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Resumo

Redes do tipo eixo-raio são normalmente utilizadas em sistemas de transporte com o

intuito de rotear eficientemente commodities e passageiros entre vários pares de origem

e destino. Duas variações do problema de localização de concentradores são propostas.

Programas inteiros mistos são apresentados e resolvidos através de métodos exatos e

heurísticos. O primeiro problema estudado propoem o desenho da malha aérea global,

com base na localização de gateways em redes do tipo eixo-raio, diferenciando pas-

sageiros domésticos e internacionais. Uma formulação de programação inteira mista é

desenvolvida e dois algoritmos baseados no métodos de decomposição de Benders são

implementados para resolver o problema. Enquanto a versão monolítica não consegue

resolver instâncias médias dentro de um tempo máximo, os algoritmos propostos são

capazes de resolver instâncias maiores em um tempo razoável. A segunda variação do

problema de localização de concentradores estudado otimiza o desenho de uma rede

de transporte genérica considerando rotas flexíveis. Nessa versão, além de localizar

nós concentradores e alocar nós não-concentradores a nós concentradores, as rotas dos

veículos são definidas. Enquanto a maioria dos estudos até então presentes na liter-

atura consideram um fator de desconto fixo para representar economias de escala em

links entre hubs e uma topologia específica para as redes, esse trabalho introduz uma

formulação inteira mista, em que economias de escalas dependem da tecnologia de

transporte escolhida para operar as rotas e a topologia da rede é determinada endo-

genamente. Duas metaheurísticas são implementadas para achar boas soluções para o

problema em tempos computacionais razoáveis.

Keywords: Problema de localização de concentradores, gateway, economia de escala,

rotas flexíveis.
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Abstract

Hub-and-spoke networks are frequently employed in transportation systems to effi-

ciently route commodities and passengers between many origins and destinations. We

propose two variants for the Hub Location Problem and introduce mixed-integer pro-

grams solved by exact and heuristic techniques. The first studied problem focuses on

locating gateway facilities on hub networks to design global air transport systems, by

differentiating international from domestic passengers. A mixed-integer programming

formulation is developed and two algorithms based on Benders decomposition method

are devised to solve the problem. While the monolithic version fails to solve medium

instances, the proposed algorithms can solve large instances in a reasonable time. The

second variant of the Hub Location Problem introduced here aims to design a generic

transport network with flexible routes. In this version, besides locating hub facilities

and allocating non-hub nodes to hubs, vehicle routes are defined. Whereas most previ-

ous studies consider a fixed discount factor to represent economies of scale in inter-hub

links and a specific network topology is imposed, we introduce a mixed integer formu-

lation, in which scale economy depends on the transport technology chosen to operate

the route and the network topology is endogenously determined. Two metaheuristics

are implemented to find good solutions to the problem in reasonable computational

time.

Keywords: Hub location problem, gateway, scale economy, flexible routes.
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Chapter 1

Introduction

1.1 Motivation

Transport plays an important role in economic and social development, bringing op-

portunities and enabling economies to be more competitive. Transport infrastructure

connects people to jobs, education, and health services; permits the supply of goods

and services all over the world; allows people to interact and ideas to be spread. In

doing so it has a catalytic effect on the global economy, whether it is tourism, whether

it is goods and services, or whether it is trade.

The transport industry directly employs around 10 million people and accounts for

about 5% of gross domestic product (GDP). Logistics, such as transport and storage,

account for 10–15% of the cost of a finished product for European companies. The

quality of transport services has a major impact on people’s quality of life. On average

13.2% of every household’s budget is spent on transport goods and services. In this

sense, the development of methodologies and tools to increase the efficiency of the whole

transport system becomes more and more crucial. (Directorate-General for Mobility

and Transport (European Commission) 2019).

To contribute to the cost-efficient design of transportation networks, two different

problems are studied in this thesis. The first problem is focused on the air transporta-

tion system, aiming to design an integrated global air network, offering opportunities

for people to fly and also facilitating economic development all over the world. Air

transport provides a significant improvement to economic development, by bringing

people together, transporting vital items faster, facilitating the exchange of experiences

and ideas, supporting trade and enabling business to access global markets. Although

more than 99% of global trade, measured by weight, is transported by surface, more

than one-third of global trade, measured by value, is transported by air. Moreover,

air activities raise jobs in the air transport sector and in its supply chain. Aviation

1



1. Introduction 2

supports 65 million jobs and $2.7 trillion in global GDP. (International Air Transport

Association 2019).

While the first problem is focused on a specific context, the second problem studied

here proposes the design of a more generic network, being applied in a wide range of

transport systems. The objective of the second problem is to design a network in a way

that flows and resources are routed at a minimal cost, without imposing restrictions of

any type to route the vehicles and to serve the demands. A concrete application of this

problem arises in liner shipping. According to the United Nations Conference on Trade

and Development (UNCTAD), total maritime trade has grown more than fourfold since

1970. In 2017, global maritime trade grew by 4.0 percent over the previous year, which

is higher than the 2.6 percent increase recorded in 2016. UNCTAD estimated that 11.8

billion tons of cargo were transported over water in 2017. (United Nations Conference

on Trade and Development 2018).

Hub-and-spoke networks are frequently employed in transportation systems to ef-

ficiently route commodities between many origins and destinations. One of the key

features of these networks is that direct connections between origin-destination (O-D)

pairs can be replaced by fewer, indirect but privileged connections by using transship-

ment, consolidation, or sorting points, called hub facilities. In this type of network, the

flow of different origins is aggregated in the hubs. Then, a hub network directs the flow

to its destination. Overall transportation costs may decrease due to the bundling or

consolidating of flows through inter-hub arcs. Figures 1.1a and 1.1b show an example

of a point-to-point network and a hub-and-spoke network, respectively.
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(a) Point to point network
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(b) Hub-and-spoke network

Figure 1.1: Types of network

Hub location problems (HLPs) deal with the design of hub-and-spoke networks and

typically arise when commodities must be transported between every pair of origin-

destination, but it could be expensive to make this transport from every single point

to another point directly. In general, these problems consist of choosing the sites of

hub facilities and allocating demand nodes to hubs to effectively route the traffic be-
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tween origin-destination pairs. O’Kelly (1987) was the first to propose a mathematical

programming formulation and two heuristics for this problem.

Some application areas of the hub location problem are logistics systems such as

trucking, liner shipping and, airline industries. Several classes of HLPs have been

studied. The various applications within each class give rise to variants that differ in

terms of assumptions, such as the required topological structure, the allocation pattern

of nodes to hubs, and the existence of capacity constraints on the hub nodes or arcs.

Various mathematical models (Ernst and Krishnamoorthy 1998, Labbé and Yaman

2004, Hamacher et al. 2004, Contreras and Fernández 2014, de Camargo et al. 2017)

and specialized solution algorithms (Ernst and Krishnamoorthy 1998, Labbé et al.

2005, Çetiner et al. 2010, Martins de Sá et al. 2015, de Sá et al. 2018, de Carvalho

et al. 2017) were developed to solve real-size instances.

This thesis discusses two different HLPs: (i) A Gateway Hub Location Problem

(GHLP), and; (ii) Hub Network Design Problem with Flexible Routes (HNDPs). Both

of them share the decisions of locating transshipment points and routing the flow

through the designed network at a minimal cost.

The first problem introduced here focuses on designing a global air transport sys-

tem, differentiating international passengers from domestic passengers and interna-

tional hubs from domestic hubs. In a typical hub-and-spoke network, we have two

connection levels: hub level (the connection between hubs) and spoke level (the con-

nection between non hubs and hubs). The local and global flow are not differentiated.

The complexity involved in routing global flow is ignored (for example, the existence

of an agreement between the countries is necessary). To design a global hub-and-spoke

network, articulating global system with the domestic system, three connection levels

are needed: international hub level (the connection between international hubs, re-

ferred as gateways), domestic hub level (the connection between domestic hubs) and

spoke level (the connection between non hubs and domestic hubs). A mixed-integer

programming formulation for the GHLP is presented. Variants based on Benders de-

composition method are devised to solve the problem.

While GHLP focus on strategic decisions locating international and domestic hubs,

in the HNDPs, strategic decisions are taken simultaneously with tactical decisions. In

this second variant, besides establishing hub locations and routing demand flow through

the designed network, vehicle routes are defined. In a typical hub location-routing

problem, routing decisions happen only at the access level, and the hub network is

assumed to be fully interconnected with one vehicle serving each pair of hubs. Normally

they consider a given exogenous network topology and a homogeneous fleet that can

only pass a limited number of times through each demand node, while the path of a

demand flow is restricted by the prescribed network topology. Moreover, these typical
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problems completely disregard that the economies of scale derive from the technology

chosen to operate the routes and its utilization. To overcome this simplification, the

HNDPs proposes the design of a more general network with flexible routes. The routes

are flexible in the sense that they may or may not have hubs on them. No restriction

of any kind is imposed on the path of a demand flow. That is, demand flow can be

routed from its origin to its destination by using a single vehicle route or by using a set

of vehicle routes. However, commodity transfers can only be performed at hubs. Most

important of all, instead of considering a fixed discount factor to represent economies

of scale in inter-hub links, the HNDPs stand on the idea that economies of scale are

obtained based on the costs of the vehicles that operate on each arc of the network

and also on the amount of flow carried on the vehicles. These assumptions render

the HNDP more difficult to formulate and solve than classical hub network design

problems. A mixed-integer programming formulation for the HNDPs is presented.

Two metaheuristics are developed to solve large instances in reasonable computation

time.

For the purposes of this thesis, we aim to expand bibliographic content that deals

with variants of HLPs, presenting problems that consider reasonable assumptions and

provide good approximation with reality. In the two problems studied here, the idea

is to propose efficient algorithms to solve benchmark instances, in which commercial

solvers have difficulties solving optimality, in a desired computational time.

1.2 Main Contributions of this Thesis

The main contributions of this thesis are presented below, divided by chapters:

Chapter 2: A Gateway Hub Location Problem

• To propose a more explicit formulation that incorporates local and global flows

to design air transportation networks with a hub and spoke structure.

• To devise Benders variants algorithms capable of solving large-scale instances in

reasonable time.

Chapter 3: Aircraft Routing and Scheduling Hub Location Problem

• To propose a more explicit formulation that designs a generic transportation

network with flexible routes.

• To model economies of scale according to the transport technology chosen to

operate the routes and their actual utilization.

• To consider strategic and tactical decisions at the same time.



1. Introduction 5

• To develop two metaheuristics capable of finding good solutions for large instances

in reasonable computational time.

1.3 Thesis Outline

Chapters 2 and 3 of this thesis are structured in the format of two scientific articles.

Chapter 2 describes the GHLP, presents a mixed integer programming formulation for

the problem and some algorithms based on Benders decomposition method to solve the

problem. This article is published to Journal of Air Transport Management, jcr 2.357.

Chapter 3 introduces the HNDPs, presents a mixed integer programming formulation

for the problem and two metaheuristics to find good solutions to the problem.



Chapter 2

The Gateway Hub Location

Problem

Abstract

We introduce the Gateway Hub Location Problem (GHLP) to design global air

transportation systems. Relying on a three-level hub network structure and on having

nodes located in different geographic regions, the GHLP consists of locating interna-

tional gateways and domestic hubs, activating arcs to induce a connected gateway and

hub network, and routing flows within the network at minimum cost. Most previous

studies focus on a typical hub-and-spoke network, in which local and global flows are

not differentiated. Here to better represent a world wide air transportation system,

global flows can only leave or enter a given geographic region by means of a gateway,

while local flows can only use hubs within their respective region. As routing local

or global flows involved different agents, this study presents a mixed integer program-

ming formulation that exploits these differences to model both the local and global

flows. Due to the formulation’s characteristics, two algorithm variants based on Ben-

ders decomposition method are devised to solve the problem. A new repair procedure

produces optimality Benders cuts whenever feasibility Benders cuts would rather be

expected. While the monolithic version failed to solve medium size instances, our

algorithms solved lager ones in reasonable time.

Key words: Air transport; Hub-and-spoke networks; Gateway; Benders decomposi-

tion method.

2.1 Introduction

By the year 2034, global air traffic is expected to double reaching over seven billion

passengers annually transported (IATA 2015), being Africa, Middle East, Asian and

6



2. The Gateway Hub Location Problem 7

Latin America the geographic areas with the largest percentage growths till then. This

rapid demand growth is pressuring airlines and air transport management agencies to

extend and expand the existent networks to accommodate new markets, new players,

new infra-structures, and new flight connections to serve both increasing domestic

(local) and international (global) passenger flows.

Modeling and understanding these local and global passenger flows are generally

done separately in the literature (Preis et al. 2013, Mao et al. 2015), or are usually

considered to be non differentiable when designing networks for many-to-many air

transportation systems with a hub-and-spoke structure (Campbell et al. 2002, Alumur

and Kara 2008, Campbell and O’Kelly 2012, Farahani et al. 2013). However, there

are some differences between domestic and international passengers that might justify

differentiating them.

From the perspective of service quality, reliability was ranked by international pas-

sengers as the most important dimension, whereas domestic passengers value more

assurance dimension (Arslan et al. 2011). According to the Resource Manual for Air-

port In-Terminal Concessions (2011), international passengers, on average, arrive at

the airport earlier and spend more time in terminals. Thereby, their needs for food,

reading materials, travel accessories and other amenities are larger than domestic pas-

sengers’ needs. They also tend to be more sophisticated with higher average incomes.

This represents a higher potential revenue for international airports, which usually

have a better infrastructure for shopping, eating and even resting. Then contrasting

to domestic airports. In this way, even though they might share some resources, and

affect each other’s routing design decisions, when designing air passenger networks,

local and global flows are required to be routed through different facility types over the

network.

Local flows are routed via domestic hubs (hubs), while global flows go through

international gateways (gateways) to leave from or to enter into a different geographic

region. Hubs allow passengers to do connections and airplanes along their routes,

whereas gateways are critical for connecting wide regions, such as continents, and

for performing customs, immigration and security checks. Since a global passenger

flow may be routed via some hubs before going through some gateways to reach its

destination, or vice versa, a global flow may share then some inter-hub connections

with other local flows, showing thus how both flow types are intertwined.

To articulate both local and global flows, three connection levels are needed: inter-

national gateway level with inter-gateway connections, domestic hub level with inter-

hub connections, and spoke level with regional airports linked to hubs or gateways.

Inter-hub connections are usually done by large carriers, while inter-gateway connec-

tions are performed by even larger, long-range airplanes. Further regional airports are
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usually linked to hubs or gateways by middle to small size planes. This three level

setting can be seen as a three-tier hierarchical hub-and-spoke network structure.

Hub-and-spoke systems are commonly used in many-to-many transport applications

to lower transportation costs by exploiting scale economies whenever large carriers can

be used to carry consolidated flows over the network (O’Kelly 1987, Jr. 2012). A typical

hub-and-spoke network uses two connection levels instead of three: hub level with inter-

hub connections, and spoke level with flow exchanging nodes (regional airports) linked

to hubs. Scale economies are usually achieved on the hub level by bulk transportation

on inter-hub connections. A myriad of applications and topologies have been modeled

as hub-and-spoke networks as can be seen in Campbell et al. (2002), Alumur and Kara

(2008), Campbell and O’Kelly (2012), Farahani et al. (2013).

In the past 20 years the global airline industry has undergone major changes. The

notion of international airlines collaborating for creating cost and revenue synergies

through the formation of strategic alliances (such as Star Alliance, Oneworld and

Skyteam) has been gained credibility (Schosser and Wittmer 2015). Thereby, design

air network from a global perspective becomes necessary. However, only in the last

decade, the idea of differentiating local from global flows has attracted some attention

from the research community (Adler and Smilowitz 2007, Sasaki et al. 2009, Yaman

2009, Catanzaro et al. 2011).

Adler and Smilowitz (2007) analyze global alliances and mergers in an airline indus-

try under competition. They present a game-theoretic competitive merger framework

that allows airlines to choose partners with their installed gateways, inter-gateway

connections, and regional networks so that mergers can be proposed and profits maxi-

mized. Selection is based on cost and revenue analyses by considering information of a

given airlines and its competitors. Local and global flows are differentiated, but treated

separately on a two stage approach. First hubs are installed to route local flows, then,

assuming that global flows are temporarily aggregated at each installed hub, rather

than in their original locations, one gateway per region is selected within these in-

stalled hubs. As the trace of each demand flow exchange can only be performed after

the network is designed, transportation costs are poorly underestimated, questioning

thus the quality of the achieved network configurations.

Disregarding the many-to-many nature of the local and global flows, Sasaki et al.

(2009) develop a gateway and hub location model based on a two level p-median facility

location problem. From a candidate set, a fixed number of gateways and hubs are

selected so that each regional airport is served by a hub, and each installed hub is linked

to a gateway at minimum allocation cost. By not considering flow demands happening

between pairs of origin-destination nodes, the problem’s complexity is greatly reduced

at the expense of having ill-formed air networks.
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Yaman (2009) does not distinguish between local and global flows, he considers

the design of a hierarchical hub and spoke network which consists of locating a fixed

number of gateways and hubs, such that regional airports and hubs are single allocated

to hubs and gateways, respectively, to form a star sub-network for each gateway. The

simpler strict formulation imposes gateways to be fully interconnected, and prevent

hubs to directly interact with each other. Given the single allocation policy, undesirable

long distances are perceived by the demand flows in the attained solutions. Further,

a fully interconnected gateway hub is not always possible to be assumed in an air

network design, since airlines tend to avoid flying for long ranges over water without

communication, or over conflict zones.

Finally, Catanzaro et al. (2011) investigate a particular variant of a hub location

problem which partitions a given network into sub-networks, and locates at most a

fixed number of gateways, but with at least one gateway in each sub-network. Sub-

networks are supposed to have at least (at most) a minimum (maximum) number of

nodes to exist. The problem’s objective is to split the network into regions and then

route flows at minimum transportation cost. A flow can only enter or leave a sub-

network through a installed gateway, and once it leaves a sub-network, it can only be

routed through gateways until it reaches its destination sub-network, when then it can

use the available hubs and local links. Hubs and all network connections are assumed to

be given beforehand, i.e. costs incurred from installing hubs, gateways, and inter-hub

and inter-gateway connections are not considered.

Until now, the literature has acknowledged the importance of differentiating local

from global flows, but, as aforementioned, has made assumption compromises that

resulted into over-simplified problems or models. Here a more explicit formulation

that incorporates local and global flows is proposed for the air transportation network

design. Hubs, gateways, and inter-hub and inter-gateway connections are decided so

that the induced network can route local and global flows at minimal transportation

and installation costs. Different scale economies are granted for installed inter-hub

and inter-gateway connections to mimic lower transportation costs due to consolidated

flows. Regional airports can be linked to any installed hub or gateway within its region

and within aircraft range, i.e. local airports can be multiple allocated to hubs and

gateways. This provides greater flexibility to route flows at the expense of demanding

a more elaborated model. Further fixed costs for establishing hubs, gateways, and

inter-hub and inter-gateway connections are assumed to be known, and continental

and country divisions are adopted as natural regions.

