
Rafael Luı́s Caldas Almeida

Classification of Load Balancing in the Internet

Advisor:

Ítalo Fernando Scotá Cunha

Belo Horizonte

June 2019

© 2019, Rafael Luís Caldas Almeida
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx -
UFMG

 Almeida, Rafael Luís Caldas

A 447c Classification of load balancing in the internet /
 Rafael Luís Caldas Almeida. — Belo Horizonte,
 2019.
 xxii, 64 p.:il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal

 de Minas Gerais – Departamento de Ciência da
 Computação.

 Orientador: Ítalo Fernando Scotá Cunha

 1. Computação – Teses. 2. Redes de
 computadores - Teses. 3. Internet – Protocolos –
 Teses. 4. IPv6 – Teses. I. Orientador. II. Título.

CDU 519.6*22(043)

i

ii

Resumo

Um roteador pode realizar balanceamento de carga e distribuir tráfego entre múl-
tiplas rotas que têm o mesmo custo. Balanceamento de carga melhora a banda dis-
ponı́vel, robustez a falhas e desempenho. Roteadores que fazem balanceamento de
carga (chamados de balanceadores de carga) calculam qual enlace cada pacote deve
ser encaminhado em função do identificador de fluxo, um subconjunto de campos nos
cabeçalhos do pacote (e.g., endereços IP e números de porto).

Operadores de rede e pesquisadores dependem de ferramentas de medição que
identifiquem balanceamento de carga e caracterizem seu comportamento. No en-
tanto, avanços recentes em planos de dados programáveis, redes definidas por soft-
ware e até mesmo a adoção de IPv6 suportam novas e mais complexas estratégias de
balanceamento de carga, permitindo a definição de identificadores de fluxo incom-
patı́veis com ferramentas existentes.

Neste trabalho, introduzimos o Multipath Classification Algorithm (MCA). Gene-
ralizamos o formalismo de rede utilizado para descrever balanceamento de carga
e estendemos técnicas existentes para o cenário onde balanceadores de carga po-
dem usar identificadores de fluxo compostos por combinações arbitrárias de bits
nos cabeçalhos dos pacotes. O MCA detecta balanceadores de carga que técnicas
existentes são incapazes de detectar, independente de quais bits compõem os iden-
tificadores de fluxo. Além disso, o MCA permite classificar o comportamento de
cada balanceador de carga e seu impacto sobre o tráfego de aplicações. Para limi-
tar o custo de medições usando MCA, propomos otimizações que reduzem o custo
da classificação em 11% e o custo global em 6%, sem perda de acurácia. Nossa
avaliação mostra que o processo de classificação acarreta um custo semelhante ao
custo do processo de detecção, demonstrando a utilidade prática do MCA.

Por fim, utilizamos o MCA para coletar um conjunto de dados representativo de
rotas na Internet para caracterizar o balanceamento de carga na Internet. Nossos re-
sultados mostram que o balanceamento de carga na Internet hoje é mais prevalente
e mais moderno em relação a caracterizações anteriores.

iii

Abstract

A router may perform load balancing and distribute traffic across multiple routes
that have the same cost. Load balancing improves available bandwidth, robustness
to failures, and performance. Routers that perform load balancing (referred to as
load balancers) compute the link a packet should be forwarded to as a function of the
packet’s flow identifier, a subset of fields in the packet’s headers (e.g., IP addresses
and port numbers).

Network operators and researchers rely on measurement tools to identify and
characterize load balancing. However, recent advances in programmable data planes,
software defined networks, and even the adoption of IPv6, support novel, more
complex load balancing strategies. These strategies allow the definition of flow
identifiers that existing measurement tools are incompatible with.

In this work, we introduce the Multipath Classification Algorithm (MCA). We
generalize the network formalism used to describe load balancing and extend ex-
isting techniques to consider that load balancers may use arbitrary combinations
of packet header fields for load balancing. MCA detects load balancers that exist-
ing tools cannot, regardless of the bits load balancers consider in flow identifiers.
Furthermore, MCA classifies the behavior of load balancers and their impact on ap-
plication traffic. We propose optimizations that reduce the classification cost by 11%
and the overall cost by 6%, without loss of accuracy. Our evaluation shows that the
process of classifying load balancers entails a cost similar to the cost of the detection
process, demonstrating MCA is a practical tool.

Finally, we use MCA to collect a representative dataset of route measurements
to characterize load balancing in the Internet. Our results show that load balanc-
ing is more prevalent and load balancing strategies are more mature than previous
characterizations have found.

v

Contents

Resumo iii

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Measurement of Internet Routes . 2
1.2 Traceroute and Load Balancing . 3
1.3 Limitations of Current Techniques . 5
1.4 Contributions . 5

2 Definitions and Background 7
2.1 Definitions . 7
2.2 Load Balancing . 8
2.3 Multipath Detection Algorithm . 9
2.4 Limitations of the Multipath Detection Algorithm 9

3 Related Work 11
3.1 Limitations of Traceroute . 11
3.2 Measurement Techniques . 13

3.2.1 Reducing Probing Cost . 13
3.2.2 Complementary Data . 15
3.2.3 Measurements of the IPv4 and IPv6 Internet 18

3.3 Measurement Platforms . 18
3.4 Characterization of Internet routes . 19

4 Load Balancer Model 21

vi

5 Multipath Classification Algorithm 23
5.1 Load Balancer Discovery . 23
5.2 Load Balancer Classification . 24
5.3 Optimizations for Searching Flow Identifiers 26

5.3.1 Problem . 26
5.3.2 Randomized Search (Baseline) 26
5.3.3 Reusing Flow Identifiers for Identification 27
5.3.4 Searching Sequence for Identification 28
5.3.5 Varying a Bit Value for Classification 28
5.3.6 Varying a Field Value for Classification 30

5.4 Operational Considerations . 30
5.5 MCA Implementation . 31

6 Dataset 33
6.1 Measurement Setup . 33
6.2 Dataset Properties . 35

7 Evaluation 37

8 Characterization of Load Balancing 41
8.1 Occurrence of Load Balancing . 41
8.2 Classes of Load Balancing . 42
8.3 Diamonds and Branched Route Properties 45
8.4 Overriding of Packet Header Fields . 49

9 Conclusion and Future Work 51

Bibliography 53

vii

List of Figures

1.1 Overview of traceroute . 2
1.2 Traceroute and load balancing . 4

2.1 Example of a branched route. 8

5.1 Example toplogy . 27

6.1 Flow identifiers and matching keys . 34
6.2 Multi-route length . 36

7.1 Probing cost for all outermost diamonds 38
7.2 Probing cost for outermost diamonds with nested diamonds 38
7.3 Normalized probing cost . 38
7.4 Normalized probing cost for outermost diamonds with depth ≥ 2 38
7.5 Normalized probing cost for detection . 39
7.6 Normalized total probing cost for outermost diamonds 39

8.1 Number of load balancers per route . 42
8.2 Example multi-route with two diamonds 45
8.3 Diamond length . 46
8.4 Diamond asymmetry . 46
8.5 Diamond min- and max-width. 47
8.6 Diamonds load balancers and depth . 47

viii

List of Tables

5.1 MCA’s parameters and default values . 32

6.1 Dataset summary . 34
6.2 Measurements that reach the destination 36

8.1 Breakdown of load balancer prevalence by protocol 43
8.2 Breakdown of load balancer classifications by protocol 43

ix

Chapter 1

Introduction

Understanding the structure of the Internet and the properties of Internet routes
serves multiple goals. Network operators use Internet route measurements to trou-
bleshoot failures [1], routing anomalies [2–4], bad performance [5], and misconfigu-
rations [6]. Researchers study properties of Internet routes to develop new models
of its topology and to design solutions to address limitations [7–11].

The Internet is a decentralized network composed of thousands of autonomous
systems (ASes) that establish peering agreements to exchange routes and traffic with
each other. Routers execute routing protocols that disseminate available routes and
populate a routing table whose entries specify the next router (referred to as next
hop) where traffic towards a destination IP prefix should be forwarded. Routing
decisions are local, i.e., each router chooses its preferred route towards each IP prefix
among the available routes and maintains its own routing table. For each packet, a
router searches the longest prefix matching the destination address in its routing
table, and forwards the packet to the corresponding next hop.

Between ASes, routing information is distributed by the Border Gateway Proto-
col (BGP). Within an AS, network operators employ an Interior Gateway Protocol
(IGP) to distribute routes, e.g., Open Shortest Path First (OSPF) or Intermediate Sys-
tem to Intermediate System (IS-IS). Routing protocols select a preferred (e.g., cheap-
est or shortest) route to each destination prefix. If multiple routes have identical
metrics (e.g., same cost or length), a routing protocol can install multiple routes to-
wards a destination and perform load balancing. For example, load balancing can
be configured automatically by mechanisms such as Equal-Cost Multi-Path (ECMP).

Internet traffic load balancing helps increase bandwidth, reliability, and reduce
maximum link utilization. Like forwarding, load balancing decisions are also local.
Routers that perform load balancing (which we call load balancers) compute which

1

R1 R3s dR2

TTL=1
TTL=2
TTL=3
TTL=n

TETETE Reply

TTL=0 TTL=0 TTL=0 TTL=0

Figure 1.1: Traceroute sends TTL-limited probes towards a destination to
identify interfaces between a source and a destination.

network link a packet should be forwarded to as a function of the packet’s flow
identifier, a subset of fields in the packet’s headers (e.g., IP addresses and transport
port numbers) [12].

Operators widely deploy load balancing, impacting most Internet routes [13,14].
Given the applicability and importance of route measurements, researchers and net-
work operators need route measurement tools to characterize load balancing in the
Internet.

In this thesis we develop and evaluate new methods to measure load balanced routes and
perform a large-scale characterization study to uncover current load balancing practices in

the Internet.

1.1 Measurement of Internet Routes

The standard tool for measuring Internet routes is traceroute [15]. Traceroute re-
veals interfaces in a route from a source to a destination in the Internet by sending
specially-crafted packets (probes) towards the destination. Traceroute sends probes
with limited values in the time-to-live field (TTL) in the packet header. Routers along
the path decrement the value of the TTL field before forwarding a packet. When the
TTL of a probe expires (i.e., gets decremented to zero), the router discards the probe
and sends an ICMP Time Exceeded message to the source (the device executing
traceroute). Traceroute identifies an interface by inspecting the source IP address of
the ICMP Time Exceeded message.

Figure 1.1 shows an overview of traceroute. Traceroute sends probes with in-
creasing TTL values until it receives a response from the destination. For ICMP
Echo Request (ping) probes, traceroute identifies the destination when it receives an
ICMP Echo Reply (pong) response; for UDP probes, traceroute identifies the des-
tination when it receives an ICMP Port Unreachable response. Traceroute imple-
mentations also set a maximum TTL parameter, and stop the measurement if the

2

destination is not reached by the maximum TTL; this stop condition is useful, e.g.,
in case of routing loops. Traceroute also stops probing if a number of consecutive
routers (e.g., five routers) do not reply to probes; this stopping condition is useful if
there is no route to the destination or if a firewall is blocking the measurement.

A key step in traceroute is matching ICMP Time Exceeded responses from routers
to the original probes. This step is critical to identify the hop distance (the TTL
value) at which each interface on the path is reached. This matching is possible
because an ICMP Time Exceeded message encapsultes the header of the (expired)
probe that triggered the message. Traceroute inserts a matching key in each probe.
When an ICMP Time Exceeded message is received, traceroute inspects the encap-
sulated header and uses the matching key to identify the probe that triggered the
message (and the hop distance of the interface that sent it).

1.2 Traceroute and Load Balancing

Load balancing in Internet routes can lead to anomalies in traceroute measurements.
Classic traceroute implementations use the destination port of the UDP protocol to
store a probe’s matching key. Unfortunately, the destination port is often consid-
ered for load balancing in the Internet; in other words, the destination port is of-
ten part of a packet’s flow identifier. When probes sent by classic traceroute, each
with a different matching key in the UDP destination port, trigger load balancing,
they may be forwarded to different next hops through different links. This causes
measurement artifacts that lead to the inference of inexistent links, loops, and cy-
cles [13, 16, 17]. Traceroute is also incapable of discovering the complete set of in-
terfaces and links in the route towards a destination. Measurement artifacts and
incompleteness negatively impact tasks such as network management and trou-
bleshooting [13, 16–19]. Next, we discuss these limitations and existing techniques
designed to address them.

Inference of False Links

Because traceroute measures a route iteratively and since classic implementations
do not control probe flow identifiers, load balancers along the route may forward
probes to different next hops, leading to the inference of false links. For example,
Figure 1.2 shows an example route with load balancing (a), where A and B are load
balancers, and a possible incomplete traceroute output (b). In the example, a probe
with TTL = 2 may expire at C and a probe with TTL = 3 may expire at D, leading to

3

s A
B

C
E

F

D

H

G

I d

(a) Route with load balancing

s A
C

D G

I d

(b) Traceroute output

Figure 1.2: Possible traceroute output in the presence of load balancing

the inference of a false link between C and D. Similarly, when routes have branches
with different lengths, traceroute may infer loops when TTL-limited probes cross
different branches over multiple iterations. In the example, a probe with TTL = 4
may traverse A, B, E, and expire at I; another probe with TTL = 5 may traverse
A, C, F, G, and also expire at I. This would lead to the inference of a self-loop at
interface I. Finally, the traceroute output is not representative of the actual route.

Paris traceroute is an extension of traceroute that stores a probe’s matching key
in header fields not normally considered for load balancing, i.e., not included in flow
identifiers, like the IP identifier field [12]. This allows Paris traceroute to carefully
control values in packet header fields to keep probe flow identifiers constant (§2.2),
avoiding triggering load balancing and inferring of false links.

Missing Nodes and Links

Classic traceroute and Paris traceroute do not identify all links and interfaces in a
route. In Figure 1.2(b), traceroute misses nodes B, E, F, H as well as their links.
Increasing the number of probes that classic traceroute sends to each TTL can lead
to the discovery of additional interfaces, but the lack of control over flow identifiers
prevents inference of links between interfaces. Paris traceroute avoids load balanc-
ing and the inference of false links, but identifies a single branch between the source
and the destination.

The Multipath Detection Algorithm (MDA) [20], is a probabilistic algorithm that
identifies load balancers in Internet routes. MDA systematically varies flow iden-
tifiers to trigger load balancing and identify all interfaces, as well as links between
interfaces, in branched routes [20]. By controlling the number of probes sent to each
TTL, MDA can calculate the probability of missing interfaces or links to within a
configurable confidence level.

