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Resumo

O aumento do uso de métodos numéricos para resolver problemas de espalhamento
eletromagnético impulsiona o estudo de uma discretização espacial ótima para obter
uma solução mais precisa. Nesta dissertação, o uso de elementos curvos (CEs) no
método galerkin descontínuo no dominio do tempo (DGTD) é apresentado como uma
alternativa aos elementos retos (SSE). Como pode ser visto ao longo deste trabalho, os
CEs apresentam muitas vantagens em problemas que envolvem contornos curvos pois
esses contornos são representados com precisão, evitando o uso de pequenos SSE e,
consequentemente, diminuindo o número de graus de liberdade (DOF).

Inicialmente, apresentamos o método clássico DGTD com SSE. Isso foi essencial
porque nesta parte são mencionadas muitas das características importantes do método
como: o uso do fluxo numérico para garantir a conectividade entre os elementos, a base
polinomial ortonormal usada para construir a forma semidiscretizada e o método de
Runge Kutta usado para a integração do tempo. Em seguida, é explicado o passo a
passo das modificações que devem ser feitas para implementar os elementos curvos. O
processo de construção dos CEs pode ser dividido em três partes: a primeira é identificar
os elementos que são interceptados pela fronteira curva, a segunda é reposicionar os nós
da face curva exatamente na fronteira curva e a terceira, aplicar a deformação sobre
os nós internos dos CEs e atualizar as localizações dos nós. Além disso, as integrais de
funções não polinomiais devem ser levadas em consideração já que o jacobiano de cada
CE não é constante.

Para validar esta formulação, problemas de espalhamento em 2D foram resolvidos.
Os resultados mostraram que o erro global diminui quando os CEs são usados. Além
disso, a taxa de convergência foi maior para os CEs do que para os SSE. Adicionalmente,
foi apresentado o uso de CEs para resolver problemas mais complexos onde a quantidade
de CEs aumenta muito. Novamente, o esquema dos CEs teve uma solução melhor do
que com os SSE junto com uma diminuição do número de elementos e de DOF.

Palavras-chave: DGTD, elementos curvos, fronteiras curvas, problemas de espal-
hamento.
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Abstract

The increase in the use of numerical methods to solve electromagnetic scattering prob-
lems drives the study of an optimal spatial discretization to obtain a more accurate
solution. In this dissertation, the use of curved elements (CE) in the Discontinuous
Galerkin Time Domain (DGTD) method is presented as an alternative to common
straight side elements (SSE). As can be seen throughout this work, CEs have many ad-
vantages in problems involving curved contours because these contours are represented
accurately avoiding the use of small SSE and consequently, decreasing the number of
nodes on the computational domain, also called degrees of freedom (DOF).

Initially, the classical DGTD method with SSE is explained. This is essential
because in this part are mentioned most of important characteristics of the method
as: the use of the numerical flux to guarantee the connectivity between elements, the
orthonormal polynomial basis used to build the semi-discretized form and the Runge
Kutta method used for the time integration. Then, it is explained step by step the
modifications which must be done to make the curved elements. The process to build
the CEs can be divided into three parts: the first one is to identify the elements which
are intersected by the curved boundary, the second one is to relocate the nodes of
the curved face exactly onto the curved boundary and third, to apply the deformation
over the internal nodes of the CEs and update the volume nodes locations. Moreover,
the integrals of non-polynomials functions must be taken into consideration due to the
jacobian of each curved element is non-constant.

In order to validate this formulation, 2D scattering problems were solved. Re-
sults showed that the global error decreases when the CEs are used. Moreover, the
convergence rate was higher for the CEs than the SSE. Additionally, the use of CEs to
solve more complex problems where the amount of CEs increases a lot was presented.
Again, the CEs scheme showed a more accurate solution than the SSE with a decrease
of number of elements and DOF.

Keywords: DGTD, curved elements, curved boundaries, scattering problems.
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Chapter 1

Introduction

Discontinuous Galerkin Time Domain (DGTD) method is a very powerful numerical
technique for solving Partial Differential Equations (PDE). This method has a lot of
possibilities to be implemented since it can be easily discretized both in space domain
and time domain. It has successfully been used to solve a lot of differential equations in
some areas as: Aerodynamics [Silveira et al., 2015], Nano-optical problems [Hille et al.,
2010], Elastodynamics [Petersen et al., 2009; Dumbser et al., 2007], and Quantum
mechanics [Xu and Shu, 2005].

In the discontinuous Garlerkin (DG) spatial discretization, we have the advantage
of using unstructured meshes with high order finite elements. This allows an accurate
discretization of some complex geometries using elements with different sizes (h −
adaptivity), and a high order convergence of the solution can be obtained depending
on the order of basis functions (p − adaptivity). Furthermore, DG method can be
applied in both the time domain (TD) and the frequency domain (FD). However,
working in TD offers several benefits in electromagnetic problems, such as transient
field effect of an arbitrary time signal excitation (e.g. scatter problems, ultra-wideband
antennas, photonic crystal guides).

All works mentioned above have focused exclusively on the simplest cases in which
all boundaries are approximated by straight side element. This is a good option when
there are not complex boundaries, but in some cases a linear approximation is not
enough [Bassi and Rebay, 1997]. Therefore, the accurate representation of the domain
and its boundary has been studied by many autors [Krivodonova and Berger, 2006; Luo
et al., 2001; Van der Vegt and Ven, 2001] among others. In fact, it is necessary to take
the effect of the boundary curvature into consideration in order to have a consistent
boundary discretization. There are a lot of works published on the DG methods for
time domain Maxwell’s equation. However, most of them use straight side elements to

1



1. Introduction 2

approximate the curved geometries and do not show any study of the induced error
caused by the inaccurate representation of these surfaces [Cohen et al., 2006; Fahs,
2009a,b]. Thus, in this work the use of isoparametric curvilinear elements (CE) will
be investigated in order to decrease the induced error caused by the representation
of curved surfaces with straight side elements. Next, a full review of the state of the
art is presented including the most used numerical methods and both the advantages
and disadvantages of them in comparison with the DG method. Furthermore, this
Section was divided into two parts: The first one shows an overview of TD numerical
methods and the second one shows some applications in engineering problems using
DGTD method.

1.1 Overview of numerical methods in TD

There are many TD numerical methods to solve Maxwell’s equations. However, each
one has different features in comparison with the others. In table 1.1 presented in
[Angulo, 2014], it can be seen a summary of the most widely used numerical methods
for modeling electromagnetics problems..

Table 1.1: Comparison of numerical methods [i.e., finite difference methods (FDTD),
finite volume methods (FVTD), finite element methods (FEMTD) and discontinuous
galerkin finite element method (DGTD-FEM)]. The symbol ∗ reflects that the method
would have this feature if some modifications are made.

FDTD FVTD FEMTD DGTD
Complex geometries No Yes Yes Yes

Explicit semidiscrete form Yes Yes No Yes
Conservation laws Yes Yes Yes∗ Yes
Spurious modes No No No∗ No∗

h adaptivity Yes Yes Yes Yes
p adaptivity No No Yes Yes

Local time stepping (LTS) No Yes Yes Yes

1.1.1 Finite Differences in Time Domain (FDTD)

FDTD was presented for the first time in 1996 [Yee, 1966] as a scheme to solve Maxwell’s
equations in isotropic media, it has been extensively developed since then in computa-
tional electromagnetics. The clasical FDTD method uses a second order finite centered
approximations for space and time derivatives in Maxwell’s curl equations. In this



1. Introduction 3

technique both the electric as magnetic fields are calculated in a rectilinear cartesian
grid, using the second order leap frog (LF2) algorithm. As a result, a second order
convergence scheme is obtained with respect to spatial and temporal discretization.

The two main claimed advantages of FDTD are the free spurious solutions and its
computational efficiency. However, space discretization based on a rectilinear grid im-
plies a high difficulty to represent complex geometries. Some techniques can be found in
the literature that mitigate this limitation, for example: geometrically conformal [Dey
and Mittra, 1997] or subgridding [Sarris, 2007]. Additionally, higher order techniques
can be implemented for the FDTD algorithm, but these formulations require more ef-
fort, reducing their computational efficiency [Young, 2001; Georgakopoulos et al., 2002;
Hwang, 2003].

1.1.2 Finite Volume Methods (FVTD)

The FVTD was introduced as an alternative to FDTD with the objective of eliminat-
ing the restrictions of geometric discretization, avoiding the rectilinear cartesian grid
discretization. However, despite improving the spatial discretization of the domain, the
FVTD has order of convergence equal to one [Bommaraju et al., 2009] which is quite
low. The most known formulation of FVTD is based on tetrahedral elements for the
Maxwell’s curl equation [Baumann et al., 2008; Sankaran et al., 2006; Fumeaux et al.,
2004]. FVTD uses the LF2 algorithm for time discretization as in the FDTD. Fur-
thermore, the time step depends on the shape of the elements which implies a higher
restriction than for the FDTD method. One solution to alleviate this restricted time
stepping is to use local time step (LTS) techniques [Fumeaux et al., 2004]. Finally,
due to the similar features with the DGTD it can be said that FVTD is a Zero-order
DGTD method.

1.1.3 Finite Element Methods (FEMTD)

There are many schemes of time domain FEM based on the hyperbolic system of curl
equations (Ampere’s and Faraday’s laws) or Maxwell’s curl-curl equation [Lee et al.,
1997]. Nevertheless, the most common in the literature is the second order vector
wave curl-curl equation, generally implemented in FD, but it can also be solved in
TD needing just the computation of a single field (electric or magnetic) [Lynch and
Paulsen, 1990; Lee, 1994; Lee and Sacks, 1995; Gedney and Navsariwala, 1995]. In this
case, a global linear system of equations at each time step has to be solved generating
a considerable computational cost. In addition, other alternatives to the single field
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scheme can be found in the literature [Rieben et al., 2005; He and Teixeira, 2006,
2007; Donderici and Teixeira, 2008a,b]. These formulations have some advantages,
such as avoiding spurious solutions, using different expansion functions. To eliminate
the need of saving previous states in memory, these schemes allow the use of a LF2
time integration.