Because our aim is to consider the design of air network from a global perspective,

we made some simplifications for now. The current study ignored, for example: airline

competition, passenger’s behavior and choice of routes, congestion transshipment air-
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ports, the effects of frequency on service quality and schedule delay. These issues have

been well studied in the literature (Hansen 1990, Hong and Harker 1992, Hsu and Wen

2003, Adler 2005).

The addressed air transportation network design is modeled as a multi-commodity

flow based hub and spoke system, given rise to a gateway hub location problem or a

three-level hub location problem. Given its large scale multi-commodity nature and

its induced decomposable matrix structure, the devised formulation is solved by two

specialized Benders decomposition algorithms (Benders 1962) which incorporate two

features that greatly speed up the method: a repair procedure which allows to gen-

erate Benders optimality cuts from unbounded dual subproblems, and a tailored dual

subproblem solution algorithm which calculates the optimal dual values to produce

Benders optimality cuts without relying on a Simplex solver. In order to evaluate

and assess the efficiency and limitations of the devised Benders algorithms, computa-

tional experiments were performed and compared with a general purpose solver (IBM

CPLEX) on solving the proposed formulation. Both algorithms clearly out-performed

the general purpose solver when solving large instance sizes.

To be clear from the outset, the focus here is not on reproducing the current air

network, rather, we wish to use network design tools that contribute to improve air

transport systems. The proposed model of how things should be can be used to con-

trast to actual systems. We believe that this analysis is needed and should be of

concern. There are many broad participants interested in the efficiency of the world’s

aviation system as World Bank, FAA (Federal Aviation Administration), Eurocontrol,

mainframe manufacturers (Boeing, Airbus, Embraer) and probably many others. The

rational planning of the air network has implications consistent with the strategic ob-

jectives of ICAO (International Civil Aviation Organization) on supporting the growth

of air transport. Analyses of the efficient of aviation could or ought to be used to

harmonize the air transport framework focused on the development of an economically

viable aviation infrastructure. This study suggests a move towards a more rational con-

ception of air network design, based on differentiating local and global air passenger

flows.

Operations research (OR) has played a critical role in helping the airline industry

designs its air network, plans its scheduling, routing and crew assignment (Barnhart

et al. 2003). Since 1961, there is a professional society dedicated to the advancement

and application of Operational Research within the airline industry, the Airline Group

of the International Federation of Operational Research Societies (AGIFORS). More

than 500 airlines and air transport associations are currently represented in AGIFORS.

The contribution of this study is twofold: To propose a more explicit formulation

that incorporates local and global flows to design air transportation networks with a
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hub and spoke structure, and to devise exact algorithms capable of solving large-scale

instances in reasonable time. The remainder of this article is organized as follows. §2.2

introduces the used notation and the proposed mathematical formulation; while §2.3

presents the devised Benders algorithms to solve the problem. §§2.4 and 2.5 reports

the carried out computational experiments, and the insights provided by this study,

respectively. §2.6 discusses achieved conclusions.

2.2 Notation, definitions and formulation

Given different geographic regions with airports which exchange flows between them,

the addressed gateway hub location problem consists of locating hubs and gateways,

and inter-hub and inter-gateway connections so that a hub and spoke based air network

is designed, and local and global flows can be routed at minimal transportation and

fixed costs. Local flows are not required to go through hubs to be routed, i.e. direct

connections between local airports are allowed. Fixed costs for direct connections are

disregarded, but transportation costs are accounted for them. However scale economies

are only granted on inter-hub and inter-gateway connections which are required to

be established. Global flows or flow exchanges between airports of different regions,

pass through at least two gateways: one in the origin’s region, and another in the

destination’s region. Consequently, each region must have at least one gateway. A

gateway also acts as a hub, but a hub does not operate as a gateway unless one is

installed at it. Local airports can be connected to more than one hub or gateway within

their region, in other words, multiple allocations are allowed. Further the gateway level

form a connected incomplete network.

To model the aforementioned problem, three different layers can be used to repre-

sent each airport operation type: layer I has all the actual local airports of each region,

layer II contains hub candidate airports, while layer III has gateway candidate air-

ports. To illustrate this idea, please refer to Figures 2.1a. The original configuration

represented by Figure 2.1b has three different regions with six local airports, which

compose layer I. Assuming that each local airport is a hub and a gateway candidate

for this example, then, by copying each local airport of layer I and re-indexing and re-

labeling it accordingly, it is possible to set layers II (airports 7−12) and III (airports

13− 18). Please see Figure 2.1.

These three layers can be represented by a digraph G = (N, A) in which N and A

are the airport and the arc sets, respectively. Set N = L∪H ∪G is formed by disjoint

subsets L (local airport set), H (hub candidate airport set), and G (gateway candidate

airport set)– note that set N has its airports re-indexed as aforementioned – while set
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hub candidates to their associated gateway candidates, respectively.

Further definitions are required to model the problem. Let W = W l ∪ W g be

the demand set with pairs of airports (i, j) exchanging wij units of flow, and that

is formed by two subsets. W l = {(i, j) : i, j ∈ L ∧ R(i) = R(j) ∧ wij > 0} and

W g = {(i, j) : i, j ∈ L ∧ R(i) 6= R(j) ∧ wij > 0} are sets with pairs of airports which

exchange flows on a local and global level, respectively. Let also cuv be a non-negative

unitary cost of arc (u, v) ∈ A given as:

cuv =











































c̃uv ∀(u, v) ∈ AL

αH c̃uv ∀(u, v) ∈ AH

αGc̃uv ∀(u, v) ∈ AG

bH ∀(u, v) ∈ ALH

bG ∀(u, v) ∈ AHG

in which c̃uv is the unitary transportation cost of arc (u, v), and 0 < αH < 1 and

0 < αG < 1 are granted discount factors to represent local and global scale economies,

respectively. Parameters bH and bG are unitary operational costs due to baggage han-

dling and custom and immigration checks done at hub and gateway levels, respectively.

To simplify notation, let E = EH ∪ EG be the edge set in which EH = {(i, j) ∈

AH : i < j} and EG = {(i, j) ∈ AG : i < j} are the edge sets associated to hub and

gateway levels. Whenever an edge (u, v) ∈ E is established to allow or inter-hub or

inter-gateway flows a fixed cost quv given as:

quv =







`H q̃uv ∀(u, v) ∈ EH

`Gq̃uv ∀(u, v) ∈ EG

is incurred, in which q̃uv is the fixed cost of edge (u, v), and `H and `G are fixed scaling

factors for setting inter-hub and inter-gateway connections, respectively. Usually `H <

`G. A fixed cost au is set for installing a hub or a gateway at airport u ∈ H ∪G.

With the aforementioned notation and definitions, and with the implementation

of the layers, it is now possible to model the problem as multi-commodity flow based

formulation with the help of the following variables: Let yu ∈ {0, 1} be equal to 1,

if a hub or a gateway u ∈ H ∪ G is installed, 0 otherwise. Further let xu,v ∈ {0, 1}

be equal to 1, if edge (u, v) ∈ E is activated, 0, otherwise, and let f ij
uv ≥ 0 represent

the flow percentage of demand wij, (i, j) ∈ W , that goes through arc (u, v) ∈ A. The

formulation for the gateway hub location problem can now be written as:

min
∑

u∈H∪G

auyu +
∑

(u,v)∈E

quvxuv +
∑

(i,j)∈W

∑

(u,v)∈A

wijcuvf ij
uv (2.1)
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s.t.:
∑

(i,v)∈A

f
ij
iv = 1 ∀(i, j) ∈W (2.2)

−
∑

(v,u)∈A
j 6=v

f ij
vu +

∑

(u,v)∈A
i6=v

f ij
uv = 0 ∀(i, j) ∈W, u ∈ N : i 6= u, j 6= u (2.3)

−
∑

(u,j)∈A

f
ij
uj = −1 ∀(i, j) ∈W (2.4)

f ij
uv + f ij

vu ≤ xuv ∀(i, j) ∈W, (u, v) ∈ E (2.5)
∑

(u,v)∈A

f ij
uv ≤ yu ∀(i, j) ∈W, u ∈ H ∪G (2.6)

∑

(u,v)∈EG

u∈S
v∈G\S

xuv +
∑

(v,u)∈EG

u∈G\S
v∈S

xvu ≥ yk + ym − 1 ∀k ∈ G \ S, m ∈ S : S ⊂ S ∧R(k) 6= R(m)

(2.7)

yu ∈ {0, 1} ∀u ∈ H ∪G (2.8)

xu,v ∈ {0, 1} ∀(u, v) ∈ E (2.9)

f ij
uv ≥ 0 ∀(i, j) ∈W, (u, v) ∈ A (2.10)

in which S = {S : S ⊂ G, |S| ≥ 2}.

The objective function (2.1) minimizes the total cost consisted of the transportation

costs, and the fixed installation costs for hubs and gateways, and for inter-hub and

inter-gateway connections. Constraints (2.2)-(2.4) are the flow balancing equations.

The constraints (2.5) guarantee that flows only go through inter-hub and inter-gateway

connections if their respective edges are set. Constraints (2.6) ensure that flows can

only go through a hub or a gateway u ∈ H ∪ G, if u is set. Constraints (2.7) are the

well-known sub-tour elimination constraints (SECs) which ensure that the gateway

level is always connected. They can be disregarded whenever there are global flows

from at least one region to all the other regions, otherwise they are required to ensure

connectivity on the gateway level. Constraints (2.8)-(2.10) set the variables’ domain.

The matrix associated with the constraints’ set of formulation (2.1)-(2.10) has a

stair-case shape regarding the large scale variables f , but which is coupled by the

integer variables y and x. This feature makes the whole system amenable to a decom-

position approach. For valid fixed values for variables y and x, the resulting subproblem

decomposes into subsystems which are actually instances of shortest path problems,

one for each (i, j) ∈ W . Hence a coordination scheme, akin Benders decomposition

method (Benders 1962) which iteratively proposes valid values for variables y and x

and solves shortest path instance problems, has a great appeal, since it will most likely

surpass an approach that directly solves the whole formulation (2.1)-(2.10) at once. It
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is also important to remark that this model is closely related to the model displayed

in Camargo et. al. de Camargo et al. (2017), with several simplifications due to the

size of the problems and instances under analysis.

2.3 Benders decomposition algorithms

The Benders decomposition technique (Benders 1962) is a classical exact method suit-

able to solve mixed integer linear programs with a stair-case matrix structure. In

general terms, the method partitions the original problem into two simpler problems

of smaller dimensions: a master problem (MP) and a subproblem (SP). The MP is

a relaxed version of the original problem having only its integer variables and their

respective constraints, but having the continuous variables projected out. These vari-

ables are replaced by an auxiliary variable, responsible for sub-estimating the objective

function of the projected subsystem, and by associated cutting planes known as Ben-

ders cuts. While the SP is the original problem with the integer variables temporarily

fixed by the MP. The algorithm iterates by solving the MP followed by the SP, while

Benders cuts are separated from the SP and added to the MP at each iteration, until

the lower bound (LB) and the upper bound (UB) converge to an optimal solution, if

one exists. The LB is provided by the MP, whereas a UB is readily available from the

SPs’ solutions.

The Benders decomposition technique has been successfully applied to different

problems and other hub location variants (Geoffrion and Graves 1974, Magnanti and

Wong 1981, Birge and Louveaux 1988, Leung et al. 1990, Cordeau et al. 2000, Costa

2005, Gelareh and Nickel 2011, Contreras et al. 2011, Gelareh et al. 2015), being its per-

formance closely related to the problem’s structure, to how easily the SP is solved, and

to the model’s linear programming relaxation. A closer look at formulation (2.1)-(2.10)

reveals that it shares these features. Hence, in this section, a Benders reformulation

for the gateway hub location problem is shown, as well as a Benders algorithm to solve

it. Further, a specialized efficient procedure that selects suitable dual optimal values

among the multiple possible ones due to the dual SP’s degeneracy is presented. This

procedure is capable generates strong Benders cuts for the MP.

2.3.1 Benders subproblem and master problem

Let Y = {(y, x) ∈ B
|H∪G|×|E|} be the set of feasible integer solutions associated to

variables y and x for formulation (2.1)-(2.10). After parameterizing variables y and x,

i.e. for (ȳ, x̄) ∈ Y, the following primal SP (PSP) is obtained:
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(PSP) v(ȳ, x̄) = min
∑

(i,j)∈W

∑

(u,v)∈A

wijcuvf ij
uv (2.11)

s.t.:
∑

(i,v)∈A

f
ij
iv = 1 ∀(i, j) ∈W (2.12)

−
∑

(v,u)∈A
j 6=v

f ij
vu +

∑

(u,v)∈A
i6=v

f ij
uv = 0 ∀(i, j) ∈W, u ∈ N : i 6= u, j 6= u (2.13)

−
∑

(u,j)∈A

f
ij
uj = −1 ∀(i, j) ∈W (2.14)

− f ij
uv − f ij

vu ≥ −x̄uv ∀(i, j) ∈W, (u, v) ∈ E (2.15)

−
∑

(u,v)∈A

f ij
uv ≥ −ȳu ∀(i, j) ∈W, u ∈ H ∪G (2.16)

f ij
uv ≥ 0 ∀(i, j) ∈W, (u, v) ∈ A (2.17)

Let πiju ∈ IR, and βijuv ≥ 0 and ρiju ≥ 0 be the dual variables associated with

constraints (2.12)-(2.14), and (2.15) and (2.16) respectively. Then the dual SP (DSP)

can be written as:

(DSP) v(ȳ, x̄) = max
∑

(i,j)∈W



πiji − πijj −
∑

u∈H∪G

ȳuρiju −
∑

(u,v)∈E

x̄uvβijuv



 (2.18)

s.t.:πiju − πijv − ρiju ≤ wijcuv ∀(i, j) ∈W, (u, v) ∈ ALH ∪AHG (2.19)

πiju − πijv − βijuv − ρiju ≤ wijcuv ∀(i, j) ∈W, (u, v) ∈ AH ∪AG : u < v (2.20)

πiju − πijv − βijvu − ρiju ≤ wijcuv ∀(i, j) ∈W, (u, v) ∈ AH ∪AG : u > v (2.21)

πiju − πijv ≤ wijcuv ∀(i, j) ∈W, (u, v) ∈ AL (2.22)

Observe that the feasible space (2.19)-(2.22) is invariable for any (ȳ, x̄) value, and

that the null vector is always a feasible solution to DSP, since wijcuv ≥ 0 for any

(i, j) ∈ W and (u, v) ∈ A. Further, the DSP is either bounded or unbounded, which,

from strong duality, implies that either the PSP is feasible or infeasible, respectively.

Hence, it is important to recognize when a (ȳ, x̄) ∈ Y vector renders into a feasible

PSP, i.e. into a bounded DSP. The condition under which such vector exists is given

by Proposition 1.

Proposition 1. The primal and dual SPs are feasible and bounded, for any (ȳ, x̄) ∈ Y

such that constraints (2.7),
∑

u∈G:R(u)=r yu ≥ 1 for all r ∈ R (i.e. there is at least one
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gateway per region), and yu ≤ yv, for all u ∈ G and v ∈ H, such that φ(u) = φ(v)

(i.e. a gateway can only be installed if its respective associated hub is also set), are

respected.

Proof. Since by the problem’s definition about the pre-existence of the local arcs given

by set Al, there is at least one path for each local flow (i, j) ∈ W l within its region.

Further constraints
∑

u∈G:R(u)=r yu ≥ 1 for all r ∈ R, and (2.7) assure that all regions

has at least an installed gateway, and are also linked forming a connected graph, i.e.

there is a path consisted of gateway arcs connecting any pair of regions. Moreover as

constraints yu ≤ yv for all u ∈ G and v ∈ H, such that φ(u) = φ(v), guarantee that

a gateway can only exists if its respective associated hub is also installed, and, by the

problem’s definition about the local arc set Al that establishes that there is always a

local arc from a local airport to a installed hub, then there is at least a path for any

global flow (i, j) ∈ W G. As wijcuv are finite for (i, j) ∈ W and (u, v) ∈ A, and due

to constraints (2.12)-(2.16) then any feasible solution to the PSP must be bounded.

Hence, by strong duality, the DSP must also be feasible and bounded.

Let D be the set of extreme points associated to DSP. It follows from Proposition

1 that the whole dual SP can then be expressed as:

v(ȳ, x̄) = max
(π,β,ρ)∈D

∑

(i,j)∈W



πiji − πijj −
∑

u∈H∪G

ȳuρiju −
∑

(u,v)∈E

x̄uvβijuv





which, with the help of an auxiliary variable η ≥ 0 to sub-estimate the routing costs,

allows to reformulate formulation (2.1)-(2.10) as the following Benders MP:

(BMP) min
∑

u∈H∪G

auyu +
∑

(u,v)∈E

quvxuv + η (2.23)

s.t.: (2.7)− (2.9)

η ≥
∑

(i,j)∈W



π̄iji − π̄ijj −
∑

u∈H∪G

ρ̄ijuyu −
∑

(u,v)∈E

β̄ijuvxuv



 ∀(π̄, β̄, ρ̄) ∈ D

(2.24)
∑

u∈G
R(u)=r

yu ≥ 1 r ∈ R (2.25)

yu ≤ yv ∀u ∈ G, v ∈ H : φ(u) = φ(v)

(2.26)

η ≥ 0 (2.27)
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Constraints (2.24) are known as Benders optimality cuts. There is one associated

to each extreme point of the feasibility space of the DSP. As established by Proposition

1, the DSP is always bounded due to constraints (2.7) and (2.25) and (2.26), ergo there

is no need for Benders feasibility cuts associated with the DSP’s extreme rays to be

added to the BMP. However if those constraints were to be disregarded, then Benders

feasibility cuts like the following would be required:

0 ≥
∑

(i,j)∈W



π̄iji − π̄ijj −
∑

u∈H∪G

ρ̄ijuyu −
∑

(u,v)∈E

β̄ijuvxuv



 ∀(π̄, β̄, ρ̄) ∈ E (2.28)

where E is the set of extreme rays associated with the DSP’s feasibility space. In this

study, both approaches are evaluated and assessed on the computational experiments.

