given by:
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Ri =

∫
L(YGk)p(θGk |σ2

y)dθGk∫
L(Y G∗k)p(θG∗k |σ2

y)dθG∗k
∫
L(Y G∗∗k )p(θG∗∗k |σ2
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ψ + V − c− 1

κ+ c−F
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(vθnG∗k + 1)1/2(vθnG∗∗k + 1)1/2

(vθnGk + 1)1/2

× exp
{−1

2σ2
y

(−λ− φ(Gk) + φ(G∗k) + φ(G∗∗k )
}

(A.2)

If we do not integrate over ρ, we should change the ratio ψ+V−c−1
κ+c−F in equation

(A.2) to (1−ρ)
ρ

. However, this may cause some instability in the algorithm as a division
by zero is possible.

A.1 Experimental setup

All the experiments were run on the same machine with Intel Core i7-2600, 3.4GHz, 8
cores and 16 GB of RAM. Except for the CatBoost that used 8 threads, all methods
were run single thread.

A.1.1 Inside Airbnb data cleaning

Firstly, we selected only samples that are rental of a full house or apartment with at
least one review. The price variable was transformed from a string to a numeric value
(ex: $5.0 to 5.0). Next, we removed samples with inconsistent values such as having
zero bathroom, bedrooms and rent value. Next, we transform the rent value to the log
of its value.

After subsetting the data and log transform the response variable, we removed
outliers from the data set. The listings prices on Airbnb showed to have an asymmetric
distribution with a long tail. Thus, we removed these outliers using an extension of
the Median Absolute Deviation (MAD) Leys et al. [2013], the extension consisting in
computing the median of the data set and split the data set in two. The first has all the
values smaller than the median and the second all the remaining values. it applies the
MAD in each side. As suggested in Leys et al. [2013], we used a conservative approach
to remove samples with a MAD score greater than 3.0.

Following, we selected 10 amenities that we found that are useful to add value
to a listing. Those amenities are TV, air conditioning, dryer, free street parking, iron,
coffeemaker, family kid-friendly, dishwasher, indoor fireplace, fire extinguisher. We
created an indicator variable for each amenities. Next, we transformed the following
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variables in buckets: bedrooms, bathrooms, number guests included, accommodates
mean review score cleanliness, mean review score value, minimum nights and property
type as described at table A.2. We did not use the number of beds as a feature because
it showed to be strongly correlated with other features such as the number of bedrooms
and bathrooms.

The last feature considered was an indicator if a listing host is super host. 1 In
total, we considered 19 categorical predictors. A summary with the compile date and
the number of samples, fixed samples, regions/districts is presented at table A.1.

Table A.1. Summary for each dataset. N is the number of samples, Nfixed

number of fixed samples, R number of levels in the categorical variable of interest,
F number of components in the input graph and Date compile is the data in which
the inside Airbnb was compiled (available for reproducibility).

Dataset N Nfixed R F Date compiled

Munich 2053 0 25 1 NA

Amster. 10741 0 22 2 08 April, 2019
Barcelona 5043 27 64 1 10 April, 2019
Chicago 2484 46 64 1 12 March, 2019
Hawaii 4518 4 30 6 03 May, 2019
London 24573 0 33 1 09 April, 2019
Montreal 7103 15 30 1 13 April, 2019
New York 11695 12 77 2 03 May, 2019
San Fran. 1920 1 35 1 03 May, 2019
Seattle 2878 24 88 2 15 April, 2019
Toronto 4340 83 136 1 08 April, 2019

A.1.2 Experimental settings

In our experiments, we evaluate the proposed model and compare it to some alternative
procedures for modeling and clustering variables: the Bayesian ordinary linear regres-
sion model (Bayes) with dummy coding of categorical variables; the gvcmcat Oelker
[2015], a lasso penalization to cluster the levels of a categorical variable; the effectFu-
sion Pauger et al. [2019], a Bayesian model to clusters levels of a categorical variable
by using a finite mixture model; and the CatBoost Prokhorenkova et al. [2017], state
of the art gradient boosting model with categorical feature support.

