
AGLOMERAÇÕES DE ANOMALIAS DE CÓDIGO

E SEU IMPACTO NA MODULARIDADE DE

SOFTWARE

AMANDA DAMASCENO SANTANA

AGLOMERAÇÕES DE ANOMALIAS DE CÓDIGO

E SEU IMPACTO NA MODULARIDADE DE

SOFTWARE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Eduardo Magno Lages Figueiredo

Belo Horizonte, Minas Gerais

Novembro de 2020

AMANDA DAMASCENO SANTANA

BAD SMELL AGGLOMERATIONS AND THEIR

IMPACT ON SOFTWARE MODULARITY

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Master
in Computer Science.

Advisor: Eduardo Magno Lages Figueiredo

Belo Horizonte, Minas Gerais

November 2020

c© 2020, Amanda Damasceno Santana.
Todos os direitos reservados.

Santana, Amanda Damasceno

S232b Bad Smell Agglomerations and their Impact on
Software Modularity / Amanda Damasceno Santana.
— Belo Horizonte, Minas Gerais, 2020

xxii, 77 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Eduardo Magno Lages Figueiredo

1. Computação – Teses. 2. Bad smell – Teses . 3.
Aglomeração – Teses. 4. Anomalias de código
(Engenharia de software) – Teses. 5. Software
-Reutilização – Teses. I. Figueiredo, Eduardo Magno
Lages. II.Título.

CDU 519.6*32(043)

Dedico esta dissertação a minha mãe, Monica, que sempre me apoiou em todo o
meu percurso de graduação e do mestrado, sempre me dando muito carinho, suporte
emocional, e fazendo de tudo a seu alcance para que eu pudesse chegar aqui. Dedico
também a minha irmã Aline, por todo o apoio dado ao longo desta dissertação, a seu
carinho, atenção dadas as minhas apresentações, e por todas discussões a respeito do
meu trabalho. Também dedico ao meu falecido pai, Velsser, que infelizmente não pode
me ver entrando no mestrado, nem o concluindo. Contudo, sei que aonde é que você
esteja, está torcendo por mim. Agradeço ao meu namorado, Newton, por todo apoio
dado durante este percurso, por sempre ter me incentivado e me dito que tudo vai dar
certo. Dedico também a Malu, Mabel e Ruffus, por seu amor incondicional. Obrigada,
meus amores, pois sem vocês eu não teria conseguido chegar até aqui, e muito menos
teria passado pelos meus momentos difíceis.

Agradeço ao meu orientador, Eduardo, por toda a paciência que teve comigo nesta
longa jornada. Agradeço por todo conhecimento passado, pela compreensão nos momen-
tos mais difíceis em minha vida, por sua positividade em relação ao meu trabalho, e por
ter me dado a oportunidade de ingressar no meio científico. Agradeço também todos os
membros do Labsoft, por todo o feedback dado, principalmente ao Cleiton e ao Daniel,
que tivemos oportunidades de trabalharmos juntos durante meu mestrado.

Agradeço também a todos os professores que fizeram parte do meu percurso cur-
ricular, desde a graduação. Guardo com muito carinho seus ensinamentos, e toda a
experiência me permitiu crescer como pessoa e como pesquisadora. Agradeço a equipe
da Pós-Graduação, em particular a Sônia e o Clodoveu por todos os esclarecimentos.
Finalmente, agradeço a Capes, cuja bolsa me possibilitou contribuir para a ciência
brasileira.

ix

Resumo

A maioria dos sistemas devem evoluir a fim de implementar novos requisitos dos stake-
holders, ou para corrigir problemas existentes. Estas mudanças são complexas devido
a diversos fatores, incluindo a necessidade de compreender o código fonte do sistema,
atividade que é prejudicada pela presença de anomalias de código. Anomalias de
código são sintomas de más decisões sobre o projeto do sistema ou simplesmente de
seu código. Contudo, quando duas ou mais anomalias acontecem no mesmo pedaço de
código, elas formam uma aglomeração. Consequentemente, desenvolvedores precisam
se esforçar muito mais para realizar suas atividades de desenvolvimento e manutenção.
Neste trabalho, nós avaliamos aglomerações formadas por quatro tipos de anomalias:
Large Class, Long Method, Feature Envy e Refused Bequest. Nosso objetivo é avaliar
como estas aglomerações estão espallhadas no código fonte, e como elas impactam na
modularidade do software. Nossos resultados são alcançados através do uso de regras
de associação e medidas de tamanho do efeito. Nós encontramos que classes com duas
ou mais anomalias são frequentes no código fonte, até mesmo quando consideramos
somente o mesmo tipo de anomalia. Elas também são altamente espalhadas no código
fonte, mesmo quando o tamanho do sistema é levado em consideração. Também, nós
descobrimos que elas realmente impactam a modularidade. Estes resultados significam
que elas podem afetar a complexidade da classe, torná-las mais propensas a problemas,
e mais acopladas a outras classes.

