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Abstract

In this work, we study the existence and nonexistence of nonconstant solutions for the

following equation
A2su = f(u) in M,

∂u
∂ν

= 0 on ∂M,

and system
A2su1 = f1(u1, u2) in M,

A2su2 = f2(u1, u2) in M,
∂u1

∂ν
= ∂u2

∂ν
= 0 on ∂M,

where M is the n-dimensional standard unit sphere or hemisphere, n > 2 and A2s is

the fractional conformal or intertwining operator for s ∈ (0, 1] or s = 2. Under some

conditions on f , f1 and f2, we will prove that the only positive solutions to the above

problems are constants. The main techniques used are the moving plane method in an

integral form and the geometry of M . In addition, we will show that the equation has

in�nitely many sign-changing solutions for any s ∈ (0, 1).

Key words: Fractional conformal operator, moving plane, sign-changing solution.
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Resumo

Neste trabalho, estudamos a existência e não existência de soluções não constantes

para a seguinte equação
A2su = f(u) in M,

∂u
∂ν

= 0 on ∂M,

e o sistema
A2su1 = f1(u1, u2) in M,

A2su2 = f2(u1, u2) in M,
∂u1

∂ν
= ∂u2

∂ν
= 0 on ∂M,

onde M é a esfera unitaria ou semi-esfera canônica de dimensão n > 2 e A2s é o operador

conforme fracionário ou intertwining para s ∈ (0, 1] ou s = 2. Sob certas condições de f ,

f1 e f2, vamos provar que as únicas soluções positivas dos problemas acima são constantes.

As principais técnicas usadas são o método moving plane na forma integral e a geometria

de M . Além disso, mostraremos que a equação possui in�nitas soluções que mudam de

sinal para qualquer s ∈ (0, 1).

Palavras chaves: Operador conforme fracionário, moving plane, solução mudando de

sinal.
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Introduction

In recent years, there has been independent study of fractional order operators by

two di�erent group of mathematicians. On one hand, there are extensive works that

study properties of fractional Laplacian operators as non-local operators together with its

applications [18], and many others (see the related articles [20, 24, 34, 37, 69]); on the

other hand, there is the work of Graham and Zworski [40] (see also [2, 3, 19, 38, 57, 45, 46],

for instance), that study a general class of conformal operators Pγ, parameterized by a real

number γ and de�ned on the boundary of a conformally compact Einstein manifold, and

which includes the fractional Laplacian operators as a special case when the boundary is

the Euclidean space setting as boundary of the hyperbolic space. Thus, the study about

the existence and nonexistence of solutions for problems involving conformal operators is

closely related with the study of problems involving the fractional Laplace operator.

This Thesis is organized in �ve chapters.

Chapter 1:

In [39], Graham et al. constructed a sequence of conformally covariant elliptic oper-

ators P g
k , on Riemannian manifolds (Mn, g) for all positive integers k if n is odd, and

for k ∈ {1, .., n/2} if n is even. Moreover, P g
1 is the well known conformal Laplacian

−∆g + c(n)Rg , where ∆g is the Laplace-Beltrami operator, c(n) = (n − 2)/4(n − 1),

P g
1 (1) = Rg is the scalar curvature of M , n ≥ 3; P g

2 is the Paneitz operator and P g
2 (1) is

the Q-curvature with n ≥ 5.

Making use of a generalized Dirichlet to Neumann map, Graham and Zworski [40]

introduced a meromorphic family of conformally invariant operators on the conformal

in�nity of asymptotically hyperbolic manifolds (see Mazzeo and Melrose [56]). Recently,

Chang and González [19] reconciled the way of Graham and Zworski to de�ne conformally

invariant operators P g
s of non-integer order s ∈ (0, n/2) and the localization method of

Ca�arelli and Silvestre [18] for fractional Laplacian on the Euclidean space Rn. These

lead naturally to a fractional order curvature Rg
s = P g

s (1), which is called s-curvature.
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There are several works on these conformally invariant equations of fractional order and

prescribing s-curvature problems (fractional Yamabe problem and fractional Nirenberg

problem), see e. g. [37, 38, 45, 46, 47] and references therein.

If M = Sn is the unit sphere, n > 2, provided with the standard metric g = gSn , then

the operator A2s =: P gSn
s has the formula (see [15])

A2s =
Γ
(
B + 1

2
+ s
)

Γ
(
B + 1

2
− s
) , B =

√
−∆gSn +

(
n− 1

2

)2

,

where Γ is the Gamma function and ∆gSn is the Laplace-Beltrami operator on Sn. Then
our goal will be to discuss the relationship between the class of conformal operators A2s

de�ned on the unit sphere Sn and the fractional Laplace or polyharmonic operator (−∆)s

de�ned on the Euclidean space Rn, namely,

(A2su) ◦ F = |JF |−
n+2s

2n (−∆)s(|JF |
n−2s

2n (u ◦ F)), for all u ∈ C∞(Sn),

where F−1 is the stereographic projection and JF is the Jacobian of F . Moreover, we

will see that the existence and nonexistence of solutions for some problems involving A2s

implies the existence and nonexistence of solutions for some problems involving (−∆)s

and vice versa.

Chapter 2:

The study of semilinear elliptic equations and systems involving critical growth with

Neumann or nonlinear boundary conditions has received considerable attention in last

years, see e.g., [4, 17, 18, 52, 58, 67]. We consider the following problem

(P )


−Lgu = f(u) in M,

u > 0 in M,
∂u
∂ν

= 0 on ∂M

where (Mn, g), n ≥ 3, is a compact Riemannian manifold (possibly with non-empty

boundary), Lg is a second order partial di�erential operator on Mn with respect to the

metric g, and ∂u
∂ν

is the normal derivative of u with respect to the unit exterior normal

vector �eld ν of the boundary ∂M , and f : (0,∞)→ R is a function. If the boundary of

M is empty, we do not assume ∂u
∂ν

= 0 on ∂M in the problem (P ). Our main interest here

is to �nd conditions on f and on the geometry or topology of M which imply that the

problem (P ) admits only positive constant solutions. A particular case of the problem
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(P ) is the following one:

(Q)


−∆gu+ λu− F (u)u

n+2
n−2 = 0 in M,

u > 0 in M,
∂u
∂ν

= 0 on ∂M,

where ∆g is the Laplace-Beltrami operator on Mn with respect to the metric g, λ is a

real smooth function on M and F : (0,∞) → R is a real smooth function. Note that

when λ > 0 is a constant and F (t)t
n+2
n−2 = tp, p > 1, then u = λ

1
p−1 is a solution of the

problem (Q). In the case where F is a constant and λ = (n−2)
4(n−1)

Rg, where Rg denotes the

scalar curvature of the Riemannian manifold (M, g), the problem (Q) is just the Yamabe

problem in the conformal geometry for the closed case or, if ∂M is not empty, for the case

of minimal boundary. See Escobar's work [32]. If Mn = Sn is the standard unit n-sphere

and g is the standard metric, there are in�nitely many solutions for the Yamabe problem

with respect to the metric g since the conformal group of the standard unit n-sphere is

also in�nite. In a more speci�c situation, the problem (Q) was studied by Lin, Ni and

Takagi for the case when F (t)t
n+2
n−2 = tp, p > 1, λ > 0 is a constant function and M is a

bounded convex domain with smooth boundary in the Euclidean space Rn (see [53], [58]

and the references therein). When p is a subcritical exponent, that is, p < (n+2)/(n−2),

Lin, Ni and Takagi [53] showed that problem has a unique solution if λ is su�ciently

small. Such kind of uniqueness results about radially symmetric solution of (P ) were also

obtained by Lin and Ni in [52] when Ω is an annulus and p > 1 or when Ω is a ball and

p > (n+ 2)/(n− 2). Based on this, Lin and Ni [52] made the following conjecture.

Conjecture 0.1. (Lin - Ni [52]) Assume F (t) = 1. Then the problem (Q) admits only

the constant solution for 0 < λ small.

When Ω is the unit ball and n = 4, 5, 6, it was shown by Adimurthi and Yadava [5] that

Lin-Ni's conjecture is not true, namely, the problem (P ) has at least two radial solutions

if λ > 0 and is close to 0 (see also [17]). In the case where Ω is a non-convex domain, this

conjecture has negative answer [64]. For other cases, the conjecture is open. But, we will

show this conjecture is true for case M = Sn+.
In [16], Brezis and Li studied the problem (P ) for the case of the standard unit sphere

(Sn, gSn) and, using results due to Gigas, Ni and Nirenberg [35], they showed that the

problem (P ) admits only constant solutions provided that Lg = ∆gSn and f is such

that the function h(t) = t−
n+2
n−2 (f(t) + n(n − 2)t/4) is a decreasing function on (0,+∞).

Hence, considering the particular problem (Q) on the standard sphere, they showed that if

0 < λ < n(n−2)
4

and F is a decreasing function on (0,+∞), then the only positive solution
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to (Q) is the constant one.

Motivated by the results in [16], and by the technique applied in that work, we study

�rst the following nonlinear elliptic equations and systems:−∆g0u = f(u), u > 0 in Sn+,
∂u

∂ν
= 0 on ∂Sn+,

(1)

and 

−∆g0u1 = f1(u1, u2) in Sn+,

−∆g0u2 = f2(u1, u2) in Sn+
u1, u2 > 0 in Sn+,
∂u1

∂ν
=
∂u2

∂ν
= 0 on ∂Sn+,

(2)

where g0 is the standard metric on the hemisphere Sn+, n ≥ 3, ∂
∂ν

is the derivate with re-

spect to the outward normal vector �eld ν, and f : (0,+∞) → R,
f1, f2 : (0,+∞)× (0,+∞)→ R are continuous functions.

Our goals are to show the nonexistence of nonconstant positive solutions of (1) and

(2). This will be a consequence of the following results.

Theorem 0.1. Assume that

h1(t) := t−
n+2
n−2

(
f(t) +

n(n− 2)

4
t

)
is decreasing in (0,+∞).

Then the problem (1) admits only constant solutions.

Theorem 0.2. Let hi1 : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions de�ned by

hi1(t1, t2) := t
−n+2
n−2

i

(
fi(t1, t2) +

n(n− 2)

4
ti

)
, t1 > 0, t2 > 0.

Assume that
hi1(t1, t2) is nondecreasing in tj > 0, with i 6= j,

hi1(t1, t2)t
n+2
n−2

i is nondecreasing in ti > 0,

hi1(a1t, a2t) is decreasing in t > 0 for any ai > 0,

for i, j = 1, 2. Then the problem (2) admits only constant solutions.

To prove the theorems above we will use the moving planes method and technique

based on identities of integrals on Rn.

12



Chapter 3:

Considerable attention has been given to the study of the problem (P ) on smooth

compact Riemannian (Mn, g) when the operator Lg is replaced by a fourth order partial

di�erential operator, see e.g. [9, 31, 52]. A particular case is the Paneitz operator [60]

de�ned by

P g
2 u = ∆2

gu− divg(anRgg + bnRicg)du+
n− 4

2
Qgu,

where n > 4, Rg denotes the scalar curvature of (Mn, g), Ricg denotes the Ricci curvature

of (Mn, g), an and bn are constants dependent of n, and Qg is called Q-curvature. See [30]

for details about the properties of P g
2 . Problems such as prescribing scalar curvature and

Paneitz curvature on Sn were studied extensively in last years, see e.g., [7, 55, 21, 50, 62]

and [1, 30, 66].

On the unit sphere (Sn, gSn), n ≥ 5, with the standard metric gSn , the operator P
gSn
2

has the expression

P gSn
2 u = ∆2

gSn
u− cn∆gSnu+ dn,2u,

where cn = (n2 − 2n− 4)/2 and dn,2 = (n− 4)n(n2 − 4)/16.

We consider the following nonlinear equations related with the Paneitz operator:{
∆2
gu− cn∆gu = f(u) in Sn,

u > 0 in Sn;
(3)

and 
∆2
gu1 − cn∆gu1 = f1(u1, u2) in Sn,

∆2
gu2 − cn∆gu2 = f2(u1, u2) in Sn

u1, u2 > 0 in Sn,

(4)

where f : (0,+∞)→ R, f1, f2 : (0,+∞)× (0,+∞)→ R are continuous functions.

Our goal is to show that under conditions on f , f1 and f2, the problems above have

only constant solutions. We use the same arguments used in the proof of Theorems 0.1

and 0.2 to show the following results.

Theorem 0.3. Assume that

h2(t) := t−
n+4
n−4 (f(t) + dn,2t) is decreasing non-negative in (0,+∞) and

h2(t)t
n+4
n−4 is nondecreasing in (0,+∞).

Then the problem (3) admits constant solutions.

13



Theorem 0.4. Let hi2 : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions de�ned by

hi2(t1, t2) := t
−n+4
n−4

i (fi(t1, t2) + dn,2ti) , ti > 0.

Assume that for i, j = 1, 2: hi,2 are non-negative,

hi2(t1, t2) is nondecreasing in tj > 0, with i 6= j,

hi2(t1, t2)t
n+4
n−4

i is nondecreasing in ti > 0,

hi2(a1t, a2t) is decreasing in t > 0 for any ai > 0.

Then the problem (4) admits only constant solutions.

The results above determine the nonexistence of nonconstant solutions of (3) and (4).

Chapter 4:

When s ∈ (0, 1), Pavlov and Samko [61] showed that

A2s(u)(ζ) = Cn,−s

∫
Sn

u(ζ)− u(z)

|ζ − z|n+2s
dz +A2s(1)u(ζ), u ∈ C2(Sn), ζ ∈ Sn,

where Cn,−s =
22ssΓ(n+2s

2
)

π
n
2 Γ(1−s)

, | · | is the Euclidean distance in Rn+1 and
∫
Sn is understood as

limε→0

∫
|x−y|>ε.

We denote

Dsu(q) =: Cn,−s

∫
Sn

u(ζ)− u(z)

|ζ − z|n+2s
dz, u ∈ C2(Sn) and dn,s =:

Γ(n
2

+ s)

Γ(n
2
− s)

= A2s(1).

We will study the existence of constant solutions of the following problems:{
Dsu = f(u) in Sn,

u > 0 in Sn;
(5)

and 
Dsu1 = f1(u1, u2) in Sn,

Dsu2 = f2(u1, u2) in Sn,

u1, u2 > 0 in Sn.

(6)

Motivated by the previous results we will study the nonexistence of nonconstant pos-

itive solutions for problems (5) and (6) on some conditions of f , f1 and f42. Our main

results are:
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Theorem 0.5. Let s ∈ (0, 1). Assume that

hs(t) := t−
n+2s
n−2s (f(t) + dn,st) is decreasing in (0,+∞).

Then the problem (5) admits only constant solutions.

Theorem 0.6. Let s ∈ (0, 1) and let his : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions

de�ned by

his(t1, t2) := t
−n+2s
n−2s

i (fi(t1, t2) + dn,sti) , ti > 0.

Assume that for i, j = 1, 2: hi,s are non-negative,

his(t1, t2) is nondecreasing in tj > 0, with i 6= j,

his(t1, t2)t
n+2s
n−2s

i is nondecreasing in ti > 0,

his(a1t, a2t) is decreasing in t > 0 for any ai > 0.

Then the problem (6) admits only constant solutions.

Chapter 5:

Looking at the previous results we can conclude that if the problem (1), (3) or (5) has

nonconstant solution then the solution is negative or its sign changes. Thus, a question

arises: given the following problem

A2su = f(u) in Sn, (7)

where 0 < 2s < n and f : R→ R is a continuous function, are there nonconstant solutions

of (7)?

If f(t) = |t|
4s

n−2s t, we will see that the problem (7) is closely related to the following

problem

(−∆)sv = |v|
4s

n−2sv in Rn. (8)

If s = 1, we have (−∆)s = −∆ the classical Laplacian operator. In [35], Gidas, Ni

and Nirenberg proved that any positive solution of

−∆v = |v|
4

n−2v, in Rn, (9)

which has �nite energy is necessarily of the form

v(x) =
[n(n− 2)a2]

n−2
4

(a2 + |x− x0|2)
n−2

2

, (10)
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where a > 0, x0 ∈ Rn. Damascelli and Gladiali [26] studied the problem of nonexistence of

positive solutions for more general elliptic equations. Many people tried to show, without

success, that all the solutions which are positive somewhere, are given by (10). However,

Ding [29] showed that (9) has an unbounded sequence of solutions that are di�erent from

those given by (10).

For n > 2m, m ∈ N, Lin [51], Wei and Xu [65] used the moving plane method to

showed that all positive solutions of the polyharmonic problem

(−∆)mv = |v|
4m

n−2mv, in Rn, v ∈ D2,m(Rn), (11)

take the form

v(x) =
Cn,m

(a2 + |x− x0|2)
n−2m

2

,

where Cn,m is a constant depending of n andm. D2,m(Rn) denotes the set of real-functions

v on Rn such that v ∈ L2n/(n−2m)(Rn) and

∆m/2v ∈ L2(Rn) if m is even,

∇∆(m−1)/2v ∈ L2(Rn) if m is odd.

Later, Guo and Liu [43] generalized Wei and Xu's results. Following the same idea of [29],

Bartsch, Schneider and Weth [9] proved the existence of in�nitely many sign-changing

weak solutions of (11).

When s ∈ (0, 2n), Chen, Li and Ou [24] showed that the positive solutions of (9) are

the form

v(x) =
Cn,s

(a2 + |x− x0|2)
n−2s

2

, a ∈ R, x0 ∈ Rn, (12)

where Cn,s is a positive constant depending of n and s. In [22], they generalized their

results showing the nonexistence of positive solutions for a class of nonlocal equations.

There is a paper [33] where the author constructs sign-changing solutions to (8). Never-

theless, we believe that the construction and the computations are not clear to us, but it

was shown in [27] for 1/2 < s < 1.

Motivated by those results we will answer the question posed above. Some conditions

on f will be required to show the existence of in�nitely many solutions of (7). In particular,

the result will lead to the following.

Theorem 0.7. For 0 < s < 1, there exists an unbounded sequence {vl}l∈N in Ds,2(Rn) of

sign-changing solutions of (8).

All the chapters are related to the preprints [2, 3].
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Chapter

1
A conformal operator on the unit

sphere

Let (Sn, gSn) be the standard unit sphere equipped with standard metric gSn of dimen-

sion n > 2. Denote by [gSn ] = {ρ̃gSn ; 0 < ρ̃ ∈ C∞(Sn)} the conformal class of gSn . Graham

and Zworski [40] showed the existence of conformally covariant (pseudo) di�erential op-

erators P g
s for g ∈ [gSn ], where 0 < 2s < n and these satisfy the conformal transformation

relation (see also [19, 38])

P g
s (φ) = ρ−

n+2s
n−2sP gSn

s (ρφ), for all ρ, φ ∈ C∞(Sn) with g = ρ
4

n−2s gSn .