Parameter tunning

We used the gvcm.cat (Library that implements the Lasso penalization method) and
CatBoost internal methods to find the best tune for key parameters.

1www.airbnb.com/superhost
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Table A.2. Variables used in the Airbnb dataset. The first 10 variables are
the selected amenities, they indicates if a listing has the given amenity. The
"is_superhost" variable indicates if the listings host is a super host. The review
scores value and review scores cleanliness are the mean value of the listings review
value. The variables, bathrooms (number of bedrooms), accommodates (number
of persons that can be accommodated), bedrooms (number of bedrooms) and
minimum nights (minimum nights required to book the listing) were transformed
in buckets. The property type variable indicates it the property is a house or an
apartment. The Z variable is an indicator variable indicating the neighbourhood
that a listing belongs to. Finally. Y is the response variable (log of the listing
price per night of stay).

Variable Type Description Values

fire_extinguisher cat Amenity indicator 0/1
indoor_fireplace cat Amenity indicator 0/1

dishwasher cat Amenity indicator 0/1
family_kid_friendly cat Amenity indicator 0/1

coffeemaker cat Amenity indicator 0/1
freestreet_street_parking cat Amenity indicator 0/1

Iron cat Amenity indicator 0/1
Dryer cat Amenity indicator 0/1

Airconditioning cat Amenity indicator 0/1
TV cat Amenity indicator 0/1

is_superhost cat Indicator if a host is superhost 0/1
guests_included cat Number of guests included (0, 1],(1, 2], (2, ∞)

review_scores_value cat Mean of reviews scores value [0,9], (9, 10]
review_scores_cleanliness cat Mean of reviews score cleanliness [0, 9], (9, 10]

bathrooms cat Number of bathrooms (0,1], (1, 2], (2, ∞)
accommodates cat Number of persons that can be accommodates (0, 2], (2, 4], (4, ∞)

bedrooms cat Number of bathrooms (0, 1], (1, 2], (2, ∞)
minimum_nights cat Minimum nights required to book the listing (0, 3], (3, 7], (7, 30], (30, ∞)
property_type cat Type of the listed property House/Apartment

Z cat Neighbourhood Neighbourhood name
Y num log of the listing price per night (0, ∞)

gvcmcat:

• ’lambda’: log scale (0, 50)

The adapted weight parameter was fixed as true for all datasets. We used the
model penalization to cluster only the categorical variable of interest. A method from
the gvcm.cat library was used to select the lambda value with the minimum mean
squared error by performing a 5-fold-cv.

catboost:

• ’depth’: [2, 4, 6, 8, 10]

• ’learning_rate’: log-uniform [e−5, 1]

• ’l2_leaf_reg’: log-uniform [1, 10]
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• ’rsm’: 1

• ’border’: 256

We fixed the CatBoost number of iteration to 250 and sampled 10 values for
the depth, learning_rate and l2_leaf_reg, creating a grid of 1000 combinations of
parameter value. The model was set to select the best combination of parameters in
the grid that minimized the root mean squared error by using a 5-fold-cv.

effectFusion:

We fixed the following parameters:

• ’method’: "FinMix"

• ’modelSelection’: NULL

• ’startsel’: 500

For the prior parameters we used the library default values that are standard
choice in the literature. We used ’M’ as 2000 for all datasets. Before fitting the model,
we dummy encoded all categorical variables that we are not interested to cluster and we
treated them as a continuous variable. The categorical variable that we were interested
to cluster were treated as a nominal variable.

After finding the best set of parameters for each model, we performed a 5-fold-cv
as described in section 4.4.