4

1.3 Limitations of Current Techniques

Recent advances in programmable data planes, software-defined networking (SDN),
and even the adoption of IPv6 lead to increasingly complex load balancing deploy-
ments [21–31]. Moreover, new router implementations support load balancing using
flow identifiers composed of arbitrary set of packet header fields [32, 33]. Existing
MDA implementations, however, only vary transport port numbers and the ICMP
checksum [20, 34]. This prevents MDA from identifying load balancers when they
do not consider port numbers for load balancing. Load balancing misidentification
may be aggravated over time as router implementations evolve and the adoption of
programmable data planes, SDN, and IPv6 increases.

MDA detects load balancers in Internet routes but does not classify their behav-
ior, i.e., it does not identify which bits or header fields in the packet headers are used
for load balancing. This information is relevant as different load balancing behav-
ior can have different impact on applications and traffic. Although previous work
have applied ad-hoc extensions to MDA to classify load balancers as per-packet,
per-flow, or per-destination [13, 14, 35], these three predefined classes are not com-
prehensive and the classification method does not generalize to other load balancer
classes. For example, IPv6 load balancers may rely on the Flow Label header field
for load balancing [36]. Moreover, these ad-hoc extensions do not provide bounds
on the accuracy of their classifications.

1.4 Contributions

In this thesis, we extend the existing formalism [20] to consider that load balancers
may use arbitrary combinations of bits in the packet header for load balancing. We
introduce the Multipath Classification Algorithm (MCA), a probing algorithm that
identifies the set of bits in the packet header used by load balancers. We release an
open-source implementation of MCA, and Route Explorer, a web-based visualiza-
tion and route analysis tool.

MCA and MDA significantly increase the probing cost of route measurements [20,
37]. We present optimizations applicable to both MCA’s and MDA’s probing algo-
rithms that reduce the average number of probes sent by 6% for IPv4 and 8% for
IPv6, without any loss of accuracy. This reduction may help adoption of MCA and
MDA measurements (e.g., by Ark or RIPE Atlas [38, 39]).

We conduct large-scale campaigns of MCA measurements of IPv4 and IPv6 routes

5

in the Internet using a diverse set of vantage points. We characterize the prevalence
and deployment of load balancing in the Internet today, and reappraise previous
characterizations of load balancing [13, 14].

Our results indicate that load balancing is more prevalent in Internet routes and
their configurations are more complex than previously reported. Our reappraisal of
previous results also reveals that IPv4 load balancing is still more prevalent than
IPv6 load balancing. We observe, for the first time, load balancers considering
ToS/traffic class and flow label fields for load balancing. Finally, we detect and
report on networks employing inter-domain load balancing.

This work improves the foundations upon which we build tools to identify load
balancing in the Internet. Our implementation of MCA provides more accurate in-
formation than existing tools, and can be useful in network characterization studies,
particularly those concerned with traffic engineering and reliability to failures.

6

Chapter 2

Definitions and Background

In this chapter we lay the foundations for the rest of this thesis. We first define termi-
nology (Section 2.1). We then discuss common load balancing practices and the pos-
sibility of using arbitrary set of packet header fields for load balancing (Section 2.2).
We describe the Multipath Detection Algorithm (MDA) in detail (Section 2.3) and
discuss its limitations (Section 2.4).

2.1 Definitions

We follow the same notation as in previous work [40]. At any given time, the con-
nectivity between a fixed source s and a destination d is realized by its current route.
A route can be simple, consisting of a sequence of IP interfaces from s toward d, or
branched, when one or more load balancing routers (LB) are present, giving rise to
multiple overlapping sequences (called “multi-paths” in [20]). Thus a route is a
directed graph with interface-labelled nodes. A route can be a sequence that termi-
nates before reaching d, due to routing changes or the absence of a complete route
to the destination.

We define a diamond as the set of all interfaces between an LB and its join point,
the interface where all the sub-branches originating from the LB first rejoin. An
outer diamond is one that contains other nested LBs, and therefore their own dia-
monds. We define an outermost diamond as one which is not contained in some other
diamond. Figure 2.1 shows an example branched route where the LB A defines an
outermost diamond with join point G, containing a diamond defined by nested LB
B, also with join point G. A branched route can have multiple (nonoverlapping)
outermost diamonds.

By hop-set or hop we define the set of interfaces found at some fixed distance,

7

s A
B

C
E

F

D

H

G

I d

Figure 2.1: Example of a branched route.

or radius, from the source. We denote the hop-set at radius r in route p as p[r].
Conversely, for some valid hop-set h in route p, we let p〈h〉 denote the radius of h.
Thus h = p[p〈h〉]. In Figure 2.1, p = [s, A, {B, C}, {D, E, F}, {G, H, I}, {I, d}, d] is a
route with three branches. The first hop is p[1] = {A}, the second hop is p[2] =
{B, C}, and hop {G, H, I} is found at radius p〈{G, H, I}〉 = 4. Assuming loop-free
routes, hops are unique, although individual interfaces can be found in multiple
hops when route branches have different lengths (e.g., I and d).

2.2 Load Balancing

Hashing different IP header fields allows control of a trade-off between the granular-
ity of load balancing and impact on traffic. Common load balancing configurations
include [41]:

• Per-destination. Hashes source and destination IP addresses to compute next-
hops. All packets from a source to a destination will traverse the same branch.

• Per-flow. Hashes source and destination IP addresses, ports (or the ICMP
checksum), and the protocol identifier. May consider the IPv6 flow label. Pack-
ets belonging to the same connection will take the same branch, but different
connections between a source and a destination may take different branches.

• Per-packet. The next-hop is chosen at random or by a round-robin mechanism.
Packets in the same connection may take different paths and be delivered out
of order, degrading TCP performance.

Some router vendors and SDN-based load balancing may allow the hashing of
arbitrary header fields, e.g., source and destination ports [32, 33, 42], creating differ-
ent load balancing behavior classes.

8

2.3 Multipath Detection Algorithm

The Multipath Detection Algorithm (MDA) is a probabilistic algorithm to identify
all routers and links in branched routes [20]. MDA proceeds hop-by-hop, and iden-
tifies whether each interface i in a hop h is a load balancer as follows.

Each interface i in hop h in a route (other than the destination) forwards traffic
to at least n = 1 interface in the next hop, i.e., the hop at radius p〈h〉 + 1. MDA
iteratively tests whether interface i forwards packets to n + 1 interfaces in the next
hop. On each iteration, MDA sends multiple probes through i to i’s next hop, each
probe with a different port number to trigger load balancing (if any). The number
of probes to send in an iteration is a function of the number n of interfaces identi-
fied in the next hop so far and on a configurable confidence level that controls the
probability of missing a next hop. The value of n and the number of probes to send
is updated according to probe replies at the end of each iteration. MDA stops the
iteration and proceeds to the next interface or hop when no new interfaces are found
in i’s next hop.

To identify the branched route in Figure 2.1 with a confidence level α = 0.95,
MDA starts sending 9 probes with varying flow identifiers to A’s next hop. If MDA
receives responses from different interfaces,1 MDA labels A as a load balancer, and
performs an additional iteration to check for additional interfaces in A’s next hop.
To check if A’s next hop has three interfaces with α = 0.95, MDA sends 8 addi-
tional probes (for a total of 17 probes). As no new interfaces are found in A’s next
hop, MDA proceeds to the next hop. This process repeats until MDA reaches the
destination.

2.4 Limitations of the Multipath Detection Algorithm

Existing MDA implementations vary a single field in packet headers, usually port
numbers [34, 35]. This approach, however, cannot identify load balancers that do
not consider ports.

Some implementations have included an ad-hoc extension to MDA to classify
load balancers. For example, previous work have applied the following steps to
classify load balancers [13, 35]. First, send multiple probes with fixed port numbers
(identical flow identifiers) and classify any identified load balancers as per-packet.
Second, run MDA varying port numbers and classify any additional load balancers

1Assuming uniform load balancing, the probability that all probes take the same branch and are
replied by the same interface is 0.59 = 0.001953.

9

as per-flow. Finally, run MDA varying the last bits of the destination IP address
and classify any additional load balancers as per-destination.2 This approach, how-
ever, relies on the property that per-destination, per-flow, and per-packet load bal-
ancers will forward packets with different port numbers on different branches. This
approach does not generalize to other load balancer types and does not provide
bounds on the accuracy of classifications.

These problems are aggravated by IPv6 load balancing, which may rely on the
IPv6-specific flow label field introduced to facilitate load balancing [36], and SDN,
which enables network administrators to configure load balancing over a large set
of packet header fields [21]. More generally, there has been no systematic studies of
which fields are used for load balancing and how they vary across routers.

2Most IPv4 and IPv6 prefixes routed in the Internet are less specific than /24 and /48 bits, respec-
tively [43]. Varying the least significant bits does not affect the routing table entry used to forward
packets.

10

Chapter 3

Related Work

In this chapter we present a review of work related to Internet route measurement.
We discuss limitations of traceroute orthogonal to load balancing (Section 3.1) and
alternative measurement techniques that extend or complement traceroute (Sec-
tion 3.2). We then present measurement platforms and ongoing efforts to monitor
the Internet’s topology (Section 3.3), and close with a summary of previous Internet
characterization studies (Section 3.4).

3.1 Limitations of Traceroute

Traceroute works by leveraging the ICMP Time Exceeded messages routers send in
response to TTL-expired probes. As traceroute is not a standard and the ICMP stan-
dard leaves several aspects open to interpretation, vendors and network administra-
tors can configure devices with different behaviors when dealing with TTL-expired
packets. This imposes limitations on traceroute measurements.

In this thesis we focus on limitations of traceroute measurements in the presence
of load balancing, discussed in Section 1.1. We next discuss work related to other
limitations of traceroute when measuring Internet routes.

Firewalls and Anonymous Routers

Network operators can configure routers to not respond to traceroute probes (e.g., to
avoid malicious attacks and keep their network topology hidden) and firewalls can
block ICMP Time Exceeded messages, thus creating anonymous routers. Although
anonymous routers do not respond to traceroute probes, they do decrement the
TTL and forward probes. As a result, anonymous routers appear in traceroute mea-
surements as a hop without any response; their interface’s IP address are unknown.

11

Most traceroute implementations output an asterisk (*) as a placeholder for anony-
mous routers. The task of assigning IP addresses to anonymous routers in traceroute
measurements is known as anonymous router resolution. Gunes et al. [44] propose
a graph data mining approach that identifies subgraphs of common structures in a
topology graph to resolve anonymous routers.

Firewalls can also block traceroute probes. This prevents traceroute probes from
getting to the destination, making it more difficult to trace the complete path. De-
pending on the application running on end hosts, network administrators can con-
figure firewalls to only allow traffic of certain protocols and ports, e.g., only allow
TCP traffic on port 443 towards a Web server. Trying to increase the probability
that probes reach the destination, some traceroute implementations (e.g., tcptracer-
oute [45]) allow probing using different protocols, including ICMP and TCP.

Researchers have also proposed techniques that include traceroute probes in le-
gitimate Internet traffic [46] to avoid filtering at firewalls. For example, Morandi et
al. [47] propose a technique that reveals the route that traffic from a real application
(e.g., a Web browser or Netflix) traverses by injecting TTL-limited packets on the
same connection as the legitimate traffic.

ICMP Response Rate Limits

ICMP error messages are generated by the router’s general-purpose CPU, which
has limited capacity and bandwidth (packets handled by the router’s CPU are said
to traverse the slow path). Network operators enable ICMP rate-limiting to prevent
abuses, such as DoS attacks, of a router’s CPU. Some vendors (e.g., MikroTik [48])
rate-limit ICMP responses by enforcing a minimum time interval between them.
Packets that would trigger an ICMP response before the minimum time interval are
simply discarded and do not elicit a response from the router. More flexible im-
plementations (e.g., Cisco [49]) use a token bucket for generating ICMP responses.
A token bucket uses a counter that is incremented at a specified rate and decreases
whenever an ICMP response is generated; a token bucket’s counter has a predefined
maximum value that allows short bursts of ICMP responses.

Routers that rate-limit ICMP messages may fail to respond to traceroute probes,
similarly to an anonymous router. Ravaioli et al. [50] studied ICMP rate limiting
for ICMP Time Exceeded messages and identified that rate-limiting is often on-off :
routers respond to all probes for a period of time and then remain silent for another
period of time. IPv6 rate-limiting may be more restrictive than IPv4, since RFC4443
explicitly states that IPv6 routers must rate-limit ICMP responses [51, 52].

12

Implementations of traceroute often allow users to increase the number of probes
to be sent to each radius and the time interval between each probe. Measurement
techniques that probe the same radius many times may trigger the rate-limiting;
which is usually circumvented by waiting longer between probes.

Hidden Routers

Network operators can also configure routers to not decrement the TTL of for-
warded packets, thus creating hidden routers. Hidden routers are invisible to tracer-
oute measurements and cause the inference of false links between interfaces: two
interfaces connected via an invisible router will appear directly connected in tracer-
oute measurements. Marchetta et al. [18, 53] proposed a technique to detect hidden
routers and estimated that at least 6% of IP paths traverse hidden routers.

3.2 Measurement Techniques

In this section we discuss alternative techniques for measuring Internet routes, most
of them based on and improving aspects of traceroute. First, we talk about tech-
niques for reducing probing cost. Next, we discuss differences in IPv4 and IPv6
route measurements. Finally, we discuss complementary data that are commonly
employed in Internet topology studies.

3.2.1 Reducing Probing Cost

Operators and researchers deploy measurement tools in topologically-distributed
vantage points aiming to maximize the coverage of Internet measurements. But
even with distributed vantage points, the scale of the Internet imposes challenges
to the mapping of its topology. Traceroute may send dozens of probes to measure a
single Internet route and discovering the complete route (e.g., when running MDA
to identify load balancers) comes with an elevated probing cost. For instance, MDA
executions frequently send ten times more probes than Paris traceroute, and a few
measurements send a hundred times more.

Efforts such as CAIDA’s Ark [38] and M-Lab [54] maintain up-to-date maps of
the Internet topology by periodically measuring routes towards a large set of desti-
nation addresses (e.g., one address at each /24 prefix). Each cycle of measurements
usually takes days to conclude because of the high probing cost. These periodic
measurements may waste probes on paths that have not changed.

13

To reduce probing cost when issuing measurements to keep an up-to-date map of
the Internet, Cunha et al. [40] propose DTRACK, a system that predicts route stability
and focuses the probing budget on paths that are more likely to have changed since
the last measurement. Another challenge in topology mapping studies is choosing
which destinations to probe. Beverly et al. [55] propose a technique that dynamically
chooses destinations to maximize network discovery while keeping the probing cost
(number of destinations) in check.

