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Chapter 1

Introduction

Formalizing and passing the current knowledge to future generations has always been
a concern of humankind. Thousands of years ago, the first Homo sapiens made cave
paintings to preserve information. In addition to the paintings, and associated with
the progress of speech, knowledge was passed by word of mouth for generations with
stories and myths. However, an existing problem of passing knowledge through stories
is that they are often lost, as different people have their way of interpreting and passing
them on to the new generations.

With the advent of writing, human knowledge began to be saved on papyri and
stones, and stories began to be recorded. However, it did not solve the problem of
properly knowledge dissemination, because the materials commonly used were depre-
ciated by the action of nature (e.g., stones were corroded and papyrus were ripped).
Then, with the invention of paper, knowledge could be stored in a solid material that
resists more to the actions of nature, when subject to proper care. Until the end of
20th century, the most common way to keep knowledge was through books (paper).
Numerous libraries around the world kept information and knowledge in billions of
books of all kinds, from the arts to novels and poetry. Still in the 20th century, another
great revolution started and transformed information processing: the computer. We
say that the digital age started from there and, with this huge advance, knowledge
began to be digitally saved.

Then, the initiative of having a network of computers connected [5] transformed
the world. Having hypertext links representing knowledge that is easily understandable
by readers contributed to spread and democratize information. Indeed, the World Wide
Web (WWW) represents one of the greatest technological and social advances of the
last century. A plethora of data being exchanged between computer clients and servers
as well as data retrieval systems becoming more robust represent just two benefits of

1



2 Chapter 1. Introduction

the Web development. However, the increasing number of hyperlinks has also created
different processing issues, which in turn required improving indexing and searching
algorithms as well as enhancing results quality. Yet, one problem persisted: all these
hypertext links are only readable by humans who can read the texts and navigate
through the links.

In such a context, the Semantic Web [6] was proposed to create Web pages that
not only humans can understand, but machines can get knowledge from. The Semantic
Web is often considered as an extension (of the current WWW) that brings a common
structure to the content of Web pages. Therefore, it provides such content with meaning
that allows external software agents to carry out sophisticated tasks on behalf of the
reader and promote a greater degree of cooperation between humans and computers.
In other words, a new age of computing was ushered in which machines are able to
“process and understand the data that they merely display at present” [17].

Technically, the Semantic Web has promoted a graph-based representation of
knowledge in which entities are graph nodes (e.g., Cecília Meireles and Espectros) and
there is a labelled edge between two nodes if they are related (e.g., Cecília has written
Espectros). Entities may also have types denoted by is a relations (e.g., Cecília is a
writer, Espectros is a book). These relations are known as facts. In many cases, the
sets of possible types and relations are organized in a schema or an ontology, which
defines their interrelations and their usage restrictions.

The Semantic Web also provides a common framework to share and reuse data
across many applications such as servers that expose data system using Resource De-
scription Framework (RDF), common metadata vocabularies and web-based services.
Adding communicating multi-agent systems to the Web usually requires ontologies (an
ontology encompasses a formal representation and definition of categories) to setup
common vocabulary and rules. The integration of agent technology and ontologies
may significantly affect the use of Web services and the ability to extend programs to
perform tasks for users more efficiently and with less human intervention [17].

A graph representation of knowledge is known as Knowledge Graph (KG), as
coined by Google in 20121. In a broader perspective, any graph-based representation
of knowledge could be considered a Knowledge Graph, which includes any kind of
RDF for example. Note that RDF organizes knowledge in triples of the form sub-
ject–predicate–object, which are easily equivalent to node-edge-node in a KG. Well
known knowledge graphs include: Freebase [9], DBpedia [2], Wikidata [45] and YAGO
[42]. Also, search engines and e-commerce websites, such as Amazon and Walmart, are

1https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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trying to improve user experience by using KGs, by attempting to better understand
how clients interact with the system and building a huge network connecting users and
products. Such graphs are often constructed from semi-structured knowledge, such as
Wikipedia, or harvested from the Web. Indeed, Knowledge Graphs on the Web form
a backbone of many information systems that require access to structured knowledge.
The idea of feeding intelligent systems and agents with formalized knowledge of the
world dates back to classic Artificial Intelligence research in the 1980s [23, 29].

Since its theoretical definition in 2001, the Semantic Web has evolved, built upon
existing technology and even boosted many advances for data processing over the Web.
Specially, the advent of Linked Open Data (LOD) has spurred interest over represen-
tations of general world knowledge as graphs from completely fresh perspectives, for
example [34]. Technically, Linked Data refers to data published on the Web in such a
way that it is machine-readable, explicitly defined, linked to other external data sets,
and can be linked to/from external data sets [8]. For example, Figure 1.1 shows a re-
cent view of linked data. In practice, LOD is being used to predict facts in Knowledge
Graphs since it uses the information presented in one KG to predict the same fact in
other [26].

Nonetheless, constructing a knowledge graph presents several issues. Specifically,
no matter its building procedure, the resultant graph is not expected to be perfect. The
reason is simple: as a model of the real world, formalized knowledge cannot reach full
coverage (i.e. cover all information about every entity in the universe). Also, achieving
100% of both completion and correctness is unlikely. Then, there is a consequent trade-
off between coverage and correctness that is addressed differently in each knowledge
graph, for example [10] and [44].

The solution for such a problem may borrow from other known issues. Specifically,
link prediction is the task of predicting the existence (or probability of correctness) of
edges in graphs [24]. In our context, link prediction is critical for KG not achieving
100% of completion and correctness. Even if KGs could reach a perfect representation
of the world, such world changes over time, and then link prediction still remains
important. Furthermore, link prediction can be easily mapped to not only adding
missing data to KGs [30, 36], but also discovering links in the context of linked data
[15], predicting new relationships over professional networks [11], and even applied to
predicting drug-target and protein-protein interactions in biomedical graphs [13].

Contributions. Following such a link prediction reasoning, this work proposes a
probabilistic algorithm (called ProA) that is based on actual existing paths in the
graph to infer possible missing edges from an entity source to an entity target. Since
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Figure 1.1. Linked Datasets in 2018 (source: https://lod-cloud.net/). Every
node in this graph is a Knowledge Graph; edges are connections between them;
and each color is a different domain (Knowledge Graphs could be focused on a
specific domain such as Publications, Government and Life Sciences). Some KGs
are clearly hubs and are essential to this shared network since they have a lot of
information and connections.

this probabilistic approach uses only the distribution over paths between nodes in the
graph, there are no entities properties or any other external dependencies to predict
facts. Our evaluation also shows that using the probability distribution provides good
performance when compared to other algorithms. Our advantages over the state-of-the-
art are simplicity in terms of operation and computational complexity. As ProA takes
advantage of the paths distribution of the KG, the actual KG structure is irrelevant
and our solution could be applied to any KG.
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Text Organization. This thesis is organized as follows. Chapter 2 presents an
overview of related work, most of which is used as baseline. Chapter 3 presents our
new probabilistic algorithm. Then, Chapter 4 presents our evaluation and results,
whereas Chapter 5 concludes this work and provides future work.





Chapter 2

Related Work

This chapter starts with an overview of Machine Learning and Knowledge Graphs, and
follows with related work on link prediction.