Branson showed [15, Theorem 2.8] that the operatorA2s := P gSn
s is the unique operator

on Sn satisfying the following properties:

(i) A2s is positive: ∫
Sn
uA2su dη > 0, for u ∈ C∞(Sn), u 6= 0.

(ii) A2s is self-adjoint:∫
Sn
uA2sw dη =

∫
Sn
wA2su dη, for u,w ∈ C∞(Sn).

(iii) A2s is an intertwining operator:

τ ∗A2s(τ
−1)∗ = |Jτ |−

n+2s
2n A2s|Jτ |

n−2s
2n ,

where τ is a conformal transformations of Sn, Jτ is the Jacobian of τ and τ ∗ denotes

17



the natural pullback

τ ∗gSn = |Jτ |
2
n gSn and τ ∗u = u ◦ τ for each u ∈ C∞(Sn).

The operator A2s can be written as

A2s =
Γ
(
B + 1

2
+ s
)

Γ
(
B + 1

2
− s
) , B =

√
−∆gSn +

(
n− 1

2

)2

, (1.1)

where Γ is the Gamma function and ∆gSn is the Laplace-Beltrami operator on (Sn, gSn).

In particular, A2 is the conformal Laplacian operator

A2su = −∆gSnu+
n(n− 2)

4
u,

and A4 is the Paneitz operator [60]

A2su = ∆2
gu− cn∆gu+ dnu,

where cn = (n2 − 2n− 4)/2 and dn = (n− 4)n(n2 − 4)/16.

Denote by Hs(Sn) the set of functions u : Sn → R such that u ∈ L2(Sn) and∫
Sn
uA2su dη < +∞.

The set Hs(Sn) will be called Sobolev space on Sn. We will see later that this name is

given by the relationship between Hs(Sn) and the Sobolev space Hs(Rn).

The sharp Sobolev inequality on (Sn, gSn) was established by Becker [11, Theorem 6]

as follows

Γ(n
2

+ s)

Γ(n
2
− s)

ω
2s
n
n

(∫
Sn
|u|2∗sdη

) 2
2∗s
≤
∫
Sn
uA2su dη, for all u ∈ Hs(Sn), (1.2)

where ωn is the volume of Sn and 2∗s = 2n/(n− 2s). Equality holds only for functions of

the form

u(ζ) = c|1− 〈a, ζ〉|, c ∈ R, a ∈ Bn+1, ζ ∈ Sn.

The operator A2s can be seen more concretely on Rn using stereographic projection

[57]. Let S be the south pole of Sn, and F−1 : Sn\{S} → Rn the stereographic projection,
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which is the inverse of

F : Rn → Sn\{S}, y 7→
(

2y

1 + |y|2
,
1− |y|2

1 + |y|2

)
.

We recall that F is a conformal di�eomorphism. More precisely, if gRn denotes the �at

euclidean metric on Rn, then the pullback of gSn to gRn satis�es

F∗gSn =
4

(1 + | · |2)2
gRn .

Moreover, the corresponding volume element is given by

dη =

(
2

1 + |y|2

)n
dy. (1.3)

For a function u : Sn → R, we may de�ne

Pu : Rn → R, (Pu)(y) := ξs(y)u(F(y)),

where

ξs(y) =

(
2

1 + |y|2

)n−2s
2

. (1.4)

Sometimes ξs is called conformal factor. From (1.3), it is easy to see that P de�nes an

isometric isomorphism between L2∗s(Sn) and L2∗s(Rn).

Let (Ḣs(Rn), ‖ · ‖s) be the completion of C∞c (Rn) smooth functions with compact

support in Rn under the norm ‖ · ‖s induce by scalar product 〈·, ·〉s, where:

(i) if s ∈ N and s even,

〈v, w〉s =

∫
Rn

∆
s
2 (v)∆

s
2 (w) dy; (1.5)

(ii) if s ∈ N and s odd,

〈v, w〉s =

∫
Rn
∇∆

s−1
2 (v)∇∆

s−1
2 (w) dy; (1.6)

(iii) if s ∈ (0, 1),

〈v, w〉s =

∫
Rn

∫
Rn

(v(x)− v(y))(w(x)− w(y))

|x− y|n+2s
dxdy, (1.7)

where ∆, ∇ are the laplacian and gradient operator on (Rn, gRn).
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The norm ‖·‖s is well de�ned for the following reason. The fractional Laplace operador
on Rn is de�ned by

(̂−∆)su := | · |2sû, u ∈ C∞c (Rn),

where s > 0 and ̂ denotes the Fourier transform. When s ∈ N, (−∆)s is the polyharmonic

operator. From Appendix and (1.15) we have that

〈v, v〉s =

∫
Rn
|(−∆)

s
2v|2dy =

∫
Rn
v(−∆)sv dy ≥ C

(∫
Rn
v2∗sdy

) 2
2∗s

for all v ∈ C∞c (Rn).

(1.8)

So, ‖ · ‖s is a norm and the Sobolev space is given by

Ḣs(Rn) = {v ∈ L2∗s(Rn); ‖v‖s < +∞}.

Let Ḣs(Sn) be the completion of the space of smooth functions C∞(Sn) under the

norm ‖ · ‖∗ induced by scalar product 〈·, ·〉∗ in C∞(Sn):

〈u,w〉∗ := 〈Pu, Pw〉s, u, w ∈ C∞(Sn). (1.9)

Then, by construction,

P is also an isometric isomorphism between(Ḣs(Sn), ‖ · ‖∗) and (Ḣs(Rn), ‖ · ‖s).

Next we note that 〈·, ·〉∗ is the quadratic form of a unique positive self adjoint operator

in L2(Sn) denoted by Ȧ2s, and

‖u‖2
∗ =

∫
Sn
uȦ2su dη, for all u ∈ C∞(Sn). (1.10)

Then, from (1.8)-(1.10) gets

(Ȧ2su) ◦ F = ξ
−n+2s
n−2s

s (−∆)s(ξs(u ◦ F)), for all u ∈ C∞(Sn).

From [57, Preposition 2.2], Ȧ2s is an intertwining operator, and from the uniqueness of

the fractional conformal operator on Sn, we have that Ȧ2s = A2s and Ḣs(Sn) = Hs(Sn).

The operator A2s is called sometimes conformal fractional operator because of the

relationship between A2s and (−∆)s. There are many problems in conformal geometry

that involve this operator, see e.g. [2, 3, 19, 38, 40, 45, 46, 47] and references therein.

20



For n > 2 and 0 < 2s < n, we consider the following problems:A2su = f(u) in Sn,

u ∈ Hs(Sn),
(1.11)

where A2s is the conformal fractional operator de�ned by (1.1), and(−∆)sv = ξ
n+2s
n−2s
s f

(
v
ξs

)
in Rn,

v ∈ Ds,2(Rn),
(1.12)

where (−∆)s is the polyharmonic operator if s ∈ N, or is the fractional Laplace operator
if s ∈ (1, 0), Ds,2(Rn) denotes the space of real-valued functions v ∈ L2∗s(Rn) whose energy

associated to (−∆)s is �nite, i.e.,

‖v‖2
s := 〈v, v〉s < +∞. (1.13)

We use the scalar products 〈·, ·〉∗ and 〈·, ·〉s to de�ne solutions of (1.11) and (1.12).

De�nition 1.1. We say that

(i) u ∈ Hs(Sn) is a weak solution of (1.11) if

〈u, ϕ〉∗ =

∫
Sn
f(u)ϕ dη, for all ϕ ∈ Hs(Sn);

(ii) v ∈ Ds,2(Rn) is a weak solution of (1.12) if

〈v, ψ〉s =

∫
Rn
ξ
n+2s
n−2s
s f

(
v

ξs

)
ψ dy for all ψ ∈ Ds,2(Rn).

The following lemma constitutes the bridge between (1.11) and (1.12). From now on,

solution means a solution in the weak sense.

Lemma 1.1. Every solution u of (1.11) corresponds to a solution v of (1.12) and

‖u‖∗ = ‖v‖s. (1.14)

Proof. Let u ∈ Hs(Sn) be a solution of (1.11). Considere v(y) = Pu(y). We shall prove
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�rst that v ∈ Ds,2(Rn). We have from (1.9) and (1.10) that

‖v‖2
s =

∫
Sn
uA2su dη < +∞.

By the isometry of P and from Sobolev inequality in Sn (1.2),∫
Rn
|v|2∗sdy =

∫
Sn
|u|2∗s dη

≤ C

∫
Sn
uA2su dη < +∞.

Thus v ∈ Ds,2(Rn) and (1.14) clearly follows.

Now, we will prove that v is solution of (1.12). Let ϕ ∈ Ds,2(Rn). Then

(ϕ/ξs) ◦ F−1 ∈ Hs(Sn) and∫
Rn
ξ
n+2s
n−2s
s f

(
v

ξs

)
ϕ dy =

∫
Rn
f(u ◦ F)

ϕ

ξs

(
2

1 + |y|2

)n
dy

=

∫
Sn
f(u)

(
ϕ

ξs
◦ F−1

)
dη

=

∫
Sn
A2svP

−1ϕ dη

= 〈u, P−1ϕ〉∗ = 〈Pu, ϕ〉s
= 〈v, ϕ〉s

The Lemma 1.1 also implies that Ḣs(Rn) coincides withDs,2(Rn) and there is a relation

between the sharp Sobolev inequality on (Sn, gSn) and (Rn, gRn), which is (see [25])

Γ(n
2

+ s)

Γ(n
2
− s)

ω
2s
n
n

(∫
Rn
|v|2∗sdη

) 2
2∗s
≤
∫
Rn
v(−∆)sv dy, for all v ∈ Ds,2(Rn). (1.15)

Equality holds only for functions of the form

v(y) :=
c

(c2 + |y − b|2)
n−2s

2

, c ∈ R, b ∈ Rn.
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Now we analyze the case for systems. We consider
A2su1 = f1(u1, u2) in Sn,

A2su2 = f2(u1, u2) in Sn,

u1, u2 ∈ Hs(Sn),

(1.16)

and 
(−∆)sv1 = v

n+2s
n−2s

1 f1(v1, v2) in Rn,

(−∆)sv2 = v
n+2s
n−2s

2 f2(v1, v2) in Rn,

v1, v2 ∈ Ds,2(Rn).

(1.17)

Based on the case for one equation, we can de�ne a solution pair of (1.16) and (1.17), and

establish the relation bewteen them.

De�nition 1.2. We say that

(i) (u1, u2) ∈ Hs(Sn)×Hs(Sn) is a weak solution pair of (1.16) if

〈u1, ϕ1〉∗ =

∫
Sn
f1(u1, u2)ϕ1 dη and 〈u2, ϕ2〉∗ =

∫
Sn
f2(u1, u2)ϕ2 dη,

for all (ϕ1, ϕ2) ∈ Hs(Sn)×Hs(Sn);

(ii) (v1, v2) ∈ Ds,2(Rn)×Ds,2(Rn) is a weak solution pair of (1.17) if

〈v1, ψ1〉s =

∫
Rn
ξ
n+2s
n−2s
s f1

(
v1

ξs
,
v2

ξs

)
ψ1 dy and 〈v2, ψ2〉s =

∫
Rn
ξ
n+2s
n−2s
s f2

(
v1

ξs
,
v2

ξs

)
ψ2 dy ,

for all (ψ1, ψ2) ∈ Ds,2(Rn)×Ds,2(Rn).

The following result is analogous to Lemma 1.1

Lemma 1.2. Every solution pair (u1, u2) of (1.16) corresponds to a solution pair of (1.17)

and

‖u1‖∗ = ‖v1‖s and ‖u2‖∗ = ‖v2‖s.

Proof. Consider v1(y) = Pu1(y) and v2(y) = Pu2(y), where y ∈ Rn. The rest of the proof

is very similar to the proof of Lemma 1.1.

The Lemmas 1.1 and 1.2 will be of great help in the study of the next chapters.
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Chapter

2
Nonexistence of nonconstant positive

solutions for Neumann problems

2.1 Case for an equation

In this section, we will study the following problem−∆g0u = f(u), u > 0 in Sn+,
∂u

∂ν
= 0 on ∂Sn+,

(2.1)

where Sn+ is the hemisphere provided with the standard metric g0, n > 2, ∆g0 is the

Laplace-Beltrami operator on (Sn+, g0), ∂u
∂ν

is the normal derivative of u with respect to

the unit exterior normal vector �eld ν of the boundary ∂Sn+, and f : (0,∞) → R is a

continuous function.

Let H1(Sn+) be the completion of the space of smooth functions C∞(Sn+) under the

norm ‖ · ‖∗,+ induced for by scalar product

〈u,w〉∗,+ :=
n(n− 2)

4

∫
Sn+
uw dη +

∫
Sn+
g0(∇Sn+u,∇Sn+w) dη, u, w ∈ C∞(Sn+),

where ∇Sn+ is the gradient on Sn+.

De�nition 2.1. We say that u ∈ C(Sn+) ∩H1(Sn+) is a solution of (2.1) if

〈u, ϕ〉∗,+ =

∫
Sn+

[
f(u)ϕ+

n(n− 2)

4
uϕ

]
dη, for all ϕ ∈ H1(Sn+). (2.2)
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If the solution u of (2.1) is smooth, then we can write (2.2) as∫
Sn+
ϕA2u dη =

∫
Sn+

[
f(u)ϕ+

n(n− 2)

4
uϕ

]
dη, for all ϕ ∈ H1(Sn+),

where A2 is de�ned by (1.1).

Some conditions on f for (2.1) are motived by the study of the following problem

−∆gSnv = f(v), v > 0 in Sn. (2.3)

For f(t) = tp − λt with 1 < p ≤ (n+ 2)/(n− 2), Gidas and Spruck [36] showed that only

solutions of (2.3) are v ≡ λ1/(p−1) provided that 0 < λ < n(n−2)/4. For p = (n+2)/(n−2)

and λ = n(n− 2)/4, the solutions of (2.3) are

u(ζ) =

(
n(n− 2)

4
(β2 − 1)

)n−2
4

(β − cos |ζ0 − ζ|Sn)
2−n

2 , ζ ∈ Sn

where β > 1, | · |Sn is the distance in Sn, ζ0 ∈ Sn. On the other hand, Bandle and Wei [8]

showed that there are nonconstant solution of (2.3) as λ → +∞. All these authors used

some remarkable identities on Sn to conclude their results while Brezis and Li [16] used

the moving planes method to deduce the following result.

Theorem 2.1. (Brezis-Li [16]) Assume that f is smooth and

h1(t) := t−
n+2
n−2

(
f(t) +

n(n− 2)

4
t

)
is decreasing on (0,+∞).

Then any solution of (2.3) is constant.

In the proof of Theorem 2.1 was also used some results of symmetry and related

properties via the maximum principle [35]. So, the smoothness of f and the solution

are necessary. However, we will use the method of moving planes and some techniques

based on inequalities of integrals to show the following main result without needing the

smoothness of f .

Theorem 2.2. Assume that

h1(t) := t−
n+2
n−2

(
f(t) +

n(n− 2)

4
t

)
is decreasing in (0,+∞).

Then the problem (2.1) admits only constant solutions.
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Example 2.1. Consider the function

f(t) = tp − λt, p > 1, λ > 0.

Then (2.1) becomes −∆gu = up − λu, u > 0 in Sn+,
∂u

∂ν
= 0 on ∂Sn+.

(2.4)

The following result guarantees that the Li-Ni's conjecture is true for the case hemi-

sphere Sn+.

Corollary 2.1. Assume that p ≤ (n + 2)/(n − 2) and λ ≤ n(n − 2)/4, and at least one

of these inequalities is strict. Then the only solution of (2.4) is the constant u ≡ λ1/(p−1).

In order to prove the Theorem 2.2 we will study a problem in Rn
+ and the symmetry

of its solutions. We use the stereographic projection to formulate an equivalent problem

with (2.1).

Let ζ be an arbitrary point on ∂Sn+, which we will rename the south pole S. Let

F−1 : Sn+\{S} → Rn
+ be the stereographic projection, which is the inverse of

F(y) =

(
2y

1 + |y|2
,
1− |y|2

1 + |y|2

)
, y ∈ Rn.

We have that F is a conformal di�eomorphism and

F∗g0 =
4

(1 + | · |2)2
gRn .

Let u be a solution of (2.1). Consider v(y) := ξ1(y)u(F(y)), y ∈ Rn
+. Then

v ∈ L
2n
n−2 (Rn

+) ∩ L∞(Rn
+). (2.5)

From Appendix we have that if u is smooth, then v satis�es the problem
−∆v = h1

(
v

ξ1

)
v
n+2
n−2 , v > 0 in Rn

+,

∂v

∂yn
= 0 on ∂Rn

+.

(2.6)

We use the moving plane method to prove symmetry with respect to the axis yn of

the solutions of problem (2.6). We will also use some techniques based on inequalities

of integrals. These techniques are used in works concerning Liouville type theorems for
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elliptic equation and system with general nonlinearity (see e.g. [6, 12, 26, 42, 43, 49, 68, 67]

and references therein), but those techniques were originally based on the ideas of Terracini

[63]. On the other hand, this method was also widely used in integral equation and

system that are closely related to the fractional di�erential equation and system, see

e.g., [22, 24, 23, 34, 69] and references therein. In those works, the authors use the

Kelvin transform to show results about the nonexistence of solutions. However, the Kelvin

transform does not contribute anything to our purposes. So, we will use the geometry of

Sn+ or Sn.

Lemma 2.1. Let u be a smooth solution of (2.1). Under the assumptions of Theorem

2.2, v = ξ1(u ◦ F) is symmetric with respect to the axis yn.

Proof. Given t ∈ R we set

Qt = {y ∈ Rn
+; y1 < t}; Ut = {y ∈ Rn

+; y1 = t},

where yt := It(y) := (2t − y1, y
′) is the image of a point y = (y1, y

′) under the re�ection

through the hyperplane Ut. We de�ne the re�ected function by vt(y) := v(yt). The proof

is carried out in three steps. In the �rst step we show that

Λ := inf{t > 0; v ≥ vµ in Qµ, ∀µ ≥ t}

is a number, that is Λ < +∞, and in fact v ≥ vµ in Qµ,∀µ > Λ. The second step consists

in proving that if Λ > 0 then v ≡ vΛ in QΛ. In the third step we conclude that Λ = 0,

which implies the symmetry of v.

Step 1. Λ < +∞.

