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“In the middle of chaos lies opportunity.”
(Bruce Lee)






Resumo

Minmax regret é um framework para abordar incerteza no processo de tomada de de-
cisao. Nesta tese, nos investigamos problemas de otimizacao minmax regret onde o
coeficiente das varidveis da funcao objetivo é desconhecido, mas é assumido ser re-
strito por um intervalo. O Problema da Programacao Linear Inteira 0-1 Minmax
regret sob Incerteza Intervalar (M-ILP) é investigado. Noés provamos que este prob-
lema é completo para o segundo nivel da hierarquia polinomial, sendo ¥5-Completo.
Além disso, nos introduzimos as heuristicas Fiz-and-Optimize (FAO), que podem ser
generalizadas para qualquer problema de otimizacao minmax regret sob incerteza in-
tervalar. Nos avaliamos a qualidade das heuristicas propostas realizando experimentos
computacionais em duas instancias de M-ILP: o problema da Cobertura de Conjuntos
Ponderado Minmax regret sob Incerteza Intervalar e o Problema do Caminho Mais
Curto de Fonte Unica Minmax regret sob Incerteza Intervalar. Para o primeiro, nos
mostramos que ele esta contido na classe X5, Além disso, nos extendemos algoriti-
mos exatos baseados na Decomposicao de Benders para este problema, propomos duas
variantes das heuristicas FAO e comparamos os resultados obtidos com os resultados
da literatura para este problema. Para o tltimo, ndés mostramos que o problema é
NP-Dificil mesmo em digrafos em camadas com 3 camadas, obtemos solu¢oes 6timas
resolvendo uma formulacao multi-commodities usando um algoritmo branch-and-bound,
e implementamos as duas mesmas variagoes das heuristicas FAO. Os resultados obti-
dos pelas heuristicas FAO também sdo comparados com os resultados das heuristicas
estado-da-arte para este problema. Experimentos computacionais realizados em in-
stancias cléssicas da literatura demonstraram que uma das heuristicas FAO propostas
é significativamente melhor que as heuristicas da literatura quando resolvendo ambos

os problemas estudados.

Palavras-chave: Minmax regret, Incerteza intervalar, Complexidade, Cobertura de

Conjuntos ponderada, Caminho Mais Curto de Fonte Unica, Heuristicas.

xlil






Abstract

Minmax regret is a framework to tackle uncertainty in the decision-making process. In
this thesis, we investigate minmax regret optimization problems where the coefficient
of the variables on the objective function is unknown, but it is assumed to be bounded
by an interval. The Minmax regret 0-1 Integer Linear Programming Problem under
Interval Uncertainty (M-ILP) is investigated. We prove that this problem is complete
for the second level of the polynomial hierarchy, being ¥5-Complete. Furthermore,
we introduce the Fix-and-Optimize (FAO) heuristics, which can be generalized for
any minmax regret optimization problem under interval uncertainty. We assess the
quality of the proposed heuristics by performing computational experiments on two
instances of M-ILP: the Minmax regret Weighted Set Covering Problem under Inter-
val Uncertainty and the Minmax regret Single-Source Shortest Path Problem under
Interval Uncertainty. For the former, we show that it is contained in the class 5.
Furthermore, we extend exact algorithms based on the Bender’s Decomposition for
this problem, propose two variants of the FAO heuristics, and compare the obtained
results with those of the literature for this problem. For the latter, we show that the
problem is NP-Hard even on a layered digraph with 3 layers, obtain optimal solutions
by solving a compact multi-commodities formulation using a branch-and-bound algo-
rithm, and implement the same FAO heuristic variants. The results obtained by the
FAO heuristics are also compared with those of the state-of-the-art heuristics for this
problem. Computational experiments performed on classical instances from the liter-
ature demonstrated that one of the proposed Fix-and-Optimize heuristics significantly

outperformed the literature heuristics for solving both of the studied problems.

Palavras-chave: Minmax regret, Interval uncertainty, Complexity, Weighted Set Cov-

ering, Single-source Shortest Path, Heuristics.
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Chapter 1

Introduction

The 0-1 Integer Linear Programming Problem (ILP) is a mathematical optimization
problem, with linear objective function and constraints, in which the domain of all
variables is {0,1}. ILP can be formulated by the objective function (1.1) and the
constraints (1.2) and (1.3), where b and ¢ are n-dimensional vectors of coefficients, A
is a m X n-dimensional matrix of coefficients, and x is a n-dimensional vector of binary
variables. ILP is NP-Hard [Karp, 1972]. However, in many cases it can be solved, on
small- and medium-sized instances, by branch-and-bound based algorithms available
in state-of-the-art ILP solvers, such as CPLEX! and GUROBI? |Anand et al., 2017

(ILP) minc’z (1.1)
Az <b (1.2)
re{0,1}" (1.3)

This thesis deals with ILP problems where the coefficients in ¢ are uncertain.
There are many techniques to tackle uncertainty in the decision making process, such as
Stochastic Programming [Spall, 2005, Dynamic Optimization [Kamien and Schwartz,
2012|, Fuzzy Logic [Ross, 2016], and Robust Optimization [Kouvelis and Yu, 1997]. We
focus on Robust Optimization (RO), which is an approach to deal with uncertainty in
decision making where the variability of the data is represented as an uncertainty set.

RO was initially set 50 years ago to deal with financial problems [Gupta and

Rosenhead, 1968|. It was originally applied as a way of self-protection against undesir-

Thttps: //www.ibm.com/analytics/data-science /prescriptive-analytics /cplex-optimizer
2http:/ /www.gurobi.com
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able outcomes due to uncertain or imprecise data, being later adapted to optimization
problems. This term describes a wide range of methodologies for modeling uncertainty
in the decision-making process. RO is specially useful when the decision maker is inter-
ested in the outcome of all potential scenarios, and not only the expected or the most
likely to happen. This situation is common when the decision has to be made once
and cannot be changed easily, or when the decision maker does not want to assume
the risk of under-performing for some scenario.

Several models for representing uncertainty within RO problems exist [Dokka
et al., 2019]. We focus on RO problems where data uncertainty is modeled as inter-
vals [Kouvelis and Yu, 1997]. In this model, the cost of each coefficient ¢; is uncertain,
but it is assumed to be bounded by an interval [l;, u;], with 0 < I; < u;.

The resolution of a RO problem consists in optimizing a RO criterion. In this
thesis, we focus on the minmax regret criterion for RO problems, which is the most
studied RO criterion [Aissi et al., 2009; Gabrel et al., 2013|. The Minmax regret 0-1
Integer Linear Programming Problem under Interval Uncertainty (M-ILP) is formally

described as follows.

Definition 1 A solution X = {z1,xa,...,2,} for both ILP and M-ILP is an attribu-

tion of values to all binary variables x.

Definition 2 A scenario S is an assignment of a single value ¢ € [l;,u;] for each

uncertain coefficient c;, for 0 < i < n.

Figure 1.1 gives an example of a graph under interval uncertainty and one possible
scenario. There are infinitely many scenarios and M-ILP aims at finding a solution that

is robust against all of them.

Q 2

13,9] 13.7] 3 3
@:& [9,15] %ED €< 12 p
[6,10] [2,5] 10 3.7

() (b)

Figure 1.1. (a) A graph under interval uncertainty and (b) one possible scenario



Let I' be the set of all scenarios, and ® be the set of all feasible solutions to the
constraints in (1.2) and (1.3).

Definition 3 The cost of a solution X € ® in a specific scenario S € I' is given by

ch

Definition 4 The best possible solution Y5 € ® for the specific scenario S € T is

Y% = argmin F(Y, S) = argmch Vi
Yed vee ‘3

i.e., Y9 is the optimal ILP solution for the scenario S.

Definition 5 The regret of a solution X € ® wn a specific scenario S € I' is the
difference between the cost of X and the cost of Y° in S [Kouvelis and Yu, 1997], i.e.,
F(X,S) - F(Y*,59).

Definition 6 The robustness cost Z(X) of a solution X € ® is defined as the maxi-
mum regret of X among all scenarios in I, i.e.,
S
Z(X) = nélglz({FXS F(Y®,8)}.

Despite the fact that |I'| = oo, it is proven in Aissi et al. [2009]; Averbakh [2001]
that the scenario on which the regret of X € @ is the maximum is the scenario SX € T,
such that

c; = li+ (u; — ly)x;,

ie., & =w;if z; =1, and ¢® = [; otherwise. From this result, we have that

?

F(X, SX Zum,

n

F(YSX, SX) = r}pelg (li + (u; — li)xi)yi,
=1

and
Z(X) = F(X,5%) — F(Y5",5%).

We refer to this scenario as the worst-case scenario induced by solution X.
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It is worth noticing that F' (YSX, SX) is still an ILP as in this case ; is con-
stant. Therefore, the robust cost of a solution X can be computed by solving a single
ILP problem in the scenario SX. M-ILP aims at finding the solution with minimum
robustness cost, i.e.,

in Z(X) = pin {F(X, SX) — PyS™, SX)} .

This problem can be rewritten as the 0-1 Bilevel Integer Linear Program in Equa-
tion (1.4) by replacing F(X,S%) and F(Y5" §¥X).

n

(M-ILP) wmin {Zl wit; — min 2 (li + (u; — ll)x,)yz} (1.4)

A ILP formulation for M-ILP can obtained by replacing F (Y5, 55) with a free
variable # and adding a new set of linear constraints that bounds the value of 6 to
the value of F(Y5* SX). The resulting formulation (1.5)-(1.9) has an exponentially
large number of constraints (1.6). It is worth noticing that the constraints in (1.6) are
linear as, in this case, y; is constant. As far as we can tell, in the general case, there is
no technique in the literature to obtain a compact formulation for any minmax regret
optimization problem under interval uncertainty whose classical counterpart does not

have a formulation with the integrality property.

%Eig; wiz; — 0 (1.5)
0 < " (li+ (ug — l)xy)y;, VY €P (1.6)
i=0
Y ajx; <b;, Vje{0,1,...,m} (1.7)
i=0
v €{0,1}, Vie{0,1,...,n} (1.8)
6> 0 (1.9)

All minmax regret combinatorial optimization problems under interval uncer-
tainty in the literature can be modeled as a M-ILP [Kouvelis and Yu, 1997; Aissi et al.,
2009; Kasperski and Zielinski, 2016|. Examples of such problems are the Minmax regret

Minimum-Spanning Tree problem under Interval Uncertainty [Aron and Hentenryck,



2004; Montemanni, 2006|, the Minmax regret Assignment problem under Interval Un-
certainty [Pereira and Averbakh, 2011|, the Minmax regret Shortest Path problem
under Interval Uncertainty [Karagan et al., 2001; Montemanni et al., 2004], the Min-
max regret Traveling Salesman problem under Interval Uncertainty [Montemanni et al.,
2007], the Minmax regret Knapsack problem under Interval Uncertainty [Deineko and
Woeginger, 2010; Furini et al., 2015, and the Minmax regret Weighted Set Covering
problem under Interval Uncertainty |[Pereira and Averbakh, 2013; Coco et al., 2016].
These problems are NP-Hard, even those whose classical combinatorial optimization
problem is solvable in polynomial-time. For those whose classical combinatorial opti-
mization are NP-Hard, it is NP-Hard even to compute the robustness cost of a solution.

In this thesis, we propose the Fix-and-Optimize (FAO) heuristics. These heuris-
tics are based on the Fix-and-Optimize framework of Gintner et al. [2005], which was
originally employed for solving a variant of a vehicle routing problem. This framework
consists of two steps: (i) the preprocessing step, where a heuristic is used to fix the
value some variables in the Mixed-Integer Linear Programming (MILP) formulation of
the problem; and (i7) the solving step, where the resulting formulation is solved without
the fixed variables. This framework was successfully adapted to several other classical
combinatorial optimization problems, such as fleet sizing [Dastjerd and Ertogral, 2019],
scheduling [Guo et al., 2018; Turhan and Bilgen, 2017|, lot sizing [Chen, 2015]|, and
timetabling [Dorneles et al., 2014|. However, as far as we can tell, FAO heuristics has
never been applied to minmax regret optimization problems.

In this thesis, we show that the decision version of M-ILP lies on the second
level of the polynomial hierarchy, being 35-Complete [Stockmeyer, 1976]. Further-
more, we perform case studies with two instances of M-ILP problems: (i) the Minmax
regret Weighted Set Covering Problem under Interval Uncertainty (M-WSCP); and
(77) the Minmax regret Single-Source Shortest Path Problem under Interval Uncer-
tainty (MSS-SPP). For M-WSCP, we prove that this problem is on the second class
of the polynomial hierarchy, being ¥%. Furthermore, we solve the ILP formulation
proposed by Pereira and Averbakh [2013| for M-WSCP through three exact algorithms
based on the Bender’s decomposition |[Benders, 1962| and implement two FAO vari-
ants, comparing their results with those given by the heuristics on the literature for
this problem. For MSS-SPP, we prove that this problem is NP-Hard. Furthermore,
we solve the compact ILP formulation proposed by Catanzaro et al. [2011] through a
branch-and-bound algorithm and implement the same two FAO heuristics, comparing
their results with those given by the heuristics on the literature for this problem.

The remaining of this thesis is organized as follows. Initially, Chapter 2 presents

a literature review on RO. A proof for the worst-complexity of the M-ILP is given in
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Chapter 3. Next, Chapter 4 shows the most prominent exact and heuristic algorithms
from the literature to solve minmax regret optimization problems under interval uncer-
tainty and proposes the FAO heuristics. Then, Chapter 5 formally defines M-WSCP
and MSS-SPP, also presenting their ILP formulations and complexity proofs. Finally,
an extensive set of computational experiments is presented and discussed on Chapter 6

and the conclusions of this thesis are drawn in the last chapter.



Chapter 2

Related work

This chapter provides a literature review on three topics. The first topic, presented
in Section 2.1, reviews the most well-known RO criteria for problems under interval
uncertainty. The second topic is presented in Section 2.2 and describes the most promi-
nent models for representing uncertainty within the RO framework. The third topic,
shown in Section 2.3, reviews the literature for works on minmax regret optimization

problems under interval uncertainty.

2.1 Robust optimization criterions

The most well-known RO criterions for problems under interval uncertainty are the
Minmax, the Minmax regret, and the Minmax relative regret [Kouvelis and Yu, 1997].
The criterions vary on the level of conservativeness of the resulting model. Furthermore,
a RO problem solved with different criteria may have different worst-case complexity.
For example, the Shortest Path Problem under Interval Uncertainty, which is solvable
in polynomial-time with the minmax criterion [Aissi et al., 2009] and is NP-Hard with
the minmax regret criterion |Kouvelis and Yu, 1997| and with the minmax relative
regret criterion [Averbakh, 2005a]. We refer to the book by Kouvelis and Yu [1997] for
a comprehensive introduction to the Minmax, the Minmax regret, and to the Minmax
relative regret criterions. In addition, we refer to Coco et al. [2014b| for a survey on
other criteria for RO problems.

The Minmax creterion is the most conservative one. It aims at finding a solution

that has the smallest worst case value, i.e., it finds a solution X* € ® such that

X* = argmin F(X, S¥*) = argmin Z UL
Xed S
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Minmax optimization problems under interval uncertainty have the same complexity
of the underlying deterministic problem, since it solves an instance of the deterministic
problem in the upper scenario s* € I', where the cost of each uncertain coefficient is

set to its upper value, i.e. ¢ = u;, for all uncertain coefficients ¢;.

The Minmax regret criterion, as shown in Chapter 1, is the most used criterion
for RO problems under interval uncertainty. It aims at finding a solution that has the

smallest regret, 7.e., it finds a solution X* such that

X* = argmin {F(X7 S¥X) — F(vS*, SX)} .
Xed
The complexity of Minmax regret optimization problems under Interval Uncertainty
greatly varies, as shown in Section 2.3. However, most of the problems within this class
are known to be NP-Hard [Kouvelis and Yu, 1997; Aissi et al., 2009].