2.1 Probabilistic Reasoning

On trying to draw timeline on machine learning, the earliest events (most probably)
happened around 1763 with the publication of the work that underlies the Bayes The-
orem. Thomas Bayes’s work An Essay Towards Solving a Problem in the Doctrine Of
Chances [4] was published two years after his death, having been amended and edited
by a friend of Bayes, Richard Price. Later, in 1810, Pierre-Simon Laplace published
Théorie Analytique des Probabilités [22], in which he expands upon the work of Bayes
and defines what is now known as Bayes Theorem.

Bayesian inference is one of the many applications of Bayes Theorem, a particu-
lar approach to statistical inference. The probabilities involved in Bayes Theorem may
have different interpretations. With the Bayesian probability interpretation, the Theo-
rem expresses how a subjective degree of belief should rationally change to account for
availability of related evidence. Then, Bayesian inference is fundamental to Bayesian
statistics.

Formally, Bayes Theorem is stated as Equation 2.1.

P (A|B) =
P (B|A)P (A)

P (B)
, (2.1)

where A and B are events and P (B) 6= 0. Then, P (A) and P (B) are the probabilities
of observing A and B independently of each other. Also, P (B|A) and P (A|B) are
conditionals probability: the likelihood of an event occur given the other is true.

7



8 Chapter 2. Related Work

Later, in 1913, Andrey Markov first described a set of techniques that later be-
come known as Markov chains. A Markov process, named after the Russian mathe-
matician, is a stochastic process that satisfies the Markov property. Roughly speaking,
a process satisfies the Markov property if it can predict its future based only on its
present state; hence, it does so independently from its history.

The Markov process is important because it defines the learning of an event by
considering only the current state of the problem, i.e., disregarding its past. It is
formally presented in Equation 2.2.

P (Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = x|Xn = xn), (2.2)

which means if the probability of an event Xn+1 is equal x given all past events, it is
equal only with the present event Xn. Directed graphs often describe a Markov chain,
where the edges of graph n are labeled by the probabilities of going from one state at
time n to the other states at time n+ 1, P (Xn+1 = x|Xn = xn).

Although machine learning algorithms have existed for a long time, the ability
to automatically apply complex mathematical calculations to big data is a recent de-
velopment. Renewed interest in machine learning is due to the same factors that have
made data mining and Bayesian analysis even more popular. For example, the usage of
latent features1 is increasing each year (as discussed in Section 2.4), but this technique
should be studied carefully.

Quinn et al. [40] report a strong association between myopia in children and their
exposure to night-time lighting during their first two years. This work was published
on Nature and associated an occurrence of light during night and myopia in children.
In other words, the variables myopia and children are most likely to be correlated if
night-time lighting is present. Figure 2.1(a) shows how the variables are correlated in
such a study.

Then, Gwiazda et al. [16] were unable to confirm such a surprising result, but
they found that myopic parents are more likely to employ night-time lighting aids for
their children. Moreover, there is an association between myopia in parents and their
children. Hence, the hidden variable parents-myopia was not used in the first study
leading a wrong inference and a consequent wrong result. Figure 2.1(b) shows the
new hidden variable impacting the variable myopia in children. This later work is a
successfully example of how to use latent features. We further discuss how it is being
used on Knowledge Graphs in Section 2.4.

Machine Learning algorithms can generally be divided in three main categories.
1Not directly observable.
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Figure 2.1. Example of inappropriate usage of latent features. In (a), night-
lighting and myopia are being correlated since children exposed by night-light are
more likely to have myopia. However in (b) a new hidden variable is added about
the parents myopia. Parents that have myopia uses night-light to take care of
their children so the real cause of children myopia is not the night-light but the
parents myopia themselves.

The first one is the supervised learning, which takes an input variable x and and returns
and output variables Y with the goal of approximating the mapping function from x to
Y , such that Y can be well predicted from x. The supervised part is about the process
of an algorithm to learn from the training dataset. As the correct answers from the
training dataset are previously known, the algorithm can make predictions, check their
correctness, and the learning process stops when the algorithm achieves an acceptable
level of performance. For example, regression and classification problems are classical
supervised learning problems.

The second one is unsupervised learning, which takes just the input data x and no
corresponding output variables. Its goal is to model a structure or distribution in the
data in order to learn more about it. The unsupervised part is because it does not have a
correct answer and there is no way to check its output. In other words, such algorithms
are responsible for discovering and presenting the results. For example, clustering and
association problems are common uses of unsupervised learning methods. A mix of the
first and second methods is the semi-supervised learning, which takes a large amount
of input data x and only some of is labeled Y . These problems have both supervised
and unsupervised learning features, and many real work machine learning problems
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fall into such category.
A third category is reinforcement learning which differs from supervised learning

in that correct input/output pairs need not be presented, and sub-optimal actions need
not be explicitly corrected. The focus is not on performance but finding a balance
between exploration (of uncharted territory) and exploitation (of current knowledge).

2.2 Knowledge Graphs

The data science research community has been working hard to improve the informa-
tion quality in Knowledge Graphs. There are two main goals of such KGs refinement:
increase completeness [21] [33] [37] [38]; and improve correctness [14] [25] [39]. A recent
survey [36] discusses approaches and evaluation methods related to such two goals. It
distinguishes refinement methods along different dimensions, mainly focused in com-
pletion versus correction. In addition, both completion and correction approaches can
be distinguished by the targeted kind of information. Some approaches target complet-
ing/correcting information about entities, while others target on relations information
between entities.

There is also a third way to distinguish refinement methods in Knowledge Graphs
that relates to the data: using the KG data itself, called internal approach; and using
external data such as text corpora or other KGs data. Using an internal approach is
often more difficult, because to predict or discover an incorrect/missing fact, it must
perform complex mathematical calculations over the current state of Knowledge Graph.

2.2.1 Representation

A graph G = (V,E) is a set of vertices V and edges E. Knowledge graphs model
information in the form of entities as vertices and relationships between them as edges.
Recently, KGs have appeared in the Semantic Web community with the purpose of
creating a “web of data” that is readable by machines. This vision of the Semantic
Web remains to be fully achieved, as some parts are still under construction.

Here, we use the RDF standard to represent facts in the form of binary rela-
tionships: [subject, predicate, object] triples (or simply SPO triples), in which subject

and object are entities, and predicate is the relation between them. The existence
of a particular SPO triple indicates an existing fact, i.e., the respective entities are
in a relationship of the given type, as the examples in Figure 2.2. The figure shows
known facts such as “Barack Obama is married to Michelle Obama”, which is trans-
lated to the triple [BarackObama, isMarriedTo,MichelleObama] and to two nodes
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Figure 2.2. Sample of Knowledge Graph where entities are nodes and the rela-
tionships between them are the edges.

(BarackObama, MichelleObama) and an edge (isMarriedTo) into the graph. The
same applies to “Barack Obama was born in Honolulu”, “Honolulu is capital of Hawaii”,
and so on.

Having all facts translated, their respective SPO triples form a multigraph2, where
nodes represent entities (all subjects and objects), and directed edges represent rela-
tionships. Different relations are represented via different types of edges (also called
edge labels). The direction of an edge indicates whether entities occur as subjects or
objects, i.e., an edge points from the subject to the object.

2A graph that may have multiple edges; that is, edges that have the same end nodes.
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2.2.2 World Assumption

While existing triples always encode known true relationships (facts), there are different
paradigms for the interpretation of non-existing triples:

• Closed world assumption: a non-existing triple indicates false relationship. For
example, in Figure 2.2, there is no wasBornIn edge from Michelle Obama to
Honolulu, which is interpreted as she was definitely not born there.

