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Resumo

Neste trabalho, apresentamos diversos resultados relacionados ao comportamento assin-

totico de solugdes de equagoes do tipo Schrodinger.

Para o caso classico (e do tipo focusing) da equagdo de Schridinger nao-linear (NLS),
descrevemos as solugoes no limiar massa-energia, tanto no caso intercritico quanto no caso
H'-critico. O comportamento dessas solucoes é completamente classificado, mostrando
que ha uma certa rigidez quanto aos tipos de solucado possiveis nesse regime. No contexto
H!-critico, estendemos o trabalho de Duyckaerts e Merle [24] para dimensdes N > 6
(c.f. Li e Zhang [63] para uma abordagem diferente), e no caso intercritico, o trabalho de

Duyckaerts e Roudenko [25].

Para a equacao de Schridinger nao-linear e nao-homogénea (INLS), apresentamos uma
prova do scattering (espalhamento) abaixo do ground state (estado estacionério), adaptando
a abordagem de Dodson e Murphy [22] para a INLS, bem como estendendo resultados

anteriores de Farah e Guzmén [31, 30].

Discutimos também o comportamento de solugoes da INLS que estao acima do limiar
massa-energia. Exibimos um cenario em que ha uma dicotomia entre scattering e blow-up
(explosao), além de provar diferentes critérios de blow-up. Estendemos, assim, o trabalho

de Duyckaerts e Roudenko [26] para a INLS.

Palavras-chave: Equagoes nao-lineares do tipo Schridinger; Comportamento global;

Espalhamento (scattering); Explosao (blow-up).






Abstract

We show several results regarding long-time behavior of solutions to Schrodinger-type

equations.

For the focusing (classical) nonlinear Schrodinger (NLS) equation, we study solutions at
the mass-energy threshold in the intercritical and energy-critical setting. We completely
identify and classify the behavior of such solutions, showing that there is some rigidity in
this regime. In the energy-critical setting, we extend the works of Duyckaerts and Merle
[24] to dimensions N > 6 (see also Li and Zhang [63] for a different approach), and in the

intercritical range, we extend the work of Duyckaerts and Roudenko [25].

For the focusing inhomogeneous nonlinear Schrodinger (INLS) equation, we present a
proof of scattering below the ground state, adapting the approach of Dodson and Murphy
[22] to the INLS, and extending the previous results of Farah and Guzman [31, 30].

We also discuss the behavior of solutions to the INLS that are above the mass-energy
threshold. We give a dichotomy between scattering and blow-up in this scenario, and also
some blow-up criteria. This chapter extends the works of Duyckaerts and Roudenko [26]

to the INLS equation.

Keywords: Nonlinear Schrodinger-type equations; Global behavior; Scattering; Blow-up.
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1 Introduction

In this work, we consider the Cauchy problem for nonlinear Schrédinger-type equations

iug + Au+ F(x,u) =0,
(1.0.1)

u(z,0) = up(x),

where u : RY x R — C, N > 1.

If F has the form F(z,u) = plu[P~'u, with g € {+1, —1}, the initial-value problem

iug + Au + pluP~tu =0,
(1.0.2)

u(z,0) = up(x)

is called the (classic) nonlinear Schrodinger equation (NLS). If 4 = 41, the problem is
called focusing, and if yp = —1, it is called defocusing. The global behavior of focusing
and defocusing equations can be very different, and we are mainly interested here in the
focusing case. Unless specified otherwise, we assume p = +1 in equation (1.0.2) throughout

all the text.

Different versions of (1.0.1) are obtained as models in physics, as in the Hartree-type
equation:

iy 4+ Au+ (2] N s jufP)|uP~2u = 0,
which models boson systems interacting via a non-local potential of convolution type, see

Ginibre and Velo [43] and Hepp [49]. One also has examples in optics, in the form

iy + Au+ V(x)|ulPtu = 0.

In this case, the potential V' (z) is proportional to the electronic density of the medium.
We refer to the works of Gill [41] and Liu and Tripathi [68] for a physical point of view.

The particular case V(z) = |z|™° appears naturally as a limit case of potentials V() that

19



Chapter 1. Introduction 20

decay at infinity as |z|™° (Genoud and Stuart [39]), and will be called inhomogeneous

non-linear Schrodinger equation (INLS):

iy + Au A+ [z ufP~tu = 0, (1.0.3)

u(z,0) = ug(x)

We are interested in L?-supercritical and H'-subcritical (or simply intercritical) case

4-2b 1+ 3%, N>3
1+ <p< N=2
~+00, N <2,
as well as in the energy-critical case
4 —2b
=1 + ﬁ, N Z 3,

for 0 < b < min{N, 2}.

The classic case (NLS) has been extensively studied in the past decades. For a textbook
treatment, we refer the reader to the works of Sulem-Sulem [80], Bourgain [10], Cazenave

[13], Linares-Ponce [65], Fibich [32], Tao [83] and the references therein.

The INLS model has received more attention recently (see for instance, [19], [38], [29], [18],
[48], [31], [30]).

Structure of this work

In the next chapter, we review the common background necessary to this work.

In Chapter 3, we present a proof of scattering below the ground state, adapting the
approach of Dodson and Murphy [22] to the INLS (1.0.3), and extending the previous
results of Farah and Guzman [31, 30].

Chapter 4 is devoted to describing solutions at the mass-energy threshold for the NLS
(1.0.2). We completely classify the behavior of solutions in the intercritical and energy-

critical setting, extending the works of Duyckaerts and Merle [24] to dimensions N > 6
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(see also Li and Zhang [63]), and of Duyckaerts and Roudenko [25] to all the intercritical

range.

In Chapter 5, we discuss the behavior of solutions to the INLS that are above the mass-
energy threshold. We give a dichotomy between scattering and blow-up in this scenario, and
also some blow-up criteria. This chapter extends the works of Duyckaerts and Roudenko

[26] to the INLS equation.

Finally, in Chapter 6, we list possible future research directions related to this work.



Chapter 1.

Introduction
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2 Preliminaries

In this chapter, we give some definitions and basic estimates, that are used in the subsequent

chapters, and review the state-of-the-art.

2.1 Notation

We denote by p’ the Holder conjugate of p > 1. We use X <Y to denote X < CY, where
the constant C' only depends on the parameters (such as N, p and b) and exponents, but
never on the solution u or on t. The notations a* and a~ denote, respectively, a + 1 and
a —n, for a fixed 0 < n < 1. We use p* to denote the critical exponent of the Sobolev
embedding H'(RY) — LP"(RY), that is, p* = 2N/(N — 2) if N > 2, and p* = +oo if
N <2.

Schwartz functions and tempered distributions

We define the Schwartz space of rapidly decaying functions as
SRY) = {f :RY — C :sup|z®0°f(z)| < oo for all a, f € Zgo},
and the space of tempered distributions as the linear functionals that satisfy

S'(RY) = {T € L(SRM),C) : T(f,) — 0 if sup |220” f,,(x)| — 0 for all a, B € ZQZO} :

23
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The Fourier transform

We denote the Fourier transform of f € S(RY) as

f&) = [e = f(a) da.

If 1 < p < 2, the Fourier transform ” : L? — L¥ is defined, by density, as the natural

extension of the previous definition.

Sobolev Spaces

For s > 0 and p > 1, we define the homogeneous Sobolev space s (RY) as the completion

of S(RY) with the norm

||f||Wsm(RN) = || D* fll oy,

—
S

where D*f(€) := |[€]°f(€) is the inverse Riesz potential of order s. The inhomogeneous
space W#P(RY) is defined as the completion of S(RY) with the norm

1F lwsrery = 11 = D)2 f|| o),

where [(1 — A)*/2f]M€) := (1 + |€]2)*/2f(€) is the Bessel potential of order s. If p = 2, we
denote W#2(RN) = H*(RY) and W**(RYN) = H*(RV).

Mixed Lebesgue spaces
Let 1 < ¢,r < 400 and I C R. We define the L1L! spaces as

1tz = {75 TR o €l o= ([ Ul )}

If I =R, we will denote LIL" as L{L". The mixed Lebesgue/Sobolev spaces LIWE™ are

defined analogously.
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The free Schrodinger operator

For t € R, we define the (free) Schrodinger operator €2 as
[ 2L1NE) = et (©).
If f e H*(RY), then u(z,t) = 2 f(z) satisfies the (linear) Schrodinger equation

10+ Au = 0,

u(z,0) = f(z)

2.2 Useful inequalities

We now present some lemmas that will be heavily used in the next chapters.

2.2.1 Smoothness and integrability

The next lemmas show that smoothness can be exchanged into integrability on higher L

norms. Let us start with a definition.

Definition 2.2.1. For 0 < o < N, the Riesz potential of order « is defined as
f)
I.f(z) = /76@.
) |z —y|Ve

The next lemma shows that [, is bounded on some LP spaces.

Lemma 2.2.2 (Hardy-Littlewood-Sobolev, see Stein [77, p. 119, Theorem 1]). Let 0 <
a<Nand1l <p,q<oo. If

then

Mo flla@ny S I1f oy
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The Hardy-Littlewood-Sobolev lemma can be used, among other applications, to prove

the Sobolev inequality:

Lemma 2.2.3 (Sobolev inequality, see Stein [77, p. 124, Theorem 2]). If0 < p— 0o < N,

l<g<p<oo, and

then the following estimate holds

I D7ull Loy < [1DPul| Loy

If one works with radial H' functions, then it is possible to show some localization.

Lemma 2.2.4 (Strauss [78]). If f € H ,(RY), N > 2, then, for any R > 0,

S
11z, oy S 2 f Nl ey (2.2.1)

As an immediate corollary, we get

Corollary 2.2.5. If f € H! ,(RY), N > 2 and p > 1, then, for any R > 0,

p+1 WN-1)(p—1) 1)(? 1) p+1
AW S B LI vy
One can also use complex interpolation to allow embedding into inhomogeneous spaces.

This gives rise to the Gagliardo-Nirenberg-Sobolev inequalities, whose proof was given

independently by Gagliardo [34] and Nirenberg [73].

Lemma 2.2.6 (Gagliardo-Nirenberg-Sobolev). Let 1 < p,q,r < 00, j,m € Z>o, j < m,
j/m <0 <1 and suppose that the following cases do not hold:

j =0, 0=1,
rm < N, and 1 <r<oo,
q = X m—j— % 1S a non-negative integer,

then

IDullze < D™l 7l 12",
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where
1 1 m 1
——==0(--—= 1-6)-.
p N (7‘ N> + )q
In particular, we often make use of the following case, valid for 1 <p <1+4/(N —2) if

N>3 forl<p<xif N=2 andforl1 <p<o0if N=1:

(N=2)(p—1)

—1) 9
1A < Ol V2™ Il (2.2.2)

N(p
2

for which, for instance, the best constant C'y,, is known and plays a crucial role on classifying

the long-time behavior for the NLS. We postpone this discussion to the subsequent sections.

Tailored for the INLS (1.0.3), there is also a weighted version of (2.2.2), proved by Genoud
[38] for p =1+ (4 — 2b)/N and posteriorly generalized by Farah [29]:

N—2)(p—1)+2b

2) 27( 2
11172 : (2.2.3)

b ) N(p—1)+2b
J1al P4 < CoglIVF e

The inequality holds for 1+ (4 —2b)/N <p <1+ (4—2b)/(N —2) if N > 3, and for
1+ (4—-2b)/N <p< +ooif N <2.1In any case, b is allowed to belong to the interval
(0, min{2, N}).

There is also another way to spend smoothness: to get rid of a singularity. This is the

essence of the so-called Hardy (or Hardy-Sobolev) inequalities, as in the following lemma.

Lemma 2.2.7 (Hardy inequality, see Kufner and Opic [59]). Let 1 < r < N. If f €

WL (RN), then
/Nﬂr > (N—r>’” /1"

r |z

2.2.2 Acquiring smoothness

The uncertainty principle allows us to spend derivatives to get higher integrability, but
forbids the converse. However, the dispersive nature of the NLS-type equations causes
some regularity gain, due to the linear operator e”*?. This smoothing effect is exploited in
the so-called Strichartz estimates. They were first proved in the NLS context by Strichartz
[79], later extended to the (possible) endpoints by Keel and Tao [54], and generalized by

Kato [53] and Foschi [33] in the inhomogeneous case. To state the estimates, we first define
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admissibility and acceptability.

Definition 2.2.8. If N > 1 and s € (—1,1), the pair (¢,r) is called H*-admissible if it

satisfies the condition

S, 2.24
. (2.2.4)

2_N N
2 T

where
2 S q’r S m? and (q7/r7 N) # (2’ OO7 2)'
In particular, if s = 0, we say that the pair is L2-admissible.
Definition 2.2.9. If N > 1, the pair (g, r) is called acceptable if
2 1 1
- < N( — > , or (q,r)=(00,2).
q 2 7
Remark 2.2.10. For s € (—1,1), every H*-admissible pair is acceptable.
In this work, we use the following versions of the Strichartz estimates:

Lemma 2.2.11 (Homogeneous Strichartz estimates, see Cazenave [13], Strichartz [79],

Keel and Tao [54]). Let s € [0,1). If (¢,7) is an H*-admissible pair, then

€2 flpacy S 111

s (2.2.5)

Lemma 2.2.12 (Kato-Strichartz inequalities, see Cazenave [13], Kato [53], Foschi [33],
Keel and Tao [54]). Let N > 1 and 1 < ¢;,1; < 00, @ = 1,2. If the pairs (q1,71) and (g2, 72)

are acceptable, satisfy

and:
o [f N =2, we require that ry,r9 < +00,
o [f N > 2, we consider two subcases

— non sharp case:
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r

— sharp case:
1 1
= =1,
. q2
N-2 N N-2 N
A1 Ty’ 1 Ty’
1 1 1

Then the following estimate holds

(tSAF<)d8 (tsAF()dS

SUFl g g (226)
t x

s>t Lt Ly s<t LMLy

Remark 2.2.13. In particular, for s € (0,1), if (¢, 1) is H*-admissible, (g, 75) is H -

admissible, and we have, for 1 = 1,2,

2N 2N i N > 2,

00, it N <2,

then estimate (2.2.6) holds. Note that we do not have all endpoints available and, in
practical applications, we have to restrict ourselves to a closed subset of acceptable pairs.
That usually does not pose a problem, since any reasonable argument usually requires

only a finite number of pairs.

2.2.3 Fractional calculus

We often deal with fractional derivatives of products and compositions of functions.
Remarkably, the fractional calculus enjoys rules akin to the product and chain rules for

smooth functions, as we state in the next lemmas.

Lemma 2.2.14 (Leibniz rule, see Grafakos and Seungli [45] and Kenig, Ponce and Vega
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56]). Let s € (0,1), py.q; € (1, 00), with =

"
bj

+ qij, j=1,2. Then
HDs(fg)HLP(RN) S (HDsf”Lpl(RN)HgHqu(RN) + HfHLp2(]RN)||Dsg||Lq2(RN)) . (2.2.7)

Lemma 2.2.15 (Fractional chain rule for C' functions, see Christ and Weinstein [16]).

Suppose F € C*, s € (0,1], and 1 < p,p1,ps < o0 are such that ;1) = p% + p%. Then

ID*F(u)lle < [F ()l zor eyl o2 @)

If one does not have F' € C', but only Hélder continuous (such as F(u) = |ul[P~u, for
1 < p < 2), we still have a chain rule, given that the order of the derivative is lower than

the Holder order:

Lemma 2.2.16 (Fractional chain rule for Hélder continuous functions, see Visan [85]).
Let F' be a Holder continuous function of order 0 < a < 1. Then, for every 0 < s < «,

I<p<oo,and 2 <v <1 we have

s

1D°F (u)| ooy S [lful*>

1 (RN)HDVU'HE (228)

70 (RN)

. 1 _ 1 1 _ s
provided = T m and (1 m)pl > 1.

2.3 Symmetries, conserved quantities and a mono-

tonicity formula

Equations of Schrodinger type can be seen as infinite-dimensional Hamiltonian systems.
As such, invariances of the Hamiltonian give rise to conserved quantities. At the H* level,
the following conserved quantities for the NLS (1.0.2) and INLS (1.0.2) are of interest to

us.

The mass:

M(u(t) = [ Ju(t)? = M(us),
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the energy:
Bu(t) = 5 [1Vu)P — = [ el ()P = Ew)
2 p+1 ’
and, only in the NLS (1.0.2) case, the linear momentum:

PW@»:Jm/a@VMﬂ:PWQ

The NLS and the INLS equations also present several symmetries. If u is a solution to the

NLS (1.0.2), then also are:

(a) vi(z,t) = ArTu(Az, \%), A > 0 (scaling),

(b) va(x,t) = u(x,t+ty), to € R (time translation),

(c) v3(z,t) = eu(z,t), Oy € [0,2m) (phase),

(d) vy(zx,t) = u(x,—t) (time-reversal),

(e) vs(z,t) = u(x + o, 1), o € RY (spatial translation),

(f) vg(z,t) = e v=illPly(z 4 vt t), v € RN (Galilean invariance).
The INLS equation (1.0.3), in turn, presents the following symmetries:

(a) vz, t) = ArTu(Az, A\2t), A > 0 (scaling),

(b) va(x,t) = u(z,t+ ty), to € R (time translation),

(c) vy, t) = eu(x,t), Oy € [0,27) (phase),

(d) v4(z,t) = u(z, —t) (time reversal).

Note that the space inhomogeneity causes the symmetries (e) and (f) to be broken in the

INLS (1.0.3).

Besides the conserved quantities and symmetries, there is also an important tool on
studying the long-time behavior of solutions, called the Virial identity. 1t is used in the
works of Vlasov-Petrischev-Talanov [86], Zakharov|90] and Glassey [44] to show the blow-up
phenomenon to the NLS in the focusing case. A more general version of the Virial identity

was adapted by Morawetz [72], in the context of wave equation, to show scattering (see
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Section 2.5). The argument of Morawetz was adapted to the NLS by Lin and Strauss [64].
Both arguments are a particular case of a more general principle, which can be stated

using the following definitions and identities.

Definition 2.3.1. If u is a solution to (1.0.2) or (1.0.3), we define the Virial quantity

associated to the weight a as

and the Morawetz action as

Zy(t) = ZIm/Va(:U) -Vu(z, t)u(z, t)dx.

Using the associated PDE, we have the following identities (see, for example, Glassey [44]
and Farah [29]).

Valt) = Za(t), (2.3.1)
and
ZNt) =2 — 4 ,u/\:v[’b\u(x )P Aa dw
a p+ 1 Y
_ Aub / 2|72 u(z, ) [P e - Vada (2.3.2)
) , 3.

—/|u(x,t)|2A2a+4ReZ/8i2jaij 0;u 0;u.
]

In particular, for the NLS, if we take

e a(x) = |z|*, we have Va = 2z, Aa = 2N, A’a = 0 and J};a = 20;;. Therefore,

Zi(t) =8 V Vul? - (J;[ - pj+V1> nf |u|p+11

— 4Blu] — LN~ 1)~ 4] [ .

In the focusing case, as = +1, we see that, if p > 1 4+ 4/N, an initial condition with
negative energy and that decays rapidly enough in space cannot exist for all positive

times. Indeed, the quantity V,(¢) is non-negative, and must lie below the graph of an
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inverted parabola. This is known as the convexity argument (see, for example, [44]) to

prove blow-up.

e a(x) = |x|, we have

2 2u(N-1)(p-1) Pt
/|WU| :u |u| f/]u|2A2|x],
|z p+1 4

where V := V — |x| (| | V) denotes the angular gradient of u. Using the fact that the

distribution A?|z| < 0 if N > 3, we have, in the case u = —1 (defocusing):

WU ulz p+1
JRA At ey L ' d S sup [[u(t)]17:
|37| t

This information about u around the origin is used to prove scattering in the defocusing

case (see Lin and Strauss [64]).

In particular, both methods above rely on some kind of monotonicity to prove the desired
results. Monotonicity-based proofs are a fundamental tool in the context of dispersive

equations, and have been widely used in the last years.

2.4 Local theory

We now review the local well-posedness theory for the NLS (1.0.2) and INLS (1.0.3).

Definition 2.4.1. By local well-posedness in a Sobolev space S, we mean that for every
ug € S, there exists 7' > 0, a subspace X of C ([-T;T];S) and a unique function u such
that

1. w is a solution,
2. ue X,
3. the solution depends continuousy on the initial data.

The precise definition of solution and the spaces S and X will be given in the next

subsection for each equation.

The Sobolev index in which the H® norm is invariant is given by scaling. Indeed, if u(x, t)
is a solution to NLS or INLS with initial data ¢, then uy(x,t) = /\z%?u()\x, A?t) is also a

solution, with initial data ¢,(x) = A1 #(Az). Computing the homogeneous H® norm:
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I6all e = X~ (F=350) g

Hs-

The Sobolev index that lets the H* norm invariant is called the critical indez, and it is
given by
N 2-b

Sc 1= — — ——

2 p-—1
4-2b 4-2b
Note that s, =0 <= p=1+ 5" and s, =1 <= p =1+ =, N > 3. One can then
classify the NLS and INLS problems. If

e 5. < 0, the problems are called mass-subcritical or L?-subcritical,

e s, = 0, the problems are called mass-critical or L*-critical,

0 < s. < 1, the problems are called intercritical,
e s, = 1, the problems are called energy-critical or H'-critical,
e 5. > 1, the problems are called energy-supercritical or H'-supercritical.

In this work, we are interested in the intercritical case for the NLS and INLS, and in the
energy-critical case for the NLS. As for the energy-critical INLS, the local well-posedness in
H' is still an open problem, although Lee and Seo [62] claim to have solved it on weighted

spaces.

2.4.1 Intercritical NLS and INLS

Let us start with the NLS. The Cauchy problem for the intercritical NLS was studied
by Ginibre and Velo [42]. They showed that, for initial data ug € H'(RY), there exists a
non-empty interval I, whose size depends on the norm ||ug|| g1, and a unique local-in-time

solution u : RY x I — C.

By solution here, we mean that u belongs to CPHY(RYN x J) N LIWLE(RY x J) for any
L?-admissible pair (q,r) (c.f. Section 2.2.2) and for every compact J C I, and satisfies the

Duhamel formula

. t
u(t) = e ug +/ =8 P~y (s) ds
0

for all t € I. Moreover, it is known that the map ug — wu is uniformly continuous in both
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CYH} and L{W}" norms.

For the case b > 0, Genoud and Stuart [39] proved that the intercritical INLS is locally
well-posed in HY(RY), N > 1 for 0 < b < min{2, N'}, in the sense of distributions. That is,
they showed that the solution belongs to CY HX(RN x I) N CHH (RN x I). More recently,
Guzman [48] established the local well-posedness of (1.0.3) based on Strichartz estimates.

In particular, defining

IN

3

w|z

?

N
b* =
N

o
Vv

4,

he proved that, for N > 2 and 0 < b < b*, the initial value problem (1.0.3) is locally
well-posed in H*(RY). Dinh [20] extended Guzman’s results in dimension N = 3 for
0<b<3and 1+ 22 <p< 32 Note that, in the results of Guzman [48] and Dinh
[20], the ranges of b are more restricted than those in the results of Genoud and Stuart
[39] (mainly due to the natural restrictions on Sobolev embeddings). However, Guzman
and Dinh give more detailed information on the solutions, showing that there exists a

nonempty interval I, whose size depends on ||ug||g1, such that u € LWL (RY x J), for

any L?-admissible pair (¢,r) and every compact J C 1.

2.4.2 Energy-critical NLS

In the energy-critical case, the Cauchy problem for (1.0.2) was studied by Cazenave
and Weissler [14] and Tao and Visan [84]. For initial data uy € H', there exists a non-
empty interval / and a unique local-in-time solution u : RV x I — C that belongs to
COHLRYN x J) N LT/ WN=2(RN ) for every compact J C I. The map from the
initial data to the solution is also uniformly continuous and the solution satisfies the

corresponding Duhamel formula.

In this case, the size of the interval I does not depend only on the norm |Jug|| 51, but on ug
itself. That is, different initial data with the same norm may have a very different maximal
interval of existence. Indeed, for any A > 0, since the H! norm is invariant by scaling, if
the maximal time of existence of the initial data ug is the interval (=7, T'), the maximal
interval of existence of ug »(z) = AT ug(Az), is (=T/A, T/)), although all have the same

norm.
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Note that, since ug belongs to the homogeneous Sobolev space H', it does not necessarily
has a finite mass. Also, its linear momentum may not be defined. Nevertheless, if these
quantities are defined for the initial data, then they are defined on the interval of existence

of the solution, and are conserved by the NLS flow.

2.5 Finite-time blowup and scattering

We say that a solution to NLS (1.0.2) or INLS (1.0.3) blows up in finite positive time
T > 0 if it is defined on [0,T") and

lull s¢zse o,y = 00

Blowup in finite negative time is defined analogously.

Solutions defined in, at least, one half-line can also exhibit a scattering behavior. We
say that a solution to NLS or INLS scatters forward in time in H'(RY) if there exists
u, € H'(RY) such that

lim [Ju(t) — e™®uy ||z = 0. (2.5.1)

t——+o0

In the energy-critical case for the NLS, the definition is the same, except that the H'(RN)

norm is used instead. Scattering backward in time is defined analogously.

The S(H*) norm also plays a role in the scattering theory (see Kenig and Merle [55],
Holmer and Roudenko [51], Cazenave [12], Farah and Guzmén [31]): one can prove that
spacetime bounds are a sufficient condition for scattering. Namely, solutions to either NLS

or INLS on [0, +00) that are uniformly bounded in H! scatter forward in time if
||u||S(HSC,[O,+oo)) < +o0.

In this case, it is a standard procedure to show that, if F'(u) is the corresponding nonlinearity,
then

Uy = Uy + 1 /OO e A F(u(s)) ds
0

is well-defined and (2.5.1) holds.
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2.6 Ground states, standing waves and the mass-energy

threshold

Besides between finite-time blowup and scattering, there is the concept of standing waves.

Consider the elliptic equation

A — (1= s) + [P~ 1 = 0. (2.6.1)

It is known that, for 0 < s. < 1, this equation admits a unique radial, positive solution in
H'(RY), which we call ground state and denote by Q = Q, x (see Strauss [78], Berestycki
and Lions [7] and Kwong [60]). If @ solves (2.6.1), then the standing wave

u(z,t) = e"Q(x)

is a solution to NLS (1.0.2) that neither blows up in finite time, nor scatters, in any time
direction. If s. = 1, since the equation (2.6.1) is invariant by scaling, the radial, positive

solution to (2.6.1) is not unique. An explicit solution is given by

1

T (1+ N(‘zxvl;))%.

This solution is commonly denoted by W, and we shall often do so.

A simple calculation shows that W € H'(RY) for any N > 3, and that W e L?>(RY) if,
and only if, N > 5. As its subcritical counterpart, the static solution u(z,t) = W(z) to

NLS neither blows up in finite time, nor scatters, in any time direction.

Also, the following Pohozaev identities follow from (2.6.1):

/ or+ = =3 1var

/’Q‘Z N) 22 /|VQ|2 if 0 <s.<1.

(2.6.2)

Remark 2.6.1. The choice of the constant (1 — s.) in (2.6.1) is only for convenience. If

0 < s. < 1, we can modify @ and replace (1 — s.) by any positive constant by scaling.
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Similarly, if s, = 1, the choice of @ oN N = W is arbitrary, and we could have used
any rescaled version of W. Since we always state our results up to scaling (among other

symmetries) or using scale-invariant quantities, there is no loss on generality.

The works of Weinstein [88], in the case 0 < s. < 1, and of Aubin [4] and Talenti [81], for

s. = 1, give the characterization of the ground state as the minimizer of

N(p—1) (N=2)(p—1)

—5 2- 2
1A < Cnpl VAT 11N , (2.6.3)

N-=-2

with equality if, and only if, f(x) = e Q(z+1¢),if 0 < s. < 1 or f(x) = eieoAjW(on+
o), if s. = 1, for some 6 € [0,27), xg € RY and Ay > 0. Here, Ciy, is the sharp constant

of inequality (2.6.3), also seen in Section 2.2.1.

In the INLS case, consider the elliptic problem
D) — ¢+ 2] ol 16 = 0.

The existence of a unique radial, positive solution Q = @, v, in H'(RY) was proved in
Genoud [35, 36], and Genoud and Stuart [39], while uniqueness was handled in Yanagida [89]

and Genoud [37]. Existence and uniqueness hold for N > 1, s, < 1 and 0 < b < min{2, N}.

Moreover, the ground state for the INLS satisfies the following corresponding Pohozaev’s

identities (see relations (1.9)-(1.10) in Farah [29])

2 1
[ el iQp de = 22wl
and
4= (N=-2)(p+1)—2b
Jler="=5, "0 ] Iver (264

In [29], Farah proved the sharp Gagliardo-Nirenberg inequality for the INLS (also discussed
in Section 2.2.1), valid for 0 < s, < 1 and 0 < b < min{2, N'}

2 (N72)(;2771)+2b

N(p—1)+2b
[ e U@ e < Conl 9 Iy I gy © (2.6.5)

with equality if, and only if, f(x) = e®Q(x), for some 6y € [0,27). Note the absence
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of the translation parameter here, due to the fact that the corresponding symmetry is
broken. This inequality can be seen as an extension to the case b > 0 of the classical
Gagliardo-Nirenberg inequality. It is also an extension of the inequality obtained by Genoud

[38], who showed its validity for p = 1+ 52

The ground state is also associated with the threshold for a dichotomy between finite-time
blow-up and scattering. The behavior of solutions with E(uy) < E(W') was studied first by
Kenig and Merle [55] for radial solutions in the energy-critical setting, and N = 3, 4 and
5. Later, Killip and Visan [57] extended the result for N > 5, without assuming radiality.

