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ABSTRACT

This work investigates the problem of stability, state-feedback and static output-feedback control
design for linear parameter-varying systems with time-varying delays. The uncertain parameters
are assumed to belong to a polytope with bounded known variation rates. The new conditions are
based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alter-
native parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative
is handled using recent integral inequalities for quadratic functions proposed in the literature.
As main results, a novel sufficient stability condition for delay-dependent systems as well as new
sufficient conditions are stated to design gain-scheduling state-feedback and also gain-scheduling
static output-feedback control. In the new proposed methodology, the Lyapunov matrices and
the system matrices are put separated, making it suitable for supporting in a new way the design
of the stabilization controllers. Some examples, including some based on models of real-world
problems, are provided to illustrate the effectiveness of the proposed methods.

Keywords: Linear parameter-varying (LPV) systems, Time-delay systems, Gain-scheduled con-
trol, Delay-dependent stability criterion.
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RESUMO

Este trabalho apresenta condições suficientes para análise de estabilidade e projeto de contro-
ladores de ganho escalonado para sistemas lineares com parâmetro variante no tempo sujeitos
a atraso. Os parâmetros incertos são considerados pertencentes a um politopo com taxas de
variação conhecidas e limitadas. As novas condições são baseadas na teoria de Lyapunov e são
expressas por meio de Desigualdades Matriciais Lineares. Um funcional alternativo de Lyapunov-
Krasovskii dependente do parâmetro é utilizado e sua derivada no tempo é tratada através de
desigualdades integrais para funções quadráticas recentemente propostas na literatura. Como
resultados principais, uma nova condição suficiente para análise de estabilidade de sistemas
dependentes do atraso é obtida, bem como novas condições suficientes para projeto de contro-
ladores de ganho escalonado por realimentação de estado e também por realimentação estática
de saída. Na nova metodologia proposta, as matrizes de Lyapunov e as matrizes do sistema são
separadas, tornando-as adequadas para suportar de uma nova forma o projeto dos controladores.
Alguns exemplos, incluindo alguns baseados em problemas do mundo real, são fornecidos para
ilustrar a eficácia dos métodos propostos.

Palavras-chave: Sistemas lineares com parâmetros variantes no tempo (LPV), Sistemas com
atraso, Controle de ganho escalonado, Condições de estabilidade dependentes do atraso.
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NOTATION

Rn denotes the n-dimensional Euclidean space;

Rm×n set of all m× n real matrices;

Sn+ refers to the set of symmetric positive definite matrices;

X > (<) 0 indicates that X is a symmetric positive (or negative) definite matrix;

I identity matrix of appropriate dimension;

0 null matrix of appropriate dimension;

XT transpose of matrix X;

He(X) is denoted by (X +XT );

diag(A,B) block diagonal matrix

A 0

0 B

;
col{a, b} denotes a column vector whose elements are a, b;

? indicates symmetric block in a symmetric matrix;

ΛN unit simplex of dimension N ;

A⊗B indicates the Kronecker product of matrices A and B;

Cn denotes the Banach space of continuous functions φ : [−h2, 0]→ Rn,

where h2 is a real constant scalar;
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1
INTRODUCTION

Most dynamical systems in real-world applications present nonlinear and even time-varying
behavior. As a matter of fact, some classes of those systems can be represented as linear sys-
tems subjected to time-varying parameters, so-called Linear Parameter-varying systems (LPV
systems). The dynamics of these systems, which are widely studied in recent years, vary as a
function of a scheduling parameter vector, unknown a priori, but measurable in real-time with
known bounds. This representation allows the analysis of gain-scheduled control design, where
the scheduling parameters that describe the current operating point are used to adjust the gain
controller automatically [1]. Likewise, systems with time delays have also received attention in
the literature [2–9]. As the delay is usually a source of instability, to investigate stability and also
gain-scheduling control for time-varying delayed LPV systems have been a topic of increasing
interest.
Over the past few decades, LPV systems have emerged as a useful modeling tool in many

applications, such as manufacturing processes [10], fault-tolerant control [11, 12], induction mo-
tor [13], power systems [14, 15], and robotic systems [16]. Regarding the stability and stabi-
lization problem, most of the current approaches are based on the Lyapunov theory, which
carries the dependence on the time-varying parameters to derive sufficient conditions, usually in
terms of Linear Matrix Inequalities (LMIs) [17–19]. One can list different types of approaches
that, basically, use the dependency on the parameter [20, 21] or parameter-independent [22]
Lyapunov functional. It is known that less conservative results can be obtained by selecting
parameter-dependent Lyapunov functional, but the problem is that in the case the parameter
is time-varying its time-derivative has to be taken into consideration.
On the other hand, processes that require the transmission of information, measurement of

data, or transportation of fluids induce intrinsic time-delays in their dynamics systems. Thus,
as the delay is usually a source of poor performance, it should not be neglected when analyzing
system stability or synthesizing control laws [3, 5]. In the case of Linear Time-Invariant systems
(LTIs) and constant time-delay, some theoretical tools such as direct eigenvalue analysis [23] are
well established and allow to obtain efficient conditions to certify stability with relatively low
numerical complexity. Nevertheless, for uncertain and LPV systems with time-varying delay, this
type of criterion generally fails to assure stability. For time-varying delay, stability conditions can
be derived in the frequency domain employing the Integral Quadratic Constraint (IQC) frame-
work [24, 25]. In the time-domain, there exist two main Lyapunov theory based approaches: the
first one is based on the so-called Lyapunov-Krasovskii functional (LKF) and the second one is
the Razumikhin method of Lyapunov functions [26, 27]. Usually, the Lyapunov-Krasovskii based
approaches, which is used in this Thesis, lead to less conservative results than the Razumikhin
technique, and it is more frequently used.
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2 introduction

For time-delay systems, to develop sufficient stability conditions in terms of LMIs, it is crucial
to choose an appropriate LKF and a method to estimate the bound of the derivative of the LKF
[28]. Many bound techniques have been developed to reduce the conservativeness of the sta-
bility conditions, as the Jensen inequality [3], Wirtinger-based inequality [29], Bessel–Legendre
inequality [30], and a more general auxiliary function-based integral inequalities [31, 32]. The
analyses of the application of the Moon’s et al. inequality [33] merged with the convex analysis
was performed in [34].

As time-delay is naturally present in several processes that can be modeled as LPV systems,
the study of time-varying delayed LPV systems is a problem that has attracted interest [35, 36].
It is known that in the case that the presence of time-delay is not considered when synthesizing
control laws, it can cause deterioration in the performance or instability of the resulting closed-
loop system. The state-feedback stabilization of LPV systems with time-varying delays has
been performed on [37] using an LKF combined with the Jensen inequality. In [38], stability
and stabilization conditions of polytopic LPV systems with parameter-varying time delays have
been addressed. Studies have also been done demonstrating that adding useful new terms in the
LKF can lead to less conservative results, for example, the addition of triple integrals as seen in
[39, 40]. [41] uses a single integral in the LKF and addresses the stability analysis and also the
state-feedback controller problem that guarantees the desired L2 gain performance for the LPV
time-delayed systems. In [42, 43], the state-feedback control design technique is employed using
double integrals in the LKF.
The control of LPV systems with time-varying delay has been examined in several recent

works [44–48]. In [49] the affine quadratic stability condition is stated as well as both state-
feedback and dynamic output-feedback controllers are derived. In [50] a synthesis conditions of
delay-scheduled state-feedback controllers for LPV systems is stated. The design of reduced order
observer for time-delayed LPV systems has been addressed in [51]. Delay-dependent stability
analysis and H∞ state-feedback control for LPV systems was investigated in [52], where the
LMIs have been solved with the aid of interactive algorithms. In [53] is considered the robust
dissipative state-feedback control for LPV systems with multiple input delays.

In addition, the bounded variation of the scheduling parameter in LPV systems can be directly
treated with robust control as an uncertainty problem [54]. However, gain-scheduled controllers
have been designed to avoid conservatism of the robust control approach [55]. Gain-scheduled con-
trollers in most cases take advantage of the parameter dependence of system variable to achieve
less conservative results with enhanced performance in comparison to linear time-invariant (LTI)
robust controllers.
In [46] a gain-scheduled state-feedback has been designed to achieve finite-time boundedness

for the closed-loop LPV system with a parameter-dependent state delay. A transformation based
on the maximum value of the delay has been used in [56] to allow the design of a gain-scheduled
state-feedback controller. On the other hand, it is required an observer design whenever full
state information is not accessible. In [57] is proposed the introduction of an additional deci-
sion matrix to decouple the parameter-dependent Lyapunov matrix from the system matrix
to design a gain-scheduled state-feedback controller. However, as pointed out by the authors,
the resulting condition is non-convex and it is necessary to convert the original problem to a
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nonlinear minimization problem to obtain the desired controller. The work [58] addresses the
gain-scheduled stabilization problem of LPV systems with time-delays and a transformation is
adopted to obtain a memory-type controller design.
Most of the conditions previously discussed assume that the states of the systems are avail-

able, but it is well known that in practical situations the state vector may not be fully available.
Based on that, state-feedback control can not be employed. Thus, a possible solution to deal
with the problem of missing measurements to control the system is to use the Static output-
feedback (SOF) control (if it exists). In comparison with the dynamic output-feedback control
and observer-based control, the SOF is much simpler to be applied in practice [59]. For this rea-
son, several researchers have been committed to exploit the problem of designing SOF controller
type. However, despite some literature about this topic, the design of SOF controllers is still a
challenging issue in control theory due to its non-convex characterization [60]. Nonetheless, due
to recent improvements in LMIs, several works have been addressed to provide SOF LMI-based
conditions. Some methods which require the output matrix to be constant, or iterative convex
optimization scheme, or additional equality constrains, or specific conditions in the system or in
the Lyapunov matrix, have emerged in the literature [60–67]. Nevertheless, the existing sufficient
conditions based on SOF formulations may be often too restrictive. Despite having a number of
results for SOF control that can be found in the literature, it is worth mentioning that, to the
best of the candidate’s knowledge, most of the results for LPV systems demand the imposition
of some additional procedure to obtain numerical tractable results. Notice also that most of the
current results for SOF control for LPV systems are not usually prepared to handle time-delays
in an easy way.

1.1 objectives

This Master Thesis investigates the problem of stability, state-feedback and static output-
feedback stabilization of time-delayed LPV systems with polytopic time-varying parameters.
The main objective is to propose sufficient delay-dependent conditions for stability analysis and
gain-scheduled stabilization of time-delayed LPV systems via the use of parameter-dependent
Lyapunov-Krasovskii functionals.

