
Universidade Federal de Minas Gerais
Escola de Engenharia

Departamento de Engenharia de Produção

Formulations and algorithms for a
rich production-routing problem

Allexandre Fortes da Silva Reis

Belo Horizonte MG
2020



Allexandre Fortes da Silva Reis

Formulations and algorithms for a
rich production-routing problem

Tese de Doutorado apresentada ao Curso de Engenharia de
Produção da Universidade Federal de Minas Gerais como
parte dos requisitos necessários para a obtenção do grau
em Doutor em Engenharia de Produção.

Supervisor: Prof. Dr. Ricardo Saraiva de Camargo.

Belo Horizonte - MG
13 de novembro de 2020



Reis, Allexandre Fortes da Silva.
R375f                  Formulations and algorithms for a rich production-routing problem 

[recurso eletrônico] / Allexandre Fortes da Silva Reis. - 2020.
                             1 recurso online (xi, 114 f. : il., color.) : pdf.

 
       Orientador: Ricardo Saraiva de Camargo.

                            Tese (doutorado) - Universidade Federal de Minas Gerais,
                     Escola de Engenharia.

                            Apêndices: f. 86-114.

                            Bibliografia: f. 77-85.

                            Exigências do sistema: Adobe Acrobat Reader.
                            

     1. Engenharia de produção - Teses.  2. Logística - Modelos 
matemáticos - Teses. 3. Transportes - Modelos matemáticos - Teses.    4.
Veículos - Teses. 5. Otimização matemática - Teses. I. Camargo, Ricardo
Saraiva de. II. Universidade Federal de Minas Gerais. Escola de 
Engenharia. III. Título.

                                                                                                                CDU: 658.5(043)

 
                            Ficha catalográfica: Biblioteca Profº Mário Werneck, Escola de Engenharia da UFMG



Logotipo
PPGCC

Logotipo
UFMG

UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

FOLHA DE APROVAÇÃO

Formulations  and  algorithms  for  a  rich  production-routing
problem

Aprovada em 13 de novembro de 2020, pela banca constituída pelos membros:

ALLEXANDRE FORTES DA SILVA REIS

Tese  submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-
Graduação em ENGENHARIA DE PRODUÇÃO, como requisito para obtenção do grau de
Doutor em ENGENHARIA DE PRODUÇÃO, área de concentração PESQUISA
OPERACIONAL E INTERVENÇÃO EM SISTEMAS SOCIOTÉCNICOS, linha de pesquisa
Otimização e Simulação de Sistemas Logíst. e de Grande Porte.

Prof(a). Ricardo Saraiva de Camargo - Orientador
UFMG

Prof(a). Gilberto de Miranda Junior
UFOP

Prof(a). Ricardo Poley Martins Ferreira
UFMG

Prof(a). Marcone Jamilson Freitas Souza
Universidade Federal de Ouro Preto

Prof(a). Alexandre Xavier Martins
UFOP

Prof(a). George Henrique Godim da Fonseca
UFOP

Belo Horizonte, 13 de novembro de 2020.

DocuSign Envelope ID: E2778BF1-030C-4578-95A6-C47597199762



Dedico esse trabalho a minha esposa Fernanda, minha mãe Cláudia e irmãs Anna Carolina e
Anna Cláudia, grandes incentivadoras desse caminho. Em especial, ao meu filho Bernardo que
chegou ao final desta caminhada. Aos meus mestres que contribuiram para minha formação e a

todos aqueles que lutam pela educação pública, inclusiva e de qualidade.



Acknowledgements

Agradeço ao meu orientador Prof. Ricardo Camargo, por toda ajuda, dedicação, paciência
e alternativas propostas para o desenvolvimento deste estudo, além de todos os conselhos e apoio
a situações fora deste trabalho.

Aos membros da banca por disponibilizarem seu tempo e por suas valiosas contribuições,
sugestões e suporte ao desenvolvimento de conhecimento.

À minha família, meu maior alicerce, que foram as minhas grandes incentivadoras, me
acompanhando e apoiando em todas as conquistas e momentos, sempre com paciência quando
me ausentei para me dedicar aos estudos. Agradeço à minha amada esposa Fernanda, que ao
longo desses 15 anos, sempre me ofereceu tudo que podia e me deu meu maior presente, nosso
filho Bernardo. À minha fortaleza e mãe Cláudia, que se sacrificou tanto por minhas irmãs e
por mim, não nos deixando faltar nada, sempre presente em nossas vidas e nos lembrando que o
conhecimento é a única coisa que não pode ser tomado de nós. Às minhas queridas irmãs Anna
Carolina e Anna Cláudia por todas as conversas, planos, carinho e amizade. Amo vocês!

Às famílias Fortes, Cota e Matos por todo incentivo e preocupação. Especialmente tia
Anjinha, tio Beto, Vinícius e Vanessa, por sempre me apoiarem tanto, e tia Élida por acompanhar
e incentivar esta caminhada.

Queridos amigos, Leila, Tom, Amanda, Karina, Vinicíus Lage, Gabi, Arthur, Edson,
Júlio, Felipe, Guga e Téis (in memoriam), e especialmente ao Leandro Reis, pelas conversas,
conselhos, estudos, apadrinhamento, sala e caronas divididas.

Aos meus caros colegas da Engenharia de Produção da Universidade Federal de São
João del-Rei, Robson Dutra, Wilson Trigueiro, Guilherme Germano, Lincoln Brandão, Kívia
Nascimento, Roberta Alves e Flávio Napolitano, e demais professores do Departamento de
Engenharia Mecânica e Produção, pelo suporte durante este trabalho.

À Universidade Federal de Ouro Preto, por me formar engenheiro e professor. À Univer-
sidade Federal de Minas Gerais por me conceder ambos graus de pós-graduação com excelência.
À Universidade Federal de São João del-Rei, onde me realizo profissionalmente e recebi apoio
através do PQualis e demais políticas de capacitação.

Ao Magno Silvério, pela imensa ajuda na realização dos testes estatísticos e ao Paganini
Barcelos pelas conversas e ajuda nas análises.

Aos grandes mestres que tive, especialmente, ao professor Gustavo Peixoto Silva pela
iniciação à pesquisa científica.

A todos vocês, o meu muito obrigado!



Fortis Fortuna adiuvat
Publius Terentius Afer (Pliny Epistles 6 16)



Abstract
This work studies a rich production-routing problem, which consists of determining, at minimal
cost, a production and distribution plan for a mix of products to be delivered via routes of hetero-
geneous fleet to supply different demand patterns of scattered clients over time while controlling
the inventory levels at the plant and the customers. The problem still allows back-order deliveries
and limit the riding time of the vehicles. Two formulations were proposed for the problem. Given
that the problem scales quickly with the number of the customers, periods, products and vehicles,
different approaches were devised. First, three hybrid two-level decomposition using a top-down
strategy were developed. The top tier decides the production and inventory levels, and the distri-
bution of goods via CPLEX; whereas the bottom one routes the heterogeneous fleet heuristically
in each period. The methods rely on an iterated local search framework combined with new
perturbations schemes that operate in both tactical and operational levels. At the tactical level,
feasible moves modify the production plans, shifting quantities manufactured between different
periods, while at the operational the perturbations change the routing design. The top-down
algorithms adopt a new implicit cost for the delivered loads, that reflects their influence of over
the production, holding and transportation decisions, providing an important aid in yielding better
solutions. An adaptive matheuristic working with a bottom-up strategy is proposed. It selects
operators to modify the distribution and routing plans, which are reoptimized in the sequence.
The best plans are then fixed for the tactical problem. Finally, a column generation approach is
provided to achieve lower bounds better than the ones attained by the formulations. An ad hoc
labeling algorithm is proposed, and the columns are heuristically priced. The algorithms were
tested over a proposed set of instances and the achieved results found more, better and faster
solutions than CPLEX, where the methods that focus on the operational level reach the best
results. Having the bottom-up algorithm performed better than the others.

Keywords: Iterated local search, Hybrid methods, Matheuristics, Column generation, Production-
routing problem.



Resumo
Este trabalho estuda um problema enriquecido e integrado de produção e roteamento, que consiste
em determinar, a um custo mínimo, os planos de produção e distribuição para um mix de produtos
a serem entregues através de rotas percorridas por uma frota heterogênea para suprir diferentes
padrões de demanda de clientes espalhados ao longo do tempo enquanto controla os níveis de
estoques na planta e nos clientes. O problema ainda permite a postergação das entregas e limita o
tempo de viagem de cada veículo. Duas formulações foram propostas para o problema. Dado
que os problema cresce rapidamente com o número de clientes, períodos, produtos e veículos,
diferentes métodos foram desenvolvidos. Primeiro, são devenvolvidos três métodos híbridos que
decompõem o problema em dois níveis usando uma estratégia top-down. O nível superior decides
os níveis de produção e inventário e a distribuição dos produtos via CPLEX; enquanto o nível
inferior roteia a frota heterogêna heuristicamente para cada período. Os métodos são imbutidos
em um escopo da busca local iterativa combinado com novos esquemas de perturbação que
operam em ambos níveis tático e operacional. No nível tático, movimentos viáveis modificam
os planos de produção, transferindo quantidades produzidas entre diferentes períodos, enquanto
no nível operacional as perturbações alteram o arranjo das rotas. Estes algoritmos top-down
adotam um novo e implícito custo para as cargas entregues, que reflete sua influência sobre
as decisões relativas a produção, inventário e transporte, provendo um importante auxílio no
alcance de soluções melhores. Uma mateurística trabalhando com uma estratégia bottom-up é
proposta. Ela seleciona operadores para modificar os planos de distribuição e roteamento, que
são então reotimizados em sequência. Os melhores planos são então fixados no nível tático do
problema. Finalmente, uma aproximação por geração de colunas e provida para alcançar limites
inferiores melhores do que os obtidos pelas formulações. Um algoritmo de rotulamento ad hoc
é proposto e as colunas são precificadas heuristicamente. Os algorimos foram testas em um
conjunto proposto de instâncias e alcançaram resultados melhores e mais rapidamente do que
o CPLEX, onde os métodos que focam no nível operacional obtiveram os melhores resultados.
Sendo que o algoritmo bottom-up teve desempenho melhor do que os demais.

Palavras-chave: Busca local iterativa, Métodos híbridos, Mateurísticas, Geração de colunas,
Problema de produção e roteamento.
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1

1 Introduction

"True optimization is the revolutionary contribution of modern research to decision processes".

George Dantzig

1.1 Background

Most industries have complex production and logistics systems. These systems usually
process several types of raw materials generating other ones that need to be transferred for the
next echelons of the supply chain. Then, there are periodic decisions to be taken about what to
produce, to store, and to distribute. The challenge to simultaneously make these decisions can be
intimidating. Furthermore, to perform better, companies have also to consider their interactions
with different levels of the logistics network, or to do what is known as supply chain management.
Traditionally in these environments, the decisions about production and transportation have been
made sequentially and independently (DÍAZ-MADROÑERO et al., 2015).

A supply chain integrates operations of manufacturing and logistics to fulfill orders of
clients more effectively and efficiently. During this process, feed-stock coming from suppliers
are converted to intermediate or final products at one or more industrial plants. After this, they
are transported to their final destination being or not stored at intermediary distribution centers
(ALMEIDA, 2015). Due to these facts, an integrated planning system is a powerful tool used
to jointly optimize several decisions thereby, capturing all the benefits of coordination of the
chain (ADULYASAK et al., 2015b), which usually happens in a natural way when the companies
belong to the same group (COELHO et al., 2013).

Even in this context, the Production-Routing Problem (PRP) arises to assist this integrated
decision making. The PRP is relatively recent, and its seminal papers are considered the studies
of Chandra (1993) and Chandra and Fisher (1994), and it can be stated as the combination of two
well-known combinatorial optimization problems, the lot-sizing (LSP) and the vehicle-routing
(VRP). Over a planning horizon, the LSP considers decisions about production, holding, and
distribution of one or more items to a set of geographically dispersed customers. Generally, it
minimizes the costs related to setup, production, storage, and back-ordering (BRAHIMI; AOUAM,
2016). Periodic deliveries capable of satisfying the customer’s demands are realized, and the
VRP is responsible for provides these decisions besides how much to load on each vehicle and
where to send it, developing routes that minimize the related operational cost (SIMCHI-LEVI et
al., 2014).

Due to its relevance, the studies over the PRP have been intensified in the last years. But,
because of the complexity of the problem, the majority of these works are focused on heuristic
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procedures (ADULYASAK et al., 2015b), and models are mostly limited to less complex cases
that consider a single product and homogeneous fleet (MOSTAFA; ELTAWIL, 2015). However,
in real life, many more complex cases exist, but that does not prevent successful examples like
the following already reported in the literature. Brown et al. (2001) presented Kellogg’s case,
where an integrated production and distribution planning system was implemented, leading to
potential savings between $35-40 million. Another example is the decrease of 10% in the logistics
costs achieved by the Frito-Lay company after the implementation of an optimization system
integrating production, inventory, distribution, and routing decisions (ÇETINKAYA et al., 2009).

1.2 Motivation and relevance of this research

The benefits of the integrated decisions are inviting, but they considerably elevate the
complexity of the problem, making the PRP extremely challenging. Aiming to contribute to
fill some literature lacks, this thesis aims to propose a rich PRP, in the sense that the proposed
problem variant considers features that are not usually adopted simultaneously in the literature,
delivering a more complex problem.

To treat this rich PRP, high-performance algorithms are needed. First, considering that
the decisions realized by the PRP are carried out at different organizational levels, the tactical
(production and inventory) and the operational (distribution and routing), hybrid algorithms, of
the solver and heuristics, are proposed. They help to fill this gap in the literature with fast and
precise results. Even linearly relaxed, the proposed problem states as a huge challenge, then this
work also provides a column generation approach with columns heuristically priced. Thus, to
make clear the purposes of this thesis and its contributions, the objectives that guide the work are
presented in the next section, as well as the organization of the thesis in Section 1.4.

1.3 Objectives

The main objective of this work is to propose an innovative and challenging variant of
the production-routing problem. This variant considers simultaneously representative features,
besides efficient approaches to treat it, more specifically:

• To introduce a PRP with back-ordering, multi-products, mixed loads, a heterogeneous fleet,
and a maximum riding time;

• To propose a vehicle-indexed model;

• To propose a two-commodity flow model;

• To solve the proposed problem with a top-down approach;

• To solve the proposed problem with a bottom-up approach;
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• To attain lower bounds via a column generation approach;

In other words, to propose a model closer to reality but providing means to solve it and assessing
the quality of the attained solutions.

1.4 Thesis organization

Chapter 1 introduces the theme of study. Chapter 2 reviews the main works of PRP and its
importance. Chapter 3 presents our proposed models, comparisons between their performances,
and describes the set of used instances, and the impacts of the adopted features in the solutions.
Chapter 4 presents a set of efficient matheuristics, based on an iterated local search framework,
their results, and analysis. These hybrid methods are based on top-down and bottom-up decision
making. Chapter 5 describes the devised columns generation approach to attain lower bounds
for the problem via heuristically priced columns, besides the proposition of an ad hoc labeling
algorithm. Final remarks and an outline for future researches are presented in Chapter 6.
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2 Literature review

“What we know is a drop, what we do not know is an ocean”.

Sir Isaac Newton

2.1 Production-routing problem

Integrated production and distribution planning problems focus on the tactical and opera-
tional decision levels. According to Bard and Nananukul (2010), there are four critical decisions
to be made: (a) how many items to manufacture each day; (b) when to visit each customer; (c)
how much to deliver to a customer during a visit; and (d) which delivery routes to use. We can
also include as a fifth decision, (e) the amount of each product to store at the manufacturer plants
and clients.

The tactical level decides on the production, storage, and back-ordering, whereas the
operational level, determines the product distribution and routing. The production-routing problem
(PRP) optimizes the decision periodically and simultaneously being seen as a combination of the
lot-sizing problem with the direct shipment (LSPDS) and the inventory-routing problem (IRP),
as stated by Adulyasak et al. (2015b). Figure 2.1 (ADULYASAK et al., 2014b) illustrates how
the decisions relate to the involved problems .
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Figure 2.1 – Supply chain planning models.
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The LSPDS encompass decisions on how much a plant produces and dispatches, while
minimizing the respective setup, production, holding, and fixed direct deliveries costs, for all
periods. Network representation is illustrated in Figure 2.2a, where, represented by a square, a
plant is directly connected to its clients. On the other hand, the IRP decides on the routing and
inventory control while neglects the production aspects. Usually, the IRP consists of determining at
a minimal total cost, which products to ship by which routes while controlling their corresponding
inventory levels at the clients (DÍAZ-MADROÑERO et al., 2015). Network representation is
shown in Figure 2.2b (ADULYASAK et al., 2014b), where a warehouse, represented by a bold
hexagon, serves as the start and final points for routes that can visit more than one customer per
period.

t = 1 t = 2 t = T

. . .

. . .

. . .

. . .

. . .

(a) LSPDS

t = 1 t = 2 t = T

. . .

. . .

. . .

. . .

. . .

(b) IRP

Factory

Warehouse
Visited customer
Non-visited customer

Inventory flow
Underlying network

Route

(c) Notation

Figure 2.2 – Network representations of the integrated problems.

For further references on LSP, VRP, and IRP, please refer to the extensive reviews of
Glock et al. (2014), Toth and Vigo (2014), and Coelho et al. (2013), respectively.

The production-routing problem is an integrated operational planning application that
jointly optimizes production, inventory, distribution, and routing decisions to produce an optimal
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solution when considering the total system cost (ADULYASAK et al., 2015b). Its practical
relevance relies upon the savings it grants to a supply chain by efficiently use the available
resources. It is an NP-hard problem as it contains a variant of the VRP (BOUDIA et al., 2007;
ARCHETTI et al., 2011).

A network structure of PRP is illustrated in Figure 2.3a (ADULYASAK et al., 2015b).
A central plant, represented by a bold square, produces a set of items, which are delivered to
satisfy the demands of each client periodically. Both plant and clients have their stocks of finished
products. These inventories can be carried or not through the time horizon while being resupplied.
The distribution is done by a set of vehicles. All these activities have an associated cost.

t = 1 t = 2 t = T

. . .

. . .

. . .

. . .

. . .

(a) PRP

Factory

Non-visited customer
Visited customer

Inventory flow
Underlying network

Route

(b) Notation

Figure 2.3 – Network representation of PRP.

Chandra (1993) is considered the seminal work on the PRP since previous works optimized
production, inventory management, and routing decisions simultaneously but only for one period
at a time, whereas Chandra (1993) did for all the periods at once.

2.2 Basic formulations for the PRP

Accordingly to Adulyasak et al. (2015b), a PRP network is defined on a complete directed
graph G = (N ,A) where N represents the set of the plant and the clients indexed by i ∈
{0, . . . , n} and A = {(i, j) : i, j ∈ N , i 6= j} is the set of arcs. The plant is represented by
node 0 and we further define the set of customers N = N \ 0. Over a finite set of periods
T = {1, . . . , T}, a single product can be manufactured at the plant and delivered by a set of
identical vehicles V = {1, . . . , V } to the customers to satisfy the demands in each period.

The parameters are defined as follows: l is the fixed setup cost, u is the unit production
cost, hi is the unit holding cost at node i, cij is the transportation cost from node i to node j, dti is
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the demand at customer i in period t, C is the production capacity, Q is the vehicle capacity, Ui
is the maximum inventory level at node i, I0

i is the initial inventory at node i. At a given period
t, we further letM t = min{C,∑T

τ=t
∑
i∈N d

τ
i }, and M̃ t

i = min{Ui, Q,
∑
i∈N d

t
i} represent the

maximum quantities to manufacture at the plant node 0 and to deliver at client i, respectively.

The decision variables are described as follows: yt is equal to 1 if there is production at
the plant in the period t, 0 otherwise; pt is the production quantity in period t; I ti is the inventory
at node i at the end of period t; xtij is equal to 1 if a vehicle travels directly from node i to node j
in period t, 0 otherwise; qti is the quantity delivered to customer i in period t; zti is equal to 1 if
customer i is visited in period t, 0 otherwise; zt0 is the number of vehicles leaving the plant in
period t, oti is the load of a vehicle before making a delivery to customer i in period t.

2.2.1 A lot-sizing and vehicle-routing based formulation
This model is based on the basic LSP and VRP formulations. It is also the most compact

one as it contains a polynomial number of constraints. The PRP is formulated with variables
that control the amounts delivered by a homogeneous fleet of vehicles. This model was first
introduced by Bard and Nananukul (2009a).

min
∑
t∈T

(
lyt + upt +

∑
i∈N

hiI
t
i +

∑
(i,j)∈A

cijx
t
ij

)
(2.1)

s.t.:

pt ≤M t
yt ∀t ∈ T (2.2)

It0 = It−1
0 + pt −

∑
i∈N

qti ∀t ∈ T (2.3)

Iti = It−1
i + qti − dti ∀i ∈ N , t ∈ T (2.4)

It0 ≤ U0 ∀t ∈ T (2.5)

Iti + qti ≤ Ui ∀i ∈ N , t ∈ T (2.6)

qti ≤ M̃ t
i z
t
i ∀i ∈ N , t ∈ T (2.7)∑

j∈N
xtij = zti ∀i ∈ N , t ∈ T (2.8)

∑
j∈N

xtji +
∑
j∈N

xtij = 2zti ∀i ∈ N , t ∈ T (2.9)

zt0 ≤ V ∀t ∈ T (2.10)

oti − otj ≥ qti − M̃ t
i (1− xtij) ∀(i, j) ∈ A, t ∈ T (2.11)

0 ≤ oti ≤ Qzti ∀i ∈ N , t ∈ T (2.12)

pt, Iti , q
t
i ≥ 0 ∀i ∈ N , t ∈ T (2.13)

yt, xtij ∈ {0, 1} ∀(i, j) ∈ A, t ∈ T (2.14)

zti ∈ {0, 1} ∀i ∈ N , t ∈ T (2.15)

zt0 ∈ Z+ ∀t ∈ T (2.16)

The objective function (2.1) minimizes the total production, setup, inventory, and routing
costs. Constraints (2.2)-(2.6) represent the lot-sizing part of the problem. Constraints (2.2) ensure
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activation of the production setup capacity constraints while limiting the production lot size to
the minimum value between the production capacity and the total remaining demand. Constraints
(2.3) e (2.4) are the inventory flow balance at the plant and customers, respectively. Constraints
(2.5) and (2.6) limit the maximum inventory at the plant and customers, respectively. The inventory
part of this model is controlled by the so-called maximum level (ML) policy, where the delivered
quantity cannot exceed the maximum inventory level. Constraints (2.7)-(2.12) represent the
vehicle loading and routing constraints. Constraints (2.7) allow a positive delivered quantity only
if customer i is visited in period t. Constraints (2.8) define that each customer can be visited by at
most by one vehicle. Constraints (2.9) are degree constraints. Constraints (2.10) limit the number
of vehicles that can be used. Constraints (2.11) prevent vehicle overloading and the formation of
subtours.

2.2.2 A vehicle-indexed formulation
A formulation with a vehicle index can impose routing constraints on each vehicle

separately. In this formulation, the variables qvti , zvti and xvtij have the same interpretation as qti , zti
and xtij but they are associated with vehicle v only. The main advantage of this formulation
is the possibility to solve the problem with a heterogeneous fleet of vehicles, i.e., a fleet with
different capacities and activation costs. The formulation with a vehicle index is based on the
ones presented by Boudia et al. (2007), Boudia et al. (2008), and it is described as follows.

min
∑
t∈T

(
lyt + upt +

∑
i∈N

hiI
t
i +

∑
(i,j)∈A

cij
∑
v∈V

xvtij
)

(2.17)

s.t.:

pt ≤M t
yt ∀t ∈ T (2.18)

It0 = It−1
0 + pt −

∑
∈V

∑
i∈N

qvti ∀t ∈ T (2.19)

Iti = It−1
i +

∑
∈V

qvti − dti ∀i ∈ N , t ∈ T (2.20)

It0 ≤ U0 ∀t ∈ T (2.21)

Iti +
∑
∈V

qvti ≤ Ui ∀i ∈ N , t ∈ T (2.22)

qvti ≤ M̃vt
i z

vt
i ∀i ∈ N , v ∈ V, t ∈ T (2.23)∑

v∈V
zvti ≤ 1 ∀i ∈ N , t ∈ T (2.24)∑

j∈N
xvtji +

∑
j∈N

xvtij = 2zvti ∀i ∈ N , v ∈ V, t ∈ T (2.25)

∑
i∈S

∑
j∈S

xvtij ≤
∑
k∈S

zvtk − 1 ∀S ⊆ N : |S| ≥ 2, v ∈ V, t ∈ T (2.26)

∑
i∈N

qvti ≤ Qvzvt0 ∀v ∈ V, t ∈ T (2.27)

pt, Iti , q
vt
i ≥ 0 ∀i ∈ N , v ∈ V, t ∈ T (2.28)

yt, xvtij , z
vt
i ∈ {0, 1} ∀i, j ∈ N , v ∈ V, t ∈ T (2.29)
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The objective function (2.17) and constraints (2.18)-(2.25) have the same meaning as (2.1),
(2.2)-(2.9), respectively. Constraints (2.26) are subtour elimination, while constraints (2.27) limit
the maximum carried load by each vehicle.

2.3 Solutions approaches

The PRP has delivered a very high computational challenge since its first publication by
Chandra (1993). Through years, many methods were used to solve it, trying to reach optimally,
feasible solutions, or even to compute lower bounds for further researches.

2.3.1 Heuristics and metaheuristics

Decomposition approaches are among the most intuitive and adopted methods by PRP
literature (ADULYASAK et al., 2015b). Chandra (1993) followed this strategy and presented a
PRP with several products and an unlimited homogeneous fleet to serve client demand partially
or not on the rolling horizon time, but not back-logged. Extending this study, Chandra and Fisher
(1994) developed two approaches, the first problem still is solved separately, whereas, in the
second, it was solved in an integrated manner. For the uncoupled approach the authors used a
derivative method from Barany et al. (1984), and Leung et al. (1989) for production planning. To
solve the routing subproblems, they employed different heuristics such as the sweep procedure
(GILLETT; MILLER, 1974), nearest neighbor (ROSENCRANTZ; STEARNS; LEWIS, 1974) or
feasible insertion (CHANDRA, 1991) to select the overall best. Next, they modified the local
search procedure with a new feasibility test to allow the shifting of the production between periods
while considering the integration of the subproblems. The analysis showed that depending on the
relative scale of the cost parameters, the attained solutions by the methods differed substantially,
from 3% to 20% of the difference in favor of the integrated approach.

Bertazzi et al. (2005) developed a nonlinear programming approach to solve the PRP after
its decomposition. Their method was based on two hierarchical algorithms. The first method was
referred to as VMI-PDP, similar to the one proposed by Chandra and Fisher (1994). It solved the
production subproblem assuming that all the retailers were served daily. For a given production
plan, the distribution subproblem was solved. The production subproblem was solved again with
the updated with the quantities shipped to each retailer. The second was known as VMI-DP.
It firstly solved the distribution plan, fixing sufficient quantities to serve retailers as the initial
production quantity. Next, it solved the production plan. An acyclic network reformulation was
built and determined the shortest path it solved the production problem to optimality, as described
in Lee and Nahmias (1993).

Aiming to maximize the profits, Park (2005) solved a decoupled PRP under the direct
shipment policy with a capacitated fleet. The proposed heuristic was partially based on the local
search done by Chandra and Fisher (1994), and worked transferring loads to earlier periods.



Chapter 2. Literature review 10

There were two phases, first, a production-distribution plan was established and in the second,
improvements of these plans were realized. The improvements were done by consolidating partial
loads and reducing stock-outs at retailers. After established, the production plan was enabled to
change for integrated planning but, it was fixed for decoupled planning.

Boudia et al. (2005) presented a heuristic to solve the PRP separately. The production
plan was solved by the Wagner and Whitin (1958) procedure, and the distribution was defined in
the sequence and optimized with the 2-opt (LIN; KERNIGHAN, 1973). An update was realized
in a manner that the production was determined after the routing, allowing a small integration of
the solution. A benchmark set of instances was proposed considering 20 periods, 50, 100, or 200
clients, homogeneous fleet, one item, and a single-capacitated plant. This set was adopted by
several works, as Boudia et al. (2007), Boudia and Prins (2009), Bard and Nananukul (2009b),
and Adulyasak et al. (2014b).

Lei et al. (2006) solved the maritime PRP with a two-phase heuristic. The problem was
characterized by a single commodity, multiple plants, and a heterogeneous fleet. The first phase
was solved with a commercial solver considering an LSPDS. As the solution of this phase was
always feasible, it served as an upper bound for the solution. Next, in the second phase, the
tactical decisions from the previous phase were fixed, and two heuristics determined the routes
for each vehicle at each plant in each period. The heuristics tested neighbor solutions and built
new ones using the closest neighbor. Good results were achieved in considerable computational
times when compared with the CPLEX, that not even find feasible solutions for some problems.

The PRP allows us to integrate decisions for the production of perishable goods, as Chen
et al. (2009) and Piewthongngam et al. (2013). Chen et al. (2009) assumed that the goods could
not be stored, which required them to formulate the problem with short-term planning decisions
with routing operations. The authors modeled the problem as a non-linear program with a profit
maximization objective function, while considering traveling times between each pair of nodes,
and the service times related to the loading and unloading of goods. They also assumed soft
time windows with penalty costs for the vehicles that arrived late at a node or made them wait
if they arrived. To solve, they decomposed the model into two, one regarding the production
and the other the VRPTW. The production problem held the non-linearity and it was handled
with the Nelder-Mead method with boundary constraints. The resulting solution attained a set
of fixed variables for the VRPTW, an initial solution was found based on the cheapest insertion
algorithm and improved by a 2-opt (LIN; KERNIGHAN, 1973) and Or-opt (OR, 1977) local
search methods.

Piewthongngam et al. (2013) adapted the PRP to a real case of the swine supply chain.
Multiple feel mills supplied swine food for a set of swine farms. The ration could be delivered in
bags, boxes, or both for the clients. These pig farms had to control their inventories to accommo-
date the specific food received. To deliver, each one of the trucks available could operate in a
limited set of clients and must be always fully loaded. As the problem size increased quickly,
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solvers were not able to perform. Then the authors proposed a heuristic that has two parts, the
first to determine the order quantity (based on analysis of the data), the number of trucks required
in each farm group, and the production batch size. The second part was used to arrange the trucks
to service the swine farms. The results compared to the solver were only 5% worst, but much
faster.

Hein and Almeder (2016) studied and solved a PRP approach named capacitated lot
sizing and supply-side vehicle routing problem. In this problem, there were many suppliers, each
providing just one product, to only one customer. The suppliers had limited production capacity
and the fleet was composed of a set of limited homogeneous vehicles. They incorporated the
just-in-time (JIT) philosophy, with an inventory equal zero at the end of each period. As the idea
was to consume the input material per period, the replacement cannot be classified as ML or OU.
The first step solved the CLSP in two different scenarios, considering and not the JIT inventory
policy. While the second was an IRP or VRP, accordingly with the presence of JIT, respectively.
The problems were solved using the commercial solver IBM CPLEX. The study showed that
companies that follows JIT may expect higher gains from coordinated plans.

Absi et al. (2014) designed a two-phase iterative mixed-integer program (MIP) based
heuristic to solve the uncapacitated version of the problem. TheMIPwas reformulated by replacing
the variables and costs of the routing component in the original model with approximated fixed
costs for the visitation of the retailers. After solved, it obtained the production, inventory, and
customer visit decisions. Next, a routing heuristic was called. When compared their results with
Archetti et al. (2011) and Adulyasak et al. (2014b), their algorithm outperformed both. But, this
work was outperformed in both solutions and gaps by the studies of Solyalı and Süral (2017) and
Russell (2017).

Solyalı and Süral (2017) worked with a five-phase heuristic. It first solved a huge TSP
considering the plant and retailers. With this information, the second step defined the production
quantities, the retailers that must be visited, and the delivered quantities, using a MIP. After, the
routes were found with the resolution of a Capacitated Vehicle Routing Problem (CVRP). To
improve the routing, another MIP was solved allowing the insertion or removal of retailers from
the routes and alterations over the production planning. The last phase solved a TSP for each
vehicle to improve their routes.