Mapping the topology of a target network benefits from having many measure-
ments through the target network. However, blindly issuing measurements will re-
sult in high probing cost and redundant measurements. RocketFuel [56] combines
techniques to reduce probing cost when mapping a target network. RocketFuel es-
timates on which routers traceroutes will ingress and egress the target network, and
chooses traceroutes whose (ingress, egress) pair has not been measured yet. Don-
net et al. propose Doubletree [57] to further reduce redundancy in Internet route
measurements. Destination-based routing in the Internet means that routes toward
one destination have a tree-like structure. Doubletree takes advantage of this tree-
like structure to reduce redundant probes. In particular, measurements from one
source to many destinations probe routers close to the source repeatedly (once to-
wards each destination), and measurements from multiple sources to one destina-
tion probe routers close to the destination repeatedly (once from each source). Dou-
bletree shares information between vantage points to avoid these redundant probes.

When identifying load balancers in Internet routes, MDA needs to search probes
traversing a specific interface to identify its next hops. This process of searching
probes accounts for a significant part of MDA’s probing cost. MDA-Lite [37] makes
assumptions about load balancing to significantly reduce the number of probes that
MDA needs to search for. Although MDA-Lite can sometimes identify violations
of its assumptions and revert to the original MDA, it incurs loss of accuracy when
assumptions are violated and the violation is not detected. In this work, we identify
and classify load balancers in Internet paths. Like MDA, the probing cost of MCA’s
classification is high. In this work we propose optimizations that allow us to save
probes without any loss of accurary.

Finally, although probing the Internet topology takes significant probing, it may
also take significant time. However, as routes can change over time, collecting a
snapshot of the topology requires fast measurements. Inspired by ZMap [58], Bev-
erly proposed Yarrp [59], a tool that combines two ideas to speed up traceroute
measurements toward a large set of destinations. First, Yarrp stores all information

14

necessary to process a response in the probe’s header (which gets encapsulated in
the response), avoiding the need to maintain local state. Second, Yarrp uses a block
cypher to generate a pseudorandom probing sequence that deterministically covers
IPv4 × TTL space while distributing probes across destination networks and TTLs,
allowing very high probing rates.

3.2.2 Complementary Data

To better understand Internet routes, traceroute measurements are frequently com-
bined with data from different sources. In this work we augment our measurements
with reverse DNS (PTR records) for IP addresses, IP-to-ASN mapping provided by
Team Cymru [60], network types extracted from PeeringDB [61] and AS relation-
ships as inferred by CAIDA [62].

IP-to-ASN Mapping

Each autonomous system (AS) in the Internet receives an identification number
(ASN) from a Regional Internet Registry (RIR) to be used in the exchange of rout-
ing information (e.g., through BGP). IP-to-ASN mapping is often used in topology
studies to identify the ASes owning the detected IP interfaces. This allows, e.g., the
use of traceroute to infer Internet routes at the AS level.

Routers share routing information through BGP messages, which consist of reach-
ability information of a destination IP prefix through a certain router (next hop).
Routers populate a BGP table and learn the AS-path (a sequence of ASNs) through
which each destination prefix can be reached. The last ASN in an AS-path is (usu-
ally) the origin ASN for the advertised prefix, which allows mapping the prefix to
its origin. Team Cymru’s IP-to-ASN service [60], which we use to map IP addresess
to ASN in this thesis, gathers data from both public [63, 64] and private BGP feeds.

Traceroute reveals Internet routes at the interface level but users are often inter-
ested in knowing which ASes routes traverse. Mapping IPs in traceroute measure-
ments to ASNs is a common approach. Two challenges complicate this approach:
anonymous routers and IP addresses without a mapping. Chen et al. [65] propose
a multi-pass algorithm that combines BGP information and several heuristics and
attempts to resolve the ASN of unresponsive routers and unmapped IPs.

15

AS Relationships and AS Business Types

Autonomous systems establish contractual relationships for exchanging routes and
traffic with each other. Relationships are commonly classified into customer-to-
provider (or provider-to-customer, p2c/c2p), when a customer network pays a provider
network for traffic sent between them; peer-to-peer (p2p), when networks exchange
traffic free of charges; and sibling-to-sibling (s2s) networks belonging to the same
administrative domain exchange traffic free of charges and sometimes implement
uncommon routing policies.

Knowing contractual relationships between ASes is useful to studying perfor-
mance, robustness, and evolution of the Internet on technical or economical aspects.
Dimitropoulos et al. [66] propose heuristics to infer AS relationships based on BGP
paths and the valley-free model, which says that AS paths should not traverse a c2p
or p2p link after traversing a p2c or p2p link [67]. Luckie et al. [8] also use BGP paths
to infer AS relationships, but do not assume presence of valley-free paths. Giotsas
et al. [9] use BGP paths, traceroute, and geolocation to infer hybrid relationships
(when two ASes participate in different relationships depending on the intercon-
nection point) and partial transit relationships (when an AS offers transit to another
for a subset of destinations in the Internet).

ASes are usually classified in types depending on their business; common types
include content provider networks (CDNs), Internet service providers (ISPs), In-
ternet exchange points (IXPs), network/transit providers, and stub/enterprise net-
works. These types are commonly employed in studying the evolution of the Inter-
net because different network types present different peering footprints and growth
patterns. Furthermore, traffic properties vary significantly across network types,
e.g., inbound/outbound traffic volumes, daily distribution, and contractual rela-
tionships with other ASes. Dimitropoulos et al. [68] and Dhamdhere et al. [69] use
data from Internet Routing Registries (IRRs) and RouteViews [63] to identify dif-
ferences across AS types and propose a classification algorithm. Today, some net-
works volunteer their (self-defined) business activity on PeeringDB [61]; Lodhi et
al. [70] found that PeeringDB offers up-to-date information on AS business types
and networks covered by PeeringDB are representative of Internet transit, content
and access networks.

IP Alias Resolution

Traceroute measures routes at the granularity of IP interfaces. Sometimes, infor-
mation about which interfaces belong to which routers is important, e.g., to build

16

network topology maps [56]. Researchers have developed several techniques to per-
form IP alias resolution, the process of identifying if two given IP addresses belong
to the same device [56, 71–75]. Techniques for IP aliasing usually exploit differences
or particularities of router implementations, and are thus unreliable and comple-
mentary. Illustrative examples are Ally [56] and RadarGun [71], techniques for IPv4
alias resolution that work by observing the IP identifier field of responses coming
from different IP interfaces: if a pair of responses from two IP interfaces have cor-
related, increasing values of IP identifiers, they are inferred to belong to a single
device. MIDAR [72] combines alias resolution techniques based on the IP identifier
with a scheduling algorithm to scale IP aliasing to Internet-wide topology measure-
ments from the Ark platform [38].

Most IPv4 alias resolution techniques do not work on IPv6. For example, the
IP identifier field is not present in the IPv6 header, making Ally, RadarGun, and
MIDAR ineffective. Luckie et al. [76] propose Speedtrap, an IPv6 alias resolution
technique that probes different IPv6 interfaces with ICMPv6 Packet Too Big mes-
sages, which cause IPv6 routers to send fragmented responses. IPv6 fragment ex-
tension headers include an identification field that is used to reassembly the original
packet. Speedtrap then applies a technique similar to Ally’s on IPv6 fragment ex-
tension headers to identify IP aliases.

Measurements of Reverse Routes

Traceroute is only capable of measuring the forward path that packets take from
a source towards a destination. In some cases, however, network operators and
researchers are interested in discovering the reverse path (from the destination to
the source). Measuring the reverse path with traceroute requires control over the
destination host to run traceroute towards the source host. Unfortunately, opera-
tors and researchers rarely have control of arbitrary destinations on the Internet.
As an alternate approach, operators and researchers often resort to issuing a tracer-
oute measurement towards the source from a vantage point topologically close to
the destination in an attempt to discover the reverse path. Typical vantage points
used include those of measurement platforms (§3.3) and looking glass servers [77].
Katz-Bassett et al. [78] designed Reverse Traceroute, a system that uses a set of van-
tage points probes combining techniques such as source spoofing and the use o IP
options to infer the reverse path without control of the destination host. Unfortu-
nately, Reverse Traceroute cannot measure all reverse paths in the Internet.

17

3.2.3 Measurements of the IPv4 and IPv6 Internet

Due to standardization and implementation differences between IPv4 and IPv6,
measurement techniques created for IPv4 may not work on the IPv6 Internet. For
example, some techniques for IP alias resolution depend on the identification field
of the IPv4 header [56, 71, 72], not present in the IPv6 header. Researchers have
proposed alias resolution techniques for IPv6, based on IPv6 extension headers [76]
and ICMPv6 address unreachable messages [79]. Similarly, other techniques use
IPv6-specific headers, (e.g., for border router detection [80] and router outage detec-
tion [81, 82]) and do not work on IPv4. Although identifying and classifying IPv4
and IPv6 load balancing requires specific probing, we provide a formalism to control
probing that generalizes to both protocols.

3.3 Measurement Platforms

To make Internet measurements representative and scalable, researchers depend on
a large and diverse set of vantage points [83]. Maintaining such infrastructure is a
challenge. Fortunately, a number of efforts maintain Internet measurements plat-
forms and release publicly-available datasets. While some platforms execute a pre-
defined set of measurements, more open platforms allow researchers to deploy their
own tools. Below we present a few Internet measurement platforms.

The Center for Applied Internet Data Analysis (CAIDA) [38], operates Archipelago
(Ark), a measurement platform that hosts monitors distributed globally. CAIDA
conducts traceroute measurements towards one IP destination in each /24 network
and releases publicly-available datasets. These datasets have been used by researchers
to study Internet infrastructure and its evolution. The Measurement Lab (M-Lab) [54]
operates different measurements (including traceroute and Reverse Traceroute) to
study Internet performance. M-Lab also offers tools to explore and analyze mea-
surement data.

Some platforms offer access for users to execute a predefined set of measurement
tools from globally distributed vantage points. RIPE NCC, for example, operates
RIPE Atlas [39], a network of thousands of monitors distributed around the globe
that allow users to run measurements (including ping and traceroute) towards user-
defined destinations. As an incentive for global distribution and user support, any-
one can host RIPE Atlas probes, and hosts earn credits that can be used to schedule
their own measurements on the platform.

18

Some platforms provide additional flexibility, and let researchers deploy their
own measurement tools and experiments. This is the case of PlanetLab [84], a net-
work of hundreds of globally distributed nodes, usually hosted by academic institu-
tions. Researchers submit experiment proposals and receive access to a set of virtual
machines in a subset of nodes, where they can deploy custom measurement tools.

Complementary to these active measurement platforms, RouteViews [63] and
RIPE RIS [64] operate a network of passive BGP route collectors. Route collectors
are routers that establish BGP sessions with dozens of routers in other networks to
collect BGP update messages. These platforms make these BGP update messages
publicly-available, which have been used in several studies of the Internet (e.g., [69,
85]), and are the basis for IP-to-ASN mapping.

Seeking representativeness and scalability, we deploy our measurements in a
diverse set of 31 vantage points, distributed across 16 countries in 5 continents. Our
vantage points include 19 monitors hosted by cloud providers (Linode, Vultr and
Digital Ocean), 11 monitors hosted by CAIDA’s Ark, and one monitor hosted by
our home institution (UFMG). We resort to this approach because PlanetLab does
not support IPv6 and other measurement platforms do not support execution of
custom tools such as MCA. We also make our dataset public-available.

3.4 Characterization of Internet routes

Paxson [86] was the first to use traceroute to study stability of Internet routes. By
conducting a large number of traceroute measurements from different Internet hosts,
he investigated the prevalence and persistence of routes. Paxson also studied anoma-
lies such as loops, erroneous routing, and infrastrucure failures. Following Paxson’s
work, researchers have used traceroute to study properties of Internet routes, pro-
pose new models, and develop solutions to address limitations [7–11].

As discussed above (Section 3.3), Internet characterization studies need a di-
verse set of vantage points to achieve good coverage of the Internet’s topology.
The other side of this coin is choosing sets of destinations. Topology monitoring
studies choose traceroute destinations to achieve goals such as maximizing cover-
age [1, 10, 11, 87, 88] or focusing on specific networks [40, 56, 88–90]. IPv4 hitlists
can be generated, e.g., by scanning the entire address space. While the entire IPv4
address space can be scanned in under 45 minutes [51, 58], scanning does not scale
to IPv6. Researchers have proposed techniques to identify active IPv6 addresses
resolving DNS names [91–93], passively monitoring IPv6 traffic [91], identifying

19

router addresses with traceroute [91], and generating candidate addresses based on
previous known IPv6 hosts [94,95]. For our experiments, we generate IPv4 and IPv6
target lists by resolving domains on Internet ‘toplists’ and from publicly-available
Internet hitlists.

The transport protocol used in traceroute probe packets impact interface dis-
covery and the probability of sucessfully reaching the destination, due to protocol-
specific handling in intermediate routers and forwarding policies [13, 96]. Our im-
plementation provides flexibility by supporting TCP, UDP, and ICMP probing. We
use this flexibility to revisit previous results showing that ICMP probing reaches
destinations more often than UDP and TCP [96] (§6), and that some per-flow load
balancers do not perform load balancing on traceroute ICMP probes when varying
only the ICMP checksum [13] (§8.2).

Augustin et al. [13,35] characterized load balancing on the IPv4 Internet through
MDA measurements. The authors were the first to quantify load balancing in the
Internet, and found it to be prevalent. Augustin et al. also characterized several
load balancer properties. We are the first to study load balancing in the IPv6 Inter-
net [14]. In this work, we characterize load balancing in the IPv4 and IPv6 Internet
and compare our observations with those of previous studies.

20

Chapter 4

Load Balancer Model

Load balancing at a given router has two main aspects: (i) when load balancing is
performed, and (ii) the type of load balancing when it is performed.

Aspect (i) is a function of whether multiple routes (through different next hops)
to a destination prefix are known, the incoming link at the router, and the policy
in place. To capture these dependencies, we test for LB behavior at the granularity
of 〈ingress link, IP interface, destination prefix〉 triples, where the interface and up-
stream IPs are those returned by traceroute, used here, as usual, as surrogates for
the true, unknown interfaces.

Aspect (ii) is a function of the router’s forwarding decision algorithm. We model
this as an ideal hash function over a hash domain consisting of a subset, in general not
contiguous, of packet header bits. Each possible bit-field value over the domain is
mapped to one of the available next hops. We consider hash domains are LB-specific.