To aid in resolution, some auxiliary valid inequalities are also added to the BMP:

xuv ≤ yu ∀(u, v) ∈ E (2.29)

xuv ≤ yv ∀(u, v) ∈ E (2.30)
∑

(u,v)∈E

xuv +
∑

(v,u)∈E

xvu ≥ yu ∀u ∈ G (2.31)

∑

(u,v)∈E
R(u)=r∧R(v) 6=r

xuv +
∑

(v,u)∈E
R(v) 6=r∧R(u)=r

xvu ≥ 1 ∀r ∈ R (2.32)

∑

(u,v)∈E
R(u) 6=R(v)

xu,v ≥ nR − 1 (2.33)

Constraints (2.29) and (2.30) ensure that an inter-hub or inter-gateway connection is

established only if the respective associated hubs or gateways are also set. Constraints

(2.31) guarantee that each installed gateway is connected to at least another gateway.

Constraints (2.32) insure that each region is connected to at least another region.

Finally, constraint (2.33) determines that at least (nR − 1) inter-gateway connections

linking different regions are installed.

Problem (2.1)-(2.10) was then reformulated into an equivalent mixed integer pro-

gram with fewer variables, having only the integer variables y and x, and one continuous

variable η. Though the BMP has a smaller dimension than the original problem, it has

now two constrain sets with an exponential size that must be managed in a suitable

fashion. All but a few of the Benders optimality constraints and the SECs are initially

disregarded to be iteratively added to the BMP, on demand, till an optimal solution is

attained for the original problem.
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2.3.2 A basic Benders decomposition algorithm outline

Let UB and LB be the current upper and lower bounds, respectively, and h the current

iteration index, (ȳh, x̄h, η̄h) and v(π̄h, β̄h, ρ̄h) the current optimal solutions for the BMP

and the DSP for iteration h, respectively. Let also D̄,Ē, and S̄ be the restricted sets of

extreme points and rays of the DSP’s feasible space, and of disconnected components

within G generated so far, up to iteration h. An outline of the Benders decomposition

technique steps is presented in Algorithm 1. This algorithm results in two different

versions, called here as Alg-1-v1 and Alg-1-v2. While in Alg-1-v1 the DSP is solved

at each iteration, in Alg-1-v2, a procedure detects whether the solution from (ȳ, x̄)

results in an infeasible or feasible solution to formulation (2.1)-(2.10) and the DSP is

solved only when a feasible (ȳh, x̄h) solution to formulation (2.1)-(2.10) is generated.

Although both versions consider the addition of optimality Benders cuts, Alg-1-v1

adds feasibility Benders cut (2.28) and Alg-1-v2 adds SECs (2.7) when BMP solution

is infeasible. The performance of Algorithm 1 is greatly affected by the computational

effort spend on solving the BMP and DSP, and the total number of iterations required

to attain optimality. These issues are addressed in the next sections.

2.3.3 Adding Pareto Optimal Cuts

One way to speed up the BMP’s solution and shorten the required number of iterations

for the Benders decomposition algorithm to reach optimality is by generating stronger,

non dominated Benders cuts or Pareto-optimal cuts (Magnanti and Wong 1981). A cut

constructed from a dual solution (π̄1, β̄1, ρ̄1) is said to dominate a cut assembled from

another dual solution (π̄2, β̄2, ρ̄2) if and only if
∑

(i,j)∈W

[

π̄1
iji − π̄1

ijj −
∑

u∈H∪G ρ̄1
ijuyu −

∑

(u,v)∈E β̄1
ijuvxuv

]

≥
∑

(i,j)∈W

[

π̄2
iji − π̄2

ijj −
∑

u∈H∪G ρ̄2
ijuyu −

∑

(u,v)∈E β̄2
ijuvxuv

]

, for all

(y, x) ∈ Y with a strict inequality for at least one vector. A cut is said to be Pareto

Optimal if it is not dominated by any other cut. To separate a Benders Pareto Optimal

cut, Magnanti and Wong (1981) use a core-point or a reference point (yc, xc) ∈ ri(P)

belonging to the relative interior of the polyhedron P = {(y, x) : (2.7), (2.25), (2.26), 0 ≤

yu ≤ 1,∀u ∈ H∩G, and 0 ≤ xuv ≤ 1,∀(u, v) ∈ E} when solving an additional dual SP,

besides the regular DSP. In other words, two different SPs are solved at each iteration:

on associated to the current BMP’s solution (ȳh, x̄h), and another related to the core

point (yc, xc).

As this additional dual SP has a further dense equality constraint, it poses as a much

harder problem to solve than the DSP and prone to numerical instabilities. Papadakos

(2008) then proposes a lighter version to generate Benders Pareto Optimal cuts by

solving the same DSP but with the core point (yc, xc) ∈ ri(P) in place of the current
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Algorithm 1 Basic Benders decomposition

UB ← +∞, LB ← −∞, stop ← false, D̄ ← ∅, Ē← ∅, S̄← ∅
while (stop = false) do

{solve MP}
(LB, ȳh, x̄h, η̄h)← BMP(D̄, Ē or S̄)
if (UB = LB) then

stop ← true

else
Alg-1-v1: {solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
if (v(π̄h, β̄h, ρ̄h) <∞) then

{bounded DSP}
{add optimality Benders cuts}
D ← D ∪ {π̄h, β̄h, ρ̄h}
UB = min(UB, LB - η̄h + v(π̄h, β̄h, ρ̄h))

else
Ē← Ē ∪ {(π̄h, β̄h, ρ̄h)}

end if
OR
Alg-1-v2: {test the feasibility of BMP solution}
if BMP solution is infeasible then

{add SECs}
s← find disconnected components within {u ∈ G : ȳh

u = 1}
S̄← S̄ ∪ {s}

else
{solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
{bounded DSP}
{add optimality Benders cuts}
D ← D ∪ {π̄h, β̄h, ρ̄h}
UB = min(UB, LB - η̄h + v(π̄h, β̄h, ρ̄h))

end if
end if
h← h + 1

end while

BMP’s solution (ȳh, x̄h) instead, or:

(PDSP) max
(π,β,ρ)∈D

∑

(i,j)∈W



πiji − πijj −
∑

u∈H∪G

yc
uρiju −

∑

(u,v)∈E

xc
uvβijuv



 (2.34)

but updating the core point at each iteration in which the DSP renders a bounded

solution. The core point is updated by a linear convex combination of the current

BMP’s solution (ȳh, x̄h) with the core point or (yc, xc) = λ(yc, xc) + (1− λ)(ȳh, x̄h), in
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which 0 < λ < 1. Empirically λ = 0.5 provides the best overall results (Papadakos

2008, Mercier et al. 2005). An initial core point is then required for starting the

Benders decomposition algorithm. A valid one which respects the definition of ri(P)

can be given as:

(ICP) yc
u =

1

|{u ∈ G : R(u) = r}|
∀r ∈ R (2.35)

yc
u = yc

v ∀u ∈ H, v ∈ G : φ(u) = φ(v) (2.36)

xc
uv = min(yc

u, yc
v) ∀(u, v) ∈ E (2.37)

Proposition 2. The vector (yc, xc) given by ICP is a valid core point, i.e. (yc, xc) ∈

ri(P).

Proof. By construction, constraints (2.25) and (2.26) are respected by equalities (2.35)

and (2.36), respectively, and 0 < (yc, xc) < 1. Finally, the SECs are also attended since
∑

(u,v)∈EG

u∈S
v∈G\S

min(yc
u, yc

v) +
∑

(v,u)∈EG

u∈G\S
v∈S

min(yc
u, yc

v) ≥ yc
k + yc

m − 1 for all k ∈ G \ S, m ∈ S

such that S ⊂ S and R(k) 6= R(m). Recall the k and m belong to different regions

(R(k) 6= R(m)), hence their associated edge connection, i.e variable xc
km if k < m, or

xk
mk if k > m, will appear on left hand side of its associated SEC. Further as 0 < yc

k < 1

and 0 < yc
m < 1 and xc

km = min(yc
k, yc

m) by construction, then min(yc
k, yc

m) > yc
k +yc

m−1

for any pair of gateways located in different regions.

Algorithm 2 shows an outline of the Papadakos’ Benders decomposition approach.

Note that the PDSP is solved before the BMP, while using the current core point,

and that, whenever the DSP is bounded, the core point is updated by a linear convex

combination. Furthermore, this algorithm expound two variants of the Benders decom-

position method, Alg-2-v1 and Alg-2-v2. Similarly to Algorithm 1, Alg-2-v1 solves the

DSP at each iteration, adding feasibility Benders cuts when necessary; while Alg-2-v2

solves the DSP only when an infeasible (ȳh, x̄h) solution to formulation (2.1)-(2.10)

is generated, separating SECs to be added to BMP. This particular solution ordering

might speed up the convergence of the Benders decomposition algorithm (Papadakos

2008).

2.3.4 Adding multiple Benders cuts

For feasible integer solutions (x, y) ∈ Y for formulation (2.1)-(2.10), the PSP can

be decomposed into |W | independent subproblems, one for each (i, j) ∈ W . Each

independent subproblem consists of a minimum shortest problem which can be easily



2. The Gateway Hub Location Problem 22

solved by Dijkstra’s algorithm. Further it allows the separation of Benders optimality

cuts from each independent subproblem that can then be added to the BMP. This

greatly reduces the number of iterations required by the method to reach optimality

(Birge and Louveaux 1988). Let Dij be the set of extreme points associated to DSP

regarding the independent subproblem (i, j), which, after redefining the variables ηij

accordingly, allows the BMP to be rewritten into a stronger form:

min
∑

u∈H∪G

auyu +
∑

(u,v)∈E

quvxuv +
∑

(i,j)∈W

ηij (2.38)

s.t.: (2.7)− (2.9) and (2.25) and (2.26)

ηij ≥ π̄iji − π̄ijj −
∑

u∈H∪G

ρ̄ijuyu −
∑

(u,v)∈E

β̄ijuvxuv ∀(i, j) ∈ W, (π̄, β̄, ρ̄) ∈ Dij

(2.39)

ηij ≥ 0 ∀(i, j) ∈ W (2.40)

2.3.5 Solving Benders subproblem

Regarding the subproblem to find SECS within the installed hubs and gateways at an

iteration h, a maximum flow problem (Ahuja et al. 1993, page 240), or the Tarjan’s

depth-first search (Tarjan 1972) to detect strong components can be used. Further,

instead of relying on a linear programing solver to solve the DSP or the |W | independent

subproblems – one associated to each Dij – induced by feasible solutions (y, x) ∈ Y to

formulation (2.1)-(2.10), a specialized procedure is devised to exploit the shortest path

structure of the primal subproblem to efficiently generate dual optimal values. Let Hij
u

be the length of the shortest path from i to node u on the shortest path from i to j

for (i, j) ∈ W induced by a feasible integer solution (ȳh, x̄h) ∈ Y to formulation (2.1)-

(2.10) at iteration h. Note that Hij
j =

∑

(u,v)∈A wijcuvf ij
uv corresponds to the shortest

path from i and j for (i, j) ∈ W in the rendered network by (ȳh, x̄h). Let also T ij
u

be the length of the shortest path from u to node j in the shortest path from i to j,

but considering all hubs and gateways, and inter-hub and inter-gateway connections

installed, i.e. all ones vector (y, x) = 11. Define δij
u = Hij

j − T
ij

u , for all u ∈ N . Given

these definitions, the optimal dual solution for (i, j) ∈ W can be calculated as:

πiji = 0 (2.41)

πijj = Hij
j (2.42)

πiju = min(Hij
u , δij

u ) ∀u ∈ N : u 6= i ∧ u 6= j (2.43)
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ρiju = max(0, πiju − πijv − wijcuv) ∀(u, v) ∈ A : u ∈ H ∩G (2.44)

βijuv = max(0, πiju − πijv − ρiju − wijcuv) ∀(u, v) ∈ AH ∩ AG : u < v (2.45)

βijvu = max(0, πiju − πijv − ρiju − wijcuv) ∀(u, v) ∈ AH ∩ AG : u > v (2.46)

Proposition 3. Equations (2.41)-(2.46) compute optimal dual values for Dij for fea-

sible integer solutions (y, x) = (ȳh, x̄h) to formulation (2.1)-(2.10) at iteration h.

Proof. By construction, equations (2.44)-(2.46) insure that the set (π, ρ, β) is feasible

for Dij. Since equations (2.41) and (2.42) set πiji = 0 and πijj = Hij
j by definition,

respectively, this allows to interpret variables βijuv and ρiju as the reduction in the

shortest path length from node i to j if the inter-hub or inter-gateway connection

(u, v) ∈ E, or the hub or gateway airport u ∈ H ∩ G are installed. Hence, when

x̄h
uv = 1 or ȳh

u = 1 imply that βijuv = 0 or ρiju = 0 because of the complementary

slackness condition to ensure that πiji = 0 and πijj = Hij
j , guarantee therefore that the

optimal dual solution for Dij will be Hij
j .

2.3.6 Repairing infeasible primal solutions

Whenever the DSP is unbounded at an iteration h, no optimality Benders cuts are

separated, no core point is updated, no Pareto Optimal cuts are generated, and no im-

provement on the Benders decomposition algorithm’s lower bound might be perceived

on the next iteration. Hence no contribution to the method’s convergence is observed.

To dwindle this effect, a simple, but effective repair procedure to find a feasible solution

from a (ȳ, x̄) infeasible solution to formulation (2.1)-(2.10) is developed. For iterations

with infeasible network generated by the BMP, beyond the separation of SECs, the

repair procedure is called followed by the specialized algorithm to solve the DSP so

that optimality Benders cuts can be separated. With this procedure, the core points

can be updated at each iteration and consequently, Pareto Optimal Benders cuts can

be added even when a (ȳ, x̄) infeasible solution to formulation (2.1)-(2.10) is found.

Since all local airports are directly connected, the origin of an infeasible solution

is from global demand. Therefore, make a network feasible implies in guarantee that

all regions are connected. Since the regions are connected by gateways arcs, this sub-

problem considers the arcs (u, v) ∈ AG. The global demand, (i, j) ∈ W g, is aggregated

on gateways, resulting in an auxiliary demand matrix, W aux. Each node i ∈ L is asso-

ciated to the nearest gateway u ∈ G, such that R(i) = R(u), and the demand of this

node i ∈ I is added on the gateway u ∈ G demand. To illustrate, assume that there is

a demand of 10 units from node 1 (R(1) = 1 and closer to gateway 14, R(14) = 1) to



2. The Gateway Hub Location Problem 24

node 2 (R(2) = 2 and closer to gateway 17, R(17) = 2). Thus, the new demand from

gateway 14 to gateway 17 will be at least equal 10 units.

Using the subdigraph G
′

= (G, AG) of Section 2.2, and redefining the unitary

transportation cost cuv for an infeasible (ȳh, x̄h) solution to formulation (2.1)-(2.10) at

iteration h as:

cuv =























































quv ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
uv = 0 ∧ ȳu

h = 1 ∧ ȳv
h = 1

quv + au ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
uv = 0 ∧ ȳu

h = 0 ∧ ȳv
h = 1

quv + av ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
uv = 0 ∧ ȳu

h = 1 ∧ ȳv
h = 0

quv + au + av ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
uv = 0 ∧ ȳu

h = 0 ∧ ȳv
h = 0

0 ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
uv = 1

0 ∀(u, v) ∈ AG : ((u, v) ∨ (v, u)) ∈ E ∧ x̄h
vu = 1

Then, for each (i, j) ∈ W aux, a Dijkstra’s algorithm is called on the a subdigraph

G
′

= (G, AG). The (ȳh, x̄h) solution is repaired at the end, by activating the hubs and

gateways, and inter-hub and inter-gateway connections that are part of the attained

shortest path, but were not originally present in the (ȳh, x̄h) solution. The specialized

algorithm of Section 2.3.5 calculates the optimal dual values for the repaired solution

and a new optimality Benders cut is added to the BMP, as can be seen in Algorithm 3.

Note that if Pareto Optimal Benders cuts are not considered, we can have two versions

of Algorithm 3, Alg-3-v1 and Alg3-v2. In Alg-3-v1, only optimality Benders cuts and

SECs are separated, while in Alg-3-v2, Pareto Optimal Benders cuts are also added at

each iteration.

2.4 Computational experiments

In order to test the proposed variants of the Benders decomposition for the GHLP, we

have generated an instance set, called here as global set. To compose the instance set,

141 big cities have been selected. Each city has its latitude, longitude, population and

Gross Domestic Product (GDP). Depending on its location, they have been divided in

regions.

Assuming that pi is the population of city i divided by 100000, gi the factor rep-

resenting the GDP of city i, dij the distance between cities i and j, and the demand

from city i to city j wij is expressed as follows:

wij = pipjgigje
−0.01dij (2.47)
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Cities are placed in descending order of population, and then, the n most populous

cities are selected to compose a new instance. Hence, if k > m, an instance of k nodes

has all m nodes presented in the m nodes instance and also more k−m different nodes.

In other words, global-19 instance has the same nodes of global-12 instance and other 7

different cities. Different problems consisting of the first n nodes have been generated

for n = 12, 19, 29, 37, 43, 48, 59, 74, 100 and 141. Table (2.1) relates the instance’s

name with its number of nodes, candidates to become a hub, candidates to become a

gateway and regions.

Table 2.1: Description of the global instances created

Instances # Nodes # Hubs # Gateways # Regions
global-12 12 11 11 8
global-19 19 17 17 10
global-29 29 24 24 14
global-37 37 28 28 15
global-43 43 32 32 15
global-48 48 35 35 15
global-59 59 40 40 15
global-74 74 48 48 16
global-100 100 60 60 18
global-141 141 67 67 19

On one hand, the fixed costs for an airport becoming hub or gateway do not differ

from one airport to another. On the other hand, the fixed costs to install arcs between

domestic or international airports are a weighted funciton of the arc lenght. The

round of experiments aims to evaluate how instances become harder by adopting more

aggressive fixed costs. Table (2.2) shows five different settings evaluated. In setting

I, the lowest fixed costs are considered, while, in setting V, the largest fixed costs are

taken into account. In settings II and IV, the cost of activating hubs and gateways

is assumed to be the same. In settings I, III and V, activating gateways is more

expensive than opening hubs. We always assume that installing hub arcs is cheaper

than activating gateway arcs.