Assume by an argument of contradiction that exists a t > 0, such that vt(y) > v(y)

for some y ∈ Qt. Since |y| < |yt|, we have

v(y)

ξ1(y)
<
vt(y)

ξt1(y)
,
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and

−∆(vt − v) = h1

(
vt

ξt1

)
(vt)

n+2
n−2 − h1

(
v

ξ1

)
v
n+2
n−2

≤ h1

(
vt

ξt1

)
(vt)

n+2
n−2 − h1

(
vt

ξt1

)
v
n+2
n−2

= h1

(
vt

ξt1

)
((vt)

n+2
n−2 − v

n+2
n−2 )

≤ n+ 2

n− 2
max

{
h1

(
vt

ξt1

)
, 0

}
(vt)

4
n−2 (vt − v)

= C(vt)
4

n−2 (vt − v), (2.7)

where the last inequality is a consequence of h1(v
ξ
) ∈ L∞(Rn

+) and C be a constant. By

the fact of that v(y) → 0 as |y| → ∞, we can take (vt − v − ε)+, where + denotes the

positive part of function, as a test function with compact support in Qt, for ε > 0 and

small. From (2.7) we obtain∫
Qt

|∇(vt − v − ε)+|2dy ≤ C

∫
Qt

(vt)
4

n−2 (vt − v)(vt − v − ε)+dy.

By (2.5), the right hand side of the above inequality is limited by the integral of a function

that does not dependent of ε. Indeed, if (vt(y) − v(y) − ε)+ > 0 for some y ∈ Qt, then

vt(y) > v(y) and

(vt)
4

n−2 (vt − v)(vt − v − ε)+ ≤ (vt)
2n
n−2 ∈ L1(Rn

+).

Using Fatou's lemma, Hölder's and Sobolev's inequalities, and Dominate Convergence
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Theorem, we have∫
Qt

[(vt − v)+]
2n
n−2dy ≤ lim inf

ε→0

∫
Qt

[(vt − v − ε)+]
2n
n−2dy

≤ lim inf
ε→0

C

(∫
Qt

|∇(vt − v − ε)+|2dy
) n

n−2

≤ C lim inf
ε→0

(∫
Qt

(vt)
4

n−2 (vt − v)(vt − v − ε)+dy

) n
n−2

= C

(∫
Qt

(vt)
4

n−2 [(vt − v)+]2dy

) n
n−2

≤ C

[(∫
Qt

(vt)
2n
n−2dy

) 2
n
(∫

Qt

[(vt − v)+]
2n
n−2dy

)n−2
n

] n
n−2

≤ ϕ(t)

(∫
Qt

[(vt − v)+]
2n
n−2dy

)
, (2.8)

where

ϕ(t) = C

(∫
Qt

(vt)
2n
n−2dy

) 2
n−2

.

Since v
2n
n−2 ∈ L1(Rn

+), then limt→+∞ ϕ(t) = 0. Thus, choosing t1 > 0 large enough, in a

such way that ϕ(t1) < 1, we obtain from (2.8) that∫
Qt

[(vt − v)+]
2n
n−2dy = 0, for all t > t1.

Therefore, (vt − v)+ ≡ 0, for t > t1. Which is a contradiction with our assumption.

Step 2. If Λ > 0 then v ≡ vΛ in QΛ.

Since the solution is continuous, by the de�nition of Λ we get v ≥ vΛ and ξ1 > ξΛ
1 in

QΛ. Then suppose that exists a point y0 ∈ QΛ such that v(y0) = vΛ(y0). Then, there is

r > 0 su�ciently small, so that

v

ξ1

<
vΛ

ξΛ
1

in B(y0, r).
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Hence, for y ∈ B(y0, r),

−∆(v(y)− vΛ(y)) = h1

(
v

ξ1

)
v
n+2
n−2 (y)− h1

(
vΛ

ξΛ
1

)
(vΛ)

n+2
n−2

≥ h1

(
vΛ

ξΛ
1

)
(v

n+2
n−2 (y)− (vΛ)

n+2
n−2 (y))

≥ −C(v(y)− vΛ(y)), (2.9)

where C is a non-negative constant. The last inequality is a consequence of the limitation

in Rn of v, vΛ and h1(v
Λ

ξΛ ). From Maximum Principle [42, Proposition 3.7], we obtain

v ≡ vΛ in B(y0, r). As the set {y ∈ QΛ; v(y) = vΛ(y)} is open and closed in QΛ, then

v ≡ vΛ in QΛ.

Now, assume that v > vΛ in QΛ. We can choose a compact K ⊂ QΛ and a number

δ > 0 satisfying ∀t ∈ (Λ− δ,Λ) that K ⊂ Qt and

ϕ(t) = C

(∫
Qt\K

(vt)
2n
n−2dy

) 2
n−2

<
1

2
. (2.10)

Moreover, there exists 0 < δ1 < δ, such that

v > vt, in K ∀t ∈ (Λ− δ1,Λ). (2.11)

Thus, we get that (vt − v)+ ≡ 0 on K. Using (2.10) and following as in Step 1, since the

integrals are over Qt\K, we see that (vt − v)+ ≡ 0 in Qt\K. By (2.11) we get v > vt in

Qt for all t ∈ (Λ− δ1,Λ), contradicting the de�nition of Λ.

Step 3. Symmetry.

If Λ > 0, then

h1

(
v

ξ1

)
= − ∆v

v
n+2
n−2

= − ∆vΛ

(vΛ)
n+2
n−2

= h1

(
vΛ

ξΛ
1

)
= h1

(
v

ξΛ
1

)
< h1

(
v

ξ1

)
in QΛ.

This is a contradiction. Thus Λ = 0. By continuity of v, we have v0(y) ≤ v(y) for

all y ∈ Q0. We can also perform the moving plane procedure from the left and �nd a

corresponding Λ′. An analogue to Step 1 and Step 2 implies that Λ′ = 0. Then we get

v0(y) ≥ v(y) for y ∈ Q0. These inequalities say us that v is symmetric with respect to

U0. Therefore, if Λ = Λ′ = 0 for all directions that are vertical to the yn direction, then

v is symmetric with respect to the axis yn.
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Now, we will study the symmetry of the solution in the hemisphere. In others words,

we go to analyse the symmetry in the meridians. In that context, the next result is a �rst

crucial step.

Lemma 2.2. Let u be a smooth solution of (2.1). Under the assumptions of Theorem

2.2, we have that for each r ∈ [0, π/2], u is constant in

Ar = {ζ ∈ Sn+; r = inf{|ζ − ζ0|Sn ; ζ0 ∈ ∂Sn+}}, (2.12)

where | · |Sn is the distance in Sn.

Proof. Let ζ1, ζ2 ∈ Ar, r > 0. Then exists a ζ0 ∈ ∂Sn+ such that |ζ1 − ζ0|Sn = |ζ2 − ζ0|Sn .
Let F−1 : Sn+\{ζ0} → Rn

+ be the stereographic projection. Then F−1(ζ1) and F−1(ζ2) are

symmetrical points with respect to the axis yn. We de�ne v = ξ1(u ◦ F) in Rn
+. From

Lemma 2.1 we obtain that v is symmetric with respect to the axis yn. By the de�nition

of v and the symmetry of ξ1, we have u(ζ1) = u(ζ2). Therefore u is constant in Ar for

each r ∈ (0, π/2]. By continuity of u, we have u is constant in A0.

Proof of Theorem 2.2

Let u be the solution of problem 2.1. We take an arbitrary point p ∈ ∂Sn+, and let

F−1 : Sn+\{p} → Rn
+ be the stereographic projection. We consider the equation (2.1),

where v = ξ1(u ◦ F) in Rn
+.

De�ne

v∗(y) =

v(y′, yn), if yn ≥ 0,

v(y′,−yn), if yn < 0,

where y = (y′, yn) ∈ Rn
+. Then v

∗ ∈ C1(Rn) is a weak solution of problem

−∆v∗ = h

(
v∗

ξ1

)
v∗

n+2
n−2 , v∗ ≥ in Rn. (2.13)

We can apply Lemma 2.1 for v∗ in whole space Rn to get radial symmetry in Rn
+.

Then we obtain that v∗ is radially symmetric, which implies

v∗(y) = v(y) = C for all y ∈ Rn
+ such that |y| = 1, (2.14)

where C is a constant.

On the other hand, the set F({y ∈ Rn
+; |y| = 1}) intersects perpendicularly to Ar for

any r ∈ (0, π/2]. Therefore, from (2.14) we have that u is constant in

F({y ∈ Rn
+; |y| = 1}), and from Lemma 2.2, we have that u is constant in Sn+. �
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Remark 2.1. We can remove the condition on the smoothness of f in the Theorem 2.1

and have the same conclution.

In fact, from Lemma 1.1 gets that for each solution u of (2.3), the function v = ξ1(u◦F)

is the solution of

−∆v = h1

(
v

ξ1

)
v
n+2
n−2 , v > 0 in Rn,

From Lemma 2.1 we have that v is radially symmetric with respect to origin. Then u is

constant in each parallel F({y ∈ Rn; |y| = r}), r > 0. If we consider the stereographic

projection F̃ in relation to a point on the equator, then we can use the same argument

to show that u is constant in each meridian of sphere Sn. Thus, u is constant in Sn.

Example 2.2. Consider the function

f(t) =

−βt, if 0 < t < (λ− β)
1
p−1 ,

tp − λt, if(λ− β)
1
p−1 ≤ t,

where p > 1, λ, β > 0. The function f is not smooth in (λ− β)1/(p−1) if λ− β > 0. Then

(2.3) becomes

−∆gSnu =

−βu, if 0 < u < (λ− β)
1
p−1 ,

up − λu, if (λ− β)
1
p−1 ≤ u.

(2.15)

Corollary 2.2. Assume that p ≤ (n + 2)/(n − 2) and λ ≤ n(n − 2)/4, and at least one

of these inequalities is strict. If λ− β > 0 then the only positive solution of (2.15) is the

constant u ≡ λ1/(p−1).

2.2 Case for systems

The study of systems arise naturally as a generalization of the study of an equation,

see e.g, [44, 42, 23, 67].

In this section we study the following system

−∆g0u1 = f1(u1, u2) in Sn+,

−∆g0u2 = f2(u1, u2) in Sn+
u1, u2 > 0 in Sn+,
∂u1

∂ν
=
∂u2

∂ν
= 0 on ∂Sn+,

(2.16)

where g0 is the standard metric on the hemisphere Sn+, n ≥ 3, ∆g0 is the Laplace-Beltrami
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operator on (Sn+, g0), ∂
∂ν

is the derivate with respect to the outward normal vector �eld ν,

and f1, f2 : (0,+∞)× (0,+∞)→ R are continuous functions.

Analogously to Theorem 2.2, under some conditions on f1 and f2 we have our next

main result.

Theorem 2.3. Let hi1 : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions de�ned by

hi1(t1, t2) := t
−n+2
n−2

i

(
fi(t1, t2) +

n(n− 2)

4
ti

)
, t1 > 0, t2 > 0.

Assume that
hi1(t1, t2) is nondecreasing in tj > 0, with i 6= j,

hi1(t1, t2)t
n+2
n−2

i is nondecreasing in ti > 0,

hi1(a1t, a2t) is decreasing in t > 0 for any ai > 0,

for i, j = 1, 2. Then the problem (2.16) admits only constant solutions.

Example 2.3. An example for system is the case

f1(t1, t2) = tα1
1 t

α2
2 − λ1t1, f2(t1, t2) = tβ1

1 t
β2

2 − λ2t2,

where αi, βi, λi are positive constants for i = 1, 2 with α1 > 1 and β2 > 1. So that (2.16)

becomes 

−∆g0u1 = uα1
1 u

α2
2 − λ1u1 in Sn+,

−∆g0u2 = uβ1

1 u
β2

2 − λ2u2 in Sn+,

u1, u2 > 0 in Sn+,
∂u1

∂ν
=
∂u2

∂ν
= 0 on ∂Sn+,

(2.17)

Corollary 2.3. Assume that α1 + α2 ≤ (n + 2)/(n − 2), β1 + β2 ≤ (n + 2)/(n − 2),

λ1 ≤ n(n − 2)/4 and λ2 ≤ n(n − 2)/4, and at least two of these inequalities are strict.

Then

a) if (α1 − 1)(β2 − 1) 6= α2β1, then the problem (2.17) has a unique positive solution

pair (u1, u2),

b) if (α1 − 1)(β2 − 1) = α2β1, then the problem (2.17) has no positive solution pair

(u1, u2) provided that λβ2−1
1 6= λα2

2 .

Similarly to Section 2.1, we consider the functions v1, v2 de�ned on Rn
+ by

v1(y) = ξ1(y)u1(F(y)), v2(y) = ξ1(y)u2(F(y)),
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where ξ1 is de�ned in (1.4), (u1, u2) is the solution of (2.16) and F is the stereographic

projection. Then we have that

v1, v2 ∈ L
2n
n−2 (Rn

+) ∩ L∞(Rn
+). (2.18)

From Appendix we have

−∆v1 = h11

(
v1

ξ1

,
v2

ξ1

)
v
n+2
n−2

1 in Rn
+,

−∆v2 = h21

(
v1

ξ1

,
v2

ξ1

)
v
n+2
n−2

2 in Rn
+,

v1, v2 > 0 in Rn
+,

∂v1

∂yn
=
∂v2

∂yn
= 0 on ∂Rn

+.

(2.19)

To show the Theorem 2.2, we will use the same arguments that were used in the proof

of the Theorem 2.2.

Lemma 2.3. Let (u1, u2) be a solution of (2.16). Then v1 = ξ1(u1◦F) and v2 = ξ1(u2◦F)

are symmetric with respect to the axis yn.

Proof. For any t ∈ R, let Qt, yt and Ut as in the proof of Theorem 2.2. Consider the

re�ected functions vt1(y) := v1(yt), and vt2 := v2(yt). Finally, let

Λ := inf{t > 0; v1 ≥ vµ1 , v2 ≥ vµ2 in Qµ, ∀µ ≥ t}.

As before, the proof is carried out in three steps.

Step 1. Λ < +∞.

Assume, again by an argument of contradiction that exists t > 0 such that

vt1(y) > v1(y) for some y ∈ Qt. Since |y| < |yt|, we have, v1

ξ1
<

vt1
ξt1
.
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If v2 > vt2, then by conditions on hi1 we have

−∆(vt1 − v1) = h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
v1

ξ1

,
v2

ξ1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
v1

ξ1

,
vt2
ξ1

)
v
n+2
n−2

1

= h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
v1

ξ1

,
vt2v1

ξ1v1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
vt1
ξt1
,
vt2v

t
1

ξt1v1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
vt1
ξt1
,
vt2
ξt1

)
v
n+2
n−2

1 .

That is

−∆(vt1 − v1) ≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
((vt1)

n+2
n−2 − v

n+2
n−2

1 )

≤ C(vt1)
4

n−2 max

{
h11

(
vt1
ξt1
,
vt2
ξt1

)
, 0

}
(vt1 − v1)

≤ C(vt1)
4

n−2 (vt1 − v1), (2.20)

where C is a non-negative constant. If vt2 > v2, then
vt1v

t
2

ξt1
> v1v2

ξ1
and

−∆(vt1 − v1) = h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
v1

ξ1

,
v2

ξ1

)
v
n+2
n−2

1

= h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
v1v2

ξ1v2

,
v2v1

ξ1v1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
vt1v

t
2

ξt1v2

,
vt2v

t
1

ξt1v1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
vt1v

t
2

ξt1v2

,
vt2
ξt1

)
v
n+2
n−2

1

≤ h11

(
vt1
ξt1
,
vt2
ξt1

)
(vt1)

n+2
n−2 − h11

(
vt1
ξt1
,
vt2
ξt1

)(
v2

vt2

)n+2
n−2

v
n+2
n−2

1

= (vt2)−
n+2
n−2h11

(
vt1
ξt1
,
vt2
ξt1

)
((vt1v

t
2)

n+2
n−2 − (v1v2)

n+2
n−2 ).
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Thus,

−∆(vt1 − v1)

≤ C(vt1)
4

n−2 max

{
h11

(
vt1
ξt1
,
vt2
ξt1

)
, 0

}
[(vt1 − v1) + vt1(vt2)−1(vt2 − v2)]

≤ C(vt1)
4

n−2 [(vt1 − v1) + (u1 ◦ F)t((u2 ◦ F)t)−1(vt2 − v2)]

≤ C(vt1)
4

n−2 [(vt1 − v1) + (vt2 − v2)],

(2.21)

where the last inequality is a consequence of (u1 ◦ F)t((u2 ◦ F)t)−1 ∈ L∞(Rn) and C

is a non-negative constant. Since v1(y) → 0 as |y| → ∞, then for ε > 0, we can take

(vt1 − v1 − ε)+ as a test function with compact support in Qt for (2.20) and (2.21). Then

we obtain∫
Qt

|∇(vt1 − v1 − ε)+|2dy ≤ C

∫
Qt

(vt1)
4

n−2 [(vt1 − v1) + (vt2 − v2)+](vt1 − v1 − ε)+dy

By (2.18), we obtain that the right hand side of the above inequality is limited by the

integral of a function independent of ε. In fact, if

(vt1(y)− v1(y)− ε)+ > 0 and (vt2(y)− v2(y))+ > 0 for some y ∈ Qt,

then vt1(y) > v1(y), vt2(y) > v2(y) and

(vt1)
4

n−2 [(vt1 − v1) + (vt2 − v2)+](vt1 − v1 − ε)+ ≤ 4(vt1)
n+2
n−2 (vt1 + vt2) ∈ L1(Rn

+).

Using Fatou's lemma, Hölder's and Sobolev's inequalities, and dominate convergence
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theorem, we have

(∫
Qt

[(vt1 − v1)+]
2n
n−2dy

)n−2
n

≤ lim inf
ε→0

(∫
Qt

[(vt1 − v1 − ε)+]
2n
n−2dy

)n−2
n

≤ lim inf
ε→0

C

∫
Qt

|∇(vt1 − v1 − ε)+|2dy

≤ C lim inf
ε→0

∫
Qt

(vt1)
4

n−2 [(vt1 − v1) + (vt2 − v2)+](vt1 − v1 − ε)+dy

= C

∫
Qt

(vt1)
4

n−2 [(vt1 − v1) + (vt2 − v2)+](vt1 − v1)+dy

≤ C

∫
Qt

(vt1)
4

n−2{[(vt1 − v1)+]2 + (vt2 − v2)+(vt1 − v1)+}dy

≤ Cψ1(t)

[(∫
Qt

[(vt1 − v1)+]
2n
n−2dy

)n−2
n

+

(∫
Qt

[(vt2 − v2)+]
2n
n−2dy

)n−2
2n
(∫

Qt

[(vt1 − v1)+]
2n
n−2dy

)n−2
2n

]
,

where

ψ1(t)
n
2 =

∫
Qt

(vt1)
2n
n−2dy.