Russell (2017) adopted a matheuristic that considered predetermined or seeded routes.
The approach with predetermined routes relied on a set partitioning formulation, where the routes
were previously generated with artificial demands. The solution to this problem served as an input
for a reactive tabu search, which improved the solution by using exchange moves. The last phase
employed a multi-iteration improvement search that estimated the insertion of retailers for each
period. The seeded routes method estimated the cost of inserting some retailers on a vehicle. This
insertion calculated the saving to cluster clients, very similar to the Clarke and Wright (1964).

Miranda et al. (2018) and Qiu et al. (2018b) divided their problem into an LSP and VRP,
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in which the former was solved by a solver whereas the latter heuristically. Miranda et al. (2018)
presented a formulation with products sharing the production line during some periods. Their
objective function minimized the costs related to the setups of interchanging products on the
production line, to holding inventory at the plant, and to the routing of vehicles. Their clients
were served only one time over the planning horizon. The first phase solved a lot-scheduling
with direct shipments problem (LSDSP) which also allocated customers to the routes. Next,
routing decisions were made by solving a multi-trip VRP with time-windows. Customers could
be reallocated between routes if the movement kept the feasibility of the solution while improving
it. The method achieved near-optimal solutions when compared with CPLEX.

Qiu et al. (2018b) applied a skewed general variable neighborhood search and guided
variable neighborhood descent (GVND) (HANSEN; MLADENOVIĆ, 2001) to the delivery and
routing variables, respectively. During the construction phase, a production-distribution problem
was solved near optimality. Then, Clarke and Wright (1964) algorithm was applied to obtain a set
of routes that were improved by GVND. The method outperformed existing methods on solving
benchmark instances of Archetti et al. (2007), Boudia et al. (2007).

Due to the combinatorial nature of the PRP, the Tabu Search (TS), proposed by Glover
(1986), plays an important role in some approaches. Van Buer et al. (1999) studied a newspaper
PRP with a short-term planning horizon in which an extremely perishable good could not be
stored. To solve it, they proposed a non-linear programming approach with an objective function
that minimized the total travel time instead of the holding and routing costs. Multiple trips per
period by the same vehicle were allowed, and they also considered the use of the empty trucks
at the end of the routes to perform recycling pickups to obtain further cost savings. Two local
search algorithms, TS and Simulated Annealing were applied to solve it. The initial solution
was obtained by a heuristic combined with a neighborhood search with full insertion moves for
lots and trucks. Through computational experiments with real data of a newspaper producer, the
authors conclude that the use of recycling pickups impacted more on the objective function that
the incorporation of better local searches.

Bard and Nananukul (2009b) adopted a three-phase approach based on a Reactive Tabu
Search (RTS) to solve the PRP. An allocation model with the VRP constraints dropped was used
to find good starting feasible points for the RTS, followed by a CVRP subroutine. Swap moves
examined two customers in two consecutive periods to exchange the maximum possible number
of goods between these two customers. Transfer moves found quantities to be delivered to a
customer that was combined with deliveries from previous periods to reduce the transportation
costs. The moves that led to an improved solution were stored in a tabu list. Infeasible solutions
were not allowed during the search. After a solution was found, the path relinking search was
applied to improve the results. Lower bounds for the optimum were obtained by solving the linear
programming relaxation of the allocation model. Bard and Nananukul (2009a) extended their
work to investigate an IRP with production decisions. Their approach minimized the costs for



Chapter 2. Literature review 13

transportation, production setup, holding costs at the factory, and at the customer sites through
the determination of production quantity, inventory at plant and customers, delivery quantity,
and routing. A branch-and-price algorithm was used to solve, with the columns being generated
to the master problem periodically. They devised a three two-step heuristics for solving the IRP
component. The first step determined the quantity to be delivered to each customer in each period.
The second step planned the routes by an adjustable VRP tabu search. They solved instances with
up to 50 clients within one hour.

Shiguemoto and Armentano (2010) proposed a TS algorithmwith a relaxation mechanism
that allowed the evaluation of infeasible solutions to guide a solution search by jointly contemplat-
ing the production and setup costs. Only the vehicle capacity was allowed to be violated during
the searching process, but not for the final solution. The initial solution was constructed using
an initial inventory and production plan to meet the demand exactly, to be then routed. Their
TS algorithm had a short and long-term memory which forbade certain moves and solutions
previously visited.

Armentano et al. (2011) proposed a TS with a path relinking search for the PRP. The
initial solution was created by setting delivered quantities equal to demands and applying two
algorithms based on savings: the Wagner and Whitin (1958) for the production, and Clarke and
Wright (1964) for routing. The neighborhood search moves were similar to the ones made by
Bard and Nananukul (2009b), but allowing a combination of quantities to be delivered for future
periods only. During every iteration, linear programming optimized the production and inventory
quantities at the plant. The local search used the maximum number of iterations. Two algorithms
were devised, the first used only short-term memory, and the second used a path relinking to
diversify the search within long-term memory.

Boudia et al. (2007) used a greedy randomized adaptive search procedure (FEO; RE-
SENDE, 1989) on a problem with a single plant and product, delivered by a homogeneous
limited fleet. A two-phase algorithm created production and delivery plans period-by-period.
The algorithm shifted some deliveries on the time horizon to achieve a compromise between
setup and storage costs at the plant. They used an adaptation of the Wagner and Whitin (1958)
algorithm. For that, for each period, the Clarke and Wright (1964) saving algorithm was used to
create the routes. The local search step applied 3-opt, inserting, and swapping neighborhoods
improved the initial solution. To further improve the routes, a path relinking procedure was also
developed (BOUDIA et al., 2008).

Approaches using the adaptive large neighborhood search (ALNS), see Ropke and Pisinger
(2006), also achieved good results. Adulyasak et al. (2014b) were the first to use it for the PRP.
An initial phase treated the production and routing variables separately and generated a pool
of solutions. Next, an ALNS improved these solutions using the selection and transformation
operators. These operators handled the setup and routing decisions with an enumeration scheme
and upper-level search. After fixing these variables, the continuous ones were adjusted by solving
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a minimum cost flow problem. New solutions were accepted using a simulated annealing (SA)
criterion. Extensive computational experiments were performed on benchmark instances from
Boudia et al. (2005) and Archetti et al. (2011). The proposed algorithm generally outperformed
the existing heuristics at that time and produced high-quality solutions within short computational
times.

Belo-Filho et al. (2015) addressed a case with perishable goods also adopting the ALNS
and SA acceptance criterion. They assumed that the shelf life of the perishable goods was shorter
than the planning horizon enforcing then a periodic serving time-window or and interval in which
a client was restricted to be served. An initial solution was constructed via the concept of first to
come, first to serve, prioritizing earlier time windows. The results were compared with CPLEX
to be near-optimal solutions.

Some authors also experimented with nature-based heuristics, for example, Boudia and
Prins (2009). They solved a problemwith a single plant and product. The plant had limited capacity
and a homogeneous fleet to serve clients without delay. The authors used a memetic algorithmwith
population management, and it simultaneously dealt with production and distribution decisions.
An initial population was created with a heuristic procedure that first set a production plan for
each period equal to the total demand. Then, a savings heuristic was used to generate the delivery
and production plans, adjusted by a Wagner and Whitin (1958) algorithm. The next step generated
new offsprings through a crossover. The local search of Boudia et al. (2007) was chosen to
improve the offsprings, while population management was used to accept new solutions only if
they improved the current one.

Calvete et al. (2011) considered a bi-level approach wherein the first level problem was
solved as a multi-depot vehicle routing problem (MDVRP), while the second having the routing
variables fixed decided on how much to produce in each plant. They solved the problem using an
ant colony algorithm which first found a feasible solution for MDVRP using the nearest neighbor
heuristic. Then the pheromone trail was updated for the arcs and, while the lower level decided
the amounts to be produced by each plant and delivered to each retailer.

Kumar et al. (2016) incorporated time windows and the reduction of carbon footprint to
the PRP. The authors modeled the problem as a bi-objective problem. Also, they incorporated a
fleet of identical and capacitated vehicles. The population was represented as chromosomes that
were under mutation and crossover operations. The algorithm ran over a set of real instances of
the United Kingdom that were analyzed. To solve, they used both a self-learning swarm particle
optimization (SLSPO) and NSGA-II, wherein most of the cases the SLSPO outperformed the
NSGA-II.

Hybrid algorithms also have their space with the PRP, mixing the quality of both methods,
the speed of heuristics with the determinism of the exact approaches. Bard and Nananukul (2010)
introduced a heuristic based on a branch-and-price framework using the restricted master problem
and subproblems. They added fixed costs per delivery made to a customer and developed a two-
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phase approach to design a reactive tabu search algorithm. In the first part of Phase I, an initial
solution was found by solving an allocation model that determined customer delivery quantities.
In the second part, these values become the demand for T independent routing problems, where
T was the number of periods in the planning horizon. An efficient CVRP subroutine was called to
find the solutions. In Phase II, a neighborhood search was performed to improve the allocations
and routing assignments found in Phase I. The results obtained by performing computational
experiments using the benchmark instances by Boudia et al. (2005) showed improvements in
all cases which range from 10% to 20% if compared to those obtained by the previous GRASP
procedure of Boudia et al. (2007). However, it was emphasized the increase up to 5 times in the
running times.

Archetti et al. (2011) discussed the PRP under the ML and OU policies and developed a
hybrid heuristic to solve the problem. Focused on the PRP with uncapacitated production and a
single capacitated vehicle, the algorithm was composed of three successive steps. A distribution
problem was solved assuming infinite production capacity at the plant. This plan provided which
quantities must be delivered at each period to the customers. Next, the production plan sought
to minimize holding and production costs. The improvement and last phase iteratively removed
and reinserted two retailers as long a new and best solution was found. They also studied single
retailers and single-vehicle variants, besides developing a branch-and-cut approach similar to
that of Archetti et al. (2007) to solve them.

Considering a two-level supply chain with multiple items, production sites, and client
areas and a discrete-time horizon, Melo and Wolsey (2012) proposed two formulations, whereas
the second one provided better bounds and was used by a heuristic. The MIP heuristic proposed
first solved the linear relaxation of the strong formulation and used its solution to generate a
neighborhood. This neighborhood fixed the values of some integer variables, and the MIP was
solved again considering only the set of neighbors generated. The method was tested considering
sales and its absence, as defying capacities for the production. The major conclusion was that for
a multi-commodity problem was that tighter was the capacity harder was to reach an optimal
solution or to get close.

Introduced by Pochet and Wolsey (2006), the heuristics relax-and-fix (RF) and fix-and-
optimize (FO) gained prominence to solve production-routing problems. These methods usually
decompose the PRP period by period, sequentially by production and routing problems or
combining periods and problems. Brahimi and Aouam (2016) used the RF to build a solution
for the lot-sizing problem, and a record-to-record local search to optimize routes and make
adjustments to the lot sizes, if necessary. Their heuristic outperformed the solver, solving the two
formulations proposed while providing good solutions in a few minutes. The formulations differed
where the first was a classical aggregate LSP and the second was based on a facility location
problem. The second formulation showed itself stronger than the first but resulted in a non-linear
model which were linearized. These authors were the first to address the PRP considering the
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possibility of the backorder.

Watanabe et al. (2017) used the RF to find an initial solution and the FO to improve it.
Their problem was described following the vehicle-indexed formulation from Armentano et al.
(2011). The RF partitioned took the binary variables which indicate production and distribution
to apply the decomposition. The FO procedure adopted these decomposition schemes, and this
procedure was repeated up to the last subset of variables was solved. Promising results were
found for instances with up to 30 customers, but beyond that, neither the heuristics nor CPLEX
was capable to solve.

Neves-Moreira et al. (2019) solved a large multi-perishable-item problem considering
time-windows for a real meat producer with a three-phase FO methodology, The first phase
simplified the problem dimensions trying to decrease the number of products, locations, and
routes. It was done aggregating products with similar characteristics and low demands into sets of
minor priority and clustering retail nodes with close geographical coordinates. The second built
an initial solution to the problem, decomposing into one lot-sizing and many inventory routing
problems. The last phase solved the IRP cluster by cluster and the disaggregating the products
for the LSP with three strategies of decomposition for the FO: (i) periodically each VRP cost, (ii)
each product LSP and (iii) local PRP, for each cluster.

2.3.2 Exact methods

Metters (1996) addressed the inter-dependency between transportation and production
in the United States Postal Service. They only considered inventories at the production plants
(regional and central post office and distribution facilities) as the routing component was related
to outsourced partners, and the clients were not contemplated. So, the decision variables were
representing inventory levels, their corresponding warehousing costs were not included in the
objective function, which included fixed costs per vehicle used in each route. The approach also
allowed to remove low potential or infeasible routes based on the areas that they were. It was
done analogously to the "cluster-first, route-second" proposed by Fisher and Jaikumar (1981).

Jolayemi and Olorunniwo (2004) developed a deterministic model for planning production
and transportation quantities in multi-plant and multi-warehouse environments with extensible
capacities. The extensions of capacity could occur at warehouses on any period, if necessary.
The distribution was accounted for direct shipments from depots to customers. Their model
determined the product mix that maximized the total profit, and it was solved to optimality using
the solver LINDO in a set of real data instances.

Bard and Nananukul (2010) proposed an RMP and subproblem formulations for the
PRP and developed a branch-and-price procedure. Their subproblem was the delivery schedule
generator, which decomposed into a VRP for each period. At each branching node, starting from
the initial solution, variables in the RMP were fixed and column generation was performed to
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add variables to the RMP and solve it again until an optimal solution was found. The branching
process went until a new optimal solution was attained to the original problem. A new branching
rule for dealing with an unstudied form of master problem degeneracy, reducing the effects of
symmetry, obtained feasible solutions by combining a rounding heuristic and TS.

Ruokokoski et al. (2010) explored different lot-sizing reformulations for the PRP with
uncapacitated production and a single non-capacitated vehicle to determine their efficiency.
The stronger LSP reformulations relied on facility location and shortest path reformulations,
similar to Boudia et al. (2007), where the vehicle index was dropped and the subtour elimination
constraints were replaced. The authors also strengthened these formulations with two families
of valid inequalities, proposing a new heuristic separation algorithm for the generalized comb
inequalities and adapted a heuristic algorithm from the literature to find high-quality integer
feasible solutions.

Adulyasak et al. (2014a) introduced multi-vehicle PRP formulations with and without
vehicle-index to solve the problem under both the maximum level (ML) and order-up-to-level
(OU) (COELHO et al., 2013) inventory replenishment policies. An initial solution and upper
bound was provided by an ALNS procedure (ADULYASAK et al., 2014b). The formulation
was strengthened the inventory constraints, breaking symmetry, generalized fractional subtour
elimination, and others, while the model was solved under a branch-and-cut (B&C) algorithm.
The vehicle-indexed formulation outperformed the non-vehicle-index one, offering better lower
bounds at root node as overall gaps. They also performed tests using multi-core processors, which
reduced the elapsed time but increased the number of B&B nodes.

Adulyasak et al. (2015a) were the first to solve the PRP under demand uncertainty.
They chose the Benders (1962) decomposition in a B&C scheme. The problem received two
formulations, called two-stage and multi-stage decision processes. The difference between them
was that for the two-stage problem, the demands for the entire planning horizon become known
once the first-stage decisions were done, while for the multi-stage problem, the demands for a
given stage become known only after the decisions for all previous stages have been made. After
each formulation was decomposed using the Benders’ method, each subproblem was solved at
the B&B nodes generating cuts for the master problem. The computational results show that,
for both the two-stage and the multi-stage problems, the B&C was efficient in handling small
instances with a small number of scenarios while the Benders-based B&C with the enhancements
outperformed the B&C on larger instances and particularly on instances with a large number of
scenarios.

Qiu et al. (2018a) proposed a formulation for the PRP considering time-windows. They
strengthened the formulation replacing the MTZ constraints (MILLER; TUCKER; ZEMLIN,
1960) and introduced four more families of cuts. This formulation was solved using a B&C
algorithm which solved the model at each node disregarding the generalized capacity and path
constraints. A heuristic combined the ideas of large neighborhood search, local search, tabu



Chapter 2. Literature review 18

search, and simulated annealing, and accelerated the solution process. After the tests, results
showed an increase of lower bounds by the root node as the reduction of CPU times.

Darvish et al. (2016) worked together a company that produced and sold furniture. They
decided to approach only online customers, as other deliveries were made for stores. In this
way, only the factories had an inventory which also allowed the exchange of products among
themselves. The company had an outsourced partner that make the deliveries, then the distribution
was treated with a proportional cost to the delivered quantity per period. With real data, they were
able to create different situations to analyses the size of the time windows, costs, and capacities of
production and storage. Although they did not find optimal solutions using a B&B algorithm, the
gap was less than 3% and much better than the methods used by the company. The total savings
reach between 4% and 14% of total costs.

Senoussi et al. (2016) approached the problem using the concept of supply chain man-
agement, whereas there was only one supplier, with limited production capacity and infinity
inventory limit. The customers must have their demands satisfied periodically. They unconsidered
distance between retailers and used a major fixed cost each vehicle to travel to some customers’
clusters. Two formulations were proposed, one based on basic lot-sizing, and the other relied on
the idea of echelon stocks. Both were strengthened with six valid inequalities and solved using a
commercial solver. Despite the good results, especially after the addition of cuts, the approaches
would not be suitable for very large instances of the problem.

There is also a concern about the impact of supply chain activities over the environment,
like carbon footprints and green/reverse logistics. A PRP approach with carbon and cap trade was
proposed by Qiu et al. (2017) which also accepted partial delivery with lost-sales. They assumed
emissions generated by both echelons, production-inventory, and routing, rewriting the objective
function with a linear approximation that considered the proportional carbon price. They solved
the problem using a branch-and-price (B&P) algorithm based on Dantzig and Wolfe (1960)
decomposition, while the branching was realized over the variables of visit, setup, and connection.
The pricing was solved through subproblem using an elementary shortest path labeling algorithm.
Their approach proved capable to reduce simultaneously emissions levels of carbon dioxide and
operational costs.

Fang et al. (2017) investigated a PRP with a reverse logistic approach under the reduction
of carbon emissions also considering simultaneous pickup and delivery. They proposed an arc-
flow-based model that was solved with a guided branch-and-cut (B&C) method. The authors
adopted the same approximation for a carbon price as Qiu et al. (2017). During the execution of
the guided B&C, three families of valid inequalities were added to the root node of the search
tree. The first strengthens the size of delivery and pickup lots, the second the routing constraints,
and the last the inventory quantities. The approach reached most of their bounds under 1%.

Qiu et al. (2018) studied a PRP under reverse logistics and remanufacturing conditions.
The solution method was closely related to Fang et al. (2017), with a guided B&C. The generated
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valid inequalities were based on the residual delivery requests by customers and as a consequence
the number of visits, at each period. Their main results show that high pickup requests turn the
algorithm more effective and the optimal solutions were insensitive to the remanufacturing depot
location.

Darvish, Archetti and Coelho (2018) worried about the carbon and other gas emissions,
evaluated the IRP and PRP under the minimization of three different objective functions: total
costs, routing costs, or emissions. A B&C algorithm was used to solve the total cost and distance
minimization objectives. For the minimization of emissions, and enhanced exact algorithm called
Variable MIP Neighborhood Descent (VMND) (LARRAIN; COELHO; CATALDO, 2017) was
used, with the B&C working within. To guide these evaluations some business key performance
indicators were adopted. One of the main results was that to perform deliveries with a vehicle
lighter was an important factor in reducing emissions.

2.3.3 Lower bounds approaches

The study from Fumero and Vercellis (1999) proposed a Lagrangian relaxation for a
variant of the PRP, where unit transportation costs were assumed. The idea was to decompose the
LSP and a multi-commodity flow VRP into four subproblems (production, inventory, distribution,
and routing). The authors dualized the inventory and vehicle capacity constraints, then they could
solve the product and inventory subproblems by inspection, the distribution using a solver, and
the routing with a heuristic.

Solyalı and Süral (2009) developed a Lagrangian relaxation approach to obtain lower
bounds based on the multi-commodity flow to solve the PRP with the order-up-to level policy. To
compute the lower bounds, the authors used a set of subproblems. The first was called ORDER
and involved only lot-sizing and setup variables. To make it tighter two sets of inequalities
were proposed, one for ensuring that the amount of product ordered do not exceed the maximum
requirement of customers less the initial inventory, and the other stipulates that the total amount of
product to be ordered to supplier up to period t should be at least the total of minimal requirements
of retailers less the initial amount at the supplier. The second subproblem was the SINV and it
consisted of only inventory variables of the supplier with non-negativity constraints. The third
was DIST and involved routing variables and periods. Five sets of inequalities were added to the
subproblem involving strengthened the routing decisions. The fourth and last subproblem was
RET that contained variables concerning delivered amounts to retailers as the inventory levels
of retailers. It decomposed into N separate single retailer problems which could be solved by
the shortest path problem with resource constraints (FEILLET et al., 2004). However, the lower
bounds obtained by this approach were weak compared to the case where the unit transportation
costs are used as in Fumero and Vercellis (1999). On the instances with 8 customers and 5 periods,
the lower bounds produced by the Lagrangian relaxation had an average deviation of 33.16%
from the optimal value.
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2.4 Summary of the papers

Tables 2.1 and 2.2 summarize the information about the reviewed papers. As can be seen,
the problem has received more attention in the past twelve years (2009-2020) that can be perceived
by the presence of 32 of the 47 works belonging to this interval. We adopted classifications about
production, inventory, distribution, and routing characteristics. Production may have single or
multiple plants and products, as some capacity to the size of the lot. Inventory may also be limited
and works with maximum level or order-up-to policies (COELHO et al., 2013). Distribution
considers if the delivered loads can be realized by different vehicles in a given time-period t and
if the demand can be back-ordered to a future period. Routing shows if the fleet is homogeneous
or heterogeneous concerning the capacity and if its number of vehicles is unlimited, limited,
single, or multiple (DÍAZ-MADROÑERO et al., 2015). Solution distinguishes if the adopted
approach was exact, heuristic or metaheuristic, or hybrid that blends exact and heuristics in
someway. The heuristics and metaheuristics approaches have a major role to solve the PRP as 35
of 48 works reviewed use them or combine with some exact method. When Table 2.1 and 2.2 are
observed, it is clear that there is a lack of works considering the idea of back-ordering deliveries
and routing characteristics as a heterogeneous fleet. Also, hybrids methods that take advantage of
the combinations of mathematical procedures and heuristics have not been explored. Our work
follows this direction proposing a formulation and algorithms to contribute to filling these gaps.
As we far know, four reviews about the PRP were done by Reimann et al. (2014),Adulyasak et al.
(2015b),Díaz-Madroñero et al. (2015) and Mostafa and Eltawil (2015), where more details can
be found about the papers published.
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AUTHORS
CHARACTERISTICS

PRODUCTION INVENTORY DISTRIBUTION ROUTING SOLUTION

Plants Product Capacity Policy Capacity Partial Back-ordering Vehicles Fleet Capacity Type Approach

Chandra (1993) S M x ML yes no U HO x HR Decomposition
Chandra and Fisher (1994) S M x ML yes no U HO x HR Decomposition

Metters (1996) S S x - no no U HE x EX Mixed integer programming (MIP)
Fumero and Vercellis (1999) S M x ML yes no L HO x HR/LB Lagrangian Relaxation

Van Buer et al. (1999) S M - yes no M HO x HR Tabu Search/Simulated Annealing
Jolayemi and Olorunniwo (2004) M M x - x no no - O - EX LINDO®

Park (2005) M M x ML x yes no U HO x HR Decomposition
Boudia et al. (2005) S S x ML x no no L HO x HR Decomposition
Bertazzi et al. (2005) S S ML x no no M HO x HR Decomposition

Lei et al. (2006) M S x ML x yes no L HE x HR Decomposition
Boudia et al. (2007) S S x ML x no no L HO x HR GRASP
Boudia et al. (2008) S S x ML x no no L HO x HR Decomposition

Boudia and Prins (2009) S S x ML x no no L HO x HR Memetic heuristic
Bard and Nananukul (2009a) S S x ML x no no L HO x HR/LB Branch-and-price
Bard and Nananukul (2009b) S S x ML x no no L HO x HR Tabu Search

Chen et al. (2009) S M no no M HO x HR Decomposition
Solyalı and Süral (2009) S S OU x no no L HO x HR/LB Lagrangian Relaxation

Bard and Nananukul (2010) S S x ML x no no L HO x HR/LB Branch-and-price/Heuristic
Ruokokoski et al. (2010) S S ML no no S HO EX Branch-and-cut

Shiguemoto and Armentano (2010) S M x ML yes no M HO x HR Tabu Search
Archetti et al. (2011) S S ML/OU x no no S HO x HY Branch-and-cut/Heuristic

Armentano et al. (2011) S M x ML x no no L HO x HR Tabu Search
Calvete et al. (2011) M S x - - no no M HO x HR Ant Colony

Melo and Wolsey (2012) S S ML x no no M HO HR MIP heuristic
Piewthongngam et al. (2013) M M x ML x no yes M HE x HR Decomposition

Absi et al. (2014) S S ML x no no M HO x HR Iterative MIP Heuristic

(S) single, (M) multiple, (ML) maximum level, (OU) order-up-to, (HO) homogeneous, (HE) heterogeneous, (U/L) (un)limited, (O) outsourced, (EX) exact, (HR) heuristic or metaheuristic, (LB) lower bounds, (HY) hybrid

Table 2.1 – Summary of the reviewed papers - Part 1.
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AUTHORS
CHARACTERISTICS

PRODUCTION INVENTORY DISTRIBUTION ROUTING SOLUTION

Plants Product Capacity Policy Capacity Partial Back-ordering Vehicles Fleet Capacity Type Approach

Adulyasak et al. (2014a) S S x ML/OU x no no M HO x HY Branch-and-cut/Adaptive large neighborhood search
Adulyasak et al. (2014b) S S x ML x no no M HO x HR Adaptive large neighborhood search
Adulyasak et al. (2015a) S S x ML/OU x no no M HO x HY Benders decomposition/Branch-and-cut
Belo-Filho et al. (2015) M M x - x no no M HO x HR Adaptive large neighborhood search
Hein and Almeder (2016) M M - no no M HO x EX Decomposition

Kumar et al. (2016) S S x ML x no no M HO x HR SLPSO/NSGA-II
Senoussi et al. (2016) S S x OU x no no L HO x EX CPLEX®

Brahimi and Aouam (2016) S M x ML x no yes L HO x HR Relax-and-Fix
Darvish et al. (2016) M M ML x no no - O - EX Branch-and-bound
Darvish et al. (2017) S S x ML x no no S HO x EX Branch-and-cut
Watanabe et al. (2017) S M x ML x no no L HO x HY Relax-and-Fix/Fix-and-Optmize
Fang et al. (2017) S S x ML x no no S HO x EX Branch-and-cut
Qiu et al. (2017) S S x ML x yes no M HO x EX Branch-and-price
Russell (2017) S S x ML x no no M HO x HY MIP-based metaheuristic

Solyalı and Süral (2017) S S x ML x no no M HO x HR Five-phase heuristic
Watanabe et al. (2017) S M x ML x no no L HO x HY Relax-and-Fix/Fix-and-Optmize
Miranda et al. (2018) S M x ML x no no M HE x HY Decomposition
Qiu et al. (2018) M S x ML x no no M HO x EX Branch-and-cut
Qiu et al. (2018a) S S x ML x no no M HO x EX Branch-and-cut
Qiu et al. (2018b) S S x ML x no no M HO x HY Skewed general variable neighborhood search

Neves-Moreira et al. (2019) S M x ML x no no M HE x HR Fix-and-Optmize
This study - Chapter 4 S M x ML x no yes M HE x HY Iterated local search matheuristics
This study - Chapter 5 S M x ML x no yes M HE x HY/LB Column generation

(S) single, (M) multiple, (ML) maximum level, (OU) order-up-to, (HO) homogeneous, (HE) heterogeneous, (U/L) (un)limited, (O) outsourced, (EX) exact, (HR) heuristic or metaheuristic, (LB) lower bounds, (HY) hybrid

Table 2.2 – Summary of the reviewed papers - Part 2.
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3 Formulations for a rich production-
routing problem

"Fortuna favors the bold".

Publius Terentius Afer

Some production-routing variants have characteristics that are usually not considered
together when modeled, e.g., a heterogeneous fleet, multiple products, or back-order. When
considered separately, they result in problems that fall short from reality. Nonetheless, combining
them all leads to a challenging and complex problem seldom approached in the literature, which
is here addressed.

The problem consists of determining at the minimal total cost, a production and dis-
tribution plant that fulfills periodic demands of multiple products by different clients while
controlling the inventory levels at the production plant and clients, observing the production
capacity, allowing back-orders for the unfilled demands in a timely fashion, and assuming a
heterogeneous capacitated fleet with a maximum riding time to deliver the products in each
period of the planning horizon. The total cost is made up of production and distribution related
costs. The former includes the production, setup, holding, and inventory costs, while the latter
accounts for the vehicle fixed and routing costs. From this point forward, the proposed problem
will be identified as a rich production-routing problem (RPRP).

The problem relies upon the following notations and definitions. Let T = {1, . . . , T}
be a set of finite and discrete planning horizon. Let N = {1, . . . , n} be the set of clients that
are supplied by a plant with products of the set P = {1, . . . , P}. Each client i ∈ N demands
dtik ≥ 0 units of product k ∈ P in period t ∈ T . Let also N = {0} ∪ N be the set of nodes with
the plant labeled 0, and its copy n+ 1.

Every time period t ∈ T the plant manufactures product k ∈ P while respecting
production capacity Ck, it incurs in setup lk and unitary uk costs. A product k ∈ P can be stored
at the plant or clients up to the limit of Uk

i ,∀i ∈ N units but incurring in an unitary holding cost
htik for each period t ∈ T . Every time the demand of client i ∈ N for product k ∈ P can not be
filled in a timely fashion in a time period t ∈ T , the unfilled quantity can be back-ordered but at
the unitary cost Bk

i .

A limited heterogeneous fleet, given by setting V = {1, . . . , V } of vehicles, delivers the
products by means of routes that start at the plant (0) and end in its copy (n+ 1) at the end of
each time period t ∈ T . Every vehicle v ∈ V that starts a route in a time period t ∈ T incurs
in an activation cost ev, and a routing cost associated with the used arcs of the directed graph
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G = (N0,A) in which N0 = N ∪ {n + 1} and A = {(i, j) : i, j ∈ N0, i 6= j}. Every arc
(i, j) ∈ A has a routing cost cij > 0 and a traversing time aij > 0. To unload the products from
the vehicles at the clients it takes a total of si units of service time.

To easy the reading, Table 3.1 lists the parameters of the problem with parametersM t
k

and M̃ vt
ik representing the maximum quantities to manufacture and deliver of the product k ∈ P

to client i ∈ N using vehicle v ∈ V in period t ∈ T , respectively. Here, we propose two different
formulations for the problem.

Table 3.1 – Problem parameters.