The goal of the above model is to capture very general LB behavior. For (i), it
allows load balancing to be triggered on some paths but not others, and the load
balancing type to be path dependent. For (ii), it includes the classic LB types men-
tioned earlier, but allows for much richer structure that router vendors or SDNs may
be implementing today or in the future. Per-packet LBs are included as the special
case of an empty hash domain.

The generality of arbitrary hash domains may seem intractable at a practical
level. There are two important reasons why this is not the case which we exploit
in the sections below:

1. LB discovery: By sending probes which vary all header bits (within some given
target set), the presence of a LB can be detected without needing to know the
exact hash domain. Moreover, if we assume the hash function maps uniformly

21

over the next hops, then the same stopping rules and statistical guarantees
used for MDA [20] still apply regardless of the unknown hash domain.

2. LB classification: It is not necessary to fully determine the hash domain to gain
useful results. For example, under the uniform hash assumption, if we vary
a single field (e.g., origin port) uniformly, we will induce a uniform sampling
of the next hops provided the hash domain and the field have a non-empty
intersection. Thus, the involvement of fields in LB decisions can be determined
without a full resolution at the bit level.

Hash functions are employed to approximate random selection of next hops, but
are actually deterministic. This can result in undesirable polarization effects when
nested LBs are of the same type. To describe this we define, for each interface i
in hop p[r] of route p, the set flows(i, r) of flow identifiers (bit-field values in the
packet header) with which i ∈ p[r] can be reached. For example in Figure 2.1, if A
and B were polarized, then all flows that A sends to B would be sent on to D, that
is flows(B, 2) = flows(D, 3). It would then be impossible to observe interface E, re-
gardless of the probing strategy used. Polarization has been observed in real routers
and flagged as undesirable, as it prevents effective use of all available routes, and
modern implementations include mechanisms to avoid it. For example, Cisco and
Juniper hash a router-specific identifier together with the packet’s flow identifier,
while Arista and Cumulus allow configuration of a seed for the hash function.

Another challenge to identifying load balancing is dealing with non-uniform
hash functions. These are sometimes deployed to better align link capacity and
traffic volumes [22, 97]. For example, in Figure 2.1, router A could send 2/3 of the
hash domain towards B and the remainder towards C. Our techniques can identify
and classify non-uniform load balancers, however our bounds on the probability of
error assume uniformity.

22

Chapter 5

Multipath Classification Algorithm

In this chapter we present the components of our Multipath Classification Algo-
rithm (MCA): an extension to MDA’s probing algorithm for enumerating next hops
considering that routers can use arbitrary hash domains (§5.1), our probing algo-
rithm for classifying load balancers (§5.2), and optimizations to reduce the probing
cost of both probing algorithms (§5.3).

MCA receives as input the destination IP address d to trace; a confidence level
αd to bound the probability of detection errors, a confidence level αc to bound the
probability of classification errors; and a set B of target bits in the packet header
defining the scope of LB detection and classification. We call the set of header fields
that intersect B the target header fields, denoted F .

MCA measures a route p hop-by-hop in increasing radius order. At each radius
r, MCA first executes a modified version of MDA to enumerate next hops of routers
in p[r] that perform load balancing involving bits in B (§5.1). MCA then sends ad-
ditional probes to classify the type of any LBs found (§5.2). During both detection
and classification phases, MCA employs optimizations to reduce the probing cost
(§5.3). After reaching the destination or stopping conditions (§5.4), MCA outputs a
directed graph representing the route discovered and the classification of each LB.

5.1 Load Balancer Discovery

MCA computes the number of probes to send through an interface to enumerate
next hops following MDA (§2.3, [20]). The novelty of MCA is its probe generation
approach designed to guarantee detection of load balancers with arbitrary hash do-
mains. MCA generates probe contents such that the values of the multisets defined
by any (not necessarily contiguous) combination of bits in B have high entropy.

23

More specifically, denote φ1, φ2, . . . , φn the flow identifiers (i.e., the values for bits in
B) generated for the first n probes; we generate a new flow identifier φn+1 such that

max
φn+1

∑
m∈B?

H(Φm,n+1), (5.1)

where B? is the power set of B (m can be thought of as a bitmask); Φm,n+1 is the
probability mass function of the values of bits m in the n + 1 flow identifiers, i.e.,
{φ1 ∧m, φ2 ∧m, . . . , φn+1 ∧m}; H is Shannon’s entropy −∑i pi log2(pi).

Given the exponential cost of solving Eq. (5.1), we apply a greedy heuristic where
we iteratively choose the value of one bit b ∈ B chosen at random. For each bit, we
set its value to 0 or 1 by maximizing H(Φm,n+1) where m is the set of bits greedily
chosen at random so far. In case of a tie (i.e., the entropy is the same regardless of
whether bit b is set to 0 or 1), we choose the value of bit b at random. Given probes
have high entropy for arbitrary combinations of bits in B, this approach ensures a
number of different inputs to the hash function and reliably triggers load balancing
for any hash domain that overlaps B (regardless of the overlap).

We note that although MCA (and measurement tools in general) cannot control
all bits in the source and destination addresses while performing a measurement,
MCA still supports testing whether they are included in hash domains by allowing
B to include the least significant bits of source and destination addresses.1

5.2 Load Balancer Classification

For each LB identified in the previous step, our goal is to identify which header bits
in B overlap its hash domain.

For each interface i identified as a LB, MCA chooses one flow identifier known
from the detection phase to traverse i, and sends multiple probes with that fixed
identifier to i’s next hop. We compute the number of probes to send as in MDA [20].
MCA classifies i as a per-packet LB if responses arrive from multiple next hops.

If interface i is not classified as per-packet, MCA sends additional probes accord-
ing to Algorithm 1 to infer which bits in B overlap with i’s hash domain and classify
the LB type (line 3). The number n of trials to perform for each bit is a function
of a configurable confidence level αc that determines the acceptable probability of
classification error (line 2).

1Varying the source IP address requires the measurement device to control multiple IP addresses
(e.g., when allocated a /64 IPv6 address).

24

Algorithm 1: Classify load balancer interface i at hop h
Input : Load balancer interface i ∈ h with set of next hops N , known not to

be a per-packet load balancer; target bit set B; confidence level αc
Output: Interface i’s hash domainHi ⊆ B

1 Hi ← ∅
2 n← NUMTRIALS(|B|, |N |, αc) Eq. (5.2)
3 foreach bit b ∈ B do
4 for j← 1 to n do
5 φ, φ′ ← SELECTFLOWS(i, h, b) §5.3
6 reply← PROBEREPLY(φ, p〈h〉+ 1)
7 reply′ ← PROBEREPLY(φ′, p〈h〉+ 1)
8 if reply 6= reply′ then
9 Hi ← Hi ∪ b

10 break
11 returnHi

In each trial, MCA identifies a flow identifier φ that traverses i and a flow identi-
fier φ′ that also traverses i and is identical to φ except for the value of b (line 5, §5.3).
MCA sends probes with φ and φ′ to i’s next hop (if not yet sent) and waits for the
responses (lines 6–7). This process is repeated until MCA identifies flow identifiers
φ and φ′ that i forwards to different interfaces (lines 8–10), or until enough trials are
performed to infer that b does not overlap with i’s hash domain at the configured
confidence level (i.e., when j = n in line 4).

MCA computes the number of trials to send when classifying an LB as a function
of the confidence level αc. We define the classification of an LB interface i as correct
when all target bits in B are correctly labelled as overlapping or not with i’s hash
domain Hi. We assume LBs distribute flow identifiers uniformly over next hops.
Violation of this assumption increases the misclassification probability.

We denote the probability that an interface i forwards traffic to its next hop j as
Pnext(i, j). Using the uniformity assumption across the set of next hops Ni, we have
Pnext(i, j) = 1/|Ni| for all j ∈ Ni.

Mislabelling can only occur for a header bit b ∈ B that overlapsHi. We compute
the number of trials considering the worst case scenario where B ∩Hi = B; if B is a
proper subset of Hi, then we overestimate the number of trials and the probability
of error will be smaller than αc. Mislabelling b when performing n trials varying b
happens when b is in i’s hash domain, and probes on all n trials are forwarded to
the same next hop, which happens with probability (1/|Ni|)n−1. The probability of

25

misclassification is then given by the probability that we mislabel any bit in B:

Pmiss(i, n,B) = 1−
[

1−
(

1
|Ni|

)n−1
]|B|

.

To bound Pmiss(i, n,B) below 1− αc we set

n =

⌈
− log|Ni|

(
1− α

1
|B|
c

)⌉
+ 1. (5.2)

To classify an interface i with confidence αc = 0.95 when |B| = 24 and |Ni| = 2,
MCA first sends up to 9 probes to check if i is a per-packet load balancer and, if not,
performs up to 9 trials (up to 18 probes) for each bit b ∈ B.

5.3 Optimizations for Searching Flow Identifiers

In this section, we discuss the existing approach (baseline) for searching new flow
identifiers [35] and optimizations to reduce probing cost.

5.3.1 Problem

MDA and MCA need to generate a number of probes with varying flow identifiers
through each interface i in a route to identify i’s next hops and, if load balancing
is identified, i’s hash domain. Consider the MDA probing process for the route in
Figure 5.1. MDA will send 17 probes2 varying flow identifiers through s to identify
s’s next hops a1 and a2. To send a probe through an interface i requires that MDA
first check that the probe’s flow identifier reaches i. To identify the next hops of
a1, MDA will also send 17 probes varying flow identifiers through a1 to identify
a1’s next hops b1 and b2. Any flow identifier MDA knows to reach a1 from the 17
probes sent to enumerate s’s next hops can be reused. However, MDA will need to
send search probes to identify new flow identifiers that reach a1 (as it needs 17 flow
identifiers through a1).

5.3.2 Randomized Search (Baseline)

New flow identifiers that reach a given interface are found by trial and error, and
can amount to a significant fraction of the probing cost. The probability that a given

2We consider a confidence level α = 0.95, which requires that MDA send 9, 17, or 24 probes
through an interface that has one, two, or three next hops, respectively [20].

26

s

a1 a2

b2b1 b3

c1 c2 c3

Figure 5.1: Example toplogy

flow identifier follows a branch segment β = [i1, i2, . . . , i|β|], assuming each interface
performs load balancing independently, is Pbranch(β) = ∏1≤k<|β| Pnext(ik, ik+1). The
probability that a flow identifier that goes through interface i at radius ri also goes
through interface j at radius rj > ri is given by

P(i, j) = ∑
β

Pbranch(β), for all branches β between i and j.

For example, in Figure 5.1, where we assume all interfaces distribute flows uni-
formly, P(s, b1) =

1
2

1
2 and P(s, b2) =

1
2

1
2 +

1
2

1
2 . The average number of trials to find a

new identifier that reaches i from s is 1/P(s, i).

5.3.3 Reusing Flow Identifiers for Identification

When searching for new flows that reach an interface i in order to enumerate its next
hops, classic MDA will try new flow identifiers from the source s. Alternatively, we
propose the reuse of flow identifiers sent to previous hops. We define a flow identi-
fier φ as reusable if it has been sent to some radius smaller than i’s radius and has not
yet been sent to i’s radius. For each flow identifier φ, we define the interface with
the highest radius φ is known to reach as tip(φ). For each reusable flow identifier φ,
we estimate the probability that it will reach interface i ∈ h as P(tip(φ), i).

We try reusable flows in order of decreasing probability to reach i. LetAi denote
the set of ancestors of interface i in i’s outermost diamond. In Figure 5.1, Ac1 =

{s, a1, a2, b1, b2}. The optimum flow trial order for finding new flows through c1

is given by P(b1, c1) = 1
2 > P(a1, c1) = 5

12 > P(b2, c1) = 1
3 > P(s, c1) = 7

24 . When
searching flows through c1, MCA will not reuse any flow φ with tip(φ) = a2, as these
flows have a lower chance, 1

24 , to reach c1 than new random flow identifiers from
the source (counted as a special case of reusable). Given that route measurement

27

proceeds hop-by-hop and all radii up to i have been probed prior to identifying i’s
next hops, Ai and probabilities P(a, i) of reaching i from all ancestors a ∈ Ai can be
computed backwards from i in time O(|Ai|).

5.3.4 Searching Sequence for Identification

When identifying next hops of interfaces at a hop h, MDA may need to find a dif-
ferent number of new flows through each interface i ∈ h. The total number of trials
required depends on the order in which we try flows. Let Mh[i] denote the fraction
of new flow identifiers missing for interface i ∈ h relative to the total over h, and
Mh the corresponding vector over all i. To minimize the total number of trials across
h, we issue a probe with a flow identifier that best matches Mh. More precisely, for
each trial, we select the identifier φ over all reusable flows that maximizes the utility

U(φ) = ∑
i∈h

Mh[i]P(tip(φ), i). (5.3)

We update Mh and recompute the optimal φ after each trial.

Example: Consider that MDA needs to find 1, 2, and 3 new flow identifiers
through c1, c2, and c3, respectively. Then Mh[c1] =

1
6 , Mh[c2] =

2
6 , and Mh[c3] =

3
6 ,

and the flow reuse order is given by the utilities of available tips: denote Φx any
flow φ such that tip(φ) = x, then U(Φa1) = 0.29 < U(Φs) = U(Φb2) = 0.33 <

U(Φa2) = 0.37 < U(Φb3) = 0.42.

5.3.5 Varying a Bit Value for Classification

After identifying next hops, MCA needs to send probes with flow identifiers φ and
φ′ that differ for a single header bit through an interface i to classify its behavior.
It is potentially onerous to find enough of such φ′, however here the fact that LBs
on the route can be of different types, usually seen as a classification burden, can be
exploited to obtain a supply of φ′ efficiently. This optimization provided the most
significant gains in our experiments, and works as follows.

Any flow identifier φ′ that overwrites a header bit b in φ is guaranteed to also
traverse i if b does not overlap the hash domains of LBs in the branch taken by φ to
reach i. For such bits, MCA can generate a φ′ flow identifier through an interface
i from any known flow identifier φ without trials. This implies that bits that are
seldom used for load balancing incur a known, fixed probing overhead given by
Eq. (5.2).