Table 2.2: Five settings

Values Setting I Setting II Setting III Setting IV Setting V
Hub fixed cost 103 104 104 105 105

Gateway fixed cost 104 104 105 105 106

Weight of domestic arcs 10−1 100 100 10 10
Weight of international arcs 103 103 104 104 105

All computational tests have been carried out on a Dell PowerEdge T620 worksta-

tion, equipped with two Intel Xeon E5-2600v2 processors and 96 GB of RAM memory.
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Table 2.3: Results for smaller instances - Setting I

Versions global-12 global-19 global-29 global-37
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 0 - 0.00 3 - 0.00 26 - 0.00 349
Alg-1-v1 11 0.00 4 12 0.00 28 16 0.00 207 17 0.00 770

Alg-1-v2-C 13 0.00 3 17 0.00 23 23 0.00 189 27 0.00 1230
Alg-1-v2-I 12 0.00 0 16 0.00 5 22 0.00 31 18 0.00 45
Alg-3-v1 7 0.00 0 11 0.00 4 10 0.00 14 10 0.00 26
Alg-2-v1 8 0.00 3 9 0.00 18 11 0.00 161 10 0.00 494

Alg-2-v2-C 13 0.00 4 12 0.00 27 9 0.00 122 11 0.00 322
Alg-2-v2-I 13 0.00 2 13 0.00 14 12 0.00 67 14 0.00 169
Alg-3-v2 8 0.00 3 8 0.00 15 8 0.00 77 8 0.00 189

Table 2.4: Results for smaller instances - Setting II

Versions global-12 global-19 global-29 global-37
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 0 - 0.00 2 - 0.00 24 - 0.00 396
Alg-1-v1 9 0.00 3 13 0.00 29 15 0.00 193 17 0.00 1055

Alg-1-v2-C 14 0.00 3 20 0.00 31 24 0.00 213 32 0.00 984
Alg-1-v2-I 14 0.00 1 19 0.00 10 23 0.00 59 23 0.00 114
Alg-3-v1 10 0.00 1 15 0.00 11 13 0.00 35 13 0.00 68
Alg-2-v1 7 0.00 3 8 0.00 26 12 0.00 221 11 0.00 527

Alg-2-v2-C 13 0.00 4 12 0.00 27 10 0.00 145 13 0.00 326
Alg-2-v2-I 13 0.00 2 13 0.00 14 12 0.00 68 14 0.00 170
Alg-3-v2 8 0.00 3 8 0.00 15 8 0.00 77 8 0.00 191

Also, all the algorithms have been implemented in C++ using Concert Technology

(CPLEX 12.5).

We have generated 8 variants of the Benders decomposition by changing the meth-

ods used to solve the DSP. Alg-1-v2 and Alg-2-v2, in fact, become Alg-1-v2-C, Alg-

1-v2-I, Alg-2-v2-C and Alg-2-v2-I. The letter “C" indicates that the DSP is solved by

CPLEX, while the letter “I" points out the implementation of the specialized algorithm

of Section 2.3.5. The monolithic version corresponds to equations (2.1) - (2.10).

To assess the implemented versions, in Table (2.3)-(2.12), we report the number of

iterations required until convergence for the Benders proposed variants algorithms (#

Iters), the total time required to attain an optimal solution (Time [s]), up to a limit of

259200 seconds (3 days), and the GAP when an optimal solution is not found within

this time (GAP) were recorded. The symbol ’-’ in GAP column represents that no

integer solution was found in the maximum time determined, and in time column that

the algorithm ran until the maximum time allowed.

Two sets of experiments were executed. On the first one, comparison between all the

variants of the Benders decomposition method is made for the smaller instances (until

37 airports). Tables (2.3), (2.4), (2.5), (2.6) and (2.7) illustrate the results obtained

for settings I, II, III, IV and V, respectively.

As can be seen on Tables (2.3), (2.4), (2.5), (2.6) and (2.7), in all settings, except

in setting V, the Monolithic version presents the best behavior for smaller instances
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Table 2.5: Results for smaller instances - Setting III

Versions global-12 global-19 global-29 global-37
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 0 - 0.00 13 - 0.00 241 - 0.00 959
Alg-1-v1 10 0.00 4 16 0.00 67 28 0.00 6513 35 0.09 -

Alg-1-v2-C 13 0.00 4 24 0.00 67 34 0.00 4228 40 0.08 -
Alg-1-v2-I 12 0.00 1 25 0.00 42 34 0.00 1179 39 0.00 7008
Alg-3-v1 8 0.00 1 41 0.00 19 24 0.00 1040 24 0.00 6218
Alg-2-v1 7 0.00 4 11 0.00 41 20 0.00 888 22 0.00 5513

Alg-2-v2-C 9 0.00 3 14 0.00 33 18 0.00 257 22 0.00 576
Alg-2-v2-I 10 0.00 2 22 0.00 29 24 0.00 144 23 0.00 317
Alg-3-v2 6 0.00 2 10 0.00 26 13 0.00 161 15 0.00 452

Table 2.6: Results for smaller instances - Setting IV

Versions global-12 global-19 global-29 global-37
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 0 - 0.00 14 - 0.00 275 - 0.00 1182
Alg-1-v1 10 0.00 5 19 0.00 262 34 0.00 93707 19 7.43 -

Alg-1-v2-C 14 0.00 5 29 0.00 390 46 0.00 72244 32 6.30 -
Alg-1-v2-I 26 0.00 10 66 0.00 1918 81 0.33 - 44 7.30 -
Alg-3-v1 16 0.00 8 50 0.00 1682 66 1.08 - 32 5.76 -
Alg-2-v1 8 0.00 4 15 0.00 74 19 0.00 1098 19 0.00 5287

Alg-2-v2-C 8 0.00 4 12 0.00 33 15 0.00 232 26 0.00 898
Alg-2-v2-I 8 0.00 2 16 0.00 20 26 0.00 158 33 0.00 439
Alg-3-v2 6 0.00 2 13 0.00 27 14 0.00 188 15 0.00 492

Table 2.7: Results for smaller instances - Setting V

Versions global-12 global-19 global-29 global-37
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 2 - 0.00 195 - 0.00 4647 - 0.00 20405
Alg-1-v1 9 0.00 4 18 0.00 116 28 0.00 8232 41 0.00 194300

Alg-1-v2-C 13 0.00 4 23 0.00 127 35 0.00 3493 51 0.00 231401
Alg-1-v2-I 16 0.00 3 42 0.00 365 70 0.00 41388 66 0.02 -
Alg-3-v1 12 0.00 3 39 0.00 362 61 0.00 26466 48 0.00 134488
Alg-2-v1 7 0.00 4 9 0.00 44 18 0.00 645 21 0.00 3436

Alg-2-v2-C 8 0.00 3 11 0.00 28 16 0.00 200 16 0.00 506
Alg-2-v2-I 10 0.00 2 12 0.00 18 18 0.00 107 19 0.00 290
Alg-3-v2 9 0.00 3 10 0.00 26 11 0.00 149 13 0.00 441

(global-12 and global-19). For instances global-29 and global-37, there are always a

variant of the Benders decomposition method that performs better than the Monolithic

version. As fixed costs increase, so does the performance difference between the best

version of Benders and the Monolithic version for a given instance. For example, while

monolithic version requires 13 times more computational effort than Alg-3-v1 to solve

global-37 instance in setting I, in setting V, monolithic version requires 70 times more

computational effort than Alg-2-v2-I to solve the same instance.

It is possible to see that the instances become harder as fixed costs increase. The

Monolithic version spends about 58 times longer to find an optimal solution for the

global-37 instance in scenario V than in scenario I. Moreover, while the global-37

instance is solved within 26 seconds by Alg-3-v1 in setting I, in setting V, Alg-2-
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v2-I requires 290 seconds to converge to an optimal solution. When fixed costs are

higher, the influence of transportation costs decreases and the problem becomes more

combinatory.

Furthermore, the versions that consider the solution of DSP by using CPLEX

and/or the addition of feasibility cuts instead of SECs (Alg-1-v1, Alg-1-v2-C, Alg-

2-v1, Alg-2-v2-C) perform worse than the other versions. This implies that CPLEX

requires more time to solve the DSP than the method describided in 2.3.5. Although

the versions Alg-2-v2-I and Alg-3-v1 are not able to find an optimal solution within

the time limit for some instances in settings IV and V, they performed very well in

settings I and II, in which fixed costs are lower. As expected, the separation of Pareto

Optimal cuts presents a better behavior for harder instances.
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Algorithm 2 Papadakos based Benders decomposition

UB ← +∞, LB ← −∞, stop ← false, D̄ ← ∅, Ē← ∅, S̄← ∅
bounded ← true

(yc, xc)← ICP
while (stop = false) do

if (bounded = true) then
{solve PDSP}
v(π̄h, β̄h, ρ̄h)← PDSP(yc, xc)
D ← D ∪ {π̄h, β̄h, ρ̄h}

end if
{solve MP}
(LB, ȳh, x̄h, η̄h)← BMP(D̄, Ē or S̄)
if (UB = LB) then

stop ← true

else
Alg-2-v1: {solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
if (v(π̄h, β̄h, ρ̄h) <∞) then

{bounded DSP}
bounded ← true

(yc, xc)← λ(yc, xc) + (1− λ)(ȳh, x̄h),
{add optimality Benders cuts}
D ← D ∪ {π̄h, β̄h, ρ̄h}
UB = min(UB, LB - η̄h + v(π̄h, β̄h, ρ̄h))

else
{unbounded DSP}
bounded ← false

Ē← Ē ∪ {(π̄h, β̄h, ρ̄h)}
end if
OR
Alg-2-v2: {test the feasibility of BMP solution}
if BMP solution is infeasible then

{add SECs}
s← find disconnected components within {u ∈ G : ȳh

u = 1}
S̄← S̄ ∪ {s}

else
{solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
{bounded DSP}
bounded ← true

(yc, xc)← λ(yc, xc) + (1− λ)(ȳh, x̄h),
{add optimality Benders cuts}
D ← D ∪ {π̄h, β̄h, ρ̄h}
UB = min(UB, LB - η̄h + v(π̄h, β̄h, ρ̄h))

end if
end if
h← h + 1

end while
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Algorithm 3 Repair Benders decomposition

UB ← +∞, LB ← −∞, stop ← false, D̄ ← ∅, Ē← ∅, S̄← ∅
(yc, xc)← ICP
while (stop = false) do

{solve PDSP}
v(π̄h, β̄h, ρ̄h)← PDSP(yc, xc)
D ← D ∪ {π̄h, β̄h, ρ̄h}
{solve MP}
(LB, ȳh, x̄h, η̄h)← BMP(D̄, Ē or S̄)
if (UB = LB) then

stop ← true

else
{test the feasibility of BMP solution}
if BMP solution is infeasible then

{add SECs}
s← find disconnected components within {u ∈ G : ȳh

u = 1}
S̄← S̄ ∪ {s}
{repair solution}
(ȳh, x̄h)← Repair(ȳh, x̄h)
{solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
D ← D ∪ {π̄h, β̄h, ρ̄h}

else
{solve DSP}
v(π̄h, β̄h, ρ̄h)← DSP(ȳh, x̄h)
{bounded DSP}
{add optimality Benders cuts}
D ← D ∪ {π̄h, β̄h, ρ̄h}

end if
(yc, xc)← λ(yc, xc) + (1− λ)(ȳh, x̄h),
UB = min(UB, LB - η̄h + v(π̄h, β̄h, ρ̄h))

end if
h← h + 1

end while
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Table 2.8: Results for bigger instances - Setting I

Versions global-43 global-48 global-59 global-74 global-100 global-141
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 1009 - 0.00 1879 - 0.00 3801 - 0.00 9882 - 0.00 45298 - - -
Alg-1-v2-I 24 0.00 166 44 0.00 941 37 0.00 3815 55 0.02 27149 21 - - 37 6.42 -
Alg-3-v1 11 0.00 74 13 0.00 204 16 0.00 889 14 0.00 2523 13 0.07 - 8 1.48 -

Alg-2-v2-I 14 0.00 395 13 0.00 640 23 0.00 1590 56 0.00 23935 27 0.00 23031 34 0.00 59391
Alg-3-v2 8 0.00 388 9 0.00 709 8 0.00 1472 9 0.00 4545 8 0.00 14124 9 0.00 55291

Table 2.9: Results for bigger instances - Setting II

Versions global-43 global-48 global-59 global-74 global-100 global-141
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 1230 - 0.00 2137 - 0.00 4463 - 0.00 10023 - 0.00 39442 - - -
Alg-1-v2-I 26 0.00 325 46 0.00 1753 42 0.00 9196 53 0.01 - 22 - - 33 12.49 -
Alg-3-v1 14 0.00 280 17 0.00 567 22 0.00 7062 19 0.00 162188 11 3.54 - 6 8.06 -

Alg-2-v2-I 13 0.00 395 14 0.00 732 25 0.00 1814 30 0.00 5272 35 0.00 35198 32 0.00 65951
Alg-3-v2 8 0.00 391 9 0.00 725 9 0.00 1686 9 0.00 4418 10 0.00 17995 10 0.00 62404

Table 2.10: Results for bigger instances - Setting III

Versions global-43 global-48 global-59 global-74 global-100 global-141
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 1859 - 0.00 3928 - 0.00 10301 - 0.00 37840 - - - - - -
Alg-1-v2-I 46 0.00 63480 62 0.00 111016 46 2.97 - 62 4.63 - 22 - - 26 90.60 -
Alg-3-v1 28 0.00 43694 28 0.00 70738 22 1.10 - 15 3.15 - 9 13.44 - 6 20.43 -

Alg-2-v2-I 31 0.00 631 27 0.00 1019 29 0.00 2896 36 0.00 1489 44 0.00 200848 32 0.27 -
Alg-3-v2 12 0.00 668 11 0.00 1178 16 0.00 3540 13 0.00 9154 14 0.00 83255 10 1.64 -
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Table 2.11: Results for bigger instances - Setting IV

Versions global-43 global-48 global-59 global-74 global-100 global-141
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 1968 - 0.00 4386 - 0.00 13407 - 0.00 39828 - - - - - -
Alg-1-v2-I 44 17.95 - 54 18.64 - 41 25.68 - 53 28.39 - 24 - - 29 88.01 -
Alg-3-v1 23 13.71 - 18 17.81 - 14 24.36 - 9 31.04 - 6 41.90 - 5 39.75 -

Alg-2-v2-I 23 0.00 640 32 0.00 1410 20 0.00 2669 40 0.00 24736 39 0.00 114895 26 2.55 -
Alg-3-v2 13 0.00 755 14 0.00 1520 12 0.00 2887 16 0.00 10778 15 0.00 56425 6 2.90 -

Table 2.12: Results for bigger instances - Setting V

Versions global-43 global-48 global-59 global-74 global-100 global-141
# Iters GAP(%) Time[s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s] # Iters GAP(%) Time [s]

Monolithic - 0.00 45241 - 0.00 52210 - 0.00 152610 - 0.01 - - - - - - -
Alg-1-v2-I 51 2.59 - 59 5.48 - 49 15.98 - 44 14.53 - 22 - - 29 66.40 -
Alg-3-v1 34 2.38 - 28 4.47 - 17 9.25 - 10 15.75 - 7 28.00 - 4 40.96 -

Alg-2-v2-I 21 0.00 712 28 0.00 1940 32 0.00 11554 42 0.00 35208 28 6.37 - 29 9.97 -
Alg-3-v2 13 0.00 923 15 0.00 2128 16 0.00 10078 16 0.00 19112 15 0.00 126468 7 7.30 -
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As the best versions in setting I and II are Alg-1-v2-I and Alg-3-v1 and in settings

III, IV and V, are Alg-2-v2-I and Alg-3-v2, the second experiment compares these

versions with the Monolithic version. As can be seen on Tables 2.8, 2.9, 2.10, 2.11

and 2.12, the larger the instance, the more the performance of Alg-2-v2-I and Alg-3-v2

versions stand out. In setting I, which has the lowest fixed costs, Alg-3-v1 converges

faster until global-74 instance. Alg-3-v2 outperforms the Alg-3-v1 on the global-59

instance in setting II. In the other settings, either Alg-2-v2-I or Alg-3-v2 present the

best behavior. Again, it shows up that Pareto Optimal Benders cuts are effective on

harder instances.

The fact that instances on setting V are harder than those on setting I, once more,

stands out. For global-141 instance, while an optimal solution is determined in 55291

and in 62404 seconds in settings I and II, respectively, none of the versions can find an

optimal solution within the maximum computational time allowed in the other settings.

Comparing versions Alg-2-v2-I and Alg-3-v2, we can observe that Alg-2-v2-I always

requires more iterations to converge to an optimal solution. In setting III, for example,

for global-100 instance, Alg-2-v2-I takes 3 times more iterations and almost 2.5 times

more computational time to converge. However, not always Alg-3-v2 requires less time

to find an optimal solution. For global-74 instance, in setting III, Alg-3-v2 takes 6 times

more computational time to converge. This behavior can be explained by observing

that in Alg-3-v2, Pareto Optimal Benders cuts are separated at each iteration, even

though an infeasible (ȳh, x̄h) solution to formulation (2.1)-(2.10) is generated. As these

cuts are stronger, the number of iterations required to the convergence of the method

decreases, but the time required in each iteration increases (PM becomes harder to solve

and also we have to consider that the PDSP is solved at each iteration). Therefore,

there is a trade-off between the time spent in each iteration and the necessary number

of iterations to the convergence of the algorithm.

It is remarkable the better performance of Alg-2-v2-I and Alg-3-v2 compared to

Monolithic version. For global-100 instance, for example, while Alg-2-v2-I and Alg-3-

v3 converges to an optimal solution using less than 50% of the maximum time set in

five settings, the monolithic version is able to find an optimal solution only for the first

two settings (I and II).

2.5 Insights from this study

The problem proposed in this paper may act as a tool for providing insights into the

current air network. First, empirical results for intermediate instances are presented for

a variety of cost parameter values. Next, in order to exemplify some practical benefits
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of the work developed here, the largest instance (global-141 instance) is chosen to be

analyzed.

2.5.1 Measuring the Influence of Economies of Scale and

Transportation Costs on the Optimal Topologies

To illustrate the influence of the transportation costs in an optimal network, our for-

mulation is solved to optimality by using different values for scale economies (αH , αG)

and unitary operational costs (bH , bG). Our first analyses employ global-37, global-43

and global-48 instances in a series of numerical examples. Whereas it is not possible

to make sweeping generalizations by deploying only three test problems, it is possi-

ble though to compare and contrast the features and characteristics of the attained

network designs regarding the variations in the transportation costs.

We set the hub and gateway installation fixed costs (aH and aG), and the hub

and gateway arc installation fixed costs (qH and qG) to 10,000.00, 100,000.00, 10.00,

1,000.00, respectively, to assess how the optimal networks are affected by varying the

scale economies or by varying unitary operational costs. In the first experiment, the

domestic and international unitary operational costs (bH and bG) are both assumed

as 1.00. Six different scenarios were constructed in which local (αH) and global (αG)

scale economies were chosen within the set {0.2, 0.5, 0.8}, but having αH ≥ αG since

it is expected that larger and more fuel efficient carriers are employed on gateway

arcs. In the second experiment, to analyze the influence of unitary operational costs in

the design of the network, six different scenarios were constructed in which local (bH)

and global (bG) unitary operational costs were chosen within the set {0.5, 1.0, 1.5},

but having bH ≤ bG, since it is expected that international stopovers may involve

performing customs, immigration and security checks. We adopted αH = αG = 0.2.

