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Abstract

Automated Text Classification (ATC) has become substantially important for a variety of
tasks, such as categorizing news, organizing digital libraries, building web directories, ana-
lyzing sentiment of user-generated content and detecting spam, to name a few. Given a set
of training documents classified into one or more predefined categories, the task of ATC is
to automatically learn how to classify new (unclassified) documents, using a combination of
features of these documents that associates them with categories. Due to the fact that the ATC
problem occurs in a number of different applications, diverse machine learning algorithms
have been proposed to deal with ATC.

Although the classification algorithm itself plays an important role in ATC, the features
that represent documents may be equally important to determine effectiveness. In particular,
representing documents in a feature space is a prerequisite work for ATC, since these classi-
fication algorithms are designed to discover discriminative patterns on these features. In this
sense, a relevant challenge relies on efficiently manipulating the feature space to address ATC
from a data engineering viewpoint. In this context, we address the problem of automatically
learning to classify texts by exploiting information derived from meta-features, i.e., features
engineered from the original (bag-of-words) representation. Particularly, the exploited meta-
features rely on distance measures to summarize complex relationships between documents
and present discriminative information for classification.

We here not only propose new meta-features that provide discriminative evidence for
classification, but also new mechanisms to analyze and select meta-features using multi-
objective strategies. These strategies are capable of reducing the number of meta-features
while maximizing the classification effectiveness, when considering the adequacy of the se-
lected meta-features to a particular dataset or classification method. Moreover, we provide
additional contributions to improve the efficiency and effectiveness of meta-features. Par-
ticularly, we propose: (i) the use of commodity GPUs to reduce the computational time to
generate meta-features; (ii) the use of supervised learning to enrich distance relationships
with labeled information; and (iii) the design of new specific meta-features for the sentiment
analysis context.
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Our experimental results on five traditional benchmarks for topic classification show
that with the appropriate selection techniques, our distance-based meta-features can achieve
remarkable classification results considering the results of original feature space and other
recently proposed distance-based meta-features. We further explain our results with the iden-
tification and discussion about meta-features that, when combined, provide core information
to classify documents. Our improvements on core meta-features using labeled information to
enrich distance relationships provide additional gains over our best results in topic datasets.
We also evaluate meta-features on nineteen sentiment analysis datasets. In this context,
our proposals for sentiment classification produced remarkable results considering the ef-
fectiveness of previous meta-features that do not take sentiment analysis idiosyncrasies into
account.

Keywords: supervised learning; text classification; meta-features; machine learning
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Resumo

Classificação Automática de Texto (CAT) têm adquirido notória importância em uma var-
iedade de tarefas, como a categorização de notícias, organização de bibliotecas digitais,
criação de diretórios da web, análise de sentimentos em conteúdos gerados por usuários
e detecção de spam. Dado um conjunto de documentos de treinamento classificados em uma
ou mais categorias predefinidas, a tarefa do CAT é aprender automaticamente como clas-
sificar novos documentos (não classificados), usando uma combinação de atributos desses
documentos que os associam a categorias. Devido ao fato de o problema do CAt ocorrer em
vários contextos, diversos algoritmos de aprendizado de máquina foram propostos para lidar
com CAT.

Embora o próprio algoritmo de classificação tenha um papel importante na CAT, os
atributos que representam documentos podem ser igualmente importantes para determinar a
eficácia da classificação. Especificamente, representar documentos em um espaço de atribu-
tos é um trabalho que precede a CAT, pois esses algoritmos de classificação são projetados
para descobrir padrões discriminativos usando esses atributos. Nesse sentido, uma tarefa
importante consiste em promover a manipulação espaço de atributos para abordar a CAT do
ponto de vista da engenharia de dados. Nesse contexto, abordamos o problema de aprender a
classificar textos de forma automática, explorando informações derivadas de meta-atributos,
ou seja, atributos criados a partir da representação original dos documentos (bag of words).
Particularmente, os meta-atributos explorados contam com medidas de distância capazes de
sumarizar relacionamentos potencialmente complexos entre documentos e apresentar infor-
mações relevantes para classificação.

Neste trabalho, não apenas propomos novos meta-atributos que fornecem evidências
discriminativas para classificação, mas também novos mecanismos para analisar e selecionar
meta-atributos. Nesse sentido, utilizamos estratégias multiobjetivo capazes de minimizar o
número de meta-atributos e maximizar a eficácia da classificação, considerando a adequação
dos meta-atributos selecionados a uma coleção de dados ou método de classificação especí-
fico. Além disso, fornecemos contribuições adicionais para aprimorar a eficiência e a eficácia
da utilização de meta-atributos. Em particular, propomos o uso de GPUs (Graphical Process-
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ing Units) para reduzir o tempo computacional da geração de meta-atributos, o uso de apren-
dizado supervisionado para o enriquecimento dos relacionamentos de distância com dados
rotulados, e a construção de novos meta-atributos específicos para o contexto da análise de
sentimento.

Nossos resultados experimentais em cinco coleções tradicionalmente usadas na clas-
sificação em tópicos mostram que, com as técnicas de seleção apropriadas, nossos meta-
atributos baseados em distância podem alcançar excelentes resultados de classificação con-
siderando os resultados previamente obtidos no espaço de atributos original ou outros meta-
atributos baseados em distância recentemente propostos. Além disso, avançamos nossa
análise experimental com a identificação e discussão de meta-atributos que, quando combi-
nados, fornecem informações centrais para a classificação de documentos. Aprimoramentos
adicionais nesses meta-atributos a partir do enriquecimento dos relacionamentos de distância
com informações de rotulação proporcionaram ganhos adicionais sobre nossos melhores re-
sultados obtidos em coleções de classificação em tópicos. Também avaliamos meta-atributos
em dezenove coleções de análise de sentimento. Nesse contexto, nossas propostas para clas-
sificação de sentimento apresentaram excelentes resultados quando comparados aos meta-
atributos anteriores que não levam em consideração as idiossincrasias da tarefa de análise de
sentimento.

Palavras-Chave: apredizado supervisionado; classificação de textos; meta características;
aprendizado de máquina
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Chapter 1

Introduction

The rapid growth of online information has led to an increasing need for handling and or-
ganizing textual data. Automatic Text Classification (ATC) plays a significant role in this
scenario, due to a wide range of problems that can be solved with this approach, particu-
larly when simple heuristics (that disregard data analysis) fail to provide effective results. In
fact, ATC methods have become substantially important for a variety of tasks, such as cate-
gorizing news, organizing digital libraries, building web directories, analyzing sentiment of
user-generated content and detecting spam, to name a few. In all such cases, there might be
some discriminative patterns that relate a document to its respective category. For example,
consider the problem of categorizing news articles. In this context, the occurrence of the
word “democrats” in a document is a discriminative evidence that relates the document to
the category politics. However, given the huge number of words and the potentially com-
plex relationships among them, the task of manually describing such patterns may become
infeasible.

To address such problems, ATC uses a set of training documents classified into one
or more predefined categories, and automatically learns how to classify new (unclassified)
documents, using a combination of features of these documents that associate them with
categories (Sebastiani, 2002). More formally, a learning algorithm uses a given a set of
pairs (~xi,ci) known as a training set, where~xi ∈X denotes the vector representation of the
document i as a point in a feature space X and ci ∈ C a categorical attribute (or response
variable) indicating i’s class (C is a finite set composed of all the possible classes). The main
goal of a supervised learning algorithm is to infer a classification function f : X → C from
the training set, which can be used to map a new example~xn to its respective category cn.

Although supervised learning techniques play a fundamental role in ATC, the features
that represent documents may be equally important to determine classification effectiveness.
In particular, representing documents in a feature space is a prerequisite work for supervised
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2 CHAPTER 1. INTRODUCTION

classification methods, since these methods are designed to discover discriminative patterns
based on these features. Usually, each dimension of the feature space X ⊆ Rd corresponds
to a word of the dictionary with d words. Therefore, a document can be seen as a point in this
feature space, where each dimension corresponds to a word weighted according to its rela-
tive importance in the document (Hastie et al., 2003). In this sense, a trend that has emerged
in ATC that works on the data engineering level instead of on the algorithmic level, is the
introduction of meta-level features that can replace or work in conjunction with the origi-
nal (bag-of-words-based) feature space (Canuto et al., 2015, 2014; Gopal and Yang, 2010;
Kyriakopoulou and Kalamboukis, 2007, 2008; Pang et al., 2015; Raskutti et al., 2002; Yang
and Gopal, 2012). These meta-features can capture insightful new information about the
unknown underlying data distribution that relates the observed patterns with the associated
category.

Particularly, we focus on distance-based meta-features, which rely on the fact that
distance measures are capable of summarizing potentially complex relationships between
text documents. This summarized information can then be exploited in different ways to
generate robust and informative meta-features for text classification. For example, let us
consider the meta-features driven from the projection of highly-dimensional documents into
a low-dimensional space spanned by category centroids. More specifically, in this scenario,
the meta-features are the distance scores between the document and each category centroid.
This specific group of meta-features, taken from category centroids, is capable of mitigating
issues related to imbalanced class distributions and irrelevant or noisy term features (Pang
et al., 2015). Indeed recent works (Canuto et al., 2015, 2014, 2019, 2018; Pang et al., 2015;
Yang and Gopal, 2012) represented discriminative patterns for text classification with several
different groups of meta-features. These groups are manually designed to extract comple-
mentary information primarily from the distribution of distances between documents. Each
group is designed to exploit a particular aspect, such as the similarity scores, the class dis-
tribution, the entropy, and the within-class cohesion observed in the k nearest neighbors of a
given test document. The combination of these meta-features provides a more compact and
informative feature space that reportedly improves classification effectiveness.

1.1 Problem Statement

In general terms, the problem we address in this dissertation can be defined as the task of
transforming the original (bag-of-words) feature space X into a new meta-feature space M

which is potentially smaller and more informative for text classification. Such meta-feature
space is built upon the distances between an arbitrary document and training documents from
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each particular category, providing explicit information about labeled data. Therefore, the
problem consists in using the distances that summarize the relationship among documents
from different categories as the primary source of information to build new meta-features for
text classification.

More specifically, given a training set Ttrain = {(~xi,ci) ∈X ×C }|mi=1 and an arbitrary
document ~xn ∈X , we define a meta-feature vector ~mn ∈M for each document ~xn ∈X .
The distance-based meta-features are dimensions of ~mn, which are driven primarily from
the distances between a document ~xn and training examples. The meta-feature vector ~mn

is divided into r sub-vectors [m1
nm2

n, ...,m
r
n], and each sub-vector is called a meta-feature

group. Each meta-feature group is a manually defined sub-vector of meta-features that uses
a particular strategy to exploits distances between documents and provides information for
classification methods. In this scenario, the engineering of different meta-feature groups
can be seen as different strategies that primarily exploit the contiguity hypothesis (Manning
et al., 2008), which expects~xn to have the same label as the training documents located close
to it.

~xn:

Ttrain :

(~x1, ca) :

(~x2, ca):

(~x3, cb) :

0.2

0.8

0.2

Define meta-feature groups from
distances between an arbitrary ~xn

~m1
n:

~m2
n:

document and training documents.

Concatenate meta-feature groups
to generate the new meta-feature
representation ~mn of ~xn.

~mn:

Figure 1.1: Generation of distance-based meta-features for the document xn.

For example, lets consider the case illustrated in Figure 1.1 that presents the trans-
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formation of an arbitrary document ~xn into its new representation ~mn. The transformation
uses the following training set Ttrain composed by three training documents i.e., Ttrain =

{(~x1,ca),(~x2,ca),(~x3,cb)}. The distances between ~xn and the three training documents ~x1,
~x2 and ~x3 are 0.8, 0.2 and 0.2, respectively. First, we obtain the meta-feature groups for xn,
which represent statistics from distances between xn and the training examples. In our toy
example, lets consider two meta-feature groups m1

n and m2
n. Assuming m1

n as the meta-feature
group that represents the average distance from documents of the same category (e.g., the
average distances between ~xn and all documents categorized as ca is 0.8+0.2

2 = 0.5), we ob-
tain m1

n = [0.5,0.2]. Then, we generate the meta-feature group m2
n, which in our case is the

distance between~xn and the nearest neighbor of each category (i.e., m2
n = [0.2,0.2]). In this

scenario the meta-feature representation of~xn is ~mn = [m1
nm2

n] = [0.5,0.2,0.2,0.2].

f1 f2 f3 ... fn

t11 t12 t13 ... t1n
t21 t22 t23 ... t2n
t31 t32 t33 ... t3n

tm1 tm2 tm3 ... tmn

...

...

...

...

Doc1 = ~x1

Doc2 = ~x2

Doc3 = ~x3

Docm = ~xm

...

Bag of Words

t11 t12 t13 ... t1k
t21 t22 t23 ... t2k
t31 t32 t33 ... t3k

tm1 tm2 tm3 ... tmk

...

...

...

...

Doc1 = ~m1

Doc2 = ~m2

Doc3 = ~m3

Docm = ~mm

...

Meta-feature Groups

t11 t12 t13 ... t1c
t21 t22 t23 ... t2c
t31 t32 t33 ... t3c

tm1 tm2 tm3 ... tmc

...

...

...

...

Group m1 Group m2

t11 t12 t13 ... t1c
t21 t22 t23 ... t2c
t31 t32 t33 ... t3c

tm1 tm2 tm3 ... tmc

...

...

Group m3

...

...

Figure 1.2: Transforming a dataset represented with bag-of-words into its respective meta-
feature representation showed as the concatenation of meta-features from different groups.

Figure 1.2 presents the documents of a dataset represented as the traditional bag-of-
words. In this example, after generating three meta-feature groups for each document, the
new meta-feature representation can be seen as the concatenation of such groups.

Though discriminative by themselves, the combined use may sometimes degrade the
effectiveness of classification algorithms (Canuto et al., 2014). In fact, the resulting meta-
feature space may be unnecessarily complex and highly dimensional, increasing the tendency
of overfitting of the classification models. Moreover, meta-feature groups may include noise
in the meta-feature space because of specific characteristics of the dataset. For example,
meta-features that exploit the neighborhood of documents on unbalanced data might incor-
rectly suggest the relationship between documents and the majority class, since the neighbors
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of an arbitrary document tend to be from the majority class. Additionally, a large number of
different meta-features might also be computationally expensive to generate, also increasing
the computational costs to build classification models.

To use as few groups of meta-features as possible, it is necessary to consider the ad-
equacy of the selected groups to a particular dataset or classification method, which is not
trivial due to the high number of possible combinations. A related problem consists in find-
ing a “common” reduced core of meta-features capable of providing effective results for
different datasets. The solution to these problems can produce insights about the unknown
behavior of different combinations of meta-feature groups, providing a starting point for new
meta-features and their application in different contexts.

Throughout this dissertation, we shall study the effects of using different meta-feature
groups for text documents considering the idiosyncrasies of each dataset. In fact, we pro-
vide methods that aim at solving the problems related to engineering efficient and effective
distance-based meta-feature groups, as well as selecting and analyzing meta-features that
improve the classification effectiveness on text categorization.

1.2 Dissertation Hypotheses and Proposals

In the following, we state the main hypotheses that we defend in this doctoral dissertation.
Such hypotheses follow from the main idea that the exploitation of distances between docu-
ments can provide an informative document representation capable of improving document
classification. Our proposals and empirical evidence that provide support for the hypotheses
are discussed below in the form of answers for explicit research questions.

Hypothesis 1. The use of distance-based meta-features can improve the classification effec-

tiveness through the exploitation of discriminative patterns obtained from different statistics

drawn from distances between documents.

Despite the evidence for this hypothesis provided by previous works (Gopal and Yang,
2010; Pang et al., 2015; Yang and Gopal, 2012), the few distance-based meta-features pre-
viously proposed have not been extensively studied in multi-class ATC tasks. Specifically,
they were not evaluated with the most traditional topic benchmarks adopted to compare al-
gorithms for this task (e.g., 20NewsGroups, Reuters, WebKB, Medline, and ACM). In this
work, we propose not only the use of such benchmarks, but also the use of new meta-features
proposed in this dissertation, which exploit sophisticated statistics from distances between
documents to improve classification effectiveness. We also propose additional experimen-
tal analyses to support our hypothesis by designing experiments that answer the following
research questions:
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RQ1 – How effective is the combination of the meta-feature groups proposed in different

works? To answer this question, we propose to combine the meta-feature groups of different
works and compare the effectiveness of the combination against the original proposals. As
we shall see, in most situations, the combination of all meta-feature groups is more effective,
showing their complementarity. This analysis not only supports our initial hypothesis, but
also motivates our next research questions.

Hypothesis 2. Multi-objective optimization techniques can be used as effective and efficient

strategies for meta-feature selection and analysis.

Despite their complementarity, the inclusion of a new group in the meta-feature space
may introduce noise depending on the dataset characteristics (Canuto et al., 2014). We inves-
tigate this hypothesis by evaluating various feature selection mechanisms on meta-features,
also considering an in-depth analysis of meta-feature selection on different classification
methods using our proposed multi-objective methods. More precisely, we design experi-
ments and methods guided by the following research questions:

Q2 – How effective and efficient are different strategies for feature selection on the meta-

feature space?

As far as we know, there is no previous study that analyzes the potential of standard
feature selection strategies for distance-based meta-features. The only preliminary study in
this direction uses a greedy strategy to remove meta-feature groups that harm classification
effectiveness (Canuto et al., 2014). In this work, we extend this analysis with selection
strategies such as exhaustive search, best-first and genetic algorithms to search for effective
combinations of meta-feature groups. Different from the previously mentioned methods, our
proposed multi-objective genetic algorithms explicitly optimize the objectives that guides
the algorithm to the most promising regions of the search space. Particularly, considering
the objectives of maximizing the classification effectiveness and minimizing the number of
meta-feature groups, our proposal can achieve remarkable classification effectiveness, with
substantial meta-feature reduction by up to 89%.

Q3 – How effective are different classification strategies on distance-based meta-features

considering meta-feature selection? Despite extensive use of the SVM classifier with meta-
features, there is no comparative study that evaluates the effectiveness of different classifi-
cation approaches on distance-based meta-features. We evaluate the effectiveness of differ-
ent classification paradigms considering not only the combination of various meta-feature
groups but also using our meta-feature selection proposal (SPEA2fast), which is capable of
efficient selection considering multiple classification methods. SVM is consistently among
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the best classification approaches, even considering potential improvements enjoined by the
other methods after feature selection.

Hypothesis 3. Despite the idiosyncrasies of each dataset, there is a “common set” of meta-

feature groups capable of providing core information to classify documents over multiple

datasets.

In order to investigate this hypothesis, we propose to answer the following research
question considering datasets both individually and collectively:

RQ4 –Which combinations of meta-feature groups provide the core information to classify

documents? Each meta-feature group provides some sort of (potentially complementary)
discriminative information. However, there might be combinations of just a few “core” meta-
feature groups that are as effective as the combination of all of them, due to redundancy and
noise. Thus, we propose to evaluate the conflicting objectives of maximizing the classifica-
tion effectiveness while minimizing the number of meta-features groups to identify the most
informative combinations.

Thus, we search for different combinations of meta-features groups that optimize the
tradeoff between the two conflicting objectives. In this scenario, our meta-feature selection
proposal (SPEA2SVM) aims at finding the Pareto frontier (Zitzler et al., 2001) of our objec-
tives, instead of focusing only on finding the most effective combination of meta-features.
This constitutes a major difference between our proposal and other traditional feature selec-
tion methods. Specifically, we focus our analysis on the individuals of the Pareto frontier.
This frontier is constituted of a set of different combinations of meta-feature groups in which
it is impossible to either include any other combination containing fewer groups or is more
effective than any other combination in the Pareto frontier set. For instance, if a combination
obtains low classification effectiveness but contains only a few meta-features groups, it can-
not be discarded from the Pareto Frontier if there is no other combination that is both more
effective and uses at least the same number of groups. Figure 1.3 presents an example of the
Pareto frontier. The Pareto frontier provides evidence to evaluate good combinations while
considering a restricted number of meta-feature groups.

In fact, we evaluate the specificities of the combinations in the Pareto frontier consid-
ering the characteristics of each dataset. For example, if we analyze the Pareto frontier of
Figure 1.3, we can see that the combination using only four meta-feature groups achieves
very effective results (close to the combination of all 7 groups).

Based on these results, we also analyze the core information present in this combina-
tion by verifying the characteristics of each meta-feature group present in the final selection,
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Figure 1.3: Representation of the Pareto frontier (points in the dashed line), where each point
in the plane corresponds to a combination of meta-features.

considering the dataset specificities. Summarizing, the Pareto frontier provides evidence for
an in-depth analysis of the discriminative information of different combinations.

Besides analyzing the core discriminative information considering each individual
dataset, we also analyze specific combinations of meta-feature groups that provide the core
information to classify documents accross various datasets. Given the objectives of minimiz-
ing the number of meta-feature groups and the maximization of the average effectiveness on
the datasets as objectives, the proposed multi-objective optimization strategy searches for
compact combinations that are effective in all datasets. As a result, we found that the combi-
nation of only two meta-feature groups provides most of the core discriminative information,
and a specific combination of five meta-feature groups is capable of providing almost all the
discriminative information to classify documents in our evaluations.

Hypothesis 4. Enriching distance relationships with labeled information can improve the

meta-feature space.

Despite the previous success of distance-based meta-features, their underlying distance
relationships rely on traditional distance measures among documents. These distances aim at
summarizing discriminative evidence based on simple manipulations of term weights (such
as TF-IDF), which might thwart the importance of relevant discriminative terms in the sim-
ilarity computation. Also, distance measures such as Cosine, Euclidean and Manhattan are
not designed to capture whether two documents belong to the same class and thus do not
directly associate similarity with class information. In this context, we argue that enriching
distance relationships with label information can improve the meta-feature space. Particu-
larly, given a set of labeled training examples and similarity evidence (e.g., common words
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among documents and similarity measures) that are manifested in distance relationships, we
aim at answering the following research question:

RQ5 – Is it possible to improve the effectiveness of distance-based meta-features by enrich-

ing distance relationships with label information? To answer this question, we focus
on extending the underlying distance relationships between a document and its neighbors
with supervised strategies that evaluate the relevance of similarity evidence. Particularly, we
propose meta-features capable of correlating a set of similarity evidence of a pair of doc-
uments with the likelihood of these documents belonging to the same class. We use these
likelihoods, predicted with SVM hyperplane distances, to build new meta-features. We also
estimate the level of error introduced by these newly proposed meta-features, specially for
hard-to-classify regions of the meta-feature space, We do so by estimating the prediction er-
rors in the neighborhood of each document. Whithout relying on feature selection strategies
to improve the meta-feature space, this approach is able to exploit a deeper correlation of
small pieces of evidence shared by documents and its labeled neighbors.

Hypothesis 5. Meta-features can improve the classification effectiveness on other applica-

tions through the combined exploitation of context-specific information and different statis-

tics drawn from distances between documents.

In this dissertation, we propose to study the application of meta-features for the specific
context of sentiment analysis. The classification of sentiments in short documents (i.e., short
messages/reviews) poses new challenges for effective classification due to the shortage of
information in small messages, the potentially limited number of training samples and noisy
texts (e.g., inconsistent shortened words and slang terms) (Kiritchenko et al., 2014). These
characteristics might impair the classification effectiveness and meta-feature representation.
In this context, we evaluate the application of meta-features by answering the following
research question:

RQ6 – How to exploit meta-features to provide effective results in sentiment analysis? To
tackle the new challenges of sentiment analysis, we make use of BM25 (Manning et al.,
2008) as similarity score in kNN, since it is an useful measure to rank documents with
short messages as queries. We also exploit the neighborhood of a test example in both
the training set and in a dataset containing 1.6 million tweets automatically labeled by its
users with emoticons (Go et al., 2009). This methodology allows us to exploit discriminative
information from different domains, even in noisy ones, like the large twitter dataset with
emoticons. The last additional evidence we exploit is taken from the weighted sentiment
polarity of the nearest neighbors by using lexicon-based methods to infer the message’s
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polarity towards a sentiment (Baccianella et al., 2010; Hutto and Gilbert, 2014; Thelwall
et al., 2010).

Hypothesis 6. Given the intrinsically paralyzable nature of the generation of distance-based

meta-features, it is possible to considerably reduce the excecution time by taking advantage

of the modern manycore GPU architectures.

The prediction of documents using distance-based meta-features consumes a poten-
tially high computational time, since it is necessary to find the neighborhood of each text
document before the prediction task. In this scenario, we propose to exploit the intrinsically
parallel nature of this problem (since distances between documents can be computed in par-
allel) by considering the high dimensional and sparse text data. More specifically, we take
advantage of the current manycore GPU architecture and present a massively parallel strat-
egy to compute distances between documents and find their closest neighbors. Our proposal
aims at answering the following research question:

RQ7 – How to exploit the modern manycore GPU architectures to reduce the computational

time to find the neighborhood of documents in text data?

Previously proposed methods to generate meta-features use serial CPU implementa-
tions to generate meta-features from text data. We propose to exploit inverted indexes along
with an efficient implementation to cope with GPU memory limitations and compute dis-
tances efficiently.

1.3 Contributions

To summarize, the main contributions of this work are 6-fold:

• The proposition and thorough evaluation of new distance-based meta-features.

• The proposal of efficient and effective strategies to evaluate different combinations of
meta-feature groups.

• The identification and discussion about the meta-feature groups that, when combined,
provide the core information to classify documents.

• The proposal of effective strategies to enrich distance relationships with labeled data
for meta-feature generation.

• The exploitation of meta-features specifically designed to take into account the id-
iosyncrasies of sentiment analysis.
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• A GPU implementation of kNN for high dimensional and sparse data to reduce the
computational time of predictions using distance-based meta-features.

1.4 Publications

The main results described in this dissertation are also presented in the following papers:

1. Canuto, S., Sousa, D., Gonçalves, M. A., Rosa, T. C. (2018). A Thorough Evaluation
of Distance-Based Meta-Features for Automated Text Classification. IEEE Transac-

tions on Knowledge and Data Engineering, 30(12):2242–2256. (Qualis A1, h5-index:

77, IF. 3.85).

2. Canuto, S., Salles, T., Couto, T., Gonçalves, M. A. (2019). Similarity-Based Syn-
thetic Document Representations for Meta-Feature Generation in Text Classification.
In Proceedings of the 42Nd International ACM SIGIR Conference on Research and

Development in Information Retrieval, p. 355–364. (Qualis A1, h5-index: 55).

3. Canuto, S., Gonçalves, M. A., Benevenuto, F. (2016) Exploiting new sentiment-based
meta-level features for effective sentiment analysis. In Proceedings of the Ninth ACM

International Conference on Web Search and Data Mining – WSDM, p. 53–62. (Qualis

A1, h5-index: 51).

4. Canuto, S., Martins, W. S., Couto, T., Gonçalves, M. A. (2015). Efficient and Scalable
MetaFeature-based Document Classification using Massively Parallel Computing. In
Proceedings of the 38th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, p. 333–342. (Qualis A1, h5-index: 55).

5. Canuto, S., Salles, T., Gonçalves, M. A., Rocha, L., Ramos, G., Gonçalves, G., Rosa,
T., Martins W. (2014). On Efficient Meta-Level Features for Effective Text Classifi-
cation. In Proceedings of the 23rd ACM International Conference on Information and

Knowledge Management – CIKM, p. 1709–1718. (Qualis A1, h5-index: 48).

6. Siqueira, G., Canuto, S., Gonçalves, M. A., Laender, A. F. (2017). Automatic Hierar-
chical Categorization of Research Expertise Using Minimum Information. In Proceed-

ings of the 21st International Conference on Theory and Practice of Digital Libraries

– TPDL. p. 103-115. (Qualis B1, h5-index: 11).

7. Sousa, D. X., Canuto, S., Rosa, T., Martins, W., Goncalves, M. A. (2016). Incorporat-
ing Risk-Sensitiveness into Feature Selection for Learning to Rank. In Proceedings of
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the 25th ACM International on Conference on Information and Knowledge Manage-

ment – CIKM. p. 257–266. (Qualis A1, h5-index: 48).

8. Sousa, D. X., Canuto, S., Gonçalves, M. A., Rosa, T., Martins, W. (2019). Risk-
Sensitive Learning to Rank with Evolutionary Multi-Objective Feature Selection.
ACM Transactions on Information Systems,37(2):1–34. (Qualis A1, IF. 2.31, h5-

index: 24).

9. Viegas, F., Canuto S., Gomes, C., Luiz, W., Rosa, T., Ribas, S., Rocha, L., Gonçalves,
M. A. (2019). CluWords: Exploiting Semantic Word Clustering Representation for
Enhanced Topic Modeling. In Proceedings of the Twelfth ACM International Confer-

ence on Web Search and Data Mining – WSDM. p. 753-761. (Qualis A1, h5-index:

51).

(Canuto et al., 2014) presents evidence towards our first hypothesis with experiments
using our proposed meta-feature groups and sheds light on the effects of selecting meta-
feature groups with a simple meta-feature selection method. Our initial results motivated
both our second and third hypotheses, which were thoroughly explored in (Canuto et al.,
2018) with strategies to select, evaluate, and identify core meta-feature groups. (Canuto
et al., 2019) exploits the core information provided by the similarity between a document
and its neighbors using supervised learning to evaluate the similarity information, with ex-
perimental results that provide evidence to support our fourth hypothesis.

(Canuto et al., 2015) presents a method to efficiently generate meta-features using
GPUs, with experimental results related to our sixth hypothesis. (Canuto et al., 2016) also
takes advantage of GPUs to make the generation of meta-features from big sentiment anal-
ysis datasets feasible. Moreover, this publication presents additional evidence towards our
fifth hypothesis by the application of meta-features designed for the context of sentiment
analysis in short texts.