28

Algorithm 2: SELECTFLOWS algorithm
Input : Load balancer interface i ∈ h, bit b
Output: Flow identifiers φ and φ′ = φ⊕ b known to reach i ∈ h

1 foreach φ ∈ flows(i, h) do
2 A ← BRANCH(φ, i)
3 Pφ ← ∪a∈AHa
4 if b /∈ Pφ then
5 return (φ, φ⊕ b)
6 foreach φ ∈ flows(i, h) do
7 if CHECKINTERFACE(φ⊕ b, r, i) then
8 return (φ, φ⊕ b)
9 do

10 do
11 φ← NEWFLOWIDENTIFIER()
12 while not CHECKINTERFACE(φ, r, i)
13 while not CHECKINTERFACE(φ⊕ b, r, i)
14 return (φ, φ⊕ b)
15

16 function CHECKINTERFACE(φ, r, i)
17 R← PROBEREPLY(φ, r)
18 return R.src = i

The same property can be used when hash domainsH of all LBs in a branch β are
identical. In these cases, we can generate new flow identifiers by overwriting all bits
in B \ H in flows known to reach i through β, and the new flows are guaranteed to
also reach i. This property allows us to repurpose flow identifiers generated during
the next hop identification phase, each with a distinct value over H, into probes
useful for classifying i’s hash domain.

Consider that s and a1 in Figure 5.1 perform per-destination load balancing. Con-
sider MCA knows flows φ1, φ2, . . . , φk reach b1 through s and a1. We can generate
flow identifiers that reach b1 and vary a bit b not in the destination address by pick-
ing, e.g., φ1, and overwriting b. We can also generate k flow identifiers that reach
b1 and vary only the destination address by overwriting all fields other than the
destination address in φ1, φ2, . . . , φk, for example with a fixed value.

Algorithm 2 shows pseudocode for the search for flow identifiers for classifying
whether bit b overlaps interface i’s hash domain. MCA first searches for a flow
identifier φ that reaches i ∈ h for which b does not overlap with the hash domains of
load balancers on the branch taken by φ (lines 1–4).3 If such a φ exists, MCA creates
a new flow identifier by swapping bit b in φ and returns the pair of flow identifiers

29

(line 5). Next, MCA iterates over flows known to reach i (line 6) and sends probes to
verify if φ′ = φ⊕ b also reaches i (line 7). If MCA finds a φ′ that also reaches i, then
it returns the pair of flow identifiers (line 8). Finally, MCA resorts to finding new
flows φ that reach i (lines 10–12), then checking if φ′ ⊕ b also reaches i (line 13). This
process is repeated until MCA finds a pair or flow identifiers φ and φ′ that reaches i
(line 14).

5.3.6 Varying a Field Value for Classification

We have yet to address the question of the choice of B. It is potentially highly oner-
ous to select a large set, and then to determine each hash domain to bit resolution as
described above (consider Eq. (5.2)). However, it is possible to work at the level of
header fields instead. LB discovery is unchanged: the hash domains are still general,
we simply set B to the union of the header fields of interest. For LB classification, the
same algorithms work unmodified by operating on F instead of B (F was defined
in the first paragraph of §5 as the set of packet header fields that overlap B). The end
result is simply to report only at field granularity: i.e., the fields which have been
found to intersect each hash domain.

5.4 Operational Considerations

MDA can identify and MCA can classify routers that load balance traffic over visible
MPLS tunnels [98, 99], i.e., MPLS tunnels that do not reset the TTL field of probes
and whose router’s ICMP time exceeded responses include the MPLS label stack.
MDA can identify load balancing (but not the intermediate hops) and MCA can
(partially) classify load balancing over invisible MPLS tunnels when (i) probes ar-
rive at different interfaces at the router where the invisible MPLS tunnels end and
(ii) the router originates ICMP time exceeded replies using different IP addresses.

Some approaches to load balancing include the TTL in the hash domain [97].
These mechanisms make it impossible to control the branches a flow identifier will
follow, as traceroute cannot function without varying the TTL of probes. For exam-
ple, consider that A in Figure 1.2a includes the TTL in its hash domain, and that it
forwards packets with flow identifier φ sent to radius 3 towards B. When identify-
ing or classifying load balancing at B, MCA needs to send probes to B’s next hops at

3If φ has not been sent to all radii up to p〈h〉, then the branch it takes to reach i it not entirely
known. In this case, we add all possible ancestors φ can traverse in the missing radii to A. This is a
conservative approach that does not introduce any error, but may reduce probe savings.

30

radius 4, but the different TTL may lead A to forward the probes to C, which would
lead to the incorrect inference of a link between B and F.

When varying the last bits of the destination address inside the destination’s
AS, MCA probes may discover subnets other than the destination’s [55]. To avoid
reporting interfaces found towards destinations on other subnets, MCA only reports
interfaces found inside the destination AS that are observed on probes targeting the
original destination.

5.5 MCA Implementation

We implement MCA in a command-line tool to identify and classify load balancers.
Our MCA implementation supports TCP, UDP, and ICMP measurements using both
IPv4 and IPv6. It supports detection and classification covering bits in the DSCP,
traffic class, flow label, destination address, source port, destination port, and ICMP
checksum fields. Table 5.1 lists MCA’s configuration parameters and their default
values.

TTL-limited probes may remain unanswered due to anonymous and hidden
routers, as well as ICMP rate limiting [18,53,100]. For both discovery and classifica-
tion steps, our implementation retries probes that are not answered after a timeout.
The number of retries, timeout, and probing rate are configurable. The measure-
ment cost and probability of measurement errors can be controlled by setting the
value of the α confidence threshold.

Our implementation stops probing under the following conditions: (i) after re-
ceiving any packet from the destination, (ii) after receiving an ICMP destination
unreachable message from an intermediate router, (iii) after discovering more than
a configurable number of next-hops of an interface (16 next hops by default), (iv)
after identifying more than a configurable number of interfaces at a given hop (32
interfaces by default), (v) after a configurable number of consecutive unresponsive
hops (3 hops by default).

We also implement Route Explorer, a front-end for MCA measurements, which
allows inspection of probes and responses, and provides graphical visualizations
integrating metadata such as IP-to-AS mapping and CAIDA’s AS-rank [60, 62].

3Our MCA implementation, dataset explorer, Route Explorer source code, and data are available
at https://mca.speed.dcc.ufmg.br.

31

https://mca.speed.dcc.ufmg.br

Table 5.1: MCA’s parameters and default values

Parameter Default Meaning
max-ttl 32 Maximum number of hops to probe
alpha 0.95 Confidence level α
max-next-hops 16 Maximum number of next hops for a load balancer
max-width 32 Maximum number of interfaces in a hop
gap-limit 3 Maximum number of consecutive unresponsive hops
max-retries 3 Maximum number of retries for unanswered probes
probe-timeout 1.0 Time to wait for a probe answer (in seconds)
transport UDP Probe transport protocol
pps 50 Number of probes to send per second
fields — Set of target fields F

32

Chapter 6

Dataset

In this chapter we describe the dataset we collected using MCA to evaluate our op-
timizations and characterize load balancing in the Internet. We collect a dataset run-
ning MCA from a diverse set of vantage points to a large set of destinations. To bet-
ter understand load balancing practices and deployment across networks, we aug-
mented our MCA measurements with IP-to-AS mapping information from Team
Cymru’s IP-to-AS service [60], reverse DNS entries (PTR records) for IP addresses
in our measurements, and networks types from PeeringDB [61]. We make our
dataset and ongoing measurements available through a dataset explorer at https:
//mca.speed.dcc.ufmg.br/.

6.1 Measurement Setup

We run six measurement campaigns to cover all combinations of IP protocol ver-
sion (v4, v6) and transport (TCP, UDP, and ICMP). In each run, we configure MCA
with FIPv4 = {destination IP, source port, destination port, DSCP} and FIPv6 =

{destination IP, source port, destination port, flow label, traffic class} to cover cur-
rently understood standard load balancer types (§2.3) as well as more general but
still reasonable hash domains for novelty. We use MCA’s default configuration pa-
rameters (Table 5.1).

Figure 6.1 shows packet headers and fields we configure MCA to vary to iden-
tify IPv4 and IPv6 load balancing with different transport protocols. MCA stores
a matching key of two bytes in the sequence number field for TCP probes, in the
checksum field for UDP probes and in the identifier field for ICMP probes. To con-
trol the value of checksum fields (e.g., when storing the matching key in UDP’s
checksum field or varying the ICMP checksum), MCA adds a two-byte payload to

33

https://mca.speed.dcc.ufmg.br/
https://mca.speed.dcc.ufmg.br/

8 bits

8 bits

Destination IP address

Destination IP address (128 bits)

Sequence number

Version IHL EDSCP

Identification

Total length

0 16
0

Flags Fragment offset

Time to live Protocol Header checksum

Source IP address

8 24

32

64

96

128

Version Traffic class

Payload length

Flow label

0 16
0

Next header Hop limit

Source IP address (128 bits)

8 24

32

64

192

IPv4 header

IPv6 header

Checksum

Source port Destination port

0 16
0

Acknowledge number

Len

8 24

32

64

96

128

TCP header

Reserved + flags Window size

Urgent pointer

Source port Destination port

Length Checksum

0

32

0 168 24

UDP header

Type Checksum

Identifier Sequence number

0

32

0 168 24

ICMP header

Code

Figure 6.1: Packet headers, flow identifiers (in gray), and matching keys (in blue)
we use to identify and classify load balancers.

Table 6.1: Dataset summary

Number of traces
Platform VPs Period IPv4 IPv6 ASes
UFMG [103] 1 2018-08-21 2018-09-06 16,272 18,684 1,540
Linode [104] 6 2018-08-21 2019-03-01 262,752 242,088 6,787
Vultr [105] 6 2018-08-21 2019-03-01 305,628 263,136 7,586
DOcean [106] 7 2018-08-21 2019-03-01 356,808 321,180 7,587
Ark [38] 11 2018-08-21 2019-04-27 571,104 469,464 8,939
All 31 2018-08-21 2019-04-27 1,512,564 1,314,552 10,454

the probe and varies the value of the payload to control the checksum.

Choosing Vantage Points

We deployed MCA in 31 vantage points (VPs) in 6 platforms (cloud providers, mon-
itoring testbeds, and one university) that provide IPv4 and IPv6 connectivity and
that allow crafting and sniffing packets using Scapy [101]. The vantage points are
spread across 16 countries in 5 continents. Previous work has used PlanetLab nodes
as vantage points; we choose not to use PlanteLab as it has no support for IPv6. We
believe the set of vantage points we use in this paper provides more diversity as
most PlanetLab nodes are hosted in educational networks [102]. Table 6.1 summa-
rizes our vantage points and dataset.

34

Choosing Destinations

We run MCA from each vantage point towards a list of 36,540 IP destinations built
as follows. We resolved A and AAAA DNS records for domains on three Internet
‘toplists’: Alexa [92], Cisco Umbrella [93], and Majestic [107]. To increase topological
diversity of probed destinations while restricting the number of destinations, we
group IPv4 and IPv6 addresses in /16 and /32 prefixes, respectively, and choose
one representative address per prefix (the one which maximizes the average prefix
length shared with all other addresses in the prefix). This resulted in a set of 11,946
IPv4 and 8,497 IPv6 addresses.

We complement the lists above with IP addresses selected from ISI’s IPv4 Inter-
net census data from Sep. 2018 [108] and Gasser et al.’s IPv6 hitlist from Jan. 2019
[109]. We pick the IPv4 address with the highest response rate (during ISI’s census
mesurements) in each /16 prefix not covered by toplists, but ignore /16 prefixes
without any IP address with at least a 10% response rate. We group IPv6 addresses
in /32 prefixes not covered by ‘toplists’ and picked the address which maximizes
the average prefix length shared with all other addresses in the prefix. This resulted
in a set of 9,893 IPv4 and 7,264 IPv6 addresses.

6.2 Dataset Properties

Our IPv4 destinations are distributed in 4,387 ASes (61% in stub ASes), and our
IPv6 destinations are in 8,106 ASes (50% in stub ASes). Destination ASes include
all Tier-1 ASes and 95% of ASes with more than 500 indirect customers (as inferred
by CAIDA’s AS relationship database [8]). We find that 80 and 974 ASes concen-
trate 50% of the IPv4 and IPv6 destinations, respectively, and that 3,134 and 6,385
ASes contain one IPv4 and IPv6 destination, respectively. Manual inspection of the
top 50 ASes with the most addresses reveal major content and cloud infrastructure
providers such as Google, Amazon, and Microsoft.

Figure 6.2 shows the distribution of the length of the longest branch in route
measurements. We find negligible difference between network protocols, with IPv6
measurements being 0.9 hops shorter than IPv4 routes on average, and between
transport protocols, with TCP measurements yielding slightly shorter routes than
UDP and ICMP.

Table 6.2 shows the fraction of measurements that reach the destination and that
reach any interface whose IP address maps to the same AS as the destination’s. Sim-
ilar to previous work [96], we find that ICMP measurements reach a higher fraction

35

0 5 10 15 20 25 30
Path length

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 p
at

hs

IPv4 ICMP
IPv4 TCP
IPv4 UDP

(a) IPv4

0 5 10 15 20 25 30
Path length

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 p

at
hs

IPv6 ICMP
IPv6 TCP
IPv6 UDP

(b) IPv6

Figure 6.2: Multi-route length (number of hops)

Table 6.2: Fraction of measurements that reach the destination IP
interface and AS per protocol

IPv4 IPv6
UDP TCP ICMP UDP TCP ICMP

Reach destination 17.3% 16.9% 39.3% 39.4% 27.0% 67.0%
Reach dest. AS 73.6% 73.7% 79.6% 76.1% 71.8% 83.9%

of destinations and destination ASes compared to TCP and UDP for both IPv4 and
IPv6. Of the measurements that stop early, 13% stop by exceeding 32 interfaces in
a given hop and 87% stop by not receiving any reply for three consecutive hops.
We truncate less than 1% of measurements at the first interface that implies a rout-
ing loop. We observe exhaustion of flow identifiers when varying the Traffic Class
for 1.6% of IPv6 interfaces and exhaustion of flow identifiers when varying DSCP
values for 2.8% of IPv4 interfaces.

For each sequence of unresponsive interfaces in a measurement, we check if the
surrounding responsive interfaces have a single sequence of responsive interfaces
between them in other measurements. If this is the case, we substitute the unrespon-
sive interfaces with the responsive ones. We apply a similar strategy for interface
IP addresses not mapped to AS numbers. For a sequence of unresponsive interfaces
(and hops not mapped to ASNs) we check if the ASes of the surrounding mapped
interfaces are interconnected by a single sequence of ASes in public BGP feeds. If
this is the case, we substitute the missing ASes by the sequence of ASes observed in
public BGP feeds.