1.1.4 Discontinuous Galerkin Methods (DGTD)

The DGTD can be considered a member of the FEMDT family. This method is
introduced with the aim of relaxing the tangential continuity condition. In this case,
the continuity is imposed via numerical fluxes in order to connect the solution among
neighbor elements. In comparison with the others FEM in TD, the main advantage is
that the linear system to be solved is block-diagonal and only requires a single inversion
ofK square matrices ofN×N elements (K is the number of elements and N the number
of basis functions per element). A lot of works using the DGTD method can be found
in the literature. Therefore, in order to show the relevance of this method, the following
subsection presents some particular interest areas.

1.2 Some applications of DGTD

1.2.1 Waveguides

In some cases, the simulation of waveguides needs the modeling of complex geometries
where DGTD offers an excellent approach. Also, DGTD is an excellent choice to
calculate the resonant frequencies, because the TD simulation allows us to estimate
them in a single run. One important characteristic of waveguides is that they are
structures where the absence of spurious modes is obligatory [Alvarez et al., 2012].
However, as it will be presented in chapter 2, DGTD has the possibility of choosing
different numerical fluxes to avoid spurious modes.

1.2.2 Antennas

In the simulation of wideband antennas it is very important to model their geometrical
details accurately, especially in critical zones such as feeding ports. These problems
have been solved with FDTD and FEMTD methods. However, a very refined spatial
discretization in the whole domain is necessary in FDTD, increasing the computational
cost. On the other hand, these problems generate in FEMTD a very big global matrix
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that has to be solved at each time step, producing a high computational cost. The
DGTD with LTS techniques can be used as alternative [Alvarez et al., 2015].

1.2.3 Photonic Crystals (PhC)

Photonic crystals, also known as photonic band gap (PBG) materials, can mold the
flow of light in a controlled way. They are periodic arrays of dielectric materials that
open band spaces for electromagnetic waves, that is, frequency ranges where the propa-
gation of photons is prohibited. These structures can be modeled using FDTD methods
[Mekis et al., 1999]. However, the cell size must be decreased to approximate the cir-
cular dielectric scatters which implies a significant increase in computational cost in
terms of storage memory and execution time. An interesting solution of a L-Shaped
photonic crystal using DGTD and applying a multiclass linear multistep strong stabil-
lity preserving method (mC-SSPMS) is shown in [de Souza et al., 2019]. Nevertheless,
in that work the author uses an unstructured mesh with an h-refinement to represent
each dielectric scatter accurately, increasing the computational effort. In this work our
aim is to use the CE to model each scatter, decreasing the number of elements nec-
essary to approximate each of them and consequently, decreasing the computational
effort.

1.3 Objectives and Contributions

The main objective of this work is to implement the DGTD method with CE to rep-
resent accurately curved surfaces in order to reduce computational effort and improve
accuracy in simulations of 2D electromagnetic scattering problems. In order to achieve
this goal, the following steps were carried out:

• To implement the DGTD general formulation with the straight side elements.

• To make the necessary modifications over the DGTD general to build the scheme
with CE.

• To define adequate 2D electromagnetic problems where the implementation of
the CE presents advantages over the DGTD general.

• To validate the implemented formulation comparing with analytical solutions or
verified numerical solutions.



1. Introduction 6

This work presents a significant contribution because represents an alternative
for the common numerical methods in the spatial discretization of curved geometries,
improving the accuracy of the approximation. Besides, the implementation of curved
elements minimizes the number of elements required in the mesh, allowing the use of a
minor time step. Partial results of this work were accepted in The 19th Biennial IEEE
Conference on Electromagnetic Field Computation (CEFC 2020).

1.4 Survey of chapters

This text is organized as follows: Chapter 2 presents step by step the DGTD general
formulation and Chapter 3 shows the necessary modifications to use the CEs. Next,
the results for different 2D electromagnetic problems are presented and discussed in
Chapter 4. Finally, Chapter 5 shows the conclusions of the work and final considera-
tions.



Chapter 2

The Discontinuous Galerkin Time
Domain Method

DGTD was first proposed in the 1970s by [Reed and Hill, 1973] to solve the linear
neutron transport equation. Moreover in 1974 [Lesaint and Raviart, 1974] proposed
for the first time a matematical formulation for this method solving the linear neutron
transport equation. In the last years some DGTD versions to solve Maxwell’s equation
has been proposed, one of the most popular and efficient was proposed in 2002 by
[Hesthaven and Warburton, 2002]. This chapter explains the modeling of the electro-
magnetic propagation using the DGTD method in non-dispersive dielectric media. The
most important characteristic of DGTD is that electromagnetic fields can have discon-
tinuous components across the boundary between two neighboring elements, Therefore,
to guarantee the coupling among the elements a numerical flux [Hesthaven and War-
burton, 2007] is introduced as a penalty term on the basis of a conservation law. This
implies two important things, first, the DG method becomes adequate for explicit time
stepping and second, the problem end up as an ordinary time-dependent differential
equation that can be solved through integration using for example the Runge-Kutta
method [Cockburn et al., 2000].

2.1 Maxwell’s equations

Considering Maxwell’s curl equations for lossless isotropic media into:

∇× E = −∂B
∂t

∇×H =
∂D
∂t

+ J (2.1)

7
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where E and H are the electric and magnetic field intensities, respectively. D and B
are the electric and magnetic flux densities. D is also called the electric displacement,
and B, the magnetic induction.

The electric and magnetic flux densities D, B are related to the field intensities E,
H by the so-called constitutive relations, whose precise form depends on the material
in which the fields exist. In a homogeneous and isotropic medium, they take their form:

D = ε0εrE

B = µ0µrH (2.2)

where ε0 are the electric permittivity and µ0 the magnetic permeability of vacuum. εr
and µr are the relative electric permittivity and magnetic permeability of the media,
respectively.

Considering a dielectric media µr = 1 without currents J = 0 and substituting
Eq. (2.2) in (2.1), we take:

∇× E = −µ0
∂H
∂t

∇×H = ε
∂E
∂t

(2.3)

where ε = ε0εr.
For each equation, we write the vector components of the curl operators in carte-

sian coordinates. This yields the following three scalar equations for the Faraday’s law:

µ0
∂Hx

∂t
=
∂Ey
∂z
− ∂Ez

∂y
(2.4a)

µ0
∂Hy

∂t
=
∂Ez
∂x
− ∂Ex

∂z
(2.4b)

µ0
∂Hz

∂t
=
∂Ez
∂y
− ∂Ey

∂x
(2.4c)

and the following three scalar equations for the Ampere’s law:

ε
∂Ex
∂t

=
∂Hz

∂y
− ∂Hy

∂z
(2.5a)

ε
∂Ey
∂t

=
∂Hx

∂z
− ∂Hz

∂x
(2.5b)

ε
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
(2.5c)
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If the system is uniform in one direction, for instance in the z-direction, then all
partial derivatives of the fields with respect to z must vanish. Under that condition,
the set of Eqs. (2.4) and (2.5) reduces to

µ0
∂Hz

∂t
=
∂Ez
∂y
− ∂Ey

∂x
(2.6a)

µ0
∂Hx

∂t
= −∂Ez

∂y
(2.6b)

µ0
∂Hy

∂t
=
∂Ez
∂x

(2.6c)

and

ε
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
(2.7a)

ε
∂Ex
∂t

=
∂Hz

∂y
(2.7b)

ε
∂Ey
∂t

= −∂Hz

∂x
(2.7c)

Grouping Eqs. (2.6b), (2.6c) and (2.7a) we obtain the called tranverse magnetic
(TM) mode in two dimensions.

ε
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
(2.8)

µ0
∂Hx

∂t
= −∂Ez

∂y

µ0
∂Hy

∂t
=
∂Ez
∂x

and by the same way, grouping the Eqs. (2.6a), (2.7b) and (2.7c) we get the called
tranverse electric (TE) mode in two dimensions.

µ0
∂Hz

∂t
=
∂Ez
∂y
− ∂Ey

∂x
(2.9)

ε
∂Ex
∂t

=
∂Hz

∂y

ε
∂Ey
∂t

= −∂Hz

∂x

From these two polarizations, we notice that the TE and TM modes do not have
any field component in common. Therefore, they can coexist without influencing each
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other. It is important to say that for simplicity all results in this work are shown using
the TMz mode.

2.2 Maxwell’s equations in conservation form

A suitable scheme for solving linear systems of hyperbolic problems in complex geome-
tries, exemplified by a scheme for solving Maxwell’s equation is:

Q
∂q
∂t

+∇ · F(q) = S (2.10)

where Q is the material matrix with the media information:

Q =

[
ε 0

0 µ

]
(2.11)

The state vector q is given by:

q =

[
E
H

]
(2.12)

The flux term F(q) can be represented as:

Fi(q) =

[
−ei ×H
ei × E

]
(2.13)

With F(q) =
[
Fx(q), Fy(q), Fz(q)

]T
. Here ei signifies the three cartesian

unit vectors i = x, y, z and S =
[
SE, SH

]T
represents sources, currents and terms

introduced by the scattered field formulation. In our case S = 0.

2.2.1 TM mode

Rewriting the set of Eqs. (2.8) in the conservation form:

Q =

ε 0 0

0 µ0 0

0 0 µ0

 ; q =

Ez

Hx

Hy

 ;∇ · F(q) =

−
∂Hy
∂x

+ ∂Hx
∂y

∂Ez
∂y

−∂Ez
∂x
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The flux term can be rewriting as:

∇ · F(q) = −∂x

Hy

0

Ez

+ ∂y

Hx

Ez

0



= −

0 0 1

0 0 0

1 0 0

 ∂xq +

0 1 0

1 0 0

0 0 0

 ∂yq

= Ax∂xq + Ay∂yq (2.15)

2.3 The Galerkin method

To apply the DG formalism, firstly, we assume that the domain Ω is represented by a
set of non-overlapping elements, K, typically tetrahedrons for tridimensional problems
or triangles for bidimensional problems, organized in an unstructured manner to fill
the computational domain.