The remaining mentioned publications are works developed toegther with other mem-
bers of the LBD (Laboratório de Banco de Dados) that use elements of this dissertation. In
more details, (de Siqueira et al., 2017) proposes the application of distance-based meta-
features in the context of categorizing research expertise and (Sousa et al., 2019, 2016)
proposed the use of similar genetic algorithms presented in this dissertation to solve re-
lated multi-objective machine learning problems, taking inspiration in our solutions. Finally,
(Viegas et al., 2019) takes inspiration on some ideas of this dissertation to exploit distances
among word representations for topic modeling.

These additional results provide even more evidence towards the potential benefits of
our proposals.
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1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows. In Chapter 2 we discuss related work
on distance-based meta-features. Chapter 3 describes both, the proposed and the literature
meta-features that explicitly exploit traditional distance measures. Our proposed strategies
to evaluate and select such meta-feature provide empirical evidence for RQ1, RQ2, RQ3,
and RQ4. Chapter 4 exploits new meta-features based on supervised strategies to evalu-
ate similarity evidence, with experiments that support our hypothesis 4 and answer RQ5.
Chapter 5 presents our strategies based on meta-features for sentiment analysis, helping to
answer RQ6. Chapter 6 presents our parallel kNN implementation to generate meta-features
efficiently, answering RQ7. Finally, in Chapter 8 we conclude this dissertation with a sum-
marization of our main findings and propose some directions for further investigation.





Chapter 2

Related Work

In this chapter, we review work related to distance-based meta-features. First, we present
previous work proposed in the literature and how our contributions advance the state-of-
the-art for text classification. Next, we review sentiment analysis works that relate to our
proposed meta-features. Finally, we discuss work related to GPU-based kNN parallelism
that can potentially help in meta-feature generation.

2.1 Meta-features

Several meta-level features have been proposed in order to improve the effectiveness of ma-
chine learning methods. They can be derived from clustering methods (Kyriakopoulou and
Kalamboukis, 2006, 2007, 2008; Raskutti et al., 2002), from kNN (Canuto et al., 2016, 2015,
2014, 2018; Gopal and Yang, 2010; Yang and Gopal, 2012), or from category centroids (Kim
et al., 2005; Pang et al., 2015).

The use of clustering (Kyriakopoulou and Kalamboukis, 2006, 2007, 2008; Raskutti
et al., 2002) is among the earliest strategies to generate distance-based meta-features. Par-
ticularly, such strategies use the idea of aggregating the information of similar documents
on clusters using both labeled and unlabeled data (Kyriakopoulou and Kalamboukis, 2007,
2008; Raskutti et al., 2002). These clusters produce meta-features that indicate the similarity
of each example to potentially informative groups of documents. In (Raskutti et al., 2002)
the largest n clusters are chosen as the most informative ones. Each cluster c contributes
with a set of meta-features, for example, an indicator function that captures whether c is the
closest of the n clusters to the example or not; the similarity of the example to the cluster’s
centroid, among others. In (Kyriakopoulou and Kalamboukis, 2006, 2007, 2008) the num-
ber of clusters is chosen to be equal to the predefined number of classes and each cluster
corresponds to an additional meta-feature.

15
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More recently, several works (Canuto et al., 2016, 2015, 2014, 2018; Gopal and Yang,
2010; Pang et al., 2015; Yang and Gopal, 2012) proposed to use class centroids or kNN as
the main tools to generate meta-features. They differ from the previously described cluster-
based meta-features as they partition the training set for each class and exploit statistics from
each training subset, explicitly capturing labeling information from training data. In more
details, Gopal and Yang (2010) reported good results by designing meta-features that make
a combined use of local information (through kNN-based features) and global information
(through category centroids) in the training set. This work was extended by the same au-
thors (Yang and Gopal, 2012) by leveraging successful learning-to-rank retrieval algorithms
over the meta-feature space for the multi-label classification problem. The same strategy was
successfully exploited on the problem of hierarchical categorization of research expertise us-
ing minimum information (de Siqueira et al., 2017).

Despite substantial improvements, the experiments of the previously described
works (Gopal and Yang, 2010; Yang and Gopal, 2012) are limited to small datasets, since
it is computationally expensive to generate meta-features for textual data. This happens be-
cause, to find the neighborhood of a given document, there is the need to constantly call
the kNN algorithm. Particularly, they generate meta-features using a general purpose kNN
implementation1, which does not take into account the high dimensional and sparse char-
acteristics of text data. Therefore, to make the meta-feature generation feasible for massive
datasets, we propose our own parallel version of the kNN algorithm for highly dimensional
and sparse text datasets (Canuto et al., 2015). This implementation enabled the application
of meta-features on large datasets (Canuto et al., 2016).

Without using any additional special-purpose hardware, an alternative strategy to ef-
ficiently generate meta-features for highly dimensional and sparse data was the proposal of
a compact meta-feature space derived only from category centroids (Kim et al., 2005; Pang
et al., 2015). The use of these meta-features brings benefits in terms of both efficiency and
classification effectiveness. This is especially the case for highly unbalanced datasets, since
minority classes are not underrepresented by class centroids Pang et al. (2015). Moreover,
Kim et al. (2005) experiments with centroid-based meta-features were capable of preserv-
ing the class structure from the full dimensional representation, achieving more effective
and efficient results than other strategies aimed at dimension reduction, such as LSI (Latent
Semantic Indexing) and GSVD (Generalized Singular Value Decomposition).

All the distance-based meta-features proposed in the previously discussed
works (Canuto et al., 2015; Gopal and Yang, 2010; Pang et al., 2015; Yang and Gopal,
2012) are based on similarity scores (e.g., similarity between a document and a category

1http://www.cs.umd.edu/~mount/ANN/

http://www.cs.umd.edu/~mount/ANN/
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centroid). We recently proposed the use of more elaborated statistics beyond the raw simi-
larity scores (Canuto et al., 2014). In that work, different meta-feature groups were derived
from the information provided by class distribution, the entropy and the within-class co-
hesion observed in the k nearest neighbors of a given test document x. The exploitation
of various new statistics relied on a simple greedy feature selection strategy for removing
meta-features that do not improve the classification effectiveness. In a follow-up, (Canuto
et al., 2018) advanced the analysis and selection of these meta-feature groups exploiting the
SPEA2 (Zitzler et al., 2001) genetic algorithm, which were successfully applied on related
machine learning tasks (Dalip et al., 2014; Li et al., 2015; Sousa et al., 2016). Our exten-
sions of the SPEA2 algorithm not only provided effective selection of meta-features for a
particular dataset, but also enabled a thorough evaluation of core information exploited by
the meta-features, as described in Chapter 3.

Without relying on feature selection, our most recent works (Canuto et al., 2016, 2019)
focused on extending the exploitation of core meta-features that achieved the best effective-
ness in most datasets. Particularly, in (Canuto et al., 2019) we focus on extending underlying
cosine similarity relationships between a document and its neighbors with supervised strate-
gies that evaluate the relevance of similarity information. Finally, in (Canuto et al., 2016),
we enrich meta-features considering sentiment analysis idiosyncrasies, as described in the
next section.

2.2 Sentiment Analysis

Unlike topic classification, which traditionally aims at classifying documents into topics,
current sentiment extraction tasks differ according to the types of classes predicted (positive
or negative, subjective or objective), the classification techniques used, and the considered
classification levels, which comprehend sentence, aspect or document level (Feldman, 2013).
Each level depends on the granularity of the sentiment scope, which may be predicted for
whole documents (document-level), for individual sentences (sentence-level) or for specific
aspects of entities and its properties (aspect-level). In this dissertation, we focus on the
sentiment detection of messages composed of one or a few short sentences, such as tweets,
comments and (micro-)reviews.

Regarding the document classes, there is an active research on subjectivity classifi-
cation (Banea et al., 2008; Biyani et al., 2014; Su and Markert, 2008; Wiebe and Riloff,
2005), in which the goal is to discriminate objective messages from subjective ones. Some
works separate subjective sentences from objective ones and then classify the polarity (pos-
itive or negative) of the opinions expressed in the subjective sentences (Barbosa and Feng,
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2010; Pang and Lee, 2004; Wang et al., 2015). These efforts present empirical evidence that
performing a simultaneous classification between positive, negative and objective (neutral)
messages is worst than a two-step approach that filters the objective messages first.

Regarding the classification techniques, most methods can be categorized into one of
two main groups: supervised approaches (Gonçalves et al., 2016), which use a wide range
of features and labeled data for training sentiment classifiers, and lexicon-based approaches
(Baccianella et al., 2010; Hutto and Gilbert, 2014; Thelwall et al., 2010), which make use of
pre-built lexicons of words weighted with their sentiment orientations to determine the over-
all sentiment of a given document. Specifically, recent methods such as Vader (Hutto and
Gilbert, 2014) and SentiStrength (Thelwall et al., 2010) rely on linguistic clues (e.g., punc-
tuation and words that intensify or invert polarity) and on a dictionary of words provided
with their sentiment scores, manually labeled 2. Their dictionaries differ, since Vader’s
lexicons include most internet slang terms and SentiStrength rely on the combination of
diverse available lexicon dictionaries. They also differ on their scoring scheme, since Sen-
tiStrength (Thelwall et al., 2010) weights the sentiment of a message by attributing to the
sentiment score of the most positively (or negatively) classified word in the message and
Vader sums the scores in of the words in the message. Instead of relying on a dictionary of
lexicons, SentiWordNet (Baccianella et al., 2010) explores relationships between unambigu-
ous polarized (or neutral) “concepts” in order to find the average polarity of close concepts
associated to a message. Therefore, terms like dog and bite (both representing neutral con-
cepts in SentiWordNet) appearing in the same message could eventually be expanded with a
more emotional term like hurt, which holds a negative polarity. We choose to use these three
lexicons as the basis to construct our meta-level features as they showed to be effective for
sentiment detection in recent benchmark comparison studies (Araújo et al., 2014; Gonçalves
et al., 2013; Ribeiro et al., 2016).

Overall, unlike the above efforts, most supervised approaches are direct applications
of the traditional classification techniques. Thus, to the best of our knowledge, our effort
described in details on Chapter 5 is the first to propose specific meta-level features for text
classification in the sentiment analysis domain.

Since such meta-features are based on the neighborhood of documents, they can take
advantage of parallel kNN implementations, discussed next.

2the sentiment of each word was manually adjusted. In Vader, for example, each word was manually scored
with 9 degrees of valence (between extremely positive to extremely negative).
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2.3 GPU-based kNN

Recently, some proposals have been presented to accelerate the kNN algorithm via highly
mutithreaded GPU-based approaches (Garcia et al., 2008; Kuang and Zhao, 2009; Sismanis
et al., 2012). However, they do not propose data structures capable of taking advantage of
highly dimensional and sparse text datasets.

The first, and most cited, GPU-based kNN implementation was proposed by (Garcia
et al., 2008). They used the brute force approach and reported speedups of up to two orders
of magnitude when compared to a brute force CPU-based implementation, which is expected
due to hundreds of cores in the GPU hardware. Their implementation assumes that multiple
queries are performed. They also compute and store a complete distance matrix, what makes
their approach impracticable for large datasets (over 65,536 documents).

Following works (Garcia et al., 2008) and (Kuang and Zhao, 2009) implemented their
own optimized matrix operations for calculating distances, and used radix sort to find the top-
k elements. Liang et al. (2009) took advantage of CUDA Streams to overlap computation and
communication (CPU/GPU) when dealing with several queries, decreasing GPU memory
requirements. The distances were computed in blocks and later merged first locally and then
globally to find the top-k elements. However, such works can still be considered brute-force.
(Sismanis et al., 2012) concentrated on the sorting phase of the brute-force kNN and provided
an extensive comparison among parallel truncated sorts. They conclude that the truncated
bitonic sort (TBiS) produces the best results.

Our proposal, described in Chapter 6.1, differs from the above mentioned work in
many aspects. First, it exploits a very efficient GPU implementation of inverted indexes
which supports an exact kNN solution without relying on brute-force. This also allows our
solution to save memory space since the inverted index corresponds to a sparse representa-
tion of the data. In the distance calculation step, we resort to a smart load balancing among
threads to increase the parallelism. And in the sorting step, we exploit a GPU-based sort-
ing procedure, which was shown to be superior to other partial sorting algorithms (Sismanis
et al., 2012), in combination with a CPU merge operation based on a priority queue. This
implementation enabled the application of meta-features on large datasets for topic classifi-
cation (Canuto et al., 2015) and sentiment analysis tasks (Canuto et al., 2016).

Most of the recently proposed distance-based meta-feature groups rely on our fast kNN
implementation to find the neighborhood of documents efficiently. In the next chapter, we
provide a detailed description of such meta-features.





Chapter 3

Meta-Features: Proposition,
Evaluation and Selection

In this chapter, we present meta-features previously proposed in literature as well as our new
proposals (Canuto et al., 2014). We analyze combinations of meta-feature groups that pro-
vide the core information to classify documents by exploiting traditional distance measures
such as Euclidean, Manhattan, and the Cosine similarity. We start by providing a detailed
description of each meta-feature group in Section 3.1. Next (Section 3.2), we describe the
used meta-feature selection methods showing that multi-objective methods are not only ca-
pable of selecting effective meta-features, but also evaluating core combinations of groups.
Finally, in Section 3.3, we describe our experimental results using the previously mentioned
meta-features and meta-feature selection strategies .

3.1 Meta-Features Based on Traditional Distance

Measures

Let X and C denote the input (feature) and output (class) spaces, respectively. Let
Dtrain = {(xi,ci) ∈ X ×C }|ni=1 be the training set. Recall that the main goal of super-
vised classification is to learn a mapping function h : X 7→ C which is general enough to
accurately classify examples x′ 6∈ Dtrain.

The distance-based meta-features proposed in this dissertation, as well as the already
existing ones (from the literature) (Gopal and Yang, 2010; Pang et al., 2015), are designed to
replace the original input space X with a new informative and compact one M .

A vector of meta-level features m f ∈M is expressed as the concatenation of some of
the sub-vectors below, which are defined for each example x f ∈X and category c j ∈ C for

21
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j = 1,2, . . . , |C | as:

• ~vcos
~x f

= [cos(~xi j, ~x f )]: A k-dimensional vector produced by considering the k nearest neigh-
bors of class c j to the target vector x f . More specifically,~xi j is the ith (i≤ k) nearest neigh-
bor to ~x f , and cos(~xi j, ~x f ) is the cosine similarity between them. Thus, a k-dimensional
meta-level feature vector is generated for each class, given a document x f .

• ~vL1
~x f

= [d1(~xi j, ~x f )]: A k-dimensional vector whose elements d1(~xi j,~x f ) denote the L1 dis-
tance between~x f and the ith nearest class c j neighbor of~x f (i.e., d1(~xi j,~x f ) = ||~xi j−~x f ||1).

• ~vL2
~x f

= [d2(~xi j, ~x f )]: A k-dimensional vector whose elements d2(~xi j, ~x f ) denote the L2 dis-
tance between~x f and the ith nearest class c j neighbor of ~x f (i.e., d2(~xi j, ~x f ) = ||~xi j−~x f ||2).

• ~vcos_cent
~x f

= [cos(~x j, ~x f )]: A 1-dimensional vector where~x j is the category c j centroid (i.e.,
vector average of all training examples of the class c j).Thus, for each category c j there is
a corresponding meta-feature which its value is the raw cosine similarity score between
the document x f and the category c j centroid.

• ~vL2_cent
~x f

= [d2(~x j, ~x f )]: A 1-dimensional vector where ~x j is the category c j centroid. This
vector contains the L2 distance between the document x f and the category c j centroid.

• ~vcnt
~x f

=
[
n j
]
: A vector of dimension 1 produced by counting the number n j of neighbors

(among the k neighbors) of ~x f which are positive training examples in category c j.

• ~vncnt
~x f

=
[

s j
smax

]
: A vector of dimension 1 produced by the sum s j of the neighbor’s cosine

similarity (among the k neighbors) of ~x f which are positive training examples in category
c j. Such a sum is then normalized by smax, which corresponds to the largest s j among all
categories.

• ~vqrt
~x f

=
[
cos(~xe j, ~x f )

]
: A vector of dimension 5 produced by considering five points that

characterize the distribution of similarities of ~x f to its category j neighbors xi j (1≤ i≤ k),
where k is the neighborhood size, as measured by the cosine similarity between both.
Among all computed similarity values, we pick five representative points: the lowest sim-
ilarity, the highest similarity, the median similarity, the lower quartile (that splits the lowest
25% of points) and the upper quartile (that splits the highest 25% of points).

• ~vcqrt
~x f

=
[
cos(qe j,ce j)

]
: A vector of dimension 5 containing the similarity value

(cos(qe j,ce j) between each previously described quartile qe j and the centroid ce j com-
puted among quartiles of the same kind of qe j but obtained from the training examples of
class c j. For example, suppose the quartile qe j is the lowest similarity quartile regarding
~x f . We obtain the lowest similarity quartile regarding each training element of class c j and
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obtain the centroid ce j of these quartiles by computing the average quartile among them.
Next, we compute the cosine similarity between qe j and ce j. We repeat this process for
the four other quartiles, obtaining the 5-dimensional vector.

• ~vsum_cent
~x f

=

[
1

|Neigc j (~x f )|∑cos(~xe j,~x j)

]
: A vector of dimension |C| containing the mean

similarity between the class c j centroid~x j and all the ~xe j ∈ Neigc j(x f ), where Neigc j(x f )

is the set of neighbors (regarding the cosine measure) of the ~x f belonging to category c j.

• ~vIG
~x f

=
[
IG(cos(~xi j, ~x f )),split,cos(~xsplit, ~x f )

]
: According to the Information Gain (Breiman

et al., 1984) measure, a 3 - dimensional vector is produced, considering the point which
best splits the neighbors of ~x f belonging to category c j. Specifically, these neighbors are
ranked according to their similarity to ~x f and, similarly to decision trees’ splitting step,
we select the point that better splits the ranking into two parts. The best split point is the
one that maximizes the information gain for the class c j. For example, suppose ~x f belongs
to category c j. It is expected, in this case, that the top ranked neighbors documents also
belong to c j, and the best splitting point to be selected is the least similar neighbor of
~x f which belongs to c j (with the low ranked neighbors probably not belonging to c j)—a
(quasi-)zero-entropy case. The three meta-features selected in this process are: (i) the
maximized information gain value, (ii) the position of the split point in the ranking and
(iii) the similarity between the splitting point and ~x f .

• ~vfisher
~x f

=

[
|µi−µ j|√
Vi+V j

]
: A 1-dimensional vector that captures the correlation between the

neighbors of ~x f which belong to category c j and the remaining neighbors that do not
belong to c j, considering a neighborhood of size k. Let µ j be the mean similarity of the
positive neighborhood (i.e., those belonging to c j), given by 1

k ∑cos(~xi j, ~x f ), and µi the
mean similarity of the negative neighborhood (i.e., the neighbors not in c j). Also, let V j

and Vi be the variances computed from each positive and negative similarities, respec-
tively. The Fisher’s correlation measure (Fisher, 1925) is then computed, as |µi−µ j|√

Vi+V j
.

Table 3.1 presents the names given to each group of meta-features and the authors
who proposed them. More specifically, the most compact meta-feature space was proposed
by Pang et al. (2015). It transforms the feature space using only the cosine similarity scores
between examples and category centroids as meta-features. In fact, the proposed cos_cent

group contains only |C | meta-features, as illustrated in Figure 3.1.
A different meta-feature space was proposed by Gopal and Yang (2010) by using

cos_cent along with four other groups of meta-features. This new meta-feature space is
based only on distance and similarity scores that make a combined use of local (through
cos_knn, l1_knn and l2_knn) and global information (through l2_cent and cos_cent). More
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Group Name Sub-Vector Reference
cos_knn ~vcos

~x f
Gopal and Yang (2010)

cos_cent ~vcos_cent
~x f

Gopal and Yang (2010) and Pang et al. (2015)

l1_knn ~vL1
~x f

Gopal and Yang (2010)

l2_knn ~vL2
~x f

Gopal and Yang (2010)

l2_cent ~vL2_cent
~x f

Gopal and Yang (2010)
cnt ~vcnt

~x f
Canuto et al. (2014)

ncnt ~vncnt
~x f

Canuto et al. (2014)

qrt ~vqrt
~x f

Canuto et al. (2014)

fisher ~vfisher
~x f

Canuto et al. (2014)

ig ~vIG
~x f

Canuto et al. (2014)

cqrt ~vcqrt
~x f

Canuto et al. (2014)
sum_cent ~vsum_cent

~x f
Canuto et al. (2014)

Table 3.1: Given name for each group of meta-feature.

Figure 3.1: The dashed lines represent cos_cent meta-features generated for the (white circle)
document. Each meta-feature is the cosine similarity between the document and a category
centroid (triangle).

specifically, each test example is directly compared to a set of nearest labeled examples and
category centroids, which are assumed to be enough to effectively characterize and discrimi-
nate categories, as illustrated in Figure 3.2. The intuition behind these meta-features consists
in the assumption that if the distances between an example to the nearest neighbors belong-
ing to the category c (and its corresponding centroid) are small, then the example is likely to
belong to c.

Our meta-features (Canuto et al., 2014) exploit the neighborhood of a document ex-
tracting sophisticated statistics from them, instead of simply using the similarity scores as
source of information. Specifically, the group of meta-features sum_cent consider the prox-
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Figure 3.2: The dashed lines represent cos_knn meta-features generated for the (white circle)
document. Each meta-feature is the cosine similarity between the document and its nearest
neighbors from each category.

imities of the neighbors of a test example belonging to some class ci to the centroid of c j.
This directly evaluates the class cohesion in the neighborhood of a test example, being an
important information regarding the uncertainty level in such region of the input space, as
illustrated in Figure 3.3.

Figure 3.3: Given only the two nearest neighbors of the white circle, the dashed lines between
the centroids and these neighbors represent the proposed sum_cent meta-features.

The group of meta-features cnt exploits the continuity hypothesis which guarantees the
kNN classifier’s success: the existence of a mode in the class distribution of the neighbor-
hood of a test example usually determines its category. The neighborhood of a test example
is further exploited by the ncnt group, which includes the information provided by the simi-
larity scores and their relationship with the majority class.

The raw similarity scores between a test example and the k nearest neighbors from
each class are explored by the qrt meta-feature group, which considers the three quartiles
along with the minimum and maximum similarity value, exploring the within-class cohesion
tied together with the locality information. The use of quartiles instead of the full distribution
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(exploited by cos_knn) reduces considerably the number of dimensions, preventing overfit-
ting in small datasets. These quartiles (together with min-max values) are further explored
by the cqrt meta-feature group, by evaluating their deviance to the expected values, which
provides global pieces of information related to each class.

Another key aspect exploited by these meta-features refers to the entropy observed
in the neighborhood of a test example. The IG meta-feature group exploit the boundary,
in the neighborhood of a test example, which maximizes the information gain of class c j,
similarly to the splitting strategy of decision trees. The situations where the splitting point is
low ranked among the nearest neighbors highlight low entropy scenarios where the majority
of the most similar examples belong to the same class. Finally, the f isher group assesses
the correlation between the similarities among the positive examples (those in c j) and the
similarities among the negative examples (those not in c j) inside the neighborhood of ~x f .
Again, low correlation values underline low entropy regions in the neighborhood.

Despite the previous efforts to design effective groups of meta-features, some combi-
nations of meta-feature groups produce complex and high dimensional feature spaces, which
induces overfitting on classification approaches. The next section presents adaptive strategies
capable of selecting effective combinations of meta-features for distinct datasets.

3.2 Meta-feature Selection Strategies

3.2.1 Brute-Force

The most simple but computationally expensive strategy to evaluate combinations of meta-
feature groups is the exploitation of the entire search space of 2n possible combinations,
where n is the number of groups. Specifically, the brute-force method just evaluates the effec-
tiveness of each possible combination of meta-feature groups according to a cross-validation
classification experiment on the training set. After evaluating all combinations, the method
selects the most effective combination of them.

Besides selecting the most effective combination, brute-force can also be used as a
tool to analyze different combinations of meta-features. In fact, brute-force is an effective
strategy to obtain the Pareto Frontier that presents the trade-offs between maximizing effec-
tiveness and minimizing the number of features in combinations of meta-feature groups.

3.2.2 GreedyMF

The recently proposed GreedyMF strategy (Canuto et al., 2014) is a simple proposal to eval-
uate only a few combinations of meta-feature groups by guiding the search for combinations
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according to a greedy heuristic. Specifically, it removes the meta-feature group that is most
harmful to the effectiveness at each iteration. The strategy can be outlined by the following
steps:

1. Let Msub = M , set formed by all meta-feature groups.

2. Find a meta-feature group Mbad ⊂Msub which, when removed, achieves the highest
effectiveness improvement. If none is found, stop. Otherwise, go to step 3.

3. Do Msub = Msub \Mbad and go to step 2.

For example, let’s assume that Msub initially corresponds to all the meta-feature groups
described in Table 3.1 and each one of these groups corresponds to a candidate for Mbad. In
each iteration, GreedyMF strategy removes the group Mbad which causes the most harm to
the effectiveness according to a cross-validation experiment on the training set. When there is
no statistically significant effectiveness improvements with the removals, the method stops.

3.2.3 Best-FirstMF

Best-FirstMF is a greedy strategy that instead of removing meta-feature groups from the set
of all meta-features like the previously described strategy, it recursively includes the meta-
feature group that is most beneficial to the effectiveness at each iteration.

It starts with n cross-validation experiments, each of them using one of the n meta-
feature groups. The group that yields the experiment with the best effectiveness is selected.
In the next iteration, it creates another set of n− 1 experiments using two meta-feature
groups: the one selected in the previous iteration and another of the n−1 remaining groups.
Again, the combination of features that gives the best performance is selected. The script
stops when there is no meta-feature group that can improve the classification effectiveness.

Despite simple and intuitive, the greedy strategies are capable of evaluating only a
restrict region of the search space of possible combinations. In the next section, we propose
an alternative capable of performing a robust search considering more diverse and promising
combinations without evaluating all of them.

3.2.4 SPEA2SVM and SPEA2fast

We propose two multi-objective optimization strategies for meta-feature selection and eval-
uation, which are capable of searching for combinations of meta-feature groups consider-
ing different objectives without evaluating all possible combinations of meta-feature groups.
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We argue that these strategies are not only capable of finding good combinations of meta-
features, but are also important tools for analyzing different combinations considering dif-
ferent objectives. Both strategies correspond to evolutionary multi-objective proposals to
meta-feature selection and are based on the SPEA2 (et al., 2001) algorithm, which presented
successful results in related machine learning tasks (Dalip et al., 2014; Li et al., 2015; Sousa
et al., 2019, 2016). The first strategy, named SPEA2SVM, is an effective approach to se-
lect and analyze combinations of meta-feature groups considering the effects of reducing the
number of groups in the combination. The second approach, called SPEA2fast, is an efficient
method for effective meta-feature selection on different classification strategies. We describe
the original SPEA2 algorithm in Section 3.2.4.1. The specification of the initial population
for our meta-feature selection strategies is described in Section 3.2.4.1. SPEA2SVM and
SPEA2fast are described respectively, in Sections 3.2.4.2 and 3.2.4.4. We also describe a
single-objective genetic algorithm strategy (SingleGA) that optimizes only classification ef-
fectiveness for the meta-feature selection task in Section 3.2.4.3.

3.2.4.1 SPEA2

SPEA2 is based on Genetic Algorithms (Srinivas and Patnaik, 1994) and thus uses an evolu-
tionary approach to explore the solution space for a multi-objective problem. In this process,
each solution (also referred to as an individual) receives a fitness value that scores its worth
based on its likelihood of surviving in the next generation. Once the fitness values have been
computed for each individual in one generation, the best individuals are selected to take part
in the breeding of the next generation. These selected individuals are kept in an archive Ag

during generation g. Thus, along with the process, the archives work as buckets to keep the
best individuals over the generations. On the other hand, the unfit individuals are eliminated
during this evolutionary process. After many generations, surviving individuals tend to be
better than the eliminated ones, according to the fitness criteria.

Algorithm 2 describes the original SPEA2. The algorithm takes as input the size n of
the population, the size a of the archive, and the number ng of generations. A population,
Pg ={i0, ..., in}, is the set of individuals in a generation g. In our case, each individual corre-
sponds to a binary array (aka, a chromosome). A position in the array is defined as a gene. It
is 0 when the feature group is absent, and 1 otherwise. The algorithm first creates an empty
archive A1 and a population P1 with n individuals in Lines 1 and 2, respectively.

Once all individuals have been created, the fitness score for each one is computed (Line
3 and 22). When assigning scores to features, SPEA2 must consider the optimization of
multiple objectives. Thus, the algorithm uses the dominance relationship among individuals
to provide the fitness values. Considering the individuals i and j, we say that i dominates j
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(denoted as i� j), if i is better than j in one objective, and i is not worse than j in any other
one. Formally, considering o1

i ,o
2
i . . .o

m
i as the values for the m objectives of an individual i,

Equation 3.1 describes the dominance relationship.

i� j ⇐⇒ (o1
i ≥ o1

j ∧o2
i ≥ o2

j ∧ . . .om
i ≥ om

j )∧ (o1
i > o1

j ∨o2
i > o2

j ∨ . . .om
i > om

j ) (3.1)

Given the dominance relationship, we say that an individual i is in the Pareto frontier
when there is no other individual j that dominates i. In this case, i is called a nondominated

individual. The strength S(i) of an individual i is defined as the number of individuals who
are dominated by i, as described in Equation 3.2.