1.2 contributions

Motivated by the previously discussion, this Thesis provides novel stability and stabilization con-
ditions for state time-delayed LPV systems. The main contributions of this work are summarized
as follows:

• a novel sufficient stability result for LPV time-delayed systems is stated. The selected
parameter-dependent Lyapunov-Krasovskii functional candidate encompasses triple inte-
gral and, based on bound techniques as well a reciprocally convex method combined with
Moon’s inequality, new LMI conditions are derived;
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• a novel gain-scheduled state-feedback stabilization result for LPV time-delayed systems is
also derived. It is worth mentioning there is no need to establish a particular structure to
the Lyapunov matrices;

• a novel gain-scheduled static output-feedback stabilization condition for LPV time-delayed
systems is also presented. As in the state-feedback case, there is no need to establish a
particular structure to the Lyapunov matrices;

• as a subproduct, the selection of a proper augmented vector in a new fashion contributes to
decouple, via Finsler’s Lemma [68], the Lyapunov-Krasovskii matrices from key matrices of
the system aiming to less conservative results. This kind of strategy facilitates to separate
important matrices variables used to obtain the state-feedback and static output-feedback
control gains. This makes easier to obtain the new LMI conditions for stabilization.

1.3 outline

The remainder of this thesis is structured as follows:

• Chapter 2: The concepts on the stability of time-delay systems and its main advances in
recent years is reviewed. The modeling representation of time-delayed LPV systems with
polytopic time-varying parameters used in this Master Thesis is presented.

• Chapter 3: The stability analysis of LPV time-delayed systems is investigated and a novel
sufficient LMI condition is derived. Examples are used to illustrate the performance of the
proposed method.

• Chapter 4: A novel gain-scheduling state-feedback control condition for LPV time-delayed
systems is obtained based on the novel condition presented in Chapter 3. An example is
used to illustrate the performance of the proposed method.

• Chapter 5: A novel gain-scheduled static output-feedback control for LPV time-delayed
systems is derived based on the novel condition presented in Chapter 3. An example is
used to illustrate the performance of the proposed method.

• Chapter 6: The conclusions and possible future directions are presented.



2
BACKGROUND

In this section, the fundamental theoretical background used in this Master Thesis is presented.
Firstly, it is introduced concepts on the stability of time-delay systems and its main advances
in recent years. Finally, it is presented the modeling representation of LPV systems subject to
time-delay employed in this Thesis.

2.1 stability of linear time-delay systems

To introduce essential concepts about the stability of time-delay systems, consider a linear time-
delay system as follows:

ẋ(t) = f(t,xt), ∀t ≥ t0,

x(t) = φ(t), ∀t ∈ [−h2, 0],
(2.1)

where f : R×Cn → Rn is continuous and is Lipschitzian in xt, f(t, 0) = 0, xt = x(t− h(t)),
and φ(t) is the initial condition. The time-varying delay h(t) is continuous and satisfies

0 ≤ h1 ≤ h(t) ≤ h2, h12 , h2 − h1, (2.2)

where h1 and h2 are, respectively, the lower and upper bounds.
In this Master Thesis, the technique used to obtain stability conditions for time-delay systems

is the following Lyapunov-Krasovskii method.

Theorem 2.1: [69, 70] Lyapunov-Krasovskii Stability Theorem

The system (2.1) is asymptotically stable if there exists a continuous differentiable functional
V (t,φ) such that

u (‖φ(0)‖) ≤ V (t,φ) ≤ v (‖φ‖c) ,

V̇ (t,φ) ≤ −w (‖φ(0)‖) ,

where u, v and w are continuous strictly increasing functions satisfying u(0) = v(0) =

w(0) = 0 and lims→∞ u(s) = +∞. The function ‖ · ‖c is defined as

‖φ‖c = max
−h2≤h(t)≤0

‖φ(h(t))‖.

Hence, for the sake of simplicity, along this work the Lyapunov-Krasovskii functional V (t,φ)
is denoted by V (t).

5



6 background

The system (2.1) is called a time-delay system because the future evolution of this system
depends not only on its present state but also on its past history [71].
Stability conditions for time-delay systems can be classified into two categories. One is delay-

independent stability conditions and the other is delay-dependent stability conditions. Generally,
delay-dependent stability conditions are less conservative than delay-independent ones mainly
when the time-delay is small. Thus, this Master Thesis deals with delay-dependent case.

Definition 2.1: Categories of stability conditions

• Delay-independent stability: when a system is stable for all h(t) ≥ 0.

• Delay-dependent stability: when a system is stable for finite intervals of the delay
value.

2.1.1 Integral Inequalities

To develop a stability condition for a system as in (2.1) three issues are crucial. One is the
choice of an appropriate LKF, the second is the calculation of the time-derivative of this LKF
candidate, and the latter is to estimate a bound for the derivative of the LKF.
Among the LKFs used to delay-dependent stability analysis of time-delayed systems, one of

the most relevant terms, which was introduced in [72] is a double integral quadratic term given
by

V (t) = h12

∫ −h1

−h2

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ,

where R ∈ S+
n . This class of LKF terms has been widely used in the literature mainly because

it leads to conditions which depend on the explicit value of the delay h1 and h2. In fact when
time-differentiating this term yields

V̇ (t) = h2
12ẋ

T (t)Rẋ(t)− h12

∫ −h1

−h2
ẋT (s)Rẋ(s)ds. (2.3)

Notice that the integral term in (2.3) can not be expressed in terms of an LMI in the form it
is. To transform (2.3) into a suitable LMI setup, the integral term should be expressed through
bound techniques. Hence, to obtain a more accurate bound for this integral term, and thus, to
reduce the conservatism of the resulting stability conditions, different bounding techniques have
been employed in the literature.
In Lemma 2.1 is described a bound technique used to analyze the stability of time-delay

systems based on the Jensen inequality [3].
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Lemma 2.1: [3] Jensen’s inequality

For any matrix R ∈ S+
n and any differentiable function

{
x(u)|u ∈ [a, b]

}
, the following

inequality holds:
∫ b

a
ẋT (δ)Rẋ(δ)dδ ≥ 1

b− a
ΩT

1 RΩ1,

where

Ω1 = x(b)− x(a).

Proof. The proof is omitted and can be found in [3]. �

The conservativeness of the Jensen inequality has been analyzed in [73] using the Gruss
inequality. In order to obtain less conservative results, the following Lemma 2.2 proposed in [29]
provides an inequality called Wirtinger-based inequality, which encompasses Jensen inequality
as a particular case.

Lemma 2.2: [29] Wirtinger-based inequality

For any matrix R ∈ S+
n and any differentiable function

{
x(u)|u ∈ [a, b]

}
, the following

inequality holds:
∫ b

a
ẋT (δ)Rẋ(δ)dδ ≥ 1

b− a
ΩT

1 RΩ1 +
3

b− a
ΩT

2 RΩ2,

where

Ω1 = x(b)− x(a), Ω2 = x(b) + x(a)− 2
b− a

∫ b

a
x(u)du.

Proof. The proof is omitted and can be found in [29]. �

In addition to the LKF functional containing double integral, it is shown by simulation re-
sults [28] that employing Lyapunov functional containing triple integral terms is quite effective
to reduce the conservatism of the stability conditions. Consider the following LKF term

V (t) =
∫ −h1

−h2

∫ −h1

γ

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθdγ.
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The time-derivative of the previous functional is given by

V̇ (t) =
h2

12
2 ẋT (t)Rẋ(t)−

∫ −h1

−h(t)

∫ t−h1

t+θ
ẋT (s)Rẋ(s)dsdθ

−
∫ −h(t)
−h2

∫ t−h(t)

t+θ
ẋT (s)Rẋ(s)dsdθ

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (s)Rẋ(s)ds.

(2.4)

Although the Wirtinger inequality provides less conservative results than Jensen’s inequality,
Wirtinger only deal with single integral terms of quadratic functions while upper bounds of
double integral terms should also be estimated if triple integral terms are introduced in the
Lyapunov–Krasovskii functional to reduce the conservatism. Recently, an integral inequality
called Bessel–Legendre (B–L) inequality has been developed in [30] which encompasses the
Jensen inequality and the Wirtinger-based integral inequality. However, this inequality only
deals with single integral terms of quadratic functions as well.
A more general integral inequality for quadratic functions, described in Lemma 2.3, which

encompasses Jensen inequality, Wirtinger-based inequality and Bessel-Legendre has been devel-
oped in [31] and can be applied to deal with the double integral terms of Equation (2.4).

Lemma 2.3: [31] Auxiliary function-based integral inequalities

For a matrix R ∈ S+
n and a differentiable function

{
x(u)|u ∈ [a, b]

}
, the following inequali-

ties holds:∫ b

a
ẋT (δ)Rẋ(δ)dδ ≥ 1

b− a
ΩT

1 RΩ1 +
3

b− a
ΩT

2 RΩ2 +
5

b− a
ΩT

3 RΩ3,∫ b

a

∫ b

β
ẋT (δ)Rẋ(δ)dδdβ ≥ 2ΩT

4 RΩ5 + 4ΩT
5 RΩ5,∫ b

a

∫ β

a
ẋT (δ)Rẋ(δ)dδdβ ≥ 2ΩT

6 RΩ6 + 4ΩT
7 RΩ7,
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where

Ω1 =x(b)− x(a),

Ω2 =x(b) + x(a)− 2
b− a

∫ b

a
x(δ)dδ,

Ω3 =x(b)− x(a) + 6
b− a

∫ b

a
x(δ)dδ− 12

(b− a)2

∫ b

a

∫ b

β
x(δ)dδdβ,

Ω4 =x(b)− 1
b− a

∫ b

a
x(δ)dδ,

Ω5 =x(b) +
2

b− a

∫ b

a
x(δ)dδ− 6

(b− a)2

∫ b

a

∫ b

β
x(δ)dδdβ,

Ω6 =x(a)− 1
b− a

∫ b

a
x(δ)dδ,

Ω7 =x(a)− 4
b− a

∫ b

a
x(δ)dδ +

6
(b− a)2

∫ b

a

∫ b

β
x(δ)dδdβ.

Proof. The proof is omitted and can be found in [31]. �

2.1.2 Convex approaches

When employing the Lemmas discussed in Section 2.1.1, a matrix

 1
λR 0

? 1
1−λR

 appears and

it has to be bounded to derive a stability condition due to the time-varying scalar λ ∈ (0, 1).
Based on the Jensen inequality, a reciprocally convex combination approach was introduced by
[74] for deriving delay-dependent stability conditions.

Lemma 2.4: [74] RCCL - Reciprocally convex combination lemma inequality

For any matrices R ∈ S+
n and X ∈ Rn×n the following inequality holds

 1
λR 0

0 1
1−λR

 ≥
R X

? R

 , ∀λ ∈ (0, 1),

subject toR X

? R

 > 0.

Proof. The proof is omitted and can be found in [74]. �



10 background

Notice that after the convex analysis, a stability condition can be expressed in terms of an
LMI. In order to obtain less conservatives results, the Moon’s et al. inequality [33] merged with
the convex analysis was performed in [34] and can be seen in Lemma 2.5.

Lemma 2.5: [34] Reciprocally convex method combined with Moon’s et al. inequality

For any matrices R1 ∈ S+
n ,R2 ∈ S+

n ,Y1 ∈ R2n×n and Y2 ∈ R2n×n the following inequality
holds  1

λR1 0

0 1
1−λR2

 ≥ ΘM (λ), ∀λ ∈ (0, 1),

where

ΘM (λ) = He(Y1[In 0n×n] + Y2[0n×n In])− λY1R
−1
1 Y T

1 − (1− λ)Y2R
−1
2 Y T

2 .

