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RESUMO 

Cruzaína é a principal cisteíno protease do Trypanosoma cruzi, sendo um alvo 

validado para o desenvolvimento de fármacos nesse parasito. O T. cruzi é o agente 

etiológico da doença Chagas, uma doença negligenciada da América Latina. O 

tratamento dessa doença hoje no Brasil é feito apenas com o Benznidazol, um 

medicamento com eficácia comprovada apenas na forma aguda da doença e que 

apresenta uma série de efeitos colaterais que diminuem a adesão ao tratamento. 

Sendo assim, o desenvolvimento de medicamentos alternativos é imprescindível e o 

presente trabalho se propõe a fazer uma contribuição nesse sentido. É proposta uma 

triagem virtual com docking molecular na busca de possíveis inibidores de cruzaína. 

O diferencial desse trabalho é a inclusão da ideia de seletividade já na etapa de 

triagem de moléculas. Isso foi incorporado ao se realizar o docking não apenas contra 

cruzaína, mas também contra duas enzimas homólogas em humanos, catepsinas L e 

B. Assim, foram selecionados oito compostos que a partir da triagem e de uma análise 

visual possuem o potencial de serem inibidores de cruzaína seletivos quando 

comparados a pelo menos uma dessas enzimas. As perspectivas desse trabalho 

incluem a realização de ensaios enzimáticos para determinar a atividade e a potência 

das moléculas contra as três enzimas, e havendo um ligante, propor modificações 

para melhorar sua atividade a seletividade. 

 

Palavras – chave: cruzaína, docking, triagem virtual 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

 Cruzain is the major Trypanosoma cruzi cysteine proteinase, a validated target for 

drug development against this parasite. T. cruzi is the etiological agent of Chagas 

Disease, a pathological condition from Latin America, considered a neglected disease. 

Benznidazole is the medicine currently used in the treatment of this disease in Brazil. 

Its efficacy is proven only in the acute phase of the disease, presenting many side 

effects which contribute to the treatment abandonment by the patients. Therefore, it is 

very important to develop alternative drugs, and this work aims to contribute in this 

sense. To do so, a virtual screening strategy employing molecular docking was 

proposed to search for possible cruzain inhibitors. A differential aspect of this work was 

the inclusion of the selectivity idea already in the screening step. This has been 

incorporated by docking molecules against cruzain, but also against the human 

homologous enzymes cathepsin L and B. Thereby, after the virtual screening protocol 

and visual inspection of top scoring compounds, eight hits that might be selective for 

cruzain were selected. Perspectives include the evaluation of these molecules in 

enzymatic assays and, if a hit is confirmed, design analogues with improved activity 

and selectivity.   

 

Key – words: cruzain, docking, virtual screening 
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1. INTRODUCTION 

Virtual screening of compound libraries have been contributing to drug development in 

the past years, and it is claimed to optimize time and costs of the process (Kar and 

Roy, 2013). Neglected tropical diseases can be particularly aided by this approach 

since the research on this field is mainly supported by public financial agencies, 

receiving less investment than other research topics that attract private funding.  

 

The aim of the present work is to search for new scaffolds for inhibitors of cruzain, an 

enzyme from Trypanosoma cruzi, the etiological agent of Chagas Disease, a neglected 

tropical disease. Developing inhibitors for this enzyme is a challenge since it is 

homologous to human cathepsins, possibly leading to selective problems. Thus, it is 

proposed to rationalize an approach to develop selective inhibitors over human 

enzymes by applying a structure-based virtual screening with docking. 

 

The present work can help to increase the comprehension about selectivity among 

cysteine proteases and usefulness of structure-based computational methodologies in 

these studies. 

1.1. Chagas Disease 

Chagas disease, discovered in 1909, infects about 6 and 7 million people (WHO 2016), 

with 12,000 deaths estimated per year and 70 million people under infection risk 

worldwide (WHO, 2015). This is an endemic disease in Latin American countries 

except Caribbean, and emerging cases have been appearing globally as a result of 

recent migration patterns (Albajar-Vinas and Jannin, 2011; Bern et al., 2011; Conners 

et al., 2016). 

 

Patients affected by this disease complain not just about the physical aspects of it, but 

also social consequences. In literature is reported that 92.3% of chagasic people who 

were submitted to pre-hiring physical exams have failed and 8.9% declare their 

condition was the reason to be fired from their jobs (Guariento, Camilo and Camargo, 

1999).  Consequently, an effective treatment would improve the life quality of these 

patients physical and mentally.  
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More than one hundred years after its description by Carlos Chagas, there is still no 

medicine able to cure Chagas Disease without significant side effects. The available 

pharmacotherapy is based on two trypanocidal drugs, nifurtimox and benznidazole, 

which are mostly effective in the acute phase. However, in Brazil only benznidazole is 

licensed for therapy (Ministério da Saúde, 2010). Despite the relative success in the 

acute phase (75%) (Britto et al., 2001), no solid evidence was seen about benznidazole 

efficiency in the treatment of chronic cardiac Chagas Disease in a systematic review 

(Reyes and Vallejo, 2011). Another systematic review was able to show that the 

treatment of asymptomatic chronic patients can decrease the parasite load, although 

it is reported these results presented some inconsistency (Villar et al., 2014). 

Furthermore, despite decreasing the parasite load, it is described that benznidazole 

treatment of chronic chagasic patients was not able to prevent heart complications 

(Morillo et al., 2015).  

 

The Brazilian Agency on Health Regulation (Ministério da Saúde) establishes that the 

treatment of adults in the acute phase must be done with the administration of 5 to 7 

mg/kg/day benznidazole for 60 days and in the asymptomatic chronic phase 3 

mg/kg/day during 90 days. This treatment is long and displays several side effects such 

as exanthema, pruritus and/or allergic dermatitis (35 to 68%); nausea and vomiting, 

abdominal pain and/or weight loss (25% to 27%) (Ministério da Saúde, 2010). This 

condition contributes to the patient abandonment of treatment when the disease 

symptoms begin to disappear. Consequently, this can lead to parasite drug resistance.  

 

These data reinforce the need of more effective trypanocidal drugs, as well as earlier 

diagnosis and treatment onset. There is evidence of increased effectiveness when the 

treatment starts earlier (Britto et al., 2001). Therefore, several efforts to develop new 

and more effective antichagasic drugs against different molecular targets such as 

nitroreductase type I, topoisomerase, cruzain and trans-sialidase are currently 

described in literature (Bermudez et al., 2016). Some drugs, as primaquine and 

carbidium can reduce parasitemia in model animals and patients, but are unable to 

lead to the cure (Rassi and Marcondes de Rezende, 2012).  

 

A validated target in Trypanosoma cruzi (T. cruzi) is cruzain, the main cysteine protease 

in this parasite. Many inhibitors of this target have been proposed so far, although there 
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are some selectivity problems with them. Thus, there is a lot of structural and activity 

data about this enzyme which can be used to develop this project (Martinez-Mayorga 

et al., 2015).  

1.2. Proteases 

Proteases (or peptidases) catalyze the hydrolysis of amide linkages in peptides and 

proteins. They are classified as endoproteases when this reaction happens inside the 

polypeptide chain and exoprotease when they cut the amino or carboxy terminal 

portion of the peptide (Castro et al., 2011). In the case of cysteine proteases, this 

reaction is mediated by a cysteine residue and a histidine that polarizes the cysteine 

and enable it to make a nucleophilic attack in the carbonyl carbon of a susceptible 

peptide bond (Keillor and Brown, 1992). 

 

Schechter and Berger defined residues located in the carboxy terminal side of the 

scissile peptide bond as primed (P’) and the residues in the amino terminal as non-

primed (P) (Schechter and Berger, 1967). Residues P and P’ interact with their 

complementary subsites in the enzyme named S and S’ (Figure 1). 

 

 

Figure 1 - Nomenclature of proteases subsites according to Schechter and Berger, 

1967. Adapted from https://prosper.erc.monash.edu.au/methodology.html 

Cruzain alongside with human cathepsins L and B (CatL and CatB, respectively) is a 

papain-like cysteine peptidase. They are not synthesized in their active form, but as 
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zymogen. They have a N-terminal proregion which is important for proper protein 

folding and prevents enzyme denaturation in neutral to alkaline pHs. This region is also 

important in the transport to the lysosome and membrane association (Error! 

Reference source not found.). In acidic pH the enzyme catalyzes its own activation 

by removing the propeptide (Tao et al., 1994; Carmona et al., 1996; Nägler et al., 1997). 

Cruzain has also a C-terminal region which is the immunodominant domain (Martínez 

et al., 1993).  The fold of these proteins has two subdomains with the active site in the 

middle of them. One of them presents a bunch of helices and the catalytic cysteine and 

the other shows a beta-sheet with the catalytic histidine. 

 

 

Figure 2 - Illustration of a cysteine protease proregion. In this example, the cruzain 

sequence is shown (GenBank AAAB41119.1.1). Yellow: signal peptide; Green: 

propeptide; Black: active domain; Blue: C-terminal portion. Information retrieved from 

Uniprot (UniProtKB - P25779) 

 

Cruzain is expressed in the three T. cruzi forms: epimastigote (Cazzulo et al., 1990), 

trypomastigote (Sant’Anna et al., 2008) and amastigote (McGrath et al., 1995). It is 

located in the parasite cell surface (Doyle et al., 2011), flagellar pocket and other 

lysosome-related organelles (Sant’Anna et al., 2008). Beyond that, it is secreted by 

trypomastigotes to the medium to digest host proteins (Yokoyama-Yasunaka et al., 

1994). It is also related to parasite cell differentiation (Franke De Cazzulo et al., 1994), 

host cell invasion (Scharfstein et al., 2000; Aparicio, Scharfstein and Lima, 2004) and 

immune response evasion (Bontempi and Cazzulo, 1990). These evidences reveal 

cruzain as a validated target for Chagas Disease drug design. Furthermore, it was 
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described a cure in murine model treated with cruzain inhibitor in lethal infection ( Engel 

et al., 1998; Cazzulo, Stoka and Turk, 2001). 

 

Despite being a good drug target to Chagas Disease, cruzain has a very similar active 

site to human CatL and B. However, it is known that small differences in sub-pockets 

may allow to achieve selectivity (Kuhn et al., 2016). One example is the Fatty Acid 

Binding Proteins (FABPs), in which the difference in one sub-pocket was decisive to 

develop a selective inhibitor for FABP4/5 over FABP3. Roche’s researches performed 

a screen and discovered a compound with activity for FABP4 that was neither active 

for FABP5 nor selective over FABP3. Based on structural comparisons they realized 

that FABP3 has a smaller pocket than the other two enzymes due to the presence of 

three LEU while the others have ILE, VAL and CYS at the equivalent positions. So, the 

scientists increased the size of the portion of the molecule interacting in this pocket 

and could improve FABP4/5 activities and reduced FABP3 activity. Another successful 

case is the odanacatib, a selective inhibitor for human cathepsin K which is in phase 3 

clinical trials (Gauthier et al., 2008). 