We summarize their results in the following theorem.

Theorem 2.6.2. Let u be a solution to (1.0.2) such that E(ug) < E(W). If N =3 or 4,

assume also that u is radial. Then, exactly one of the following alternatives hold.

o If||Vug|rz < ||[VW/||Lz2, then u is defined for all positive and negative times. Moreover,

u scatters in both time directions.

o If||Vugllzz > [[VW]||L2 and either u is radial and has finite mass or |x|ug € L*(RY),

then u blows up in finite positive and negative times.

Note that ||Vugl||z2 and E(ug) are scale-invariant quantities if s, = 1. In the intercritical
setting, consider the following scale-invariant conserved quantity, introduced by Holmer

and Roudenko [50],
ME(u(t)) = M(u(t))' > E(u(t))* = ME(up), (2.6.6)
and the scaling invariant, but not necessarily conserved quantity

ME(u(t)) = [luoll 2% Vu(®) [ 32-

Holmer and Roudenko [51] in the 3d cubic radial case, later being joined by Duyckaerts [27]
and removing the radial assumption, adapted the Kenig-Merle concentration-compactness
approach [55] to prove scattering. Fang, Xie and Cazenave [28] and Guevara [47] (see also
Guevara and Carreon [46]) extended the result to all intercritical ranges and dimensions.
The blow-up versus global existence part of Theorem 2.6.3 below was proved by Holmer

and Roudenko in [50] Their result is summarized as follows.
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Theorem 2.6.3. For 0 < s, < 1, let u be a solution to (1.0.2) such that ME(uy) <
ME(Q). Then we have the following alternatives.

o If MK(up) < MK(Q), then u is defined for all positive and negative times. Moreover,

u scatters in both time directions.

o If MK(ug) > MK(Q) and either u is radial or |z|ug € L*(RY), then u blows up in

finite positive and negative times.

This dichotomy does not hold above the ground state mass-energy threshold. In [52], blow-
up criteria that included solutions above the mass-energy threshold In [26], Duyckaerts
and Roudenko showed, for 0 < s. < 1, the existence of solutions to NLS that are above the
threshold and that scatter in one time direction and blow up in finite time in the other time
direction. In fact, they showed that it suffices to multiply the ground state by a quadratic
phase to produce such result. In the same paper, they proved a dichotomy-type result if
one has a restriction on the mass-energy, provided certain conditions on the variance of

the initial data are satisfied.

Recently, another method to prove scattering in the intercritical case for N > 2 was
developed by Dodson and Murphy [22, 23], based on Morawetz estimates instead of
concentration-compactness. Their method requires much less machinery than using profile
decomposition, but it gives slightly weaker space-time bounds (see [23]). This approach
has proven to be versatile, as it extends to other equations, such as the INLS, which we
discuss in Chapter 3 (see the work of the author [11]) and the Hartree-type equation in
Arora [2]. Due to the slow decay in time of solutions to the linear problem, extending
this result to the lower-dimensional case is harder, although a very recent result by Arora,

Dodson and Murphy [3] proves it in the radial case for N = 2.



3 A new proof of scattering for the INLS
below the threshold

3.1 Introduction

The argument of Farah and Guzmén to prove scattering for the radial INLS (1.0.3) is
based on the concentration-compactness-rigidity method introduced by Kenig and Merle
[55] for the energy-critical case, which was adapted to an intercritical case (3d cubic) of
the NLS by Holmer and Roudenko [51]. Recently, Dodson and Murphy [3] revisited this
result, but using a different approach, with a scattering criterion proved by Tao [82] and a

Virial/Morawetz estimate.

Tao’s scattering criterion and Dodson-Murphy’s approach for the

radial NLS

The method used by Dodson and Murphy to prove scattering to the radial NLS is based on
Ogawa and Tsutsumi’s [74] argument, by combining the weights a(x) = |z|? and a(x) = |z|
in order to establish control of the solution on large balls around the origin. Dodson and

Murphy used the following scattering criterion.

Theorem 3.1.1 (Scattering criterion). Let N = p = 3. Let u be a radial solution in
HY(RY) to (1.0.2) defined on [0, +0o0) and assume the a priori bound

sup |[u(t)||;n = E < +o0.
te[0,+00) v

There exist constants R > 0 and € > 0 depending only on E (but never on u ort) such
that, if

lim inf lu(z,t)*dor < €, (3.1.1)
t—=+oco JB(0,R)

41



Chapter 3. A new proof of scattering for the INLS below the threshold 42

then there exists a function u, € H'(R®) such that

itA

lim Hu(t)—e u+‘

=0
t—>+o0 H1(R3) ’

that is, u scatters forward in time in H'(R?).

According to this criterion, it is enough to ensure that the mass escapes from a large ball
around the origin to guarantee scattering. Relying on Virial/Morawetz-type inequalities,
and on the compact embedding H}, ,(R3) < LP(R3), for 2 < p < 6, Dodson and Murphy
proved that, if ME[up] < 1 and MKJ[ug] < 1, then, for R large enough,

t)*d dt<— —
T/ /|:E|<R “ | v NT+R2

This inequality is enough to establish the bound (3.1.1), therefore, proving scattering.
Note that this result was already known, but the previous proofs are based on the Kenig-
Merle’s concentration-compactness-rigidity method which, albeit powerful, requires a lot

of machinery to be applied.

We show here that the method used by Dodson and Murphy can be adapted to the INLS.
Naturally, Tao’s scattering criterion, which is a crucial part of the argument, has to be
proved for this different nonlinearity. Due to the nature of the potential |z|~, the proof of
the criterion has to be carefully adapted, avoiding the use of Sobolev embeddings (which
may worsen the singularity at the origin). To this end, we prove a different Strichartz-type
estimate, which we call local-in-time. All the proofs here extend immediately to the case

b = 0, and therefore, we include it in the statement of the theorems.

Theorem 3.1.2 (Scattering criterion). Let N > 2, 1+ 52 <p <1+ 32 and 0 < b < 2.
Consider a spherically symmetric H'(RY) solution u to (1.0.3) deﬁned on [0,4+00) and

assume the a priori bound

sup Ju(t)||;n = £ < 4o00. (3.1.2)
t€[0,4-00) v

There exist constants R > 0 and € > 0 depending only on E, N, p and b (but never on u
or t) such that if

lim inf lu(z,t)]?de < €, (3.1.3)
t——+oo B(0,R)
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then there exists a function uy € H'(RY) such that

=0,

lim Hu(t) - e“Aqu‘ HiEn)

t——+o00

i.e., u scatters forward in time in H'(RY).

Remark 3.1.3. The notation N > 2 instead of N > 3 is intentional, since we allow N to
be arbitrarily close to 2. At least in the radial case, it is possible to define Sobolev spaces
with non-integer N, as in this case the dimension becomes just a parameter. It is also
mathematically convenient, as this flexibility is useful in some harder proofs. We mention
here the work of Landman, Papanicolau, Sulem and Sulem [61] (see also Sulem and Sulem
[80]), in which self-similar solutions were computed numerically for dimension approaching
2 as the relative rate of the scaling parameter approaches zero. Later on, Kopell and
Landman [58] constructed a blow-up profile for equation (1.0.2) in the cubic case when the
dimension N is exponentially asymptotically close to 2. In [71], Merle, Raphael and Szeftel
constructed stable blow-up solutions in the cubic case when d g 2. Later, Rottshafer and
Kaper [76] improved the construction in [58] to allow the dimension to be polynomially

close to 2.

The criterion above is used to prove scattering in H' below the mass-energy threshold,
as in the following theorem. We emphasize that the main aim of this chapter is to show
that a different approach, based on Dodson-Murphy’s method, instead of the classic
Kenig-Merle’s concentration-compactness-rigidity technique, can be applied to the INLS
equation. Moreover, our method extends the range of parameters in which scattering can

be proved (see Remark 3.1.5).

Theorem 3.1.4. Let N >2, 1+ 412 < p < 14+%42 0 < b < min{N/2,2}, and uo € H},,
be such that

ME[ug] < ME[Q)

and

MKuo] < MK[Q.

Then the solution u(t) to (1.0.3) is defined on R and scatters in H' in both time directions.

Remark 3.1.5. The above result is known for b = 0 and proved in Holmer and Roudenko

[51] Duyckaerts et al. [27], Fang et al. [28], Guevara [47]. The case b > 0 is considered
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by Farah and Guzmén [31] with the assumption 0 < b < min{N/3,1}, for N > 2. In the
theorem above, not only we employ a new method to prove scattering, but we actually
extend the range of b in dimensions N > 2, allowing 0 < b < min{/N/2,2} in this case.
Moreover, we extend the range of p in the case N = 3. Indeed, the result proved in
Farah and Guzmaén [31] considered p < 4 — 2b, while here we allow p to be in the entire
intercritical range for the 3d case. The proofs in [51, 27, 28, 31, 47] use the so-called
concentration-compactness-rigidity approach, pionereed by Kenig and Merle [55] in the

context of the energy-critical (s, = 1) NLS equation.

This chapter is organized as follows: in the next section, we introduce some notation and
basic estimates. In Section 3, we prove the scattering criterion (Theorem 3.1.2). In Section
4, we apply this criterion, together with Morawetz/Virial estimates to prove Theorem

3.1.4.

3.2 Preliminaries

We start defining the Strichartz norms, which are used together with the Strichartz

estimates.

Definition 3.2.1. Given N > 2, consider the set

2<r<

Ay = {(q, r) is L*-admissible

QN}
N-2J"

For N > 2 and s € (0, 1), consider also

As = {(q, r) is H*-admissible

(Nzivzs)+ =TS (NQ—NQ)_}

(Nziv%)* =TS (JVQ—Nz)_}

and

A= {(q,r) is H*-admissible

We define the following Strichartz norm

lullscgsry = sup ullpors,
(g,r)€As
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and the dual Strichartz norm

s = 0, uly

If s = 0, we shall write S(H°, 1) = S(L? I) and S'(H°,I) = S'(L?,I). If I = R, we will
often omit /.

We now turn to a local-in-time Strichartz estimate, which is the key point to prove Theorem

3.1.2.

Lemma 3.2.2 (Local-in-time Strichartz estimate, see the work of this author [11]).

b .
/a =g 1) dr S 9l e a-

S(Hs,R)

Proof of Lemma 3.2.2. Recall the decay of the linear operator (see, for instance, Linares

and Ponce [65, Lemma 4.1])

HeitAf”Lg < ) ”fHLP , p>2 (321)

N(1_1
07\

For s € [0,1), let ¢, ¢ and r be such that (q,r) is an H*-admissible pair, and (g,7)

is an H S-admissible pair. If s = 0, assume additionally that 2 < ¢ < oo. Consider
= (N/2)(1/r'—=1/r) =2/G+ s =2/q— s and note that 0 < a < 1 and %—l—% = a. From

Minkowski’s inequality, and the decay of the linear Schrodinger operator (3.2.1):

b
<)
Lr a
b1
s o oz &
= [ e () ol i

:zka@hﬂmmgoax

b . .
/ ez(t—’r)Ag(" 7_) dr i(t—7)A dr

(&

g('? 7—) Ir

where I, is the Riesz potential of order o (see Definition 2.2.1). From Lemma 2.2.2

(Hardy-Littlewood-Sobolev), we get

b .
/ MR ) dr

S i ey | g = Nollps 1y (3:22)

LiLy
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In particular, if s = 0, then ¢ = ¢ and

b
/ =18 1) dr

Slalle - (3.2.3)
LiLy [a.b]

Note that (3.2.3) also immediately holds in the case (s, ¢,7) = (0, 00, 2). Now observe that,
if s=0and g € C(RVT),

b
/ TR ) dr

2 b b
= // e=MRg (1) dT/ et=m48g(-, ") dr’ dx
Lg a a

b
a

b
= [ [ ot.0) [ eemg( ) art dr d

b b . /
< [Ng@luy | [ 297 ar'|
a a L;
b i(t—7")A / /
<ol g || [ €207 dr
[a,b] 7 a LZLQ
Sloly (3.24)

Therefore, as in Kato [53, Theorem 2.1], we can interpolate (3.2.2) and (3.2.4) and use a

density argument to obtain (3.2.2). O]

In what follows we also use the following standard estimates.

Lemma 3.2.3 (See Guzman [48, Section 4], Farah and Guzmén [31] and the work of
this author [11]). Let N > 2, u,v € CPRN ), 1+ 22 < p <1+ 422 and 0 <
b < min{2, N/2}. Then there exists 0 < 0 = 0(N,p,b) < p — 1 such that the following

inequalities hold

2N

|||x|_b|u|p_1u||L?°L; ,S ||u||i?°H%7 1<r< m, (325)
_ _ [ —0
=l gy S Wl Nty (3:2.0)
_ _ [ —1-0
=l ] g gy S Wl ey el Tl sy (3.2.7)

—1-0

_ _ 0
A G ) IO 1 FASY v A PP (3.2.8)
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Proof. Inequality (3.2.5) follows immediately from the Gagliardo-Nirenberg-type inequality

(2.2.3). To prove the remaining inequalities, consider the exponents

4p-1(p+1) Np-1)(p+1)

= DG D+ NG -1 —d+2 DN _b)—62-b)
. 20— 1)(p+1-10) 5o 20— 1)(p+1-10)
C(p—=D[Np—-0)—2+2b)]—4—-20)(1—-0) 4-20—(N-2)(p—1)

Choosing § = 0if b =0, and 0 < § < 1 if b > 0, we have that (4,7) € Ao, (a,7) € As,
and (a,7) € A_,.. By Hélder and Sobolev inequalities (see [48, Lemmas 4.1 and 4.2] for
details), we have

— — —1-6
e~ P oll o < Nl Nl Nl (3.2.9)

so that (3.2.6) and (3.2.7) follow.

Consider now (3.2.8). If b = 0, then it follows directly from (3.2.9). For b > 0, define the

pairs
_ Alp—1)(p—10)
= - DINGp -1 +20—2 —0[N(p—1)—4+2y
- 2N(p—1)(p—90)
C(p—1)(N +2—2b) —0(4 —2b)’
-__ Ap-1p-0)

4-20—(N-2)(p—1)

It is immediate to check that (2,2N/(N — 2), (¢,7) € Ay, and that (a,7) € A;,. Let B be
the unit ball centered at the origin, B¢ = R"\ B and let A denote B or B°. Since

V(|27 M) S el [ Vul + o7l 7 (el ul),
we estimate, by Holder inequality

IVl )l e S M=l (P~ Yl e + el ullz ), (3.2.10)
A

2
+2
Ly

where we choose

0(1—sc) 3 —
1 b o=s) it A=P
— =t with L= N

" —0seif A= B,
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and
1 N+2 1

T2 n 2N 1 .
Since 1 < ﬁ{% < N for N > 2 and 0 < b < N/2, if we choose € (and thus [) small
enough, we conclude that |||x|*b||L21 < 400, and that 1 < ry < N. In view of Hardy’s

inequality (see [59]),

/ny|7" > (N;T>/ T e wie@®@Y), 1< < N,

x|

we have

e~ el ullzre S AV (ul u)llze S [Julf ™ Vg
Therefore, (3.2.10) becomes

IVl )l ax, < MulP = V|

LN+2

Now, by splitting

it is easy to see that 2 < fr3 < 2N/(N — 2). By Holder and Sobolev inequalities
- -0 -0
Hul?= Vg S Nl o 1ull 7"Vl e S Tl g lull 720l V] 7.

Therefore, by Holder inequality on the time variable:

_ — —1-6
IV ([~ ul” 1U)I|L2L1312 S Nl e mllullye IVl o
t -

which finishes the proof of the lemma. ]

Remark 3.2.4. Inequalities (3.2.6)-(3.2.8) were proved in [48] for 0 < b < b* (see Definition
2.4.1) and with the additional restriction p < 4 — 2b instead of p < 5 — 2b in the 3d case.
The proof we give here extends the range of b to min{N/2,2} and of p to the whole range
where local well-posedness is proved. We expect that Lemma 3.2.3 can be used to extend

the results in [48] via the concentration-compactness-rigidity tecnique.
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The next lemma was proved in [48] with the same restrictions mentioned in Remark 3.2.4.

In view of Lemma 3.2.3, the proof in [48] immediately extends to the new range of p and b.
Lemma 3.2.5 (Small data theory, see Guzmén [48, Theorem 1.8], and the work of this

author [11]). Let N > 1, 1 + % <p<l1l+ j‘\,——fg and 0 < b < min N/2,2. Suppose

|luol| g < E. Then there exists dsq = dsqa(E) > 0 such that if

HeitAuUHS(HSC,[O,Jroo)) < Osd,

then the solution u to (1.0.3) with initial condition ug € HY(RY) is globally defined on
[0, 4+00). Moreover,

itA
||u||S(HSC,[O,+oo)) < 2fe” uO||S(HSC7[O,+oo))7

and

[lls(z2 o.400)) + IVtulls 2204000 S [luollar-

3.3 Proof of the scattering criterion

We start this section with a remark.

Remark 3.3.1. Under Definition 3.2.1, there exists a small § > 0 (possibly depending on
N, p, s and b) such that, for a fixed 0 < s < 1

24+0<r<p"—94, and
2 1
245< 2 <g<z,
+ =1-s°1=35
for any pair (¢q,r) € As.

For N > 2, fix the parameters

2
o 5(2+9) -0

(p* =) (p* —2)

and
. d(p—10) }
= min , 08, p > 0,
! {(p* —0)(p* —2)
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Where 0 < # < p— 1 is given in Lemma 3.2.3. The following result is the key to prove
Theorem 3.1.2.

Lemma 3.3.2. LetN>2,1+4_T2b<p<1+%,03b<2andu be a radial

HY(RN)-solution to (1.0.3) satisfying (3.1.2). If u satisfies (3.1.3) for some 0 < € < 1,

then there exists T' > 0 such that the following estimate is valid

i(-—=T)A < 7

Proof. From (2.2.5), there exists Ty > €~ such that

eztAu

,
OHS(HSQ[TO,JFOO)) s € (3.3.1)

For T" > Tj to be chosen later, define I} := [T — ¢ *,T|, Iy := [0,T — e “] and let 5
denote a smooth, spherically symmetric function which equals 1 on B(0,1/2) and 0 outside

B(0,1). For any R > 0 use ng to denote the rescaling ng(z) := n(x/R).

From Duhamel’s formula
) T
ulT) = eT2ug + [ T2 ur=tu(s) ds,
0

we obtain

ei(t_T)Au(T) = Py + Fy + F,

where, for 1 =1, 2,

E-:/ e =B 2|70 ulP~Lu(s) ds.
I

We refer to Fj as the “recent past”, and to Fy as the “distant past”. By (3.3.1), it remains

to estimate F} and Fs.
Step 1. Estimate on recent past.

By (3.1.3), we can fix T' > Tj such that
/ nr(@) (T, )2 dz < €. (3.3.2)

Given the relation (obtained by multiplying (1.0.3) by ngru , taking the imaginary part
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and integrating by parts, see Tao [82, Section 4] for details)

8t/nR|u|2dx = QIm/VnR - Vuu,

we have, from (3.1.2), for all times,

1
~ R’

(915/773 )u(t, z)| dcc’

so that, by (3.3.2), for t € I,

—

[ (@) futt, ) do S € +

If R > e (@2 then we have ||nRu||L?oLz <e.
1 xT

Let (q,7) € A, . Recalling that 2+ 0 < r < p* — 0 (see Remark 3.3.1), using interpolation
and Sobolev inequalities and the decay of the L* norm of radial functions outside the ball

(2.2.1), we get

2(p"—r) 2(p*—r)
B sl = 1= meul e 0 = meul e

||U||L;>§L; S lnru

2( *—r) 2(p :r) _ N-1(r-2 r=2 2
STl 7 + BT Il E) ool (33.3)

< E(P**‘S)(P**” + R 2 P 75 < 6(?*75)(10*72)

if R is large enough. Note that, in the penultimate step, we used the H' < L?" embedding.
Using the local-in-time Strichartz estimate (3.2.2), together with estimates (3.2.6) and
(3.3.3), we bound

/ei(t’s)A]x\’b]u\p’lu(s)ds

Iy

. < e ull g gr—se 1y
S(HSC,[T,+OO))

p— o [/
< ||U||L°°H1||U|| HSC 1) ||u||L;>°H; (q,f)lgilsc ||u||L4 Lr

0 -0 _—a(2t
<Nl ) sup - Julfge (5
<r<p*—

< ||U||L<>OH1 €m(p 0) —a(455) < ewi%)%
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where we used the definition of o > 0 and the fact that ¢ > 2 + 4.

Step 2. Estimate on distant past.

};: (1—13) B_&C}
i~ ()5

We claim that (¢, d) € Ay. Indeed, it is immediate to check that (¢, d) satisfies (2.2.4) with

Let (¢,7) € As,. Define

and

s = 0. Moreover, since
2

1—s.

q>

we see, since § > 0 is small, that 2 < ¢ < +00, so that the pair (c,d) is L?-admissible. We

have

Sc

2N .
L§72746

1—
||F2||LE1T7+OO)L; < ||F2||L[C;j_oo)Lg ||F2

’qo.\»-t

L +o0)

Using Duhamel’s principle, write

F, = it [ei(—T—&-e*a)Au(T . €—a> . U(O)} '

Thus, by the Strichartz estimate (2.2.5),

1-s
[E2lle 1 < )

[T,4o0)™

it [ei(fTJre_“)Au(T _ €7a> B u(())}

Sc
)Ld HF2H % L#N_ms

LC
[T:oo [T, +00) " ®

1—sc

I£=11"y L < e,
T,+oc0

< (Jfull oo 2

since, by (3.2.1) and (3.2.5),

1
[}
[T, 400

12|
L

S 1=l [l s

(‘ e €_a> —25

N2N§’§’ -
—2—4 244
)Lx Lx++

< p
Slallfs

ad
S e
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Therefore, recalling that
ei(t*T)Au(T) = e"Puy+ Fy + s,

we have

i(-—T)A <
e U(T)HS(HSC,[T,JrOO)) ~ €0

Hence, Lemma 3.3.2 is proved. O

Proof of Theorem 3.1.2. Choose ¢ is small enough so that, by Lemma 3.3.2,

u(T)HS(HSc, -

[0,400)) U(T)HS(HSc,

[T,400))

where 044 is given in Lemma 3.2.5. Thus, by small data theory, we have

||u||S(H567[T7+OO)) S, and [|(1+ |V|)U||S(L2,[T,+oo)) S L

) +oo
Define uy = e T2u(T) + z/ e "8z PlulP u(s) ds. Using (3.2.7) and (3.2.8), we
T

estimate

. +oo
||u(t) . eltAu‘i‘HH}: = H/ eZ(t—s)A|x|—b|u|p—1u(S) ds
t

Hy

+oo |
S|V [ eI u(s) ds

12

+oo |
< sup H(1—|—|V|)/ TR g |7t Lu(s) ds

[

TE[t,+00)

L3

+oo |
S| e 2 0 VD) (ol el uls)) ds

S(L2,[t,+00))

S| +19D (2] fu~tugs))|

S’ (L2,[t,+00))

p—1—6
SJ HuHS(HSC7[t,+OO)) *

(Note that the same estimate ensures that uy € H'). Hence, we conclude that
lim [Ju(t) — ™ ui|/g =0

t——+o0

as desired. 0
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3.4 Proof of the main result

We now turn to Theorem 3.1.4. The main idea behind the proof is to combine radial decay
with a truncated Virial identity. By choosing the right weight, and using bounds given by
coercivity in large balls around the origin, one can control a time-averaged LP norm on
these balls. Averaging is necessary due to the lack uniform estimates in time, since we are

not employing concentration-compactness as in Holmer-Roudenko [51, 27].

We start with the following “trapping” lemmas, which follow immediately from the sharp

Gagliardo-Nirenberg inequality, and can be found in Farah and Guzmén [31, Lemma 4.2].

Lemma 3.4.1 (Energy trapping). Let N > 1 and 0 < s. < 1. If

1— 1

SCSCE[UO] < (1= 0)M [uy] QCSCE[UO]

M uo)

for some 6 > 0 and

1-sc 1-sc
2 [Vuollz < QN2 IVQ L2,

ol
then there ezists 6’ = ¢'(5) > 0 such that

s

Sc

1—
L2

Juoll 15 | Vuollz2 < (1= 6)[Q| IVQ| 2.

for allt € I, where I C R is the maximal interval of existence of the solution u(t) to

(1.0.3). Moreover, I =R and u is uniformly bounded in H".

Lemma 3.4.2. Suppose, for f € H'(RY), N > 1, that

Sc¢ 1—s¢

11l IV Allze < (1= O)QlLs 1VQIze-

Then there exists 0" = §'(5) > 0 so that

N-b N
[ises (St - 5) e =8 [l

From now on, we consider u to be a solution to (1.0.3) satisfying the conditions

1—sc

M{ug) =" Eluo] < M[Q] +* E[Q]
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and

|VQ||L2

||U0||L2 |

In particular, by Lemma 3.4.1, u is global and uniformly bounded in H'. Moreover, there
exists 0 > 0 such that

1-sc
sup |[uol| 2*
teR

1-sc
2 [VQl|z2 (3.4.1)

(@O)llz> < (1 —20)

In the spirit of Dodson and Murphy [22], we prove a local coercivity estimate. We start

with a preliminary result.

Lemma 3.4.3. For N > 1, let ¢ be a smooth cutoff to the set {|x| < %} and define
or(z) = ¢ (5). If f € H'(RY) , then

J1V@rhI? = [ VI = [ 6rior)lf I (34.2)

In particular,

[V @nf)F < I (343

Proof. We first calculate directly

IV(orf) = |VorS + 0rV > = [Vor*|fI> + 2Re(Vor - Vf ¢r f) + o3|V f|*.

Now, integrating by parts, we have

2Re [(Von-Vionf) = [ondon)lf — [ IVonfIf.

Using the last two identities, we conclude (3.4.2). To obtain (3.4.3), we note that

[¢rA(DR) |1 < ﬁ O
Lemma 3.4.4 (Local coercivity). For N > 1, let u be a globally defined H'(R™) solution
to (1.0.3) satisfying (3.4.1). There evists R = R(5, M[ug), Q,s.) > 0 such that, for any
R >R,

sup loru(®) 5 IV (Sru(t) e < (1—0)
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In particular, by Lemma 3.4.2, there exists &' = ¢§'(§) > 0 such that

[t + (5L = T) [l onatopt =8 [ el oo

+1

Proof. First note that
lpru(t)|Z2 < lu(t)|z: = Mluo),

for all t € R. Thus, we only need to control the H' term. Using Lemma 3.4.3 and (3.4.1),

we conclude

2(1—s¢
H%MWmCH%MNQSMWd%OWMNm+m M@

2(1—sc)

< (U= 2071Ql" 1VQIE: + 7 Mudljs.

Thus, by choosing R large enough dependmg on 0, M[ug], @ and s., we bound the last
expression by |[(1 — )||QHL ||VQ||L2] , which finishes the proof.

We exploit the coercivity given by the previous lemma by making use of the Virial identity.

Recalling (2.3.2), if a : RY — R is a smooth weight and |Va| € L*, define

Z(t) = QIm/ﬂVu-Vada:.

Then, if u is a solution to INLS (1.0.3), we have the following identity

d 4 4b
—7Z(t) = —— — 92 / —b p-l—lA _7/ —b—2 p+1,. .
570 = (5 =2) i riaa S [l v
—/|u|2AAa+4ReZ/aijﬂiuj.
i,

We now have all the basic tools needed to prove scattering. Let R > 1 to be determined

below. We take a to be a radial function satisfying
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In the intermediate region £ < |z| < R, we impose that
da >0, 9a>0, |0%(x)| Sa Rlz|74H for |a| > 1.
Here, 0, denotes the radial derivative, i.e., 0,a = Va - ‘i—' Note that for |z| < g, we have
a;j = 20;5, Aa =2N, AAa =0,
while, for |z| > R, we have

CLZ'J'

iJ ) = ——"

E ] || |

Proposition 3.4.5 (Virial/Morawetz estimate). For N > 2, let u be a radial H'-solution
to (1.0.3) satisfying (3.4.1). Then, for R = R(3, M[ug], Q) sufficiently large, and T > 0,

1 /T/ | ( t)|p+1 de di < Rb+1 N 1
— u(x x u —.
T Jo Jiz<r ’ ~uwd T RC-D(F)

Proof. Choose R > R(8, M[ug],Q, s.) as in Lemma 3.4.4. We define the weight a as above

and define Z(t) as in Lemma 3.4. Using Cauchy-Schwarz inequality, and the definition of
Z(t), we have
sup |Z(t)] < R. (3.4.4)

teR

As in Dodson and Murphy [22, Proposition 3.4], we compute

d N—-b N
L7 = / 2 (MO0 N / ~by, [p+1
2w =s|[ ke (2T [t

4 4b x-Va
+/ —— =2 (N -1)Aa — —— i
m>§Kp+1 )( )Aa p+1|ﬂ2]u|h4

+ R 40%a|0,ul? — / lu|?AAa,

|z|> & |z|> &

where we used the radiality of u and a. By the definition of a, and the fact that 9%a > 0,

d N-b N
/ a2+ (2 / 2| 0P+ (3.4.5)
lz|< & p+1 2 lz|<£&

— >
ZZ(t) =8
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¢ ac
T /|x|>}; ulP™ — ﬁM[UO]'

Define ¢ , A > 0, as a smooth cutoff to the set {|z| < 1} that vanishes outside the set
{lz] <1+ %}, and define ¢pg(z) = ¢* (%) We will now estimate the first term in the

last inequality.