Ω =
K⋃
k=1

Ωk (2.16)

Now, let us consider only a single element of the computational domain. The aim
is to find a numerical approximation qN to the correct solution q to the Eq. (2.10). For
the DG spatial discretization, each element is discontinuous with respect to others. It
means that the variational form must be local, therefore, the weak form is obtained by
multiplying Eq. (2.10) by a regular test function Lj(r, t) which minimizes the residue.
Finally, we integrate over the element Ωk.∫

Ωk

[
Q∂tq(r, t) +∇ · F(q)

]
Lj(r, t)dΩ = 0 (2.17)

Now, let us apply Gauss’s theorem over Eq. (2.17) to obtain the local statement:∫
Ωk

[
Q∂tq(r, t)Lj(r, t)− F(q) · ∇Lj(r, t)

]
dΩ = −

∫
ΓΩk

n̂ · F(q)Lj(r, t)dΓ (2.18)

As can be seen in Eq. (2.18), only fields values and derivatives on the element
Ωk are involved. It is clear that we have to find a connection between the neighbor
elements, because Maxwell’s equations are formulated in a continuous space. Conse-
quently, at this point it suffices to substitute the flux F by a numerical flux F∗ as the
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unique value to be used at the interface and obtained by combining information from
both elements. With this we recover the scheme:∫

Ωk

[
Q∂tq(r, t)Lj(r, t)− F(q) · ∇Lj(r, t)

]
dΩ = −

∫
ΓΩk

n̂ · F∗(q)Lj(r, t)dΓ (2.19)

and applying Gauss’ theorem once again, we get:

∫
Ωk

[
Q∂tq(r, t) +∇ · F(q)

]
Lj(r, t)dΩ =

∫
ΓΩk

n̂ ·
[
F(q)− F∗(q−,q+)

]
Lj(r, t)dΓ (2.20)

This is the strong variational formulation of Maxwell’s curl equations. In the
right hand side of Eq. (2.20), n̂ represents the outwardly directed normal vector and
F∗ is the numerical flux, which is function of the local element q− and its neighbor q+.

2.3.1 Numerical flux

The DG method relies on enforcing continuity of the numerical flux across elements
edges, in other words the information through the interface between two elements is
carried along the unit normal vector n̂ [Shu, 2009]. Fig. 2.1 shows the interaction of
the flux between two neighbor elements.

e= 

n

Ωk1

Ωk2

Ωk1
Γ Ωk2

Γ⋂

F*(q )- F*(q )+

Figure 2.1: Neighbor elements with the same edge e.

where e is the interface between elements Ωk1 and Ωk2 .
An interesting characteristic of DG methods is that we have a lot of possibilities

for choosing the numerical flux, for example, centered, upwind and penalized. In the
table 2.1 found in [Angulo, 2014], the parameters of each flux mentioned above are:
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Table 2.1: Parameters of centered, upwind and penalized numerical fluxes.

Numerical flux Centered Upwind Penalized
AE

1
2

Y +

Y −+Y +
Y +

Y −+Y +

AH
1
2

Z+

Z−+Z+
Z+

Z−+Z+

BH 0 1
Y −+Y +

τ
Y −+Y +

BH 0 1
Z−+Z+

τ
Z−+Z+

Table 2.1 shows the expressions for the A and B factors for centered, upwind and
penalized numerical fluxes. Terms multiplied by B are called penalization or upwind
terms and come from the solution of the Riemman problem [LeVeque et al., 2002]. On
the other hand, for the penalized flux, the factor τ is used to avoid the propagation
of spurious modes in the computational domain [Hesthaven and Warburton, 2004b].
However, these terms introduce some dissipation to the scheme [Sármány et al., 2007].
One option to mitigate spurious modes is the centered flux, it appears when B = 0 but,
at the cost of introducing spectral pollution to the method [Ainsworth et al., 2006]. As
a result, the general equation to the numerical Lax-Friedrichs flux is given by:

F∗(q−,q+) =


n̂×

[
E− + AE∆E + BH

(
n̂×∆H

)]
n̂×

[
H− + AH∆H − BE

(
n̂×∆E

)] (2.21)

where ∆E = E+ − E− and ∆H = H+ −H−.
Hesthaven and Warburton presented a numerically stable and convergent scheme

using the upwind flux [Hesthaven and Warburton, 2002]. It is given by:

n̂ ·
[
F(q)− F∗(q−,q+)

]
=


Z̄−1

(
α
[
∆E− n̂(n̂ ·∆E)

]
+ Z+n̂×∆H

)
Ȳ −1

(
α
[
∆H− n̂(n̂ ·∆H)

]
− Y +n̂×∆E

) (2.22)

where Z± and Y ± are respectively, the impedance and the conductance of the media:

Z± =

√
µ±

ε±
, Y ± =

1

Z± =

√
ε±

µ±

Z̄ and Ȳ are their sums:

Z̄ = Z+ + Z− , Ȳ = Y + + Y −
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In Eqs. (2.21),(2.22) the superscript ” + ” refers to field values from the neighbor
element while superscript ”−” refers to field values from local element. The tangential
field components are represented by the normal component of the flux. Hence, the ob-
jective of the right hand side in Eq. (2.22) is to enforce the continuity of the tangential
field components across the face of the elements.

Another important parameter not yet explained is the upwind term α in Eq.
(2.22). When α = 1 represents the pure upwind flux while for α = 0 we obtain the
centered flux. Also, for any number between [0, 1] we get the penalized flux. Thus, the
accuracy of the scheme is influenced by the optimal choice of α. In [Hesthaven and
Warburton, 2007], the authors showed that good convergence rates are achieved using
α = 1, on the contrary, convergence rates are worse for other values of α. According
to Eq. (2.22) the TM mode is given by:

n̂ ·
[
F(q)− F∗(q−,q+)

]
=


Z̄−1

(
α∆Ez + Z+

[
nx∆Hy − ny∆Hx

])
Ȳ −1

(
α
[
∆Hx − nx

(
nx∆Hx + ny∆Hy

)]
− Y +ny∆Ez

)
Ȳ −1

(
α
[
∆Hz − ny

(
nx∆Hx + ny∆Hy

)]
+ Y +nx∆Ez

) (2.23)

2.3.2 Boundary conditions

Electromagnetic fields are propagating in the whole space continually. However, com-
putational methods cannot discretize an infinite space with a finite quantity of memory.
Therefore, computational domain must be truncated. Previously, it was explained that
numerical flux can be used to connect adjacent elements, but also serves to directly
implement basic boundary conditions in the weak form, only modifying the jumps in
factors ∆E and ∆H.

2.3.2.1 Perfect Electric Conductor (PEC)

The PEC condition requires that the tangential component of the electric field must
be null and the tangential magnetic field component to be continuous as long as there
is not a electric current around the surface.

n̂× E = 0 (2.24)

In our case to implement the PEC boundary condition, we use the same mirror
principle used in [Hesthaven and Warburton, 2002]. To the electric field we assigned
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E+ = −E−. Thus, on a PEC boundary ∆E = −2E−. On the other hand, we assigned
H+ = H− to the magnetic field and consequently, ∆H = 0.

2.3.2.2 Perfect Magnetic Conductor (PMC)

The PMC condition is the reciprocal of the PEC one, accordingly:

n̂×H = 0 (2.25)

As in the PEC boundary conditions, for the PMC we use H+ = −H− and
E+ = E−. Finally, to the PMC case: ∆H = −2H− and ∆E = 0.

2.3.2.3 Silver-Muller Absorbing (SMA)

The first order SMA boundary condition provides an ideally null reflection coefficient for
normal incidence because it is based on assuming that fields outside the computational
domain propagate as normal plane waves to the interface [Rao, 1999].√

ε0

µ0

n̂× E + n̂×
(
n̂×H

)
= 0 (2.26)

To implement this condition we just have to guarantee that tangential components
of the electric and magnetic field to be nulls. It means that ∆E = −2E− and ∆H =

−2H−.

2.3.2.4 Sources

When modeling a physical system, it is important to know the geometrical structures
or materials of the media. However, the form as the system is illuminated decides if
the results has an interesting physic mean or not. For our case, we can incorporate
sources directly in the DGTD method via the numerical flux, in the same way as the
boundary conditions PEC, PMC and SMA. For this, we have to guarantee that in the
position where the input is placed:

E+ = E(t), H+ = H(t)

where E(t) and H(t) are the input fields in the time domain.
Then, the flux term can be separated in two: the first term includes the connection

among the elements and boundary conditions, and the second one incorporates the
source term.
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Ftotalflux = Fflux + Fsource

2.4 Semi-discretized form

We supose that the local solution can be represented in the following form:

qhk =

Np∑
i=1

qi(ri, t)Li(r) =

Np∑
n=1

q̂nψn(r) (2.27)

where Li and ψn determine a nodal and modal local basis, respectively.
According to [Hesthaven and Warburton, 2007], the nodal and modal coefficients

can be related as follows:
qnodal = V q̂modal (2.28)

This matrix, V , is known as a generalized Vandermonde matrix, Vij = ψj(ri). Its
function is to establish the connection between the modes q̂ and the nodal values q.
Now, we choose the interpolating Lagrange polynomial to the function Li because it is
well known that this polynomial basis has the Kronecker delta property:

Li(rj) =

{
1, i = j

0, i 6= j
(2.29)

Lagrange polynomials are formed by the linear combination of monomials and
can be represented in general by [Busch et al., 2011]:

Li(rj) =

k+l+m≤N∑
k,l,m=0

aik,l,mx
kylzm (2.30)

where N is the polynomial order. The grid point nodes Np in each element have to
respect the condition:

Np = N + 1 (1D)

Np = 1
2
(N + 1)(N + 2) (2D)

Np = 1
6
(N + 1)(N + 2)(N + 3) (3D)

To guarantee numerical stable behavior of the generalized Vandermonde matrix
V , an orthonormal polynomial basis for ψj(r) must be used. In this work we used the
same basis as in [Hesthaven and Warburton, 2002]. So, let us consider a canonical basis
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defined on a space with the coordinates (r, s):

ψm(r) = risj, (i, j) ≥ 0; i+ j ≤ N

m = j + (N + 1)i+ 1− i
2
(i− 1), (i, j) ≥ 0; i+ j ≤ N

(2.31)

It cannot be expect that the Eq. (2.31) is a good choice because if the polynomial
order N increases, the vandermonde matrix becomes poorly conditioned. To solve this
problem, the polynomial basis can be orthonormalized applying the Gram-Schmidt
process. The resulting basis is:

ψm(r) =
√

2Pi(a)P
(2i+1,0)
j (b)(1− b)i (2.32)

where

a = 2
1 + r

1− s
− 1, b = s,

and Pα,β
n is the n-th order Jacobi polynomial. When α = β = 0 it is the Legendre

polynomial.