 

Attempts at developing inhibitors against cruzain have been successfully performed in 

recent decades.  Some examples scaffolds displaying inhibitory activity ranging from 

0.02 to 1000 µM are thiosemicarbazones, tetrahydropyran, vinyl sulfones and 

pyrimidines (Du et al., 2002; Siles et al., 2006; Zanatta et al., 2008; Martinez-Mayorga 

et al., 2015). However, these studies usually don’t evaluate selectivity over human 

cathepsins.  

1.3. Structure-Based Drug Design (SBDD) 

This knowledge about known scaffolds and the basis of the interaction between a small 

molecule and a macromolecule can be very useful in drug design. Analyzing data from 

x-ray crystallography and nuclear magnetic resonance (NMR) is very helpful to achieve 

this purpose. In the absence of experimental data, comparative modeling can be 

applied. Through structural data, it is possible to investigate the steric and electronic 

principles that rule the interaction, subsequently trying to transpose it to other 

molecules to obtain ligands with higher binding affinities.  
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SBDD is a cyclic procedure that starts with the analysis of the target and the use of 

computational programs to identify potential ligands. Afterward, they can be purchased 

or synthetized and experimental assays are performed. Once the activity of one or 

more molecules is confirmed, the complex macromolecule-ligand must have its 

structure solved. From this point, it is possible to propose modifications in the ligand or 

search analog compounds on virtual databases seeking for molecules with higher 

affinity (Ferreira et al., 2015). 

 

A method widely used in SBDD design is virtual screening (VS), in which large 

compounds databases are screened against the target molecule and those that are 

predicted to be active are tested in vitro.  Well established techniques used in VS 

include molecular docking, structure-based pharmacophores and molecular dynamics 

simulations. 

1.4. Docking 

Docking is a structure-based computational technique for prediction of the binding 

mode between two molecules. In our case, the interactions analyzed will be between 

enzymes and small molecules. Moreover, it can make a quantitative prediction of the 

energy involved in these binding modes, providing not just a binding mode, but also a 

ranked list based on the scores obtained from docking (Ferreira et al., 2015). 

 

The docking software employed in this study was Glide (Grid-based Ligand Docking 

with Energetics, version 6.8, Schrödinger, LLC, New York, NY, 2015). It makes as close 

as possible an exhaustive search in the ligands conformation, to provide a prediction 

similar to the reality. Glide produces a set of ligand conformations next to the minima. 

These conformations are docked in different places in the macromolecule to find the 

ligands with poses more energetic favorable. Then, the ligand is minimized using 

OPLS-AA force field and the lowest energy poses obtained have their torsional minima 

analyzed. After predicting binding poses, Glide ranks the molecules according to their 

predicted binding affinities, based on GlideScore and Emodel scoring functions. 

GlideScore is an empirically-based scoring function with many terms, some of which 

are force field contributions, and others penalize, or reward special motifs identified in 

the predicted pose. To select the best pose of a ligand, Glide uses Emodel, a 

combination of GlideScore, ligand-receptor interaction energy and ligand strain energy. 
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In the end, the best scoring poses from different ligands are ranked according to their 

GlideScore (Friesner et al., 2004). 

 

Glide has three pose prediction levels: HTVS, SP and XP, with increasing accuracy 

and computational cost of calculations. HTVS or High Throughput Virtual Screening is 

used for rapid conformational search in a set which has many ligands. SP or Standard 

Precision applies a scoring function that enables the program to find molecules that 

are likely to bind the receptor, although the pose prediction is not precise and can have 

significant imperfections. Its objective is to minimize false negatives. XP or Extra-

precision seeks to minimize the false positive poses with a scoring function that applies 

severe penalties in the poses when charged and polar groups are not adequately 

exposed to solvent and rewards features such as special hydrogen bond motifs and 

hydrophobic interactions within enclosed pockets (Friesner et al., 2004). 

 

Another difference in Glide XP is the sampling methodology, which evaluates more 

conformations then Glide SP. If at least one predicted pose has a key fragment 

anchored in the active site, Glide performs what is called growing algorithm. The key 

fragment is generally a ring or other rigid fragment that presents various positions 

sampled and clustered. Afterward, a representative member of each cluster has its 

side chains grown from the anchor fragment. Molecules with severe steric clashes are 

discarded, and the retrieved are minimized using an energy function from Glide. 

Following they are ranked according to Emodel, explicit water molecules are added to 

top-ranked molecules and penalties are calculated. Any side chains that are 

responsible for a penalty are grown and minimized again. Then, a single pose is 

selected based on a weighted scoring function that combines protein-ligand Coulomb 

and van der Waals interaction energies, terms that favor binding affinity and the penalty 

terms (Friesner et al., 2006). These can help the program to predict accurately the 

ligand binding pose with the drawback of the high computational cost of these 

calculations.  

1.5. Structure-Based Pharmacophore 

Another technique widely used in drug discovery is based on the set of features present 

in a molecule that are essential for its biological activity, the pharmacophore. These 

features are related to atoms electronic aspects and their position on the tridimensional 
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space. Therefore they represent a particular binding mode of a molecule – or a set of 

molecules (Güner, 2002; Wolber and Langer, 2005). Pharmacophores are very useful 

in drug virtual screening because they allow the identification of new scaffolds based 

on consensus information obtained from experimentally tested molecules. One 

advantage of pharmacophore modeling is the low computational cost. That is the 

reason why many groups apply this technique as a filter in hierarchical virtual screening 

before methods that can predict binding affinities but also present a high computational 

cost. One example of its application can be found in work published by Shah and 

colleagues.  They described the identification of 21 falcipain-2 inhibitors by submitting 

an extensive database to a hierarchical virtual screening that started with a structure-

based pharmacophore filter (Shah et al., 2011). 

 

Pharmacophore modeling is always interesting to help us to comprehend better the 

target studied and the known binding molecules. Still, it is important to settle down 

some concepts about pharmacophore modeling and its uses in virtual screening. 

 

Each pharmacophore modeling software translates topological information into an 

abstract representation (Figure 3) recognizing particular features.  

Table 1 summarizes features from LigandScout, a software commonly used in 

pharmacophore generation, and their respective representation. It identifies hydrogen 

bonds, charge transfers, lipophilic and aromatic interactions, metal and covalent 

binding. 

  



22 
 

 

 

Figure 3 - Pharmacophore generation with LigandScout omits topological information 

from the molecule and translates this into an abstract representation – the 

pharmacophore features. A: Ligand-based pharmacophore generatin. B: Structure-

based pharmacophore generation. Adapted from (Wolber, Dornhofer and Langer, 

2006). 

 

Table 1 - LigandScout recognized pharmacophore features and representations 

(Wolber & Langer 2005; Vuorinen & Schuster 2015; LigandScout3 online manual) 

Pharmacophore feature LigandScout definition 

 

Hydrogen bond acceptor – an atom with negative partial 

charge distant from 2.5 until 3.8Å of a partially positive 

hydrogen. The angle between the acceptor and the donor 

atoms should be 180º; the bond is considered broken when 

the angle differs by 34º. 

 

Hydrogen bond donor – the heavy atom of these functional 

groups: nonacidic hydroxyls, thiols, acetylenic hydrogens 

and NHsª that is found between 2.5 and 3.8Å from an 

acceptor group. The angle between the acceptor and the 

donor atoms should be 180º; the bond is considered broken 

when the angle differs by 34º. 

 

Positive ionizable area – atoms or groups that are usually 

protonated at pH 7.4. 

 

Negative ionizable area – atoms or groups that are typically 

deprotonated at pH 7.4. 

A 

B 
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Pharmacophore feature LigandScout definition 

 

Hydrophobic area - a sphere located in the center of a 

lipophilic group that is located between 1 to 5 Å from the 

receptor.  

 

Aromatic ring – aromatic group of the ligand which can 

interact with an aromatic ring or positive group from the 

environment. 

ª  

Metal binding – groups able to interact with magnesium, 

zinc or iron from proteins. 

 

Exclusion volume - areas in the macromolecule that cannot 

be assessed by the ligand due to steric clashes. 

 

Residue binding point - a region where there is a covalent 

bond between ligand and protein. 

ªexcept tetrazoles and trifluoromethyl hydrogens 

 

Modeling a pharmacophore requires the use of data retrieved from a public database 

to obtain either target structures or small molecules structures and activity data. The 

Protein Data Bank (PDB) is the most used database to search for target structures. 

Nevertheless, when these data are used to obtain Structure-based pharmacophore, it 

is important to have in mind that the focus of this database is the protein, not the ligand. 

The PDB file, for instance, was created to describe protein atoms types, not all the 

others that can appear in the ligands, and some PDB entries have wrong ligand 

topology description. Only part of the ligand graph information is defined in the PDB 

file, while bond types and atom hybridization states are missing (Wolber and Kosara, 

2006). 

 

Pharmacophore modeling can be divided into two approaches, ligand and Structure-

basedstructure-based. When the receptor structure is not available, but there is 

information about ligands, the ligand-based methodology can be very useful. 

Furthermore, in structure-based modeling information retrieved from X-ray 
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crystallography and NMR data or even comparative modeling is used to translate 

ligand-target interactions to pharmacophore features (Vuorinen and Schuster, 2015). 

 

Depending on the selected approach, some standard procedures must be followed. 

Ligand-based pharmacophore modeling requires two sets of molecules. The training 

set contains molecules upon which the model will be built, while the test set consists 

of molecules that will be used to validate the model. It is interesting to have these sets 

with a high chemical diversity to try to generate a pharmacophore hypothesis that 

would be able to recognize molecules as structurally diverse as possible (Vuorinen and 

Schuster, 2015). 

 

If high-quality 3D coordinates are available from the complex macromolecule-small 

molecule, it is intuitive trying to study how the ligand is complementary to the binding 

site. Besides docking, structure-based pharmacophore can be very useful in that 

sense. LigandScout may firstly interpret ligand coordinates from PDB file to buildi a 

structure-based pharmacophore model. Therefore, it is important to check the electron 

density maps of these structures, in particular on the ligand, and try to use structures 

with the best maps as possible. In Figure 4 three PDBs can be observed. The first one 

has a high resolution of 0.85Å, enabling to locate each atom properly. The second PDB 

has an electron density map with medium resolution, so atoms locations are estimated. 

The third PDB shows a low-resolution structure where only the general shape of 

proteins is estimated. Since the models are going to be based on this information, it is 

essential to observe these characteristics to guarantee the quality of the model and 

the following work. 
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Figure 4 - Electron density from 2Fo – Fc maps of crystals with different resolutions. 

Adapted from (Vuorinen and Schuster, 2015). 

 

The first step in ligand interpretation is the analysis of its topology, which enables the 

software to build a molecular graph with rings and untyped bonds. Since the PDB file 

does not contain information on the hybridization states of the atoms, the program must 

determine this first, to subsequently derive bond types. Finally, LigandScout can 

analyze ligand-protein interactions to recognize the chemical features that will be used 

in the model construction (Wolber and Kosara, 2006). 