Proof. The proof is omitted and can be found in [34]. �

Indeed, in [34] it has been proved that RCCL is a particular case of the reciprocally convex
method combined with the Moon’s et al. inequality. Thus, it is expected that applying Lemma 2.5
provides a tighter lower bound than applying Lemma 2.4.

2.2 polytopic lpv time-delayed systems modeling

The polytopic modeling representation of Linear Parameter-varying systems (LPV systems) has
been broadly used for robust analysis and robust control, and will be used in this Master Thesis.
Consider the following LPV system with time-varying delay described by:

ẋ(t) = A(%(t))x(t) +Ad(%(t))x(t− h(t)) +B(%(t))u(t), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h2, 0],
(2.5)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and φ(t) is the initial
condition. The time-varying delay h(t) is continuous and satisfies

0 ≤ h1 ≤ h(t) ≤ h2, h12 , h2 − h1, (2.6)

where h1 and h2 are, respectively, the lower and upper bounds. Furthermore, the system ma-
trices A(%(t)) ∈ Rn×n, Ad(%(t)) ∈ Rn×n, and B(%(t)) ∈ Rn×m belong to a polytopic domain
parameterized in terms of a time-varying parameter %(t), being defined by:

X(%(t)) =
N∑
i=1

%i(t)Xi, %(t) ∈ ΛN , (2.7)



2.2 polytopic lpv time-delayed systems modeling 11

where X(%(t)) represents any matrix of the system in (2.5), N denotes the number of vertices
of the polytope and ΛN is the unit simplex given by

ΛN =

{
%(t) ∈ RN :

N∑
i=1

%i(t) = 1, %i(t) ≥ 0, i = 1, . . . ,N
}

. (2.8)

Notice that as X(%(t)) =
∑N
i=1 %i(t)Xi, then taking its time-derivative on both sides yields

d
dtX(%(t)) =

N∑
i=1

%̇i(t)Xi. (2.9)

Hence, along this work, the time-derivative of a generic matrix X(%(t)) that depends polyno-
mially on %(t) is denoted by Ẋ(%(t)) =

∑N
i=1 %̇i(t)Xi (in shorthand notation: Ẋ(%(t))).

From the constraint ∑N
i=1 %i(t) = 1 in (2.8), it is easy to notice that:

N∑
i=1

%̇i(t) = %̇1(t) + . . .+ %̇N (t) = 0. (2.10)

In this work, the following assumption is considered:

Assumption 2.1

The time-varying parameter %(t) is assumed to be measured or estimated on-line. Besides
that, the variation rate of the time-varying parameter is assumed to be bounded and known.

Based on Assumption 2.1, consider the following known bounds of the parameter variation
rates:

bi ≤ %̇i(t) ≤ b̄i, b̄i > bi, 0 ∈ [bi, b̄i] , i = 1, . . . ,N , (2.11)

and notice that (2.10) and (2.11) can be expressed, respectively, in the form Aex = be and
Āx ≤ b with:

x =


%̇1(t)
...

%̇N (t)

 , Ae =
[
1 · · · 1

]
︸ ︷︷ ︸
N times

, be = 0, Ā = IN ⊗

 1

−1

 , b =



b̄1

−b1
...

b̄N

−bN


. (2.12)

Then the space where %̇i(t) assumes values can be determined via the region defined by the
intersection between the linear constraints (2.10) and (2.11). As shown in [75], this region is
convex and can be represented by the set

D =

{
ϕ ∈ RN : ϕ =

M∑
`=1

β`h
`,

N∑
i=1

h`i = 0, ∀` = 1, . . . ,M , β ∈ ΛM

}
, (2.13)
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being the vectors h` the vertices of the polytope. As pointed out in [75], the computation of hl

can be efficiently performed by vertex enumeration algorithms [76], having the matrices in (2.12)
as inputs.



3
STAB IL ITY ANALYS I S

This chapter investigates the problem of stability for time-delayed Linear Parameter-varying sys-
tem (LPV system) with polytopic time-varying parameters. The selected parameter-dependent
Lyapunov-Krasovskii functional (LKF) candidate encompasses triple integral and, based on
bound techniques as well a reciprocally convex method combined with Moon’s inequality, a new
Linear Matrix Inequality (LMI) condition is derived. In Section 3.1 a sufficient condition is de-
rived. Some examples that illustrate the performance of the proposed method are presented in
Section 3.2.

3.1 stability of time-delayed lpv systems

To analyze the stability problem consider the closed-loop time-delayed LPV system:

ẋ(t) = A(%(t))x(t) +Ad(%(t))x(t− h(t)), (3.1)

with initial condition as in (2.5). The following result provides a new sufficient condition for
ensuring the asymptotic stability of the system (3.1).

Theorem 3.1

If there exist matrices P (%(t)) ∈ S4n
+ defined as in (2.7), Q1, Q2, R1, R2, Z1, Z2, Z3 and

Z4 ∈ Sn+, Mk̂ ∈ R11n×3n, k̂ = 1, 2, Wk̃(%(t)) ∈ Rn×n defined as in (2.7), k̃ = 1, 2, 3, and
given scalars 0 ≤ h1 ≤ h2, such that the following LMIs holdΩ0(h2) h12M1

? −R̃21

 < 0,

Ω0(h1) h12M2

? −R̃22

 < 0, (3.2)

with

Ω0(h) = Γ(h)P (%(t))ΥT + ΥP (%(t))ΓT (h) + Γ(h)Ṗ (%(t))ΓT (h) + Q̃

+ Υ

(
h2

1R̂1 + h2
12R̂2 +

h2
1

2 Ẑ1 +
h2

1
2 Ẑ2 +

h2
12
2 Ẑ3 +

h2
12
2 Ẑ4

)
ΥT

−GT0 R̃1G0 −GT3 Z̃1G3 −GT4 Z̃2G4 −GT5 Z̃3G5 −GT6 Z̃3G6

−GT7 Z̃4G7 −GT8 Z̃4G8 +GT1 Z̆3G1 +GT2 Z̆4G2

− h12He(M1G1 +M2G2) +X B +BTX T ,

(3.3)

13
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Q̃ = diag(0,Q1,Q2 −Q1, 0,−Q2, 0, 0, 0, 0, 0, 0),

R̂1 = diag(R1, 0, 0, 0), R̂2 = diag(R2, 0, 0, 0), Ẑ1 = diag(Z1, 0, 0, 0),

Ẑ2 = diag(Z2, 0, 0, 0), Ẑ3 = diag(Z3, 0, 0, 0), Ẑ4 = diag(Z4, 0, 0, 0),

R̃1 = diag(R1, 3R1, 5R1), R̃2 = diag(R2, 3R2, 5R2), Z̃1 = diag(2Z1, 4Z1),

Z̃2 = diag(2Z2, 4Z2), Z̃3 = diag(2Z3, 4Z3), Z̃4 = diag(2Z4, 4Z4),

Z̆3 = diag(Z3, 3Z3, 5Z3), Z̆4 = diag(Z4, 3Z4, 5Z4),

R̃21 = R̃2 + Z̆3, R̃22 = R̃2 + Z̆4,

X =
[
W1(%(t)) W2(%(t)) 0 W3(%(t)) 0n×7n

]T
,

B =
[
−I A(%(t)) 0 Ad(%(t)) 0n×7n

]
,

Γ(h) =


0 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 h1I 0 0 0 0 0

0 0 0 0 0 0 (h(t)− h1)I (h2 − h(t))I 0 0 0

0 0 0 0 0 0 0 0 h1I 0 0



T

,

Υ =


I 0 0 0 0 0 0 0 0 0 0

0 I −I 0 0 0 0 0 0 0 0

0 0 I 0 −I 0 0 0 0 0 0

0 2I 0 0 0 −2I 0 0 0 0 0



T

,

H1 =

I 0 0 0 −I 0 0 0

I 0 0 0 2I 0 0 −3I

 , H2 =

−I 0 0 I 0 0 0

I 0 0 −4I 0 0 3I

 ,

H3 =


I −I 0 0 0 0 0 0

I I 0 0 −2I 0 0 0

I −I 0 0 6I 0 0 −6I

 , G0 =


0 0 0

0 H3 0 0

0 0 0

 ,

G1 =


0 0 0

0 0 H3 0

0 0 0

 , G2 =


0 0 0

0 0 0 H3

0 0 0

 ,

G3 =

 0
H1

0 0

0 0 0

 , G4 =

 0 0
H2

0 0

0 0 0 0

 ,G5 =

 0 0
H1

0

0 0 0

 ,

G6 =

 0 0 0
H1

0 0 0

 ,G7 =

 0 0 0
H2

0

0 0 0 0

 ,G8 =

 0 0 0 0
H2

0 0 0 0

 ,

then the system (3.1) is asymptotically stable for any time-varying delay h(t) satisfy-
ing (2.6).
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Proof. Consider a parameter-dependent Lyapunov-Krasovskii functional selected as:

V (t) =
5∑
i=0

Vi(t),

with

V0(t) = ηT (t)P (%(t))η(t),

V1(t) =
∫ t

t−h1
xT (δ)Q1x(δ)dδ +

∫ t−h1

t−h2
xT (δ)Q2(t)x(δ)dδ,

V2(t) = h1

∫ 0

−h1

∫ t

t+β
ẋT (δ)R1ẋ(δ)dδdβ + h12

∫ −h1

−h2

∫ t

t+β
ẋT (δ)R2ẋ(δ)dδdβ,

V3(t) =
∫ 0

−h1

∫ 0

γ

∫ t

t+β
ẋT (δ)Z1ẋ(δ)dδdβdγ +

∫ 0

−h1

∫ γ

−h1

∫ t

t+β
ẋT (δ)Z2ẋ(δ)dδdβdγ,

V4(t) =
∫ −h1

−h2

∫ −h1

γ

∫ t

t+β
ẋT (δ)Z3ẋ(δ)dδdβdγ,

V5(t) =
∫ −h1

−h2

∫ γ

−h2

∫ t

t+β
ẋT (δ)Z4ẋ(δ)dδdβdγ,

where

η(t) = col
{
x(t),

∫ t

t−h1
x(δ)dδ,

∫ t−h1

t−h2
x(δ)dδ, (2/h1)

∫ 0

−h1

∫ t

t+β
x(δ)dδdβ

}
.

Furthermore, consider an augmented vector ξ(t) given by:

ξ(t) = col





ẋ(t)

x(t)

x(t− h1)

x(t− h(t))

x(t− h2)


,



1
h1

∫ t
t−h1

x(δ)dδ

1
h(t)−h1

∫ t−h1
t−h(t) x(δ)dδ

1
h2−h(t)

∫ t−h(t)
t−h2

x(δ)dδ

2
h2

1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ

2
(h(t)−h1)

2
∫−h1
−h(t)

∫ t−h1
t+β x(δ)dδdβ

2
(h2−h(t))2

∫−h(t)
−h2

∫ t−h(t)
t+β x(δ)dδdβ





.
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As
∫ t−h1
t−h2

x(δ)dδ =
∫ t−h1
t−h(t) x(δ)dδ +

∫ t−h(t)
t−h2

x(δ)dδ the following relation is obtained

ηT (t) = ξ(t)TΓ(h) =


x(t)∫ t

t−h1
x(δ)dδ∫ t−h1

t−h2
x(δ)dδ

2
h1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ



T

,

η̇(t) = ΥT ξ(t) =


ẋ(t)

x(t)− x(t− h1)

x(t− h1)− x(t− h2)

2(x(t)− 1
h1

∫ t
t−h1

x(δ)dδ)


.