2.4.1 Nodal distribution

We have to choose an optimal distribution of the Np grid point nodes. This choice
is very important because a poorly chosen set generates computational problems as
ill-conditioning matrices.

As in FEM, the nodal distribution is done in a reference element and then, nodes
are mapped into a physical element. There are some different ways to build a good
nodal distribution [Hesthaven, 1998; Taylor et al., 2000; Chen and Babuška, 1995].
However, all of them require substantial initial effort and it is a disadvantage that
we want to avoid. In [Hesthaven and Warburton, 2007], a simple and constructive
approach was built for a computation of a well-behaved family of nodal points of any
order. This process maps a set of equidistant nodes into Legendre-Gauss-Lobatto
distribution. Finally, the nodal distribution is calculated for each simulation, using a
computational low cost algorithm and avoiding distribution tables. Fig. 2.2 shows the
Np grid point nodes into a triangle for two different polynomial orders.

2.4.2 Mass and stiffness matrices

Now, to the spatial discretization of the TM mode, we take the left hand side of Eq.
(2.10), remembering that flux term can be written as Eq. (2.15). Considering only a
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N=4 N=6

Figure 2.2: Nodal distribution for N = 4 and 6.

local element k:∫
Ωk

[
Qk∂tqk +∇ · F(qk)

]
LkjdΩ =

∫
Ωk

[
Qk∂tqk + Ax∂xqk + Ay∂yqk

]
LkjdΩ (2.33)

The approximation of each variable in the system is made using basis functions
such that: ukh =

∑Np
i=1 u

k,i
t L

k
i (x, y), where Np are number of the unknown variables for

each element. Coefficients depend on time and the basis functions of space. Therefore,
using expansion by basis functions in Eqs. (2.15), we obtain:

∫
Ωk

(
εk∂tE

k
z − ∂xHk

y + ∂yH
k
x

)
LkjdΩ = εkMk∂tEk

z − [Sk,x]THk
y + [Sk,y]THk

x∫
Ωk

(
µk0∂tH

k
x + ∂yE

k
z

)
LkjdΩ = µk0Mk∂tHk

x + [Sk,y]TEk
z∫

Ωk

(
µk0∂tH

k
y − ∂xEk

z

)
LkjdΩ = µk0Mk∂tHk

y − [Sk,x]TEk
z

(2.34)

where Ek
z ,H

k
x,H

k
y are vectors with dimension Np× 1, they contain the field component

for each nodal value. Moreover, electric permittivity εk and magnetic permeability µk0
have the same dimension Np × 1 with the information about the media in element k.
On the other hand,Mk and Sk are known as mass and stiffness matrices respectively.
Their dimensions are equal to Np ×Np.

Mk
i,j =

∫
Ωk
LkiL

k
jdΩ

Sk,xi,j =
∫

Ωk
∂xL

k
iL

k
jdΩ

Sk,yi,j =
∫

Ωk
∂yL

k
iL

k
jdΩ

(2.35)
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Taking into account that V was built using an orthonormal basis, mass matrix
can be calculated as follows:

Mk = Jk(V V T )−1 (2.36)

Where Jk is the jacobian of the element k. It is important to say that the mass
matrix is diagonal due to the use of orthonormal polynomials ψm. Now, to calculate
the stiffness matrix, we need the differentiation matrices:

∂

∂x
=
∂r

∂x
Dr +

∂s

∂x
Ds,

∂

∂y
=
∂r

∂y
Dr +

∂s

∂y
Ds

where Dr and Ds calculate derivatives in the reference space (r, s). They can be cal-
culated as follows:

Vr,(i,j) =
∂ψj(ri, si)

∂r

Vs,(i,j) =
∂ψj(ri, si)

∂s

Then, we have the relation Dr = VrV
−1 and Ds = VrV

−1. Finally, the expressions
for the stiffness matrices are:

Sk,x = ( ∂r
∂x
Dr + ∂s

∂x
Ds)(V V T )−1

Sk,y = ( ∂r
∂y
Dr + ∂s

∂y
Ds)(V V T )−1

(2.37)

2.4.3 Flux discretization

Until now, the computation of the local matrices for the left hand side of Eq. (2.15)

has been explained. Also, we have to explain how to discretize the flux term of Eq.
(2.20) to complete semi-discretized form. So, firstly we consider that:

n̂ · F(q)− F∗(q−,q+) = F∆q (2.38)

Substituing Eq. (2.38) in the rigth hand side of Eq. (2.20):∫
ΓΩk

n̂ ·
[
F(qk)− F∗(q−,q+)

]
LkjdΓ =

∫
ΓΩk

F∆qLkjdΓ (2.39)

Taking into consideration that all edges in a triangular element are boundary, it
can be said that each edge is an intersection between local and neighbor element. So:

∫
ΓΩk

F∆qLkjdΓ =
3∑
e=1

∫
edge

Fe(q+e − q−e)LkjdΓ (2.40)
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Now, we have to discretize as before q+e and q−e , therefore:

3∑
e=1

∫
edge

Fe(q+e − q−e)LkjdΓ =
3∑
e=1

FeMe
1d(q

+e
t − q−e

t ) (2.41)

whereMe
1d is a diagonal block matrix with dimension 3N × 3N and each block is the

called edge-mass matrixMe whose form is:

Me
i,j =

∫
edge

LkiL
k
jdΓ (2.42)

Furthermore, there is another way to calculate Me because the functions ψm
in edges are also orthonormal polynomials. According to [Hesthaven and Warburton,
2007], functions ψem over an edge e are given by:

ψem(r) =
Pm−1(r)√
γm − 1

(2.43)

where Pm are the classic Legendre polynomials of order m and γm is a normalization
factor.

γm =
2

2m+ 1
(2.44)

Now, considering that the Vandermonde one-dimensional matrix is equal to
V1d,(i,j) = ψj(ri), the edge-mass matrix can be calculated by:

Me =
he

2
(V1dV

T
1d)

−1 (2.45)

where he is the length of the triangle edge.

2.5 Low-Storage Explicit Runge Kutta fourth order

method for time integration

Until now the space discretization using the discontinuous Galerkin approach has been
presented. However, our model depends on the space as well as on time. In this case,
for the time integration, we use the low-storage five-stage fourth-order explicit Runge-
Kutta method (LSERK4) [Williamson, 1980; Hesthaven and Warburton, 2004a; Diehl
et al., 2010]. This method is one of the most used in high order DG schemes because
it does not need to compute and evaluate derivatives and also, produces low dispersion
and dissipation errors [Angulo, 2014]. As in all time-stepping methods, the aim is to
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find the solution in the time step tn+1 taking as a reference the solution at the first time
step tn, starting with the given initial condition. Then, considering the approximate
solution qh:

dqh
dt

= L(qh, t)

and applying the LSERK4 method we have:

p(0) = qnh

i ∈ [1, ...5] :

β
(i) = aiβ

(i−1) + ∆tL(p(i−1), tn + ci∆t)

p(i) = p(i−1) + biβ
i

qn+1
h = p(5)

(2.46)

where qnh and qn+1
h are respectively, initial and final solution. They are separated by

the time step ∆t. Coefficients ai, bi and ci can be found in [Hesthaven and Warburton,
2007].

2.5.1 Conditional stability and time step

The LSERK4, as his name says, is a explicit method and therefore is subject to condi-
tional stability, also known as the Courant-Friedrichs-Lewy condition (CFL condition).
When the time step ∆t exceeds a critical value, the solution is subject to unphysical
exponential growth. The size of the time step is directly related with the quality of the
mesh, as the very popular FDTD method [Busch et al., 2011]. One interesting approach
was found in [Hesthaven and Warburton, 2007], where the time step is calculated with
the minimum distance between the nodes in element k:

∆t ≤ C

ck
mink,i

∆hki
2

(2.47)

wheremink,i∆hki indicates the minimum distance among nodes in k, ck is the maximum
speed of light in k and C is the CFL constant.



Chapter 3

Curved Elements

In the previous Chapter the whole scheme for the DGTD method was explained, in-
cluding the steps for spatial and temporal discretization. This formulation is valid only
using the well-known straight side triangles, these elements can represent accurately
any surface but their size can be very small to capture small features. Similar to the
finite element method (FEM) [Monk et al., 2003], DGTD uses unstructured meshes
that adapt to any geometry. However, curved surfaces need a big quantity of small size
elements to approximate them. As a consequence, the maximum stable time step is af-
fected drastically. For this reason, it makes sense to introduce the CE [Fahs, 2010; Hille
et al., 2010] with the objective of avoiding very small elements, reducing the number of
them and at the same time increasing the accuracy of the geometrical representation.