 

Regardless of the approach employed, once a satisfying pharmacophore model is 

defined compounds are searched against the pharmacophore query. LigandScout 

creates a pharmacophore model for each conformer molecule in the database and 

uses these models in the search. Compounds that fit the query model are considered 

as hits. Otherwise, the molecules are suggested to be inactive (Markt, Schuster and 

Langer, 2011).  

1.6. Virtual screening workflow validation 

An in silico method chosen for virtual screening should: be selective (find the active 

ligands in the middle of a pool of inactive molecules) and be able to find new chemical 

scaffolds for the desired target. A suitable method must also be able to help the 

researchers to prioritize the real actives for in vitro assays, since only a small number 
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of compounds are experimentally evaluated. To address this issue, it is very useful to 

generate a validation database prior to designing the VS workflow.  

 

This database should contain structurally diverse active molecules and inactive ones 

structurally related to the actives. This is crucial since using inactive molecules which 

are very different from the actives might lead to artificial enrichment metrics (Markt, 

Schuster and Langer, 2011). However, a frequent issue is the fact that negative results 

are not widely published. Also, when a commercial compound database is evaluated, 

the compounds tested are as diverse as possible. In consequence, using 

computationally generated decoys when evaluating a model might be a way to 

overcome these potential issues.  

 

Decoys are molecules that have physicochemical properties similar to the known 

active ligands and are topologically different. They can be generated on web-based 

servers as DUD-E (Mysinger et al., 2012). The server calculates the following 

properties based on an active compound: molecular weight (MW), the logarithm of the 

partition coefficient (logP – reflects hydrophobicity of a small molecule), the number of 

rotatable bonds, hydrogen bond donors and acceptors. Then, molecules with similar 

parameters are retrieved from the database. The selected molecules are compared to 

the query, and the most different ones are returned to the user. In effect, it is useful to 

have 45 decoys for each active ligand to mimic the reality (Mysinger et al., 2012).  

 

Some statistical evaluations can be used to check a model performance in virtual 

screening: sensitivity, specificity, enrichment factor (EF), area under the receiver 

operating characteristics (ROC) curve (AUC) and partial area under the ROC curve 

(pAUC) (Braga and Andrade, 2013): 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2) 
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ROC curves are obtained by plotting the sensitivity versus 1-specificity, while 

enrichment plots contain %actives versus %screened molecules. As Figure 5 shows, 

the performance of a model might be evaluated based on its AUC values. AUC = 0 

means the model only finds false positives, AUC = 0.5 means the model finds and rank 

actives and inactive molecules by chance and AUC = 1 means the model ranks all true 

positives before finding a false positive. An AUC = 1 is almost impossible to be 

achieved. So, the desired value is something as close as possible to 1 and higher than 

0.5.  

 

 

Figure 5 - ROC curve example. Blue diagonal curve illustrates a model with AUC = 0.5, 

red curve an ideal model with AUC = 1 and the green curve a model with performance 

between random and ideal. Adapted from Vuorinen and Schuster, 2015. 

 

Enrichment factors (EF) are used to evaluate how much the methods enriches true 

positives within a given percentage of the database, when compared to random 

ordering. EF are calculated by determining the fraction of true positives selected in the 

top X% of the ranked list of screened compounds and dividing this value by the fraction 

of total true positives in the total molecules tested. 

 

𝐸𝐹𝑋% =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑋% 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑋%⁄

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑡𝑒𝑠𝑡𝑒𝑑⁄
 (3) 
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When running a virtual screening the goal is to find models not only able to find real 

actives, but also to rank them higher than the inactive molecules and within the very 

top of the database. However, evaluating the AUC of the entire ROC curve does not 

provide a clear picture of whether the VS algorithm ranks the actives at the top or at 

the bottom of the score list. Thus, the pAUC, the AUC of the top X% of evaluated 

compounds ordered in a score list, is applied to help the evaluation of the top 

compounds ranked by a model (Braga and Andrade, 2013). 

1.7. Fingerprints definition 

The validation performed with active molecules and decoys rely on the need of knowing 

the similarity of molecules. Cheminformatics methods like fingerprints are well 

established and widely used to address the chemical diversity of a set of compounds. 

In the present work, fingerprints were calculated to compare molecules and group the 

most similar ones. The fingerprint is a string representation of a molecule structure and 

properties in which a binary pattern is used to describe and compare molecules. In 

Figure 6 there is a hypothetical fingerprint representation, in which the molecule was 

divided into substructures and, once they matched with their bit representation, they 

were marked as 1, and the other bits that were not represented in the molecule were 

kept as 0. 

 

 

Figure 6 - Hypothetical fingerprint representation. Figure from (Cereto-Massagué et al. 

2015). 

 

Fingerprints are widely used to compare molecules, especially in similarity searches. 

Generally, with a given query, a search in a database for similar molecules is done by 

calculating a similarity coefficient in a pairwise comparison. The mainly used is the 

Tanimoto coefficient (Tc), which is calculated according to the following equation: 
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𝑇𝑐 =  
𝑐

𝑎 + 𝑏 − 𝑐
(4)  

 

Where a is the number of bits set to 1 in molecule A, b is the number of bits set to 1 in 

molecule B and c is the number of bits set to 1 common to both molecules. Tc values 

range from 0 to 1. 0 means no similarity, while 1, means very similar or identical 

(Cereto-massagué et al., 2015).  

 

There are different types of fingerprints, and the focus of the present work is circular 

fingerprints, a kind of hashed topological fingerprint, illustrated in Figure 7. Hashed 

topological fingerprints work by selecting an atom and analyzing all the fragments 

generated by following a path until a predetermined number of bonds. This process is 

done to all the atoms in the molecule. A given bit can correspond to more than one 

feature, which is called bit collision. Moreover, circular fingerprints do not analyze the 

path in a molecule, but the environment of each atom until a given radius. The ECFP4 

fingerprint is a particular type of circular fingerprint used in this thesis (Rogers and 

Hahn, 2010). 

 

 

Figure 7 - A hashed topological fingerprint hypothetical example. Figure from (Cereto-

Massagué et al. 2015). 
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2. JUSTIFICATION 

Considering the epidemiological importance of Chagas disease and the lack of safe 

and efficient trypanocidal drugs, it is important to development new antichagasic 

medicines. Cruzain is a validated target in T. cruzi, with many studies describing the 

importance of this enzyme in parasite development, cell infection and survival. Many 

structural and activity data have been reported in literature making this a good target 

to structure-based approaches.   

 

Moreover, drug development can take advantage of computational methods, as they 

can make the process cheaper and faster. Structure-based pharmacophores and 

molecular docking are two established methods in drug discovery with several 

successful reported cases, which were chosen in this work to aid in the discovery of 

selective cruzain inhibitors.  

3. OBJECTIVES 

To propose potential selective cruzain inhibitors through a validated virtual screening 

approach. 

3.1 Specific Objectives 

I. To compare the performance of structure-based pharmacophore and molecular 

docking techniques in retrospective virtual screening of a library containing 

cruzain ligands and decoys 

II. To rationalize a workflow to address the selectivity issue in virtual screening  

III. To propose new cruzain inhibitors by virtually screening the ZINC database 
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4. MATERIALS AND METHODS 

Two approaches were evaluated to propose a suitable VS workflow to identify potential 

selective cruzain inhibitors. A structure-based pharmacophore and a docking approach 

were considered. 

4.1. Construction of a Validation Database 

Prior to establishing the virtual screening workflow, we tested and validated some 

methods. In doing so is important to use sets of known cruzain, human CatL and CatB 

inhibitors and to analyze if the methods can correctly predict their activities. A search 

in the BindingDB database (Gilson et al. 2015) and in the literature was carried out 

looking for molecules with IC50 or Ki below 100 µM. Besides, decoys were generated 

on DUD-E (Mysinger et al., 2012) to evaluate the specificity of the tested methods. On 

the DUD-E website (dude.docking.org) the user can upload the SMILES of the ligand 

and subsequently the server generates the appropriate protonation states in pH 

ranging from 6 to 8. Then, it calculates the molecular properties for each protonation 

state (molecular weight, estimated water−octanol partition coefficient, rotatable bonds, 

hydrogen bond acceptors and donors, plus net charge) and finds in the ZINC database 

molecules that match these properties. This search is performed with a protocol that 

adapts to local chemical space by narrowing or widening windows in seven steps 

around these properties. The aim is to find from 3,000 to 9,000 putative decoys and to 

calculate their ECFP4 fingerprints to select the 25% most different molecules. After 

removing possible duplicates, 50 decoys for each ligand are picked randomly. In the 

case of cruzain, experimental HTS data was available in the PubChem BioAssay 

database (Wang et al., 2017). Therefore, we also download a subset of experimentally 

confirmed inactive molecules to evaluate VS performance also considering this set.  

4.2. Structure-Based Pharmacophore 

Modeling a Structure-basedpharmacophore requires a 3D structure of the 

macromolecular receptor and a known ligand. Crystallographic structures of 

complexes between cruzain and competitive inhibitors were searched in PDB, and 

2Fo-Fc maps at 1.0 sigma of these crystals were evaluated using Coot software 

(Emsley et al., 2010), specifically in the region corresponding to the ligand. Among 

complexes for which ligand binding modes were unequivocally defined based on their 
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electron density, clustering was performed with LigandScout, to define representative 

structures for pharmacophore generation. Twenty-five conformations were generated 

per compound, and a pharmacophore was calculated for each conformation. 

Afterward, a similarity score was calculated based on these pharmacophores. An 

average of these scores was calculated, and ligands were clustered based on the 

distance to this average score. Compounds representing each cluster were employed 

in the generation and evaluation of the model, as described below in Item 4.4. 

4.3. Docking 

Docking with Glide (version 6.8, Schrödinger, LLC, New York, NY, 2015)  was 

employed to predict binding modes and for virtual screening. Glide has two scoring 

functions, GlideScore and GlideScore XP. GlideScore is an empirically based scoring 

function and can be written as follows: 

 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐶𝑙𝑖𝑝𝑜−𝑙𝑖𝑝𝑜 ∑ 𝑓(𝑟𝑙𝑟) +  𝐶ℎ𝑏𝑜𝑛𝑑−𝑛𝑒𝑢𝑡−𝑛𝑒𝑢𝑡 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) +

 𝐶ℎ𝑏𝑜𝑛𝑑−𝑛𝑒𝑢𝑡−𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) + 𝐶ℎ𝑏𝑜𝑛𝑑−𝑐ℎ𝑎𝑟𝑔𝑒𝑑−𝑐ℎ𝑎𝑟𝑔𝑒𝑑 ∑ 𝑔(∆𝑟)ℎ(∆𝛼) +

𝐶𝑚𝑎𝑥−𝑚𝑒𝑡𝑎𝑙−𝑖𝑜𝑛 ∑ 𝑓(𝑟𝑙𝑚) +  𝐶𝑟𝑜𝑡𝑏𝐻𝑟𝑜𝑡𝑏 + 𝐶𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏𝑉𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏 +  𝐶𝑐𝑜𝑢𝑙𝐸𝑐𝑜𝑢𝑙 +

 𝐶𝑣𝑑𝑊𝐸𝑣𝑑𝑊 + 𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑠 (5)   

 

Where l refers to ligands’ atoms, r to receptor atoms and 𝑓(𝑟𝑙𝑟) is a linear function of 

the interatomic distance. The first term in the eq 5 is related to hydrophobic effect, that 

happens when a lipophilic atom from ligand interacts with a lipophilic atom from 

receptor, releasing water molecules from the active site and leading to a decrease in 

the free energy of the system. If these water molecules have a low movement, once 

released, they induce an entropy gain, which is also favorable to the free energy. The 

hydrogen bond terms (2nd to 4th) are separated according to the nature of the atoms 

involved, if both are neutral, one neutral and the other charged or both charged. The 

𝐶𝑚𝑎𝑥−𝑚𝑒𝑡𝑎𝑙−𝑖𝑜𝑛 ∑ 𝑓(𝑟𝑙𝑚) term measures metal-ligand interactions, the 

𝐶𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏𝑉𝑝𝑜𝑙𝑎𝑟−𝑝ℎ𝑜𝑏 rewards occurrences in which a polar atom that is not involved 

in hydrogen bond is in a lipophilic region. 𝐶𝑐𝑜𝑢𝑙𝐸𝑐𝑜𝑢𝑙and  𝐶𝑣𝑑𝑊𝐸𝑣𝑑𝑊 terms compute 

Coulomb and van der Waals interactions energies. The solvation terms are calculated 

in the competitive ligand poses by adding explicit water molecules to the system and 
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measuring the exposition of many groups to these molecules. Friesner et al claim these 

terms to be helpful in reducing false positive results (Friesner et al., 2004, 2006).  