N—-b N
[Vl (S S ) [l =
|$\§5 p+ 1 2 ‘93|§5

= :/(¢£>2|Vu|2 + (]pV;f - ]QV) /(¢£)2|$\b|u\p+1]
) :/f;<|z§§+§(¢g)2|v“|2 " <]pv+_1b ) ]2V> e g O
_ Ia
| freavur s (S0 - 5) frel o
—la— (Z;[ - g;f) / (@™ = (0m)?) || fuf ™" (3.4.6)
114

Using Lemma 3.4.3, we can write

N—-b N
Jroava s (S0 = 5 flal oup >

+1

[tops (S0 =3 [l ot - ghitl. 47

The inequalities (3.4.5), (3.4.6) and (3.4.7) can be rewritten as

d N —b
2] fovtor s (Y2 3) furtotr]
c c
TRy /le R JulP*t — ﬁM[UO] — 814 — 8114. (3.4.8)

By Corollary 2.2.5 and by Lemma 3.4.4, we can write (3.4.8) as

1 1
—b| LA 1
/|-T| |¢ |p+ N dtZ(t)+W R2 4+ 814 +811y4.

We can now make A — +o00 to obtain I4 + I14 — 0 by dominated convergence. Hence,
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d 1 1
—b +1 —b +1 <
R O S [ O™ S G20+ e+

|z|<&

We finish the proof integrating over time, and using (3.4.4). We have

P+1 < Rb Z(t 1 1
T |m|<R (t)] T ti[%%“” ()] + R(N—l%(p—l) + R2-b

Rb+1 1
~ T + R(Q—b) (N];l) Y

s1ncep>1+42b ]

We are now able to prove the energy evacuation.

Proposition 3.4.6 (Energy evacuation). Under the hypotheses of Proposition 3.4.5, there

exist a sequence of times t, — +00 and a sequence of radii R,, — 400 such that

lim lu(t,) [Pt =0 (3.4.9)

n—-+o0o |$|§Rn

Proof. Using Proposition 3.4.5, choose T}, — +o00 and R,, = T,;¥ > =2 , SO that

Tn 1
)P < v — 0 as n — 400
T, / /|x<Rn " S —meo

T 3N—2+b
n

Therefore, by the Mean Value Theorem, there is a sequence t,, — oo such that (3.4.9)
holds. The proof is complete. n

Using Proposition 3.4.6, we can prove Theorem 3.1.4. We will prove only the case t — +o00,

as the case t — —oo is entirely analogous.

Proof of Theorem 3.1.4. Take t,, — +00 and R,, — 400 as in Proposition 3.4.6. Fix € > 0
and R > 0 as in Theorem 3.1.2. Choosing n large enough, such that R, > R, Holder’s
inequality and (3.4.9) yield

2
N(p—1)

p+1
/ u(z, )2 < R vt (/ |u(ac,tn)|p+l> — 0 as n — +oo.
WSR WSRn

Therefore, by Theorem 3.1.2, u scatters forward in time. O
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4 (Classifications of solutions to the NLS at
the threshold

4.1 Introduction

In this chapter, we consider solutions to NLS (1.0.2), in the intercritical and energy-critical

case, for initial data at the mass-energy threshold, that is,
ME[uo] = ME[Q)]

(see (2.6.6)).

Solutions to NLS at the threshold level were first studied by Duyckaerts and Merle in [24],
in the radial case, for N = 3, 4 and 5. Later, the result was proved for N > 6 by Li and

Zhang [63]. Their results can be summarized as following.

Theorem 4.1.1. Let N > 3. There exist two radial solutions W+ and W~ to (1.0.2) in
HY(RN) such that

o E[W%] = E[W], W= is defined at least in [0, +00) and there exist C, ey > 0 such
that
|[WE(t) = W]l < Ce=t, for all t >0,

o |[VWilla > [VW]la and, if N > 5, W blows-up in finite negative time,

o |[VWille < [[VW |2 and W~ is globally defined and scatters backward in time.

In the next theorems, by u equals v up to the symmetries of the equation, we mean that

there exist tg € R, A\g > 0 and 0y € R such that

eifo Tz t+1p e (x —t+ to
u(x,t) = @U )\7, )\2 or U(x,t) = M/U )\7, )\2 .
)\0 2 0 0 )\0 2 0 0

Theorem 4.1.2. For N > 3, let u be a radial solution to (1.0.2) such that E(ug) = E(W).

61
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Then, the following holds.

o If ||uollgr < [|W]l g1, then u is defined for all times. Moreover, either u scatters in

both time directions, or u = W™ up to the symmetries of the equation.
o If luollgn = [[W g1, then u =W up to the symmetries of the equation.

o If |uollgn > W], and ug € L?, then either u blows-up in finite positive and

negative time, or u = W™ up to the symmetries of the equation.

In the intercritical case, the following similar result in the 3d cubic equation was proved

by Duyckaerts and Roudenko [25]:

Theorem 4.1.3. Let N = p = 3. There exist two radial solutions QT and Q= to (1.0.2)
in HY(RN) such that

o M[Q*] = M[Q], E[Q*] = E[Q] , Q* is defined at least in [0,+00) and there exist
C, ey > 0 such that

1Q*(t) — Qllm < Ce™*", forallt >0,

o [VQ{II2 > [[VQ]2 and QT blows-up in finite negative time,
o |[VQill2 < ||VQ]2 and Q~ is globally defined and scatters backward in time.

Theorem 4.1.4. Let N = p =3, and u be a solution to (1.0.2) such that M (ug)E(ug) =
M(Q)E(Q). Then, the following holds.

o If||Vugol|lzz < IVQ| 2, then u is defined for all times. Moreover, either u scatters

in both time directions, or u = Q~ up to the symmetries of the equation.
o If ||Vuol|zz = [|VQ| 12, then u= Q up to the symmetries of the equation.

o If |Vugllze > ||VQ|lL2, and ug is radial or |z|ug € L?, then either u blows-up in

finite positive and negative time, or u = QT up to the symmetries of the equation.

The aim of this chapter is to generalize the results in [25] to all possible values of N and p
in the intercritical range. Since the proof can be readily applied to energy-critical case,
and is considerably different from the proof given in [63] for higher dimensions, we also

state and prove our results when s, = 1, for N > 6. Our main results are the following.

Theorem 4.1.5 (Critical case). For N > 6, there exist two radial solutions W+ and W~
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to (1.0.2) in H'(RN) such that

o E[W%] = E[W], W= is defined at least in [0, +00) and there exist C, ey > 0 such
that

|[WE(t) = W]l < Ce=t, for all t >0,

o |[VWi|la > IVW |2 and, if N > 5, W blows-up in finite negative time,
o |[VWylle < [[VW |2 and W~ is globally defined and scatters backward in time.

Theorem 4.1.6 (Critical case). For N > 6, let u be a radial solution to (1.0.2) such that
E(ug) = E(W). Then, the following holds.

o If ||uollgr < [|W]l g1, then u is defined for all times. Moreover, either u scatters in

both time directions, or w = W™ up to the symmetries of the equation.
o If luwollgn = [|W g1, then u =W up to the symmetries of the equation.

o If |uollg > [[Wlli, and ug € L?, then either u blows-up in finite positive and

negative time, or v = W™ up to the symmetries of the equation.

Theorem 4.1.7 (Intercritical case). For N > 1 and 0 < s. < 1, there exist two radial
solutions Q and Q= to (1.0.2) in HY(RY) such that

o M[Q*] = M[Q], E[Q*] = E[Q] , Q% is defined at least in [0,+00) and there exist
C, ey > 0 such that

Q5 (t) — e"Ql|gr < Ce ", for allt >0,

o |[VQFll2 > IVQ|2 and QF blows-up in finite negative time,
e |[VQill2 < [IVQ|l2 and Q= is globally defined and scatters backward in time.

Theorem 4.1.8 (Intercritical case). For N > 1 and 0 < s, < 1, let u be a solution to
(1.0.2), such that ME(uy) = ME(Q). Then, the following holds.

o [f MK (up) < MK(Q), then u is defined for all times. Moreover, either u scatters

in both time directions, or u = Q= up to the symmetries of the equation.
o If MK(ug) = MK(Q), then u = Q up to the symmetries of the equation.

o If MK(up) > MK(Q) and uq is either radial or |xluy € L*(RY), then either u
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blows-up in finite positive and negative time, or u = QF up to the symmetries of the

equation.

There are two major difficulties on extending the previous results. The first one is to
deal with low powers of the parameter p. If p < 3, then the nonlinearity |u|?~!u is not a
smooth function of (u, u). Moreover, as the power of the nonlinearity is not an odd integer,
the difference |u[P~'u — |v[P~!v cannot be written as a polynomial. Therefore we cannot
use the same estimates as in [25], as they rely heavily on H*(RY) estimates, for large
values of s. Moreover, if p < 2, then the nonlinearity is not twice real-differentiable. In
the energy-critical case, p. < 2 happens exactly when N > 6. In order to perform the
necessary estimates, we employ the fractional calculus tools introduced by Christ and
Weinstein [16] and Visan [85]. This approach is different from Li and Zhang [63], which
used weighted Sobolev estimates to prove Theorems 4.1.5 and 4.1.6 in the energy-critical

setting.

Another problem arises from the fast decay of the ground state @, for 0 < s. < 1. When
constructing the solutions Q*, we must deal with some estimates that involve terms on
the form [|Q ™! f| . Even though (Q~!f)(z) is pontwise defined for any function f, the
exponential decay of () makes it harder to obtain good estimates. Therefore, we have
to carefully study the desired functions f to ensure that they have the necessary decay.
We establish the decay via several bootstrap arguments, and by making use of resolvent

convolution kernels associated to the corresponding elliptic equations.

It is worth mentioning that, in order to prove the classification results in the intercritical
case for all dimensions, one has to change the orthogonality conditions that were used by
Duyckaerts and Roudenko [25], as in lower dimensions they would not necessarily ensure

coercivity. See Remark 4.3.4 and the proof of Lemma 4.3.5 for details.

Remark 4.1.9. By scaling, the condition M&(ug) = ME(Q) can be read, without loss of
generality, as

M (uo) = M(Q)

E(u) = E(Q).

Indeed, considering ugs(z) = (51’%1u0(5:z:), with 0 = (M(uo)/M(Q))%, gives the above

9To be precise, at least s > N/2, to make use of the fact that H*(R") is an algebra.
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condition for ugs. Similarly, the condition
MK (uo) < ME(Q)
(resp. “=", “>") can be read as

Vuoll> < [[V@Q[r2

43 ”

(resp. “=", “>7). Unless stated otherwise, we shall adopt this simplification throughout
the whole chapter.

4.2 Notation

We make use of the following Strichartz norms, defined separately for the energy-critical

and intercritical cases.

Definition 4.2.1 (Critical case). Let I be a (possibly unbounded) time interval. Given
0 < &< w5, N > 6, define the spaces

2N

S(HY.I)=L¥LY?
aN 2(N—2) 2N(N—-2)

LOOLN 2+25 mL LN 2+e mLE(N 4)L(N 2)2+45

(Hl s’[

Y

(L2, I {LqLT

2N
N+2

)=

S(H-0-9, 1) = L; e
)= (q,7) is L? — admissible} ,
) =

2N
Remark 4.2.2. In particular, we make use of the following spaces in S(L?): L3°L2, L[ ,
2(N—2) 2N (N—2) 2]\] 2(N+2) 2(1\2’+2) 16 8N
(N—4) N(N—-2)—2e(N—4) — N-—-2 4N —e(N—-2
Ly Ly 2 p i L N LN and LYY LYY

Remark 4.2.3. By Sobolev embedding, if f € S(H',I)NV~'S(L?,I),

||f||S(H1,1) + ||D5f||S(H1—€,I) S ||vf||S(L2,I)-
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And by Kato-Strichartz estimates,

z(t SAF( )dS

<l arror s
S WPl

(t sAF( )dS

S(L2

< ||F||s'(H—(1—e))'

s>t

S(H'~¢)

Remark 4.2.4. Note that the pairs in S(H', I) are H'-admissible, the pairs in S(H'~¢, I) are

H'~*-admissible, the pairs in S(L?,I) and in the dual space of S'(L?,

and the pair corresponding to the dual space of S'(H~(1-9) I) is H—(1-9)

Definition 4.2.5 (Intercritical case). Define the set

Ay = {(q, m)|(g,r) is LQ-admiSSible} :

For s € (0,1), define A, as the H*-admissible pairs that satisfy

2 < r < (#5) . N23,
2 << ((ﬁf)/ . N=2,
1_225 < r < o0 , N =1,
and A_, as the H *-admissible pairs that satisfy
(#5) < r< (39 Nz
() <= () V=2
(1_225)+ < r < 00 ., N=1.

-admissible.

I) are L?-admissible,

Let I be a (possibly unbounded) time interval. For s € [0,1), we define the following

Strichartz norms

lulls(zz,n = sup ||U||L§L;7
(qu)EAO
lullscse,y = sup  [lullzory,
(gr)eAs,
and the dual Strichartz norms
Ilscasn = o Il
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Il e = ok, Wlogng:

Remark 4.2.6. By Sobolev embedding, if f € S(H*, I) N (V)~'S(L?, I),

I [sczse, ry SNV Fllsee.n S KV fllsez, n-

And by Kato-Strichartz estimates,

/ =92 P (s) ds
s>t

/ ei(t_S)AF(s) ds
s>t

< ||l o ,
S WFllzz

< F 1(FT—sc) -
ey S WPl

4.3 The linearized equation

In order to prove the main theorems of this chapter, we need to carefully study NLS (1.0.2)

around the ground state. We will often identify the complex number a + bz with the vector

. Also, if f is a complex-valued function, we will write its real part as fi, and its
b

imaginary part as fo, i.e., f = fi +ifo. We now introduce some definitions.

Definition 4.3.1. For 0 < s. < 1, we define

Ly :=(1-5)—A—pQrt,
L_:=(1—-s)—A—-Q 1,

L= ,

R(f)=1Q+ fIP'(Q+ f) — Q" —pQ" " fr —iQ" " fs,
K(f) :==pQ" ' fi +1Q"" fo.

If u is a solution to NLS (1.0.2), write u = ¢!=%)*(Q) + v). Then v must satisfy

o + Lv =1iR(v), (4.3.1)



Chapter 4. Classifications of solutions to the NLS at the threshold 68

or, writing it as a Schrodinger equation,

10w + Av — (1 — s.)v+ K(v) = —R(v). (4.3.2)

In the next two sections we recall some properties of the operator L.

4.3.1 The linearized operator

We will need the spectral theory for £, as well as estimates on solutions to the linearized

equation. For 0 < s. < 1, we have, by direct calculation,
LOQ) = L(GQ) =0, 1<k<N.
Also, defining @) as I%Q +x - VQ, we have

L(Q1) = =2(1 = 5)Q.

Note that, in the energy-critical case, £L(W;) = 0. These directions are obtained from
by the symmetries of the NLS equation. Indeed, defining

i 1 T
f[xo,/\o,eo}(x) =€ o f <)\0 + l’o) )

p—1
Ad

we have

0Q(20,70,00]

(VQ,Q1,iQ) = D0, Mo, o)

(.ro,ko,@o):((),l,())

The following result is well-known and will be proved in Section 4.10.

Lemma 4.3.2 (sce [24],[15]). Let o(L) be the spectrum of the operator L, defined in
L2(RN) x L2(RY) with domain H*(RN) x H2(RY) and let 0.4,(L) be its essential spectrum.
Then

Oess(L) ={iy;y e R, |yl > 1 —s.}, oNR={—ep,0,e0} withey>0.
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Moreover, ey and —ey are simple eigenvalues of L with eigenfunctions Y, andY_ =Y, € S,
respectively. The null space of L is spanned by iQ and 0xQ, 1 < k < N (and, in the

energy-critical case, also by W ).

Remark 4.3.3. By Lemma 4.3.2, if Y} = Re(Y,) and Y, = Im();), then

L Yy =e and L_Y, = —ep.

Furthermore, the null space of L, is spanned by the vectors 0@, k < N (and by Wh, if
s. = 1) and the null space of L_ is spanned by Q.

Consider the bilinear form

1

B(f,9): (L+f1,91)+1([17f2>g2)

2 9
1—s. 1 _
= /f1'91+§/vf1'V91—g/Qp i+
1—s, 1 1 _
+ 5 /f2'92+§/Vf2'V92—§/Qp 1f292a

and define the linearized energy

®(f):=B(f,f) = ;<L+f1,f1) + ;(L—f%fz)

S J10sE g 1957 =5 [ @ AR + 1P

If 0 < s, <1, one can check directly that, for any f, g € S(RY),

B(f.9) = Blg, [),
B(Lf,g9) = —B(f,Lg),
B(iQ, ) =0,
B(OQ, f)=0,1<k <N,
BQuf) = -1 [ e,
O(Vy) =2(V-) =0.

(4.3.3)
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In the energy-critical case, note that we have

B(W1,f) =0.

If 0 < s. < 1, consider the following orthogonality relations in the real Hilbert space
L2(RY,C)
/QUQ _ /akal —0, 1<k<N, (4.3.4)

/Qp?h =0, (4.3.5)
/y1U2 = /y2U1 = 0. (4.3.6)

Denote by G the set of v € H' satisfying (4.3.4) and (4.3.5), and G the set of v € H'
satisfying (4.3.4) and (4.3.6).

Remark 4.3.4. Differently than Duyckaerts and Roudenko [25], we use the orthogonality
condition (4.3.5) instead of [ AQu; = 0. We make this choice in order to be able to prove

coercivity in all dimensions, specially in dimension N = 1.

By direct calculations, one sees that

Pispan{vQ.iQ} = 0

and

_pHl

5 QP <. (4.3.7)

®(Q) =

If s. = 1, consider the mutually orthogonal directions W, iW, W; = %W +x- W
and 1 < 9,W, 1 < k < N in the real Hilbert space H' = H'(RY,C). Denote by G :=
span{W, VW, iW, W} and by G* its orthogonal complement in H? for the canonical scalar
product, which is given by

(f,9) i :/Vfl'V91+/Vf2~Vgnge/Vf~V§.

Let Gt be the set {v € H': v L span{VW,iW, W1}, B(Y;,v) = B(Y_,v) = O}.
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By direct calculations, one sees that

@ span{vw,iw,wiy = 0

and
2

P =N oy

<0, (4.3.8)
where Cly is the sharp constant for Sobolev inequality for the embedding H' — Lz,
The following lemma shows that ® is coercive in G+ U G*.

Lemma 4.3.5. For 0 < s, < 1, there is a constant ¢ > 0 such that, for any f € G+ U G+

O(f) > &l f%-

This result is well-known, and its proof will be given in Section 4.10.

We now prove results for the ground state in the case 0 < s. < 1. For convenience, from

now on we rescale () in the intercritical case as to solve
AQ—-Q+QP=0.

This is in order to simplify the exposition, avoiding unnecessary parameters in the calcula-
tions. The term (1 — s.) must be replaced by 1 in the definition of £ and in the standing

wave solution e/ =*)(Q as well.

Unlike the energy-critical case, the ground state decays exponentially if 0 < s. < 1. In
the next sections, we need sharp bounds on the decay of () and its derivatives. We start

recalling the following result, proved by Gidas, Ni and Nirenberg.

Lemma 4.3.6 (See Gidas et al. [40, Theorem 2, p. 370]). For N > 1, 1+ % <p<2f—1,
let Q € S(RY) be the radial, positive solution of the equation

AQ—Q+QP=0.
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Then there exists C > 0 such that

lim |x|%e‘x|Q(x) =C.

|z|—=+o0

We next study the decay of solutions

Lemma 4.3.7. Let f € S(RY) and X € R. If f solves
(1-A+X)f =G,

with

e—a|:r;\

G(z)| £ TN L
(1+]21727)

for0<a#Rev1+ A, 0<b#1, then

1

|f(x)] S (1 N ‘x’¥>min{b,l} (e*m)

min{a,Re v1+Xi}

Proof. Let ¢ = Rev/1+ Ai > 1. We recall the integral form of the resolvent (see [1])

(1—-A+M)"'G=K=xG,

where K € L*(RY) is such that, for |z| > 1,

e_cl'r‘

(z S — g

Al

and, for |z| < 1,
% for N > 2,

K@) S{mt for N=2

1 for N < 2.
Consider first the case 0 < a < ¢. We estimate

P

(1 + |z — yl%y

K+ G@)| S [ K(y)

(4.3.9)

(4.3.10)
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N-1 N—1\min{b,1}
< e — W L+ |z —y"= + 1yl 2b)
m1n N—1
(1+\| (1+]e—y*5)
*alfr\ .
€ a N—1\ min{b,1}
5 N—1\ min{b,1} /K(y)e v (1+ |y| 2 ) .
(1+‘x|T)

By (4.3.9) and (4.3.10), the integral in the last inequality is O(1). For a > ¢, the estimate

is

—c|z|
e o min{b,1} a—c)lo—
K+ G(o)] S e | K@ (L) ook
()
—clz|
e N-1
5 i /e—(a—c)\x—yl + K(y)ec\zﬂ 1+ \yIT ‘| )
(1+|x|%)“““{”’1} [ Jwl<1 ( )

Since the first integral in the last inequality is bounded uniformly in z, the lemma is

proved. 0

Corollary 4.3.8. The following estimates hold, for any multi-index o € ZE .
(i) 1Q710°Ql|z~ < +oo,
(ii) |Q ' e"®19°Y || Lo < 400, for some 0 < < 1,

(iii) || Qe 0%[(L — N) 7 ]|l < 400, for every X € R\o(L) and every f € S(RY)
such that | Q7 1e"®0P f|| = < +oo for some 0 < n < Re(v/1+ Ai) and any 3 € ZE .

Proof. We first remark that @ is strictly positive, and thus Q! is well-defined. Recalling

Lemma 4.3.6, we have, for all x,

€_|$‘

Qlz) » ———5—.
1+ |x| 2

We differentiate (2.6.1) to obtain
(1-A)VQ =pQ"'VQ.

Since @ € S, by Lemma 4.3.7 and a bootstrap argument, we conclude (i) for |a| = 1. By

repeatedly differentiating 2.6.1 and repeating the argument, we conclude (i) for any a.
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To prove (ii), recall the differential equation for Y; = Re(),)
(1=A=pQ" (1 —-A-Q" ) =~

By factoring [(1 — A)? + €3] = (1 — A +ieg)(1 — A —ieg) and using item (i), this equation
can be rewritten as

(1 — A +ieg)(1 — A —ieg)Vr = Go(D1),

where we define Gi(f) as a linear function on f and its derivatives up to order k that

satisfies, for any k > 1,

GR(HI S Q™ X2 10°fl.

o<k

Writing g = (1 — A —ieg))1, we have, for any multi-indices «, 3,

(1= A +ieg)0%g = Glaj+2(M1)

(1 —A— Zfo)&’gyl = 8’89

Therefore, using Lemma 4.3.7 and bootstrapping, we prove that Q@ 'e"*l9*), € L* for
any «, where 0 < 7 < Re(y/1 +ieg) — 1. The estimate on ) is entirely analogous, and
hence (ii) holds. We now turn to estimate (iii). If g = (£ — )71 f, then, for any «,

01— A — QP Ngy — Nd%gy = 0“1
0*(1 — A —pQP~1)gy — A0*gy = 0° fo.

We can rewrite this system as

(1= A+ X]0%1 = Glaj+2(91) + Hiap2(f),

where we define Hy(f) as a linear function on f and its derivatives up to order k that

satisfies, for any £ > 1,

H(DI S Y 1%,

o<k
By bootstrapping similarly to the previous items, and noting that the argument to g5 is

analogous, we finish the proof of Lemma 4.3.7. n
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4.3.2 Estimates on the linearized equation

We now prove some estimates that will be used in the next sections. We start with estimates

for the energy-critical case.

Lemma 4.3.9 (Preliminar estimates). Let s, = 1, N > 6 (and then p. — 1 < 1),
0 < e < 55 and I be a bounded time interval with |I| <1, and consider f, g € S(H', 1)
such that Vf,Vg € S(L?,I). The following estimates hold.

(i) IVE(Dllsrwzn S IV Fllszn,

(ii) |V (R(f) = R(g))lsz2n SIVE = 9llsen (IV AR + 1V91E 5 5)
+ 1D (f = )% ey (IV Fllsez.n) + va\sm) -

If N > 6, then also
(iii) |\ D°K ()l siir-a-o.0y S 172 1D fll g py:
(iv) ||ID*(R(f) = R)lsz-a-0.1) S I1D*(f = Dl sy (1V 1% Sa)-

Remark 4.3.10. It is necessary to treat the case N > 6 differently due to the low power of

e—1
g (2n T Vg

the nonlinearity. If N < 6, then it is possible to estimate ||V(R(f) — R(g))||s/(z2,1) at least
linearly in terms of ||V (f — g)||s(z2,r). In higher dimensions, one of the terms must be in
the form [[V(f — g) |/ o > Which is not good enough for the fixed-point argument carried
on in the next section. The use of less that one derivative enables us to keep the desired

linearity.
Proof of Lemma 4.5.9. We start by proving the following claim:

Claim 4.3.11. Let H be a map such that H(0) = 0 and |H(f) — H(g9)| < C|f — g|ﬁ
for all functions f,g: RN — C, N > 6. Then, for all f,g € S(H*,I)NV~S(L?I),

ID*(H(DDI 5 2, < IV D%l

LfLéV (N 2y IN= 5( 1y 2+s

+||Vf||<11\[ N ||D g||2<N 2) 2N(N-2) .

g’ N—4)’ (N—-2)24+4¢

In other words,

ID*(H (DI srzr-a-21y S IIVfIIS L2.pllD° 9l s« -
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Proof of Claim /.3.11. By Leibniz Rule (2.2.7) and Holder’s inequality, we can write

o

L

DN 5, S IDHDN, ol

Lf L, dte

2
e

(DI vav—o D9l 2vev—z
p2N=2-2) 1 (N=2)2+4e

i 2=
LEL]

SIDHDI 4z llgll
I

LELFe

HIHON vy veva D] 2z 2vov .
L, ® Lj(N‘2_€) L;(N—4)LZ(N72)2+45

By Sobolev inequality;,

loll s gy SUDN 4 g
IL I

and since, by assumption on H, |H(f)| < |f\ﬁ, we have, by Sobolev,

IHDI vy van S HfHQ N IIVinV

L]E L(N77 e’ 2 e’ N—¢

It remains to estimate ||D*H(f)|| 2. Choosing v such that (N=2)e 2)5
Ll

chain rule! (2.2.8) and Sobolev embeddm s, we have
g

€

€ < v v
IDH, 2 S IAITEL ), 10
S vaﬂggf Y HVfHEiz,
where we choose py = ¢ = ﬁé\zfv—m € (1,400), and p; and ¢; must satisfy
1< P1,q1 < 00,
1 1 1 1 1—v

and

!That is where the hypothesis N > 6 is used, as the fractional chain rule requires 0 < 4/(N —

2) <

< v < 1, by fractional

1.
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These conditions can be easily satisfied if ¢ is small enough (depending only on the

dimension). The claim is now proved. ]

Estimate (iii) of Lemma 4.3.9 follows directly from Sobolev inequality and Claim 4.3.11,
by taking H(W') = |W|ﬁ, and from the fact that |[VW| e L2N LY, if N > 6.
To prove (iv), note that R(f) = WP J(W1f), where J(2) = |1 + 2P} (1 4+ 2) — 1 —

petly — 221z is C1(C). Its derivatives J, and J; satisfy J,(0) = Jz(0) = 0 and, if N > 6,

are Holder continuous of order p. — 1 < 1. Therefore, writing

R(F) = Rlg) = W [ J0V 7 (s +(1=5)))(f — ) +J=(W (5 + (1= 5)0)) (T — 9)ds.
(4.3.11)

we can apply Claim 4.3.11 to estimate each term in (4.3.11), taking H(f) = WP L (W~Lf)
or H(f)=WPr= 1 (W~!f). Estimate (iv) then follows directly.

To prove (i), we write
IVE())] S W2V + W V£

Using the fact that [0°W (z)| < C,|W (z)| for every multi-index o € ZY and all x, we

have, by Holder inequality

4
N—-2
IVE(DI | a0 S HHWHngwszHL;g

2Ly

_4
; HHWHNﬁvHVfHLa
L2 Ly ~?

L}

1
<1 (171, 19z

t xT

2N 4N

Note that we used that W € L2 > N Ly 2, which follows from the fact that W € L2 N L

x )

if N > 6. The inequality follows from Sobolev embedding.