xi

Abstract

Most systems must evolve to cope with new stakeholders requirements, or to fix existing
problems. These changes are complex due to several factors, including the need of
understanding the source code, activity that is impaired by the presence of bad smells.
Bad smell is a symptom of bad decisions about the system design or code. When two
or more bad smells occur in the same snippet of code, they form an agglomeration.
Consequently, developers need to put more effort to perform their development and
maintenance tasks. In this work, we evaluate agglomerations composed of four kinds
of bad smells: Large Class, Long Method, Feature Envy, and Refused Bequest. We
aim at evaluating how these agglomerations are spread in the source code, and how
they impact on the software modularity. Our results are achieved through the use of
association rules and effect size measurements. We have found that classes with two or
more smells are frequent in the source code, even when the smells present in the class
are of the same type. We also observed that agglomerations are the most spread in the
source code, even when the size of the systems are taken into account. Agglomerations
have a significant effect on most analyzed modularity metrics. This result means that
they may affect class complexity, fault proneness, and coupling.

xiii

List of Figures

4.1 Methodology steps . 26

5.1 Absolute numbers of classes with bad smells. (a) Heterogeneous Agglom-
erations, (b) Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e)
Isolated LM, (f) Isolated LC, and (g) Isolated RB. 39

5.2 Percentile of classes presenting agglomerations. (a) Heterogeneous Agglom-
erations, (b) Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e)
Isolated LM, (f) Isolated LC, and (g) Isolated RB. 39

5.3 Density of bad smells per KLOC (a) Heterogeneous Agglomerations, (b)
Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e) Isolated LM,
(f) Isolated LC, and (g) Isolated RB. 40

5.4 Pairwise Cohen’s d per metric. (a) maxNest. (b) RFC. (c) DIT. (d) WMC.
(e) CBO. 43

5.5 FE Agglomerations. (a) Presents the absolute number of the FE smell
present in each Homogeneous FE found. (b) Presents the number of Homo-
geneous FE in each system. 46

6.1 Density of Heterogeneous Types in All Systems. 51
6.2 Density of Classes Affected by Heterogeneous Agglomerations Segregated

by Type. 52
6.3 Density of Heterogeneous Agglomeration Types per KLOC. 53
6.4 Pairwise Cohen’s d per metric for Heterogeneous Agglomerations. 56

xv

List of Tables

2.1 Studied bad smell . 8

3.1 Selected Systems . 17
3.2 Detection tools used . 18
3.3 Number of bad smell found . 19
3.4 Bad Smell Evaluation Questions . 21

4.1 Association Rules Measurements . 30
4.2 Analysed Metrics and their Definition . 32
4.3 Metrics and its Modularity Aspects . 32

5.1 Agglomerations Found by Association Rule 36
5.2 Number of Homogeneous Agglomerations Found 38
5.3 Overall Variation of General Agglomerations 42
5.4 Overall statistics for FE Agglomerations 47
5.5 Correlation between pairs of metrics . 48

6.1 Heterogeneous Agglomeration Types and the Smells that Composes it . . . 50
6.2 Variation Measurements for Heterogeneous Agglomerations 53
6.3 Variation of Heterogeneous Agglomerations 55

A.1 Cohen’s d values for CBO . 63
A.2 Cohen’s d values for WMC . 63
A.3 Cohen’s d values for DIT . 64
A.4 Cohen’s d values for RFC . 64
A.5 Cohen’s d values for maxNest . 64