The Minmax relative regret is the less conservative one among the three reviewed
criterions [Averbakh, 2005b|. It aims at finding a solution X* such that

F(X,8%) — F(v2", 8%)
F(X,5%) '

X" = arg min

zed
As shown by Coco et al. [2017], the robust deviation of a minmax relative regret problem
under interval uncertainty is not the maximum in the worst-case scenario induced by
solution X, i.e., exists a scenario S € I', S # S¥ such that the relative regret is the

minimum. This scenario can be computed using a binary search algorithm, as pointed
out by Averbakh [2000].

2.2 Uncertainty sets for robust optimization

problems

There exists different possibilities for expressing data uncertainty within the RO frame-
work. The uncertainty on cost coefficients ¢; can be modeled through a given un-
certainty set il and the decision maker is interested in computing a solution that is
protected against all possible outcomes without further knowledge of a probability

distribution.

For the sake of simplicity, in this section we will describe the different uncertainty
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sets using the minmax criterion as an example. Let

n
min E C;;
1=0

denote the objective function of ILP, as described in Equation (1.1). Let C' =
{c1,¢2,...,¢,} be a vector of cost coefficients associated with the variables X. A

minmax optimization problem model can be expressed as

n
min Iggﬁ( Z Ci;.
i=0
In RO problems, it is commonly assumed that the shape of the uncertainty set
il is known in advance. In Chapter 1, we described the case where U is represented
by intervals. However, the shape of {l can also be discrete, ellipsoidal, budgeted, or

polyhedral, among other possibilities [Dokka et al., 2019]. They are presented below.

Interval uncertainty sets [Kouvelis and Yu, 1997; Aissi et al., 2009] represent

uncertain data as bounded intervals. In this case,
ﬂ: {C LG c [lz,ul]},

where 0 < [; < u;. The worst-case complexity of minmax regret optimization problems
under interval uncertainty greatly varies and will be discussed in details on Section 2.3.
The discrete case explicitly shows the uncertain data [Kouvelis and Yu, 1997]. In

this case, one can represent
d={c .. ),

where each vector of cost coefficients C* € 4l represents a possible observation of the
uncertain data. In the case that |[U| is known, many polynomial-solvable problems
turns out to be NP-Hard. In addition, if |4l] is unbounded or given as part of the input
of the problem, in most of the cases, the underlying RO problem is NP-Hard in the

strong sense [Kouvelis and Yu, 1997|.

Ellipsoidal uncertainty sets [Ben-Tal and Nemirovski, 1998, 1999] can be described

as

§ = {OeRgo (O~ C)=HC - 0) gﬂ},

where C is the expected value of the uncertain cost coefficients C' and X is the covariance

matrix given by the values in C'. Furthermore, parameter r represents the risk that
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the decision maker is willing to assume, such that as greater is the value of r, then
more conservative is the computed solution. The worst-case complexity of minmax
regret optimization problems under ellipsoidal uncertainty are not greater than that of
the deterministic problem at hand, as this representation imposes only a polynomial

number of additional convex constraints.

Budgeted uncertainty sets |Bertsimas and Sim, 2003, 2004]| were based on interval
uncertainty sets. The former was developed in an attempt to reduce the conservatism
level of the latter. It assumes that at most A < n values of the cost coefficients in
C are greater than the midpoint value, i.e., that at most A coefficients ¢; are greater

than " = w One can state the budgeted uncertainty set as

n
= {C’ cep =+ (up — )6, Ve € C0 <9 < 1,2(2 < A}.
=0
The resolution of a minmax regret optimization problem under budgeted uncertainty
involves solving O(n) times the deterministic problem with different cost coefficients.

Therefore, the budgeted variant of deterministic polynomial-time problems still can be
efficiently solved [Dokka et al., 2019].

Polyhedral uncertainty sets are defined as
U={C:VC <e,C >0},

where V' is a m x n-dimensional matrix of coefficients and e is a n-dimensional vector
of coefficients. Thus, the uncertainty is contained within a polyhedron P defined
by constraints VC' < e, which can assume different formats (e.g., a knapsack [Poss,
2018] or a continuous multidimensional knapsack problem [Minoux, 2009]). Minmax
regret optimization problems under polyhedral uncertainty are likely to be NP-Hard,
as pointed out by Buchheim and Kurtz [2018].

In a recent study, Dokka et al. [2019] proposed the use of multiple uncertainty

sets within a RO problem. The authors build a new objective function

n
Ciy,
1=

min E Py, Max
Xecd Cel, 4
uelU

where U is a set of uncertainty sets and p, is a weight which gives the importance of
uncertainty set il,. Thee authors argue that using multiple uncertainty sets in conjoint
can better represent the uncertain data and produce solutions that are more robust

against data variability.
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Table 2.1. Summary of the literature review for minmax regret optimization
problems under interval uncertainty

Problem name

Complexity

Linear Programming
Shortest Path

Single-Source Shortest Path
Minimum Spanning Tree
Assignment

Min Cut

Min s-t Cut

Selection

Representatives Selection
Weighted Independent Set
1-median (edge uncertainty)
1-median (node uncertainty)
1-center (edge uncertainty)
1-center (node uncertainty)
Scheduling 1| 3C;

0-1 Integer Programming
Restricted Shortest Path
Traveling Salesman Problem
Weighted Set Covering

0-1 Knapsack

Strongly NP-Hard [Averbakh and Lebedev, 2005]
Strongly NP-Hard [Averbakh and Lebedev, 2004]
NP-Hard
Strongly NP-Hard [Averbakh and Lebedev, 2004]
Strongly NP-Hard [Aissi et al., 2005a]
Polynomial [Aissi et al., 2005b]
Strongly NP-Hard [Aissi et al., 2005b]
Polynomial [Averbakh, 2001]
Polynomial [Dolgui and Kovalev, 2012]
NP-Hard [Kasperski and Zieliriski, 2015]
Strongly NP-Hard [Averbakh, 2003]
Polynomial [Averbakh and Berman, 2000b]
Strongly NP-Hard [Averbakh, 2003]
Polynomial [Yu et al., 2008]

NP-Hard [Lebedev and Averbakh, 2006]
35-Complete
NP-Hard
NP-Hard
3%, NP-Hard
»P-Complete [Deineko and Woeginger, 2010]

2.3 Literature review on minmax regret
optimization problems under interval

uncertainty

Minmax regret optimization problems under interval uncertainty were widely studied
in the literature. This class of problems were studied from the theoretical point, where
one is interested in determining the problem’s complexity, and from a algorithmic
view, where one is interested in proposing algorithms for the resolution of problems
within this class. This section reviews the most well-known works from the literature
regarding minmax regret optimization problems under interval uncertainty, which are
summarized in Table 2.1. This table shows, in the first column, the name of the problem
and the complexity of the problem in the second column. The results obtained in this
thesis are highlithed in bold.

A general result for minmax regret optimization problems is that the uncertain
variant is, at least, as harder to solve than the deterministic version of the prob-
lem [Kasperski and Zieliriski, 2016]. This is due to the fact that, for computing the
minmax regret of a solution, one must solve the deterministic problem on its worst-case

induced scenario, as presented in Definition 5.

The Minmax regret Linear Programming Problem under Interval Uncertainty was

shown to be strongly NP-Hard by Averbakh and Lebedev [2005|. This problem was
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solved by the repetitional use of the simplex method in Inuiguchi and Sakawa [1995|.
This algorithm was later improved by Mausser and Laguna [1998] using a stronger ILP
formulation than that of Inuiguchi and Sakawa [1995].

The Minmax regret Shortest Path Problem under Interval Uncertainty was first
proposed in Kouvelis and Yu [1997] and was shown to be Strongly NP-Hard by Aver-
bakh and Lebedev [2004]. Later, this problem was shown to be NP-Hard even on series-
parallel digraphs by Kasperski and ZielinSki [2006]|. The first ILP formulation for this
problem was proposed by Yu and Yang [1998]. A branch-and-bound algorithm and a
Benders-like decomposition algorithm were presented in Montemanni et al. [2004] and
Montemanni and Gambardella [2005], respectively. An scenario-based heuristic was ap-
plied for this problem by Kasperski and Zielinski [2007]. Two preprocessing algorithms
for fixing arcs were proposed by Catanzaro et al. [2011]. Most recently, Pérez-Galarce
et al. [2018] proposed a Branch-and-Cut algorithm for this problem along with a local
search and a simulated annealing metaheuristics.

The Minmax regret Single-Source Shortest Path under Interval Uncertainty was
first studied by Neumann [2010]. An ILP formulation for this problem was also given by
Neumann [2010]. Later, Carvalho et al. [2016] extended two scenario-based heuristics
from the literature to this problem, while Carvalho et al. [2018]| proposed the use of
a Variable Neighborhood Descent algorithm where the local search is performed by
solving an ILP formulation. In this thesis, we show that this problem is NP-Hard.

The Minmax regret Minimum Spanning Tree Problem under Interval Uncertainty
was shown to be Strongly NP-Hard by Averbakh and Lebedev [2004]. An ILP formula-
tion for this problem was presented in Yaman et al. [2001]. Furthermore, preprocessing
algorithms for fixing variables for this problem were presented by Salazar-Neumann
[2007|. Regarding exact algorithms, we can cite the branch-and-bound of Montemanni
and Gambardella [2005] and algorithms based on Benders’ decomposition by Monte-
manni [2006] and Pérez-Galarce et al. [2014]. Heuristics and metaheuristics for this
problem include the simulated annealing by Nikulin [2008], a tabu-search heuristic by
Kasperski et al. [2012], and a scenario-based heuristic by Goncalves et al. [2017].

The Minmax regret Assignment Problem under Interval Uncertainty was shown
to be strongly NP-Hard by Aissi et al. [2005a]. Two ILP formulations for this problem
were proposed respectively by Kasperski and Zielinski [2004] and Pereira and Averbakh
[2011]. Several exact and heuristic algorithms for this problem were also proposed by
Pereira and Averbakh [2011], which includes an exact algorithm based on Benders’
decomposition, a Variable Neighborhood Search, and two hybrid population-based
metaheuristics. This problem was also solved through a scenario-based heuristic by
Goncalves et al. [2017].
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The Minmax regret Min Cut Problem under Interval Uncertainty was shown to
be polynomially solvable by Aissi et al. [2005b]. However, a variant of this problem,
the Minmax regret Min st Cut under Interval Uncertainty, was shown to be strongly
NP-Hard by Aissi et al. [2005b].

The Minmax regret Selection Problem under Interval Uncertainty was shown
to be polynomial-time solvable by Averbakh [2001]. The authors also proposed a
polynomial-time algorithm for this problem. Furthermore, another selection problem,
denominated Minmax regret Representative Selection Problem under Interval Uncer-
tainty, was studied by Dolgui and Kovalev [2012|, on which the authors presented a
polynomial-time algorithm for this problem.

The Minmax regret Maximum Weighted Independent Set Problem under In-
terval Uncertainty was shown to be NP-Hard by Kasperski and Zieliriski [2015]. A
2-approximation algorithm for this problem was also given by Kasperski and Zielinski
[2015]. Despite that, no ILP formulation, exact, or heuristic algorithms for this problem
were proposed in the literature.

Two variants of the Minmax regret 1-median Problem under Interval Uncertainty
were studied in the literature. This problem was shown to be strongly NP-Hard if the
uncertainty is located on the edges of the graph [Averbakh, 2003|, but solvable in
polynomial-time if the uncertainty is located on the nodes [Averbakh and Berman,
2000b]. For the latter problem, a polynomial-time algorithm was given by Averbakh
and Berman [2000b|, which was later improved by Yu et al. [2008]|. The former problem
was also studied when the underlying instance is a tree, on which it is solvable in
polynomial-time. In this case, a first polynomial-time was proposed by Chen and Lin
[1998] and later improved by Averbakh [2003].

Two variants of the Minmax regret 1-center Problem under Interval Uncertainty
were studied in the literature. This problem was shown to be strongly NP-Hard if
the uncertainty is located on the edges of the graph [Averbakh, 2003], but solvable
in polynomial-time if the uncertainty is located on the nodes [Averbakh and Berman,
2000b]. The former problem was also shown to be solvable in polynomial-time in a
tree [Averbakh and Berman, 2003]. In the case that uncertainty is presented in both
the edges and the nodes of the graph and the underlying instance is a tree, the problem
was shown to be polynomial-time solvable. A first algorithm for this case was presented
by Averbakh and Berman [2000a], which was later improved by Burkard and Dollani
[2002| using techniques of computational geometry.

A Minmax regret Scheduling Problem under Interval Uncertainty was studied
by Lebedev and Averbakh [2006]. This problem consists in scheduling a set of jobs

in a single machine, such that the time of each job is uncertain and the objective is
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to minimize the maximum regret of the total flow time. For the general case, this
problem was shown to be NP-Hard. However, the authors presented specific cases
where this problem is polynomial-time solvable. An ILP formulation for this problem,
along with a branch-and-bound algorithm and two heuristics, were proposed by Daniels
and Kouvelis [1995].

The Minmax regret Restricted Shortest Path Problem under Interval Uncertainty
was only studied by Assuncao et al. [2017]. The authors proposed an ILP formulation
for the problem and two heuristics, whereas one was a scenario-based algorithm and
the other was based on linear programming. The proposed ILP formulation was solved
by an exact algorithm based on Benders’ decomposition. Computational experiments
demonstrated that the linear programming-based heuristic outperformed the scenario-
based heuristic.

The Minmax regret Traveling Salesman Problem under Interval Uncertainty was
first studied by Montemanni et al. [2006], where the authors proposed two scenario-
based heuristics and a preprocessing algorithm. Montemanni et al. [2007] proposed an
ILP formulation for this problem, along with three exact algorithms. The first was a
branch-and-bound algorithm, while the others were based on Benders’ decomposition.

The Minmax regret Weighted Set Covering Problem under Interval Uncertainty
was first studied by Pereira and Averbakh [2013|. The authors proposed an ILP for-
mulation for this problem, which was solved by three algorithms based on Benders’
decomposition. Several heuristics were also proposed for this problem. A Genetic
Algorithm and a Hybrid Genetic Algorithm were proposed by Pereira and Averbakh
[2013], a scenario-based heuristic with a path-relinking strategy was proposed by Coco
et al. [2015], while a hybrid heuristic based on the Benders’ decomposition algorithm
and a scenario-based heuristic were developed by Coco et al. [2016].

The Minmax regret 0-1 Knapsack Problem under Interval Uncertainty was stud-
ied by Deineko and Woeginger [2010] and by Furini et al. [2015]. The former work
demonstrated that this problem is complete for the second level of the polynomial hi-
erarchy, being ¥:5-Complete. This result implies that the problem is not in the class NP
unless the polynomial hierarchy do not collapses to some finite level, which is almost as
unlikely as P = NP. The former work developed four exact algorithms for this problem

based on Benders’ decomposition, as so as an Iterated Local Search metaheuristic.



Chapter 3

Worst-case complexity for M-ILP

An Alternating Turing Machine with k alternations (ATM) [Chandra and Stockmeyer,
1976] is a non-deterministic Turing Machines whose states are divided into existential
states (3) and universal states (V). Let © be a decision problem. The existential state
relates to the definition of NP: if there is a solution for ® such with answer YES, then
the computation is accepted. The universal state relates to the definition of co-NP: if
all possible solutions for ® have answer YES, then the computation is accepted. An
ATM alternates between the existential state and the universal state k times, and it
has a answer YES if and only if all of its states have answer YES.

The Polynomial Hierarchy [Stockmeyer, 1976] is a hierarchy of complexity classes

which generalizes the classes P, NP, and co-NP to oracle machines. We must define
Ab =35 =1I) = P,

where P is the set of all decision problems which can be solved in polynomial-time by

a deterministic Turing Machine. Then, for ¢ > 0, we have that

P _ px?P
A7 =P,
P = NP>

1+1 )

and

P ?
II;,, = co-NP™,

where P* is the set of decision problems solved in polynomial-time by a Turing Machine
coupled with a non-deterministic oracle, NP* is the set of decision problems solved in
non-polynomial time by a Turing Machine coupled with a non-deterministic oracle, and
co-NP* is the analogue for co-NP problems. One may note that NP = ¥ co-NP =TI,

15
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and A5 = P defines the class of problems solved by a Turing Machine coupled with
a non-deterministic oracle for some NP-Complete problem.