 

XP Glide scoring function is also empirically based, its description is following: 

 

𝑋𝑃 𝐺𝑙𝑖𝑑𝑒𝑆𝑐𝑜𝑟𝑒 =  𝐸𝑐𝑜𝑢𝑙 +  𝐸𝑏𝑖𝑛𝑑 +  𝐸𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (6), where: 

𝐸𝑏𝑖𝑛𝑑 =  𝐸ℎ𝑦𝑑_𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 +  𝐸ℎ𝑏_𝑛𝑛_𝑚𝑜𝑡𝑖𝑓 +  𝐸ℎ𝑏_𝑐𝑐_𝑚𝑜𝑡𝑖𝑓 + 𝐸𝑃𝐼 + 𝐸ℎ𝑏_𝑝𝑎𝑖𝑟 +  𝐸𝑝ℎ𝑜𝑏𝑖𝑐_𝑝𝑎𝑖𝑟 (7) 

and 

𝐸𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  𝐸𝑑𝑒𝑠𝑜𝑙𝑣 +  𝐸𝑙𝑖𝑔𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑖𝑛 (8) 

 

𝐸ℎ𝑏_𝑝𝑎𝑖𝑟 and 𝐸𝑝ℎ𝑜𝑏𝑖𝑐_𝑝𝑎𝑖𝑟 are the same hydrogen bond and lipophilic pair terms 

described above. 𝐸ℎ𝑦𝑑_𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒 is the hydrophobic enclosure score, differently from 

𝐸𝑝ℎ𝑜𝑏𝑖𝑐_𝑝𝑎𝑖𝑟, it considers not a pair of atoms in ligand and in the receptor, but a group 

of connected lipophilic atoms. 𝐸ℎ𝑏_𝑛𝑛_𝑚𝑜𝑡𝑖𝑓 are the special neutral-neutral hydrogen-

bonding motifs. They are identified in positions in the active site where the water 

molecules form a hydrogen bond to protein in such a way it is difficult for them to 

perform additional ones. So, this interaction has some geometrical constraints due the 

environment where they happen, that generally is a hydrophobic protein region which 

surrounds the water molecule in two faces. The donor or acceptor atom must be a ring 

atom, except nitrogen. 𝐸ℎ𝑏_𝑐𝑐_𝑚𝑜𝑡𝑖𝑓 refers to special charged-charged hydrogen-bond 

motifs that occurs, for example, when a positive ligand group binds to a weakly 

solvated negative protein group, or a ligand CO2
- group binds to multiple positive 

groups in the protein that are close to each other. 𝐸𝑃𝐼  rewards pi-stacking and pi-cation 

interactions.  

 

However, there are other näive terms included that reward halogen atoms in 

hydrophobic regions and an empirical correction enhancing the binding affinity of 

smaller ligands over to larger ones (Friesner et al., 2006). Some terms penalize the 

pose, like 𝐸𝑑𝑒𝑠𝑜𝑙𝑣 that refers to water scoring and it is calculated in the docking step in 

which explicit water molecules are added. When a polar or charged group in the ligand 

is not properly solvated, a desolvation penalty is applied. 𝐸𝑙𝑖𝑔𝑎𝑛𝑑_𝑠𝑡𝑟𝑎𝑖𝑛 are the contact 

penalties, which penalize only bad internal contacts such as some ligands geometries 

retrieved from spectroscopy data exhibiting high strain energies (Friesner et al., 2006).  
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4.3.1 Subsites definition 

Prior doing docking studies we wanted to know better the residues composing the 

subsites of the enzymes we would study. To do so, we aligned crystal structures of 

cruzain (PDB ID: 20Z2), cathepsin L (PDB ID: 2XU1) and cathepsin B (PDB ID: 1GMY). 

These crystals are from complexes of the enzymes with peptidic ligands. Then, we 

analyzed the residues interacting with the crystal’s ligands and summarized them 

(Figure 11).  

4.3.1 Compound preparation 

Compounds were prepared with LigPrep (LigPrep version 3.5, Schrödinger, LLC, New 

York, NY, 2015) using Merck Molecular Force Field (MMFF). Ionization states were 

generated with Epik at the following pHs: 5.5 ± 2 (docking against cruzain and human 

cathepsin L) and 6.0 ± 2 (docking against human cathepsin B).  

4.3.2 Protein preparation 

Proteins were prepared with Protein Preparation Wizard in Maestro (Maestro version 

10.3, Schrödinger, LLC, New York, NY, 2015). Hydrogens were added with PropKa 

using the following pHs: 5.5 for cruzain and CatL and 6.0 for CatB. The PBDs employed 

in this study are summarized in Table 2: 

 

Table 2 - PDB IDs used in docking-based virtual screening 

PDB ID  Authors Protein Resolution (Å) 

3KKU Ferreira, R.S. et al.  Cruzain 1.28 

1MHW Chowdhury, S. et al. Cathepsin L 1.9 

3AI8 Renko, M. et al. Cathepsin B 2.11 

 

Grids were generated to each prepared protein with centroids set on the catalytic 

cysteine (CYS 25) and dimensions of 10x10x10 Å. SER 24, CYS 25 and SER 64 side 

chains were considered rotatable in cruzain. SER 24 and CYS 25 side chains were 

http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Ferreira,%20R.S.
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=AdvancedAuthorQuery&exactMatch=false&searchType=All%20Authors&audit_author.name=Chowdhury,%20S.
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kept rotatable in CatL. SER 28 and CYS 29 side chains were considered as rotatable 

in CatB. All other residues were kept rigid during docking.  

4.4 Evaluation of Virtual Screening Methods 

LigandScout was the program applied for pharmacophore modeling, while Glide was 

employed for docking. Both programs generate ROC curves and calculate AUC, pAUC 

EF values at 1, 5 and 10% database screen. Statistical analysis with the R package 

pROC were performed to address the significance of observed differences in ROC 

curves and AUC values. DeLong’s unpaired test was carried out to compare AUC 

values and Venkatraman’s test to compare ROC curves shape (Robin et al., 2011). 

4.5 Virtual Screening Database and Workflow 

The VS was performed using ZINC database, a library of commercially available 

compounds containing more than 35 million 3D structures divided into subsets (Irwin 

and Shoichet, 2005; Irwin et al., 2012). The subset employed in the present work was 

Leads Now molecules, which contains 3,687,621 molecules with a molecular weight 

between 250 and 350 g/mol; xlogP under 3.5 and less than seven rotatable bonds. 

The molecules from this subset were clustered and filtered based on a Tc = 0.9. To do 

so, the molecules were ranked according to their molecular weight, ascending. Thus, 

a compound is selected and next one would be selected if it differs from the first one 

by a Tc of 0.9 using calculated fingerprints.   

 

A hierarchical virtual screening was performed. Firstly, the ZINC molecules were 

docked with Glide docking HTVS against cruzain. Molecules on the top ten percent 

ranking were docked again against cruzain by SP docking. Next, only molecules 

involved in the main interactions with the receptor were subsequently docked against 

CatL and B by SP docking. These interactions were defined by analyzing PDB 

complexes of these enzymes. From this new ranking, bottom ten percent of molecules 

were docked on the XP mode against the three enzymes. Compounds were visually 

inspected and selected to be purchased for in vitro assays.  
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5. RESULTS AND DISCUSSION 

5.1 Construction of Validation Databases 

Before performing VS studies, compound databases were built for validation and 

comparison of the performance of possible VS strategies. Databases specific for each 

protein target have been constructed, containing: experimentally validated competitive 

inhibitors, retrieved from BindingDB; computationally generated decoys, obtained 

through the DUD-E website; and, in the case of cruzain, experimentally validated 

inactive compounds retrieved from PubChem.   

 

Cruzain active ligands considered in the analysis were from five published papers (Du 

et al. 2000; Huang et al. 2003; Ferreira et al. 2010; Rogers et al. 2012; Ferreira et al. 

2014) and in-house compounds, totalizing 66 molecules (  



37 
 

Table 3). All of them are competitive and non-covalent binders from several classes as 

aryl ureas, ketones and benzimidazoles. The potency (measured by IC50 and Ki)  of 

these compounds ranged between 0.004 and 100 µM, being in most cases under 25 

µM. Ligands Morgan fingerprints were calculated with RDKit (www.rdkit.org) to 

illustrate their chemical diversity. Then, they were clustered and the ten most diverse 

scaffolds are shown in Error! Reference source not found..  

 

 

  

http://www.rdkit.org/
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Table 3 – Cruzain active compound number, ZINC code, reference, IC50 and/or Ki 

values. 