3.1 Strong variational form for the CE

According to [Zhang, 2016], we consider the same domain Ω rounded by the boundary
Γ as in Section 2.3. For simplicity, we assume that Γ does not intersect more than
two vertices of any triangle in Ω. Hence, for any boundary triangle K adjacent to the
curve boundary Γ, there are two cases of CEs depending on the intersection between
the curve Γ and boundary triangle K. If Γ intersects K at its interior, it is called
a concave case. Otherway, it is known as convex case. Let us call ei (i = 1, 2, 3) as
the three edges of triangle K and assuming that e1 is the one adjacent to Γ. Then,
we assume that ẽ1 is an approximated representation of Γ. We use K̃ to denote the
CE bounded by e2, e3 and ẽ1. Finally, C is the difference between K and K̃. These
geometrical aspects can be seen in Fig . 3.1.

The variational formulation showed in section 2.3 is valid for all straight side
elements, nevertheless, we have to do some modifications for the curved elements. So,

22
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Figure 3.1: Two possible cases of boundary triangle K. (a) Convex case, (b) Concave
case.

considering Eq. (2.10) and remembering that we assumed S = 0, the equation can be
rewritten as:

Q
∂q
∂t

= −∇ · F(q) (3.1)

Also, rewriting Eq. (2.20), we obtain the equivalent strong formulation for a CE:

∫
K̃

[
Q∂tq +∇ · F(q)

]
LjdΩ +

∫
∂K̃

n̂ ·
[
F∗(q−,q+)− F(q)

]
LjdΓ = 0 (3.2)

where for this case n̂ is the outward unit normal vector to the boundary ∂K̃.
Moreover, we have two expressions for the flux term , first one appears when

adjacent triangles share straight edges Ki(i = 2, 3), another one appears when edge
shared is the curved one K1. See Fig. 3.2.

So, the numerical Lax-Friedrichs flux after some modifications is given by:

F∗(q−,q+)ei =


n̂ei ×

[
E− + AE∆E + BH

(
n̂ei ×∆H

)]
n̂ei ×

[
H− + AH∆H − BE

(
n̂ei ×∆E

)] , i = 2, 3 (3.3)
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Figure 3.2: CE with neighbor elements

and

F∗(q−,q+)ẽ1 =


n̂ẽ1 ×

[
E− + AE∆E + BH

(
n̂ẽ1 ×∆H

)]
n̂ẽ1 ×

[
H− + AH∆H − BE

(
n̂ẽ1 ×∆E

)] (3.4)

3.1.1 Convex case

As can be seen in Fig. 3.1, the convex case happens when Γ intercepts K at outside
of it and, therefore, K̃ = K ∪ C. Taking into consideration Eq. (2.19), for the convex
case we have:

∫
K

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ +

∫
∂K̃

n̂ · F∗(q)LjdΓ =
∫
C

[
−Q∂tqLj + F(q) · ∇Lj

]
dΩ (3.5)

Inserting Eq. (3.1) in the right hand-side of Eq. (3.5):

∫
C

[
−Q∂tqLj + F(q) · ∇Lj

]
dΩ =

∫
C

[
∇ · F(q)Lj + F(q) · ∇Lj

]
dΩ
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and applying Gauss’s theorem, the right hand side of Eq. (3.5) becomes:∫
C

[
∇ · F(q)Lj + F(q) · ∇Lj

]
dΩ =

∫
∂C

F(q) · n̂(C)LjdΓ (3.6)

where n̂(C) denotes the outward unit normal vector to the boundary ∂C. Now, re-
placing Eq. (3.6) in the right hand side of Eq. (3.5), we get the weak formulation in
the convex case for a boundary triangle K.

∫
K

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ +

∫
∂K̃

n̂ · F∗(q)LjdΓ =

∫
∂C

F(q) · n̂(C)LjdΓ (3.7)

Finally, we apply integration by parts in Eq. (3.7) and using the relation n̂(C) =

n̂. After the cancellation of the line integral along the edge e1, the strong formulation
in the convex case can be written as:

∫
K

[
Q∂tq +∇ · F(q)

]
LjdΩ +

∫
∂K̃

n̂ ·
[
F∗(q−,q+)− F(q)

]
LjdΓ = 0 (3.8)

3.1.2 Concave case

As can be seen in Fig. 3.1, the concave case happens when Γ intercepts K at inside of
it. Therefore, K = K̃ ∪ C. Taking into consideration Eq. (2.19), for the concave case
we have:

∫
K

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ +

∫
∂K̃

n̂ · F∗(q)LjdΓ =
∫
C

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ (3.9)

Now, the same convex case steps are applied, replacing Eq. (3.1) in the right
hand side of Eq. (3.9), we obtain:

∫
C

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ = −

∫
C

[
∇ · F(q)Lj + F(q) · ∇Lj

]
dΩ

and applying Gauss’s theorem, the right hand side of Eq. (3.9) becomes:

−
∫
C

[
∇ · F(q)Lj + F(q) · ∇Lj

]
dΩ = −

∫
∂C

F(q) · n̂(C)LjdΓ (3.10)

where n̂(C) denotes the outward unit normal vector to the boundary ∂C. Now, re-
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placing Eq. (3.10) in the right hand side of Eq. (3.9), we get the weak formulation in
the concave case for a boundary triangle K.

∫
K

[
Q∂tqLj − F(q) · ∇Lj

]
dΩ +

∫
∂K̃

n̂ · F∗(q)LjdΓ = −
∫
∂C

F(q) · n̂(C)LjdΓ (3.11)

Finally, we apply integration by parts in Eq. (3.11) and using the relation n̂(C) =

−n̂, the strong formulation in the concave case can be written exactly as Eq. (3.8).
As a consequence of CE, the strong formulation showed in Eq. (2.20) has to be

modify. Therefore, the generalized strong formulation for a curved element K̃ is given
by the next equation:

∫
K

[
Q∂tq +∇ · F(q)

]
LjdΩ +

3∑
i=2

∫
ei

n̂ ·
[
F(q)− F∗(q−,q+)

]
Lj∂K̃ei

+

∫
ẽ1

n̂(K̃) ·
[
F(q)− F∗(q−,q+)

]
Lj∂K̃ẽ1 = 0 (3.12)

where n̂ denotes the outward unit normal vector for straight side edges of the triangle
K̃. Also, n̂(K̃) denotes the outward unit normal vector for curved edge that can be
positive or negative, depending on the form of the CE.

3.2 Forming curved elements

A lot of mesh generators use unstructured meshes to represent complex geometries,
for example [Persson and Strang, 2004; Shewchuk, 1996]. However, we cannot expect
that they place automatically the nodes on curved surfaces. Hence, in this Section, we
explain the required steps to modify straight side elements located near to a curved
boundary.

First, we have to identify all the elements with at least one face near to the
curved boundary and both the face number. Second, verify if vertices and faces nodes
are located exactly onto the curved boundary. Third, apply the deformation over
internal nodes of the curved elements and update the volume node locations.

Fig. 3.3 shows an example of a node deformation process for an element of order
six with an edge over the curved boundary. As can be seen in Fig. 3.3, the vertices
in the element are located exactly over the unit circle. Moreover, the nodes on the
interior of the curved face are redistributed by arc-length along the segment of the
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(a) (b) (c)

Figure 3.3: (a) Straight side element. (b) Nodes deformed on the face curved. (c) Final
nodes distribution in the CE

curved boundary between two vertices. Last, we apply the deformation to redistribute
all inner nodes in the element.

Once the vertices nodes of all CE are correctly positioned, we have to adjust the
nodes of the finite element mesh. This is important because we have to guarantee that
the modification is made on all the elements that share these vertices. The next step
is to parameterize each curved segment and find the polar angles of vertices of curved
faces, these angles are calculated relative to the polar coordinates of the center of the
circle. See Fig. 3.4.
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Figure 3.4: Straight side element near to curved boundary

where θ1 and θ2 are the polar angles of the vertices of curves faces. we calculate them
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as follows:

θ1 = tan−1

(
y1 − y0

x1 − x0

)
, θ2 = tan−1

(
y2 − y0

x2 − x0

)
Previously, we said that the Legendre-Gauss-Lobatto distribution is used for the

nodal basis. Therefore, we have to maintain the same distribution for the nodes on
the curved faces to avoid severe distortion of the volume nodes and, consequently,
destroy the nodal basis approximation. Next, we create a distribution of polar angles
between θ1 and θ2. Also, in some cases, we have to apply an angle shifting based on
the location of the element in relation to the center of the circle. Finally, we apply the
deformation on the interior nodes of CE using the same concept of [Gordon and Hall,
1973]. Basically, we use the called deformation functions depending on the faces that
need to be curved. This deformation is zero on the other two faces of each triangle.

3.3 Operators on curved elements

As was explained in Section 2.4, the generalized vandermonde matrix is used to compute
inner products needed in the implementation of the DG method. This matrix was
constructed with orthonormal polynomial basis functions. However, this approach is
not succesful when the range of integration does not coincide with the range of the
orthonormal polynomials. Therefore, in this Section, we are going to explain how the
integrals of nonpolynomial functions are treated.

When working with CE, we must consider integral of nonpolynomial functions
because jacobians are non constant in each curved element, therefore, it is recommended
to use cubature formulas to evaluate the elemental inner products. A cubature is a
multidimensional version of the classic quadrature formula, then, a cubature is a set
of Nc two dimensional points {rci , sci}

Nc
i=1 with Nc associated weights {wci}

Nc
i=1, where

the number of points Nc depends on the maximum order of polynomial required to
be integrated accurately. There are a lot of cubature formulas, a survey where many
different methods are reviewed can be found in [Cools and Rabinowitz, 1993; Cools,
1999; Stroud, 1971]. Nevertheless, in this work are used the symmetric rules proposed
in [Wandzurat and Xiao, 2003].