Notation Meaning

Ck, lk, uk The production capacity, setup and unitary costs of product k ∈ P
Uki , h

k
i , B

k
i The inventory capacity, holding and back-order costs of product k ∈ P for client i ∈ N

ev, Qv The cost and capacity of each vehicle v ∈ V
cij , aij The connection costs and traveling times of each arc (i, j) ∈ A
H, si The maximum riding time and service times of each customer i ∈ N
dtik The periodic demand of each client i ∈ N of product k ∈ P in period t ∈ T

M
t

k = min{Ck,
∑
i∈N

∑T
e=t d

e
ik},∀t ∈ T , k ∈ P

M̃vt
ik = min{Uki , Qv,

∑T
e=t d

e
ik},∀i ∈ N , k ∈ P, v ∈ V, t ∈ T

3.1 A vehicle-indexed formulation

A vehicle-indexed formulation is here proposed. This model extends the one of Section
2.2.2 to our RPRP. It uses the following decision variables. The production variables are ytk ∈
{0, 1} is equal to one if a setup is realized to manufacture ptk ≥ 0 units of product k ∈ P in
period t ∈ T , zero, otherwise. Variables I tik ≥ 0 indicates the inventory level for product k ∈ P
at node i ∈ N in period t ∈ T . Variables btik ≥ 0 represents the quantity of the unfilled demand
for product k ∈ P at node i ∈ N in period t ∈ T . The aforementioned are production related
variables. The routing counterpart variables are: variable gvt ∈ {0, 1} is equal to one if vehicle
v ∈ V is set to serve the clients’ demands of period t ∈ T , zero, otherwise. Variable zvti ∈ {0, 1}
is equal to one if client i ∈ N is visited by vehicle v ∈ V to deliver qvtik ≥ 0 units of product
k ∈ P in period t ∈ T , zero, otherwise. Finally, variable xvtij ∈ {0, 1} is equal to one if arc
(i, j) ∈ A is used by vehicle v ∈ V in period t ∈ T , zero, otherwise, while variable wvtij ≥ 0
represents the arrival time at node j ∈ N′ of vehicle v ∈ V after traversing arc (i, j) ∈ A in
period t ∈ T . To facilitate the representation, Table 3.2 lists the decision variables.
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Table 3.2 – Decision variables of the vehicle-indexed formulation.

Notation Meaning

btik ≥ 0 The quantity back-ordered at customer i ∈ N of product k ∈ P at period t ∈ T
Itik ≥ 0 The inventory level at node i ∈ N of product k ∈ P at final of period t ∈ T
ptk ≥ 0 The quantity of product k ∈ P manufactured at period t ∈ T
qvtik ≥ 0 The quantity of product k ∈ P delivered to customer i ∈ N at period t ∈ T using vehicle v ∈ V
wvtij ≥ 0 The arrival time at node j ∈ N0 after vehicle v ∈ V traverses arc (i, j) ∈ A at period t ∈ T

gvt ∈ {0, 1} It is equal to one if vehicle v ∈ V perform a route at period t ∈ T , zero, otherwise
xvtij ∈ {0, 1} It is equal to one if arc (i, j) ∈ A is used by vehicle v ∈ V at period t ∈ T , zero, otherwise
ytk ∈ {0, 1} It is equal to one if the product k ∈ P is manufactured at period t ∈ T , zero, otherwise
zvti ∈ {0, 1} It is equal to one if node i ∈ N is visited by vehicle vehicle v ∈ V at period t ∈ T , 0 otherwise

min
∑
t∈T

{∑
k∈P

[
lkytk + ukptk +

∑
i∈N

hki I
t
ik +

∑
i∈N

Bki b
t
ik

]
+

∑
v∈V

[
evgvt +

∑
(i,j)∈A

cijx
vt
ij

]}
(3.1)

s.t.:

ptk ≤M
t

ky
t
k, ∀k ∈ P, t ∈ T (3.2)

It0k = It−1
0k + ptk −

∑
i∈N

∑
v∈V

qvtik , ∀k ∈ P, t ∈ T (3.3)

Itik = It−1
ik +

∑
v∈V

qvtik − dtik + btik − bt−1
ik , ∀i ∈ N , k ∈ P, t ∈ T (3.4)

Itik ≤ Uki , ∀i ∈ N , k ∈ P, t ∈ T (3.5)

qvtik ≤ M̃vt
ik z

vt
i , ∀i ∈ N , k ∈ P, v ∈ V, t ∈ T (3.6)∑

k∈P

∑
i∈N

qvtik ≤ Qvgvt, ∀v ∈ V, t ∈ T (3.7)

∑
v∈V

zvti ≤ 1, ∀i ∈ N , t ∈ T (3.8)

zvt0 + zvtn+1 = 2gvt, ∀v ∈ V, t ∈ T (3.9)∑
i∈N

xvt0i = zvt0 , ∀v ∈ V, t ∈ T (3.10)

∑
i∈N

xvti,n+1 = zvtn+1, ∀v ∈ V, t ∈ T (3.11)

∑
(i,j)∈A

xvtij = zvti , ∀i ∈ N , v ∈ V, t ∈ T (3.12)

∑
(j,i)∈A

xvtji = zvti , ∀i ∈ N , v ∈ V, t ∈ T (3.13)

wvt0i = a0ix
vt
0i , ∀i ∈ N , v ∈ V, t ∈ T (3.14)∑

(i,j)∈A

wvtij −
∑

(j,i)∈A

wvtji =
∑

(i,j)∈A

(si + aij)xvtij , ∀i ∈ N , v ∈ V, t ∈ T (3.15)

0 ≤ wvtij ≤ Hxvtij , ∀(i, j) ∈ A, v ∈ V, t ∈ T (3.16)

ptk, I
t
ik, b

t
ik, q

vt
ik ≥ 0, ytk ∈ {0, 1}, ∀i ∈ N , k ∈ P, v ∈ V, t ∈ T (3.17)

gvt, zvti ∈ {0, 1} ∀i ∈ N , v ∈ V, t ∈ T (3.18)

xvtij ∈ {0, 1}, wvtij ≥ 0, ∀(i, j) ∈ A, v ∈ V, t ∈ T (3.19)
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The objective function (3.1) minimizes the production, setup, holding, back-ordering,
fleet, and routing costs, respectively. Constraints (3.2) limit the quantity to be produced for
each item either the plant’s production capacity for that item or its total remaining demand
for the horizon planning. Constraints (3.3)-(3.5) control the inventory level of each product in
each period. For each product k ∈ P , both constraints (3.3) and (3.4) guarantee the balance
of the inventory level at the end of period t ∈ T at the plant and customers, respectively. The
maximum inventory levels at the factory and clients are stated by (3.5). The distribution and
routing constraints are given by (3.6)-(3.16). The delivery lot size of each item k ∈ P for each
client i ∈ N in each period t ∈ T is limited by constraints (3.6). While constraints (3.7) assure
that the vehicles’ capacity is not exceeded. Constraints (3.8) limit the maximum number of times
that a client i ∈ N is visited per period t ∈ T , while constraints (3.9) stipulates that if a vehicle
v ∈ V leaves the plant node 0 it must return to its node copy n + 1. Constraints (3.10)-(3.13)
are the degree related constraints for the plant, its node copy, and the clients visited by the same
vehicle v ∈ V in a period t ∈ T . Proposed by Bianchessi et al. (2018), constraints (3.14)-(3.16)
bound the riding time of the vehicle while eliminating subtours. The vehicle’s arrival time at the
clients after leaving the plant is defined by (3.14), while constraints (3.15) balances the vehicles’
time continuity. Constraints (3.16) bound the vehicles’ maximum riding time. The remaining
constraints (3.17)-(3.19) are variable domain related. It is here that the back-orders at the last
period are equal to zero just as done by Brahimi and Aouam (2016). For simplicity, we call this
formulation VINDX.

3.2 A two-commodity flow formulation

A two-commodity flow formulation based on Baldacci et al. (2009) is proposed. This
formulation allows the omission of the vehicle index by rewriting the routing and distribution
constraints for the heterogeneous fleet as a two-commodity flow pattern. As far as we know, it is
the first time that such a modeling strategy is extended to the PRP.

To formulate using such flow pattern, we associate each vehicle v ∈ V with its own plant
node copy resulting in set V+ = {n + 1, n + 2, . . . , n + V }. We also introduce a new set of
nodesN+ = {0}∪N ∪V+, i.e.,N+ = {0, 1, 2, . . . , n, n+ 1, n+ 2, . . . , n+V } and arcsA+ =
{(i, j) ∈ N+×N+ : i 6= j ∧ (i, j) /∈ {0}×V+∪V+×{0}}. Note that there no arcs connecting
the plant and its copies, and vice-versa. We also define parameterQ = maxv∈V{Qv} to represent
the largest vehicle capacity, and redefine M̃ t

ik = min{Q,Uk
i ,
∑T
τ=t d

τ
ik}, ∀i ∈ N , k ∈ P , t ∈ T .

To design the routes without the vehicle indexes, we introduce a new set of flow variables
f tij ≥ 0 to represent either the total amount of flow traversing arc (i, j) ∈ A+ in period t ∈ T or
the residual capacity of the vehicle when using arc (j, i) ∈ A+. Here variables qtik, zti , wtij and
xtij still have the same meaning as before, but with the vehicles’ indices suppressed. To avoid
using the vehicle activation variables gvt, we redefine the costs cij with the help of the function
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π(i) = i − n to return the vehicle associated to the plant node copy i ∈ V+. We assume that
the vehicle leaves its node copy and moves towards the plant node 0. Hence, the costs for the
new arcs (i, j) ∈ A+ with i ∈ V+ are set to cij = eπ(i) + c0j to properly compute the vehicles’
activation cost. The remaining arcs retain their previous cost. Given the aforementioned, the
two-commodity flow formulation, for short, can be written as follows.

min
∑
t∈T

{∑
k∈P

[
lkytk + ukptk +

∑
i∈N

hki I
t
ik +

∑
i∈N

Bki b
t
ik

]
+

∑
(i,j)∈A+

cijx
t
ij

}
(3.20)

s.t.:

ptk ≤M
t

ky
t
k, ∀k ∈ P, t ∈ T (3.21)

It0k = It−1
0k + ptk −

∑
i∈N

qtik, ∀k ∈ P, t ∈ T (3.22)

Itik = It−1
ik + qtik − dtik + btik − bt−1

ik , ∀i ∈ N , k ∈ P, t ∈ T (3.23)

Itik ≤ Uki , ∀i ∈ N , k ∈ P, t ∈ T (3.24)

qtik ≤ M̃ t
ikz

t
i , ∀i ∈ N , k ∈ P, t ∈ T (3.25)∑

(v,j)∈A+

f tvj =
∑
k∈P

∑
i∈N

qtik, ∀t ∈ T (3.26)

∑
i∈N

f ti0 = 0, ∀t ∈ T (3.27)

∑
(i,j)∈A+

(f tji − f tij) = 2
∑
k∈P

qtik, ∀i ∈ N , t ∈ T (3.28)

∑
(i,j)∈A+

(f tji + f tij) = 2Q, ∀i ∈ N , t ∈ T (3.29)

f tij + f tji = Q(xtij + xtji), ∀(i, j) ∈ A+, t ∈ T (3.30)

f tvj ≤ Qπ(v)xtvj , ∀v ∈ V+, j ∈ N , t ∈ T (3.31)∑
j∈N

xtvj ≤ 1, ∀v ∈ V+, t ∈ T (3.32)

∑
v∈V+

∑
j∈N

xtvj −
∑
i∈N

xti0 = 0, ∀t ∈ T (3.33)

∑
(i,j)∈A+

xtij = zti , ∀i ∈ N , t ∈ T (3.34)

∑
(j,i)∈A+

xtji = zti , ∀i ∈ N , t ∈ T (3.35)

wtvj = a0jx
t
vj , ∀v ∈ V+, j ∈ N , t ∈ T (3.36)∑

(i,j)∈A+

wtij −
∑

(j,i)∈A+

wtji =
∑

(i,j)∈A+

(si + aij)xtij , ∀i ∈ N , t ∈ T (3.37)

0 ≤ wtij ≤ Hxtij , ∀(i, j) ∈ A+, t ∈ T (3.38)

ptk, I
t
ik, b

t
ik, q

t
ik ≥ 0, zti , ytk ∈ {0, 1}, ∀i ∈ N , k ∈ P, t ∈ T (3.39)

xtij ∈ {0, 1}, wtij ≥ 0, ∀(i, j) ∈ A+, t ∈ T (3.40)

The objective function (3.20) is similar to (3.1) but now with the vehicle indices sup-
pressed and the vehicles’ activation cost embedded within the costs cij,∀(i, j) ∈ A+. Constraints
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(3.21)-(3.25) have the same meaning as constraints (3.2)-(3.6).

Constraints (3.26)-(3.31) define a feasible flow pattern. Constraints (3.26) ensure that
the total amount to be delivered leaves the plant through the vehicles’ associate plant node copy.
Constraints (3.27) guarantee that the vehicles return to the plant node 0 empty. Constraints (3.28)
and (3.29) state that the difference of inflows and outflows and their sum at a client node i ∈ N
in a time period t ∈ T is equal to twice the amount delivered and the largest vehicle capacity
Q, respectively. Constraints (3.30) define the relationships between flow and routing variables.
They guarantee that the sum of the flow traversing an arc (i, j) ∈ A+ and the vehicles’ residual
capacity represented by the flow going in the opposite direction is equal to the vehicle’s capacity
if any of the forward or reverse arcs are connecting nodes i and j,∀i, j ∈ N+, is used. The
inequalities (3.31) allow flows traversing an arc (i, j) ∈ A+ only if that arc is activated in a route,
and limits the maximum flow leaving the artificial node i ∈ V+ to the corresponding vehicle’s
capacityQv, v = π(i) = i−n. Constraints (3.32) limit the maximum number of vehicles leaving
a plant node copy v ∈ V+. The remaining constraints (3.33)-(3.40) have the same meaning of
the VINDX formulation but with the vehicles’ indices suppressed. Formulation (3.20)-(3.40) is
named henceforth as 2COMM.

To illustrate and clarify the routing modeling part of the aforementioned formulations,
Figure 3.1 exemplifies two routes with vehicles’ capacities Q1 = 105, Q2 = 100 to serve six
clients with their respective delivery lots (qvi or qi) for a period.

Figure 3.1a illustrates a vehicle-indexed solution in which labels 0 and 7 represent the
plant node and its copy. For sake of representation, we show variables qvtik as qvi to indicate the
size of the delivery lots. In solid blue arrows, we can see the route of the first vehicle leaving the
plant 0 fully loaded and visiting customers 5, 6, 1 and 3, before returning to the plant copy 7. In
dash-and-dotted red arrows, the second vehicle, with 81 units of load, visiting customers 4 and 2,
before its return to 7.

Figure 3.1b shows a two-commodity flow solution. As previously defined, we have
Q = max{Q1, Q2} = Q1 = 105. Here, the two vehicles leave their respective plant copies,
nodes 7 and 8, to visit the client nodes before returning to the plant node 0. The dotted blue and
red arrows show the routes for both vehicles and their loads when traversing an arc. Reversed
dashed arrows display the residual "artificial" capacity of the vehicles. Note that the sum of a
forward arc and its reverse counterpart is exactlyQ. Furthermore, observe also that the difference
between the inflow and outflows, and their sum are equal to twice the amount delivered, and
twice the value of Q, respectively, for each client.

Unfortunately, both formulations have poor linear programming relaxation bounds due
to the big-M constraints such as (3.2), (3.6), (3.21) and (3.25), that, associated with the fact
that both formulations scale very quickly with the number of clients, vehicles, products and
periods, and that the problem is NP-Hard, limit their applicability to small instances only. Hence
our motivation to devise hybrid methods capable of reaching good upper bounds in reasonable
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computational times, while a column generation approach computes lower bounds. Chapter 4
presents three top-down and one bottom-up ILS-based matheuristics. Chapter 5 introduces a
column generation approach, that combines a compact formulation as a master problem with
columns heuristically priced, besides the introduction of a pricing algorithm.
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(a) Vehicle-indexed solution.
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(b) Two-commodity flow solution.

Figure 3.1 – Example of routing solutions.
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3.3 Generation of instances

As far as we know, no set of benchmark instances gathers simultaneously all the necessary
information for our formulation and algorithms, then they were generated using as a basis the
works of Coelho and Laporte (2013) and Brahimi and Aouam (2016). We developed 108 instances,
varying four main aspects: (1) numbers of retailers (n = 10c, c ∈ {2, . . . , 5}), (2) number of
periods (T ∈ {5, 10, 15}), (3) number of products (P ∈ {3, 5, 7}) and (4) number of available
vehicles (V ∈ {7, 9, 11}).

Parameters and costs were drawn from discrete uniform distributions within intervals
shown in Table 3.3. Two different intervals were used to characterize low and high levels of
demands. We assumed as in Brahimi and Aouam (2016) that the initial back-order and inventory
at the clients were equal zero, and the clients’ first-period demand, respectively. The codes to
generate and read the instances are all available at https://tinyurl.com/rprp-instances, and in
Appendix A. To ease the identification, the instances are labeled from 1 to 108, accordingly to
Table B.1.

Table 3.3 – Parameters and costs values.

Values Meaning

xi, yi ∈ [0, 1000], ∀i ∈ N The node coordinates
dt

ik ∈ [0, 25] or dt
ik ∈ [30, 55],∀(i, k, t) ∈ {N ,P, T } The clients’ periodic demand

I0
0k ∈ [100, 150], ∀k ∈ P The plant initial inventory

Ck = nAk, Ak ∈ [50, 140], ∀k ∈ P The production capacity
uk ∈ [2, 8], lk = 104uk, ∀k ∈ P The production setup and unitary costs

Uk
i = κFk : Fk ∈ [140, 190], κ ∈ {2, 3, 4},∀(i, k) ∈ {N ,P} The holding capacity

hk
0 ∈ [1, 5], hk

i ∈ [6, 10], ∀(i, k) ∈ {N ,P} The holding costs
Bk

i = γhk
i , γ ∈ {8, . . . , 12},∀(i, k) ∈ {N ,P} The back-order costs

D =

⌈∑
t∈T

∑
k∈P

∑
i∈N

dt
ik

|T |

⌉
The average demand per period

ev ∈ [500, 1000], Qv ∈ 2D
T V

[0.8, 1], ∀v ∈ V The vehicles’ cost and capacity
cij = round(

√
(xi − xj)2 + (yi − yj)2),∀(i, j) ∈ A The traveling costs
aij = cij , ∀(i, j) ∈ A The traveling times

H = 6000 The maximum riding time
si = 50, ∀i ∈ N The client’s service time

3.4 Bounds comparisons

Before we proceed to the devised methods, we analyze the bounds obtained for the
generated instances when the VINDX and 2COMM formulations are solved by CPLEX 12.9.
The experiments were performed on an Intel® Xeon™ CPU E5-2687W v3 @ 3.10GHz computer
with 160 GB of RAM and running Ubuntu Linux 18.04. The formulations were coded in C++
using the CPLEX 12.9 Concert technology.

We first examined how the CPLEX performed on solving the 108 instances with a time-
stopping criterion of 21600 seconds or six hours. Tables B.2-B.7 report the attained results. They
show the obtained upper (UB) and lower (LB) bounds, the percentage gaps between the UB and

https://tinyurl.com/rprp-instances
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the linear programming relaxation (LP GAP%), the optimality gaps between the UB and LB, the
total number of nodes explored by the branch-and-bound tree, and the total number of nodes left
until the reaching of the stopping criterion.

To compare the formulations, a benchmark profile (Figure 3.2) is performed with respect
to the upper bounds (UB) achieved by CPLEX on solving the 108 instances but set to stop after
six hours of execution. Performance profiles are graphic tools that aid to evaluate and compare
the performance of a set of algorithms on solving a set of problems over a given performance
measure, more details can be found in Dolan and Moré (2002). The 2COMM (solid and blue
lines) formulation outperformed the VINDX (dashed and magenta lines) obtaining the best upper
bounds for 98% of them after six hours of which, 12 were optimal. The VINDX formulation
found valid upper bounds for only 87 of the instances. These solution values are up to 25% worse
than those found by 2COMM. The smallest, average, and largest attained optimality gaps for the
2COMM (VINDX) formulation were 0.62% (2.49%), 15.11% (36.68%), and 41.25% (76.27%),
respectively.
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Figure 3.2 – Benchmark profile for the attained upper bounds.

The 2COMM formulation outperformed the VINDX one on reaching the best lower
bounds (LB) for all instances. To allow a comparison of these lower limits, we analyze the linear
programming gaps (LP GAP). Figures 3.3a-3.3d illustrates the attained LP GAP for all the 108
instances, considering from the smaller to the larger. The LP GAP is calculated for each instance
considering the percentage of the difference between the upper bound (integer solution) and the
lower bounds (relaxed solution) divided by the upper bound, as shown in Equation 3.41.

LPGAP (%) = UB − LB
UB

% (3.41)

Observing Figure 3.3, it is clear that 2COMM (blue boxes) provides tighter bounds than VINDX
(magenta boxes), and comparing their average linear programming gaps, the 2COMM achieved
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30,55% against 53,23% of the VINDX. Due to the superior performance of the 2COMM formu-
lation, the outlined methods presented in Chapters 4-5 are compared to it.
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Figure 3.3 – Comparison of the linear programming gaps for the proposed formulations.
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3.5 Impacts of back-ordering and a heterogeneous fleet

Back-order and heterogeneous fleet are not features commonly found in PRP studies.
Given that a regular PRP already packs a large number of complicating assumptions, the presence
of further certainty hinders not only the solution of a test instance but the development of
algorithms as well. Nevertheless, their presence bridges the applicability gap of such solution
frameworks.

In industrial applications, back-orders represent a risk of losing sales or even some
patrons, but when judiciously allowed, they pose as to reduce the delivery or inventory costs.
However, determining the quantities that can be back-ordered without negatively impacting costs
or substantially affecting the current production plan is a non-trivial task. Moreover, delivery
fleets can be owned or outsourced, and may not always be homogeneous.

To illustrate how these aspects influence the obtained solutions and their costs, we solved
instance P20n3p10t9v with 2COMM formulation considering four cases: (a) no back-ordering
and homogeneous fleet, (b) no back-ordering and heterogeneous fleet, (c) back-ordering and
homogeneous fleet, and the proposed RPRP considering (d) back-ordering and heterogeneous
fleet. The data about the solution values can be found in the Section B.3, and some metrics are
presented in the Table 3.4, further discussed.

Table 3.4 – Solutions’ comparison among the cases (a), (b) and (c) with (d).

Cases
Metrics (a) (b) (c)
Holding costs -25,57% -22,75% -2,43%
Back-ordering costs 100,00% 100,00% 100,00%
Traveling costs -5,03% -1,73% -10,13%
Vehicle activation costs 18,01% -1,95% 14,80%
Total cost -2,14% -2,75% 1,16%
Activated vehicles -4,08% 0,00% -8,16%

Table 3.4 presents the percentage difference among the aforementioned cases (a),(b), and
(c) when compared with the proposed RPRP, represented by case (d). There, negative values
imply that a worse metric value was obtained when compared with case (d), used as a reference.
For the tested cases, all of them obtained the same setup and production costs, which does not
interfere in the following analysis. Observing the back-ordering cost metric, it shows that the
three alternatives do not incur in such kind of cost, even in the case (c), when it is allowed. But,
it can lead to the false idea of savings. The absence of back-ordering incurs higher traveling and
holding costs, as well as the total cost, for all three alternative cases. When properly accounted
for, as here modeled, it helps in achieving lower total costs.

Furthermore, the use of a homogeneous fleet can lead to longer traveled distances, and a
larger number of vehicles required over the periods for cases (a) and (c). These settings most
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definitely raise environmental concerns, as highlighted by Fang et al. (2017), Qiu et al. (2017),
and Qiu et al. (2018). Another important aspect to observe is how the routing design can be
influenced without the back-order or with a homogeneous fleet. In Figure 3.4, routing solutions
for the same period are illustrated. These solutions were obtained with a stopping criterion of
six hours. For each case, the square node represents the plant, while the circle ones the clients.
Except for Figure 3.4d, Figures 3.4a-3.4c reach solutions with an elevated presence of longer and
overlapping edges, suggesting that the absence of the proposed back-ordering and heterogeneous
fleet features can produce solutions with higher quality.

(a) (b)

(c) (d)

Figure 3.4 – Back-order and heterogeneous fleet impacts over the routing solutions.
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4 Efficient matheuristics to solve a rich
production-routing problem

"Divide and rule".

Julius Caesar

4.1 Introduction

Due to the difficulty to solve the RPRP with the proposed formulations, this chapter
outlines four hybrid algorithms. Hybrid methods seek to blend the speed of heuristics with the
determinism of the exact methods. Such a solution framework is normally called a matheuristic.
Matheuristic approaches explore mathematical programming techniques in (meta)heuristic frame-
works or on granting to mathematical programming approaches the cross-problem robustness
and constrained-CPU-time effectiveness which characterize metaheuristics (CASERTA; VOSS,
2009).

They devised algorithms work in a two-level decision making within an iterated local
search (ILS) framework (LOURENÇO; MARTIN; STÜTZLE, 2003). These levels are tactical,
which is responsible for the production, inventory plans, and operational plans of the distribution
and routing. Three of the proposed hybrid methods follow a top-down hierarchical approach,
presented in Section 4.6.1. The fourth approach adopts a bottom-up decision approach, outlined
in Section 4.6.2. They share a set of characteristics that are presented in Sections 4.2, 4.3, 4.4,
and 4.5.

4.2 Building a solution

Algorithm 4.1 provides a new, or initial, solution based on the problem information and
on the parameter ∆ to the top-down methods. It constructs a feasible plan for the tactical problem
and then proposes delivery routes for each period. Throughout the execution of the algorithm, the
parameter ∆ = [∆vt

ik],∀i ∈ N , k ∈ P , v ∈ V , t ∈ T is a vector of estimated costs, and plays an
important role. The meaning of ∆vt

ik is that each unit of the delivery lots qvtik has an indirect cost
over the production, inventory, and transportation decisions since it affects or is affected by them.

To find an initial solution for the problem, Algorithm 4.1 computes ∆vt
ik as shown in

Equation (4.1). The visitation cost ∆i is calculated as in Qiu et al. (2018b). The other components
consider how much it costs to transport a unit by each vehicle v ∈ V thorough the fraction ev/Qv,
and if produced, whether this unit is stored either at the plant or the customer. The parameter
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ω ∈ [1,maxWeight], belonging to a discrete and uniform distribution, adds a random component
to the problem to help to escape non-promising search areas.

∆vt
ik = ω

(
∆i + ev

Qv
+ min{uk + hk0, u

k + hki }
)
, ∀i ∈ N , k ∈ P, v ∈ V, t ∈ T (4.1)

Algorithm 4.1: Build and optimize
Data: Problem information, costs ∆

1 q ← BuildAndSolve(PIv(∆));
2 VRt ← ∅;
3 for t ∈ T do
4 vr(qt)← BuildVRP(qt);
5 VRt ← VRt ∪ {NRS(vr(qt))};
6 end
7 s← PIv ∪VRt;
8 return s

Algorithm 4.1 solves in line 1 the top tier problem PIv with the indirect costs ∆vt
ik, as

written in (4.2)-(4.4) via CPLEX. The variables and constraints of formulation (4.2)-(4.4) have
the same meaning as before, please see Table 3.2 for the meaning of the variables. Note that with
the adoption of ∆ it is possible to solve PIv even without the visitation (z) and vehicle activation
(g) binary variables, since ∆ carries routing information. It eases the resolution by the solver.

min
∑
t∈T

{∑
k∈P

[
lkytk + ukptk +

∑
i∈N

hki I
t
ik +

∑
i∈N

(
Bk
i b
t
ik +

∑
v∈V

∆vt
ikq

vt
ik

)]}
(4.2)

s.t.: (3.2)− (3.5)∑
k∈P

∑
i∈N

qvtik ≤ Qv,∀v ∈ V, ∀t ∈ T (4.3)

0 ≤ qvtik ≤ M̃vt
ik ,∀i ∈ N , k ∈ P, v ∈ V, t ∈ T (4.4)

Given the to-be-delivered loads qt per product in each period t to the clients i, that are
provided by PIv, they are concatenated into qti = ∑

k∈P
∑
v∈V q

vt
ik . Next, the VRt problem is

initialized (Alg. 4.1, line 2), it corresponds to the set of the independent routing solutions for the
periods t ∈ T .

For each period, the BuildVRP function generates feasible routes vr(qt) (Alg. 4.1, line 4).
It is done via randomly selected constructive methods chosen within the following: the Clarke-
Wright (CLARKE; WRIGHT, 1964) savings heuristic (parallel or sequential, see Lysgaard
(1997)); the sequential-lexicographic and load-ordered insertions. For all these methods, the
vehicles with the largest capacities are filled first. The reason for using these four constructive
methods is to allow diversification in the search space In line 5, the routing solution vr(qt) is
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improved by the procedure neighborhood routing search (NRS), described in Section 4.3, and
added the resulting routing solution added to VRt.

Thought the first constructive routing methods are well known in the literature, the last
two are proposed by this study. The Sequential-lexicographic insertion starts from a node defined
as 1, and tries to add it to a vehicle v, considering the feasibility of vehicle capacity and riding
time. The procedure investigates all customers until no further client can be added to v. When a
vehicle is full or reaches the maximum riding time ofH , a new vehicle is activated. The procedure
stops when all retailers are allocated. The load-ordered insertion algorithm takes the individual
lots qi of each node i and orders them from largest to smallest. The largest loads are then added
iteratively to the largest vehicle available until no further additions can be done.

For instance, suppose that there are five retailers N = {i1, . . . , i5} with delivery lots
equal to q1 = 3, q2 = 2, q3 = 4, q4 = 2, q5 = 1, respectively, and that there are two vehicles
V = {v1, v2}with capacities equal to Q1 = 7,Q2 = 5 are available. The sequential-lexicographic
solution would be vehicle v1 visiting retailers i1, i2 and i4, while vehicle v2 visits i3 and i5. Now, for
the load-ordered insertion procedure, the attained solution would be vehicle v1 visiting retailers
i3 and i1, while vehicle v2 visits i2, i4 and i5.

Algorithm 4.2 explains how the initial solution for the bottom-up method is obtained.
It starts defining the objective function of the best solution as a large enough value (line 1). In
order to achieve better results, the initial solution function generates different initial solutions
(lines 2 to 9). A solution s is generated with the Algorithm 4.1, and if it is better than the current
s∗, it is retained (line 4). Now, to allow different arrangements, the ∆ set of coefficients at the
production-inventory problem PIv are updated with the information of s∗ using the Equation
(4.8), at line 8. This process is repeated until the stop criterion is met, which for this case is
running for up to twenty minutes.

Algorithm 4.2: Bottom-up initial solution
Data: Problem information, costs ∆

1 f ∗ ← +∞;
2 while stop criterion is not met do
3 s← Build and optimize(∆); //Alg. 4.1
4 if f ∗ > f(s) then
5 s∗ ← s;
6 f ∗ ← f(s);
7 end
8 ∆← Update∆(s∗); //Sec. 4.5
9 end

10 return s∗;
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4.3 Neighborhood routing searches

The procedure NRS showed in Algorithm 4.3 applies a set of routing local searches on
a given solution. It is based on the random variable neighborhood descent (RVND) procedure
(SOUZA et al., 2010; PENNA; SUBRAMANIAN; OCHI, 2013), which prevents method fa-
voritism, and applies each routing local search as neighborhood structure. The combination of
the aforementioned constructive routing heuristics with the following neighborhood routing local
searches achieved good upper bounds with reduced computational effort and running times.

First, set RS of inter-route searches is created (line 1). While this set RS is not empty, i.e.,
while solution improvements are obtained (lines 2-10), a inter-route local search rs is randomly
chosen from the set RS and applied on vr(qt) (line 4). In the case of improvement, an intra-route
search procedure is performed (line 6). Otherwise, local search rs is removed from the set rs (line
8).

Algorithm 4.3: Neighborhood routing search (NRS)
Data: vehicle routing solution vr(q)

1 RS← inter-route local search list;
2 while RS 6= ∅ do
3 rs← random(RS);
4 vr′(q)← InterRoute(rs, vr(q));
5 if f(vr′(q)) < f(vr(q)) then
6 vr(q)← IntraRoute(vr′(q));
7 else
8 RS← RS \ {rs}
9 end

10 end
11 return vr(q);

The adopted routing local searches may be separated into two groups, intra-route, and
inter-routes (KYTÖJOKI et al., 2007). Every time an improvement is found by some inter-route
method, a set of intra-route heuristics is applied (Alg. 4.3, line 6). They are organized in an RVND
strategy but only employed on modified routes by the inter-route procedures. Intra-route local
searches work reordering the visited nodes by each route, and we used five: the 1, 2 or 3-point
move, 2 or Or-opt, with Or=3,4,5. Groër et al. (2010) describe them as follows, the 1-point move
relocates an existing node into a new position (Fig. 4.1a), the 2-point move swaps the position
of two nodes (Fig. 4.1b), the 3-point move swaps the position of a pair of adjacent nodes with
the position of a third node (Fig. 4.1c), the 2-opt move removes two edges from the solution and
replaces them with two new edges (Fig. 4.1d), the Or-opt move removes a string of two, three, or
four nodes and inserts the string into a new position (Fig. 4.1e).
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(a) 1-point move. (b) 2-point move. (c) 3-point move.