• Open world assumption: a non-existing triple is interpreted as unknown, and
the corresponding relationship can be either true or false. Still in Figure 2.2,
the missing edge [MichelleObama,wasBornIn,Honolulu] is not interpreted as
she was not born there; but rather, as the fact is unknown. This more cautious
approach is justified, since KGs are known to be very incomplete.

Usually RDF and the Semantic Web use the open-world assumption, and we
follow such trend and use the open-world assumption as well.

2.2.3 Construction

Completeness, accuracy, and data quality are important parameters that determine the
usefulness of Knowledge Graphs and are influenced by the way they are constructed.
KG construction methods are usually classified into four main groups:

• Curated: triples are manually created by a closed group of experts.

• Collaborative: triples are manually created by an open group of volunteers.

• Automated semi-structured: triples are automatically extracted from semi-
structured text3 via hand-crafted rules, learned by Artificial Intelligence rules,
or regular expressions.

• Automated unstructured: triples are automatically extracted from unstruc-
tured text via machine learning and natural language processing techniques.

Construction of curated Knowledge Graphs typically leads to highly accurate
results, but this technique does not scale well due to its dependence on human experts.
Collaborative KG construction, which was used to build Wikipedia and Freebase, scales
better but still has some limitations. For instance, the attribute place of birth is missing
for 71% of all people included in Freebase, even though this is a mandatory property

3Texts in table format such as infoboxes in Wikipedia.
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of the schema [46]. Also, a study [43] found that the growth of Wikipedia has been
slowing down. Consequently, automatic Knowledge Graph construction methods have
been gaining more attention.

Such methods can be grouped into two main approaches. The first approach
exploits semi-structured data, such as Wikipedia infoboxes, which has led to large,
highly accurate knowledge graphs such as YAGO [42] and DBpedia [2]. The accuracy4

of facts in such automatically created KGs is often still very high. For instance, the
accuracy of YAGO was estimated to be over 95% through manual inspection of sample
facts [7], and the accuracy of Freebase [9] was estimated to be 99%. However, semi-
structured text still covers only a small fraction of the information stored on the Web,
and completeness (or coverage)5 is another important aspect of KGs. Hence the second
approach tries to “read the Web” by extracting facts from the natural language texts
of Web pages. Examples include projects as NELL [50] and the Knowledge Vault [14].

2.3 Link Prediction

The link prediction task is: given an incomplete graph, find existing edges to increase
the completeness In the context of regular graphs and complex networks, Link predic-
tion is an important task because graphs are often incomplete or need improvement.
For example, a social network developer may want to predict relationships between
users or study the possible evolution of a professional network [11]. Indeed, link pre-
diction is critical due to KGs not achieving 100% of completion and correctness. Even
if KGs could reach a perfect representation of the world, such world changes over time,
and then link prediction still remains important. Now, there are many works improv-
ing link prediction over Knowledge Graphs. This section follows with a comprehensive
overview of relevant approaches that are used as our baselines (in our experimental
evaluations).

Angeli et al [1] propose a system to complete KGs with a degree of confidence for
each unseen fact. As facts in these bases are often devoid of context, it defines the notion
of truth to reflect whether it would assume a fact to be true without evidence to the
contrary. Then, it can further refine the task by determining whether an arbitrary fact
is plausible (true in the absence of contradictory evidence). The approach generalizes
word similarity metrics to a notion of fact similarity and judges unseen facts based
on the aggregate similarity between them and existing members of the database. For

4The trustworthiness of the present facts.
5Completeness is about facts that should be in Knowledge Graph but they are not. Correctness

is about facts that are in Knowledge Graphs but they are there wrongly and then should be removed.
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instance, if philosophers are mortal but it is known that Greeks are philosophers, and
that philosophers and Greeks are similar, it is reasonable to infer that philosophers are
mortal is nonetheless plausible.

Databases were originally developed to support deterministic applications such
as banking, payroll, accounting, inventory; all of which require a precise semantics of
the data. However, there is also imprecise and uncertain data that contain an explicit
representation of uncertainty. Degrees of belief in knowledge bases (KB) was described
for the first time in 1996 [3], which also included important aspects of how to deal with
uncertainty. Its authors propose the random-worlds method that relies on the principle
of indifference: it treats all of the worlds the agent considers possible as being equally
likely. The approach is able to integrate qualitative default reasoning with qualitative
probabilistic reasoning then providing a language in which both types of information
can be easily expressed. It also describes the uncertainty in knowledge bases in terms
of degrees of belief. The most widely used framework for assigning degrees of belief to
each relation in a knowledge base, which are essentially subjective probabilities, is the
Bayesian paradigm. It assumes a space of possibilities and a probability distribution
over this space, called the prior distribution, and calculates posterior probabilities by
conditioning on what is already known.

Using such an approach requires to specify the space of possibilities and the dis-
tribution over it. Indeed, the usual practice is considering such decisions as subjective.
Then, the approach in [3] assumes that the KB contains all the knowledge the agent has,
and it allows a very expressive language so as to make this assumption reasonable. In
other words, any knowledge the agent has (that could influence the prior distribution)
is already included in the KB. As a consequence, it gives a single uniform construction
of a space of possibilities and a distribution over it. Once it has this probability space,
it can use the Bayesian approach to compute the probability of an assertion ' given a
KB, and then compute the probability of ' using the resulting posterior distribution.

Still in the relational scenario, the Path Ranking Algorithm (PRA) [21] extends
the idea of using random walks of bounded lengths for predicting links in multi-
relational Knowledge Graphs. In particular, let ⇡L(i, j, k, t) denote a path of length L,
where t represents the sequence of edge types t = (r1, r2, . . . , rL). PRA also requires
a direct arc representing the existence of a relationship of type k from ei to ej. Then,
PRA can compute the probability of following such a path by assuming that at each
step, it follows an outgoing link uniformly at random. A probability of this particular
path can be computed recursively by a sampling procedure, similar to PageRank [35].
The key idea in PRA is to use these path probabilities as features for predicting the
probability of missing edges.
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In a different perspective, Chekol et al [12] describe how to combine uncertainty
and time in Knowledge Graphs. Since facts are usually accompanied by a confidence
score that witnesses how likely it is for them to hold, the authors show a solution for
the management of uncertain and temporal data in KGs. The work relies on one main
step: using Markov Logic Network (MLN) that provides the necessary underpinning
to formalize the syntax and semantics of uncertain temporal KGs. Then, they explore
the usage of Probabilistic Soft Logics (PSL) and compare the results against the MLN
approach.

Xu and Barbosa [47] report an effectiveness evaluation of the existing knowledge
base embedding models for link prediction. It describes a new benchmark, which is
much larger and complex than previous ones and helps validate the effectiveness. The
results show knowledge base embedding models are generally effective for link predic-
tion but unable to give improvements for the state-of-art neural relation extraction
model with the existing strategies, while pointing limitations of existing methods.

Information theory has been taken as a prospective tool for quantifying the com-
plexity of complex networks, including Knowledge Graphs. Xu et al [48] started to
study the information entropy or uncertainty of a path using information theory. It
applies the path entropy to the link prediction problem in real-world networks. Specif-
ically, the authors propose a new similarity index, namely Path Entropy (PE) index,
which considers the information entropy of shortest paths between node pairs with
penalization to long paths. Empirical experiments demonstrate that PE index outper-
forms the mainstream link predictors.