This implies that

(1− Cψ1(t))

(∫
Qt

[(vt1 − v1)+]
2n
n−2dy

)n−2
2n

≤ Cψ1(t)

(∫
Qt

[(vt2 − v2)+]
2n
n−2dy

)n−2
2n

. (2.22)

Similarly, we have

(1− Cψ2(t))

(∫
Qt

[(vt2 − v2)+]
2n
n−2dy

)n−2
2n

≤ Cψ2(t)

(∫
Qt

[(vt1 − v1)+]
2n
n−2dy

)n−2
2n

, (2.23)

where

ψ2(t)
n
2 =

∫
Qt

(vt2)
2n
n−2dy.

Since v1, v2 ∈ L
2n
n−2s (Rn), we obtain

lim
t→∞

ψ1(t) = lim
t→∞

ψ2(t) = 0.
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Then, we can choose a t1 ∈ R, such that

Cψ1(t) <
1

2
and Cψ2(t) <

1

2
, for all t > t1, (2.24)

and from (2.22) - (2.24), we have∫
Qt

[(vt1 − v1)+]
2n
n−2dy = 0,

∫
Qt

[(vt2 − v2)+]
2n
n−2dy = 0 for all t > t1.

Therefore, (vt1− v1)+ ≡ 0 and (vt2− v2)+ ≡ 0 in Qt for all t > t1. Which is a contradiction

with our assumption. Therefore, Λ < +∞.

Step 2. If Λ > 0 then v1 ≡ vΛ
1 or v2 ≡ vΛ

2 in QΛ.

By de�nition of Λ and the continuity of solutions, we get v1 ≥ vΛ
1 and v2 ≥ vΛ

2 in QΛ.

Then 
−∆(v1 − vΛ

1 ) = h11

(
v1

ξ1
, v2

ξ1

)
v
n−2
n+2

1 − h11

(
vΛ
1

ξΛ
1
,
vΛ
2

ξΛ
1

)
(vΛ

1 )
n−2
n+2 ≥ 0 in QΛ,

−∆(v2 − vΛ
2 ) = h21

(
v1

ξ1
, v2

ξ1

)
v
n−2
n+2

2 − h11

(
vΛ
1

ξΛ
1
,
vΛ
2

ξΛ
1

)
(vΛ

2 )
n−2
n+2 ≥ 0 in QΛ,

v1 − vΛ
1 ≥ 0, v2 − vΛ

2 ≥ 0 in QΛ.

From Maximum Principle, we obtain either vi ≡ vΛ
i in QΛ for some i = 1, 2 or vi > vΛ

i

in QΛ for all i = 1, 2. Suppose v1 > vΛ
1 and v2 > vΛ

2 in QΛ. We can choose a compact

K ⊂ QΛ and a number δ > 0 such that ∀t ∈ (Λ− δ,Λ) we have K ⊂ Qt and

Cψi(t) =

(∫
Qt\K

(vti)
2n
n−2dy

)
<

1

4
for i = 1, 2. (2.25)

On the other hand, there exists 0 < δ1 < δ, such that

v1 > vt1 and v2 > vt2 in K, ∀t ∈ (Λ− δ1,Λ). (2.26)

Using (2.25) and following as in Step 1, since the integrals are over Qt\K, we see that

(vti − vi)+ ≡ 0 in Qt\K for i = 1, 2. By (2.26) we get v1 > vt1 and v2 > vt2 in Qt for all

t ∈ (Λ− δ1,Λ), contradicting the de�nition of Λ.

Step 3. Symmetry.

Suppose Λ > 0. From Step 2 we can assume v1 = vΛ
1 . Then

h11

(
v1

ξ1

,
v2

ξ1

)
= −∆v1

v
n+2
n−2

1

= − ∆vΛ
1

(vΛ
1 )

n+2
n−2

= h11

(
vΛ

1

ξΛ
1

,
vΛ

2

ξΛ
1

)
≤ h11

(
v1

ξΛ
1

,
v2

ξΛ
1

)
< h11

(
v1

ξ1

,
v2

ξ1

)
.
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This is a contradiction. Thus Λ = 0. By continuity of v1 and v2, we have v0
1(y) ≤ v1(y)

and v0
2(y) ≤ v2(y) for all y ∈ Q0 . We can also perform the moving plane procedure from

the left and �nd a corresponding Λ′. An analogue of Step 1 and Step 2 we can show

that Λ′ = 0. Then we get v0
1(y) ≥ v1(y) and v0

2(y) ≥ v1(y) for y ∈ Q0. This fact and

the above inequality imply that v1 and v2 are symmetric with respect to U0. Therefore,

if Λ = Λ′ = 0 for all directions that are vertical to the yn direction, then v1 and v2 are

symmetric with respect to the axis yn.

Lemma 2.4. Let (u1, u2) be a solution of (2.16). Then for each r ∈ [0, π/2], we have that

u1 = u1(r) and u2 = u2(r) in Ar, where Ar is de�ned by (2.12).

Proof. The arguments for the proof are the same as the Lemma 2.2.

Proof of Theorem 2.2.

Let (u1, u2) be the solution of problem (2.16). We take a p ∈ ∂Sn+ and let F−1 :

Sn+\{p} → Rn
+ be the stereographic projection. We consider the problema (2.19), where

v1 = ξ1(u1 ◦ F) and v2 = ξ1(u2 ◦ F) in Rn
+. Denote y = (y′, yn) ∈ Rn

+, and de�ne

v∗1(y) =

v1(y′, yn) if yn ≥ 0,

v1(y′,−yn) if yn < 0,
and v∗2(y) =

v2(y′, yn) if yn ≥ 0,

v2(y′,−yn) if yn < 0.

Then, (v∗1, v
∗
2) ∈ C1(Rn)× C1(Rn) are weak solutions of the problem

−∆v∗1 = h11

(
v1

ξ1
, v2

ξ1

)
in Rn,

−∆v∗2 = h21

(
v1

ξ1
, v2

ξ1

)
in Rn,

v∗1, v
∗
2 > 0 in Rn.

Applying Lemma 2.3 for (v∗1, v
∗
2) in the whole space Rn, we obtain that v∗1 and v∗2 are

radially symmetrical. This implies

v∗1(y) = v1(y) = C1 and v∗2(y) = v2(y) = C2, for all y ∈ Rn
+ such that |y| = 1, (2.27)

where C1 and C2 are constant.

On the other hand F({y ∈ Rn
+; |y| = 1}) intersects perpendicularly to Ar for all

r ∈ (0, π/2). Therefore, from (2.27) we have that u1 and u2 are constant in F({y ∈
Rn

+; |y| = 1}) and from Lemma 2.4, we have that u1 and u2 are constant in Sn+. �
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Chapter

3
Problems on the sphere involving the

Paneitz operator

3.1 Constant solutions for an equation

In this section we study the following problem

∆2
gSn
u− cn∆gSnu = f(u), u > 0 in Sn, (3.1)

where gSn is the standard metric on Sn, n ≥ 5, cn = (n2 − 2n− 4) and f : (0,∞)→ R is

a continuous function.

We recall that

A4 = ∆2
gSn
− cn∆gSn + dn,2 in C∞(Sn),

where dn,2 = (n− 4)(n2 − 4)/16.

Following the results of Chapter 1 we have our main result for this section.

Theorem 3.1. Assume that

h2(t) := t−
n+4
n−4 (f(t) + dn,2t) is decreasing non-negative in (0,+∞) and

h2(t)t
n+4
n−4 is nondecreasing in (0,+∞).

Then the problem (3.1) admits constant solutions.

Example 3.1. A typical example is the case

f(t) = tp − λt, p > 1, λ > 0.
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So that (3.1) becomes

∆2agSnu− cn∆gSnu = up − λu, u > 0 in Sn. (3.2)

Corollary 3.1. Assume that p ≤ (n+ 4)/(n− 4) and λ ≤ dn,2, and at least one of these

inequalities is strict. Then the only solution of (3.2) is the constant u ≡ λ1/(p−1).

In order to prove Theorem 3.1 we will use the moving planes method and thechniques

based on inequalities of integrals. First we will show the symmetry of solutions for a

problem on Rn equivalent to (3.1).

Let ζ be an arbitrary point on Sn, which we will rename the south pole S. Let

F−1 : Sn\{S} → Rn be the stereographic projection.

Let u be a solution of (3.1). We de�ne

v(y) = ξ2(y)u(F(y)), y ∈ Rn,

where ξ2 is de�ned by (1.4). Then we have

|y|−2v ∈ L2(Rn\Br) ∩ L∞(Rn\Br),

|y|−2v∆v ∈ L1(Rn\Br) ∩ L∞(Rn\Br),
(3.3)

where Br is any ball with center zero and radius r > 0. By Lemma 1.1, v is solution of

∆2v = h2

(
v

ξ2

)
v
n+4
n−4 , v > 0 in Rn, (3.4)

where

h2(t) = t−
n+4
n−4 (f(t) + dn,2t) , t > 0

and dn,2 = n(n− 4)(n2 − 4)/16.

Denote w1 = v and w2 = −∆w1, we have−∆w1 = w2 in Rn,

−∆w2 = h2

(
w1

ξ2

)
w

n+4
n−4

1 in Rn.
(3.5)

We use the moving plane method to prove radial symmetry of solution of the problem

(3.4). The next lemma shows the non-negativity of w2, which is necessary for the proof

of Theorem 3.1.

Lemma 3.1. w2 = −∆w1 is non-negative in Rn.
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Proof. Suppose that there exists y0 ∈ Rn such that w2(y0) < 0. We can assume that

y0 = 0. We introduce the spherical average of a function

w(r) =
1

|Sr|

∫
Sr

w dσ,

where |Sr| is the measure of the sphere of radius r. By de�nition of w1, we have w1 ∈
L∞(Rn) and  −∆w1 = w2,

−∆w2 = h2(w1

ξ2
)w

n+4
n−4

1 .

Since w2(0) = w2(0) < 0 and −∆w2 = h2(w1

ξ2
)w

n+4
n−4

1 ≥ 0, from Maximum Principle, we

obtain for all r > 0, {
w2(r) ≤ w2(0) < 0,

−∆w1(r) = w2(r) ≤ w2(0),

or

−1

r

d

dr
(r
d

dr
w1) ≤ w2(0). (3.6)

Integrating (3.6), we have

w1(r) ≥ w1(0)− w2(0)

4
r2, for all r > 0.

Since w2(0) < 0, we have w1(r)→ +∞ as r → +∞. This leads to a contradiction.

Proof. Theorem 3.1.

Let u be the solution of problem 3.1. We take an arbitrary point ζ ∈ Sn as the

south pole S, and let F−1 : Sn\{S} → Rn be the stereographic projection. We de�ne

v = ξ2(u ◦ F) in Rn. For given t ∈ R we de�ne as before the elements Qt, Ut, and yt.

Thus, the re�ected function is vt(y) := v(yt). Also, we denote w1 := v and w2 := −∆w1.

Following the same argument, the proof is carried out in three steps. Let

Λ := inf{t > 0; w1 ≥ wµ1 , w2 ≥ wµ2 in Qµ, ∀µ ≥ t}.

Step 1. Λ < +∞.

Again, we follows an argument of contradiction. For ε > 0 and t > 0, we denote
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W t
i,ε = wti − wi − ε and W t

i = wti − wi for i = 1, 2. Assume that W t
i > 0. Then∫

Qt

|∇{(W t
1,ε)

+|yt|−1}|2dy

=

∫
Qt

|∇(W t
1,ε)

+|2|yt|−2dy +

∫
Qt

2|yt|−1∇(W t
1,ε)

+.∇{|yt|−1}dy

+

∫
Qt

[(W t
1,ε)

+]2(∇{|yt|−1})2dy

=

∫
Qt

∇(W t
1,ε)

+.∇{(W t
1,ε)

+|yt|−2}dy +

∫
Qt

[(W t
1,ε)

+]2(∇{|yt|−1})2dy

=

∫
Qt

∇(W t
1,ε).∇{(W t

1,ε)
+|yt|−2}dy +

∫
Qt

[(W t
1,ε)

+]2(∇{|yt|−1})2dy

=

∫
Qt

∇W t
1.∇{(W t

1,ε)
+|yt|−2}dy +

∫
Qt

[(W t
1,ε)

+]2(∇{|yt|−1})2dy. (3.7)

Since w1(y) → 0 as |y| → ∞, then for ε > 0, we can take (W t
1,ε)

+|yt|−2 as test function

with compact support in Qt for the problem (3.5). Then, from (3.7) we obtain∫
Qt

|∇{(W t
1,ε)

+|yt|−1}|2dy

=

∫
Qt

(wt2 − w2)(W t
1,ε)

+|yt|−2dy +

∫
Qt

[(W t
1,ε)

+]2(∇{|yt|−1})2dy

≤
∫
Qt

(W t
2)+(W t

1,ε)
+|yt|−2dy

∫
Qt

[(W t
1,ε)

+]2|yt|−4dy

= Iε + IIε. (3.8)

From Lemma 3.1 and by (3.3) we can see that if (W t
1,ε)

+(y) > 0 and (W t
2)+(y) ≥ 0 for

some y ∈ Qt, then wt1(y) > w1(y), wt2(y) ≥ w2(y) and

(W t
2)+(W t

1,ε)
+|yt|−2 ≤ 4wt1w

t
2|yt|−2 ∈ L1(Rn)

[(W t
1,ε)

+]2|yt|−4 ≤ 4(wt1)2|yt|−4 ∈ L1(Rn).

Thus, by Fatou's lemma, Sobolev's inequality and dominate convergence theorem we get

(∫
Qt

[(W t
1)+|yt|−1]

2n
n−2dy

)n−2
n

≤ lim inf
ε→0

(∫
Qt

[(W t
1,ε)

+|yt|−1]
2n
n−2dy

)n−2
n

≤ C lim inf
ε→0

∫
Qt

|∇{(W t
1)+|yt|−1}|2dy

≤ lim inf
ε→0

(Iε + IIε) < +∞. (3.9)
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By Hardy's inequality, we know that(
n− 2

2

)2 ∫
Rn

u2

|x|2
dx ≤

∫
Rn
|∇u|2dx, u ∈ H1(Rn).

Which together with Holder's inequality we obtain

Iε ≤
(∫

Qt

[(W t
2)+]2dy

) 1
2

(∫
Qt

[
(W t

1,ε)
+

|yt|2

]2

dy

) 1
2

≤
(

2

n− 2

)(∫
Qt

[(W t
2)+]2dy

) 1
2
(∫

Qt

|∇{(W t
1,ε)

+|yt|−1}|2dy
) 1

2

.

(3.10)

Moreover,

IIε =

∫
Qt

[
(W t

1,ε)
+

|yt|2

]2

dy ≤
(

2

n− 2

)2 ∫
Qt

|∇{(W t
1,ε)

+|yt|−1}|2dy. (3.11)

By (3.8), (3.10) and (3.11), we have(
1−

(
2

n− 2

)2
)2 ∫

Qt

|∇{(W t
1,ε)

+|yt|−1}|2dy ≤
∫
Qt

[(W t
2)+]2dy (3.12)

On the other hand, for t > 0, we get ξ2 > ξt2 in Qt. By conditions on h2 we have: if

wt1 > w1, then

−∆W t
2 = h2

(
wt1
ξt2

)
(wt1)

n+4
n−4 − h2

(
w1

ξ2

)
w

n+4
n−4

1

≤ h2

(
wt1
ξt2

)
((wt1)

n+4
n−4 − (w1)

n+4
n−4 )

≤ n+ 4

n− 4
(wt1)

8
n−4h2

(
wt1
ξt2

)
(wt1 − w1);

if wt1 < w1, then

−∆W t
2 ≤ h2

(
wt1
ξt2

)
(wt1)

n+4
n−4 − h2

(
w1

ξt2

)
w

n+4
n−4

1 ≤ 0.

Thus,

−∆W t
2 ≤ C(wt1)

8
n−4 (wt1 − w1)+, (3.13)

where the last inequality is a consequence of h2(w1

ξ2
) ∈ L∞(Rn), and C is a positive

constant. Since w2(y)→ 0 as |y| → ∞, then for ε > 0, we can take (W t
2,ε)

+|yt|2 as a test
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function with compact support in Qt for (3.5), and one gets∫
Qt

|∇{(W t
2,ε)

+|yt|}|2dy =

∫
Qt

∇W t
2∇{(W t

2,ε)
+|yt|2}dy +

∫
Qt

[(W t
2,ε)

+]2dy

≤ C

∫
Qt

(wt1)
8

n−4 (W t
1)+(W t

2,ε)
+|yt|2dy +

∫
Qt

[(W t
2,ε)

+]2dy

= CIIIε + IVε.

(3.14)

From Hölder's, Sobolev's and Hardy's inequalities, and (3.9) we have

IIIε ≤
(∫

Qt

[(wt1)
8

n−4 |yt|2]
n
2 dy

) 2
n

(∫
Qt

[
(W t

1)+

|yt|

] 2n
n−2

dy

∫
Qt

[
(W t

2,ε)
+

|yt|−1

] 2n
n−2

dy

)n−2
2n

≤ ϕ(t)

(∫
Qt

[
(W t

1)+

|yt|

] 2n
n−2

dy

)n−2
2n (∫

Qt

∇{(W t
2,ε)

+|yt|}2dy

) 1
2

,

(3.15)

where

ϕ(t) =

(∫
Qt

(wt1)
4n
n−4 |yt|ndy

) 2
n

and lim
t→0

ϕ(t) = 0, (3.16)

because (wt1)
4n
n−4 |yt|n ∈ L1(Rn); and from Hardy's inequality,

IVε ≤
(

2

n− 2

)2 ∫
Qt

|∇{(W t
2,ε)

+|yt|}|2dy. (3.17)

Then, by (3.14), (3.15) and (3.17), we get

∫
Qt

|∇{(W t
2,ε)

+|yt|}|2dy ≤ ϕ(t)

(∫
Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy

)n−2
2n
(∫

Qt

|∇{(W t
2,ε)

+|yt|}|2dy
) 1

2

+

(
2

n− 2

)2 ∫
Qt

|∇{(W t
2,ε)

+|yt|}|2dy.

Hence, for all ε > 0,(
1−

(
2

n− 2

)2
)2(∫

Qt

|∇{(W t
2,ε)

+|yt|}|2dy
)
≤ ϕ(t)2

(∫
Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy

)n−2
n

.

(3.18)
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From Fatou's lemma, Hardy's inequality and (3.18), we obtain∫
Qt

[(W t
2)+]2dy ≤ lim inf

ε→0

∫
Qt

[(W t
2,ε)

+]2dy

≤
(

2

n− 2

)2

lim inf
ε→0

∫
Qt

|∇{(W t
2,ε)

+|yt|}|2dy

≤ Cϕ(t)2

(∫
Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy

)n−2
n

, (3.19)

where C is a positive constant depending of n. From Sobolev's inequality, (3.12), (3.19)

and letting ε→ 0, we have

(∫
Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy

)n−2
n

≤ Cϕ(t)2

(∫
Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy

)n−2
n

.