S(i) =| { j | j ∈ Pg∪Ag∧ i� j} | (3.2)

where | . | is the cardinality of a set. Finally, the fitness score of i is computed by Eq. 3.3.

f itness(i) = R(i)+D(i) (3.3)

where,
R(i) = ∑

j∈(Pg∪Ag)∧ j�i
S( j) (3.4)

R(i) sums the strength of the individuals who dominate i. Note that R(i)> R( j) means that
the individual i is worse than individual j, as the individuals that dominate i are stronger than
those who dominate j. Thus, the value of f itness(i) is optimized by minimizing R(i). When
R(i) = 0, no individual dominates i, meaning that all individuals with R(i) = 0 are the best
solutions, i.e., they belong to the Pareto frontier.

Term D(i) is assigned to promote a large variety of solutions, as it decreases when i

is farther from a dense region. In this sense, a higher priority is given to the more distinct
individual, stopping the search process from being trapped in a local optimal solution. In
addition, individuals with tied R(i) values but in a sparse region will have more chance of
surviving to the next generation. Term D(i) in Equation 3.3 is referred to as density estimate,
and it is calculated according to Equation 3.5:

D(i) =
1

σ k
i +2

(3.5)

The value 2 is used to ensure that D(i) is less than 1 and to keep the denominator greater
than zero (et al., 2001). Also, σ k

i is the distance (in objective space) between individual i and
the kth nearest individual using the K-nearest neighbor algorithm with the Euclidean distance.
The parameter k is defined as

√
| Ag |+ | Pg |.
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Algorithm 1 The Original SPEA2 Algorithm.
Require: Population size n
Require: Size a of Archive (Ag)
Require: Number of generation ng
Require: Gene mutation probability p
Ensure: Ag close to Pareto frontier

Let Pg = pop. of individuals {i0, ..., in} of generation g
Let Ag = the best individuals of all generations until g
Let Dg = dominated individuals of Pg and Ag

Let Ng = non-dominated individuals of Pg and Ag

1: A1← /0
2: Initialize P1 with random individuals
3: Compute fitness(i), i ∈ P1
4: for g = 1 to ng do
5: with i ∈ Pg∪Ag do:
6: Assign i to Dg if fitness(i) ≥ 1
7: Assign i to Ng if fitness(i) < 1
8: Add Ng to Ag

9: if | Ag |> a then
10: truncate(Ag)
11: else if Ag < a then
12: k = a− | Ag |
13: Fill Ag with the k best individuals in Dg

14: Pg+1← /0
15: Ag+1← Ag

16: while | Pg+1 | −1 < n do
17: Select two individuals ix and iy from Ag.
18: (new_ix,new_iy) = crossover(ix, iy)
19: Add new_ix and new_iy to Pg+1
20: fol all i ∈ Pg+1
21: random_mutate(i,p)
22: Compute fitness(i), i ∈ Pg+1∪Ag+1

After computing the fitness for each individual, the algorithm defines the Dg and Ng

sets, putting inside Dg the individuals which are dominated by other individuals (Line 6),
and in Ng all nondominated individuals (Line7).

Lines 8-13 of Algorithm 2 define the elitism process, saving in the archive (Ag) all
the nondominated individuals of the population. If there is more individuals in the archive
than the limit a (Line 9), the algorithm keeps only the a individuals with the best fitness in
the archive. If the archive is not full (Line 13) the algorithm fills the archive with the best
individuals in Dg (i.e. individuals that despite being dominated have small fitness).

After Ag is full, the algorithm initializes the next generation archive (Ag+1) with Ag

(Line 15). Next, it creates a new population Pg+1, performing crossover and mutation on
individuals of the current archive (Ag). Crossover is performed by using the Tournament
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Selection method (Srinivas and Patnaik, 1994) (Line 17), which selects the individuals with
highest fitness values, among a few set of individuals chosen at random from Ag. Using
the Two Point Crossover (Srinivas and Patnaik, 1994) method, the uniform crossover is per-
formed (Line 18) exchanging a random genes on two selected individuals.

In Lines 21 and 22, the algorithm applies a random selection for mutation to each
individual. The random_mutate(i, p) method flips a coin for each gene in the chromosome
corresponding to i, changing its content with probability p.

After Algorithm 2 is completely executed, we can analyze the trade-offs between the
considered objectives using the nondominated individuals in the last archive, or just select
one of the individuals from the archive according to some heuristic. In the next sections we
present details about objectives, selection strategies and adaptations in the original SPEA2
method for effective meta-feature selection and analysis.

Initial Population Instead of using only randomly generated individuals for the initial
population, we include individuals to guide the genetic algorithm towards the most promising
regions of the search space faster. We include individuals that minimize the number of meta-
feature groups as well as potentially effective individuals. Considering the initial individuals
that minimize the number of groups, each meta-feature group in Table 3.1 corresponds to an
individual that contains only one active gene (that represents its corresponding meta-feature
group).

We also include four potentially effective combinations of meta-feature groups as ini-
tial individuals. The first one is the combination of all meta-feature groups (i.e, all genes
are active). The other three individuals correspond to the literature combinations described
in Table 3.1 and proposed by Canuto et al. (2014), Gopal and Yang (2010) and Pang et al.
(2015).

3.2.4.2 SPEA2 with SVM (SPEA2SVM)

Since SVM is the state-of-the-art classification method in various domains and the best per-
forming classifier for meta-features (as shown in Section 3.3.4), we focus on searching for
the Pareto frontier considering the maximization of the SVM model effectiveness on a 5-
fold cross validation experiment as objective along with the minimization of the number of
meta-feature groups of the individuals. The values of these objectives are derived from an
individual represented by a binary vector, where each position corresponds to the presence
or absence of a meta-feature group.

The benefits of using this SPEA2SVM for meta-feature selection are two-fold: (i) it
is capable of searching for individuals that maximize the classification effectiveness with
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as few meta-feature groups as possible and (ii) we can interpret the impact of our objec-
tives by analyzing the non-dominated individuals found by SPEA2SVM. For example, let
us consider two non-dominated individuals (i.e., individuals on the Pareto frontier) i and j.
Considering effectiveness as the objective function, suppose that i is a little higher than j,
using the MacroF1 as effectiveness measure. Otherwise, taking into account the minimiza-
tion of meta-feature groups, j can use substantially less meta-feature groups than i. In this
case, it is interesting to analyze the hypothesis that meta-feature groups in j provide the
most discriminative information to classify documents and the reasons why i is not able to
substantially improve the effectiveness of j.

SPEA2SVM provides a feasible alternative to the brute-force for the task of finding the
Pareto frontier when considering various meta-feature groups or big datasets. The combina-
tions of meta-feature groups in the Pareto frontier provide information to analyze the core
information to classify documents, which is essential to answer our fourth question (Q4).
We also use SPEA2SVM as a new feature selection approach by selecting the most effec-
tive non-dominated individual on a 5-fold cross validation experiment. The effectiveness of
SPEA2SVM as a meta-feature selection strategy and other feature selection approaches will
be evaluated to answer our second research question (Q2).

3.2.4.3 Single Objective GA (SingleGA)

SingleGA is the single objective version of the previously described SPEA2SVM genetic
strategy. Unlike SPEA2SVM, SingleGA does not aim at finding the Pareto frontier among
objectives, and therefore it is not useful as an evaluation tool to analyze core combinations
of meta-feature groups. Instead, it only maximizes classification effectiveness as goal, being
an important baseline to evaluate the effects of exploiting the search space guided only by
effectiveness on genetic algorithms.

3.2.4.4 Efficient SPEA2 for Multiple Classifiers (SPEA2fast)

Despite the good effectiveness of the SVM classifier, it is sometimes very slow to compute,
specially with a large number of categories, since it is a binary classifier that separates the
feature space into two subspaces using a hyperplane, requiring costly solutions for multiclass
tasks (Hastie et al., 2003). Consequently, evaluating the effectiveness of each individual with
SVM can be computationally expensive. Moreover, the evaluation of individuals might be
biased to those that work effectively with the SVM classifier, which limits the evaluation of
the individuals on other classification approaches.

In this section, we propose an efficient meta-feature selection method that does not
rely on the SVM classifier to find effective combinations for SVM and other classification
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approaches. Specifically, we evaluate the effectiveness of individuals without relying on
expensive classifiers (such as SVM). Instead, we propose the maximization of the effec-
tiveness on the following three classification methods as objectives of the multi-objective
strategy SPEA2: Naive Bayes, Nearest Centroid, and Extreme Randomized Trees. These
classification methods were chosen because they are very fast to execute and they are based
on different classification paradigms as objectives1. In other words, the classification effec-
tiveness of each chosen fast classifier is one objective of our multi-objective strategy. We
argue that maximizing the effectiveness of diverse and fast classification methods as objec-
tives can direct the search of effective combinations of meta-feature groups, and the most
promising combinations can be found on the Pareto frontier.

The expected Pareto frontier considering these objectives may contain high quality
individuals, which in most cases2 To illustrate the intuition about why the Pareto frontier
obtained in SPEA2fast contains high quality individuals for arbitrary classification methods,
let us consider an example of three non-dominated individuals, i, j and z. Suppose that
individuals i and j are the most effective individuals considering respectively, the Nearest
Centroid and NB classifiers. Controversially, i and j are also the worst performers consider-
ing the objectives of maximizing the effectiveness on NB and Nearest Centroid, respectively.
In this scenario, i and j are biased to optimize the performance on specific classifiers due to
specificities of different classification paradigms. The third individual z achieves good re-
sults in both objectives, despite not achieving the best results in any of them. Besides z, there
may be other non-dominated individuals with potentially good results in both objectives, but
more biased towards one of them. We argue that the subset of non-dominated individuals
in this Pareto frontier are high quality individuals that can be efficiently found and most of
these individuals are not entirely biased to any classification paradigm. Therefore, we expect
that some of these individuals can produce effective results for an arbitrary classification
approach. Considering our previous example, the SVM classifier might not produce good
results for using the individuals i or j, since each one is biased to optimize the performance
of a specific classification method different from SVM. However, other non-dominated in-
dividuals such z that can produce good results for these methods are more likely to produce
effective results for SVM.

In order to select the best individual to a specific classifier, we test every non-dominated
individual found in the last archive produced by SPEA2fast using a target classification

1We do not include the minimization of the number of meta-feature groups as an objective, since it would
considerably increase the size of the Pareto frontier, also increasing the computational cost of SPEA2fast.
Moreover, fast classifiers usually rely on only a few meta-features to obtain their best effectiveness, which
indirectly reduce the number of meta-features in individuals.

2With the exception of the limits of the Pareto frontier. are not biased to one specific fast classifier. In other
words, SPEA2fast aim at finding individuals that can perform relatively well in all three classifiers.
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method (e.g., SVM). We select the most effective individual based on a 5-fold cross-
validation experiment for the target classification approach. This efficient and effective
method for meta-feature selection considering diverse classification methods is an impor-
tant tool to provide evidence for our third research question (Q3).

3.3 Experimental Evaluation

In this section, we provide experimental evidence to answer the proposed research questions
using five datasets from different contexts. We first present the experimental setup and then
we present results of experiments designed for providing evidences for the answers to our
research questions.

3.3.1 Experimental Setup

3.3.1.1 Textual Datasets

In order to evaluate our research questions, we consider five real-world textual datasets,
namely, 20 Newsgroups, Four Universities, Reuters, ACM Digital Library and MEDLINE.
For all datasets, we performed a traditional preprocessing task: we removed stopwords, using
the standard SMART list, and applied a simple feature selection by removing terms with low
“document frequency (DF)”3 and use the traditional TFIDF term weighting. Next, we give a
brief description of each dataset.

4 Universities (4UNI), a.k.a, WebKB this dataset contains Web pages collected from
Computer Science departments of four universities by the Carnegie Mellon Univer-
sity (CMU) text learning group. There is a total of 8,277 web pages, classified in 7
categories (such as student, faculty, course and project web pages).

20 Newsgroups (20NG) this dataset contains 18,805 newsgroup documents, partitioned al-
most evenly across 20 different newsgroups categories. 20NG has become a popular
dataset for experiments in text applications of machine learning techniques, such as
text classification and text clustering.

ACM-DL (ACM) a subset of the ACM Digital Library with 24,897 documents containing
articles related to Computer Science. We considered only the first level of the taxon-
omy adopted by ACM, whereas each document is assigned to one of 11 classes.

3We removed all terms that occur in less than six documents (i.e., DF < 6).
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Reuters (REUT90) this is a classical text dataset, composed by news articles collected and
annotated by Carnegie Group, Inc. and Reuters, Ltd. We consider here a set of 13,327
articles, classified into 90 categories.

MEDLINE (MED) a subset of the MedLine dataset, with 861,454 documents classified
into 7 distinct classes related to Medicine. This dataset was obtained from Rocha
et al. (2008). In that work, the authors considered the first level of the taxonomy so
that each document article is classified under only one category, avoiding dealing with
multilabel cases.

3.3.1.2 Evaluation, Algorithms and Procedures

The different combinations of meta-features were compared using two standard text catego-
rization measures: micro averaged F1 (MicroF1) and macro averaged F1 (MacroF1) (Lewis
et al., 2004; Yang, 1999). While the MicroF1 measures the classification effectiveness over
all decisions (i.e., the pooled contingency tables of all classes), the MacroF1 measures the
classification effectiveness for each individual class and averages them. All experiments
were executed using a 5-fold cross-validation procedure (Breiman and Spector, 1992). This
procedure involves partitioning a sample of data into five complementary subsets, where
four of them are considered as training data to generate the classification model considering
a combination of meta-features, and the remaining subset is considered as test set to measure
the effectiveness of the classification model. We report the average effectiveness of the five
possible different training/test partitions using this scheme.

In this work, we use the training set for two different tasks besides the usual tasks
of building a classification model with the training examples and setting the parameters via
cross-validation on the training set (i.e., nested cross-validation). The first task is the trans-
formation of the original feature space into the meta-feature space, which is done by gener-
ating the meta-feature groups described in Section 3.1 for each document in the dataset. If
document d is in the test partition, we use all the training samples to generate meta-features
for d, and in case document d is a training example, we use all training examples except d to
generate the meta-features to d.

After the generation of meta-features for the training and test partitions, we use each
training partition for the task of finding effective combinations of meta-features using various
feature selection strategies. Besides the methods described in Section 3, we evaluate seven
other widespread general-purpose feature selection strategies, namely InfoGain (Yang and
Pedersen, 1997), Chi2 (Liu and Setiono, 1995), RELIEF (Kira and Rendell, 1992), Pearson-
Correlation(Hall, 2000), FCBF (Yu and Liu, 2003), CFS (Hall, 2000), and Consistency (Liu
and Setiono, 1996).
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Most feature selection strategies and classification algorithms rely on the selection of
parameters to achieve their best results. The feature selection strategies InfoGain (Yang
and Pedersen, 1997), Chi2 (Liu and Setiono, 1995), RELIEF (Kira and Rendell, 1992),
PearsonCorrelation (Hall, 2000), and FCBF (Yu and Liu, 2003) rely on the the parame-
ter that controls the number of selected features. This parameter was chosen among 5%,
[10%, 90%] with steps of 10% and 95% of the total number of features by using a nested
5-fold cross-validation within the training datasets. The parameters necessary to execute
our SPEA2-based meta-feature selection algorithms were chosen according to the general
guidelines provided in previous works (Chen et al., 2012; Laumanns et al., 2001) and the
specificities of machine learning tasks (Dalip et al., 2014; Sousa et al., 2016).We evaluate
our parameterization using the brute-force results as the gold standard for the Pareto frontier.
Particularly, we search for the lowest number of generations and population size (always
keeping identical population and archive sizes) that achieve comparable results with the gold
standard. As a result, we set the following parameters in Algorithm 2: number of generations
ng = 30, population size n = 20, archive size a = 20 and mutation probability p = 0.03. In
fact, using the this parameterization, SPEA2SVM can produce similar effectiveness to the
optimal solution provided by the brute-force method on a fraction of its execution time.

In order to evaluate the performance of different combinations of meta-features, we
adopted the LIBLINEAR (Fan et al., 2008) implementation of the SVM classifier, and the
scikit-learn (Pedregosa et al., 2011) implementation of the classifiers random forests (RF),
extreme randomized trees (XF), nearest centroid (CENT) and Gaussian naive Bayes (NB).
The regularization parameter of SVM was chosen among eleven values from 2−5 to 215 by
using 5-fold cross-validation on each training dataset. Likewise, the percentage of features
to consider when looking for the best split of a tree from RF and XF was chosen among
six values from 10% to 60%. Each tree is grown without pruning, as suggested by Breiman
(2001), and since there are no statistically significant differences on results obtained with
500, 1000, and 2000 trees, we adopted 500 trees due to the lower cost. The size of neighbor-
hood used in knn-based meta-features is chosen among ten values from 10 to 100 according
to the number of neighbors that maximizes the kNN effectiveness in the cross-validation on
each training dataset.

In order to consider the cost of all processing power of each approach, we conduct
our experiments on a Supermicro server with two E5-2620 Intel Xeon processors and one
GeForce GTX TITAN Black consumer GPU. We report the wall time consumed by the
process execution in all experiments regarding execution time.

To compare the average results of our cross-validation experiments, we assess the sta-
tistical significance of our results by means of a paired 2-tailed t-test with 95% confidence
and Holm correction to account for multiple tests. T-test is strongly recommend over sign and
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Wilcoxon tests for hypothesis testing on mean effectiveness (Urbano et al., 2019), which is
arguably robust to violations of the normality assumption (Hull, 1993). Either way, the bag-
of-words and the set of all meta-features follow the normal distribution under the Shapiro-
Wilk test (Luengo et al., 2009). We mark the best results and results that are not statistically
inferior to the best in bold. The obtained results (and their 95% confidence intervals) are
described in the following sections.

We would like to point out that some of the results obtained in some datasets with
and without the meta-features may differ from the ones reported in other works for the same
datasets (Godbole and Sarawagi, 2004; Kim et al., 2006; Lan et al., 2006). Such discrep-
ancies may be due to several factors such as differences in dataset preparation4, the use of
different splits of the datasets (e.g., some datasets have “default splits”5 such as 20NG and
REUT), the application of some score thresholding, such as SCUT, PCUT, etc., which, be-
sides being an important step for multilabel problems, also affects classification performance
by minimizing class imbalance effects, among other factors. We would like to stress that we
ran all alternatives under the same conditions in all datasets, using the best traditional feature
weighting scheme (TFIDF), using standardized and well-accepted cross-validation proce-
dures that optimize parameters for each of alternatives, and applying the proper statistical
tools for the analysis of the results. All our datasets are available for others to replicate our
results and test different configurations.

3.3.2 Effectiveness of Meta-features (Q1)

We start by analyzing the effectiveness of the SVM classifier on different combinations of
meta-feature groups. We aim at evaluating how effective is the combination of all the meta-
feature groups proposed in different works, which corresponds to our first research question.
Table 3.2 shows the results of various combinations of meta-feature groups and the origi-
nal bag-of-words feature space. More specifically, we present the combination of all meta-
feature groups (AllMF), described in Table 3.1, and the combination of meta-feature groups
proposed in each literature work (e.g., the combination of meta-feature groups proposed by
Gopal and Yang (2010), as can be seen in in Table 3.1). The combination AllMF presents
better results than the combination of the meta-feature groups proposed by Canuto et al.
(2014), Gopal and Yang (2010), Pang et al. (2015) and the bag-of-words on most datasets,
improving the results of Gopal and Yang (2010), Pang et al. (2015) and Canuto et al. (2014)
by up to 9%, 40% and 4%, respectively. The fact that AllMF achieves better results than other

4For instance, some works do exploit complex feature weighting schemes or feature selection mechanisms
that do favor some algorithms in detriment to others.

5In fact, we do believe that running experiments only in the default splits is not the best experimental
procedure as it does not allow a proper statistical treatment of the results.
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combinations of meta-feature groups on MED, ACM and 4UNI provides evidence of com-
plementary discriminative information among the different meta-feature groups proposed in
the literature.

Conversely, AllMF produces worse results than Gopal et al on REUT and 20NG, in-
dicating that the additional information in AllMF can cause overfitting to the classification
model on these datasets. This hypothesis is also supported by the fact that these datasets
provide only a few training documents per class, which may not be enough to cope with
the complexity and the large number of meta-features provided by AllMF. Since the other
considered datasets do not suffer from a shortage of training information, AllMF is always
better than Gopal et al on them, with gains up to 10% and 6% on MacroF1 and MicroF1,
respectively.

AllMF also presents substantial gains ranging from 11% to 40% over Pang et al for
most datasets, except REUT. The gains are expected, since the Pang et al’s meta-features
only provide global information about the distribution of distances between examples and
their category centroids. However, the use of centroid information was enough to achieve
good MacroF1 results on REUT. In this scenario, the centroid information is important to
prevent errors considering the imbalanced and small number of training examples available
for some categories.

AllMF presents statistically superior results compared with the Bag of Words (Bow)
for most datasets, with gains up to 9% and 12% respectively, in MicroF1 and MacroF1.
The only statistically loss of AllMF over the BoW representation is the MicroF1 result on
MEDLINE, which is only 1% lower. One possible justification for this fact is that the number
of documents in this dataset is one order of magnitude higher than in the other datasets. As a
consequence, the training sets have sufficient examples to deal with the large space of textual
features. Since some MEDLINE classes do not have many training examples, the AllMF’s
MacroF1 is as good as BoW’s MacroF1 on this dataset.

Despite the overall good effectiveness of AllMF and the fact that the number of dimen-
sions in AllMF is usually much smaller than the number of dimensions in the BoW represen-
tation, AllMF is still highly dimensional and complex (dense) feature space. Complementary
information from different meta-feature groups brings benefits to the effectiveness for most
cases, but also harms the effectiveness in some scenarios due to its complexity. This situation
motivates our work to further exploit the selection and analysis of meta-features.

3.3.3 Meta-Feature Selection Results (Q2)

In this section, we answer our second research question showing how effective and efficient
are different strategies for feature selection on the meta-feature space. Specifically, we eval-
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20NG 4UNI REUT ACM MEDLINE

Canuto et al. (2014) MacF1 88.3(0.6)↓ 66.1(2.6)l 32.4(2.6)↓ 64.1(1.1)l 72.7(0.5)↓
MicF1 88.5(0.6)↓ 78.9(1.6)↓ 71.5(0.9)l 75.5(0.8)↓ 82.5(0.2)↓

Gopal and Yang (2010) MacF1 89.5(0.5)↑ 60.6(2.7)↓ 41.7(2.8)↑ 62.7(1.4)↓ 74.9(0.2)↓
MicF1 89.8(0.6)↑ 75.6(0.7)↓ 77.9(1.2)↑ 75.6(0.4)↓ 84.2(0.1)↓

Pang et al. (2015) MacF1 77.4(0.6)↓ 56.4(1.8)↓ 37.2(1.6)↑ 52.1(1.6)↓ 46.3(1.0)↓
MicF1 78.3(0.7)↓ 67.6(1.1)↓ 71.8(0.8)l 65.0(0.9)↓ 66.3(1.0)↓

Bag of Words MacF1 87.8(0.2)↓ 60.4(1.0)↓ 29.5(2.1)↓ 61.6(0.4)↓ 76.0(0.2)l
MicF1 87.6(0.2)↓ 70.7(0.8)↓ 65.7(0.7)↓ 72.1(0.5)↓ 85.6(0.5)↑

allMF MacF1 88.8(0.6) 66.3(1.4) 33.5(2.6) 64.2(1.0) 76.0(0.4)
MicF1 89.0(0.6) 80.3(1.2) 71.9(1.3) 76.2(0.7) 84.6(0.2)

Table 3.2: Comparison between the meta-features proposed in different literature works and
the combination of all meta-features allMF, using the SVM classifier. ↑, ↓ and l correspond,
respectively, to statistically significant gains, losses and no evidence over the set of all meta-
features allMF.

uate the effectiveness and efficiency of different meta-feature selection methods designed
to remove groups of meta-features (Brute-force, GreedyMF, SPEA2fast, SPEA2SVM, Best-
FirstMF, and SingleGA) and various general feature selection methods on the meta-feature
space of all meta-features (AllMF).

We start by noting that, according to Table 3.3 the proposed methods SPEA2SVM and
SingleGA are the only methods that always improve classification effectiveness. They also
are capable of significantly reduce the number of meta-features from AllMF. Moreover, our
proposals SPEA2SVM, SPEA2fast, and SingleGA are never statistically inferior to the brute-
force approach on 4UNI, 20NG, and ACM without the need to perform the computationally
expensive evaluation of all possible combinations of meta-feature groups. This extensive
evaluation, makes brute-force infeasible on datasets containing a high number of categories
or training examples6, which is the case of MED and REUT datasets.

The meta-feature selection methods SPEA2SVM, SingleGA, and SPEA2fast are capa-
ble of obtaining the best results on both REUT and 20NG, with significant gains over AllMF
– up to 24% and 7.6% respectively, in Macro and Micro F1 on REUT. As discussed in the
previous section, REUT and 20NG have only a few training examples for each category.
Therefore, considering complex or highly dimensional feature spaces to represent training
examples of these datasets might lead to overfitting. SPEA2SVM, SPEA2fast and SingleGA
were the methods capable of automatically choosing the most effective meta-feature groups
considering the peculiarities of these datasets.

GreedyMF is the most conservative approach tested to remove meta-feature groups.
Despite keeping the results of AllMF on most datasets, it was not able to provide statisti-
cally significant improvements on 20NG and it was not capable of achieving the same effec-

6The SVM method is less efficient to compute individuals with various meta-feature groups (which con-
sumes most of the execution time on the brute-force algorithm), and datasets with various categories (since the
SVM method needs to generate one classifier per category on the adopted one-versus-all approach).
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20NG 4UNI REUT ACM MED

SPEA2SVM MacF1 89.7(0.6)↑ 66.5(1.4)l 41.5(3.1)↑ 64.9(1.4)l 75.7(0.6)l
MicF1 90.0(0.7)↑ 79.9(1.4)l 77.4(1.5)↑ 76.3(0.7)l 84.4(0.5)l

SingleGA MacF1 89.6(0.6)↑ 66.3(1.5)l 41.3(2.8)↑ 64.4(1.1)l 75.9(0.5)l
MicF1 90.0(0.6)↑ 80.1(1.3)l 77.3(1.7)↑ 76.3(1.2)l 84.5(0.3)l

SPEA2fast MacF1 89.6(0.5)↑ 67.0(2.5)l 41.2(3.2)↑ 64.4(1.4)l 75.0(0.9)↓
MicF1 89.9(0.6)↑ 79.6(0.9)l 77.0(1.2)↑ 76.1(0.6)l 83.9(0.6)↓

Brute-force MacF1 89.7(0.5)↑ 66.3(1.0)l * 64.6(1.2)l *
MicF1 90.1(0.7)↑ 79.8(1.2)l * 76.4(0.9)l *

Best-FirstMF MacF1 89.5(0.4)↑ 66.7(1.3)l 41.5(3.1)↑ 64.8(1.5)l 75.2(0.6)↓
MicF1 89.6(0.5)↑ 79.9(1.5)l 77.4(1.5)↑ 76.1(0.5)l 84.0(0.5)↓

GreedyMF (Canuto et al., 2014) MacF1 89.0(0.9)l 66.3(1.4)l 37.1(3.3)↑ 63.9(0.9)l 76.0(0.4)l
MicF1 89.3(0.9)l 80.3(1.2)l 73.1(1.4)↑ 76.3(0.9)l 84.6(0.2)l

CFS (Hall, 2000) MacF1 87.2(0.8)↓ 59.2(2.6)↓ 29.3(2.6)↓ 57.5(1.8)↓ 71.0(0.4)↓
MicF1 87.4(0.8)↓ 73.2(2.8)↓ 73.3(0.7)↑ 72.3(0.5)↓ 81.7(0.1)↓

Consistency (Liu and Setiono, 1996) MacF1 47.7(3.2)↓ 52.5(3.6)↓ 23.5(3.7)↓ 49.1(1.8)↓ 58.3(6.7)↓
MicF1 54.0(2.5)↓ 70.7(2.7)↓ 68.7(1.3)↓ 68.8(0.7)↓ 79.7(1.3)↓

InfoGain (Yang and Pedersen, 1997) MacF1 89.0(0.7)l 67.4(1.6)l 37.4(2.6)↑ 63.9(1.3)l 75.9(0.4)l
MicF1 89.2(0.8)l 79.5(1.4)l 75.2(1.9)↑ 75.8(0.9)↓ 84.5(0.3)l

Chi2 (Liu and Setiono, 1995) MacF1 89.1(0.7)l 66.9(1.1)l 36.6(3.2)l 64.1(1.0)l 75.7(0.3)l
MicF1 89.3(0.8)l 79.2(1.0)l 74.4(1.9)↑ 76.0(0.5)l 84.3(0.4)l

RELIEF (Kira and Rendell, 1992) MacF1 88.7(0.7)l 67.0(1.8)l 33.3(4.6)l 64.0(1.2)l 75.8(0.5)l
MicF1 89.0(0.8)l 79.2(1.9)l 71.0(2.3)l 76.2(0.6)↓ 84.4(0.2)l

PearsonCorrelation (Hall, 2000) MacF1 89.0(0.7)l 67.3(2.9)l 35.3(3.3)l 64.9(1.8)l 75.8(0.4)l
MicF1 89.2(0.7)l 79.5(1.3)l 72.7(1.6)l 76.2(0.6)l 84.4(0.4)l

FCBF (Yu and Liu, 2003) MacF1 89.0(0.6)↑ 67.4(1.3)l 36.6(2.0)↑ 63.8(1.3)l 75.8(0.4)l
MicF1 89.2(0.6)↑ 79.4(1.4)l 74.2(1.8)↑ 76.1(0.6)l 84.3(0.3)l

allMF MacF1 88.8(0.6) 66.3(1.4) 33.5(2.6) 64.2(1.0) 76.0(0.4)
MicF1 89.0(0.6) 80.3(1.2) 71.9(1.3) 76.2(0.7) 84.6(0.2)

Table 3.3: Average MicroF1 and MacroF1 of different feature selection strategies on the
SVM as classifier. ↑, ↓ and l correspond, respectively, to statistically significant gains, losses
and without significances over the set of all meta-features allMF.

tiveness improvements of SPEA2SVM, SingleGA, Best-FirstMF, and SPEA2fast on REUT.
Despite following the same paradigm as GreedyMF, the Best-FirstMF method is superior
to GreedyMF in most datasets, except MED. This provides evidence for the benefits of the
recursive inclusion of the best meta-features to build a solution, instead the removal of the
worst meta-features from the full set of meta-features. Both GreedyMF and Best-FirstMF
are not adequate for exploiting the search space of possible combinations, since the removal
or inclusion of only one meta-feature group at time restricts the search for good combina-
tions. This is not the case for genetic algorithms, since they are designed to exploit diverse
regions of the search space in a non-linear way.