B.1 Cohen’s d values for CBO . 66
B.2 Cohen’s d values for WMC . 67
B.3 Cohen’s d values for DIT . 68
B.4 Cohen’s d values for RFC . 69

xvii

B.5 Cohen’s d values for maxNest . 70

xviii

List of Symbols

1. CBO Coupling Between Objects

2. CI Confidence Interval

3. CV Coefficient of Variation

4. DIT Depth of Inheritance Tree

5. FE Feature Envy

6. IQR InterQuartile Range

7. Isolated FE Isolated Feature Envy

8. Isolated LC Isolated Large Class

9. Isolated LM Isolated Long Method

10. Isolated RB Isolated Refused Bequest

11. Homogeneous FE Homogeneous Feature Envy

12. Homogeneous LM Homogeneous Long Method

13. KLOC 1000 Lines of Code

14. LC Large Class

15. LOC Lines of Code

16. LM Long Method

17. maxNest max nest blocks

18. NOC Number of Classes

19. NOM Number of Methods

xix

20. OR Odds Ratio

21. RB Refused Bequest

22. RFC Response set of a class of objects

23. RQ Research Question

24. χ2 Chi Square Test

25. std. dev. Standard Deviation

26. WMC Weighted Method Class

xx

Contents

Resumo xi

Abstract xiii

List of Figures xv

List of Tables xvii

List of Symbols xix

1 Introduction 1
1.1 Methodology . 3
1.2 Contributions . 4
1.3 Dissertation Outline . 5

2 Background 7
2.1 Bad Smells . 7
2.2 Classification of Bad Smell Agglomerations 10
2.3 Association Rules . 11
2.4 Related Work . 12
2.5 Concluding Remarks . 14

3 A Dataset of Bad Smells 15
3.1 Systems Under Evaluation . 15
3.2 Dataset Construction . 16
3.3 Dataset Evaluation . 19
3.4 Threats to the Dataset Construction 22
3.5 Concluding Remarks . 23

4 Study Design 25

xxi

4.1 Research Questions . 26
4.2 Identification of Agglomerations . 28
4.3 Modularity Metrics . 30
4.4 Density Calculation . 33
4.5 Threats to Validity . 34
4.6 Concluding Remarks . 34

5 Results and Analysis of Bad Smell Agglomerations 35
5.1 Understanding Heterogeneous Agglomerations 35
5.2 Understanding Homogeneous Agglomerations 37
5.3 On the Agglomeration Density . 38
5.4 Impact of Agglomerations on Modularity 41
5.5 Discussion . 45
5.6 Concluding Remarks . 48

6 Understanding Heterogeneous Agglomerations 49
6.1 Heterogeneous Types Density . 49
6.2 Impact of Heterogeneous Agglomerations 52
6.3 Concluding Remarks . 57

7 Conclusions 59

Appendix A Original Values of Cohen’s d Comparison 63

B Heterogeneous Cohen’s d Values 65

Bibliography 71

xxii

Chapter 1

Introduction

Most software systems must evolve to cope with new requirements or to address existing
code problems and bugs [30]. However, evolving systems is a challenging task, due
to the growing system complexity, leading developers to take sub-optimal decisions
about the design [58]. In order to make the required changes, developers need first
to understand the source code, identifying how the modules of the system interact to
avoid breaking the application. In a recent study [63], the authors found that developers
spend up to 58% of their time understanding the source code in an industrial setting.
This increased effort is affected by the existence of technical debts, that, beyond making
the system harder to understand, increase the complexity of the interaction between
system modules.

A technical debt (TD) is a metaphor in which developers (un)awaringly take
sub-optimal decisions in order to speed the development process [10]. Even though
these decisions bring benefits to developers in short term, in long term, due to the
accumulation of debts, they lead to a more inflexible source code that is more difficult
to comprehend, to extend, and to maintain. Consequently, the debts increases the
software maintenance costs [6].

In a systematic mapping, Li et al. [31] raised primary studies that evaluate the
impact of TDs in the system quality, and found several works on their impact on
maintainability. Most of the studies identified by the authors focused on evaluating
changeability. Besker et al. [5] evaluated how TD affects the project at different
development stages. The authors found that understanding and measuring the TD
effects take most of developers’ time. They also have found that, overall, 36% of
development time is used to address TDs.