Decision problems in class X¥ or IT7 are the set of problems solved in polynomial-
time by ATM (Theorem 17.8 of Papadimitriou [1994]). Let © be a decision problem
whose variables are partitioned into k sets Dy, Do, ..., Dy. Problem ® is said to be in
¥P if there is an ATM in the form

3D,VD,3AD; ... f(D1, D, ..., Dy),

i.€., there is an assignment of values for variables in Dy, such that, for all assignments
of values in Dy, there exists an assignment of values to variables in Ds, ... such that
function f(Dy, D, ..., Dy) can be evaluated in polynomial-time and returns an answer
YES? Similarly, a problem in said to be in IT} | if there is an ATM in the form

VD;13DoVD; ... f(Dy, Ds, ..., Dy),

such that function f(Dy, Ds, ..., Dy) can be evaluated in polynomial-time..

A problem is said to be 3}-Complete (or IT}-Complete) if every other problem in
P (or IT?) can be reduced to it in polynomial-time. A compedium of problems known
to be complete for the second or higher levels of the polynomial hierarchy can be found
in Schaefer and Umans [2002|. Furthermore, a complete and precise introduction to
the polynomial hierarchy is given by Stockmeyer [1976].

In this chapter, we prove that the decision version of M-ILP is ¥Z-Complete.
First, we show that it is in the class ¥5. Next, we show that M-ILP is complete
for the class X5 through a reduction from the Minmax regret 0-1 Knapsack Problem
under Interval Uncertainty (M-Knapsack), which is complete for this class [Deineko
and Woeginger, 2010|. For this proof, we define the decision version of M-Knapsack,
propose a reduction from the decision version of M-Knapsack to the decision version
of M-ILP, and show that a solution for the former is valid if and only if it is also valid
for the latter.

3.1 The X} proof

DEecisioN M-ILP

Input: A n-dimensional vector of coefficients b, a m X n-dimensional matrix of co-

efficients A, a n-dimensional vector of binary variables z, two n-dimensional vector
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of coefficients [ and u, with ; < wu;, Vi, and a minimization problem as defined by
Equations (1.5)—(1.9).
Question: Is there a solution X € ® for M-ILP such that Z(X) < (7

Lemma 1 Problem DECISION M-ILP lies in class 2b.

Proof. From Definition 6, we recall that Z(X) = max {F(X,5) - F(Y%, S)}. Wecan
€

rewrite this equation as

Z(X) = {Zule — glégz (L + (u; — ll)xz)yz} :

Thus, the question for DECISION M-ILP is: exists a solution X € & such that
Z(X) < (7 One may observe that this question is on the form FzVyf(z,y), where
the Boolean predicate f(x,y) can be evaluated in polynomial time. Theorem 17.8
from Papadimitriou [1994] states that problems with an existential quantifier followed
by an universal quantifier (which is the exact form of the question stated above) are
in the complexity class ¥, which completes the proof. Il

If P # NP, we can assume that the polynomial hierarchy do not collapses to the

second level. Therefore, we can state the following corollary.
Corollary 2 Problem DECISION M-ILP is not contained in class NP.

Furthermore, by using the Kannan’s Theorem |[Kannan, 1982], we can state the

following corollary.
Corollary 3 Do not exists a polynomial-sized formulation for M-ILP.

The latter corollary can be easily verifiable. If there is a polynomial-sized formu-
lation for M-ILP, then there exists an algorithm which verifies the cost of its solution
in polynomial-time and, thus, it is in NP. This is clearly a contradiction, since prob-
lems in the second level or higher of the polynomial-hierarchy are not contained in
NP [Papadimitriou, 1994].

3.2 The Decision M-Knapsack problem

The 0-1 Knapsack Problem (Knapsack) [Martello et al., 1999] is a classic NP-Hard
combinatorial optimization problems. In this problem, we are given a set of items H,

such that each item h € H is associated with an weight w;, > 0 and a profit p,. The
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objective is to choose I C H such that ), _; wy is smaller than a predefined capacity
T and that ), ., pp is the maximum.

Knapsack can be formulated as following. It uses decision variables
{zn€B:he€H} such that z, = 1 if item h € H belongs to the optimal solution
I and zj, = 0 otherwise. The Knapsack formulation is given by objective function (3.1)
and the constraints in (3.2)—(3.3).

max thzh (3.1)

heH

s.t. Z wpzp < T (3.2)
heH
z, € {0,1}, Vh e H (3.3)

M-Knapsack, as defined by Deineko and Woeginger [2010], is a RO variant of
Knapsack. This problem was shown to be in the second layer of the polynomial hier-
archy, being ¥f-Complete [Deineko and Woeginger, 2010]. In M-Knapsack, the exact
profit py, of items h € H is unknown, but it is assumed to be bounded by an interval
[, up], with 0 < [;, < uy,. The formal definition of M-Knapsack is given below. It is
closely related to the definition of M-ILP presented in Chapter 1.

Definition 7 A solution I C H for both Knapsack and M-Knapsack is a subset of
items such that ), wy, < T.

Definition 8 A scenario L is an assignment of a single value pt € [ln,up] for all

uncertain profits associated with items h € H.

Let A be the set of all scenarios, and T be the set of all feasible solutions to the

problem.

Definition 9 The value of a solution I € T in a specific scenario L € A is given by

F(I,L)=> py.

hel

Definition 10 The best possible solution J& € Y for the specific scenario L € A is

JV = argmax F(J,L) = argmaprﬁ,
Jex Jer

i.e., JE is the optimal Knapsack solution for the scenario L.
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Definition 11 The regret of a solution I € Y in a specific scenario L € A is the
difference between the value of JY in L and the value of I [Kouvelis and Yu, 1997],
i.e., F(JV,L) — F(I,L).

Definition 12 The robustness cost Z(I) of a solution I € Y is defined as the mazi-

mum regret of I among all scenarios in A, i.e.,

Z(1) = max {F(J*, L) = F(I,1)} .

Despite the fact that |[A| = oo, it is proven in Furini et al. [2015] that the scenario

where the regret of I € T is the maximum is the scenario L’ € A, such that

I .
k' =y, otherwise

{cgf —1,, ifitem hel

From this result, we have that

P(I,L") = "I,

S

F(JLI,LI = max Zuh— Z In | .

heJ heH\J

and
Z(I)=F(JY L' - F(I,L").

We refer to this scenario as the worst-case scenario induced by solution 1.

One can note that the robust cost of a solution I can be computed by solving a
single Knapsack problem in the scenario L. M-Knapsack aims at finding the solution
with minimum robustness cost, 7.e.,

min Z(1) = min {F(JL’, L'y — F(I, LI))} .

This problem can be rewritten as the 0-1 Bilevel Integer Linear Program in (3.4) by
replacing F(JY', LT) and F(I, L) .

(M-Knapsack) min 4 max Zuh— Z Iy, —Zlh (3.4)

heJ REH\J hel

Let {z, € B: h € H} be such that z, = 1 if item h € H belongs to the optimal



20 CHAPTER 3. WORST-CASE COMPLEXITY FOR M-ILP

solution of problem (3.4) and z, = 0 otherwise. Furthermore, let {j, € B: h € H}
be such that j, = 1 if item h € H belongs to the optimal solution of F(JL', LT) and
Jn = 0 otherwise. We can rewrite problem (3.4) as in Equation (3.5).

(M-Knapsack) min {ryeet%( <Z up + (I — up)zn)j ) Z lhzh} (3.5)

heH

M-Knapsack can be formulated as an ILP by replacing F(JLI, L) with a free
variable €2 and adding a new set of linear constraints that bounds the value of {2 to the
value of F'(J*' | LT). As is the case of M-ILP, the resulting formulation (3.6)(3.10) for

M-Knapsack has an exponentially large number of constraints (3.7).

min Q- hEZthzh (3.6)
Q > Z up + lh U}L)Zh) jh, vVJeT (37)

heH

thzh S T (38)

heH

2z, €40,1}, VheH (3.9)

Q>0 (3.10)
Now, we are able to define the decision version of M-Knapsack. It is as follows.

DEcIstoN M-KNAPSACK

Input: An item set H, an weight w;, > 0 for each item h € H, a profit interval [I;,, uy]
for each item h € H, and a capacity T
Question: Is there a solution I € T such that Z(I) < & and ), ., w, <T7

3.3 The hardness proof

Given a DECISION M-KNAPSACK instance, we obtain a DECISION M-ILP instance as
follows. We set the vector of coefficients b with dimension 1, the matrix of coefficients A
with dimension 1 x |H|, and a set { x, € B : h € H } of variables. Also, weset b= {T'},

Ay = wy, 1 Yh € H, the lower value [, to the profit upper value uy, and the upper value



3.3. THE HARDNESS PROOF 21

uy, to the profit lower value [,. One may note that, in this construction, ® = T since
all feasible solutions for M-ILP arc feasible for M-Knapsack and vice-versa. Besides,

in this construction, I' = A.
Theorem 4 The decision version of M-ILP is ¥5-Complete.

Proof. Consider a M-ILP instance as constructed above. We argue that M-ILP has a
solution X € ¢ with Z(X) < ( if and only if M-Knapsack has a solution I € T with
Z(I)=—-Z(X).

=: Suppose there exists a solution X € ® for the above-constructed instance of
M-ILP such that Z(X) < (. If this solution sets variable x;, = 1, then item h € H is in
the solution for M-Knapsack. On the other hand, if this solution sets variable z; = 0,
then item h € H is not in the solution for M-Knapsack. As Ay = wy, : Vh € H and
b= {T}, we guarantee that the capacity of the knapsack is not violated.

We are left to show that —Z(X) = Z(I). If we rewrite M-ILP as a maximiza-
tion problem, then —Z(X) > —(. Furthermore, definitions 4-6 should be rewritten
for the case of a maximization problem. Thus, we restate definitions 4, 5, and 6 as

definitions 13, 14, and 15, respectively.
Definition 13 The best possible solution Y € ® for the specific scenario S € T is

Y® = argmax F(Y,S) = arg maxz S Yn,

Yed Yed he=1

i.e., Yo is the optimal ILP solution for the scenario S.

Definition 14 The regret of a solution X € ® in a specific scenario S € T is the
difference between the cost of Y in S and the cost of X [Kouvelis and Yu, 1997], i.e.,
F(Y5,8) - F(X,S).

Let Z(X) = —Z(X) be the robustness cost of solution X when M-ILP is formu-

lated as a maximization problem.

Definition 15 The robustness cost Z(X) of a solution X € ® is defined as the maxi-

mum regret of X among all scenarios in I', i.e.,

Z(X) =max {F(Y®,5) — F(X,9)}.

Ser’
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Despite the fact that |I'| = oo, it is proven in Aissi et al. |2009]; Averbakh |2001]
that the scenario where the regret of X € ® is the maximum is the scenario S* € T,
such that

CfT = up, + (I, — up)xp,

i.€., cfx =1, if x, =1, and cﬁx = uy, otherwise. From this result, we have that

X SX Zlhl'h,

n

F(Y'SX7 SX) = gfnég (uh + (lh — uh)zh)yh,
h=1

and

Z(X)=F(Y5", 5% - F(X,8Y).
We refer to this scenario as the worst-case scenario induced by solution X.
The maximization version of M-ILP aims at finding the solution with minimum
robustness cost, i.e.,

min Z(X) = min {F(YSX, S¥) — F(X, SX)} .

Xed Xed

This problem can be rewritten as the 0-1 Bilevel Integer Linear Program in Equa-
tion (3.11) by replacing F (Y5, SX) and F(X, S¥).

(Maximization M-ILP) min {max (lh + (up — lh)ajh)yh — Z uhxh} (3.11)

Xed | Yed
h=1 h=1

One may note that the objective function (3.11) is the same of the M-Knapsack,
as defined in Equation (3.5). This is due to the fact that & = T, the lower value [}, is
equal to the profit upper value uy,, and the upper value uy, is equal to the profit lower
value l, and x, = 1:Vh € I. Therefore, we have that Z(X) = Z(I) = —Z(X).

<: Suppose there exists a solution I € YT for M-Knapsack such that Z(I) <
&. By definition, this solution does not violate the capacity T' of the knapsack, i.e.,
YonesWh ST As Ay = wy : Vh € Hand b= { T}, we guarantee that constraint (1.7)
of M-ILP is not violated.

We are left to show that Z(X) = Z(I), which can be demonstrated using the

same argument employed above for the proof of the if case. U



Chapter 4

Algorithms for M-ILP

This chapter presents the literature algorithms for minmax regret optimization prob-
lems under interval uncertainty and instantiates them for M-ILP. Furthermore, it
also presents the two FAO heuristics proposed in this thesis. First, in Section 4.1,
we present three exact algorithms for M-ILP, namely the Benders-like Decomposi-
tion (BLD), the Extended Benders (EB), and the Branch-and-Cut (BC). Next, in
Section 4.2, we present the heuristics Algorithm Mean Upper (AMU), Scenario-based
Algorithm (SBA), Linear Programming Based Heuristic (LPH), and the two FAO

heuristics.

4.1 Exact algorithms for M-ILP

The M-ILP formulation given by objective function (1.5) and constraints in (1.6)—(1.9)
have an exponential number of the constraints (1.6). Enumerating all these constraints
is a #P-Complete problem [Cook et al., 1992|, since there is one constraint for each
feasible solution of the problem. Therefore, this formulation cannot be explicitly solved
by commercial MIP solvers, and more sophisticated methods are needed. We present
below the three exact algorithms which are widely applied to solve particular M-ILP

instances.

4.1.1 Benders-like Decomposition (BLD)

BLD relies on a cutting plane algorithm inspired by the Benders’ Decomposition [Ben-
ders, 1962]. It differs from the classic algorithm because the Bender’s subproblem is not
a linear program. BLD was successfully applied to solve the Minmax regret Traveling

Salesman Problem under Interval Uncertainty [Montemanni et al., 2007], the Minmax
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regret Knapsack problem under Interval Uncertainty |Furini et al., 2015|, the Minmax
regret Restricted Shortest Path problem under Interval Uncertainty [Assungéo et al.,
2017], and the Minmax regret Set Covering problem under Interval Uncertainty [Pereira

and Averbakh, 2013|, among other problems.

BLD decomposes M-ILP into two problems: (i) the Master problem (MP); and
(77) the Subproblem (SP). The MP consists in solving the formulation defined by
objective function (1.5) and the constraints in (1.7)-(1.9),(4.1), i.e., it solves a M-ILP
using only a subset of the constraints in (1.6). The SP consists in solving ILP where the
cost coeflicients of the objective function are given by the worst-case scenario induced
by the optimal solution of the MP. BLD solves the MP and the SP iteratively and
stops when the solution given by the MP has a robustness cost equal to that of the
smallest robustness cost of a solution computed by the SP. Assungao et al. [2016]

proved that this algorithm always returns the optimal solution for M-ILP.