(d) 2-opt move. (e) Or-opt move.

Plant
Exchanged clients

Visited clients

Old arcs

New arcs

(f) Notation

Figure 4.1 – Examples of intra-route local searches.

For the inter-route neighborhood structure, we adopted seven well-described moves by
Penna, Subramanian and Ochi (2013). They are the Shift(1,0), Swap(1,1), Shift(2,0), Swap(2,1),
Swap(2,2), Cross, and K-Shift (K=3,4,5) and they work selecting two different routes and ex-
changing or allocating customers between them. These moves are realized only if the new route
arrangement is feasible and improves the routing cost. The moves are illustrated in Figure 4.2.
Figure 4.2a shows an initial arrangement for the example, with route r1 in dashed and blue
arrow and route r2 in dotted and red arrows, while the notation is presented in Figure 4.2i. In
the Shift(1,0) move, a customer i is transferred from route r1 to route r2 (Figure 4.2b). Move
Swap(1,1) picks a client i from route r1 and a client j from route r2 and exchange them (Figure
4.2c). In Shift(2,0) move, two adjacent customers i− j from route r1 are transferred to route r2
(Figure 4.2d). The move Swap(2,1) exchanges two adjacent customers i − j from route r1 by
a customer k from route r2 (Figure 4.2e). Swap(2,2) swaps a pair i− j of adjacent customers
belonging to route r1 by a second pair of adjacent customers k − l from route r2 (Figure 4.2f).
The Cross move removes arcs connecting two adjacent i− j clients belonging to route r1 and
the one between clients k − l that belongs to route r2. Next, arcs connecting i and l and k and
j are inserted (Figure 4.2g). The move K-Shift removes a subset of consecutive customers K,
in this example K = 3, which is transferred from route r1 to the end of route r2. It should be
pointed out that the move is also applied if the second route is empty (Figure 4.2h).
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(a) Initial example. (b) Shift(1,0). (c) Swap(1,1).

(d) Shift(2,0). (e) Swap(2,1). (f) Swap(2,2).

(g) Cross exchange. (h) K-shift.

Plant
Shifted/swapped client

Visited customer

Route 1

Route 2

(i) Notation

Figure 4.2 – Examples of inter-route local searches.

Aiming for better results, we also applied the very large-scale neighborhood search
(VLNS)1proposed by Ahuja et al. (2000). It replaces both moves Shift(1,0) and Swap(1,1), with
substantially more neighbors when compared to them. This occurs because VLNS contemplates
simultaneously swap and shift moves not only between a pair of routes, as done by Shift(1,0)
and Swap(1,1) but among all the sets of routes if the move is feasible. Its design is extremely
efficient for the family of set partitioning problems, once the VLNS neighborhood structure is
classified as a network flow-based improvement algorithm, once it builds an improvement graph
that contains all feasible moves of retailers between routes.

The improvement graph for a neighborhood with multiple exchanges is defined over a
1 The VLNS algorithm must not be confused with the Large Neighborhood Search (LNS) proposed by Shaw (1998).

The LNS belongs to the VLNS class of heuristics (PISINGER; ROPKE, 2010).
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feasible routing solution s for the problem, being represented by G(s). Let r[ij] be a route that
contains the client ij . The graph G(s) is a directed graph with n + V + 1 nodes, where n is
the number of clients belonging to the V routes and one more artificial node. Then, each node
i1, . . . , in corresponds to the customers, nodes in+1, . . . , in+m to respective vehicles/routes and
artificial node in+m+1. A directed arc (l, k) ∈ G(s) means that client il leaves its current route
and is transferred to the route that contains item ik, i.e., the route r[ik]. Simultaneously, the client
ik leaves r[ik]. To build G(s), all the pairs of elements il, ik ∈ s are considered. Then, an arc
(l, k) is added to G(s) if and only if: (i) the clients il and ik belong to different routes; (ii) the
route r[ik] \ {ik} ∪ {il} is feasible. The cost clk of the arc (l, k) is defined by the difference of
the cost of the modified route and its previous version, i.e., c(r[ik] \ {ik} ∪ {il})− c(r[ik]).

LetD be a directed cycle on the improvement graph G(s) if the elements which compose
D belong to different partitions. A valid cycle can be defined as a directed cycle with a negative
cost of G(s). Thus, a valid cycle corresponds to a cyclic or path exchange often leading to
an improvement in the objective function of the problem with respect to all constraints. If no
improvement is found, the search stops. To reach these improvements it is necessary to efficiently
identify these valid cycles in G(s). It is done with a label-correcting algorithm, in this work the
Bellman-Ford2algorithm is adopted, that finds the minimum path from a given (and artificial)
source node to all nodes of the network.
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(a) Cyclic exchange.
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(b) Path exchange.

Figure 4.3 – Very large-scale neighborhood exchanges.

These cyclic and path exchanges (Figure 4.3) are a generalization of the two-exchange
neighborhood (THOMPSON; ORLIN, 1989). Given a subset of routes, the cyclic exchange
removes one node from each route that composes this subset and exchange them. Figure 4.3
illustrates the cyclic and path exchanges, respectively. Shifting the nodes iA, iD, iG and iJ , among
their respective partitions P1, P2, P4 and P3, in the sequence iA → iD → iJ → iG → iA,
2 The Bellman-Ford label-correcting algorithm correspond to the ones proposed in Bellman (1958) and Ford Jr.

(1956).
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characterizes a cycle exchange (Figure 4.3a). While moving the nodes iA, iD and iG in the
sequence iA → iD → iG, among partitions P1, P2 and P3, characterizes a path exchange (Figure
4.3b). The cardinality of the routes involved in the exchange is kept for the cyclic, but for the path,
one route has its cardinality increased by one while others decreased. Further details about the
VLNS method can be found in Ahuja et al. (1998), Ahuja et al. (2000), Ahuja (2017), and a real
crew scheduling problem application in Silva and Reis (2014).

4.4 Perturbation operators

The local searches can get trapped into basins of attractions, leading to non-promising
neighborhoods. To avoid that, a solution perturbation is applied, perturbation operators must
be strong enough to allow the exploration of new regions or have their effort undone by a local
search (LOURENÇO; MARTIN; STÜTZLE, 2019). This study considers these recommendations
and outlines four algorithms, having different strategies of perturbation mechanisms. The main
idea of these mechanisms is to modify either or both decision levels while verifying how these
changes lead to better solutions. The proposed perturbation operators modify the tactical level
through modifying the production plans, or the operational level changing the distribution and
routing plans.

4.4.1 Production plan operator

For the tactical level, we adopted moves to change the production plans of the PIv, called
production plan (PP). It shifts part of the lot produced at period t′ to a period t′′ in which the
production also takes place. We consider the periods where the production occurs as this shift
takes place if the following conditions are met: (i) period t′′ corresponds to the beginning of
the adjacent production stages, (ii) there is idle production capacity at t′′, and (iii) there is the
possibility to store the excess production at the plant.

To understand the concept of production stages, let’s see the following example illustrated
in Figure 4.4. Suppose that there are 14 periods the production occurs at periods t = 1, 5, 10,
and 13 (blue and solid lines). It implies that the production lot manufactured in t = 1 fulfills
the demands of subsequent periods 1, 2, 3 and 4. The production of period t = 5 fulfills the
demands of periods 5, 6, 7, 8 and 9. The same reasoning is applied to periods of 10 and 13. The
inventory level of each stage is represented by red and dashed lines. Once the proposed RPRP
allows back-order, and the tactical problem PIv does not contemplate the routing constraints,
the production and inventory plans are found after solving PIv may not be properly fitting the
demands.

Lets us consider that part of the demand dt′′ of the period t′′ = 4 is back-ordered in bt′′

units to period t′ = 5. Then, to fulfill dt′′ fully inside its current stage, part of the production
occurred in t′ = 5, which corresponds to the quantity bt′′ back-ordered, can be transferred to
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t′′ = 4. Lets us also considers that the manufactured lot in period t′ = 10 contemplates part of
the demand of period t′′ = 13, yielding to not necessary inventory levels, i.e., I12 > d12. Thus,
part of the production lot of period t′ = 10 can be transferred to t′′ = 13 to meet demand in due
time, i.e., I12 = 0, p13 = d13 + d14.

t

p/I

1 5 10 13

Figure 4.4 – Production stages and inventory levels vs. planning horizon.

With this example, it is possible to see that two possible moves can be realized on the
production lots, shifting the lot partially or completely to other adjacent periods where production
takes place. If t′′ < t′, then the move is anticipating the production, otherwise (t′′ > t′), the
production is delayed. The possible shifted amount is calculated with Equation (4.5), which
defines the move feasibility. For each product k ∈ P , it is possible to shift from period t′ to
an adjacent moment t′′ the minimum value among its entire production lot pt′k , the residual
production capacityM t′′

k − pt
′′
k of t′′ or the residual holding capacity Uk

0 − I t
′′

0k at the plant during
t′′.

mt′t′′
k = min{pt′k ,M

t′′

k − pt
′′
k , U

k
0 − It

′′
0k},∀k ∈ P, t′, t′′ ∈ T , t′′ 6= t′ (4.5)

Every time the operator PP is selected, it lists all feasible moves of the production lots.
Then, it randomly draws up tomaxPertPP moves for different products and periods. To keep
the solution feasibility, it allows the modification of the production plan of a product k ∈ P up to
one time per perturbation call. The selected moves are applied to PIv by changing the variables’
bounds while taken into the consideration the value of ∆vt

ik.

4.4.2 Routing operators

Exchanges on the routing design characterize perturbation on the operational level. To
modify the routes, five operators are outlined. For each of them, between 25% and 75% of the
time periods are randomly selected, and perturbed, always keeping the solution feasible. They are
separated into intra-route and inter-route operators. After the execution of routing perturbations
following presented, the NRS (Section 4.3) procedure is applied to the attained solution.

The intra-routes perturbations modify one route individually, they are the reverse-route
(RR), lexicographic (LX), and randomize route (RD). Figure 4.5 illustrates them. The route
connection is represented in dashed and blue arrows, and after the perturbation applied over
a single route, its arcs are in dotted and red. Operator RR inverts the sense of selected routes,
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giving more opportunity to the last visited nodes to be first explored by the routing local searches
(Fig. 4.5a). It reverts the sense of up to maxV routes of a period time t ∈ T . This parameter
is randomly select from interval [0, V ] every time the operator is called. As an example for LX
e RD, suppose that a route visits a subset of customers in the following order 3, 4, 5, 1, 2. The
operator LX turns the sequence into 1, 2, 3, 4, 5 (Fig. 4.5b), while RD could turn into 3, 1, 4, 2, 5
(Fig. 4.5c). Both operators LX and RD were calibrated, and they are executed in each selected
time period t ∈ T up tomaxPertLX andmaxPertLX times, respectively.
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(a) Reverse-route (RR).
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(c) Randomize (RD).

Figure 4.5 – Examples of intra-route perturbation operators.

The inter-route perturbation operators modify simultaneously two routes. Figure 4.6
illustrates the adopted inter-route operators. One of the routes is in blue and dashed arrows and
the other is in red and dotted arrows. The split-route (SR) operator looks for some empty vehicle
and allocates to it some or all retailers visited by another route. For example, a route that visits the
following customers 1, 2, 4, 5, 3 could be divided into 1, 2, 4 and 5, 3 (Fig. 4.6a). This operator
search for some empty vehicle v1 ∈ V and randomly selects another one v2 ∈ V , v1 6= v2 that
is activated and transfer as much as possible load from vt to v1. The KK-swap (KK) operator
randomly selects two routes, and also strings of sequential nodes with sizesK1 andK2 belonging
to them. These strings are exchanged between the routes, being allocated from a route to the end
of the other, for example, suppose that a route visiting clients 1, 2, 3, 4 and a second route visiting
7, 6, 8, 5. Applying operator KK, they could be turn into 1, 2, 8, 5 and 7, 6, 3, 4 (Fig. 4.6b). This
perturbation operator is applied up tomaxPertKK over each selected time period t ∈ T .
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(b) KK-swap (KK).

Figure 4.6 – Examples of inter-route perturbation operators.

4.4.3 Distribution plan operator

The operational level may be perturbed by modifying the distribution plan. Qiu et al.
(2018b) outlined that the delivery loads could be moved totally or partially between periods. The
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authors formulated that these movements can anticipate or delay deliveries, aiming to form as
many full-load vehicles as possible.

Following this concept, we also apply these moves, but it is extended to incorporate
important features of our work which are the existence of multiple products and a heterogeneous
fleet. For this, a movemtt′

ik is based on the transfer of some quantity of the item k delivered for
the client i at period t to another period t′, and must not violate the bounds on the inventory
levels I tik and I t

′
ik, as shown in Armentano et al. (2011). If t′ < t, then the method is anticipating

the delivery, otherwise t′ > t, the delivery is delayed, and they also occur inside the respective
production stage.

Based in the example illustrated in Figure 4.4, with 14 periods and production occurring
in periods t = 1, 5, 10, and 13. As aforementioned, the manufactured lot of period t = 1 fulfill
the demands of subsequent periods 1, 2, 3 and 4. The same reasoning is applied to periods 5, 10
and 13. As an example of moving a delivered lot, from t = 7, then a movemtt′

ik could happen to a
period such as t′ = {1, 2, 3, 4} ∪ {5, 6, 8, 9} ∪ {10, 11, 12}, i.e., transferring to the predecessor,
current or successor production stage.

Equation 4.6 computes the anticipating moves. This kind of movement causes a decrease
in the inventory levels of the plant I t0k, and an increase in the inventory level of the clients
I tik,∀i ∈ N . For each product k ∈ P and customer i ∈ N is possible to move from period t
to t′ the minimum value among the following: the current delivery load qtik, or the minimum
residual inventory level value minτ

{
Uk
i − Iτik

}
, and the maximum residual vehicle capacity

maxv∈V{Qv −∑j∈N
∑
k∈P q

vt′
jk }.

mtt′
ik = min

{
qtik,min

τ

{
Uki − Iτik

}
,max
v∈V

{
Qv −

∑
j∈N

∑
k∈P

qvt
′

jk

}}
, τ = t′, . . . , t− 1,∀t′ < t (4.6)

Equation 4.7 describes the delaying moves. This kind of move provokes an increase in the
inventory levels of the plant I t0k, and a decrease in the inventory level of the clients I tik,∀i ∈ N .
For each product k ∈ P and customer i ∈ N is possible to move from period t to t′ the minimum
value among the following: the current delivery load qtik, or the minimum inventory level value
minτ

{
Iτik
}
, and the maximum residual vehicle capacity maxv∈V{Qv −∑j∈N

∑
k∈P q

vt′
jk }.

mtt′
ik = min

{
qtik,min

τ

{
Iτik
}
,max
v∈V

{
Qv −

∑
j∈N

∑
k∈P

qvt
′

jk

}}
, τ = t, . . . , t′ − 1, ∀t′ > t (4.7)

The aforementioned moves try to delay deliveries of those clients with inventory costs
bigger than the plant ones and to advance deliveries for clients with inventory costs smaller than
the plant ones. It is important to note that all generated movesmtt′

ik are feasible, and they only
occur if there is delivery in the period t from which the cargo originates, and in the period t′′

where the quantity moved will be allocated, there is availability to be absorbed by the residual
capacity and cargo of the respective stocks and vehicles available.
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With a set of moves generated, a maximum ofmaxPertDL movesmtt′
ik are performed.

Then, a new solution for the VRt problem is built as done in Algorithm 4.1 (line 4) and re-
optimized with the adaptive version of the inter-route algorithm 4.3. For simplicity, this operator
is called DL.

4.5 Updating ∆

Building an initial solution for the bottom-up method or every time a perturbation operator
is applied on the solution from the three top-down algorithms, the indirect costs ∆ are updated
according to Equation 4.8. They offer much more accurate information about the problem
and assess the influence that the transported lots have on the production, storage, and routing
components.

∆vt
ik = ω

(∆i

∆r
+ ev

Qv
+ hki

(Itik − I
t−1
ik )

+ uk

(ptk − p
t−1
k )

)
,∀i ∈ N , k ∈ P, v ∈ V, t ∈ T (4.8)

Equation 4.8 reflects the sum of the following components. Parameter ∆i = chi + cij,∀i, j, k ∈
r ⊂ N , i.e., it is equal to the sum of the costs of the corresponding arcs that connects the node i
inside the route r, whose total length is equal to ∆r. The second component is the fraction ev/Qv,
it shows how much it costs to transport a unit by each vehicle v ∈ V . The component that divides
the holding cost hki per the difference between the inventory levels at period t and t− 1 estimates
how much each load unity impacts the inventory from a period to another. The reasoning is
analogous for the last component considering the production costs and manufactured lots.

By adding more information to the ∆, the decision making at the tactical level is enriched
and able to achieve better solutions. This is presented in Section 4.7.2, where the proposed new
∆vt
ik is compared with the one proposed by Qiu et al. (2018b).

4.6 Iterated local search matheuristics

The outlined methods split the problem into two, a top tier deciding about the production
and inventory plans, as the distribution of goods, and the bottom tier solving the routing component.
They are embedded within an ILSmetaheuristic, whose core-concept involves improving a current
solution by generating new initial solutions through perturbations combined with local searches
(LOURENÇO; MARTIN; STÜTZLE, 2019).

4.6.1 Top-down framework

Three of the devised hybrid approaches follow a top-down decision-making process,
usually adopted by production planning systems (BITRAN; TIRUPATI, 1993). The Algorithm
4.4 shows the main steps of the devised top-down ILS (TDILS) framework. An initial solution s∗

is provided by Algorithm 4.1 and declared as the current best solution (line 1). Each iteration of the
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outer loop (lines 2-20) tries to improve the current best solution s∗. In line 4, the setup variables
y have their values fixed for each period to the corresponding products being manufactured
in solution s∗. It aims to make the resulting problem easier and quicker to be solved. Line 5
initializes the set P of perturbation operators.

In the inner loop (lines 6-19), a perturbation operator is randomly selected to avoid
favoritism and applied to the current solution. The chosen perturbation operator modifies either
the tactical or the operational part of the solution, adopting the operators presented in Section
4.4.1 and 4.4.2.

Parameter ∆ and its updating function are the core of the TDILS algorithm. As afore-
mentioned, parameter ∆ is a vector of indirect costs, used for the to-be-delivered loads, and to
guide the solution of the tactical problem PIv. As the RPRP is here solved in two stages, first
the production, inventory, and distribution plans, followed by the routing one, the parameter ∆
estimate the impact that the delivery lots have on the production plan and routing design. It works
as a feedback parameter to guide the solution of the top tier problem. Function Update∆ renews
parameter ∆ at the top tier problem PIv considering the modifications done by the operator εκ,
please see Section 4.5.

In line 10, the problem PIv is optimized considering the renewed ∆, and examined if
it reached a better objective function value. If a better solution is found, the search continues
from it, otherwise, the current solution has its objective function value tested, and if it is less
than (1 + α) times the objective function value, this solution is explored in the next iteration.
This step allows diversification, exploring non-local optimal solutions, and are adapted from the
Skewed variable neighborhood search (HANSEN; MLADENOVIĆ, 2001).

A perturbation operator is discarded from the list if a solution improvement is not attained
in the current iteration. This strategy of perturbation operator can be understood as a combination
of the cyclic and pipe neighborhood exchange steps (HANSEN et al., 2017). Because if there
is an improvement, the algorithm does not immediately return to the first perturbation operator,
i.e., it can explore a different perturbation operator from the current one unless it is drawn again.
But if there is not an improvement, the remaining operators have the same opportunity of being
selected. The results show that no operator was at a disadvantage to the others.

If the setup variables y at the tactical problem are fixed, then they are unfixed, otherwise,
they are fixed. It works closely related to a relax-and-fix procedure (POCHET; WOLSEY, 2006).
Recall that, with y fixed, it is expected that the problem will be easily and quickly solved.

The proposed top-down algorithms were named after the adopted perturbation strategy,
TILS, OILS, and IILS referring to tactical, operational, and integrated, respectively. TILS adopted
the production plan operator PP from Section 4.4.1. OILS picked the five routing operators RR,
LX, RD, SR, and KK presented in Section 4.4.2. IILS works with perturbations the same adopted
perturbation operators by TILS and OILS.
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Algorithm 4.4: Top-down ILS (TDILS)
Data: Problem information, costs ∆

1 s∗ ← BuildAndOptimize (∆); //Alg. 4.1
2 for i← maxIter do
3 s← s∗;
4 fix the setup variables y;
5 P← {(εκ)};
6 while P 6= ∅ do
7 εκ ← Random(P);
8 s′ ← Perturb(s, εκ);
9 s′ ← Update∆(s′);

10 s′′ ← Opt(s′);
11 if f(s′′) < f(s) then
12 s← s′′;
13 if f(s) < f(s∗) then s∗ ← s;
14 else
15 P← P \ {εκ} ;
16 if f(s′′) < (1 + α)f(s) then s← s′′;
17 unfix/fix y;
18 end
19 end
20 end
21 return s∗;

4.6.2 Adaptive bottom-up framework

Accordingly to Darvish and Coelho (2018), in a bottom-up approach is supposed that
the distribution managers have the most power in the decisions and can, therefore, determine
how the rest of the system works. It is done optimizing the distribution decisions and right after,
fixing them in the production-inventory problem. Our approach jointly optimized routing and
distribution decisions.

The following bottom-up approach aims to provide an alternative to the usual top-down
decision making, making the distribution and routing decisions take place before the production-
inventory ones. In the proposed algorithm, the focus is on modifying the delivery and routing
plans, and shortly thereafter to fix the renewed delivery decisions in the top tier problem PIv.

Algorithm 4.5 summarizes how the proposed adaptive bottom-up iterated local search
(ABUILS) works. The proposed procedure starts with an initial solution provided by the Algorithm
4.2 and it is declared as the current best solution s∗ (line 1). In line 2, the linear coefficients ∆
of the load variables q in the problem PIv are set to 0. The setup variables y are fixed in their
respective values (line 3).

Each iteration of the outer loop (lines 4-23) explores the current best solution s∗ for up
to maxIter iterations. First, s∗ is assigned to an incumbent solution s (line 5). The operator
mechanism set is initialized with possible moves (line 6). In line 7, different from the TDILS
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approaches (Alg. 4.4), the perturbation operators are adaptively selected using a roulette wheel
(RW) procedure, discussed in Appendix C. Here, vector S registers the number of times that an
operator κ lead to some solution improvement. Parameter S accounts the total of improvements
achieved.

Algorithm 4.5: Adaptive bottom-up ILS (ABUILS)
Data: Problem information, costs ∆

1 s∗ ← InitialSolution(∆); //Alg. 4.2
2 s∗ ← Update∆(s∗, 0);
3 fix the setup variables y;
4 for i← maxIter do
5 s← s∗;
6 R ← {(εκ)};
7 RW← RouletteWheel (S,S,|R|); //Alg. C.1
8 while R 6= ∅ do
9 εκ ← AdaptiveSelection(RW, |R|); //Alg. C.2

10 s′ ← PerturbAndOptVRP(s, εκ);
11 s′′ ← OptPI(s′, q);
12 if f(s′′) < f(s) then
13 s← s′′;
14 if f(s) < f(s∗) then s∗ ← s;
15 S[κ]← S[κ] + 1;
16 S← S + 1;
17 else
18 R ← R \ {εκ} ;
19 if f(s′′) < (1 + α)f(s) then s← s′′;
20 unfix/fix y;
21 end
22 end
23 end
24 return s∗;

While some move can improve the solution, the following steps are done (lines 8-22).
With the accumulative success RW of each of the perturbations, one is selected from set R, all of
them keeping the solution feasible (line 9). Five of them consist of the operators Reverse-route
(RR), Split-route (SR), KK-swap (KK), Lexicographic (LX), and Random (RD), introduced at
Section 4.4.2, and each of them modifying between 25% and 75% of the periods, generating s′.
The sixth is the operator DL that modify the distribution plans, described in Section 4.4.3.

In line 10, if the distribution plan is modified, the routing solutions of the changed periods
are rebuilt with the BuildVRP method, and optimized with an adaptive version of the NRS
procedure (Alg. 4.3). If the routes are changed by routing operators, the same adaptive NRS
method optimizes them. The scheme adopted to select the operators adaptively is applied on the
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inter-route selection and can be found in Appendix C.

The attained routing solution deliveries which it considers the best assignment of vehicle-
customer. At the top tier problem PIv), the delivery load variables qvtik ,∀i ∈ N , k ∈ P , v ∈ V , t ∈
T that do not match this vehicle-customer assignment are fixed to 0 (line 11). This corresponds
to defining which retailers will be visited in each period and by which vehicles (routes).

An example to the vehicle-customer assignment and fixation is presented as follows,
Suppose that for period t = 2, vehicle v = 3 visits the retailer i = 1. Thereby, all variables
qvtik ,∀k ∈ P with t = 2 and i = 1, but not with vehicle v = 3 are reset to 0. This guarantee
simultaneously the feasibility of PIv and VRt.

The new obtained solution s′′ is tested, and if better than the current, in the next iteration
the search continues from it (line 12). This test also updates two parameters used by the roulette
wheel procedure. Parameter S is a vector that stores the number of times that each perturbation
εκ leads to some improvement, while S stores the total of improvements. If s′′ is not better than s,
but not worst than α times f(s) the search is allowed to modify s again in the next iteration. But,
the operator is eliminated from the list R. As done for the Algorithm 4.4, if the solution found is
worse, setup y variables are unfixed, if they are fixed, otherwise, they are fixed.

4.7 Computational results and analysis

This section presents the parameters adjustment, the results, and the analysis of the
computational experiments performed by the TILS, OILS, IILS, and ABUILS algorithms. All
the examined data are available in Appendix D.

4.7.1 Parameters adjustment and implementation details

All experiments were performed on an Intel® Xeon™ CPU E5-2687W v3 @ 3.10GHz
computer with 160 GB of RAM and running Ubuntu Linux 18.04. The matheuristics were coded
in C++ and used the Concert Technology of CPLEX to solve the production planning problem.
We solved each instance by matheuristic 10 times as planned by a power of sample test with a
power of 95% to detect the differences on the averages. We set the stopping criterion of 7200
seconds for all algorithms.

The TILS variant of the Algorithm 4.4 only works with PP operator. Then, the inner
loop (lines 6-19) was modified to repeat at mostmaxIterTILS number of times. Every time
an improvement was found at line 13, the counter nIter ∈ [0,maxIterTILS] was reset to 0,
otherwise it was incremented by one.

Parametersα,maxWeight,maxIter,maxPertPP,maxPertRD,maxPertLX,maxPertKK,
maxPertDL were all calibrated using irace package (LÓPEZ-IBÁÑEZ et al., 2016), an automatic
configuration tool. Parameter α, in Algorithms 4.4 and 4.5, allows the method to explores more
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configurations of the basin of attraction without straying too far from the best current solution.
Parameter maxWeight adds an aleatory component to the problem, modifying the ∆ costs.
Parameter maxIter defines the maximum number of iterations of loop between lines 2 and 20 in
Algorithm 4.4. Parameter maxPertPP bounds the maximum number of moves that perturbation
operator PP realizes (Section 4.4.1). Parameters maxPertRD,maxPertLX,maxPertKK limit
the number of times that the routing perturbation operators RD, LX, and KK are applied on
the routing solution (Section 4.4.2). Parameter maxPertPP borders the maximum number of
moves that perturbation operator DL realizes (Section 4.4.3). Each algorithm was executed a
thousand times and the irace picked the best values for each parameter (Table 4.1). The irace
reports, the possible values for each parameter (see Table D.2), the instances used in the tests, as
the matheuristics results are available are in Appendix D.

Table 4.1 – Adopted parameter values by the devised methods.

Parameter TILS OILS IILS ABUILS

α 10% 20% 15% 20%
maxWeight 5 5 5 5
maxIter 300 300 300 500

maxPertPP 15 - 5 -
maxPertRD - 7 7 3
maxPertLX - 3 3 7
maxPertKK - 15 10 15
maxPertDL - - - 3

4.7.2 The importance of ∆

Recall that our parameter∆vt
ik estimates the impact of the routing and distribution decisions

when making a new production plan. It helps to guide CPLEX to find more promising production
and inventory plans. Here, we compare our parameter with the one introduced in Qiu et al.
(2018b). As far as we know, it is the first time that indirect costs related to delivery variables q
are used.
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Figure 4.7 – Comparison of the new ∆vt
ik with the ∆i of Qiu et al. (2018b).
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Using both theirs and our parameter ∆, the TDILS algorithms were tested on twelve
instances PX0n5p15tYv (where X = 2, 3, 4, 5, and Y ∈ V , see Table D.1). Figure 4.7 brings the
attained benchmark profile (DOLAN; MORÉ, 2002), where the plots only use the overall best
solutions of the algorithms with respect to the adopted parameter ∆. Our adaptive indirect cost
∆vt
ik (solid and orange lines) reaches 90% of the best solution values, which demonstrates its

superiority over ∆i (dashed and blue lines).

To draw further insights, about the contribution of the ∆, we performed statistical tests
(Table 4.2). Here, due to the smaller sample size and the absence of normality, please see the
results of the Kolmogorov-Smirnov tests of Table 4.2a which shows that the p-value is less than
0.05, the non-parametric tests of Wilcoxon (WX) was applied. The alternative hypothesis of
the WX signed-rank test verifies if the results are statistically different,i.e., it verifies if the ∆vt

ik

results are better than the ∆i ones. Table 4.2b shows the p-values of the Wilcoxon tests, and that
the results are indeed significantly different besides showing a clear superior performance of ∆vt

ik

over ∆i, because both p-values tend to zero.

Table 4.2 – Statistical tests for the comparison of the new ∆vt
ik with ∆i of Qiu et al. (2018b).

(a) Kolmogorov-Smirnov tests.
∆ Statistic p-value

∆vt
ik 1.0 0.0

∆i 1.0 0.0

(b) Wilcoxon tests.
Alternative Statistic p-value

default 36.0 3.1×10-6
greater 630.0 1.5×10-6

4.7.3 Comparing the algorithms

We assessed the performance of the algorithms with respect to the solutions found, and
time spent to reach them. First, the best solution values attained by the algorithms are compared
to the 2COMM formulation upper bounds, due to 2COMM clearly outperforming the VINDX
formulation, please see Section 3.4. Hereafter, the four devised algorithms, i.e., TILS, OILS,
IILS, and ABUILS are compared among themselves.

As shown in Section 3.4, the 2COMM found solutions for 106 of 108 instances but
running for up to six hours (21600 seconds). Observing the benchmark profile plot (DOLAN;
MORÉ, 2002) illustrated in Figure 4.8a, it is possible to see that ABUILS founds solutions that
are comparable or better for all proposed instances.

Observing the time, the ABUILS (TILS, OILS, IILS) average time until the best solution
(Opt) was 1229.60 (729.60, 621.70, 729.60) seconds (see Table 4.7), which means approximately
5.7% (3.38%, 2.88%, 3.38%) of the time spent by the solver (21,600 seconds). ABUILS was
responsible to reach around 54.65% of the best solutions. Disregarding the 2 instances that
2COMM found no upper bounds, on average, the bottom-up method was 2.65% better than the
solver. With the best distance found of 18.77% and worse of -7.7% (negative sign means that
2COMM performed better). Analyzing the performance of the TDILS methods, we can see that
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40% of their best-known solution (BKS) are better than 2COMM, but 60% are far worst.

To conclude this comparative analysis about the objective function values, Figure 4.8b
illustrates the comparison of the averages obtained by the ILS in comparison with the best values
found by the solver. For the ABUILS, it can be seen that around 35% of the instances had averages
better than the best solutions found with the 2COMM. In contrast, the OILS and IILS methods
had only 20% of their objective function averages better than 2COMM. The TILS had the poorest
average performance. Tables D.3-D.5 present the percentage distance between the BKS of the
proposed matheuristics and the 2COMM formulation.