We now turn our attention to the the seven general purpose feature selection strategies
capable of evaluating the “worthiness” of a subset of features or of individual features. The
strategies CFS and Consistency are both based on finding a compact subset of features by
filtering irrelevant and redundant information regardless of a specific classification method.
Since various meta-features are highly correlated, these methods consider most meta-features
as redundant, filtering them. As a consequence, CFS and Consistency present the worst
results on most datasets.
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The methods InfoGain, Chi2, RELIEF, PearsonCorrelation and FCBF provide scores
that measure the discriminative value of each individual feature. Therefore, they provide
a ranking of features, where only the top performers are selected. Most of these methods
are not capable of significantly reducing the feature space or improving the effectiveness
results in most datasets, since they are not designed to keep less discriminative features that
provide complementary evidence to classification, which is the case of various meta-features.
The only exception is the FCBF approach, which considers both relevance and redundancy
among the top features. As a result, FCBF is the only method among the baselines capable of
obtaining small but statistically significant improvements on both REUT and 20NG. Despite
its improvements, FCBF is statistically worse than SPEA2SVM, SPEA2fast, Best-FirstMF,
and SingleGA on both datasets and removes significantly fewer features than SPEA2SVM
and SVM2fast, as we shall see next.

We show the proportion of meta-features removed (from the total number of gener-
ated meta-features for AllMF described in details in Table 3.5) using all the feature selection
approaches in Table 3.4. Consistency and CFS always remove more than 95% of the meta-
features, but present significant effectiveness losses on most datasets. The other standard
methods – InfoGain, Chi2, RELIEF, PearsonCorrelation and FCBF – remove only a few
meta-features (mostly up to 10%) from 4UNI, ACM and MEDLINE. By removing just a
small number of features, these methods can keep the effectiveness of AllMF in most cases,
with the expense of not being able to remove harmful features or produce significant dimen-
sionality reductions.

20NG 4UNI REUT ACM MEDLINE
SPEA2SVM 85% 65% 89% 51% 28%
SingleGA 62% 58% 68% 39% 13%
SPEA2fast 82% 58% 87% 48% 47%
Brute-force 87% 62% * 53% *
Best-FirstMF 78% 62% 89% 45% 36%
GreedyMF (Canuto et al., 2014) 20% 0% 65% 0% 0%
CFS (Hall, 2000) 93% 97% 98% 96% 95%
Consistency (Liu and Setiono, 1996) 98% 98% 99% 98% 95%
InfoGain (Yang and Pedersen, 1997) 40% 10% 80% 5% 5%
Chi2 (Liu and Setiono, 1995) 60% 10% 80% 5% 5%
RELIEF (Kira and Rendell, 1992) 20% 40% 60% 5% 5%
PearsonCorrelation (Hall, 2000) 40% 10% 40% 20% 5%
FCBF (Yu and Liu, 2003) 40% 20% 60% 5% 5%
Total Number of Meta-Features 1360 805 12420 979 385

Table 3.4: Reduction of the number of features on different feature selection strategies

The most conservative approach is GreedyMF, which usually does not remove any
meta-feature to keep or improve the effectiveness of AllMF in all situations. On the other
side, Best-FirstMF is able do provide significantly more feature reduction following the same
greedy paradigm because of the fact that Best-FirstMF tries to include only meta-features that
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#Meta-Features 20NG 4UNI REUT ACM MEDLINE
cos_knn |C|*k 200 210 900 220 70
cos_cent |C| 20 7 90 11 7
l1_knn |C|*k 200 210 900 220 70
l2_knn |C|*k 200 210 900 220 70
l2_cent |C| 20 7 90 11 7
cnt |C| 20 7 90 11 7
ncnt |C| 20 7 90 11 7
qrt |C|*5 100 35 450 55 35
fisher |C| 20 7 90 11 7
ig |C|*3 60 21 270 33 21
sum_cent |C|2 400 49 8100 121 49
cqrt |C|*3 100 35 450 55 35
total 1360 805 12420 979 385

Table 3.5: Number of meta-features generated for each group on each dataset according to
the number of classes |C| and the number of neighbors k.

improve the results. Because of this inclusion strategy, Best-FirstMF was not able to keep the
AllMF results in the MED dataset as GreedyMF, which does not remove any meta-features
from MED.

SPEA2SVM is the only method capable of obtaining a substantial reduction of the
number of features while improving or keeping the effectiveness of AllMF considering all
datasets. SPEA2SVM and SingleGA achieved the best effectiveness results among all strate-
gies, but SPEA2SVM can produce more compacted representations. These results provide
evidence for the benefits of explicitly optimizing the minimization of the number of meta-
features in SPEA2SVM.

SPEA2fast provides a different strategy to achieve close effectiveness and feature re-
duction results when compared to SPEA2SVM in most datasets. This was possible be-
cause SPEA2fast optimizes effectiveness considering multiple classifiers, some of which
(e.g. Naive Bayes and Nearest Centroid) rely on a reduced number of meta-features to
achieve their best effectiveness. This tends to guide the SPEA2fast genetic algorithm to-
wards the most promising regions of the search space indirectly producing a reduced number
of meta-features.

The high effectiveness of SPEA2SVM, SingleGA and Brute-force are due to the ex-
tensive use of classification approaches to evaluate possible combinations of meta-feature
groups (i.e., wrapper strategies). As a consequence, they are among the most computa-
tionally expensive approaches, as shown in Table 3.6. Brute-force is the most expensive
approach, since it builds SVM classification models to evaluate every possible combina-
tion of meta-feature groups. SPEA2SVM also builds various SVM classification models to
evaluate the worthiness of the individuals. However, SPEASVM only evaluates the most
promising combinations of meta-feature groups in diverse regions of the search space. This
guided evaluation drives the search to smaller and relatively fast-to-compute individuals,
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usually requiring only a few interactions to converge. Consequently, SPEA2SVM is capable
of providing effectiveness and meta-feature reduction results as good as the ones provided
by brute-force being about 100 times faster than the latter. SPEA2SVM is also up to 4 times
more efficient than SingleGA, as it usually evaluates individuals with less meta-features than
SingleGA.

Similarly to SPEA2SVM, SPEA2fast also exploits diverse promising combinations of
meta-feature groups. However, it only uses fast classification approaches to evaluate indi-
viduals, which improves its efficiency. In fact, it is one of the most efficient methods among
the meta-feature selection approaches, being up to 31 times faster than SPEA2SVM. Even
the restrict search of GreedyMF and Best-FirstMF, which allows them to build only a few
SVM models, is not as efficient as SPEA2fast in most evaluated datasets. As we can see,
GreedyMF can be relatively slow to converge as it relies on the SVM classifier to build mod-
els usually using most meta-feature groups. Conversely, Best-first evaluates combinations
with only a few meta-features and it is significantly faster than GreedyMF even though it
requires more iterations to converge.

The general-purpose feature selection approaches are usually fast to compute, since
they do not make extensive use of classification approaches to evaluate meta-features. CFS
and Consistency both search for a subset of uncorrelated and informative features. CFS uses
a fast heuristic based on the Pearson correlation, while Consistency measures inconsistencies
among the subset of candidates and the full set of features. CFS is always significantly faster
than Consistency due to its fast heuristic to compute correlations. InfoGain, Chi2, RELIEF,
PearsonCorrelation and FCBF compute scores to measure the worthiness of individual fea-
tures, and then use SVM a few times to select a cutoff value that excludes the worst evaluated
features. The fast evaluation of individual features and the limited use of the classification
method are the reasons for the short execution time of these feature selection approaches.

20NG 4UNI REUT ACM MEDLINE
SPEA2SVM 53873 11505 1564117 84494 1360846
SPEA2fast 17756 3504 50817 17903 44873
Best-FirstMF 9697 4211 198319 28627 532854
SingeGA 66382 25421 4914201 120439 3726032
Brute-force 3932160 505560 * 4157440 *
GreedyMF (Canuto et al., 2014) 25964 5804 301614 55641 458549
CFS (Hall, 2000) 1161 74 19428 451 4625
Consistency (Liu and Setiono, 1996) 2551 349 85844 2031 32240
PearsonCorrelation (Hall, 2000) 1262 364 22851 3340 29199
InfoGain (Yang and Pedersen, 1997) 1572 381 25514 3438 26124
Chi2 (Liu and Setiono, 1995) 1528 376 25179 3412 25482
RELIEF (Kira and Rendell, 1992) 1356 363 23791 3335 22968
FCBF (Yu and Liu, 2003) 1536 377 25528 3419 25923

Table 3.6: Execution time (in seconds) of different feature selection strategies.

Despite the short execution times of the general-purpose feature selection approaches,
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none of them provide substantial reduction of meta-features, which is essential for our next
evaluations. Since we provide evidence that the proposed approaches SPEA2SVM and
SPEA2fast are capable of achieving good results in terms of both - effectiveness and fea-
ture reduction – and considering that they are designed to evaluate different combinations of
meta-features groups, we choose them as tools for analyzing the meta-features described in
Section 3.1.

3.3.4 Effectiveness on Different Classifiers (Q3)

In this section, we aim to answer our third research question: how effective are different

classification approaches when using the distance-based meta-features? We evaluate the use
of different classification paradigms in two scenarios. The first scenario consists in executing
different classifiers considering all meta-features. In the second scenario, we adopt feature
selection in our evaluations since each classification approach may achieve better results with
a specific combination of meta-features.

We start by analyzing the effectiveness of different classification methods considering
all meta-features. In this scenario, Table 3.7 shows that SVM results are consistently the best
on all datasets. These results provide evidence towards the robustness of SVM on dealing
with the diverse meta-features that use different distributions of numeric values.

SVM’s effectiveness is always statistically superior to RF, with gains up to 27% and
8% in MacroF1 and MicroF1, respectively. XF, which is also based on an ensemble of
decision trees, presents results close to RF. These results provide evidence for the short-
comings of exploiting meta-features using association rules provided by random forest or
extremely randomized trees. More specifically, meta-features provide document represen-
tations based on direct evidence from similarity measures and statistics derived from them.
We hypothesize that those dimensions are difficult to exploit with algorithms based on a re-
cursive partitioning of the space, as explored in RFs , since they discretize meta-features.
This may reduce the capability to exploit nuances of the general behavior found on numeric
meta-features. We will investigate this hypothesis further in the future.

The classifiers NB and CENT are always significantly worse than SVM, RF, and XF.
This provides strong evidence towards the limitations of NB and CENT to cope with the
complex feature space produced by all meta-features. In fact, both methods are not capable of
combining features that follow different distributions and do not have sophisticated internal
mechanisms to evaluate the worthiness of the meta-features.

We now turn our attention to the reduced space of meta-features selected by
SPEA2fast, which was specifically designed to perform an efficient search for effective com-
binations of meta-feature groups considering different classifiers. Table 3.8 shows that our
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20NG 4UNI REUT90 ACM MEDLINE

SVM MacF1 88.8(0.6) 66.3(1.4) 33.5(2.6) 64.2(1.1) 76.0(0.4)
MicF1 89.0(0.6) 80.3(1.2) 71.9(1.3) 76.2(0.6) 84.6(0.2)

RF MacF1 86.4(0.8) 61.1(3.9) 26.9(1.0) 58.7(0.6) 74.0(0.4)
MicF1 86.6(0.8) 75.3(2.1) 68.4(0.9) 72.7(0.6) 83.4(0.0)

XF MacF1 86.1(0.4) 60.2(2.6) 27.4(1.7) 56.0(0.4) 72.3(0.5)
MicF1 86.3(0.4) 74.2(1.8) 69.1(0.6) 70.8(0.7) 81.9(0.1)

NB MacF1 56.6(1.4) 15.2(8.0) 15.2(0.5) 33.6(2.1) 38.8(1.4)
MicF1 57.8(2.0) 16.0(8.7) 39.2(2.4) 37.7(3.6) 44.9(2.3)

CENT MacF1 68.1(0.7) 55.8(1.7) 17.0(0.6) 51.8(1.0) 63.9(0.6)
MicF1 64.8(1.0) 62.5(2.0) 44.1(1.3) 58.8(2.0) 78.6(0.4)

Table 3.7: Average MicroF1 and MacroF1 of different classifiers using all meta-features.

meta-feature selection approach significantly improves the results (previously presented in
Table 3.7) for the classifiers NB and CENT on all datasets, with gains up to 73% and 50% in
MacroF1, respectively. Moreover, after the selection CENT is capable obtaining competitive
results with RF in most datasets. These results indicate that simple classifiers might bene-
fit from combining specific groups of meta-features, as we analyze in details latter in this
section.

The RF and XF results do not improve with meta-feature selection in any dataset. We
argue that these results are primarily due to the capability of RF and XF to build models by
evaluating the worthiness of each meta-feature, meaning that the most discriminative meta-
features can contribute more for classification. This characteristic, combined with bagging
of decision trees implemented in both approaches, already reduce the impact of noisy or
irrelevant meta-features.

Despite providing consistently the best results, SVM is not capable of avoiding the
impact of noisy or irrelevant meta-features in all datasets, since the meta-feature selection
is capable of improving its results on 20NG and REUT. For both datasets, the shortage of
information provided by just a few documents per class tends to harm the same mechanism
that grants SVM its best results: its capability of finding nuances that provide discriminative
information for classification.

In order to analyze the combinations of meta-feature groups found by SPEA2fast for
each classification method, we present the most common among the best combinations found
by the executions of SPEA2fast in all datasets. Each column in Table 3.9 corresponds to a
combination, where the 3cells indicate a selected group for the best individual.

As expected, each classifier achieves its best results with a different combination of
meta-features, since each classification approach exploits the meta-feature space in a dif-
ferent way. Specifically, the meta-features l1_knn do not appear in the individual for the
SVM classifier because they usually do not provide complementary discriminative evidence
to the l2_knn and cosine similarity exploited by l2_knn and cos_knn, respectively. The NB
classifier achieves its best results using only the ncnt group, probably because it is easy to
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20NG 4UNI REUT90 ACM MEDLINE

SVM MacF1 89.6(0.5)↑ 66.5(1.4)l 41.2(3.2)↑ 64.4(1.4)l 75.0(0.9)↓
MicF1 89.9(0.6)↑ 79.9(1.4)l 77.0(1.2)↑ 76.1(0.6)l 83.9(0.6)↓

RF MacF1 86.9(1.0)l 62.6(2.9)l 26.9(1.7)l 58.5(0.9)l 73.9(0.3)l
MicF1 87.1(1.1)l 74.8(3.1)l 68.4(1.2)l 72.9(0.7)l 83.4(0.1)l

XF MacF1 86.2(0.3)l 59.6(3.4)l 27.3(1.6)l 55.8(1.1)l 72.2(0.3)l
MicF1 86.4(0.4)l 72.2(3.6)l 69.2(0.9)l 70.6(0.7)l 82.0(0.1)l

NB MacF1 83.7(1.0)↑ 58.1(2.5)↑ 17.2(1.1)↑ 58.9(0.2)↑ 65.7(0.3)↑
MicF1 83.8(1.1)↑ 65.4(1.8)↑ 40.1(3.6)l 69.7(0.7)↑ 80.5(0.1)↑

CENT MacF1 86.6(0.9)↑ 59.6(2.4)↑ 34.5(1.3)↑ 60.2(1.5)↑ 71.3(0.4)↑
MicF1 86.8(1.0)↑ 67.2(2.0)↑ 66.4(1.0)↑ 70.7(1.8)↑ 81.3(0.1)↑

Table 3.8: Average MicroF1 and MacroF1 of different classifiers using the SPEA2fast feature
selection strategy. ↑, ↓ and l correspond, respectively, to statistically significant gains, losses
and without significances over the set of all meta-features on the same classifier. Despite the
effectiveness benefits of selecting meta-features for NB and CENT, SVM is consistently the
best classifier for all datasets.

MF SVM NB CENT RF
cos_knn 3 3
cos_cent 3 3 3
l1_knn 3
l2_knn 3
l2_cent 3 3 3
cnt 3 3
ncnt 3 3 3 3
qrt 3 3
fisher 3 3
ig 3
sum_cent 3 3
cqrt 3 3 3

Table 3.9: Individuals (columns) found by the SPEA2fast algorithm for each classifier. Each
column represents the best individual found for a classifier, where the 3cells indicate a se-
lected group for this individual.

estimate Gaussian probabilities from this normalized meta-feature group. CENT uses all
meta-features that include global class distributions, and RF is capable of exploiting infor-
mation from most meta-features thanks to its internal selection mechanism that evaluates the
best features to build decision trees.

To further evaluate the best combination of meta-feature groups for XF, NB and CENT,
we use the brute-force method executed with these fast classifiers in each dataset. Since SVM
is the best method to classify meta-features, we use the SVM method to classify documents
represented with the combinations of meta-feature groups that correspond to each classifier
in Table 3.10. As expected, the best meta-feature groups for the classifiers XF, NB and CENT
do not achieve results as effective as SPEA2fast or Brute-force (SVM) in most datasets. This
was somewhat expected as the best combination of meta-features found by each classification
approach is biased towards their respective classification paradigm, as previously discussed.
This provides evidence for the benefits of using the multi-objective SPEA2fast for the joint
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exploitation of different classification methods.

20NG 4UNI REUT90 ACM MEDLINE

SPEA2fast MacF1 89.6(0.5) 67.0(2.5) 41.2(3.2) 64.4(1.4) 75.0(0.9)
MicF1 89.9(0.6) 79.6(0.9) 77.0(1.2) 76.1(0.6) 83.9(0.6)

Brute-force (SVM) MacF1 89.7(0.5) 66.3(1.0) * 64.6(1.2) *
MicF1 90.1(0.7) 79.8(1.2) * 76.4(0.9) *

Brute-force (XF) MacF1 88.9(0.7) 66.7(1.5) 35.3(2.4) 64.2(0.9) 75.1(0.7)
MicF1 89.0(0.7) 79.5(1.2) 73.2(1.5) 76.2(0.7) 84.0(0.6)

Brute-force (NB) MacF1 84.7(1.3) 55.3(1.4) 31.2(0.6) 60.8(2.1) 70.9(0.7)
MicF1 84.9(3.3) 69.5(1.4) 72.9(2.3) 72.0(0.2) 80.4(0.3)

Brute-force (CENT) MacF1 89.2(0.3) 57.3(1.9) 38.5(1.4) 60.8(2.2) 73.2(0.4)
MicF1 89.3(0.4) 71.3(2.2) 72.2(2.7) 72.1(0.2) 82.4(0.2)

Table 3.10: Average MicroF1 and MacroF1 of the SVM classifier executed on meta-feature
groups found by variations of the Brute-force executed with different classification methods
and the SPEA2fast method. As expected, the best meta-feature groups for the classifiers XF,
NB and CENT are not usually effective on SVM.

3.3.5 Core Combinations of Meta-Feature Groups (Q4)

In this section, we analyze the Pareto frontier produced by maximizing the classification
effectiveness and minimizing the number of meta-feature groups in the task of finding com-
binations of meta-feature groups. As we shall see, this analysis is capable of providing
information about the discriminative power of specific combinations of meta-feature groups
considering the nuances of each dataset. Since SPEA2SVM achieved the best results in
our meta-feature selection experiments, we start comparing Brute-force with SPEA2SVM
to provide evidence that SPEA2SVM is an effective tool to find the Pareto frontier in
Section 3.3.5.1. Then, we analyze the Pareto Frontier of each individual dataset in Sec-
tion 3.3.5.2. Finally, Section 3.3.5.3 finishes our analysis showing core combinations that
provide the most discriminative information considering multiple datasets at the same time.

3.3.5.1 SPEA2SVM Pareto Frontier

The Brute-force strategy is very slow and it is not feasible as a mechanism to find the Pareto
frontier in datasets such as REUT and MEDLINE. Therefore, we start by providing evidence
that SPEA2SVM might be as effective as the Brute-force method for the task of finding the
Pareto frontier using our smaller/less complex datasets.

Instead of evaluating all possible combinations, SPEA2SVM aims at driving the search
to non-dominated individuals and improving their results in successive generations. Fig-
ure 3.4 shows the distance7 between the Pareto frontier found by Brute-force and the Pareto

7We use the average Euclidian distance in the objective space between each individual of the Brute-force
Pareto frontier and its respective closest individuals (as previously suggested (Czyzak and Jaszkiewicz, 1998))
of a SPEA2SVM generation.
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frontier from each generation of SPEA2SVM on 20NG, 4UNI and ACM. In fact, consider-
ing only a few generations (less than 30), the Pareto frontiers found by the SPEA2SVM are
very close to the Pareto frontier found by the Brute-force method.
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Figure 3.4: Distance between the Pareto frontier found on each generation of SPEA2SVM
and the Pareto frontier found by the Brute-force method.

To be more specific, let us turn our attention to the Pareto frontier8 found after exe-
cuting all the iterations of the SPEA2SVM and the Pareto frontier found by the Brute-force
method. Table 3.11 represents such Pareto frontier, in which the numbered columns rep-
resent the number of meta-feature groups in the non-dominated individual, and lines rep-
resent the individual’s effectiveness. Table 3.11 shows that considering the same number
of meta-feature groups, the effectiveness of all individuals in the Pareto frontier found by
SPEA2SVM are equivalent (without statistically significant differences) with the individuals
found by Brute-force. This indicates that despite the fact that SPEA2SVM does not eval-
uate all possible combinations, the individuals found by SPEA2SVM on 20NG, 4UNI and
ACM are as good as the ones found by Brute-force. These results motivate the adoption of
SPEA2SVM as an analysis framework.

3.3.5.2 Core Combinations of Meta-Feature Groups on each Dataset

In our next experiments, we provide a visualization of the individuals in the Pareto frontier.
This visualization guides our analysis by showing the meta-feature groups in the individuals
and by providing evidence to evaluate the core discriminative information in them. However,
it is worth pointing out that one individual may generate different results on different samples
of the same dataset due to the variance of the effectiveness scores predicted by the models
being used. Consequently, there are different Pareto frontiers with different samples from the
dataset. Since we execute SPEA2SVM five times for each dataset (due to the 5-fold cross

8Individuals with more meta-feature groups tend to be dominated by other individuals. Therefore, datasets
such as 20NG and ACM contain only a few individuals with small number of meta-feature groups in their
Pareto frontier.
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Number of Meta-Feature Groups
1 2 3 4 5 6 7

20NG SPEA2SVM 88.5(0.7) 89.5(0.5) 89.7(0.6) * * * *
Brute-force 88.5(0.8) 89.6(0.5) 89.8(0.5) * * * *

4UNI SPEA2SVM 58.4(2.5) 61.1(1.7) 63.9(1.4) 65.8(1.7) 66.1(1.6) 66.4(1.6) 66.6(2.1)
Brute-force 58.4(2.5) 61.2(1.1) 64.1(3.0) 66.0(2.8) 66.2(1.6) 66.3(1.8) 66.3(1.0)

ACM SPEA2SVM 61.9(1.8) 62.7(1.9) 64.5(1.9) 64.9(1.4) * * *
Brute-force 62.1(1.4) 62.6(1.5) 64.6(1.9) 64.6(1.2) * * *

Table 3.11: Pareto frontiers found by Brute-force and SPEA2SVM on 20NG, 4UNI and
ACM. Each column corresponds to the individuals in the Pareto frontier sorted in ascending
order by the number of meta-feature groups in each individual and their average MacroF1
effectiveness (with their 95% confidence intervals). *represents the absence of an individual
in the Pareto frontier.

validation methodology), we show in the following tables only the most common Pareto
frontier of different SPEA2SVM executions. This enables us to analyze a representative
visualization of the Pareto frontier found by the SPEA2SVM method. In the following tables,
each column corresponds to an individual in the Pareto frontier, where the 3cells indicate
a selected group for this individual, and the blank cells indicate the absence of a group.
Since we consider as objectives the minimization of meta-feature groups and maximization
of effectiveness, we order the columns according to the number of features, and present the
average effectiveness results on MacroF1 and MicroF1 in the last two rows.

Table 3.12 represents the Pareto frontier on 20NG. The individual containing only the
meta-feature group qrt is capable of achieving results comparable to the ones obtained with
the combination containing all groups of meta-features. This indicates that the compact
set of cosine similarities between an example and its neighbors provided by qrt is enough
to provide the most discriminative information for this dataset. We argue that in balanced
datasets, such as 20NG, the local information provided by the closest training examples
from each category (exploited by qrt) is a reliable source of discriminative patterns, since
there is enough training examples from each category to provide low variance statistics about
neighbors from each one of them. The individual with the two meta-features qrt and cos_cent

is capable of producing statistically significant gains over qrt, which indicates that qrt and
cos_cent provide complementary information to each other. In fact, previous works (Gopal
and Yang, 2010; Yang and Gopal, 2012) only exploit these two kinds of information in
order to achieve effective results. The inclusion of other kinds of information is not able to
provide statistically better results on 20NG. In fact, they can even unnecessarily increase the
complexity of the meta-feature space, leading the classification model to overfit due to the
small number of training examples per category. In fact, SPEA2SVM is not able to find any
combination of meta-features containing more than three meta-feature groups.

Unlike the results on 20NG, the removal of meta-features does not produce improve-
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MF Number of Meta-Feature Groups
1 2 3

cos_knn 3
cos_cent 3 3
l1_knn
l2_knn
l2_cent
cnt
ncnt
qrt 3 3
fisher 3
ig
sum_cent
cqrt
MacF1 88.5(0.7) 89.5(0.5) 89.8(0.6)
MicF1 88.7(0.7) 89.7(0.5) 90.1(0.7)

Table 3.12: The three individuals of the 20NG Pareto Frontier.

ments in effectiveness on 4UNI. Table 3.13 shows that the inclusion of new meta-feature
groups, beyond qrt and cos_cent, is capable of improving the effectiveness in various sit-
uations. We argue that besides the robust model learned from informative data to ignore
redundant and noisy information, the inclusion of new discriminative information provided
by the other meta-feature groups might in some cases overcome the potential harm of includ-
ing noise associated with this new information.

Specific characteristics of categorizing web pages from 4UNI might induce the need
for complementary information provided by different meta-feature groups. Specifically, the
distribution of categories is very unbalanced and the largest category corresponds to general
academic web pages, which is a collection of pages that were not assigned as the “main
page”. Instances from each category might find very close pages to the category of general
academic web pages, which impairs the discriminative information provided by the meta-
feature group cos_knn. The inclusion of the meta-feature groups sum_cent and ig provide
additional evidence to evaluate the discriminative power of the neighbors, which can be
useful in cases where the similarity between neighbors provided by cos_knn is not enough
to provide discriminative evidence. The inclusion of other meta-feature groups, such as cnt,
l1_knn and cqrt also provide new discriminative information from the neighborhood.

Using only five meta-feature groups (cos_knn, cos_cent, ig, sum_cent and cnt) it is
possible to obtain equivalent results (without statistically significant differences) to the set
of all meta-features. Moreover, the use of only one, two, three and four meta-feature groups
is statistically inferior to the combination of five groups. Particularly, the use of the cos_knn

alone provides most of the discriminative information by exploiting the local distribution of
classes despite its previously discussed limitations. Considering two meta-features, the most
effective combination contains cos_knn and cos_cent. As we shall see in all datasets, when
using only two meta-feature groups, there is always one of them that exploits local and other
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MF Number of Meta-Feature Groups
1 2 3 4 5 6 7

cos_knn 3 3 3 3 3 3 3
cos_cent 3 3 3 3 3 3
l1_knn 3 3
l2_knn
l2_cent
cnt 3 3 3
ncnt
qrt
fisher
ig 3 3 3 3
sum_cent 3 3 3 3 3
cqrt 3
MacF1 58.4(2.5) 61.5(1.9) 63.4(2.7) 65.1(1.8) 66.3(1.5) 66.7(1.3) 67.0(1.4)
MicF1 72.1(1.5) 75.9(1.2) 78.2(1.5) 79.1(1.4) 79.9(1.2) 80.3(1.0) 80.6(1.2)

Table 3.13: Individuals in the 4UNI Pareto Frontier.

that provides global information.

REUT is the only dataset which a single meta-feature group is more effective than the
combination of all meta-features (see Table 3.14). In fact, classification models built from
this dataset are very sensitive to overfitting due to complex and noisy meta-feature spaces,
as this dataset has the smallest number of training examples per category (on average). The
straightforward raw distances provided by cos_knn are capable of providing a simple and
informative meta-feature space for building effective classification models for REUT. The
complementary information provided by cos_cent makes the combination of cos_knn and
cos_cent slightly superior to cos_knn alone, with statistically significant gains on MicroF1
and MacroF1. The inclusion of any meta-feature group to the combination of cos_knn and
cos_cent does not provide any significant gains.

MF Number of Meta-Feature Groups
1 2 3

cos_knn 3 3 3
cos_cent 3 3
l1_knn
l2_knn 3
l2_cent
cnt
ncnt
qrt
fisher
ig
sum_cent
cqrt
MacF1 40.5(2.1) 41.5(2.9) 41.5(3.1)
MicF1 75.7(0.5) 77.3(1.7) 77.4(1.5)

Table 3.14: Individuals in the REUT Pareto Frontier.