Therefore, according to the augmented vector, differentiating V0(t) along the trajectories of
the system (3.1) yields

V̇0(t) = ξT (t)(Γ(h)P (%(t))ΥT + ΥP (%(t))ΓT (h) + Γ(h)Ṗ (%(t))ΓT (h))ξ(t).

On the other hand, from the definition of the matrix Q̃, the time-derivative of V1(t) along the
trajectories of the system leads to

V̇1(t) = xT (t)Q1x(t)− xT (t− h1)Q1x (t− h1)

+ xT (t− h1)Q2x (t− h1)− xT (t− h2)Q2x (t− h2)

= ξT (t)Q̃ξ(t).

The time-derivative of V2(t) along the trajectories of the system yields

V̇2(t) =ẋ
T (t)(h2

1R1 + h2
12R2)ẋ(t)− h1

∫ t

t−h1
ẋT (δ)R1ẋ(δ)dδ

− h12

∫ t−h1

t−h(t)
ẋT (δ)R2ẋ(δ)dδ− h12

∫ t−h(t)

t−h2
ẋT (δ)R2ẋ(δ)dδ,

and according to the definition of matrices Υ, R̂1 and R̂2, the previous equation can be rewritten
as

V̇2(t) = ξT (t)Υ(h2
1R̂1 + h2

12R̂2)ΥT ξ(t)− h1

∫ t

t−h1
ẋT (δ)R1ẋ(δ)dδ

− h12

∫ t−h1

t−h(t)
ẋT (δ)R2ẋ(δ)dδ− h12

∫ t−h(t)

t−h2
ẋT (δ)R2ẋ(δ)dδ.



3.1 stability of time-delayed lpv systems 17

Based on the matrix R̃1, applying Lemma 2.3 in the first integral of the previous equation
yields the following inequality relation:

− h1

∫ t

t−h1
ẋT (δ)R1ẋ(δ)dδ 6

−


x(t)− x(t− h1)

x(t) + x(t− h1)− 2
h1

∫ t
t−h1

x(δ)dδ

x(t)− x(t− h1) +
6
h1

∫ t
t−h1

x(δ)dδ− 12
h2

1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ


T

×

R̃1 ×


x(t)− x(t− h1)

x(t) + x(t− h1)− 2
h1

∫ t
t−h1

x(δ)dδ

x(t)− x(t− h1) +
6
h1

∫ t
t−h1

x(δ)dδ− 12
h2

1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ



(3.4)

and from the definition of G0, Equation (3.4) can be rewritten as

−h1

∫ t

t−h1
ẋT (δ)R1ẋ(δ)dδ 6 −ξT (t)GT0 R̃1G0ξ(t),

by noting that

G0ξ(t) =


x(t)− x(t− h1)

x(t) + x(t− h1)− 2
h1

∫ t
t−h1

x(δ)dδ

x(t)− x(t− h1) +
6
h1

∫ t
t−h1

x(δ)dδ− 12
h2

1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ

 .

Applying Lemma 2.3 and the same procedure as before to the other two integrals of V̇2(t)

yields

−h12

∫ t−h1

t−h(t)
ẋT (δ)R2ẋ(δ)dδ 6 −

h12
h(t)− h1

ξT (t)GT1 R̃2G1ξ(t),

−h12

∫ t−h(t)

t−h2
ẋT (δ)R2ẋ(δ)dδ 6 −

h12
h2 − h(t)

ξT (t)GT2 R̃2G2ξ(t).

The time-derivative of V3(t) along the trajectories of the system leads to

V̇3(t) =
h2

1
2 ẋ

T (t)Z1ẋ(t)−
∫ 0

−h1

∫ t

t+β
ẋT (δ)Z1ẋ(δ)dδdβ +

h2
1

2 ẋ
T (t)Z2ẋ(t)

−
∫ 0

−h1

∫ t+β

t−h1
ẋT (δ)Z2ẋ(δ)dδdβ.

The previous equation can be rewritten as

V̇3(t) = ξT (t)Υ

(
h2

1
2 Ẑ1 +

h2
1

2 Ẑ2

)
ΥT ξ(t)−

∫ 0

−h1

∫ t

t+β
ẋT (δ)Z1ẋ(δ)dδdβ

−
∫ 0

−h1

∫ t+β

t−h1
ẋT (δ)Z2ẋ(δ)dδdβ,
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and applying again Lemma 2.3, the following upper bounds are obtained

−
∫ 0

−h1

∫ t

t+β
ẋT (δ)Z1ẋ(δ)dδdβ 6 −ξT (t)GT3 Z̃1G3ξ(t),

−
∫ 0

−h1

∫ t+β

t−h1
ẋT (δ)Z2ẋ(δ)dδdβ 6 −ξT (t)GT4 Z̃2G4ξ(t).

The time-derivative of V4(t) along the trajectories of the system yields

V̇4(t) =
h2

12
2 ẋT (t)Z3ẋ(t)−

∫ −h1

−h(t)

∫ t−h1

t+β
ẋT (δ)Z3ẋ(δ)dδdβ

−
∫ −h(t)
−h2

∫ t−h(t)

t+β
ẋT (δ)Z3ẋ(δ)dδdβ

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (δ)Z3ẋ(δ)dδ.

The previous equation can be rewritten as

V̇4(t) = ξT (t)Υ

(
h2

12
2 Ẑ3

)
ΥT ξ(t)−

∫ −h1

−h(t)

∫ t−h1

t+β
ẋT (δ)Z3ẋ(δ)dδdβ

−
∫ −h(t)
−h2

∫ t−h(t)

t+β
ẋT (δ)Z3ẋ(δ)dδdβ

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (δ)Z3ẋ(δ)dδ,

and applying Lemma 2.3, the following upper bounds are obtained

−
∫ −h1

−h(t)

∫ t−h1

t+β
ẋT (δ)Z3ẋ(δ)dδdβ 6 −ξT (t)GT5 Z̃3G5ξ(t),

−
∫ −h(t)
−h2

∫ t−h(t)

t+β
ẋT (δ)Z3ẋ(δ)dδdβ 6 −ξT (t)GT6 Z̃3G6ξ(t),

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (δ)Z3ẋ(δ)dδ 6 −

(
h12

h(t)− h1
− 1

)
ξT (t)GT1 Z̆3G1ξ(t).

The latter inequality can be rewritten as

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (δ)Z3ẋ(δ)dδ 6−

h12
h(t)− h1

ξT (t)GT1 Z̆3G1ξ(t)

+ ξT (t)GT1 Z̆3G1ξ(t).

Finally, the time-derivative of V5(t) along the trajectories of the system yields

V̇5(t) =
h2

12
2 ẋT (t)Z4ẋ(t)−

∫ −h1

−h(t)

∫ t+β

t−h(t)
ẋT (δ)Z4ẋ(δ)dδdβ

−
∫ −h(t)
−h2

∫ t+β

t−h2
ẋT (δ)Z4ẋ(δ)dδdβ

− (h(t)− h1)
∫ t−h(t)

t−h2
ẋT (δ)Z4ẋ(δ)dδ.
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The previous equation can be rewritten as

V̇5(t) =ξ
T (t)Υ

(
h2

12
2 Ẑ4

)
ΥT ξ(t)−

∫ −h1

−h(t)

∫ t+β

t−h(t)
ẋT (δ)Z4ẋ(δ)dδdβ

−
∫ −h(t)
−h2

∫ t+β

t−h2
ẋT (δ)Z4ẋ(δ)dδdβ

− (h(t)− h1)
∫ t−h(t)

t−h2
ẋT (δ)Z4ẋ(δ)dδ,

applying again Lemma 2.3, the following upper bounds are obtained

−
∫ −h1

−h(t)

∫ t+β

t−h(t)
ẋT (δ)Z4ẋ(δ)dδdβ 6 −ξT (t)GT7 Z̃4G7ξ(t),

−
∫ −h(t)
−h2

∫ t+β

t−h2
ẋT (δ)Z4ẋ(δ)dδdβ 6 −ξT (t)GT8 Z̃4G8ξ(t),

− (h(t)− h1)
∫ t−h(t)

t−h2
ẋT (δ)Z4ẋ(δ)dδ 6 −

(
h12

h2 − h(t)
− 1

)
ξT (t)GT2 Z̆4G2ξ(t).

Notice that the latter inequality can be rewritten as:

− (h(t)− h1)
∫ t−h(t)

t−h2
ẋT (δ)Z4ẋ(δ)dδ 6−

h12
h2 − h(t)

ξT (t)GT2 Z̆4G2ξ(t)

+ ξT (t)GT2 Z̆4G2ξ(t).

Now, defining λ = h(t)−h1
h12

, the terms in V̇2(t), V̇4(t) and V̇5(t) that depend on h(t)−h1
h12

can be
rewritten as:

− 1
λ
ξT (t)GT1 R̃2G1ξ(t)−

1
1− λξ

T (t)GT2 R̃2G2ξ(t)

− 1
λ
ξT (t)GT1 Z̆3G1ξ(t)−

1
1− λξ

T (t)GT2 Z̆4G2ξ(t),
(3.5)

then from the definition of R̃21 and R̃22, Equation (3.5) can be rewritten as

−ξT (t)

G1

G2

T  1
λR̃21 0

0 1
1−λR̃22

G1

G2

 ξ(t).
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Applying Lemma 2.5, with Y1 = h12[M̂1
T 0]T and Y2 = h12[0 M̂2

T
]T , it follows that

−ξT (t)

G1

G2

T  1
λR̃21 0

0 1
1−λR̃22

G1

G2

 ξ(t)
6 − ξ(t)

G1

G2

T He

h12M̂1

0

 [I 0
]
+

 0

h12M̂2

 [0 I
]

− h12(h(t)− h1)

M̂1

0

 R̃−1
21

[
M̂1

T 0
]

− h12(h2 − h(t))

 0

M̂2

 R̃−1
22

[
0 M̂2

T
]G1

G2

 ξ(t).

(3.6)

Let M1 = GT1 M̂1 and M2 = GT2 M̂2, then the following inequality holds

−ξT (t)

G1

G2

T  1
λR̃21 0

0 1
1−λR̃22

G1

G2

 ξ(t)
6− ξ(t)(h12He(M1G1 +M2G2)− h12(h(t)− h1)M1R̃

−1
21 M

T
1

− h12(h2 − h(t))M2R̃
−1
22 M

T
2 )ξ(t).