The matheuristics behavior is studied by analyzing the objective values and running
times comparing the top-down and bottom-up approaches. The benchmark profile plot in Figure
4.9 shows that the ABUILS reaches 93.5% of the best solution values when compared to the
other matheuristics. Followed by OILS (3.7%), IILS (1.8%), and TILS (1.0%). ABUILS was
on average 1.76% better than these methods, with the best distance equals 6.05% and the worse
equals to -4.61%.

The parametric methodology, ANOVA was chosen, which, even with the premise of
normality of the data, works very well even with asymmetric distributions, as long as the sample
size is significantly large, which is the case. All the following statistical tests were performed
using the MINITAB® 19.

The objective function values of the algorithms are studied. The null hypothesis tests if
the average objective function value is equal and the alternative hypothesis they are not, with an
α = 0.05. Equality of variances of the algorithms was assumed for the analysis. As α < p−value
(0.05≥ 0.05), it rejects the null hypothesis (Table 4.3). Thus, there is sufficient statistical evidence
to infer that the four algorithms do not return the same average value for the objective function.

Table 4.3 – ANOVA tests for objective function values.

Source F p-value

o.f. 2.61 0.05

The Tukey simultaneous tests with 95% confidence for the average objective function
was performed. With the averages presented in Table 4.4, their differences are shown in Table
4.5. Once the confidence interval (CI) difference of ABUILS-TILS does not contain the value
0, the difference between the average objective values can not be 0. That is, when an interval
does not contain zero, the corresponding averages will be significantly different. On the other
hand, the CI of ABUILS-OILS and ABUILS-IILS contains the value 0, then the average of the
objective function value of these methods are not significantly different.
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Figure 4.8 – Benchmark profiles comparing the devised ILS methods with 2COMM.
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Figure 4.9 – Benchmark profile plot comparing the ABUILS with TDILS variants.

Table 4.4 – Averages and standard deviation for objective function.

Algorithm N AVG SD

TILS 1080 1,031,022 576,228
OILS 1080 995,410 548,640
IILS 1080 1,002,700 551,385

ABUILS 1080 965,101 525,006
AVG - average,SD - standard deviation

Table 4.5 – Tukey simultaneous tests for differences of objective function means.

Level Diff AVG Diff SE Diff CI of 95% T-value p-value

TILS - OILS 35612 23719 (-25,268; 96,493) 1.50 0.437
IILS - OILS 7291 23719 (-53,590; 68,171) 0.31 0.990
IILS - TILS -28322 23719 (-89,203; 32,559) -1.19 0.631

ABUILS - OILS -30309 23719 (-91,190; 30,572) -1.28 0.577
ABUILS - TILS -65921 23719 (-126,802; -5,040) -2.78 0.028
ABUILS - IILS -37599 23719 (-98,480; 23,282) -1.59 0.387

AVG - average, SE - standard error, Diff - difference, CI - confidence interval

The running time is analyzed considering four different measurements for each algorithm.
They are (i) the time until the best solution - Opt; (ii) the cumulative time spent to solve the PIv

and (iii) VRt; and (iv) the Total running time. The time measure (ii) includes the time spent by
the production plan operator (PP), while (iii) accounts for the time spent with the routing and
distribution operator (RR, SR, KK, LX, RD, DL).
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A One-way ANOVA analysis is used to detect any differences between each of these
times. The null hypothesis is if the average time spent is equal and the alternative hypothesis they
are not, with an α = 0.05. No equality of variances is assumed for the analysis. The Welch test is
significant at a 5% level of significance, that is, there is sufficient statistical evidence to infer that
the four algorithms have different Opt, PIv, VRt and the Total average times (Table 4.6), once
α ≥ p-value, and then the null hypothesis is rejected.

Table 4.6 – Welch tests results.

Source F p-value

Opt 63.89 0.00
PIv 1576.55 0.00
VRt 145.05 0.00
Total 4434.59 0.00

Table 4.7 – Standard deviation and average of the times.

Time
TILS OILS IILS ABUILS

SD AVG SD AVG SD AVG SD AVG

Opt 654.50 729.60 462.50 621.70 404.98 729.60 1390.63 1229.60
PIv 1198.70 1482.30 547.40 1085.10 369.18 1018.50 998.98 3213.00
VRt 162.18 126.81 258.16 204.87 256.42 223.40 854.97 615.80
Total 1082.20 1868.30 456.00 1322.90 219.15 1321.99 684.85 3814.00

SD - standard deviation, AVG - average

Observing the Table 4.7 with the respective standard deviations and averages, it is possible
to notice that the ABUILS algorithm has the bigger average times for all the time measurements.
Thus, for better clarification, the Games-Howell paired comparison tests are realized to infer the
average time difference between all algorithms.

The Games-Howell simultaneous test is significant at a 5% level of significance, that is,
there is sufficient statistical evidence to infer that the difference in the average times of the four
algorithms (Column AVG Diff, Table 4.8) is different from 0, then, the null hypothesis about the
equality of the average times of the four algorithms is rejected (α ≥ p-value) in the following
pairwise comparisons. For Opt, ABUILS and OILS are different between themselves and from
both TILS and IILS. For PIv all algorithms are different among themselves. While for VRt and
Total average times, ABUILS and TILS are different between themselves and from both OILS
and IILS.

At last, the performance of the algorithms is examined with a multiple time-to-target
(MTTT) plot, an extension of the time-to-target plots (AIEX et al. 2002, 2007) and capable to set
multiple instances simultaneously (REYES; RIBEIRO, 2018). Five randomly selected instances
from the group of problems with 50 customers had their worst objective function value defined
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Table 4.8 – Tukey simultaneous tests for differences of time means.

Time Level Diff AVG Diff SE Diff CI of 95% T-value p-value

Opt

TILS - OILS 107.9 24.4 (50.8; 165.0) 4.42 0.000
IILS - OILS 107.9 24.4 (50.8; 165.0) 4.42 0.000
IILS - TILS 0.0 28.2 (-65.9; 65.9) 0.00 1.000

ABUILS - OILS 607.9 44.6 (493.4; 722.4) 13.63 0.000
ABUILS - TILS 500.0 46.8 (380.0; 620.1) 10.69 0.000
ABUILS - IILS 500.0 46.8 (380.0; 620.1) 10.69 0.000

PIv

TILS - OILS 397.3 40.1 (303.4; 491.1) 9.91 0.000
IILS - OILS -66.6 20.1 (-113.6; -19.6) -3.31 0.003
IILS - TILS -463.9 38.2 (-553.2; -374.5) -12.15 0.000

ABUILS - OILS 2128.0 34.7 (2039.0; 2217.0) 61.39 0.000
ABUILS - TILS 1730.7 47.5 (1608.8; 1852.6) 36.45 0.000
ABUILS - IILS 2194.6 32.4 (2111.4; 2277.8) 67.72 0.000

VRt

TILS - OILS -78.06 9.28 (-99.78; -56.35) -8.41 0.000
IILS - OILS 18.5 11.1 (-7.4; 44.4) 1.67 0.215
IILS - TILS 96.59 9.23 (74.98; 118.20) 10.46 0.000

ABUILS - OILS 411.0 27.2 (341.2; 480.7) 15.12 0.000
ABUILS - TILS 489.0 26.5 (421.1; 557.0) 18.47 0.000
ABUILS - IILS 392.4 27.2 (322.7; 462.2) 14.45 0.000

Total

TILS - OILS 545.4 35.7 (461.7; 629.0) 15.26 0.000
IILS - OILS -0.9 15.4 (-37.0; 35.1) -0.06 0.998
IILS - TILS -546.3 33.6 (-624.9; -467.7) -16.26 0.000

ABUILS - OILS 2491.0 25.0 (2426.8; 2555.3) 99.50 0.000
ABUILS - TILS 1945.7 39.0 (1845.6; 2045.7) 49.93 0.000
ABUILS - IILS 2492.0 21.9 (2435.8; 2548.1) 113.89 0.000

as target for each matheuristic. Each matheuristic runs 100 times in each of the selected instances
until the target was found or the limit time reached. Figure 4.10 presents the MTTT plot. All
the outlined methods reach 54% of the attempted targets within 200 seconds. OILS and IILS
(ABUILS and TILS) in 80% (70%) of attempts reach the targets within 400 seconds. But the
ABUILS was the only one with 35% within 20 seconds, and guaranteeing 93.5% within 1400
seconds. While the three top-down methods, 90% of attempts need more than 1800 seconds. It
suggests that the ABUILS was strongly dependent on the initial solution, but can escape more
easily from local optima and to converge faster than the TDILS methods to the targets. In contrast,
it is possible to see that the OILS and IILS have a closer performance to ABUILS. In common,
OILS, IILS and ABUILS had the perturbation operators at the operational level.

The analysis is extended to the efficiency of the perturbation operators and routing local
searches. Observing Table 4.9, it is possible to deduce alone in the TILS variation, the operator
PP is not efficient, leading to only 1.43% of improvements. In contrast, when it works together
with the routing operators in IILS, its efficiency grows almost 7.5 times. Similar behavior can
be observed for the routing operators in OILS and IILS, their performance increase around 1%
when coupled with PP. As for the ABUILS that selected the operator adaptively, the most efficient



Chapter 4. Efficient matheuristics to solve a RPRP 58

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

200 400 600 800 1000 1200 1400 1600 1800 2000

P
r

o
b

a
b

i
l

i
t

y

Ti me  ( s )

TI LS
OI LS
I I LS

ABUI LS

Figure 4.10 – Multiple TTT plot comparing ABUILS with the TDILS variants.

Table 4.9 – Perturbation operators efficiency per matheuristics.

Op. TILS OILS IILS ABUILS

PP 1,43% - 10,72% -
RR - 4,93% 5,75% 1,86%
LX - 4,93% 5,84% 2,76%
RD - 4,95% 5,80% 3,44%
SR - 4,84% 5,83% 3,82%
KK - 4,94% 5,78% 4,30%
DL - - - 2,18%

operators are the inter-route (SR and LX).

Table 4.10 summarizes the performance of the routing local searches. Observing the
efficiency of the inter-route local searches, Table 4.10a, the three top-down methods reached
practically the same performance. In contrast, the ABUILS concentrated the 99.19% of the
improvements in four searches, SWAP (2,2), SWAP(2,1), SHIFT (2,0), and VLNS. The latter, in
particular, had the best performance, reaching around 39% of the improvements for the TDILS,
and 53.99% for the ABUILS. The intra-route methods presented in Table 4.10b, for all outlined
matheuristics, had the same performance, once they were randomly selected instead of adaptively.
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Table 4.10 – Routing local searches efficiency per matheuristics.

(a) Inter-route searches.

TILS OILS IILS ABUILS

VLNS 39,42% 38,46% 39,04% 53,99%
SHIFT(2,0) 12,24% 12,45% 12,45% 7,08%
SWAP(2,1) 24,16% 24,31% 24,08% 30,22%
SWAP(2,2) 15,03% 15,33% 15,02% 7,90%
CROSS 1,96% 2,01% 1,99% 0,05%
SHIFT(3) 3,71% 3,79% 3,83% 0,46%
SHIFT(4) 2,11% 2,21% 2,18% 0,19%
SHIFT(5) 1,36% 1,43% 1,40% 0,11%

(b) Intra-route searches.

TILS OILS IILS ABUILS

1PNT 20,70% 20,72% 20,68% 20,57%
2PNT 20,30% 20,33% 20,29% 19,69%
2OPT 25,85% 25,84% 25,83% 25,97%
3PNT 16,80% 16,78% 16,84% 16,53%

OROPT(3) 7,45% 7,45% 7,51% 7,65%
OROPT(4) 5,38% 5,36% 5,36% 5,63%
OROPT(5) 3,51% 3,52% 3,49% 3,95%

Despite the production, inventory decisions have a tactical character approach, usually
occurring before the distribution and routing ones, they cannot be done apart or without at least
considers the operational importance. After these analyses, it is clear to infer that operational
decisions can strongly affect the performance of integrated problems. This corroborates the
thesis that by spending more time in the prospection of the routing component, most of the
solutions converge for faster and better results than those found focused on the production-
inventory problem. This can be seen in the performance of the algorithms that used operators
at the operational level, as ABUILS (best solution values) and OILS (best times until the best
solution). It leads to the reflection on whether the decision-making could give more attention to
the operational decisions and how they influence the tactical ones.

4.8 Final remarks

Due to the high-level computational challenge offered by the proposed RPRP, this study
developed approaches that split it into two following top-down and bottom-up decision manners.
A top-tier problem solved the production, inventory, and distribution plans with a commercial
solver providing an estimate of the loads to be distributed. The bottom tier, for each period, routed
heuristically the operational level.

Embedded in an ILS framework, three top-down algorithms were outlined. The first
provoked perturbations at the tactical level, modifying the production plans and affecting directly
the inventory, back-order, and distribution variables. While the second explored a set of mecha-
nisms to modify the routing design, changing the operational level. The latter algorithm works by
integrating perturbations at both levels. An important and common point in the implementation of
the algorithms is the development of an intuitive way to calculate the costs of the delivered loads.
This is because, if there is a need to deliver a lot, this lot influences the costs related to production,
inventories, and transportation. In this way, during each iteration of the method, these indirect
costs are updated with the latest information from the solution. Along with the perturbation
mechanisms, it was able to lead to solutions superior to those found by the commercial solver.
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The fourth algorithm was based on the bottom-up hierarchical approach, whereas the
distribution decision had priority over the production of an inventory. Also ILS-based, it adaptively
selected the perturbation operator and inter-route searches. The adaptive principle was a roulette
wheel selection, i.e., the selection was proportional to the fitness of the mechanism or search to
the problem. The method adopted an operator that perturbed the distribution plan. It was done
exchanging lots partially or totally between periods, keeping the solution always feasible. The
new routing arrangement Was optimized and fixed in the production-inventory problem, defining
for each period in which customers are visited by each vehicle.

Through computational experiments, the methods were compared with the best-proposed
formulation, and among themselves. These results are statistically analyzed, showing the impor-
tance of our indirect cost and perturbation mechanisms, especially the ones that modified the
operational level. Analyzing the bottom-up performance, it was capable to reach equivalent or
better solutions in a reasonable time, and with much less computational effort when compared to
the formulation. And, according to the statistical analysis, the bottom-up spends more average
time than the top-down methods but dominates most of the values of the solution. Besides, the
methods that prospect the operational level is capable to bring better and faster solutions than the
method that modifies the production plans.
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5 A column generation approach for a
rich production-routing problem

"Those who can imagine anything, can create the impossible".

Alan Turing

5.1 Introduction

The proposed RPRP grows quickly with the number of retailers, which directly impacts
the vehicle-routing component, hindering thus the solution process. This impact was seen on the
attained performances of the VINDX and 2COMM formulations and of the devised top-down
and bottom-up matheuristics.

Given the possible impacts of the involved decision of the studied RPRP on the costs of a
supply chain, it is important to assess the quality of the attained upper bounds by the devised
matheuristics. One way to assess these upper bounds is to compare them with the attained linear
programming relaxation bounds by formulation 2COMM, for instance. Nonetheless, better lower
bounds may be obtained by using a different approach such as a column generation algorithm,
the subject of this chapter. We devised a column generation algorithm that uses a compact and
equivalent model for the studied RPRP, besides proposing a pricing algorithm, and to price
columns heuristically.

Column generation or delayed column generation is an efficient technique for solving
linear programs with a large number of variables. For many of these large linear programs, to
explicitly consider all of their variables is impractical. Nevertheless, this is not a problem because
most of the variables will be non-basic, i.e., they will be equal to zero in an optimal solution. This
premise allows us then to consider only a subset of the variables when solving an optimization
problem. The column generation technique leverages this idea by seeking to generate only those
variables with the potential to improve the objective function. In a minimization problem, this
would be translated as generating only those variables with negative reduced costs.

To leverage the idea requires coordinating the solution of two problems: A restricted
master problem, which is the original problem but with only a subset of the variables being
considered, and a subproblem, which is responsible for generating new variables.

The solution coordination works as follows. The restricted master problem is solved.
From this solution, we obtain dual prices for each of the constraints in the master problem. These
dual prices are then used in the objective function of the subproblem. The objective function of
the subproblem is the reduced cost of the new variable concerning the current dual variables, and



Chapter 5. A column generation approach for a RPRP 62

subject to the naturally occurring constraints. The subproblem is solved. If its optimal solution
is negative, given, without loss of generality, that the original problem is a minimization one,
then a variable with negative reduced cost has been found. This variable is then added to the
restricted master problem, which is resolved. Re-solving the master problem will generate a new
set of dual prices, and the process is repeated until no further negative reduced cost variables are
identified. Whenever the subproblem returns a non-negative optimal solution, i.e, the reduced
cost is non-negative, we can conclude that the optimal solution to the restricted master problem
is optimal to the original problem.

The column generation technique has been originally proposed by Ford and Fulkerson
(1958) but formalized by Dantzig andWolfe (1960). In many cases, the technique has proved to be
efficient to solve large linear programs such as the classical cutting stock (GILMORE; GOMORY,
1961; VANCE et al., 1994; VANCE, 1998), the crew scheduling (DESROCHERS; SOUMIS,
1989; BORNDÖRFER et al., 2006), the vehicle routing (PESSOA et al., 2009; BALDACCI et al.,
2011; PECIN et al., 2017), and the capacitated p-median (LORENA; SENNE, 2004; CESELLI;
RIGHINI, 2005) problems. One particular method in linear programming which uses this kind
of approach is the Dantzig-Wolfe decomposition algorithm.

Figure 5.1 illustrates how the original problem is reduced to a restricted problem, and it
has its columns added iteratively. Instead of adding only the column with the best-reduced cost
(Dantzig’s rule, see Le et al. (2013)), it is interesting to add more than one negative reduced cost
column by iteration.

Original

problem

Restricted

master

problem

Columns

Figure 5.1 – Column generation representation.

5.2 Column generation algorithm

Algorithm 5.1 describes the adopted column generation algorithm. It starts building
the restrict master problem (RMP), presented in Section 5.3. The master problem requires an
initial set of columns. This set is provided with the procedure illustrated in Algorithm E.1. The
current reduced cost r̃c receives −∞ (line 3). While the least reduced cost found by the pricing
subproblem is less than 0, the following steps occur (lines 4-8). The RMP is solved and its
objective function computes a lower bound (LB). The values of dual variables Π related to
the RMP constraints are retrieved (line 6). In line 7, the chosen pricing subproblem is solved
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considering the parameterized values of Π, please see Section 5.4. In the case of a heterogeneous
fleet, it is solved independently for each vehicle v ∈ V . The columns with negative reduced
cost are added to the RMP. If none negative reduced cost column is found (r̃c ≥ 0), the loop is
interrupted, and the algorithm returns the attained LB found (line 9).

Algorithm 5.1: Column generation algorithm
Data: Problem information

1 build the RMP;
2 generate an initial solution; //Alg. E.1
3 r̃c ← −∞;
4 while r̃c < 0 do
5 LB← solve the RMP;
6 Π← getDuals(RMP);
7 r̃c ← pricing(Π);
8 end
9 return LB;

5.3 Restricted master problem

An equivalent column generation model for the proposed RPRP is outlined as follows. It
is closely related to the set packing problem, as described in formulation (5.1)-(5.8), which is
named rich restricted master problem (RRMP). In RRMP, the distribution and routing variables
g, z,w and q are dropped out. The production-inventory variables y,p, I, and b have the same
meaning and domains, please see Table 3.2. Variables xtr have a new meaning, indicating if a
route r ∈ R performs some deliveries in the period t ∈ T . An advantage of the variables xtr is
the omission of the vehicle index.

min
∑
t∈T

{∑
k∈P

[
lkytk + ukptk +

∑
i∈N

(
hki I

t
ik +Bki b

t
ik

)]
+
∑
r∈R

crx
t
r

}
(5.1)

s.t.: (3.2)

It0k = It−1
0k + ptk −

∑
i∈N

∑
r∈R

qtikrx
t
r, ∀k ∈ P, t ∈ T (γtk) (5.2)

Itik = It−1
ik − dtik + btik − bt−1

ik +
∑
r∈R

qtikrx
t
r, ∀i ∈ N , k ∈ P, t ∈ T (δtik) (5.3)∑

r∈R
ztirx

t
r ≤ 1, ∀i ∈ N , t ∈ T (πti) (5.4)∑

r∈R
gvtr x

t
r ≤ 1, ∀v ∈ V, t ∈ T (φvt) (5.5)

0 ≤ Itik ≤ Uki , btik ≥ 0, ∀i ∈ N , k ∈ P, t ∈ T (5.6)

ptk ≥ 0, ytk ∈ {0, 1}, k ∈ P, t ∈ T (5.7)

xtr ≥ 0 ∀r ∈ R, t ∈ T (5.8)
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Each column xtr ≥ 0,∀r ∈ R, t ∈ T is composed by three parameters as follows: qtikr ≥ 0
indicates how much of product k ∈ P is delivered to the customer i ∈ N ; ztir ∈ Z+

0 shows the
number of times that the customer i ∈ N is visited; and gvtr ∈ {0, 1},∀v ∈ V , signalizes which
vehicle v performed the route. Its cost cr = ev +∑

(i,j)∈A cijx
vt
ij , corresponds to the sum of the

activation cost of the vehicle v choose to perform the route and the total traveling costs.

Observing RRMP, we can note that constraints (5.2) and (5.3) have the same meaning as
(3.3) and (3.4). Constraints (5.4) and (5.5) limit the maximum number of times that a customer
is visited and vehicle activation up to one per period. The remaining constraints (5.6)-(5.8) are
variable domain related.

As is well known, the potential number of possible routes grows far beyond treatment,
then it is impossible, and not interesting, to make explicit all of them. Then, to overcome this
trouble, the columns that offer the potential to improve the RRMP are priced as presented
in Section 5.4. An interesting characteristic of the column generation approaches involving
product(inventory)-routing problem is that the delivered quantities are defined by the pricing
problem, which increases its complexity.

5.4 Pricing subproblem

In column generation methods, it is known that the pricing problems are responsible for
the major complexity of the algorithms, then they must be capable to generate good columns
working as efficient and fast as possible. The first step to designing a pricing algorithm is to
define the objective function considering the current dual values. After solving RRMP, dual
prices (γtk, δ

t

ik, π
t
i, φ

vt) are obtained from the constraints (5.2)-(5.5). The new columns are priced
by the subproblem, considering the objective function (5.9). The reduced cost is related to each
arc (i, j) ∈ A is calculated as shown in (5.10).

min
∑
t∈T

∑
v∈V

{ ∑
(i,j)∈A

cijx
vt
ij −

∑
j∈N

∑
k∈P

(
γtk + δ

t

jk

)
qvtjk

}
(5.9)

cij =

c0j − φ
vt
, ∀j ∈ N

cij − πti, ∀i ∈ N
(5.10)

The proposed RPRP has a multi-product characteristic, which implies that every time a label is
extended to a node, it would have to decide not the quantity delivery of one product, but for up to
P different items. This significantly increases the complexity of the algorithm which already must
be run independently for each vehicle. To pick the combination of products that most contributes
to the reduced cost is equivalently to solve the following bounded knapsack problem (BKP)
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(5.11)-(5.13) for each visited customer j ∈ N .

max
∑
k∈P

(
γtk + δtjk

)
qtjk (5.11)∑

k∈P

qtjk ≤ Q̃ (5.12)

0 ≤ qtjk ≤ Otjk ∀k ∈ P (5.13)

The parameter Q̃ is a residual load considering the previous deliveries performed by
the vehicle v. Parameter Ot

jk = min
{
Uk
j ,maxτ

{∑τ
m=t d

m
jk

}
,∀τ = t + 1, . . . , T : dτik > 0

}
represents a maximum quantity delivered enough to satisfy the accumulated demand between
the current period t and future periods that do have positive demands.

The studies of Engineer et al. (2012), Desaulniers, Rakke and Coelho (2016) and Qiu et
al. (2017) developed efficient approaches to inventory/production-routing problems considering
single-product and a homogeneous fleet. They worked with the concept of a time-expanded
network, where each node corresponded to a pair (i, t) denoting a customer i and period t. The
network was exploited with labeling algorithms based on the combination of two problems, the
elementary shortest path with resource constraints, and the bounded knapsack.

The following Sections 5.4.1 and 5.4.2 present our proposed ad hoc labeling algorithm,
considering the required combination of a resource-constrained shortest path and bounded
knapsack problems, and the heuristically priced columns procedure, respectively.

5.4.1 Time-oriented simple pricing problem

Dror (1994) stated that the elementary shortest path problem with resource constraints
(ESPPRC) belongs to the class of NP-hard problems. Its natural relaxation is the shortest path
problem with resource constraints (SPPRC), which accepts the existence of cycles in the solution.
If the SPPRC has only one resource, for example, a vehicle load capacity of Q units, it can be
extended to the q-routes relaxation.

The q-routes was proposed by Christofides et al. (1981), and can be defined as a walk
that starts at the depot vertex, traverses a sequence of client vertices with total demand at most
equal to Q, and returns to the depot. Some vertices may be visited more than once, therefore the
set of q-routes strictly contains the set of actual routes (PESSOA et al., 2009).

The q-routes is a dynamic programming algorithm and it was successfully adapted to the
CVRP in the studies of Fukasawa et al. (2006), Pessoa et al. (2009), Contardo and Martinelli
(2014) and Pecin et al. (2017), having all of them reached good results with very low computational
times. A comparison among the non-elementary and elementary shortest path algorithms, and the
q-routes can be found in Reis (2015). The study showed a q-route algorithm combined with the
decremental state-space relaxation (RIGHINI; SALANI, 2008), and the strong degree constraints
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(CONTARDO et al., 2015) that outperformed both ESPPRC and SPPRCwith very low processing
times.

Following all these aforementioned cases applying the q-routes, we proposed a variant
called t-routes, once it is a time-oriented simple pricing problem. Instead of using the vehicles’
capacity Q as a resource to limit the path formation, the maximum riding time H is adopted. Let
aij,∀(i, j) ∈ A be the travel time between i and j, and si the service time. Then, a t-route is a
walk that starts at the plant node 0, visit a sequence of customers, and returns to the depot copy
n+ 1 with arrival time lesser or equals to the maximum riding time H . Each t-route defines a
set of indexed arcs (i, j)a, which is started with an arc (0, j)a, where j is the first client visited
after leaves the depot and a = a0j . Each arc (h, i)a is followed by an arc (i, j)a+si+aij , where j is
the client immediately visited after i, and a ≤ H − aj,n+1 − sj is the riding time until j. The
sequence ends necessarily with an arc (i, n+ 1)a, where i ∈ N is the last client before return to
the depot n+ 1 and a = ai + si + ai,n+1 ≤ H .

Lets define a matrixR such each positionR(a, j) represents the partial minimum-reduced
cost of the t-route that starts in the plant node 0 with initial time equal to 0, and ends in some
customer j ∈ N with total riding time a0j ≤ a ≤ H − sj − aj,n+1. The cost cj,n+1 of the arc
(j, n + 1) that returns to the depot are not considered in R. Each entrance R(a, j) has a label
L that consists of two items, the predecessor node i, and the accumulated reduced cost rc. The
complete path can be recovered from each node j using the predecessor node i, and the respective
travel and service times.

Figure 5.2 illustrates an t-route example. Let the set of clients beN = {1, . . . , 4},H = 7,
the service times equal to si = 1,∀i ∈ N , and the travel times between nodes be symmetric and
equal to a01 = a04 = a13 = a14 = a34 = 1, a02 = a03 = a23 = a24 = a12 = 2. The infeasible
entries of the matrix R are filled with × symbol. A non-elementary t-route is represented in red
and dashed arrows. It visits the subset of vertexes {2, 4} in the sequence 4− 2− 4, and would be
described by the following arcs: (0, 4)1, (4, 2)3, (2, 4)5. On the other hand, an elementary t-route
is represented by blue and dotted arrows. It visits the subset of nodes {1, 2} in the sequence 2− 1,
and would be represented by the following arcs: (0, 2)2, (2, 1)5.

The t-routes algorithm can be described in three steps as follows: (a) Initialization, (b)
Filling and (c) Retrieving. Algorithm 5.2 summarizes the Initialization step. First, it creates a
matrix R of (H + 1)× (n+ 1) positions. In line 2, the position R(0, 0) receives and label with
reduced cost rc = 0, and predecessor i = 0. The entries R(a0j, j),∀j ∈ N are filled with a label
corresponding of a lonely arc going direct from the plant node 0 to node j, that is, the reduced
cost is rc(R(a0j, j)) = c0j , and the predecessor is i(R(a0j, j)) = 0. The positions R(a, j) such
that a < a0j or a > H − sj − aj,n+1 also are initialized with infinite cost labels, because a client
can not be reached with a riding time inferior to a0j or superior to H − sj − aj,n+1.

The Filling step is described in Algorithm 5.3, which fills the positions R(a, j) such that
j ∈ N , and a0j < a ≤ H − sj − aj,n+1. For each j ∈ N with respective feasible arrival time a,
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Figure 5.2 – t-routes example.

Algorithm 5.2: Initialization
Data: Problem information

1 create a matrix R with (H + 1)× (n+ 1) positions;
2 R(0, 0)← (0, 0);
3 for a = 1, ..., H do
4 for j ∈ N do
5 if a = a0j then
6 rc(R(a, j))← c0j;
7 i(R(a, j))← 0;
8 else if a < a0j or a > H − sj − aj,n+1 then
9 rc(R(a, j))← +∞;

10 i(R(a, j))← −1;
11 end
12 end
13 end
14 return matrix R;

this step chooses the best predecessor node i. To choose the predecessor node i with arrival time
a− si − aij , the reduced cost until reaches j is computed with Equation (5.14).

rc(R(a, j)) = min
(i,j)a∈∆(−)

j

{rc(R(a− si − aij, i)) + cij} (5.14)

Then, for each position of the matrix R(a, j) there is a t-route with the minimum reduced cost,
and ending in a client j ∈ N with a total riding time a = a0j, ..., H−sj−aj,n+1, before returning
to the plant copy n+ 1.

Algorithm 5.4 explains the Retrieving step. This step has the purpose of selecting for each
client j ∈ N the t-route with time a∗ which minimizes the reduced cost (rc(R(a∗, j)) + cj,n+1)
to be added to the RRMP.

It is possible to see that the proposed t-routes has no elementary guarantee, that is, cyclic
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Algorithm 5.3: Filling
Data: Problem information, Matrix R

1 for a = 1, . . . , H do
2 for j ∈ N do
3 if a > a0j and a ≤ H − sj − aj,n+1 then
4 c̃← +∞;
5 ĩ← −1;
6 forall (i, j) ∈ A do
7 rc ← rc(R(a− si − aij, i)) + cij;
8 if rc < c̃ then
9 c̃← rc;

10 ĩ← i;
11 end
12 end
13 rc(R(a, j))← c̃;
14 i(R(a, j))← ĩ;
15 end
16 end
17 end
18 return matrix R;

Algorithm 5.4: Retrieving
Data: Matrix R

1 for j ∈ N do
2 c̃← +∞;
3 a∗ ← −1;
4 for a = a0j, . . . , H − sj − aj,n+1 do
5 if rc(R(a, j)) < c̃ then
6 c̃← rc(R(a, j));
7 a∗ ← a;
8 end
9 end

10 compute the corresponding t-route that starts in R(a∗, j) into a column xtr with cost
cr ;

11 add xtr to RRMP;
12 end
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paths are allowed. But, observing the RRMP, it is possible to realize that non-elementary columns
(that has at least one customer i with ztir > 1) will never be part basic due the presence of
constraints (5.4). To get around this condition, the cycles can be progressively forbidden in the
pricing algorithm. Here, the decremental state-space relaxation (DSSR) proposed by Righini and
Salani (2008) was adopted. It helps the formation of elementary routes considering a new subset
of clients, besides not changing the complexity of the pricing. Let’s now consider that each entry
in matrix R(a, j) has also a has a field U ⊆ N that stores the set of clients that participates of
the t-route. Let E ⊆ N be a subset of clients which their elementary is required. When a t-route
L is extended to a node j, the set of unreachable clients that participates of L, must be updated
as follows:

U(L′) =

 U(L ∪ {j}, if j ∈ E \ U(L)
U(L), otherwise.