Compound number ZINC code Reference  IC50 (µM)   Ki (µM)  

1 ZINC36962557 Biocomp    2.0  

2 ZINC00314954 Biocomp    3.0  

3 ZINC10434589 Biocomp 27.0    

4 Du_2000_D12 Du et al. 2000  <10.0    

5 ZINC5223994 Du et al. 2000  4.8    

6 ZINC1038200 Du et al. 2000  3.1    

7 ZINC1033017 Du et al. 2000  <10.0    

8 ZINC3106209 Du et al. 2000  2.7    

9 Du_2000_D17 Du et al. 2000  <10.0    

10 ZINC2161657 Du et al. 2000  <10.0    

11 ZINC1040170 Du et al. 2000  3.7    

12 Du_2000_D22 Du et al. 2000  <10.0    

13 ZINC1035011 Du et al. 2000  10.0    

14 Du_2000_D45 Du et al. 2000  3.0    

15 ZINC1043567 Du et al. 2000  <10.0    

16 ZINC1047389 Du et al. 2000  <10.0    

17 ZINC1042930 Du et al. 2000  1.2   

18 ZINC2161654 Du et al. 2000  <10.0    

19 Du_2000_D23 Du et al. 2000  1.9    

20 ZINC1026484 Du et al. 2000  2.9   

21 ZINC2148801 Du et al. 2000  <10.0    

22 Du_2000_D61 Du et al. 2000  <10.0    

23 Du_2000_D34 Du et al. 2000  6.9   

24 ZINC20191037 Ferreira et al. 2010    2.0  

25 ZINC03242874 Ferreira et al. 2010  0.3    
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Compound number ZINC code Reference  IC50 (µM)   Ki (µM)  

26 ZINC03363866 Ferreira et al. 2010    6.0  

27 ZINC05212600 Ferreira et al. 2010  0.5    

28 ZINC08693977 Ferreira et al. 2010    0.8  

29 ZINC09580294 Ferreira et al. 2010  1.0    

30 ZINC03282619 Ferreira et al. 2010  38.0    

31 ZINC01852276 Ferreira et al. 2010  0.7   

32 ZINC05061372 Ferreira et al. 2010  18.0    

33 ZINC03363859 Ferreira et al. 2010  7.0   6.0  

34 ZINC02236859 Ferreira et al. 2010    2.0  

35 ZINC00943080 Ferreira et al. 2010    2.0  

36 ZINC8691187 Ferreira et al. 2010  1.0   2.0  

37 ZINC02652325 Ferreira et al. 2010  3.0    

38 ZINC00002334 Ferreira et al. 2014  0.2   

39 ZINC13824869 Ferreira et al. 2014  0.5   

40 ZINC13824883 Ferreira et al. 2014  0.6   

41 ZINC13824781 Ferreira et al. 2014  0.6    

42 ZINC13824822 Ferreira et al. 2014  0.8    

43 ZINC00003658 Ferreira et al. 2014  2.7   

44 ZINC00011550 Ferreira et al. 2014  1.6    

45 ZINC13824833 Ferreira et al. 2014  3.0    

46 ZINC00002336 Ferreira et al. 2014  3.0    

47 ZINC13824805 Ferreira et al. 2014  4.1    

48 ZINC13824835 Ferreira et al. 2014  5.2    

49 ZINC13824857 Ferreira et al. 2014  13.5    

50 ZINC13824824 Ferreira et al. 2014  10.9    

51 ZINC13824804 Ferreira et al. 2014  38.4    

52 ZINC13824839 Ferreira et al. 2014  5.3    
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Compound number ZINC code Reference  IC50 (µM)   Ki (µM)  

53 ZINC13824780 Ferreira et al. 2014  9.9   

54 ZINC13824851 Ferreira et al. 2014  8.2    

55 ZINC13824867 Ferreira et al. 2014  12.7    

56 ZINC13824793 Ferreira et al. 2014  23.9    

57 ZINC13824797 Ferreira et al. 2014  13.2    

58 ZINC13824826 Ferreira et al. 2014  77.5   

59 huang_2003_1 Huang et al. 2003    0.1 

60 huang_2003_3 Huang et al. 2003    0.004 

61 huang_2003_2 Huang et al. 2003    0.06  

62 huang_2003_4 Huang et al. 2003    >10.0  

63 huang_2003_5 Huang et al. 2003    >10.0  

64 huang_2003_6 Huang et al. 2003    >5.0 

65 ZINC01694053 Rogers et al. 2012  66.0   

66 ZINC85548285 Rogers et al. 2012  16.0   
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Figure 8 - Ten most chemically diverse cruzain ligands according to Morgan 

fingerprints. 

Molecules displaying similar chemical properties to cruzain ligands were obtained in 

DUD-E, generating 3,772 decoys. Experimentally validated inactive compounds 
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against cruzain were obtained from PubChem, referring to the assay AID: 1478, from 

NIH Chemical Genomics Center [NCGC]. This set contains 197,846 molecules 

screened against cruzain in the presence of 0.01% Triton X-100, in concentrations 

ranging between 57.5 µM and 3.7 nM (Jadhav et al., 2010). Inactive molecules were 

downloaded (195,907 molecules), among which 1,980 compounds were randomly 

picked. 

 

CatL active ligands applied in the analysis were from five published papers:  Yamashita 

et al. 1999; Chowdhury et al. 2002; Marquis et al. 2005; Chowdhury et al. 2008 and 

Marques et al. 2012, totalizing 68 compounds (Appendix 1). All of them are competitive 

and non-covalent binders from several classes as peptidomimetics, azepanone-based, 

acridones and quinolinones. The potency of these compounds ranged between 0.0002 

and 100 µM. 2,766 decoys were generated with DUD-E.  

 

After a literature search, no competitive, non-covalent binders of CatB were found. 

Therefore docking performance against this target was not evaluated. 

5.2 Structure-Based Pharmacophore 

Our purpose was to use a structure-based pharmacophore model as a pre-filter to 

docking in a virtual screening to identify cruzain inhibitors. However, the first objective 

was to evaluate whether it was possible to generate a model that was general enough 

to identify as many chemical classes as possible and at the same time, be selective. 

 

Modeling a structure-based pharmacophore begins withsearching for structures of the 

target complexed with a ligand. A search on PDB for crystal structures of cruzain-ligand 

complexes revealed 24 hits. It is important to obtain a high-quality model and assure if 

these structures have a good electronic density in the ligand region, so electronic 

density maps were analyzed on Coot. In Figure 9 two ligands can be observed. The 

first one (A) is inadequate for pharmacophore modeling, as the electron density map 

has low resolution and it cannot be seen where the atoms are properly located. It was 

discarded from the analysis together with another four complexes that did not have 

satisfactory electron densities. Other ten complexes were also discarded as there were 

no maps available. On the other hand, electron density for the second ligand (Figure 

9B) allows clear determination of atom coordinates, making this a good structure for 
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pharmacophore modeling. Some of these high-quality crystals contain similar ligands, 

generated in the context of Structure-Activity Relationship (SAR) studies. In these, with 

the purpose of finding which part of a molecule is necessary to trigger its biological 

activity, researchers introduce several modifications on a scaffold. Thus, the molecules 

of these studies are very similar, so they were clustered, and a representative complex 

was chosen based on the crystal resolution. Six clusters were generated, and their 

representative complexes have resolutions ranging from 1.1 to 2.0 Å (Table 4). 

 

 

Figure 9 - Electron density from 2Fo – Fc maps of ligands from 4KLB, 2.62Å resolution 

(A) and 3KKU, 1.28Å resolution (B). Maps were contoured at 1 sigma. 

 

The first step to building a pharmacophore is to define which features are important. 

Thus, to recognize true binders, some features in each pharmacophore were deleted 

(initially once by time), then the generated model was evaluated by observing the AUC 

and pAUC values obtained. This process was repeated until all features in a 

pharmacophore model were tested. After this, features that were not shown to be 

important were deleted in pairs and this new simplified model was evaluated again. By 

employing this methodology, 55 pharmacophores were generated and assessed with 

the active ligands and decoys set. AUC values obtained ranged from 0.50 to 0.65. The 

best model obtained was a simplification of the pharmacophore from 1EWP PDB 

structure. From its graphical representation, it can be observed that its features 

correspond to a hydrogen bond acceptor and a donor, which interact to GLY66. There 

is another donor feature interacting with GLY163 and an acceptor interacting with 
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ASP161. The hydrophobic area of the pharmacophore is close to ALA136, LEU67 and 

MET68 (Figure 10). The corresponding ROC curve was considered the best obtained 

because of its AUC value (0.65) and mainly due to the pAUC 10% of 0.90, meaning 

that in the top 10% almost exclusively active ligands were found. On the other hand, 

sixteen out of seventeen of these ligands are benzimidazoles derivatives, revealing 

low diversity of the hits recapitulated. Since the goal is to find new scaffolds to drug 

design, this is a drawback of this pharmacophore model. 
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Table 4 - PDB ID of cruzain crystals employed in structure-based pharmacophore 

modeling, their authors and resolution. 

PDB ID and  

ligand structure 
Authors Resolution (Å) 

1EWM  

Brinen, L.S. et al. 2.0 

1EWP  

Gillmor, S.A. 1.75 

4PI3  

Tochowicz, A., McKerrow, J.H. 1.1 

2OZ2  

Rickert, M., Brinen, L. 1.95 

3I06  

Ferreira, R.S., et al. 1.27 

 
3KKU 

Ferreira, R.S., et al. 1.28 
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Figure 10 - The best structure pharmacophoric model generated by LigandScout. On 

the left, pharmacophore features with their respective residues, on the right, its ROC 

curve. 

5.3 Docking 

Before starting a docking study, it is important to study the active site of the target 

protein. Cruzain and the human cathepsins L and B are papain-like cysteine proteases 

which have very similar active sites. However, some differences can be exploited in 

drug design to achieve selectivity. In the S3 pocket, for example, cruzain has an ASP 

60, an acidic residue, while CatL, contains an ASN, a polar neutral residue at the 

corresponding position (Figure 11). Another interesting difference is the ASN 70 in 

cruzain which is a GLU in CatL and TYR in CatB, which may allow the charge and 

volume of residues to be explored to reach selectivity. 

 

The S2 pocket is a well-described pocket among these proteases, and its selectivity is 

addressed to the presence of a GLU 208 in cruzain and CatB, while CatL has an ALA. 

Because of this, cruzain and CatB can receive both hydrophobic and positively 

charged groups in this pocket, while CatL receives mainly hydrophobic groups, as the 

side chain of LEU and VAL (Castro et al., 2011). Moreover, the major differences are 

between cruzain and CatB, while cruzain has a LEU 67, the human enzyme has a TYR 

75, a bigger residue. MET 68 in cruzain is substituted to PRO 76 in CatB, a less flexible 

residue. ASP 161, a negatively charged residue in the parasite protease is a GLY 198, 
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a hydrophobic residue in CatB. Moreover, LEU 160 in cruzain is GLY 197 and MET 

161 in CatB and L, respectively. 

 

In the S1 and S1’ pockets, these enzymes share a high sequence and conformational 

similarity, as Figure 11 illustrates. However, polar interactions with the ASP present in 

cruzain (ASP 161) and CatL can be exploited due to its absence in CatB, which 

contains a GLY at the same position. 

 

Interesting interactions could be selected to be explored to increase selectivity towards 

cruzain when comparing PDB complexes of enzyme-ligand of cruzain and CatL. CatB 

has only one PDB complexed with a small molecule, and the electronic density map in 

the ligand is incomplete. These interactions are summarized in Table 5. Half of them 

are hydrogen bonds with polar atoms of the side chains; half are hydrophobic contacts. 

There are two hydrogen bonds in cruzain (SER 61 and MET 145) which cannot be 

observed in CatL, as in the human proteinase these residues are muted to hydrophobic 

ones (Figure 11). The hydrophobic interactions selected are important to both 

proteases. This information was incorporated to the VS adding an interaction filter to 

the workflow. 