The task of classifying academic publications from ACM is not trivial, since specific
papers of one area might be very close to papers from other areas. In fact, Table 3.15 shows
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that local information provided by cos_knn does not appear to be enough for classifying these
hard cases. The set with meta-features cos_cent and cos_knn is capable of improving the
results of cos_knn due to the inclusion of the global information, but is statistically inferior
to the combination containing all meta-features. In order to obtain close results (indeed
without statistically significant differences) with the combination of all meta-features, we
need an additional kind of information provided by sum_cent. Specifically, sum_cent is
capable of providing comparisons between local and global information from all pairs of
categories. This information provides specific evidence about how a neighborhood is distant
from the distribution of all documents from each category. Considering the specificities of
the ACM, sum_cent provides specific evidence to identify that, if the closest publications of
a paper p are not from the same area as p, they might be outliers of their respective areas.

MF Number of Meta-Feature Groups
1 2 3 4

cos_knn 3 3 3 3
cos_cent 3 3 3
l1_knn
l2_knn
l2_cent
cnt 3
ncnt
qrt
fisher
ig
sum_cent 3 3
cqrt
MacF1 62.1(1.3) 62.6(1.7) 64.5(1.8) 64.8(1.6)
MicF1 74.0(1.2) 75.4(0.3) 76.1(0.6) 76.1(0.3)

Table 3.15: Individuals in the ACM Pareto Frontier.

The previously discussed problems in classifying academic publications might also
occur in the classification of publications from the MEDLINE digital library. In fact, the
specific evidence exploited by sum_cent also provides complementary discriminative infor-
mation for MEDLINE, since our best results in Table 3.16 always include sum_cent.

The combination of the four meta-feature groups sum_cent, l2_knn, cos_knn and
cos_cent achieve the best results in terms of MicroF1, which indicates that sum_cent com-
plements the local information provided by l2_knn and cos_knn and global information
of cos_cent. The inclusion of more meta-feature groups to this individual provides only
marginal (but statistically significant) improvements on MacroF1 due to specificities of dif-
ferent categories.

It is important to notice that the use of different similarity measures can provide sig-
nificant improvements in MEDLINE. In fact, the individual with three meta-features in Ta-
ble 3.16 contains l2_knn combined with cos_knn and cos_cent, indicating the benefits of
using l2 distance along with cosine similarity. We argue that the high number of documents
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in MEDLINE helps to provide enough information to exploit the high variance of the l2
distance measure, as l2 is not normalized according to the compared document lengths.

MF Number of Meta-Feature Groups
1 2 3 4 5 6 7

cos_knn 3 3 3 3 3 3
cos_cent 3 3 3 3 3 3
l1_knn 3
l2_knn 3 3 3 3 3
l2_cent 3 3
cnt 3 3 3
ncnt 3
qrt
fisher
ig
sum_cent 3 3 3 3
cqrt
MacF1 70.9(0.7) 73.7(0.3) 74.9(0.4) 75.6(0.5) 75.7(0.3) 75.7(0.5) 75.9(0.6)
MicF1 81.4(0.3) 83.4(0.1) 84.2(0.2) 84.7(0.5) 84.5(0.2) 84.5(0.5) 84.6(0.5)

Table 3.16: Individuals in the MEDLINE Pareto Frontier.

3.3.5.3 Core Meta-Features Considering All Datasets

In this experiment, we aim at finding core combinations of meta-features capable of achiev-
ing good results across all datasets. In order to do so, we use the maximization of the
average effectiveness in all the six datasets and the minimization of the number of meta-
feature groups as objectives in our multi-objective optimization strategy SPEA2SVM. After
obtaining the Pareto frontier for these objectives, we select individuals with the best average
effectiveness on all datasets.

Table 3.17 presents the selected individuals considering the number of meta-feature
groups in each individual. We start by noticing that cos_knn is the best isolated meta-
feature group and the best combination of only two meta-feature groups contains cos_knn

and cos_cent. As previously discussed, this combination of two groups is capable of achiev-
ing the best results on 20NG and REUT and provide most part of the discriminative infor-
mation for other datasets as they are complementary to each other, providing high quality
information from the raw cosine similarity scores. In fact, cos_knn and cos_cent are part
of most combinations containing more than two meta-feature groups. The only exception is
when using three groups, where qrt replaces cos_cent. In this case, both qrt and cos_cent

provide the raw cosine similarities as features, but qrt is a more compact version of cos_cent.

The combination of three groups includes the l2 distance to complement the infor-
mation of the cosine similarity. This change only benefits the MED dataset and does not
provide statistically significant gains on the remaining datasets. The combination of four
groups includes discriminative information provided by sum_cent, which provides statisti-
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Number of Meta-Feature Groups
1 2 3 4 5 6 7

MF

cos_knn 3 3 3 3 3 3
cos_cent 3 3 3 3 3 3
l1_knn 3
l2_knn 3 3 3 3 3
l2_cent 3 3
cnt 3 3 3
ncnt
qrt 3
fisher
ig
sum_cent 3 3 3 3
cqrt

20NG MacF1 88.5(0.8) 89.6(0.5) 89.5(0.5) 89.3(0.4) 88.9(0.3) 89.0(0.4) 89.0(0.4)
MicF1 88.7(0.9) 89.9(0.6) 89.8(0.5) 89.6(0.4) 89.1(0.3) 89.2(0.5) 89.2(0.5)

4UNI MacF1 58.4(2.5) 61.0(1.6) 60.4(2.4) 64.7(1.5) 66.0(2.2) 65.4(1.6) 65.8(1.5)
MicF1 72.1(1.5) 75.6(1.1) 76.3(1.5) 78.9(1.0) 79.4(0.9) 79.2(0.9) 79.6(1.2)

REUT MacF1 40.5(2.1) 41.6(2.6) 40.1(3.1) 32.5(3.2) 32.7(3.0) 32.5(2.9) 33.3(2.8)
MicF1 75.7(0.5) 77.6(0.5) 77.1(1.5) 70.7(1.5) 70.9(1.2) 71.1(1.3) 71.4(1.5)

ACM MacF1 62.0(1.4) 63.0(2.2) 63.4(1.3) 64.5(1.9) 65.0(1.5) 65.0(1.6) 65.1(1.6)
MicF1 74.0(1.2) 75.6(0.5) 75.7(0.4) 76.1(0.4) 76.1(0.6) 76.1(0.5) 76.2(0.5)

MED MacF1 69.9(0.4) 73.7(0.3) 74.8(0.3) 75.6(0.3) 75.7(0.5) 75.7(0.5) 75.9(0.4)
MicF1 82.2(0.2) 83.4(0.1) 84.1(0.2) 84.7(0.2) 84.5(0.2) 84.5(0.2) 84.6(0.2)

Table 3.17: Individuals chosen from the Pareto frontier according to the higher average
effectiveness on different datasets.

cally significant improvements on MED, ACM, and 4UNI, but substantial losses on REUT.
We argue that despite the additional information provided by sum_cent for most datasets, it
is also potentially noisy for small datasets containing various categories. In fact, sum_cent

is the only meta-feature group that grows quadratically with the number of categories of the
dataset. Since REUT is the dataset with the largest number of categories, sum_cent pro-
duces various potentially noisy meta-features for this dataset, incurring in overfitting. The
only dataset that can benefit from the use of more than the four aforementioned meta-feature
groups is 4UNI. As previously discussed, this dataset can use various kinds of discriminative
information about the neighborhood to treat its particular characteristics.

Table 3.17 shows that there is no combination of meta-feature groups capable of
achieving the best results in all datasets. Despite the differences among datasets, the combi-
nation using only the two meta-feature groups cos_knn and cos_cent is the best combination
on REUT and 20NG, also achieving good results in general. In fact, the best combina-
tion found for both ACM and MED datasets are slightly superior (about 1% in MicroF1
and 3% in MacroF1) to this combination of two groups. We argue that the combination of
cos_knn and cos_cent provides core discriminative information for classification in the eval-
uated datasets by directly exploiting local and global distribution of raw cosine similarities,
as they also appear among the individuals in the Pareto frontier of previous experiments on
each dataset. The inclusion of a few other meta-feature groups enables the exploitation of
additional information, especially on 4UNI. In fact, the combination of the five meta-feature
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groups cos_knn, cos_cent, sum_cent, l2_knn, and cnt is capable of providing additional in-
formation from the relationship between the category centroids and neighborhood (through
sum_cent meta-features), l2 distances and the normalized cosine similarity scores. This core
combination of meta-features is capable of providing almost all discriminative information
from the evaluated meta-features, since they are capable of achieving the best results on
most datasets, except in REUT and 20NG. These results provide evidence towards the use of
cos_knn and cos_cent when dealing with shortage of information per category, and the use
of l2_knn, sum_cent, cos_knn, cos_cent and cnt otherwise.





Chapter 4

Distance-based Meta-features
Enriched with Label Information

Despite the success of the previously discussed distance-based meta-features, the considered
underlying distance relationships rely on traditional distance measures among documents.
These distances aim at summarizing discriminative evidence based on simple manipulations
of term weights (such as TF-IDF), which might thwart the importance of relevant discrim-
inative terms in the similarity computation, emphasizing irrelevant terms. Also, distance
measures such as Cosine, Euclidean and Manhattan are not designed to capture whether two
documents belong to the same class and thus do not directly associate similarity with class
information.

In this chapter, we present new strategies to exploit distance relationships for meta-
feature generation. In fact, instead of relying on the selection of meta-features that directly
exploit traditional distances between documents, we propose new meta-features that adapt
the exploitation of distance relationships for each dataset using machine learning techniques.
Particularly, we tackle the limitations of previous strategies by proposing two types of po-
tentially complementary meta-features that correlate a set of pairwise document similarity
evidence with the likelihood of these documents belonging to the same class. Using super-
vised strategies to enrich distance relationships with labeled data, we propose the following
meta-features:

Distance-based meta-features from Synthetic Document Representations (SDRs).
The first type of meta-features we propose uses SDRs built from similarity evidence (e.g.,
common words among documents and similarity measures) found on nearby documents to
correlate pair of documents with classes. As illustrated in Figure 4.1, the common words
between two documents and the similarity scores between them provide features for the
resulting SDR.

57
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SDRs and the class labels of the pairs of documents originating them are used to gen-
erate a training collection. A SDR in this collection is labeled as positive if the pair belongs
to the same class and as negative, otherwise.

1 1 0 0

0 1 0 1

0 1 0 0

Doc. 1 =

Doc. 2 =

0.5 0.3

Bag of Words

Common 
  Words

Similarity
Measures

 Synthetic Document 
Representation (SDR)

Figure 4.1: SDR built from similarity evidence.

A predictor (in our case, an SVM classifier) is learned from this “synthetic collection”,
producing a hyperplane able to separate positive from negative SDRs (as described in details
in Section 4.1.2). In other words, an effective predictor produces high scores (ı.e., high
distances from the hyperplane) when there is compelling similarity evidence to assert that
two original documents in the pair belong to the same class.

Once the predictor is learned, we can generate our first type of meta-features for a given
document as follows. Given a target document t on the original collection, we first obtain the
neighbors of t belonging to the original training set (i.e., neighbor documents whose classes
are known). For each neighbor n, we obtain a SDR formed by n and t. Next, we compute
the distance between each resulting SDR and the hyperplane previously obtained. These
distances correspond to our first type of meta-features for the target document.

The left part of Figure 4.2 illustrates the generation of this type of meta-feature for a
target document represented in the figure by a circle with a “?” inside. The circles connected
to the target by a line represent the neighbors of ? in the original training set. There are
four neighbors in this example. Each pair (?,neighbor) produces a single SDR using simi-
larity evidence shared by the two documents in the pair. The SDR production is emphasized
by the circled pair pointing (with a dashed arrow) to a SDR on the right side of the figure.
The four distances between the hyperplane and the SDRs (represented as double-arrow lines
in the right part of the figure) correspond to the proposed meta-features for document “?”.
These hyperplane distances directly correlate with the discriminative power of the similar-
ity evidence contained in each SDR. The higher the distances, the stronger the evidence.
In sum, instead of relying on the cosine similarity score of pairs (?,neighbor) to produce
meta-features (i.e., using only the left part of Figure 4.2), we propose to use the hyperplane
distances corresponding to such pairs, which can better assess the discriminative power of
the similarity evidence.
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Error rate based meta-features. An important aspect of the process to construct
the proposed meta-features is that it allows us to identify hard-to-classify examples. Given
a target document, it is possible to identify if it is hard-to-classify by analyzing both the
proportion of errors in the predictions for SDRs formed from the target document and the
differences in the distances among these SDRs and the hyperplane. For example, consider
the four SDRs formed from the target “?” and its neighbors in Figure 4.2. The one repre-
sented by a green-border square positioned above the hyperplane was wrongly classified by
the predictor. Since this SDR was formed by similarity evidence between the target docu-
ment and a neighbor with label “1”, the predictor was “fooled” by the similarity evidence
in the SDR. Thus, the proportion of SDRs wrongly classified by the predictor provides ev-
idence regarding hard-to-classify documents. Accordingly, such proportion (of incorrectly
classified SDRs) corresponds to the second type of proposed meta-features.

Notice that this second type of meta-feature works as an evaluation of the quality of
the first type of meta-feature. Whenever the former meta-features indicate that a document
is difficult to classify, supplementary information about the neighborhood of a target doc-
ument is needed. In this case, we propose to combine our proposed meta-features based
on SDRs with an extended version of the two meta-feature groups (cos_knn and cos_cent)
that presented core information for text classification considering all evaluated datasets in
Chapter 3.

-1

?

-1

11

1
-1

-1

-1

1

-1 1-1

SDR construction

(target, neighbor) pairs Evaluation of the discriminative 
power in the neighborhood

Hyperplane

Figure 4.2: Evaluating the discriminative power of similarity evidence among the neighbors
of a target document with a hyperplane as a predictor. Hyperplane distances provide evidence
for new meta-features to represent the target document. Circles and squares indicate original
and SDRs, respectively. Labels -1 and 1 indicate their associated category.

Different sets of the proposed meta-features can be obtained if we use different train-
ing sets or different algorithms to find the separating hyperplane for the SDRs. Particularly,
we construct two different kinds of hyperplanes to evaluate SDRs by using different training
sets. The first kind uses SDRs produced with all training documents as training examples to
produce a hyperplane. In this scenario, the global similarity information related to all train-



60
CHAPTER 4. DISTANCE-BASED META-FEATURES ENRICHED WITH LABEL

INFORMATION

ing documents is explored when learning the hyperplane, and the distances between a SDR
and the hyperplane reflect the use of all training information. The second kind of hyperplane
is inspired on the SVM-kNN method (Zhang et al., 2006). We build local hyperplanes using
only the nearest SDRs of a target document as training examples. In this scenario, the hy-
perplane construction ignores potentially unrelated documents beyond the neighborhood of
a document by locally adjusting the capacity of the SVM hyperplane to the properties of the
training set in each localized area of the input space of SDRs.

Thus, we propose a meta-feature space that exploits not only distances from different
hyperplanes, but also the identification of hard-to-classify examples and other statistics to
replace (or extend) the original (bag-of-words) features of documents. Our experimental
results in a large and heterogeneous set of datasets show significant improvements (up to
12%) of our proposal over a strong baseline constituted of the best literature meta-feature
groups specially selected for each of the considered datasets. Such improvements helped our
proposal to achieve the best results in all tested scenarios.

In sum, we defend that training documents can provide additional information to meta-
features with a supervised evaluation of similarity evidence. In order to defend such claim,
we propose: (i) the design and evaluation of new meta-features based on SDRs and distances
to hyperplanes especially designed to learn and evaluate discriminative similarity evidence;
(ii) a new set of meta-features for estimating the level of error introduced by the newly
proposed and the existing meta-features, specially for hard-to-classify regions of the feature
space and (iii) an analysis of the effects of different groups of meta-features on classification
effectiveness.

4.1 Newly Proposed Meta-Features

In here, we provide the necessary details for building the meta-features newly proposed
in this chapter. We first describe how SDRs are built followed by the process of building
the first type of meta-features derived from these SDRs. Next, we show how to extend
previously proposed meta-features to exploit potentially complementary information from
traditional distance measures. Finally, we detail a set of meta-features designed to evaluate
the discriminative information produced by the two previous types of meta-features. Such
meta-features are useful to identify hard-to-classify documents, being of great importance
when learning robust high quality classification models.
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4.1.1 SDRs

Classification effectiveness based on meta-features significantly depends on the similarity
evidence used to evaluate different pairs of documents. In order to further advance their
potential, we propose to take advantage of the discriminative similarity evidences explicitly
captured by SDRs.

Similarity evidences are formally defined as follows. Let X and S denote the bag-
of-words feature space and the SDR feature space, respectively. The similarity evidence
corresponding to the pair of documents~xa,~xb ∈X is denoted by the SDR~sab ∈S expressed
as the concatenation of the sub-vectors below:

• ~vcommon = [min(~xa,~xb)]: A |X |-dimensional vector s.t. each element w in ~vcommon corresponds to

min(~xaw ,~xbw), where~xaw ≥ 0 and~xbw ≥ 0 correspond to the TFIDF weights of word w in documents

~xa and ~xb, respectively1. This vector provides a new sparse representation that corresponds to the

common information among two documents. This high-dimensional, fine-grained information

might identify important individual common similarity evidence that appear in both documents.

• ~vcos = [cos(~xa,~xb)]: A 1-dimensional vector produced by the cosine similarity between~xa and~xb.

• ~vcent = [min(cos(~xa,~x j),cos(~xb,~x j))]: A |C |-dimensional vector formed by the minimum cosine

similarities between ~xa or ~xb and each one of the x j category centroids in the training dataset. It

captures explicit similarity evidence that relates both~xa and~xb documents to categories.

Since most documents in a given set of training documents Dtrain usually do not present
meaningful similarity evidence with a target document t, SDRs are built using only the k

nearest neighbors of t in Dtrain. Algorithm 2 describes the construction of SDRs for t. It
receives t, k and Dtrain as input and returns a set of SDRs S that represents the similarity
evidence found on neighbors of t in a given set of documents Dtrain. In Line 2, the algorithm
finds the neighbors of t using the cosine similarity, which presented the best results for
meta-feature generation in textual data (Canuto et al., 2018). Then, for each neighbor, the
algorithm uses function SyntheticDocumentRepresentation(t,n) in Line 4 to build a SDR
for the pair (t,n) with the previously described similarity features. Therefore, the similarity
evidence found on each neighbor is explicitly represented as features from its corresponding
SDR.

4.1.2 Meta-Features based on SDRs (SYN)

After providing explicit similarity evidence in the form of SDRs, it is possible to learn a
predictor that correlates the similarity evidence found in the pair of documents corresponding

1Whenever word w does not occur in a document~xa,~xaw = 0.
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Algorithm 2 BuildSyntheticNeighbors(t,k,Dtrain)
Input: Target document t, number of neighbors k and set of documents Dtrain
Output: SDRs S for t

1 S← /0
2 N← k nearest neighbors of~xt in Dtrain
3 foreach ~n ∈ N do
4 ~stn = SyntheticDocumentRepresentation(~xt ,~n)
5 S← S∪{~stn}
6 end

to a SDR s with the likelihood of these documents belonging to the same class. Thus, the
predictor is able to estimate the relevance of similarity evidence to build more informed
meta-features for effective text classification.

Algorithm 3 details how the training samples are processed to learn a predictor for
SDRs. In Lines 1-2, the algorithm prepares the training data for the generation of an SVM
hyperplane hwc for each category c considering each training document d ∈Dtrain. Lines 5-7
generate SDRs that are positive training examples related to d using the subset of training
examples Dpos of the same category as d. Note that there is no “else” after line 7, since
we want to include negative training examples for documents of category c. In other words,
these lines produce a set of SDRs Spos with Algorithm 2 only for pairs of training documents
that belong to the same class. On the other hand, Lines 8-9 produce a set of SDRs Sneg only
for pairs of training documents that belong to different classes. Finally, in Line 11 an SVM
classifier is trained using those positive and negative training samples ultimately defining a
separating hyperplane. Such hyperplane is used as a predictor to estimate the likelihood of
the similarity evidence in a SDR being related to category c.

Algorithm 3 Global hyperplanes for SDRs.
Input: Training set Dtrain
Output: Hyperplanes hwc for each category c

1 foreach category c do
2 Dpos← /0; Dneg← /0; Spos← /0; Sneg← /0;
3 foreach d ∈ Dtrain do
4 if category of d = c then
5 Dpos← documents of category c in Dtrain
6 Spos← Spos∪BuildSyntheticNeighbors(d,k,Dpos)
7 end
8 Dneg← docs. that are not of category c in Dtrain
9 Sneg← Sneg∪BuildSyntheticNeighbors(d,k,Dneg)

10 end
11 hwc← TrainSV M(Spos,Sneg)
12 end

After learning the hyperplanes hwc, we use the distances among SDRs and the hy-
peplanes as meta-features that measure the similarity evidence between a target document
and its neighbors. Algorithm 4 describes how meta-features ~mt are generated for a target
document t with the previously built hyperplanes hwc. Lines 3-4 build the SDRs from the
neighbors of t that belong to the training documents of category c. Using the generated
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SDRs, the method ComputeHyperplaneDistance in Line 7 computes the normalized dis-
tance (with sigmoid function (Platt, 1999)) between each SDR s ∈ Sc and the hyperplane
hwc. Such normalized distances correspond to the likelihood of the similarity evidence in
each SDR in Sc being related to category c. It is worth noting that each SDR s corresponds
to the similarity evidence between the target document t and one of its neighbors. Therefore,
a high hyperplane (Euclidean) distance between s and hwc corresponds to a high likelihood
of t being related to c.

In Line 10, all the computed distances stored in the set H are sorted in ascending order,
generating meta-features in ~mtc. This allows a learning method to compare the i-th greatest
meta-feature value related to hperplane c of a document to the i-th greatest meta-feature value
regarding the same hyperplane of another document during the learning process. Finally, in
Line 11, the computed meta-features for class c are concatenated with the output vector ~mt

that contains meta-features for all categories.

It is important to notice that Algorithm 4 is used directly only for the corresponding
SDRs of a test example. If applied to SDRs generated for documents in the training set
Dtrain, the meta-features generated from these SDRs would be biased to the training data,
which consequently overfits the classifier. In order to generate meta-features for training
documents, it is necessary to apply Algorithm 4 with cross-validation in the training set,
where the hyperplanes hwc are built from a subset of the training data, and the meta-features
are generated for documents in the remaining subset.

Algorithm 4 Building Meta-features from SDRs using Global Hyperplanes (Synglob).
Input: Hyperplanes hwc, target document t, training set Dtrain
Output: Meta-features ~mt for the document t

1 ~mt ← []
2 foreach category c do
3 Dpos← documents of category c in Dtrain
4 S← BuildSyntheticNeighbors(t,k,Dpos)
5 H← /0
6 foreach s ∈ S do
7 hdist ←ComputeHyperplaneDistance(s,hwc)
8 H← H ∪{hdist}
9 end

10 ~mtc← sort(H)
11 ~mt ← concatenate(~mt ,~mtc)
12 end

As previously mentioned, we also propose a version of our meta-features inspired on
the SVM-kNN method (Zhang et al., 2006), which builds local hyperplanes using only the
nearest SDRs of a target document as training examples. In this scenario, the hyperplane con-
struction ignores potentially unrelated documents beyond the neighborhood of a document
by locally adjusting the capacity of the SVM hyperplane to the properties of the training set
in each area of the input space of SDRs. The construction of meta-features using such hy-
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perplanes is illustrated in Algorithm 5, which differs from the Algorithm 4 by the fact that it
builds each hyperplane using only the neighborhood of each target document, as illustrated
in Lines 3-7. The construction of one hyperplane for each category of each target document
is feasible because of the reduced number of training elements (only the neighbors). This
naive implementation can be further improved with the combined use of kernel trick and
DAGSVM (Zhang et al., 2006). Then the algorithm generates one meta-feature for each
distance between the target document and the locally built hyperplane in Lines 8-9. The fact
that SDRs are generated from training documents of all categories assures the evaluation of
similarity evidence found on the relationship between t and neighbors from each category
even on unbalanced training datasets.

Algorithm 5 Building Meta-features from SDRs using Local Hyperplanes (Synloc).
Input: Target document t, training set Dtrain
Output: Meta-features ~mt for the document t

1 ~mt ← []
2 foreach category c do
3 Dpos← documents of category c in Dtrain
4 Spos← BuildSyntheticNeighbors(t,k,Dpos)
5 Dneg← docs that are not of category c in Dtrain
6 Sneg← BuildSyntheticNeighbors(t,k,Dneg)
7 hwc← TrainSV M(Spos,Sneg)
8 hdist ←ComputeHyperplaneDistance(t,hwc)
9 ~mt ← concatenate(~mt ,hdist)

10 end

4.1.3 Extended version of literature Meta-features (EXT)

We extend the literature meta-features in two different ways. The first strategy exploits
the space of original features and some literature meta-features using an SVM classifier.
The correlation between both feature spaces are enriched with label information using the
SVM classifier. The second strategy extends the centroid distances previously defined in
Section 3.1 as cos_cent by evaluating the neighborhood in a projected meta-feature space.
In our extensions, we focus on the two groups of literature meta-features which correspond
to the vectors ~vcos

~x f
and ~vcent

~x f
(named as cos_knn and cos_cent in Chapter 3.1) built from the

cosine similarity. These two meta-features were the only groups consistently among the
individuals in the Pareto frontier of different datasets, as pointed out in Chapter 3.

Original features and meta-features (Orig_ext). Inspired by the success of previous
works (Canuto et al., 2014) in combining the high-dimensional original input space X with
distance-based meta-features, we here propose a compact set of meta-features capable of
embodying the main benefits of such combination. This combination, named XMFextend , is
an extended feature space that represents documents with the concatenation of their origi-
nal document representation with core literature meta-features cos_knn and cos_cent. The
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extended space XMFextend enables the classifier that operates in such space to find interest-
ing connections/relationships between meta-features and individual words. In this sense,
XMFextend combines the best of two worlds: summarized discriminative evidence about doc-
uments in the form of meta-features and very specific information about the individual words
of the documents. In order to build a compact set of meta-features that exploits the relation-
ship between the original and meta-features, we propose to exploit the distances between
documents~x ∈XMFextend and SVM hyperplanes trained to categorize such documents. The
resulting hyperplanes discriminate documents ~x according to the information from features
and meta-features, which allows us to automatically evaluate the relationships between the
two types of features in XMFextend . Particularly, we use a training set to generate one hy-
perplane per category. The meta-features for a test document are the normalized distances
between the document and each hyperplane2.

In sum, let hwdistc(~x) be the hyperplane distance between a document ~x ∈XMFextend

and the hyperplane trained to categorize documents for category c. We define Orig_ext =

[hwdistc(~x)] as a |C|-dimensional vector that contains the distance between~x and the hyper-
planes generated for each category c∈C. In order to avoid overfitting when generating these
meta-features for training documents, we use cross-validation in the training set, where the
hyperplanes are built from a subset of the training data, and the meta-features are generated
for documents in the remaining subset.

Centroid-based meta-features (cent_ext). Our extension of centroid meta-features
evaluates the neighborhood of documents in a low-dimensional space spanned by class cen-
troids. Due to the already strong discriminative power of class centroids, our extension aims
at enhancing them to better handle issues related to class imbalance and noisy terms in the
original textual data representation. The strategy to extend centroid meta-features relies on
two steps. In the first step, we replace the original input space X with a new space Mcent

corresponding to the cos_cent meta-features. By doing so, documents that were represented
as a bag-of-words are then represented as the compact set of centroid distances between the
original document and each category centroid.

In the second step, we evaluate the neighborhood of each projected document ~m ∈
Mcent using the same strategy described in Chapter 3.1 to generate the distance vectors~vcos

~x f
.

Therefore, we generate meta-features that correspond to the Euclidean distance between a
projected document document ~m ∈Mcent and each neighbor in the projected meta-feature
space of centroids. In other words, we generate a vector cent_ext = [dist(~mi,~m)], which
is a |C | ∗ k-dimensional vector whose elements dist(~mi,~m) denote the euclidean distance

2In order to generate meta-features for training documents, it is necessary to apply cross-validation in the
training set, where the hyperplanes are built from a sub-set of the training data, and the meta-features are
generated for documents in the remaining subset.
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between ~m and the ith nearest class c j neighbor of ~m in Mcent space. The evaluation of
the distribution of distances among neighbors in the projected space enables a deeper ex-
ploitation of centroids distances, since it takes into account the relationships between close
centroids distances from different documents.

4.1.4 Error rate based Meta-features (ERR)

The main goal of error rate based meta-features is to estimate whether a target document
needs additional information that complements meta-features built from SDRs or from our
proposed extension of literature meta-features. We propose three strategies to evaluate pre-
diction errors on the prediction of SDRs and documents in the previously described extended
space XOrig_ext , which are both used to generate meta-features relying on SVM predictions.

Error rate for SDRs (Err_syn). Let St and Stcorrect denote the SDRs produced for
a target document t using Algorithm 2 and let Stcorrect be the number of correctly classi-
fied SDRs evaluated with the previously trained SVM models in Algorithm 3. We define
Err_syn = [ |Stcorrect |

|St | ] as a 1-dimensional vector produced by the proportion of correctly clas-
sified synthetic neighbors generated for t. A high proportion of correctly classified SDRs
generated for t indicates that there is reliable similarity evidence provided by SDRs to clas-
sify it.

Error rate for extended meta-features (Err_ext). Similarly to the error rate of SDRs,
we compute the proportion of correctly classified documents in the previously described ex-
tended space XOrig_ext . In this scenario, we define Err_ext = [ |Ntcorrect |

|Nt | ] as a 1-dimensional
vector produced by the proportion of correctly classified neighbors Ntcorrect from all neigh-
bors of a target document~t ∈XOrig_ext .