We finally turn to estimate (ii). Write

V(R(f) = R(g)) =p.WP'VW (W f) = J(W™g))
@
+ WP LW )V = WP (W g) Vg
®)
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+ WP L (WL AV — WP I (W 1g)Vg
(c)
+ WP AW LW L) f — WP 2VW (W tg)g
(d)
+ WPAYW (W) f — WP 2V W J(Wg)g
(o)

To estimate (a), note that

@1 S WP [TV f + (L= $))(f = g) + J:W 7 (5 + (1= $)9))(F = )lds

S (PPt 1g 1) | = gl

Thus, by the Hoélder and Sobolev inequalities,

pc_l pc_l o
o, I g VIl

1 = I~z

ber) IV(f = 9)llcsers

1
I, 5111 (17

2
L3L

1 o—
S (IV£Ilrs +11Vg

We now estimate (b). By triangle inequality,

(0)] < WPTHL(WT NIV = Vgl + WPTHL(WTHf) = (W g)|[Vy]

PV,

<PV =9l +1f—g

So that, by the Holder and Sobolev inequalities,

< pe—1 _ o pe—1
IO, 250 5 L1 e 1905 =, 15 =P g 19,
< pe—1 _ € _ pe—1
SIVABEIVG =9l gy 1D =9 g 19l
I

2N .

N—
T

2
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The estimate for (¢) is analogous. To estimate (d), we write

(@) < WPHL(W A — gl + WP LW ) = LW g)llg]

< |fPMf =gl + |f — glP gl

Therefore, by Holder and Sobolev,

< 1 pe—1 o 1 _ pe—1
D, SV g 1 =l 1S =l

SEIV A2 IV = llegers + HI2[1D°(f — 9) Z: o [IVgllierz.

N —242¢
I Ly

Since the estimate for (e) is analogous, the proof of Lemma 4.3.9 is complete. n

The following Strichartz-type continuity argument follows from Lemma 4.3.9 and will be

useful on proving the main results of this chapter.

Lemma 4.3.12. Let h be a solution to (4.3.2). If, for some ¢ > 0, and all t > 0,
1R < e, (4.3.12)

then, for allt >0,
HVhHS(LQ, [t,+oo)) S eict. (4313)

Proof. Differentiating (4.3.2), we get
i0,(Vh) + A(Vh) + V(K (h) + R(h)) = 0.

By Duhamel formula, Strichartz estimates and items (i) and (ii) of Lemma 4.3.9, if

0<7<1,

l C
IVRl[sz, em) S RO + T2 VA2, e + IV L2, 000
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By (4.3.12), we get, for some K > 0,

||Vh||S(L2,[t,t+T]) < K(e*Ct

I;*C(LZ, [t,t—f—r]))' (43'14)

This implies, for large t,

1

||VhHS(L2,[t,t+T0]) < 2K€70t’ T0 — W

Indeed, assume by contradiction that there exists 7 € (0, 7] such that ||h||g2, jt4-) =

2Ke . for fixed t > 0. Then, by (4.3.14),

2Ke ™ < Ke™® + 2K*r2e™ + (2K)"Ke ! < ~Ke™ + (2K)P Ke™,

W | Ut

which is a contradiction if ¢ is large. Therefore, by decomposing [t, +00) U [t + j70,t +
7=0
(7 + 1)710) and using the triangle inequality, we see that (4.3.13) holds. H

The following lemma is the intercritical version of Lemma 4.3.9, and its proof is analogous.

Lemma 4.3.13 (Preliminar estimates, subcritical case). Let 0 < s. < 1 and I be a bounded
time interval such that |I| < 1, and consider f,g € S(L?, I) such that V f,Vg € S(L?, I).

There exists a > 0 such that the following estimates hold.
Forp>1:
(i) VK (Dllsiez.ny S 1) Fllseee,n
(@) 1K (P)llsrir—se, ry S N Fllsarse, 1y-
Forp > 2:
(iii) [(V)(R(f) = R@)llsrwz 0 S IV = llsc,ny [IK9) sz, n + 1) gllsz, 1y
+ VY 1By + 1) )
(iv) IR(F) = B@)sriir—se, 1y S If = Gllsciree, 1y |1 lsazse, 1y + 191 scaree,

S L ey 17 e
For1l<p<2:

() {V)R() = R@)lsrcwz, 1y SIS = Dllsce,ny (1 Wggzee 1y + N9 e 1)

+11F = 9lsiee.ry (K9 F sz, + 1) gllseez,n) »
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(i) |IR(f) = R lsritr—e. 1y S I = allsivee, iy (W izee 1y + 190 rec )

Proof. The estimates are very similar as the ones in the proof of the energy-critical case.

We use the following classical inequalities

lal? = bllse(z2) < llally;

sureolblsee) S I{V)allg 2)||b||S(L2

and

Hal? = bllsr sy < Nallygo 1llscaree) S KV allGezz) 1<V bllsce2),

which can be verified using the pairs (;\l,(gill)),p + ) e A, (%,p + 1) € A,

and (%, D+ 1) € A_; , together with Sobolev inequality. Let us estimate, for

example, [V(R(f) ~ R(9)) sz, Write

V(R(f) = R(9)) =pQ"'VQ(J(Q™'f) - J(Q'g))
(@)
+ QN L(QT NV - Q" (Q ) Vy
(®)
+QNLQTNHV - QT Q gV
(©)
+QUPVQLQT ) f — QM VQI(Q ™ 9)g
(d)
+QPEVQI(QT ) f — QP PVQI(Q T 9)g
()

Making use of [VQ| < @ (which follows from Corollary 4.3.8), we write (a) as

@ Q" [ 1Q7 (5 + (1= )g))(f — 9) + J(Q (s + (1= 5)))(F = g)lds.
Now, since

|21 = zo| (L + [21 P72 + [22[P7%), p2>2,
.(21) = J(z2)] + | J=(21) — Jo(22)] S (4]

|Zl—22’p_1, 1<p<2,
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we have

‘(a)| < (Qp_2‘f‘+Qp_2’g’+’f’p_1+’g’p_l)|f—g” p22’

(1P~ + LglP=DIf = gl, l<p<2

Thus, since @ € S(RY) and |I] < 1,

U Nsczrse,ry + N9l sezse.n

lellszen < I ree 1y + NG e I = 9llsra2ny, 222,

(Hpr S(Hse,T) + ngs(Hs,» 1) )Hf - gHS’(LzJ)a 1< p < 2.

We also have

IV = 9)llseee.n (KT Flsen + IV FIn
(V) gllswz.n + V)9l 2 ),
p>2
VI = sz, (1 W hee. 1 + lalhee 1))
1 F = alee 1y (V) Fllszz, 1y + 1{V)gllszz )

1<p<?,

Y

IOs 2.y + l(@)ls 22y S

with the same bounds for (d) and (e). O

Remark 4.3.14. We do not employ the same estimates as Duyckaerts and Roudenko [25],
since the nonlinearity |u[P~'u is not a polynomial in (u,u) if p is not an odd integer.
Therefore, instead of using H*® estimates, we rely on S(L?) and S(H**) estimates, that
are more suitable to generalizing the result to all possible dimensions and powers of the

nonlinearity.

Remark 4.3.15. We also employ a different approach than Li and Zhang [63], that divide
all estimates in regions where |f| > W or |f| < W. Instead, we use fractional derivatives

to avoid some sublinear estimates, resulting in a simpler proof.
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4.4 Construction of special solutions

In this section, we construct special solutions to NLS (1.0.2), in the sense that they are
on the same energy level of the ground state, converge to the standing wave in H' as

t — 400, but have kinetic energy different from ||V Q|| 2.

4.4.0.1 Construction of a family of approximate solutions

We start with a proposition that was first proved by Duyckaerts and Merle in [24], for
s. = 1. We extend here their proof to the intercritical case. The main difference from the
energy-critical case is that () decays exponentially if 0 < s. < 1, so we need to be careful
with its spatial decay, as we make use of estimates of the type |[Q~! f||z~. To this end,
we make use of the sharp decay estimate for () given by 4.3.6 and of the control on the

spatial decay given by Corollary 4.3.8.

Proposition 4.4.1. Let 0 < s, < 1 and A € R. There exists a sequence (Zi)i>1 of
functions in S(RYN) such that Z{* = AY, and, if k > 1 and V! = Z;‘?:l e*jEOtZJA, then as

t — +oo we have
OV + LV = iRV + O (e-FHD=!) in S(RY), (4.4.1)

where L and R are given in Definition 4.5.1.

Proof. We prove this proposition by induction. For simplicity, we often omit the superscript

A.

Define Z; = AY, and V; = e ®!'Z;. Thus

BV1 + LV — iR(Vy) = —iR(Wy).

Note now that R(f) = Q?J(Q7'f), where J(z) = |1+ 2[P"} (1 +2) — 1 — 21z — A7 s

real-analytic in the disc {z;|z| < 1}, and satisfies J(0) = 0,J(0) = 9;J(0) = 0. Write its
Taylor expansion as

J(2)= > a;2'? (4.4.2)

i+5>2
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with normal convergence of the series and all of its derivatives in the compact disc
{zl2] < 3}

Now, if s, = 1, since Z; € S(RY) and W decays polynomially, we have that ||W 12|/ =~ <
+00. For 0 < s, < 1, we make use of the Corollary 4.3.8.(ii), to conclude that ||Q ™ 71|z~ <
+00. In any case, we can choose ty such that |V, ()| < %Q, for any t > ty. Therefore, for

large ¢, we have

1 _ _

[RWV)| < [[QIIZ~ ( > |aij’2i+j) QWP = ClQ™ W™
i+52>0

In the same fashion, we can use Leibiniz rule, equation (4.4.2) and items (i) and (ii)

of Corollary 4.3.8 to bound all the derivatives of R(V;). Using that V; = e ®'Z;, we

conclude that R(V;) = O(e 2! in S(RY). Moreover, by Corollary 4.3.8.(ii), we have

Q" e*l0° Z, || g < +o0.

Now let £ > 1 and assume that V; is defined and satisfy (4.4.1) for all i < k. For 0 < s, < 1,

assume furthermore that, for all i < k, and all «,

Qe 92 Zy|| oo < +o00. (4.4.3)
Defining
€ — c‘)th + £Vk - R(V}C), (444)
note that
k
Ve = (—jeo)e 7 Zy,
j=1

so that (4.4.4) can be written as

ex(x,t) = Z eI (—jegZi(z) + LZk(2)) — R(WVe(z,1)). (4.4.5)

Recall that, for all k, Z; € S(RY). If 0 < s, < 1, we also have (4.4.3). Therefore, for
large t, and all z, |V, (2, t)| < 3Q(x). Writing R(Vy) = QP J(Q'V) and using again the
expansion (4.4.2), we get by (4.4.5) that there exist functions F; € S(RY) such that for
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large t
k41

er(z,t) =Y e IO F () + O(e”* ) in S(RY).
=1
By (4.4.1), we conclude that F; = 0 for j < k, which shows

ep(z,t) = e~ *teot 4 O(e= (et (4.4.6)

Noting that (k + 1)eg is not in the spectrum of £, define Zp,1 = —(L + (k + 1)eq) ' Fry1,
which belongs to S (see Section 4.10). Moreover, if 0 < s, < 1, Zj satisfies (4.4.3) with
k replaced by k + 1. By definition, we have Vj1 = V), + e~ (FtDeot 7, Furthermore,

€41 = €k — 6_(]Cle)eOtll‘jlcjtl - i(R(Vk+1) - R(Vk))-

By (4.4.6), ¢, — e~ kDot iy | = O(e(F2e0t) Writing again R(f) = Q?J(Q~'f), and
using the expansion (4.4.2), we conclude that R(Vyy1) — R(Vi) = O(e~*+2¢0t). The proof

is complete. O

4.4.1 Contraction argument near an approximate solution

We now prove the key result of this subsection. The propositions are stated for the

energy-critical and for the intercritical cases separately.

4.4.1.1 Energy-critical case

We only treat here the case N > 6, as in the lower-dimensional cases this result is proved
in [24]. The main difference here from [24] is that 0 < p. — 1 < 1 if N > 6, so that the
nonlinearity is no longer C?, and its derivative is only Holder-continuous of order p, — 1.
This introduces difficulties, as the control of the convergence of VU4 to VW is not enough
to close the contraction argument, and we need to ensure that the higher order terms
D(UA — W — V) converges faster to 0, for a small € > 0. The fractional derivative D? is
needed here to avoid certain end-point Strichartz estimates, which are not proved for any

combination of H'-admissible and H~!-admissible pairs.

Proposition 4.4.2. Let N > 6. There exists kg > 0 such that for any k > ko, there exists
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tr > 0 and a solution U4 to (1.0.2) such that for t >t and (k) = [%k + HL

_ LyN=2
||DE<UA_W_V;?k))||S(H1*5,[t,+OO)) <e (k+3)77 ot; and (447)
—(k+L)e S
VWU =W = Viglsa, ooy < €D

Furthermore, U4 is the unique solution to (1.0.2) satisfying (4.4.7) for large t. Finally,
U4 is independent of k and satisfies for large t,

|UA(E) = W — Ae™ @'Y || ;1 < e 201, (4.4.8)
Proof. Since A € R will be fixed in the proof, we will omit the superscripts A. Define
h=U" =W =V,
so that U4 is a solution to (1.0.2) if, and only if, h satisfies
i0h + Ah = =K (h) — (RViw) + h) — RVw)) + i€y,

where ¢ = O (e_(l("’)“)eot) in S(RY) for all k > 0. Therefore, the existence of U4 can

be written as the fixed-point problem

where

M(R)(t) = —i /t T gitea =K (h) = (RViw) + h) = ROV)) + e | -

Let first N > 6. We will show that M is a contraction on B defined by

1 Me € 1)
17 = sup B2 5220 DRl ey + sup PR VR g2 ooy
>t >ty

E = E(k,t) :={h € S(H", [ti, +00)), D*h € S(H' % [ty,, +00)),
Vhe S(L?, [tr, +00)); k]| < +00} ,
B = B(k,ty) :={h € E;||h|p < 1},
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equipped with the metric

kLl)N=2,
p(u,v) = sup el D5 D~ 0) s oy,
—tk

Let {h,} € B and h € S(H'*, 1), with p(hn, h) — 0. By reflexiveness and uniqueness
between weak and strong limits, h € B. This shows that (B, d) is a complete metric space.

We will show that M(B) C B and that M is a contraction.

By Strichartz estimates, there exists C* > 0 such that

IV M) 522, ttoe)) < C [IVE (D) 5122, 4000y (4.4.9)

HIV(RMVigy + h) = RV ls1(z2, frrso)) + | Ve llsrz2, ooy |

ID* M) s, 1,00 < C [IDTE (W) grg-0-01, 1100 (4.4.10)
+ I D (RVaw) + 1) — RVige) s (-9, 1,100

+ ||D£€l(k)||S/(H*(1*5),[t,+00))} ,

and

|D5(M(g) = M) i ey < € [ID7K g = W)l t-0-2 100 (4.4.11)

+ [[D(BRViwy + 9) — RVuw) + h))HS’(H—(l—EL[t,—&-oo))} :

To finish the argument, we just need the following estimates.

Lemma 4.4.3. For every n > 0, there exists k(n) > 0 such that, if k > k(n), then for any
g, h € B the following inequalities hold for all t > ty.

. _ 1,
(i) VK (D) lsr2. o0y < me” FH2)00 B[,

(ZZ) ||V(R<Vl(k) + h) - R(Vl(k)))HS’(L2,[t,+oo)) S Cke_(k+%+ﬁ)60t7
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& o L\N=2,
(ii6) | DK (0)l|srgg-0-00 procy < me” T2 5550 (1, 0),

16 N—2
2 ) 7 eot

) —(k+3+
() [|D*(RMViwy + 9) — BVir) + 7))l sri-a-9), 1 400)) < Che ( =2 p(g,h),

(k+1) &

eot

(U) ||V€l(k)||s'(L2,[t,+oo)) + ||Da€l(k)HS’(H_(1_5),[t,-l—oo)) < Cye™

Indeed, assuming this lemma, choosing first > 0 small enough, and then a large enough ¢y,
we see by (4.4.9) and (4.4.10) that M(B) C B. Moreover, by (4.4.11), M is a contraction
on B. Thus, for every k > ko = k(n), there is a unique solution U4 to (1.0.2) satisfying
(4.4.7) for t > t;. Note that the uniqueness still holds in the class of solutions to (1.0.2)
satisfying (4.4.7) for t > t},, where ¢j, > t;. Thus, uniqueness of solutions to (1.0.2) shows
that U4 does not depend on k.

It remains to show Lemma 4.4.3. By Lemma 4.3.9.(i), if 7o > 0 and t > {;, then
1 1),
IVE () [|sr(22 1)) < Cr e EF2) | .

Summing up this equation at times ¢; =t + j7p, and using triangle inequality, we get a

geometric series, whose sum is

[N

To —(k+3 )eot
IVE (W) 5122t 00y < C1 R — (+3)eot| o .

1
Choosing 7y and kg such that 7 = 5L and e ~ (kg )eomo < 1, we get estimate (i) of Lemma

2C’

4.4.3. Estimate (iii) follows analogously from Lemma 4.3.9.(iii).

We now turn to item (ii). By Lemma 4.3.9, item (ii), we have

IV(BVigry + 1) = ROViwy)) s 2, sy < (AIVAlse2, e + (B )IIDShHS(Hl ‘[t 1])?

where (4) S [VVik ||s 12 [tt+1)+||VhHS(L2 o1 a0d (B) S IIVViw sz, e HIVRI sz, e

By the explicit form of V; and the fact that h € B, we get

(A) + (B) < Cre~0v2",
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Therefore,

oA e (I V=3
I(ROVuwy + h) = RVie)) sz, ey < Cre™F=2"([[ VAl sz, sy + 1D°RI S )

S(H=¢, [t,t+1])

< C’ke_(k+%+ﬁ)e°t.

Since h € B, triangle inequality and the sum of the resulting geometric series gives us (ii).
As for item (iv), it follows analogously from Lemma 4.3.9.(iv). Estimate (v) of Lemma

4.4.3 follows immediately from (4.4.6) and from the bound

l(k;)+12(k+1)N4_2.

Finally, given that U4 = W + V,, + h, with h € B, we see that, for large k,

5

IVA@®)I|ze < e 3 [hfl < 2,
and recalling the definition of V. given in Proposition 4.4.1, we have, for all k,
Vigy = Ae 'Y, + O(e ") in S(RY),

which proves (4.4.8), and finishes the case N > 6.

For the case N = 6, note that % =1, so that, by Sobolev embedding, only the space

S(L?, 1) is enough for the contraction argument. Therefore, defining the space B as

1 €
Ill = sp el 2 Tl gs2 o0,

>ty

E = E(k, ti) == {h € CH"([t, +00)) N S(H", [ti, +00)),
Vh e S(L?, [tr, +00)); k]| < +00},
B = B(kty) :=={h € E;||h|p < 1},
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equipped with the metric

De
p(u,v) = sup el )T~ 0) (22,140,
—lk

we see, by Lemma 4.3.9, that the analogous estimates of Lemma 4.4.3 hold. Hence, the

conclusion of Proposition 4.4.2 also holds for N = 6, finishing its proof.

4.4.1.2 Intercritical case

Proposition 4.4.4. There exists kg > 0 such that for any k > ko, there exists t;, > 0 and
a solution UA to NLS (1.0.2) such that for t >t and I(k) = max{ [@ - 1} k)

p—1

U4 — €Q — Vi llsiree ooy < € Fm =0 gng (4.4.12)
(V) (U = e"Q - eitvl?k))HZ(t,—l—oo) < e~(B+3)et, (4.4.13)

Furthermore, U4 is the unique solution to NLS satisfying (4.4.13) for large t. Finally, U*

is independent of k and satisfies for large t,

HUA<t> . eitQ o AefeotJritijHHl < 6726()15

In view of Lemma 4.3.13, the proof of Proposition 4.4.4 is essentially the same as in the
energy-critical case, and we state Lemma 4.4.5 below for completeness. Note that (4.4.12)

is a consequence of (4.4.13) in the case p > 2, due to the Sobolev inequalities.

Lemma 4.4.5. For every n > 0, there exists k(n) > 0 such that, if k > k(n), then for any
g, h € B the following inequalities hold for all t > ty.

. _ 1\,
(i) IVE(B)[|sr(22. 00y < me” FF2)0 B,
.. — min{p— e — e
(i) |\V(RWViwy +h) = RViwy)) lsr22, [t400)) < Cre {p—1,1}eot o~ (k+3) of
(i66) K (0)lg1(1-ee. ooy < me (FF3) max(GErtent p(p )

. — min{p— e - 1) max $7 €
(iv) 1ROV +9)— ROViay+1)) |1 (t1-ve. 1400y < Cre™minlp=tilbeote= (k3 maxtzipdeot g ),



Chapter 4. Classifications of solutions to the NLS at the threshold 91

—(k+1) max{=-,1}e
(0) Vel 5122, f100)) + €1 [/ 400y < Cre” D P Hheot,

4.5 Modulation

Throughout the rest of the chapter, we will write, for 0 < s, <1,

d(f) = IVl = IVQ 2]

If w is a solution to (1.0.2) and if there is no risk of ambiguity, we will also often write

4.5.1 Energy-critical case

The variational characterization of W [4, 81, 67] shows that, if E(f) = E(WW), then

inf T - W n < d 5
nf {lfgaa [ < e(d(f))

A>0
PeER

with € = ¢(J) such that
lim €(d) = 0.

6—0t

The goal of this section is to construct modulation parameters xy, A\g and 6y such that
the quantity d(f) controls linearly || fizo,x0.000 — Wl as well as the parameters and its
derivatives. By making use of the Implicit Function Theorem, we can construct appropriate
modulation parameters. The proof of the next two lemmas is very similar to the ones in

[24], with the introduction of a translation parameter, and will be given in Section 4.10.

Lemma 4.5.1. There exist 69 > 0 and a positive function e(d) defined for 0 < d < o,
which tends to 0 as d tends to 0, such that, for all f € H' satisfying E(f) = E(W) and
d(f) < do, there existss (x, A, 0) such that

[ feo) = Wl < e(d(w)),
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S L span{ VW, iW, W, }.

The parameters (x, X\, 0) are unique in RY x R/27Z x R, and the mapping u — (z, ), 0)
is C1.

Let u be a solution to (1.0.2) and I be a time interval such that

d(t) < dp for all t € I.

For each t € I, choose the parameters (z(t), A(t),0(t)) according to Lemma 4.5.1. Write
Uy om](t) = (14 a(t))W + h(t), (4.5.1)

where
1

O =

(Ut A0 001 W) — 1.

Note that «(t) is chosen so that h(t) € G*. By Lemma 4.5.1 and a standard regularization
argument (see, for instance [70, Lemma 4] for details in a similar context), the map

t— (z(t), \(t),0(t)) is C'. We are now able to prove estimates on the modulation.

Lemma 4.5.2. Let u be a solution to (1.0.2) satisfying E(ug) = E(W). Taking a smaller

0o, if necessary, the following estimates hold on I:

)] = [[A(0)][ g = d(t) < do (4.5.2)

N(#)

o/ (0)] + 2] + 10 0)] +| i

S (t)d(t). (4.5.3)

In the next two sections, we mainly consider radial solutions to (1.0.2). Since the translation

parameter is not needed, we write

, 1 T
f[)\o,Oo](‘r) = 6190 N—2 f <)\> .
0 : 0

In some results regarding compactness, the parameter ¢, can also be omitted. In this case,

we write

foule) = ==/ (55

2
0
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For solutions to the intercritical NLS, since the scaling parameter is fixed (see Remark

4.1.9), we use the notation

Flzo00) () = €™ f(x + 20).

When 6, can be omitted, we write

f[xo](x) = f(JJ + SC(])-

4.5.2 Intercritical case

For 0 < s. < 1, the variational characterization of @) [66] shows that, if M(f) = M(Q)
and E(f) = E(Q), then

inf [ fire) — Qi < e(d(f)). (45.4)
z€R
(SIS
with
52%1 €(6) = 0.

As in the previous subsection, the goal of here is to construct modulation parameters
xo and 0y such that the quantity d(f) controls linearly || fizo.0, — @l a2, as well as the

parameters and its derivatives. We follow mainly [25] here.

Lemma 4.5.3. There exist 69 > 0 and a positive function e(d) defined for 0 < d < &y,
which tends to 0 as d tends to 0, such that, for all f € H' satisfying M(f) = M(Q),
E(f)=E(Q) and d(f) < do, there exist (x,0) such that

| flz.0) — QU < e(d(f)),
fwo L span{VQ,iQ}.

The parameters (z,0) are unique in RY x R/277Z and the mapping u — (x,0) is C*.
Let u be a solution to NLS (1.0.2) and I be a time interval such that d(t) := d(u(t)) < do

for all ¢t € I. For each t € I, choose the parameters (z(t),0(t)) according to Lemma 4.5.3.
Write

Uam,o)(t) = (1+ a(t)Q + h(t), (4.5.5)
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where

Re(e ™™ [ Vugw.om) - VQ)
VA7

Note that a(t) is chosen so that h(t) € G*. Recall that the parameters (z,6) are C*'. We

at) = -1

are now able to prove estimates on the modulation.

Lemma 4.5.4. Let u be a solution to (1.0.2) satifying M (ug) = M(Q) and E(ug) = E(Q).

Taking a smaller g, if necessary, the following estimates hold on I:

a(t)] ~ k(@) | [ Qb

o' (t)] = [ ()] ~ |0'(1)] < d(t).

~ d(t), (4.5.6)

We finish this section with a lemma that will be useful in the next sections, in the

intercritical case.

Lemma 4.5.5. Let u be a solution to (1.0.2) such that M (ug) = M(Q) and E(ug) = E(Q).
Assume that u is defined on [0,400) and that there exists ¢ > 0 such that

+o0o
/ d(s)ds < e, (4.5.7)
t
Then there exists (xo,6y) such that

Hu[woﬂo] - eitQ“Hl f§ e .
Proof. Step 1. Convergence of 6(t). We claim that

tLleroo d(t) = 0. (4.5.8)
To prove this, first note that (4.5.7) implies that there exists a sequence {t, } with t,, — 400
such that

lim d(t,) =0.

n—-+o0o

Suppose now, by contradiction, that (4.5.8) does not hold. In this case, we can find another
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sequence {t/ } and 0 < ¢ < Jp such that

t, <t Vn

n

(4.5.9)
d(t, ) = €1,

n

and

d(t) < e Wt e[t t)).

Since €; < dp, the parameter a(t) is well-defined on [t,,t)). By Lemma 4.5.4, |/ (t)| < d(t),
so that fttj |/ (t)|dt < e, by (4.5.7). Therefore,

lim |a(t,) — a(t)| = 0.

n—o0 n

Since, by Lemma (4.5.4), |a(t)| =~ d(t), we get that «(t,) tends to 0, which contradicts
(4.5.9) and proves (4.5.8). Recalling the decomposition (4.5.5), to conclude the proof of

Lemma 4.5.5, it is sufficient to prove that there exists (zg,6p) such that

d(t) + la®)| + 1)l g + () — z0| +[0(t) — O] S e

By Lemma 4.5.4, |a(t)| ~ d(t) — 0, as t — +oo. Therefore,

+o0 +o0
el < [l s)lds S [ dls)ds S e,
t t

since |a/(t)| ~ d(t). Again by Lemma 4.5.4, d(t) ~ ||h(t)|| ;: =~ |a(t)|, we get the bounds
on d(t) and ||h(t)]|z1. To obtain the bounds on z(t) and 6(t), it is sufficient to recall that
Lemma 4.5.4 says |2/(t)| + |0'(¢)] S d(t) S e . O

4.6 Solutions with high kinetic energy

4.6.1 Energy-critical case

In this and in the next section, we prove that radial solutions to (1.0.2) on the same energy

level as W that do not blow-up in finite positive time (and have finite mass), and that
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do not scatter forward in time must converge exponentially to W, as t — +o00. We follow

closely [24].

Proposition 4.6.1. Let u be a solution to (1.0.2) defined on [0,400) satisfying
E(ug) = E(W) and ||uoll g > |W|| - (4.6.1)

Assume furthermore that uq is radial and belongs to L. Then there exist (Ao, o) and ¢ > 0
such that
lu = Wi oall i S e (4.6.2)

Moreover, u blows up in finite negative time.

We will work with a truncated variance. Consider a radial function ¢ € C5°(RY) such that

P(r) >0 Vr>0,

o —{ ="
7":
0, r=>3,
and
2
%(T)SZ,T>O

Flg(t):zlm/v¢-vua

Fu(t) = —N1_62d(t) + An(®), (4.6.3)

where

Anw(®) = [ V0O (10200 =) + [ (8= aen) = [ Pt

(4.6.4)
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Recall that, if ||Vuo|| g > [[VW|| g1, then, for all ¢ in the interval of definition of w,
d(t) = [IVu®)ll g = VW] = IVu@)ll g = VW] -

In order to prove Proposition 4.6.1, we start with the following lemma.

Lemma 4.6.2. Let u be a radial solution to (1.0.2) defined on [0,+00) and satisfying
(4.6.1). Assume furthermore that the mass M(ug) of ug is finite. Then, there exists a

constant Ry > 0 such that, for all t in the interval of existence of u and all R > Ry,
Fi(t) >0, (4.6.5)
and there exists ¢ > 0 such that
—+00
/ d(s)ds <e ™, WVt >0. (4.6.6)
t

Proof of Lemma 4.6.2.
Step 1. A general bound on Ag

By the definition of ¢, we have the bounds 402¢r < 8, [A%¢r| < 1 and [A%PR(r)| S 5.
Therefore,

Ap(u(t)) S

~Y
lz|=R

. 1

Now, making use of the decay given by radiality in H' from Lemma 2.2.4, we can bound

[ e 0 e < I ol < — e V()] 57 ool 57
to obtain
1

1 1
Awfu(t)) < C | g + g (000) + W i)™ |.

where Cj depends only on M (ug).
Step 2. A bound on Ag when d(t) is small.