The inner product on a reference triangle can be approximated by two functions
f and g, using a N-th-order cubature with Nc(N) nodes, we have:

(f, g)Dk ≈
Nc∑
i=1

g (rci , s
c
i) f (rci , s

c
i) J

k
i w

c
i (3.13)
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where Jki is the jacobian of the polynomial map from the reference element to the
physical element

Jki =

(
∂xk

∂r

∂yk

∂s
− ∂xk

∂s

∂yk

∂r

)
(rci ,sci)

Remembering that (x, y) are polynomial function of (r, s) for the curved elements.
We assumed that the coordinate transform relies on an isoparametric map of the form:

xk(r, s) =

Np∑
i=1

ψi(r, s)x
k
i , yk(r, s) =

Np∑
i=1

ψi(r, s)y
k
i

where the polynomial basis {ψi}Npi=1 is the known interpolating Lagrange polynomial,
discussed in Section 2.4. The coefficients

(
xki , y

k
i

)
are the physical location of each

node on the CE. Now, to evaluate geometric factors at the cubature nodes, we need
the derivatives of Lagrange interpolants, these can be computed by:

∂xk

∂r (rci ,sci)
=

Np∑
j=1

∂Lkj
∂r (rci ,sci)

xkj ,
∂xk

∂s (rci ,sci)
=

Np∑
j=1

∂Lkj
∂s (rci ,sci)

xkj

∂yk

∂r (rci ,sci)
=

Np∑
j=1

∂Lkj
∂r (rci ,sci)

ykj ,
∂yk

∂s (rci ,sci)
=

Np∑
j=1

∂Lkj
∂s (rci ,sci)

ykj (3.14)

Moreover, the computation of the element boundary flux must be changed. For
the surface integrals, we created a one dimensional Gauss quadrature [Golub and
Welsch, 1969] on each face of each element. Now, to simplify the implementation
process, interpolation matrices are created on the reference element and then, interpo-
lated from the node data of the CE to the nodes on the reference element and Gauss
nodes on each face. Finally, to evaluate the derivatives matrices, we have:

Dx,Dk ≈ (V c)T WV cDx

Dy,Dk ≈ (V c)T WV cDy (3.15)

where V c
ij = Lj (rci , s

c
i), W is a diagonal matrix with entriesWii = wciJ

c
i and Dx,Dy are

the derivatives matrices calculated with the cubature data. Finally, this scheme has to
be applied individually for each curved element due to the nonconstant jacobian.
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Results and Discussion

In this section, we consider various wave propagation problems in homogeneous and
heterogeneous media to evaluate the benefits of apply the CE in the DGTD scheme. In
the first problem, we show the solution of a concentric PEC cylinders resonator with
the purpose to check the accuracy and to validate the method. These results are shown
in terms of convergence rate and global L2 error. Next, we show the analysis of two
very common scattering problems (e.g scattering by a PEC circular cylinder, scattering
by a dielectric circular cylinder). These problems have a convergence analysis similar
to the previous one. Then, we forced the method solving a more complicated scattering
problem with more than one scatter (e.g scattering by a PEC coated circular cylinder).
Finally, it has been solved a more realistic engineering problem that involves a lot of
dielectric circular cylinders, showing that DGTD with curved element is a powerful
numerical technique. To evaluate the accuracy of the numerical scheme, we compute
the difference between the exact solution, let say E, and the approximate solution Eh
using the L2 norm, see Eq. (4.1). On the other hand, for the convergence analysis, we
use the Eq. (4.2), where hi and hi+1 are two different values of the size of the mesh and
δ(hi), δ(hi+1) are the errors corresponding to a mesh of size hi and hi+1, respectively.

er =

∫
Ω

√
(E − Eh)2

E
dΩ (4.1)

β =
log

[
δ(hi+1)

δ(hi)

]
log

[
hi
hi+1

] (4.2)

30
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4.1 Concentric PEC cylinders resonator

As can be seen in Fig. 4.1, we consider a resonator that consists of two concentric
PEC cylinders with an electromagnetic wave that bounces back and forth between the
walls. The material inside the cylinders is considered vacuum εr = µr = 1. The radius
of the cylinders are r1 = 1/6 m and r2 = 1/2 m. According to [Ditkowski et al., 2001],
the exact time domain solution to this problem is given by:

Ez = cos(wt+ θ) [J1(wr) + aY1(wr)]

Hx = −1

2
sin(wt+ θ)sin(θ) [J0(wr)− J2(wr) + a(Y0(wr) + Y2(wr))]

−cos(θ)
wr

cos(wt+ θ) [J1(wr) + aY1(wr)]

Hy =
1

2
sin(wt+ θ)cos(θ) [J0(wr)− J2(wr) + a(Y0(wr) + Y2(wr))]

−sin(θ)

wr
cos(wt+ θ) [J1(wr) + aY1(wr)]

where for the polar coordinates: r1 < r < r2, r =
√
x2 + y2, θ = arctan(y/x). Jn and

Yn are the n-th order Bessel functions of the first and second kind, respectively. Due
to the two cylinders are PEC, we have to enforce the boundary condition Ez = 0 at
r = r1 and r = r2. The constants w ans a are obtained by enforcing the boundary
conditions on Ez at r = r1 and r = r2. According to [Ditkowski et al., 2001], we set
w = 9.813695999428405 and a = 1.76368380110927.

x

y

z

r1

r2

Figure 4.1: Concentric PEC cylinders resonator.
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In this problem were considered two strategies: the first one is the general DGTD
with straight side elements and the second one is the modified DGTD with CE. The
simulations have been performed on three successively refined non-uniform grids whose
characteristics are summarized in Table 4.1. For time integration has been used the
LSERK4 method. Tables 4.2 and 4.3 show both the global L2 error and the convergence
rate as a function of the mesh size, the time step for each mesh depending on the
polynomial order and the number of degrees of freedom (DOF) for both DGTD with
straight side elements and DGTD with CE, respectively. We use the same time step
showed in Table 4.2 to obtain the results is Table 4.3. Finally, all errors were calculated
at time t=0.333ns.

Fig 4.2 (a) and (b) illustrates respectively, the component Ez of the solution
for the general DGTD and the modified DGTD into the mesh 1, using a polynomial
order N = 5. As seen in Fig 4.2, the CE provides a better approximation of the
boundaries than the straight side elements, even using a coarse mesh. Fig 4.3 shows
the convergence rate for the global L2 error as a function of the number of DOF. This
was made fixing the mesh 3 and varying the polynomial order. We selected the mesh
3 due to the discretization over the domain and especially in the boundaries is better
than in the others meshes. Moreover, Fig. 4.3 shows that the general DGTD method
becomes less efficient in terms of global L2 error as the number of DOF increases.

As can be seen in Table 4.2, the accuracy of the DGTD method with straight
side elements is limited by the geometrical error, achieving convergence rates between
1.9 and 2. On the other hand, Table 4.3 shows that the geometrical error is mitigated
using the CE. This modification allows us to obtain convergence rates up to two times
higher in certain cases. By comparing all global L2 error values, it is clear that the
DGTD method with CE provides a solution more accurately than the general DGTD.
This is achieved using less elements and, consequently, less DOF.

Table 4.1: Characteristics of grids used for the concentric PEC cylinders resonator.

Mesh M1 M2 M3
Number of vertices 28 41 113
Number of elements 36 58 182

Number of CE 20 24 44
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Table 4.2: L2 errors at time t=0.333ns and convergence rates for h-refinement using
the general DGTD into the concentric PEC cylinders resonator problem.

N M1 ∆t(ps) DOF M2 ∆t(ps) DOF M3 ∆t(ps) DOF Rate
2 2.07e-2 66.3 216 1.35e-2 60.3 348 2.30e-3 42.3 1092 2.00
3 1.35e-2 44.6 360 8.00e-3 40.6 580 1.60e-3 28.33 1820 1.94
4 1.24e-2 31.6 540 7.90e-3 28.6 870 1.50e-3 20 2730 1.92
5 1.23e-2 23.3 756 7.10-e3 21 1218 1.50e-3 14.66 3822 1.91

Table 4.3: L2 errors at time t=0.333ns and convergence rates for h-refinement using
the modified DGTD with CE into the concentric PEC cylinders resonator problem.

N M1 DOF M2 DOF M3 DOF Rate
2 3.17e-02 216 1.05e-02 348 6.66e-04 1092 3.51
3 2.20e-03 360 1.70e-03 580 2.70e-05 1820 4.00
4 2.23e-04 540 2.04e-04 870 3.80e-06 2730 3.7
5 1.80e-04 756 3.46-e05 1218 5.50e-07 3822 5.27

(a) (b)

Figure 4.2: Triangular meshes and component Ez of the solution for the concentric
PEC cylinders resonator at time t=0.333ns, using (a) straight side and (b) curved
elements.
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Figure 4.3: P-convergence for the concentric PEC cylinders resonator, using straight
side and curved elements.