Discrepancy on literature-extended meta-features (Discr). We also evaluate dis-
crepancies on scores of XOrig_ext . The main idea is to evaluate how the hyperplane distance
of a target document differs from the hyperplane distances of its neighbors Discrepancy
meta-features were not generated for SDRs, as they are already focus on the discrepancies
between a target document and its neighbors. Accordingly, the fact that a target document
is as distant from a hyperplane as its neighbors correlates with the reliability of the evi-
dence in XOrig_ext for such target document. Considering the vector of hyperplane distances
~vhwdist
~x defined for a document x in Section 4.1.3, we define the discrepancy meta-features

as ~vdiscrepancy = [~vhwdist
~x −~vhwdist

~xi j
], which is a k-dimensional vector whose elements denote

the difference between the hyperplane distance of ~x to a hyperplane and each hyperplane
distance of its ith nearest class c j neighbor of~x.
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4.2 Experimental Results

In this section we describe the experiments using the proposed meta-features. The experi-
ments follow the same methodology of the experimental setup described in Chapter 3, which
relies on 5-fold cross-validation to evaluate parameterization and average effectiveness (in
MacF1 and MicF1), with with the best results and values that are not statistically inferior to
the best (with 95% confidence) marked in bold. We start by evaluating the overall effec-
tiveness results of different meta-feature spaces followed by experiments that evaluate the
proposed groups meta-features in this chapter.

4.2.1 Effectiveness of the Proposed Meta-features (Q5)

We here present the effectiveness results of classifiers trained with the meta-features from
different literature works and our proposed approach. Our goal is to show that our proposed
strategies to enrich distance relationships with label information can improve the classifica-
tion effectiveness, answering our fifth research question (Q5). Particularly, in the experi-
ments of this section we compare the strategies proposed in this chapter with the following
meta-feature baselines:

• Canuto et al. (2014), Gopal and Yang (2010) and Pang et al. (2015): Meta-level fea-
tures proposed to exploit traditional distance measures, described in Chapter 3.

• SPEA2SVM (Canuto et al., 2018): The best combination of meta-features proposed to
exploit traditional distance measures obtained for each dataset using the SPEA2SVM
genetic algorithm described in Chapter 3.

• Bag-of-words + SPEA2SVM: Concatenation of SPEA2SVM meta-features with the
original Bag-of-words representation. This baseline is capable of representing both
individual words in the original feature space and meta-features, which enables the
classification method to evaluate the relationship between both feature spaces and the
exploitation of potentially complementary information among them.

• BOW-CNN (Johnson and Zhang, 2015): a recently proposed Convolutional Neural
Network implementation specially designed for sparse and high dimensional text data.
As our proposal, it uses label information to predict the importance of meta-features.
However, the meta-features themselves are automatically generated in a convolutional
layer of the neural network based on the co-occurrence of terms in documents. In terms
of potential neural network baselines, we believe BOW-CNN is an good choice as it
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takes as input the same representation as our meta-features, i.e.., BOW, and automati-
cally generates internal “latent” representations that may be thought as automatically
generated meta-features.

For this method, we kept the default parameterization of the implementation, except
for the parameters learning rate and number of neighbors, which were chosen respec-
tively, among five values from 0.1 to 0.5 and among six values from 500 to 3000 by
using 5-fold cross-validation on each training dataset.

• The EXT+SYN+ERR (Proposed) meta-features corresponds to the union of the pro-
posed SYN, EXT, and ERR meta-features described respectively, in Sections 4.1.2,
4.1.3 and 4.1.4.

20NG 4UNI REUT ACM MED

EXT+SYN+ERR (Proposed) macF1 91.4(0.5) 74.4(1.8) 41.8(1.9) 67.3(1.2) 78.9 (0.6)
micF1 91.6(0.5) 83.0(0.6) 79.7(1.0) 77.9(0.3) 87.8 (0.4)

Canuto et al. (2014) macF1 88.3(0.6) 66.1(2.6) 32.4(2.6) 64.1(1.1) 72.7(0.5)
micF1 88.5(0.6) 78.9(1.6) 71.5(0.9) 75.5(0.8) 82.5(0.2)

Gopal and Yang (2010) macF1 89.5(0.5) 60.6(2.7) 41.7(2.8) 62.7(1.4) 74.9(0.2)
micF1 89.8(0.6) 75.6(0.7) 77.9(1.2) 75.6(0.4) 84.2(0.1)

Pang et al. (2015) macF1 77.4(0.6) 56.4(1.8) 37.2(1.6) 52.1(1.6) 46.3(1.0)
micF1 78.3(0.7) 67.6(1.1) 71.8(0.8) 65.0(0.9) 66.3(1.0)

SPEA2SVM (Canuto et al., 2018) macF1 89.7(0.6) 66.5(1.4) 41.5(3.1) 64.9(1.4) 75.7(0.6)
micF1 90.0(0.7) 79.9(1.4) 77.4(1.5) 76.3(0.7) 84.4(0.5)

BOW-CNN (Johnson and Zhang, 2015) macF1 89.1(0.6) 68.0(1.0) 25.2(1.3) 59.6(0.3) 60.7(0.2)
micF1 89.3(0.7) 81.3(0.8) 70.9(0.6) 74.9(0.4) 82.5(0.4)

Bag-of-words macF1 87.8(0.2) 60.4(1.0) 29.5(2.1) 61.6(0.4) 76.0(0.2)
micF1 87.6(0.2) 70.7(0.8) 65.7(0.7) 72.1(0.5) 85.6(0.5)

Bag-of-words+SPEA2SVM macF1 89.5(0.4) 66.7(1.5) 39.8(4.2) 64.6(1.4) 76.8(0.2)
micF1 89.8(0.5) 77.7(1.5) 76.7(0.9) 76.5 (0.5)) 86.1(0.3)

Table 4.1: Average effectiveness on different meta-features.

Table 4.1 shows the obtained values of MacroF1 and MicroF1 for the meta-features
proposed in this chapter and the previously described baselines. As it can be seen, our
proposed meta-features consistently achieve the best results in all evaluated datasets, a re-
markable result. This provides evidence that the combination of meta-features described in
Section 4.1 does produce more discriminative information than other distance-based meta-
features in the literature, which rely on distance measures not designed to relate pairwise
similarity evidence with categories.

The main difference between our proposal and the remaining methods is the identifi-
cation of strong clues indicating that one particular neighbor contains important similarity
evidence. Such clues may be associated to high prediction scores, which are most likely not
“false positives” (Platt, 1999). We further exploit the confidence of predictions about sim-
ilarity information thru ERR meta-features that provide evidence about the discriminative
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information in our proposals. In fact, the proposed meta-features improved the results of pre-
vious works by Gopal, Canuto, Pang, and the combination of the best of them (SPEA2SVM)
by 13%, 22%, 28%, and 12%, respectively. Our new meta-features achieved better re-
sults than the ones obtained by the traditional Bag-of-words and the combination Bag-of-
words+SPEA2SVM in all datasets, including MED. This is specially important, since none
of the previous meta-feature works can take advantage of the massive amount of data in
MED to provide better results than Bag-of-words for this dataset.

BOW-CNN is a different strategy to exploit the bag-of-words representation. It has the
potential advantage of the automated design of meta-features adapted to the dataset by the
learning framework. Despite this potential advantage, our manually designed meta-features
achieve significantly superior results than BOW-CNN. We conjecture that this is due mainly
to (i) overfitting, as a joint effect of a complex model operating in a high dimensionality,
which can be observed on the low error-rate for training data on early iterations of BOW-
CNN, and (ii) skewness combined with large number of classes (between 7 and 90) and
insufficient number of training documents per class in the smaller ones. This is corroborated
by the poor results in MacroF1 of BOW-CNN in REU and ACM.

4.2.1.1 Group Evaluation

After evaluating the behavior of the combined use of all the proposed meta-features, we
further analyze each component of our proposal. Table 4.2 shows the effectiveness of each
meta-feature group in isolation in terms of MicroF13. We first turn our attention to the SYN
meta-features described in Section 4.1.2, which are based on the supervised evaluation of
SDRs described by two algorithms: Algorithm 3 that generates Synglob meta-features, and
Algorithm 4 that generates Synloc meta-features. Synglob meta-features always perform
significantly better than Synloc as the latter only uses the limited information provided by the
nearest neighbors of training examples, while Synglob takes advantage of the whole labeled
data. Synglob, for instance, was the sole winner on 4UNI, achieving the best results among
all groups in this dataset. The task of categorizing academic webpages in 4UNI is difficult
as the general pages category is commonly mistaken by others. Synglob also appears among
the top performers in 4 out of 5 datasets (the exception beinng REUT), a very strong and
consistent performance. Particularly, in the case of REUT, it contains several classes with
just a few training documents (less than 5 for 26 categories), which prevents the exploitation
of SDRs in an effective way.

EXT meta-features described in Section 4.1.3 also obtained high effectiveness using
different strategies to exploit information from similarity evidence. Particularly, Orig_ext

3Results with MacroF1 were qualitatively the same.



70
CHAPTER 4. DISTANCE-BASED META-FEATURES ENRICHED WITH LABEL

INFORMATION

SYN EXT ERR
Dataset Synglob Synloc cent_ext Orig_ext cos_knn cos_cent Err_syn Err_ext discrepancy
4UNI 79.0(1.5) 64.5(1.0) 71.6(0.9) 75.5(1.0) 71.4(0.6) 70.4(0.4) 45.1(1.2) 45.4(1.1) 69.0(1.3)
20NG 88.8(0.9) 72.7(0.7) 78.6(0.6) 87.7(0.2) 88.5(0.6) 81.1(0.4) 5.9(0.3) 5.3(0.1) 63.9(1.2)
ACM 73.9(0.5) 62.3(0.8) 68.9(0.6) 74.3(0.4) 74.3(0.5) 70.0(0.3) 24.3(0.5) 26.3(0.3) 60.7(0.4)
REUT 64.7(3.2) 56.8(1.3) 76.3(0.6) 69.9(1.5) 76.1(0.7) 74.7(0.7) 30.1(0.6) 29.7(0.5) 61.6(0.9)
MED 84.9(0.6) 72.9(0.4) 80.3(0.3) 84.5(0.7) 82.9(0.9) 79.9(0.3) 51.1(0.5) 52.9(0.4) 75.2(1.0)

Table 4.2: Average Micro-F1 effectiveness on each group of proposed meta-features.

produced high effectiveness results, in general, achieving the best results among EXT on
4UNI and MED with the combined exploration of original features and meta-features. De-
spite its benefits, Orig_ext suffers from potential generalization errors because of imbalanced
classes and small training, as seen in REUT. Other EXT meta-features, namely cent_ext

and cos_cent obtained significantly lower results in most datasets, as they are designed to
complement other meta-features by exploiting only the global information related to class
centroids.

Considering the ERR meta-features, we can see that they obtained the lowest results in
general. In fact, they were designed to identify hard-to-classify documents based on meta-
features, being not explicitly designed to provide direct evidence for classification. As such,
their largest benefit should be observed when used in conjunction with other groups.

Since the groups SYN, EXT, and ERR were designed to explore different aspects and
idiosyncrasies of the text classification task, we expect the presence of complementary infor-
mation among them. In fact, there is clear empirical evidence to support such complemen-
tarity hypothesis. This is best seen with the combination SYN+EXT+ERR, which provides
statistically significant superior results when compared to all other possible combinations of
SYN, EXT, and ERR in all datasets, as shown in Table 4.3.

Particularly, the comparison between SYN+EXT+ERR and SYN+EXT highlights the
importance of ERR meta-features to identify potentially hard-to-classify examples. Such
identification provides means for a better optimization process during learning, improving
the ability of SYN or EXT for categorizing hard-to-classify examples. This can also help
mitigate potential noise or sampling errors from such examples during the model construc-
tion.

Disregarding ERR, the combination EXT+SYN is always superior to EXT or SYN
in isolation. In fact, SYN and EXT exploit similarity evidence using different methods.
Particularly, SYN meta-features take advantage of SDRs to directly express the relationship
between categories and neighborhood-based similarity evidence. On the other hand, EXT
meta-features summarize all the similarity evidence with cosine scores without exploiting the
other components of the SDRs, especially the relationships with categories. Such significant
(and complementary) differences on strategies to exploit similarity information justify the
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20NG 4UNI REUT ACM MED

EXT+SYN+ERR macF1 91.4(0.5) 74.4(1.8) 41.8(1.9) 67.3(1.2) 78.9 (0.6)
micF1 91.6(0.5) 83.0(0.6) 79.7(1.0) 77.9(0.3) 87.8 (0.4)

SYN+ERR macF1 89.1(0.5) 70.4(3.3) 34.8 (2.1) 63.5(1.1) 76.5 (0.4)
micF1 89.3(0.4) 80.0(1.3) 71.8 (2.3) 75.6(0.4) 86.0 (0.3)

EXT+ERR macF1 88.3(0.4) 65.5(1.0) 36.8 (1.2) 63.1(1.5) 75.9 (0.4)
micF1 88.5(0.3) 78.7(0.7) 76.9 (0.8) 75.6(0.5) 85.9 (0.2)

EXT+SYN macF1 90.6(0.4) 70.5(2.0) 39.4(0.6) 64.4(0.9) 75.5 (0.7)
micF1 90.8(0.4) 80.2(0.8) 77.9(0.5) 77.0(0.5) 86.8 (0.5)

SYN macF1 88.3(0.7) 67.1(3.6) 25.8 (2.5) 59.4(0.6) 75.3 (0.7)
micF1 88.5(0.7) 79.2(1.5) 65.9 (2.9) 74.5(0.6) 85.1(0.5)

EXT macF1 88.2(0.2) 65.0(0.9) 37.3 (0.9) 63.7(0.7) 74.3 (0.7)
micF1 88.3(0.3) 78.6(0.8) 77.0 (0.7) 75.5(0.4) 85.7 (0.3)

ERR macF1 64.2(0.9) 49.1(2.3) 22.5(1.7) 41.2(1.1) 47.4 (1.3)
micF1 64.6(0.9) 68.3(1.3) 62.7(1.1) 60.6(0.6) 75.1 (1.2)

Table 4.3: Average effectiveness on each meta-feature group.

consistent and statistically significant gains ranging from 1% to 5% of EXT+SYN over the
best results found either in EXT or SYN.

4.2.1.2 Importance of Groups with using 2kr Factorial Design

We further analyze the importance of the three groups of meta-features, as well as their inter-
actions, to explain the current results, using all 2k possible combinations of groups for each
dataset. We consider the case without any group using a “random” classifier, which returns
an arbitrary category for each document. We also consider the replication of the experi-
ments with each possible combination (using 5-fold cross validation) to evaluate the effects
of uncontrollable external factors. We follow the standard quantitative approach called 2kr

factorial design (Jain, 1991) to analyze the effects of the individual groups of meta-features,
as well as the effectiveness improvements produced by their interactions.

The first step to perform a 2kr factorial design is to define the binary factors that may
affect a response variable (e.g., Micro-F1 score). In our case, each factor corresponds to the
presence or absence of one group of meta-features. We show the presence of meta-features
with their combined names (e.g., SYN:ERR indicates the presence of SYN and ERR).

Since we use five replications for each combination of meta-features, we estimate the
residuals from the sum of the squared errors obtained from the replications. Then, we com-
pute the 95% confidence intervals for residuals and effects from the variance on the results
of our replications.

Table 4.4 presents the percentage of variation in the results that can be explained
by each individual group of meta-features and by the interaction between groups of meta-
features considering each possible combination. As we can see, the variations observed on
all combinations can mostly be explained by the groups SYN and EXT in isolation and the
iteration SYN:EXT. The effects of SYN and EXT each always account for more than 23%
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20NG 4UNI REUT ACM MED
SYN 25.63 29.03 11.34 25.28 23.58
EXT 24.89 26.13 48.49 27.29 36.89
ERR 7.34 7.68 7.49 7.53 8.16
SYN:EXT 21.15 18.77 9.73 20.29 16.94
SYN:ERR 6.65 5.06 7.14 6.04 3.52
EXT:ERR 7.37 6.46 7.22 7.15 6.79
SYN:EXT:ERR 6.94 5.94 7.59 6.33 4.12
Residuals 0.03 0.94 0.98 0.09 0.01

Table 4.4: Explained percentage of result variation by individual meta-feature groups and
interactions between them. The 95% confidence intervals are always inferior to 0.5%.

of all the effectiveness variation, as the presence of each one of these groups in isolation pro-
vides discriminative information for the text classification task. The iteration SYN:EXT also
explains up to 21% of all variations in the results, highlighting the complementarity between
SYN and EXT. Altogether, SYN, EXT and SYN:EXT explain more than 70% of the results
in all analyzed datasets.

Other measured effects that present the interaction of ERR with other groups consis-
tently explain statistically significant portions of the variation in the results, ranging from
4% to 8%. Such consistent variations, though relatively small in isolation, account alto-
gether for about 17% of the total variation in the results. This provides strong evidence of
the importance of ERR to improve the results of other meta-feature groups when interacting
with them. But even in isolation, ERR can explain a rather interesting portion of the results
(between 7%-8%). Finally, the residuals (the inexplicable fraction of the variation) are quite
low, meaning that we can safely ignore external factors beyond EXT, SYN and ERR.



Chapter 5

Exploiting Meta-features for
Sentiment Analysis

The popularity of online forums, reviews and social networks has led numerous people to
share their opinions on a wide range of subjects, including products, events, news, and even
daily experiences. Dealing with this massive amount of data, generated everyday on online
platforms, can bring a number of new opportunities to businesses and markets. In particular,
the sentiment analysis of such unstructured data can reveal how people feel about a particular
product or service.

We dedicate this chapter to address the problem of how to automatically learning to
classify the sentiment of short messages/reviews by exploiting information derived from
meta-features, our seventh research question. Particularly, we evaluate the use of previously
proposed meta-features along with new proposals that exploit sentiment and distances distri-
butions. All this considering a (potential) noisy neighborhood with scarcity of information
(short messages).

In more details, we make use of BM25 (Manning et al., 2008) as similarity score to find
neighbors, since it is an useful measure to rank documents with short messages as queries 1.
We also exploit the neighborhood of a test example in both the training set and in a dataset
containing 1.6 million tweets automatically labeled by its users with emoticons (Go et al.,
2009). This methodology allows us to exploit discriminative information from different
domains, even noisy ones, like the large twitter dataset with emoticons. The last additional
evidence we exploit is taken from the weighted sentiment polarity of the nearest neighbors by
using lexicon-based methods to infer the message’s polarity towards a sentiment (Baccianella
et al., 2010; Hutto and Gilbert, 2014; Thelwall et al., 2010).

1On topic classification, the use of BM25 might not be adequate because of the use of long documents as
queries.
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In sum, we argue that the exploitation of sentiment analysis idiosyncrasies to design
meta-features can improve the classification effectiveness in short text messages. The fol-
lowing sections provide a detailed description of our meta-features, followed by a detailed
evaluation of our proposals and previously described meta-features.

5.1 Proposed Meta-Level Features for Sentiment

Analysis

Similarly to the meta-level features described in Chapter 3.1, the proposed meta-features for
sentiment analysis are based on nearest neighbor search. However, we focus on dealing with
specific aspects of sentiment analysis of short messages. We use BM25 (Manning et al.,
2008) for dealing with short texts as queries and exploit additional information from lexical-
based methods as well as the inexpensive (though noisy) tweet messages labeled by Tweeter
users with emoticons.

Given the examples in the original input space X , the proposed vector of meta-level
features m f ∈M is expressed as the concatenation of the following sub-vectors, which are
defined for each example x f ∈X and category c j ∈ C for j = 1,2, . . . , |C |.

• ~vrawsim
~x f

= [sim(~xi j, ~x f )] A k-dimensional vector produced by considering the k nearest
neighbors of class c j to the target vector x f . More specifically, ~xi j is the ith (i ≤ k)
nearest neighbor to ~x f , and sim(~xi j, ~x f ) is the a similarity score (BM25 or cosine)
between them. Thus, k meta-level features are generated to represent x f .

• ~vcagglex
~x f

=
[
∑sim(~xi j, ~x f )∗ pi j

]
A 1-dimensional vector produced by considering the

weighted polarity sum of the k nearest neighbors of x f that belong to the class c j.
The similarity sim(~xi j, ~x f ) between~x f and its ith (i≤ k) nearest neighbor~xi j is used to
weight the polarity pi j of the document xi j. The polarity score pi j (that represents the
valence of a positive sentiment, for example) is given by a lexical-based method.

• ~vmaxminlex
~x f

= [max(sim(~xi j, ~x f ) ∗ pi j),min(sim(~xi j, ~x f ) ∗ pi j)] A 2-dimensional vector
produced by considering the maximum and minimum document weighted polarity of
the k nearest neighbors of the target vector x f that belong to the class c j. The similar-
ity sim(~xi j, ~x f ) between~x f and its ith (i≤ k) nearest neighbor~xi j is used to weight the
polarity pi j of the document xi j.

• ~vagglex
~x f

=
[
∑sim(~ti, ~x f )∗ pi)

]
A 1-dimensional vector with the weighted polarity sum

of the k-nearest neighbor’s polarities. The similarity sim(~ti, ~x f ) between ~x f and its ith

(i≤ k) nearest neighbor~ti is used to weight the polarity pi of the document ti
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• ~vrawlex
~x f

=
[
p f
]

A 1-dimensional vector produced by one of the (possibly many) outputs
of a lexical-based method. The output p f corresponds to the polarity score of the
document represented by x f .

With exception of~vrawlex
~x f

, all remaining described vectors depend on a similarity mea-
sure in order to find the nearest neighbors. We generate our meta-features with two similarity
scores: Cosine (i.e., sim(~x,~q) =Cosine(~x,~q)) and BM25 (i.e., sim(~x,~q) = BM25(~x,~q)). We
use the cosine similarity because of it produced effective results when applied together with
bag-of-words weighted with TF-IDF in previous meta-features studies (Canuto et al., 2018).
We also compute the vectors using the BM25 similarity score due to its effectiveness on
dealing with short queries in information retrieval, which is the case when dealing with short
messages as queries for kNN. These two similarity scores are fundamentally different, since
BM25 computes the similarity based on terms in a query document appearing in other doc-
uments, regardless the additional terms that are not in the query document. On the contrary,
cosine similarity considers all terms from both compared documents, since it is symmetrical.

The vectors were grouped into 4 categories, considering whether they use only the
polarity information (RAWLEX), only the neighborhood distance information (RAWSIM),
the combination of distances with polarities (KNNLEX) and information generated from
the external data containing tweet messages labeled with emoticons, instead of the original
training data (TWEMOT). Table 5.1 summarizes the names we give to different groups of
meta-features depending on the variations of these factors.

Group Description
RAWSIM Vector~vrawsim

~x f

RAWLEX Vector~vrawlex
~x f

KNNLEX Vectors~vcagglex
~x f

,~vmaxminlex
~x f

and~vagglex
~x f

TWEMOT Vectors ~vcagglex
~x f

, ~vmaxminlex
~x f

, ~vagglex
~x f

and ~vrawsim
~x f

computed using only the neighborhood from the
tweet dataset with emoticons.

Table 5.1: Groups of proposed meta-features.

As described in Table 5.1, the proposed meta-features are able to capture discriminative
information from the labeled set using different sources of information. We now further
analyze the proposed groups of meta-features, describing which characteristics of the data
each of them aim to exploit.

For the RAWSIM features, each test example~x f is directly compared to a set of nearest
labeled examples. The intuition behind these meta-features consists in the assumption that
if the distances between an example to the nearest neighbors belonging to a category c are
small, then the example is likely to belong to c.
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The RAWLEX features are the raw scores produced by outputs of the used lexicon-
based methods. All used methods produce one score for positive polarity and another for
negative polarity. Each one of these raw scores correspond to a one-dimensional vector
~vrawlex
~x f

.
The KNNLEX features also use the neighborhood distances, but they are only em-

ployed for finding and weighting the polarity of the nearest neighbors. More specifically, the
meta-features ~vcagglex

~x f
supply the agglomerated polarity of the category c’s neighbors. This

meta-feature obtains, for each neighbor, the polarity valence p towards a sentiment (e.g.,
negativity score) using a lexicon-based method (e.g., SentiStrength). The weighted sum of
these polarities can be seen as the summarization of the distribution of the neighbor’s polar-
ities. If the neighbors of a test document~x f have very high values for the positive polarity p

and they are also very close to~x f , the sentiment of~x f is likely to be positive. This summa-
rization can be useful, since the lexical-based approaches usually have a small coverage of
words which often are not in a particular message. The exploitation of the neighborhood of
this message aims at easing this coverage problem by looking at the words of the neighbors.

Another way to analyze the neighborhood polarity distribution is by looking at the
maximum and minimum values. The meta-features~vmaxminlex

~x f
extract this additional informa-

tion to complement the agglomerated polarity previously described. The final meta-feature
belonging to the KNNLEX group is the agglomeration~vagglex

~x f
. It differs from the other meta-

features because it does not use the labeled information, but just summarizes the polarity of
the k nearest neighbors without looking at their categories. By ignoring the category of the
neighbors, it is possible to exploit the existence of a mode in the polarity distribution of the
neighborhood.

Most meta-features depend on a training set in which we find the k-nearest neighbors.
We generate them using the traditional training set (that follows the same distribution of the
test documents). Besides this traditional training set, we exploit an additional very large
dataset with 1.6 million tweet messages with emoticons inserted by the users (which can
be considered as noisy labels) as a training set. The group of meta-features TWEMOT
comprises all the proposed kNN-based meta-features generated using this twitter training set.
There are two factors that make possible the exploration of this highly noisy tweet dataset.
First, we exclude all messages from the tweet dataset that are not in the neighborhood of a
query document~x f . By doing so, we ignore a huge volume of messages that are not close to
the domain of interest in which~x f is inserted. The second factor is related to the fact that the
neighborhood’s information is summarized with similarity scores. This summarization with
fewer features can be easily evaluated regarding its discriminative power.

Considering kt neighbors from the tweet dataset, ko neighbors from the original train-
ing data, the |C | sentiment categories, 2 similarity measures (cosine and BM25) and p polar-
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ity scores, the number of features generated will be 2|C |(kt +ko)+ p+4(1+3|C |). Specif-
ically, kt meta-features per category are generated by the vector ~vrawsim

~x f
derived from the kt

nearest neighbors from the tweet dataset. Since we use two similarity measures, we will gen-
erate one vector for each similarity measure which gives us 2kt meta-features per category, or
|C |2kt . Similarly, we generate 2ko meta-features driven by the original labeled data, which
gives us 2|C |(kt + ko) meta-features generated by~vrawsim

~x f
. The equation also accounts for p

polarity scores given by each single lexical-based method output, as described in~vrawlex
~x f

.

The vectors~vcagglex
~x f

and~vmaxminlex
~x f

provide three meta-features per category and~vagglex
~x f

provides only one meta-feature, generating the total of 1+3|C | meta-features. Since they are
generated using two similarity measures and two different datasets (original training dataset
and tweets data-set), the final number of features driven from these vectors are 4(1+3|C |).

In any case, the size of this meta-level feature set is much smaller than that typically
found in bag-of-words representation, while explicitly capturing class discriminative infor-
mation from the labeled set, polarity scores, and external data.

5.2 Experimental Evaluation

In this section we describe the experiments using the proposed meta-features. We start by
presenting the experimental setup (Section 5.2.1) followed by the experimental results using
distinct sets of meta-features (Section 5.2.2).

5.2.1 Experimental Setup

The experiments follow the same methodology described in Chapter 3, which includes the
standard preprocessing task for all datasets (removal of stopwords and use of the TF-IDF
weighting scheme) and the use of 5-fold cross-validation to evaluate parametrization (for the
neighborhood size k and the regularization parameter of the SVM). The meta-level features
were compared using the Micro-F1 score, which is a standard measure for binary-class cate-
gorization tasks (Sokolova and Lapalme, 2009), with the best results and values that are not
statistically inferior to the best (with 95% confidence) marked in bold.

The meta-features RAWLEX, KNNLEX and TWTEMOT rely on lexicon-based as-
sessments to estimate the sentiment value of each message. We use three recent and freely
available lexicon-based classifiers Vader (Hutto and Gilbert, 2014), SentiStrength (Thelwall
et al., 2010) and SentiWordnet (Baccianella et al., 2010) to estimate the sentiments of mes-
sage. Specifically, we extract the positive and negative sentiment scores of each message
using these methods, along with combined and neutral scores given by Vader.



78 CHAPTER 5. EXPLOITING META-FEATURES FOR SENTIMENT ANALYSIS

In order to evaluate the meta-feature strategies, we use publicly available bench-
mark (Ribeiro et al., 2016) with nineteen real-world textual datasets gathered from differ-
ent works. They are named aisopos_tw (Fotis Aisopos, 2014), debate (Diakopoulos and
Shamma, 2010), narr_tw (Narr et al., 2012), pappas_ted (Pappas and Popescu-Belis, 2013),
pang_movie (Pang and Lee, 2004), sanders_tw2, ss_bbc (Thelwall, 2013), ss_digg (Thel-
wall, 2013), ss_myspace (Thelwall, 2013), ss_rw (Thelwall, 2013), ss_twitter (Thelwall,
2013), ss- youtube (Thelwall, 2013), stanford_tw (Go et al., 2009), semeval_tw3, vader_-
amzn (Hutto and Gilbert, 2014), vader_movie (Hutto and Gilbert, 2014), vader_nyt (Hutto
and Gilbert, 2014), vader_tw (Hutto and Gilbert, 2014) and yelp_re-view4. In addition to
the previously described datasets, we also exploit the information of 1.6 millions of tweets
automatically labeled with emoticons (Go et al., 2009). All these datasets contain short texts
as documents, which are distinct from documents usually found in text classification (e.g.
news and web pages).