Taking a small ¢;, write the decomposition (4.5.1) as w0 = W + v, with ||v]| 5, S
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d(t), by Lemma 4.5.2. We will start by proving
A_c=inf{A(¢),t >0, d(t) <} >0. (4.6.7)

Indeed, by mass conservation,

1
> 2 _ 2 g2 _
ol = 2| <A(t) [u(?)] A2(1) ( Iw\Slw (e)dz —Cd (t)>

If d(t) < 6; and ¢; is small enough, then (4.6.7) holds. We now give an estimate on
, 4 [ $p|W]* =0, so that
Ar(W) =0, for all R > 0, by (4.6.3). If we assume R > 1, by a change of variables, Hélder,

Apg when d(t) is small. Since W is a static solution to (1.0.2)

Hardy and Sobolev inequalities, we can write (4.6.4) as

[Ar(u(t)] = [Arxan (W +0)| = [Ara@) (W +v) = Apag (W) (4.6.8)
1
<C / 2 W w2l 2+ W 2
< R |Voul* + [VW - Vu| + [v| + |v] (R)\(t))Z( lv| + |v]?)
1 1 1
<C |l + ——— + v ol + v ]
o]l (RA@»N2|‘HH1 o7 + (RA<»NHH 1 A()Hﬂgl
9 1

< Cy |d*(t) + e d(t)|, (4.6.9)

where we used the fact that ||VW||L%‘ oy ||W||L?‘ oy N ©—, which can be verified

by explicit computation. Note that the constant C; depends only on A_, which in turn

depends only on M (uy).
Step 3. Bounds on Ag prove bounds on d(t).

We now claim the bound

< 5l (4.6.10)

This is clear from the bound (4.6.9), if d(t) < ¢; and R > Ry, where Ry is a large constant

depending only on M (ug). Now, if d(t) > §;, consider the function

Co Co 8
SOR<5) RQ + R2N 2 (5 + HW”Hl) - m(s



Chapter 4. Classifications of solutions to the NLS at the threshold 99

By direct computation, we see that ¢%(0) < 0 for any 6 > 0. We can choose a large
Ry > R, (depending again only on M (ug)) such that ¢g,(d1) < 0 and ¢} (01) <0, so that
©Yr,(0) <0 for all 6 > §;. The bound (4.6.10) is now proved.

Bound (4.6.10), together with (4.6.3), gives, for R > Ry and any ¢ > 0,

8
N -2

Fu(t) < — d(t) < 0. (4.6.11)

Note that we must have F(t) > 0, for all £ > 0, as (4.6.11) would otherwise contradiction

the positivity of Fg. Therefore, (4.6.5) is proved.

We will now make use of the following lemma, in the spirit of Banica [5, Lemma 2.1] and

Duyckaerts-Roudenko [25, Claim 5.4], whose proof is given in Section 4.10.

Lemma 4.6.3. Let ¢ € CY(RY) and f € HY(RY). Assume that [|Vo|*|f|*> < 400, and
E(f)=E(W). Then

(m [vo-977) S0 [Ivaris?

By Lemma 4.6.3 and the fact that Fp(¢t) > 0 and F"(t) < 0, we can write

Fr(t)
so that
+oo
/ d(s)ds < e,
t
which proves (4.6.6) and finishes the proof of Lemma 4.6.2. O

Proof of Proposition 4.6.1. We first prove that

lim d(t) = 0. (4.6.12)

t——+o0

Indeed, by Lemma 4.6.2, there exists ¢, — 400 such that d(t,) — 0. Assume, by

contradiction, that there exists a sequence t/, > t,, such that

d(t)) = 6y, and 0 < d(t) <8 Vt € (t,, 1)), (4.6.13)
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where dg is given by Lemmas 4.5.1 and 4.5.2. Recall the decomposition (4.5.1):

up ey o) () = (1 + a(t))W + h(t), with h € G*.

By taking subsequences, if necessary, we can assume

lim A(t,) = A € (0, +00).

We now prove that A\, < +o0.

If Ao = +00, as Up(,),6(1,)] cOnverges to W in Hl, we have, for any C' > 0,

t,)|? — 0.
/|x|>c'“< )

For any € > 0 we have, by Holder inequality,

so that

However, by (4.6.5), F5(t) > 0. This implies Fr(t) < 0 for all ¢ > 0, contradicting the fact
that Fg is positive. Therefore, A(¢,,) must be bounded.

Now, by Lemma 4.5.2, we have

i‘;((? ’ < d(t). This implies, if t € (¢,,1)),

~

1 1

<e
NOEBU I

Therefore, A(t) < 2X\, on U, (t,,t,,), for large ¢t. Turning to the bound on o’ in Lemma
45.2,
o/ (1) S A*(t)d(t) < d(t).

This implies |«(t,) — a(t))| — 0. Moreover, again by Lemma 4.5.2, |a(t)| = d(t), which
contradicts (4.6.13) and proves (4.6.12).

To finish the proof of Proposition 4.6.1, we must refine the estimate on d(t). Since d(t) — 0

as t — 400, the decomposition (4.5.1) is well-defined for all large times. Therefore, by
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(4.6.12) and (4.6.7), we have

lim A(t) = A € (0,400), lim a(f) = lim d(t) =0,

t—+o00 t—-o00 t—+400
and
+oo +oo
() s~ o) = [ o/ (Olds S [ W (s)d(s)ds S e
t t

Furthermore, the bound |¢(t)| < A%(t)d(t) implies that there exists 04, such that

lim [0(t) — 00| = 0.

t—+o00

Therefore, (4.6.2) is proved.

It remains to prove the finite-time blow-up. This is a corollary of Lemma 4.6.2, applied to

the time-reversed solution v(t) := u(—t). If u is defined on R, by (4.6.5), we have
Im/w-vuoao >0

and

Im/ng-Vvo@o >0,

which clearly contradicts the fact that
Im/ng-Vuoﬂo _ —Im/ng-Vvo@O.

This finishes the proof of Proposition 4.6.1. O]

4.6.2 Intercritical case

We state here the corresponding results for the intercritical case. Since the proofs are very

similar to the energy-critical case, we mainly sketch them.

Proposition 4.6.4. Let u be a solution to (1.0.2) defined on [0, +00) satisfying

M(uo) = M(Q), E(u) = E(Q) and ||Vuollzz > |[VQI|z. (4.6.14)
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Assume furthermore that either uq is radial or |x|uy € L*(RY) . Then there exists (g, 0p)
and ¢ > 0 such that

HU - eitQ[aﬁoﬁo]HHl 5 e .

Moreover, u blows up in finite negative time.

Proof. We divide the argument in two cases: the finite-variance case, and the radial case.
Using the same proof of the finite-time blow-up as in the energy-critical case, and in view

of Lemmas 4.5.5, 4.6.5 and 4.6.7 in the next subsections, Proposition 4.6.4 follows. O

4.6.2.1 Finite variance solutions

Lemma 4.6.5. Let u be a solution to (1.0.2) defined on [0,+00) and satisfying (4.6.14)

and |||z|ugl|r2 < +00. Then, for allt in the interval of existence of u,
Im [ 2 - Vu(t)u(t) > 0, (4.6.15)

and there exists ¢ > 0 such that

/;OO d(s)ds S e, Vit > 0. (4.6.16)
Proof. Let F(t) = [|z|?|u(x,t)|? dz. Then, by the virial identities, we have, for all ¢ > 0,

F'(t) = 4Im / z - Vu(t)a(t).
Note that, by Cauchy-Schwarz, F'(t) is well-defined. Furthermore, since E(u) = F(Q),

F'() = 2N =1 =8 ([ 1Vuf = [ | ) = =N (= 1) - Sd(u(®)

Now, if (4.6.15) does not hold, there exists ¢; such that F’(¢;) < 0. Since F” < 0, for any
to > t1,
F'(t) < F'(tg) <0, Vt>to.

This implies that F'(t) < 0 for large ¢, contradicting the definition of F'.



Chapter 4. Classifications of solutions to the NLS at the threshold 103

We now claim that

[FO)) S FOF"®), (4.6.17)

which is a consequence of the following lemma, whose proof we postpone to Section 4.10.

Lemma 4.6.6. Let ¢ € CY(RY) and f € H'Y(RY). Assume that [|V¢]*|f|* < +oo,
M(f) = M(Q) and E(f) = E(Q). Then

(1 [Vo-957) () [ 19011

Taking ¢(x) = |z|?, (4.6.17) is proved. Since F’(t) > 0 and F”(t) < 0 for all t > 0, equation

(4.6.17) can be rewritten as

S —F(1).
Integrating from 0 to ¢t > 0,

VE@) = F(0) S —(F'(t) = F'(0)) < F'(0).

From (4.6.17), we deduce

F(t) S - (VFO) + F(0) F't) S F'(0),

~Y

which shows

F'(t) Se .
Finally,
+oo +o0
Fl(t) = — / F"(s)ds = 4 / d(s)ds,
t t
and we obtain (4.6.16). Lemma 4.6.5 is proved in the finite-variance case. O

4.6.2.2 Radial solutions

We will work with a truncated variance. Consider a radial function ¢ € C§°(RY) such that

o(r) >0 Vr>0,
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T2, r<l,
o(r) =
0, r=3,
and
d2¢
W( ) ~ 2,7" > O

Fi(t) = 21m/v¢R-vua

Fg(t) = —=[2N(p — 1) — 8d(t) + Ag(1),

where

Vulol (1080n - )+ [l o8 = Aon)- [

Anfu(t) = [

|U’2A2¢R.
lz|>R >R

(4.6.18)
The following lemma holds.

Lemma 4.6.7. Let u be radial a solution to (1.0.2) defined on [0,+00) and satisfying
(4.6.14). Then, there exists a constant Ry > 0 such that, for allt in the interval of existence
of u and all R > Ry,

Frp(t) >0, (4.6.19)

and there exists ¢ > 0 such that

+oo
/ d(s)ds S e, VWt > 0.
¢

Moreover, uy has finite variance.

Proof. The proof of Lemma 4.6.7 is essentially the same as in the energy-critical case, and

will be omitted, except for the finite-variance part.

By hypothesis, there is a sequence t,, — +o0o such that d(¢,) — 0. By (4.5.4), extracting

a subsequence, if necessary, we have u,, — %@ in H' for some 6, € R. Since Fj is
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increasing by (4.6.19), we have
[ éxluol® = Fu(0) < [ 6nQ*

Thus, we can make R — +oo, which proves the finite variance of uq. O

4.7 Solutions with low kinetic energy

4.7.1 Energy-critical case

In this section, we will consider solutions such that

E(up) = E(W), and |Jug|| g1 < [|[W]| - (4.7.1)

Definition 4.7.1. A solution u to (1.0.2) with lifespan I is said to be almost periodic
modulo symmetries on J C I if there exist functions =z : J — RY, X\ : J — R% and

C : RS — RS such that for all ¢t € I and all > 0

Vu(x,t 2dx < i
/xw(t)zc(n)/k(t) Vu(, )l

and

2la(g,t)|? de <.
S EPIBE DP dE <

Remark 4.7.2. By Arzela-Ascoli’s theorem, almost periodicity modulo symmetries is

equivalent to the set
{U[ut),x(t),oﬁ teJ }
being precompact in H®.
Remark 4.7.3. If the solution is radial, z(t) can be chosen as zero.

Proposition 4.7.4. Let u be a solution to (1.0.2) and I = (T~,T%) be its mazimal
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interval of existence. If u satisfies (4.7.1) then
I =R.
Furthermore, if
+o0 2(N+2)
/ /’MLMWjMﬁ:+m, (4.7.2)
0 RN

then w is almost periodic modulo symmetries on [0, +00).

The proof of Proposition 4.7.4 is essentially contained in the proof in [57, Proposition 3.1},

which extended the work in [55] to dimensions N > 6.

Remark 4.7.5. By time-reversal symmetry, the analogous version of (4.7.2) for the interval

(—00, 0] holds.
The next theorem is the main result proved in [57, Theorem 1.7].

Theorem 4.7.6. For N > 5, letu: [ x RN — C be a solution to (1.0.2) satisfying
E, = sup [lu(t)|| g < W]z
tel

Then,

// (e, )| N5 d dt = C(E,) < +oo.
I JRN

In particular, by uniqueness of solutions and continuity of the flow of (1.0.2), we have the

following corollary.

Corollary 4.7.7. For N > 5, let u be a solution to (1.0.2) satisfying (4.7.1) and (4.7.2).

Then there exists a sequence t, — 400 such that

lim d(u(t,)) =0.

n—-+00

The main aim of this section is to prove the following proposition.

Proposition 4.7.8. Let u be a radial solution to 1.0.2 satisfying (4.7.1) and (4.7.2). Then
there exist (Ao, 0p) and ¢ > 0 such that, for allt >0,

||U — W[Aoﬂo} ||H1 <e (4.7.3)

~Y
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Moreover, u scatters backward in time.

As in the proof of Proposition 4.6.1, we need to show that

d(t) = Wl g — [[u®)||gr — 0, as t = +o0.

We start by stating the following monotonicity results.

Lemma 4.7.9. Consider {t,}, and {t,},, t, < tI two real sequences, and {u,}, a

sequence of radial solutions to (1.0.2) on [t,,t)] satisfying (4.7.1). Assume that there exist

{A(t)}n C R such that the set
K = {(un(t))pop; m €N, t € [tn, )]}
is relatively compact in H'. If
lim d(, (£)) + d(u,(£,)) = 0,

then

lim{ sup d(un(t))} = 0.

" Ltelt, th]

(4.7.4)

Lemma 4.7.10. Under the assumptions of Lemma 4.7.9, if n is large enough so that

d(u,(t)) < dg on [t,,t.] and if 0,, p, and o, are the parameters of the decomposition

n’ n

(4.5.1), then
sup i (t)

i Eltarth]
noinf (1)

tE€ [ty t]

=1

Remark 4.7.11. In Lemmas 4.7.9 and 4.7.10, it is sufficient to assume

inf At)=1 VneN.

tE [t t7]

In fact, if A, := infep o1 A(t), then

K* = {(ur(0)psop n €N, € (17,8}

n)»’n

(4.7.5)
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satisfy the assumptions of Lemma 4.7.9. Moreover, the conclusions of the Lemmas are

unchanged under these transformations.
Before proving Lemmas 4.7.9 and 4.7.10, we prove two auxiliary lemmas.

Lemma 4.7.12. Consider {t,}, and {t/,},, t, < t!, two real sequences, and {u,}, a
sequence of radial solutions to (1.0.2) on [t,,t]] satisfying (4.7.1). Assume that there exist
{A(t)}n C RE such that the set

K = {(un(t)poon; m €N, t € [tn, 1]}

is relatively compact in H'. Assume furthermore that

teg% AMt)=1 VneN, (4.7.6)
Then, for alln € N,
t7,
[ () < dutt) + d(u(t,) (4.7.7)
tn

Proof of Lemma 4.7.12. For R > 0, consider the function

Fra(t) = [ onlua(t)
By Hélder and Sobolev inequalities, and recalling that [|u(t)]| 51 < [|[W||;1, we have

Fr.(t) S R

~

By Lemma 4.6.3,
|Frn(t)] S d(ua(t)y/ Fra(t) S R*d(ua(t)). (4.7.8)

By (4.7.6), A(t) > 1 on [t,,t,]. We claim that, whenever defined, u,, is bounded away from

zero. In fact, by the precompactness of K and decomposition (4.5.1), we have

(un (D) = (L + an(O)Win @) /un @) + () o) /o )]



Chapter 4. Classifications of solutions to the NLS at the threshold 109

with (hn<t))[)\n(t)/,un(t)] 1 W[An(t)/un(t)} and Ozn(t) < Hu[)\n(t)}HHl + 1. Therefore, the set

U {W[An(t)/un(t)ﬁ t e [tn,t%], d(un(t)) < 50} (4.7.9)

n

must be precompact. Since W does not depend on time, we get
An(t) & p () on {t € [tn, 1], d(un(t)) < o}

(Note that the constant does not depend on n). Thus, u_ := [inf | wn(t) 2 1.
tE[tn,th],
d(un(t))<do

We will now give a lower bound to Fg,(t). Recalling (4.6.8), if d(u,(t)) < d and R > “%,

we have

2 1 U
[Ar(un ()] < |d (un(t))Jri(RM_)%d( n(t))|-

Therefore, there exist 9; > 0 and R; > 0 such that, if d(u,(t)) < d;, then

8

()] < 57—

d(un(t)).

Now, by almost periodicity modulo symmetries and (4.7.6), if n > 0 and R > C(n), then

[ Ar(un ()] < n-

Thus, we can choose 1y = n;(6;) such that, if d(u,(t)) > d; and R > C(1n,), then

< <
Ann ()] € s < < ()
Finally, since
16
Fpolt) = 20 dfun(6) + Anlu(9).
we get, if R > max{Ry,C(m)},
FI() >~ d(un (1)) (4.7.10)
Ran(l) 2 75 d(un(1))- 7.
Integrating (4.7.10) and using (4.7.8), we obtain (4.7.7). O

Lemma 4.7.13. Under the assumptions of Lemma 4.7.9 and Remark 4.7.11, if s, € [tn,t])]
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and the sequence \,(sy) is bounded, then
lim d(un(sn)) = 0. (4.7.11)

Proof of Lemma 4.7.13. By Remark 4.7.11, we have \,(s,) =~ 1, so we can assume that

the sequence {u,(s,)}n converges to some vy € H'. If (4.7.11) does not hold, then
d(ve) > 0, and ||voll g < [[W | 1. (4.7.12)

By strong convergence, we have E(vg) = E(W). Let v be the solution to (1.0.2) with

initial condition vg. By Proposition 4.7.4, v is defined on R.

We claim that, for large n, s, +1 < /.. Indeed, if |, € (s,, s, + 1) for an infinite number
of n, after extracting a subsequence, we have that t/ — s,, converges to some 7 € [0, 1]. By
continuity of the flow, u,(t!,) — v(7). But since d(u,(t,)) — 0, d(v(7)) = 0, which implies
that v = W4, for some fixed Ay, 0y. Uniqueness of solutions to (1.0.2) then contradicts

(4.7.12). Therefore, for large n, t, < s, < s, + 1 <t . Again by continuity of the flow,

i | " () dt — / Ld((t)) dt > 0.

But Lemma 4.7.12 gives

’

lim / " () dt < Tim [ d(un(t)) dt < lim d(uy (t)) + d(un (£})) = 0.

n tn

Lemma 4.7.13 is now proven. [
We now prove Lemmas 4.7.9 and 4.7.10.

Proof of Lemma 4.7.9. By Remark 4.7.11, we can choose, for every n, b, € [t,,t] such
that
lim An(bn) = 1.

This implies, by Lemma 4.7.13, that

lim d(un(bn)) = 0.
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Assume, by contradiction, that (4.7.4) does not hold. Without loss of generality, there
exists d; > 0 such that
sup d(un(t)) > 6, VYneN. (4.7.13)

tE[tn,bn]

Choosing d; < min{dy, 01 }, by continuity there exists a,, € [t,, b,) such that
d(u,(t)) < 62 on (ay,b,) and d(u,(a,)) = ds.

Since do < dp, the modulation parameter p, is well-defined. Recalling that the set defined
by (4.7.9) is precompact, we must have A\, &~ yu,, where the constants do not depend on n.

Thus, up to a subsequence, we can assume
fin(bn) — o € (0, +00).

We will now show that the p, are uniformly bounded on U, [a,, b,]. Suppose, by contradic-

tion, that there exists ¢, € [a,, b,) such that, for large n,

() < 2p0 on (¢, by) and p,(cn) = 2p0. (4.7.14)

Since pi,(cy,) is bounded, so is A, (c,). Therefore, by Lemma 4.7.13, lim d(u,(c,)) = 0.

Recalling Lemma 4.5.2, we have

(1)
13 (t)

b
</
Cn

By Lemma 4.7.12, the last integral converges to 0, contradicting (4.7.14). Therefore,

1 b,
i(en)  p2(ba) |S [ w0 dt.

sup i (t) < +oo.
te[anybn}
neN

We conclude that p,(a,) must be bounded, and so must be A, (a,). Invoking again Lemma

4.7.13, we have lim d(u,(a,)) = 0, contradicting (4.7.13). Lemma 4.7.9 is proven. O

Proof of Lemma 4.7.10. As in the proof of the previous Lemma, by Remark 4.7.11 and

Lemmas 4.7.12 and 4.7.13, we have that u, ~ 1, where the constant does not depend on
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n. Let a,, and b,, be such that

pn(an) = inf pn(t), and p,(by) = sup pu(t).

t€(tn,ty,] t€(tn,ty,]

Let @, = min{a,,b,} and b, = max{a,, b, }. Then,

bn
<)
an

Since i, (by,) is bounded, we get (4.7.5), and Lemma 4.7.10 is proven. O

1 I
M%(an) “%(bn)

T)n
/ d(un(t))dt — 0, as n — +o0.

We now have all the tools to prove Proposition 4.7.8.

Proof of Proposition 4.7.8. By Corollary 4.7.7, there exists a sequence ¢, — 400 such
that
h}ln d(u(t,)) = 0.

By Lemma (4.7.9), with u, = u, A, = A (where X is the frequency scale obtained from
Proposition 4.7.4) and !, = t,,1, this implies

lim d(t) = 0. (4.7.15)

t——+o0

Therefore, the modulation parameters «(t), pu(t), 0(t) are defined for large t. We now prove
that
lim u(t) = peo € (0, +00). (4.7.16)

t—+00

Indeed, if not, then as t — +oo, log(u(t)) does not satisfy the Cauchy criterion. Therefore,
there must exist sequences 7T, < T such that
(T3)

lim n
nu(T,)

=

£ 1. (4.7.17)

But d(7T,,) + d(T]}) — 0, by (4.7.15). By Lemma (4.7.10), with u, = u, A\, = A, t, =T,

and t/ =T/, we have

SUPye(T,,,T7] 11(t)
m

- =1,
ninfem, 1y p(t)
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contradicting (4.7.17). Turning to the proof of (4.7.3), we claim the following inequality:

/ " d(u(s)) ds < d(u(t). (4.7.18)

Suppose by contradiction that (4.7.18) does not hold. Then there exists a sequence
T,, — oo such that
+oo
/ d(u(s)) ds > 2n d(u(T})).

Moreover, there exists a sequence {S,}, such that S, > T,, for all n, and

Sn
/ d(u(s)) ds > nd(u(Ty)).
By (4.7.16), for any sequence {7}, such that 7 > S, for all n, we are under the
assumptions of Lemma 4.7.12) with u,, = u, A\, =\, T,, = t,, and ¢/, = T}, Hence,

ndw(T) < [ dlu(s)) ds < du(T,)) + d(u(T’)).

= Iz

Since T can be taken arbitrarily large, and the implicit constant is independent of the
choice of a particular {7}, (given the function u itself does not change), we have a

contradiction.

Note that (4.7.18) is equivalent to the existence of ¢ > 0 such that
+oo
/ d(u(s))ds < e .
t
By Lema 4.5.2, since |a(t)| =~ d(u(t)) and p is bounded, there exist 0, such that
|a(®)] +10(t) = Ouc| + [R(B) ]| 1 S 7"

Therefore, the bound (4.7.3) is proven. The assertion about scattering for negative times

is a corollary of Lemma 4.7.12. Indeed, if

lulls00) = l[ulls(-o0.0) = +o00,
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by time-reversal and (4.7.3), we see that the set

{u(?); t € R}
is relatively compact and that
lim d(t) = 0.
t—=to0
Therefore, by Lemma 4.7.12, with w, = u, A, = 1, t, = —n and t/, = n, we have

/ T dt = tim [ d(t)dt < d(—n) + d(n) = 0.

—0 n—+oo J_pn

Therefore, d(ug) = 0, contradicting (4.7.1). Proposition 4.7.8 is proven. O

4.7.2 Intercritical case

In this section, we will consider solutions such that

M (up) = M(Q), E(uo) = E(Q), and |[Vuo|z2 < [[VQ||2. (4.7.19)

Since the scaling parameter is fixed a priori in the intercritical regime, controlling scaling is
no longer an issue. We can then use the fact that the solution has finite mass, together with
information given by virial-type and compactness arguments, to control the translation

parameter, allowing us to prove results in the non-radial setting. We start with a definition.

Definition 4.7.14. A solution u to (1.0.2) with lifespan [ is said to be almost periodic
modulo symmetries on J C I if there exist functions z : J — RY and C' : R — R such

that for all t € J and all n > 0
Vu(x,t 24 u(x,t 2dx§ .
/x—x(t)|>C(77)| (2, 1)] u(z,t)]| n

Remark 4.7.15. By Arzela-Ascoli’s theorem, almost periodicity modulo symmetries is

equivalent to the set

{upwer: t € T}
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being precompact in H!.

Proposition 4.7.16. Let u be a solution to (1.0.2) and I = (T~,T%) be its mazimal
interval of existence. If u satisfies (4.7.19) then

I =R

Furthermore, if

[ulls(0,+00) = +00, (4.7.20)

then w is almost periodic modulo symmetries on [0, +00), and we have
P(u) = Im/ﬂVu =0, and

lim @

t—oo

= 0.
The proof of Proposition 4.7.16 is now classical, and it is essentially the same as in

Duyckaerts and Roudenko [25, Lemma 6.2, Corollary 6.3 and Lemma 6.4].

Remark 4.7.17. By time-reversal symmetry, the analogous version of (4.7.20) for the

interval (—oo, 0] holds.

Remark 4.7.18. As in Duyckaerts and Roudenko [25, Lemma 6.2], the function x(t) can
be chosen as to be continuous on R and the same as the one given in Lemmas 4.5.3 and

Proposition 4.7.19. Let u be a solution to (1.0.2) satisfying (4.7.19) and (4.7.20). Then

there exist (xq,0) and ¢ > 0 such that, for all t >0,
lu — € Qpuo.ao) e < €™

Moreover, u scatters backward in time.

As in the proof of Proposition 4.6.4, we need to show that

+o00
/ d(s)ds < e, ¥t > 0. (4.7.21)
t

We start with the following lemmas.
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Lemma 4.7.20. Let u be a solution to (1.0.2) satisfying (4.7.19) and (4.7.20). Then

1 ! Td d
i — t)dt = 0.
im T/o (t) 0

T—+o00

Proof. Let R > 0 to be chosen later and let ¢ and Fg be as in the previous section. Then,

by Hoélder and inequatity,
|Fr(t)| < R. (4.7.22)

Moreover, we have

FI(t) = [2N(p — 1) — 8]d(#) + Ar(u(?)), (4.7.23)

where Ap is given by (4.6.18).

Fix n > 0. By definition of ¢ and almost periodicity modulo symmetries, if R > C(n),

we have

1
At S [ [Vl OF + ol P 4 o fu e, (4720

Choose Ty(n) > 0 such that, for any ¢ > Tj,

[z(t)] < nt.

For T' > Ty, choose R :=nT + C(n) + 1. With this choice of R, we have

[Ar(u(t))] S Ve, )" + [u(z, ) + |u(e, )]* do
fo—a(0) +a()|>R

S [Vu(z, ) + u(z, )7 + [u(z, £)[* do
fo—() >C ()

S
By (4.7.22), (4.7.23), and (4.7.24),

NG~ 1) = 8] [ d(t)dt S |FR(T)] + [F(T)] + (T~ Ty
S R4n((T —To)
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Letting T" — +o0,

1 /T
limsup = [ d(t)dt <.
T—+o00 0

Since 7 is arbitrary, we conclude the proof of Lemma 4.7.20. O

We next state a key result to prove Proposition 4.7.21.

Lemma 4.7.21. Let u be a solution to (1.0.2) satisfying (4.7.19) and (4.7.20), and z(t)
as in Proposition 4.7.16 and Remark 4.7.18. Then, for any 0 < o < T,

[ ) s

g

1+ sup |x(t)|] (d(u(o)) + d(u(r))), (4.7.25)

o<t<T

and, if T >0+ 1,

2(r) = 2(0) S [ d(u(t)). (4.7.26)

(e

The proof of (4.7.25) is similar to the energy-critical setting (it is in fact easier, since there
is no scaling involved). We refer to [25, Lemma 6.7] for the argument in the 3d cubic case.

The proof of (4.7.26) follows verbatim from the proof in [25, Lemma 6.8].

We are now able to prove Proposition 4.7.19. We follow closely the proof in [25].

Proof of Proposition 4.7.19. We first show that x(¢) is bounded. By Lemma 4.7.20, there
exists a sequence {t,}, such that ¢,,; > t, + 1 for all n, and d(u(t,)) — 0. By Lemma
4.7.21, there exists Cy > 0 such that, if n > ng and 1 +¢,,, <t <t,, then

|2(t) = 2(tny)| < Co

1+ sup Ix(S)I] (d(u(tn)) + d(u(tny))).

tnO <s<in

If ng is large enough so that d(u(t,)) + d(u(t,,)) < 1/(2Cy), and t is chosen in [t,, + 1,%,]

so that sup,, | 1<.<, [2(s)| = [2(t)], then
1
sup |z(s)| < C(ng)+ =  sup |z(s)],
tng+1<s<in tng+1<s<tn

where C'(ng) = |x(tn,)] + %Suptnogsgtno—i—l |z(t)| + 3. Therefore, z(t) is bounded on [t,, +

1, +00), and hence, by continuity, on [0, +00).
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By the boundedness of z(t) and (4.7.25), we have

[ dw®) 5 d(u(0)) + d(u(r)).