2.4 Specific Techniques

As already discussed, the presence or absence of certain triples in relational data is
correlated with (i.e., predictive of) the presence or absence of certain other triples.
We model each possible triple xijk over the set of entities and relations as a binary
random variable Y (ijk) 2 0, 1 that indicates its existence, and each random variable
is correlated with each other. There are three main ways to model these correlations,
as follows.

• Latent feature models: Assume all Y (ijk) are conditionally independent; given
latent features associated with subject, object and relation type and additional
parameters.

• Graph feature models: Assume all Y (ijk) are conditionally independent; given
observed graph features and additional parameters.
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• Markov Random Fields: Assume all Y (ijk) have local interactions.

The Latent and Graph feature models predict the existence of a triple xijk via a
score function f(xijk; ✓), which represents the model’s confidence that a triple exists
given the parameters ✓. Assuming Ne and Nr as the total number of entities and
relations respectively, O as a set of observed triples, the conditional independence
assumptions of those models allow the probability model to be written as Equation
2.3.

P (Y |O, ✓) =
NeY

i=1

NeY

j=1

NrY

k=1

Ber(Y (ijk)|�(f(xijk; ✓))), (2.3)

where �(u) = 1(1 + e�u) is the sigmoid (logistic) function, and

Ber(y|p) =

8
<

:
p, if y=1

1� p, if y=0.
(2.4)

We discuss various possible forms for the score function f(xijk; ✓) ahead.
What all models have in common is that they explain triples via latent features of

entities (which is justified via various theoretical arguments). For instance, a possible
explanation for the fact “Morgan Freeman received an Academy Award” is that he is
a good actor. This explanation uses latent features of entities (being a good actor)
to explain observable facts (Freeman receiving an Academy Award). We call these
features latent because they are not directly observed in the data. One task of all
latent feature models is therefore to infer these features automatically from the data.

Another way of modeling relations is using tensors. Tensors are mathematical
objects that can be used to describe physical properties, just like scalars and vectors.
In other words, tensors are a generalisation of scalars and vectors; a scalar is a zero rank
tensor, and a vector is a first rank tensor. The rank (or order) of a tensor is defined
by the number of directions (and hence the dimensionality of the array) required to
describe it. For example, properties that require one direction (first rank) can be fully
described by a 3⇥ 1 column vector, and properties that require two directions (second
rank tensors) can be described by nine numbers as a 3⇥ 3 matrix. As such, in general
an nth rank tensor can be described by 3n coefficients.

To represent relational data, we use the semantic web’s RDF formalism where
relations are modeled as triples of the form [subject, predicate, object], and a predicate
either models the relationship between two entities or between an entity and an at-
tribute value. In order to model dyadic relational data as a tensor, some algorithms
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Figure 2.3. Tensor model for relational data. E1 . . . En denote the entities, while
R1 . . . Rm denotes the relations in the domain.

employ a three-way tensor X, where two modes are identically formed by the con-
catenated entities of the domain and the third mode holds the relations. Figure 2.3
provides an illustration of this modelling method. A tensor entry Xijk = 1 denotes the
existence of a relation [ithentity, kthpredicate, jthentity]. Otherwise, for non-existing
and unknown relations, the entry is set to zero.

RESCAL [32] is a relational latent-feature model that explains triples via pairwise
interactions of latent features. In particular, it models the score of a triple xijk and
a weight matrix W whose entries wabk specify how much the latent features a and b

interact in the k-th relation. This is a bilinear model, since it captures the interactions
between two entity vectors using multiplicative terms. In general, it models block
structure patterns via the magnitude of entries in matrix W, while it uses homophily
patterns via the magnitude of its diagonal entries.

Specifically, it employs a rank-r factorization, where each slice Xk is factorized
by Equation 2.5.

Xk = ARkA
T , for k = 1, . . . ,m. (2.5)

For a short illustration of this mechanism, consider the example in Figure 2.4.
The latent-component representations of Al and Lyndon will be similar to each other
in this example, as both representations reflect that their corresponding entities are
related to the object Party X. Because of this, Bill and John will also have similar
latent-component representations. Consequently, the product aTBillRpartyaPartyX will
yield a similar value to aTJohnRpartyaPartyX and, as such, the missing relation can be
predicted correctly. Please note that this information propagation mechanism through
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Figure 2.4. Visualization of a subgraph of the relational graph for the US
presidents example. The relation represented by a dashed-red arrow is unknown.

the latent components would break if Bill and John had different representations as
subjects and objects.

DistMult [49] is a special form of a bilinear model like RESCAL, where the non-
diagonal entries in the relation matrices are assumed to be zero. In this model, each
entity ei is assigned a latent feature vector (embedding) ni of dimensionality K; and
each relation type is assigned an embedding r of the same dimensionality. The score
of a candidate triple (es, r, eo) is defined as: f(xs, r, o) = rT (nsxno).

Some models are based on multi-layer perceptrons (MLPs), also known as feed-
forward neural networks. In the context of multidimensional data, they can be referred
to multiway neural networks. This approach allows to consider alternative ways to
create composite triple representations and to use nonlinear functions to predict their
existence. For example, ER-MLP [27] uses a global weight vector for all relations based
on multi-layer perceptrons (MLPs). Figure 2.5 shows its comparison against RESCAL
as a Neural Network.

Another class of models are latent distance models (also known as latent space
models in social network analysis), which derive the probability of relationships from
the distance between latent representations of entities: entities are likely to be in a
relationship if their latent representations are close according to some distance measure.
TransE [10] translates the latent feature representations via a relation-specific offset
instead of transforming them via matrix multiplications. In particular, the score of a
triple xijk is defined by Equation 2.6.
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Figure 2.5. Visualization of RESCAL and ER-MLP model as Neural Network.
Here, He = Hr = 3 and Ha = 3. Note, that the inputs are latent features. The
symbol g denotes the application of the function g(·).

fTransE
ijk = �d(ei + rk, ej), (2.6)

where d(·, ·) refers to an arbitrary distance measure such as the Euclidean distance.
HolE [31] learns compositional vector space representations of an entire Knowl-

edge Graph. This method is related to holographic models of associative memory, as
it employs circular correlation to create compositional representations. Compositional
vector space models provide an elegant way to learn the characteristic functions of the
relations in a Knowledge Graph, as they allow to cast the learning task as a problem
of supervised representation learning. HolE introduces models of the form given by
Equation 2.7.

Pr(�p(s, o) = 1|⇥) = �(⌘spo), (2.7)

where rp 2 Rdr , ei 2 Rde are vector representations of relations and entities; �(x) =
1/(1+ exp(�x)) denotes the logistic function; ⇥ = {ei}ne

i=1 [ {rk}nr
k=1 denotes the set of

all embeddings. Figure 2.6 shows its comparison against RESCAL as Neural Networks.
Complex [44] performs sparse tensor factorization of KG in the complex domain.

Specifically, nodes and relations are modeled by d dimensional vectors with a real and
an imaginary part (Re(x), Im(x)). This allows to model anti-symmetric relations since
the three way dot product (inner product) in the complex domain is not symmetric.