0<> (it (ui—l)z)y;, VYed (4.1)
=1

Let ®" C ® be the subset of solutions generated by BLD until iteration h. Al-
gorithm 1 gives a pseudo-code of BLD. It receives as input the matrix of coefficients
A, the vector of variables x, and the vector of coefficients b of ILP. Additionally, it
receives the interval uncertainties [l;, u;] for all uncertain coefficients. Initially, as sug-
gested by Montemanni et al. [2007] to avoid an unbounded MP, BLD solves M-ILP
using the Algorithm Mean (AM) and Algorithm Upper (AU) algorithms (which will be
described in Section 4.2.1) on lines 1 and 2, respectively. Then, it initializes ®° with so-
lutions obtained by these heuristics in line 3. In lines 4 and 5, it keeps respectively the
smallest robustness cost between solutions computed by AM and AU and the solution
which gives the smallest robustness cost. Furthermore, it initializes the the iteration
count in line 6. The loop on lines 714 corresponds to an iteration of BLD and is run
until an optimal solution is found. First, the MP is solved in line 8 using constraints
(4.1). Then, the SP corresponding to the solution obtained by previous iteration of the
MP is solved in line 9. Next, the primal bound 9 of BLD is computed as the minimum
between the previous value of ¥ and the cost of the solution of the SP on line 10 and
the solution with the smallest robustness cost is kept on line 11. At the end of the loop,
the iteration number is increased in line 12 and ®” is augmented by incorporating the
solution found by the SP in line 13. Finally, the best feasible solution X* computed is

returned in line 15.
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Algorithm 1: Benders-like Decomposition (BLD)
input : (A, z,b,[l;,w]Ve; € ¢)
output: X* € ¢

X < MP(A, x,b,®" [I;,u:]Ve; € ¢)
Y <+ SP(A,x,b,S%)

10 ¥ < min (19, F (Y(SX), SX)>

11 X"« argminyegx-yy Z(X)

12 h<+h+1

13 P O U {Y'}

14 while (Z(X) < 9)

15 return X~

1 X~ AM(A, z,b, [l;,u;|Ve; € ¢
2 X1+ AU(A, x,b, [l;,u;]Ve; € ¢)
3 Y+ {X= X1}

4 X* ¢ argminy g x-y+y Z(X)

5 1 <= minye(x- x+3 Z(X)

6 h< 0

7 do

8

9

4.1.2 Extended Benders-like Decomposition (EB)

EB employs a methodology introduced by Fischetti et al. [2010] for selecting Benders’
cuts. The proposed methodology consists in solving a SP for each incumbent solution
found by the MP instead of using only the MP’s optimal solution. Thus, the expected
number of iterations in EB is smaller than of BLD. Percira and Averbakh [2013]
first implemented EB for the M-WSCP and demonstrated that its outperformed BLD
running time. However, Coco [2017] found that BLD outperformed EB when solving
the Minmax regret Maximum Covering Location problem under Interval Uncertainty.

A pseudo-code for EB is very similar with that of BLD, which was described in
Algorithm 1. The main difference is that, instead of solving an unique SP on line 10,

it solves a SP for each integer solution found by the MP solved in line 8.

4.1.3 Branch-and-Cut (BC)

BC was initially proposed by Montemanni et al. [2007| for solving the Minmax regret
Traveling Salesman Problem under Interval Uncertainty. The authors noticed that
BLD may be computationally inefficient, as each iteration of this algorithm runs an
branch-and-bound algorithm from scratch to solve the Bender’s Master Problem. In

BC, each incumbent solution found by the algorithm is processed by a Subproblem
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(which is the same of the BLD and EB) to generate a new cut on the original branch-
and-bound algorithm. BC differs from EB because the computed cuts are inserted
globally, being propagated to all active nodes in the branch-and-bound tree, while the
Master Problem of BLLD and EB is reinitialized after each iteration of it’s Subproblem.
These cuts are inserted using a branch-and-cut framework. BC was shown to out-
performs BLD when solving the Minmax regret Travelling Salesman Problem under
Interval Uncertainty [Montemanni et al., 2007] and the Minmax regret Knapsack Prob-
lem under Interval Uncertainty [Furini et al., 2015]. However, Coco [2017] experiments
demonstrated that both BLD and EB outperformed BC when solving the Minmax re-
gret Set Covering Problem under Interval Uncertainty and the Minmax regret Maximal
Coverage Location Problem under Interval Uncertainty.

Algorithm 2 gives a pseudo-code for BC. It receives as input the matrix of coeffi-
cients A, the vector of variables z, and the vector of coefficients b of ILP. Additionally,
it receives the interval uncertainties [l;, u;] for all uncertain coefficients. Initially, as sug-
gested by Montemanni et al. [2007] to avoid an unbounded Master problem, BCsolves
M-ILP using the AM and AU algorithms (which will be described in Section 4.2.1)
on lines 1 and 2, respectively. Then, it initializes ® C & with solutions obtained by
these heuristics in line 3. Next, the Branch-and-Cut framework is performed on line 4,
which stops when an optimal solution is found or when a predefined time limit is met.

Finally, the best feasible solution X* computed is returned in line 5.

Algorithm 2: Branch-and-Cut (BC)

input : (A, z,b,[l;, u;|Ve; € c)

output: X* € ¢

X~ AM(A, X, b7 [ll, UZ]VQ S C)

Xt AU(A, z,b, [l;, u;]Ve; € ¢)

O {X=, X}

X* < Branch-and-Cut(A, z, b, ¥', [l;, w;]Ve; € ¢)
return X

[S N N N

4.2 Heuristics for M-ILP

Heuristics for minmax regret optimization problems under interval uncertainty gener-
ally rely on solving an ILP into different pre-determined scenarios and returning the
best computed solution or uses the dual counterpart of the linear relaxation of M-ILP.

This section extends these heuristics from the literature to M-ILP. In addition, this
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section also introduces the FAO heuristics, which is a new heuristic strategy for solving

M-ILP.

4.2.1 Algorithm Mean Upper (AMU)

AMU [Kasperski and Zielinski, 2006 is a 2-approximative heuristic framework for
M-ILP. Tt is the most widely applied heuristic to solve specific instances of this prob-
lem (e.g., Pereira and Averbakh [2013]; Furini et al. [2015], and Carvalho et al. [2016]).
The worst-case complexity of the algorithms developed through this framework is the
same as solving the classical counterpart of the robust optimization problem at hand.
AMU relies on two other heuristics, AM and AU. Thus, we first describe AM and AU
and, then, introduce AMU.

AM solves the deterministic counterpart of M-ILP at the midpoint scenario s™.

= —li;“i , for

In s™, the cost of each uncertain coefficient is set to its mean value, i.e. ¢
all uncertain coefficients ¢; € c. Next, the maximum regret of the computed solution is
evaluated and returned. The cost of the solution obtained through AM is bounded by
a factor of 2 from the optimal solution, as proved by Kasperski and Zieliniski [2006].

AU is similar to AM. However, instead of solving M-ILP for scenario s™, AU
solves for the upper scenario s", where the cost of each uncertain coefficient is set to
its upper value, i.e. ¢f" = u;, for all uncertain coefficients ¢; € c¢. Unlike AM, the cost
of the solution obtained by AU is not bounded by any factor.

AMU combines both AM and AU, returning the solution with the smallest robust
cost. As AMU uses the solution from AM, it is also a 2-approximation algorithm for
any minmax optimization problem under interval uncertainty. Figure 4.1 shows an
example of a scenarios s™ and s* solved by AMU considering the digraph under interval

uncertainty shown in Figure 1.1(a).

4.2.2 Scenario-Based Algorithm (SBA)

SBA was first proposed for the M-WSCP [Coco et al., 2015, 2016]. SBA extends AMU,
where target scenarios between the lower scenario s' € I' (a scenario where the cost of
the arcs are set to their respective lower, i.e. cf]l- = [;;) and the upper scenario (s*) are
investigated. SBA inspects a set @ = {q1,¢2,...,¢,} € I' of target scenarios. These
scenarios are computed using three parameters: (i) the initial scenario «; (ii) the final
scenario (; and (#ii) the step size . All parameters are real-valued in the interval [0, 1].
The cost of the uncertain coefficients for each target scenario ¢; € () is computed as
c/ =L+ (a+8-7) (u; —1;), 0 €N, for all values of § such that a + §y < 8.
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Figure 4.1. (a) Scenario considered by AM and (b) scenario considered by AU

Algorithm 3 presents a pseudocode of SBA. It receives as input the matrix
of coefficients A, the vector of variables z, and the vector of coefficients b of ILP.
Additionally, it receives the interval uncertainties [l;, u;], for all uncertain coefficients,
and parameters «, 5, and 7. Initially, v is set to « in line 1 and the value of primal
is set to infinity in line 2. The algorithm consists in the main loop from lines 3-8. It
solves the deterministic counterpart of M-ILP on scenario g; on line 4. Then, if the
regret of the computed solution is smaller than that of the previous best solution, it
updates the value of the best solution found in line 6 and stores the solution found in
line 7. The value of « is incremented in line 8. This loop runs until v is greater than

B. The best solution found X is then returned in line 9.

Algorithm 3: Scenario-based Algorithm (SBA)

input : (A, x,b,«, 3,7, [l;, u;]Ve; € c)

output: X* € ¢

)+ «

¥ = o0

while 0 < 3 do

X « M-ILP(A, z,b, [l;, u;]Ve; € ¢,0) // Solve M-ILP with ¢”,Ve; € ¢
if (30, cly; <) then

K
»
VY0 CiYi

X +Y
8 | 0« d+y

B IR BT VU VI

9 return X*
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4.2.3 Linear Programming Heuristic (LPH)

LPH was introduced by Assungao et al. [2017]. It proposes a formulation whose solu-
tions are guaranteed to be feasible for the original minmax regret optimization problem
under interval uncertainty and that the optimal value of the objective function approx-
imates the value of that of the original problem. This heuristic was applied to solve
the Minmax regret Restricted Shortest Path Problem under Interval Uncertainty and
the Minmax regret Set Covering Problem under Interval Uncertainty. Computational

experiments indicated that LPH outperformed AMU when solving both problems.

For the case of M-ILP, the formulation solved by LPH is constructed as follows.
Equations (4.2)—(4.4) represent linear relaxation of the problem associated with sec-

ond term of the 0-1 Bilevel Integer Linear Program defined in Equation (1.4), i.e.,
F(YS5Y §%).

Zajixi < bj, \V/] S {O,L...,m} (43)
1=0
gy €[0,1, Vie{0,1,...,n} (4.4)

One can denote the dual of the formulation given by Equations (4.2)—(4.4) by the
objective function (4.5) and the constraints in (4.6)—(4.7).

max Z bjv; (4.5)
=0

Zaj,-l/j Z ll + (UZ — lz)ajz (46)
7=0
v; >0, Vje{0,1,...,m} (4.7)

Thus, the formulation solved by LPH consists in replacing F (YSX,SX ) in the
problem defined in Equation (1.4) by its associated dual defined above. The resulting
formulation is given by objective function (4.8) and the constraints in (1.6)—(1.8),
(4.6)—(4.7). This formulation is compact, as the number of constraints in (4.6) grows

polynomially with |m|. LPH consists in solving this formulation and returning the best
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solution found.
min Z U — Z bjv; (4.8)
i=0 §=0

4.2.4 Fix-and-Optimize through Scenario-based Algorithm
(FO-SBA)

The Fix-and-Optimize through Scenario-based Algorithm (FO-SBA) relies on the SBA
heuristic described in Section 4.2.2. The intuition behind this heuristic is that the
variables which have a zero value in the optimal solution of all M-ILP scenarios solved
by SBA are less likely to appear in the in the optimal solution than the other. Therefore,
these variables are removed from the problem and M-ILP is solved on the reduced
instance.

FO-SBA constructs a Restricted Minmax regret 0-1 Integer Lincar Programming
Problem under Interval Uncertainty (RM-ILP) by setting some of the variables of
M-ILP to zero. Let V be the set of variables such that {i=0:x; € X } for all feasi-
ble solutions X computed though SBA. RM-ILP consists in solving the formulation
denoted by objective function (1.5) and the constraints in (1.6)—(1.9) and (4.9).

2, =0, VieV (4.9)

Algorithm 4 shows the pseudo-code of FO-SBA. It receives as input the matrix
of coefficients A, the vector of variables x, and the vector of coefficients b of ILP.
Additionally, it receives the interval uncertainties [l;,u;], for all uncertain coefficients,
and parameters «, 8, and v of SBA. Initially, 7 is set to a in line 1 and V is initialized
in line 2. The preprocessing step consists of the loop in lines 3-6. At each iteration
of this loop, it solves the deterministic counterpart of M-ILP on scenario ¢; on line
4. Then, it stores the variables which were in the optimal solution of the previously
solved problem on line 5 and increases the value of v in line 6. The solving step is
performed in line 7, which consists in solving the resulting RM-ILP formulation. One
may observe that this formulation can be solved with any exact algorithm for M-ILP.

Finally, FO-SBA returns the computed solution X* on line 8.

4.2.5 Fix-and-Optimize through Linear Relaxation (FO-LR)

The Fix-and-Optimize through Linear Relaxation (FO-LR) relies on the linear relax-
ation of the M-ILP formulation defined by Equations (1.5)-(1.9), i.e., it solves the
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Algorithm 4: FO-SBA

input : (A, z,b,a, 8,7, [l;,u;|Ve; € ¢)

output: X* € ¢

)+«

VX

while § < 3 do
X < M-ILP(A, x,b, [l;, u;)Vc; € ¢,0) // Solve M-ILP with ¢’ V¢; € ¢
Ve V\{i:z; e X,z; =1}
0 0+7

7 X* « RM-ILP(A, z, b, [l;, w;]Ve; € ¢,V)

8 return X*

S Otk W N

Linear Program (LP) corresponding to relaxing the integrality of constraints in (1.9).
The intuition behind this heuristic is that the variables which have a zero value in the
optimal solution of the LP relaxation are less likely to appear in the optimal solution
of M-ILP than the others. Therefore, the variables which are equal to zero in the LLP
are removed and M-ILP is solved on the reduced instance.

Let LM-ILP denotes the linear relaxation of the M-ILP formulation defined by
Equations (1.5)—(1.9). Similarly to FO-SBA, FO-LR builds a RM-ILP by setting
some of the variables of M-ILP to zero. Let V be the set of variables such that
{i=0:x; € X} for the optimal solution X of LM-ILP. RM-ILP consists in solving
the formulation denoted by objective function (1.5) and the constraints in (1.6)—(1.9)
and (4.9).

Algorithm 5 shows the pseudo-code of FO-LR, which receives as input the matrix
of coefficients A, the vector of variables x, and the vector of coefficients b of ILP. Ad-
ditionally, it receives the interval uncertainties [I;, u;] for all uncertain coefficients. The
preprocessing step consists in lines 1 and 2. In line 1, it solves RM-ILP, which can be
done using any exact algorithm for M-ILP. In line 2, it stores in V' the variables which
were equal to zero in the optimal solution of LM-ILP. The solving step is performed in
line 3, and consists in solving the RM-ILP formulation. Finally, the resulting solution

X* is returned on line 4.

Algorithm 5: FO-LR
input : (A, z,b,[l;,u;)Ve; € ¢)
output: X* € ¢

1 X «+ LM-ILP(A, z,b, [l;, u;]Vc; € ¢)

2 V(—{yZyZEY,yZ>O}

3 X* < RM-ILP(A, z,b, [l;, w;]Ve; € ¢, V)

4 return X*







Chapter 5

Case studies

In this chapter we present two problems which will be used as case studies for solving
M-ILP. The first is the M-WSCP |[Pereira and Averbakh, 2013|, which is a Minmax
regret variant of the classic Weighted Set Covering Problem (WSCP) [Edmonds, 1962].
The second is the MSS-SPP [Catanzaro et al., 2011], which is a Minmax regret variant
of the well-known Single-Source Shortest Path Problem (SS-SPP) [Cormen et al., 2009].
Both problems can be formulated as M-ILP.

5.1 The Weighted Set-Covering problem

The WSCP |[Edmonds, 1962], also known as the Weighted Set Cover Problem, is one
of the most studied combinatorial optimization problems. Its decision version was one
of the original 21 problems proved to be NP-Complete by Karp [1972]. WSCP appli-
cations range from data partitioning |[Li et al., 2017] to vehicle routing problems [Bai
et al., 2015]. For the reader interested in a deeper knowledge on this problem, we
indicate the annotated bibliography of Ceria et al. [1997].

WSCP is defined by a set of objects N and a set S of subsets of NV, such that
each subset s € S contains one or more elements of /. Furthermore, we associate an
weight wg to each subset s € §. The objective of WSCP is to find §* C & such that
all objects are covered by at least one subset s € §* and that the sum of the weights
of the sets in S* is minimum.