For a fixed ¢ > 0 and choosing 7 = t,,, we let n — +o0 to obtain

| dtw(®) 5 d(ulo)).

By Gronwall’s Lemma, we have (4.7.21) and, by Lemma 4.5.5, we finish the proof of
Proposition 4.7.19. O]

4.8 Estimates on exponentially decaying solutions

According to the previous sections, we must study the behavior of solutions approaching

e exponentially fast in time. We start with the energy-critical setting.

4.8.1 Energy critical case

In contrast to the previous two sections, the radiality assumption is not needed to prove

the results in this subsection. We consider the linearized approximate equation
oh+ Lh=c¢ (4.8.1)

with A and e such that, for ¢ > 0,

IR 1 S e,
(4.8.2)

le@)l 2x + [IVellsrz2, ooy S €

where ¢; > ¢y > 0. The following self-improving estimate was proved for radial data in

[24]. We give the proof without the radial assumption in Section 4.10.

Lemma 4.8.1. Under the assumptions (4.8.2),
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(i) if e & [co, 1), then
[P S e, (4.8.3)

(i) if eg € [co,c1), then there exists A € R such that

|h(t) — Ae™ ' Y || S el (4.8.4)

To further improve the convergence in the case N > 6, we study the linearized equation
around W + V&, for A # 0, which was defined in (4.4.1). For simplicity, we omit the

superscripts A. Defining, for every k,

. 0 A (p+1 0 1
Ly = e Dy 4y e
~A 0 2 -1 0

=1 Im(W 4+ V)2 —Re(W +W,)?
2 —Re(W + V)% —Im(W + V)2
- 3 1 _ C_1 B _
Ki(h) = (p; )|W+Vkpe h+ (p 5 )|W+kap SW +Vi)?h,
and
Ri(h) := [W 4+ VP2 (W + V) J (W + Vi) th),
where
J) =1+ 2P 142)—1— (pc+1)z— (pc_l)z,

2 2

we have that if, u = W + V), + h satisfies (1.0.2), then h satisfies

O:h + ﬁkh = ZRk(h) + €k, (485)
or in the form of a Schrodinger equation,

u?th + Ah + Rkh = —Rk(h) + iEk,

where ¢, are O(e~*+De?) in S(RY) . Note that the operator Ly is time-dependent and
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that, by the construction of V, we have, for all t > 0,
V()] S e W,

and

[VVe(t)] S e [VIV] S e,

This implies that the estimates in Lemmas 4.3.9 and 4.3.12 hold with the same proof if we
replace K by K}, and R by Rj. Therefore, we have the following results.

Lemma 4.8.2. Let N > 6, k > 1 and I be a bounded time interval, and consider

f e SHI) such that Vf € S(L?,I). The following estimates hold
(i) \VE.(P)llszn S 2NV sz,
(ii) IV Ri(f)llsieeny + 1R 2, S (14 1112) 1V £ g -

Lemma 4.8.3. Let h be a solution to (4.8.5). If, for some ¢ > 0 and for any t > 0,

1A ()| S e,

~Y

then

HVh||S(L27 [t4o0)) S € min{e,(k+17)eo}t

In the spirit of Lemma 4.8.1, we prove the following estimate.

Lemma 4.8.4. For N > 6, let h be a solution to
Oh + Lyh =€, (4.8.6)

with h and € such that, fort > 0,

1RO S e,
||€<t>‘|]37_‘]\_72 + ||ve||SI(L2,[t,+oo)) SJ 6_61t7

where (k+ 1)eg > ¢ > ¢o > eg. Then,

IR Se ot (4.8.7)
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Proof of Lemma 4.8.4. Since the subscript k£ will be fixed in this proof, it will be omitted.

By Lemma 4.8.3, we have

VR 522, [t +00)) S €7

We first note that (4.8.6) can be written as
Oh 4 Lh = e+ (L — Ly)h.
Now, if N > 6 and h € H*,

(£ = L)h] S V@)t h] S e Dt rn),

and

IVI(L —L)h]l < W

PR e VW [VV@)] ]+ VPR
< eVt [ |t b + [Vh|]

where we used the fact that V() € S(RY), [|[V()||z~ < e %t and [VW| < |[W].

~Y

Thus,

(£ = L)h]zx, + V(L = L)R]ll gz, 1400y S € mmleo (H1eob el

Therefore, by Lemma 4.8.1, since ¢y > eg by hypothesis,

HhHH1 <e min{[co+(pc—1)eo], c1}7¢

By iterating this argument, we get (4.8.7).

We now improve the convergence given by Propositions 4.6.1 and 4.7.8.

Lemma 4.8.5. For N > 6, if u is a solution to (1.0.2) satisfying, for allt > 0,

lu(t) = Wllm S e, E(ug) = E(W), (4.8.8)



Chapter 4. Classifications of solutions to the NLS at the threshold 122

then there exists a unique A € R such that u = U*.

Proof. Step 1. Linearize around W to improve the decay on time.

If w is a solution to (1.0.2), write w = h + W. Recall that h is a solution to (4.3.1). We
will first show the bound

IV RE 02 0oy + [RBE)2p, S e forall 120 (489)
Indeed, by Lemmas 4.3.12 and 4.3.9.((ii)),

IV (R(P)||srr2, o1 S €t

)~

Therefore, triangle inequality gives
V(R 572, 1t 400y S €77

Now, by (4.3.11), we have
[R(h(t)] < A ()",

so that, by Sobolev inequality,

— t
Be < e Pt

IR 2, S N2 (2)

Therefore, the bound (4.8.9) is proved.

We are now under the hypotheses of Lemma 4.8.1, with ¢y = ¢ and ¢; = ¢p. > ¢. The

conclusion of this Lemma gives
1A ()l gn S €™ +emPet.

If ¢ > ey/pe, we get

1A | n S e,

and, by the same argument used to prove (4.8.9),

IV R 5722, t400)) + IR(AO)]] 220 S o—copet.
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Thus, (4.8.4) gives
|h(t) — Ae™ 'Y || S e7Pe ok, (4.8.10)

Y

1+pe

If, however, ¢ < eg/p., then assumption (4.8.8) holds with —3F¢c > c instead of c. By

iteration, we get (4.8.10).
Step 2. Linearize around W + V. to improve higher order convergence to U*.

For k > 2 to be chosen later, write A = h — V, so that h is a solution to (4.8.5). Since k

is fixed throughout the proof, it will often be omitted. By Lemma 4.8.2, we have

IV (R sz, eorooyy + IR 22, St IVAIE 22, 1 400y

Therefore, by (4.8.5),
ath + Ekh =1,

with
IV sz voop + Il 20, Sk VAN 22, 1 400y + e kot (4.8.11)

By (4.8.10) and the definition of V, we have
12l S |h— Ae™ Y || 4+ Oe20t) <, e7Pe (4.8.12)

By iteration, starting with (4.8.12), and repeatedly applying Lemmas 4.8.4 and 4.8.3, as

well as estimate (4.8.11), we have, for any k > 2,
1Bl g S et
Therefore, choosing k = I(ko) where kg and [ are defined in Proposition 4.4.2, we have, for

N >6andt >0,

N-2

_ 3
1D (= W = Viga) )l s(—=. ooy S IV = W = Vi) 522, o400y S € F0FTD7

eot

Hence, by uniqueness in Proposition 4.4.2, we get that v = U4,
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Corollary 4.8.6. Let N > 6. For any A # 0, there exists T4 € R such that either
UAt) = WT(t+Ta), if A>0,

or

UMt) =W (t+Ta), if A<O.

Proof. Choose T4 such that |Ale~®T4 = 1. We have, by (4.4.8),
|UA(t+Ty) =W F e Y, || < e 2 (4.8.13)

Note that U4(t + T4) satisfies the hypotheses of Lemma 4.8.5. Thus, there exists A € R
such that UA(t + T4) = U4 But (4.8.13) implies that A =1, if A > 0, and A = —1, if
A < 0, finishing the proof of the corollary. O]

4.8.2 Intercritical case

For 0 < s. < 1, we study the linearized approximate equation
Oh+ Lh =€ (4.8.14)

with h and e such that, for ¢t > 0,

1A )| S e,

V)@ lIneto) S €7

(4.8.15)

where ¢; > ¢y > 0. We merely state the results in this case, as their proof is very close to
the energy-critical case (in fact, some proofs are easier, since the L? norm of the solution

is finite).
Lemma 4.8.7. Under the assumptions (4.8.15),

(i) if e & [co, 1), then
1) S e, (4.8.16)
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(ii) if ey € [co, 1), then there exists A € R such that

1A(t) — Ae=c0tY, [l < ecit. (4.8.17)

Omitting A for simplicity and defining, for every k,

ik:< 0 1—A)+(p+1)|Q+Vkpl<0 1)
~(1-A) 0 2 -1 0

(p g 1) |Q N Vk’p_?’ ( Im(Q + Vk)2 RGEQ + Vk) ) 7

_|_

— RG(Q + Vk)Q —Im Q + Vk)

ian) = TV evpn+ O Vg v v
and
Ri(h) == Q + VP 1 (Q + V) J((Q + Vi) 'h),
where
J) = |14+ (1 42y —1 - 2FD, =D

2 2
we have that if, u = e™(Q + Vj, + h) satisfies (1.0.2), then h satisfies

Oh + Lih = iRi(h) + e, (4.8.18)
or in the form of a Schrodinger equation,
iOh + Ah — h + Kyh = —Ry(h) + ey,
where ¢, are O(e~k+Yet) in S(RV) . By the construction of Vy, we have, for all t > 0,
V()] S e Q)

and

IVVe)] S e IVQI < e'|Q).

Therefore, as in the energy-critical case, we have the following results.
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Lemma 4.8.8. Let p > 1, k > 1 and I be a bounded time interval, and consider f €
S(L?*, 1) such that Vf € S(L?,I). There exists a > 0 such that the following estimates
hold.

For allp > 1:

(i) IKV) K (Nl 52, 0 S TV fllse, o

Forp > 2:

(i) IKV) Bl D2, 1y S IOV Dllsaz, o (I Fllsen + 10V F Iz ) -

Forl1l<p<2:

(iii) [[(V) Ri(f)l|sz2,ny S (14 I]%) [{V Y32, 1)

Lemma 4.8.9. Let h be a solution to (4.8.18). If, for some ¢ > 0 and for any t > 0,
IR < e,

then

||<v>h||S(L2,[t,+oo)) 5 e min{c,(k—&-l*)eo}t'

Lemma 4.8.10. Let h be a solution to

Oh + Lyh =

with h and € such that, fort >0,

1A ()| S e,

(V) ellsrr2, ftao0)) S e~

Y

where (k+ 1)eg > ¢ > ¢o > eg. Then,

A S e



Chapter 4. Classifications of solutions to the NLS at the threshold 127

Lemma 4.8.11. If u is a solution to (1.0.2) satisfying
lu(t) = e Qllm S e, M(up) = M(Q), Eluo) = E(Q),

then there exists a unique A € R such that u = U*.

Corollary 4.8.12. Let 1 +4/N < p < 2*—1. For any A # 0, there exists Ty € R such
that either
UAt) = QT (t+ Ta), if A>0,

or

UAt) =Q (t+Tn), if A<O.

4.9 Closure of the main theorems

Having proved Propositions 4.6.1 and 4.7.8, and Lemma 4.8.5, we can proceed as in [24].

Proof of Theorem 4.1.5. Recall the notation J; = Re )Y, = Re Y_. We claim that (W, Y1) 1 #

0. If not, since W solves the equation AW = —WPe, we would have
1 Pe P _
B(I/V,y:t)—§ VW-V%—E W y1—§ AW Y, =0,

so that W € G*. But, by Lemma 4.3.5, ® is nonnegative (in fact, it is coercive) on G*,

which contradicts (4.3.8).

Replacing Y., if necessary, we may assume

(W, y1>H1 > 0.

Defining
W* = U+,

we claim that the conclusions of Theorem 4.1.5 hold. By the strong convergence U4 (t) — W

in H' and energy conservation, we conclude E(W=*) = E(W). Moreover, by (4.4.7),

||UA(t>||§Il = ||W||§_11 + 2A€_280t(m yl)Hl + O(G—Semf)7
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which shows that [|[UA(t)|| 71 — |[W]|z: has the same sign as A, for large t. By uniqueness
and continuity of the flow, this sign must remain the same for every t in the intervals of
existence of W*. By Proposition 4.7.4, W~ is defined on R, and by Proposition 4.7.8, W~

scatters backward in time.

We now show that U4 has finite mass, if N > 5. Let, as in the proof of Proposition 4.7.4,
¢ be a smooth, positive, radial cutoff to the set {|x| < 1}. Define, for R > 0 and large ¢,

= [ 103 @, )Pl ) do
Since U4 is a solution to (1.0.2), by Lemma 4.6.3 and Hardy’s inequality, we have
1 2 .
PO S 1040 - W ([ 0O ) S 1040 = Wl 04O o
Hence, integrating from a large t to +oo,

—eot
< e o

Fult) = [ W P(F) do

Recalling that W € L*RY) if N > 5, we can make R — +o0o to obtain M(U%) =
M(W) < +oo. In particular, W* € L*(RY) and, by Proposition 4.6.1, W blows up in

finite negative time. This finishes the proof of Theorem 4.1.5. [

Proof of Theorem 4.1.6. The case |lugl|zn < |[W/||z: follows immediately from Proposition
4.7.8, Lemma 4.8.5 and Corollary 4.8.6. Case ||ug|| 51 = ||W]|z: is a consequence of the
variational characterization of W. Finally, |luol| 51 > ||[W || 51 follows from Proposition 4.6.1,

Lemma 4.8.5 and Corollary 4.8.6. ]

Proof of Theorem /.1.7. Recall the notation }; = Re), = Re)_. We claim that (Q, V1) m #
0. If not, since @) solves the equation Q) — AQ) = —QP, we would have

BQY) =5 [Qvi+y [ve-vy L [@ey =TT @Q v =0

so that Q € G*. But, by Lemma 4.3.5, ® is nonnegative (in fact, it is coercive) on G*,

which contradicts (4.3.7).
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Replacing Y., if necessary, we may assume

(Q, yl)Hl > 0.

Defining
Qi — U:tl 7

we claim that the conclusions of Theorem 4.1.7 hold. By the strong convergence e U4 (t) —
Q in H' and energy conservation, we conclude M(Q*) = M(Q) and E(Q*) = E(Q).
Moreover, by (4.4.13),

[UAE) 3 = QU3 + 2474 (Q. V) s + O,

which shows that [[UA(t)|| g — [|Q]|z has the same sign as A, for large t. By uniqueness
and continuity of the flow, this sign must remain the same for every t in the intervals of
existence of Q*. By Proposition 4.7.16, Q~ is defined on R, and by Proposition 4.7.19, Q~
scatters backward in time. Finally, by Proposition 4.6.4, Q% blows up in finite negative

time. This finishes the proof of Theorem 4.1.7. O]

Proof of Theorem 4.1.8. The case ||[Vugl||r2 < [|[VQ)| 2 follows immediately from Proposi-
tion 4.7.19, Lemma 4.8.11 and Corollary 4.8.12. Case ||Vugl|z2 = ||[VQ||r2 is a consequence
of the variational characterization of of Q. Finally, ||Vugl/zz > [|[VQ||r2 follows from

Proposition 4.6.4, Lemma 4.8.11 and Corollary 4.8.12. ]

4.10 Auxiliary results

4.10.1 Spectral properties of the linearized operator

We prove here some results about the operator £, following closely [25].

Proof of Lemma 4.5.2. In this proof, we will write V = QP! for 0 < s. < 1. Note that V

defines a compact operator from H'! to L2.

Intercritical case. The operator L is a relatively compact perturbation of ¢(1 — A), and
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therefore has the same essential spectrum. We now prove the existence of exactly one
negative eigenvalue to £. From the proof of Lemma 4.3.5, we see that L_ on L? with
domain H? is nonnegative. Since it is also self-adjoint, it has a unique square root L% with
domain H'. It is equivalent to show that the the self-adjoint operator P := L%LJFL% on

L? with domain H* has a unique negative eigenvalue. Indeed, consider the function

o (@1,Q)re
77000

One can check that Z € H?, Z € {Q}* and, for 0 < s. < 1,

(L2, 7 = —]\m [p _ (1 + ;‘[ﬂ /Qp—l <0.

Defining h := L_%*Z € Q*, one also has

h=(LZL-YWL'L)Z=L"'L?L_Z € H

For € > 0, choose h. € H* such that h. L Q and ||h — h.||ys < . We have

| rol=
| rol=

he, L

117

. (Pf, )2 _ (LiL he)pe

sert | fII7

IN

<0,

if € is small enough.

Hence, by the mini-max principle, P has a negative eigenvalue —e2 and an associated
eigenfunction g. Defining ), := L%g, Y, = %LJFJA, and Vi = Y, £+ 1), we have
LY+ = tey. Uniqueness of the negative eigenfunction of P follows from the non-negativity
of Ly on {QP}*. The assertions about the kernel of £ follow from the coercivity given by

Lemma 4.3.5.

It remains to prove that Yy € S(RY). It suffices to prove this assertion for J; = ReY,.

The differential equation for ) is

(1= AP +eg)Vy = [pV2+ V(1 — AV —p(1 — AV (4.10.1)

Since the Fourier symbol of (1—A)2+e2 is (1+[£[*)2+e3 ~ (1+£]?)?, and V, Y, € H*(RY),
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we have that Yy € H® for all s > 0. As in [24], we show that for all non-negative integers
k,s and all p € Cg°(RY), we have

Cp, s, k)

Rk 7

lp(z/R)I|

s < for all R > 1. (4.10.2)
The inequality (4.10.2) holds if £ = 0, for any s > 0. By induction, we show that if it
holds for (k, s), it also holds for (k+1,s+1). Given ¢, consider ¢ € C5°RY such that ¢ is
1 on the support of ¢, so that we have $0%p = 0%p for any a. Since () and its derivatives
decay (more than) polynomially, (4.10.1) gives, for s > 3,

e/ B)(1 — A + @il < Z@/ RNl < Sl@a/ RN

Hs-

Using the straightforward commutator estimate |[[(1 — A)? + €3; ¢(z/R)]|
C(N)/R, we get

Hs=3Hs-3 <

lo(x/R)Wllress ~ [I[(1 = A) + eg)(p(@/ R)V) |l =-s < €||g5(x/R)y1| He-

By the induction hypothesis, we get ||¢(z/R)V1||gs+1 < C/R*!, as desired. The same
argument shows that, if A € R\o (L), then (A — £)71S(RY) C S(RY).

Critical case.

The range of the operator L_ is no longer closed, but the operator 1 + L_ is invertible on

{Q}*. Therefore, for any € > 0, one can take G. € H? such that

IL_G. — (1+ L_)Z|2 < <.

Letting h. := (14L_)'L2G, = LE(1+L_)'G. = (14L_) " (1+L_) 3 LE(1+L_)3G. €

H3, we have

|LEhe — Zllge = (1= A)(+ L) (LG — (14 L) Z)]

< 5”[1 — V(l — A)_l]_1||L2_>L2.
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Choosing h. € H* such that h. L Q and |he — ﬁgHHs < e, we get

(Phe,he)re = (L4 Z, Z) 12 + O().

Thus, if € is small enough, the conclusion follows. The regularity and the decay of V.

follow analogously from the argument for the intercritical case. O]

Proof of Lemma 4.3.5, energy-critical case.

Step 1. Coercivity in G*. We adapt here the proof in [75] to our context.

Let IT : S¥ — RY be the “stretched” stereographic projection of the sphere S onto R¥,
with respect to the North pole, defined by

By integration by parts, one can check that
/ |Vsyul|?do = 2N’2/ (Vo|? — WPevidy,
SN RN

and

2N
2 _ Pe,,2
/SNUdU_N(N—Q)/RNW vody.

The spectrum of Agn is well-known [8]. Namely, for the first eigenvalues A, with multi-

plicity n, and associated eigenfunctions u,, we have

)\0:07 77/0:1, u0:17
)\1:N, n1:N+1, Uy, = Ty, 1§Z§N+1,
Ay = 2(N +1).
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Therefore, if v L W in H*, then u is orthogonal to ug, and we have

4\
2 _ Pe 2 1 Pe,,2
/]RN|:U’ ! UdyZN(N—Q)/RN vidy,

which is equivalent to

4
/RN Vo> — WPevidy > N2 /]RN IVv|?dy.

Similarly, if v L span{W, VW, W;} in H', then u is orthogonal to u, U, 1 <i < N+1,
and thus

/ (Vo> — WPevidy > 4)\2/ Wrevldy

RN ~ N(N —2) Jrwy ’

which is equivalent to

4
/]RN |VU|2 — p WP dy > N2 /RN |Vv|2dy.

Therefore, we proved that, for h € G+,

4
(I)h >7h 71 .
(h) = 575 lhl

Step 2. Coerciveness of ® in G*.

We first claim that B(Y,,Y_) # 0. If B();,Y_) was 0, then ® would be identically 0
on span{ VW, iW, Wy, Y., Y_}, a subspace of dimension N + 4. But this cannot happen,

given ® is positive definite on G, which is of codimension N + 3.

We now show that ®(h) > 0 on G*\{0}. Assume, by contradiction, that there exists
h € G*\{0} such that ®(h) < 0. Recall that ker £ = span{VW,iW, W}, and that, by
definition of G\{0}, B(),,h) = 0. Hence, the vectors 9,W, k < N, iW, Wy, Y, and h

are mutually orthogonal under the symmetric form B. Since
(0 W) = W) = &(W1) = (I4) =0,

we get

Dispan{vw,iw,wy v, ny < 0.
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We claim that these vectors are independent. Indeed, if
> W + BiW + AWy + 6, + eh = 0,
k

then

6B(y+ay—) =0

and since B(Y,,Y_) # 0, § = 0. Therefore, the claim is proven, since O, W, iW, Wi and h

are orthogonal in the real Hilbert space H®.

To prove coercivity, we rely on a compactness argument. Suppose, by contradiction, that

there exists {h,} C G such that

lim ®(hy) =0,  ||hnllp = 1.

Up to a subsequence, we may assume h,, — h* weakly in H'. This implies h* € G*. Since

the operator [WWPe~1|.|? is compact, we have [ WPe=1|h,|? > 0 and
®(h*) < liminf ®(h,) = 0.

This contradicts the strict positivity of ® on G*-\{0}.

Proof of Lemma 4.5.5, intercritical case. Since the explicit formula for ) in the intercriti-
cal case is not available, we cannot proceed as in the energy-critical case. We follow here

[87] and [25].

Step 1. Non-negativity on G*. Define the functional

o ) ()
IS !

_2p+2—-N(p—1)
— . ,

where

_Np-1)
a= 1 , b

By the sharp Gagliardo-Nirenberg inequality, we see that this functional achieves an
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absolute minimum at (. Therefore, the minimization condition -5 J(Q + £h).—o > 0 for

(/QQﬂ </AQ") +2</Qh1>2‘</QPhlﬂ‘

Since a and b are positive if 0 < s. < 1, we have that ®(h) > 0 if [ QPh; = 0. Therefore,

® must be non-negative on G*.

Step 2. Coercivity on G*. We now employ compactness to show that, for every real function
h € G+,
(L h)gz 2 WAz, and (L_h,R)g 2 ]

If we prove the last inequalities, then (again) by compactness, the coercivity follows.

Suppose that there is a sequence of real H' functions h,, in G* such that
nli_{glo(LJrhn,hn)Lz = ®(h,) =0, and [|h,||zz = 1.

This implies
1 1
0< 5 [IVhar = =5+ [ Q@ h2 + @(h) S 1.

Therefore, |[Vh,| < 1 and, for large n, [ QP~'h? > 1. Passing to a subsequence, and

recalling that  decays at infinity, we get that there exists h, € G+ such that
h, — h, weakly in H', and / QP12 > 0,
In particular, h, # 0. Moreover,

®(h,) < Ehmlanh |l — = hm Qr'h2 —hmlnf@(h )=0.

n+— n-+—00

Recall that ®(h,) > 0 by Step 1. Therefore, ®(h,) = 0 and h, is the solution to the

minimization problem

0= (Lihi, hi)2 = %ig(LJrh, h)r2, where
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E:={he H"||h]z2 = ||h.] 2 and h € G*}.

Thus, there exist Lagrange multipliers Ay, --- , Ay11 such that

N
L+h* - )\on + Z )‘jan + /\N+1h*~

J=1

Since h, € G*\{0} and (L, h,, h.)r> = 0, we have Ay, = 0. By testing the last equation
against 0;Q and using that L, (0,Q) = 0, for all £ < N, we conclude that

Lyh, = M\QP.

Recalling that that L, Q = —]%IQP and that ker(L,) = span{VQ}, we conclude that

there exist p,-- -, uy such that

2)\0

Noting that [ Q0;Q = %faj(QQ) = 0, and recalling that h, € G+ gives p; = 0 for all j.

Therefore,
2o

p—1

And, by direct calculation,

(Lyhy, hy)pe = — ( 220 ) /Qp“ <0.

This contradicts (Lyhs, hy)rz > 0 and h, # 0, and proves that

(Lih,h)p2 Z (Bl

for any real function h € G*. The proof for L_ is analogous. In particular, we have strict

positivity of ® on G1\{0} and, by compactness, the coercivity follows on G*.

Step 3. Coercivity on G*+. The proof relies on a (co)dimensional argument, together with

compactness, as in the energy-critical case. 0
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4.10.2 Proof of modulation results

Proof of Lemma 4.5.1. The proof is already classical (see, for instance, [25, Section 7.1]
and [70, Section 2]). We first show the lemma when u is close to W. Define the functionals

J:(J(),"' aJN—i-l) ODRNXR+XRXH1 as

J() : (9,1‘, )\,U) — (f[x7A,9],iW)H1,
Jk : (e,l',A,'LL) = (f[x,)\,e]aakW)Hla 0< k < N:

JN—l—l : (67x7 >\,U) = (f[ac,A,G]aWI)Hl-

By direct calculation, one can check that

et (s ) = (/0P) (T floave ) (= fiwie) 2o

and that J(0,1,0,WW) = 0. Hence, by the Implicit Function Theorem, there exist €, 79
such that, if f € H' and ||f — W||zn < €o, then there exists a unique n-tuple (z, \, §) such
that

lz| + [N 4+ |0 — 1| < 1o, and J(,x,\, f) =0.

Now, if u is as in the lemma, by the variational characterization of W, if d(u) is small,
then there exists (2o, Ao, 0p) such that wu, x00 = W + f, with || f||;n < e(d(f)). We are
thus back to the preceding case. Existence, local uniqueness and regularity follow again

from the Implicit Function Theorem. O

Proof of Lemma 4.5.2. For a fixed t, write v = up @) a@),00)(t) = W = a(t)W + h(t) as in
(4.5.1). Since h € G+, we have

[0][F = @2[[W [ + 1A]1 - (4.10.3)
Since h € G*, and W satisfies the equation AW 4 WPe = 0, we have
1 p
B(W, h) = 5/VIA/-VfL1+§/AVVizl —0.

Therefore, ®(v) = ®(aW + h) = ®(W)a?® + ®(h). Recalling that W is a critical point
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for the energy functional E, we have E(W +v) = E(W) + ®(v) + O(]|v||3,). Since
E(W +v) = E(W), and by the coercivity given by Lemma 4.3.5, we have ®(h) ~ ||h|| .-
Thus, we have

a® Sl + ol (4.10.4)

and

17 S @ + ol (4.10.5)

Since ||v|| 1 is small when d(u) is small, estimates (4.10.3), (4.10.4), and (4.10.5) give

la| = ||h|| g1 = ||v]| 2. Finally, since

d(u) = | + vlf3n — [Wln

= ll[vll: + 20| W 71,

we have d(u) ~ |a|, and (4.5.2) is proved.

It remains to prove (4.5.3). Consider the variables y and s given by

and dt =

Yy DR

In view of (4.5.2) and the decomposition (4.5.1), we can rewrite (1.0.2) as

10sh + Ah —ia,W + 0, W — iz, - VIV + i);\sz = O (e(s)) in HY, (4.10.6)

where €(s) :=d (d+ 105 + || +

As
A

). Since h € G, projecting (4.10.6) in H* onto W,
iW, VW and W; and integrating by parts (possible due to a standard regularization

argument) yields

As
|| + 0] + || + T O(d + €(s)),
which is enough to conclude (4.5.3) and finishes the proof of Lemma 4.5.2. O

Proof of Lemma 4.5.5. The proof is analogous to the proof of Lemma 4.5.1 and will be
omitted. O

Proof of Lemma /.5.4. The orthogonality condition (4.3.5) implies B(Q,h) = 0. Since
E(u) = E(Q), and @ is a critical point for E, we have

a?®(Q) + (h) = (aQ + h) = O(|a]* + || 2]|31).
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By coercivity, ®(h) ~ ||h||z1, and hence |«| & ||h||g1. The relation M(u) = M(Q) gives

‘OC/QQ‘F/th

_ ;/m@ +h? = O(laf), (4.10.7)

and thus

ol = | [ Qi

Now, using (4.3.5),

d(w) = | [ IVaf = [ 1vQP

—2(a [19QF = [ Qi)+ O(laP)

Y

which, together with (4.10.7), gives

d(w) =[2a ([ 19QF - [ @*) +O(aP?)