(5.15)

Consequently, cycles can occur in any client j /∈ E . To seek the elementary, E is augmented as
needed. Typically, the DSSR procedure starts with E = ∅. If the path with the smaller reduced
cost has a cycle in some client j, this client is added to E . Desaulniers et al. (2008) stated that is
interesting to hold the set E for all iterations during the column generation procedure.

Our proposed t-routes is solved individually for each pair vehicle-period (v, t),∀ ∈ V , t ∈
T . Then, in line 6 of Algorithm 5.2, the reduced cost must be computed as rc(R(a, j)) = c0j−φvt,
considering the respective dual price of the vehicle v during period t. As aforementioned,
product(inventory)-routing problems solved with column generation approaches have the deliv-
ered loads defined by the pricing problem, which increases the algorithm complexity. It augments
the amount of information contained in each entry of matrix R. Then, before we proceed to the
pricing problems, it is important to bound the possible label extensions as well as to-be-delivered
loads, aiming to control the growth in the number labels.

A labelLi contained in the entryR(a−si−aij, i) can be extended to a node j ∈ N , if and
only if, the accumulated load until a predecessor node i more the delivered loads to node j is less
than the vehicle’s capacity that is performing the route, i.e., o(R(a−si−aij, i))+∑k∈P qjk ≤ Qv.
The optimal values could be assessed by solving the BKP (5.11)-(5.13) for each visited customer
of every possible new label and could lead to very high processing times. Instead, it can be solved
with dynamic programming.

The solution of the BKP with dynamic programming works as follows. When a label
is extended to a client node j ∈ N , it must select which products and respective quantities are
delivered, and compute its respective dual price. Then, in line 7 of Algorithm 5.3 the computation
of the reduced cost must be rewritten as rc = rc(R(a−si−aij, i))+cij−

∑
k∈P(γtk+δtjk)qtjk. Only

products k ∈ P with positive dual values (γtk + δtjk
)
are selected to be delivered, once the BKP

aims to maximize its objective function. The selected dual prices are decreasingly ordered. The
product with the larger dual price is added to the vehicle assuming one of the following possible
values qtjk = min{Q̃, {0, dtjk, Ot

jk}}. It is done to bounds the possible number of labels, once
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variables qjk are non-negatives, and would lead to an intractable number of possible extensions.
For the selected product k, the residual load is updated as Q̃ = Q̃− qtjk. This step is repeated
until no longer products can be delivered to customer j.

Let’s define that each entry in matrix R(a, j) contains no longer a single label, but a
bucket of labels. A bucket R(a, j) represents not only the cheapest t-route with riding time a
that reaches j, but also alternative t-routes that ensure that all possible extensions from the plant
node 0 to j are considered. The number of labels in each bucket is limited by eliminating all
dominated labels.

Each label L(a, j) = (rc,U , i, qik, o) reaching the client j ∈ N with riding time a,
corresponds to the following information: rc is the accumulated reduced cost, U is the set of
clients that compose the path, i is the predecessor node, qik is the quantity delivered for the client
i ∈ U of the product k ∈ P , and o = ∑

(i,k)∈{i∈U ,k∈P} is the total carried load by the vehicle.
Lets qk = ∑

i∈U , qj = ∑
k∈P , qjk be the total quantities delivered by the label L(a, j) related

to a product k ∈ P , to a client j ∈ N , and the individual quantities of product k to customer
j, respectively. Every time a label is extended, a pairwise dominance rule is adopted. These
dominance rules were derived from the work of Desaulniers (2010). Given two labels L∗ and
L′ , that reaches j with riding time a, L∗j dominates L′j (L∗j � L

′
j), if and only if, the following

conditions are satisfied:

1. o1 ≥ o2;

2. c1
r − q1

jk(γk + δjk) ≤ c2
r − q2

jk(γk + δjk);

3. c1
r − (q2

k − q1
k)(γk + δjk) ≤ c2

r;

4. c1
r − (q2

k + q2
jk − q1

k)(γk + δjk) ≤ c2
r − q2

jk(γk + δjk).

If a new L′ is not dominated, then it is added to its respective bucket. The dominance rule test
replaces the reduced cost test in line 8 of Algorithm 5.3, and provokes that for every entry in
matrix R(a, j), Algorithm 5.4 would have to select the t-routes with negative reduced cost from
the bucket.

Accordingly to Pessoa et al. (2009), the pricing subproblem of finding the q-routes yielding
a variable with minimum reduced cost is NP-hard, but can be solved in pseudopolynomialO(mC)
time, where m = |A|, and C is the vehicle capacity. Once the proposed t-routes relies on the
same concept, we can state as follows.

The matrix R(a, j) have (n+ 1)× (H + 1) entries. Moreover, the reduced cost of each of
them is accessed exactly once. For each accessed entry, the procedure takes O(1) time to update
the matrix. So, the total running time is O(nH). Considering that the proposed pricing runs for
each pair period-vehicle (t, v), the total number of entries updated is T×V ×(n+1)×(H+1). For
example, the minor (larger) proposed instance has n = 20, T = 5, V = 7 (n = 50, T = 15, V =
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11), and H = 6000, soon, there are 4,410,735 (50,498,415) entries to be updated during every
pricing execution. Updating an entry also requires the solution of a bounded knapsack problem.
Whereas, the proposed pricing presented impracticable computational times. To get around this
situation and allow us to study the RRMP attained bounds, the columns were heuristically priced,
as shown in the next section.

5.4.2 Pricing columns heuristically

The pricing proposed in the previous section is executed for every pair of vehicle-period
(v, t). It leads to elevated computational times, even for the smallest instances proposed. To offer
an alternative for generating negative reduced cost columns, the following procedure is based on
the refinement heuristics and perturbation operators presented in Chapter 4. First, the proposed
problems PIv and VRt are built and solved, accordingly to the Algorithm 4.1. Next, the part of
the solution about the delivery lots q = {qvtik ,∀i ∈ N , k ∈ P , v ∈ V , t ∈ T }, and the T routing
problems VRt are retained as a delivery pattern.

The procedure PCH (Alg. 5.5) works with the obtained dual prices (γtk, δ
t

ik, π
t
i, φ

vt), the
delivery pattern information q, and routing solution VRt. For each period, it perturbs the current
vehicle routing solution vrt with the selected perturbation operator rκ (line 2). With vrt perturbed
by rκ, it is optimized with a modified version of the NRS (Alg. 4.3) procedure (line 3). Every
optimized route by NRS is tested if its reduced cost is negative, considering the dual prices
(γtk, δ

t

ik, π
t
i, φ

vt), and delivery pattern q. The reduced cost is computed with Equations(5.9) and
(5.10), and if negative, this route is added to the RRMP. In line 4, if a better routing solution was
found, it is stored for the next iterations. Also, in the case that the perturbation operator is DL,
the new delivery pattern is updated.

Algorithm 5.5: Pricing columns heuristically (PCH)
Data: (q,VRt), (γtk, δ

t

ik, π
t
i, φ

vt), rκ
1 forall t ∈ T do
2 vr′t ← Perturb(vrt, rκ);
3 vr′′t ← NRS(vr′t,q, γtk, δ

t

ik, π
t
i, φ

vt); //Alg. 4.3, Eq. (5.9), Eq. (5.10)
4 if f(vr′′t ) < f(vrt) then
5 vrt ← vr′′t ;
6 if q was modified then updade q;
7 end
8 end

To induce the formation of columns with negative reduced costs, a small modification
is realized over the perturbation operator DL, please see Section 4.4.3. When a move mtt′

ik is
identified with Equations 4.6 or 4.7, it is added to the list of possible moves if, and only if, the
dual prices of the period t′ are bigger than the ones of period t (γt′k + δ

t′

ik > γtk + δ
t

ik). Here, this
modification relies on the idea of maximizing the contribution of the delivery to the reduced
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cost of the route, as done in problem (5.11)-(5.13). After applying DL on delivery pattern q, the
routing solution vrt is rebuilt.

5.5 Computational results and analysis

This section presents the attained bounds by the column generation approach. The adop-
tion of the proposed t-routes pricing algorithm led to a prohibitive number of labels and computa-
tional times, even for the smaller instances. To get around this situation, we proposed to generate
heuristically negative reduced cost columns, and to study the bounds reached.

As the variables are heuristically priced, different columns are generated during each run
of the method. Due to this, the method runs 5 rounds for at most 20 minutes. The complete data
are available in Tables E.1-E.3.

As shown in Section 3.4, the proposed 2COMM model offers better lower bounds than
VINDX. Thus, the lower bounds (LB) reached by the Algorithm 5.1 are compared to them. This
comparison adopts the linear programming gap (LP GAP), computed as shown in Equation 3.41,
but considering the upper bounds (UB) as the best-known solution value found between the
2COMM, ABUILS, and the TDILS methods.

To compare, we selected within the 5 rounds the best bounds found for each instance.
Because it would be closer to the attained bounds of non-heuristic pricing since non-heuristic
pricing would generate the best columns guided only by the dual prices and without a random
characteristic as the one present in the PCH procedure.

Figure 5.3 presents the attained linear programming gaps for RRMP (gray boxes), and
2COMM (blue boxes). It is possible to see that RRMP provided tighter bounds in 100% of the
instances. Considering the LP GAP reached, RRMP (2COMM) had an average value equals to
11.14% (27.10%), worst value equals 23.38% (42.46%), and best value equals 2.47% (13.33%).
Besides, the average percentage difference showed that RRMP performed 15.96% better than
2COMM. The complete data are available in Tables E.4-E.6. The columns represent the index of
the instance (#), the name, best known solution (UB), lower bounds (LB) and linear programming
gaps (LP GAP) for 2COMM and RRMP, and the percentage difference (Diff) between the attained
LP GAP.

The proposed RRMP formulation, even with heuristically priced columns, is capable to
return better lower bounds than the ones found by 2COMM. To tight these attained lower bounds,
improvements can be realized with the addition of strengthening cuts, and on the proposed
t-routes pricing algorithm, to generate high-quality columns within low computational times,
instead to price them heuristically.
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Figure 5.3 – Comparison of the LP GAP for RRMP and 2COMM.
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5.6 Final remarks

The proposed RPRP has proved itself a huge challenge. Aiming to provide lower bounds
to assess the quality of the attained upper bounds, this chapter focused on the development of
column generation approach. A column generation is an efficient method for solving large linear
problems, and provides better lower bounds than linear programming relaxation. This method
splits the problem into a master problem, considering a subset of variables, and a pricing problem
that generates new ones.

The chosen master problem was a compact and equivalent formulation for the RPRP,
called RRMP. Besides, a concept of a pricing algorithm was proposed. The proposed pricing,
named t-routes, relied in the same ground of the well known q-routes algorithm largely adopted
for capacitated VRP in the literature. This pricing worked with time-indexed arcs, and every label
extension solved a multi-product bounded knapsack problem, which contributed to increase the
complexity of an already complex algorithm, leading to a elevated computational processing
times.

To get around this situation, and to be able to study the quality of the lower bounds
found by the compact formulation and the known upper bounds, the columns were generated
heuristically. With a delivery pattern and routing design found by the initial solution procedure
from the adaptive bottom-up method from Chapter 4, the delivery plan and the arrangement
of routes were modified with the operational-level perturbation operators and optimized with
the routing local searches. Every column with a negative reduced cost were added to the master
problem, which is solved again.

The computational experiments showed that the proposed formulation was capable to
provide lower limits tighter than the ones found by the 2COMM formulation. Future researches
encompass the improvement of the proposed t-routes pricing subproblem making it capable to
generate quality columns in reasonable computational time and effort, also, to develop cuts to
strengthen the bounds.
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6 Conclusions and future researches

"One is always a long way from solving a problem until one actually has the answer".

Stephen W. Hawking

In this thesis, a rich production-routing problem (RPRP) was proposed, bringing interest-
ing features like the possibility of back-order the demand, the production of several items and to
carry mixed loads using a heterogeneous fleet that must travel within a time limit. Two formula-
tions were proposed, modeling the routing component of the problem considering vehicle-indexes
or a two-commodity flow pattern. With the increase in the number of clients, products, vehicles
and, periods, the problem delivered a high-level computational challenge. To provide solutions
and assess their quality, hybrid, and lower bound approaches were developed to treat the RPRP.

The first three matheuristic approaches were based on the top-down hierarchical two-level
decision. The methods divided the problem into two. A top tier, treating the production-inventory
and distribution decisions, and a bottom one focused in the routing ones. The top tier was
solved using a commercial solver, as the operational was routed and improved with heuristics
independently for each period. With an iterated-local search framework, perturbations occurred
changing the production and routing plans. The production plan was modified increasing or
decreasing the production levels. Whereas the routing design was changed in an intuitive way
to price the costs of the delivered lots is proposed to feedback the production-inventory level
with information about the routing, which helps to lead to faster and improved solutions. The
methods that considered the perturbations over the routing lead to the best solutions, suggesting
that approaches giving first attention to the routing-distribution could achieve better results.

A bottom-up and hybrid approach was proposed to allow an analysis of a counterpoint in
decision making. Still, with the problem divided into two, it focused in to modify the distribution
and routing plans. The distribution plans were modified exchanging delivery lots between different
periods. The perturbation operators were adaptively selected, guaranteeing that the ones with
more fitness to the problem had more opportunities. These decisions were fixed in the top tier
problem, which was reoptimized. The solutions found, despite needing more time than the
top-down approaches, achieved better objective function values.

The last approach proposed was a column generation algorithm. It had the purpose to
provide better lower bounds than the ones found by the proposed models, and to assess the
quality of the best-known solutions. An equivalent formulation for the RPRP was developed,
dropping out the distribution-routing variables and constraints. This model worked as a restricted
master problem having the routing-distribution columns added iteratively. Column generation
approaches are known to have their complexity residing in the pricing subproblems. As done in
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the close related studies found in the literature, the delivered quantities are defined in the pricing
subproblem. This increases the complexity, once the routing component is usually solved with
the shortest path problem with resource constraints, and also solves a bounded knapsack problem
to define the size of the lots delivered. A pricing approach named t-routes is proposed. However,
even with dominance policies, the number of entries (labels) became intractable. To overcome
this situation, we decided to generate the columns heuristically. With a routing and distribution
pattern provided by the initial solution of the matheuristic, it had its distribution plans and routing
design perturbed and optimized. The columns with negative reduced costs were added to the
master problem. The method was capable to reach tighter lower bounds than the ones found by
2COMM with the columns heuristically priced.

Future researches have several opportunities that would turn the problem richer and
still more challenging. It could be done with the inclusion of some factors, such as allowing
partial deliveries or lost sales, perishable products, adoption of periodic time windows with
demands being served within a given range of periods, heterogeneous and multiple fleet, and
proportional service time. This last would turn the problem non-linear, once the parameter service
time becoming a variable proportional to the size of the lot. Also, the inclusion of more plants
and permanent or rented distribution center, creating a multi-echelon network. The demands
and travel times could be considered under uncertainty. Part of these proposals is treatable with
branch-and-price approaches, strongly dependent on the pricing subproblem.
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APPENDIX A – Generating and reading
RPRP instances

A.1 C++ code to generate instances
#include <iostream>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <random>
#include <algorithm>

using namespace std;

typedef struct{
char type; //tipo, (u)niforme
int n; //numero de clientes
int P; //numero de produtos
int T; //numero de periodos;
int V; //numero de veiculos

//informacoes sobre a planta produtiva
std::vector<int> C;//capacidade de produção de cada linha de cada item
std::vector<double> l; //custo de setup/ativacao de cada item em cada linha
std::vector<double> u; //custo unitário de produção de cada item em cada lkinha;

//informacoes dos clientes
std::vector<std::vector<std::vector<int> > > d; //demanda periodica de cada item por cada cliente
std::vector<std::vector<int> > a; //tempo de viagem de i para j
std::vector<int> s; //tempo de servico de i
std::vector<std::vector<double> > B; //custo de atrasar o produto p para o cliente i

//informacoes da frota
std::vector<int> Q; //capacidade maxima de transporte de determinado veiculo
std::vector<int> e; //custo de setup/ativação de cada veiculo
int H; //horizonte de tempo para entrega

//informacoes gerais
std::vector<std::vector<double> > c; //custo de transporte de i para j
std::vector<double> x; //coordenada x do no i
std::vector<double> y; //coordenada y do no i
std::vector<std::vector<double> > h; //custo de estocagem do produto p no no i
std::vector<std::vector<int> > U; //limite superior de estocagem de cada item na planta produtiva
std::vector<std::vector<int> > I0; //inventario inicial em cada no

} DATA;
void help();
void vSort(std::vector<int> &V);
void print(DATA d);
void generate(DATA &d);
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void help(){
std::cout << std::endl << std::endl << "exec [data file] \n " << std::endl;
exit(1);

}
void vSort(std::vector<int> &V) {

for (int fixo = 0; fixo < V.size() - 1; fixo++) {
int menor = fixo;
for (int i = menor + 1; i < V.size(); i++) if (V[i] < V[menor]) menor = i;
if (menor != fixo) {

int sV = V[fixo];
V[fixo] = V[menor];
V[menor] = sV;

}
}

}
void print(DATA d){

ofstream arq;

string n = std::to_string(d.n);
string T = std::to_string(d.T);
string P = std::to_string(d.P);
string V = std::to_string(d.V);

string name = "P" + n + "n" + P + "p" + T + "t" + V + "v" + ".dat";
string outputfile = "..." + name; //"..." equivale ao caminho para salvar os arquivos

//convertendo string para char
char *cName = new char[outputfile.length()+1];
memcpy(cName, outputfile.c_str(), outputfile.length() + 1);
arq.open(cName);

if (!arq.is_open()) help();

arq << d.n;
arq << "\n" << d.T;
arq << "\n" << d.P;
arq << "\n" << d.V;
arq << "\n" << d.H;

for (int v = 1; v <= d.V; v++)
arq << "\n" << d.Q[v] << "\t" << d.e[v];

for (int i = 0; i <= d.n; i++){
arq << "\n" << fixed << setprecision(1) << d.x[i] << "\t" << d.y[i];
if (i > 0){

arq << "\t" << d.s[i];
for (int p = 1; p <= d.P; p++)

arq << "\t" << d.I0[p][i] << "\t" << d.h[p][i] << "\t" << d.U[p][i] << "\t" << d.B[p][i];
}else if (i == 0){

for (int p = 1; p <= d.P; p++)
arq << "\t" << d.I0[p][i] << "\t" << d.h[p][i] << "\t" << d.U[p][i] << "\t" << d.C[p] << "\t" << d.l[p]<< "\t" << d.u[p];

}
}

for (int p = 1; p <= d.P; p++){
for (int i = 1; i <= d.n; i++){

arq << "\n";
for (int t = 1; t <= d.T; t++) arq << d.d[t][p][i] << "\t";

}
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}
arq.close();

}
void generate(DATA &d){

std::random_device rd; //Will be used to obtain a seed for the random number engine
std::mt19937_64 gen(rd()); //Standard mersenne_twister_engine seeded with rd()

//gerando as coordenadas dos pontos
std::uniform_real_distribution<> pos(0,1000); //coelho
//std::normal_distribution<double> pos(0.0,100.0);
d.x = std::vector<double> (d.n+2,0.0); //coordenada x do no i
d.y = std::vector<double> (d.n+2,0.0);
//reservar as posições 0 e n+1 para os nós artificiais
for (int i = 0; i <= d.n; i++){

d.x[i] = pos(gen);
d.y[i] = pos(gen);
if (i == 0){

d.x[d.n+1] = d.x[0];
d.y[d.n+1] = d.y[0];

}
//std::cout << "\ni: " << i << " -> x: " << d.x[i] << " -> y: " << d.y[i];

}

std::uniform_int_distribution<> demLow(5,25);
std::uniform_int_distribution<> demHigh(30,55);
std::uniform_int_distribution<> LowHigh(0,1);
d.d = std::vector<std::vector<std::vector<int> > >
(d.T + 1,std::vector<std::vector <int> > (d.P + 1, std::vector<int>(d.n + 1, 0)));
int demandTotal = 0;
for (int t = 1; t <= d.T; t++){

//std::cout << "\n\tt = " << t;
for (int p = 1; p <= d.P; p++){

//std::cout << "\n\t\tk = " << p;
for (int i = 1; i <= d.n; i++){

if (LowHigh(gen) == 0)
d.d[t][p][i] = demLow(gen);

else if (LowHigh(gen) == 1)
d.d[t][p][i] = demHigh(gen);

demandTotal += d.d[t][p][i];
//std::cout << "\ti = " << i << " -> d: " << d.d[t][p][i];

}
}

}

//custos de estocagem
std::uniform_int_distribution<> h0(1,5);
std::uniform_int_distribution<> hi(6,10);
d.h = std::vector<std::vector<double> > (d.P + 1, std::vector<double> (d.n+1,0.0));
for (int p = 1; p <= d.P; p++){

for (int i = 0; i <= d.n; i++){
if (i > 0) d.h[p][i] = hi(gen);
else d.h[p][i] = h0(gen);

}
}

std::uniform_int_distribution<> backorder(8,12);
d.B = std::vector<std::vector<double> > (d.P + 1, std::vector<double> (d.n+1,0.0));
for (int p = 1; p <= d.P; p++)

for (int i = 1; i <= d.n; i++)
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d.B[p][i] = (d.h[p][i])*backorder(gen);

std::uniform_int_distribution<> holdCapacity(140,190);
std::uniform_int_distribution<> g(2,4);
d.U = std::vector<std::vector<int> > (d.P + 1, std::vector<int> (d.n + 1, 0));
for (int i = 0; i <= d.n; i++)

for (int p = 1; p <= d.P; p++) d.U[p][i] = g(gen)*holdCapacity(gen);

//as capacidades de produção por produto
d.C = std::vector<int> (d.P + 1, 0);
d.l = std::vector<double> (d.P + 1,0); //custo de preparação de produção (setup)
d.u = std::vector<double> (d.P + 1,0.0); //custo de producao unitario
std::uniform_int_distribution<> prodCost(2,8);
std::uniform_int_distribution<> prodCapacity(50,140);
for(int p = 1; p <= d.P; p++) {

d.C[p] = d.n*prodCapacity(gen); //leandro coelho mmirp
d.u[p] = prodCost(gen);
d.l[p] = 10000*d.u[p];

}

//definindo o I0 igual a demanda do primeiro período para cada cliente
d.I0 = std::vector<std::vector<int> > (d.P + 1, std::vector<int> (d.n + 1,0));
std::uniform_int_distribution<> i0(100,150); //coelho
for (int p = 1; p <= d.P; p++){

d.I0[p][0] = i0(gen); //coelho
for (int i = 1; i <= d.n; i++){

d.I0[p][i] = d.d[1][p][i];
}

}

d.Q = std::vector<int> (d.V + 1, 0);
d.e = std::vector<int> (d.V + 1, 0);
std::uniform_int_distribution<>

maxVehicleLoad(0.8*2*floor(demandTotal/(d.T*d.V)),2*floor(demandTotal/(d.T*d.V)));
std::uniform_int_distribution<> setupVehicle(500,1000);
for (int v = 1; v <= d.V; v++){

d.Q[v] = maxVehicleLoad(gen);
d.e[v] = setupVehicle(gen);

}
//ordenando os custos e capacidades
vSort(d.Q);
vSort(d.e);

d.H = 6000;
d.s = std::vector<int> (d.n + 1, 50);

//print(d,type);
}
int main(){

//Fortes
//n = 20, 30, 40, 50
//P = 3,4,5
//T = 5,10,15
//V = 7,9,11
int inst = 0;

for (int c = 2; c <= 5; c++){
DATA d;
d.n = 10*c;
for (int p = 3; p <= 5; p++){
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d.P = p;
for (int t = 5; t <= 15; t+=5){

d.T = t;
for (int v = 7; v <= 11; v+=2){

d.V = v;
generate(d);
inst++;

}
}

}
}

std::cout << std::endl << inst;
//getchar();
return 0;

}

A.2 C++ code to read instances
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <time.h>
#include <string>
#include <string.h>
#include <deque>

//instance data
typedef struct{

int n; //numero de clientes
int P; //numeto de produtos
int T; //numero de periodos;
int V; //numero de veiculos

//informacoes sobre a planta produtiva
std::vector<int> C; //capacidade de produção de cada fabrica de cada item
std::vector<double> l; //custo de setup/ativacao de cada item em cada fabrica
std::vector<double> u; //custo unitário de produção de cada item em cada fabrica;

//informacoes dos clientes
std::vector<std::vector<std::vector<int> > >d; //demanda periodica de cada item por cada cliente
std::vector<std::vector<double> > a; //tempo de viagem de i para j
std::vector<int> s; //tempo de servico de i
std::vector<std::vector<double> > B;//custo de atrasar o produto p para o cliente i

//informacoes da frota
std::vector<int> Q; //capacidade maxima de transporte de determinado veiculo
std::vector<int> e; //custo de setup/ativação de cada veiculo
int H; //horizonte de tempo para entrega, de 12 horas (6h - 18h)

//informacoes gerais
std::vector<std::vector<double> > c; //custo de transporte de i para j
std::vector<double> x; //coordenada x do no i
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std::vector<double> y; //coordenada y do no i
std::vector<std::vector<double> > h; //custo de estocagem do produto p no no i
std::vector<std::vector<int> > U; //limite superior de estocagem no item de cada planta
std::vector<std::vector<int> > I0; //inventario inicial em cada no, deve satisfazer a demanda do periodo

string name;
string pathIn;

}data;

//Erro de leitura de dados
void help(){

std::cout << std::endl << std::endl << "exec [data file] \n " << std::endl;
exit(1);

}
void read(data &d){

string sPath = d.pathIn + d.name;
//std::cout << "\n\tPath = " << sPath;
char *cPath = new char[sPath.length()+1];
memcpy(cPath, sPath.c_str(), sPath.length() + 1);
//std::cout << "\n\tPath = " << cPath;
//fim conversao string para char

//abertura do arquivo de dados
ifstream arq(cPath);
if (!arq.is_open()) help();

//iniciando leitura dos parametros
arq >> d.n; //number of clients
arq >> d.T; //number of periods
arq >> d.P; //number of commodities
arq >> d.V; //number of vehicles
arq >> d.H; //maximum time route size

//std::cout << "\nV = " << d.V << "\nP = " << d.P;

//reservando posicoes 0 e n+1 para nos artificiais
d.x = std::vector<double> (d.n + 2,0.0); //coordenada x do no i
d.y = std::vector<double> (d.n + 2,0.0); //coordenada x do no i
d.c = std::vector<std::vector<double> > (d.n + 2, std::vector<double> (d.n + 2, 0.0)); //custo (i,j)
d.a = std::vector<std::vector<double> > (d.n + 2, std::vector<double> (d.n + 2, 0.0)); //tempo (i,j)
d.s = std::vector<int> (d.n + 1, 10); //tempo de atendimento

//estoque inicial
d.I0 = std::vector<std::vector<int> > (d.P + 1, std::vector<int> (d.n + 1,0));

//demanda periodica e acumulada
d.d = std::vector<std::vector<std::vector<int> > >

(d.T + 1, std::vector<std::vector <int> > (d.P + 1, std::vector<int>(d.n + 1, 0)));

//informacoes sobre producao e fabrica
d.u = std::vector<double> (d.P + 1,0); //custo de producao unitario
d.C = std::vector<int> (d.P + 1,0); //capacidade de cada linha de produção
d.l = std::vector<double> (d.P + 1,0); //custo de preparação de produção (setup)

//informacoes sobre os veiculos
d.Q = std::vector<int> (d.V + 1, 0); //carga maxima carregada
d.e = std::vector<int> (d.V + 1, 0); //custo de ativação

//custos e limites de estocagem e custo de atraso
d.h = std::vector<std::vector<double> > (d.P + 1, std::vector<double> (d.n + 1,0.0));
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d.U = std::vector<std::vector<int> > (d.P + 1, std::vector<int> (d.n + 1, 0));
d.B = std::vector<std::vector<double> > (d.P + 1, std::vector<double> (d.n + 1,0.0));

//informacoes sobre os veiculos
for (int v = 1; v <= d.V; v++){

arq >> d.Q[v];
arq >> d.e[v];

}

//lendo informacoes dos nos clientes e plantas
for (int i = 0; i <= d.n; i++){

arq >> d.x[i];
arq >> d.y[i];
if (i == 0){

for (int p = 1; p <= d.P; p++){
arq >> d.I0[p][i];
arq >> d.h[p][i];
arq >> d.U[p][i];
arq >> d.C[p];
arq >> d.l[p];
arq >> d.u[p];

}
d.x[d.n+1] = d.x[i];
d.y[d.n+1] = d.y[i];

}else if (i > 0){
arq >> d.s[i];
for (int p = 1; p <= d.P; p++){

arq >> d.I0[p][i];
arq >> d.h[p][i];
arq >> d.U[p][i];
arq >> d.B[p][i];

}
}

}

//demandas de cada cliente por cada produto em cada periodo
for (int p = 1; p <= d.P; p++)

for (int i = 1; i <= d.n; i++)
for (int t = 1; t <= d.T; t++) arq >> d.d[t][p][i];

for (int i = 0; i <= d.n + 1; i++)
for (int j = 0; j <= d.n + 1; j++)

d.c[i][j] = round(sqrt((d.x[i] - d.x[j])*(d.x[i] - d.x[j]) + (d.y[i] - d.y[j])*(d.y[i] - d.y[j])));

d.a = std::vector<std::vector<double> > (d.c);
arq.close();

}

int main(int argc, char *argv[]){
data d;
d.name = argv[1];
d.pathIn = "..."; //caminho onde estao as instancias
read(d);
return 0;

}
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APPENDIX B – Data from Chapter 3

B.1 Instance labeling

Table B.1 – Instance labels

# INSTANCE # INSTANCE # INSTANCE

1 P20n3p5t7v 37 P30n4p5t7v 73 P40n5p5t7v
2 P20n3p5t9v 38 P30n4p5t9v 74 P40n5p5t9v
3 P20n3p5t11v 39 P30n4p5t11v 75 P40n5p5t11v
4 P20n3p10t7v 40 P30n4p10t7v 76 P40n5p10t7v
5 P20n3p10t9v 41 P30n4p10t9v 77 P40n5p10t9v
6 P20n3p10t11v 42 P30n4p10t11v 78 P40n5p10t11v
7 P20n3p15t7v 43 P30n4p15t7v 79 P40n5p15t7v
8 P20n3p15t9v 44 P30n4p15t9v 80 P40n5p15t9v
9 P20n3p15t11v 45 P30n4p15t11v 81 P40n5p15t11v
10 P20n4p5t7v 46 P30n5p5t7v 82 P50n3p5t7v
11 P20n4p5t9v 47 P30n5p5t9v 83 P50n3p5t9v
12 P20n4p5t11v 48 P30n5p5t11v 84 P50n3p5t11v
13 P20n4p10t7v 49 P30n5p10t7v 85 P50n3p10t7v
14 P20n4p10t9v 50 P30n5p10t9v 86 P50n3p10t9v
15 P20n4p10t11v 51 P30n5p10t11v 87 P50n3p10t11v
16 P20n4p15t7v 52 P30n5p15t7v 88 P50n3p15t7v
17 P20n4p15t9v 53 P30n5p15t9v 89 P50n3p15t9v
18 P20n4p15t11v 54 P30n5p15t11v 90 P50n3p15t11v
19 P20n5p5t7v 55 P40n3p5t7v 91 P50n4p5t7v
20 P20n5p5t9v 56 P40n3p5t9v 92 P50n4p5t9v
21 P20n5p5t11v 57 P40n3p5t11v 93 P50n4p5t11v
22 P20n5p10t7v 58 P40n3p10t7v 94 P50n4p10t7v
23 P20n5p10t9v 59 P40n3p10t9v 95 P50n4p10t9v
24 P20n5p10t11v 60 P40n3p10t11v 96 P50n4p10t11v
25 P20n5p15t7v 61 P40n3p15t7v 97 P50n4p15t7v
26 P20n5p15t9v 62 P40n3p15t9v 98 P50n4p15t9v
27 P20n5p15t11v 63 P40n3p15t11v 99 P50n4p15t11v
28 P30n3p5t7v 64 P40n4p5t7v 100 P50n5p5t7v
29 P30n3p5t9v 65 P40n4p5t9v 101 P50n5p5t9v
30 P30n3p5t11v 66 P40n4p5t11v 102 P50n5p5t11v
31 P30n3p10t7v 67 P40n4p10t7v 103 P50n5p10t7v
32 P30n3p10t9v 68 P40n4p10t9v 104 P50n5p10t9v
33 P30n3p10t11v 69 P40n4p10t11v 105 P50n5p10t11v
34 P30n3p15t7v 70 P40n4p15t7v 106 P50n5p15t7v
35 P30n3p15t9v 71 P40n4p15t9v 107 P50n5p15t9v
36 P30n3p15t11v 72 P40n4p15t11v 108 P50n5p15t11v
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B.2 Data from Section 3.4

Table B.2 – VINDX formulation after 6 hours running.