4.2 Scattering by a PEC circular cylinder

In this problem, we present the case when a plane wave with frequency f = 300 MHz
that propagates in the x̂ direction, impinges on a PEC circular cylinder. The incident
field is imposed using the scattered field formulation. This problem can be formulated
in 2D because the domain geometry has no variation in the ẑ direction. Fig 4.4 shows
the geometry of the scenario. This test problem has been solved in many works, a clear
example is [Balanis, 2012] where the expression of the analytical solution is detailed.
So, we set µr = εr = 1 outside of cylinder and inside of it σ =∞. The internal cylinder
has a radius r = 0.5 m. Furthermore, The computational domain Ω is bounded by a
square of side length Ωa = 2 m centered at (0, 0). For the boundary condition, we use
a first order Silver-Muller. The simulations have been performed on three successively
refined non-uniform grids whose characteristics are summarized in Table 4.4. For time
integration has been used the LSERK4 method. The global L2 error of component Ez
at t = 26.67ns, the time step for each mesh depending on the polynomial order, and the
corresponding convergence rate are shown in Table 4.5 for straight side elements and
Table 4.6 for CE. We use the same time step showed in Table 4.5 to obtain the results
in Table 4.6. As in the previous problem, these values are calculated as a function of
the mesh size and the number of DOF. It is important to say that each value with a (∗)
is not taken into account for the convergence rate because is considered a larger error.
Fig. 4.5 shows the component Ez of scattered field and spatial discretization of the
elements in mesh 1, using a polynomial order N = 5. We choose the poorest mesh to
show that it is possible to reproduce a curved boundary with accuracy using CE and a
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higher polynomial order. Fig 4.6 shows the convergence rate for the global L2 error as
a function of the number of DOF. This was made again fixing the mesh 3 and varying
the polynomial order. For this problem, the x-wise distribution of the scattered field
Ez was plotted for y = 0 and it is shown in Fig. 4.7. Moreover, this figure illustrates
that the CE scheme provides a better approximation in relation with the analytical
solution than the straight side elements. It is clear from data in Table 4.5 that the
solution accuracy for high degree N is limited by the geometrical error when we use
straight side elements. By comparing all global L2 error values into Tables 4.5 and 4.6,
one can notice that to achieve a given accuracy, the meshes with CE require less DOF
than the meshes with straight side elements. For instance, for an accuracy of 10−2, we
can save around 50% to 90% of DOF. For the convergence analysis, it can be seen that
we achieved larger convergence rates using CE than straight side elements, similar as
the previous problem. As can be seen in Tables 4.5 and 4.6, the converge rate was low
comparing with the previous problem, this can be happen due to the error induced by
the SMA boundary condition. This can be solved using a PML as boundary condition.
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Figure 4.4: Uniform plane wave illuminating a PEC circular cylinder.

Table 4.4: Characteristics of the grids used for the scattering by a PEC circular cylin-
der.

Mesh M1 M2 M3
Number of vertices 44 138 439
Number of elements 60 220 765

Number of CE 8 16 33
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Table 4.5: L2 errors at time t=26.67ns and convergence rates for h-refinement using
the general DGTD into the scattering by a PEC circular cylinder problem.

N M1 ∆t(ps) DOF M2 ∆t(ps) DOF M3 ∆t(ps) DOF Rate
2 1.60e-1* 159 360 1.10e-1 76.3 1320 7.80e-2 35 4590 0.50
3 1.50e-1* 107 600 1.07e-1 51.3 2200 5.20e-2 23.3 7650 1.00
4 1.50e-1* 75.3 900 1.06e-1 36.3 3300 4.12e-2 16.6 11475 1.37
5 1.50e-1* 55.6 1260 1.05e-1 26.6 4620 3.82e-2 12.3 16065 1.45

Table 4.6: L2 errors at time t=26.67ns and convergence rates for h-refinement using
the modified DGTD with CE into the scattering by a PEC circular cylinder problem.

N M1 DOF M2 DOF M3 DOF Rate
2 1.08e-01 360 4.70e-02 1320 1.90e-02 4590 1.25
3 9.67e-02 600 4.01e-02 2200 1.01e-02 7650 1.63
4 8.34e-02 900 3.50e-02 3300 8.00e-03 11475 1.70
5 7.11e-02 1260 3.01e-02 4620 7.00e-03 16065 1.67

(a) (b)

Figure 4.5: Scattered field by a PEC circular cylinder using (a) straight side and (b)
curved elements for the mesh 1.
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Figure 4.6: P-convergence for the scattered field by a PEC circular cylinder problem,
using straight side and curved elements.

Figure 4.7: x-wise 1D distribution of the solution of the scattered field by a PEC
circular cylinder for straight side and curved elements.
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4.3 Scattering by a dielectric circular cylinder

In this problem a dielectric circular cylinder is illuminated by a plane wave with fre-
quency f = 300 MHz, experiencing reflection and refraction at the material interface.
The incident field is imposed using the scattered field formulation. The scenario is
shown in Fig. 4.8. This problem has been considered in various works as [Cai and Deng,
2003] and its analytical solution is found in [Jin, 2015]. We consider a non-magnetic
material, therefore, µr2 = 1 and the material exterior to the cylinder is assumed to be
vacuum µr1 = εr1 = 1. The internal cylinder has a radius of r = 0.6 m and is filled with
a material of relative permittivity εr2 = 2.0. The computational domain Ω is bounded
by a square of side length Ωa = 2 m centered at (0, 0). A first order Silver-Muller
absorbing condition is applied on the boundary of the square domain. The simulations
have been performed on three successively refined non-uniform grids whose character-
istics are summarized in Table 4.7. For time integration has been used the LSERK4
method. Moreover, Tables 4.8 and 4.9 show the global L2 error of the component Ez
for straight and CE at time t = 26.67ns, the time step for each mesh depending on the
polynomial order. Also, these tables show the convergence rate for the two cases. We
use the same time step showed in Table 4.8 to obtain the results in Table 4.9. These
values are calculated as a function of the mesh size and the number of DOF. The sym-
bol (*) means that the value is not taken into account for the convergence rate, similar
as in the previous problem. Fig. 4.9 shows the component Ez of the scattered field at
t = 26.67ns in the mesh 1 with a polynomial order N = 5. It can be seen that CE
provides a better approach on the curved boundary, even using the poorest mesh. At
first glance, both solutions look very similar, however, as described in Tables 4.8 and
4.9, CEs provide a more accurate approximation, achieving an accuracy of 10−3 that
is not possible to obtain with the straight side elements under these conditions. Fig
4.10 shows the convergence rate for the global L2 error as a function of the number
of DOF. Again, we fixing the mesh 3 and varying the polynomial order. This figure
shows that the CE scheme becomes more efficient than the general DGTD, in terms
of global L2 error as the order of approximation N increases. Fig. 4.11 illustrates the
field distribution of Ez through the x axis when y = 0.

Table 4.7: Grids used for the scattering by a dielectric circular cylinder.

Mesh M1 M2 M3
Number of vertices 55 165 567
Number of elements 88 288 1052

Number of CE 24 40 80
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Table 4.8: L2 errors at time t=26.67ns and convergence rates for h-refinement using
the general DGTD into the scattering by a dielectric circular cylinder problem.

N M1 ∆t(ps) DOF M2 ∆t(ps) DOF M3 ∆t(ps) DOF Rate
2 2.10e-1* 122 528 7.23e-2 75 1728 3.40e-2 38 6312 1.08
3 9.72e-2 82 880 5.23e-2 50 2880 1.92e-2 25 10520 1.17
4 8.37e-2 58 1320 4.81e-2 35 4320 1.64e-2 18 15780 1.175
5 6.89e-2 43 1848 3.90e-2 26 6048 1.06e-2 13 22092 1.35

Table 4.9: L2 errors at time t=26.67ns and convergence rates for h-refinement using the
modified DGTD with CE into the scattering by a dielectric circular cylinder problem.

N M1 DOF M2 DOF M3 DOF Rate
2 1.10e-01 528 3.48e-02 1728 2.30e-02 6312 1.12
3 4.45e-02 880 2.96e-02 2880 7.00e-03 10520 1.33
4 4.33e-02 1320 2.60e-02 4320 3.80e-03 15780 1.75
5 3.36e-02 1848 2.42e-02 6048 1.90e-03 22092 2.07
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Figure 4.8: Uniform plane wave illuminating a dielectric circular cylinder.
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(a) (b)

Figure 4.9: Scattered field by a dielectric circular cylinder using (a) straight side and
(b) curved elements for the mesh 1.

Figure 4.10: P-convergence for the scattered field by a dielectric circular cylinder prob-
lem, using straight side and curved elements.
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Figure 4.11: x-wise 1D distribution of the solution of the scattered field by a dielectric
circular cylinder for straight side and curved elements at time t=26.67ns.

4.4 Scattering by a PEC coated circular cylinder

In order to show the behavior of the DGTD with curved elements in more complex
problems, we choose to study the scattering by a PEC coated cylinder. Many research
has been conducted on the problem of coated conducting cylinders due to their im-
portance in many applications. One of them is the protection of objects from radar
illumination, where the coating can be used to obtain the maximum reduction of the
radar dispersion cross section. This problem was solved for the first time by [Tang,
1957]. In that work he showed an exact series solution by using cylindrical eigenfunc-
tions expansion. The geometry of the problem is depicted in Fig. 4.12, where can be
seen a cross-sectional view of a coated PEC cylinder assumed to be infinitely long in the
ẑ direction. The computational domain Ω is bounded by a square of side length Ωa = 4

m centered at (0, 0). For the boundary condition, we use a first order Silver-Muller.
The region outsides of the cylinder are assumed to be vacuum µr1 = εr1 = 1. The
material of the coating region is assumed to be linear and isotropic with permittivity
εr2 = 2.25 and µr2 = 1. The internal PEC cylinder has a radius of r1 = 0.5m and the
external coated cylinder has a radius of r2 = 0.8m. The frequency of the incident plane
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wave is f = 300 MHz. Table 4.10 shows the comparison between the meshes used in
this problem and the global L2 error, for both straight element and curved element.
For time integration has been used the LSERK4 method. Also, in this problem, the
time step used by CE is decreased by 30% compared to SSE. Fig. 4.13 shows the
component Ez of the scattered field along the axis x for y = 0. Fig. 4.14 shows the
component Ez of the scattered and total field at t = 26.67ns. As can be seen in Table
4.10, the meshes are different for both cases because the objective was showing that
a smaller quantity of elements in the modified DGTD allows obtaining a more precise
solution. Therefore, in analysing Fig. 4.13 and Table 4.10, we can conclude that CE
provides a better approximation of the solution, saving around 70% of elements and
50% of DOF.
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Figure 4.12: Uniform plane wave illuminating a PEC coated circular cylinder.