Figure 5.1 shows a WSCP instance with |N| = 16 and |S| = 5. The optimal
solution S* for this instance is S* = s, 53,55, such that ) _c.w, = 13. One can
note that subsets sy and s; are not needed, since the other subsets cover all of their

elements.

33
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Figure 5.1. An WSCP instance

WSCP can be formulated as following. It uses decision variables { x;, € B: s € S}
such that x, = 1 if subset s € S belongs to the optimal WSCP solution and z, =
0 otherwise. Furthermore, let ¢;; = 1 if item ¢ € N is covered by subset s and
¢is = 0 otherwise. The WSCP formulation consists of the objective function (5.1) and
constraints in (5.2)-(5.3). The objective function (5.1) aims at minimizing the weight
of subsets s € S. Inequalities in (5.2) ensure that all items ¢ € N are covered by at

least one subset s € S. The domain of variables x; are defined by Constraints in (5.2).

min Z WsTs (5.1)

sES

s.t. Zcisxs >1, Vie N (5.2)
seS
z, € {0, 1}, VseS (5.3)

5.1.1 The Minmax regret Weighted Set Covering problem

under Interval Uncertainties

M-WSCP, as defined by Pereira and Averbakh [2013], is a RO variant of WSCP. In
this problem, the weight associated to each subset s € § is uncertain, but it is assumed
to be bounded by an interval [l5, us], with 0 < [y < u,. The objective of M-WSCP is
to find a solution X* with the smallest robustness cost, according to the definitions
presented in Chapter 1.

Pereira and Averbakh [2013] presented a ILP formulation for M-WSCP. It was
obtained by linearizing F’ (Y(SX), S¥), as explained by Aissi et al. [2009]. It makes use
of binary decision variables {z; € B: s € S} and parameter {c¢;s:i € N,s € S}, as

defined for the WSCP. Besides, it also uses an auxiliary variables § € R>( to compute
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the cost of the solution in the worst-case scenario, as in the formulation defined by
Equations (1.5)—(1.9) for M-ILP. The resulting formulation is defined by the objective
function (5.4) and the constraints in (5.5)—(5.8).

min Z (uszs) — 0 (5.4)
seS

s.t. Zcisxs >1, Vie N (5.5)
seS
0 <> (I + (us — 1)) ys, VY € (5.6)

seS

zs € {0,1}, Vse S (5.7)
0>0 (5.8)

The objective function (5.4) aims at minimizing the maximum regret. The con-
straints in (5.5) ensure that all items i € N are covered by at least one subset s € S.
The inequalities in (5.6) enforce the correct value of §. The constraints in (5.7)—(5.8)

define the domain of the variables x, and 6, respectively.

5.1.2 Worst-case complexity for the Minmax regret Weighted

Set Covering problem under Interval Uncertainty

In this section, we prove that the decision version of M-WSCP lies on the second level
of the polynomial hierarchy, being % [Stockmeyer, 1976]. This proof employs a similar
argument as used in Chapter 3 for the decision version of M-ILP. However, the question

of whether M-WSCP is complete for this class still remains as an open problem.

DEcisioN M-WSCP
Input: A set of objects N and a set S of subsets of N, along with an interval [l us]
of weights associated to each subset s € S.
Question: Is there a solution X € ® forM-WSCP such that Z(X) < p?

Lemma 5 Problem DECISION M-WSCP lies in class 5.

Proof. From Definition 6, we recall that Z(X) = max {F(X,S)— F(Y5,S)}. We can
€

rewrite this equation as

{Zu T; — mln (L + (u; — 1)) yl} )

€S 168
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Thus, the question for DECISION M-WSCP is: exists a solution X € & for M-WSCP

such that
o —1mi , U A VA T ?
{ E U; 5 melg E (lZ + (ul lz)xl) y@} < p!

€S €S
One may observe that this question is on the form JaxVyP(x,y), where the Boolean
predicate P(z,y) can be evaluated in polynomial time. Theorem 17.8 from Papadim-
itriou [1994] states that problems with an existential quantifier followed by an universal
quantifier (which is the exact form of the question stated above) are in the complexity
class X8, which completes the proof. Il
If P # NP, we can assume that the polynomial hierarchy do not collapses to the

second level. Therefore, we can state the following corollary.
Corollary 6 Problem DECISION M-WSCP s not contained in class NP.

Furthermore, by using the Kannan’s Theorem |[Kannan, 1982], we can state the

following corollary.
Corollary 7 Do not exists a polynomial-sized formulation for M-WSCP.

The latter corollary can be easily verifiable. If there is a polynomial-sized for-
mulation for M-WSCP, then there exists an algorithm which verifies the cost of its
solution in polynomial-time and, thus, it is in NP. This is clearly a contradiction, since
problems in the second level or higher of the polynomial-hierarchy are not contained
in NP [Papadimitriou, 1994].

5.2 The Single-Source Shortest Path problem

The SS-SPP [Cormen et al., 2009], also known as the Shortest Path Tree Problem,
is a shortest path problem where one is interested in computing the shortest path
from a predefined node r to all other nodes of a graph. The solution of SS-SPP
is a tree, which is known to be the shortest path tree of the graph. SS-SPP find
applications in multicast routing in computer networks [Zhang and Mouftah, 2002;
Shelby and Bormann, 2011], which usually has a better performance than other routing
topologies [Nguyen and Xu, 2007|. One can solve SS-SPP using classic polynomial-time
algorithms, such as Dijkstra’s and Bellman-Ford’s [Cormen et al., 2009].

SS-SPP is defined on a connected digraph G = (N, A) with a set IV of nodes and
a set A of arcs, where each arc (i,5) € A is associated with a cost coefficient ¢;; > 0.

Furthermore, we are also a node r € N, which is the root of the arborescence. The
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objective of SS-SPP is to find A* C A such that A* is an arborescence and contains
the shortest paths from r to all other nodes in N \ {r}.

Figure 5.2 shows a SS-SPP instance with |[N| = 4 and |A| = 5. The optimal
solution A* for this instance is A* = {(r,a),(r,b), (a,c) }, such that the cost of the
path from r to a is 8, the cost of the path from r to b is 10, and the cost of the path
from r to ¢ is 11. One can note that A* is also an spanning arborescence of GG, as
|A*| = |N| — 1 and it spans all nodes of G.

Figure 5.2. A SS-SPP instance

SS-SPP can be formulated as following. It uses decision variables { z;; € B : (i,j) € A}
and {azf; € B: (i,j) € A,k € N\ {r}}, such that z;; = 1 if the arc (i,j) € A* and
z;; = 0 otherwise. Additionally, :Ef] = 1 if the arc (i, 7) € A* is in the path from r to k
and z}; = 0 otherwise. The SS-SPP formulation consists of the objective function (5.9)

and the constraints in (5.10)—(5.14).

keN\{r} | (i,j)eA

1, ifj=r
st > ah— N ab=0-1 ifj=k VieN, ke N\{r} (5.10)
(Gi)eA (i.j)€A 0, otherwise
> @y =|N|l-1 (5.12)
(4,5)€A
i; € {0,1}, V(i,j) € A (5.13)

xF. € {0, 1}, V(i,j) € A ke N\ {r} (5.14)
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The objective function (5.9) aims at minimizing the maximum regret. The con-
straints in (5.10) are the classic flow conservation constraints which ensure the con-
nectivity of the paths from r to every other node in N. The inequalities in (5.11)
enforce the path from r to k € N \ {r} to be set on the arborescence induced by vari-
ables x;;, for all (i,7) € A. The constraint in (5.12), together with the constraints in
(5.10) and (5.11), guarantees that variables x;; induce an arborescence. The constraints

in (5.13)—(5.14) define the domain of the variables z;; and 7, respectively.

5.2.1 The Minmax regret Single-Source Shortest Path

Problem under Interval Uncertainty

MSS-SPP, as defined by Catanzaro et al. [2011], is a RO variant of SS-SPP. In this
problem, the cost of each arc (i,j) € A is uncertain, but it is assumed to be bounded
by an interval [l;;,u;;], with 0 < [;; < w;;. The objective of MSS-SPP is to find a
solution X* with the smallest robustness cost, according to the definitions presented
in Chapter 1.

Neumann [2010] presented a ILP formulation for MSS-SPP. It was obtained by
linearizing F(Y5), 5%), as explained by Aissi et al. [2009]. It makes use of binary
decision variables { z;; € B : (i,j) € A} and {2}, € B: (i,j) € A,k € N\ {r} }, as de-
fined for the SS-SPP. Besides, it also uses auxiliary variables { z;, € Rsg : k € N\ {r} }
to keep the cost of the shortest path from r to k in the worst-case scenario defined by

variables z;;. The resulting formulation is defined by the objective function (5.15) and
the constraints in (5.16)—(5.23).
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min Z Z ul]xf] — 25 (5.15)

keN\{r} | (i,j)eA

s.t.
1, ifj=r

Sooakh— Y ali=0-1, ifj=k VjiEN, ke N\{r}  (5.16)
(G,1)€A (i.j)€A 0, otherwise
xy; < @i, V(i,j) € A,k e N\ {r} (5.17)

> wy=|N|-1 (5.18)
(i,j)€A
2 <z + by + (i — Lij)zyg, V(i,j) € A (5.19)
vy € {0,1}, V(i,j) €A (5.20)
xf; € {0,1}, V(i,j) € A,k € N\ {r} (5.21)
zr =0, (5.22)
2 >0, Vk e N\ {r} (5.23)

The objective function (5.15) aims at minimizing the maximum regret. The
constraints in (5.16) are the classic flow conservation constraints which ensure the
connectivity of the paths from r to every other node in N. The inequalities in (5.17)
enforce the path from r to &k € N\{r} to be set on the arborescence induced by variables
x5, for all (4,7) € A. The constraint in (5.18), together with the constraints in (5.16)
and (5.17), guarantees that variables x;; induce an arborescence. The inequalities
in (5.19) enforce the correct value of z;. The constraints in (5.20)—(5.23) define the

domain of the variables z;;, a:fj,

2z, and zg, respectively.
5.2.2 Worst-case complexity for the Minmax regret
Single-Source Shortest Path Problem under Interval

Uncertainty

In this section, we prove MSS-SPP is NP-Hard. We obtain this result by demonstrating
that the decision version of MSS-SPP is NP-Complete through a reduction from the
2-Partition Problem (2PP) [Karp, 1972|, employing a similar technique as used by
Kasperski and ZielinSki [2006]. First, we define the decision versions of MSS-SPP and

2PP. Then, we demonstrate how to reduce a 2PP instance to an MSS-SPP instance
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and show that a solution for MSS-SPP is valid if and only if it is also valid for 2PP.
We show that this proof holds even on layered digraphs with only 3 layers.

DEecisioN MSS-SPP
Input: A connected digraph G = (N, A), an interval [[;;, u;;] for each arc (i,5) € A
with 0 < l;; < w4, a source node r € N, and an integer e > 0.
Question: Is there an arborescence X such that Z(X) = e?

2-PARTITION PROBLEM
Input: A finite set I and a weight a; > 0,V7 € [.

Question: Is there a partition of I into two disjoint subsets P and () such that
ZiEP a; = ZiEQ a; = b?

Definition 16 A layered digraph G = (N, A) is a directed acyclic digraph whose set
N is partitioned into disjoint subsets No, Ny, ..., Ny, such that if arc (i,j) € A, then
node u € N;, node v € Nj, and 1 < j.

Given a 2PP instance, we obtain a MSS-SPP instance G = (N, A), which is a
layered digraph with 3 layers, as follows. Let IV be partitioned into 3 disjoint subsets
of nodes Ny, N7, and Ns. Subset Ny contains only one node, r. Subset N; contains
2m nodes, and subset Ny contains m nodes. Each node u; € N, represents an item
a; € I. Besides, we define three disjoint subsets of arcs Ag, A1, and As such that
A= AgU A; U A, Subset Ay contains 2m arcs and establishes a complete bipartite
digraph between N, and N;. Subset A; contains m arcs, such that there is an arc from
each node n; € N; to a node u; € Ny, for 0 <7 < m. Subset A, also contains m arcs,
such that there is an arc from each node n,,.; € N; to a node u; € Ny, for 0 <i < m.
We denote as A} the arc from A; that reaches node u; € Ny. Similarly, we denote as
Al the arc from A, that reaches node u; € N,. Finally, let e = %b

We define the intervals of the arcs as follows. The interval of arcs in Ag are set to
[0,0]. In addition, we set the intervals of arc A} € A; to [0, £a;] and define the intervals
of arc A5 € Ay to [a;,a;]. This construction corresponds to a layered digraph with 3
layers, as shown in Figure 5.3. In this construction, it is clear that the robustness cost
of the paths for all nodes in Ny U N; are zero. Furthermore, one can note that only

one arc can be used to reach each node in Ns.

Theorem 8 The decision version of MSS-SPP is NP-Complete, even in layered di-
graphs with only 3 layers.

Proof. Consider a 2PP instance and a MSS-SPP instance as constructed above. It

is easy to see that the problem is in NP, as the cost of a solution can be verified in
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Figure 5.3. Reduction of the 2PP to the MSS-SPP. Arcs in A are solid, arcs in
Aj are dashed and arcs in A9 are dotted.

polynomial-time by running two Dijkstra’s algorithms. We argue that a 2PP of I exists
if and only if an arborescence X C A exists such that Z(X) = %b.

=: Suppose there exists a partition of I in two subsets P and () such that
D iep @i = Do = b. A shortest path arborescence X uses arc Aj to reach node
u; € Ny if item a; € P, and uses arc A} if item a; € ). Thus, using the definition of
the worst-case scenario [Aissi et al., 2009; Averbakh, 2001|, we have that

Z(X) —;ZaH—Zai—Zai—ZO.

icP 1eQ icP i€Q

By the 2PP definition, we rewrite the above equation as

Z(X)=2b+b—b
3

«: Assume that Z(X) = 3b. A partition of I into subsets P and @ can be

represented as follows. If arc AY € X, then item i € P. Otherwise, item i € Q. Let

Y iep @i = by and ZiEQ a; = by. Using the definition of the worst-case scenario [Aissi
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et al., 2009; Averbakh, 2001|, we have that
2= a+Y a-Y -3 0="2
2 4 , , ; 2
i€P 1€Q iEP 1€Q

It follows that 5 5
§b — §b1 —|—bz - bl.

Since by + by = 2b, the above equation can only be true if by = by = b, which is a valid
partition of I into subsets P and Q). OJ
From Theorem 8 we immediately obtain the computational complexity of MSS-SPP.

Corollary 9 MSS-SPP is NP-Hard.



Chapter 6

Computational experiments

The computational experiments were performed on a single core of an Intel Xeon
CPU E5645 with a 2.4 GHz clock and 32 GB of RAM, running under the Linux
Ubuntu operating system. The MILP and LP formulations were solved by the ILOG
CPLEX solver, version 12.6, with default parameter settings. All algorithms were
implemented in C+-+, along with the ILOG Concert Technology, and compiled with
the GNU g++ 8.2.0. The parameters of SBA for both problems were set accordingly
to Coco et al. [2015]. In addition, the maximum running time of all algorithms in any

of the experiments was set to 3600 seconds.

6.1 Experiments with the M-WSCP

We used two set of benchmark instances in our computational experiments, namely
OR-Library and Shunji. In both sets, the interval I, u,], for all s € S, was computed
as suggested by Karagan et al. [2001]. Initially, a random value ¢, was obtained from the
original instance. Then, we set [, = Z/l((l —b)es, (1+ b)cs) and uy = Z/{(ls +1,(1 +b)cs),
where b € {0.3,0.6,0.9} is a parameter that defines the degree of uncertainty of the
instance, i.e., the greater is the value of b, the greater is the difference between u, and
ls, on average.