We consider only messages with a clear polarity (positive or negative), since we focus
on the supervised (binary) task of discriminating between positive and negative polarities of
the messages. The reasons for this are threefold: (i) in several domains (e.g., reviews and
micro-reviews), the basic motivation for people to write such messages is to provide positive
or negative feedback on products, experiences and services that can be helpful to others; (ii)
even in other domains in which “neutral” opinions can occur more frequently, many appli-
cations are interested in knowing only the most “polarized” opinions about certain topics
(e..g., politicians, events, etc); and finally (iii), even if identifying neutral positions is impor-
tant, some works (e.g., Barbosa and Feng (2010); Pang and Lee (2004); Wang et al. (2015)
have advocated doing this in a prior step (aka, subjectivity extraction) before determining the
polarity of the message, which is our focus here.

Table 5.2 shows some of the characteristics of the datasets used to evaluate our meta-
features. The first column indicates the name of the dataset used in our experiments, the
second column is the number of messages in the dataset, the third shows the number of
features (words) represented in the dataset, the fourth corresponds to the average number of
words (density) of a message, and the last two columns show the number of positive and
negative messages, respectively.

2http://www.sananalytics.com/lab/twitter-sentiment
3https://www.cs.york.ac.uk/semeval-2013/task2
4http://www.yelp.com/dataset_challenge

http://www.sananalytics.com/lab/twitter-sentiment
https://www.cs.york.ac.uk/semeval-2013/task2
http://www.yelp.com/dataset_challenge
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dataset #msgs #feat density #pos #neg
aisopos_tw 278 1493 13.0 159 119
debate 1979 3360 11.5 730 1249
narr_tw 1227 3508 11.3 739 488
pappas_ted 727 1635 11.7 318 409
pang_movie 10662 12432 13.9 5331 5331
sanders_tw 1091 3102 13.5 519 572
ss_bbc 752 5655 40.3 99 653
ss_digg 782 4015 22.2 210 572
ss_myspace 834 2639 14.7 702 132
ss_rw 705 4595 43.3 484 221
ss_twitter 2289 7777 13.8 1340 949
ss_youtube 2432 6275 12.2 1665 767
stanford_tw 359 1620 12.0 182 177
semeval_tw 3060 9087 16.4 2223 837
vader_amzn 3610 3678 11.9 2128 1482
vader_movie 10568 11980 14.0 5242 5326
vader_nyt 4946 8756 13.0 2204 2742
vader_tw 4196 7346 11.2 2897 1299
yelp_review 5000 19398 71.5 2500 2500

Table 5.2: Dataset caracteristics.

5.2.2 Experimental Results

In this section we present results of a series of experiments to evaluate the effectiveness
of proposed meta-features for sentiment analysis. Initially, we present results comparing
the effectiveness of our solution with the traditional Bag of Words and previously proposed
meta-features (not designed for sentiment analysis). Then, we compare the results of the
best lexicon-based methods and a supervised ensemble of lexicon-based methods with our
meta-features. Finally, we present a study regarding the role of each individual group of
meta-features.

5.2.2.1 Meta-features in the Sentiment Analysis Context (Q6)

We start by evaluating different meta-features in sentiment analysis datasets. Our main
goal is to answer our sixth research question (Q6) by providing evidence that meta-features
can improve the effectiveness of sentiment analysis, specially (Section 5.1). We com-
pare our proposal with the the set of original (Bag of Words) features, the combination
(SYN+EXT+ERR) of meta-features based on enriching distance relationships with labeled
information (Chapter 4), and three sets of meta-level features proposed by Canuto et al.
(2014), Gopal and Yang (2010) and Pang et al. (2015). We also include the combination of
these three literature meta-features using the SPEA2SVM (Canuto et al., 2018) genetic al-
gorithm described in Chapter 3 to select the best meta-feature combination for each dataset.

As shown in Table 5.3, the set of proposed meta-features for sentiment analysis
achieved the highest effectiveness among the evaluated meta-features in most datasets (six-
teen of the nineteen), being (statistically) superior than all baselines in nine datasets. This is
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a strong evidence towards the robustness of the proposed meta-features for the specific task
of sentiment analysis of short messages. Notice particularly, the significant improvements
obtained by the proposed meta-features on vader_tw, ss_twitter, semeva_tw, vader_nyt, ss_-
youtube, vader_amz, ss_digg, pang_movie and narr_tw with gains ranging from 5% to 10%
over the best baseline.

The reasons for the low competitiveness of the baseline meta-features are twofold:
(i) most sentiment analysis datasets have only a few documents with very short messages
and (ii) they do not exploit any specific characteristic of sentiment analysis. The proposed
meta-features address these issues by: (i) using an external tweet dataset with 1.6 millions
of documents; (ii) utilizing a specific similarity score for short queries (BM25), and (iii) by
exploiting lexicon-based methods which deal with sentiment analysis specificities.

The SYN+EXT+ERR (Chapter 4) meta-feature group constitutes the most competitive
baseline. It achieves the single best result in one dataset (yelp_review) and ties in first place in
ten other datasets. In fact, the messages of yelp_review contain longer texts (highest density
in Table 5.2), which enables the exploitation of more common words among documents,
and consequently, more informative synthetic document representations. The relatively high
results on such datasets is evidence that the meta-features described in Chapter 4 can perform
relatively well in sentiment analysis, even without domain-specific adaptations.

The other strategies do not use additional information for sentiment analysis or label-
enriched representations. In fact, both SPEA2SVM and Bag of Words presented close results
in most datasets, being never able to produce statistically superior results than both, Proposed
and SYN+EXT+ERR. This is mostly probably due to the lack of specific strategies to ex-
tract and expose the sentiment of short texts. In any case, SPEA2SVM was never inferior to
Canuto et al. (2014), Gopal and Yang (2010) and Pang et al. (2015), since it is a combina-
tion, with meta-feature selection, of these groups. Such combination provided statistically
superior gains on top of Bag of Words on vader_tw, vader_movie, stanford_tw, ss_digg and
narr_tw.

5.2.2.2 Proposed versus Lexical Approaches

We now compare the relative effectiveness of our proposed meta-features with a simplified
ensemble using lexical-based methods (Baccianella et al., 2010; Hutto and Gilbert, 2014;
Thelwall et al., 2010) as first level classifiers, in which their outputs are combined with an
SVM classifier. We also use the individual classification of the best unsupervised lexical
method as baseline. As show in Table 5.4, our approach outperformed by large margins
both, the lexical ensemble and the best unsupervised method, in various situations, with
gains over the best baseline ranging from 9% to 16% in six datasets, namely vader_movie,
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aisopos_tw 89.2(5.4) 88.5(3.5) 83.5(3.3) 71.2(6.3) 82.4(4.6) 83.5(3.3) 89.6(2.8)
debate 80.0(2.9) 78.5(1.3) 78.5(1.9) 78.2(1.7) 76.6(1.6) 76.2(0.9) 77.4(1.3)
narr_tw 88.8(2.0) 85.0(1.3) 83.3(1.3) 82.2(1.0) 81.0(2.9) 83.3(1.3) 81.4(2.7)

pappas_ted 72.8(3.0) 78.3(1.4) 77.5(3.2) 67.0(10.0) 76.6(3.8) 77.5(3.2) 76.1(3.8)
pang_movie 78.6(1.0) 77.5(0.3) 77.3(0.7) 77.3(0.9) 77.5(1.4) 74.3(1.3) 76.9(1.3)
sanders_tw 86.5(2.4) 84.2(1.8) 83.2(2.8) 83.2(3.2) 83.4(1.7) 80.8(2.6) 84.5(3.1)

ss_bbc 88.6(3.8) 86.9(4.3) 87.0(4.3) 86.1(5.3) 86.3(6.3) 86.9(4.7) 87.4(5.6)
ss_digg 82.1(2.6) 78.6(2.3) 78.6(1.1) 76.3(4.1) 78.5(3.8) 77.1(1.5) 77.6(3.7)

ss_myspace 88.4(1.2) 86.1(2.2) 86.3(2.4) 86.2(4.0) 85.7(3.2) 85.3(1.8) 86.2(2.8)
ss_rw 79.8(5.0) 76.6(2.8) 77.8(3.5) 75.2(2.3) 70.9(1.0) 77.8(3.5) 76.0(4.1)

ss_twitter 82.6(1.1) 75.4(1.5) 73.3(2.2) 73.4(2.2) 73.1(1.4) 73.3(2.2) 72.8(2.8)
ss_youtube 86.1(1.6) 82.2(0.8) 82.6(1.8) 79.8(1.7) 80.2(1.9) 80.8(1.5) 81.2(2.5)
stanford_tw 86.9(3.5) 84.7(3.9) 86.6(2.7) 80.5(4.5) 84.4(3.4) 84.3(0.8) 84.7(3.0)
semeval_tw 85.8(1.9) 81.9(1.5) 79.4(1.0) 79.1(1.2) 71.6(1.1) 67.7(12.3) 80.2(1.6)
vader_amzn 78.0(1.0) 74.2(1.2) 74.5(1.2) 74.2(2.2) 74.0(1.6) 73.5(1.5) 74.1(1.4)
vader_movie 79.9(0.6) 79.0(0.5) 78.9(0.6) 78.8(1.0) 78.8(1.0) 75.4(0.4) 78.2(0.6)

vader_nyt 71.2(2.5) 66.1(1.6) 67.1(0.9) 66.1(1.9) 66.4(2.8) 66.3(0.7) 67.1(1.2)
vader_tw 97.2(0.6) 88.2(0.6) 86.2(0.3) 85.6(0.8) 84.2(1.1) 86.0(0.4) 84.0(1.1)

yelp_review 93.4(1.1) 94.2(0.1) 90.4(1.2) 87.3(1.5) 90.0(1.3) 87.2(1.7) 93.3(0.4)

Table 5.3: Average Micro-F1 with different groups of meta-features and the Bag of Words
representation.

pang_movie, debate, sanders_tw, stanford_tw and vader_amzn. The most significant gains
were on our two biggest datasets vader_movie and pang_movie, with 16% and 15% respec-
tively, providing evidence that the proposed meta-features can extract more discriminative
information from large training datasets.

The results of the best lexical unsupervised method (last column of Table 5.4) are
close to the supervised methods in only two datasets: pappas_ted and ss_rw, some of the
smallest ones. However, the best unsupervised approach could achieve results superior to
75% of effectiveness in twelve of the nineteen datasets, a significant fact, as it does not use
any domain-specific labeled information to classify messages. This demonstrates why and
how this type of source can produce useful and complementary information to be exploited
in other approaches. Finally, exploiting the lexical approaches in a supervised manner (the
Lexical ensemble) helped to improve results substantially in most datasets, achieving gains of
about 7% on pang_movie, vader_movie, semeval_tw and yelp_review. This further justifies
the use of lexical information in our meta-features.
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dataset Proposed Lex Ensem Best Lex
aisopos_tw 89.2 ± 5.4 85.2 ± 5.9 83.4 ± 6.8
debate 80.0 ± 2.9 70.1 ± 1.2 67.4 ± 3.3
narr_tw 88.8 ± 2.0 85.8 ± 2.4 81.2 ± 1.9
pappas_ted 72.8 ± 3.0 72.6 ± 7.0 72.8 ± 3.2
pang_movie 78.6 ± 1.0 68.4 ± 1.3 63.7 ± 1.0
sanders_tw 86.5 ± 2.4 75.5 ± 2.2 73.1 ± 3.6
ss_bbc 88.6 ± 3.8 88.6 ± 4.6 84.7 ± 1.8
ss_digg 82.1 ± 2.6 80.5 ± 5.4 77.2 ± 3.4
ss_myspace 88.4 ± 1.2 87.3 ± 1.5 82.6 ± 1.8
ss_rw 79.8 ± 5.0 78.2 ± 5.6 78.0 ± 3.8
ss_twitter 82.6 ± 1.1 79.5 ± 2.6 75.8 ± 2.9
ss_youtube 86.1 ± 1.6 83.0 ± 3.4 78.6 ± 1.0
stanford_tw 86.9 ± 3.5 79.4 ± 6.9 78.5 ± 3.2
semeval_tw 85.8 ± 1.9 82.9 ± 1.5 77.9 ± 1.1
vader_amzn 78.0 ± 1.0 71.4 ± 2.2 68.5 ± 1.6
vader_movie 79.9 ± 0.6 68.8 ± 1.5 64.2 ± 1.0
vader_nyt 71.2 ± 2.5 67.5 ± 1.6 65.4 ± 2.1
vader_tw 97.2 ± 0.6 97.3 ± 0.6 95.0 ± 1.6
yelp_review 93.4 ± 1.1 88.8 ± 2.0 82.7 ± 0.9

Table 5.4: Average Micro-F1 with the proposed meta-features, a simplified ensemble of the
lexical-based outputs and best result of an individual lexical method.

5.2.2.3 Similarity Measure for the Proposed Meta-level Features

In this experiment, we investigate the role and the impact of the two used similarity func-
tions – cosine and BM25 – in our results. Table 5.5 shows that using BM25 to deal with
the similarity of short messages is in fact better than using the cosine similarity, since it is
consistently better or not statistically inferior to the cosine results. In all datasets, BM25
never performs worse than cosine, with small but statistically significant gains up to 2% in
six datasets. It is important to point out that the these statistically significant gains are present
only in datasets with relatively small density.

5.2.2.4 Analysis of the Proposed Groups of Meta Features

In this section we investigate the quality of each proposed group of meta-level features in
isolation as well as the complementarity with regard to other groups. Table 5.7 shows the
effectiveness of the SVM classifier trained with each group of the proposed meta-features in
isolation. As can be seen, all groups achieved relatively good results in isolation. In fact,
there are seven datasets for which there are no statistically significant differences among the
groups’ results. Moreover, there is no isolated group that is consistently among the best in
all datasets, and there are only two datasets in which one specific group is better than all
remaining ones.

TWEMOT achieves the worst performance among the four groups in eight datasets.
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dataset COSINE BM25
aisopos_tw 88.2 ± 6.5 90.0 ± 6.9
debate 79.0 ± 2.8 80.6 ± 2.6
narr_tw 87.5 ± 2.7 89.4 ± 2.1
pappas_ted 73.6 ± 5.7 74.8 ± 5.3
pang_movie 78.2 ± 1.1 78.1 ± 0.6
sanders_tw 86.4 ± 1.7 86.1 ± 3.3
ss_bbc 88.3 ± 4.7 87.4 ± 5.9
ss_digg 82.0 ± 2.5 81.0 ± 5.1
ss_myspace 88.7 ± 1.2 86.3 ± 4.3
ss_rw 80.4 ± 5.4 79.0 ± 3.5
ss_twitter 82.1 ± 1.3 83.0 ± 0.8
ss_youtube 85.1 ± 1.6 86.7 ± 1.3
stanford_tw 88.3 ± 6.5 87.5 ± 3.7
semeval_tw 85.8 ± 1.0 85.9 ± 2.4
vader_amzn 77.3 ± 1.3 78.2 ± 1.1
vader_movie 79.4 ± 1.1 79.5 ± 0.6
vader_nyt 71.6 ± 1.8 71.8 ± 1.7
vader_tw 96.9 ± 0.7 97.4 ± 0.6
yelp_review 92.6 ± 0.9 92.9 ± 0.9

Table 5.5: Average Micro-F1 of the proposed meta-features generated using only cosine or
BM25 as similarity scores.

This is expected, since TWEMOT exploits primarily the evidence from an external dataset
of tweets, labeled with emoticons. It is interesting to notice how TWEMOT and RAWLEX
have similar results in most datasets. Similarly, KNNLEX and RAWSIM also share some
close results. This may be due the fact that both TWEMOT and RAWLEX try to exploit ex-
ternal sources of information to classify messages, but KNNLEX and RAWSIM are focused
primarily on exploiting the neighborhood inside the training data.

In order to further analyze the effects of possibly noisy meta-features and their com-
plementary information, we performed an ablation analysis in which we removed one group
of meta-features at a time from the full set ALL, before training the SVM classifier. Table
5.8 shows the effects of such procedure.

The first observation is that the removal of the meta-feature group RAWLEX produced
significant losses with regard to the set with ALL meta-features in most datasets. This is
an evidence supporting the complementary discriminative evidence provided by the output
scores of lexical methods. This was somewhat expected, since these methods provide specific
additional information about lexical clues on the message.

The second most impacting group is RAWSIM, which provides the similarity infor-
mation between a message and their neighborhood. The removal of this group causes sta-
tistically significant losses in six datasets, demonstrating the complementary nature of pure
similarity scores. In three datasets, KNNLEX is capable of providing complementary infor-
mation by combining similarity scores with lexical evidence in a message’s neighborhood.
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dataset RAWLEX RAWSIM KNNLEX TWEMOT
aisopos_tw 85.2 ± 5.9 86.4 ± 2.4 83.9 ± 8.3 83.8 ± 5.7
debate 70.1 ± 1.2 79.0 ± 3.0 78.7 ± 2.0 69.0 ± 1.4
narr_tw 85.8 ± 2.4 82.2 ± 3.4 81.2 ± 2.8 85.3 ± 2.1
pappas_ted 72.6 ± 7.0 76.5 ± 2.5 65.5 ± 4.3 74.8 ± 6.0
pang_movie 68.4 ± 1.3 77.5 ± 0.7 77.1 ± 0.4 65.5 ± 1.2
sanders_tw 75.5 ± 2.2 82.7 ± 3.1 83.5 ± 3.5 74.6 ± 2.8
ss_bbc 88.6 ± 4.6 86.5 ± 6.1 86.7 ± 5.8 87.7 ± 5.9
ss_digg 80.5 ± 5.4 78.3 ± 2.4 74.9 ± 2.7 77.1 ± 1.8
ss_myspace 87.3 ± 1.5 85.6 ± 2.1 85.4 ± 3.5 87.2 ± 3.2
ss_rw 78.2 ± 5.6 72.6 ± 2.8 72.8 ± 2.4 71.4 ± 4.1
ss_twitter 79.5 ± 2.6 73.7 ± 2.7 72.6 ± 2.0 78.2 ± 2.6
ss_youtube 83.0 ± 3.4 78.8 ± 1.3 78.1 ± 2.0 81.2 ± 1.3
stanford_tw 79.4 ± 6.9 81.1 ± 3.9 83.3 ± 6.4 80.5 ± 8.0
semeval_tw 82.9 ± 1.5 78.0 ± 1.3 77.3 ± 2.0 80.8 ± 2.5
vader_amzn 71.4 ± 2.2 73.4 ± 1.3 75.0 ± 2.4 66.3 ± 1.1
vader_movie 68.8 ± 1.5 78.3 ± 0.6 78.6 ± 0.9 66.7 ± 1.3
vader_nyt 67.5 ± 1.6 66.9 ± 2.4 66.4 ± 2.8 66.0 ± 1.4
vader_tw 97.3 ± 0.6 84.7 ± 1.5 84.1 ± 1.2 89.1 ± 0.7
yelp_review 88.8 ± 2.0 91.1 ± 0.6 87.9 ± 0.9 79.8 ± 1.3

Table 5.6: Average Micro-F1 of each proposed group of meta-features in isolation.

Although it does not produce high improvements, since RAWLEX, RAWSIM and TWE-
MOT already provide some of this information, the statistical significant losses demonstrate
that there is additional information that can be extracted from this group in some datasets.

The removal of the TWEMOT group also produces significant losses in four datasets.
This is evidence towards the importance of the additional information exploited by the large
(though noisy) tweet dataset. As we can see, the removal of this group does not improve the
effectiveness in any dataset. This is surprising – TWEMOT is capable of capturing useful
classification evidence from a highly noisy dataset for some datasets, without harming the
remaining ones.

As we can see, the removal of any single group does have impacts on the effective-
ness in several datasets. This is evidence that the proposed meta-features are not inserting
significant complexity in the meta-feature space and can be included in the pool of available
evidence for the (hard) task of analyzing the sentiment of short messages.

5.2.2.5 Importance of Groups with using 2kr Factorial Design

The best way to evaluate the interactions among our four groups of meta-features is by do-
ing an analysis of all 2k possible combinations of groups for each dataset5. By replicating
the experiments with each possible combination (using 5-fold cross validation), we can also

5We consider the case without any group using a “random” classifier, which returns positive with a 50%
chance.
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dataset RAWLEX RAWSIM KNNLEX TWEMOT
aisopos_tw 85.2 ± 5.9 86.4 ± 2.4 83.9 ± 8.3 83.8 ± 5.7
debate 70.1 ± 1.2 79.0 ± 3.0 78.7 ± 2.0 69.0 ± 1.4
narr_tw 85.8 ± 2.4 82.2 ± 3.4 81.2 ± 2.8 85.3 ± 2.1
pappas_ted 72.6 ± 7.0 76.5 ± 2.5 65.5 ± 4.3 74.8 ± 6.0
pang_movie 68.4 ± 1.3 77.5 ± 0.7 77.1 ± 0.4 65.5 ± 1.2
sanders_tw 75.5 ± 2.2 82.7 ± 3.1 83.5 ± 3.5 74.6 ± 2.8
ss_bbc 88.6 ± 4.6 86.5 ± 6.1 86.7 ± 5.8 87.7 ± 5.9
ss_digg 80.5 ± 5.4 78.3 ± 2.4 74.9 ± 2.7 77.1 ± 1.8
ss_myspace 87.3 ± 1.5 85.6 ± 2.1 85.4 ± 3.5 87.2 ± 3.2
ss_rw 78.2 ± 5.6 72.6 ± 2.8 72.8 ± 2.4 71.4 ± 4.1
ss_twitter 79.5 ± 2.6 73.7 ± 2.7 72.6 ± 2.0 78.2 ± 2.6
ss_youtube 83.0 ± 3.4 78.8 ± 1.3 78.1 ± 2.0 81.2 ± 1.3
stanford_tw 79.4 ± 6.9 81.1 ± 3.9 83.3 ± 6.4 80.5 ± 8.0
semeval_tw 82.9 ± 1.5 78.0 ± 1.3 77.3 ± 2.0 80.8 ± 2.5
vader_amzn 71.4 ± 2.2 73.4 ± 1.3 75.0 ± 2.4 66.3 ± 1.1
vader_movie 68.8 ± 1.5 78.3 ± 0.6 78.6 ± 0.9 66.7 ± 1.3
vader_nyt 67.5 ± 1.6 66.9 ± 2.4 66.4 ± 2.8 66.0 ± 1.4
vader_tw 97.3 ± 0.6 84.7 ± 1.5 84.1 ± 1.2 89.1 ± 0.7
yelp_review 88.8 ± 2.0 91.1 ± 0.6 87.9 ± 0.9 79.8 ± 1.3

Table 5.7: Average Micro-F1 of each proposed group of meta-features in isolation.

dataset ALL no RAWLEX no RAWSIM no KNNLEX no TWEMOT
aisopos_tw 89.2 ± 5.4 86.4 ± 6.3 86.0 ± 6.4 ↓ 88.9 ± 6.7 90.7 ± 3.6
debate 80.0 ± 2.9 78.8 ± 2.4 ↓ 79.9 ± 2.9 79.5 ± 2.7 80.2 ± 2.9
narr_tw 88.8 ± 2.0 86.1 ± 1.3 ↓ 88.8 ± 2.4 89.1 ± 2.2 88.0 ± 1.5
pappas_ted 72.8 ± 3.0 72.5 ± 1.6 76.6 ± 5.5 69.6 ± 6.8 72.9 ± 3.3
pang_movie 78.6 ± 1.0 78.0 ± 1.0 ↓ 78.2 ± 0.8 78.3 ± 0.9 78.5 ± 1.0
sanders_tw 86.5 ± 2.4 84.7 ± 2.4 ↓ 85.8 ± 2.3 ↓ 85.6 ± 2.6 86.2 ± 3.1
ss_bbc 88.6 ± 3.8 88.3 ± 5.3 87.9 ± 4.1 88.6 ± 4.7 86.7 ± 4.7 ↓
ss_digg 82.1 ± 2.6 80.1 ± 1.3 ↓ 81.5 ± 2.8 81.8 ± 3.0 81.6 ± 3.3
ss_myspace 88.4 ± 1.2 86.2 ± 1.4 ↓ 88.7 ± 1.5 89.0 ± 1.5 87.9 ± 2.7
ss_rw 79.8 ± 5.0 74.8 ± 5.1 ↓ 79.7 ± 5.6 80.2 ± 4.8 80.4 ± 4.4
ss_twitter 82.6 ± 1.1 77.8 ± 3.1 ↓ 83.0 ± 1.5 82.7 ± 1.0 80.9 ± 2.2 ↓
ss_youtube 86.1 ± 1.6 83.0 ± 0.9 ↓ 85.8 ± 2.0 ↓ 86.4 ± 1.8 84.7 ± 1.9 ↓
stanford_tw 86.9 ± 3.5 83.9 ± 5.6 86.3 ± 4.0 86.1 ± 3.0 ↓ 84.7 ± 5.1 ↓
semeval_tw 85.8 ± 1.9 82.0 ± 1.2 ↓ 85.8 ± 1.7 85.6 ± 1.7 85.3 ± 0.5
vader_amzn 78.0 ± 1.0 75.3 ± 2.0 ↓ 76.9 ± 1.4 ↓ 77.3 ± 1.3 77.5 ± 2.8
vader_movie 79.9 ± 0.6 79.3 ± 0.9 ↓ 79.1 ± 1.1 ↓ 79.1 ± 1.0 ↓ 79.8 ± 0.6
vader_nyt 71.2 ± 2.5 69.5 ± 1.3 ↓ 71.4 ± 2.0 71.2 ± 2.1 70.9 ± 2.6
vader_tw 97.2 ± 0.6 89.6 ± 1.3 ↓ 97.2 ± 0.7 97.2 ± 0.7 97.3 ± 0.5
yelp_review 93.4 ± 1.1 91.1 ± 0.7 ↓ 93.0 ± 1.1 ↓ 92.3 ± 1.0 ↓ 93.0 ± 1.1

Table 5.8: Average Micro-F1 removing one group of meta-features from the full set. ↓
indicates statistically significant losses due to the removal of a meta-feature group from the
full set ALL.

evaluate the effects of uncontrollable external factors. We follow the standard quantitative
approach called 2kr factorial design (Jain, 1991) to analyze the effects of the individual
groups of meta-features, as well as the effectiveness improvements produced by their inter-
actions.
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The first step to perform a 2kr factorial design is to define the binary factors that may
affect a response variable (e.g., Micro-F1 score). In our case, each factor corresponds to the
presence or absence of one group of meta-features. We name the presence of each group of
features as follows:

• A – Presence of KNNLEX
• B – Presence of RAWSIM
• C – Presence of TWEMOT
• D – Presence of RAWLEX

In order to summarize the analysis of the nineteen datasets with the sixteen possible
combinations of our four factors, we clustered our datasets into two groups, according to the
importance and interaction of meta-features in each dataset. We hope to keep similar datasets
in the same group in order to summarize the results of the group. We use a simple k-means
algorithm to group close datasets according to their individual factorial design results. The
found groups are:

• Group 1 datasets: debate, pang_movie, sanders_tw, vader_amzn, vader_movie and
yelp_review.

• Group 2 datasets: aisopos_tw, narr_tw, pappas_ted, ss_bbc, ss_digg, ss_myspace,
ss_rw, ss_twitter, ss_you-tube, stanford_tw, semeval_tw, vader_nyt and vader_tw.

For each dataset, we compute the percentage of variation in the results that can be
explained by each individual group of meta-features and by the interaction between groups
of meta-features considering each possible combination. We summarize the effects of each
combination6 on different datasets by showing its average. Table 5.9 shows this summariza-
tion for the two groups of datasets. In addition to the mean value, we also show the lowest
and the highest value among the datasets in each group.

As we can see, the variation on results in the datasets of group 1 can mostly be ex-
plained by the presence of A (KNNLEX) and B (RAWSIM) in isolation. The inclusion of
each one of these groups account for about 20% of all the variation in the observed results.
The interaction between A:B is the third most important observed factor. In fact, the effects
of A, B and A:B account for 60% of all the Micro-F1 variation. The fourth most impor-
tant factor is the inclusion of D, which accounts for about 10% of the variation, showing
the importance of the RAWLEX meta-features in isolation. The remaining effects, though
small, account together for about 30% of the total variation in the results, which highlights
the complementarity among the proposed groups of meta-features.

6The 95% confidence interval on the effects of all combinations of the tested datasets are always inferior
to 1%.
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Factor/
Interaction

Group 1
datasets

Group 2
datasets

Mean Range Mean Range
A 19.5 [14.4, 24.3] 6.1 [3.8, 10.1]
B 19.8 [10.9, 26.3] 5.7 [1.1, 9.3]
C 3.3 [2.2, 5.5] 9.5 [3.2, 16.2]
D 9.6 [4.6, 17.2] 20.7 [7.3, 39.5]

A:B 17.3 [10.3, 22.4] 5.6 [3.6, 9.1]
A:C 2.6 [1.6, 3.8] 4.8 [2.8, 7.4]
B:C 2.6 [1.8, 4.2] 4.0 [2.2, 6.2]
A:D 3.9 [2.4, 8.1] 4.5 [3.2, 8.0]
B:D 3.8 [2.8, 6.3] 3.6 [1.6, 5.3]
C:D 2.2 [1.4, 3.2] 6.8 [3.8, 9.4]

A:B:C 2.9 [1.9, 4.2] 4.6 [2.6, 10.0]
A:B:D 3.9 [2.6, 6.3] 3.8 [2.4, 5.6]
A:C:D 1.9 [1.4, 3.6] 4.0 [1.4, 6.0]
B:C:D 1.8 [1.2, 2.8] 3.3 [0.4, 6.2]

A:B:C:D 1.9 [1.3, 2.9] 3.0 [0.6, 5.6]
Residuals 2.8 [0.7, 5.7] 9.9 [0.6, 30.4]

Table 5.9: Explained percentage of result variation by individual meta-feature groups and
interactions between them.