Thus, choosing t1 su�ciently large such that ϕ(t)2 < 1
C
for all t > t1, we have∫

Qt

[
(W t

1)+|yt|−1
] 2n
n−2 dy ≡ 0, in Qt for all t > t1.

Then, (W t
1)+ ≡ 0 in Qt for all t > t1, and from (3.19), one gets (W t

2)+ ≡ 0 in Qt for all

t > t1.

Which implies a contradiction with our assumption. Therefore, Λ < +∞.

Step 2. If Λ > 0, then w1 ≡ wΛ
1 or w2 ≡ wΛ

2 in QΛ.

By de�nition of Λ and the continuity of the solutions, we get w1 ≥ wΛ
1 and w2 ≥ wΛ

2

in QΛ. From conditions of h2 and (3.5) we have
−∆(w1 − wΛ

1 ) = w2 − wΛ
2 ≥ 0 in QΛ,

−∆(w2 − wΛ
2 ) = h2

(
w1

ξ2

)
w

n+4
n−2

1 − h2

(
wΛ

1

ξΛ
2

)
(wΛ

1 )
n+4
n−2 ≥ 0 in QΛ,

w1 − wΛ
1 ≥ 0, w2 − w2 ≥ 0 in QΛ.

Then, from Maximum Principle we have either wi ≡ wΛ
i in QΛ for some i = 1, 2 or

wi > wΛ
i in QΛ for all i = 1, 2. Suppose w1 > wΛ

1 and w2 > wΛ
2 in QΛ. We can choose a

compact K ⊂ QΛ and a number δ > 0 such that ∀t ∈ (Λ− δ,Λ) we have K ⊂ Qt and

Cϕ(t)2 = C

(∫
Qt\K

(wt1)
8

n−4 |yt|2dy
) 4

n

<
1

2
. (3.20)
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On the other hand, there exists 0 < δ1 < δ, such that

w1 > wt1, w2 > wt2 in K for all t ∈ (Λ− δ1,Λ). (3.21)

Using (3.20) and following as in Step 1, considering the integrals are over Qt\K, we see

that (wt1 − w1)+ ≡ 0 in Qt\K. By (3.21) we get w1 > wt1 in Qt for all t ∈ (Λ − δ1,Λ),

contradicting the de�nition of Λ.

Step 3. Symmetry

Suppose Λ > 0. From Step 2 we can assume w2 ≡ wΛ
2 in QΛ. Then

h2

(
w1

ξ2

)
= −∆w2

w
n+4
n−4

1

= −∆wΛ
2

w
n+4
n−4

1

= h2

(
wΛ

1

ξΛ
2

)(
wΛ

1

w1

)n+4
n−4

≤ h2

(
w1

ξΛ
2

)
< h2

(
w1

ξ2

)
.

Which clearly is a contradiction.

Therefore, Λ = 0 for all directions. This implies that w1 is radially symmetric in Rn.

By de�nition of w1, we obtain that u is constant on every (n− 1)-sphere whose elements

q ∈ Sn satisfy |q − S| = constant. Since ζ ∈ Sn is arbitrary on Sn, u is constant.

3.2 Constant solutions for systems

In this section we generalize the Theorem 3.1 for systems.

We consider the following problem
∆2
gSn
u1 − cn∆gSnu1 = f1(u1, u2) in Sn,

∆2
gSn
u2 − cn∆gSnu2 = f2(u1, u2) in Sn

u1, u2 > 0 in Sn,

(3.22)

where f1, f2 : (0,+∞)× (0,+∞)→ R are continuous functions.

Based on the Theorem 2.3 we have our main result for system.

Theorem 3.2. Let hi1 : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions de�ned by

hi1(t1, t2) := t
−n+2
n−2

i (fi(t1, t2) + dn,2ti) , t1 > 0, t2 > 0.
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Assume that
hi1(t1, t2) is nondecreasing in tj > 0, with i 6= j,

hi1(t1, t2)t
n+2
n−2

i is nondecreasing in ti > 0,

hi1(a1t, a2t) is decreasing in t > 0 for any ai > 0,

for i, j = 1, 2. Then the problem (3.22) admits only constant solutions.

The result above means that the problem (3.22) has no nonconstan solutions. To

prove the Theorem 3.2, we will use the same arguments that were used in the proof of

the Theorem 3.1. Let (u1, u2) be a solution of (3.22). We de�ne the functions

v1(y) = ξ2(y)u1(F(y)), v2(y) = ξ2(y)u2(F(y)), y ∈ Rn,

where ξ2 is de�ned in (1.4). Then we have that

|y|−2v1, |y|−2v2 ∈ L2(Rn\Br) ∩ L∞(Rn\Br),

|y|−2v1∆v1, |y|−2v2∆v2 ∈ L1(Rn\Br) ∩ L∞(Rn\Br),
(3.23)

where Br is any ball with center zero and radius r > 0. From Lemma 1.2 we obtain
∆2v1 = h12

(
v1

ξ2

,
v2

ξ2

)
v
n+4
n−4

1 , v1 > 0 in Rn,

∆2v2 = h22

(
v1

ξ2

,
v2

ξ2

)
v
n+4
n−4

2 , v2 > 0 in Rn,

(3.24)

where

hi2(t1, t2) = t
−n+4
n−4

i (fi(t1, t2) + dnti), t1 > 0, t2 > 0 for i = 1, 2,

and dn = n(n− 4)(n2 − 4)/16.

Denote w11 = v1, w12 = −∆w11, w21 = v2 and w22 = −∆w21. Then we have

−∆w11 = w12, in Rn

−∆w12 = h12

(
w11

ξ2
, w12

ξ2

)
w

n+4
n−4

11 in Rn

−∆w21 = w22, in Rn

−∆w22 = h22

(
w11

ξ2
, w12

ξ2

)
w

n+4
n−4

21 in Rn.

(3.25)

The moving plane method is the main ingredient to prove radial symmetry of solution

of the problem (3.24). We start with

Lemma 3.2. For i = 1, 2, we have −∆wi1 are non-negative in Rn.
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Proof. The arguments for the proof are the same as the Lemma 3.1.

Proof of Theorem 3.2. Since the arguments to prove Theorem are similar to those that

were used in the prove of Theorem 2.3 and 3.1, then we will simplify some calculations.

Let (u1, u2) be the solution of problem (3.22). We take a ζ ∈ Sn as the south pole S, and

let F−1 : Sn\{S} → Rn be the stereographic projection. We de�ne

v1 = ξ2(u1 ◦ F), and v2 = ξ2(u2 ◦ F) in Rn.

Given t ∈ R, let Qt, Ut as before, and yt the re�ection through the hyperplane Ut. De�ne

the re�ected function by vti(y) := vi(yt), i = 1, 2, and wi1 := vi and wi2 := −∆wi1, i = 1, 2.

The prove is carried out in three steps. De�ne

Λ := inf{t > 0; wij ≥ wµij, in Qµ,∀µ ≥ t, i, j = 1, 2.}.

Step 1. Λ < +∞.

Again, we follows an argument of contradiction. For ε > 0 and t > 0, we denote W t
ij,ε =

wtij−wij−ε andW t
ij = wtij−wij for i, j = 1, 2. We can take (W t

i1,ε)
+|yt|−2 as test function

with compact support in Qt for the problem (3.25). Then∫
Qt

|∇{(W t
i1,ε)

+|yt|−1}|2dy ≤
∫
Qt

(W t
i2)+(W t

i1,ε)
+|yt|−2dy +

∫
Qt

[(W t
i1,ε)

+]2|yt|−4dy

= Ii,ε + IIi,ε (3.26)

From the Hölder and Hardy inequalities we obtain

Ii,ε ≤
(

2

n− 2

)(∫
Qt

[(W t
i2)+]2dy

) 1
2
(∫

Qt

|∇{(W t
i1,ε)

+|yt|−1}|2dy
) 1

2

and

IIi,ε ≤
(

2

n− 2

)2 ∫
Qt

|∇{(W t
i1,ε)

+|yt|−1}|2dy.

Thus,(
1−

(
2

n− 2

)2
)2 ∫

Qt

|∇{(W t
i1,ε)

+|yt|−1}|2dy ≤
∫
Qt

[(W t
i2)+]2dx for i = 1, 2. (3.27)

On the other hand, using the same arguments as in (2.20) and (2.21), we have

−∆W t
i2 ≤ C(wti1)

8
n−4 [(wt11 − w11)+ + (wt21 − w21)+], (3.28)
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where C is a positive constant. We take (W t
i2,ε)

+|yt|2 as test function in (3.28). Then∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy =

∫
Qt

∇W t
i2∇{(W t

i2,ε)
+|yt|2}dy +

∫
Qt

[(W t
i2,ε)

+]2dy

≤ C

∫
Qt

w
8

n−4

i1 [(W t
11)+ + (W t

21)+](W t
i2,ε)

+|yt|2dy

+

∫
Qt

[(W t
i2,ε)

+]2dy

= C

∫
Qt

w
8

n−4

i1 (W t
11)+(W t

i2,ε)
+|yt|2dy

+ C

∫
Qt

w
8

n−4

i1 (W t
21)+(W t

i2,ε)
+|yt|2dy +

∫
Qt

[(W t
i2,ε)

+]2dy

= IIIi,ε + IVi,ε + Vi,ε. (3.29)

From Hölder, Sobolev and Hardy inequalities, we have

IIIi,ε ≤ ϕi(t)

(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
2n
(∫

Qt

∇{(W t
i2,ε)

+|yt|}2dy

) 1
2

, (3.30)

where

ϕi(t) = C

(∫
Qt

(wti1)
4n
n−4 |yt|ndy

) 2
n

and lim
t→0

ϕi(t) = 0, (3.31)

IVi,ε ≤ ϕi(t)

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
2n
(∫

Qt

∇{(W t
i2,ε)

+|yt|}2dy

) 1
2

, (3.32)

and

Vi,ε ≤
(

2

n− 2

)2 ∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy. (3.33)

From (3.29)-(3.32) and (3.33), gets∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy

≤ ϕi(t)

(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
2n
(∫

Qt

|∇{(W t
i2,ε)

+|yt|}|2dy
) 1

2

+ ϕi(t)

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
2n
(∫

Qt

|∇{(W t
i2,ε)

+|yt|}|2dy
) 1

2

+

(
2

n− 2

)2 ∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy.
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Hence, for all ε > 0, i = 1, 2, we obtain(
1−

(
2

n− 2

)2
)(∫

Qt

|∇{(W t
i2,ε)

+|yt|}|2dy
) 1

2

≤ ϕi(t)

[(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
2n

+

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
2n

]
.

(3.34)

From Fatou's lemma and Hardy's inequality, we obtain∫
Qt

[(W t
i2)+]2dy ≤

(
2

n− 2

)2

lim inf
ε→0

∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy

≤ Cϕi(t)
2

[(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
n

+

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
n

] (3.35)

where C is a positive constant. From Fatou's lemma, Sobolev's inequality, (3.27), (3.35)

and letting ε→ 0, we have

(∫
Qt

[
(W t

i1)+|yt|−1
] 2n
n−2 dy

)n−2
n

≤ C lim inf
ε→0

∫
Qt

|∇{(W t
i2,ε)

+|yt|}|2dy

≤ Cϕi(t)
2

[(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
n

+

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
n

]
.

So,

(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
n

+

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
n

≤ ϕ(t)2

[(∫
Qt

[
(W t

11)+|yt|−1
] 2n
n−2 dy

)n−2
n

+

(∫
Qt

[
(W t

21)+|yt|−1
] 2n
n−2 dy

)n−2
n

]
,

where ϕ(t)2 = C(ϕ1(t)2 +ϕ2(t)2). Thus, choosing t1 su�ciently large such that ϕ(t)2 < 1

for all t > t1, we have∫
Qt

[
(W t

i1)+|yt|−1
] 2n
n−2 dy ≡ 0, in Qt for all t > t1, i = 1, 2.

Then, (W t
i1)+ ≡ 0 in Qt for all t > t1, and from (3.35), gets (W t

i2)+ ≡ 0 in Qt for all t > t1,

i = 1, 2. Which implies a contradiction with our assumption. Therefore, Λ < +∞.

Step 2. If Λ > 0 then wij ≡ wΛ
ij in QΛ for some i, j = 1, 2.
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By de�nition of Λ and continuity of solutions, we get wij ≥ wΛ
ij, i, j = 1, 2 in QΛ, and

from (3.25) and the conditions on hi,j, i, j = 1, 2, we have:
−∆(wi1 − wΛ

i1) = wi2 − wΛ
i2 ≥ 0 in QΛ,

−∆(wi2 − wΛ
i2) = hi2

(
w11

ξ2
, w12

ξ2

)
w

n+4
n−2

i1 − hi2
(
wΛ

11

ξΛ
2
,
wΛ

12

ξΛ
2

)
(wΛ

i1)
n+4
n−2 ≥ 0 in QΛ,

wij − wΛ
ij ≥ 0 in QΛ.

Then, from Maximum Principle we have either wij ≡ wΛ
ij in QΛ for some i, j = 1, 2, or

wij > wΛ
ij in QΛ for all i, j = 1, 2. Suppose wij > wΛ

ij in QΛ. We can choose a compact

K ⊂ QΛ and a number δ > 0 such that ∀t ∈ (Λ− δ,Λ) we have K ⊂ Qt and

Cϕi(t)
2 = C

(∫
Qt\K

(wti1)
8

n−4 |yt|2dy
) 4

n

<
1

2
. (3.36)

On the other hand, there exists 0 < δ1 < δ, such that

wij > wtij in K ∀t ∈ (Λ− δ1,Λ), ∀i, j = 1, 2. (3.37)

Using (3.36) and following as in Step 1, since the integrals are over Qt\K, we see that

(wtij − wij)
+ ≡ 0 in Qt\K for all i, j = 1, 2. By (3.37) we get wij > wtij in Qt for all

t ∈ (Λ− δ1,Λ), contradicting the de�nition of Λ.

Step 3. Symmetry

Supose Λ > 0. From Step 2 we can assume that w12 ≡ wΛ
12 in QΛ. Then

h12

(
w11

ξ2

,
w21

ξ2

)
= −∆w12

w
n+4
n−4

11

= −∆wΛ
12

w
n+4
n−4

11

= h12

(
wΛ

11

ξΛ
2

,
wΛ

21

ξΛ
2

)(
wΛ

11

w11

)n+4
n−4

≤ h12

(
w11

ξΛ
2

,
w21

ξΛ
2

)
< h12

(
w11

ξ2

,
w21

ξ2

)
.

This is a contradiction.

Therefore, Λ = 0 for all directions. Which implies that wij is radially symmetrical in

Rn for i, j = 1, 2. By de�nition of v1 = w11 and v2 = w21, we obtain that u1 and u2 are

constant on every (n− 1)-sphere whose elements q ∈ Sn satisfy |q − S| = constant. Since

ζ ∈ Sn is arbitrary on Sn, u1 and u2 are constant.
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Chapter

4
Problems on the sphere involving a

conformal fractional operator

4.1 Nonexitence of solutions for an equation

In this section we study the following problem{
Dsu = f(u) in Sn,

u > 0 in Sn,
(4.1)

where 0 < s < 1, n > 2, f : (0,∞)→ R is a continuous function and

Dsu(ζ) = (A2su)(ζ)−A2s(1)u(ζ), ζ ∈ Sn, u ∈ C∞(Sn).

The nonexistence of nonconstant solutions of problem (4.1) is characterized by the

following result.

Theorem 4.1. Let s ∈ (0, 1). Assume that

hs(t) := t−
n+2s
n−2s (f(t) + dn,st) is decreasing in (0,+∞).

Then the problem (4.1) admits only constant solutions.

In order to prove Theorem 4.1 we will use the same arguments that were used in the

proof of previous theorems.

Let ζ be an arbitrary point on Sn, which we will rename the north pole N . Let

F−1 : Sn\{N} → Rn be the stereographic projection.
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Let s ∈ (0, 1). Let u be a solution of (4.1). We de�ne

v(y) = ξs(y)u(F(y)), y ∈ Rn.

Then we have that

v ∈ L
2n
n−2s (Rn) ∩ L∞(Rn). (4.2)

From Lemma 1.1 we get the following equation

(−∆)sv = hs

(
v

ξs

)
v
n+2s
n−2s , v > 0 in Rn, (4.3)

where

hs(t) = t−
n+2s
n−2s (f(t) + dn,st) , t > 0 and dn,s =

Γ(n
2

+ s)

Γ(n
2
− s)

.