Proposed in 1927, Canonical Polyadic (CP) [18] decomposition is among the first
tensor factorization approaches. CP generally performs poorly for link prediction as it
learns two independent embedding vectors for each entity, whereas they are really tied.
SimplE is a simple enhancement of CP that allows the two embeddings of each entity
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Figure 2.6. RESCAL and HOLE as neural networks. RESCAL represents pairs
of entities via d

2 components (middle layer). In contrast, HOLE requires only d

components.

to be learned dependently. The complexity of SimplE grows linearly with the size of
embeddings. The embeddings learned through SimplE are interpretable, and certain
types of background knowledge can be incorporated into these embeddings through
weight tying [19].

For example, let likes(p,m) represent if a person p likes a movie m and acted(m, a)

represent who acted in which movie. Then, which actors play in a movie is expected
to affect who likes the movie. In CP, observations about likes only update the t

vector of movies, and observations about acted only update the h vector. Therefore,
what is being learned about movies through observations about acted does not affect
the predictions about likes, and vice versa. SimplE takes advantage of the inverse of
relations to address the independence of the two vectors for each entity in CP. While
inverse of relations has been used for different purposes, using them to address the
independence of the entity vectors in CP is a novel contribution.

2.5 Final Considerations

Here, we propose a new way to predict edges in Knowledge Graphs based on path
information from the topological structure of the graph. Given the probability dis-
tribution over all paths between two entities and the probability distribution of those
paths in the whole graph, the probabilistic algorithm learns about it and generates a
new probability distribution to infer if there is an edge to be predicted or not. The
main difference between our approach to existing ones is the input. ProA only takes
the path information over entities to predict facts, without any complex mathematical
calculation. Moreover, the results show competitive performance and accuracy against
current state-of-the-art, specially for dense graphs.





Chapter 3

Predict Missing Facts

We now introduce concepts necessary to understand our proposed solution, followed
by our algorithm called ProA.

3.1 Basic Concepts

Knowledge Graphs typically have statistical patterns or regularities, which are not uni-
versally true but nevertheless allow for useful predictive power. They also have some
deterministic rules, such as type constraints and transitivity (e.g., if Barack Obama
was born in Honolulu, and Honolulu is located in the USA, then we can infer that
Barack Obama was born in the USA). One example of such statistical pattern is ho-
mophily, that is, the tendency of entities to be related to other entities with similar
characteristics. This has been widely observed in various social networks. For example,
Brazil born actors are more likely to star in Brazil made movies.

Graphs can also exhibit global and long-range statistical dependencies, i.e., de-
pendencies that can span over chains of triples and involve different types of relations.
For example, the citizenship of Barack Obama (USA) depends statistically on the city
where he was born (Honolulu), and such dependency involves a path over multiple en-
tities (Barack Obama, Honolulu, USA) and relations (bornIn, locatedIn, citizenOf).
A distinctive feature of relational learning is its ability to exploit such patterns for
creating richer and more accurate models of relational domains.

Formally, let Ne be the number of entities, Nr be the number of relations, ⇠ =

{e1, e2, ..., eNe} be the set of all entities, and � = {r1, r2, ..., rNr} be the set of all relation
types in a Knowledge Graph. We model each possible triple xijk = (ei, rk, ej), indicating
that entity ei is related to entity ej by relation type rk, over these sets of entities and
relations as a binary random variable Y (ijk) 2 {0, 1}, which indicates its existence.

21
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Figure 3.1. Probability dependencies between entities. There are two ways to
reach Oscar from Morgan Freeman: through [gender, gender

�1, hosted], and
through [profession, profession�1, won_award].

While Y (ijk) = 1 indicates the existence of a triple, the interpretation of Y (ijk) = 0

depends on whether the open world or closed world assumption is considered. In this
work, we assume it is open world, which means if a random variable is Y (ijk) = 0 then
this fact is unknown.

A path D is a sequence of relations, in which the last entity of a relation is the
first entity of the following one, with length greater than 0, connecting two or more en-
tities. For example, a valid path could be: [(BeloHorizonte,MinasGerais, capitalOf)

(MinasGerais, Brazil, stateOf)], which means the city Belo Horizonte is the capital
of Minas Gerais and Minas Gerais is a state of Brazil. Then, there is a valid path
between Belo Horizonte and Brazil. Moreover, random variables Y (ijk) are condi-
tionally dependent on each other because we consider paths and their dependencies.
In other words, if the probability to reach a node x is P (x) and the node y depends
on x, then the probability of reaching y is P (y|x).

Figure 3.1 illustrates an example of a Knowledge Graph. The graph represents
real facts regarding profession, gender, hosted_oscar and won_oscar relations.
Then, the probability of reaching the target node Oscar from source node Morgan
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Table 3.1. Content of set D (set of paths at length at most 3) starting at Morgan
Freeman from Figure 3.1.

- ` = 1 ` = 2 ` = 3

Morgan Freeman Male - -
Morgan Freeman Actor - -
Morgan Freeman Male Chris Rock -
Morgan Freeman Actor Tom Hanks -
Morgan Freeman Actor Sean Penn -
Morgan Freeman Actor Leo DiCaprio -
Morgan Freeman Male Chris Rock Oscar
Morgan Freeman Actor Tom Hanks Oscar
Morgan Freeman Actor Sean Penn Oscar
Morgan Freeman Actor Leo DiCaprio Oscar

Freeman depends on the probability of each relation in the path. Since this graph has
four paths connecting Morgan Freeman to Oscar, the question here is: “Can we infer
the existence of any direct relation between Morgan Freeman and Oscar”?

Let D be the set of paths of length at most ` between any two nodes. Table 3.1
shows the content of D considering the node Morgan Freeman with ` from 1 to 3. We
only consider paths in which the random variable Y 1 is 1, i.e., there is a path between
two nodes. There is also a probability distribution over D, because some paths can be
more likely than others. There is a probability distribution for every valid path in D

in the whole topological structure in the graph which means how often the path is in
the graph structure. Note it is a valid probability distribution since the sum of values
is 1.

In the current example, there are two possible paths from node Morgan Freeman
to Oscar: [(gender, gender�1, hosted)] and [(profession, profession�1, won_award)],
and they occur one and three times, respectively. Then, since the probability of each
one is 25%, we can infer that if there is an edge connecting these entities, the probability
to be won_award is 75% and hosted is 25%, given the distribution of the paths.

Also, in such example, there are no paths of size other than three; however, in
real examples (discussed in the next section), there are normally paths of different
sizes, and the distribution table contains more values as well. It is also important to
note that each path in the graph contains the same weight; that is, the probability
of each of them is uniform. Some papers [48] put different weights for different path

1
Y (ijk) = 1 when the nodes i and j are connected through relation k.
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sizes in a graph, which is not the case in this work since we consider every path in set
D with the same probability. Usually, the weights are defined according to the length
of paths. For example, the larger the path size, the smaller the weight assigned to it.
For Knowledge Graphs, the weight is the same, since the edges have semantics, and a
longer path between two entities should not necessarily be penalized.

In summary, the intuition here is: popular paths can predict relations between
two entities. If a certain path occurs many times between a set of similar nodes, it can
denote that there is a great probability to have the same edge between those similar
nodes. For example, considering again Figure 3.1, the nodes Tom Hanks, Sean Penn,
Leo DiCaprio and Chris Rock share the same relation types as Morgan Freeman.
Nonetheless, its more likely that Morgan Freeman has won an Oscar than hosted one,
because there are more similar nodes that won the award than hosted it.

Regarding the distribution math, a distribution over all edges in the graph can be
defined by counting the number of each type of relation divided by the total of edges
in the KG. For instance, consider the Freebase train dataset with 483,142 facts. One of
its popular edge is award_nominee, as it appears almost 16,000 representing 0.03311
of total. Then, the probability of an edge being award_nominee in KG is about 3.3%.