Tables 2.13 and 2.14 provide the results for variations in scale economies and uni-

tary operational costs, respectively. The computational running times, the number of

installed hubs and gateways, and hub and gateway arcs in the optimal solutions for

the selected costs are reported. Table 2.13 and 2.14 also indicate in percentage for

each example three other performance measures, the Passenger Mile per Direct Arc

(PMDA), Passenger Mile per Hub Arc (PMHA) and Passenger Mile per Gateway Arc

(PMGA). Passenger Miles per arc type are calculated by summing the multiplication

of the number of passengers that traveled through an arc by the arc length, as demon-

strated in equations (2.48), (2.49) and (2.50). By direct arc, we consider arc between
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two non-hub nodes or between a hub and a non-hub node.

PMDA =
∑

(u,v)∈AL

duv

∑

(i,j)∈W

f ij
uv (2.48)

PMHA =
∑

(u,v)∈AH

duv

∑

(i,j)∈W

f ij
uv (2.49)

PMGA =
∑

(u,v)∈AG

duv

∑

(i,j)∈W

f ij
uv (2.50)

Table 2.13: Optimal network under different economies of scale values

Instance αH αG Time(s) # Hubs # Gateways # Hub Arcs # Gateway Arcs PMDA PMHA PMGA

global-37

0.2 0.2 150 28 16 19 27 0.17 0.34 0.49
0.5 0.2 171 28 19 10 35 0.28 0.20 0.52
0.8 0.2 135 26 25 2 50 0.42 0.01 0.57
0.5 0.5 163 28 20 16 39 0.28 0.22 0.50
0.8 0.5 135 27 24 3 52 0.42 0.03 0.55
0.8 0.8 147 27 23 15 46 0.43 0.06 0.51

global-43

0.2 0.2 694 32 17 25 27 0.19 0.37 0.44
0.5 0.2 692 31 20 19 38 0.28 0.22 0.50
0.8 0.2 676 28 25 4 51 0.44 0.02 0.54
0.5 0.5 640 31 20 20 40 0.29 0.24 0.47
0.8 0.5 646 28 24 6 54 0.45 0.03 0.52
0.8 0.8 748 29 24 18 50 0.45 0.06 0.49

global-48

0.2 0.2 1447 35 17 34 28 0.22 0.41 0.37
0.5 0.2 1137 34 22 23 44 0.32 0.25 0.43
0.8 0.2 890 30 26 5 52 0.53 0.01 0.46
0.5 0.5 1128 34 21 31 42 0.33 0.29 0.39
0.8 0.5 873 31 24 11 54 0.53 0.04 0.43
0.8 0.8 888 31 23 23 49 0.53 0.07 0.39

A detailed view of the results displayed in Table 2.13 shows a direct correlation

between the optimal network and the relative difference in effectiveness for hubs and

gateways. As the hub efficiency is lost, the investment priorities are re-routed through

the international gateways. The same effect is observed on installation of hub and

gateway arcs, when comparing to direct connections. In general, it is more attrac-

tive to select best global infrastructure and bring the international passengers close

together using direct flights. Is is important to recall that international demands can

not be directly served, and therefore, as the gateways have their efficiency reduced,

new attempts to improve the network cost structure are implemented, turning to hubs

again as a cost-relieve device.

The important conclusion drawn here is that the intermediate network layer has its

importance demonstrated specially for scenarios where a company is operating with

old, not very effective international gateways like the ones available in on-development

countries. Furthermore, ensuring the operational health and efficiency of both elements,

hubs and gateways, is a task of capital importance to avoid unnecessary infrastructure

mobilization. A careful planning of the installed capacity of these devices is advised,
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and an up-to-date tracking of good operational metrics to select the proper moment of

capacity expansion as well.

As displayed in Table (2.14), it seems that the sensitivity to reasonable changes

in unitary costs is not as high, regarding the structure of the optimal network. Only

slight variations on the network topologies could be found, typically on the number of

hub and gateway arcs. This is expected as the unitary costs were augmented using a

flat profile to avoid introducing any bias towards any special location. As such, more

subtle effects might be expected.

Table 2.14: Optimal network under different unitary operational costs

Instance bH bG Time(s) # Hubs # Gateways # Hub Arcs # Gateway Arcs PMDA PMHA PMGA

global-37

0.5 0.5 325 28 16 19 27 0.05 0.47 0.49
0.5 1.0 304 28 16 19 27 0.05 0.47 0.49
0.5 1.5 243 28 16 19 27 0.05 0.47 0.49
1.0 1.0 348 28 16 19 27 0.17 0.34 0.49
1.0 1.5 242 28 16 19 27 0.17 0.34 0.49
1.5 1.5 323 28 16 15 27 0.26 0.26 0.49

global-43

0.5 0.5 819 32 17 27 28 0.08 0.48 0.44
0.5 1.0 691 32 17 27 28 0.08 0.48 0.44
0.5 1.5 606 32 17 27 28 0.08 0.48 0.44
1.0 1.0 661 32 17 25 27 0.19 0.37 0.44
1.0 1.5 928 32 17 25 28 0.19 0.37 0.44
1.5 1.5 838 32 17 21 28 0.27 0.29 0.44

global-48

0.5 0.5 1005 35 17 39 29 0.11 0.52 0.37
0.5 1.0 744 35 17 38 28 0.11 0.52 0.37
0.5 1.5 879 35 17 38 28 0.11 0.52 0.37
1.0 1.0 1458 35 17 34 28 0.22 0.41 0.37
1.0 1.5 925 35 17 34 28 0.22 0.41 0.37
1.5 1.5 1162 35 17 30 28 0.30 0.33 0.37

However, a detailed inspection of the metrics PMDA and PMHA show, as in the

first experiment, that the local infrastructure or intermediate network layer has its

importance reduced as the transportation costs in hubs and gateways get closer. Please,

recall once more that no impact is expected in PMGA as there is no other way to cope

with the global demand components except by going through the gateways. Once

again, the direct flights become more and more attractive as the hubs display poor

performance, in a effort to fast connect the international passengers. The hub layer

infrastructure, to be important for relieving transportation costs, must be kept in good

health, operating at good and safe overhead levels.

After the discussion of aforementioned results, the fundamental lesson is: a three

layer network displaying specific and well defined roles for hubs and gateways may be

of strategical value, provided that the transportation costs and economies of scale are

kept under severe control. The differentiation between local and global infra-structure

may be the key to relieve transportation costs when old, overloaded gateways are used,

but to properly take advantage of the expected savings, it is required to keep the local

hubs in good operational health. Otherwise, its is probably better dodge the costly
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Table 2.15: Total passenger traffic 2015

Rank Airport City / Country / Code Solution
1 Atlanta GA, US (ATL) Gateway
2 Beijing, CN (PEK) Gateway
3 Dubai, AE (DXB) Not in data
4 Chicago IL, US (ORD) Gateway
5 Tokyo, JP (HND) Hub
6 London, GB (LHR) Gateway
7 Los Angeles CA, US (LAX) Gateway
8 Hong Kong , HK (HKG) Gateway
9 Paris, FR (CDG) Gateway
10 Dallas/Fort Worth TX, US (DFW) Hub
11 Istanbul, TR (IST) Gateway
12 Frankfurt, DE (FRA) Not in data
13 Shanghai, CN (PVG) Gateway
14 Amsterdam, NL (AMS) Not in data
15 New York NW, US (JFK) Gateway
16 Singapore, SG (SIN) Hub
17 Guangzhou, CN (CAN) Gateway
18 Jakarta, ID (CGK) Hub
19 Denver CO, US (DEN) Not a candidate
20 Bangkok, TH (BKK) Hub

As the instances elaborated here contemplate the most populous cities, despite

being well classified in both ranks, Dubai, Frankfurt and Amsterdam airports are not

included in the instances. A similar situation is perceived with airports in Munich and

Doha. They are in top 20 busiest international passenger traffic but they are not in

the instance. In spite of being in data, Denver and Roma airports are not considered

as gateway and hub candidates. This implies that instance creation is a point to be

improved.

Dallas and Jakarta airports appear on the most-travelled airports in 2015 but they

are not present in the rank when international passengers are considered. In the solu-

tion obtained for our model, they are active as hubs. On the contrary, although Tokyo,

Singapore and Bangkok airports were considered as the most busiest airports of both

total and only international passenger traffic, they are selected only as hubs in Figure

2.2. Of course the already existing infrastructure of these airports must be considered,

but considering those cities the best transshipment localities in Asia from an economic

point of view is a matter of discussion. The optimal solution obtained for our model

activated Ho Chi Minh City (Vietnam) airport as gateways in this region. Also in

Asia, Incheon, Taipei and Kuala Lumpur airports are the world busiest in terms of

international passengers and are selected as gateways in Figure 2.2.
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Table 2.16: Total international passenger traffic 2015

Rank Airport City / Country / Code Solution
1 Dubai, AE (DXB ) Not in data
2 London, GB (LHR ) Gateway
3 Hong Kong , HK (HKG) Gateway
4 Paris, FR (CDG) Gateway
5 Amsterdam, NL (AMS) Not in data
6 Singapore, SG (SIN) Hub
7 Frankfurt, DE (FRA) Not in data
8 Incheon, KR (ICN) Not in data
9 Bangkok, TH (BKK) Hub
10 Istanbul, TR (IST) Gateway
11 Taipei, TW (TPE) Gateway
12 London, GB (LGW) Gateway
13 Kuala Lumpur, MY (KUL) Gateway
14 Madrid, ES (MAD) Hub
15 Munich, DE (MUC) Not in data
16 Doha, QA (DOH) Not in data
17 Tokyo, JP (HND) Hub
18 New York NW, US (JFK) Gateway
19 Barcelona, ES (BCN) Hub
20 Rome, IT (FCO ) Not a candidate

Despite being the fourteenth and the nineteenth world’s busiest international pas-

senger traficc airports, Madrid and Barcelona airports are proposed to be hubs in our

solution. A similar question arises: Is Spain in a strategic place to concentrate in-

ternational flows? The network drawn in Figure 2.2 proposed Berlin and The Ruhr

airports, in Germany, as gateways. Would Germany not be a more strategic country

to concentrate international flights?

In our solution, Lagos, in Nigeria, and Casablanca, in Morocco, are proposed as

gateways in Africa. Considering that Africa occupies a strategic position on the globe,

these two countries would be strategic points for concentration of international flow?

In Brazil, Sao Paulo and Salvador airports are activated as gateways. We know

that Rio de Janeiro airport concentrates much more flights than Salvador airport.

From a geographic point of view, should be better to concentrate international flights

in Salvador?

The costs considered in this study are not real, the demand utilized is based on the

population of the city (we ignore the nearby cities) and the algorithms developed are

only able to solve instances up to 141 nodes until optimality. Despite these limitations,

the solution drawn here could provoke insights and questionings in the way of air

companies prioritize airports.
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2.6 Conclusion and future research

In this paper, we studied a gateway hub location problem, which is a three-level hub

location problem, considering domestic and international flows for design a global air

network. We have proposed exact methods to solve the problem, based on a gener-

alized Benders decomposition. Two features that greatly speed up the method have

been proposed: a separation of SECs when the BMP solution results in a infeasible

network and a repair procedure which allows to generate Benders optimality cuts from

unbounded dual subproblems. Computational experiments showed the effectiveness of

our algorithms, which significantly improve the solution time of the general purpose

solver when solving large instance sizes. As future research, the difference in perfor-

mance between algorithms Alg-2-v2-I and Alg-3-v2 needs to be investigated further.

The formulation can tackle instances containing up to 141 airports, which is still

far from real-life problem sizes. Moreover, the costs and the demand matrix considered

here are not real data. Nevertheless, our approach offers important questions about

the way current global air network is designed. Some efforts should be directed to

improve the elaboration of the instances and also, other techniques can be studied to

enable determining optimal solutions for larger instances.



Chapter 3

Hub Network Design with Flexible

Routes

Abstract

This paper introduces a hub network design problem with flexible routes. The

routes are flexible in the sense that each route may contain a mix of hub and non-

hub nodes. We assume that commodity transfers can only be performed at hubs and

that transportation costs are flow-dependent, which implies that instead of imposing

fixed discount factors to represent economies of scale, these economies of scale stem

from the transport technology chosen to operate the routes. This makes the problem

more difficult to formulate and solve than classical hub network design problems. We

propose a mixed integer programming formulation and two metaheuristics based on

the adaptive large neighborhood search paradigm to solve the problem. We report the

results of computational experiments to assess the performance of the formulation and

algorithms on a set of benchmark instances.

Key words: Scale economies; Hub-and-spoke network; Flexibility; Routing.

3.1 Introduction

Hubs are special facilities that act as transshipment or flow consolidation points in

many-to-many transport applications. Hub location problems (HLPs) are a class of

strategic logistics planning problems in which hub facilities must be located while

demand nodes must be allocated to hubs in order to route the traffic between multiple

origin-destination pairs. In hub-and-spoke systems, instead of directly connecting each

origin-destination pair, flows from the same origin but with different destinations are

consolidated at the hubs with other flows that have different origins but the same

destination. Consolidating demands at hub terminals allows transportation carriers to

41



3. Hub Network Design with Flexible Routes 42

use larger vehicles to exploit economies of scale and achieve lower transportation costs.

Given their wide presence in logistics systems, HLPs have been the focus of many

researchers. Readers may refer to Alumur and Kara (2008), Campbell and O’Kelly

(2012), Farahani et al. (2013) and Contreras (2015) for recent surveys on hub location.

Classic HLPs relies on three main assumptions. First, demand flows have to be

routed through one or at most two hubs, implying that a non-hub node is directly

connected to at least one hub facility. Second, the hub network is considered to be fully

interconnected. Third, a constant discount factor representing economies of scale is

applied to the unit transportation cost of inter-hub connections. In several applications,

these assumptions are reasonable and provide a good approximation of reality; in

others, they may lead to suboptimal solutions.

Considering a fixed discount factor to represent economies of scale on inter-hub

links may be more suitable for applications in which links between hubs are associated

with faster transportation modes. Nonetheless, it may be an oversimplification for

applications in which economies of scale are a consequence of the bundling of flows

on hub arcs. This simplification may lead to solutions that grant a discount factor to

inter-hub arcs only, even though these connections may carry considerably less flow

than non-hub links. Consequently, in many cases, this may lead to miscalculations of

the total network cost as well as to erroneous decisions of hub locations and non-hub

allocations.

Several modeling approaches have been introduced to overcome this simplifica-

tion. For instance, O’Kelly and Bryan (1998) and de Camargo et al. (2009) approach

this issue by proposing formulations in which the economies of scale are modeled as

flow dependent functions on the inter-hub arcs in a fully interconnected hub network.

Nonetheless, they have neither consider the selection of vehicles nor how they operate.

Kimms (2006) argue that economies of scale stem from the transportation technology

selected to be used in the system. He propose three multiple allocation p-hub median

problems with direct service and with fixed and variable costs. The goal is to determine

the optimal number of vehicles to be used on each arc of a fully interconnected hub

network. Considering flow dependent transportation costs based on modular arc costs,

Tanash et al. (2017) study a modular hub location problem, which bears similarity to

the work of Kimms (2006). The total transportation cost is calculated not in terms of

the per unit flow cost, but with respect to the number of vehicles used on each arc.

Although these models design the hub-and-spoke network and assign resources to arcs

aiming to minimize the total cost of transporting flows, the routing of the resources is

not taken into account.

The need to jointly consider location and routing decisions arises naturally in ap-

plications that have nodes with insufficient demand to justify direct connections with
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the hubs such as in many-to-many flow transportation systems. In these cases, besides

the location of hubs and routing of flows through the network, local tours to serve

and connect the non-hub nodes to the installed hubs need to be generated so that

flows from many origins to many destinations can be transported at a minimal cost.

This gives rise to the so-called many-to-many hub location-routing problem (MMHLRP)

introduced by Nagy and Salhi (1998). The authors study a MMHLRP that impose

capacity and maximum distance constraints to the local tours of a homogeneous fleet,

and fixed costs to establishing hubs.

Wasner and Zäpfel (2004) consider a MMHLRP arising in a postal service applica-

tion in which non-hub nodes are directly linked by local tours while all inter-hub flows

is transferred through a central hub. Another variant of a MMHLRP is presented in

Çetiner et al. (2010) in which an iterative two-stage solution procedure is described.

In the first stage, hub location and non-hub node (multiple) assignments decisions are

fixed whereas in the second stage a traveling salesman problem is solved for each in-

stalled hub. Camargo et al. (2013) and Rodríguez-Martín et al. (2014) study single

allocation variants of the problem with bounded tour length to ensure service quality

and present exact solution algorithms for solving them. Kartal et al. (2017) propose

three different mixed integer programs (MIP) and two heuristic approaches to solve a

single allocation p-hub median location and routing problem with simultaneous pickup

and delivery. Karimi (2018) study a version of a single allocation hub location routing

problem that considers hub and vehicle capacities. Kartal et al. (2019) present a p-hub

center and routing network design problem which locates p-hubs, allocates non-hub

nodes to the installed hubs, and generates vehicle routes for each installed hub in a

way that the maximum travel time between all origin-destination pairs is minimized.

Most of the work on MMHLRPs assume that routing decisions happen only at the

access level, and that the hub network is fully interconnected with one vehicle serving

each pair of hubs. Nonetheless these assumptions may not lead to the most cost efficient

topologies, since they may result in unnecessary routes. To prevent that, Lopes et al.

(2016) investigate a MMHLRP with an incomplete hub network. Nodes are partitioned

into tours with exactly one hub each, while creating an extra tour interconnecting all

hubs. Hubs are restricted to serve a predetermined number of non-hub nodes, whereas

the many-to-many flow decisions are implicitly made. Neither flow capacity on the

tours or hubs nor maximal length on the routes are imposed.

In this paper we introduce a new general class of MMHLRPs denoted as hub net-

work design problems with flexible routes (HNDPs). Besides considering hub location

decisions and flow dependent transportation costs, HNDPs determine itineraries for the

selected vehicles. One of the major advantages of HNDPs over classical models is that

no particular topological structure, such as cycles (Contreras et al. 2017), stars (Labbé
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and Yaman 2008), trees (de Sá et al. 2013), lines (Martins de Sá et al. 2015), incomplete

(de Camargo et al. 2017) or fully interconnected hub networks (O’Kelly 1986, Skorin-

Kapov et al. 1996, Hamacher et al. 2004), is assumed a priori. The network topology

is endogenously determined, being induced from the involved costs. This ensures that

vehicles will be used more efficiently and economically, and that economies of scale will

be obtained according to the transport technology chosen to operate the routes and

their actual utilization.