INSTANCE VINDX
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P20n3p5t7v 393.771 295.889 24,86 3,18 32878 22032
P20n3p5t9v 223.426 161.474 27,73 20,62 21769 16235
P20n3p5t11v 292.348 244.798 16,26 11,04 18135 10874
P20n3p10t7v 528.468 379.945 28,10 15,47 2747 617
P20n3p10t9v 482.892 304.049 37,04 33,13 1762 0
P20n3p10t11v 720.290 588.051 18,36 14,98 1211 1076
P20n3p15t7v 857.569 534.081 37,72 31,30 418 413
P20n3p15t9v 1.191.080 852.533 28,42 21,18 39 40
P20n3p15t11v 945.068 707.484 25,14 19,15 0 1
P20n4p5t7v 375.892 285.778 23,97 4,25 32807 24075
P20n4p5t9v 347.962 264.463 24,00 19,29 14073 10800
P20n4p5t11v 289.224 215.791 25,39 16,67 8792 6674
P20n4p10t7v 829.422 627.574 24,34 13,49 2531 2284
P20n4p10t9v 707.403 497.865 29,62 23,56 1945 1915
P20n4p10t11v 959.711 684.246 28,70 20,32 60 61
P20n4p15t7v 1.156.740 755.195 34,71 28,51 76 77
P20n4p15t9v 1.247.360 785.504 37,03 31,61 0 1
P20n4p15t11v 1.312.450 927.767 29,31 24,96 0 1
P20n5p5t7v 340.144 294.378 13,45 2,49 39251 24981
P20n5p5t9v 394.751 324.860 17,71 6,66 15153 9681
P20n5p5t11v 494.888 383.946 22,42 8,37 6658 2996
P20n5p10t7v 990.685 723.308 26,99 17,32 2893 2574
P20n5p10t9v 821.995 606.059 26,27 18,18 472 456
P20n5p10t11v 770.823 527.693 31,54 28,42 92 93
P20n5p15t7v 1.387.800 868.433 37,42 31,54 46 39
P20n5p15t9v 1.577.950 1.150.470 27,09 21,81 0 1
P20n5p15t11v 1.851.200 1.441.040 22,16 18,43 0 1
P30n3p5t7v 245.963 162.438 33,96 27,36 7081 3358
P30n3p5t9v 431.912 301.409 30,22 14,66 3218 2208
P30n3p5t11v 384.292 274.973 28,45 25,31 3493 2935
P30n3p10t7v 1.201.720 481.578 59,93 54,20 40 41
P30n3p10t9v 715.053 460.111 35,65 29,03 0 1
P30n3p10t11v 709.858 444.824 37,34 33,74 0 1
P30n3p15t7v 2.442.140 510.576 79,09 76,27 0 1
P30n3p15t9v 2.145.500 655.632 69,44 65,42 0 1
P30n3p15t11v 1.537.150 840.268 45,34 38,59 0 1
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Table B.3 – VINDX formulation after 6 hours running.

INSTANCE VINDX
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P30n4p5t7v 434.697 316.854 27,11 11,72 4486 1099
P30n4p5t9v 558.914 431.259 22,84 9,38 4189 799
P30n4p5t11v 549.718 410.156 25,39 18,75 2325 2121
P30n4p10t7v 750.017 481.951 35,74 23,43 37 38
P30n4p10t9v 815.512 530.540 34,94 30,82 0 1
P30n4p10t11v 896.933 575.316 35,86 31,55 0 1
P30n4p15t7v 3.350.600 803.950 76,01 72,51 0 1
P30n4p15t9v 1.330.540 772.189 41,96 36,65 0 1
P30n4p15t11v 1.342.350 824.193 38,60 34,68 0 1
P30n5p5t7v 456.627 341.105 25,30 19,72 3414 3079
P30n5p5t9v 426.722 320.281 24,94 22,92 160 134
P30n5p5t11v 504.405 392.082 22,27 21,11 186 154
P30n5p10t7v 2.759.440 755.767 72,61 69,46 0 1
P30n5p10t9v 2.649.030 675.739 74,49 72,30 0 1
P30n5p10t11v 1.115.330 755.193 32,29 26,10 0 1
P30n5p15t7v 1.507.690 875.531 41,93 37,25 0 1
P30n5p15t9v 2.546.510 1.220.080 52,09 48,23 0 1
P30n5p15t11v 4.297.030 1.152.160 73,19 71,93 0 1
P40n3p5t7v 505.832 329.084 34,94 33,43 1708 1336
P40n3p5t9v 296.602 182.776 38,38 31,71 0 1
P40n3p5t11v 408.951 307.084 24,91 17,42 0 1
P40n3p10t7v 1.836.600 484.415 73,62 70,03 0 1
P40n3p10t9v 1.851.760 704.946 61,93 60,23 0 1
P40n3p10t11v 1.264.500 685.990 45,75 42,92 0 1
P40n3p15t7v 3.140.920 872.886 72,21 70,59 0 1
P40n3p15t9v 1.728.290 466.618 73,00 68,40 0 1
P40n3p15t11v 1.895.240 682.968 63,96 60,93 0 1
P40n4p5t7v 453.213 245.731 45,78 41,09 218 212
P40n4p5t9v 430.170 319.420 25,75 22,08 18 17
P40n4p5t11v 515.293 356.201 30,87 23,80 0 1
P40n4p10t7v - 515.181 - - - -
P40n4p10t9v 2.434.040 688.190 71,73 71,05 0 1
P40n4p10t11v - 662.319 - - - -
P40n4p15t7v - 907.440 - - - -
P40n4p15t9v 3.358.250 815.336 75,72 73,37 0 1
P40n4p15t11v 4.390.560 1.161.270 73,55 72,45 0 1
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Table B.4 – VINDX formulation after 6 hours running.

INSTANCE VINDX
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P40n5p5t7v 518.105 345.830 33,25 31,77 866 802
P40n5p5t9v 565.973 431.552 23,75 20,60 0 1
P40n5p5t11v 611.745 417.736 31,71 30,74 0 1
P40n5p10t7v 3.040.470 898.987 70,43 68,52 0 1
P40n5p10t9v 2.210.840 1.169.390 47,11 43,38 0 1
P40n5p10t11v 1.779.260 934.598 47,47 46,04 0 1
P40n5p15t7v - 1.290.700 - - - -
P40n5p15t9v 5.104.740 1.677.770 67,13 65,71 0 1
P40n5p15t11v - 1.364.410 - - - -
P50n3p5t7v 1.006.910 304.794 69,73 68,55 36 37
P50n3p5t9v 713.850 429.257 39,87 39,04 0 1
P50n3p5t11v 1.429.730 444.786 68,89 65,31 0 1
P50n3p10t7v - 410.006 - - - -
P50n3p10t9v - 771.997 - - - -
P50n3p10t11v - 488.024 - - - -
P50n3p15t7v - 858.541 - - - -
P50n3p15t9v 3.608.090 946.907 73,76 72,11 0 1
P50n3p15t11v - 800.089 - - - -
P50n4p5t7v 950.456 332.052 65,06 64,02 0 1
P50n4p5t9v - 492.561 - - - -
P50n4p5t11v 747.986 473.114 36,75 36,51 0 1
P50n4p10t7v - 624.403 - - - -
P50n4p10t9v 2.363.800 898.420 61,99 61,47 0 1
P50n4p10t11v - 790.445 - - - -
P50n4p15t7v - 1.369.540 - - - -
P50n4p15t9v - 1.049.610 - - - -
P50n4p15t11v - 1.295.940 - - - -
P50n5p5t7v 841.087 481.136 42,80 41,70 0 1
P50n5p5t9v 1.134.560 553.521 51,21 50,77 30 29
P50n5p5t11v 865.317 526.570 39,15 34,25 0 1
P50n5p10t7v - 961.170 - - - -
P50n5p10t9v - 1.104.200 - - - -
P50n5p10t11v 2.538.630 911.456 64,10 62,23 0 1
P50n5p15t7v - 1.405.500 - - - -
P50n5p15t9v - 1.224.080 - - - -
P50n5p15t11v - 1.334.770 - - - -
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Table B.5 – 2COMM formulation after 6 hours running.

INSTANCE 2COMM
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P20n3p5t7v 391.528 297.990 23,89 2,45 23259 13026
P20n3p5t9v 202.915 164.319 19,02 2,50 28429 14195
P20n3p5t11v 288.668 246.252 14,69 2,42 22671 17321
P20n3p10t7v 489.465 382.494 21,85 2,50 55613 32084
P20n3p10t9v 436.894 308.409 29,41 7,87 19768 11236
P20n3p10t11v 688.757 591.686 14,09 2,93 84234 73302
P20n3p15t7v 755.877 540.318 28,52 16,33 35474 26928
P20n3p15t9v 1.182.860 859.310 27,35 14,91 33916 29562
P20n3p15t11v 898.279 713.910 20,52 9,32 20472 18164
P20n4p5t7v 372.428 287.229 22,88 2,44 22031 13081
P20n4p5t9v 344.193 266.998 22,43 2,49 5856 3684
P20n4p5t11v 273.274 220.017 19,49 2,49 36742 19435
P20n4p10t7v 782.581 629.284 19,59 3,62 18649 5998
P20n4p10t9v 660.923 500.170 24,32 8,57 38187 24094
P20n4p10t11v 906.773 688.348 24,09 12,70 22271 15124
P20n4p15t7v 1.108.540 763.501 31,13 15,70 27059 20407
P20n4p15t9v 1.083.300 791.510 26,94 12,97 16280 13455
P20n4p15t11v 1.240.280 936.779 24,47 12,71 8876 6192
P20n5p5t7v 341.003 295.544 13,33 2,43 10178 3740
P20n5p5t9v 389.873 326.648 16,22 2,50 28718 17710
P20n5p5t11v 485.908 387.007 20,35 2,22 8784 5477
P20n5p10t7v 944.844 728.208 22,93 7,80 39916 29811
P20n5p10t9v 775.047 612.165 21,02 6,55 24806 18871
P20n5p10t11v 717.215 529.836 26,13 4,46 25916 18095
P20n5p15t7v 1.284.820 874.308 31,95 18,61 6600 3891
P20n5p15t9v 1.494.610 1.162.500 22,22 11,27 13722 8267
P20n5p15t11v 1.750.670 1.449.880 17,18 8,36 13034 10287
P30n3p5t7v 213.712 163.465 23,51 7,49 28443 11805
P30n3p5t9v 391.676 304.526 22,25 2,50 43041 27849
P30n3p5t11v 367.768 277.559 24,53 2,50 22404 11863
P30n3p10t7v 688.428 484.644 29,60 16,10 24871 19469
P30n3p10t9v 667.572 463.102 30,63 10,82 16486 8420
P30n3p10t11v 655.854 448.232 31,66 16,54 18263 15412
P30n3p15t7v 903.626 514.078 43,11 25,03 4218 172
P30n3p15t9v 1.080.670 661.370 38,80 24,56 3887 2222
P30n3p15t11v 1.196.560 846.593 29,25 18,18 2105 275
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Table B.6 – 2COMM formulation after 6 hours running.

INSTANCE 2COMM
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P30n4p5t7v 410.940 318.423 22,51 1,64 108440 82807
P30n4p5t9v 537.101 432.958 19,39 0,62 224435 181648
P30n4p5t11v 495.875 412.699 16,77 0,64 137388 99115
P30n4p10t7v 692.268 484.873 29,96 13,07 18877 13407
P30n4p10t9v 739.013 534.998 27,61 10,68 21103 16141
P30n4p10t11v 853.287 580.149 32,01 17,68 7804 4585
P30n4p15t7v 1.221.400 806.908 33,94 19,29 3416 2213
P30n4p15t9v 1.263.490 775.141 38,65 23,02 5052 3275
P30n4p15t11v 1.352.240 834.354 38,30 24,07 4756 4696
P30n5p5t7v 415.180 343.669 17,22 1,30 171274 151919
P30n5p5t9v 396.522 322.253 18,73 1,05 83896 53145
P30n5p5t11v 481.502 393.899 18,19 0,62 139601 88833
P30n5p10t7v 1.030.250 759.197 26,31 12,36 14600 10310
P30n5p10t9v 975.333 680.593 30,22 13,70 3395 1385
P30n5p10t11v 1.040.080 760.388 26,89 13,45 5769 3498
P30n5p15t7v 1.364.230 881.433 35,39 18,39 5651 3859
P30n5p15t9v 1.884.860 1.225.560 34,98 23,55 5434 2641
P30n5p15t11v 1.719.730 1.163.680 32,33 20,02 3710 2602
P40n3p5t7v 444.187 330.565 25,58 2,98 39841 7505
P40n3p5t9v 249.859 183.788 26,44 3,25 37128 13985
P40n3p5t11v 380.325 308.907 18,78 3,08 20230 13699
P40n3p10t7v 748.607 486.765 34,98 19,12 4002 228
P40n3p10t9v 1.039.380 707.615 31,92 20,34 4095 1733
P40n3p10t11v 978.994 690.991 29,42 19,67 2979 637
P40n3p15t7v 1.391.770 876.775 37,00 27,97 570 570
P40n3p15t9v 860.608 470.927 45,28 25,67 1763 1175
P40n3p15t11v 1.182.990 689.736 41,70 29,65 571 572
P40n4p5t7v 318.810 247.166 22,47 7,59 19571 7896
P40n4p5t9v 380.047 319.847 15,84 1,51 39594 20812
P40n4p5t11v 474.411 358.988 24,33 8,98 22097 17776
P40n4p10t7v 820.170 516.326 37,05 16,82 6040 4597
P40n4p10t9v 1.067.600 691.271 35,25 20,55 2512 730
P40n4p10t11v 1.058.480 672.186 36,50 22,67 3552 3339
P40n4p15t7v 1.722.080 911.707 47,06 32,98 273 274
P40n4p15t9v 1.438.880 823.494 42,77 28,12 224 217
P40n4p15t11v 1.829.910 1.173.510 35,87 25,78 813 814
P40n5p5t7v 420.504 347.023 17,47 2,73 24031 9245
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Table B.7 – 2COMM formulation after 6 hours running.

INSTANCE 2COMM
UB LB LP GAP (%) GAP(%) B&B Nodes Nodes left

P40n5p5t9v 524.461 432.411 17,55 5,85 24326 15164
P40n5p5t11v 522.045 420.379 19,47 10,43 11238 6260
P40n5p10t7v 1.244.820 902.930 27,47 14,73 3569 2913
P40n5p10t9v 1.640.770 1.173.900 28,45 17,73 4373 3943
P40n5p10t11v 1.377.760 937.402 31,96 20,22 4545 2195
P40n5p15t7v 2.013.740 1.294.080 35,74 22,24 538 539
P40n5p15t9v 2.549.640 1.683.920 33,95 25,06 560 559
P40n5p15t11v 2.417.880 1.373.290 43,20 32,47 343 344
P50n3p5t7v 401.351 305.876 23,79 13,23 20588 11138
P50n3p5t9v 524.467 431.451 17,74 11,12 21980 14474
P50n3p5t11v 598.881 448.696 25,08 13,21 14786 9494
P50n3p10t7v 710.314 413.584 41,77 25,16 253 254
P50n3p10t9v - 776.136 - - - -
P50n3p10t11v 879.953 493.255 43,95 27,73 393 394
P50n3p15t7v 1.399.850 861.784 38,44 24,66 0 1
P50n3p15t9v 1.688.620 955.951 43,39 32,00 0 1
P50n3p15t11v 1.727.050 807.048 53,27 41,25 0 1
P50n4p5t7v 468.341 333.285 28,84 16,59 6286 219
P50n4p5t9v 656.003 494.613 24,60 17,67 3242 1151
P50n4p5t11v 614.873 475.263 22,71 14,95 3579 1562
P50n4p10t7v 1.069.130 627.398 41,32 24,97 0 1
P50n4p10t9v 1.547.480 901.283 41,76 31,54 0 1
P50n4p10t11v 1.380.320 796.470 42,30 29,34 0 1
P50n4p15t7v 2.190.220 1.374.240 37,26 26,86 0 1
P50n4p15t9v 1.961.430 1.055.440 46,19 33,66 0 1
P50n4p15t11v 2.245.050 1.305.000 41,87 33,30 0 1
P50n5p5t7v 629.287 482.461 23,33 15,83 2186 1722
P50n5p5t9v 715.774 555.604 22,38 16,74 2204 922
P50n5p5t11v 717.739 528.628 26,35 20,83 2142 1853
P50n5p10t7v 1.519.620 962.170 36,68 21,25 0 1
P50n5p10t9v 1.724.700 1.108.840 35,71 25,09 0 1
P50n5p10t11v 1.503.930 915.536 39,12 25,73 0 1
P50n5p15t7v 2.360.440 1.409.850 40,27 27,90 0 1
P50n5p15t9v - 1.228.240 - - - -
P50n5p15t11v 2.188.780 1.339.930 38,78 25,04 0 1

B.3 Data from the Section 3.5

Table B.8 presents the data attained after the solving the instance P20n3p10t9v with the
2COMM formulation considering of four cases: (a) no back-ordering and homogeneous fleet,
(b) no back-ordering and heterogeneous fleet, (c) back-ordering and homogeneous fleet, and the
proposed rich PRP considering (d) back-ordering and heterogeneous fleet. For the tested cases,
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Table B.8 – Metrics of the solutions attained by the cases a, b and c.

Cases
Metrics (a) (b) (c) (d)
Holding costs 97,101 94,922 79,209 77,328
Back-ordering costs 0 0 0 7,028
Traveling costs 50,144 48,567 52,576 47,742
Vehicle activation costs 26,367 32,788 27,401 32,160
Total costs 446,248 448,913 431,822 436,894
number of vehicles 51 49 53 49

all of them obtained the same sum of setup, and production costs, which are equal to 240,000,
and 32,636, respectively.
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APPENDIX C – Adaptive selection

The ABUILS method, presented in Section 4.6.2, used the following adaptive criterion
to select perturbation operators and inter-route local searches.

The roulette wheel or fitness proportionate selection (GOLDENBERG, 1989) is a fre-
quently used method in genetic and evolutionary algorithms which assumes that the probability
of selection is proportional to the fitness of an individual (LIPOWSKI; LIPOWSKA, 2012).

Based on this concept and to guarantee greater chances of improving the solutions found
by the ABUILS approach, the roulette wheel procedure is used in two moments of the Algorithm
4.5. First to select the perturbation mechanism (line 9) and second when the problems VRt are
optimized with the inter-route search algorithm 4.3 (line 10). In both cases, before picking an
perturbation operator or inter-route search and apply it to the solution, the fitness is calculated
with Algorithm C.1. Vector S registers the number of times that an operator or an inter-route
search κ lead to some solution improvement. Parameter S accounts the total of improvements
achieved, and K corresponds to the respective cardinality of the sets of perturbations (R) or
searches (RS). Then, with the Algorithm C.2 a number ρ ∈ [0, 1] is drawn, and accordingly with
the proportional fitness, the correspondent item κ is selected and applied to the solution.

Algorithm C.1: Roulette wheel
Data: vector S, S, K

1 for κ = 1, . . . ,K do
2 RW[κ]← (RW[κ− 1] + S[κ])/S);
3 end
4 return RW;

Algorithm C.2: Adaptive selection
Data: vector RW, K

1 ρ← [0, 1];
2 for κ = 1, . . . ,K do
3 if RW[κ− 1] < ρ ≤ RW[κ] then choose item

κ;
4 end
5 return κ;
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APPENDIX D – Data from Chapter 4

D.1 ∆ comparison

Table D.1 compares the results obtained by each of the three Top-down ILS matheuristics
when they adopt the new proposed ∆vt

ik or the ∆i proposed by Qiu et al. (2018b).

Table D.1 – Results found for each algorithm tested with different ∆.

TILS OILS IILS
INSTANCE ∆vt

ik ∆i ∆vt
ik ∆i ∆vt

ik ∆i

P20n5p15t7v 1.292.997 1.367.683 1.298.490 1.356.261 1.291.880 1.357.766
P20n5p15t9v 1.536.466 1.602.247 1.530.284 1.575.562 1.540.208 1.559.412
P20n5p15t11v 1.805.196 1.870.957 1.798.096 1.868.928 1.807.442 1.836.693
P30n5p15t7v 1.380.956 1.483.223 1.385.304 1.441.097 1.375.116 1.477.505
P30n5p15t9v 1.882.327 1.913.187 1.874.242 1.906.038 1.883.683 1.875.127
P30n5p15t11v 1.714.216 1.758.211 1.712.711 1.712.553 1.715.671 1.733.160
P40n5p15t7v 2.008.522 2.146.106 2.010.339 2.124.787 1.991.491 2.130.201
P40n5p15t9v 2.421.443 2.484.539 2.424.660 2.401.548 2.438.379 2.478.534
P40n5p15t11v 2.190.505 2.257.174 2.175.225 2.216.623 2.226.000 2.175.248
P50n5p15t7v 2.163.148 2.383.223 2.211.989 2.369.234 2.217.961 2.389.641
P50n5p15t9v 2.176.566 2.215.536 2.164.321 - 2.190.110 2.203.621
P50n5p15t11v 2.172.959 2.157.400 2.122.353 2.125.158 2.151.538 2.171.415

D.2 Parameters tuning

The set of instances tested in the parameters tuning is composed by: X20C3P7T9V,
X20C3P7T11V,X20C3P10T9V,X20C3P10T11V,X20C3P14T9V,X20C3P14T11V,X20C4P7T11V,
X20C4P10T7V,X20C4P10T11V,X20C4P14T9V,X20C4P14T11V,X20C5P10T9V,X20C5P10T11V,
X20C5P14T11V,X20C6P7T9V,X20C6P10T11V,X20C6P14T9V,X20C6P14T11V,X20C7P7T9V,
X20C7P10T9V,X20C7P14T9V,X20C7P14T11V,X30C3P7T7V,X30C3P7T9V,X30C3P7T11V,
X30C3P10T11V,X30C3P14T7V,X30C3P14T9V,X30C3P14T11V,X30C4P7T7V,X30C4P7T9V,
X30C4P7T11V,X30C4P10T9V,X30C4P10T11V,X30C4P14T7V,X30C4P14T9V,X30C4P14T11V,
X30C5P7T7V,X30C5P7T9V,X30C5P10T9V,X30C5P10T11V,X30C5P14T9V,X30C5P14T11V,
X30C6P7T9V,X30C6P7T11V,X30C6P14T11V,X30C7P7T11V,X30C7P10T11V,X30C7P14T7V,
X30C7P14T9V,X30C7P14T11V,X40C3P7T9V,X40C3P7T11V,X40C3P10T7V,X40C3P10T9V,
X40C3P10T11V,X40C3P14T11V,X40C4P3T9V,X40C4P10T7V,X40C4P10T11V,X40C4P14T11V,
X40C5P7T9V,X40C5P14T11V,X40C6P7T9V,X40C6P7T11V,X40C6P10T7V,X40C6P10T9V,
X40C6P10T11V,X40C7P3T9V,X40C7P7T11V,X40C7P10T9V,X40C7P10T11V,X40C7P14T7V,
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X40C7P14T9V.

Table D.2 – Parameters values calibrated.

Parameter Possible values

α (10%, 15%, 20%)
maxWeight (5,10)
maxIter (200, 300, 500, 1000)

maxPertPP (5,10,15,20)
maxPertRD (3,5,7)
maxPertLX (3,5,7)
maxPertKK (5,10,15)
maxPertDL (3,5,7)
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TILS	irace	report
#	Best	configurations	(first	number	is	the	configuration	ID;	listed	from	best	to
worst	according	to	the	sum	of	ranks):
			maxweight	maxiterils	maxpertP	maxiter	alpha
14									5									15								3					300			0.1
19									5									10								3					200		0.15
3										5									15								3					200		0.15
25									5									15								3					200		0.15
#	Best	configurations	as	commandlines	(first	number	is	the	configuration	ID;	same
order	as	above):
14		--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	3	--MAXITER	300	--ALPHA	0.1
19		--MAXWEIGHT	5	--MAXITERILS	10	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.15
3			--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.15
25		--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.15

OILS	irace	report
#	Best	configurations	(first	number	is	the	configuration	ID;	listed	from	best	to
worst	according	to	the	sum	of	ranks):
			maxweight	maxpertkk	maxpertrd	maxpertlx	maxiter	alpha
19									5								15									3									7					300			0.2
25									5								10									3									7					300			0.2
26									5								15									3									3					200		0.15
5										5								10									3									7					300			0.2
#	Best	configurations	as	commandlines	(first	number	is	the	configuration	ID;	same
order	as	above):
19		--MAXWEIGHT	5	--MAXPERTKK	15	--MAXPERTRD	3	--MAXPERTLX	7	--MAXITER	300	--ALPHA
0.2
25		--MAXWEIGHT	5	--MAXPERTKK	10	--MAXPERTRD	3	--MAXPERTLX	7	--MAXITER	300	--ALPHA
0.2
26		--MAXWEIGHT	5	--MAXPERTKK	15	--MAXPERTRD	3	--MAXPERTLX	3	--MAXITER	200	--ALPHA
0.15
5			--MAXWEIGHT	5	--MAXPERTKK	10	--MAXPERTRD	3	--MAXPERTLX	7	--MAXITER	300	--ALPHA
0.2

IILS	irace	report
#	Best	configurations	(first	number	is	the	configuration	ID;	listed	from	best	to
worst	according	to	the	sum	of	ranks):
			maxweight	maxiterils	maxpertP	maxiter	alpha	maxpertkk	maxpertrd	maxpertlx
13									5									15								5					300		0.15								10									7									3
26									5									10								3					200		0.15								10									5									3
33									5									15								3					200		0.1									15									7									5
37									5									15								3					300		0.15								10									7									7

#	Best	configurations	as	commandlines	(first	number	is	the	configuration	ID;	same
order	as	above):
13		--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	5	--MAXITER	300	--ALPHA	0.15			--
MAXPERTKK	10		--MAXPERTRD	7			--MAXPERTLX	3
26		--MAXWEIGHT	5	--MAXITERILS	10	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.15			--
MAXPERTKK	10		--MAXPERTRD	5			--MAXPERTLX	3
33		--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.1				--
MAXPERTKK	15		--MAXPERTRD	7			--MAXPERTLX	5
37		--MAXWEIGHT	5	--MAXITERILS	15	--MAXPERTP	3	--MAXITER	200	--ALPHA	0.15			--
MAXPERTKK	10		--MAXPERTRD	7			--MAXPERTLX	7
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D.3 Percentage gaps

Table D.3 – Percentage gap (%) of the methods w.r.t the best known solution and average.

INSTANCE
GAP (%)

2COMM OILS TILS IILS ABUILS
OPT BKS BKS AVG BKS AVG BKS AVG BKS AVG

P20n3p5t7v 2,45 1,85 3,15 2,19 5,51 2,08 3,28 0,70 2,25
P20n3p5t9v 2,50 2,95 9,83 3,19 14,53 9,57 11,08 7,70 8,50
P20n3p5t11v 2,42 1,95 2,63 1,68 6,13 1,96 3,30 2,16 2,58
P20n3p10t7v 2,50 5,47 7,49 7,14 8,95 6,39 7,74 3,13 4,22
P20n3p10t9v 7,87 6,71 9,60 8,32 15,49 6,90 9,91 4,14 6,70
P20n3p10t11v 2,93 4,08 5,75 4,86 11,83 4,91 5,53 2,07 3,77
P20n3p15t7v 16,33 6,01 8,36 5,85 15,71 5,55 7,67 4,05 4,62
P20n3p15t9v 14,91 0,38 0,89 3,86 0,45 2,78 2,03 1,74
P20n3p15t11v 9,32 5,01 6,43 6,06 14,25 5,77 8,59 2,55 3,88
P20n4p5t7v 2,44 1,83 2,57 2,38 2,82 1,88 2,49 1,46 1,99
P20n4p5t9v 2,49 1,85 6,80 3,92 10,71 2,64 7,87 1,10 2,88
P20n4p5t11v 2,49 3,21 4,19 5,60 10,42 3,26 5,10 2,49 4,35
P20n4p10t7v 3,62 3,31 4,31 3,96 7,84 2,65 4,10 0,92 3,09
P20n4p10t9v 8,57 2,68 4,14 3,83 11,91 3,90 4,74 1,22 2,73
P20n4p10t11v 12,70 2,64 3,74 2,88 7,79 3,38 4,26 1,09 2,03
P20n4p15t7v 15,70 1,64 8,21 4,26 10,18 5,07 6,99 2,57 4,37
P20n4p15t9v 12,97 4,76 9,03 5,13 8,07 4,19 7,19 1,85 3,21
P20n4p15t11v 12,71 4,05 5,41 4,77 9,76 4,68 6,30 3,07 4,00
P20n5p5t7v 2,43 1,86 4,53 2,80 4,30 1,77 2,54 1,29 2,09
P20n5p5t9v 2,50 2,12 3,30 2,15 4,34 1,65 4,58 0,86 1,66
P20n5p5t11v 2,22 1,75 2,79 2,32 7,92 2,04 2,45 0,97 2,17
P20n5p10t7v 7,80 1,52 3,06 2,09 6,29 1,80 3,13 1,05 3,15
P20n5p10t9v 6,55 2,11 3,94 3,81 4,78 2,67 3,96 0,90 3,43
P20n5p10t11v 4,46 5,45 6,51 3,92 9,09 3,64 5,91 2,07 3,35
P20n5p15t7v 18,61 1,06 4,37 0,64 6,70 0,55 3,31 2,56
P20n5p15t9v 11,27 2,39 3,40 2,80 7,21 3,05 4,59 0,74 1,72
P20n5p15t11v 8,36 2,71 5,58 3,11 7,33 3,24 5,04 1,14 2,67
P30n3p5t7v 7,49 2,37 6,06 2,41 10,10 2,62 6,11 1,91 4,69
P30n3p5t9v 2,50 1,34 2,92 1,81 2,66 0,99 2,97 0,12 2,12
P30n3p5t11v 2,50 1,89 3,74 2,05 7,53 1,61 3,61 0,52 2,04
P30n3p10t7v 16,10 3,11 4,75 4,87 16,89 2,19 4,59 0,03 3,83
P30n3p10t9v 10,82 4,92 7,85 5,74 12,81 5,12 8,36 1,29 5,14
P30n3p10t11v 16,54 0,59 5,12 3,69 7,10 1,74 4,87 2,20
P30n3p15t7v 25,03 0,76 0,82 5,08 0,15 9,32 4,35 1,85
P30n3p15t9v 24,56 0,17 4,24 0,98 8,33 1,06 4,84 2,34
P30n3p15t11v 18,18 2,40 4,89 3,61 10,47 2,87 5,96 2,92
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Table D.4 – Percentage gap (%) of the methods w.r.t the best known solution and average.