Formally, the distribution to predict a fact is defined by Equation 3.1.

P (Y (ijk) = 1) =
|D|X

mk

dmk

|D| , (3.1)

where |D| is the number of paths in D, and each dmk
is a valid path in D ending with a

relation k. Then, the final distribution after this calculation can be sorted and ranked.
Intuitively, the most probable relation after this calculation should be the correct fact
between those entities.

Applying Equation 3.1 for Morgan Freeman and Oscar example results in: i =

MorganFreeman, j = Oscar, |D| = 4, |R| = 4. For k ( the relation to be predicted),
there are three possible values: hosted, won_award and None2. The final distributions
are: hosted = 1/4, for None = 0 and for won_award = 1/4+ 1/4+ 1/4 = 3/4. Then,
with 75% of probability, the relation to be predicted is won_award. For each relation
k, there is a value in the final distribution table.

In summary, the problem tackled in this work is defined as: “Given a source and
a target entities, what steps are necessary to predict a fact between them?”

2A non-relation between the source and target node.
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Algorithm 1 ProA’s algorithm to generate probability distributions of missing facts
in a KG
Require: KG, source entity, target entity, length `
Ensure: Ranked predicted edges between source and target
1: D = all paths from source to target at most length `
2: Ddist = ; . initialize distribution paths set
3: Gendist = ; . initialize general distribution
4: Finaldist = ; . initialize final distribution
5: for each d 2 D do

6: if d /2 Ddist then

7: Ddist.add(d) . add d to set D
8: else

9: Ddist[d].increment(1) . increment d counter
10: for each path 2 KG do

11: for each d 2 D do

12: if path = d then

13: if d /2 Gendist then

14: Gendist.add(d) . add d to set Gendist

15: else

16: Gendist[d].increment(1)
17: for each d 2 Ddist and d 2 Gendist do

18: Finaldist = P (d 2 Ddist)⇥ P (d 2 Gendist)

19: Return: Finaldist

3.2 ProA Algorithm

Our solution, the ProA algorithm, gets all possible paths from a source node to a
target node to infer which relation is most likely to connect between those two nodes.
It satisfies the Markov property of the probability conditional distribution, since it
depends upon the present state of the graph, according to Equation 2.2. In other
words, the algorithm has the memoryless property of a stochastic process.

Also, ProA takes advantage of the distribution over two sets, D and Gen, to
create a fact ranking. A relation ranking is generated from ProA’s output and the
predicting task can be applied properly since the best relation ranked is usually the
right relation to be predicted.

ProA gets every path between the source and the target entities, and generates
an initial probability Ddist from D. Then, ProA calculates the weight of each of those
relations of D in the whole graph to get how often they are. This new set is called
Gendist. Finally, the final distribution is given by Equation 3.2, in which each path di

in D and Gen has its proper probability distribution.
Algorithm 1 shows ProA processing. First, lines 1-4 initialize the variables. Then,
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Figure 3.2. Link prediction based on path probabilistic distribution. To predict
the red fact between source and target, ProA finds all possible paths between
two nodes at most length ` (in this scenario ` = 3). The set of possible paths is
{(a, b), (a, e), (a, a, b), (a, b, e)}, and the most common path is (a, b). Usually, the
fact {e} exists when (a, b) is a path between two nodes; hence, ProA infers with
a certain probability that {e} could be the missing red fact.

the loop in lines 5-9 creates the probability distribution of paths between source and
target at most length ` (or how many times they occur). Next, the loop in lines
10-16 gets the distribution over those paths in the whole graph structure. The final
distribution is calculated in lines 17-18.

Again using Figure 3.1 with a piece of real Knowledge Graph that focuses on
Morgan Freeman and the Oscars. Entity Morgan Freeman is connected to actor and
male entities through relations profession and gender, respectively. Applying ProA
algorithm for entities Morgan Freeman and Oscar finds all drawn paths to generate D.
Then, for each path in D, a final probability distribution of facts that connect entities
is calculated following Algorithm 1. In summary, ProA learns that won_award is more
probable to occur for an actor that hosted from gender relation. The final distribution
is about all relations found between source and target, and ProA can properly infer
each missing relation.
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Table 3.2. Example of probability distribution

Relation Probability

(a,b) 0.5
(a,e) 0.1666666667
(a,a,b) 0.1666666667
(a,b,e) 0.1666666667

A higher level example of the whole link prediction process is illustrated in Figure
3.2. Given the paths distribution between two entities in the graph, the probabilistic
algorithm learns about relations that usually connect the query entities (source and
target). For example, between nodes source and target there are four kinds of paths
{(a, b), (a, e), (a, a, b), (a, b, e)}, and the probability distribution is in Table 3.2.

ProA does not only infer missing relations between entities, but also predicts
whether there is no relation between them. Considering the Knowledge Graphs Free-
base and Wordnet, an initial empirical evaluation (performed while testing ProA) shows
that None is the most probable relation to occur between entities connected by a path
at most length three. Therefore, ProA learns about this special relation and infers
whether there is a relation or not.

The calculation of time complexity for ProA is similar to well known algorithms
in graphs such as Breadth-first search and Depth-first search. In the worst case, every
node and relation will be explored, then ProA is at least O(|V |+ |E|). However ProA
takes ` as argument, so the final time complexity is O((|V |+|E|)`), which means if ProA
considers the number of paths at most three, it has a time complexity of O((|V |+|E|)3)
and so on.

3.3 Real Examples

In this section, we explain the algorithm based on two real examples from Freebase.
We use the Freebase training file that has 483,142 entities, and we construct the graph
according to all the relationships established in this file (details about this dataset are
in Section 4.1). Once the graph is created, we select a fact at random, remove its
relation between nodes, and run the algorithm to see if it can predict it or not. Then
we run the algorithm with two entities that have no relation and we verify if it does
not predict any relation, as expected.
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Table 3.4. Final relation probability between The Jetsons Meet the Flintstones
(movie) and Romance film (genre). ProA predicts that such two entities could be
connected through /film/film/genre with 16% of chance.

Relation Probability

None 0.7396
/film/film/genre 0.1620
/film/film_genre/films_in_this_genre 0.0714
/media_common/netflix_title/netflix_genres 0.0217
/media_common/netflix_genre/titles 0.0030
/film/film_regional_release_date/film_release_region 0.0008
/film/film_regional_release_date/film_release_distribution_medium 0.0006
/film/film/country 0.0003

3.3.1 The Jetsons Meet the Flinstones and Romance

Regular Test. For the first test, the two entities selected at random were /m/063zky
and /m/02l7c8 which are The Jetsons Meet the Flintstones (movie) and Romance film
(genre), respectively. The relationship between them is /film/film/genre, meaning
the film is from the genre of romance. Then, the first step is to remove this relation
connecting those two entities and check if after the algorithm ends the relation is
predicted properly.

The algorithm receives as input the graph itself, the source node, the target node,
and a size ` to check the maximum length of paths between the nodes. Then, it checks if
there is any relation between both nodes; and if so, identifies such a relation. Next, the
second step is to generate the probability distribution between all paths of size at most
` between the input nodes. Table 3.3 shows how many times each path occur between
those nodes. The total number of paths is 948, and the most probable path for the
input nodes is: [/film_release_region, /film/film/country, /film/film/genre],
which occurs 182 times, or 19.19%. Note that None is a valid relation for our algorithm.
ProA deals with it as explained in the next section.