The set OR-Library of instances was retrieved from the OR-Library!, a collec-
tion of test data sets for a variety of Operations Research (OR) problems. It was
originally described by Beasley [1990] and encompass instances for several combina-
torial optimization problems. We retrieved the instance sets 4, 5, and 6, which were
first used for experiments for the WSCP by Balas and Ho [1980] and later adapted

Thttp://people.brunel.ac.uk/“mastjjb/jeb /info.html

43
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for the M-WSCP |Pereira and Averbakh, 2013; Assuncao et al., 2017|. Set 4 con-
tains 10 instances with |[A/| = 200 and |S| = 1000, while set 5 contains 10 instances
with |[N] = 200 and |S| = 2000 and set 6 contains 5 instances with || = 200 and
|S| = 1000. The weight values range between 1 and 100 for all instances. For each
instance obtained from the OR-Library, we generated three instances for the M-WSCP,
such that each generated instance use a different value of b. Therefore, there are 75
instances in this set.

The set Shunji of instances was generated using the instances generator for WSCP
developed by Shunji Umetani?. This generator implements the scheme for constructing
instances for WSCP proposed by Balas and Ho [1980] and guarantees that every ele-
ments in NV is covered by, at least, two sets in S, and guarantees that every set s € S
covers at least one element in N. The instances within this set have |A| = 1000 and
|S| = 2000. The weight values for all instances range between 1 and 100. Furthermore,
it has a parameter D € [0, 1] which controls the density of the covering matrix. Given
the parameters D € {0.02,0.05,0.10 } and b € {0.3,0.6,0.9 }, we generated 5 random
instances for each combination of these parameters. Therefore, there are 45 instances

in this set.

6.1.1 Results for the exact algorithms

The first set of experiments aims at evaluating the efficiency of BLD, EB, and BC
to solve M-WSCP using the instances in sets OR-Library and Shunji. The results are
reported in tables 6.1 and 6.2. The first and second column respectively report the value
of b and the set that the instance belongs. For BLD, the third, fourth, fifth, and sixth
columns show respectively (i) the number of instances solved to optimality; (i7) the
average number of cuts inserted by BLD and its standard deviation; (iii) the average
relative optimality gap for the instances whose optimal solution was not found and the
standard deviation of this same value; and (iv) the average running time (in seconds)
for the instances whose optimal solutions were not found and the standard deviation
of this same value. This same data is reported for EB in the seventh, eight, ninth, and
tenth columns and for BC in the eleventh, twelfth, thirteenth, and fourteenth columns.
When optimal solutions were not found for any of the five instances in a group, the
fiftth column is filled with a '—’. We recall that, for each value of b, sets 4 and 5 have 10
instances, whereas set 6, as so as the instances in Shungji, only have 5 instances each.
Regarding the set OR-Library of instances, it can be seen from Table 6.1 that all

algorithms found optimal solutions for all evaluated instances. Furthermore, as greater

2https://sites.google.com /site /shunjiumetani/benchmark
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Table 6.1. Results for the exact algorithms on OR-Library instances

BLD EB BC
b set opt cuts gap (%) t(s) opt cuts gap (%) t (s) opt cuts gap (%) t (s)
4 10 13.8+9.0 0.0+£0.0 0.14+0.1 10 103.4+149.5 0.04+0.0 0.1+£0.1 10 15.84+9.0 0.0+£00 1.0+1.2
0.3 5 10 13.5+£82 0.04+0.0 42447 10 84.2 +89.8 0.0+0.0 11.1+14.7 10 16.3+9.0 00+00 20419
6 5 6.8+29 0.0£0.0 6.6 £3.0 5 278+ 14.5 0.0+0.0 152+9.5 5 82+34 0.0+0.0 66+34
4 10 41.2+16.3 00+00 1994125 10 417.7+£409.5  0.0£0.0 43.5+£46.9 10 484+195 0.0+£0.0 67+6.7
0.6 5 10 57.3+29.7 0.0£0.0 49.8+48.0 10 14934 £1864.8 0.0+0.0  263.9+ 365.7 10 7451423 0.0£0.0 11.1+£7.3
6 5 10.6£5.0 00£0.0 10.6=£8.7 5 51.2 £48.7 0.0+ 0.0 25,2+ 33.3 5 13.8+4.0 0.0£0.0 92+£57
4 10 101.7£49.8 0.04+0.0 230.6+378.7 10 110744+ 1429.8 0.04+0.0  163.0 +257.3 10 1289+64.0 0.0+0.0 16.8+18.0
0.9 5 10 158.7+£79.2 0.0£0.0 804.9+£11254 10 3501.2+£2610.8 0.0£0.0 1171.14£1200.5 10 203.3+£103.2 0.0£0.0 64.3+62.8

6 5 372+£94 00400 2784137 5 380.8£171.7  0.0£0.0 7444+ 34.0 5 59.8+£303 0.0£0.0 134+£93

Table 6.2. Results for the exact algorithms on Shunji instances

BLD EB BC
b density opt cuts gap (%) t(s) opt cuts gap (%) t (s) opt cuts gap (%) t (s)

0.02 4 154+6.2 0.0£00 2613.2+12183 1 37.0+156 0.1+0.0 3071.0£0.0 1 194+£6.8 0.3+0.1 1194.0£0.0

0.3 0.05 5 154+£78 0.0+0.0 13694+1339.1 3 5244286 0.1+£0.1 1130.7 £750.5 4 2044+12.0 03+0.0 11745 £948.7
0.10 5 158474 0.0+£00 344242186 5 12144775  0.04+0.0 11954 +839.7 5 2884234 0.04+0.0 430.8+£362.7
0.02 0 166+£75 0.1=£0.1 - 0 1984136 02+0.1 - 0 16.4£9.0 0.5£0.1 -

0.6 0.05 1 40.0£23.6 0.1+0.0 3358.0=+0.0 0 76.4+523 0.1+0.0 — 1 63.4+46.7 03+02 3474.0%0.0
0.10 5 51.0+358 0.0+£0.0 791.4+830.6 3 461.6+286.6 0.1+0.0 1477.0£1175.0 5 756455  0.0+£0.0 462.8 £401.7
0.02 0 234+84 01£0.0 - 0 720+559 02+£0.1 - 0 65.44+40.2 03=£0.1 -

0.9 0.05 1 4064184 0.14+0.0 816.0+0.0 1 323641942 0.1+0.0 2092.04+0.0 2 239.04+1144 01401 2143.5 £1924.0
0.10 3 T72+£192 0.0£0.0 1138.04647.5 0 706.8+53.3 0.1£0.0 — 5 138.0£549 0.0£0.0 989.0=+605.1

was the value of b, then greater was the average running time of the algorithms. BLD
inserted the smallest average number of cuts for all evaluated instance sets, whereas
EB inserted the greatest number of cuts, on average. One can see that BC was the
fastest among the evaluated algorithms, being able to solve all instance sets within 65
seconds, on average. This smaller running time may be due to the fact that BC do not
reinitialize its branching tree, as presented in Section 4.1.3, while BLD and EB restarts
their branching tree at each iteration. Regarding the set Shunji of instances, it can be
seen from Table 6.2 that, as denser is the instance, less time the algorithms need to
found the optimal solution. EB found a smaller number of optimal solutions than BLD
and BC. Furthermore, BLD found a greater number of optimal solutions for instances
with b = 0.3, while BC found a greater number of optimal solutions for instances with
b = 0.9. Despite that, the average relative gap achieved by BLD, EB, and BC were up
to 0.5 %, on average, being very close to the optimal solution. We choose to use BLD
for solving the remaining formulation in FO-SBA and FO-LR, as it was able to found

a greater number of optimal solutions than EB and BC.

6.1.2 Results on the preprocessing step of the

fix-and-optimize heuristics

The second set of experiments evaluates how efficient are FO-SBA and FO-LR to fix the
value of variables in the M-WSCP formulation defined by the objective function (5.4)
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Table 6.3. Results for the FAO heuristics on OR-Library instances

FO-SBA FO-LR
b set || 5% 1) te (s) || 5 1) tr (s)
4 T73.7+£85 7.4 06£1.1 0.1£03 68.6=%9.5 6.9 0.0£0.0 0.0£0.0
0.3 5 T76.4+14.2 3.8 1.3+£1.8 034+0.5 72.0+10.7 3.6 0.1+03 01+£0.3
6 50.0+11.0 5.0 82+£33 0.8£08 562477 5.6 14+£08 15+£1.6
4  86.0+8.2 8.6 0.7£0.8 0.1£0.3 75.0£8.0 7.5 0.0£0.0 0.1£0.3
0.6 5 89.0£12.3 4.4 1.1+1.1 02404 69.5+£7.0 3.5 0.0x£00 01+£0.3
6 526495 5.3 58+£22 04+£05 478498 4.8 0.84+£0.8 0.6£0.5
4 91.6+84 9.2 0.0£0.0 0.0£00 71.5+5.7 7.1 0.0£0.0 0.0£0.0
0.9 5 96.2+13.7 4.8 06+07 02+£04 70948.0 3.5 0.0£0.0 0.0+£0.0
6 53.6+74 5.4 22416 04405 456474 4.6 04+05 0.0+£0.0
Table 6.4. Results for the FAO heuristics on Shunji instances
FO-SBA FO-LR
b density i B <) t, (s) t (s) S| E %) t, () t (s)
002 1504+236 7.5 1235.8+585.1  81.6+428 17424340 87  241.4+146.6 395.0+ 365.2
03 005 902468 45 518243993  388+26.1 1122+4.1 56 7284357 815.64 706.1

0.10 524+84 2.6 222.0 £212.9 12.6 £15.1 69.4+3.9 3.5 42.6 £ 35.6 36.0 £33.8

0.02  143.6 £23.3 7.2 1592.2 £ 2345.1  33.0x£25.8 150.0£32.6 7.5 430.8 £710.9 1160.2 £ 2361.5
0.6 0.05 98.6 £15.3 4.9 453.0+389.1  206.4+391.1 107.8+4.9 5.4 80.6 £47.0 1203.0 £ 1503.4
0.10 53.0+7.3 2.6 64.2 +40.7 3.0£0.7 61.6+3.2 3.1 8.6+48 15.8 £13.7

0.02  184.8+175 9.2 434.4 £+ 384.5 81.6 £113.0 166.0 £ 13.0 8.3 109.6 £ 131.4 275.2 + 368.8
0.9 0.05 99.8 £ 11.7 5.0 154.2 +102.5 6.4£22 88.0£11.4 4.4 26.8 £14.6 13.0+6.4
0.10 53.2+£5.1 2.7 29.8 £10.4 1.6 1.3 50.8 £6.8 2.5 5.0x£23 1.4+£0.5

and the constraints in (5.5)—(5.8). As the number of binary variables is the same as
the cardinality of the set S, we measure as |S’| how many subsets of S remain in the
instance after the preprocessing step of each heuristic and how long it takes to solve
the resulting formulation.

The results of this experiment are presented in tables 6.3 and 6.4 for the OR-
Library and Shunji instances, respectively. The first column reports the value of b,
while the second shows the set of the instance (for OR-Library instances) or the density
value D (for Shunji instances). The third column gives the average and the standard
deviation of the number |S’| of subsets of S that remained in the instance after the
preprocessing step of FO-SBA, while the fourth column presents the average ratio
S'/S, i.e., the proportion of subsets of S that remained in the instance. The average
running times, along with their standard deviations, for the preprocessing and solving
steps of FO-SBA are presented in the fifth and sixth columns, respectively. The same
data is reported for FO-LR in the last four columns. As pointed out in Section 6.1.1,
the solving step of both FO-SBA and FO-LR employs BLD.

Regarding the OR-Library instances, one can see from Table 6.3 that both heuris-
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tics obtained similar results. For both FO-SBA and FO-LR, the greatest average re-
duction was achieved in instances from set 5, while the smallest average reduction was
achieved in instances from set 4. FO-SBA average preprocessing running time never
exceeded 9 seconds and was able to fix more than 90 % of the variables of the formu-
lation, on average, for all evaluated instances. FO-LR was faster than FO-SBA, such
that the maximum running time of its preprocessing step was 1.4 seconds for instances
from set 6 with b = 0.3. Using this reduced variable set, the BLD average running time
never exceeded 1 second for FO-SBA and 1.5 second for FO-LR. In addition, one can
also see that the accumulated running times of the preprocessing step and the solving
step of FO-SBA and FO-LR, computed as t, +t;, were significantly smaller than those
of the exact algorithms, as reported in Table 6.1.

Regarding the Shunji instances, one can see from Table 6.4 that, the denser was
the instance, then smaller was the running time of FO-SBA and FO-LR, on average.
Besides, the heuristics also fixed a greater number of variables in denser instances than
on the sparser instances, such that only 2.7% and 2.5 % of the original variables were
not fixed for the instances with b = 0.3 and D = 0.10 using FO-SBA and FO-LR,
respectively. The average running time of FO-SBA preprocessing step was up to 1592
seconds on intances with b = 0.6 and D = 0.05, while that of FO-LR was up to only
430 seconds on instances with b = 0.6 and D = 0.05. However, the solving step of
FO-SBA was faster than that of FO-LR for all evaluated instance subsets, being up to
206 seconds on instances with b = 0.6 and density of 0.05.

6.1.3 Comparison of the heuristics

The last set of experiments with M-WSCP compares the results of the proposed heuris-
tics. The results reported in tables 6.5 and 6.6 for the OR-Library and Shunji instances,
respectively. The first column reports the value of b, while the second shows the set of
the instance (for OR-Library instances) or the density value D (for Shunji instances).
The third and fourth columns report the results of SBA. Let X the best known solu-

tion for each instance (found by any of the exact or heuristic algorithms used in our

Z(SBA)-Z(X)
Z(X)

Z(SBA) is the robustness cost of the solution obtained by SBA, along with the stan-

dard deviation of this same metric. The fourth column presents the average and the

experiments), the third column gives the average relative deviation , where

standard deviation of the running time of SBA. The same data is reported for LPH in
the fifth and sixth columns, for FO-SBA in the seventh and eighth columns, and for
FO-LR in the ninth and tenth columns.

Regarding the OR-Library instances, one can see from Table 6.5 that the average
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Table 6.5. Results for the heuristics on OR-Library instances

SBA LPH FO-SBA FO-LR
b set  dev (%) t (s) dev (%) t (s) dev (%) t (s) dev (%) t (s)

4 49+92 06+1.1 864+97 02+£04 46+82 07+11 6.5+£10.0 0.0+0.0
0.3 5 90+116 13+18 13.7+126 01+£03 90+116 1.6+16 10.1+10.8 02+0.4
6 11.9+76 82£33 544+£290 04+£05 94£68 9.0+38 94+£68 3.0+23
4 104+£170 0.7+08 102+148 03£05 99+172 08+1.0 10.7£169 0.1+0.3
0.6 5 7063 114+11 66+68 08£06 70+63 13+£09 76x£78 01+0.3
6 28+6.2 58+£22 15724 06405 28+62 62+22 51+57 14+£1.1
4 90£+11.3 014+£00 724116 03+05 9.0£114 0.04£0.0 9.74+11.1 0.04£0.0
0.9 5 29+28 06+07 17+£26 07£07 294+£28 08+£06 3.8+32 00+0.0
6 2719 22416 28+17 10£00 244+22 26+£15 3529 04%+0.5
Table 6.6. Results for the heuristics on Shunji instances
SBA LPH FO-SBA FO-LR
b density dev (%) t (s) dev (%) t (s) dev (%) t (s) dev (%) t (s)

0.02 49+33 1235.8£585.1 T73.1+23.0 4824532 49+33 13174+£571.8 49+33 636.4+403.6
0.3 005 69+£76 5182+£339.3 794+£245 398%£331 6976 557.0£421.7 33+£75 888.4£729.1
010 72+£51 2220+£2129 71.1£299 620£582 6.0x6.1 234.6+£209.7 6.0x£6.1 78.6 £52.9

0.02  09+1.0 1592.2+£2345.1 25.8 £5.6 90.6£68.6 0.9=£1.0 1625.2£2327.7 2.1£25 1591.043072.2
0.6 005 26+£28 453.0£389.1 34.6+12.5 3354+569.0 2.6+28 65947704 38+£23 1283.6=£1534.1
010 49+3.5 64.2+40.7 21.7L£7.7 258+£23.6 49+£35 67.24+41.3 6.6 £5.7 24.4+18.2

002 00+£00 4344+3845 68+19 184842024 0.0+0.0 516.0+£4934 24+£25 384.8+499.8
0.9 005 07+£1.0 1542+1025 86=+35 166.8+120.5 0.7+1.0 160.6+103.2 14+0.9 39.8 £18.8
010 22%x23 29.8+10.4 5.0+21 292+13.6 1.7£25 31.4£10.5 2.8+£2.7 6.4+23

running time of the heuristics never exceeded 9 seconds, which was the case of FO-SBA
for instances from set 6 with b = 0.3. LPH was the fastest among the evaluated
heuristics. However, it also found the greater average relative deviations among the
evaluated heuristics, being up to 54.4 % for instances from set 6 with b = 0.3. The best
results for all instances were obtained by FO-SBA, such that it achieved a maximum
average relative deviation of 9.9 % for instances from set 4 with b = 0.6. Besides, one
can observe that FO-SBA average running time never exceeds 9 seconds, and that it
was able to improve the average relative deviations of SBA for 4 out of the 9 subset of
instances evaluated. These results indicate that FO-SBA was able to fastly compute
near-optimal solutions, since the optimal solution for all OR-Library instances were
given by BLD, EB, and BC, as shown in Table 6.1.