To introduce extra slack variables, consider the Finsler’s Lemma [68]. Let ξT (t)Qξ(t) < 0 be
the sum of the terms generated by the differentiation of V (t) and application of Lemmas 2.3
and 2.5, where Q is given by

Q = Γ(h)P (%(t))ΥT + ΥP (%(t))ΓT (h) + Γ(h)Ṗ (%(t))ΓT (h) + Q̃−GT0 R̃1G0

+ Υ

(
h2

1R̂1 + h2
12R̂2 +

h2
1

2 Ẑ1 +
h2

1
2 Ẑ2 +

h2
12
2 Ẑ3 +

h2
12
2 Ẑ4

)
ΥT

−GT3 Z̃1G3 −GT4 Z̃2G4 −GT5 Z̃3G5 −GT6 Z̃3G6 −GT7 Z̃4G7

−GT8 Z̃4G8 +GT1 Z̆3G1 +GT2 Z̆4G2 − h12He(M1G1 +M2G2)

+ h12(h(t)− h1)M1R̃
−1
21 M

T
1 + h12(h2 − h(t))M2R̃

−1
22 M

T
2 .

(3.7)

Based on the system (3.1), let B =
[
−I A(%(t)) 0 Ad(%(t)) 0n×7n

]
and note that

Bξ(t) = 0. Then, according to Finsler’s Lemma, ξT (t)Qξ(t) < 0 is equivalent to

Ω̃(h) , Q +X B +BTX T < 0, (3.8)

with

X =
[
W1(%(t)) W2(%(t)) 0 W3(%(t)) 0n×7n

]T
.
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Notice also that Ω̃(h) (defined in (3.8)) can be rewritten as Ω̃(h) = Ω0(h) + J with

J = h12(h(t)− h1)M1R̃
−1
21 M

T
1 + h12(h2 − h(t))M2R̃

−1
22 M

T
2 ,

and Ω0(h) is given in (3.3).
Notice that applying the Schur Complement in Equation (3.8) one has Equation (3.2). Thus, if

Equation (3.2) is satisfied, one can conclude that Equation (3.8) holds and consequently V̇ (t) < 0
which, by the Lyapunov-Krasovskii theory, ensures the asymptotic stability of the system (3.1).
This concludes the proof. �

Remark 3.1

It is worth highlighting that Ṗ (%(t)) in (3.3) can be described as

Ṗ (%(t)) =
N∑
i=1

%̇i(t)Pi.

Moreover, using the representation given in (2.10)-(2.13), one can compute the expression
Ṗ (%(t) in a polytopic way in the following way

Ṗ (%(t)) =
N∑
i=1

M∑
`=1

β`h
`
iPi, β ∈ ΛM .

For more details on how to obtain finite conditions from the presented parameter-
dependent LMIs see Appendix A.

Remark 3.2

Differently from existing conditions in the literature (see, e.g. [43, 77] and the references
therein), the chosen strategy to deal with the various integrals, composing the LKF, and also
to obtain proper upper bounds to them, has been based on Lemma 2.3. This alternative is
more general than the results proposed in [3, 29, 30]. Therefore is expected to ensure tighter
bounds [31, 32]. Besides that, it has been applied Lemma 2.5 in Equation (3.6) since, in
general, it may produce less conservative results [34]. The strategy, as proposed to bound
the various integrals in the LKF, to the best of the candidate’s knowledge, is new in the
context of time-delayed LPV systems.

3.2 examples

The next examples illustrates the effectiveness of the proposed Theorem 3.1. The first example
is motivated by the model of a milling process, the second is from [71, Example 3.4.1] and the
third one has been randomly generated. The simulations are implemented in Matlab, a finite
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set of LMIs is automatically obtained by employing the ROLMIP parser [75] that works jointly
with Yalmip and the solver MOSEK.

Example 3.1. Consider a chatter during the milling process [78, 79]. Milling is the process of
machining using rotary cutters to remove material by advancing a cutter into a workpiece. The
simplified geometry of a milling process is depicted in Figure 3.1.

m1 φ

β

c k2

m2x2

x1

k1

Figure 3.1: Simplified geometry of a milling process.

The cutter has two blades that are used to remove material from the clamped workpiece. The
force acting on the tool is a function of the current displacement of the tool and the workpiece
surface characteristics, and hence the displacement at the previous tool pass. This phenomenon
induces a speed-dependent delay into the system and the equations that describe the motion
are given by

m1ẍ1(t) + k1 (x1(t)− x2(t)) = f(t),

m2ẍ2(t) + cẋ2(t) + k1 (x2(t)− x1(t)) + k2x2(t) = u(t),
(3.9)

with

f(t) = k sin(φ+ β)l(t)−w(t),

l(t) = sin(φ) [x1(t− h(t))− x1(t)] ,

where k1 and k2 are the stiffness of the two springs, c is the damping coefficient, m1 and m2

are, respectively, the masses of the blade and the tool. Further, x1(t) and x2(t) are, respectively,
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the displacements of the blade and the tool. The angle β depends on the particular material
and the tool used. The angle φ denotes the angular position of the blade, k is the cutting force
coefficient, w(t) denotes the disturbance, u(t) denotes the control input and h(t) denotes the
time-varying delay that is approximated to be π/ω(t), where ω(t) is the rotation speed of the
blade. Equation (3.9) can be rewritten as:

ẋ1(t)

ẋ2(t)

ẍ1(t)

ẍ2(t)


=


0 0 1 0

0 0 0 1

−k1+k sin(φ) sin(φ+β)
m1

k1
m1

0 0
k1
m2

−k1+k2
m2

0 − c
m2




x1(t)

x2(t)

ẋ1(t)

ẋ2(t)



+


0 0 0 0

0 0 0 0
k sin(θ+β) sin(φ)

m1
0 0 0

0 0 0 0




x1(t− π/ω(t))

x2(t− π/ω(t))

ẋ1(t− π/ω(t))

ẋ2(t− π/ω(t))


+


0

0

−1

0


w(t) +


0

0

0
1
m2


u(t).

(3.10)

Consider the parameters: m1 = 1, m2 = 2, k1 = 10, k2 = 20, k = 2, c = 0.5 and β = 70◦.
Notice also that:

sin(φ+ β) sin(φ) = 0.5[cos(β)− cos(2φ+ β)]

= 0.1710− 0.5 cos(2φ+ β).

Considering α1(t) = cos(2φ+ β) notice that α1(t) ∈ [α1 α1]. The rotate of the speed blade
is assumed to be between 200 rpm and 2000 rpm, and 1000 rpm is the maximum variation rate.
Hence α1(t) = cos(2φ+ β) ∈ [−1 1] and |dα1(t)/dt| = | − 2 sin(2φ+ β)ω| 6 2× 2000× 2π/60
= 418.9 rad/s.
Substituting the given model parameter values in Equation (3.10), it follows the time-delayed

LPV system

ẋ(t) =


0 0 1 0

0 0 0 1

−10.34 + α1(t) 10 0 0

5 −15 0 −0.25


x(t)

+


0 0 0 0

0 0 0 0

0.34− α1(t) 0 0 0

0 0 0 0


x(t− π/ω(t)) +


0

0

−1

0


w(t) +


0

0

0

0.5


u(t).

(3.11)
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Considering %1(t) =
α1(t)−α1
α1−α1

and %2(t) = 1− %1(t), an LPV system with 2 vertices can be
obtained

A1 =


0 0 1 0

0 0 0 1

−11.34 10 0 0

5 −15 0 −0.25


, A2 =


0 0 1 0

0 0 0 1

−9.34 10 0 0

5 −15 0 −0.25


,

Ad1 =


0 0 0 0

0 0 0 0

1.34 0 0 0

0 0 0 0


, Ad2 =


0 0 0 0

0 0 0 0

−0.66 0 0 0

0 0 0 0


, B1 = B2 =


0

0

0

0.5


.

The time-derivative of %1(t) =
α1(t)−α1
α1−α1

and %2(t) = 1− %1(t) are given by

%̇1(t) =
α̇1(t)(α1 − α1)

(α1 − α1)2 =
α̇1(t)

2 ,

%̇2(t) = −%̇1(t).

Then, |d%1(t)/dt| 6 209.45 rad/s. To verify the effectiveness of Theorem 3.1 concerning
stability, a comparison with other methods in the literature is performed considering w(t) =

u(t) = 0.
The problem to be solved is to find, for a given cutting force coefficient k, the maximum allowed

delay τ̄ ∈ [0,h2] such that system (3.11) still remains stable. It is performed tests employing
Theorem 3.1, and the parameter-dependent proposed approaches in [71, Corollary 3.4.1] and [79,
Corollary 4], considering the interval k ∈ [0.1 0.5]. The results of this analysis are depicted in
Figure 3.2.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Theorem 1

Corollary 3.4.1

Corollary 4

Figure 3.2: Stability Analysis - Maximum allowable time delay.
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As can be seen in Figure 3.2, Theorem 3.1 provides less conservative results than the one
in [71] and [79]. This result is somehow expected since the proposed approach in Theorem 3.1
included several new relaxations as described before.
These results illustrate the effectiveness of the proposed Theorem 3.1 for stability analysis for

time-delay LPV systems.

Example 3.2. [71, Example 3.4.1] Consider the system (3.1) with polytopic uncertainties and
with

A1 =

−0.2 0

0 −0.09

 , A2 =

−2 −1

0 −2

 , A3 =

−1.9 0

0 −1

 ,

Ad1 =

−0.1 0

−0.1 −0.1

 , Ad2 =

0 1

1 0

 , Ad3 =

−0.9 0

−1 −1.1

 .

The objective is to find the maximum upper bound of τ̄ ∈ [0,h2]. The information about
the time-derivative of the parameter is not given in this example, then it is considered to be
null. The upper bound on the delay is 0.7963 in [2, 80], and 0.9090 in [71]. However, Theorem
3.1 in this section shows that the system is asymptotically stable for h2 = 1.1098. Theorem 3.1
yields a larger maximum upper bound on the allowable size of the delay than [2, 71, 80] do.
Moreover, Table 3.1 compares the upper bounds obtained. It is consider the lower bound of the
delay h1 = 0 to compare with the existing results, although Theorem 3.1 allows to analyze the
stability when h1 is greater than 0.

Table 3.1: Allowable upper bound, h2, Example 3.2.
Method Maximum h2

[2] 0.7963
[80] 0.7963
[71] 0.9090
Theorem 3.1 1.1098

Example 3.3. Consider the following LPV system with time delay

ẋ(t) =

 0 1 + 0.2α1(t)

−10 −1

x(t) +
 0 0.1

0.1 0.2

x(t− h(t)), (3.12)

where α1(t) ∈ [−1, 1]. Consider %1(t) =
α1(t)−α1
α1−α1

and %2(t) = 1− %1(t), and let the variation
rate of each parameter bounded by

−1 ≤ %̇1(t) ≤ 1, 1 ≤ %̇2(t) ≤ 1.
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The vectors h` that describe the polytopic region where %i assume values are given by

[
h1 h2

]
=

 1 −1

−1 1

 ,

and a graphical representation is depicted in Figure 3.3.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Feasible region subject to −1 ≤ %̇i ≤ 1 and %̇1 + %̇2 = 0.