Given the path distribution, the next step is to generate a dictionary with all
occurred paths and how many times each one exists. Since it already knows how many
relations the graph has, our solution calculates the final distribution for each path and
the final probability of each relation to connect the source node to target node (i.e.,
The Jetsons Meet the Flintstones and Romance film, in this example). Finally,
our solution ranks those relations in terms of how likely each connects them, as Table
3.4 shows.
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Figure 3.3. Knowledge Graph from Google showing information about The
Jetsons meet the Flinstones movie. The genre of this movie is labeled as Fan-
tasy/Romance.

In summary, given the distribution of paths between two nodes and the global
path distribution over all the graph, ProA infers which relation should be the valid
one between the input nodes. In this particular case, ProA predicts well that the
two nodes be connected with a relation /film/film/genre with 16.19% of chance.
To better illustrate, Google Knowledge Graph shows the properties for this movie in
Figure 3.3.

Two Additional Tests. There are two more scenarios that we can test to see if
ProA predicts correctly the right relation between the movie and the right genre. The
first one is selecting as input a movie and a completely different entity – with which
movie would not be connected because it does not make sense, such as Food Network3.
The second test considers another genre that could be a relation for the selected movie.

Starting with Food Network, there is not many paths between those two entities.
Then, the None relation has 99.5% probability to be the right relation between them.
In other words, the algorithm predicts correctly since Food Network and the movie do
not seem to be related at all.

In the second testing scenario, we try to infer a relation between the movie The
3It is a television channel
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Table 3.5. Relation distribution between The Jetsons Meet the Flintstones
(movie) and Biography (genre). ProA predicts they could be connected through
/film/film/genre with 13.37% of chance, which is correct. However, it is more
likely to be a Romance than a Biography given the distribution.

Relation Probability

None 0.7767
/film/film/genre 0.1337
/media_common/netflix_title/netflix_genres 0.0381
/film/film_genre/films_in_this_genre 0.0284
/film/film_regional_release_date/film_release_region 0.0114
/film/film/country 0.0031

Jetsons Meet the Flintstones and the genre Biography. We know that the right genre
is romance with a probability of 16.19%, as already discussed in the regular testing.
Then, the algorithm gets the results from Table 3.5. The relation found makes sense
since a movie could be connected to a genre through /film/film/genre, but it is most
likely to be connect to Romance than Biography.

3.3.2 Anarcho Punk and Norfolk

Now, we select two nodes at random and make sure they do not have any relation. The
entities are Anarcho Punk and Norfolk, which are a music genre and a United States
city in the Virginia state, respectively. Intuitively, there is no relation between those
since such a music genre is not related with Virginia city. Then, the expected result
for ProA is to predict that there is no relation between them; i.e., the None relation
should be predicted.

Creating the set D of paths between the entities gives the notion that there are
not many relations between them. Then, None clearly appears as the most likely to
be the relation between them, as Table 3.6 shows. If we ignore the None relation, the
second most probable relation is /music/genre/artists with 0.01%, which is very
small.

In fact, such results show that even not considering the None relation, the prob-
ability of the two entities being connected is very low. In the next section, we explain
the None relation as it is important for predicting facts; however, in this test scenario,
we clearly realize that the two vertices are not connected.
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Table 3.6. Final relation probability between Anarcho Punk (music genre) and
Norfolk (city). ProA predict that those two entities could not be connected at all.

Relation Probability

None 0.9884
/music/genre/artists 0.0100
/music/artist/genre 0.0017
/media_common/netflix_genre/titles 0.000005
/broadcast/genre/content 0.0000005

3.4 The None Relation

The None relation, which is the absence of relation, is always the most common rela-
tion in the final probability table. As presented in Tables 3.4, 3.5 and 3.6, None has
respectively 0.74%, 0.77% and 0.98% of chance to be predicted; however, as it is the
most likely to be predicted, why is it not a final result?

ProA generates a distribution table of all possible relations from nodes to the
target entity. Then, there are many entities not connected to others. The Knowledge
Graph is usually dense, but not dense enough to have facts between every node. At
the end, ProA identifies such properties on the KGs and learns from them.

For example, in Section 3.3.2, Anarcho Punk and Norfolk are not connected.
However, if ProA generates a table distribution from Virginia (state) and Norfolk
(city), and there is a relation from Anarcho Punk in the middle of paths (between
the city and state), the None relation will be counted, because the music genre is not
connected to the city as we demonstrated.

Based on empirical experiments, if None has probability smaller than 92%, the
first relation found is the most likely relation that ProA calculated to be correct. If
None probability is equal to or greater than 92%, then ProA infers that there is no
relation between the vertices and, hence, there is no edge to be added in the graph
between the two entities.





Chapter 4

Experiments and Results

In order to evaluate ProA performance, we first detail the dataset over which we build
a knowledge graph. Then, we present two of the most common metrics for evaluating
prediction on KG. Last, we present our evaluation and results.

4.1 Datasets

In order to test and evaluate ProA, we use two datasets: Freebase and Wordnet.
Freebase1 was a large collaborative knowledge base that contains data mainly added
by its community members. It was an online collection of structured data harvested
from many sources, including individual, user-submitted wiki contributions. Freebase
aimed to create a global resource to allow people (and machines) to access common
information more effectively. On 16 December 2014, Knowledge Graph announced that
it would shut down Freebase over the succeeding six months and help with the move
of the data from Freebase to Wikidata, which is another Knowledge Base.

Wordnet2 [28] is a large lexical database for English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a
distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical
relations. The resulting network of meaningfully related words and concepts can be
navigated with the browser.

Following [10]3, this work evaluates the probabilistic approach sampling on the
Freebase dataset (FB15k) and WordNet dataset (WN18). They are very different in
coverage: FB15k contains mostly named entities connected through strongly typed

1http://www.freebase.com/
2https://wordnet.princeton.edu/
3A very well cited paper with over 680 citations in June, 2018.
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Table 4.1. Dataset details

Dataset Entities Relations Train Test Valid

FB15K 14,951 1,345 483,142 59,071 50,000
WN18 40,943 18 141,442 5,000 5,000

relations, whereas WN18 contains mostly common nouns connected through lexical
and semantic relations. Table 4.1 presents the dataset statistics.

The data contain relations with high variation in the number of instances – 39%
of the relations have at most 10 instances, while the most frequent relation4 has almost
16,000. This disparity is also reflected in the distribution of node degrees: 12% of the
entities have degree equal or less than 10 (appear in at most 10 instances). The average
degree of a node in FB15k is approximately 13.2 overall, and 32.4 on the training data
[20].

4.2 Evaluation Metrics and Process

As evaluation metrics, we consider Mean Reciprocal Rank (MRR) and Hits@K, which
are commonly used for link prediction [10]. The MRR is the average of the reciprocal
ranks of results for a sample of queries N . The reciprocal rank of a query response is
the inverse of the rank of the first correct answer. For example, if the correct result
is returned in the first place, its MRR is 1. If such expected result appears in second
place, its MRR is 1/2; for third place it is 1/3, and so on.

Formally, the MRR is defined by Equation 4.1.

MRR =
1

N

NX

i=1

1

ranki
, (4.1)

where ranki is the rank of the positive instance i predicted by the model with respect
to the negative samples. Table 4.2 shows an example of how MRR is calculated.