HNDPs consist of opening a set of hub nodes and covering a set of nodes with a

set of heterogeneous vehicle routes. Vehicles are assumed to start their route on any

node of the graph, serve some nodes, and then return to the same initial node. Routes

are not forced to visit hub nodes. Load capacity constraints and a maximum time for

completing the routes must be respected. There are installation costs for establishing a

hub and using a vehicle, while fixed operational costs are incurred every time a vehicle

moves through an arc. We assume that all demand flows have to be routed with the

selected vehicle routes. Instead of applying the traditional fixed discount factor to

inter-hub links, it is assumed that economies of scale are a direct consequence of the

vehicles assigned to the routes and not of the arc type being used. No restriction of

any kind is imposed on the path of a demand flow. That is, demand flow can be routed

from its origin to its destination by using a single vehicle route or by using a set of

vehicle routes. However, flow transfers between vehicles are allowed only at hub nodes.

Here, a hub works exclusively as a transshipment facility to transfer flows from one

vehicle to another. There is no limit on the number of intermediate nodes (hub and

non-hub) a path of a demand flow can have.

Figure 3.1 illustrates a solution of a HNDP with four hub nodes, 13 non-hub nodes

and seven vehicle routes. Note that there are routes that start and end at non-hub

nodes, and that, even though there are multiple routes passing through the same non-

hub node, there is no flow exchange on non-hub nodes. It is also worth observing that

demand flows follow the direction of the routes, i.e. an origin-destination demand (i, j)

may have a longer path than its counterpart, demand (j, i).

HNDPs greatly differs from previously studied MMHLRPs. They assume a given

exogenous network topology and a homogeneous fleet with routes that start and end

at the hubs. Normally vehicles can only pass a limited number of times through each

demand node, while the path of a demand flow is restricted by the prescribed network

topology. Most important of all, MMHRLPs completely disregard that the economies

of scale derive from the technology chosen to operate the routes and its utilization.

To better highlight the similarities and dissimilarities between the HNDP and other

MMHLPRP, Table 3.1 summarizes their main characteristics.

6
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or may not contain hubs on them and there is no restriction in the path chosen to

serve the requests. The goal of liner shipping companies is to design vessel routes at

a minimal cost to satisfy the demand. Although shipping service routes cannot be

reshuffled overnight, several circumstances, e.g. changes in demand, increase in fuel

price and modification in ship capacity, drive a liner shipping company to adjust its

service routes and ship deployment on a small scale from time to time (see, for instance,

Gelareh and Pisinger 2011, Reinhardt and Pisinger 2012, Song and Dong 2013).

The main contribution of this paper is threefold. First, we introduce a new class

of HLPs that encompass both strategic and tactical planning decisions. The strategic

decisions consist of locating hub facilities and defining how many vehicles of each

type should be used. Given that transforming a facility into a hub and owning a

vehicle involve a significant capital investment, the decisions taken at this level are very

important. The tactical decisions assign vehicles to arcs so that vehicle routes can define

paths to route all demand flows. While these decisions can be taken separately, once

strategic decisions are made, they may negatively impact the decisions of the tactical

level, resulting in suboptimal solutions. Second, we propose a MIP formulation to solve

the problem. Third, because the proposed MIP is too large to be solved in a timely

manner by general purpose solver, we also develop two metaheuristics based on an

adaptive large neighborhood search (ALNS). To evaluate the efficiency and limitations

of our algorithms, extensive computational experiments are performed on instances

with up to 50 nodes.

The remainder of this document is organized as follows. Section 3.2 provides a for-

mal definition of the problem and presents the mathematical formulation. Section 3.3

describes in detail the two ALNS metaheuristics. Computational results are reported

in Section 3.4, followed by conclusions in the last section.

3.2 Problem definition and formulation

Let G = (NO, AO) be a directed graph, with the node set NO = {0, .., n} and the arc

set AO = {(i, j) : i, j ∈ NO; i 6= j}. Node 0 is a fictitious depot, where vehicles must

start and end their routes. The sets N = {1, ..., n} and A = {(i, j) : i, j ∈ N ; i 6= j} are

the node and arc sets, respectively, without considering the depot. We define H ⊆ N

as the hub candidate set and hk as the fixed cost incurred for installing a hub in node

k ∈ H. There is a demand flow wij ≥ 0 that needs to be routed from i ∈ N to j ∈ N .

We assume that wij can be split, i.e., can be routed using more than one path. We

also consider that more than one vehicle can be used to serve a demand in a specific

path. However, demand flows can change vehicles only at hub nodes. For example,
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consider the path 1 − 2 − 3 − 4 to serve demand w14. If vehicle 1 operates arc (1, 2)

and vehicle 2 operates arcs (2, 3) and (3, 4), a hub must be installed at node 2. These

features substantially increase the complexity of the design of the model and of the

solution procedures.

We consider an heterogeneous fleet of vehicles in which each vehicle type has a dif-

ferent capacity, speed, fuel consumption, and other specific characteristics. We denote

by R the set of all vehicle types and use the index r to represent a particular vehicle

type. For each r ∈ R, τ r denotes the capacity of a vehicle of type r and for each arc

(k, m) ∈ A, tr
km denotes the time it takes a vehicle of type r to traverse arc (k, m).

The fixed cost related to the acquisition of a vehicle type r ∈ R is denoted by ar. We

associate the fixed cost cr
km with vehicle type r ∈ R traversing arc (k, m) ∈ A. Finally,

let T be an upper bound on the length of the routes.

Let ρ(r) be a function that returns the number of available vehicles of type r, and R

be the total number of available vehicle types. Let P = {1, ..., ρ(1), ρ(1) + 1, ..., ρ(1) +

ρ(2), ..., ρ(1) + ... + ρ(R)} be the set of vehicles, and index p be used to represent a

specific vehicle. Let φ(p) be a function that returns the type of vehicle p. For example,

if we have three types of vehicles (R = 3), having three vehicles for type 1 (ρ(1) = 3),

four vehicles for type 2 (ρ(2) = 4), and two vehicles for type 3 (ρ(3) = 2), then set

P = {1, 2, 3, 4, 5, 6, 7, 8, 9}. For this case, vehicles 1, 2, 3 are of type 1 (φ(1) = φ(2) =

φ(3) = 1), vehicles 4, 5, 6, 7 are of type 2 (φ(4) = φ(5) = φ(6) = φ(7) = 2), and vehicles

8 and 9 are of type 3 (φ(8) = φ(9) = 3).
We now present an MIP formulation for the HNDP. Our formulation combines

decisions of two problems: 1) variables y and f related to the hub location problem,
and 2) variables q, x and z associated to the vehicle routing problem. Let yk ∈ {0, 1}

be equal to one if and only if a hub is located at node k ∈ H. Let fp
ijkm ≥ 0 denote the

percentage of demand wij passing through arc (k, m) ∈ A in vehicle p ∈ P . Further, let
qp ∈ {0, 1} be equal to one if and only if vehicle p ∈ P is utilized. Also, let xp

km ∈ {0, 1}

be equal to one if and only if vehicle p ∈ P passes through arc (k, m) ∈ A0, and
zp

k ∈ {0, 1} be equal to one if and only if vehicle p ∈ P passes through node k ∈ N .
Using these variables, the HNDP can be formulated as follows:

min
∑

k∈H

hkyk +
∑

p∈P

aφ(p)qp +
∑

p∈P

∑

(k,m)∈A

c
φ(p)
km x

p
km (3.1)

s.t.:
∑

p∈P

∑

(i,m)∈A

f
p
ijim = 1 ∀(i, j) ∈W (3.2)

∑

p∈P

∑

(k,m)∈A

f
p
ijkm =

∑

p∈P

∑

(m,k)∈A

f
p
ijmk ∀(i, j) ∈W, k ∈ N : k 6= i, k 6= j (3.3)

∑

p∈P

∑

(k,j)∈A

f
p
ijkj = 1 ∀(i, j) ∈W (3.4)
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f
p
ijkm ≤ x

p
km ∀(i, j) ∈W, (k, m) ∈ A, p ∈ P : k 6= j, m 6= i

(3.5)
∑

(m,k)∈A
m6=j

f
p
ijmk −

∑

(k,m)∈A
m6=i

f
p
ijkm ≤ yk ∀(i, j) ∈W, k ∈ N, p ∈ P : k 6= i, k 6= j

(3.6)
∑

(k,m)∈A0

x
p
km =

∑

(m,k)∈A0

x
p
mk ∀k ∈ N, p ∈ P (3.7)

∑

(0,m)∈AO

x
p
0m = qp ∀p ∈ P (3.8)

∑

(k,0)∈AO

x
p
k0 = qp ∀p ∈ P (3.9)

∑

(k,m)∈A

t
φ(p)
km x

p
km ≤ qpT ∀p ∈ P (3.10)

∑

(k,m)∈A

x
p
km = z

p
k ∀k ∈ N, p ∈ P (3.11)

∑

(k,m)∈A

x
p
km = zp

m ∀m ∈ N, p ∈ P (3.12)

∑

u∈S

∑

v∈NO\S

xp
uv +

∑

u∈S

∑

v∈NO\S

xp
vu ≥ z

p
k ∀k ∈ S, S ⊂ N, |S| ≥ 2, p ∈ P (3.13)

x
p
km ≤ qp ∀p ∈ P, (k, m) ∈ A (3.14)
∑

(i,j)∈W

wijf
p
ijkm ≤ τφ(p)x

p
km ∀(k, m) ∈ A, p ∈ P (3.15)

f
p
ijkm ≥ 0 ∀(i, j) ∈W, (k, m) ∈ A, p ∈ P : k 6= j, m 6= i

(3.16)

yk ∈ {0, 1} ∀k ∈ H (3.17)

x
p
km ∈ {0, 1} ∀(k, m) ∈ A0, p ∈ P (3.18)

qp ∈ {0, 1} ∀p ∈ P (3.19)

z
p
k ∈ {0, 1} ∀k ∈ N, p ∈ P. (3.20)

The objective function (3.1) minimizes the total cost of designing the network and

routing the vehicles. The first term of the objective function denotes the cost of in-

stalling hubs. The second term represents the cost of acquiring the vehicles, while the

third term calculates the vehicle routing cost of traversing the arcs. Constraints (3.2)-

(3.4) are flow balancing equations. Constraints (3.5) ensure that if any flow passes

through an arc in a vehicle, then, this vehicle passes through such arc. Constraints

(3.6) guarantee that if a demand flow changes vehicles in a node, then, such node

must be a hub. Constraints (3.7) balance the vehicle routes, i.e. if a vehicle arrives

at a node, it must leave that node. Constraints (3.8) and (3.9) guarantee that the

acquired vehicles start and end their routes at the fictitious depot. Constraints (3.14)



3. Hub Network Design with Flexible Routes 49

ensure that a vehicle passes through an arc only if the vehicle is acquired. Constraints

(3.15) are the capacity constraints, i.e. the total flow that passes through an arc in a

vehicle must respect the capacity of that arc. Constraints (3.10) impose a travel time

limit on each vehicle route. Constraints (3.11) and (3.12) activate variables z, i.e. if

a vehicle traverses an arc, the nodes of that arc are in the vehicle route. Constraints

(3.13) are the well-known sub-tour elimination constraints (SECs) which ensure that

for each route sub-cycles will not be formed. Constraints (3.16)-(3.20) are the standard

non-negativity and integrality conditions.

Let ρs(r) and ρe(r) be the first and the last indices of vehicle of type r, respectively.

In order to reduce the symmetry of our formulation (3.1)-(3.20), we add the following

constraints:

∑

(k,m)∈A

tr
kmxp

km ≤
∑

(k,m)∈A

tr
kmxp−1

km ∀r ∈ R, p ∈ P : p > ρs(r), p ≤ ρe(r) (3.21)

qp ≤ qp−1 ∀r ∈ R, p ∈ P : p > ρs(r), p ≤ ρe(r). (3.22)

Constraints (3.21) ensure that longer routes will have vehicles indexed with smaller

values for each type of vehicle. Constraints (3.22) guarantee that vehicles with a smaller

index will be activated before vehicles with higher indices for each type of vehicle.

3.3 Solution algorithms

We next present two metaheuristics based on a ALNS framework to find feasible so-

lutions for the HNDP in reasonable computation times. The ALNS framework was

originally devised by Ropke and Pisinger (2006) for the pickup and delivery problem

with time windows. It can be seen as an extension of the large neighborhood search

framework of Shaw (1998) but with an adaptive layer. Our first algorithm, denoted

as TDALNS, follows a top down approach, in which the hub configuration is defined

first followed by the construction of the routes. The second algorithm, denoted as

BUALNS, follows a bottom up approach, in which the routes are built before the hub

configuration is established.

Both algorithms are iterative procedures in which at every iteration, two main

phases are performed. The first phase selects a destroy operator to remove nd nodes

from the routes, while the second phase chooses a repair operator to reconstruct the

solution. Operators are selected according to an adaptive probabilistic mechanism

derived from the score of each operator. Operators that have successfully found new

improving solutions have a higher score and, therefore, a higher probability to be chosen

again.



3. Hub Network Design with Flexible Routes 50

A general overview of TDALNS and BUALNS heuristics are depicted in Algorithms

4 and 5, respectively. An initial feasible solution s is first constructed. A new solution

snew is then obtained by sequentially applying on the current solution s destroy and

repair operators. In the TDALNS, whenever ωih iterations have been performed, a

hub configuration operator is chosen to modify the current network before applying

the destroy and the repair operators. In the BUALNS, the hub configuration is the

last decision to be fixed, which is done at the same time the feasibility of the solution

is analyzed. If the new solution is disconnected, a connection procedure is called to

change the network.

In the TDALNS, we verify if the network is connected with respect to the hub

configuration. In our case, the network is sometimes strongly connected, but there

may be paths in which the transshipment occurs at non-hub nodes, thus violating our

assumption that flow transfers between vehicles can only occur at hub nodes. Recall

that a flow can pass from arc (k, m) to arc (m, l) only if the same vehicle passes through

both arcs or if node m is a hub. Therefore, if the current set of open hubs does not

guarantee the feasibility of the network, the solution is rejected. Otherwise, we verify

if there is enough capacity in the selected vehicle routes to serve all demand pairs.

For the BUALNS, once the network is connected we call a procedure that defines the

hub configuration and analyzes the capacity feasibility at the same time. In both

algorithms, if there is not enough allocated capacity on the vehicle route to serve all

demand pairs, the solution is dynamically penalized by taking into account its capacity

violation. The algorithms terminate when a limit on the maximum number of iterations

is reached.

The algorithm always accepts a better solution, whereas a worse solution can be

accepted depending on a simulating annealing criterion. Infeasible solutions can also be

accepted. We note that there is no guarantee that the objective value of an infeasible

solution will always be better than the objective value of an optimal solution. For this

reason, at each iteration, we keep the best solution in general (s∗) and the best feasible

solution (sf∗).

After destroying and repairing a solution, the resulting network may be infeasible

for three different reasons. First, the network can be disconnected. In that case, a

procedure is called to make it connected. Second, the network can be connected but to

serve all the demand pairs some non-hub nodes may be used as transshipment points,

which violates our assumption that flows can be transferred from one vehicle to another

only at hub nodes. This situation may arise only in the TDALNS (and when it does,

the solution is discarded). In the BUALSN, the hub configuration is made in a way

that the feasibility from this point of view is always guaranteed. Third, the allocated

capacity may not be enough to serve all the demand pairs. When this happens, the
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solution is penalized and it can be accepted or not according to the simulated annealing

criterion. The next subsections describe in detail all the procedures used in Algorithms

4 and 5. The two metaheuristics contain a high level of sophistication and complication.

We could not do less than this because of the complexity of the problem.

Algorithm 4 Basic steps of TDALNS
s← InititalSolution
s∗ ← s

sf∗ ← s

InitializeScores(πD, πR, πH)
ih← 0, is← 0
repeat

if ih = ωih then

Oh ← ChooseHubConfigurationOperator(H, π)
snew ← HubConfigurationOperators(Oh, s)
ih← 0

else

ih← ih + 1
end if

Od ← ChooseDestroyOperator(D, π)
Or ← ChooseRepairOperator(R, π)
snew ← DestroyAndRepairOperators(Od, Or, snew)
if snewis disconnected then

snew ← ConnectNetwork(snew)
end if

if snewis connected from a hub configuration point of view then

(snew, feasibleSolution, hubFeasibility)← AnalyzeCapacityFeasibility(snew)
if feasibleSolution = false then

if hubFeasibility = true then

Penalize(OF (snew))
end if

end if

if feasibleSolution = true or hubFeasibility = true then

if snewsatisfies the accepetance criterion then

s← snew

end if

if OF (snew) < OF (s∗) then

s∗ ← snew

end if

if feasibleSolution = true then

if OF (snew) < OF (sf∗) then

sf∗ ← snew

end if

end if

end if

end if

if is = ωis then

UpdateScores(πD, πR,πH

)
is← 0

else

is← is + 1
end if

until {the stopping condition is met}
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3.3.1 Initial solution

To construct an initial feasible solution, we divide the nodes into clusters by solving

a p-median problem. In this problem, central nodes correspond to facilities and non-

central nodes correspond to non-facility points. The objective is to minimize the sum of

the distances between the chosen central nodes and the nodes located to each of them.

This problem is formulated as an MIP and solved with CPLEX. Each cluster has then

its central node with its respective assigned non-central nodes. For each cluster, we

find a Hamiltonian cycle of minimal cost. To construct Hamiltonian cycles, we used

the Concorde solver (Applegate et al. 2012). We also create a simple route for every

pair of clusters that connects their central nodes. If the duration of any tour is greater

than the maximum duration allowed, the tour is split into feasible tours. Even though

we assign the largest vehicle type to perform all the tours, there is no guarantee that

the network will have enough capacity to serve all the demand pairs. To define the hub

configuration and to verify if any route needs to be duplicated, we solve an auxiliar

mixed integer problem that we denote as the routing flow problem (RFP).
The RFP determines which hubs should be opened and whether the initial solution

is feasible or if it would be necessary to add capacity to the network by duplicating
some vehicle routes. Let P be the set of all routes in a solution. We redefine variables f

considering only the arcs that exist in the solution network. In other words, arc (k, m) ∈

AP is considered if there is any p ∈ P with xp
km = 1. Let qp be a decision variable to

determine the number of times route p will be used, and let Cp be a parameter that
represents the total cost of route p. Let c

φ(p)
km be the estimated cost of transporting a

unit flow through the arc (k, m) of vehicle p, i.e. c
φ(p)
km = Cp/(dkm × τφ(p)). Using these

variables, we formulate the RFP as the following MIP:

min
∑

k∈N

hkyk +
∑

p∈P

Cpqp +
∑

p∈P

∑

(i,j)∈W

∑

(k,m)∈Ap

c
φ(p)
km f r

ijkm (3.23)

s.t.:
∑

p∈P

∑

(i,m)∈Ap

f
p
ijim = 1 ∀(i, j) ∈W (3.24)

∑

p∈P

∑

(k,m)∈Ap

f
p
ijkm =

∑

p∈P

∑

(m,k)∈Ap

f
p
ijmk ∀(i, j) ∈W, k ∈ N : k 6= i, k 6= j

(3.25)
∑

p∈P

∑

(k,j)∈Ap

f
p
ijkj = 1 ∀(i, j) ∈W (3.26)

∑

(u,k)∈Ap

u 6=j

f
p
ijuk −

∑

(k,v)∈Ap

v 6=i

f
p
ijkv ≤ yk ∀(i, j) ∈W, k ∈ N, p ∈ P : k 6= i, k 6= j

(3.27)
∑

(i,j)∈W

wijf
p
ijkm ≤ τφ(p)qp ∀(k, m) ∈ Ap, p ∈ P (3.28)
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f
p
ijkm ≥ 0 ∀(i, j) ∈W, (k, m) ∈ Ap, p ∈ P : k 6= j, m 6= i

(3.29)

qp ≥ 0 ∀p ∈ P (3.30)

yk ∈ {0, 1} ∀k ∈ N. (3.31)

The objective function minimizes the cost of opening hubs, activating routes and

routing demand flows. Constraints (3.24)-(3.28) are equivalent to constraints (3.2)-

(3.4), (3.6), and (3.15), respectively. Constraints (3.29)-(3.31) show the variable do-

mains. After solving the RFP, if a route is used more than once, i.e., qp > 1, we create

a copy of this route and add it to the set P . If no flow passes through a route, then

this route is removed from the set P .