Since, by Pohozaev identities (2.6.2), |VQ||z2 # ||Q]|z2 for any N and any p in the
intercritical range, we conclude d(u) ~ |a| and hence (4.5.6) holds. The rest of the proof
goes along the same lines of the proof of Lemma 4.5.2 (without the need of self-similar

variables), and will be omitted.

4.10.3 Proof of an incertainty principle

Proof of Lemma 4.6.5. Let §(f) = [|[VW|*> — [|Vf|* and A € R. By Sobolev inequality

VW]

IV () >
(€Dl 2 .

[ F |2

Squaring the last inequality and expanding the term ||V (e f)|o,

VW3
W

N [ IVl [V 2+ 20t [(Vo- VT + [V - 1113 = 0.

2
2*

The discriminant of this quadratic form must be non-positive, and we have

(mn f90-907) < ([ wse = BB ) ([ 9019.2)
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Since

[1vsE= [19we - s(p),

we have, by E(f) = E(W),

0< [ =

» N
- 500,

Therefore,

2 =/|VW|2 —8(f) HHZVWHQ (/|

VW3
[roge - IV
2% 2%
;
(1w

= [rowe - a0 - 10

=0(3(f)*),

and Lemma 4.6.3 is proved.

Proof of Lemma 4.6.6. The proof is analogous to the proof of Lemma 4.6.3 and will be

omitted.

Proof of Lemma 4.8.1. By Lemma 4.3.12, we can assume that

1A () |52, tro0)) S €7

We first normalize the eigenfunctions of £. Define

fO TR 2T fk = A T fN 1= Ty
W 1O W[ 1 AT

We have

(fish) =0, |fillgn =1, VE<N+1,Vhe H"

Recall that B(),, Y-

h(t) = ar(O)Vs +a-(t) Y- + Zﬂk Vet g(t), g(t) e G

N—-2
N

;—&ﬂ+owUW)

]

(4.10.8)

) # 0. Normalize ), V_ such that B(),,)_) = 1. Next, write

(4.10.9)
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where, recalling that Lispans, k<n+1; = 0 and that ®(Y;) = ®(Y-) =0,

as(t) = B(h(t),Y.), a_(t) = B(h(t),Vs), (4.10.10)
Br(t) = (h(t), fi)  — s () Vi, fid g — o (O (Vo) fi)gn, Yk < N+ 1(4.10.11)

Step 1. Differential inequalities on the coefficients. We will show

jt (eeotaJr(t)) =e“'B(Y_,e), jt (e’eota, (t)) =e "B(Y,,€), (4.10.12)
2 (€)= (e i — O )i B, ©) = (V- fi) in B ) — (Lg. (IHLL3)
CICM(Z@ = 2B(h,€). (4.10.14)

By equation (4.8.1),

o/ (t) = B(0sh,Y-) = B(—Lh +¢€,Y-)
= B(h,LY_) + B(e,Y-) = —epai(t) + B(e, Y-).

This yields the first equation in (4.10.12). The second equation follows similarly.

Now, differentiating (4.10.11), we obtain

Br=(—Lh+e—o V=" V_, fi).

Note that Lh = ega; Yy — epa_Y— + Lg, by (4.10.9), which proves (4.10.13), in view of
(4.10.12).

Finally, differentiating ®(h(t)),

C‘;tcp(t) = 2B(h, 0,h) = —2B(h, Lh) + 2B(h,¢) = 2B(h, ¢),

by the skew-symmetry of £ in (4.3.3). Equation (4.10.14) is then proved.

Step 2. Estimates on ay. We claim

la_(t)] < et (4.10.15)

[
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e—cit if ey < ¢y,

oy ()] < (4.10.16)

Y
e~ fe~at if eg > ¢

We will need the following claim, which is an immediate application of Holder inequality.

2N
Claim 4.10.1. If I is a finite time interval, f € L?OL%, g € LPLy™ are such that

2N

2N
VfeLiLY 2, Vge L2LY™?, then

N
:c x

/IB !dt<HVfH HVgH e AL - xllgll . 25

oL N2

The above claim, (4.10.8) and (4.10.12) yield

t+1 t+1
[l B es)lds < e [ By, e(s)lds S e ot
t t

By triangle inequality, integrating the second equation in (4.10.12) gives
+oo
@IS e [ e B e(s)lds S e,
t

which proves (4.10.15).

To prove (4.10.16), consider first the case co > €. Then, by (4.10.8) and (4.10.10), e®*a, (¢)
vanishes as t — 400. By Claim 4.10.1

t+1 t+1
[ e B els)lds S et [ 1B e(s))lds $ el
t t

integrating the equation on o, in (4.10.12), recalling that ¢; > ¢y, and using triangle

inequality, we get (4.10.16) if ¢y > e.

Assume now that ¢y < eg. Integrating (4.10.12),
t _
s (t) = e a ) < e [ e B efs))lds S e T,
0

and the proof of (4.10.16) is finished.
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Step 3. Bounds on g and (. We will prove

(cg+e1)
7Tt‘

lg(O)ll g + Zk: EAGINEE (4.10.17)

Again by Claim 4.10.1, [*'|B(h(s), e(s))|ds < e~(©0te)t, By triangle inequality, integrating
(4.10.14), we get
O(h(t)) < e (ot

Therefore,

20,0 BV, V) 4 ®(g)| = |®(h)| S e~ (ot

By Step 2,

e—(coten)t 4 p—2eit if ¢ > ey,
[2(9)] S
e—(coten)t e~crt(emeot 4 e~ t) if ¢y < e

In any case, |®(g)| < e~(@0F)t, Using the coercivity of ®, given by Lemma 4.3.5, estimate

for g in (4.10.17) is proven.

Consider now (4.10.13). By (4.10.8),

' t+1 ' t+1
340l S e+ [ | Lol s = et [ Re [ £7(A a0 o)
0 L,
where £* = is the L2-adjoint of L.
—L_ 0

One can check explicitly that, for any 0 < k < N + 1, [L*(Afi)| < W Therefore,
LX(Afy) € L%(RN), so that, by the estimate on g in (4.10.17),

(cote1)

Re [ £9(Af70)] S 90 gs, S lgllin S e

Step 4. Closure

By the decomposition (4.10.9), as well as steps 2 and 3, so far we have

(co+e1)
—#t

e if ¢g > eg

1P S

e—eot +e <Cogcl)t

if ¢g < €.
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Now, if ey & [co, ¢1), by iterating the argument, we obtain
IR S e,

which proves (4.8.3).

Assume now ey € [cg, ¢1). Then, estimate (4.10.12) on «y ensures the existence of a limit

A to e®'a (t), as t — +oo. Integrating (4.10.12) from ¢ to +oo,

+oo
A= eva < et [T By, e(s)lds S e
t

In view of decomposition (4.10.9) and estimates (4.10.15), (4.10.16) and (4.10.17), we get

(coter)

1A(t) — Ae™ V[l S e

Since LY, = ey, we see that h(t) := h(t) — Ae 'Y, satisfies the differential equation
(4.8.1) with the same €, and with ¢, replaced by ©3€ > ¢; in condition (4.8.2). By iterating
the argument a finite number of times, we end up under condition (4.8.3), which implies

condition (4.8.4) for the original h, and finishes the proof of Lemma 4.8.1. O]

Proof of Lemma 4.8.7. We first normalize the eigenfunctions of L. Define

@
10:Q2”

fo: i

= m> Jr =

We have

Recall that B(),,Y_) # 0. Normalize ), , }_ such that B(),,Y_) = 1. Next, write
ht) = ar (Vs +a (V- + Y BB f +9(t), o) €GE (41018)
k
where, recalling that Lispan(s,, i<y} = 0 and that ®(Y,) = ®(Y-) =0,

a(t) = B(h(t),Y.), a_(t) = B(h(t),Y,), (4.10.19)
Br(t) = (h(t), fi)m — s (Vs fi)m — a_ ()Y, f)m, ¥k < N. (4.10.20)
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Step 1. Differential inequalities on the coefficients. We will show

jt (e“'as(t)) = e BV e), jt (e7a_(t)) = e ™'B(Vye), (4.1021)
3 (E7B0) = (fi O = Vs )i BO-€) = V-, fidin BYs €) = (Lg, (#)30.22)
‘@(CZ@ =2B(h,e). (4.10.23)

By equation (4.8.14),

o\ (t) = B(0,h,Y-) = B(—Lh+€,Y_)
= B(h,LY_) + B(e,Y_) = —epar(t) + B(e, Y-).

This yields the first equation in (4.10.21). The second equation follows similarly.

Now, differentiating (4.10.20), we obtain

Br=(Lh+e—a Vi —a YV, fi)m.

Note that Lh = eqay Yy — epa— Y + Lg, by (4.10.18), which proves (4.10.22), in view of
(4.10.21).

Finally, differentiating ®(h(t)),

thD(t) — 9B(h, O1h) — —2B(h, Lh) + 2B(h, €) = 2B(h, ¢),

by the skew-symmetry of £ in (4.3.3). Equation (4.10.23) is then proved.

Step 2. Estimates on a4. We claim

la_(t)] S e (4.10.24)

~

e—cit if co < e,

la, (8)] < ) (4.10.25)
e—¢ot +e 4 toif Co > €p
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We will need the following inequality, which is an immediate application of Holder inequality.
/IIB(f(t),g(t)ﬂdt S KV fllscez, nl{V) gl sz, 1y (4.10.26)
The above inequality, assumption (4.8.15) and (4.10.21) yield
+0o0 +oo
[ e B els)lds < e [ B els))lds 5 e e
t t
By integrating the second equation in (4.10.21) gives
+oo
(OIS e [ 1 By els))lds S e,
t

which proves (4.10.24).

To prove (4.10.25), consider first the case ¢; > ¢g > ep. Then, by assumption (4.8.15) and
(4.10.19), e“*av, (t) vanishes as t — 4o00. By (4.10.26), integrating the equation on o in
(4.10.21),

+oo
et (]S [ 1 B e(s)lds S e,
t
and we get (4.10.25) if ¢o > eo.

Assume now that ¢y < eg. By (4.10.21), we have

t _
o (8) = o 0)] < e [ e B efs))lds S e T,
0

and the proof of (4.10.25) is finished.

Step 3. Bounds on g and ;. We will prove

(cote1)
_Tt'

gl + Xk: Br(t)] S e (4.10.27)

Again by (4.10.26), [* |B(h(s),¢€(s))|ds < e~(«0teVt. By integrating (4.10.23), we get

B(h(t)) < e(coten)t,
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Therefore
20 a_B(Yy, V) + ®(g)| = |®(h)| < e (cote)t,

By Step 2,

e—(coten)t 4 p—2eit if cg > e,
[2(9)] <
e~(coten)t 4 emart(gmeol L emert)  if ¢y < e,

In any case, |®(g)| < e~(0Fel)t, Using the coercivity of ®, given by Lemma 4.3.5, estimate

for @ in (4.10.27) is proven.

Consider now (4.10.22). By assumption (4.8.15),

Bt +1) =0 S et [ 1o LoDimlds =4 [T [Re [ £2(Af)g05)|des),
0 Ly
where L* = is the L%-adjoint of L.
—L_ 0

One can check that, for any 0 < k < N, [L*(Afi)| < e7l#l. Therefore, £*(Af,) € L? so
that, by the estimate on g in (4.10.27),

0+C1)t

‘Re [ (afog 1s||g Bz < gl S e

Step 4. Closure

By the decomposition (4.10.18), as well as steps 2 and 3, so far we have

_(egte1), .
e 2 if cg > e
[ <
—ent _(eoten), .
e 0 47 2 if ¢g < eg.

Now, if ey & [co, ¢1), by iterating the argument, we obtain
1) S e,

which proves (4.8.16).

Assume now ey € [cg, ¢1). Then, estimate (4.10.21) on « ensures the existence of a limit
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A to e®la (t), as t — 4o00. Integrating (4.10.21) from ¢ to 400,

“+oo
A= evar < et [ By, el(s)lds S e
t

In view of decomposition (4.10.18) and estimates (4.10.24), (4.10.25) and (4.10.27), we get

_ (eote1),

1h(t) = Ae™ Vil S e

Since LY, = eg)y, we see that h(t) := h(t) — Ae~“0*), satisfies the differential equation
(4.8.14) with the same €, and with ¢y replaced by ©Z% > ¢; in condition (4.8.15). By
iterating the argument a finite number of times, we end up under condition (4.8.16), which

implies condition (4.8.17) for the original h, and finishes the proof of Lemma 4.8.7. [



5 Scattering and blowup criteria for the INLS
above the threshold

5.1 Introduction

We consider here the initial value problem associated to INLS (1.0.3), with initial data
above the mass-energy threshold. This question was considered for the classical NLS by

Duyckaerts and Roudenko [26].

For the sake of readability, we normalize here the scale-invariant quantities defined in the

preliminaries chapter. Namely, we redefine the mass-energy

l1—s¢

ME[u] = ME[ug] = el == Elual

M[Q] = E[Q]

the mass-kinetical-energy

Ml [ 19w

MK[u(t) —,
M@= [Iva

and define here the mass-potential-energy

Mluo] 5 [ Jo| (!

MIQIF [lal Q!

MPlu(t)] =

Also, if u is a solution to (1.0.3) and ug € X := {f € HY(RM); |z|f € Lz(RN)}, we define
its variance at time ¢ as

V() :/\xmu(x,t)y2dx.

149
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Recalling the Virial identities ((2.3.1) and (2.3.2)), we have
Vi(t) = 4 Im/x Vu(z, t)a(z, t) do (5.1.1)
and

Vi(t) = 4(N(p = 1) + ) Eu] — 2(N(p — 1) + 20 — 4) |Vl 2oy, (5.1.2)

In previous works, Farah and Guzmaén [31] and Dinh [21] studied the global behavior of
solutions to (1.0.3) below the mass-energy threshold, i.e, in the case MEJug| < 1. They
proved a dichotomy between blow-up and scattering, depending on the quantity MCluy].

We rewrite the global behavior of solutions to (1.0.3) with ME&[up] < 1 in the following

way

Theorem 5.1.1. Let u be a solution to INLS (1.0.3) and 0 < s, < 1. Assume ME[uy] < 1.
Then

(i) If MPuo| > 1, and either V(0) < oo, or ug is radial, or N =1, then the solution
blows up in finite time, in both time directions.

(ii) If MPlug] < 1, N > 2, and ug is radial then the solution is global. Moreover, if

N

0 < b < min {3, 1} and u is radial, then it scatters in H', in both time directions.

Remark 5.1.2. The case MP[ug] = 1 cannot occur if ME[ug] < 1 (see Farah and Guzman
[31, Lemma 4.2, item (ii)]).

Remark 5.1.3. In Farah and Guzman [31] and Dinh [21], this theorem was proven using
MK [ug] instead of MP[ug]. We show the equivalence, if ME[ug] < 1 in Proposition 5.2.1.
Therefore, since the equivalence does not hold in the case ME[ug] > 1, the quantity that

governs the dichotomy between blow-up and scattering is, in fact, MP][uy].

We are interested here in criteria that includes initial data above the threshold ME&[ug| = 1.

The first theorem we prove is a dichotomy

Theorem 5.1.4. Let u be a solution to INLS (1.0.3), where 0 < s. < 1. Assume N > 2,
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V(0) < oo, ug € HY(RY) and

(V:(0))
ME|uy) (1 — 32E[UO]V(O)> <1. (5.1.3)
(i) (Blow-up) If
MPlug) > 1 (5.1.4)
and
Vi(0) <0, (5.1.5)

then u(t) blows-up in finite positive, T\ < oc.

(ii) (Boundedness and scattering) If
MPlug] < 1 (5.1.6)

and

Vi(0) = 0, (5.1.7)

then

timsup Mol ([ o] u()rt) < MQP ([ lelM@l) L (518)

t*)T_'. (u)

In particular, Ty = +o00. Moreover, if b < min {%, 1} and w is radial, then it scatters

forward in time in H*.

Remark 5.1.5. If MEJug| < 1, the conclusion of Theorem 5.1.4 follows from Theorem 5.1.1.

Thus, the conclusions of Theorem 5.1.4 is new in the case ME[ug] > 1.

Remark 5.1.6. The proof of Theorem 5.1.4 shows that there are two disjoint subsets (defined
by (5.1.3), (5.1.4) and (5.1.5); and by (5.1.3), (5.1.6) and (5.1.7)) that are stable under
the INLS flow and contain solutions with arbitrary mass and energy (see, for example,

Remark 5.1.10 below).

Remark 5.1.7. We prove in Section 5.3 that any solution of (1.0.3) that satisfies (5.1.8)
scatters for positive time. Replacing MP[ug] by MK|ue], this result is already known

(see [31]). Due to the one-sided implication (5.2.1), our assumption is weaker. Therefore,
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Theorem 5.1.4 improves known results.

Remark 5.1.8. The scattering statement of Theorem 5.1.4 is optimal in the following sense:
If up € H'(RY) has finite variance and scatters forward in time, then there exists ¢ty > 0
such that (5.1.3), (5.1.6) and (5.1.7) are satisfied by wu(t) for all t > to. In fact, if u(t)
scatters forward in time, then / || ~°|u(t)[PT! — 0. This implies Efug) > 0 and, by (5.1.2),

Vi(t) = 16E[uglt  and V(t) ~ 8E[uo|t?

which implies
(K@)
ME|uy] (1 33 Eug V(1) — 0, as t — +o00.

As a consequence of Theorem 5.1.4, we obtain

Corollary 5.1.9. Let v € R\{0}, vo € H'(R") with finite variance be such that ME[vy] <
1, and u” be the solution to INLS (1.0.3) with initial data

v

; 2
ug = ey,

(i) If MP[vo] > 1, then for any v < 0, u7 blows up in finite positive time;

(i7) If MP[vy] < 1, then for any v > 0, u” satisfies (5.1.8). Moreover, if b < min {%, 1}

and vy is radial, then u” scatters forward in time in H*(RY).

Remark 5.1.10. With the above corollary, we can predict the behavior of a class of solutions

with arbitrarily large energy. If MEvg] < 1, then

Elug] = 49°|zvo 22 + 4 Tm / 2 - Voot + Elvo]

and Fluj] — 400 as v — +00.

Remark 5.1.11. Note that the statement of Theorem 5.1.4 is not symmetric in time as the
statement of Theorem 5.1.1. Indeed, Corollary 5.1.12 below shows solutions with different

behaviors in positive and negative times.

Corollary 5.1.12. Let v € R and Q7 be the solution to INLS (1.0.3) with initial data

Qi =e"Q.
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(i) If v > 0, then Q7 is globally defined on [0, +00), scatters forward in time and blows

up backwards in time.

(ii) If v < 0, then Q7 is globally defined on (—o0,0], scatters backward in time and blows

up forward in time.

Blow-up criteria

The blow up criterion of Glassey [44] for the NLS uses the second derivative of the the
variance V(t) to show that finite variance, negative energy solutions blow up in finite
time. The second derivative of the variance is also used by Lushnikov [69], but with
an approach based on classical mechanics, resulting in a finer blow-up criterion. This
and another criteria were proven by Holmer, Platte and Roudenko [52] for the 3D cubic
NLS. The argument was extended by Duyckaerts and Roudenko [26] to the focusing
mass-supercritical NLS in any dimension. We extend these criteria for the intercritical

INLS equation in any dimension.

Theorem 5.1.13. Suppose that ug € H'(RY), N > 1 and V(0) < oco. The following

inequality is a sufficient condition for blow-up in finite time for solutions to the INLS 1.0.3

with 0 < s. < 1 and Efug) >0

Vi(0)
MTuo]

- SNSCg< 4 E[uO]V(O)>,

NSC M[UO]2

where

1 1 .
—+rx—(1+73) fO0<zx <1 —1)s,
g(z) = Ve A+ ¥ with k= L= Ve,

(5.1.9)
Vi tr- 1+ ifz>1 2

Theorem 5.1.14. Suppose that uy € HY(RY) and V(0) < oo. The following inequality is
a sufficient condition for blow-up in finite time for solutions to INLS (1.0.3) with 0 < s. < 1
and Elug) > 0

1_ p+1 sc 4

Vi(0) _ 4V2Mugl*” 5o 0 Elug] ¥ (L Elug] Vo5V (0)

M < C g|¢ 14 _2@+D ’
[to] M [ug] T ¥o-1+7
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where g is defined in (5.1.9),

2
C = (2(p + 1> (Op N) N(p21)+2b+(17+1)> e .
30(p - 1) 7

and Cy, n is a sharp constant in the interpolation inequality (5.2.3).

Remark 5.1.15. For real-valued initial data, Theorem 5.1.14 is an improvement over

Theorem 5.1.13 if

N(p—1)+2b

NSCCQ ) N(p—1)+26—4

MEug] > ( 1

Remark 5.1.16. In both theorems, the restriction s, < 1 is only needed to ensure the local

well-posedness.

Remark 5.1.17. In both theorems, the restriction s. < 1 is only needed to ensure the local

well-posedness of the INLS equation, proved by Genoud [38] and Guzman [48].

This chapter is structured as follows: In section 5.2, we prove the boundedness and blow-up
part of Theorem 5.1.4. The scattering part is proven in section 5.3. In section 5.4, we show

two non-equivalent blow-up criteria for the INLS (Theorems 5.1.13 and 5.1.14).

5.2 Boundedness versus Blow-up

Coercivity and equivalence between criteria

We start this section with the proof of the equivalence between using MK[ug] and MP[ug]
in the dichotomy when ME&[ug] < 1.

Proposition 5.2.1. If f € HY(RY), then
MK[f] < 1= MPI[f] < 1. (5.2.1)
Furthermore, assume ME[f] < 1. Then

MK[f] < 1<= MP[f] < 1. (5.2.2)
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Proof. We write the sharp Gagliardo-Nirenberg inequality (2.6.5) as
(MPf])) 75777 < MKIf],

and (5.2.1) follows. Now, if MP[f] <1 and ME[f] < 1, then:

1—sc 1—s¢

MIQI=E[Q] > M[f]'%

l—sc 1—s¢
s c

) 1 .
*JIVP e Q)

[f] > ;M[f] /|x|’b|Q|p+1 dr

taking the first and last member, we conclude MK[f] < 1 O

We also point that inequalities in (5.2.2) can be replaced by equalities: we can scale f so
that M[f] = M[Q]. By similar arguments as the ones used in proving (5.2.1) and (5.2.2),
MPI[f] =1or MK[f] = 1in the case ME[f] < 1, implies MP[f] = MK[f] = ME[f] = 1.

In this case, f is equal to ) up to scaling and phase.

We now turn to the proof of Theorem 5.1.4. Start rewriting the Gagliardo-Nirenberg
inequality (2.6.5) as

—b| f|p+1 N<P*41)+2b< H/ 2 _ 2(p+1) _
(/|m| Il d:r) < CoMIf [ IVuPde,  w= Py 1 (5:23)
where
_ N7 L
ey (e
= N(p—-1)+2b —
@ = (Gw) No-D+2  MQF
(S D\ s(p-1)  E[Q) v
“\ 4 Np-1)+20 MQJF
and

A:=2(N(p—1)+20—4) =4(p—1)s..

We make use of the following Cauchy-Schwarz inequality proved by Banica [6]. We include

the proof here for the sake of completeness.
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Lemma 5.2.2. Let f € H'(RY) such that |z|f € L*(RY). Then,

(Im/l‘-fodx)Q < [lePIfP da [/IVdex— CQlw </|x|—b|f|p+1 da;)”(”]

Proof. Given f € HY(RM) and A > 0, we have
V(M) = 2ineM a4 VY f = N (20N f + V).
Thus,

/ [V (e FY[ dw = / GNP (2N z f 4+ V e MNP (—2i\ 2 + V) dar

= 4>\2/|x]2|f\2da:—|—4>\ Im/az : foda:+/\Vf|2d:c
and of the Gagliardo-Niremberg inequality (5.2.3), for all A € R we get

CoM[f" [4A2/]a:\2|f|2d:c+4)\ tm [ @V Fdo+ [ 977 ds

4
B (/ ‘x’_b‘f‘p—i_l d.il:) N(p—1)+2b > 0.

Note that the left-hand side of inequality above is a quadratic polynomial in A . The

discriminant of this polynomial is non-positive, which yields the conclusion of the lemma.

O
5.2.1 Dichotomy above the threshold
Proof of Theorem 5.1.4. We assume
ME[uo] > 1, (5.2.4)
as the case ME[ug] < 1 has been proven by [31]. By (5.1.2), we have
[1vudz = ANV~ 1) +jb)E[“°] m (5.2.5)
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where we recall A =2(N(p—1) +2b—4) = 4(p — 1)s.. Furthermore,

8||VU||% — Vi
H(N(p—1) +20)

16Euo] — Vi 16
WN(p—1)+20)  A(N(p—1)+2b)

[l de = 9+ 1)

= (p+1) Jlal ! da.

Solving the equality above for / || ~°|u[PT! dz, we have

16E[U,0] — Wt

=b|,,|p+1 _
/m [uf* e = (p+ )= (5.2.6)

Note that the expression (5.2.6) implies that Vi, < 16 E[ug] for all ¢. In view of the equation

(5.1.1), the derivative of variance V' (¢), and Lemma 5.2.2 we get,

Vi) = 16 (1m [ & Vufr)u(e) dr)
<16 [Vt [/ VU)o~ oy s ([ 1 o) ”“b}az.n

If z(t) = /V(¢), then

Dividing (5.2.7) by V(t), using (5.2.5), (5.2.6) and (5.2.7), we have

2y L (Vi)
() = 4 V()
<4 [AN(p = 1) + 2b) Efuo] — Vi 1 (p+ 1) (16 Efug) — Vir) | ¥o- 07
= A "~ CoM{ug)” 24 ’
that is,
7 (t) < 4p(Vy), (5.2.8)
where
4N - 1)+ 20) Blug) - @ 1 (p+ 1)(16 EJug) — o)\ ¥ 072
p(a) = A N Co M uol* ( 24 ) ]
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is defined for o € (—o00, 16 E[ug]]. We have

(16 E[ug] — o) ¥ 075,

’()——i+ 4 (p+1>1\1(z>41>+2b
P T T CoMuof(N(p— 1) + 20) \ 24

Consider «,,, € (—00,16Fug]) such that ¢'(a,,) = 0, that is,

1 4 p+1 NG=D a

A~ 16E — Q) Ne-D+20 7 599

A CoMluel*(N(p — 1) + 2b) ( 24 ) (16 Euo] — aum) (5.2.9)
Since s. > 0,

4 AN o) -2 25, _

Np—1)+20 = Np-1)+20  (p-D{N{p-1+2b)

therefore ¢ is decreasing on (—o0, av,) and increasing on (., 16 E[ug]]. Note that (5.2.9)

implies

@y (g, — 16E)(N(p— 1) + 2b) N 4(N(p—1)+20)E

8 1A A A = elom).

Using (5.2.9) and the fact that @ is associated to the sharp constant in the Gagliardo-
Nirenberg (2.2.3), we have

hence raising both sides to N2(p—1)

m, we get

<M[uo]>15‘fc Bluol -5 _ | (5.2.10)

M[Q] E[Q]

As a consequence of (5.2.4)

(%[{g}])lsf W =1< MEug) = (M[UO]>

ie.,
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and by (5.1.3) and (5.2.10),

2/ (V4(0))? 8 o) ME [ug]
#(0) = - (1 - 32E[u0]V(O)> MEfug] T SElwol
8E[uo] (Mluo)\ = Elug) — 2
ME[u) (M[Q] ) Bigp Sl
ZE%E::4¢@Lny (5.2.11)

We first prove case (i) of Theorem 5.1.4. Suppose that v € H'(RY) satisfies (5.1.4) and
(5.1.5). Note that (5.1.5) is equivalent to

2(0) = <0. (5.2.12)

In view of (2.6.4), the assumption (5.1.4) means

>1

(M[ud)lscsc A/\r!*”\udp“ dx B <M[UO]>15§C /\x!’b\uolpﬂ dx
MI[Q] (p+1E[Q] -\ M[Q)] /’x‘—b’Q‘p-&-l dr

and consequently, from (5.2.6)

24
V) = — =5 / 2| ~Puo P+ + 16 Efug) < cim. (5.2.13)

Note that, for all £ > 0

d

Ztt<t) = dt Vild)

2,/V(t)

o vy v =0

Vat) (V1) 1 (Wgﬂ_zﬂ@>.(5zm)

Hence from (5.2.11) and (5.2.13), we have

2n(0) = Z(l()) (V“Q(O) - (zt(O))2> < Z<10) (G- =0

Suppose that z,(f) > 0 for some ¢ belonging to [0, T, (u)). Then, as z; is continuous on

[0,7(u)), by the intermediate value theorem there exists ¢y € (0,7’ (u)) such that

\ € [O,t()), Ztt(o) < 0 and Ztt(t()) =0.
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Thus for (5.2.11) and (5.2.12)

Yt € (0,to], 2(t) < 2(0) < —\/4dp(amn,).
We have, thus,

Yt € (0,t0], 22(t) > do(aum,).

Using the inequality above and (5.2.8),

Vit € (0,t0], 4p(Vie(t)) > 22(t) > do(amm).
Therefore, Vi (t) # ay, for t € (0,to]. Since V;4(0) < o, and by the continuity of Vi,

Vt € [0, o], Vie(t) < im. (5.2.15)

Since Vi (t) # au, and by (5.2.15), we get

sulto) = s (P40 - 2000 < o (- %),

z(to) z(tg) \ 2 2

contradicting the definition of ¢y3. Therefore,

2z < 0 for all t € [0, T (u)). (5.2.16)

By contradiction, suppose that T (u) = +o0. From (5.2.12) and (5.2.16),

vVt > 0, Zt(t) < Zt(O) < O,

a contradiction with nonnegativity of z(¢).