Table 4.10: Characteristics of grids used for the scattering by a PEC coated circular
cylinder.

Mesh with
straight side elements Mesh with CE

N 3 4
Number of vertices 1702 558
Number of elements 3254 1034

DOF 32540 15510
Number of CE 0 88
Global L2 error 7.1e-03 4.8e-03
Time step (ps) 27.3 35.6
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Figure 4.13: x-wise 1D distribution of the solution of the scattered field by a PEC
coated circular cylinder for straight side and curved elements at time t=26.67ns.

Figure 4.14: Total and Scattered field by a PEC coated circular cylinder at time
t=26.67ns, using straight side and curved elements
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4.5 L-shaped photonic crystal guide

As can be seen in the previous problems, the implementation of the CE in DGTD
method has a lot of advantages in terms of decreasing the number of elements and con-
sequently, decreasing the number of DOF. All this without compromising the precision
of the solution. However, these problems have a very small number of CE in compa-
rison with real engineering problems as photonic crystal, where the number of scatters
is much higher. Therefore, we choose the L-shaped photonic guide in order to evaluate
the behavior of this scheme in large structures. The photonic crystal characterization
is based on the construction of band diagrams. These structures can be studied if
we know their symmetry properties, that is, we can understand the electromagnetic
properties of the system only knowing the symmetry properties.

Basically, a bidimensional (2-D) photonic crystal consists of a square lattice of
parallel infinite dielectric rods in air. This structure can be seen in Fig. 4.15, where a
is the lattice constant and ra is the radius of the scatters. In Fig. 4.15, we consider a
system with continuous translational symmetry in the ẑ direction, that is, the system
is invariant under any translation in a given direction. On the other hand, for the
plane xy, the system has discrete translational symmetry, that means, the structure is
invariant to a translation over a distance that is multiple of a certain length. According
to Fig 4.15, the basic photonic crystal structure is filled with scatters separately by a
constant distance. However, it is necessary to insert the so-called defects in the crystal
lattice to build some engineering applications. For instance, the characteristics of the
photonic crystal can be altered in Fig 4.15, removing or changing the characteristics of
a dielectric column, creating waveguides that could be based on other devices such as
logic gates [Fu et al., 2013]. Finally, applying some defects in the previuous structure,
we construct the same L-shaped photonic crystal guide used in [de Souza et al., 2019],
see Fig 4.16. The lattice constant a = 0.57µm and the rods are assumed to have
a circular cross-section of radius ra = 0.114µm. The dielectric is chosen to have a
refractive index η ≈ 3.4 (εr = 11.5), appropriate for Silicon (Si). This crystal has a
complete band gap for TM polarization between frequencies 0.35 and 0.42 (ωa/2πc).
The incident pulse is placed in the left input of the waveguide and is given by:

Ez(x, y, t) = E0cos
(πy
d

)
cos(2πfmt)e

−( t−t02σ )
2

(4.3)

where d = 2(a − ra) is the waveguide length, σBW = 5 × 10−14 s is a parameter
which define the pulse bandwidth, fm = 2 × 1014 Hz is the central frequency and
t0 = 2.5× 10−13 s.
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Figure 4.15: Photonic crystal structure.
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Figure 4.16: L-shaped photonic crystal guide.

In Fig 4.17 and 4.18, the computational domain represented by a triangular mesh
and the solution for the component Ez are shown, for straight side and curved elements,
respectively. A first order Silver-Muller absorbing condition is applied on the boundary
of the computational domain. Table 4.11 shows the characteristics of each mesh used
on both the straight side and the curved elements.
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Table 4.11: Meshes used to represent the L-shaped photonic guide.

Mesh with
straight side elements Mesh with CE

N 3 2
Number of vertices 5735 3944
Number of elements 11294 7680

DOF 112940 46080
Number of CE 0 1504
Time step (ps) 5 1.5

(a) (b)

(c)

Figure 4.17: L-shaped photonic crystal guide, (a) computational domain represented
by a refined triangular mesh, (b) Component Ez of solution, (c) dielectric scatter
represented by small straight side elements.
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(a)

(c)

(b)

Figure 4.18: L-shaped photonic crystal guide, (a) computational domain represented
by a triangular mesh, (b) Component Ez of solution, (c) dielectric scatter represented
by curved elements.

Fig. 4.17 (b) shows the component Ez of the solution, it can be seen that part of
the field is confined in the adjacent scatters while the pulse is propagating, this may
be due to numerical error or an induced error by the geometry of the scatters. On
the contrary, it can be seen in Fig. 4.18 (b) that this problem disappears, showing a
more defined solution. Moreover, as can be seen in Fig. 4.17 (c), we have to apply a
h-refinement to guarantee the circular shape of each dielectric scatter, that means the
number of elements in each dielectric scatter is increased by four times. On the other
hand, in Fig. 4.18 (c), the number of elements has been maintained in each scatter and
the curved elements scheme has been applied in each one. Therefore, we have a better
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approximation of each curved boundary using less elements but as a consequence, the
pre-processing time is increased. At first glance, it is clear that the DGTD method
with curved elements provides a better solution. However, in these types of problems
that do not have an analytical solution, it is difficult to compare both solutions. An
interesting option to compare both solutions could be to know the dispersion caused by
the waveguide on the propagated pulse. Consequently, a field detector was placed in
the output of the waveguide. Finally, a Fast Fourier transform (FFT) is calculated from
the data obtained from the pulses in the time domain. Fig. 4.19 shows a comparison
of the FFT for the signal obtained for straight side case and curved case. Table 4.12

show the results in terms of the dispersion caused by the waveguide on the signals.

Figure 4.19: FFT of the signals propagated inside the waveguide.

Table 4.12: Central frequencies for each pulses.

Solution Central
frequency (Hz)

Analytical 2×1014

Straight side elements 1.988×1014

Curved elements 1.999×1014
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As can be seen in Table 4.12, the dispersion caused by the waveguide using
straight side elements was 0.6% in relation to the central frequency. On the other
hand, using curved elements the dispersion in relation with central frequency was
0.05%, that is, the dispersion decreased more than 90% in the propagated pulse using
CE. Moreover, according to Table 4.11 these results were obtained saving more than
30% of elements and 60% of DOF. Also, for this problem, it was necessary to use a
slightly lower time step for CE than for SSE elements as can be seen in Table 4.11.
It occurs because the CE scheme has instability problems when large problems are
analyzed.



Chapter 5

Conclusions

This work addressed a complete analysis of the DGTD method with curved elements
to solve (2D) electromagnetic problems. In order to achieve this, we presented step
by step the whole scheme for the DGTD method with straight side elements, this
was essential to understand how the method works and as a result, implementing the
modifications for the curved element scheme. The obtained results demonstrated that
the CE scheme makes possible a better approximation without increase computational
effort, due to the curved boundaries are represented accurately using few elements. In
this regard, it is important to clarify that the curved element scheme demands a higher
pre-processing computational time to build the element matrices for each CE and also,
it is required to evaluate each CE separately in the loop time, because the jacobian is
not constant in each CE. However, those efforts are rewarded in terms of accuracy and
decreasing the amount of elements necessary to represent a curved surface.

In the first problem of the concentric PEC cylinders resonator, we presented an
analysis in terms of global L2 error and convergence rate with the purpose of validating
our method. These results showed that for a very common problem used in the liter-
ature to test the CE sheme, the DGTD with CE method provides convergence rates
of up to 5, which would be impossible to obtain in other very common methods such
as FDTD or FEMTD. Now, for the next two very common electromagnetic scattering
problems (scattering by a PEC and dielectric circular cylinders) can be seen that the
CE scheme provides a better approximation of the solution in terms of global L2 error
even if the domain was well discretized or not.

Once the method has been validated, we had to find a more complex problem
to evaluate the behavior of the scheme. Therefore, we chose the PEC coated circular
cylinder, this problem is very interesting because different from the previous cases, two
scatters must be considered. Moreover, this problem will need a higher quantity of CE

50
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to represent the two scatters. As a result, we found again that the CE scheme provides
better results than the straight side scheme, using fewer elements and consequently,
decrasing the number of DOF.

From the application of the CE scheme in the scattering problems and the possi-
bility to work with more than one scatter, we decided to solve a very complex engineer-
ing problem. In this case, we selected the L-shaped photonic guide problem studied
in [de Souza et al., 2019]. This problem is very interesting for us because a photonic
crystal is based on many dielectric circular scatters. The results with the CE scheme
were satisfactory and allowed us to obtain a better approximation of the solution with
a dramatic decrease in the number of elements and DOF. Then, it is possible to con-
clude that the implementation of the DGTD method with CE provides a very powerful
numerical technique due to the geometrical error caused by the bad approximation
over the curved boundaries is eliminated.

5.1 Futures works

The development of this work allowed us to know some flaws in the DGTD method
with CE that can be studied in detail. Thus, the futures works proposals are related
mainly with the following ideas:

• As presented throughout the text, the nodes discretization is made depending
on the polynomial order. Therefore, all the elements maintain the same quan-
tity of nodes, including CE. One interesting option could be implementing a
p-refinement in the straight side elements. This means maintaining the accuracy
of CE and in addition, decreasing the computational effort.

• To perform an analysis of the stability of the method when the CE scheme is
implemented, because when we use a higher polynomial order in a large scale
problem, it is necessary to decrease the time step.

• According to the previous suggestions, we could apply the LTS as in [de Souza
et al., 2019] to guarantee the stability of the method and also, as was shown in
that work, optimizing the computational time.

• Finally, this work showed that the CE scheme in the DGTD method presents
significative improvement in terms of accuracy. However, the fact that all the
test are bidimensional imposes a restriction in terms of applications over more
realistic problems. Hence, a 3D scheme with CE for the DGTD method is very
necessary.
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