Regarding the datasets in group 2, the presence of D (RAW-LEX) in isolation accounts
for 20% of all the Micro-F1 variations in the experiments. The presence of C (TWEMOT) in
isolation and the interaction C:D are the most important effects to explain the results. This
means that the use of additional information from the lexical-based approaches and from
the large tweet corpus are the most important factors for these datasets. It is important to
notice that A, B and most of the interactions have a considerable participation to explain
the results. The residuals (inexplicable fraction of the variation in the results) are quite high
(about 10%) on the second group. This may be due the fact that most of the datasets on
the second group are small, which leads to higher variability when classifying their samples.
Since they are more likely to suffer from overfitting due to shortage of training information,
their dependence on external data (provided by RAWLEX and TWEMOT) is expected.





Chapter 6

GPU-based kNN Implementation

Since the proposed meta-features rely on the computation of distances between documents,
unless this procedure is efficiently implemented, their use may have limited applicability.
Particularly, most distance-based meta-features rely on finding the k nearest neighbors of
a document using some distance measure, which can easily become prohibitive for large
datasets in highly dimensional spaces. In this Chapter, we describe our proposal to make use
of low cost commodity GPUs, providing a scalable solution to the kNN problem for text data.
We start providing a brief introduction to parallelism in GPU in Section 6.1, followed by the
description of our GPU-based implementation, specially designed for highly dimensional,
sparse data in Section 6.2.

6.1 Parallelism and the GPU

In the last few years, the focus on processor architectures has moved from increasing clock
rate to increasing parallelism. Rather than increasing the speed of its individual processor
cores, traditional CPUs are now virtually all multicore processors. In a similar fashion,
manycore architectures like GPUs have concentrated on using simpler and slower cores,
but in much larger counts, in the order of thousands of cores. The general perception is
that processors are not getting faster, but instead are getting wider, with an ever increasing
number of cores. This has forced a renewed interest in parallelism as the only way to increase
performance.

The high computational power and affordability of GPUs has led to a growing number
of researchers making use of GPUs to handle massive amounts of data. While multicore
CPUs are optimized for single-threaded performance, GPUs are optimized for throughput
and a massive multi-threaded parallelism. As a result, the GPUs deliver much better energy
efficiency and achieves higher peak performance for throughput workloads. However, GPUs

89
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have a different architecture and memory organization and to fully exploit its capabilities
it is necessary considerable parallelism (tens of thousands of threads) and an adequate use
of its hardware resources. This imposes some constraints in terms of designing appropriate
algorithms, requiring the design of novel solutions and new implementation approaches.

A GPU consists of a M-SIMD machine, that is, a Multiple SIMD (Single Instruction
Multiple Data) processor. Each SIMD unit is known as a streaming multiprocessor (SM)
and contains streaming processor (SP) cores. At any given clock cycle, each SP executes the
same instruction, but operates on different data. The GPU supports thousands of light-weight
concurrent threads and, unlike the CPU threads, the overhead of creation and switching is
negligible. The threads on each SM are organized into thread groups that share computation
resources such as registers. A thread group is divided into multiple schedule units, called
warps, that are dynamically scheduled on the SM. Because of the SIMD nature of the SP’s
execution units, if threads in a schedule unit have to perform different operations, such as
going through branches, these operations will be executed serially as opposed to in parallel.
Additionally, if a thread stalls on a memory operation, the entire warp will be stalled until
the memory access is done. In this case the SM selects another ready warp and switches
to that one. The GPU global memory is typically measured in gigabytes of capacity. It is
an off-chip memory and has both a high bandwidth and a high access latency. To hide the
high latency of this memory, it is important to have more threads than the number of SPs
and to have threads in a warp accessing consecutive memory addresses that can be easily
coalesced. The GPU also provides a fast on-chip shared memory which is accessible by all
SPs of a SM. The size of this memory is small but it has a low latency and it can be used as
a software-controlled cache. Moving data from the CPU to the GPU and vice versa is done
through a PCIExpress connection.

The GPU programming model requires that part of the application runs on the CPU
while the computationally-intensive part is accelerated by the GPU. The programmer has to
modify his application to take the compute-intensive kernels and map them to the GPU. A
GPU program exposes parallelism through a data-parallel SPMD (Single Program Multiple
Data) kernel function. During implementation, the programmer can configure the number
of threads to be used. Threads execute data parallel computations of the kernel and are
organized in groups called thread blocks, which in turn are organized into a grid structure.
When a kernel is launched, the blocks within a grid are distributed on idle SMs. Threads
of a block are divided into warps, the schedule unit used by the SMs, leaving for the GPU
to decide in which order and when to execute each warp. Threads that belong to different
blocks cannot communicate explicitly and have to rely on the global memory to share their
results. Threads within a thread block are executed by the SPs of a single SM and can
communicate through the SM shared memory. Furthermore, each thread inside a block has
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its own registers and private local memory and uses a global thread block index, and a local
thread index within a thread block, to uniquely identify its data.

6.2 Proposed Implementation

The proposed parallel implementation, called GPU-based Textual kNN (GT-kNN), greatly
improves the k nearest neighbors search in textual datasets. The solution efficiently imple-
ments an inverted index in the GPU, by using a parallel counting operation followed by a
parallel prefix-sum calculation, taking advantage of Zipf’s law, which states that in a textual
corpus, few terms are common, while many of them are rare. This makes the inverted index
a good choice for saving space and avoiding unnecessary calculations. At query time, this
inverted index is used to quickly find the documents sharing terms with the query document.
This is made by constructing a query index which is used for a load balancing strategy to
evenly distribute the distance calculations among the GPU’s threads. Finally, the k near-
est neighbors are determined through the use of a truncated bitonic sort to avoid sorting all
computed distances. Next we present a detailed description of these steps.

6.2.1 Creating the Inverted Index

The inverted index is created in the GPU memory, assuming the training dataset fits in mem-
ory and is static1. Let V be the vocabulary of the training dataset, that is the set of distinct
terms of the training set. The input data is the set E of distinct term-documents (t,d), pairs
occurring in the original training dataset, with t ∈ V and d ∈ Dtrain. Each pair (t,d) ∈ E is
initially associated with a term frequency t f , which is the number of times the term t occurs
in the document d. An array of size |E | is used to store the inverted index. Once the set E

has been moved to the GPU memory, each pair in it is examined in parallel, so that each time
a term is visited the number of documents where it appears (document frequency - d f ) is
incremented and stored in the array d f of size |V |. A parallel prefix-sum is executed, using
the CUDPP library (Sengupta et al., 2011), on the d f array by mapping each element to the
sum of all terms before it and storing the results in the index array. Thus, each element of
the index array points to the position of the corresponding first element in the invertedIndex,
where all (t,d) pairs will be stored ordered by term. Finally, the pairs (t,d) are processed in
parallel and the frequency-inverse document frequency t f -id f (t,d) for each pair is computed
and included together with the documents identification in the invertedIndex array, using the
pointers provided by the index array. Also during this parallel processing, the value of the

1If the training data is larger than the GPU memory, we can split the data into parts, execute our strategy
on each subset and then perform a merge-sort on the kNN results obtained for each part.
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norm for each training document, which is used in the calculus of the cosine or Euclidean
distance, is computed and stored in the norms array. Algorithm 1 depicts the inverted index
creation process.

Algorithm 1: CreateInvetedIndex(E)

input : term-document pairs in E[0 . . |E |−1 ].
output: d f , index, norms, invertedIndex.

1 array of integers d f [0 . . |V |−1 ] // document-frequency array, initialized with
zeros.

2 array of integers index[0 . . |V |−1 ].
3 array of floats norms[0 . . |Dtrain−1| ].
4 invertedIndex[0 . . |E |−1 ] // the inverted index

5 Count the occurrences of each term in parallel on the input and accumulates in d f .
6 Perform an exclusive parallel prefix sum on d f and stores the result in index.
7 Access in parallel the pairs in E, with each processor performing the following tasks:
8 begin
9 Compute the tf-idf value of each pair.

10 Accumulate the square of the tf-idf value of a pair (t,d) in norms[d].
11 Store in invertedIndex the entries corresponding to pairs in E, according to index.
12 end
13 Compute in parallel the square root of the values in array norms.
14 Return the arrays: count, index, norms and invertedIndex.

Figure 6.1 illustrates each step of the inverted index creation for a five documents
collection where only five terms are used. If we take t2 as an example, the index array
indicates that its inverted document list (d2,d4) starts at position 3 of the invertedindex array
and finishes at position 4 (5 minus 1).
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Figure 6.1: Creating the inverted index
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6.2.2 Calculating the distances

Once the inverted index has been created, it is now possible to calculate the distances between
a given query document q and the documents in Dtrain. The distances computation can take
advantage of the inverted index model, because only the distances between query q and
those documents in Dtrain that have terms in common with q have to be computed. These
documents correspond to the elements of the invertedIndex pointed to by the entries of the
index array corresponding to the terms occurring in the query q.

The obvious solution to compute the distances is to distribute the terms of query q

evenly among the processors and let each processor p access the inverted lists corresponding
to terms allocated to it. However, the distribution of terms in documents of text collections
is known to follow approximately the Zipf Law. This means that few terms occur in large
amount of documents and most of terms occur in only few documents. Consequently, the
sizes of the inverted list also vary according to te Zipf Law, thus distributing the work load
according to the terms of q could cause a great imbalance of the work among the processors.

In this dissertation besides using an inverted index to boost the computation of the
distances, we also propose a load balance method to distribute the documents evenly among
the processors so that each processor computes approximately the same number of distances.
In order to facilitate the explanation of this method, suppose that we concatenate all the
inverted lists corresponding to terms in q in a logical vector Eq = [0 . . |Eq|−1 ], where |Eq|
is the sum of the sizes of all inverted lists of terms in q. Considering the example in Fig. 6.1
and supposing that q is composed by the terms t1, t3 and t4, the logical vector Eq would be
formed by the following pairs of the inverted index: Eq = [(t1,d1), (t1,d3), (t1,d5), (t3,d1),

(t3,d5), (t4,d1)] and |Eq| equals to six.

Given a set of processors P = {p0, · · · p|P|−1}, the load balance method should
allocate elements of Eq in intervals of approximately the same size, that is, each pro-
cessor pi ∈P should process elements of Eq in the interval [id |Eq|

|P|e,min((i + 1)d |Eq|
|P|e −

1, |Eq| − 1)]. Consider the example stated above, and suppose that the set of processors is
P = {p0, p1, p2}. Thus elements of Eq with indices in the interval [0,1] would be assigned
to p0, indices in [2,3] would be processed by p1 and indices in [4,5] would be processed by
p2.

Since each processor knows the interval of the indices of the logical vector Eq it has to
process, all that is necessary to execute the load balancing is a mapping of the logical indices
of Eq to the appropriate indices in the inverted index (array invertedIndex). In the case of the
example associated to Fig. 6.1, the following mappings between logical indices and indices
of the invertedIndex array must be performed: 0→ 0, 1→ 1, 2→ 2, 3→ 5, 4→ 6 and 5→ 7.
Each processor executes the mapping for the indices in the interval corresponding to it and
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finds the corresponding elements in the invertedIndex array for which it has to compute the
distances to the query.

Let Vq ⊂ V be the vocabulary of the query document d. The mapping proposed in this
work uses three auxiliary arrays: d fq[0 . . |Vq|−1 ], startq[0 . . |Vq|−1 ]] and indexq[0 . . |Vq|−
1 ]. The arrays d fq and startq are obtained together by copying in parallel d f [ti] to d fq[ti] and
index[ti] to startq[ti], respectively, for each term ti in the query q. Once the d fq is obtained,
an inclusive parallel prefix sum on d fq is performed and the results are stored in indexq.

Algorithm 2: DistanceCalculation(invertedIndex,q)

input : invertedIndex, d f , index, query q[0 . . |Vq|−1 ].
output: distance array dist[0 . . |Dtrain|−1 ] initialized according to the distance function used.

1 array of integers d fq[0 . . |Vq|−1 ] initialized with zeros
2 array of integers indexq[0 . . |Vq|−1 ]
3 array of integers startq[0 . . |Vq|−1 ]

4 for each term ti ∈ q, in parallel do
5 d fq[i] = d f [ti];
6 startq[i] = index[ti];
7 end
8 Perform an inclusive parallel prefix sum on d fq and stores the results in indexq
9 foreach processor pi ∈P do

10 for x ∈ [id |Eq|
|P|e,min((i+1)d |Eq|

|P|e−1, |Eq|−1)] do
// Map position x to the correct position indInvPos of the invertedIndex

11 pos = min(i : indexq[i]> x);
12 if pos = 0 then
13 p = 0; o f f set = x;
14 else
15 p = indexq[pos−1]; o f f set = x− p;
16 end
17 indInvPos = startq[pos]+o f f set
18 use q[pos] and invertedIndex[indInvPos] in the partial computation of the distance between q and

the document associated to invertedIndex[indInvPos]
19 end
20 end

Algorithm 2 shows the pseudo-code for the parallel computation of the distances be-
tween documents in the training set and the query document. In lines 4-7 the arrays d fq and
startq are obtained. In line 8 the array indexq is obtained by applying a parallel prefix sum
on array d fq. Next, each processor executes a mapping of each position x in the interval of
indices of Eq associated to it to the appropriate position of the invertedIndex. This mapping
is described in lines 10-17 of the algorithm. Then, the mapped entries of the inverted index
are used to compute the distances between each document associated with these entries and
the query.

Figure 6.2 illustrates each step of Algorithm 2 for a query containing three terms, t1, t3
and t4, using the same collection presented in the example of Figure 6.1. Initially, the arrays
d fq and startq are obtained by copying in parallel entries respectively from arrays d f and
index, corresponding to the three query terms. Next a parallel prefix sum is applied to array
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Figure 6.2: Example of the execution of Algorithm 2 for a query with three terms.

d fq and the indexq array is obtained. Finally the Figure shows the mapping of each position
of the logical array Eq into the corresponding positions of the invertedIndex array.

6.2.3 Finding the k Nearest Neighbors

With the distances computed, it is necessary to obtain the k closest documents. This can be
accomplished by making use of a partial sorting algorithm on the array containing the dis-
tances, which is of size |Dtrain|. For this, we implemented a parallel version of the Truncated
Bitonic Sort (TBiS), which was shown to be superior to other partial sorting algorithms in
this context (Sismanis et al., 2012). One advantage of the parallel TBiS is data independence.
At each step, the algorithm distributes elements equally among the GPU’s threads avoiding
synchronizations as well as memory access conflicts. Although the partial bitonic sort is
O(|Dtrain| log2 k), worse than the best known algorithm which is O(|Dtrain| logk), for a small
k the ratio of logk becomes almost negligible. In the case of ADC using kNN, the value
of k is usually not greater than 50. Our parallel TBiS implementation also uses a reduction
strategy, allowing each GPU block to act independently from each other on a partition of ar-
ray containing the computed distances. Results are then merged in the CPU using a priority
queue.
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6.3 Experimental Results

In this section, we compare the experimental results of our implementation with literature
baselines. Particularly, we compare the computation time to generate meta-features us-
ing three different algorithms: (1) GTkNN, our GPU-based implementation of kNN; (2)
BF-CUDA, a brute force 2 kNN implementation using CUDA proposed by Garcia et al.
(2008); and (3) ANN, a C++ library that supports exact and approximate nearest neighbor
searching3. We use the ANN exact version, since it was used in the previous meta-feature
works (Gopal and Yang, 2010; Yang and Gopal, 2012). We chose BF-CUDA because it is
the main representative of the GPU-based brute force approach. However, the other imple-
mentations (Kuang and Zhao, 2009; Sismanis et al., 2012) (some not available for download)
also work with a complete distance matrix and would produce similar results.

All experiments were run on a Quad-Core Intel R© Xeon R© E5620, running at 2.4GHz,
with 32Gb RAM. The GPU experiments were run on a NVIDIA Tesla K40, with 12Gb
RAM. In order to consider the costs of all data transfers in our efficiency experiments, we
report the wall times on a dedicated machine so as to rule out external factors, like high load
caused by other processes.

6.3.1 Computational Time to Find Neighbors (Q7)

Here, we evaluate the potential efficiency benefits of using the GTkNN GPU implementation
to find the neighborhood of documents, which is pre-requisite to enable the use of distance-
based meta-features.

Table 6.1 shows the average time to find the neighborhood for a batch of test examples
using ours and the baseline’s kNN implementations. Since we use a 5-fold cross validation,
we measure the time to find the neighborhood for all the examples in the batch of examples
in each test fold.

As can be seen in Table 6.1, the search for neighbors using GTkNN shows significant
speedups in relation to the other kNN implementations. In particular, the speedups for the
small datasets range from 4.8 to 141.3 in relation to the ANN implementation, used in previ-
ous works to generate meta-features. This high speedup was somewhat expected, since the
ANN do not explore parallelism to compute the distances. However, even when compared
to the parallel BF-CUDA implementation (Garcia et al., 2008), GTkNN was able to achieve
speedups ranging from 3.6 to 15.7. This was possible mainly because BF-CUDA does not

2A brute force kNN method computes the distance function between a query and each one of the training
documents.

3http://www.cs.umd.edu/~mount/ANN/

http://www.cs.umd.edu/~mount/ANN/
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optimize the distance calculations to deal with the low density of terms present in textual
documents nor tries to balance the load among threads.

GTkNN produced the best speedups in 4UNI, 20NG and ACM, but it obtained a lower
speedup in REUT90. This may be due to the fact that REUT90 has a large number of classes
and only a few documents in each class. Since the meta-features are generated one class at
a time, we could not explore the parallelism in its full potential. For example, if there are
only 10 training documents in a class, we can only perform at most 10 simultaneous distance
calculations, leaving most CUDA cores idle.

Dataset Execution Time (s) Speedup
GTkNN BF-CUDA ANN BF-CUDA ANN

4UNI 40±1 259 ± 46 1590 ± 29 6.4 39.6
20NG 187±4 2004 ± 17 10947 ± 1323 10.7 68.7
ACM 112±3 1760 ± 91 13589 ± 1539 15.7 141.3
REUT90 625±12 2242 ± 5 3024 ± 303 3.6 4.8
MED 4637 ± 43 * * * *

Table 6.1: Average time in seconds (and 95% confidence interval) to find the neighborhood of documents using different
kNN strategies. GTkNN is significantly better than others and makes the generation of meta-features possible to MED.

The effectiveness of the proposed load balancing strategy was evaluated by comparing
it to the more straightforward unbalanced solution that assigns each term of a query to a
thread running on the GPU. The problem with this simple strategy is that the threads will
do uneven work since the lists associated with the terms vary considerably in size. In con-
trast, our strategy associates each thread with the same number of entries (for all terms of the
given query) in the inverted index. Since the load balancing is applied to the distance cal-
culation operation, we measure the time to perform this operation with and without the load
balancing. Table 6.2 summarizes the times to calculate the distances when working with one
query considering our solution (with load balancing and the simple unbalanced solution). As
expected, the speedups obtained with load balancing demonstrates the effectiveness of our
approach, since the performance gains vary from 105 to 303 times the version without load
balancing.

DATASET With Load Balancing Without Load Balancing
4UNI 0.03 4.71
20NG 0.05 12.65
ACM 0.01 1.05
REUT90 0.02 6.87
MED 0.08 24.27

Table 6.2: Average time (in miliseconds) to calculate distances for each query with and
without the proposed load balancing.





Chapter 7

Conclusions and Future Work

7.1 Conclusions

This is the first dissertation that thoroughly investigated the impact of different distance-
based meta-feature groups for text classification. In this dissertation, we not only proposed a
comprehensive set of new meta-features, but also performed a thorough analysis of different
vector spaces drawn from meta-features. Specifically, we provided empirical evidence about
the potential benefits of combining groups of meta-features that contain complementary dis-
criminative information. We also investigated potential issues due to the use of more com-
plex and highly dimensional meta-feature spaces. Furthermore, we enriched meta-features
with labeling information, adapted meta-features for the sentiment analysis context and par-
allelized the neighborhood search for text documents, which is crucial for the practical ap-
plication of meta-features. Before delving into the planned future work, in the following
sections we outline each specific contribution in more details.

7.1.1 Meta-Features: Proposition, Evaluation and Selection

Q1 – How effective is the combination of the meta-feature groups proposed in different

works?

We showed that distance-based meta-features from different works present comple-
mentary information, improving the results of Gopal and Yang (2010), Pang et al. (2015)
and Canuto et al. (2014) by up to 9%, 40% and 4%, respectively. This was an important re-
sult towards demonstrating their potential benefits. However, we also showed the challenges
of combining meta-features, since their concomitant presence may incur on overfitting of
some classification methods.

99
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Q2 – How effective and efficient are different strategies for feature selection on the meta-

feature space?

In order to mitigate the potentially harmful effects of the combination of some meta-
feature groups, we evaluated diverse feature selection strategies on the meta-feature space.
The proposed meta-feature selection strategy SPEA2SVM was able to considerably reduce
the number of meta-features by up to 89%, while maintaining or even improving the ef-
fectiveness by removing noise. This was not possible using any other of our baselines in
the evaluated datasets. In fact, SPEA2SVM effectiveness results were equivalent to the re-
sults obtained by SingleGA and the gold standard Brute-force, while being significantly
faster and more feature-efficient than both. The second proposed strategy SPEA2Fast also
achieved results close to SPEA2SVM, while spending only a small fraction (up to 1

30 ) of the
SPEA2SVM execution time.

Q3 – How effective are different classification strategies on distance-based meta-features

considering meta-feature selection?

The SPEA2Fast approach also provided means to efficiently evaluate high-quality
combinations of meta-features on different classification methods, providing substantial ef-
fectiveness gains (up to 50%) on classifications approaches that are very sensitive to complex
meta-feature groups. These results add valuable evidence to our evaluation of meta-features
on multiple classification approaches.

Q4 –Which combinations of meta-feature groups provide the core information to classify

documents?

A comprehensive analysis of the core combinations of meta-feature groups considering
the specificities of each dataset was also important to reveal details about which kind of
information induced by meta-features can effectively provide discriminative patterns. We
found important clues that explain why in most datasets we can use only a few meta-feature
groups (up to seven 1 of twelve) to achieve the same or even better results in comparison
to the ones achieved by the set of of all evaluated meta-feature groups. We also discovered
that most datasets achieve reasonable results using only a specific combination of two meta-
feature groups, and most datasets can achieve effectiveness very close to their best results
with a specific combination of five meta-feature groups. These conclusions are important to
provide a starting point for the exploitation of new meta-features in other classification tasks
or related problems.

1cos_cnn, cos_cent, l1_knn, l2_knn, l2_cent and sum_cent.
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7.1.2 Enriching, Adapting and Parallelizing Meta-Feature
Generation

Q5 – Is it possible to improve the effectiveness of distance-based meta-features by enriching

distance relationships with label information?

Our new SYN meta-features based on SDRs aim at explicitly capturing the relation-
ships between document distances and label information. The EXT meta-features explore
potential relationships that do exist between meta-features and the original words used
to build them. Finally, the ERR meta-features aim at identifying hard-to-classify docu-
ments, complementing other meta-feature representations and allowing classifiers to adjust
the learning process, as this information is now part of the document representation itself.
Through a detailed and carefully designed set of experiments, we showed that our proposal
can achieve significant gains of more than 12% against the best combination of meta-features
found with SPEA2SVM in all considered datasets. Our group and factorial analyses demon-
strated that the newly proposed meta-features groups did provide complementary informa-
tion to each other, producing their best results when used altogether.

Q6 – How to exploit meta-features to provide effective results in the sentiment analysis

context?

We also extended the use of meta-features to the sentiment analysis context, especially
for the case of short messages. In order to exploit this context, we proposed new meta-
features that exploit BM25 ? to use short messages as queries and made use of automatically
labeled external training data as well as weighted sentiment polarities of the neighborhood
(obtained from lexicon-based methods) to infer the message’s polarity. Our controlled ex-
periments with these new meta features on nineteen benchmark datasets showed significant
effectiveness improvements in most datasets over previous meta-features and the original
bag-of-words representation. This provides evidence towards the benefits of carefully de-
signing meta-features considering the specific characteristics of the task at hand.

Q7 – How to exploit the modern manycore GPU architectures to reduce the computational

time to find the neighborhood of documents in text data?

Despite the important improvements in classification effectiveness, most meta-features
are based on intensive use and direct application of the kNN algorithm to exploit local infor-
mation regarding the neighborhood of training documents. However, intensive use of kNN,
combined with the high dimensionality and sparsity of textual data, make this a challenging
computational task for meta-feature generation. We have presented a very fast and scalable
GPU-based approach for computing meta-feature document classification. In fact, different
from other GPU-based kNN implementations, we avoided comparing the query document
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with all training documents. Instead we built an inverted index in the GPU that is used to
quickly find the documents sharing terms with the query document. Although the index does
not allow a regular and predictable access to the data, we used a load balancing strategy to
evenly distributed the computation among thousand threads in the GPU. After calculating
the distances, we again used a massive number of threads to select the k smallest distance by
implementing a truncated bitonic sort in the GPU followed by a merge operation in the CPU.

Our results showed very significant gains in speedup when compared to our baselines.
In fact, running our baselines in our largest dataset demonstrated to be unfeasible, stressing
the value of our efficiency contribution. And even in scenarios where the dataset is too big for
our implementation (a single GPU), our approach could easily be extended by splitting the
dataset, executing the kNN in each part, and merging the partial results. Thus, meta-feature
based classification can be applied in huge collections of documents, taking a reasonable
time and without requiring expensive hardware.

7.2 Future Work

This dissertation paved the way for numerous directions of future research based on the
exploitation of meta-features for machine learning. In general, the application of machine
learning on domains not discussed in this work can be focused on the exploitation of mean-
ingful distances between documents instead of new classification algorithms capable of cop-
ing with the idiosyncrasies of their original feature spaces.

Particularly, one potential new venue of research consists in adapting our GPU im-
plementation to efficiently compute other distance measures. Further improvements on ef-
ficiency can be investigated with distributed and multi-gpu implementations for exact and
approximate nearest neighbor search algorithms. Moreover, parallel implementations can
also improve the efficiency for generating and predicting our proposed SDRs.

In addition to the exploitation of SDRs, other strategies can be used to explicitly cap-
ture the relationships between document distances and label information. Particularly, future
investigations to improve the underlying distance measures with dataset-oriented distance

learning techniques are very promising. A possible scenario is the use of genetic program-
ming for the evolution of similarity measures specially designed for the characteristics of
specific textual datasets. Although there is some efforts on automatically finding good simi-
larity measures (Agapitos, 2014), it is not clear how to adapt them to the high dimensionality
and sparsity of textual data. In the same vein, future research on meta-features can ben-
efit from similarity learning strategies based on the vast literature on Mahalanobis metric
learning (Globerson and Roweis, 2005; Weinberger and Saul, 2009) or metrics derived from
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potentially non-linear relationships in the data (Kedem et al., 2012).

Despite the potential of improving meta-features, scalability and overfitting issues
should be taken into account by future research on meta-features that exploit similarity learn-
ing. Particularly, the efficiency of the classification using meta-features relies on the fast
computation of learned distances, which poses new challenges for new parallel implemen-
tations. Moreover, the use of use labeled training data to learn new distances can bias the
distance distribution to labeled documents, which might impair the generalization power of
the classifiers.

Instead of exploiting only the training data, meta-features might enable the exploitation
of information from huge external corpus such as the web pages categorized into topics
provided by the open directory initiative DMOZ2. In this scenario, it is possible to build
meta-features that exploit the similarity between a document and the set of documents from
each DMOZ category, filtering out distant ones. As a result, the high similarity between an
arbitrary document and a (well represented) DMOZ category can provide additional evidence
that relates a document to a topic. This new information might be relevant for classification,
specially in the scenario of limited training data.

Besides document distances, we could also exploit similarities between features to
generate new meta-features. Specifically, we can adapt our proposed meta-features, which
are based on document distances, to the fine-grained task of providing meta-features that rep-
resent individual words. The pre-required similarity between words can be computed using
a wide range of measures, such as co-occurrence of words in documents (Figueiredo et al.,
2011), mutual information, semantic (Kusner et al., 2015), lexical and phonetic similarities.
It is worth noting that this strategy can provide a novel vectorial representation of words
(i.e., a new kind of word embedding) adaptable to the classification task, since the proposed
n-dimensional meta-features would rely on the distribution of distances and categories re-
lated to the neighbor words. Giving our vectorial representation of words, it is possible to
use recent statistical techniques that combine the proposed word embeddings in a compact
document representation (Lev et al., 2015).

We could also build meta-features based on alternative documents representations,
such as the those based on Word embeddings (Kusner et al., 2015), masked-based represen-
tations as used in BERT (Devlin et al., 2019) and clusters of similar words (Cluwords (Viegas
et al., 2019)), which in theory capture semantic information based on local co-occurrences
of words in sentences. Meta-features generated with different document representations (and
adequate distances for such spaces) might complement each other, consequently providing a
more informative feature space for classification methods.

2http://dmoz.org
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Finally, it is possible to combine all above suggestions into a single framework. How-
ever, as we have seen, noise and overfitting may still be issues we have to deal with. In
this scenario, our meta-feature selection strategies can evaluate the most promising combi-
nations and provide the adequate combination of meta-features that complement each other
considering the specificities of each dataset. There is room for further improvements in our
feature selection methods such as the use of statistical significance tests to deal with ties in
the Pareto Frontier (Sousa et al., 2019) and better selection of individuals from the frontier
when considering multi-objective scenarios (e.g., maximize effectiveness while reducing the
complexity of the representation).
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