36

Chapter 7

Evaluation

In this chapter we evaluate MCA’s probing cost with and without our optimiza-
tions introduced in §5.3. Key to this analysis is that the MCA measurement cost for
a route is variable: the number of probes sent depends on the random flow identi-
fiers generated during the identification and classification phases. In particular, it
depends on the number of probes sent when searching for flow identifiers through
the identified interfaces.

As the number of probes is high, rate-limits impose a maximum probing rate,
and paths may change over time, estimating the average probing cost with real
measurements is not viable. Instead, we compute the average probing cost using
trace-driven simulations. For each route measurement in our dataset, we simulate
the unoptimized and optimized versions of MCA until the 95% confidence interval
around the average probing cost of each outermost diamond is below±1 probe. We
hash flow identifiers using SHA-256.

Figure 7.1 shows the distribution of the average number of probes issued by
MCA for all outermost diamonds in our dataset on our simulations. We split costs
between the identification and classification phases when using and not using our
optimizations. We note that MCA’s classification incurs probing cost that is of the
same order of magnitude than that of identification, but often significantly less.
When using our optimizations, classification amounts to 34% of the total probing
cost of IPv4 measurements and to 39% of IPv6 measurements, on average.

Our optimizations only apply to outermost diamonds with nested diamonds.
This means that our optimizations only save probes on complex diamonds. To illus-
trate this, Figure 7.2 shows the distribution of the number of probes issued in our
simulations for outermost diamonds that have nested diamonds. In Figure 7.2 we
observe higher probing cost overall and more significant savings for classification.

37

0 500 1000 1500
Probes

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 d
ia

m
on

ds

Classification (baseline)
Classification (optimized)
Detection (baseline)
Detection (optimized)

Figure 7.1: Probing cost for all
outermost diamonds

0 500 1000 1500
Probes

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

Classification (baseline)
Classification (optimized)
Detection (baseline)
Detection (optimized)

Figure 7.2: Probing cost for
outermost diamonds with

nested diamonds

0.80 0.85 0.90 0.95 1.00
Fraction of probes (opt/baseline)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds IPv4

IPv6

Figure 7.3: Normalized
probing cost

0.80 0.85 0.90 0.95 1.00
Fraction of probes (opt/baseline)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv4
IPv6

Figure 7.4: Normalized
probing cost for outermost
diamonds with depth ≥ 2

Figure 7.3 shows the number of probes sent during detection and classification
by the optimized MCA normalized by the number of probes sent by the unopti-
mized MCA (baseline) for IPv4 and IPv6 outermost diamonds. Similarly, in Fig-
ure 7.4 we show savings for outermost IPv4 and IPv6 outermost diamonds with
nested diamonds (i.e., with depth≥ 2). Although our optimizations provide a small
reduction in the number of probes, they have no impact on accuracy and apply to
all load balancers; we argue implementations would benefit from integrating the
optimizations.

Figure 7.5 shows the normalized probing cost for identifications as a function of
an outermost diamond’s depth, defined as the maximum number of load balancers

38

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of probes (opt/baseline)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds Depth=2

Depth=3
Depth>=4

Figure 7.5: Normalized
probing cost for detection

0.5 0.6 0.7 0.8 0.9 1.0
Fraction of probes (opt/baseline)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds Depth=2

Depth=3
Depth>=4

Figure 7.6: Normalized total
(detection and classification)
probing cost for outermost

diamonds

in any of the outermost diamond’s branches. Diamond depth is a measure of com-
plexity, and we observe that our optimizations save more probes on more complex
diamonds, which also have higher probing cost. In the same way, Figure 7.6 shows
the normalized total probing cost as a function of an outermost diamond’s depth.

Our optimizations provide only modest probe savings for detection with, on av-
erage, 2.8% less probes for IPv4 and 0.7% for IPv6. For classification, the savings are
higher: reducing classification costs by 11% for IPv4 and 18% for IPv6 routes. Sav-
ings for classification for IPv6 are higher than for IPv4 because our MCA executions
included four header fields for IPv6 and three for IPv4, and more fields means op-
portunities to apply optimization. In measurement campaigns covering more fields,
savings would be higher than reported here. In total, we estimate by simulation that
the optimizations reduce the total probing cost for routes in our datasets by 6% for
IPv4 and 8% for IPv6 for the default MCA configuration. Although our optimiza-
tions provide only single-digit savings, implementations would benefit from inte-
grating them as they have no impact on accuracy and apply to all measurements.

39

Chapter 8

Characterization of Load Balancing

In this chapter, we characterize IPv4 and IPv6 load balancing on the Internet. We
study the prevalence of load balancing on routes (§8.1) and identify common hash
domains used for load balancing and classes of load balancer behavior (§8.2). We
revisit previous work and discuss the evolution of load balancing and path diversity
(§8.3). Finally, we discuss routers that override packet header fields and complicate
load balancing detection as well as classification (§8.4).

8.1 Occurrence of Load Balancing

In this section we provide an overview of load balancing observed in our measure-
ments. The majority of cloud providers we used, some networks hosting Ark nodes,
and the university’s provider (an educational network) employ load balancing in
their networks. In these cases, most paths from vantage points traverse at least one
load balancer. Unless otherwise noted, we report results on load balancers identified
outside the vantage point’s network to avoid biasing our results.

Load balancing is prevalent

Figure 8.1 shows the distribution of the number of load balancers in Internet routes,
and Table 8.1 shows the prevalence of each of the most common types of load bal-
ancer (§2.2). We find that load balancing is applied similarly across all transport
protocols. Even when ignoring load balancing in the vantage point’s network, we
find that 74% of IPv4 routes and 56% of IPv6 routes traverse at least one load bal-
ancer, and some traverse many more. When considering load balancers in the origin
network, we find that 86% of IPv4 routes traverse at least one load balancer, a frac-
tion similar to that observed in 2009 [13], and that 77% of IPv6 routes traverse at

41

0 5 10 15 20 25 30
Total load balancers per route

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 p
at

hs

IPv4 ICMP
IPv4 TCP
IPv4 UDP

(a) IPv4

0 5 10 15 20 25 30
Total load balancers per route

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 p

at
hs

IPv6 ICMP
IPv6 TCP
IPv6 UDP

(b) IPv6

Figure 8.1: Number of load balancers per route

least one load balancer, slightly larger than the 74% observed in 2016 [14]. This
result indicates the extent of traffic engineering used in the Internet and the need
for considering load balancers in Internet measurement efforts. In particular, the
growth in the observed fraction of IPv6 routes with load balancing may reflect the
growth of IPv6 deployment and the resulting need for traffic engineering [28, 110].

IPv4 load balancing is more widespread

We find 55% of ASes traversed in our IPv4 measurements employ IPv4 load bal-
ancing; this fraction is 41% for load balancing in IPv6 measurements. Moreover,
although 58% of ASes that appear in both IPv4 and IPv6 measurements employ
both IPv4 and IPv6 load balancing, ASes more often employ IPv4 load balancing
exclusively. We find that 82% of the ASes that employ IPv6 load balancing and are
traversed in IPv4 measurements employ IPv4 load balancing, but that only 66% of
the ASes that employ IPv4 load balancers and are traversed in IPv6 measurements
employ IPv6 load balancing. These results indicate richer traffic engineering in IPv4
than in IPv6, possibly due to IPv4 still carrying most traffic or simply due to being
around (and engineered) for longer.

8.2 Classes of Load Balancing

As a measure of the accuracy of our classifications, we check whether multiple mea-
surements of the same load balancer identify identical hash domains. When using
TCP probes, we find that 9.7% of IPv4 and 8.8% of IPv6 load balancers are measured

42

Table 8.1: Breakdown of load balancer prevalence by protocol

IPv4 IPv6
UDP TCP ICMP UDP TCP ICMP

Per-flow 70.8% 70.1% 1.2% 51.4% 51.3% 0.7%
Per-dest 18.4% 17.5% 72.6% 8.4% 8.4% 53.3%
Per-packet 0.1% 0.1% 0.1% 0.0% 0.0% 0.1%
Per-flow + FL 0.0% 0.0% 0.0% 0.5% 0.6% 0.0%
Per-dest + FL 0.0% 0.0% 0.0% 0.0% 0.1% 0.5%
Any 74.9% 74.2% 72.9% 56.1% 55.8% 55.4%

Table 8.2: Breakdown of load balancer classifications by protocol

IPv4 IPv6
UDP TCP ICMP UDP TCP ICMP

Per-flow 69.6% 69.8% 1.5% 77.6% 78.5% 0.3%
Per-dest 24.4% 24.1% 94.2% 13.3% 13.5% 90.1%
Per-app 1.8% 2.1% 0.0% 0.9% 0.8% 0.0%
Per-packet 0.1% 0.1% 0.1% 0.1% 0.1% 0.3%
Per-flow + FL — — — 2.9% 2.4% 0.0%
Per-dest + FL — — — 0.2% 0.3% 3.2%
Other 2.3% 2.6% 2.7% 3.2% 2.8% 3.9%
Not classified 1.8% 1.4% 1.5% 1.7% 1.6% 2.2%
Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

multiple times (this ratio is similar across TCP, UDP, and ICMP measurements), and
that 98.1% these load balancers have a single hash domain, which is within our 95%
confidence threshold.

Table 8.2 shows the percentage of load balancers of each class per protocol in In-
ternet routes, ignoring load balancers in the vantage point’s network. As explained
before, load balancing is more prevalent on IPv4 routes and there is no significant
difference in prevalence between transport protocols. We observe that per-flow load
balancers are the most common, followed by per-destination.

We note a few load balancers considering only transport port numbers in their
hash domain (we found this can be configured in RouterOS as “per-application load
balancing” [33]) and some IPv6 load balancers employing the flow label field (the
default in JunOS [32]).

Load balancing is improving

Per-packet load balancing is at an all-time low relative to previous characteriza-
tions. As per-packet load balancers induce packet reordering and TCP performance

43

degradation, this is a positive trend.

We find few load balancers whose hash domains include the ICMP checksum
field (shown as per-flow in Table 8.2). Augustin et al. [13] reported a considerable
decrease in the number of routers performing per-flow load balancing for ICMP be-
tween 2006 and 2009; we find this trend has continued, with an all-time low of IPv4
load balancers considering the ICMP checksum field (3.2% of load balancers, down
from 20% in 2009). This behavior may follow from more mature implementations
defaulting to per-destination load balancing for ICMP packets.

We find that an average of 2.8% of IPv6 load balancers consider the flow label
field in their hash domain, when measuring with TCP. We also observe the use of
flow label in conjunction with per-flow or per-destination load balancing classes: we
classify 2.7% of IPv6 load balancers as having this behavior. A significant fraction
(85%) of load balancers including the flow label in their hash domains are in con-
tent and infrastructure providers’ networks (e.g. Facebook’s AS32934 and Google’s
AS15169), which adopt IPv6 and rely on advanced traffic engineering [29, 30].

Traffic engineering triggers load balancing

IPv6’s traffic class and IPv4’s DSCP fields serve a similar purpose of classifying
packets. Although their use is not widespread, these fields are included in the de-
fault hash domain of some versions of Juniper’s JunOS [32]. We identified a non-
negligible number of load balancers with the IPv6 traffic class (2.7%) and IPv4 DSCP
fields (2.6%) in their hash domains when measuring with TCP.

Load balancers are widespread

Not only do many routes traverse load balancers, but load balancers are (close to)
uniformly distributed along all hops of branched routes (not shown).

Classification errors

When measuring with TCP, MCA failed to classify 1.4% IPv4 and 1.6% IPv6 load
balancers; i.e., MCA detected load balancing, but did not observe load balancing
during the classification phase. Possible reasons for this include measurement errors
(possibly aggravated by non-uniform load balancing) or hash domains that only
trigger load balancing when multiple fields are varied simultaneously.

44

s A

B

C

E

F

D

J

H
L

UN

P

Q

S

T

d

G

I

K
M

RO

Figure 8.2: Example multi-route with two diamonds

8.3 Diamonds and Branched Route Properties

In this section we characterize load balancer outermost diamonds (referred to as
simply diamonds in this section) in Internet routes in an attempt to better under-
stand how load balancing is used. Our dataset contains measurements of 188,448
outermost diamonds, 9% of which have unanswered probes. We find that our re-
sults are quantitatively similar whether we consider or ignore the 9% of diamonds
with unanswered probes; we present results including all diamonds. Among the
load balancers measured by multiple MCA executions, we find 97% have a single
unique diamond (identical across all measurements of the load balancer), indicating
that diamonds are stable. Overall, we find that IPv4 diamonds are more complex,
traversing a higher number of load balancers and resulting in greater path diversity.

We revisit Augustin et al.’s original diamond metrics and consider new ones [13].
Figure 8.2 shows a route with two diamonds. Augustin et al. [13] defined the length
of a diamond as the number of edges in the longest sequence of interfaces across the
diamond; the asymmetry as the maximum length difference between any sequence of
interfaces across the diamond (a diamond with asymmetry zero is said to be sym-
metric); the min-width of a diamond as the number of edge-disjoint sequences of
interfaces across the diamond; and the max-width as the maximum number of reach-
able interfaces at any given hop. The min- and max-width give lower and upper
bounds on route diversity. We defined the depth of a diamond in Section 7 as the
maximum number of load balancers traversed by any of its branches. In Figure 8.2,
diamond B–O is symmetric, has length 5, min-width 2, max-width 4, and depth 2;
diamond P–V has asymmetry 1, length 3, min-width 3, max-width 3, and depth 1.
We have compiled a list of illustrative branched route measurements, which can be
interactively inspected in Route Explorer, at https://mca.speed.dcc.ufmg.br.

Diamonds are similar across transport protocols

We do not observe significant differences between diamonds measured with TCP,
UDP, or ICMP (not shown). In this section we report on diamonds measured using

45

https://mca.speed.dcc.ufmg.br

2 4 6 8 10 12 14 16
Length

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 d
ia

m
on

ds

Per-dest (IPv4/TCP)
Per-flow (IPv4/TCP)

Figure 8.3: Diamond length

0 1 2 3 4 5
Asymmetry

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

Per-flow (IPv4/TCP)
Per-dest (IPv4/TCP)

Figure 8.4: Diamond asymmetry

TCP probes, but other transport protocols yield quantitatively similar results. For
most metrics, we observe no significant differences between diamonds measured
using IPv4 or IPv6, or between diamonds from load balancers with different hash
domains; in the following paragraphs we point out the significant differences we
identified.

Diamond Length and Asymmetry

Figure 8.3 shows the distribution of diamond lengths for per-flow and per-destination
load balancers. We find per-destination diamonds to be shorter than per-flow dia-
monds, as previously observed by Augustin et al. [13]. We also find that diamonds
are usually short (80% of diamonds span at most 5 hops) and that IPv6 diamonds
are shorter than IPv4 diamonds (not shown).