 

An interesting observation made is that PropKa predicts two protonation states to GLU 

208 in cruzain according to the nature of the group interacting with it. Figure 12 shows 

the PBD 1F2C, in which the ligand has a lipophilic ring and the calculated state of the 

GLU 208 is protonated, and pKa is 5.82. On the other hand, in PDB 1AIM the ligand 

has a hydroxyl and the GLU 208 is deprotonated with a pKa of 5.30. Without any ligand 

interacting the calculated pKa is 5.53, very close to the experimental pH. Although in 

this case, the program predicts it to be neutral, the protonation state is uncertain. 

Charge variation might be related to the group interacting with the residue. Thus, it is 

reasonable to perform docking with both protonation states as the charges are 

constant during docking. Doing so also allows to observe whether GLU 208 protonation 

state interferes in the results. 
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Figure 11 - Comparison between cruzain, CatL and CatB subsites. Cruzain is pink, 

CatL is cyan and CatB is magenta. In the table residues are colored according to this 

scheme: red - negatively charged; white - hydrophilic non-charged; yellow - 

hydrophobic; green - cysteine. 
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Table 5 - Atoms and respective interactions selected for the interaction filter. 

Interactions were analyzed with Napoli server (http://www.napoli.dcc.ufmg.br/). Values 

in the column % ligands were calculated as the number of ligands making this type of 

interaction, divided per total ligands analyzed for that protein multiplied per 100. 

Residue Atom Type of 
interaction 

% ligands 
in cruzain 

% ligands 
in CatL 

ASP161 OD1/2(-1) Hydrogen bond¹ 6.7% 6.3% 

SER61 OG Hydrogen bond¹ 2.7% - 

MET145 SD Hydrogen bond¹ 40% - 

LEU67  Hydrophobic ² 86.7% 100% 

MET68  Hydrophobic ² 73.3% 93.8% 

LEU160  Hydrophobic ² 73.3% 81.25% 

ALA141  Hydrophobic ² 33.3% 12.5% 

- This interaction cannot occur in the protein because the residue is different. 

¹ Hydrogen bond is defined with the following parameters: minimum angle, 120º; 

maximum distance between acceptors and donors, 3.9Å; maximum distance 

between the hydrogen and the acceptor, 2.5 Å.  

² Hydrophobic contacts distance is between 2.0 and 4.5Å. 

 

Figure 12 - GLU 208 charges calculated by PropKa. A) In the presence of an apolar 

GLU 208 is predicted to be neutral (PDB ID: 1F2C); B) In the presence of a polar group 

GLU 208 is predicted to be charged (PDB ID: 1AIM). 

 

Furthermore, when analyzing previous docking studies from different groups, CYS 25 

and HIS 162 protonation states are variable. One work set both residues as uncharged 

(Wiggers et al., 2013), other two used a higher dipole in CYS 25 (Ferreira et al., 2009, 

2010); and other formed a thiolate-imidazolium pair (Rogers et al., 2012). Based on 

http://www.napoli.dcc.ufmg.br/
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this lack of theoretical consensus, we decided to analyze whether varying the 

protonation states of these residues would interfere in docking enrichment metrics. 

Thus, four cruzain grids were prepared to be evaluated varying the protonation states 

of CYS 25, HIS 162 and GLU 208 residues as shown in Table 6: 

 

Table 6 - Protonation states of HIS 162, GLU208 and CYS 25 in each grid considered 

for docking calculations against cruzain 

 Grid 1 Grid 2  Grid 3  Grid 4 

Residue State State State State 

HIS 162 Neutral (HIE) Charged (HIP) Charged (HIP) Neutral (HIE) 

GLU 208 Neutral Neutral  Charged Charged  

CYS 25 Neutral Charged Charged Neutral 

 

 

5.4 Comparison of the Virtual Screening Performance for Different Grids 

5.4.1 Evaluation with cruzain inhibitors and decoys 

Aiming to analyze if the various grids proposed (Table 6) would alter the docking 

results, the four cruzain grids were employed for docking the validation datasets of 

active ligands and decoys, employing both HTVS and SP Glide. Table 7 brings the 

enrichment metrics calculated and shows that the AUC values ranged between 0.580 

(Grid 3 HTVS) and 0.704 (Grid 1 SP). For Grids 1, 3 and 4, the AUC from SP was 

higher than HTVS (comparing 0.704 to 0.616 in Grid 1; 0.636 to 0.580 in Grid 3; 0.652 

to 0.612 in Grid 4). Thus, it is reasonable to conclude that docking SP discriminated 

better between active ligands and decoys. The highest AUC values were from SP Grid 

1 and 4, 0.704 and 0.652 respectively, the grids with both CYS 25 and HIS 162 neutral. 

 

AUC values for themselves are not enough to attest if the curves are different. A slight 

difference can be significant in some cases, while a big one may not.  Delong’s Test 
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verifies whether the AUC value obtained from two ROC curves is significant (Delong, 

Delong and Clarke-Pearson, 1988). When the p-value is under 0.05, the AUC values 

from the curves are significantly different. All the curves were compared with a random 

curve with 0.5 AUC. The only curve whose AUC was not different from 0.5, was from 

Grid 3 HTVS (p-value = 0.06692). Venkatraman’s test was performed to verify if the 

ROC curves shape were significantly distinct from the form of a random ROC curve. 

All the ROC curves obtained were different from a random curve.  

 

Table 7 - Enrichment metrics obtained for the cruzain validation database, employing 

different docking methods and Grids 

Grid Method AUC p-value 

(Delong’s) 

p-value 

(Venkatraman’s) 

EF 1% EF 2% EF 10% 

Grid 1 HTVS 0.616 0.00323 0.003 9.1 6.1 2.6 

SP 0.704 1.68x10-11 < 2.2x10-16 9.1 6.9 2.4 

XP 0.615 0.001427 0.0025 7.6 5.3 2.0 

Grid 2 HTVS 0.623 0.004196 0.0035 6.0 4.5 1.5 

SP 0.615 0.00718 0.005 7.5 3.8 2.1 

Grid 3 HTVS 0.580 0.06692 0.049 11.0 5.3 1.8 

SP 0.636 0.001483 < 2.2x10-16 6.0 3.0 2.9 

Grid 4 HTVS 0.612 0.01259 0.0145 6.0 3.8 1.8 

SP 0.652 0.0002817 < 2.2x10-16 9.0 5.3 2.3 

 

The main intention behind a VS is to reduce the quantity of experimentally tested 

compounds, so this method is used to help to choose the molecules to be prioritized 

for in vitro assays. Therefore, the objective is not just to discriminate real positives from 

real negatives, but also to rank the actives at the very top. EF is the metrics to be 

looked in this sense. 
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HTVS and SP docking were used in the intermediate steps of VS with their top 10% 

ranked molecules being submitted to the following step. Hence, EF10% values were 

analyzed to compare the different grids performance (Figure 13). In Grid 2, Grid 3 and 

Grid 4 the SP docking rank was more enriched with actives ligands in top 10%.  This 

data reveals that the enrichment differences obtained with the grids were minimal.In 

HTVS docking the higher value was from Grid 1 and in SP docking, from Grid 3.  

 

 

Figure 13 - EF10% values obtained in the grids for Glide HTVS and SP docking. 

 

We wanted to check also whether varying residues protonation states could interfere 

in the docked ligands. Ligands ranked in the top 10% in each docking were analyzed 

to answer this question. In HTVS docking 10 to 14 active ligands (15 to 21% of total 

actives) were retrieved in the top 10%. Among these, four ligands appeared in all 

ranked lists, all from Huang et al., 2003: 59, 62, 63 and 64 (Figure 14). Therefore, we 

observed that in HTVS docking the different protonation states of protein residues can 

alter the nature of docked ligands. 
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Figure 14 - Compounds retrieved in the top 10% of HTVS docking against cruzain in 

all the Grids. 

 

 When analyzing Glide SP results, the number of active ligands recovered in the top 

10% of the screen varies from 14 to 19 (21 to 28% of all actives). Looking at the 

compounds that appear in all grids, the number is the double when compared with 

HTVS, including the four from Figure 14 (59, 62, 63, and 64) plus 31, 60, 61 and 66 

(Figure 15).   

 

 

Figure 15 - Compounds retrieved in the top 10% of SP docking in all the Grids. 

 

Even if a compound is highly ranked in several grids, the pose predicted may differ 

among them. Therefore, we also evaluated whether poses for the same compound 



54 
 

retrieved from different grids were consistent. Some compounds have similar poses 

predicted among the grids. Compound 59 in HTVS docking was chosen to illustrate 

this. It has a conserved hydrogen bond pattern. The only group varying its conformation 

is one of the benzyl groups, which is highly exposed to solvent. It is attached to the 

rest of the molecule by a flexible bond, and only in Grid 1 its predicted to interact with 

the S3 pocket (Figure 16).  

 

 

Figure 16 - Compound 59 predicted poses among the four grids did not exhibit a high 

variation. The only group with a significant difference was the benzyl, it was exposed 

to the solvent (Grid 2 to 4) or occupying S3 pocket (Grid 1).  
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Some compounds contain groups with multiple possible protonation states in the pH 

range of the docking against cruzain (5.5 ± 2.0). Aiming to investigate if the different 

ligand protonation states could interfere in the predicted pose, some compounds were 

analyzed. Compound 40 was the only compound whose best-scored pose predicted 

had its protonation state varied in HTVS docking. All other molecules had the same 

calculated charge in the top 10 percentage screen or, do not have ionizable groups. In 

compound 40 the benzimidazole ring is protonated in Grid 1 and deprotonated in Grid 

4. Despite this difference, the poses predicted were very similar, with the 

benzimidazole ring positioned in S1 (Figure 17).  

 

 

Figure 17 - Protonation states variation in compound 40 does not interfere in pose 

prediction in docking HTVS 

 

A case in which the charges of the molecule and the receptor influenced in the 

predicted pose was observed in SP docking. Compound 60 has a pyridine ring that 

can be charged or not at docking conditions (pH 5.5 ± 2.0), as the calculated pKa is 
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4.7 (ACE and JChem acidity and basicity calculator, available in 

https://epoch.uky.edu/ace/public/pKa.jsp). In Grid 1 to 3 the calculated charge of the 

best-predicted pose is neutral, but in Grid 4, it is positively charged and positioned 

towards the negatively charged GLU 208 (Figure 18). The charged nitrogen and the 

oxianion are 3.7Å apart and therefore involved in a salt bridge interaction.  

 

 

Figure 18 – Pose prediction of compound 60 in docking SP is influenced by the 

protonation states of the residues in the active site. 

 

Docking XP calculations need considerably more CPU time than SP and HTVS 

docking, so, only Grid 1 was evaluated in this method. Its AUC value was 0.615, lower 

than the values obtained to HTVS and SP, although the difference is marginal when 

compared to HTVS. These results agree with a previous study called CASF-2013 

(Comparative Assessment of Scoring Functions) (Li et al., 2014). Using a benchmark 

docking scoring functions were evaluated in terms called Scoring Power Test, Ranking 
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Power Test, Docking power test and Screening Power Test. The overall conclusion is 

that Glide scoring functions (SP and XP) are not useful in predicting binding affinities 

or even to rank the molecules properly. Still, SP had a better performance than XP 

docking. 