3.3.2 Destroy operators

The destroy phase consists of either removing nd nodes from their respective routes or

deleting rd routes from the current solution. Each operator uses a different metric to

choose the nodes/routes to be destroyed. The nodes/routes are always ordered from the

best to the worst according to the operator metric. To introduce some randomization,

instead of picking the best element (the one in the first position), we randomly choose a

number σ ∈ [0, 1), and then select the closest position to the σp value. The parameter

p controls the desired level of diversification. With p = 1, the metric is ignored and

the choice is completely random. With p =∞, the best element is always chosen. As

proposed by Shaw (1997), we use p = 4. The six destroy operators are:

• Choose more expensive routes (D1): For each route r, we calculate an aver-

age cost per unit and per distance: Cr/(dr × τ r), in which Cr, dr and τ r are the

total cost, total distance and capacity of the route r, respectively.

• Choose shortest routes (D2): The routes are ordered in a non-decreasing

order with respect to their length.

• Randomly choose nodes (D3): There is no metric in this operator. A node is

randomly selected and removed from all the routes it belongs to.

• Unit cost greedy savings node selection (D4): For each candidate node

i, we define β(i, r) as the difference between the total cost of route r with and

without node i. The nodes are always removed from all the routes they belong

to. For this operator, the metric of each node is calculated as
∑

r∈P :i∈r β(i, r),

where the nodes are sorted in non-increasing order.
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• Shaw removal distance (D5): This operator and the following one are based on

the Shaw removal heuristic used by Shaw (1997) and Ropke and Pisinger (2006).

They remove nodes that are similar in some aspect. A route is first randomly

chosen and then, a node k of such route is randomly chosen to be removed from

this and other routes it may belong to. Then, the nodes are sorted, in relation to

node k, from the closest to the furthest one. To introduce some randomization,

distances are perturbed by a factor within the range [0.80, 1.20].

• Shaw removal demand (D6): A route is first randomly chosen and then, a

node k of this route is randomly chosen to be removed from this and other routes

it may belong to. Then, for each node i 6= k, we calculate the total demand

between such nodes as wik + wki. The nodes with the largest values have a

larger probability to be removed. To introduce some randomization, demands

are perturbed by a factor within the range [0.80, 1.20].

3.3.3 Repair operators

The repair operators insert the removed nodes into existing routes or generate new

routes when the insertion is not possible. The operators are also selected according

to the values of σp and are inspired by the basic greedy heuristic proposed by Shaw

(1997).

• Greedy distance route insertion (R1): We define ∆dir as the change in the

distance of route r incurred by inserting node i into a position that increases

the distance the least. If it is not possible to insert node i into route r, we set

∆dir = ∞. We randomly select one node i between the nodes that have been

removed in the previous phase. For this node i, the routes are ordered from the

lowest to the highest ∆dir values. The route that is at the position closest to σp is

chosen to be the new route of i. Once the route is chosen, node i is inserted in the

position that increases the duration of the route the least. During the insertion

of a node, we recalculate ∆dir for all nodes that have not been reinserted yet.

• Greedy demand insertion (R2): For each node removed i and for each existing

route r, we calculate the change in the distance incurred by inserting i into

position p of route r, ∆dirp. For each node i and route r, we calculate the

demand between i and all the nodes belonging to r, Dir. We randomly select

node i among the nodes that have been removed in the previous phase. Then,

for this node i, the pair route-position (r, p) is sorted in non-increasing order of

Dir and non-decreasing order of ∆dirp. The idea is to try to insert node i into
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a route that contains nodes having the largest demand flow to and from node

i. The route-position (r, p) that is the closest to the σp position value is chosen.

During the insertion of a node, we recalculate ∆dirp and Dir for all nodes that

have not been reinserted yet.

• Greedy node selection (R3): We define ∆dir as the change in the distance

of route r incurred by inserting node i in a position that increases the distance

the least. If it is not possible to insert i into route r, we set ∆dir = ∞. We

define ci as the "cost" of inserting node i at its overall best position, such as

ci = minr∈R{∆dir}. Finally, we sort the nodes that need to be reinserted from

the smallest to the highest value of ci. We first choose a node to be reinserted

according to σp value, and insert it at its minimum cost position. During the

insertion of a node, we recalculate ci for all nodes that have not been reinserted

yet.

After executing the repair operator, we verify if the capacity incident to any node

is less then the incoming/outgoing flow of that node. If so, we try to insert the node

in a route according to repair operator R1. If it is not possible, we store such node

in a list L. After verifying the capacity incident to each node, if there is at least one

node in L, we generate a Hamiltonian cycle of minimal cost containing the nodes in

L, splitting it if necessary. Every time we have just one node in L, we choose another

node k to form a route between them. This node is randomly chosen between the three

nodes from and to which node i has the greatest demand.

3.3.4 Verifying the connectivity of the solution

There is no guarantee that the solution network obtained after applying the destroy

and repair operators is connected. If this network is disconnected, we try to make it

connected. We first identify the set V of partitions of the solution. While it is possible,

we try to take a node from a partition s and put it into a route of another partition

ss, such that s 6= ss. If this movement is feasible, partitions s and ss correspond now

to just one partition, allowing us to eliminate partition ss from set V . If we cannot

connect two partitions by putting a node from one partition into a route of another

partition, we choose the closest two nodes between the two partitions and we construct

a new route connecting these two nodes.

3.3.5 Hub configuration and capacity-feasibility check

The destroy and repair operators as well as the procedure applied to verify if the

solution is connected are the same for both TDALNS and BUALNS. However, the way
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we define the hub configuration of a solution and the mechanism to check whether a

solution is feasible with respect to the vehicle capacities differ from one version to the

other. We next describe how each of the algorithms perform these two steps.

3.3.5.1 TDALNS Algorithm

In the TDALNS algorithm, the initial hub configuration is obtained by solving a p-

median problem. Whenever ωih iterations have been performed, we modify the hub

configuration before applying the destroy operator. We start by closing the hubs in-

cident to exactly one route in the current solution. A hub configuration operator is

next chosen to add one more hub to the current solution. We consider three hub con-

figuration operators. Operators H1 and H3 choose the new hub according to the σp

value.

• Choose node with the highest incoming-outgoing flow (H1): Choose

among the nodes with the highest incoming-outgoing flow.

• Choose node randomly (H2): Randomly choose a node to become a hub.

• Choose node according to geographic position (H3): Choose among the

nodes that are closest to the central point of the graph.

We verify if the network is connected with respect to the hub configuration. If

the hub configuration is not feasible, the solution is discarded. Otherwise, we check

if the current network has enough capacity to serve all the demand flows. This part

of the metaheuristic is responsible for most of the total computational time. Even

though we have tried different approaches, preliminary experiments showed that a

path based formulation was the most successful approach to do this verification. Thus,

we solve a linear problem that we denote as the capacity verification problem (CVP).

Let P ij be the set containing all feasible paths to serve demand pair (i, j) ∈ W over

the solution network defined by the arcs in the active vehicle routes, i.e., A(s) =

{(k, m) ∈ A : x̄p
km = 1}, where xp

km = 1 indicates that vehicle p passes through arc

(k, m) on the current solution s. Let parameter bl
kmp ∈ {0, 1} be equal to one if path

l contains vehicle p ∈ P passing through arc (k, m) ∈ A. We also define variables

ep
km ≥ 0 to represent the overflow on arc (k, m) ∈ A for vehicle p ∈ P , and f ij

l ≥ 0 to

be the percentage of demand wij that goes via path l ∈ P ij. The CVP can then be
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written as:

min
∑

p∈P

∑

(k,m)∈A:
x̄

p

km
=1

ep
km (3.32)

s.t.:
∑

l∈Pij

f ij
l = 1 ∀(i, j) ∈ W (3.33)

∑

(i,j)∈W

∑

l∈Pij :
(k,m,p)∈l

wijf
ij
l − ep

km ≤ τφ(p)x̄p
km ∀p ∈ P, (k, m) ∈ A : x̄p

km = 1 (3.34)

f ij
l ≥ 0 ∀(i, j) ∈ W, l ∈ P ij (3.35)

ep
km ≥ 0 ∀(k, m) ∈ A, p ∈ P : x̄p

km = 1, (3.36)

where x̄ represents the current solution that forms the connected network. The ob-

jective function minimizes the total overflow of the network (3.32). Constraints (3.33)

guarantee that all the demand pairs will be served by a path, while constraints (3.34)

calculate the overflow on each arc.

The current solution can either have a feasible network or an infeasible one due to

either a lack of capacity or an insufficient number of installation hubs. To solve the

CVP, instead of enumerating all paths, we generate them on the fly. First, an auxiliary

graph G̃ = (N, Ã(s)) is created with the active arcs and vehicles of the current solution

s. For each pair (i, j) ∈ W , we initialize P ij with its shortest path in the current

network. Then, the CVP is solved.

If the CVP objective function is equal to zero, then the procedure terminates. If

transshipment occurs only at hub nodes, solution s is feasible. Otherwise, paths already

added to the P ij set were not enough to serve all the demand pairs. However, as set

P does not necessarily contain all possible paths to serve the demand, we can not yet

assure that the solution is infeasible. Thus, we verify if there is any new path to be

considered when solving the CVP in order to prevent overflow to occur. Let W
′

be the

set of demand pairs (i, j) ∈ W , that need to pass through any arc with overflow to be

served. So, after constructing set W
′

and updating the auxiliary graph G̃, forbidding

arcs with overflow, we look for new paths. On one hand, if we cannot find any new

path for demand pairs with overflowing arcs, the solution is considered infeasible and

penalized according to the overflown quantity found. On the other hand, if the value of

the objective function (3.32) is zero and if transshipment occurs only at hub nodes, the

solution is feasible. Otherwise, if the value of the objective function (3.32) is zero while

any transshipment occurs at non-hub nodes, then the hub configuration is considered

infeasible and the solution is discarded.

Procedure FindPath is used to identify the shortest path from node i to node j in
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the current auxiliary graph G̃. We use Dijkstra’s algorithm, in which the cost of the

arcs corresponds to their length. If in the path, it is necessary to change vehicles in a

node m, and if node m is not an active hub, we add to the shortest path cost the cost

of activating node m as a hub.

Our approach shares similarities with column generation algorithms because we

create paths on demand. The CVP corresponds to the Master Problem. The pricing

subproblem is equivalent to identifying new paths for pairs (i, j) ∈ W . The CVP is

solved heuristically because instead of using the dual variables to price new columns, we

forbid arcs with overflow. We solve the CVP until the value of the objective function is

zero or until is not possible to add more paths to the problem according to our criteria.

3.3.5.2 BUALNS Algorithm

In the BUALNS algorithm, after ensuring a connected network, we first verify if the

current solution has enough arc capacity and if it is the case, the hub network is

defined. The procedure to check arc capacity feasibility consists of solving the CVP,

as described before for the TDALNS algorithm. The nodes in which transshipment

occurs are stored in set H. If the solution is detected to be infeasible, it is penalized

according to the overflown quantity found and can be accepted or not according to a

simulated annealing criterion. Otherwise, we need to define a feasible hub network. To

define the cheapest hub configuration, we solve the Hub Activation Problem (HAP)

stated as follows:

min
∑

k∈H

hkyk (3.37)

∑

l∈P̄ij

f ij
l = 1 ∀(i, j) ∈ W (3.38)

∑

(i,j)∈W

∑

l∈P̄ij

(k,m,p)∈l

wijf
ij
l ≤ τφ(p)x̄p

km ∀p ∈ P, (k, m) ∈ A (3.39)

yk ≥ f ij
l ∀k ∈ H, (i, j) ∈ W, l ∈ P̄ ij

k (3.40)

f ij
l ≥ 0 ∀(i, j) ∈ W, l ∈ P̄ ij (3.41)

yk ∈ {0, 1} ∀k ∈ H. (3.42)

Let P̄ ij be the set of paths for demand pair (i, j) ∈ W that were added in the CVP

phase, and P̄ ij
k be the set of paths for demand pair (i, j) ∈ W containing node k, such

as node k needs to become a hub so that the path becomes feasible. In the HAP, the

objective function minimizes the cost of activating hubs. Constraints (3.38) guarantee

that all demand pairs are served, while constraints (3.39) make sure that the allocated

capacity is respected. Constraints (3.40) ensure that flow can pass through a path that
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needs a node to become a hub just if this node is activated as a hub. Constraints (3.41)

and (3.42) show the variable domains. It is important to note that if |H| = 1, we do

not have to solve the HAP, because in that case there is no decision to be made, we

just activate the only hub that is in set H.

3.3.6 Selection of operators

Let πi be the weight associated with operator i. The probability of choosing operator

i is given by πi/
∑

j πj. The update of the weight of each operator is done according

to the performance of each operator in a time interval (segment) by means of scores.

The score of each operator is initially set to 10. At each iteration, each score can be

increased by a factor as follows: (a) θ1 if the operator results in a new best solution,

(b) θ2 if the operator results in a new solution worst than the minimum, but better

than the current one, and (c) θ3 if the operator results in a solution that is worse than

the current one, but satisfies the acceptance criterion. At the end of each segment we

calculate new weights for each operator, as follows:

πi = (1− γ)πi + γ
ηi

ζi

,

where ηi is the score of operator i obtained during the last segment, ζi is the number of

times operator i was used in the last segment, and γ is the reaction factor that controls

how quickly the weight adjustment algorithm reacts to the last segment performance.

3.3.7 Penalizing infeasible solutions

When we detect that the new solution does not contain enough capacity to serve all de-

mand pairs, we add to the objective function the quantity αkm

∑

p∈P

∑

(k,m)∈A ep
km which

carries the penalization factor αkm. This factor is initially set to 10
∑

r∈R max(k,m)∈A cr
km.

At every 25 iterations, we change this penalization factor. If the best solution s∗ is fea-

sible, the penalization factor is decreased to αkm = 0.90αkm. Otherwise, it is increased

to αkm = 1.10αkm.

3.3.8 Acceptance criterion

To accept a new solution, we adopt a simulated annealing criterion. An improving

solution is always accepted whereas a worse solution is accepted with probability e ˆ

(φ(s′) − φ(s))/t), where φ(s) returns the objective function value of solution s. The

temperature t is calculated by the formula ti = cti−1 at iteration i. We set the initial

temperature as a percentage of the objective function of the initial solution, such



3. Hub Network Design with Flexible Routes 60

as t0 = φ(s0)c0. We determine c according to Ribeiro et al. (2014). We suppose

a final temperature as a percentage of the objective function of the initial solution,

tf = φ(s0)cf . Let Ω be the maximum number of iterations performed, then c is

calculated as c = Ω

√

tf

t0
.

3.4 Computational experiments

We next present the results of the computational experiments performed to assess the

behavior of our exact and heuristic algorithms. In all experiments, we set a maximum

time limit of 24 hours of CPU time (86,400 seconds). All experiments were performed

on an Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz computer with 750 GB of

memory running on a Linux environment. The formulations were coded in C++ using

the Concert Technology of CPLEX 12.9 to solve them. Up to four threads were allowed

to run during the executions. After some preliminary testes, to improve performance,

we set the following variable priority order for branching: y, q, z and x. We chose the

barrier optimizer to solve the nodes of the branch-and-bound tree.

The separation and addition of SECs were implemented via lazy cut callbacks and

user cut callbacks. To detect the violated SECs for a fractional or integer solution,

for each vehicle p ∈ P , such that qp > 0, we solved a series of minimum s-t cut

problems in a support graph G
′

= (N0′

, A0′

) in which N0′

= {i ∈ N0|zp
i > 0} and

A0′

= {(i, j) ∈ A0|xp
ij > 0}. We set the fictitious depot as the source node s and the

nodes i ∈ N0′

as the sink node t. A violated SEC is identified every time the value of

the resulting minimum cut is less than 2 units. We used the Concorde callable library

by Applegate et al. (2012) to solve the associated mincut problems.

The metaheuristics were also coded in C++. We use the irace package (López-

Ibánez et al. 2011), an automatic configuration tool, to fine tune the values of the

parameters used in both algorithms. We used the default package setting using a

maximum number of 58320 experiments during the tuning. We decided to run the

irace Package on 16 different instances. For the TDALNS algorithm, we change the

hub configuration every 50 iterations, i.e. ωih = 50. The number of nodes nd and routes

rd to be destroyed are picked within the range [1, λ × n] and [1, λ × R], respectively,

where the parameter R represents the total number of routes in the current solution.

The parameter λ starts with value 0.1 and is increased by 0.1 every Ψ iterations. For

the TDALNS and BUALNS algorithms, we set Ψ to 50 and 5, respectively. When λ

reaches the maximum value Υ, we set it to 0.1 again. For the TDALNS and BUALNS

algorithms, we use Υ = 0.6 and Υ = 0.7, respectively. The weights of the operators are

reset every 50 iterations to ωis = 50. For the TDALNS algorithm, we use (θ1, θ2, θ3) =
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(0, 10, 5), while, for the BUALNS variant, we use (θ1, θ2, θ3) = (10, 5, 0). The reaction

factor γ is set to 0.1. For the acceptance criterion, we consider c0 = 1 and cf = 0.01.

The heuristics were applied 10 times to each instance with each execution taking 25,000

iterations.

3.4.1 Test instances

We used two sets of instances for our experiments. The first data set was randomly

generated, whereas the second one was extracted from the Australian Post (AP) stan-

dard data set Ernst and Krishnamoorthy (1996). Both data sets assume T = 24 and

two types of vehicles which were set to have the same speed of 1 unit per hour.