Substituting the given model parameter values in Equation (3.12), the time-delayed LPV
system with 2 vertices can be obtained

A1 =

 0 0.8

−10 −1

 , A2 =

 0 1.2

−10 −1

 ,

Ad1 =

 0 0.1

0.1 0.2

 , Ad2 =

 0 0.1

0.1 0.2

 .

The objective is to find the maximum upper bound of h2. The comparison is performed in
relation to [71, Corollary 3.4.1]. The upper bound on the delay is 0.155 in [71] when the lower
bound h1 = 0. However, the proposed Theorem 3.1 shows that the system is asymptotically
stable for h2 = 1.264 when h1 = 0. Thus, Theorem 3.1 yields a larger maximum upper bound
on the allowable size of the delay. Furthermore, Table 3.2 compares the upper bounds obtained.
Due to the strategy used in condition [71, Corollary 3.4.1], the allowable upper bound only can
be evaluated when h1 = 0, although Theorem 3.1 allows to analyze the stability when h1 is
greater than 0.

Table 3.2: Allowable upper bound, h2, Example 3.3.
h1 0 0.1 0.2 0.4 0.5
[71] 0.155 − − − −
Theorem 3.1 1.264 1.411 1.605 2.034 2.205
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3.3 chapter conclusions

This chapter investigated the stability analyses of time-delayed LPV systems. First a novel
stability result was stated, based on a parameter-dependent Lyapunov-Krasovskii functional,
and bound techniques as well a reciprocally convex method combined with Moon’s inequality.
Finally, the results in the examples illustrate the effectiveness of the proposed Theorem 3.1.





4
STATE -FEEDBACK STABIL IZAT ION

This chapter investigates the problem of state-feedback control for time-delayed Linear
Parameter-varying system (LPV system) with polytopic time-varying parameters. A novel gain-
scheduled state-feedback stabilization result for LPV time-delayed systems is derived based on
Theorem 3.1. It is worth mentioning there is no need to establish a particular structure to the
Lyapunov matrices. In Section 4.1 a sufficient condition is derived. An example that illustrates
the performance of the proposed method is presented in Section 4.2.

4.1 gain-scheduled state-feedback control

Considering Assumption 2.1, the following scheduling state-feedback control is adopted

u(t) = K(%(t))x(t). (4.1)

Closing the loop with Equation (4.1) and the system (2.5), then the closed-loop system is
given by

ẋ(t) = Ã(%(t))x(t) +Ad(%(t))x(t− h(t)), (4.2)

where Ã(%(t)) = A(%(t)) +B(%(t))K(%(t)).
Now, the problem is to design a control law, as in Equation (4.1), that stabilizes the delayed

LPV closed-loop system described in (4.2). The LMI based condition to obtain the gain-scheduled
control gain is stated in the following theorem.

Theorem 4.1

If there exist matrices P (%(t)) ∈ S+
4n defined as in (2.7), Q1, Q2, R1, R2, Z1, Z2, Z3 and

Z4 ∈ S+
n , Mk̂ ∈ R11n×3n, k̂ = 1, 2, W (%(t)) ∈ Rn×n defined as in (2.7), L(%(t)) ∈ Rm×n

also defined as in (2.7), and given scalars 0 ≤ h1 ≤ h2, such that the following LMIs hold
Ω0(h2) h12M1

? −R̃21

 < 0,

Ω0(h1) h12M2

? −R̃22

 < 0,

29
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where Ω0(h), Γ(h), Υ, Q̃, R̂1, R̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, R̃1, R̃2, Z̃1, Z̃2, Z̃3, Z̃4, Z̆3, Z̆4, R̃21, R̃22,
H1, H2, H3, G1, G2, G3, G4, G5, G6, G7 and G8 are defined in Theorem 3.1 and

BTX T =

−W (%(t)) −W (%(t)) 0 −W (%(t))

04n×7n
A A 0 A

0 0 0 0

Ad(%(t))W (%(t)) Ad(%(t))W (%(t)) 0 Ad(%(t))W (%(t))

07n×4n 07n×7n


,

with A = A(%(t))W (%(t)) +B(%(t))L(%(t)).
Then K(%(t)) = L(%(t))W (%(t))−1 is a scheduling state-feedback gain control ensuring

that system (4.2) is asymptotically stable for any time-varying delay h(t) satisfying (2.6).

Proof. Taking Theorem 3.1 as the starting point. Consider the closed-loop system (4.2) and
let

B =
[
−I ÃT (%(t)) 0 ATd (%(t)) 0n×7n

]
,

such that ξT (t)BT = 0.
Then, according to Finsler’s Lemma, ξT (t)Qξ(t) < 0 (with Q, given in (3.7)) is equivalent

to:

Q +BTX T +X B < 0,

where,

X T =
[
W (%(t)) W (%(t)) 0 W (%(t)) 0n×7n

]
.

Substituting L(%(t)) = K(%(t))W (%(t)), the scheduled state-feedback gain that guaran-
tees the asymptotic stability of the closed-loop system (4.2) follows in a straightforward way:
K(%(t)) = L(%(t))W (%(t))−1. This concludes the proof. �

Remark 4.1

Notice that matrix Υ multiplies matrix P (%(t)) in Equation (3.3) but Υ does not contain
any of the system matrices. This is due to the new proposed approach used for selecting the
augmented vector. Then, there is no need to establish a particular structure to the Lyapunov
matrices in the control design, since the Lyapunov matrices and the system matrices are
decoupled. This is also a new strategy for designing gain-scheduled state-feedback controllers
for delayed LPV systems.
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4.2 example

The next example illustrates the effectiveness of the proposed Theorem 4.1. The example is
motivated by the same model of a milling process seen in Section 3.2. The simulations are
implemented in Matlab, a finite set of LMIs is automatically obtained by employing the ROLMIP
parser [75] that works jointly with Yalmip and the solver MOSEK.
Consider the model of a milling process as in Example 3.1.

ẋ1(t)

ẋ2(t)

ẍ1(t)

ẍ2(t)


=


0 0 1 0

0 0 0 1

−k1+k sin(φ) sin(φ+β)
m1

k1
m1

0 0
k1
m2

−k1+k2
m2

0 − c
m2




x1(t)

x2(t)

ẋ1(t)

ẋ2(t)



+


0 0 0 0

0 0 0 0
k sin(θ+β) sin(φ)

m1
0 0 0

0 0 0 0




x1(t− π/ω(t))

x2(t− π/ω(t))

ẋ1(t− π/ω(t))

ẋ2(t− π/ω(t))


+


0

0

−1

0


w(t) +


0

0

0
1
m2


u(t).

Consider the parameters as in Example 3.1. Based on Assumption 2.1, consider α1(t) =

cos(2φ+ β) such that α1(t) ∈ [α1 α1] as scheduling parameters, which is measurable in real-
time and can be used to obtain a gain-scheduled controller.
Substituting the given model parameter values, it follows the time-delayed LPV system:

ẋ(t) =


0 0 1 0

0 0 0 1

−10.34 + α1(t) 10 0 0

5 −15 0 −0.25


x(t)

+


0 0 0 0

0 0 0 0

0.34− α1(t) 0 0 0

0 0 0 0


x(t− π/ω(t)) +


0

0

−1

0


w(t) +


0

0

0

0.5


u(t).

(4.3)

In the sequel, some experiments are discussed for the design of gain-scheduling controllers for
time-varying delayed LPV systems. The control design is based on the new result proposed in
Theorem 4.1. In the first experiment, Case I, the objective is to find the controller that ensures
stability for a maximum time-delay for a given cutting force coefficient, k. In the second one,
Case II, it is investigated the performance of the gain-scheduled controller if a disturbance force,
w(t), occurs. In the third experiment, Case III, it is considered the situation in which the friction
of the blades varies during the milling process (modeled as an uncertain parameter) and how the
proposed control design strategy performs in this case even if it is also affected by disturbance.
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• Case I – Maximum allowed time-delay

In this case, the purpose is to find, for a given cutting force coefficient k, the maximum
allowed delay τ̄ ∈ [0,h2] such that a controller designed via Theorem 4.1 stabilizes the sys-
tem (4.3). Several tests have been performed considering W and L fixed in order to obtain a
fixed-gain controller. Also, it is performed tests considering W (%(t)) and L(%(t)) dependent on
the parameter %(t) to obtain a scheduled-gain controller. The result of this analysis is depicted
in Figure 4.1. It can be seen that the scheduled-gain controller presents better results than a
fixed-gain controller.

0 5 10 15 20

0.5

1

1.5

2

2.5

Scheduled

Fixed

Figure 4.1: Case I - Maximal allowable time delay obtained via Theorem 4.1.

• Case II – Presence of disturbance

In this case, the goal is to investigate the performance of the gain-scheduled controller in the
presence of a disturbance force w(t).

Consider the disturbance w(t) given by a rectangular signal:

w(t) =

 1, 0 ≤ t ≤ 4

0, t > 4.

The blade rotating speed ω(t) varies as depicted in Figure 4.2 and, therefore, the time-varying
delay h(t) is according to Figure 4.3. The initial condition of the states, in this case, are null.
In Figure 4.4 it is possible to notice the system behavior without control. In Figure 4.5, it

is possible to notice the performance of the controller in correcting the disturbance that has
been presented up to the instant of 4 seconds. It is possible to see that the controller effectively
stabilizes the system.

• Case III – Uncertain friction of the blades
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Figure 4.2: Blade rotating speed.
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Figure 4.3: Time-varying delay.
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Figure 4.4: Case II – Displacement of the masses without control.
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Figure 4.5: Case II – Displacement of the masses with the controller via Theorem 4.1.

Now, suppose that the friction of the blades during the milling process leads the spring tem-
perature to rise and there is a variation in the stiffness described as k1 ∈ [5, 10]. In this case,
matrix A(%(t)) is given by

A(%(t)) =


0 0 1 0

0 0 0 1

−0.34 + α1(t)− α2(t) α2(t) 0 0
α2(t)

2 −α2(t)
2 − 10 0 −0.25


,

and the other system matrices do not modify since only A(%(t)) depends on k1. In this case,
the scheduling parameters are α1(t) ∈ [−1 1] and α2(t) ∈ [5 10], and the combination of these
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parameters belongs to a unit simplex as in Equation (2.8). Thus, an LPV system with 4 vertices
can be obtained

A1 =


0 0 1 0

0 0 0 1

−6.34 5 0 0

2.5 −12.5 0 −0.25


, A2 =


0 0 1 0

0 0 0 1

−11.34 10 0 0

5 −15 0 −0.25


,

A3 =


0 0 1 0

0 0 0 1

−4.34 5 0 0

2.5 −12.5 0 −0.25


, A4 =


0 0 1 0

0 0 0 1

−9.34 10 0 0

5 −15 0 −0.25


,

Ad1 =Ad2 =


0 0 0 0

0 0 0 0

1.34 0 0 0

0 0 0 0


, Ad3 = Ad4 =


0 0 0 0

0 0 0 0

−0.66 0 0 0

0 0 0 0


,

B1 =B2 = B3 = B4 =


0

0

0

0.5


.

Furthermore, the time-derivative of %1(t) and %2(t) are given in Example 3.1, and it is con-
sidered |%̇3(t)| = |%̇4(t)| = 0.