In our arguments, we follows the same strategy as before to show the symmetry of the

solution. So, for given t ∈ R, we set Qt, Ut, and yt the same previous objects. We de�ne

the re�ected function by vt(y) := v(yt), and the following functions for t ≥ 0 and ε > 0:

wtε(y) =

(vt(y)− v(y)− ε)+, y ∈ Qt,

(vt(y)− v(y) + ε)−, y ∈ Qc
t ,

(4.4)

where − denotes the negative part of function. Our �rst result to prove that the solutions

are constants is:

Lemma 4.1. Under the assumptions of Theorem 4.1, for t > 0 exists a constant C > 0

such that (∫
Qt

|wtε|
2n
n−2sdy

)n−2s
n

≤ C

∫
Qt

(−∆)s(vt − v)(vtε − v − ε)dy. (4.5)

Proof. Given t > 0, we have that

wtε(y) = max{vt(y)− v(y)− ε, 0} = −min{vt(yt)− v(yt) + ε, 0} = −wtε(yt),

for y ∈ Qt. Similarly, wtε(y) = −wtε(yt) for y ∈ Qc
t . So

wtε(y) = −wtε(yt) for all y ∈ Rn. (4.6)

This implies that∫
Rn
|wtε|

2n
n−2sdy =

∫
Qt

|wtε|
2n
n−2sdy +

∫
Qct

|wtε|
2n
n−2sdy = 2

∫
Qt

|wtε|
2n
n−2sdy. (4.7)
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Moreover, we see that for any y ∈ Qt ∩ supp(wtε), we have

(−∆)swtε(y)− (−∆)s(vt − v − ε)(y)

=

∫
Rn

wtε(y)− wtε(z)

|y − z|n+2s
dz −

∫
Rn

(vt − v − ε)(y)− (vt − v − ε)(z)

|y − z|n+2s
dz

=

∫
Rn

(vt − v − ε)(z)− wtε(z)

|y − z|n+2s
dz

=

∫
Qt∩supp(wtε)

c

(vt − v − ε)(z)

|y − z|n+2s
dz +

∫
Qct∩supp(wtε)

c

(vt − v − ε)(z)

|y − z|n+2s
dz

−
∫
Qct∩supp(wtε)

2ε

|y − z|n+2s
dz

=

∫
Qt∩supp(wtε)

c

(vt − v − ε)(z)

|y − z|n+2s
dz +

∫
Qt∩supp(wtε)

c

(vt − v − ε)(zt)
|y − zt|n+2s

dz

−
∫
Qct∩supp(wtε)

2ε

|y − z|n+2s
dz

=

∫
Qt∩supp(wtε)

c

(vt − v − ε)(z)

[
1

|y − z|n+2s
− 1

|y − zt|n+2s

]
dz

−
∫
Qt∩supp(wtε)

c

2ε

|y − zt|n+2s
dz −

∫
Qct∩supp(wtε)

2ε

|y − z|n+2s
dz

≤ 0,

(4.8)

where the last two integrals are �nite, vt−v−ε ≤ 0 in Qt∩supp(wtε)
c, and |y−z| < |y−zt|

for y, z ∈ Qt. Using the same arguments as in (2.7) and (2.8), we have

(−∆)s(vt − v)(y) ≤ Cvt(y)
4s

n−2s (vt − v)(y) for vt(y) ≥ v(y), y ∈ Qt. (4.9)

From (4.8) and (4.9), we get∫
Qt

(−∆)swtεw
t
εdy ≤

∫
Qt

(−∆)s(vt − v − ε)(vt − v − ε)+dy

=

∫
Qt

(−∆)s(vt − v)(vt − v − ε)+dy (4.10)

≤ C

∫
Qt

(vt)
4s

n−2s (vt − v)(vt − v − ε)+dy

≤ 4C

∫
Qt

(vt)
4s

n−2s (vt)2dy <∞,
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where the last inequality is a consequence of (4.2). From (4.10) and (4.6) we obtain∫
Rn
|(−∆)

s
2wtε|2dy =

∫
Qt

|(−∆)
s
2wtε|2dy +

∫
Qct

|(−∆)
s
2wtε|2dy

= 2

∫
Qt

|(−∆)
s
2wtε|2dy. (4.11)

Using Sobolev's inequality, (4.7), (4.10) and (4.11) we obtain

(∫
Qt

|wtε|
2n
n−2sdy

)n−2s
n

=

(
1

2

∫
Rn
|wtε|

2n
n−2sdy

)n−2s
n

≤ C

∫
Qt

|(−∆)
s
2wtε|2dy

=
C

2

∫
Rn
|(−∆)

s
2wtε|2dy =

C

2

∫
Rn

(−∆)swtεw
t
εdy

= C

∫
Qt

(−∆)swtεw
t
εdy

≤ C

∫
Qt

(−∆)s(vt − v)(vt − v − ε)+dy.

This concludes the proof of the lemma.

Proof of Theorem 4.1

Let u be the solution of problem 4.1. We take an arbitrary point ζ ∈ Sn as the

south pole, S and let F−1 : Sn\{S} → Rn be the stereographic projection. We de�ne

v = ξs(u ◦ F) in Rn. Let

Λ := inf{t > 0; v ≥ vµ, in Qµ,∀µ ≥ t}.

Following our scheme, we start with

Step 1. Λ < +∞.

For ε > 0 and t > 0, we consider the functions wtε and wt de�ned by (4.4). Using

Fatou's lemma, Lemma 4.1, (4.9), Höolder's and Sobolev's inequalities, and dominate
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convergence theorem, we �nd that

(∫
Qt

|wt|
2n
n−2sdy

)n−2s
n

≤ lim inf
ε→0

(∫
Qt

|wtε|
2n
n−2sdy

)n−2s
n

≤ C lim inf
ε→0

∫
Qt

(−∆)s(vt − v)(vt − v − ε)+dy

≤ C lim inf
ε→0

∫
Qt

(vt)
4s

n−2s (vt − v)(vt − v − ε)+dy

≤ C

∫
Qt

(vt)
4s

n−2s [(vt − v)+]2dy

≤ C

(∫
Qt

(vt)
2n
n−2sdy

) 2s
n
(∫

Qt

[(vt − v)+]
2n
n−2sdy

)n−2s
n

≤ φ(t)

(∫
Qt

|wt|
2n
n−2sdy

)n−2s
n

, (4.12)

where φ(t) = C(
∫
Qt

(vt)
2n
n−2sdy)

2s
n . Since v

2n
n−2s ∈ L1(Rn), we obtain that limt→+∞ φ(t) = 0.

Thus, choosing t1 > 0 large su�ciently such that ϕ(t1) < 1, we have from (4.12)∫
Qt

|wt|
2n
n−2sdy = 0, for all t > t1.

This implies (vt − v)+ ≡ 0 in Qt for t > t1. Which complete this step.

Step 2. Λ = 0.

Assume Λ > 0. By de�nition of Λ and the continuity of the solution, we have v ≥ vΛ

and ξs > ξΛ
s in QΛ.

Suppose that exists a point y0 ∈ QΛ such that v(y0) = vΛ(y0). Using the fact of h is

decreasing, we have

(−∆)sv(y0)− (−∆)svΛ(y0) =

[
hs

(
v(y0)

ξs(y0)

)
− hs

(
v(y0)

ξΛ
s (y0)

)]
v(y0)

n+2s
n−2s > 0. (4.13)
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On the other hand,

(−∆)sv(y0)− (−∆)svΛ(y0)

= −
∫
Rn

v(z)− v(zΛ)

|y0 − z|n+2s
dz

= −
∫
QΛ

v(z)− v(zΛ)

|y0 − z|n+2s
dz −

∫
QcΛ

v(z)− v(zΛ)

|y0 − z|n+2s
dz

= −
∫
QΛ

(v(z)− v(zΛ))

(
1

|y0 − z|n+2s
− 1

|y0 − zΛ|n+2s

)
dz ≤ 0.

Which contradicts (4.13). As a consequence, v > vΛ in QΛ. So, we can choose a compact

K ⊂ QΛ and a number δ > 0 such that ∀t ∈ (Λ− δ,Λ) we have K ⊂ Qt and

φ(t) = C

(∫
Qt\K

(vt)
2n
n−2sdy

) 2s
n

<
1

2
. (4.14)

We also have that exists 0 < δ1 < δ, such that

v > vt, in K ∀t ∈ (Λ− δ1,Λ). (4.15)

Using (4.14), (4.15) and following as in (4.12), by noticing that the integrals are over

Qt\K, we see that (vt − v)+ ≡ 0 in Qt\K. By (4.15) we obtain v > vt in Qt for all

t ∈ (Λ− δ1,Λ), contradicting the de�nition of Λ.

Step 3. Symmetry.

By Step 2 we have Λ = 0 for all directions. This implies that v is radially symmetrical

in Rn. By de�nition of v, we obtain that u is constant on every (n − 1)-sphere whose

elements q ∈ Sn satisfy |q − S| = constant. Since ζ0 ∈ Sn is arbitrary on Sn, we conclude
that u is constant. �

4.2 Nonexitence of solutions for systems

Following the results of Chapters 1, 2 and 3, we will study the following system
Dsu1 = f1(u1, u2) in Sn,

Dsu2 = f2(u1, u2) in Sn,

u1, u2 > 0 in Sn.

(4.16)
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Similarly to Theorem 4.1, the nonexistence of nonconstant solutions of problem (4.16)

is characterized by the following result.

Theorem 4.2. Let s ∈ (0, 1) and let his : (0,∞)× (0,∞)→ R, i = 1, 2, be two functions

de�ned by

his(t1, t2) := t
−n+2s
n−2s

i (fi(t1, t2) + dn,sti) , ti > 0.

Assume that for i, j = 1, 2: hi,s are non-negative,

his(t1, t2) is nondecreasing in tj > 0, with i 6= j,

his(t1, t2)t
n+2s
n−2s

i is nondecreasing in ti > 0,

his(a1t, a2t) is decreasing in t > 0 for any ai > 0.

Then the problem (4.16) admits only constant solutions.

The arguments to be used in the proof of Theorem 4.2 are similar to those used in the

proof of Theorem 4.2. Then we will simplify some calculations.

Let (u1, u2) be a solution of (4.16). We de�ne

v1(y) = ξs(y)u1(F(y)), v2(y) = ξs(y)u2(F(y)),

where ξs is de�ned in (1.4) and F is the inverse of stereographic projection. Then we

have that

v1, v2 ∈ L
2n
n−2s (Rn) ∩ L∞(Rn). (4.17)

From Lemma 1.2 gets the following equation
(−∆)sv1 = h1s

(
v1

ξs(y)
,
v2

ξs(y)

)
v
n+2s
n−2s

1 , v1 > 0 in Rn,

(−∆)sv2 = h2s

(
v1

ξs(y)
,
v2

ξs(y)

)
v
n+2s
n−2s

2 , v2 > 0 in Rn,

(4.18)

where

his(t) = t−
n+2s
n−2s (f(t) + dn,st), t > 0, i = 1, 2, and dn,s =

Γ(n
2

+ s)

Γ(n
2
− s)

.

We de�ne the following functions for t ≥ 0, i = 1, 2, and ε ≥ 0:

wti,ε(y) =

(vti(y)− vi(y)− ε)+, y ∈ Qt,

(vti(y)− vi(y) + ε)−, y ∈ Qc
t .

(4.19)

Then, we have that these functions satisfy the following inequality.
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Lemma 4.2. Under the assumptions of Theorem 4.2, there exists a constant C > 0 such

that, for t > 0 and ε > 0, gets

(∫
Qt

|wti,ε|
2n
n−2sdy

)n−2s
n

≤ C

∫
Qt

(−∆)s(vti − vi)(vti − vi − ε)dy, i = 1, 2. (4.20)

Proof. Given t > 0,ε > 0 and arguing as (4.6)-(4.8) we have

wi,ε(y) = −wti,ε(yt) for all y ∈ Rn, and
∫
Rn
|wti,ε|

2n
n−2sdy = 2

∫
Qt

|wti,ε|
2n
n−2sdy, (4.21)

and

(−∆)swti,ε(y) ≤ (−∆)s(vti − vi − ε)(y), y ∈ Qt ∩ supp(wti,ε). (4.22)

Using the same arguments as in (2.20) and (2.21), we have

(−∆)s(vti − vi)(y) ≤ Cvti(y)
4s

n−2s [(vt1 − v1) + (vt2 − v2 − ε)](vti − vi)(y), (4.23)

for vti(y) ≥ vi(y), y ∈ Qt, i = 1, 2. From (4.22) and (4.23), we get∫
Qt

(−∆)swti,εw
t
i,εdy ≤

∫
Qt

(−∆)s(vti − vi)(vti − vi − ε)+dy (4.24)

≤ C

∫
Qt

(vti)
4s

n−2s [(vt1 − v1)+ + (vt2 − v2)+](vti − vi − ε)+dy

≤ C

∫
Qt

(vti)
n+2s
n−2s (vt1 + vt2)dy < +∞. (4.25)

Moreover, ∫
Rn
|(−∆)

s
2wti,ε|2dy = 2

∫
Qt

|(−∆)
s
2wti,ε|2dy, i = 1, 2. (4.26)

Using Sobolev's inequality, (4.21), (4.24) and (4.26) we obtain

(∫
Qt

|wti,ε|
2n
n−2sdy

)n−2s
n

≤ C

∫
Qt

(−∆)s(vti − vi)(vti − vi − ε)+dy, for i = 1, 2.

This completes the proof of Lemma.

Proof of Theorem 4.2

Let (u1, u2) be the solution of problem (4.16). We take a ζ ∈ Sn as the south pole S,

and let

F−1 : Sn\{S} → Rn be the stereographic projection. De�ne v1 = ξs(u1 ◦ π) and
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v2 = ξs(u2 ◦ F) in Rn. As in the case of one equation, given t ∈ R we set Qt, Ut
and yt. Let

Λ := inf{t > 0; vi ≥ vµi , in Qµ,∀µ ≥ t, i = 1, 2}.

The proof is carried out in three steps.

Step 1. Λ < +∞.

For ε > 0 and t > 0 we consider the functions wti,ε and w
t
i de�ned by (4.19). Using

Fatou's lemma, Lemma 4.2, (4.23), Hölder's and Sobolev's inequalities, and Dominate

Convergence, we get

(∫
Qt

|wt1|
2n
n−2sdy

)n−2s
n

≤ C lim inf
ε→0

∫
Qt

(−∆)s(vt1 − v1)(vt1 − v1 − ε)+dy

≤ C lim inf
ε→0

∫
Qt

(vt1)
4s

n−2s (vt1 − v1)(vt1 − v1 − ε)+dy

+ C lim inf
ε→0

∫
Qt

(vt1)
4s

n−2s (vt2 − v2)(vt1 − v1 − ε)+dy

≤ C

(∫
Qt

(vt1)
2n
n−2sdy

) 2s
n

[(∫
Qt

[(vt1 − v1)+]
2n
n−2sdy

)n−2s
n

(∫
Qt

[(vt2 − v2)+]
2n
n−2sdy

)n−2s
n

]

≤ φ1(t)

[(∫
Qt

|wt1|
2n
n−2sdy

)n−2s
n

+

(∫
Qt

|wt2|
2n
n−2sdy

)n−2s
n

]
, (4.27)

where φ1(t) = C(
∫
Qt

(vt1)
2n
n−2sdy)

2s
n . Since v

2n
n−2s

1 ∈ L1(Rn), then limt→+∞ φ1(t) = 0. Simi-

larly, we have

(∫
Qt

|wt2|
2n
n−2sdy

)n−2s
n

≤ φ2(t)

[(∫
Qt

|wt1|
2n
n−2sdy

)n−2s
n

+

(∫
Qt

|wt2|
2n
n−2sdy

)n−2s
n

]
, (4.28)

where φ2(t) = C(
∫
Qt

(vt2)
2n
n−2sdy)

2s
n . Since v

2n
n−2s

2 ∈ L1(Rn), then limt→+∞ φ2(t) = 0.

Thus, choosing t1 > 0 large su�ciently such that φi(t1) < 1/4 for i = 1, 2, we have

from (4.27) and (4.28) ∫
Qt

|wti|
2n
n−2sdy = 0, for all t > t1.

This implies that (vti − vi)+ ≡ 0 in Qt for t > t1 and i = 1, 2. Therefore Λ is well de�ned,

i.e. Λ < +∞.
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Step 2. Λ = 0.

Assume Λ > 0. By de�nition of Λ and continuity of the solution, we get vi ≥ vΛ
i in

QΛ for i = 1, 2. Suppose there is a point y0 ∈ QΛ such that v1(y0) = vΛ
1 (y0). By the

conditions on his, we have

(−∆)sv1(y0)− (−∆)svΛ
1 (y0)

= h1s

(
v1(y0)

ξs(y0)
,
v2(y0)

ξs(y0)

)
v1(y0)

n−2s
n+2s − h1s

(
vΛ

1 (y0)

ξΛ
s (y0)

,
vΛ

2 (y0)

ξΛ
s (y0)

)
vΛ

1 (y0)
n−2s
n+2s

=

[
h1s

(
v1(y0)

ξs(y0)
,
v2(y0)

ξs(y0)

)
− h1s

(
v1(y0)

ξΛ
s (y0)

,
vΛ

2 (y0)

ξΛ
s (y0)

)]
v1(y0)

n−2s
n+2s

≥
[
h1s

(
v1(y0)

ξs(y0)
,
v2(y0)

ξs(y0)

)
− h1s

(
v1(y0)

ξΛ
s (y0)

,
v2(y0)

ξΛ
s (y0)

)]
v1(y0)

n−2s
n+2s > 0. (4.29)

On the other hand,

(−∆)sv1(y0)− (−∆)svΛ
1 (y0)

= −
∫
QΛ

(v1(z)− v1(zΛ))

(
1

|y0 − z|n+2s
− 1

|y0 − zΛ|n+2s

)
dz ≤ 0,

which contradicts (4.29). Thus, v1 > vΛ
1 in QΛ.

Similarly, we have that v2 > vΛ
2 in QΛ. We can choose a compact K ⊂ QΛ and a

number δ > 0 such that ∀t ∈ (Λ− δ,Λ) we have K ⊂ Qt and

φi(t) = C

(∫
Qt\K

(vti)
2n
n−2sdy

) 2s
n

<
1

2
, i = 1, 2. (4.30)

On the other hand, there exists 0 < δ1 < δ, such that

v1 > vt1 and v2 > vt2, in K ∀t ∈ (Λ− δ1,Λ). (4.31)

Using (4.30), (4.31) and proceeding as in Step 1, in (4.27), since the integrals are over

Qt\K, we see that (vt − v)+ ≡ 0 in Qt\K. By (4.31) we get vi > vti in Qt for all

t ∈ (Λ− δ1,Λ) and i = 1, 2, contradicting the de�nition of Λ.

Step 3. Symmetry.

By Step 2, the functions vi are radially symmetrical in Rn. By the de�nition of vi,

we obtain that ui is constant on every (n − 1)-sphere whose elements q ∈ Sn satisfy

|q − S| = constant. Since p ∈ Sn is arbitrary on Sn, ui is constant. �
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Chapter

5
Existence of solutions for a conformally

invariant fractional equation on the

sphere

5.1 Main results

Consider then the following problem

A2su = f(u) in Sn, u ∈ Hs(Sn), (5.1)

where s ∈ (0, 1), n > 2, A2s is the conformal fractional operator given by (1.1) and

f : R→ R is a continuous function verifying the following conditions:

(h1) f(−t) = −f(t) for all t ∈ R;

(h2) There exist a positive constant C and p ∈ (2, 2n/(n− 2s)] such that

|f(t)| ≤ C(1 + |t|p−1) for all t ∈ R;

(h3) There are two constants µ > 2 and R > 0 such that

0 < µF (t) ≤ tf(t) for all |t| ≥ R,

where F (t) :=
∫ t

0
f(τ)dτ for all t ∈ R.
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The operator A2s can be seen more concretely on Rn using stereographic projection:

(A2su) ◦ F = ξs
−n+2s
n−2s (−∆)s(ξs(u ◦ F)), for all u ∈ C∞(Sn),

where F is the inverse of the stereographic projection, ξs is de�ned by (1.4) and (−∆)s

is the fractional Laplacian operator.

The study of the existence of sign-changing solutions for some problems involving the

fractional Laplace and conformal operatos have been studied with great interest in recent

years, see e. g., [10, 20, 41, 48, 54] and the references therein. Motivated by these results

we can state our main result about the existence of solutions as follows.

Theorem 5.1. Assume that function f satis�es (h1), (h2), (h3). Then there exists an

unbounded sequence of solutions {ul}l∈N in Hs(Sn) of (5.1).

Our result also guarantes the existence of solutions for some problems on Rn involving

the fractional Laplacian operator. These problems arise from (5.1) using the stereographic

projection (see Chapter 1).