Regarding the Shunji instances, one can see from Table 6.6 that the results were
very similar to those obtained for the OR-Library instances. LPH obtained the greatest
average relative deviations for all subset of instances. On the other hand, the FO-SBA
solutions had the smallest average relative deviation among the evaluated heuristics for
all instance subsets, except for instances with b = 0.3 and D = 0.05. One can observe
that FO-SBA was able to improve the results of SBA for instances with b = 0.3 and
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D = 0.10 and for instances with b = 9 and D = 0.10. Furthermore, FO-LR obtained
competitive results, being faster than FO-SBA for 7 out of the 9 subset of instances
evaluated and computing solutions with an average relative deviation at least as good
as those of FO-SBA for 3 out of the 9 subset of instances evaluated.

The results from tables 6.5 and 6.6 point out to the fact that FO-SBA obtained
the best results among the evaluated heuristics. To test this observation for OR-Library
and Shunji instances, we analyzed our experimental data following the statistical pro-
cedure of Garcia and Herrera [2008], which is composed of three steps. The first
step verifies the non-normality of the relative deviations of SBA, LPH, FO-SBA, and
FO-LR. Next, the second step evaluates whether there is a statistical significant dif-
ference among the four heuristics. Then, in case such a difference exists, the third step
verifies whether the relative deviations of the heuristics are significantly different among
them. These steps are detailed below. They assume a significance level o = 0.05, i.e.,

the null hypothesis is rejected if the p-value is smaller than 0.05.

In the first step, we applied a Shapiro-Wilk test of normality [Shapiro and Wilk,
1965| to verify whether the relative deviations of SBA, LPH, FO-SBA and FO-LR
follow a normal distribution. With a p-value of 0.001, the test indicated that the data
of the three heuristics does not follow a normal distribution. Thus, a non-parametric

test is used in the next step.

In the second step, we applied the Friedman’s test [Friedman, 1937| to verify
whether there is a statistically significant difference between at least two of the eval-
uated heuristics. The null hypothesis was that SBA, LPH, FO-SBA and FO-LR have
the same relative deviation, on average. The data were ranked according to Carvalho
[2019]. With a p-value of 0.002, the test rejected the null hypothesis for both OR-
Library and Shunji instances. Therefore, there is indeed a significant difference in the
relative deviations of SBA, LPH, FO-SBA and FO-LR.

In the third step, we applied a non-parametric two-tailed Nemenyi’s post-hoc
test, also known as the Nemenyi-Damico—Wolfe-Dunn post-hoc test [Nemenyi, 1962],
which compares the results of multiple algorithms. This test evaluated the pair of
hypothesis

H . i > :
’ = MJ? V(Nw:u]) € ]\[7

Hy:opy # py
where M = { fisba, Hiph, Hfo-sbas Mfo-ir }> SUCh that figpa, fliph, ffo-sbas a0 figo1r are, respec-
tively, the average of the rankings obtained by SBA, LPH, FO-SBA, and FO-LR in
the second step. The null hypothesis (Hj) states that the average ranking of u; and

p; was not significantly different among them, thus implying that the results of one
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of the evaluated heuristics is not significantly better than those of the other. On the
other hand, the alternative hypothesis (H;) implies that indeed the results of p; is
significantly different than those of p;.

Table 6.7 presents the results of the Nemenyi’s test for OR-Library and Shungji
instances. Each cell of this table displays the p-value obtained by comparing the

heuristics displayed on the top of the column and on the beginning of the row.

Table 6.7. p-values obtained by the Nemenyi’s test on OR-Library and Shunji

instances
OR-Library Shunji
SBA LPH FO-SBA SBA LPH FO-SBA
LPH 0.52 - - 0.01 - -
FO-SBA 0.93 0.20 - 1.00 0.01 -

FO-LR 0.14 0.86 0.03 0.74 0.01 0.61

Regarding the OR-Library instances, one can see from Table 6.7 that only FO-SBA
and FO-LR significantly differ among them, with a p-value of 003. For the remaining
of the comparisons, the test could not reject the null hypothesis and, thus, we cannot
assume that the average relative deviation of the heuristics significantly differ among
them. Thus, we conclude that SBA, LPH, and FO-SBA results do not significantly dif-
fer among them. For this set of instances, the recommended heuristic is LPH, since it
had a smaller running time in comparison to SBA and FO-SBA, as shown in Table 6.5.

Regarding the Shunji instances, one can see from Table 6.7 that LPH was the
worst heuristic for these instances, as the Nemenyi’s test returned a p-value of 001 for
the comparison of LPH with all other heuristics. The comparison of SBA and FO-SBA
returned a p-value of 100, while the comparisons of FO-LR with SBA and FO-SBA
returned a p-value of 074 nad 061, respectively. Thus, the test could not reject the
null hypothesis for these comparisons and we cannot assume that the average relative
deviations of SBA and FO-SBA significantly differ among them. Additionally, we
also cannot assume that the average relative deviations of FO-LR, SBA, and FO-SBA
significantly differ among them. Therefore, for this set of instances, the recommended
heuristic is FO-LR, since its average running time was smaller than those of SBA and
FO-SBA for 7 out of the 9 subset of instances, as shown in Table 6.6.

6.2 Experiments with the MSS-SPP

We used two sets of benchmark instances in our computational experiments, namely

Random and Layered. In both sets, the interval [I;;, u;;], for all (4, ) € A, was computed
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as suggested by Karagan et al. [2001|. Initially, a random value ¢;; is generated from
a uniform distribution ¢(1,100). Then, we set l;; = U((1 — b)cy, (1 + b)e;;) and
wij = U(L;; + 1, (1 + b)cy;), where b € {0.3,0.6,0.9} is a parameter that defines the
degree of uncertainty of the instance, i.e., the greater is the value of b, the greater is
the difference between u;; and [;;, on average.

The set Random of instances was used in the computation experiments of Catan-
zaro et al. [2011]; Taccari [2016], and Martinovic et al. [2020]. It consists of random
digraphs generated accordingly to the Gilbert model |Gilbert, 1959]. Given the parame-
ter D € {0.25,0.50,0.75,1.00} of the density coefficient of the graph and the parameter
n € {100, 200,300} of the number of nodes in N, i.e., n = |N|, five instances were ran-
domly generated for each of the 36 combinations of the values of D, n and b. Thus,
there are 180 instances in this set.

The set Layered of instances is one of the most used instances benchmark in
the literature of Minmax regret Shortest Path Problem under Interval Uncertainty
(M-SPP) and Minmax regret Resource-Constrained Shortest Path Problem under In-
terval Uncertainty (MRC-SPP) [Pérez-Galarce et al., 2018; Assuncao et al., 2017; Mon-
temanni and Gambardella, 2004; Coco et al., 2014a]. They consist of digraphs with L
layers, each with the same number w of nodes, where there is an arc from every node
in layer [ € {1,...,L — 1} to every node in layer [ + 1. Besides, they also contain a
source node 7 and a destination node f, such that there is an arc from node r to every
node in the first layer and an arc from every node in the last layer to the destination
node f. An example of a layered digraph with L = 4 and w = 3 is shown in Figure 6.1.
Given the parameters w € {5,10,25,50}, n € {102,152,202}, and b € {0.3,0.6,0.9},
five instances were randomly generated for each of the 36 combinations of values of w,
L = (n—2)/w and b. Thus, there are 180 instances in this set.

6.2.1 Results for the MILP formulation

The first set of experiments aims at evaluating how efficient is the MILP formula-
tion (5.15)—(5.23) to solve the instances in sets Random and Layered. The results are
reported in tables 6.8 and 6.9, respectively. The first and second column respectively
report the number of nodes and the number of arcs in each group of five instances
generated with the same parameter setting. The third column gives the value of D (for
the Random digraphs) or L (for the Layered digraphs). For the instances with b = 0.3,
the fourth, fifth and sixth columns show respectively (i) the number of instances solved
to optimality; (i7) the average relative optimality gap for the five instances within 3600

seconds and the standard deviation of this value; and (iii) the average running time
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Figure 6.1. A layered digraph with L = 4 layers of w = 3 nodes

(in seconds) for the instances where an optimal solution was found and its standard
deviation. When optimal solutions were not found for any of the five instances in a
group, the fifth column is filled with a ’—’. Besides, when the MILP formulation could
not be solved due to the lack of available RAM, the fourth and fifth columns are filled
with an 'x’. The same data is reported for the instances with b = 0.6 in the seventh,
eighth and ninth columns, and for those with b = 0.9 in the tenth and eleventh, and

twelfth columns, respectively.

Regarding the set Random of instances, it can be seen from Table 6.8 that the
CPLEX branch-and-bound algorithm could solve all of the instances in this set with
up to 200 nodes within 3000 seconds, on average. One can also see that the value of the
degree of uncertainty parameter b did not greatly influenced the running time of the
algorithm. For the largest instances with 300 nodes, one can observe that only those
with the smallest arc density D = 0.25 could be solved. The other instances with more
than 40,000 arcs could not be solved due to the lack of available RAM. Regarding
the set Layered of instances, it can be seen from Table 6.9 that, the smaller is the
value of b, the longer it takes is to solve the instance. For b = 0.3, optimal solutions
could be found only for instances with up to L = 6 layers, while all the instances with
b = 0.9 were solved to optimality within 3600 seconds. These results motivate the
use of heuristics as many instances could not be solved to optimality and the largest
Random instances could not even be run due to the large amount of memory necessary
to run MILP formulation (5.15)—(5.23).



6.2. EXPERIMENTS WITH THE MSS-SPP 53

6.2.2 Results on the preprocessing step of the

fix-and-optimize heuristics

The second set of experiments evaluates how efficient are FO-SBA and FO-LR to fix
the value of variables in the formulation (5.15)—(5.23). As the number of variables is
proportional to the number or arcs, we measure how many arcs remain in the instance
after the preprocessing step of each heuristic and how long it takes to solve the resulting
formulation.

The results are presented in tables 6.10 and 6.11 for the Random and Layered
instances, respectively. The first column reports the instance size, while the second
shows the value of D (for Random digraphs) or L (for Layered digraphs). The third
and forth columns give the average, over the 15 instances with b = 0.3, b = 0.6 and
b= 0.9, of the number |A’| of arcs that remained in the instance after the preprocessing
step of FO-SBA, and the value of the ratio |A’|/|A|, i.e., the proportion of arcs that
remained in the instance. The average running times of the preprocessing the solving
steps of FO-SBA are presented in the fifth and sixth columns, respectively. When the
MILP formulation could not be solved due to the lack of available RAM, columns 3 to
6 are filled with an ’x’. The same data is reported for FO-LR in the last four columns.

Regarding the Random instances, one can see from Table 6.10 that FO-LR could
not be run on the largest instances with |[N| = 300 and D = 1.00 due to the lack of
RAM. For the other instances, the number |A’| of remaining arcs after the preprocessing
step of both heuristics were significantly smaller than |A|. The largest average value
of |A’|/|A] for FO-SBA and FO-LR was respectively 4.4 % and 5.6 %, on the instances
with |/V| = 100 and D = 0.25. The running times ¢, (in seconds) of the preprocessing
step of FO-SBA were much smaller than those of FO-LR, on average. On the largest
instances where both heuristics could be run, i.e., those with | N| = 300 and D = 0.75,
the value of ¢, for FO-SBA was 106 5 seconds, while that for FO-LR was 1880 2 seconds.
In addition, one can also see that the running times t, (in seconds) of the solving step
of FO-SBA and FO-LR were significantly smaller than those reported in Table 6.8 for
the CPLEX branch-and-bound algorithm.

Regarding the Layered instances, one can see from Table 6.11 that again the
number |A’| of remaining arcs after the preprocessing step of both heuristics were
significantly smaller than |A|. The reduction observed for this set of instances was
not as greater as that observed for Random instances. Additionally, one can see the
preprocessing step of FO-SBA was more efficient than that of FO-LR for this set of
instances. For the largest instances with |N| = 202 and L = 40, the average value of

|A’|/|A| for FO-SBA was 23.6 %, while that for FO-LR was 37.5%. This result may
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Table 6.8. Results for the MILP formulation on random graphs
b=0.3 b=0.6 b=0.9
NI 14 D opt gap (%) t (s) opt  gap (%) t (s) opt  gap (%) t (s)
2447 025 5 0.0£0.0 248434 5 00+00 254£3.0 5 0.0+00 25.0£37
100 4935 050 5  0.04£0.0 49.6 £5.7 5 0.0£0.0 47.0 £ 11.7 5 0.0£0.0 4144171
7436 075 5 0.0+£0.0 456422 5 00400 52.0+126 5 00+£00 520+11.1
9900 1.00 5 00£00 103.4+163 5 0.0£00 99.4+43 5 0.0+00  96.0+16.1
9969 0.25 5 0.04+0.0 332.84+25.0 5 00+00 340.6+154 5 0.04+0.0 4074+855
sop 19848 050 5 0.0£0.0 10220£1645 5 00£00 74324£653 5 00£00  940.2+110.0
20909 0.75 5 0.0£0.0 9684+2969 5 0.0£00 1416.6+3955 5 0.0+0.0 1504.0+333.7
39800 1.00 5 0.0£0.0 2660.6+£832.1 5 0.0£0.0 29624+368.7 5 0.0£0.0 2671.2+ 3544
22283 025 4 0.7+£1.6 2361.5+509.9 5 0.0£00 2128.8+550.7 4 20.0+44.7 2581.6 +618.7
300 44742 050 0 * * 0 * * 0 * *
67638 0.75 0 * * 0 * * 0 * *
89700 1.00 0 * * 0 * * 0 * *
Table 6.9. Results for the MILP formulation on layered graphs
b=0.3 b=0.6 b=0.9
N[ |A] L opt gap (%) t (s) opt  gap (%) t (s) opt  gap (%) t (s)
2600 2 5 0.0£0.0 04405 5  0.0+0.0 02+04 5 0.0+0.0 0.2+0.4
102 1925 4 5 0.0+0.0 78+23 5 0.0+0.0 6.8+24 5 0.040.0 3.8+0.8
920 10 0 80+5.3 - 5 0.0+00 3062+157.8 5 0.0+0.0 52424
485 20 0 14.0+1.9 - 5  00£00 232242186 5 0.0£0.0 42+23
5100 3 5 00+00 164418 5  00+£00 150416 5 00+00 122408
1 3175 62 1011 2495511250 2 18£22 1017.0£11186 5 0.0£00  208+36
C 1420 15 0 278419 - 0 53+38 - 5 00400 1148+110.3
735 30 0 269+14 - 3 11+£19 11297413090 5 0.0£00  194+193
7600 4 5 0.0£0.0 243.6+260.7 5 0.0+£0.0 103.2+47.6 5 0.040.0 38.6+1.9
by H425 8 0 109%22 - 0 11.7+39 - 5 0.04+0.0 449.2 +673.7
1920 20 0 40.5+3.5 - 0 184+55 - 5 0.0£00 1067.2+1148.8
985 40 0 354+12 - 1 98492 3183.0+0.0 5 0.0£00 98.0+545
Table 6.10. Reduction achieved by FO-SBA and FO-LR on random digraphs
FO-SBA FO-LR
IN| D |A % (%) tp (5) ts (s) |A] J‘%[ (%) ty (5) ts (s)
0.25 109.843.1 44 0.0 +0.0 0.0+0.0 137.7+6.0 5.6 3.9+0.9 0.6+0.5
oo 080 112139 23 0.2+0.1 1.04£0.0 139.1+6.8 2.8 6.9+1.9 14405
0.75 113.3+£34 15 04402 19403 141.6+5.8 1.9 9.5+3.1 1.9+0.5
1.00 1149440 1.2 0.640.2 20£00 1441483 15 12.6 £ 3.0 23205
0.25 2249442 23 0.7+0.3 6.0+0.0 282.6+102 2.8 61.4+30.4 6.1+0.4
sy 050 237.6£10.0 1.2 15404 1234+05 2929+114 15 135.9 £ 77.3 14.3+£1.0
0.75 243.0£7.6 08 2.2+0.5 19.3+0.7  304.5+8.0 1.0 191.7 £97.8 22.5+0.9
1.00 2468+ 11.1 0.6 29405 226+£0.7 311.5+13.6 08 201.5+£110.6  27.7+£0.7
0.25 351.9+83 16 3.0+04 243405 43894120 20 805.7£494.9  23.2+0.6
s0 0-50 306.7+121 0.8 44404 587+1.0 460.6+105 1.0 1295646039 252.7+17.1
' 0.75 38244114 06 61404 1605435 483.4+£21.7 0.7  1880.2+1010.3 455.3+425.7
1.00 387.9+11.0 0.4 79406  654.1+47.8 * * * *
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explain why the running times t; (in seconds) of the solving step of FO-SBA were
significantly smaller than those of FO-LR.