We now prove case (ii) of Theorem 5.1.4. We assume, besides the conditions (5.1.3) and
(5.2.4), that (5.1.6) and (5.1.7) hold. That implies, in the same way as we did in case (i),
2(0) >0 (5.2.17)

Vit (0) > aup. (5.2.18)
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We affirm that there is ¢ty > 0 such that
zi(to) > 21/ (). (5.2.19)
Indeed, by (5.2.11) and (5.2.17),
2(0) > 24/ (). (5.2.20)
If z,(0) > A/M , then choose ty = 0 and we have the result. If not,
20(0) = z(lo) (V“Q(O) _ z§<0)> > 2(10) (G -22) =0,
by (5.2.18) and (5.2.20). Hence, there is a small ¢, > 0 satisfying (5.2.19).
Let g be a positive small number and assume
20(to) = 2y/p(am) + 2¢0 (5.2.21)
We will show that, for all t < ¢
() > 2y/p(am) + <. (5.2.22)
Suppose (5.2.22) is false, and define
tr = inf{t > to; 2(t) < 21/0(cm) + <0}
By (5.2.21) t; > to. By continuity of z,
z2(t) = 2y/o(am) + €0 (5.2.23)
and
V€ [tota], 2(t) > 24/p(am) + o. (5.2.24)
In view of (5.2.8),
Vt € [to, ta], (21/(am) +£0)? < 22(t) < dp(Vi(1)). (5.2.25)
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Hence, o(Vi(t)) > p(auy,) for all t € [to, 1], so, Vi(t) # o and by continuity Vi(t) > ay,
for t € [to,t1]. Using the Taylor expansion of ¢ around o = «,, there exists a > 0 such

that, if & — a;,| < 1, then
ola) < p(am) + ala — ) (5.2.26)
We show that there exists a universal constant D > 0 such that
Vit e [to, t1] Vie(t) > ap + \/jjj_o' (5.2.27)

Consider two cases:
a) If Viu(t) > ayy, + 1, then for D > 0 large, we get (5.2.27)
b) If a,, < Vie(t) < aup + 1, then by (5.2.25) and (5.2.26), we obtain

(2y/(m) +20)” < 2(8) < 4p(Via(t)) < dp(am) + 4a(Vie(t) — ).

Thus,
A/ o(am)eg < 4/ @(am)eo + 53 <da(Vy — Oém)Q,

and choosing D = v/a(p(om)) "1, (5.2.27) holds.

Furthermore, by (5.2.14) and (5.2.24)

z(t1) = ! (Vtt(tl) - 2152(751))
1 0 9
> ) (g —dev/p(am) — 50> >0,

if £¢ is small enough. That is, z; is increasing close to t1, contradicting (5.2.23) and(5.2.24).

This shows (5.2.22). Note that we have also shown that the inequality (5.2.27) holds for
all t € [to, T (u)). Hence, by (5.2.6), (2.6.4) and (5.2.10)



Chapter 5. Scattering and blowup criteria for the INLS above the threshold 163
.. [pt1 S
< Mlug)'~* []’QA (16 E]uq] — am)}
. [8(p+1 %
= M[ug]' ™ l%)E[Q]]
= MQP | [l Q!
O

5.2.2 Quadratic-phase initial data

We now prove Corollary 5.1.9, except for the scattering statement, which will follow from

the results in Section 5.3.

Proof of Corollary 5.1.9. Let vy satisfy ME[vy] < 1, v € R\{0} and u be the solution

with initial data ug = "’ vy. We assume

(otherwise the result follows from Theorem 5.1.1).

We will now show that ug satisfies the assumption of Theorem 5.1.4. We need to calculate

Elug) = Elvo] + 2y Im/x - Vugtp dx + 272/\x|2|vo|2 dx

and

Im/ﬂox-Vude = Im/z‘;om-Vvod$+27/|$|2|vo|2d$-

Rewriting the above equations,

<Im/u0$'vu0dx>2 = Eluv] (Im/vow-Vvodx>2 < By

Eluo] = 2, |2 0 2, |2
2 [ |z|*|uo|” dx 2 [ |z|*|vo|* dx

or,

MEug |1 — (Im/uom | VUO) = MCEw) <1
2BJuo] | Jzuof?

(5.2.28)

(5.2.29)

(5.2.30)
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Therefore, the assumption (5.1.3) follows from (5.1.1) and (5.2.30).

We will assume here v > 0 and MP|vg] < 1, as the proof of the other case is analogous.

First note that, since ME&[vg] < 1 and [ |z|*|vg|* > 0, there is only one positive solution of

1—

(E[Ug] + 2y Im/x - Vgt da + 272 / |z|?|vol? dx) = M[Q] = E[Q].
(5.2.31)

1—s¢

Mvo] e

Now, since MEJug] > 1 and v > 0, (5.2.28), we have v > ~F, where v/ is the positive
solution of (5.2.31). Rewriting (5.2.31), we have

M[Q] =" E[Q] — M]uv)

1—s¢

2M[U0] sc

1—

" Elv)

o Im/:zc - Voo dz + (72“)2/ |2[2|vo|* d = >0,

which implies

Im/x - Voo dx + v+ / |z|?|vo|? dz > 0.

Using that v > ., we see that
Im/x - Vugtg dr = Im/x - Vugtg dx —1—7/ |z|?|vo|? dx > 0.
which yields (5.1.7). Since Theorem 5.1.4 applies, we conclude the proof. ]

We next prove Corollary 5.1.12; except for the scattering statement.

Proof of Corollary 5.1.12. Given that u(z, —t) is a solution of (1.0.3) if u(z, t) is a solution,

we can assume 7y > 0. We only need to prove that
Im/x - VQ (t)Q7 (o) dz > 0,

MP[Q(t)] < 1

and

MEQ )] (1 o) < b

- 32E[Q(t)]V (to)

for some ¢y > 0, where V() = / 122|Q" (, t)|? dx. First note that, for Qf = ¢"*Q, we
have

VQl = (2ivzQ + VQ)e** | and
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AQY = e (2NYQ + diva - VQ — 492 |2PQ + AQ). (5.2.32)
Thus,
Im / z-VQIOldr = Im / - (2i72Q + VQ)e e P Qdr  (5.2.33)

= Im/x - (2i72Q + VQ)Q dx

= 27/ |2]2Q* dz > 0.

which shows Im / x-VQ(t))Q(ty) dr > 0 for sufficiently small ¢y. Moreover, using the
fact that @7 is a solution to (1.0.3), we have

& [l 1@ P de = (1) Re [ o (0Q @@ P da
= (p+1) Re [ |2 *GAQQN|Q P da
= —(p+1) I [ |2 Q" AQQ da

Consequently, from (5.2.32),

[i/|x|_b|Q7|p+l de‘| — |:_<p_|_ 1) Im/’x|—b’QV|P—1AQ7Q‘/dJJ:|

t=0 t=0
= ~(p+1) Im [ 2 Q3 QRINAQ + dina - VQ
— 492 *Q + AQ) dx
— ONY(p+ 1) / 2| Q" dar — 4y (p + 1) /pr VQdx
= —2N~v(p—1) / 2| QP da < 0.
Since
MIQYS [ 2 Q3P de = MIQY" [ fal QI da,

we get, for sufficiently small %,

MPIQ(ty)] < 1.
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Now, define the function F' as

. (Im/x VQ'(1)Q7(t) dx>2 .
F(t)=M[Q"] = |E[Q"] - 2/‘ e — M[Q] = E[Q]. (5.2.34)

In view of (5.2.29), with vy = @, we conclude F(0) = 0. We just need to check that
F(t) <0 for small positive ¢. Let

V(t) = [Pl @ DR e, =) = V@),

We can rewrite (5.2.34) as

1—

F() = M@V (BIQ) - g220)) - MIQI=*BIQ)
and thus,
Fi(t) = _iM[Qv]lgjc (1) zu(1).

Using (5.1.1), (5.1.2) and the fact that Gagliardo-Nirenberg inequality (2.6.5) is an equality
for f =Q = e QY we conclude that z,(0) = 0. Therefore,

l—s¢

F(0) = —iM[QW] se (Zt<0)2ttt(0) + 215215(0)) )
1 1-

_ _ZM[QV] . 2(0) 2414(0).

On the other hand,
Vie = Q(Zt)Q + 2224, Vite = 62120 + 2224

Thus, Vi (0) = 22(0)24:(0). Hence, Fy;(0) and —V;;(0) have the same sign, but from
(5.2.33) z(0) > 0. By (5.2.6), we get that this sign is the same as the one of

d
e

Therefore, Fy(0) < 0, which shows that F(t) is negative for small £ > 0. This completes

_ (p+1
= —Tvttt(o)-

t=0

the proof. n
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5.3 Scattering

We now prove the scattering part of Theorem 5.1.4. We start with a lemma:

Lemma 5.3.1. Let 0 < a < A < 1. Then, there exists ¢¢ = €g(a, A) such that for all
f € HY(RY) with

a < MP[f] <A,
one has
195 do = XEEDEE [apptan oMl G
and
BIf] = M) 7. (5.3.2)

Proof. Recalling the sharp Gagliardo-Nirenberg inequality, we have:

MU | [19 5P an = MO D2 oyt

1 1 _ NG=DT 1 4Np-1)+2b
> —M 5c1"‘(/ b P+1d) - M 1—/ b £|p+1 4
> () ol 4P do et B2 fapygpa

yNE  N(p—1) +2b

Q 2(p+1)

4
where y = ]\4[}"]9%_1 / 2| 78| £|P*! dz. The function y yN<p;;)+2b — (p(p}r;)“zby has only
one zero y* on (0, +00) and is positive on (0,y*). Since the inequality (5.3.1) is an equality
when f = Q, y* is exactly M[Q /|3:] °|Q[P*! dx, and (5.3.1) follows. Noting that

b
Mﬂzi(/Wﬂ%m—“““z/|www“m>,

2(

we get (5.3.2), because W > 1. O

It is already known that scattering follows from the finiteness of the S(H®) norm (see

Farah and Guzman [31, Proposition 1.4]).

Proposition 5.3.2. Define S(L, A) as the supremum of ||ul[ggsc) such that u is a radial



Chapter 5. Scattering and blowup criteria for the INLS above the threshold 168

solution to (1.0.3) on [0, 4+00) with

and

sup MPu(t)] < A (5.3.3)

te[0,+00)

If A< 1, then S(L,A) < +o0.

Proof. The proof goes along the spirit of Duyckaerts and Roudenko [26], Farah and
Guzmén [31] and (see also Guevara [47]). As this proof is already considered classical, and

it is considerably long, we give an outline of the proof, highlighting the main differences.

First we note that, if L > 0 is small enough (i.e., L < 1), then S(L, A) < 4+00. Assume,
by contradiction, that S(L, A) = +oo for some L € R. Note that, if v # 0 satisfies (5.3.3),
with A < 1, then by Lemma 5.3.1, Efu| > 0. Thus, the quantity L. given by

L.=L.(A) :=inf{L € Rst. S(L,A) =400}

is well-defined and positive.

Moreover, there exists a sequence {u,} of (global) radial solutions such that
Mlu,) =1,

”uan(HsC) — +00,
Elu,] \ L.

and

sup /|x|_b|u|erl dr < A.
t€[0,4-00)

Therefore, using the radial linear profile decomposition ([31, Proposition 5.1]) for the
initial conditions u, o (note that {u, ¢} is bounded in H'(R")) and the existence of wave

operators for large times (see [31] and [47]), we obtain, for each M € N (passing, if
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necessary, to a subsequence) a nonlinear profile decomposition of the form:
M . . ~
un’o = ZQJ (-t%) + WT]LW,
j=1

where, for each j, @ is a solution to (1.0.3) and:
1. for k # j, |tF — 7| — +o0;
2. for each j, there exists T; > 0 such that, if #/ — 400, then @’ is defined on (—oo, —T}],

and if # — —oo, then @ is defined on [T}, +00);

3. for each j, there exists v/ € H' such that [|a/ (—t/) — et yi||n — 0;
eitAW’st(HSc)l =0

5. for fixed M € N and any 0 < s < 1, the asymptotic Pythagorean expansion:

M—+4o00 [n—+o00

4. lim [lim

M
oty = 3= (-6)[ + 2L+ nt

and the energy Pythagorean decomposition:

Eltno] = f; E @]+ B [W]] +o0u(1).
j=1

We denote the solution to (1.0.3) in time ¢, with initial data ¢ by INLS(t)y. Note that,
unlike in [31], we do not know whether the nonlinear profiles evolve into global solutions,
because the quantity E[a’]*M[a/]'~% may not be small. Thus, in order to prove that
INLS(t)a (—t)) exists on [0,400), we need to track [[VINLS(t)a/(—t)| .. But the
long-time perturbation theory (Farah and Guzmén [31, Proposition 4.14], see also Guevara,
[47, Lemma 3.9]), shows that the asymptotic orthogonality at ¢ = 0 can be extended to
the INLS flow.

Lemma 5.3.3. (Pythagorean decomposition along the bounded INLS flow). Suppose
is a radial bounded sequence in H*(RY). Let T € (0,+00) be a fized time. Assume that
up(t) = INLS(t)uno exists up to time T for all n; and 117?1|’V“n(t)||LF§T}L§ < +o0.
Consider the nonlinear profile decomposition (5.3) and denote WM (t) = INLS(t)W™.
Then for all j, the nonlinear profiles v’(t) = INLS(t)@’ (—t)) exist up to time T and for
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all t €[0,7),

; +|[Wie) ; + 0n(1),

M
IVun®)72 =3 |Vo' ()
=1
where 0,(1) — 0 uniformly on 0 <t <T.

Invoking (5.3.2) and (5.3.3) and using this orthogonality along the INLS flow, one gets

that v7(¢) is defined on [0, 4+00) as well, and satisfies, for every j,
M) <1,

MEW] <L

and

sup MP[v'] < A.

te[0,+00)

The rest of the proof follows the same lines as [26] and [31], using the criticality of L. to
show the existence of only one non-zero profile, say, v!(¢), and letting u.(t) = v!(t). This
criticality also shows that Mu.] =1 and E[uc]* M[u.]'"% = L. Long-time perturbation

theory yields ||u.|| s(re) = +00. At this point, we have the classical compactness lemma.

Lemma 5.3.4 (Compactness). Assume that there exists Ly € R and a positive number
A < 1 such that S(Lg, A) = +oo. Then there exists a radial global solution u. of (1.0.3)
such that the set

K = {uc(x,t),t € [0,400)}

has a compact closure in H*(RY).

Using this compactness lemma and the virial identity (5.1.2), we also have the classic

rigidity lemma.

Lemma 5.3.5 (Rigidity). There is no solution u. of (1.0.3) satisfying the conclusion of
Lemma 5.3.4.

The proof goes on the same lines as in Duyckaerts and Roudenko [26] and Farah and

Guzman [31]. We point here that the restriction b < min {%, 1} is technical and comes
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from the proof of long-time perturbation in [31]. O

5.4 Proof of the blowup criteria

In this section we prove two criteria for blow up in finite time. The first one is a generaliza-
tion of Lushnikov’s criterion in [69] and of Holmer-Platte-Roudenko criteria in [52] for the
INLS, and the second one is the modification of the first approach, where the generalized
uncertainty principle is replaced by the interpolation inequality (5.4.10). The two criteria
are the INLS versions of the criteria proved by Duyckaerts and Roudenko in [26].

Proof of Theorem 5.1.13. Integrating by parts,

1 Y 1 Y
Jullte = [l de = 532 [ 0gasluf du = =53 [ a0,(uP) do
j=1 j=

N 2 N
= (0jut + ud;w) de = —— Re [ z;0.uudx
3 f o § o Re [0

1
N
2

N /x Vu)udz.

Since |z|? = |Re z|> + [Im 2|2, using Holder’s inequality

2

2 2
leull2, [|VullZs > ‘/(x'Vu)udx _ ’Re [ Vuyuda

+ ’Im /(:c -Vu)udz

N2 2
= THUH%Z + ‘Im /(m -Vu)udz

From the definition of variance and the identity for the first derivative of the variance

(5.1.1), we get the uncertainty principle

N2
THUOH%? +

EQ

L S VoIV (5.4.1)

Using the equation (5.1.2) for the second derivative of the variance, we obtain

Vie() = 4(N (p — 1) + 26) Elug] — 4(p — 1)scl| Vu(t) |22 (5.4.2)
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Substituting (5.4.2) in the uncertainty principle (5.4.1), we have

(Mlug])* — (p—1)sc [Vi(t)[?

t) <4(N(p— 1)+ 2b)Elug) — N*(p — 1)s. . (54.
Now, we rewrite equation (5.4.3) in order to cancel the term V2. For this, define
1 —1 Np—1)—4+2b
V = B, q— P lse  Np—1)—4+2b (5.4.4)
4 8
Then,
1 - 67 _ 2041 __a_
‘/15704+1B atl and tt*—mB 2D‘J:r1 Bf—i_a—f—lB a+1Btt;
which gives
Bi < 4(a + 1)N(p — 1) Elug) B=5 — (o + 1)N*(p — 1)s.(M[uo))? B,
that is, for all ¢ € [0, T} (u)
B, < YT D@ =D AR D) gy ¥t N (a2 MR ).

In order to further simplify inequality, let us make a rescaling. Define B(t) = u®(\t), with

N(p—1)+4+2b
([ Nso(M[ug))*\ ™ 5 \ 8v2 Elu] (5.45)
a AEuo] ’ ~ V/Ns. M[ug]’ h
Then letting s = At, we obtain
why, <OV —P° s [0,T,/a), (5.4.6)
where
_ N(p—-1)—4+2b 6_N(p—1)—12+2b_ )
TTNp -1 +4t+ 2 T Np-1)+4d4+r2m T
64
w =

Np—1)(N(p—1)+4+2b)
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and sincep>1+%,
D<y<l, —-1<d<n.

We rewrite (5.4.6) as

oU
) — < 4.
wh,, + 55 S 0, (5.4.7)

o @6-&-1 Pr+1

for t € [0, T /a), where U(®) = T — 21

Define the energy of the particle

E(s) = 5 ®2s) + U(D(s))

which is conserved for solutions of

oUu
b+ —=0.
w + 50 0

Based on the ideas of Lushnikov [69], Duyckaerts and Roudenko [26] studied this model

and showed the following proposition

Proposition 5.4.1. Let ® be a nonnegative solution of (5.4.7) such that one of the
following holds:

(A) £(0) < Upae and ®(0) < 1,
(B) £(0) > Upas and @4(0) < 0,

(C) £(0) = Upaz, Ps(0) < 0 and ®(0) < 1.

Then Ty < oo.
Proof. For the sake of completeness of this work, we will give the proof of the proposition.
Multiplying equation (5.4.7) by ®,, we get

Dy (s) >0=E(s) <0, Py(s)<0=E&(s)>0. (5.4.8)

We argue by contradiction, assuming 7'y = T’ (u) = +o0.
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We first assume (A). Let us prove by contradiction that
ds >0, d(s) <0.

If not, ®4(s) < 0 for all s, and (5.4.8) implies that the energy decays. By (A), £(s) <
E(0) < Upaz for all s. Thus, |®(s) —1| > gy (where €9 > 0 depends on £(0)) for all s. Since
by (A) ®(0) < 1, we obtain by continuity of ® that ®(s) < 1 — ¢, for all s. By equation
(5.4.6), we deduce ®y; < —¢g; for all s, where £; > 0 depends on gy. Thus, ® is strictly

concave, a contradiction with the fact that ® is positive and T, = +o0.

We have proved that there exists s > 0 such that ®,(s) < 0. Letting
ty = inf{s > 0; P,(s) < 0},

we get by (5.4.8) that the energy is nonincreasing on [0,¢;]. Thus, £(s) < £(0) < Upna
on [0,t1], which proves that ®(s) # 1 on [0,#;]. Since ®(0) < 1, we deduce by the
intermediate value theorem that ®(¢;) < 1 and by (5.4.6) that ®4(¢;) < 0. Since P4(t;) < 0,
an elementary bootstrap argument, together with equation (5.4.6) shows that ®(s) <
1 — g, Ps(s) < 0 and Pyi(s) < —ey for s > t1, for some positive constants g, £1. This is

again a contradiction with the positivity of ®.

We next assume (B). Let ¢; be such that ®(s) < 0 on [0,%]. By (5.4.8), £ is nondecreasing
on [0,#1], and thus, £(s) > £(0) > Upnge for all s on [0,#1]. As a consequence, 3P (s)* >
E(0) = Upaz > 0 for all s in [0, 1], which shows that the inequality ®,(s) < —4/E(0) — Upaa
holds on [0,¢;]. Finally, an elementary bootstrap argument shows that the inequality

D (s) < —4/E(0) — Upae is valid for all s > 0, a contradiction with the positivity of ®.

Finally, we assume (C). By bootstrap again, ®4(s) < 0, ®(s) < 1 and ®(s) < 0 for all

positive s, proving again that ® is a strictly concave function, a contradiction. O
Since
(p—1)s. Np-1)—4+2b
o = =
4 8 ’
we have
Np—1)+2b Np—1)+4+2b

9 a—l—l: ’
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2

(a+1)(0+1)=2a, (a+1)(y+1)=2a+1andw= CESICESE

By making ® = v**!, then

w a+1 a+1 a—+1
5 — 7(1)2 U(P —_ N2, 2a 2a0 2041
g () FUR(s)) = g O T T a1
and
1 a+1
Uma:v ~ 5 A 4
20020 + 1
Consider the function f given for
1 1
f@) = | o (1 4 k) (5.4.9)
where k = (p_zﬁ = 2a. Hence, if v4(0) satisfies the condition

0 <{ F(0)),  ifu(0) < 1,
—f(v(0)), ifv(0) > 1,

then ® = v**! satisfies the conditions of Proposition 5.4.1. Indeed, the condition £ < U,z

is equivalent to

2a(v")*0** 4+ (2a + 1)v** — 200** 1 < 1

that is,
|vs| < f(v).

Hence, the condition (A) means

and the condition (B) holds if and only if
lvs(0)] > f(v(0)) and wg(0) < O.

More precisely,

vs(0) < —f(v(0))
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and the condition (C) is equivalent to
v(0) <1 and wvs(0) =—f(v(0)).
Therefore, from (5.4.4), (5.4.5) and from the definition of v, we have

V(0) = (p®(\))=+

:va 8v2 E[uo]t
/N s, Mlug|
Ns.M?
= 0
1Eug )

t=0 t=0

— N (0)

and

[ _ Ns.M? 8v2 Elug) B
V;(0) = p~Ne-D No M) v5(0) = TEua] /s M[ug) v5(0) = M[up]y/8Ns.v5(0).

Furthermore,

M[uo]:mvs(ok 8Ns.g(v(0)) = \/8Ns.g ( stcvj\j)[i[}?]»

which completes the proof of Theorem 5.1.13. [

We now proceed to the proof of Theorem 5.1.14. For that, we consider the following

proposition.

Proposition 5.4.2. Let p > 1 and N > 1. Then, the following inequality

(5.4.10)

2
N(p—1)+2b b NGp-D+2(p+D)+2b
Julls < Gy (llzulla = - 175l )

holds with the sharp constant Cp, n (depending on the nonlinearity p and dimension N )
given by (5.4.14). Moreover, the equality occurs if and only if there exists 5> 0, a <0
such that |u(z)| = po(ax), where

w@{ﬂfmx%&#o<m<L
0 if |x] > 1.

The proof of Proposition 5.4.2 follows the ideas of [26].
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Proof. Let R > 0 to be specified later. Split the mass of u as follows
[l e =z [ (Bl dot gz [ Pl et [ )P de
R? Jiz|<r R? Jizi<r

By Hoélder inequality we have

==

1 1 e 1\ P i P
[ = PG o < g ([l = e an) (el o i)

1

N(p—1)42b 2

—R 71 D,y H| =] .

p+1

where

2b p+1 +1
Dy = ( [l e dy) .
lyl<1

SRS
[

Furthermore,

1 1
/|<R|x\ lu(z ]2dzc+/ ()2 do < R2/|x|2|u(x)\2dx.
Combining (5.4.11) and (5.4.12), we get

2 N(p71)+2b
Pt ”qum

_ b
VR >0, lullfs < Do |77 =

b1 )
< Ry |72 (R? — Ry 5T R dy) Pu(z) Pt dr )
< ([ B R = RS R dy) " ([ el o) ds

(5.4.11)

(5.4.12)

(5.4.13)

Let F: (0,+00) — R given by F(R) = AR* + BR™2, where A,B > 0 and a > 0. The

1
minimum value of F is reached at R = (%) 2 and

9B\ a2 9B\ =iz
F — =A(— B
((aA) ) (ozA) +

Thus, by taking

p+1
Np—D+2(r 126
p+1 2||zull7.
N(p—1)+2b

b 2
Dy |17 710

Lr+1
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in (5.4.13), we have

4(p+1) _
NG=D+2(p 2 (e ey

__b_
Julls < 2y |1+ 7770 a3 ,

Lp+1

where

1)

1 ety
— — (p—1)+2(p+1) _
Cyx — (N(P 2]\2+2§z;j:2)+ 2b>2 (N(p +1)1+ 2prN>Np e
p- p

(5.4.14)

Note that equality in (5.4.10) holds if and only if there exists R > 0 such that (5.4.13)

is an equality. This is equivalent to the fact that for some R > 0, both (5.4.11) and

(5.4.12) are equalities. The inequality (5.4.11) is an equality if and only if, for |z| < R,
2b p+1

|z| P |u(x) [Pt = c|z|PT (R? — |z|?)»—* for some constant ¢ > 0, and inequality (5.4.12) is

an equality if and only if u(z) = 0 for |x| > R. This completes the proof of Proposition
5.4.2. [

Proof of Theorem 5.1.14. Since the energy is

p+1

Ble] = 51 Vu(t)3: - u(t)

1 _ b
sl

)
Lp+1

from (5.1.2), we obtain

Vit t) = 4(N(p — 1) + 2b) Efug] — 2(N(p — 1) + 2b — 4)[[Vu(t) |72z,

&(p—1)s, b p+1
= 16E[uo) — u |- p-?—lu(t) )
P +1 Lp+1
Using the sharp interpolation inequality (5.4.10)
8(p— 1)s. M{ug) 52+ 55743

Vi (t) < 16 Efug| —

(5.4.15)

N(p—1)

(p+D)(Cpy) 7 T V(1)

Np-Dt2b
4

with C, y from (5.4.10). As done in the proof of Proposition 5.1.13, take v(s) with s = at

such that
2F
V() = (), A=,/ M[“‘”,
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where

(sc(p — 1)>N<fl>+2b Mu] e (55=57z)
W=\ 53 .
2(p+1) (C N)ZHPH)(W)E[UO]W

Hence, applying in the inequality (5.4.15), we have

1 p—
’USS(S) < 5 (1 B Uizv( 41>+2b (S)) '

If the inequality in the above expression is replaced by an equality, then we have that the

following energy is conserved

) = g (0P o) - ).

where as before k = ® _21 Jse _ N(p _41)+2b — 1. The maximum of the function

attained at =z = 1, is —1. As we did to (A), (B) and (C), we identify the three sufficient

conditions for blow-up in finite time.
(A*) £(0) < =1 and v(0) < 1,

(B*) £(0) > —1 and v4(0) < 0,

(C*) £(0) = —1, v5(0) < 0 and v(0) < 1.

If vs(0) satisfies the condition

0l0) < FF(0(0)), ifv(0) <1
—f(v(0)), ifv(0) > 1,

then v satisfies one of the conditions (A*), (B*) and (C*). Indeed, recalling the function f
from (5.4.9) and using the definition of £, we obtain
a) € < —1if and only if |vs| < f(v).

b) € > —1 if and only if |us| > f(v).

Then the previous conditions can be written in the following form:

(A7) < v(0) <land — f(v(0)) <vs(0) < f(v(0)),



Chapter 5. Scattering and blowup criteria for the INLS above the threshold 180

(B) < vs(0) < = f(v(0)),

(C") & vs(0) = —=f(v(0)), v(0) <1.
Substituting back V (t), we obtain

Vi(0) <9<V(0>>,

AL It

where g is defined in (5.1.9). Hence,

< g(9),

2
W (2(p e N)W+<p+l>> V(G ) ()
’ Eluo] % Mug)? t®+) (ve=r=)

4 4

2 1 p—1)+2 N(p—-1)+2b E NG-DT%

- < o=l (szv)w+(p+l)> o —V(0).
30(? - 1) M[u0]1+(p+1)(m)

This completes the proof of Theorem 5.1.14. O



6 Future work

We list here some possibilities for future works on topics related to this thesis.

1. Give a classification of solutions at the mass-energy threshold for different nonlinear-

ities, such as the INLS equation and the Hartree-type equations;

2. Answer to questions regarding stability /instability of standing waves for the INLS

equation, extending, for example the results of [19];

3. Study the global well-posedness of solutions to INLS for initial data with less regular-
ity than H'. There are two possible approaches: the high-low decomposition method,
introduced by Bourgain [9] and its improved version, the I-method, introduced by

Colliander-Keel-Staffilani-Takaoka-Tao [17];

4. Perform numerical simulations on the INLS to investigate whether the restrictions
on N, p and b in the theorems regarding long-time behavior are really necessary, or

if they are technical.

181
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