Consider the equation (−∆)sv = |v|
4s

n−2sv in Rn,

v ∈ Ds,2(Rn), 0 < s < 1.
(5.2)

Then all positive solutions are the form

v(x) =
Cn,s

(a2 + |x− x0|2)
n−2s

2

, a ∈ R, x0 ∈ Rn, (5.3)

where Cn,s is a positive constant depending of n and s. We remark that the equation

(5.2) is invariant under the conformal transformations on Rn. Thus, if v(x) is solution,

then for each a > 0 and x0 ∈ Rn, a(n−2s)/2v ((x− x0)/a) is also solution. Moreover, for

each equation, all solutions obtained in this way have the same energy, and we will say

that these solutions of each equation are equivalent. In particular, the solutions (5.3)

are equivalent. Therefore, our main theorem implies the existence of in�nitely many

inequivalent solutions to the problem (5.2).

Corollary 5.1. The problem (5.2) has an unbounded sequence {vl}l∈N of sign-changing

solutions.

Proof. By Theorem 5.1, the equation

A2su = |u|
4s

n−2su
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has an unbounded sequence {ul}l∈N in Hs(Sn) of solutions. From Lemma 1.1, each func-

tion vl = Pul, l ∈ N, is a solution of (5.2) and

‖vl‖s → +∞ as l→ +∞.

Follow from [24] that the solutions vl are not equivalent. Therefore, vl changes sign.

We recall that the Theorem 4.1 shows that the only positive solutions to problem (5.1)

are constants provided that the function h̃(t) = t−
n+2s
n−2sf(t) is decreasing on (0,+∞). The

following result shows the existence of solutions no constants.

Corollary 5.2. Assume that function f satis�es (h1), (h2), (h3) and h̃(t) = t−
n+2s
n−2sf(t)

is decreasing on (0,+∞). Then there exists an unbounded sequence {ul}l∈N in Hs(Sn) of

sign-changing solutions of (5.1).

Proof. By Theorem 5.1, (5.1) has an unbound sequence {ul}l∈N in Hs(Sn). Unless of

subsequence, assume that {ul}l∈N is a positive sequence. Then, from Theorem 4.1, each

ul is costanst and

f(ul)ul =
1

|Sn|

∫
Sn
f(ul)ul dη =

1

|Sn|

∫
Sn
ulA2sul dη =

1

|Sn|
‖ul‖2

∗ → +∞ as l→ +∞.

Moreover,

f(ul)ul =
1

|Sn|

∫
Sn
ulA2sul dη =

1

|Sn|

∫
Sn
ul

Γ(n
2

+ s)

Γ(n
2
− s)

uldη =
Γ(n

2
+ s)

Γ(n
2
− s)

(ul)
2. (5.4)

Thus, ul → +∞ as l→ +∞.

On the other hand, from (h3), there are positive constans a1, a2 such that

tf(t) ≥ µF (t) ≥ a1t
µ − a2, for all t > 0 large.

From (5.4) and as µ > 2, we have

ulf(ul) ≥ µF (ul) >
Γ(n

2
+ s)

Γ(n
2
− s)

(ul)
2 = ulf(ul) for l large.

Thus, we obtain a contradiction.

Example 5.1. Consider the following function:

f(t) = |t|p−2t+ λt, p > 2, 0 ≤ λ ≤ dn,s,
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where dn,s = Γ(n/2 + s)/Γ(n/2− s). So that (5.1) becomes

A2su = |u|p−2u+ λu in Sn. (5.5)

Corollary 5.3. Assume that p ≤ (n+ 2)/(n− 2s) and λ ≤ dn,s, and at least one of these

inequalities is strict. Then there exists an unbounded sequence {vl}l∈N in Hs(Sn) of sign

changing solutions of (5.5).

The proof of our main theorem consists in use some standard variational techniques.

As always, we note that the symmetries of Sn will play an important role.

5.2 Existence of in�nitely many solutions

We note that solutions of (5.1) are related with the critical points of the functional

J(u) :=
1

2

∫
Sn
uA2su dη −

∫
Sn
F (u) dη

=
1

2
‖u‖2

∗ −
∫
Sn
F (u)dη.

(5.6)

Recall that A2s is adjoint and 2∗s = 2n/(n − 2s) is just the critical exponent for the

embedding Hs(Sn) ⊂ Lp(Sn), 1 ≤ p ≤ 2∗s. Therefore, by conditions on f , the functional

J is well de�ned and di�erentiable in Hs(Sn), but it fails to satisfy the Palais-Smale

compactness condition in Hs(Sn). However, applying the fountain theorem [10], and the

principle of symmetric criticality [59] we obtain the following result whose demonstration

is found in the Appendix.

Lemma 5.1. Let G be a compact topological group acting linearly and isometrically on

closed subset XG ⊂ Hs(Sn) such that

(i) J is G-invariant;

(ii) the embedding XG ↪→ Lp is compact;

(iii) XG has in�nite dimension.

Then J has a unbounded sequence of critical points {ul}l∈N in Hs(Sn).

Ding [29] considered an in�nite dimensional closed subset XG ⊂ H1(Sn) and showed

that the embedding XG ↪→ Lp is compact. To show this compactness he used Sobolev's

inequality for functions in H1 on limited domains of Rk, k < n, and some integral
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inequalities. In order to show the item (ii) of Lemma 5.1 we will use the Sobolev's in-

equality in fractional spaces Hs (see [28]), but this inequality involves an double integral

similar to the expression (5.31). Hence we need to give an expression of double integral

in Sn instead of the �rst integral of (5.6). This expression is given by Proposition 5.2 and

we will give a brief proof. When s ∈ (0, 1), Pavlov and Samko [61] showed that

A2su(ζ) = A2s(1)u(ζ) + cn,−sP.V.

∫
Sn

u(ζ)− u(ω)

|ζ − ω|n+2s
dηω, for all u ∈ C2(Sn), (5.7)

where

A2s(1) =
Γ
(
n
2

+ s
)

Γ
(
n
2
− s
) , cn,−s =

22sΓ
(
n
2

+ s
)

π
n
2 Γ(1− s)

,

and P.V.
∫
Sn is understood as limε→0

∫
|x−y|>ε. In order to remove the singularity of the

integral we will use the following lemma.

Lemma 5.2. There is a positive constant C = C(n, s) such that∫
Sn

∫
Sn

|u(ω)− u(ζ)|2

|ω − ζ|n+2s
dηωdηζ ≤ C‖u‖2

H1(Sn), for all u ∈ C1(Sn). (5.8)

Proof. First, let us estimate (5.8) on Vζ = Sn∩{ω ∈ Rn+1; |ω−ζ| < 1}, ζ ∈ Sn. Consider
the di�eomorphism

h : Br ⊂ Rn → VS, h(y) = (y,−
√

1− |y|2).

where Br(0) is the ball of center 0 and radius r, 0 < r < 1, and S = (0,−1) is the south

pole of Sn. Then Rζ ◦ h maps Vζ di�eomorphically onto Br, where Rζ is an orthogonal

rotation in Rn+1. Thus, there is a positive constant c1 that is independent of ζ such that

c−1
1 |z| ≤ |Rζz| ≤ c1|z| for all z ∈ Rn,

and the metric matrices in the charts (Vζ , (Rζ ◦ h)−1) satis�es

gζij ≤ c1I for each ζ ∈ Sn,

where I is the n× n identity matrix. Moreover,

|h′(ty)|
|h(y)− h(0)|

≤ 1

(1− t2|y|2)
1
2

< c, for all t ∈ (0, 1) and y ∈ Br,
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where c2 is a positive constant. Then∫
Sn

∫
Sn∩{|ω−ζ|<1}

|u(ω)− u(ζ)|2

|ω − ζ|n+2s
dηωdηζ

=

∫
Sn

∫
Br

|u(Rζ ◦ h)(y)− u(Rζ ◦ h)(0)|2

|(Rζ ◦ h)(y)− (Rζ ◦ h)(0)|n+2s

√
det(gζij) dydηζ

≤ C

∫
Sn

∫
Br

[∫ 1

0

|(u ◦Rζ ◦ h)′(ty)|
|Rζ(h(y)− h(0))|

dt

]2
1

|Rζ(h(y)− h(0))|n+2(s−1)
dydηζ

≤ C

∫
Sn

∫
Br

[∫ 1

0

|∇Snu[Rζ(h(ty))]| |h′(ty)|
|h(y)− h(0)|

dt

]2
1

|h(y)− h(0)|n+2(s−1)
dydηζ

≤ C

∫
Sn

∫
Br

[∫ 1

0

|∇Snu[Rζ(h(ty))]|
|h(y)− h(0)|

n+2(s−1)
2

dt

]2

dydηζ

≤ C

∫
Sn

∫
Br

∫ 1

0

|∇Snu[Rζ(h(ty))]|2

|h(y)− h(0)|n+2(s−1)
dtdydηζ

≤ C

∫
Br

∫ 1

0

∫
Sn

|∇Snu[Rζ(h(ty))]|2

|y|n+2(s−1)
dηζdtdy

≤ C

∫
Br

∫ 1

0

‖∇Snu‖2
L2(Sn)

|y|n+2(s−1)
dtdy

≤ C‖u‖2
H1(Sn), (5.9)

where C = C(n, s) > 0 and ∇Sn is the gradient on Sn.
Now, let us estimate (5.8) on Sn ∩ {ω ∈ Rn+1; |ω − ζ| > 1}, ζ ∈ Sn.∫

Sn

∫
Sn∩{|ω−ζ|>1}

|u(ω)− u(ζ)|2

|ω − ζ|n+2s
dηωdηζ

≤C
∫
Sn

∫
Sn∩{|ω−ζ|>1}

[
|u(ω)|2 + |u(ζ)|2

]
dηωdηζ ≤ C‖u‖2

L2(Sn). (5.10)

From (5.9) and (5.10) we get (5.8).

Proposition 5.1. If s ∈ (0, 1) , then

P.V.

∫
Sn

u(ζ)− u(ω)

|ζ − ω|n+2s
dη(ω) =

Cn,−s
2

∫
Sn

2u(ζ)− u(ω)− u(θ(ζ, ω))

|ζ − ω|n+2s
dυ(ω)

gSn
, ζ ∈ Sn, u ∈ C2(Sn),

where θ(ζ, ω) denotes the symmetric value of ω on Sn with respect to ζ.

Proof. Given u ∈ C2(Sn) and z ∈ Sn, we use the stereographic coordinates with ζ being
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the south pole to obtain the following equality

P.V.

∫
Sn

u(ζ)− u(ω)

|ζ − ω|n+2s
dη(ω) = P.V.

∫
Rn

u(F(0))− u(F(y))

|F(0)−F(y)|n+2s

(
2

1 + |y|2

)n
dy, (5.11)

where F is the inverse of the stereographic projection. For simplicity, we assume that ζ

is the canonical vector −en+1 ∈ Rn+1, since we can apply a orthogonal rotation on the

right side of (5.1). Substituting ỹ = −y on the left side of the above equality, we have

P.V.

∫
Rn

u(F(0))− u(F(y))

|F(0)−F(y)|n+2s

(
2

1 + |y|2

)n
dy

= P.V.

∫
Rn

u(F(0))− u(F(−ỹ))

|F(0)−F(−ỹ)|n+2s

(
2

1 + |ỹ|2

)n
dỹ,

and so,

2P.V.

∫
Sn

u(ζ)− u(ω)

|ζ − ω|n+2s
dη(ω)

= P.V.

∫
Rn

2u(F(0))− u(F(y))− u(F(−y))

|F(0)−F(y)|n+2s

(
2

1 + |y|2

)n
dy.

(5.12)

The above representation is useful to remove the singularity of the integral at the origin.

Indeed, we use a second order Taylor expansion to obtain

2u(F(0))− u(F(y))− u(F(−y))

|F(0)−F(y)|n+2s

(
2

1 + |y|2

)n
≤ C
‖D2(u ◦ F)‖L∞
|y|n+2s−2

,

which is integrable near 0, and thus one can get rid of the P.V.

The following result expresses the norm ‖ · ‖∗ in terms of a singular integral operator.

Proposition 5.2. If s ∈ (0, 1), then

‖u‖s,gSn =
Cn,−s

2

∫
Sn

∫
Sn

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn
+ Ps(1)

∫
Sn
u2dυgSn

for all u ∈ Hs(S, gSn).

Proof. Denote by θ(ζ, ω) the symmetric value of ω on Sn with respect to ζ ∈ Sn. Given
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u ∈ C2(Sn), from Proposition 5.1 and the Fubini theorem, we have∫
Sn
P.V.

∫
Sn

u(ζ)2 − u(ζ)u(ω)

|ζ − ω|n+2s
dυ(ω)

gSn
dυ(ζ)

gSn

=
1

2

∫
Sn

∫
Sn

2u(ζ)2 − u(ζ)u(ω)− u(ζ)u(θ(ζ, ω))

|ζ − ω|n+2s
dυ(ω)

gSn
dυ(ζ)

gSn

=
1

2

∫
Sn

∫
Sn

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn
+

1

2

[u(ζ)− u(θ(ζ, ω))]2

|ζ − θ(ζ, ω)|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn

− 1

2

∫
Sn

∫
Sn

u(ω)2 − u(ω)u(ζ) + u(θ(ζ, ω))2 − u(θ(ζ, ω))u(ζ)

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn

=

∫
Sn

∫
Sn

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn
− 1

2

∫
Sn
P.V.

∫
Sn

u(ω)2 − u(ω)u(ζ)

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn

− 1

2

∫
Sn
P.V.

∫
Sn

u(θ(ζ, ω))2 − u(θ(ζ, ω))u(ζ)

|ζ − θ(ζ, ω)|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn

=

∫
Sn

∫
Sn

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn
−
∫
Sn
P.V.

∫
Sn

u(ω)2 − u(ω)u(ζ)

|ζ − ω|n+2s
dυ(ζ)

gSn
dυ(ω)

gSn

Therefore, the proposition follows immediately from the above equality and the above

proposition.

Now, we consider as in [29] the set

XG = {u ∈ H1(Sn); u(gζ) = u(ζ),∀g ∈ G and a.e ζ ∈ Sn}, (5.13)

where G = O(k) × O(m) is the compact subgroup of the compact Lie group O(n + 1),

k + m = n + 1 and k ≥ m ≥ 2. For g = (g1, g2) ∈ G, where g1 ∈ O(k) and g2 ∈ O(m),

the action of G on Sn is de�ned by g(ζ1, ζ2) = (g1ζ1, g2ζ2), where ζ1 ∈ Rk and ζ2 ∈ Rm.

With this choice of G and by the continuity of H1(Sn) ↪→ Hs(Sn) we obtain that Xs
G =

(XG, ‖.‖∗) is an in�nite-dimensional closed subspace of Hs(Sn).

Lemma 5.3. For 1 ≤ p ≤ 2k/(k−2s), we have the continuous embeddings Xs
G ↪→ Lp(Sn).

Moreover, the embeddings are compact if 1 ≤ p < 2k/(k − 2s).

Proof. Notice �rst that if v ∈ Xs
G, then v(ζ) = v(|ζ1|, |ζ2|) i.e. v depends only on |ζ1|, or

equivalently, v depends only on |ζ2|, since |ζ1|2 + |ζ2|2 = 1. Now, for any ζ = (ζ1, ζ2) ∈ Sn,
assume �rst that ζ2 6= 0. Then ζ

i

2 6= 0 for some 1 ≤ i ≤ m. Set

h−1(ζ1, ζ2) = (ζ1
1 , ..., ζ

k
1 , ζ

1
2 , ..., ζ

i−1
2 , ζ i+1

2 , ..., ζm2 ) ∈ Rn.

Then there exists a neighborhood U of ζ in Sn and δ > 0 such that h−1 maps U di�eo-
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morphically onto the open set Bk
δ (ζ1)×Bm−1

6δ (ζ
′
2) in Rn, where

ζ
′
2 = (ζ

1

2, ..., ζ
i−1

2 , ζ
i+1

2 , ..., ζ
m

2 ) ∈ Rm−1.

Note that in the chart (U, h−1), if v ∈ Xs
G then v depends only on |ζ1| where ζ1 ∈ Bk

δ (ζ1).

Next, if ζ2 = 0, then ζ
i

1 6= 0 for some 1 ≤ i ≤ k. We can likewise take a chart in which

v ∈ Xs
G depends only on |ζ2|, where ζ2 ∈ Bm

δ (ζ2).

(Continuity) We may assume that Sn is covered by a �nite number of such charts, say

(Uα, h
−1
α ), 1 ≤ α ≤ N , and that the metric matrices in these charts satis�es

c−1I ≤ (gαij) ≤ cI, 1 ≤ α ≤ N,

where c > 0 is a constant and I is the n × n identity matrix. Moreover hα is Lipschitz

in h−1
α (Uα) and its Lipschitz constant no depending of α. Since the functions in Xs

G

behave locally like functions of k or m independent variables in these charts, we have for

r = k or m,∫
U

∫
U

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dηζdηω

=

∫
Brδ×B

n−r
6δ

∫
Brδ×B

n−r
6δ

[u(h(ζ1, ζ
′
2))− u(h(ω1, ω

′
2))]2

|h(ζ1, ζ ′2)− h(ω1, ω′2)|n+2s

√
det(gijζ)det(gijω)dζ1dζ

′
2dω1dω

′
2

≥ C

∫
Brδ

∫
Brδ

∫
Bn−r6δ

∫
Bn−r6δ

[u(ζ1)− u(ω1)]2

|(ζ1, ζ ′2)− (ω1, ω′2)|n+2s
dζ ′2dω

′
2dζ1dω1. (5.14)
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Making change vaviable we have∫
Bn−r6δ

∫
Bn−r6δ

1

|(ζ1, ζ ′2)− (ω1, ω′2)|n+2s
dζ ′2dω

′
2

=

∫
Bn−r6δ (0)

∫
Bn−r6δ (0)

1

[|ζ1 − ω1|2 + |ζ ′2 − ω′2|2]
n+2s

2

dζ ′2dω
′
2

=

∫
Bn−r6δ (0)

∫
Bn−r6δ (ζ′2)

1

[|ζ1 − ω1|2 + |ω′2|2]
n+2s

2

dω′2dζ
′
2

≥
∫
Bn−r3δ (0)\Bn−r2δ (0)

∫
Bn−r6δ (ζ′2)

1

[|ζ1 − ω1|2 + |ω′2|2]
n+2s

2

dω′2dζ
′
2

≥
∫
Bn−r3δ (0)\Bn−r2δ (0)

∫
Bn−rδ (0)

1

[|ζ1 − ω1|2 + |ω′2|2]
n+2s

2

dω′2dζ
′
2

≥
∫
Bn−r3δ (0)\Bn−r2δ (0)

∫
Bn−r|ζ1−ω1|

2

(0)

1

[|ζ1 − ω1|2 + |ω′2|2]
n+2s

2

dω′2dζ
′
2

≥ C

∫
Bn−r3δ (0)\Bn−r2δ (0)

1

|ζ1 − ω1|n+2s

∫
Bn−r|ζ1−ω1|

2

(0)

dω′2dζ
′
2

≥ C

∫
Bn−r3δ (0)\Bn−r2δ (0)

1

|ζ1 − ω1|r+2s
dζ2

≥ C
1

|ζ1 − ω1|r+2s
, (5.15)

where C = C(δ, n, r) > 0. From (5.14), (5.15) we obtain∫
U

∫
U

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dηζdηω ≥ C

∫
Brδ

∫
Brδ

[u(ζ1)− u(ω1)]2

|ζ1 − ω1|r+2s
dζ1dω1.