We observe asymmetry to be rare and small for both IPv4 and IPv6 (83% of
the diamonds are symmetric), following previous results on diamond asymmetry
[13]. Figure 8.4 shows the distribution of diamond asymmetry. We find that per-
destination load balancers have slightly higher asymmetry than per-flow load bal-
ancers.

Diamond Width and Route Diversity

Figure 8.5 shows the distributions of min-width and max-width for diamonds in our
dataset. We observe the min-width to be small, with 86% of diamonds having only
two edge-disjoint branches. As previously observed by Augustin et al. [13], we find
that diamonds are narrow, i.e., their max-width is small, and that IPv4 diamonds are
slightly wider than IPv6 diamonds. The difference between min- and max-width is

46

2 4 6 8 10 12 14 16
Min-width

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

2 4 6 8 10 12 14 16
Max-width

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

Figure 8.5: Diamond min- and max-width.

1 5 9 13 17 21
Number of load balancers

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

fra
ct

io
n

of
 d

ia
m

on
ds

IPv6 TCP
IPv4 TCP

1 2 3 4 5
Depth

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
fra

ct
io

n
of

 d
ia

m
on

ds

IPv6 TCP
IPv4 TCP

Figure 8.6: Diamonds load balancers and depth

correlated with diamond depth: We find that 86% of the diamonds with a max-
width of 8 or larger have a depth of 2 or more.

Augustin et al. [13] previously observed that wide and long IPv4 diamonds are
rare. Our measurements corroborate this finding. We also observe that wide and
long IPv6 diamonds are considerable more rare than in IPv4, indicating that traffic
engineering practices are still more present in IPv4 routes.

Number of Load Balancers and Diamond Depth

Figure 8.6 shows the distribution of the number of load balancers and depth for
diamonds in our dataset. We find that diamonds usually have few load balancers,
but a few diamonds have more than 20. Diamonds often have between 1 and 3 load
balancers, which often appear in a symmetric fan-out pattern as that of routers B, C,

47

and D in Figure 8.2. IPv4 diamonds have slightly more load balancers and higher
depth than IPv6 diamonds.

The majority of load balancers (80% for IPv4 and 82% for IPv6) have two next
hops (not shown). We find less than 1% of load balancers have more than 16 next
hops. This may be a limitation of router implementations; e.g., Juniper’s JunOS
limits routers performing ECMP to 16 next hops [32].

Interdomain Load Balancing

Intradomain routing protocols, such as IS-IS and OSPF, allow the installation of mul-
tiple routes through ECMP [111]. This creates instances of intradomain load balanc-
ing (intradomain diamonds). BGP, the interdomain routing protocol, selects a single
best path towards a destination using a tie-breaking mechanism. Some vendors,
however, extend BGP with ECMP support by allowing the BGP decision process to
be interrupted before all tie-breakers are considered, leading to selection and load
balancing among multiple equally-preferred interdomain routes [112].

Due to challenges in identifying the border between two neighboring networks [113],
we use a conservative approach to identify interdomain load balancing and require
that diamonds span at least two hops in each of at least two different ASes.

We identify that 4.7% of the IPv4 and 4.2% of the IPv6 diamonds are instances
of interdomain load balancing. We validated some instances of interdomain load
balancing in out dataset contacting network operators directly. We find NTT Amer-
ica (AS2914) participating in the highest number of interdomain load balancing in-
stances, with a total of 62 other ASes.

Multi-Homing Load Balancing in Origin Networks

Infrastructure and content providers explore rich connectivity at their edges, bal-
ancing load across their transit providers or peering networks [29–31]. We observe
load balancing across multiple transit providers on measurements from our van-
tage points in Linode and DigitalOcean. This type of load balancing (on the vantage
point’s network, not included in the previous discussions) induces high length (up
to 18 hops) and asymmetry (up to 8 hops), as branched routes reach the destina-
tion by unrelated routes through different providers. All of these load balancers in
our dataset are per-flow load balancers, which may have practical implications as
applications can use multiple connections to exploit route diversity.

48

8.4 Overriding of Packet Header Fields

One challenge when trying to identify and classify load balancers whose hash do-
mains include the DSCP, traffic class, and flow label fields is that these fields may be
overwritten by intermediate routers and devices on destination networks (e.g. for
traffic marking). Although RFCs state routers should not overwrite the IPv6 flow
label field, this has been observed on the Internet [114]. Such overwriting will inter-
fere with identification and classification of load balancers by preventing control of
the field’s value.

ICMP time-exceeded messages encapsulate the header of the expired TTL-limited
probe. This allows us to recover the values of the DSCP, traffic class, and flow label
fields received by each interface in a multi-route. When we find an interface in a
route that receives a DSCP value, traffic class, or flow label field with a value dif-
ferent from the expected value, we infer that the preceding interface overwrites that
header field. For any overwritten field, we identify whether it is overwritten with
a fixed or variable value by looking at multiple encapsulated TTL-limited probes.
Note that the expected values for DSCP, traffic class, and flow label fields we use for
detecting overwriting change after an interface that overwrites them with a fixed
value (but become undetermined after an interface that overwrites with a variable
value). We identify interface behavior proceeding hop-by-hop starting from the van-
tage point.

We find that 4.1% of IPv4 interfaces overwrite the DSCP field and that 3.6% of
IPv6 interfaces overwrite the traffic class field. Among these, 0.7% overwrite the
DSCP and traffic class fields with a variable value. MCA tracks these interfaces to
avoid incorrectly inferring per-packet load balancing if subsequent load balancers
include DSCP and traffic class in their hash domains. The 3.4% and 3.0% of in-
terfaces that overwrite the DSCP and traffic class fields with a fixed value prevent
identification and classification of subsequent load balancing including these fields
in their hash domains. This leads to an underestimation of load balancers using the
DSCP and traffic class fields reported in §8.2. We did not find interfaces overriding
the IPv6’s Flow Label field.

49

Chapter 9

Conclusion and Future Work

In this thesis we presented a more general model for load balancing that considers
that load balancers can use arbitrary bits in packet header fields for load balancing.
We designed and implemented MCA, a probing algorithm that identifies and clas-
sifies load balancing, alongside optimizations to reduce its overall probing cost. We
also presented optimizations that reduce MDA’s probing cost. Overall, we found
that MCA has probing cost comparable to that of previous tools, but provides more
complete information about routers, making MCA a practical and useful addition
to researchers’ and operators’ toolsets.

We collected a large dataset to characterize load balancing practices for all com-
binations of IP protocol version (v4 and v6) and transport protocol (UDP, TCP, and
ICMP). Our results show that load balancing is more prevalent and load balancing
strategies more mature than previously reported. We identified that existing mea-
surement tools cannot identify 4.7% of load balancers, and will misclassify an addi-
tional 2.3%. Given the rise of IPv6 traffic [28,110], programmable data planes [23,24],
and software-defined networking [21, 26], these percentages may increase and pre-
vious tools may become increasingly inadequate over time.

We also implemented Route Explorer, a visualization tool for Internet route mea-
surements. Route Explorer integrates complementary data such as reverse DNS,
IP-to-ASN mapping, AS relationships, and AS business types to show rich and in-
teractive visualization of multi-routes in the Internet.

Compared to previous tools, MCA offers greater visibility of load balancing on
Internet routes, but increases the probing cost. We believe that MCA probes can be
integrated into techniques that reduce the cost of probing for large-scale measure-
ments such as DTRACK [40]. We also believe MCA can benefit from techniques such
as ZMap [58] and Yarrp [51, 59].

51

Bibliography

[1] E. Katz-Bassett, C. Scott, D. Choffnes, I. Cunha, V. Valancius, N. Feamster,
H. Madhyastha, T. Anderson, and A. Krishnamurthy, “LIFEGUARD: Practical
Repair of Persistent Route Failures,” in Proc. ACM SIGCOMM, 2012.

[2] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-wide Traffic
Anomalies,” in Proc. ACM SIGCOMM, 2004.

[3] K. Naidu, D. Panigrahi, and R. Rastogi, “Detecting Anomalies Using End-to-
End Path Measurements,” in Proc. IEEE INFOCOM, 2008.

[4] F. Silveira, C. Diot, N. Taft, and R. Govindan, “ASTUTE: Detecting a Different
Class of Traffic Anomalies,” in Proc. ACM SIGCOMM, 2010.

[5] P. Barford, N. Duffield, A. Ron, and J. Sommers, “Network Performance
Anomaly Detection and Localization,” in Proc. IEEE INFOCOM, 2009.

[6] F. Le, S. Lee, T. Wong, H. Kim, and D. Newcomb, “Minerals: Using Data Min-
ing to Detect Router Misconfigurations,” in Proc. of MineNet, 2006.

[7] V. Giotsas, M. Luckie, B. Huffaker, and K. Claffy, “IPv6 AS relationships,
cliques, and congruence,” in Proc. PAM, 2015.

[8] M. Luckie, B. Huffaker, K. Claffy, A. Dhamdhere, and V. Giotsas, “AS Rela-
tionships, Customer Cones, and Validation,” in Proc. ACM IMC, 2013.

[9] V. Giotsas, M. Luckie, B. Huffaker, and K. Claffy, “Inferring Complex AS Re-
lationships,” in Proc. ACM IMC, 2014.

[10] Í. Cunha, P. Marchetta, M. Calder, Y. Chiu, B. Schlinker, B. Machado,
A. Pescape, V. Giotsas, H. Madhyastha, and E. Katz-Bassett, “Sibyl: A Practi-
cal Internet Route Oracle,” in Proc. USENIX NSDI, 2016.

53

[11] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “iPlane: an Information Plane for Distributed Ser-
vices,” in Proc. USENIX OSDI, 2006.

[12] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,
C. Magnien, and R. Teixeira, “Avoiding Traceroute Anomalies with Paris
Traceroute,” in Proc. ACM IMC, 2006.

[13] B. Augustin, T. Friedman, and R. Teixeira, “Measuring Multipath Routing in
the Internet,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 830–840, 2011.

[14] R. Almeida, O. Fonseca, E. Fazzion, D. Guedes, W. Meira, and Í. Cunha, “A
Characterization of Load Balancing on the IPv6 Internet,” in Proc. PAM, 2017.

[15] V. Jacobson, “traceroute,” 1989.

[16] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From Paris to Tokyo: On
the Suitability of Ping to Measure Latency,” in Proc. ACM IMC, 2013.

[17] F. Viger, B. Augustin, X. Cuvellier, C. Magnien, M. Latapy, T. Friedman, and
R. Teixeira, “Detection, Understanding, and Prevention of Traceroute Mea-
surement Artifacts,” Comput. Netw., vol. 52, no. 5, pp. 998–1018, 2008.

[18] P. Marchetta, A. Montieri, V. Persico, A. Pescapé, Í. Cunha, and E. Katz-
Bassett, “How and How Much Traceroute Confuses Our Understanding of
Network Paths,” in Proc. LANMAN, 2016.

[19] Í. Cunha, R. Teixeira, and C. Diot, “Measuring and Characterizing End-to-End
Route Dynamics in the Presence of Load Balancing,” in Proc. PAM, 2011.

[20] D. Veitch, B. Augustin, T. Friedman, and R. Teixeira, “Failure Control in Mul-
tipath Route Tracing,” in Proc. IEEE INFOCOM, 2009.

[21] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford, and
L. Vanbever, “An Industrial-scale Software Defined Internet Exchange Point,”
in Proc. USENIX NSDI, 2016.

[22] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient Traffic
Splitting on Commodity Switches,” in Proc. ACM CoNEXT, 2015.

[23] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:

54

Programming Protocol-independent Packet Processors,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[24] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking, “Packet Transactions: High-Level
Programming for Line-Rate Switches,” in Proc. ACM SIGCOMM, 2016.

[25] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. Zermeno,
C. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin, A. Siganporia,
S. Stuart, and A. Vahdat, “BwE: Flexible, Hierarchical Bandwidth Allocation
for WAN Distributed Computing,” in Proc. ACM SIGCOMM, 2015.

[26] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
“B4: Experience with a Globally-deployed Software Defined Wan,” in Proc.
ACM SIGCOMM, 2013.

[27] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving High Utilization with Software-driven WAN,” in
Proc. ACM SIGCOMM, 2013.

[28] Google, “IPv6 Adoption Statistics by Google,” 2019. [Online]. Available:
https://www.google.com/intl/en/ipv6/statistics.html

[29] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha, I. Cunha,
J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng, “Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World,” in Proc. ACM SIGCOMM,
2017.

[30] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus, M. Hines,
T. Kim, A. Narayanan, A. Jain et al., “Taking the Edge off with Espresso: Scale,
Reliability and Programmability for Global Internet Peering,” in Proc. ACM
SIGCOMM, 2017.

[31] Z. Zhang, M. Zhang, A. G. Greenberg, Y. C. Hu, R. Mahajan, and B. Christian,
“Optimizing Cost and Performance in Online Service Provider Networks,” in
Proc. USENIX NSDI, 2010.

[32] Juniper, “Configuring Per-Packet Load Balancing,” 2019. [Online].
Available: https://www.juniper.net/documentation/en US/junos/topics/
usage-guidelines/policy-configuring-per-packet-load-balancing.html

55

https://www.google.com/intl/en/ipv6/statistics.html
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/policy-configuring-per-packet-load-balancing.html
https://www.juniper.net/documentation/en_US/junos/topics/usage-guidelines/policy-configuring-per-packet-load-balancing.html

[33] MikroTik, “ECMP Load Balancing With Masquerade,” 2019. [On-
line]. Available: https://wiki.mikrotik.com/wiki/ECMP load balancing
with masquerade

[34] M. Luckie, “Scamper: a Scalable and Extensible Packet Prober for Active Mea-
surement of the Internet,” in Proc. ACM IMC, 2010.

[35] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced paths in
the internet,” in Proc. ACM IMC, 2007.

[36] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “RFC 6437 - IPv6 Flow
Label Specification,” 2011.

[37] K. Vermeulen, S. D. Strowes, O. Fourmaux, and T. Friedman, “Multilevel
MDA-Lite Paris Traceroute,” in Proc. ACM IMC, 2018.

[38] CAIDA, “Archipelago (Ark) Measurement Infrastructure,” 2019. [Online].
Available: https://www.caida.org/projects/ark/

[39] RIPE, “RIPE Atlas,” 2013. [Online]. Available: https://atlas.ripe.net

[40] I. Cunha, R. Teixeira, D. Veitch, and C. Diot, “DTRACK: A System to Predict
and Track Internet Path Changes,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp.
1025–1038, 2014.