The simulation of this second time-delayed LPV plant has been performed with the same
rotating speed ω(t). The disturbance w(t) is given by:

w(t) =

 1, 8 ≤ t ≤ 10

0, 0 ≤ t < 8 and t > 10.

For this simulation, the initial conditions is x(0) =
[
0.1 0.2 0.5 0.5

]T
. The uncertain k1

assumes values between 5 to 10.
Figure 4.6 depicts the trajectories of the system with k1 assuming values between 5 to 10. The

trajectories of the states x1 and x2 are represented in blue and red color, respectively. Unlike the
previous case, the system begins with a non-null initial condition. In approximately 4 seconds the
system stabilizes, and a disturbance occurs in 8 seconds. Once more, a gain-scheduled controller
K(%(t)) is obtained using Theorem 4.1 and its effectiveness is depicted in Figure 4.6.
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Figure 4.6: Case III – Trajectories of x1 with k1 ∈ [5, 10] are depicted in blue; Trajectories of x2 with
k1 ∈ [5, 10] are depicted in red.

4.3 chapter conclusions

This chapter investigated the state-feedback stabilization analyses of time-delayed LPV systems.
First a novel gain-scheduled state-feedback stabilization result for LPV time-delayed systems is
stated. It is worth mentioning there is no need to establish a specific structure to the Lyapunov
matrices. Finally, the results presented in the example illustrate the effectiveness of the proposed
Theorem 4.1.



5
STATIC OUTPUT -FEEDBACK STABIL IZAT ION

This chapter investigates the problem of static output-feedback control for time-delayed Linear
Parameter-varying system (LPV system) with polytopic time-varying parameters. A novel gain-
scheduled static output-feedback stabilization result for LPV time-delayed systems is derived
based on Theorem 3.1. As in Theorem 4.1, it is worth mentioning there is no need to establish
a particular structure to the Lyapunov matrices. In Section 5.1 a sufficient condition is derived.
An example that illustrates the performance of the proposed method is presented in Section 5.2.

5.1 gain-scheduled static output-feedback control

Considering Assumption 2.1, the following scheduling static output-feedback control is adopted

u(t) = L(%(t))y(t), (5.1)

where y(t) = C(%(t))x(t) is the output vector, with C(%(t)) ∈ Rny×n.
Closing the loop with Equation (5.1) and the system (2.5), leads to:

ẋ(t) = Ā(%(t))x(t) +Ad(%(t))x(t− h(t)), (5.2)

where Ā(%(t)) = A(%(t)) +B(%(t))L(%(t))C(%(t)).
The problem can be stated as to design a control law, as in Equation (5.1), that stabilizes

the delayed LPV closed-loop system described in (5.2). The LMI based condition to obtain the
gain-scheduled control gain is presented in the following theorem.

Theorem 5.1

If there exist matrices P (%(t)) ∈ S+
4n defined as in (2.7), Q1, Q2, R1, R2, Z1, Z2, Z3 and

Z4 ∈ S+
n , Mk̂ ∈ R(11n+m)×3n, k̂ = 1, 2, E(%(t)), X(%(t)) and Z(%(t)) ∈ Rn×n defined

as in (2.7), J(%(t)) ∈ Rm×n defined as in (2.7), G(%(t)) ∈ Rm×m defined as in (2.7),
K(%(t)) ∈ Rm×ny also defined as in (2.7), a given matrix T ∈ Rn×m, and given scalars ζ
and 0 ≤ h1 ≤ h2, such that the following LMIs holdΩ0(h2) h12M1

? −R̃21

 < 0,

Ω0(h1) h12M2

? −R̃22

 < 0,

37
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where Ω0(h), R̂1, R̂2, Ẑ1, Ẑ2, Ẑ3, Ẑ4, R̃1, R̃2, Z̃1, Z̃2, Z̃3, Z̃4, Z̆3, Z̆4, R̃21, R̃22, H1, H2 and
H3 are defined in Theorem 3.1 and

Γ(h) =


0n×m 0 I 0 0 0 0 0 0 0 0 0

0n×m 0 0 0 0 0 h1I 0 0 0 0 0

0n×m 0 0 0 0 0 0 (h(t)− h1)I (h2 − h(t))I 0 0 0

0n×m 0 0 0 0 0 0 0 0 h1I 0 0



T

,

Υ =


0n×m I 0 0 0 0 0 0 0 0 0 0

0n×m 0 I −I 0 0 0 0 0 0 0 0

0n×m 0 0 I 0 −I 0 0 0 0 0 0

0n×m 0 2I 0 0 0 −2I 0 0 0 0 0



T

,

Q̃ =diag(0m, 0,Q1,Q2 −Q1, 0,−Q2, 0, 0, 0, 0, 0, 0),

G0 =


0n×m 0 0 0

0n×m 0 H3 0 0

0n×m 0 0 0

 , G1 =


0n×m 0 0 0

0n×m 0 0 H3 0

0n×m 0 0 0

 ,

G2 =


0n×m 0 0 0

0n×m 0 0 0 H3

0n×m 0 0 0

 , G3 =

 0n×m 0
H1

0 0

0n×m 0 0 0

 ,

G4 =

 0n×m 0 0
H2

0 0

0n×m 0 0 0 0

 , G5 =

 0n×m 0 0
H1

0

0n×m 0 0 0

 ,

G6 =

 0n×m 0 0 0
H1

0n×m 0 0 0

 , G7 =

 0n×m 0 0 0
H2

0

0n×m 0 0 0 0

 ,

G8 =

 0n×m 0 0 0 0
H2

0n×m 0 0 0 0

 ,

X B =



F11 −ζJ(%(t)) F13 0m×n F15

0(4n+m)×7n

F21 −E(%(t)) F23 0 F25

F31 −X(%(t)) F33 0 F35

0n×m 0 0 0 0

F51 −Z(%(t)) F53 0 F55

07n×(4n+m) 07n×7n


,
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with

F11 = ζJ(%(t))B(%(t))−G(%(t)), F21 = E(%(t))B(%(t))− ζT G(%(t)),

F31 = X(%(t))B(%(t))− ζT G(%(t)), F51 = Z(%(t))B(%(t))− ζT G(%(t)),

F13 = ζJ(%(t))A(%(t)) +K(%(t))C(%(t)),

F23 = E(%(t))A(%(t)) + ζT K(%(t))C(%(t)),

F33 = X(%(t))A(%(t)) + ζT K(%(t))C(%(t)),

F53 = Z(%(t))A(%(t)) + ζT K(%(t))C(%(t)),

F15 = ζJ(%(t))Ad(%(t)), F25 = E(%(t))Ad(%(t)),

F35 = X(%(t))Ad(%(t)), F55 = Z(%(t))Ad(%(t)).

Then L(%(t)) = G(%(t))−1K(%(t)) is a scheduling static output-feedback gain control
ensuring that system (5.2) is asymptotically stable for any time-varying delay h(t) satisfy-
ing (2.6).

Proof. Use Theorem 3.1 as starting point and consider the augmented vector ξ(t) given by:

ξ(t) = col





u(t)

ẋ(t)

x(t)

x(t− h1)

x(t− h(t))

x(t− h2)


,



1
h1

∫ t
t−h1

x(δ)dδ

1
h(t)−h1

∫ t−h1
t−h(t) x(δ)dδ

1
h2−h(t)

∫ t−h(t)
t−h2

x(δ)dδ

2
h2

1

∫ 0
−h1

∫ t
t+β x(δ)dδdβ

2
(h(t)−h1)

2
∫−h1
−h(t)

∫ t−h1
t+β x(δ)dδdβ

2
(h2−h(t))2

∫−h(t)
−h2

∫ t−h(t)
t+β x(δ)dδdβ





.

Taking ξ(t) given above, the matrices Γ(h), Υ, Q̃, G0, G1, G2, G3, G4, G5, G6, G7, and G8

are redefined following the same reasoning applied along the proof of Theorem 3.1.
Consider the closed-loop system (5.2) and let

B =

B(%(t)) −I A(%(t)) 0 Ad(%(t)) 0n×7n

−I 0 L(%(t))C(%(t)) 0 0 0m×7n

 ,

such that Bξ(t) = 0.
Then, according to Finsler’s Lemma, ξT (t)Qξ(t) < 0 (with Q, given in (3.7)) is equivalent

to:

Q +X B +BTX T < 0,
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with

X =



ζJ(%(t)) G(%(t))

E(%(t)) ζT G(%(t))

X(%(t)) ζT G(%(t))

0 0

Z(%(t)) ζT G(%(t))

07n×n 07n×m


.

Substituting K(%(t)) = G(%(t))L(%(t)), the scheduled static output-feedback gain that guar-
antees the asymptotic stability of the closed-loop system (5.2) follows in a straightforward way:
L(%(t)) = G(%(t))−1K(%(t)). This concludes the proof. �

Remark 5.1

Notice that matrix T is used only to achieve less conservative results, namely, the given
matrix T is not used to make the static output-feedback problem convex.

Remark 5.2

As in Theorem 4.1, the matrix Υ multiplies matrix P (%(t)) in Equation (3.3) but Υ does
not contain any of the system matrices. This is due to the new proposed approach used for
selecting the augmented vector. Then, there is no need to establish a particular structure
to the Lyapunov matrices in the control design, as done in the current literature [62], since
the Lyapunov matrices and the system matrices are decoupled. This is also a new strategy
for designing gain-scheduled static output-feedback controllers for delayed LPV systems.

5.2 example

The next example illustrates the effectiveness of the proposed Theorem 5.1. The example is
motivated by the model of a magnetic suspension system investigated in [81, Example 1]. The
simulations are implemented in Matlab, a finite set of LMIs is automatically obtained by em-
ploying the ROLMIP parser [75] that works jointly with Yalmip and the solver MOSEK.
Consider a magnetic suspension system [81]. Magnetic suspension is a system where an object

is suspended without a physical support, using only magnetic fields. In this systems, a magnetic
force is used to counteract the effects of forces caused by gravitational acceleration and any other
accelerations. Magnetic suspensions systems are commonly found in high-speed trains, magnetic
bearings, gyroscopes, and accelerometers. The simplified geometry of a magnetic suspension
system is depicted in Figure 5.1.
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Figure 5.1: Simplified geometry of magnetic suspension system.