Version of the libraries

• catboost 0.14.2

• effectFusion 1.1.1

• igraph 1.2.4.1

• gvcmcat 1.9

• MASS 7.3-51.4

• R 3.5.3
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A.2 Additional plots

We show additional plots, for each dataset we show the posterior mean for θ estimated
by our model (left plot first row) and the estimated coefficients by the lasso penalization
(right plot first row), sampled clustering from the posteriori distribution (second row),
a histogram of the posteriori number of clusters (third row left plot), the neighbourhood
graph used (third row right plot) and a caterpillar plot (95% highest posterior density
interval) for each θ estimated by our model. The estimated coefficient for each model
were normalized using the min-max normalization.
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Munich house rent
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Figure A.1. Caterpillar plot
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Inside Airbnb: Amsterdam

Figure A.2. PPRM posterior mean of θ Figure A.3. Lasso estimated coefficients

Figure A.4. PPRM sampled clustering Figure A.5. PPRM sampled clustering

Figure A.6. PPRM posterior number of clusters Figure A.7. Neighbourhood graph
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Figure A.8. Caterpillar plot
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Inside Airbnb: Barcelona

Figure A.9. PPRM posterior mean of θ Figure A.10. Lasso estimated coefficients

Figure A.11. PPRM sampled clustering Figure A.12. PPRM sampled clustering

Figure A.13. PPRM posterior number of clusters Figure A.14. Neighbourhood graph
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Figure A.15. Caterpillar plot
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Inside Airbnb: Chicago

Figure A.16. PPRM posterior mean of θ Figure A.17. Lasso estimated coefficients

Figure A.18. PPRM sampled clustering Figure A.19. PPRM sampled clustering

Figure A.20. PPRM posterior number of clusters Figure A.21. Neighbourhood graph
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Figure A.22. Caterpillar plot
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Inside Airbnb: Hawaii

Figure A.23. PPRM posterior mean of θ Figure A.24. Lasso estimated coefficients

Figure A.25. PPRM sampled clustering Figure A.26. PPRM sampled clustering

Figure A.27. PPRM posterior number of clusters Figure A.28. Neighbourhood graph
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Figure A.29. Caterpillar plot
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Inside Airbnb: London

Figure A.30. PPRM posterior mean of θ Figure A.31. Lasso estimated coefficients

Figure A.32. PPRM sampled clustering Figure A.33. PPRM sampled clustering

Figure A.34. PPRM posterior number of clusters Figure A.35. Neighbourhood graph
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Figure A.36. Caterpillar plot
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Inside Airbnb: Montreal

Figure A.37. PPRM posterior mean of θ Figure A.38. Lasso estimated coefficients

Figure A.39. PPRM sampled clustering Figure A.40. PPRM sampled clustering

Figure A.41. PPRM posterior number of clusters Figure A.42. Neighbourhood graph
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Figure A.43. Caterpillar plot
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Inside Airbnb: New York

Figure A.44. PPRM posterior mean of θ Figure A.45. Lasso estimated coefficients

Figure A.46. PPRM sampled clustering Figure A.47. PPRM sampled clustering

Figure A.48. PPRM posterior number of clusters Figure A.49. Neighbourhood graph
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Figure A.50. Caterpillar plot
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Inside Airbnb: San Francisco

0.5

Figure A.51. PPRM posterior mean of θ Figure A.52. Lasso estimated coefficients

Figure A.53. PPRM sampled clustering Figure A.54. PPRM sampled clustering

Figure A.55. PPRM posterior number of clusters Figure A.56. Neighbourhood graph
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Figure A.57. Caterpillar plot
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Inside Airbnb: Seattle

Figure A.58. PPRM posterior mean of θ Figure A.59. Lasso estimated coefficients

Figure A.60. PPRM sampled clustering Figure A.61. PPRM sampled clustering

Figure A.62. PPRM posterior number of clusters Figure A.63. Neighbourhood graph
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Figure A.64. Caterpillar plot
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Inside Airbnb: Greater Toronto

Figure A.65. PPRM posterior mean of θ Figure A.66. Lasso estimated coefficients

Figure A.67. PPRM sampled clustering Figure A.68. PPRM sampled clustering

Figure A.69. PPRM posterior number of clusters Figure A.70. Neighbourhood graph
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Figure A.71. Caterpillar plot