INSTANCE
GAP (%)

2COMM OILS TILS IILS ABUILS
OPT BKS BKS AVG BKS AVG BKS AVG BKS AVG

P30n4p5t7v 1,64 2,10 3,49 3,68 7,25 2,67 3,72 2,18 3,62
P30n4p5t9v 0,62 1,90 2,94 2,86 8,55 2,29 3,00 1,68 2,68
P30n4p5t11v 0,64 2,92 4,01 3,66 10,14 2,66 4,11 1,45 2,26
P30n4p10t7v 13,07 0,56 3,57 3,95 8,79 1,96 4,20 1,11
P30n4p10t9v 10,68 4,01 6,19 4,87 10,46 5,73 7,15 1,21 3,31
P30n4p10t11v 17,68 0,85 4,13 0,50 7,22 1,68 3,35 2,83
P30n4p15t7v 19,29 1,61 1,19 2,85 0,66 5,72 2,26 2,57
P30n4p15t9v 23,02 4,43 1,86 3,89 3,18 1,83 4,20 2,05
P30n4p15t11v 24,07 0,54 3,04 0,31 5,80 1,06 2,81 1,61
P30n5p5t7v 1,30 2,53 7,19 3,72 9,69 2,97 6,57 1,69 3,86
P30n5p5t9v 1,05 3,71 5,68 3,94 9,92 3,35 6,15 2,45 5,30
P30n5p5t11v 0,62 3,14 4,45 4,26 10,94 3,52 4,74 2,24 3,33
P30n5p10t7v 12,36 2,25 3,67 2,75 9,34 1,19 3,22 0,16 1,20
P30n5p10t9v 13,70 0,05 1,29 0,32 1,67 0,34 1,35 1,60
P30n5p10t11v 13,45 0,44 2,40 1,69 8,97 1,02 2,29 1,64
P30n5p15t7v 18,39 1,54 3,34 1,23 9,24 0,80 2,76 2,07
P30n5p15t9v 23,55 0,57 1,16 0,43 9,48 0,50 2,04 1,22
P30n5p15t11v 20,02 0,41 7,26 0,09 5,88 0,17 2,60 1,25
P40n3p5t7v 2,98 3,63 4,54 4,26 7,19 3,75 5,01 0,84 5,01
P40n3p5t9v 3,25 3,44 4,63 5,15 6,42 4,50 6,05 1,69 5,45
P40n3p5t11v 3,08 2,60 3,43 3,06 7,44 2,95 4,31 1,21 2,87
P40n3p10t7v 19,12 1,67 4,72 0,44 8,77 2,60 3,94 3,90
P40n3p10t9v 20,34 4,23 1,57 4,45 0,81 4,01 3,56 1,81
P40n3p10t11v 19,67 3,01 0,39 1,69 0,29 8,29 1,89 1,51
P40n3p15t7v 27,97 10,45 0,95 4,33 0,46 3,26 3,26 1,73
P40n3p15t9v 25,67 3,56 0,18 1,71 0,02 6,30 1,55 2,76
P40n3p15t11v 29,65 8,92 2,37 4,24 1,56 3,98 4,74 2,79
P40n4p5t7v 7,59 2,17 4,47 4,67 7,60 2,10 4,21 1,01 3,66
P40n4p5t9v 1,51 2,96 6,98 4,21 18,71 3,69 7,32 1,81 3,11
P40n4p5t11v 8,98 1,18 3,39 1,56 17,68 1,50 3,34 1,30 2,67
P40n4p10t7v 16,82 1,40 1,21 3,42 1,28 8,90 2,26 3,36
P40n4p10t9v 20,55 4,06 0,85 2,63 1,40 5,44 2,44 2,41
P40n4p10t11v 22,67 4,17 0,08 1,96 5,85 0,62 3,42 2,11
P40n4p15t7v 32,98 7,20 2,73 1,99 8,32 0,36 3,87 2,03
P40n4p15t9v 28,12 4,06 1,69 4,77 11,54 1,17 5,29 2,43
P40n4p15t11v 25,78 2,47 2,72 1,76 7,67 1,97 3,90 1,52
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Table D.5 – Percentage gap (%) of the methods w.r.t the best known solution and average.

INSTANCE
GAP (%)

2COMM OILS TILS IILS ABUILS
OPT BKS BKS AVG BKS AVG BKS AVG BKS AVG

P40n5p5t7v 2,73 2,27 4,55 2,29 7,84 2,12 3,71 1,51 3,83
P40n5p5t9v 5,85 2,81 3,93 2,45 12,58 2,59 4,16 1,10 1,77
P40n5p5t11v 10,43 1,31 5,97 5,13 22,94 1,28 4,51 1,30 2,28
P40n5p10t7v 14,73 1,46 3,29 0,81 5,27 0,72 4,07 0,95 1,62
P40n5p10t9v 17,73 3,86 0,10 1,05 0,01 3,42 1,52 1,30
P40n5p10t11v 20,22 2,03 3,30 1,33 6,49 1,27 3,80 0,99
P40n5p15t7v 22,24 1,12 0,95 2,81 0,86 9,94 3,23 2,43
P40n5p15t9v 25,06 5,29 0,13 2,57 5,26 0,70 2,81 1,79
P40n5p15t11v 32,47 11,16 3,10 0,70 8,35 2,33 4,51 1,63
P50n3p5t7v 13,23 0,17 3,43 2,53 6,02 1,27 5,07 3,10
P50n3p5t9v 11,12 1,28 3,48 3,05 11,52 1,53 3,56 0,70 1,77
P50n3p5t11v 13,21 4,83 1,48 0,39 10,51 0,26 3,88 2,20
P50n3p10t7v 25,16 3,13 1,50 4,26 1,14 4,25 4,03 4,73
P50n3p10t9v - 2,73 2,16 8,11 0,96 3,07 1,58
P50n3p10t11v 27,73 7,57 1,20 3,64 1,04 11,03 3,11 1,10
P50n3p15t7v 24,66 0,53 4,61 2,64 9,31 2,11 5,49 4,68
P50n3p15t9v 32,00 10,86 4,83 1,80 4,23 0,42 5,40 1,65
P50n3p15t11v 41,25 18,28 2,86 0,09 2,80 1,80 4,69 1,62
P50n4p5t7v 16,59 5,97 0,51 5,55 6,54 0,55 2,65 1,73
P50n4p5t9v 17,67 8,40 0,04 4,33 0,89 12,70 4,42 2,09
P50n4p5t11v 14,95 1,02 2,76 0,26 5,70 1,04 2,47 1,53
P50n4p10t7v 24,97 9,68 1,13 3,39 5,74 0,89 2,99 2,42
P50n4p10t9v 31,54 13,94 1,40 0,21 6,06 0,57 1,87 2,71
P50n4p10t11v 29,34 11,76 3,11 0,71 4,10 0,23 3,65 2,91
P50n4p15t7v 26,86 7,79 1,53 3,34 5,95 2,23 4,01 1,37
P50n4p15t9v 33,66 11,42 0,86 2,57 0,21 6,53 2,41 1,91
P50n4p15t11v 33,30 7,22 3,22 2,01 11,81 0,70 3,54 1,62
P50n5p5t7v 15,83 3,39 0,63 3,95 9,24 0,56 3,72 2,79
P50n5p5t9v 16,74 1,74 0,33 1,38 6,25 0,34 1,97 0,79
P50n5p5t11v 20,83 3,90 0,08 1,84 0,02 8,12 1,76 1,37
P50n5p10t7v 21,25 5,23 1,54 3,04 1,01 2,57 2,98 0,85
P50n5p10t9v 25,09 13,48 0,92 1,71 7,45 1,34 3,07 1,39
P50n5p10t11v 25,73 10,71 2,68 0,81 2,87 0,65 2,73 4,41
P50n5p15t7v 27,90 9,12 2,26 3,76 3,31 2,53 4,01 3,22
P50n5p15t9v - 2,53 0,57 6,79 1,19 4,42 1,86
P50n5p15t11v 25,04 3,13 2,33 2,38 3,59 1,38 3,50 1,50
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E.1 Generating feasible routes for the RRMP

To first solve the RRMP, a set of routes must be provided. This work generate them with
the Algorithm E.1. It explores the vehicles from the biggest to the smallest capacities.

Algorithm E.1: Feasible routes
Data: Problem information

1 forall t ∈ T do
2 C ← ∅;
3 forall i ∈ N do
4 C ← C ∪ {i};
5 forall k ∈ P do
6 Dt

i ← Dt
i + dikt;

7 end
8 end
9 sort the set of customers C decreasingly, from highest to lowest accumulated periodic demand Dt

i ;
10 for v = V, . . . , 1 do
11 load← Qv; //residual load
12 ttt← 0; //accumulated travel time
13 h← 0; //predecessor node
14 r ← r ∪ {h};
15 while is feasible to add some customer to r do
16 i← first(C);
17 if i is not visited by some route then
18 if Dt

i ≤ load and ttt− ahi + si + ai,n+1 ≤ H then
19 C ← C \ {i};
20 r ← r ∪ {i};
21 load← load−Dt

i ;
22 ttt← ttt− ahi + si + ai,n+1;
23 h← i;
24 end
25 end
26 end
27 r ← r ∪ {n+ 1};
28 add r with correspondent cost cr = ev +

∑
(i,j)∈A cijx

vt
ij to the RRMP;

29 end
30 end

But, if it is not possible to generated feasible routes for a certain period, an artificial
routing solution is easily provided considering an infinite-cost path leaving the plant, visiting all
customers while deliveries their respective demands, and returning to the plant.
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E.2 Lower bounds foundwith the heuristically priced columns

Table E.1 – Upper, lower and column generation bounds.

INSTANCE UB LB Column generation
0 1 2 3 4 5

P20n3p5t7v 391.528 297.990 378.221 316.230 319.557 318.831 315.452 316.800
P20n3p5t9v 202.915 164.319 220.900 186.772 184.161 184.510 183.052 180.439
P20n3p5t11v 288.668 246.252 304.429 260.695 260.303 261.297 304.429 304.429
P20n3p10t7v 489.465 382.494 483.251 431.225 419.215 418.799 412.041 418.072
P20n3p10t9v 436.894 308.409 409.192 349.341 354.851 346.981 409.192 331.243
P20n3p10t11v 688.757 591.686 692.487 692.487 671.707 646.115 692.487 692.487
P20n3p15t7v 755.877 540.318 700.129 700.129 619.669 609.340 700.129 700.129
P20n3p15t9v 1.148.420 859.310 1.074.280 1.074.280 1.062.760 1.057.490 1.074.280 1.074.280
P20n3p15t11v 898.279 713.910 850.924 850.924 833.652 831.190 765.745 761.514
P20n4p5t7v 372.428 287.229 347.784 314.098 314.695 304.784 301.133 301.063
P20n4p5t9v 344.193 266.998 332.538 297.398 282.628 281.045 274.974 332.538
P20n4p5t11v 273.274 220.017 274.783 274.783 245.647 240.508 236.172 236.384
P20n4p10t7v 782.581 629.284 744.194 683.940 670.631 672.940 657.359 658.110
P20n4p10t9v 660.923 500.170 600.768 578.363 547.785 544.008 525.107 600.768
P20n4p10t11v 906.773 688.348 825.281 825.281 798.170 800.098 729.597 726.847
P20n4p15t7v 1.108.540 763.501 949.640 869.340 947.241 936.717 926.796 876.052
P20n4p15t9v 1.083.300 791.510 962.342 962.342 882.050 901.974 863.345 880.040
P20n4p15t11v 1.240.280 936.779 1.127.250 1.127.250 1.123.070 1.051.580 1.029.100 1.127.250
P20n5p5t7v 341.003 295.544 355.497 328.256 355.497 315.052 306.466 308.231
P20n5p5t9v 389.873 326.648 397.985 351.366 397.985 353.189 334.757 368.179
P20n5p5t11v 485.908 387.007 474.204 417.481 406.505 408.698 402.268 402.897
P20n5p10t7v 944.844 728.208 875.819 804.639 802.722 789.960 769.896 766.112
P20n5p10t9v 775.047 612.165 721.939 674.156 669.181 698.869 721.939 651.315
P20n5p10t11v 717.215 529.836 623.073 614.319 580.625 623.073 582.273 582.463
P20n5p15t7v 1.266.602 874.308 1.104.140 1.014.720 1.020.600 1.015.930 1.082.560 986.541
P20n5p15t9v 1.494.610 1.162.500 1.369.590 1.272.360 1.264.210 1.369.590 1.283.020 1.272.140
P20n5p15t11v 1.750.670 1.449.880 1.635.030 1.543.590 1.539.530 1.635.030 1.560.030 1.530.490
P30n3p5t7v 213.712 163.465 229.878 189.713 184.696 180.980 181.170 182.609
P30n3p5t9v 391.676 304.526 389.140 324.450 323.454 320.157 321.432 319.081
P30n3p5t11v 367.768 277.559 374.909 303.986 294.451 290.560 290.451 312.275
P30n3p10t7v 688.428 484.644 662.270 552.102 546.392 530.212 528.101 532.785
P30n3p10t9v 667.572 463.102 642.806 530.126 543.126 508.292 501.700 505.191
P30n3p10t11v 654.725 448.232 609.833 503.163 502.056 609.833 485.869 489.356
P30n3p15t7v 880.395 514.078 775.153 617.246 761.807 659.923 624.919 612.543
P30n3p15t9v 1.023.110 661.370 912.183 762.005 750.084 770.349 867.381 786.251
P30n3p15t11v 1.184.380 846.593 1.083.730 1.083.730 992.255 922.044 1.083.730 1.083.730
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Table E.2 – Upper, lower and column generation bounds.

INSTANCE UB LB Column generation
0 1 2 3 4 5

P30n4p5t7v 410.940 318.423 406.527 347.910 350.592 339.147 334.691 339.692
P30n4p5t9v 537.101 432.958 541.255 488.135 541.255 448.291 448.549 448.458
P30n4p5t11v 495.875 412.699 531.912 448.750 434.420 429.181 429.001 428.625
P30n4p10t7v 691.145 484.873 643.588 548.043 557.528 538.815 540.460 534.780
P30n4p10t9v 739.013 534.998 705.602 608.693 606.143 601.251 596.706 590.572
P30n4p10t11v 824.586 580.149 737.904 737.904 692.715 640.822 659.953 686.876
P30n4p15t7v 1.175.321 806.908 1.070.500 1.070.500 909.590 953.337 958.318 977.888
P30n4p15t9v 1.180.465 775.141 1.007.620 880.521 902.890 937.109 893.888 918.400
P30n4p15t11v 1.293.592 834.354 1.109.930 1.109.930 955.443 1.109.930 1.094.040 982.480
P30n5p5t7v 415.180 343.669 429.630 384.213 366.076 429.630 358.895 361.367
P30n5p5t9v 396.522 322.253 409.511 355.587 385.793 335.971 409.511 339.658
P30n5p5t11v 481.502 393.899 484.450 421.994 429.706 408.827 411.910 408.810
P30n5p10t7v 1.030.250 759.197 941.360 843.486 852.569 861.994 823.940 825.892
P30n5p10t9v 958.748 680.593 850.361 850.361 768.534 745.159 850.361 758.686
P30n5p10t11v 1.028.217 760.388 917.701 856.308 835.270 824.262 820.004 902.479
P30n5p15t7v 1.338.394 881.433 1.128.950 1.128.950 1.017.510 1.031.370 1.128.950 1.128.950
P30n5p15t9v 1.816.277 1.225.560 1.502.160 1.502.160 1.390.000 1.376.730 1.381.740 1.377.720
P30n5p15t11v 1.682.814 1.163.680 1.417.660 1.355.320 1.305.250 1.295.550 1.309.390 1.394.880
P40n3p5t7v 444.187 330.565 441.780 362.419 367.291 374.819 354.182 358.254
P40n3p5t9v 249.859 183.788 272.570 208.381 204.372 204.548 205.757 211.336
P40n3p5t11v 380.325 308.907 415.983 337.528 336.593 330.847 335.385 332.868
P40n3p10t7v 731.204 486.765 704.410 558.866 560.186 546.776 553.904 548.079
P40n3p10t9v 994.609 707.615 952.824 952.824 796.461 770.501 952.824 773.910
P40n3p10t11v 923.388 690.991 899.978 758.946 756.885 899.978 755.321 761.380
P40n3p15t7v 1.227.324 876.775 1.179.120 1.013.280 1.006.820 1.045.300 1.053.510 1.028.710
P40n3p15t9v 781.594 470.927 789.579 605.909 589.054 613.683 675.677 623.328
P40n3p15t11v 1.045.710 689.736 1.009.240 1.009.240 786.124 812.433 828.758 847.537
P40n4p5t7v 318.810 247.166 337.967 271.306 277.104 267.403 269.636 264.626
P40n4p5t9v 380.047 319.847 418.788 349.184 339.045 418.788 418.788 331.132
P40n4p5t11v 474.411 358.988 492.036 397.246 427.550 394.432 384.813 381.860
P40n4p10t7v 794.697 516.326 697.640 697.640 586.091 661.526 643.614 604.643
P40n4p10t9v 1.007.635 691.271 894.533 796.293 773.223 783.479 894.533 765.742
P40n4p10t11v 992.252 672.186 910.682 910.682 756.053 773.302 770.770 790.978
P40n4p15t7v 1.554.534 911.707 1.239.890 1.239.890 1.239.890 1.174.100 1.239.890 1.239.890
P40n4p15t9v 1.339.051 823.494 1.159.650 1.159.650 1.159.650 1.141.460 1.017.860 1.056.830
P40n4p15t11v 1.731.838 1.173.510 1.498.500 1.498.500 1.498.500 1.414.560 1.447.250 1.498.500
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Table E.3 – Upper, lower and column generation bounds.

INSTANCE UB LB Column generation
0 1 2 3 4 5

P40n5p5t7v 420.504 347.023 473.455 380.507 381.398 366.176 372.585 378.508
P40n5p5t9v 524.461 432.411 559.977 480.258 471.445 453.328 452.651 453.601
P40n5p5t11v 522.045 420.379 535.874 478.495 463.675 441.719 441.472 442.793
P40n5p10t7v 1.244.820 902.930 1.137.100 1.137.100 1.045.060 1.018.560 1.057.210 1.032.430
P40n5p10t9v 1.555.132 1.173.900 1.411.580 1.411.580 1.299.510 1.375.790 1.275.660 1.283.350
P40n5p10t11v 1.343.143 937.402 1.154.420 1.154.420 1.064.940 1.084.140 1.081.670 1.154.420
P40n5p15t7v 1.950.402 1.294.080 1.646.040 1.646.040 1.646.040 1.619.110 1.627.930 1.646.040
P40n5p15t9v 2.361.557 1.683.920 2.061.400 2.061.400 1.868.700 1.959.840 1.940.190 1.998.010
P40n5p15t11v 2.124.965 1.373.290 1.779.400 1.779.400 1.561.020 1.664.890 1.779.400 1.779.400
P50n3p5t7v 400.692 305.876 438.872 343.882 359.001 331.275 339.089 337.613
P50n3p5t9v 524.467 431.451 576.475 473.529 468.345 474.539 476.074 473.676
P50n3p5t11v 568.760 448.696 625.108 488.305 489.755 497.803 497.064 484.433
P50n3p10t7v 647.029 413.584 669.782 668.185 589.366 519.107 508.348 514.674
P50n3p10t9v 1.129.270 1.102.400 897.255 860.366 922.514 869.434 1.077.380
P50n3p10t11v 801.108 493.255 764.509 764.509 628.297 591.580 586.394 625.741
P50n3p15t7v 1.344.246 861.784 1.240.580 1.240.580 1.240.580 1.220.380 1.212.200 1.148.840
P50n3p15t9v 1.487.444 955.951 1.397.120 1.397.120 1.397.120 1.375.610 1.156.380 1.146.280
P50n3p15t11v 1.402.785 807.048 1.219.830 1.219.830 1.219.830 1.219.830 1.137.120 1.042.100
P50n4p5t7v 441.109 333.285 460.644 414.822 366.419 374.261 375.134 358.623
P50n4p5t9v 597.091 494.613 681.331 541.139 562.592 533.143 531.276 533.884
P50n4p5t11v 602.110 475.263 635.962 635.962 515.059 505.148 513.242 509.042
P50n4p10t7v 956.102 627.398 885.836 885.836 885.836 770.687 827.100 781.330
P50n4p10t9v 1.312.692 901.283 1.211.010 1.211.010 1.029.850 1.074.910 1.140.020 1.129.040
P50n4p10t11v 1.197.104 796.470 1.093.160 1.093.160 911.582 970.951 1.093.160 1.089.900
P50n4p15t7v 2.006.724 1.374.240 1.783.740 1.783.740 1.783.740 1.777.820 1.775.850 1.686.410
P50n4p15t9v 1.683.038 1.055.440 1.454.250 1.454.250 1.215.740 1.454.250 1.454.110 1.384.980
P50n4p15t11v 2.014.575 1.305.000 1.758.750 1.758.750 1.758.750 1.649.150 1.758.750 1.555.740
P50n5p5t7v 600.330 482.461 644.828 559.732 526.620 510.148 511.067 514.125
P50n5p5t9v 695.681 555.604 751.063 627.399 751.063 597.440 584.614 751.063
P50n5p5t11v 681.704 528.628 698.492 608.841 586.457 562.254 561.621 698.492
P50n5p10t7v 1.436.290 962.170 1.247.600 1.247.600 1.247.600 1.247.600 1.179.920 1.162.090
P50n5p10t9v 1.475.592 1.108.840 1.402.430 1.402.430 1.402.430 1.402.430 1.302.360 1.301.520
P50n5p10t11v 1.307.607 915.536 1.175.980 1.175.980 1.047.630 1.153.290 1.175.980 1.125.390
P50n5p15t7v 2.115.728 1.409.850 1.844.430 1.844.430 1.844.430 1.815.260 1.844.430 1.844.430
P50n5p15t9v 2.108.270 1.653.910 1.653.910 1.653.910 1.653.910 1.653.470 1.652.020
P50n5p15t11v 2.051.843 1.339.930 1.770.250 1.770.250 1.770.250 1.769.180 1.770.250 1.770.250
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Table E.4 – Linear programming gaps between 2COMM and RRMP.

# INSTANCE UB LB LP GAP (%) Diff (%)2COMM RRMP RRMP 2COMM
1 P20n3p5t7v 391.528 297.990 319.557 18,38 23,89 5,51
2 P20n3p5t9v 202.915 164.319 186.772 7,96 19,02 11,07
3 P20n3p5t11v 288.668 246.252 261.297 9,48 14,69 5,21
4 P20n3p10t7v 489.465 382.494 431.225 11,90 21,85 9,96
5 P20n3p10t9v 436.894 308.409 409.192 6,34 29,41 23,07
6 P20n3p10t11v 688.757 591.686 671.707 2,48 14,09 11,62
7 P20n3p15t7v 755.877 540.318 700.129 7,38 28,52 21,14
8 P20n3p15t9v 1.148.420 859.310 1.074.280 6,46 25,17 18,72
9 P20n3p15t11v 898.279 713.910 850.924 5,27 20,52 15,25
10 P20n4p5t7v 372.428 287.229 314.695 15,50 22,88 7,37
11 P20n4p5t9v 344.193 266.998 332.538 3,39 22,43 19,04
12 P20n4p5t11v 273.274 220.017 245.647 10,11 19,49 9,38
13 P20n4p10t7v 782.581 629.284 683.940 12,60 19,59 6,98
14 P20n4p10t9v 660.923 500.170 600.768 9,10 24,32 15,22
15 P20n4p10t11v 906.773 688.348 825.281 8,99 24,09 15,10
16 P20n4p15t7v 1.108.540 763.501 947.241 14,55 31,13 16,57
17 P20n4p15t9v 1.083.300 791.510 962.342 11,17 26,94 15,77
18 P20n4p15t11v 1.240.280 936.779 1.127.250 9,11 24,47 15,36
19 P20n5p5t7v 341.003 295.544 328.256 3,74 13,33 9,59
20 P20n5p5t9v 389.873 326.648 368.179 5,56 16,22 10,65
21 P20n5p5t11v 485.908 387.007 417.481 14,08 20,35 6,27
22 P20n5p10t7v 944.844 728.208 804.639 14,84 22,93 8,09
23 P20n5p10t9v 775.047 612.165 721.939 6,85 21,02 14,16
24 P20n5p10t11v 717.215 529.836 623.073 13,13 26,13 13,00
25 P20n5p15t7v 1.266.602 874.308 1.082.560 14,53 30,97 16,44
26 P20n5p15t9v 1.494.610 1.162.500 1.369.590 8,36 22,22 13,86
27 P20n5p15t11v 1.750.670 1.449.880 1.635.030 6,61 17,18 10,58
28 P30n3p5t7v 213.712 163.465 189.713 11,23 23,51 12,28
29 P30n3p5t9v 391.676 304.526 324.450 17,16 22,25 5,09
30 P30n3p5t11v 367.768 277.559 312.275 15,09 24,53 9,44
31 P30n3p10t7v 688.428 484.644 552.102 19,80 29,60 9,80
32 P30n3p10t9v 667.572 463.102 543.126 18,64 30,63 11,99
33 P30n3p10t11v 654.725 448.232 609.833 6,86 31,54 24,68
34 P30n3p15t7v 880.395 514.078 761.807 13,47 41,61 28,14
35 P30n3p15t9v 1.023.110 661.370 867.381 15,22 35,36 20,14
36 P30n3p15t11v 1.184.380 846.593 1.083.730 8,50 28,52 20,02
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Table E.5 – Linear programming gaps between 2COMM and RRMP.

# INSTANCE UB LB LP GAP (%) Diff (%)2COMM RRMP RRMP 2COMM
37 P30n4p5t7v 410.940 318.423 350.592 14,69 22,51 7,83
38 P30n4p5t9v 537.101 432.958 488.135 9,12 19,39 10,27
39 P30n4p5t11v 495.875 412.699 448.750 9,50 16,77 7,27
40 P30n4p10t7v 691.145 484.873 557.528 19,33 29,84 10,51
41 P30n4p10t9v 739.013 534.998 608.693 17,63 27,61 9,97
42 P30n4p10t11v 824.586 580.149 737.904 10,51 29,64 19,13
43 P30n4p15t7v 1.175.321 806.908 1.070.500 8,92 31,35 22,43
44 P30n4p15t9v 1.180.465 775.141 937.109 20,62 34,34 13,72
45 P30n4p15t11v 1.293.592 834.354 1.109.930 14,20 35,50 21,30
46 P30n5p5t7v 415.180 343.669 384.213 7,46 17,22 9,77
47 P30n5p5t9v 396.522 322.253 385.793 2,71 18,73 16,02
48 P30n5p5t11v 481.502 393.899 429.706 10,76 18,19 7,44
49 P30n5p10t7v 1.030.250 759.197 861.994 16,33 26,31 9,98
50 P30n5p10t9v 958.748 680.593 850.361 11,31 29,01 17,71
51 P30n5p10t11v 1.028.217 760.388 902.479 12,23 26,05 13,82
52 P30n5p15t7v 1.338.394 881.433 1.128.950 15,65 34,14 18,49
53 P30n5p15t9v 1.816.277 1.225.560 1.502.160 17,29 32,52 15,23
54 P30n5p15t11v 1.682.814 1.163.680 1.394.880 17,11 30,85 13,74
55 P40n3p5t7v 444.187 330.565 374.819 15,62 25,58 9,96
56 P40n3p5t9v 249.859 183.788 211.336 15,42 26,44 11,03
57 P40n3p5t11v 380.325 308.907 337.528 11,25 18,78 7,53
58 P40n3p10t7v 731.204 486.765 560.186 23,39 33,43 10,04
59 P40n3p10t9v 994.609 707.615 952.824 4,20 28,85 24,65
60 P40n3p10t11v 923.388 690.991 899.978 2,54 25,17 22,63
61 P40n3p15t7v 1.227.324 876.775 1.053.510 14,16 28,56 14,40
62 P40n3p15t9v 781.594 470.927 675.677 13,55 39,75 26,20
63 P40n3p15t11v 1.045.710 689.736 1.009.240 3,49 34,04 30,55
64 P40n4p5t7v 318.810 247.166 277.104 13,08 22,47 9,39
65 P40n4p5t9v 380.047 319.847 349.184 8,12 15,84 7,72
66 P40n4p5t11v 474.411 358.988 427.550 9,88 24,33 14,45
67 P40n4p10t7v 794.697 516.326 697.640 12,21 35,03 22,82
68 P40n4p10t9v 1.007.635 691.271 894.533 11,22 31,40 20,17
69 P40n4p10t11v 992.252 672.186 910.682 8,22 32,26 24,04
70 P40n4p15t7v 1.554.534 911.707 1.239.890 20,24 41,35 21,11
71 P40n4p15t9v 1.339.051 823.494 1.159.650 13,40 38,50 25,10
72 P40n4p15t11v 1.731.838 1.173.510 1.498.500 13,47 32,24 18,77



APPENDIX E. Data from Chapter 5 115

Table E.6 – Linear programming gaps between 2COMM and RRMP.

# INSTANCE UB LB LP GAP (%) Diff (%)2COMM RRMP RRMP 2COMM
73 P40n5p5t7v 420.504 347.023 381.398 9,30 17,47 8,17
74 P40n5p5t9v 524.461 432.411 480.258 8,43 17,55 9,12
75 P40n5p5t11v 522.045 420.379 478.495 8,34 19,47 11,13
76 P40n5p10t7v 1.244.820 902.930 1.137.100 8,65 27,47 18,81
77 P40n5p10t9v 1.555.132 1.173.900 1.411.580 9,23 24,51 15,28
78 P40n5p10t11v 1.343.143 937.402 1.154.420 14,05 30,21 16,16
79 P40n5p15t7v 1.950.402 1.294.080 1.646.040 15,61 33,65 18,05
80 P40n5p15t9v 2.361.557 1.683.920 2.061.400 12,71 28,69 15,98
81 P40n5p15t11v 2.124.965 1.373.290 1.779.400 16,26 35,37 19,11
82 P50n3p5t7v 400.692 305.876 359.001 10,40 23,66 13,26
83 P50n3p5t9v 524.467 431.451 476.074 9,23 17,74 8,51
84 P50n3p5t11v 568.760 448.696 497.803 12,48 21,11 8,63
85 P50n3p10t7v 647.029 413.584 589.366 8,91 36,08 27,17
86 P50n3p10t9v 1.129.270 776.136 1.077.380 4,60 31,27 26,68
87 P50n3p10t11v 801.108 493.255 764.509 4,57 38,43 33,86
88 P50n3p15t7v 1.344.246 861.784 1.240.580 7,71 35,89 28,18
89 P50n3p15t9v 1.487.444 955.951 1.397.120 6,07 35,73 29,66
90 P50n3p15t11v 1.402.785 807.048 1.219.830 13,04 42,47 29,43
91 P50n4p5t7v 441.109 333.285 414.822 5,96 24,44 18,48
92 P50n4p5t9v 597.091 494.613 562.592 5,78 17,16 11,39
93 P50n4p5t11v 602.110 475.263 515.059 14,46 21,07 6,61
94 P50n4p10t7v 956.102 627.398 885.836 7,35 34,38 27,03
95 P50n4p10t9v 1.312.692 901.283 1.211.010 7,75 31,34 23,59
96 P50n4p10t11v 1.197.104 796.470 1.093.160 8,68 33,47 24,78
97 P50n4p15t7v 2.006.724 1.374.240 1.783.740 11,11 31,52 20,41
98 P50n4p15t9v 1.683.038 1.055.440 1.454.250 13,59 37,29 23,70
99 P50n4p15t11v 2.014.575 1.305.000 1.758.750 12,70 35,22 22,52
100 P50n5p5t7v 600.330 482.461 559.732 6,76 19,63 12,87
101 P50n5p5t9v 695.681 555.604 627.399 9,82 20,14 10,32
102 P50n5p5t11v 681.704 528.628 608.841 10,69 22,45 11,77
103 P50n5p10t7v 1.436.290 962.170 1.247.600 13,14 33,01 19,87
104 P50n5p10t9v 1.475.592 1.108.840 1.402.430 4,96 24,85 19,90
105 P50n5p10t11v 1.307.607 915.536 1.175.980 10,07 29,98 19,92
106 P50n5p15t7v 2.115.728 1.409.850 1.844.430 12,82 33,36 20,54
107 P50n5p15t9v 2.108.270 1.228.240 1.653.910 21,55 41,74 20,19
108 P50n5p15t11v 2.051.843 1.339.930 1.770.250 13,72 34,70 20,97
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