For the first data set, the nodes were randomly scattered around clusters. To

guarantee the feasibility of the instance, we consider that the central point of each

cluster is at most 12 units far from each other central point. We considered a 16× 16

square region with up to four possible clusters. The x and y coordinates of the central

points of clusters 1, 2, 3 and 4 are (4, 4), (12, 12), (12, 4) and (4, 12), respectively.

We generated a set of instances by varying the number of clusters, and the total

number of nodes in the network. For instance, if clusters 2 and 3 were selected, and

an instance with 10 nodes is being created, then the other 8 nodes would be randomly

generated. To scatter the non central cluster nodes, we first randomly assign them to a

central node, and then we randomly generate their x and y coordinates such that they

will lay within three units of distance to a central node of the cluster. The demands

between the central points of the clusters were randomly chosen as dU(0.10, 0.30)×750c,

while between the other nodes they were randomly selected as dU(0.01, 0.10) × 100c,

where the operator d·c returns the nearest integer.

We assumed that all nodes are hub candidates, while the fixed costs to install a hub

in a node were randomly chosen within the range [20000, 30000]. In our experiments,

we selected problems with |N | = {6, 7, 8, 9, 10, 20, 30, 40, 50} nodes. These random

instances are referred to as NR, where N represents the number of nodes considered in

the instance. For example, instance 10R contains 10 nodes. The vehicle costs were set

to bI = 3000, bII = 4500, aI = 20000, aII = 35000 for each instance. For each problem

size, we generated 4 instances for the HNDP varying the value of τ I to assess the

effect of different economies of scale. Table 3.2 shows the capacity values considered.

The potential economies of scale obtained when using a larger vehicle when it is fully

utilized is calculated as ((aII + bII)/τ II)/((aI + bI)/τ I).

The AP data set consists of demand flows and Euclidean distances between 200

districts of Australia. We selected problems with |N | = {10, 15, 20, 25, 30, 35, 40, 45, 50}

nodes, but disregarding flows wii for each i ∈ N , i.e. we set wii = 0. We changed the
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Table 3.2: Capacity of the vehicles and potential economies of scale for the random
instances

Instances economies of scale τ I τ II

6R-10R

0.21 90

750
0.34 150
0.50 220
0.80 350
0.21 250
0.34 400
0.50 590

20R

0.80 1070

2040

30R

0.21 290

2360
0.34 470
0.50 690
0.80 1100
0.21 370
0.34 600
0.50 880

40R

0.80 1400

3000

50R

0.21 510

4160
0.34 830
0.50 1210
0.80 1940

distances in a way that from each node it is possible to go to at least half of the total

nodes of the graph within 12 hours. The vehicle costs were set to bI = 6000, bII = 9000,

aI = 20000, aII = 30000 and τ II = 3000 for each instance. For each problem size, we

generated four instances for the HNDP by varying the value of τ I to assess the effect

of different economies of scale. Table 3.3 shows the capacity values considered for the

small vehicle and the potential economies of scale obtained.

Table 3.3: Capacity of the vehicles and potential economies of scale for the AP instances
(τ II = 3, 000)

economies of scale τ I

0.20 400
0.30 600
0.50 1,000
0.80 1,400

3.4.2 Solving small instances

We first focus on analyzing the performance of the proposed MIP formulation and al-

gorithms to solve small instances. Table 3.4 reports the results obtained for instances

6R, 7R, 8R, 9R, 10R, and 10AP considering economies of scale of 0.21/0.20, 0.34/0.30,
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0.50 and 0.80. We consider four vehicles of type I and two vehicles of type II. Column

Dev(%) presents the deviation between the optimal solution and the solutions found

by the MIP formulation, TDALNS and BUALNS. In particular, columns under the

heading AVG(BKS) report the deviation between the optimal solution and the aver-

age(best) solution found by TDALNS and BUALNS. Column TRN (s) presents the

time spent to solve the linear programming relaxation of the root node of the branch-

and-bound tree. Column LP(%) reports the deviation between the optimal solution

and the linear programming relaxation value.

Table 3.4: Results for small instances: 6R, 7R, 8R, 9R, 10R and 10AP.

economies of scale Instances

Time(s) Dev(%) MIPFV

MIP TDALNS BUALNS MIP
TDALNS BUALNS

TRN (s) LP (%)
BKS AVG BKS AVG

0.21/0.20

6R 34 14 27 0.00 0.00 0.00 0.00 0.00 0 19.84%

7R 71 15 25 0.00 0.00 0.00 0.00 0.00 1 20.36%

8R 86 17 31 0.00 0.00 0.00 0.00 0.00 2 18.73%

9R 264 22 33 0.00 0.00 0.00 0.00 0.00 4 16.90%

10R 17454 26 55 0.00 0.00 0.00 0.00 0.00 11 24.07%

10AP 84177 28 50 0.00 4.77 5.72 4.74 4.75 16 29.12%

Average 17014 20 37 0.00 0.80 0.95 0.79 0.79 6 21.50%

6R 76 13 26 0.00 0.00 0.00 0.00 0.00 0 32.91%

7R 982 14 28 0.00 0.00 0.00 0.00 0.00 1 33.07%

8R 317 17 32 0.00 0.00 0.00 0.00 0.00 2 18.73%

9R 1691 22 36 0.00 0.00 0.00 0.00 0.00 6 17.20%

10R 27077 26 57 0.00 0.00 0.00 0.00 0.00 11 23.88%

0.34/0.30

10AP 30561 28 54 0.00 0.00 0.00 0.00 0.00 19 18.58%

Average 10117 20 39 0.00 0.00 0.00 0.00 0.00 7 24.06%

0.5

6R 43 17 30 0.00 0.00 4.25 0.00 1.58 0 36.63%

7R 204 22 29 0.00 1.38 1.56 1.38 1.38 1 36.03%

8R 2394 24 37 0.00 0.00 0.00 0.00 0.00 2 30.78%

9R 32403 24 36 0.00 0.00 0.00 0.00 0.00 5 32.96%

10R 86400 26 57 5.20 8.67 9.33 0.00 8.45 13 29.84%

10AP 86400 26 60 16.03 0.83 0.83 0.83 0.83 20 33.59%

Average 34641 23 42 3.54 1.81 2.66 0.37 2.04 7 33.31%

6R 20 17 30 0.00 0.00 0.00 0.00 0.00 0 39.27%

7R 17 22 30 0.00 0.00 0.00 0.00 0.00 1 23.93%

8R 86 25 37 0.00 0.00 0.00 0.00 0.00 3 20.93%

9R 431 23 44 0.00 0.00 0.00 0.00 0.00 182 20.22%

10R 10068 26 54 0.00 0.00 1.23 0.00 0.58 12 29.94%

0.8

10AP 37758 27 67 0.00 0.00 0.00 0.00 0.00 19 33.35%

Average 8063 23 44 0.00 0.00 0.21 0.00 0.10 36 27.94%

As can be seen in Table 3.4, the devised metaheuristics take much less time than
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the exact algorithm to solve the instances, as expected. The MIPFV version requires

804 and 434 times more computational effort on average than the TDALNS and the

BUALNS versions, respectively. For instance 9R-0.80, the computational effort needed

to solve just the linear relaxation of the formulation is about eight and four times

larger than the time spent by the TDALNS and BUALNS algorithms, respectively.

The MIPFV formulation was not able to reach optimality for two instances within

the given time limit, 10R-0.50, and 10AP-0.50, due to the complexity of the problem.

However, for instance 10R-0.50, the BUALNS was able to find the optimal solution

within less than one minute. The TDALNS and BUALNS failed to find the optimal

solution in four (10AP-0.20, 7R-0.50, 10R-0.50, and 10AP-0.50) and three (10AP-0.20,

7R-0.50, and 10AP-0.50) instances, respectively, of the 24 proposed test problems.

Table 3.5 shows the results obtained for instances 20R, 15AP and 20AP. We consid-

ered five vehicles for each type I and II. We took into account two additional different

performance measures: Dev_BKS is the percentage deviation between the best solu-

tion found by the version and the best known solution; while GAP_CPLEX is the

optimality gap found by CPLEX within 24 hours of CPU time.

Table 3.5: Results for medium instances: 20R, 15AP and 20AP

economies of scale Instances
Time(s) Desv_BKS(%) MIPFV

MIPFV TDALNS BUALNS MIPFV TDALNS BUALNS TRN (s) GAP_CPLEX(%)

0.21/0.20

20R 86400 143 329 0.00 0.00 0.69 52199 32.74%

15AP 86400 62 156 0.00 0.00 0.00 2627 29.05%

20AP 86400 124 314 0.00 0.26 0.00 54102 26.01%

20R 86400 141 332 0.00 2.08 0.00 86388 100.00%

15AP 86400 63 159 0.00 0.00 1.42 2038 27.76%0.34/0.30

20AP 86400 122 325 0.00 0.40 0.00 57579 30.01%

0.5

20R 86400 140 337 0.00 0.00 1.84 86385 100.00%

15AP 86400 69 176 0.00 2.20 0.00 1626 33.03%

20AP 86400 149 391 0.00 0.00 0.00 38073 31.35%

20R 86400 127 353 0.00 0.00 3.22 83842 27.21%

15AP 86400 61 181 0.00 0.00 0.00 1116 30.64%0.8

20AP 86400 121 378 0.00 4.44 0.00 29823 26.64%

Average 86400 110 286 0.35 1.14 0.95 41317 41.20%

When the instance size is greater than 15 nodes, it becomes much more difficult to

solve by CPLEX regardless of the formulation being used. Before calling the CPLEX

solver, the best solution found by the devised metaheuristics is supplied as an initial

solution to it. The fact that the metaheuristcs performed better than MIPFV stands

out once again. While the metaheuristics found good solutions within 400 seconds, the

MIPFV took 41316 seconds on average just to attain the linear programming relaxation

of the formulation for these instances. For some instances (20R-0.30 and 20R-0.50),
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the MIPFV was not able to find any lower bound within one day of computing time.

The results only highlight how difficult the problem is.

3.4.3 Solving large instances

To better assess the devised metaheuristics, we also tested them on larger instances.

Since the complexity of the problem does not allow the MIPFV exact approach to

neither prove the optimality nor improve the best solution found by the proposed

metaheuristics for instances with 15 nodes, we chose to solve larger instances with

more than 25 nodes using only the metaheuristics. We considered five vehicles for

each type I and II. Table 3.6 reports the average computational time in seconds, the

deviation between the best solution found by the version and the best known solution

(Dev_BKS), and the deviation between the average objective function value found and

the best known solution (Dev_avg).

According to Table 3.6, the TDALNS version gets worse solutions than BUALNS

though taking less time. Table 3.5 shows that BUALNS version provides slightly better

solutions on average. For instances with 15 and 20 nodes, the BUALNS version found

the best known solution eight times, whereas the TDALNS variant got the best known

solution seven times. For the large instances, although the TDALNS is in average 3

times faster than the BUALNS version, the BUALNS is in average 2 times better to

find the best known solutions, and 1.4 times better to find averages values. To obtain

these values we used the ratio of the summed averages.

Despite taking more computing time, the BUALNS seems to present a better perfor-

mance. The larger computational effort is due to the step in which the CPLEX solver

is called in each iteration to find the cheapest hub configuration. In the TDALNS the

hub configuration is randomly defined. In order to confirm this behavior, we performed

a statistical test. Generally, there are two types of statistical tests, namely parametric

and non-parametric. Three conditions must be met to use a parametric test, including

normality, independence, and heteroscedasticity. A Kolmogorov-Smirnov test was car-

ried out to check the first condition (i.e. normality). The results reported in Table 3.7

show that the normality condition is not fulfilled in our case (i.e., the p-value is less

than .05).

For this reason, a non-parametric test, the Wilcoxon test, was used to compare the

devised algorithms in terms of best known solutions found. To calculate the Wilcoxon

signed-rank test, the Wilcoxon function of the scipy Python package was used. First,

we used the default alternative hypothesis to test if the algorithms were statistically

different and later, we use the alternative hypothesis to verify if the BUALNS was

better than the TDALNS version. The p-values of the Wilcoxon tests are reported in







3. Hub Network Design with Flexible Routes 68

Algorithm 5 Basic steps of BUALNS
s← InititalSolution
s∗ ← s

sf∗ ← s

InitializeScores(πD, πR)
is← 0
repeat

Od ← ChooseDestroyOperator(D, π)
Or ← ChooseRepairOperator(R, π)
snew ← DestroyAndRepairOperators(Od, Or, snew)
if snewis disconnected then

snew ← ConnectNetwork(snew)
end if

(snew, feasibleSolution)← AnalyzeCapacityFeasibilityAndDefineHubConfiguration(snew)
if feasibleSolution = false then

Penalize(OF (snew))
end if

if snewsatisfies the accepetance criterion then

s← snew

end if

if OF (snew) < OF (s∗) then

s∗ ← snew

end if

if feasibleSolution = true then

if OF (snew) < OF (sf∗) then

sf∗ ← snew

end if

end if

if is = ωis then

UpdateScores(πD, πR)
is← 0

else

is← is + 1
end if

until {the stopping condition is met}
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Table 3.6: Results for large instances: 30R, 40R, 50R, 25AP, 30AP, 35AP, 40AP, 45AP
and 50AP.

Scale

economies
Instances

Time(s) Dev_BKS(%) Dev_Avg(%)

TDALNS BUALNS TDALNS BUALNS TDALNS BUALNS

30R 465 1246 0.00 0.41 4.25 1.14

40R 1257 3084 3.50 0.00 10.14 4.40

50R 2886 7958 4.95 0.00 10.78 5.30

25AP 217 598 2.62 0.00 7.04 2.35

30AP 383 1130 2.08 0.00 5.12 2.24

35AP 646 1918 0.00 0.59 3.70 4.04

40AP 1074 3326 8.07 0.00 13.24 7.50

45AP 1607 5384 0.00 7.20 10.78 10.31

0.20

50AP 2517 8595 4.48 0.00 9.67 5.75

Average 1228 3693 2.86 0.91 8.30 4.78

30R 464 1256 0.65 0.00 3.35 1.30

40R 1267 3454 6.69 0.00 12.27 5.70

50R 2826 8153 4.92 0.00 8.46 6.38

25AP 221 623 0.00 1.42 8.15 7.68

30AP 387 1140 5.26 0.00 8.85 4.64

35AP 643 2014 0.00 1.88 3.87 5.12

40AP 1077 3488 0.00 7.21 14.97 14.15

45AP 1621 5668 4.05 0.00 8.04 6.20

0.30

50AP 2581 9021 0.00 3.01 10.81 8.52

Average 1232 3869 2.40 1.50 8.75 6.63

30R 443 1242 0.69 0.00 4.29 2.55

40R 1187 3293 0.00 1.98 5.83 6.67

50R 2818 8460 0.39 0.00 5.61 6.91

25AP 217 756 0.00 2.54 8.45 8.48

30AP 389 1208 1.12 0.00 9.23 6.70

35AP 640 2134 5.85 0.00 12.02 6.17

40AP 1164 3748 10.63 0.00 13.82 6.48

45AP 1621 6121 0.00 1.81 8.29 4.81

0.50

50AP 2530 9752 0.50 0.00 8.49 6.22

Average 1223 4079 2.13 0.70 8.45 6.11

30R 429 1242 2.30 0.00 4.27 5.73

40R 1214 3561 0.00 6.96 6.81 12.15

50R 2887 9124 0.00 8.61 6.87 14.34

25AP 218 746 12.79 0.00 18.15 5.70

30AP 379 1430 2.46 0.00 11.94 4.82

35AP 629 2513 10.55 0.00 15.36 6.20

40AP 1042 4600 0.00 2.46 10.01 8.81

45AP 1597 7269 0.98 0.00 12.84 6.23

0.80

50AP 2483 11621 7.15 0.00 19.21 8.39

Average 971 3317 4.01 2.57 10.48 8.25
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Table 3.7: Results of the normality
analysis.

Algorithm
Kolmogorov-Smirnov test

Statistic P-value

TDALNS 0.445 0.000

BUALNS 0.235 0.001

Table 3.8: Results of the Wilcoxon tests.

Pairwise comparison Alternative Statistic P-value

TDALNS-BUALNS default 233.0 0.0

TDALNS-BUALNS greater 1198.0 0.0



Chapter 4

Final Remarks

This thesis addresses two hub-and-spoke network design problems focuses on trans-

portation systems. The first problem, presented in Chapter 2, proposes the design of

a global air transportation system, relying on a three-tier hierarchical hub-and-spoke

network. The problem mainly arises from the differentiation of domestic and inter-

national passengers. Having nodes located in different geographic regions, gateways,

hubs, inter-hub, and inter-gateways connections are installed and so local and global

flows are routed at minimal transportation and fixed costs. The GHLP is modeled as

a multi-commodity flow-based hub and spoke system and given its large scale multi-

commodity nature and its induced decomposable matrix structure, the mathematical

formulation introduced here is solved by two specialized Benders decomposition al-

gorithms. A new repair procedure allows to generate Benders optimality cuts from

unbounded dual subproblems and a tailored dual subproblem solution algorithm cal-

culates the optimal dual values to produce Benders optimality cuts without the need

of a Simplex solver. Computational experiments show that while the monolithic ver-

sion failed to solve medium-size instances, the exact algorithms solve lager ones in a

reasonable time.

While the GHLP supports strategic decisions, the second problem, presented in

Chapter 3, considers both strategic and tactical characteristics in the design of the

transportation system. The HNDPs proposes the design of a more generic and flexible

network, having a wide range of applications, including air, ground and liner shipping

industries. The problem is flexible in the sense that no network topology is imposed,

vehicle routes may or may not have hubs on them, demand path can consist of a

single vehicle route or a set of them. Most important of all, economies of scale derive

from the technology chosen to operate the routes and its utilization, instead of being

represented by a fixed discount factor. It is important to highlight once more that this

flexibility makes the problem more difficult to formulate and solve than classical hub

71
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network design problems. We propose a MIP formulation to solve the problem and

as the proposed MIP is too large to be solved in a timely manner by general purpose

solver, two metaheuristics based on an adaptive large neighborhood search (ALNS) are

developed. In the computational experiments, the metaheuristic that follows a bottom

up approach performs better than the one with a top down approach.

This thesis presents two hub-and-spoke network design problems with the potential

for practical applications by considering several characteristics of real transportation

systems. Mathematical formulations were proposed to model these problems while

exact and heuristic algorithms, based on decomposition methods and adaptive large

neighborhood search metaheuristics are proposed to solve them. Although the proposed

algorithms can tackle instances that still far from real-life size problems, our approaches

can work as an important tool to offer questions and insights about the way current

transportation networks are designed. Thus, some issues that remain open for future

research consist of developing metaheuristics to solve instances larger than 141 nodes

for GHLP and in developing exact efficient methods to optimally solve the HNDPs.
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