 

Concerning the ability to identify the native binding pose of a ligand, both methods 

were well evaluated. If only the best-predicted pose is considered, the success rate is 

79% to SP and 75% to XP (Li et al., 2014). Moreover, they had a god performance in 

finding the true binders among random molecules and ranking them in the top. EF1% 

of SP was 19.54, while in XP was 16.81. EF10% of SP was 4.14, while in XP was 4.07 

(Li et al., 2014).  

 

Based on these analyses it is plausible to conclude that no Grid had a superior 

enrichment performance. Despite this, different compounds were ranked among the 

grids. Thus, it could be worthwhile to use more than one grid to enhance the possibility 

of selecting a real active for in vitro assays. Moreover, this could help to identify 

scaffolds that would not be identified if only one grid was used. 

 

Desiring to improve the chances of obtaining cruzain competitive inhibitors, both 

charged and neutral GLU 208 were utilized in the VS. Between the grids with the 

neutral GLU 208, Grid 1 had a considerably higher EF10% value in HTVS docking. So, 

Grid 1 was selected to the VS. In the case of the charged GLU208, the EF10% from 

docking SP were appreciably higher in Grid 3, which was chosen for VS. Finally, the 

compound selection from the virtual screening was performed looking at the best-

predicted poses, keeping in mind that their ranking position is not necessarily related 

to its binding affinities.  

5.4.2 Cruzain evaluation with actives and experimentally inactive molecules 

Besides evaluating the Grids with computationally generated decoys, in the cruzain 

case, it was also checked how docking would deal with real inactive molecules. Table 

8 summarizes the results. AUC values ranged from 0.651 to 0.756, higher than those 

obtained with decoys. A possible explanation is that the decoys were obtained assuring 

to be chemically similar to the actives, while the inactive molecules were picked 

randomly. It is “easier” for docking to identify actives in a set with high chemical diversity 
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than in a group with a narrow chemical diversity. Comparing the Grids with GLU 208 

neutral (Grid 1 and 2), the highest AUC to HTVS is from Grid 1 (0.715), and in SP the 

values are very close (0.712 for Grid 1 and 0.716 for Grid 2). Looking at the EF10%, 

the higher enrichment in HTVS is from Grid 1 (4.2 against 3.2) and in SP also (4.8 

against 4.2). 

 

Comparing the grids with GLU 208 charged, the highest AUC value from HTVS was 

obtained by Grid 4 (0.709 against 0.651), and in SP, again Grid 4 had the highest value 

(0.756 against 0.749). When EF10% is analyzed in HTVS, Grid 4 has the highest value 

(3.8 against 2.7).  In SP, Grid 3 has the highest value, 4.5 against 4.1. Therefore, work 

with experimental inactive molecules confirmed the results discussed with decoys. 

 

 

Table 8 - Enrichment metrics calculated to docking against cruzain with actives and 

inactive molecules 

  AUC p-value 

(Delong's) 

p-value 

(Venkatraman's) 

EF 

1% 

EF 

2% 

EF 

10% 

Grid 1 HTVS 0.715 3.00x10-8 < 2.2x10-16 11 7.5 4.2 

SP 0.712 3.14x10-6 < 2.2x10-16 12 9.7 4.8 

Grid 2 HTVS 0.693 1.722x10-5 < 2.2x10-16 12 9.8 3.2 

SP 0.716 7.412x10-8 < 2.2e-16 14 8.2 4.2 

Grid 3 HTVS 0.651 0.001188 5e-04 15 8.3 2.7 

SP 0.749 2.049x10-8 < 2.2x10-16 12 12 4.5 

Grid 4 HTVS 0.709 1.503x10-6 < 2.2x10-16 12 8.3 3.8 

SP 0.756 1.121x10-10 < 2.2x10-16 17 13 4.1 
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5.4.3 Enrichment results for docking the CatL ligand database 

Docking performance was also evaluated for CatL database of active molecules and 

decoys. Protonation states of CYS 25 and HIS 163 were kept as predicted by PropKa: 

neutral and positively charged, respectively. This protein has an ALA 214 in the 

corresponding position of GLU 208 in cruzain. 

 

68 active molecules and 2,766 decoys were evaluated in these analyses. Table 9 

summarizes the results. All the AUC values and ROC curves were significantly different 

from a random ROC curve. The AUC value obtained in docking HTVS was lower than 

SP (0.748 and 0.776, respectively). Enrichment factors from SP were also higher than 

the values obtained for HTVS. 

 

Table 9 - Enrichment metrics obtained in docking studies against CatL 

 AUC p-value 

(Delong's) 

p-value 

(Venkatraman's) 

EF 

1% 

EF 

2% 

EF 

10% 

HTVS 0.748 1.137x10-10 < 2.2x10-16 2.9 4.4 4.4 

SP 0.776 1.137x10-10 < 2.2x10-16 17 16 5 

 

Based on these values it can be concluded that Glide docking can distinguish well 

between actives and decoys in the tested dataset. Thus, it is possible that in the virtual 

screening the top of ranking would be enriched with active ligands. On the other hand, 

the bottom of the ranked list might be full of molecules that are not able to inhibit CatL.  

 

Based on these results, we decided to address the selectivity issue in the present VS 

by selecting compounds that are at the same time in the top of cruzain docking results 

and in the bottom of CatL and CatB docking results. 
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5.5 Virtual Screening 

5.5.1 Virtual screening database preparation 

The database for VS, was the ZINC Leads Now molecules (www.zinc.docking.org), 

which contains 3,687,621 molecules with a molecular weight between 250 and 350 

g/mol; xlogP under 3.5 and less than seven rotatable bonds. Then, were selected a 

subset of molecules clustered and filtered based on a Tc = 0.9. To apply this filter, first 

the molecules are ranked according to molecular weight, in an ascending fashion. 

Then, a compound is selected if it differs from the previously chosen by the Tc of 0.9 

using fingerprints.  

 

372,632 molecules were downloaded from ZINC and after preparation with LigPrep 

321,811 molecules were retrieved. This number is smaller than the input because 

MMFFs force field used by LigPrep does not have all the atom types found in the 

ligands file, so these ligands were not prepared and were removed from the virtual 

screening. Figure 19 illustrates some non-processed molecules. As it can be observed, 

they contain groups as a carbocation, a positively charged sulfur in an aromatic ring 

and a phosphorus making five bonds. These groups are not interesting in drug 

development, so discarding them did not represent a problem. Some of them might be 

a result of errors in ZINC database or misinterpretation of molecules graphs from 

Maestro. 

 

 

Figure 19 - Example of ZINC compounds MMFFs force field was not able to process 

during ligand preparation. 
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5.5.2 Virtual Screening Workflow 

 

A hierarchical virtual screening was performed with two grids in parallel, Grid 1, with 

GLU 208, HIS 162 and CYS 25 neutral, and with Grid 3, which has these residues 

charged. The first step was to dock ZINC compounds against cruzain with Glide HTVS. 

The second step was to select top ten percent ranked molecules (54,639 molecules in 

Grid 1 and 42,466 molecules in Grid 3) and dock them against cruzain once more, but 

this time using docking SP. The third step was to submit them to the interaction filter 

(Table 5). If they satisfied at least one condition, they were kept, otherwise they were 

discarded. After this step, 5,461 molecules were retrieved from SP docking results with 

Grid 1 and 3,312 molecules with Grid 3.  

 

Then, these compounds were docked against CatL and B with docking SP. Next, the 

bottom ten percent of ranked molecules were docked in the mode XP against the three 

enzymes (489 compounds from Grid 1 and 578 compounds from Grid 3). Finally, 

molecules were visually inspected and selected to be purchased and evaluated in in 

vitro assays. Figure 20 summarizes the VS workflow employed. 
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Figure 20 – VS workflow. Zinc molecules were submitted to a hierarchical VS starting 

with HTVS docking against cruzain. Molecules were ranked according to their 

calculated ∆G by the docking algorithm. Top 10% of ranked molecules were submitted 

to SP docking against cruzain. Then, compounds which filled at least one interaction 

from the interaction filter were submitted to SP docking against human cathepsins L 

and B. Molecules were ranked according to their docking scores (calculated ∆G) and 

the bottom 10% were subjected to XP docking against the three enzymes. Molecules 

were visually inspected and selected to purchase and in vitro assays. 

5.6 Compound Selection for In Vitro Assays 

Compound selection for in vitro assays was based not solely on compound ranks, but 

mainly on a visual inspection of their predicted poses. In this inspection it was verified 

how well the cruzain S2 pocket was occupied, the hydrogen bonding pattern and 

overall chemical complementarity. Additionally, compounds displaying highly reactive 

group were discarded, since non-covalent binders were the focus of this research. 

Finally, the chemical diversity and hits commercial availability selected were 

considered. 
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All selected compounds occupy S2 pocket in cruzain, and many of them establish a 

hydrogen bond with the oxygen present in the ASP 161 backbone. This interaction was 

also conserved in the predicted poses against CatB, except by the fact the ASP 161 is 

a GLY 122 in this enzyme. On compounds well ranked by Grid 3 salt bridge interactions 

with CYS 25 were observed, while in top hits from Grid 1 this interaction was observed 

with the charged ASP 161. Pi-stacking interactions were observed only in the CatB. 

 

Eight compounds were selected, two of them are thought to be selective cruzain 

inhibitors over CatL and CatB. All the others are supposed to be cruzain inhibitors 

selective over one of the human cathepsins. Top-ranked cruzain molecules were 

inspected first and had their predicted poses compared to the human enzymes. Then, 

CatL and CatB poorly ranked molecules were analyzed and had their predicted poses 

compared with cruzain. The following discussion refers to molecules selected by the 

first approach. 
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Compound ZINC97114414 (Figure 21) has its polar groups turned towards solvent and 

makes a salt bridge between the positively charged nitrogen of methyl thiazole with the 

negatively charged sulfur of CYS 25. In cruzain and CatL the methyl imidazole pyridine 

ring is well suited to S2, but in CatB, this ring occupies S3 pocket. Cruzain active site 

is more similar to CatL active site than to CatB active site. That might be the reason 

why the predicted pose in CatB is considerably different from the others. Its S2 pocket 

is not so tight as in other two enzymes, and the ligand is well fitted in S1 and S1’ pocket, 

being stabilized by the electrostatic interactions. In CatB, the five-member heterocycle 

makes a pi-stacking with HIS 199 (HIS162 in cruzain). Moreover, the molecule is 

involved in a hydrogen bond with GLU 122 in CatB (in the other enzymes this residue 

is absent). There is one conserved interaction in all the poses predicted. It is a 

hydrogen bond with ASP 161 (cruzain)/ ASP 162 (CatL)/ GLY 198 (CatB). Based on 

these poses and the ranking position among the grids, this molecule is supposed to be 

a selective cruzain hit over CatB.  

 

 

Figure 21 - Predicted poses and chemical structure of ZINC97114414, a putative 

selective cruzain inhibitor, likely inactive against CatB. 