6.2.3 Comparison of the heuristics

The last set of experiments compares the results of the proposed heuristics. The results
reported in tables 6.12 and 6.13 for the Random and Layered instances, respectively.
The first column shows the instance size, while the second reports the value of D (for
Random instances) or L (for Layered instances). The third and fourth columns report
the results of SBA. Let X the best known solution for each instance (found by any of
the algorithms used in our experiments), the third column gives the average relative
%X}Z(x_), over the 15 instances with b = 0.3, b = 0.6 and b = 0.9, where
Z(SBA) is the robustness cost of the solution obtained by SBA. Besides, the fourth
column presents the average running time of this heuristic over these 15 instances. The
same data is reported for MILP-basedVariable Neighborhood Descent (VND) in the
fifth and sixth columns, for FO-SBA in the seventh and eighth columns, and for FO-LR
in the ninth and tenth columns. When a group of instances could not be solved due to

the lack of available RAM, the columns are filled with an "«’.

deviation

Regarding the Random instances, one can see from Table 6.12 that only SBA and
FO-SBA were able to solve the largest instances with 300 nodes and D = 1.00. SBA
was able to solve these instances because it do not rely on the formulation 5.15-5.23,
while FO-SBA solves this formulation in a reduced instance. In addition, the largest
instances where VND could be run have 300 nodes and D = 0.25, and those of FO-LR
have 300 nodes and D = 0.75. SBA was the fastest among the evaluated heuristics
with a maximum average running time of 79 seconds. VND was able to improve the
results of SBA on all instances where it could run, but it achieved the greatest average
running time among the evaluated heuristics, such as the average running times of
FO-SBA and FO-LR were always smaller than those of VND. In addition, it can be
seen that the average relative deviation of FO-LR, over the best known solution for each
instance, was significantly smaller than those of SBA, FO-SBA, and VND. The largest
average relative deviation of FO-LR was only 0.4 %, on the instances with |[N| = 100
and D = 0.25, while that of FO-SBA was 30.6 %, on the instances with |N| = 100 and
D = 0.50, and that of VND was 35.4%, on the instances with |[N| = 200 and D = 0.25.

Regarding the Layered instances, one can see from Table 6.11 that SBA had the
smallest average running time, being up to 07 seconds on instances with |N| = 202
and L = 4. The greatest average running time of FO-LR was 2198 5 seconds, on the
instances with |N| = 202 and L = 20, while that of FO-SBA was 45 seconds, on the
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instances with |N| = 202 and L = 4, and that of VND was 327 1 seconds for the same
instances. This may be explained by the fact that the preprocessing step of FO-LR
on these instances is not as efficient to reduce the number of variables as it is on the
Random instances. However, it can be seen that the average relative deviation of
FO-LR, over the best known solution for each instance, was significantly smaller than
those of SBA, FO-SBA, and VND. The largest average relative deviation of FO-LR
was only 0.7 %, on the instances with |N| = 102 and L = 20, while that of FO-SBA
was 20.5 %, on the instances with |N| = 202 and L = 40, and that of VND was 15.4 %
on the instances with |N| = 202 and L = 20.

The results from tables 6.12 and 6.13 point out to the fact that FO-LR obtained
the best results among the evaluated heuristics. To test this observation for Random
and Layered instances, we analyzed our experimental data following the statistical
procedure of Garcia and Herrera [2008|. This is the same methodology applied for

evaluating the experiments with the M-WSCP instances, as shown in Section 6.1.3.

In the first step, we applied a Shapiro-Wilk test of normality [Shapiro and Wilk,
1965| to verify whether the relative deviations of SBA, VND, FO-SBA, and FO-LR
follow a normal distribution. With a p-value of 0001, the test indicated that the data
of the three heuristics does not follow a normal distribution. Thus, a non-parametric

test is used in the next step.

In the second step, we applied the Friedman’s test [Friedman, 1937| to verify
whether there is a statistically significant difference between at least two of the evalu-
ated heuristics. The null hypothesis was that SBA, VND, FO-SBA and FO-LR have
the same relative deviation, on average. The data were ranked according to Carvalho
[2019]. With a p-value of 0.001, the test rejected the null hypothesis for both Random
and Layered instances. Therefore, there is indeed a significant difference in the relative
deviations of SBA, VND, FO-SBA and FO-LR.

In the third step, we applied a non-parametric two-tailed Nemenyi’s post-hoc

test, also known as the Nemenyi-Damico—Wolfe-Dunn post-hoc test [Nemenyi, 1962],

which compares the results of multiple algorithms. This test evaluated the pair of
hypothesis

{H(): Mz’ZNj’ (ki p1y) € M,

Hy: o i # py

where M = {itspa, fivnd, fnd, fir > Such that figpa, fiynd, fina, and e are, respectively, the

average of the rankings obtained by SBA, VND, FO-SBA, and FO-LR in the second

step. The null hypothesis (H) states that the average ranking of y; and p; was not

significantly different among them, thus implying that the results of one of the evaluated
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heuristics is not significantly better than those of the other. On the other hand, the
alternative hypothesis (H;) implies that indeed the results of y; is significantly different
than those of p;.

Table 6.14 presents the results of the Nemenyi’s test for Random and Layered di-
graphs. Each cell of this table displays the p-value obtained by comparing the heuristics
displayed on the top of the column and on the beginning of the row.

One can see from Table 6.14 that the results of the statistical tests were very
similar for both Random and Layered instances. The statistical tests returned a p-
value smaller than 005 for all performed comparisons. Thus, the test rejected the
null hypothesis and stated that there are significant differences between all heuristic
pairs, for both Random and Layered instances. Since the average ranking computed
for FO-LR is smaller than those of the other heuristics, we can infer that FO-LR was

the best among the evaluated heuristics for solving both instance’s set.
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Table 6.11. Reduction achieved by FO-SBA and FO-LR on layered digraphs

FO-SBA FO-LR
~ v
IN| L |A| H (%) tp (s) ts (s) [A'| H (%) ty (s) ts (s)
2 112.3+£6.2 4.3 0.1£0.1 0.14+0.2 141.3+1.5 5.4 3.4+0.6 0.6 +0.5
102 4 1198+ 7.7 6.2 0.2+0.1 0.2+0.2 183.7 £ 38.9 9.5 44+18 0.8+0.6
10 118.7+9.7 12.9 0.0+0.0 0.14+0.1 201.8 £55.2 21.9 5.2+2.6 655.9 + 1304.6
20 1154+7.2 23.8 0.0£0.0 0.14+0.1 179.9+4.4 37.1 29+04 710.8 £135.5
3 1781+146 3.5 0.6 0.2 24+08 254.5+4.6 5.0 19.1 £0.7 2.1+0.3
152 6 183.0+11.9 5.8 0.5+0.2 1.4+0.5 3188 +8.7 10.0 32.1+£2.3 53.3£7.2
15 182.34+16.9 128 044+0.1 0.94+0.3 312.2 £ 8.6 22.0 31.0£1.2 1449.0 £ 163.9
30 173.34+10.2 23.6 0.3+0.1 0.7+0.3 275.2 £6.2 37.4 145+ 04 1196.9 £ 174.0
4 246.14+19.3 3.2 0.7+0.1 3.84+1.1 383.3£8.6 5.0 76.5+ 3.1 59+04
202 8 246.7+16.4 5.6 0.54+0.2 234+09 461.24+14.3 104 174.84+12.6 1860.2 -+ 165.5
20 243.14+20.5 12.7 0.5+0.2 1.8+0.6 421.3+12.6 21.9 141.24+11.4 2057.3 +159.1
40 232.6+13.4 23.6 04+0.2 1.1+0.3 369.7£8.4 37.5 82.5+6.4 1199.4 £+ 167.5
Table 6.12. Results for the heuristics on random digraphs
SBA VND FO-SBA FO-LR
IN| D dev (%) t (s) dev (%) t (s) dev (%) t (s) dev (%) t (s)
0.25 39.8+£19.2  0.0+0.0 21+82 11024279 165+168 0.1+01 04=+1.1 15+1.0
0o 080 3L2£178 02401 14+55 199.7+538 163=+145 12+03 0.1+0.3 83+18
0.75 295+107 04402 31483 2681+71.7 1314113 23403 00400 114431
1.00 2184219 06202  17.1+£13.7 224741477 100£68 26+04 00+0.0  14.9+3.2
0.25 42.3+£167 0.7+0.3 354+£129 4201480 247+185 6.7+04 02+05  67.5+304
oo 050 394331 15£04  339£181 1020£67.4  185=20.7 138+£08 0.1£03 150.1=775
0.75 2724114 22405 231290 1555.5+£247.7 1234+56 215409 0.14+02 214.3+98.0
1.00 29.1+11.3  29-+05 2774134 2085.0+182 1514144 255+07 0.14+02 319.1+111.0
0.25 3594187 3.04+04 28.1+£101 2451443294 159+9.1 273407 0.1+01 828944951
00 050 33.0£271  44x04 * * 143+£6.7 63.1£10 0.0£0.0 1548.3+614.9
0.75 355+18.7 6.1+04 * * 155469 166.6+36 0.0+00 23355%656.3
1.00 35+1.2 7.9+0.6 * * 0.0£0.0 662.0%47.8 * *
Table 6.13. Results for the heuristics on layered digraphs
SBA VND FO-SBA FO-LR
IN| L dev (%) t (s) dev (%) t (s) dev (%) t (s) dev (%) t (s)
2 32+1.6 0.1+0.1 0.1+0.2 11.5+0.9 24+29 0.3+0.1 0.0+£0.0 4.0+0.8
102 4 90+34 02+£0.1 0.0£0.0 35.7 £ 21.0 6.2 +4.8 04+02 02+£04 52+ 1.8
10 17653 0.0£0.0 1.2£21 187.8 £124.7 10.3 £8.5 0.24+0.1 0.1£0.2 661.141306.5
20 29.14+11.4 0.0+0.0 1.6+27 221.5+170.0 189=x1.1 0.2+0.1 0.7+24 713.7 +1354.7
3 106+29 06+02 0.0+0.0 90.5 £ 8.7 5.6 £4.0 20+0.7 0.1+0.1 21.1+7.7
152 19.1+£6.3 05+£0.2 0.3+£05 290.1£159.3 11.5+6.9 12404 02402 85.4 + 83.1
15 2244148 04401 7.6+10.0 290.7+117.6 11.8+6.6 09+0.3 0.1+£0.3 1480.0=+ 1651.0
30 27.2+164 03+£0.1 824125 184.5+1594 20.1+12.6 0.9+03 06=+£1.9 1211.5+1748.3
4 124+£98 0.7+£0.1 1.1£25 327.1+84.4 84+5.6 45+1.2 0.1=£0.1 82.4 + 37.8
bgp 8 1T8E108 05+02 129+111 28274985 143+£81  23+10 01£02 2035.0+1758.9

20 20.7+15.1 05x02 154+£144 3133+544 13.1=£55 1.5+£0.6 02x0.5 2198.5+1673.5
40 278+122 04£02 103+128 2251+159.0 205+128 1.1£03 06=+£1.5 1281.9+£1724.6




6.2. EXPERIMENTS WITH THE MSS-SPP

Table 6.14. p-values obtained by the Nemenyi’s test on random and layered

digraphs
Random Layered
SBA  VND FO-SBA SBA VND FO-SBA
VND 0.01 - - 0.01 - -
FO-SBA 0.01 0.01 - 0.01 0.02 -

FO-LR 0.01 0.01 0.01 0.01 0.01 0.01
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Chapter 7

Conclusions and future works

This thesis focused on the Minmax regret 0-1 Integer Linear Programming Problem
under Interval Uncertainty (M-ILP). We proved that this problem is complete for
the second level of the polynomial-hierarchy, being 35-Complete, considering that the
polynomial-hierarchy do not collapses to some finite level. Therefore, M-ILP is consid-
ered to be harder than the problems in the class NP.

We proposed two new heuristics for M-ILP: the Fix-and-Optimize through Scenario-
based Algorithm (FO-SBA) and the Fix-and-Optimize through Linear Relaxation (FO-LR).
Both heuristics were based in the Fix-and-Optimize heuristic framework of Gintner
et al. [2005], which was originally proposed for a variant of a Vehicle Routing Problem.
These heuristics consist of two steps. In the first step, denominated preprocessing step,
a heuristic is used to fix the value of some variables in zero. In the second step, a MILP
formulation is solved without the fixed variables. The heuristics differ from each other
by the manner they fix variables in zero. The former uses the Scenario-based Algo-
rithm, which was first proposed by Coco et al. [2016] for solving the Minmax regret
Weighted Set Covering Problem under Interval Uncertainty, while the latter uses the
linear relaxation of the MILP formulation for M-ILP.

The proposed heuristics were applied to solve two M-ILP instances: the Minmax
regret Weighted Set Covering Problem under Interval Uncertainty (M-WSCP) and
the Minmax regret Single-Source Shortest Path Problem under Interval Uncertainty
(MSS-SPP). We proved the worst-case complexity of both M-WSCP and MSS-SPP
and performed a set of computational experiments to compare the proposed heuristics
with those of the literature for these problems.

For the M-WSCP, we proved that it is on the second level of the polynomial
hierarchy, being >%. However, we could not show that it was complete for this class.

Regarding the heuristics, the computational experiments performed on two instance
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sets demonstrated that FO-LR was competitive in comparison to the other heuris-
tics when solving the smaller evaluated instances. However, FO-LR was statistically
superior than all other assessed heuristics when solving the larger evaluated instances.
For the MSS-SPP, we proved that this problem is NP-Hard. Regarding the
heuristics, computational experiments performed on two classic set of instances from
the literature demonstrated that FO-LR outperformed all other evaluated heuristics.
Future works may focus on demonstrating that M-WSCP is complete for the
class 8. From an algorithmic perspective, a future work can also look to improve
the ILP formulation for MSS-SPP by introducing the MTZ subtour elimination con-
strains [Miller et al., 1960| or the lifted MTZ constraints [Akgiin and Tansel, 2011].
Additionally, another interesting topic of research is to explore new manners to fix vari-

ables in the Fix-and-Optimize heuristic framework and to extend it to other problems.
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