The magnetic suspension system is composed by a ball and a variable electromagnet. The
force acting on the ball is function of the gravitational force and the attraction force of the
electromagnet. The equations that describe the system are given by

ẋ1(t) = x2(t)

ẋ2(t) =
gµ (µx1(t) + 2µy0 + 2) x1(t)

(1 + µ (x1(t) + y0))
2 x1(t)−

Km

m
x2(t) +

λµ

2m (1 + µ (x1(t) + y0))
2u(t),

(5.3)

where Km is the viscous friction coefficient, λ is the inductance, m is the mass of the suspended
ball. Further, x1(t) and x2(t) are, respectively, the ball deviation around its desired position
and vertical velocity. The position y0 is the desired vertical position. The acceleration g denotes
the gravity acceleration, µ is the coefficient of inductance variation, and u(t) denotes the control
input. Assuming a delay in the state x2(t) due to practical sensor dynamics in the measured
velocity, Equation (5.3) can be rewritten as:

ẋ1(t) =cx2(t) + (1− c)x2(t− h(t))

ẋ2(t) =
gµ (µx1(t) + 2µy0 + 2) x1(t)

(1 + µ (x1(t) + y0))
2 x1(t)− c

Km

m
x2(t)− (1− c)Km

m
x2(t− h(t))

+
λµ

2m (1 + µ (x1(t) + y0))
2u(t),

(5.4)

where c = 1 means there is no delay as in Equation (5.3), and as c decreases the dynamics of
the sensor induces delay in the system.
In addition, consider that the measured output is:

y(t) = Cx(t), (5.5)

where y(t) ∈ Rny×n is the output vector.
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Equations (5.4) and (5.5) can be rewritten as:

ẋ1(t)

ẋ2(t)

 =

 0 c

gµ(µx1(t)+2µy0+2)x1(t)

(1+µ(x1(t)+y0))
2 −cKm

m


x1(t)

x2(t)



+

0 1− c

0 −(1− c)Km
m

x1(t− h(t))

x2(t− h(t))

+
 0

λµ

2m(1+µ(x1(t)+y0))
2

u(t),
y(t) = C

x1(t)

x2(t)

 .

(5.6)

Consider the parameters: m = 0.068, Km = 0.001, λ = 0.46, g = 9.8, µ = 2, c = 0.7 and
y0 = 0.05. The time varying delay h(t) satisfies (2.6). The physical structure of the assembling
imposes that 0 ≤ x̄1(t) ≤ 0.1, where x̄1(t) = x1(t) + y0 and, thus, we have −0.05 ≤ x1(t) ≤ 0.05.
In order to obtain an LPV system, consider the schedules parameters

α1(t) =
gµ (µx1(t) + 2µy0 + 2) x1(t)

(1 + µ (x1(t) + y0))
2 , α2(t) =

λµ

2m (1 + µ (x1(t) + y0))
2 ,

such that α1(t) ∈ [α1 α1] and α2(t) ∈ [α2 α2] are scheduling parameters, which are measurable
in real-time and can be used to obtain a gain-scheduled controller. Substituting the scheduling
parameters in Equation (5.6), it follows the time-delayed LPV system

ẋ(t) =

 0 c

α1(t) −cKm
m

x(t) +
0 1− c

0 −(1− c)Km
m

x(t− h(t)) +
 0

α2(t)

u(t)
y(t) = Cx(t).

Substituting the given parameters values the scheduling parameters are α1(t) ∈
[−2.058 1.5653], where |dα1(t)/dt| =

∣∣∣ 47.43
(2x1(t)+1.1)3

∣∣∣ 6 47.43 and α2(t) ∈ [4.6977 6.7647],
where |dα2(t)/dt| =

∣∣∣ −27.05
(2x1(t)+1.1)3

∣∣∣ 6 27.05. The combination of these parameters belongs to a
unit simplex as in (2.8). Thus, an LPV system with 4 vertices can be obtained

A1 =A2 =

 0 0.7000

−2.0580 −0.0103

 , A3 = A4 =

 0 0.7000

1.5653 −0.0103

 ,

Ad1 =Ad2 = Ad3 = Ad4 =

0 0.3000

0 −0.0044

 ,

B1 =B3 =

 0

4.6988

 , B2 = B4 =

 0

6.7647

 .

(5.7)
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The time-derivative of %1(t), %2(t), %3(t), and %4(t) are given by

%̇1(t) =
α̇1(t)(α1 − α1)

(α1 − α1)2 =
α̇1(t)

3.6233,

%̇2(t) = −%̇1(t),

%̇3(t) =
α̇2(t)(α2 − α2)

(α2 − α2)2 =
α̇2(t)

2.067 ,

%̇4(t) = −%̇3(t).

In this example, consider that the measured output is:

C =
[
1 1

]
.

Furthermore, consider also that:

ζ = 1.6, T =

1

1

 .

In the sequel, some experiments are discussed for the design of gain-scheduling controllers of
the time-varying delayed LPV system describing the magnetic suspension system. The control
design is based on the new result proposed in Theorem 5.1. In the first experiment, Case I,
it is investigated the performance of the gain-scheduled static output-feedback controller to
stabilize the magnetic suspension system given an initial condition. In the second one, Case II,
the objective is to find the controller that ensures stability for a maximum time-delay for a given
sensor dynamics in the measured velocity coefficient, c.

• Case I – Stabilization of (5.4)-(5.5) for a given initial condition

In this case, the goal is to investigate the performance of the gain-scheduled controller proposed
in Theorem 5.1 to stabilize the time-delayed LPV system which vertices are depicted in (5.7).
Consider a time-varying delay depicted in Figure 5.2.
At 0s to 2s and 8s to 12s of the simulation the delay is constant and its value is 1 second. At

2s to 3s and 7s to 8s, the delay varies in time, as depicted in Figure 5.2. For this simulation, the
initial condition is x(0) =

[
−0.05 0.15

]T
.

Clearly if the system is in open-loop it is unstable (the ball falls) and it is not necessary
to depict its state trajectories. In Figure 5.3, it is possible to notice the performance of the
controller stabilizing the system (5.4)-(5.5), when closing the loop for the given initial condition,
which shows the controller effective.

• Case II – Maximum allowable time-delay

In this case, the purpose is to find, for a given sensor dynamics in the measured velocity coef-
ficient c, the maximum allowed delay τ̄ ∈ [0,h2] such that a controller designed via Theorem 5.1
stabilizes the system (5.4)-(5.5). Several tests have been performed considering G and K fixed
in order to obtain a fixed-gain controller. Also, it is performed tests considering G(%(t)) and
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Figure 5.2: Case I – Time-varying delay.
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Figure 5.3: Case I – Trajectories of x1 and x2 - closed-loop magnetic suspension system.

K(%(t)) depending on the parameter %(t) to obtain a scheduled-gain controller. The result of
this analysis is depicted in Figure 5.4. It can be seen that the scheduled-gain controller presents
better results than a fixed-gain controller.

Remark 5.3

Notice that in this example, the results may be better or, at least achieve less conservative
results, if one searches for another combination for the controller matrix T and scalar ζ.

5.3 chapter conclusions

This chapter investigated the static output-feedback stabilization analyses of time-delayed LPV
systems. Firstly, a novel gain-scheduled static output-feedback stabilization result for LPV time-
delayed systems is stated. It is worth mentioning there is no need to establish a specific structure
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Figure 5.4: Case II - Maximal allowable time delay obtained via Theorem 5.1

to the Lyapunov matrices. Finally, the results presented in the example illustrate the effectiveness
of the proposed SOF control design in Theorem 5.1.





6
CONCLUS IONS AND POSS IBLE FUTURE DIRECTIONS

In this Master Thesis new results for stability and stabilization of Linear Parameter-varying
systems (LPV systems) with polytopic time-varying parameters subject to time-varying delay
have been proposed. The considered parameter-dependent Lyapunov-Krasovskii functional has
been combined with recent relaxations proposed in the literature for time-delayed systems as,
for instance, the Auxiliary function-based integral inequalities for quadratic functions, to esti-
mate the best upper bound to the functional derivative. The new obtained conditions have the
advantage of separating the Lyapunov matrices and the system matrices, making it very suitable
for describing the new stabilization conditions.
Chapter 3 has provided a novel sufficient stability result for state time-delayed LPV systems

employing a parameter-dependent Lyapunov-Krasovskii functional. The use of new relaxations
proposed in the literature for time-delay systems, as the reciprocally convex method combined
with Moon’s inequality, have contributed to achieve less conservative results as discussed in the
examples.
Considering as starting point the novel stability conditions presented in Chapter 3, new LMI-

based conditions to calculate gain-scheduling state-feedback control gains for state time-delayed
LPV systems have been introduced in Chapter 4. The selected augmented vector, which is used
in a new fashion, has contributed to decouple the Lyapunov matrices from the system matrices,
making it easier to obtain the conditions for stabilization.
On the other hand, Chapter 5 has proposed new LMI conditions to compute gain-scheduling

Static output-feedback (SOF) for state time-delayed LPV systems. It is worth mentioning that,
unlike most results found in the literature, the derived LMI conditions do not require additional
procedure to provide numerical tractable solutions.
Finally, this Thesis has presented a few examples to illustrate the effectiveness of the proposed

conditions.

6.1 possible future directions

Following the same strategy proposed in this Master Thesis, new LMI conditions can be derived
to stabilization of similar classes of systems and problems. More specifically, the future directions
of this work can be summarized as follows:

• to employ different bound techniques to upper bound the derivative of the Lyapunov-
Krasovskii functional (LKF). As discussed in Chapter 2, to reduce the conservatism of
stability conditions for time-delayed systems, a few different bounding techniques have
been proposed in the literature in the recent years. These techniques, usually applied in
time-delayed Linear Time-Invariant systems (LTIs), can be extended to deal with time-

47
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delayed LPV systems. The stabilization conditions may also be extended to design H∞

like controllers;

• as pointed out in Chapter 1, to explore alternative Lyapunov–Krasovskii functionals can
lead to less conservative results, for example, the addition of triple integrals. Based on
that, less conservative results can be obtained adding higher order integrals, or exploring
other classes of LKF;

• as the issue of time-delay is of fundamental importance in Networked Control Systems
(NCS), a natural discussion is to extend the proposed approaches to NCS for LPV systems
with time-delays induced along the network.

6.2 submitted journal paper

• L. T. F. de Souza, M. L. C. Peixoto, and R. M. Palhares. “New Gain-Scheduling Control
Conditions for Time-Varying Delayed LPV Systems.” Currently in revision: Journal of the
Franklin Institute (2020).
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A
F IN ITE -D IMENS IONAL LMI RELAXATIONS

The parameter-dependent LMI conditions proposed in Theorem 3.1, Theorem 4.1 and The-
orem 5.1 are assumed to be polynomially parameter-dependent, that is, they are of infinite
dimension. To illustrate how those conditions can be numerically solved, a general scheme to
build finite set of LMIs is given in the sequel.
Consider the multiple summation given by:

Φ(%(t), %̇(t)) =
N∑
i=1

N∑
j=1

%i(t)%j(t)Φij +
N∑
k=1

M∑
l=1

βlh
l
kΦk < 0,

∀%(t) ∈ ΛN , ∀%̇(t) ∈ D . (A.1)

Equation (A.1) is negative definite if

Φii +
N∑
k=1

hlkΦk < 0, i = j = 1, . . . ,N , l = 1, . . . ,M ,

Φij + Φji + 2
N∑
k=1

hlkΦk < 0, i = 1, . . . ,N − 1, j = 1 + 1, . . . ,N , l = 1, . . . ,M ,

where the vectors hl are the vertices of the polytope D given in (2.13). Notice that, the second
part of (A.1), (∑N

k=1
∑M
l=1 βlh

l
kΦk), corresponds to the polytopic representation of the matrices

that depend on the derivative of the time-varying parameter %̇(t). For more details on how to
solve the proposed LMI conditions, see [75].
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