In a different perspective, Hits@K is how far the predictions are from the positive
sample. It is calculated by Equation 4.2.

Hits@K =
|{i|ranki < K}|

N
, (4.2)

The evaluation process is: select N random facts from the graph; remove the
edges connecting those entities; execute ProA between them to verify how effective the

4/award/award nominee/award nominations./award/award nomination/award nominee
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Table 4.2. MRR and Hits example. The final MRR is calculated by Equation
4.1: 1/3 ⇥ (1/2 + 1 + 1/3) = 11/18 (0.61). About Hits, the correct response was
predicted at the first place once (was_born_in) and three times at least in third
place; so Hits@1 and Hits@3 are 1/3 and 1 respectively.

Query Proposed Results Correct Response Rank Reciprocal rank

won_award hosted, won_award won_award 2 1/2
was_born_in was_born_in was_born_in 1 1
married_with was_born_in, hosted, married_with married_with 3 1/3

Table 4.3. MRR, Hits@1, Hits@3 and Hits@10 on FB15K and WN18 datasets.
The algorithms are sorted by best results in decreasing order.

MRR Hits@1 Hits@3 Hits@10
Algorithm FB15K WN18 FB15K WN18 FB15K WN18 FB15K WN18

[27] ER-MLP 0.288 0.712 0.317 0.775 - - - -
[10] TRANSE 0.380 0.454 0.231 0.089 0.472 0.823 0.641 0.934
[32] RESCAL 0.354 0.890 0.409 0.904 - - - -
[31] HOLE 0.524 0.938 0.402 0.93 0.613 0.945 0.739 0.949
[49] DISTMULT 0.654 0.938 0.546 0.728 0.733 0.914 0.824 0.936
[44] COMPLEX 0.692 0.941 0.599 0.936 0.759 0.945 0.840 0.947
[19] SIMPLE 0.727 0.942 0.660 0.939 0.773 0.944 0.838 0.947
PROA 0.706 0.483 0.563 0.304 0.861 0.701 0.962 0.703

prediction is. Then, given the results and the correct response, we evaluate how many
times an algorithm gives the correct response at K place. Table 4.2 exemplifies it as
well.

Since the probabilistic algorithm generates a list of possible facts (including the
None relation), the evaluation is based on how accurate the prediction is in terms of
MRR and Hits using Equations 4.1 and 4.2.

4.3 Results

We now proceed by presenting the results of the evaluation. The evaluation considers
ProA and each of the algorithms from the state of the art presented in Section 2.4. We
tested ProA against 2,000 facts in FB15K and WN18 with ` = 3, and the results from
other algorithms were taken from their papers.

Table 4.3 presents the results. Specifically, the columns are grouped by the met-
rics (previous section) calculated over each of the two datasets. ER-MLP and RESCAL
do not provide information about Hits@3 and Hits@10.

The resuls show that our probabilistic approach (ProA) has competitive results
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Figure 4.1. Differences in the number of paths between FB15k and WN18:
there are four paths from entity source to entity target in WN18 and 36 paths in
FK18k.

in terms of accuracy over baselines for FB15K. The main reason is dense graphs have
multiple paths between entities, and ProA learns from those and properly infers the
missing facts. Then, the Freebase dataset has an average degree of 32.4 that indicates
a high level of relation between entities, which could classify it as a dense graph.

SimplE, which is a very recent work, has the best results in terms of MRR for
FB15K and WN18 datasets. The MRR results from ProA show a small improvement
over other works but SimplE, without significant statistical difference over Complex
and DistMult. However, there is a significant improvement for Hits@3 and Hits@10
indicating that ProA often has a good precision under ranking of possible facts.

On the other hand, Wordnet has average degree of three. Then, Table 4.3 shows
that ProA does not fully learn the paths. In our complementary evaluations of this
dataset, the number of paths between two entities is often one, and then ProA cannot
properly predict based solely in one relation. Moreover, ProA has a considerable hits
rate in sparse graphs indicating that in 70% of cases, the number of facts predicted is
in the top three and top 10 results.

To better clarify such results, consider two small, actual samples from the datasets
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Table 4.4. Relation ranking generated from Figure 4.1

Ranking generated for FB15K
Relation Probability

None 0.739
/music/genre/artists 0.211
/music/artist/genre 0.049

Ranking generated for WN18
Relation Probability

None 0.682
_member_of_domain_topic 0.298
_hypernym 0.008
_hyponym 0.007
_synset_domain_topic_of 0.002
_derivationally_related_form 0.0002
_member_holonym 0.0001

with structure illustrated in Figure 4.1 and relations with probabilities in Table 4.4.
Clearly, FB15k has more paths than WN18 (an overall feature that is true for the
whole dataset). In this specific example, FB18k has 32 more paths between source and
target entities than WN18. As already mentioned, ProA takes advantage of paths in
the graph; hence, for sparse graphs as WN18 in this example, the task becomes much
more difficult.

Specifically, for WN18, the right relation to be predicted is _member_holonym.
However, according to Table 4.4, for ProA _member_holonym is at seventh place with
a very low probability. For FB15k, ProA correctly predicts /music/genre/artists
relation with high probability. Moreover, once again, even having None with more
probability than other relations, ProA learns that such a relation is only considered
when it has probability larger than 0.92.

In a different perspective over the same example, in terms of MRR and Hits@K,
ProA gets 1.0 in MRR for FB15k, because the first relation in the ranking is the desired
one. Likewise, Hits@1, Hits@3 and Hits@10 also get 1.0. However, in WN18, the MRR
is 0.166, Hits@1 is 0, Hits@3 is 0, and Hits@10 is 1; because the desired relation is at
seventh place.

Overall, ProA works well with dense Knowledge Graphs (such as Freebase) be-
cause it requires a certain amount of paths to generate the paths probability distribu-
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tion. For KGs with less paths between entities, the probabilistic algorithm could not
learn properly and then the prediction is reasonable. Wordnet is an example of sparse
Knowledge Graph, which means there is a few number of paths between nodes, making
it difficult for ProA.





Chapter 5

Conclusion

This work presents ProA, a probabilistic algorithm to predict missing facts in Knowl-
edge Graphs. The approach generates probability distributions over paths between
entities and predicts missing facts. In ProA, the paths are exploited to create a proba-
bilistic model that can capture rich interactions in relational data. Since other predict-
ing algorithms present complex mathematical calculations and generally a considerable
space/time complexity, ProA takes advantage of the current topological state of the
graph to predict missing relations with a good accuracy.

Our experimental evaluation shows ProA provides a good performance against
the state-of-the-art, specially in dense graphs, then solving a complex problem as link
prediction. Moreover, ProA is available on GitHub1 and it is easy to use. Intuitively,
user can setup a Knowledge Graph dataset as input and define parameters such as the
most allowed length of paths, and then ProA predicts every possible fact.

As future work, we plan to further exploit the probability distribution over sparse
graphs and apply ProA to complex networks, as the topological structure is important.
A related idea is to explore the presence of relations None and correlate it with the
concept of dull nodes as proposed in [41].

Also, there are runtime improvements to be done in ProA such as applying dy-
namic programming to avoid recalculating the probability already calculated. It is
also necessary to investigate how to improve results in sparse graphs. Moreover, an
interesting topic is applying ProA not only for link prediction but for other important
task over Knowledge Graphs such as entity recognition.

1https://github.com/andrehigher/proa
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