 

Another supposed selective cruzain hit over CatB is ZINC81113908 (Figure 22). It has 

a well-stabilized pose in cruzain, establishing two conserved hydrogen bonds with the 
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backbone of GLY 66 and ASP 161 and two salt bridges between the charged catalytic 

cysteine and the positively charged groups from the rings. In CatL and CatB the poses 

are very similar, except by a pi-stacking predicted in CatB with HIS 199. However, as 

the active site is shallower in CatB, it is supposed to be a weaker binder in this enzyme 

than in the others. 

 

 

Figure 22 - Predicted poses and chemical structure of ZINC81113908, a supposed 

selective cruzain inhibitor over CatB. 
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A putative selective cruzain inhibitor over CatL is ZINC95480744, with predicted poses 

in CatB and cruzain occupying from S2 to S1. In CatL in which the S2 pocket is not so 

closed as in cruzain, the ligand is not predicted to occupy this pocket. There is no 

hydrogen bond predicted, and there is a great portion of ligand exposed to solvent in 

CatL making this pose less stable (Figure 23). On the other hand, in cruzain, there is 

a hydrogen bond with ASP 161 backbone and in CatB, besides the corresponding 

interaction, there are two others. One with GLY 74 and other with GLU 122. 

 

 

Figure 23 - Predicted poses and chemical structure of ZINC95480744, a supposed 

selective cruzain inhibitor over CatL. 
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ZINC55314924 is expected to be a selective cruzain inhibitor over CatL and CatB 

(Figure 24). Its predicted pose in cruzain has all the polar groups involved in hydrogen 

bonds or polar contacts. In CatL only the nitrogen atoms are not exposed to the solvent, 

the nitrogen from the ring is involved in a salt bridge with ASP 162, and the other is 

making a hydrogen bond with the backbone of this same residue. In CatB there is the 

conserved hydrogen bond with GLY 198. As the ligand pose predicted in cruzain is 

more stable than in the others, it is proposed that this compound might have a higher 

activity against cruzain. 

 

 

Figure 24 - Predicted poses and chemical structure of ZINC55314924, a supposed 

selective cruzain inhibitor over CatL and CatB. 
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Compound ZINC05173978 is predicted to be a cruzain selective inhibitor over CatB. 

The pose in cruzain and CatL is well suited in S2 and S1’, with benzene in S2 and 

thiazole in S1’ making a salt bridge interaction with ASP 161 in the cruzain.  The other 

poses also have the benzene in the S2, but in the CatB the thiazole is making a salt 

bridge interaction with GLU 122, in a pocket very exposed to the solvent so that might 

be a weaker binder to this enzyme (Figure 25).  

 

 

Figure 25 - Predicted poses and chemical structure of ZINC05173978, a supposed 

selective cruzain inhibitor over CatB. 
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Until this point, the compounds described were selected because they were well 

ranked against cruzain. Molecule ZINC71859319, however, was chosen because it is 

predicted to be a weak CatL binder (Figure 26). The molecule is positioned in the S2 

and S3 pockets, the latter a pocket very exposed to solvent, and it is only stabilized by 

a single hydrogen bond. In cruzain, on the other hand, despite its bad ranking position 

(302), the pose is plausible, occupying S2 and S1 pockets and making a hydrogen 

bond with ASP 161. In CatB there is an excellent predicted pose, occupying S2 and 

S1’ making key hydrogen bonds with GLY 74 and GLY 198. Based on these analyses 

is supposed that this ligand is a cruzain inhibitor selective over CatL. 

 

Figure 26 - Predicted poses and chemical structure of ZINC71859319, a supposed 

selective cruzain inhibitor over CatL. 
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ZINC81063926 is expected to be a selective cruzain inhibitor over both human 

cathepsins. The predicted pose in cruzain is very well fitted in the active site. Moreover, 

it is stabilized by hydrogen bonds, in a fashion that most polar groups are involved in 

these interactions. In CatL and B the ring with three polar atoms is positioned in S2, a 

very hydrophobic pocket, without any hydrogen bond with these atoms to stabilize this 

binding mode. Therefore, this is a poorly scoring pose and probably a weak CatL and 

B binder (Figure 27).  

 

 

Figure 27 - Predicted poses and chemical structure of ZINC81063926, a supposed 

selective cruzain inhibitor over CatL and CatB. 
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ZINC83820332 was chosen based on its poor predicted pose against CatB (Figure 

28). Its CatB pose is positioned from S1 pocket onwards, a very shallow region in this 

enzyme, with many polar groups exposed to solvent. In cruzain, the molecule fits the 

S2 pocket and make a hydrogen bond with GLN 19 stabilizing the other ring. In CatL, 

the S2 pocket is also occupied, and the other ring is stabilized by a hydrogen bond 

with the backbone of ASP 162. 

 

 

Figure 28 - Predicted poses and chemical structure of ZINC83820332, a supposed 

selective cruzain inhibitor over CatB. 
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6. CONCLUSIONS 

Proposing a robust virtual screen workflow to find a cruzain selective inhibitor is a 

challenge, as its human homologous have a very similar active site. A structure-based 

VS was proposed, and two methods were tested: structure-based pharmacophores 

and molecular docking. 

 

The objective in working with pharmacophores was to use this as a pre-filter in a 

hierarchical virtual screening to find new scaffolds of cruzain inhibitors. However, we 

were not able to generate a general pharmacophoric hypothesis; our best model was 

able to recognize only benzimidazole derivatives. Despite this result, it is important to 

keep in mind that in the future, with more ligands being described, a better model might 

be achieved. Also, another option could be the generation of many pharmacophoric 

models, one for each chemical class characterized in the literature so far, and evaluate 

if any new scaffolds can be found with this approach. 

 

Docking was the selected method to the VS screening as it could better discriminate 

between ligands and decoys and enrich the top of screens with a high chemical 

diversity of ligands. The evaluation done revealed that using grids with different 

protonation states might increase the chemical diversity of retrieved compounds in the 

top of docking rank. Two grids were used in this VS, of one with CYS 25, GLU 208 and 

HIS 162 neutral and other with these residues charged.   

 

After the VS, eight cruzain hits were proposed. Two of them (ZINC55314924 and 

ZINC81063926) are supposed to be selective over both CatL and CatB, and the others 

are selective over one of them. Next steps are to make the in vitro assay against these 

enzymes and, if obtaining a selective inhibitor, work to enhance its activity. Even if we 

are not able to find a selective inhibitor among this compounds, this should not be a 

huge problem, since the knowledge about the structure of these enzymes can be useful 

to propose modification the inhibitors to try to achieve selectivity.  
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8. APPENDIX 

Appendix 1 - CatL known inhibitors employed for docking evaluation. 

ZINC / CHEMBL ID Reference IC50 (µM) Ki (µM) 

ZINC96142574 Yamashita et al., 1999  >1 

ZINC96142576 Yamashita et al., 1999  >1 

ZINC96142578 Yamashita et al., 1999  >1 

ZINC96142580 Yamashita et al., 1999  0.23 

ZINC96142582 Yamashita et al., 1999  0.12 

ZINC96142584 Yamashita et al., 1999  >1 

ZINC96142586 Yamashita et al., 1999  0.15 

ZINC96142588 Yamashita et al., 1999  0.053 

ZINC96142590 Yamashita et al., 1999  >1 

ZINC96142592 Yamashita et al., 1999  0.13 

ZINC96142594 Yamashita et al., 1999  0.036 

ZINC96142596 Yamashita et al., 1999  >1 

ZINC96142598 Yamashita et al., 1999  0.13 

ZINC96142600 Yamashita et al., 1999  0.11 

ZINC96142602 Yamashita et al., 1999  >1 

ZINC96142604 Yamashita et al., 1999  0.09 
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ZINC / CHEMBL ID Reference IC50 (µM) Ki (µM) 

ZINC96142606 Yamashita et al., 1999  0.018 

ZINC96142608 Yamashita et al., 1999  >1 

CHEMBL148544 Chowdhury et al., 2002  0.490 

CHEMBL148943 Chowdhury et al., 2002  0.210 

CHEMBL149738 Chowdhury et al., 2002  6.6 

CHEMBL341609 Chowdhury et al., 2002  0.021 

CHEMBL415539 Chowdhury et al., 2002  0.019 

ZINC27562733 Chowdhury et al., 2002  0.930 

ZINC27563201 Chowdhury et al., 2002  >100 

ZINC27563212 Chowdhury et al., 2002  0.24 

ZINC27624073 Chowdhury et al., 2002  0.21 

ZINC39290220 Chowdhury et al., 2002  0.27 

ZINC39290221 Chowdhury et al., 2002  0.045 

ZINC39290222 Chowdhury et al., 2002  0.016 

ZINC39290223 Chowdhury et al., 2002  3.9 

ZINC95542088 Chowdhury et al., 2002  0.27 

ZINC95542462 Chowdhury et al., 2002  74 

ZINC95588063 Chowdhury et al., 2002  0.067 

ZINC95588077 Chowdhury et al., 2002  38 

ZINC95612041 Chowdhury et al., 2002  0.16 

ZINC95612249 Chowdhury et al., 2002  0.2 
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ZINC / CHEMBL ID Reference IC50 (µM) Ki (µM) 

ZINC95614747 Chowdhury et al., 2002  0.17 

CHEMBL271747 Marquis et al., 2005  0.008 

CHEMBL270269 Marquis et al., 2005  0.009 

CHEMBL407515 Marquis et al., 2005  0.001 

ZINC29135725 Marquis et al., 2005  0.0004 

ZINC29135841 Marquis et al., 2005  0.0005 

ZINC29136045 Marquis et al., 2005  0.002 

ZINC29136295 Marquis et al., 2005  0.005 

ZINC58638412 Marquis et al., 2005  0.0006 

ZINC85549974 Marquis et al., 2005  0.0002 

ZINC95540444 Chowdhury et al., 2008  0.112 

ZINC96308785 Chowdhury et al., 2008  0.023 

ZINC96308786 Chowdhury et al., 2008  0.511 

ZINC96308787 Chowdhury et al., 2008  10.7 

ZINC04430352 Chowdhury et al., 2008  6 

ZINC04579248 Chowdhury et al., 2008  0.021 

ZINC84651994 Chowdhury et al., 2008  0.045 

ZINC84652016 Chowdhury et al., 2008  0.019 

ZINC84652064 Chowdhury et al., 2008  0.46 

ZINC84652767 Chowdhury et al., 2008  0.464 

ZINC84672029 Chowdhury et al., 2008  0.155 
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ZINC / CHEMBL ID Reference IC50 (µM) Ki (µM) 

ZINC84712659 Chowdhury et al., 2008  0.024 

CHEMBL196023 Chowdhury et al., 2008  57.5 

CHEMBL197958 Marques et al., 2012 0.007  

CHEMBL382286 Marques et al., 2012 0.002  

CHEMBL194643 Marques et al., 2012 1.1  

ZINC03813507 Marques et al., 2012 19.3  

ZINC03934226 Marques et al., 2012 13  

ZINC13731099 Marques et al., 2012 1.5  

ZINC27212266 Marques et al., 2012 0.5  

ZINC27524329 Marques et al., 2012 3.9  

 