[41] Cisco, “Configuring a Load-Balancing Scheme,” 2018. [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipswitch cef/
configuration/15-mt/isw-cef-15-mt-book/isw-cef-load-balancing.html

[42] MikroTik, “Per-traffic Type Load Balancing,” 2019. [Online]. Available:
https://wiki.mikrotik.com/wiki/Per-Traffic Load Balancing

[43] D. Bayer, “Visibility of Prefix Lengths in IPv4 and IPv6,” 2010. [Online]. Avail-
able: https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths

[44] M. Gunes and K. Sarac, “Resolving Anonymous Routers in Internet Topology
Measurement Studies,” in Proc. IEEE INFOCOM, 2008.

[45] M. Toren, “tcptraceroute: An Implementation of Traceroute Using TCP SYN
Packets,” 2001.

[46] D. Kaminsky, “Paratrace,” 2002.

56

https://wiki.mikrotik.com/wiki/ECMP_load_balancing_with_masquerade
https://wiki.mikrotik.com/wiki/ECMP_load_balancing_with_masquerade
https://www.caida.org/projects/ark/
https://atlas.ripe.net
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipswitch_cef/configuration/15-mt/isw-cef-15-mt-book/isw-cef-load-balancing.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipswitch_cef/configuration/15-mt/isw-cef-15-mt-book/isw-cef-load-balancing.html
https://wiki.mikrotik.com/wiki/Per-Traffic_Load_Balancing
https://labs.ripe.net/Members/dbayer/visibility-of-prefix-lengths

[47] I. Morandi, F. Bronzino, R. Teixeira, and S. Sundaresan, “Service Traceroute:
Tracing Paths of Application Flows,” in Proc. PAM, 2019.

[48] MikroTik, “ICMP Rate Limit,” 2019. [Online]. Available: https://wiki.
mikrotik.com/wiki/Manual:IP/Settings

[49] Cisco, “IPv6 ICMP Rate Limit,” 2019. [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/
configuration/15-2mt/ip6-15-2mt-book/ip6-icmp-rate-lmt.html

[50] R. Ravaioli, G. Urvoy-Keller, and C. Barakat, “Characterizing ICMP Rate Lim-
itation on Routers,” in Proc. Intl. Conference on Communications, 2015.

[51] E. Gaston, “High-Frequency Mapping of the IPv6 Internet Using Yarrp,” Ph.D.
dissertation, Monterey, California: Naval Postgraduate School, 2017.

[52] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” 2006.

[53] P. Marchetta and A. Pescapé, “DRAGO: Detecting, Quantifying and Locating
Hidden Routers in Traceroute IP Paths,” in Proc. IEEE INFOCOM, 2013.

[54] M-Lab, “Measurement Lab,” 2019. [Online]. Available: https://www.
measurementlab.net/

[55] R. Beverly, A. Berger, and G. Xie, “Primitives for Active Internet Topology
Mapping: Toward High-Frequency Characterization,” in Proc. ACM SIG-
COMM, 2010.

[56] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1, pp. 2–16,
2004.

[57] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient Algorithms for
Large-Scale Topology Discovery,” in Proc. ACM SIGMETRICS, 2005.

[58] Z. Durumeric, E. Wustrow, and J. Halderman, “ZMap: Fast Internet-Wide
Scanning and Its Security Applications,” in USENIX Security Symposium, 2013.

[59] R. Beverly, “Yarrp’ing the Internet: Randomized High-Speed Active Topology
Discovery,” in Proc. ACM IMC, 2016.

57

https://wiki.mikrotik.com/wiki/Manual:IP/Settings
https://wiki.mikrotik.com/wiki/Manual:IP/Settings
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ip6-15-2mt-book/ip6-icmp-rate-lmt.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipv6/configuration/15-2mt/ip6-15-2mt-book/ip6-icmp-rate-lmt.html
https://www.measurementlab.net/
https://www.measurementlab.net/

[60] T. Cymru, “IP to ASN Mapping,” 2019. [Online]. Available: http:
//www.team-cymru.com/IP-ASN-mapping.html

[61] PeeringDB, “PeeringDB,” 2019. [Online]. Available: https://www.peeringdb.
com

[62] CAIDA, “AS Rank,” 2019. [Online]. Available: http://as-rank.caida.org/

[63] R. Views, “University of Oregon Route Views Project,” 2000.

[64] R. NCC, “Routing Information Service (RIS),” 2019. [On-
line]. Available: https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris

[65] K. Chen, D. Choffnes, R. Potharaju, Y. Chen, F. Bustamante, D. Pei, and
Y. Zhao, “Where the Sidewalk Ends: Extending theInternet AS Graph Us-
ing Traceroutesfrom P2P Users,” IEEE/ACM Trans. Netw., vol. 63, no. 4, pp.
1021–1036, 2013.

[66] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, K. Claffy,
and G. Riley, “AS Relationships: Inference and validation,” SIGCOMM Com-
put. Commun. Rev., vol. 37, no. 1, pp. 29–40, 2007.

[67] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733–745, 2001.

[68] X. Dimitropoulos, D. Krioukov, and G. R. K. Claffy, “Revealing the Au-
tonomous System Taxonomy: The Machine Learning Approach,” in Proc.
PAM, 2006.

[69] A. Dhamdhere and C. Dovrolis, “Twelve years in the evolution of the internet
ecosystem,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1420–1433, 2011.

[70] A. Lodhi, N. Larson, A. Dhamdhere, C. Dovrolis, and K. Claffy, “Using Peer-
ingDB to Understand the Peering Ecosystem,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 20–27, 2014.

[71] A. Bender, R. Sherwood, and N. Spring, “Fixing Ally’s Growing Pains with
Velocity Modeling,” in Proc. ACM IMC, 2008.

[72] K. Keys, Y. Hyun, M. Luckie, and K. Claffy, “Internet-scale IPv4 Alias Resolu-
tion with MIDAR,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 383–399, 2013.

58

http://www.team-cymru.com/IP-ASN-mapping.html
http://www.team-cymru.com/IP-ASN-mapping.html
https://www.peeringdb.com
https://www.peeringdb.com
http://as-rank.caida.org/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris

[73] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “Internet Map-
ping: from Art to Science,” in Proc. CATCH, 2009.

[74] J. Sherry, E. Katz-Bassett, M. Pimenova, T. A. H. Madhyastha, and A. Krishna-
murthy, “Resolving IP Aliases with Prespecified Timestamps,” in Proc. ACM
IMC, 2010.

[75] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet Map Discov-
ery,” in Proc. IEEE INFOCOM, 2000.

[76] M. Luckie, R. Beverly, W. Brinkmeyer, and K. Claffy, “Speedtrap: Internet-
Scale IPv6 Alias Resolution,” in Proc. ACM IMC, 2013.

[77] V. Giotsas and A. Dhamdhere and K. Claffy, “Periscope: Unifying Looking
Glass Querying,” in Proc. PAM, 2016.

[78] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van Wesep,
A. Krishnamurthy, and T. Anderson, “Reverse Traceroute,” in Proc. USENIX
NSDI, 2010.

[79] R. Padmanabhan, Z. Li, D. Levin, and N. Spring, “UAv6: Alias Resolution in
IPv6 Using Unused Addresses,” in Proc. PAM, 2015.

[80] M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark, and K. Claffy, “Bdrmap:
Inference of Borders Between IP Networks,” in Proc. ACM IMC, 2016.

[81] R. Beverly, M. Luckie, L. Mosley, and K. Claffy, “Measuring and Characteriz-
ing IPv6 Router Availability,” in Proc. PAM, 2015.

[82] M. Luckie and R. Beverly, “The Impact of Router Outages on the AS-level
Internet,” in Proc. ACM SIGCOMM, 2017.

[83] M. Bagnulo, P. Eardley, T. Burbridge, B. Trammell, and R. Winter, “Standardiz-
ing Large-Scale Measurement Platforms,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 2, pp. 58–63, 2013.

[84] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “PlanetLab: An Overlay Testbed for Broad-Coverage Services,”
SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–12, 2003.

[85] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang, “The
(In)Completeness of the Observed Internet AS-level Structure,” IEEE/ACM
Trans. Netw., vol. 18, no. 1, pp. 109–122, 2010.

59

[86] V. Paxson, “End-to-End Routing Behavior in the Internet,” IEEE/ACM Trans.
Netw., vol. 5, no. 5, pp. 601–615, 1997.

[87] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane Nano: Path Prediction for Peer-to-peer Applica-
tions,” in Proc. USENIX NSDI, 2009.

[88] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY: Detecting IP
Prefix Hijacking On My Own,” in Proc. ACM SIGCOMM, 2008.

[89] G. Gürsun, N. Ruchansky, E. Terzi, and M. Crovella, “Routing State Distance:
A Path-based Metric for Network Analysis,” in Proc. ACM IMC, 2012.

[90] E. Katz-Bassett, H. Madhyastha, J. P. John, A. Krishnamurthy, D. Wetherall,
and T. Anderson, “Studying Black Holes in the Internet with Hubble,” in Proc.
USENIX NSDI, 2008.

[91] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning the IPv6 Internet:
Towards a Comprehensive Hitlist,” in Proc. TMA, 2016.

[92] Alexa, “Top Global Sites,” 2019. [Online]. Available: http://www.alexa.com/
topsites

[93] Cisco, “Umbrella Popularity List,” 2019. [Online]. Available: http://
s3-us-west-1.amazonaws.com/umbrella-static/index.html

[94] P. Foremski, D. Plonka, and A. Berger, “Entropy/IP: Uncovering Structure in
IPv6 Addresses,” in Proc. ACM IMC, 2016.

[95] A. Murdock, F. Li, P. Bramsen, Z. Durumeric, and V. Paxson, “Target Genera-
tion for Internet-Wide IPv6 Scanning,” in Proc. ACM IMC, 2017.

[96] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute Probe Method and Forward
IP Path Inference,” in Proc. ACM IMC, 2008.

[97] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and A. Vah-
dat, “WCMP: Weighted Cost Multipathing for Improved Fairness in Data
Centers,” in Proc. ACM EuroSys, 2014.

[98] B. Donnet, M. Luckie, P. Mérindol, and J. Pansiot, “Revealing MPLS Tunnels
Obscured from Traceroute,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 2,
pp. 87–93, 2012.

60

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html
http://s3-us-west-1.amazonaws.com/umbrella-static/index.html

[99] Y. Vanaubel, P. Mérindol, J. Pansiot, and B. Donnet, “A Brief History of MPLS
Usage in IPv6,” in Proc. PAM, 2016.

[100] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology Inference
in the Presence of Anonymous Routers,” in Proc. IEEE INFOCOM, 2003.

[101] P. Biondi, “Scapy’s Documentation.” [Online]. Available: https://scapy.net

[102] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using PlanetLab for Net-
work Research: Myths, Realities, and Best Practices,” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 17–24, 2006.

[103] DCC, “Department of Computer Science, Universidade Federal de Minas
Gerais,” 2019. [Online]. Available: https://www.dcc.ufmg.br/

[104] Linode, “Linode,” 2019. [Online]. Available: https://www.linode.com/

[105] Vultr, “Vultr,” 2019. [Online]. Available: https://www.vultr.com/

[106] DigitalOcean, “DigitalOcean,” 2019. [Online]. Available: https://www.
digitalocean.com/

[107] Majestic, “The Majestic Million,” 2019. [Online]. Available: https://majestic.
com/reports/majestic-million

[108] X. Fan and J. Heidemann, “Selecting Representative IP Addresses for Internet
Topology Studies,” in Proc. ACM SIGCOMM, 2010.

[109] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczynski, S. D. Strowes,
L. Hendriks, and G. Carle, “Clusters in the Expanse: Understanding and Un-
biasing IPv6 Hitlists,” in Proc. ACM IMC, 2018.

[110] Facebook, “IPv6 Traffic Statistics by Facebook,” 2019. [Online]. Available:
https://www.facebook.com/ipv6/?tab=ipv6

[111] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-Hop
Selection,” 2000.

[112] P. Lapukhov, “Equal-Cost Multipath Considerations for
BGP,” 2017. [Online]. Available: https://tools.ietf.org/id/
draft-lapukhov-bgp-ecmp-considerations-01.html

61

https://scapy.net
https://www.dcc.ufmg.br/
https://www.linode.com/
https://www.vultr.com/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://www.facebook.com/ipv6/?tab=ipv6
https://tools.ietf.org/id/draft-lapukhov-bgp-ecmp-considerations-01.html
https://tools.ietf.org/id/draft-lapukhov-bgp-ecmp-considerations-01.html

[113] A. Marder, M. Luckie, A. Dhamdhere, B. Huffaker, J. M. Smith et al., “Push-
ing the Boundaries with bdrmapIT: Mapping Router Ownership at Internet
Scale,” in Proc. ACM IMC, 2018.

[114] J. Jaeggli, “IPv6 Flow Label: Misuse in Hashing.” [Online]. Available: https:
//labs.ripe.net/Members/joel jaeggli/ipv6-flow-label-misuse-in-hashing

62

https://labs.ripe.net/Members/joel_jaeggli/ipv6-flow-label-misuse-in-hashing
https://labs.ripe.net/Members/joel_jaeggli/ipv6-flow-label-misuse-in-hashing

	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Measurement of Internet Routes
	Traceroute and Load Balancing
	Limitations of Current Techniques
	Contributions

	Definitions and Background
	Definitions
	Load Balancing
	Multipath Detection Algorithm
	Limitations of the Multipath Detection Algorithm

	Related Work
	Limitations of Traceroute
	Measurement Techniques
	Reducing Probing Cost
	Complementary Data
	Measurements of the IPv4 and IPv6 Internet

	Measurement Platforms
	Characterization of Internet routes

	Load Balancer Model
	Multipath Classification Algorithm
	Load Balancer Discovery
	Load Balancer Classification
	Optimizations for Searching Flow Identifiers
	Problem
	Randomized Search (Baseline)
	Reusing Flow Identifiers for Identification
	Searching Sequence for Identification
	Varying a Bit Value for Classification
	Varying a Field Value for Classification

	Operational Considerations
	MCA Implementation

	Dataset
	Measurement Setup
	Dataset Properties

	Evaluation
	Characterization of Load Balancing
	Occurrence of Load Balancing
	Classes of Load Balancing
	Diamonds and Branched Route Properties
	Overriding of Packet Header Fields

	Conclusion and Future Work
	Bibliography