Hence, there exists a constant C1 = C1(α, δ, n, r) > 0 such that∫
Uα

∫
Uα

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dηζdηω ≥ C1

∫
Brα,δ

∫
Brα,δ

[u(ζ1)− u(ω1)]2

|ζ1 − ω1|r+2s
dζ1dω1. (5.16)

Similarly, we can prove that ∫
Uα

|u|pdη ≤ C2

∫
Brα,δ

|u|pdζ1, (5.17)

for some C2 = C2(α, δ, n, r) > 0 and all v ∈ Xs
G. Combining (5.16), (5.17) and the Sobolev
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inequality on Hs(Br
α,δ) yields that∫

Uα

|u|pdη ≤ C3

∫
Uα

∫
Uα

[u(ζ)− u(ω)]2

|ζ − ω|n+2s
dηζdηω, 1 ≤ p ≤ 2r

r − 2s
, (5.18)

for some C3 = C3(α, δ, n, r) > 0 and for all u ∈ Xs
G. The global inequality now follows

easily:

‖u‖Lp(Sn) ≤ C‖u‖Hs(Sn), 1 ≤ p ≤ 2k

k − 2s
,

for all u ∈ Xs
G. This proves that X

s
G ↪→ Lp(Sn) is continuous for 1 ≤ p ≤ 2k/(k − 2s).

(Compactnes) Let {ul}l∈N ⊂ Xs
G be a limited sequence in the norm ‖ · ‖Hs(Sn). We will

show that unless subsequence {ul} converges in Lp(Sn), 1 ≤ p < 2k/(k − 2s). By (5.16)

with r = k or m, there is a M > 0 such that

‖ul‖Hs(Brα,δ)
≤M, for all l, 1 ≤ α ≤ N.

From (5.17) and sinceHs(Br
α,δ) ↪→ Lp(Br

α,δ) is compact for 1 ≤ p < 2r/(r−2s), then unless

subsequence {ul} is a Cauchy sequence in Uα, 1 ≤ α ≤ N . Thus for each α = 1, ..., N

there exists uα ∈ Lp(Uα) such that vl → uα in Lp(Uα) as l→ +∞. De�ne u ∈ Lp(Sn) as

u(ζ) := uα(ζ), ζ ∈ Uα.

Then ∫
Sn
|u− ul|pdη ≤

N∑
α=1

∫
Uα

|uα − ul|pdη → 0, as l→ +∞.

This proves that Xs
G ↪→ Lp(Sn) is compact for 1 ≤ p < 2k/(k − 2s).

Proof of Theorem 5.1. Since 2k/(k − 2s) > 2∗s and by Lemma 5.3, the embedding

Xs
G ↪→ L2∗s is compact. Therefore, we may apply Lemma 5.1 to complete the proof of

Theorem 5.1. �
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Conclusion

The fractional conformal operator A2s (s ∈ (0, 1) ∪ N, de�ned by (1.1)) is related to

the fractional Laplace operator through the following identity

A2su ◦ F = ξ
−n+2s
n−2s

s (−∆)s(ξs(u ◦ F)), u ∈ C∞(Sn),

where F is the stereographic projection and ξs is the conformal factor. Thus, the study of

some problems on Sn involving these operators A2s is equivalent to the study of problems

on Rn involving the fractional Laplace operator (−∆)s.

A class of problems that we studied was the nonexistence of nonconstant positive

solutions of the problem A2su = f(u) in Sn,

u ∈ Hs(Sn),
(5.19)

where f : R→ R is continuous. Using method of moving plane, it was concluded that if

hs(t) := t−
n+2s
n−2sf(t) is decreasing on (0,+∞), then it was shown that any positive solution

of (5.19) is constant. In addition, the result was generalized for systems.

A natural question that arose was about the existence of nonconstant solutions of

(5.19), which implies that the solution changes sign. For 0 < s < 1, it was shown that,

under certain conditions on f , the problem (5.19) has a unbounded sequence of sing-

changing solutions (Theorem 5.1 and Corollary 5.2).

An interesting work would be to study these conformal operators in the Hyperbolic

space Hn or on the Cylinder R×Sn as well as the existence and nonexistence of solutions

for problems involving these operators.

Also, using method of moving plane, we studied the nonexistence of positive solutions

of −∆gSn+
u = f(u) in Sn+;

∂u
∂ν

= 0 on ∂Sn+.
(5.20)
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The main result was that any positive smooth solution of (5.20) is constant provided that

h(t) := t
n+2
n−2 (f(t) + n(n − 2)/4t) is decreasing. As a particular case it was that Ni-Li's

conjecture is true in the case of the hemisphere, i.e., for f(t) = t−
n+2
n−2 − λt and 0 < λ

small, the only positive solution of (5.20) is u ≡ λ
n−2

4 . Moreover, this result was also

generalized for systems.

An interesting line of research is to know and study what class of fractional conformal

operators are de�ned in the hemisphere since we are not able to de�ne these operators by

the method of Chang and Gonzales [19]. Likewise, it is possible to study some problems

in the space Rn
+ through the study of problems in the hemisphere Sn+, see e.g., [29, 32].
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Appendix

In this chapter, we gather some elementary results used in this thesis, see [14, 13, 28].

Conformal Laplacian in coordinates

Let u be a smooth function de�ned on Riemannian manifold (Mn, g), where g is a

metric. Then, the Laplace-Beltrami operator in coordinates is given by

∆gu(q) =
n∑

i,j=1

(gji(q)∂i∂ju(q)− gij(q)
n∑
k=1

Γkij(q)∂ku(q)), q ∈Mn, (5.21)

where ψ : U ⊂ Rn → Mn is a parameterization, U is neighborhood of y = (y1, y2, ..., yn),

ψ(y) = q, ∂iu(q) = ∂
∂yi

(u ◦ ψ)(y), g = (gij), g−1 = (gij) and Γkij are Christo�el symbols,

Γkij =
1

2

n∑
m=1

(∂igjm + ∂jgim − ∂mgij)gkm, (5.22)

for i, j, k = 1, ..., n.

Let (Sn, g) be the unit sphere provided with the standard metric g, n > 2. Let p be

an point on Sn, which we will rename the south pole S. Let F : Rn → Sn\{S} be de�ned
by the stereographic projection. Then

F(y) =

(
4y

1 + |y|2
,
1− |y|2

1 + |y|2

)
, y ∈ Rn,

and

gij(q) =
4

(1 + |y|2)2
δji , and gij =

(1 + |y|2)2

4
δji , y ∈ Rn, q = F(y), (5.23)
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where g is called standard metric and δji is the Kronecker delta.

Theorem A 5.1. If u is a smooth function in (Sn, g), n > 2, where g is the standard

metric, then

∆gu(p) =
(1 + |y|2)2

4
∆(u ◦ F)(y)− (n− 2)

1 + |y|2

2
y.∇(u ◦ F)(y), y ∈ Rn, (5.24)

where ∆ and ∇ are the Laplacian and gradient operators on Rn.

Proof. From (5.23) we have

∂mgij =
∂

∂ym

(
4

(1 + |y|2)2

)
δji = −2

(
2

1 + |y|2

)3

ymδji , for i, j,m = 1, ..., n; (5.25)

and from (5.22) and (5.25)

Γkij =
1

2
(∂igjk + ∂jgik − ∂kgij)gkk

=

(
2

1 + |y|2

)
(−yiδkj − yjδki + ykδji )

(5.26)

Therefore, by (5.21), (5.23) and (5.26), we have

∆gu(q) =
n∑
i=1

(gii∂i∂iu(q)− gii
n∑
k=1

Γkii∂ku(q))

=

(
1 + |y|2

2

)2

∆u(F(y))−
(

1 + |y|2

2

)2 n∑
i,k=1

Γkii∂ku(q))

=

(
1 + |y|2

2

)2

∆u(F(y))−
(

1 + |y|2

2

)
(n− 2)y.∇u(F(y)).

Let us denote from here ∂i = ∂
∂yi

. Let

ξ(y) =

(
2

1 + |y|2

)n−2
2

, y ∈ Rn.
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Then, for i, j = 1, ..., n,

∂iξ(y) = −n− 2

2

(
2

1 + |y|2

)n
2

yi, (5.27)

∂i∂jξ(y) = −n− 2

2

(
2

1 + |y|2

)n
2
{
− nyiyj

1 + |y|2
+ δji

}
, (5.28)

∆ξ(y) = −n(n− 2)

4

(
2

1 + |y|2

)n+2
2

= −n(n− 2)

4
ξ(y)

n+2
n−2 . (5.29)

Theorem A 5.2. Let u be a smooth function in (Sn, g), n > 2, where g is the standar

metric. Denote

v(y) = ξ(y)u(F(y)), y ∈ Rn.

Then

−∆v(y) = ξ(y)
n+2
n−2

(
−∆gu(q) +

n(n− 2)

4
u(q)

)
, q = F(y), y ∈ Rn. (5.30)

Proof. From Theorem A5.1, (5.27)-(5.29), we have

−∆v(y) = −ξ(y)∆u(F(y))− 2∇ξ(y).∇u(F(y))−∆ξ(y)u(F(y))

= −ξ(y)

(
(

2

1 + |y|2
)2∆gu(q) + (n− 2)

2

1 + |y|2
y.∇(u(F(y))

)
− 2

(
−n− 2

2

(
2

1 + |y|2

)n
2

y.∇u(F(y))

)
+
n(n− 2)

4
ξ(y)

n+2
n−2u(F(y))

= −ξ(y)
n+2
n−2 ∆u(q) +

n(n− 2)

4
ξ(y)

n+2
n−2u(q).

Similarly, we have:

Theorem A 5.3. Let y, η ∈ Rn and ν := dFy(η). If u ∈ C1(Sn), then

∂u

∂ν
(p) =

(1 + |y|2)2

4

(
(u ◦ F)(y)

∂ξ

∂η
(y) + ξ(y)

∂(u ◦ F)

∂η
(y)

)
, p = F(y),

where ∂
∂ν

means the covariant derivative in the direction of ν.
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Fractional Laplace Operator

In this section we will brie�y comment on some results involving the fractional Lapla-

cian operator. The fractional Laplace operator (−∆)s on Rn, s > 1 is de�ned using the

Fourier transform by

̂(−∆)sv(y) := |y|2sv̂(y), for all v ∈ C∞c (Rn),

where

v̂(y) =

∫
Rn

e−2πix.yv(x) dx.

From [28] we have the following result.

Theorem A 5.4. Let 0 < s < 1. Up to a positive constant we have∫
R
v(−∆)sv dy =

∫
Rn
|(−∆)

s
2v|2dy =

∫
Rn

∫
Rn

|v(x)− v(y)|2

|x− y|n+2s
dy. (5.31)

(−∆)su(x) = P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where P.V. means limε→0

∫
|x−y|>ε.

By the Sobolev inequality, we have that

‖v‖s :=

∫
Rn
v(−∆)sv dy

is a norm. Let Ds,2(Rn) be the completion of C∞c (Rn) in the norm ‖·‖s. The set Ds,2(Rn)

is called the Sobolev space. Then we have a characterization for the Sobolev space.

Theorem A 5.5. For s ∈ (0, 1) ∪ N, we have

Ds,2(Rn) = {v ∈ L
2n
n−2s , ‖v‖s < +∞}. (5.32)

Proof. Denotes by H the right side of (5.32). For s ∈ N, see [13, Section 11.8]. Let

0 < s < 1. Select ρ ∈ C1
c (Rn) so that0 ≤ ρ ≤ 1, ρ ≡ 1 on B(0, 1),

spt(ρ) ⊂ B(0, 2), |∇ρ| ≤ 2.

For each k = 1, 2, ..., set ρk(y) = ρ(x/k). Given v ∈ H, we write vk = ρkv. Then
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vk ∈ Lp(Rn), 1 ≤ p ≤ 2n/(n− 2s) and (−∆)s/2(vk) ∈ L2(Rn), and∫
Rn

∫
Rn

|v(x)− v(y)− vk(x) + vk(y)|2

|x− y|n+2s
dxdy

≤ C

∫
Rn

∫
Rn

|ρk(x)|2|v(x)− v(y)|2

|x− y|n+2s
dxdy + C

∫
Rn

∫
Rn

|v(x)|2|ρk(x)− ρk(y)|2

|x− y|n+2s
dxdy

≤ C

∫
Rn

∫
Rn−B(0,k)

|v(x)− v(y)|2

|x− y|n+2s
dxdy +

C

k2

∫
Rn
|v(x)|2

∫
B(0,2k)

|∇ρ(x
k
)|2

|z|n+2s−2
dydx

≤ C

∫
Rn

∫
Rn−B(0,k)

|v(x)− v(y)|2

|x− y|n+2s
dxdy +

C

k2

∫
B(0,2k)−B(0,k)

|v(x)|2dx

≤ C

∫
Rn

∫
Rn−B(0,k)

|v(x)− v(y)|2

|x− y|n+2s
dxdy + C

∫
Rn−B(0,k)

|v(x)|2dx→ 0

Then, ‖v − vk‖∗ → 0 as k → +∞. From [28, Theorem 2.4] gets that for each k, exists a

sequence ṽkl in C
∞
c (Rn) such that ‖vk − ṽkl‖∗ → 0 as l→ +∞.

Therefore, unless the subsequence, ‖v − ṽkl‖∗ → 0 as l→ +∞.

Fountain theorem

In this section we are going to show Lemma 3.1, which is a consequence of the principle

of symmetric criticality and the fountain theorem.

Theorem A 5.6. (Principle of symmetric criticality [59]) Let G be a group of isometries

of a Riemannian manifold M and let J : M → R be a C1 function invariant under G.

Then the set X of stationary points of M under the action of G is a totally geodesic

smooth submanifold M , and if u ∈ X is a critical point of J |X then u is in fact a critical

point of J .

The Principle states that in order for a symmetric point u to be a critical point it

su�ces that it be a critical point of J |X , the restriction of J to X.

Theorem A 5.7. (Fountain theorem [10]) Let E be a Hilbert space, (ej : j ∈ N) an

orthonormal sequence, and set Ek := span(e1, e2, ..., ek). Consider a C1-functional J :

E → R that satis�es the following hypotheses.

(g1) J is even: J(−v) = J(v) for all v ∈ E;

(g2) bk := supρ≥0 infv∈E⊥k ,‖v‖=ρ J(v)→ +∞ as k → +∞;

(g3) infr>0 supv∈Ek,‖v‖≥r J(v) < 0 for every k ∈ N;
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(g4) The Palais- Smale condition hold above 0, i.e., any sequence {vm} in E which sat-

is�es J(vm)→ c > 0 and J ′(vk)→ 0 contains a convergent subsequence.

Then J posseses an unbouded sequence of critical values ck.

Proof of Lemma 5.1. Let E := XG. By the principle of symmetric criticality [59],

it su�cies to �nd an unbouded sequence of critical values of the restriction J : E → R.
We claim that J : E → R satis�es the assumptions of the Fountain Theorem 3.1. Let

(ej; j ∈ N) be a Hilbert basis of E and set Ek = span(e1, ..., ek). Clearly, J satis�es (g1)

because of (h1). For the proof of (g2) we de�ned

µk := sup
v∈E⊥k−1,v 6=0

‖v‖Lp(Sn)

‖v‖∗
.

From [59, Lemma 3.3] we have µk → 0 as k → +∞. Using (h2), there is a constant C > 0

such that

|F (t)| ≤ C(1 + |t|p), for all t ∈ R.

Thus, for v ∈ E⊥k−1 we have

J(v) ≥ 1

2
‖v‖2

∗ − C‖v‖
p
Lp(Sn) − C|S

n|

≥ 1

2
‖v‖2

∗ − Cµ
p
k‖v‖

p
∗ − C|Sn|,

where |Sn| is the measure of Sn. Set rk := (Cµpkp)
1/(2−p). Then

J(v) ≥
(

1

2
− 1

p

)
(Cµpkp)

2/(2−p)

for every v ∈ E⊥k−1 with ‖v‖∗ = rk. Therefore,

bk ≥ inf
v∈E⊥k−1,‖v‖∗=rk

J(v)→ +∞ as k → +∞,

because µk → 0 and p > 2. This prove (g2).

To show (g3), from (h3) gets

F (t) ≥ a1t
µ − a2,

for some positive constants a1, a2. Then

J(v) ≤ 1

2
‖v‖2

∗ − a1‖v‖µLµ(Sn) − a2|Sn|.
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Since Ek is �nite dimensional, all norms are equivalent on Ek. Therefore, µ > 2 implies

sup
v∈Ek,‖v‖∗≥r

J(v)→ −∞, as r → +∞.

It remains to prove the condition (g4). Consider a Palais-Smale sequence {vm} in E,
so that J(vm) → c and J ′(vm) → 0. we will check that {vm} is bounded. For m largue

enough, using (h3) we have

1 + c+ ‖vm‖∗ ≥ J(vm)− 1

µ
J ′(vm)vm

=

(
1

2
− 1

µ

)
‖vm‖2

∗ −
∫
Sn∩{|um|≤R}

(
F (vm)− 1

µ
f(vm)vm

)
dη

−
∫
Sn∩{|um|>R}

(
F (vm)− 1

µ
f(vm)vm

)
dη

≥
(

1

2
− 1

µ

)
‖vm‖2

∗ − max
0≤t≤R

{
F (t)− 1

µ
f(t)t

}
|Sn|.

It follows that {vm} is bounded in E. Unless of subsequences, we have vm ⇀ v in E for

some v ∈ E. By (f2) we have that vm → v in Lp(Sn) and vm → v a.e. in Sn. By (h2) and

for standard arguments,∫
Sn

(f(vm)− f(v))(vm − v)dη → 0 as m→ +∞.

Since

‖vm − v‖2
∗ = (J ′(vm)− J ′(v))(vm − v) +

∫
Sn

(f(vm)− f(v))(vm − v)dη

and

(J ′(vm)− J ′(v))(vm − v)→ 0 as m→ +∞,

we have

‖vm − v‖∗ → 0 as m→ +∞.

Therefore, we can apply the Fountain Theorem 3.1 as clameid.

�
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