In this dissertation, we are interested in evaluating bad smells, symptoms of TD
occurrence [21]. Bad smell is a symptom that indicates that the code needs to be

1

2 Chapter 1. Introduction

refactored. They were proposed as a mean of identifying the portions of code that
presents decaying quality. Bad Smell affect several properties of software modularity,
such as understandability, extensibility, and reusability [22; 64]. Consequently, they
affect directly on the lifecycle activities of development. To pay this debt, developers
may refactor the smelly code. Refactoring is an activity in which modifications in
the source code are made to improve its internal quality. Yet, it does not change
the external behavior of the system [21]. These modifications may involve removal of
duplication, code simplification, or clarification of unclear code [26]. Moreover, studies
in the literature found that bad smells tend to persist for all versions of the system
after being introduced in the source code [7]. This implies that removing bad smell
from the code is not a trivial task.

Several studies tried to understand the impact of bad smell instances on different
quality attributes, such as error proneness, change proneness [4; 23; 27; 43; 46], and
maintenance effort [53; 65]. However, there are evidences that when two or more bad
smell instances occur together in the source code, for example, in the same component
or through a coupling relationship, they make the code even harder to understand and
to maintain [1; 29; 39; 47]. When two or more bad smells occur together in the same
piece of code, they form an agglomeration. Sobrinho et al. [11] raised in their literature
review several works that aimed at co-studying bad smells. In this work, we extend
the understanding of agglomerations filling some of the gaps found in their work. In
this dissertation, we investigate how classes that are agglomerations, i.e., classes that
have two or more instances of bad smells, impact on the source code modularity.

Even though bad smells are extensively researched in the literature [11], bad
smell agglomerations only recently started getting the necessary attention. Most of the
studies that investigated these agglomerations focus on identifying which of them are
the most common in the source code [49; 50; 61; 67]. Few studies try to understand
how they impact on aspects of the source code quality [12; 41; 46] and their lifecycle
[35; 45]. There is also an effort to understand the relationship between bad smell
agglomerations, architectural problems, and design problems [12; 41; 42].

It is worth mentioning that these studies rely on small datasets, composed of few
open source systems. They focus on evaluating bad smells that are extensively inves-
tigated in the literature, such as Large Class and Long Method [11]. The need of more
understanding on the impact of such agglomerations on the source code modularity
motivated us to investigate this research topic. This work contributes to expanding
the current knowledge by providing an evaluation of bad smell agglomerations at the
level of class in a larger dataset. It reports the density of agglomerations in the source
code and how they are affecting the system modularity through the use of software

1.1. Methodology 3

metrics. We also evaluate not only common co-studied bad smells, such as Large Class
and Long Method, but also smells that are not largely co-investigated, such as Feature
Envy and Refused Bequest.

1.1 Methodology

In this section, we aim at briefly explaining how this dissertation was conducted. We
first created a dataset composed of 20 open-source Java systems from the Qualita
Corpus [56], with different sizes and domains. To create this dataset, we identified
with the help of six automatic detection tools four bad smells: Large Class, Long
Method, Feature Envy and Refused Bequest. Each class in our dataset was classified
according with the smell that it contains. We consider as an agglomeration a class with
two or more bad smell instances. Since we are creating a new dataset, we evaluated this
dataset, with the help of six post-graduated students that had experience in detecting
bad smells, by calculating the agreement between our employed detection strategy and
the opinion of the evaluators about the presence of the smell in the class/method.

After building and evaluating our dataset, we are now prepared to identify and
verify how the agglomerations impact aspects of source code modularity. In order to
identify the agglomerations, we used association rules and frequency statistics. The
former was used to identify agglomerations composed of at least two bad smells types.
The latter was used to identify agglomerations composed of only one smell type, but
that has two or more instances of the smell. We opted to use a simple technique to
identify agglomerations of only one smell type due to the restriction of the association
rule that does not allow a bad smell being in the two sides of the rule at the same time.
Consequently, the association rule does not detect agglomerations formed of only one
bad smell type.

We then analyze how is the density of agglomerations in each system. We con-
sidered their density in terms of absolute numbers, number of classes of each system,
and KLOC. Finally, we explored the impact of the agglomerations on the modularity
metrics, comparing them to classes that do not have bad smell or that has only one
bad smell instance. In order to compare them, we calculated five modularity metrics
for each class, summarized them in terms of mean, medians, quartiles and dispersion,
and then used the Cohen’s d values [9] and the Coefficient of Variation (CV) [52] in
order to compare the categories. We repeated this analysis in order to verify how ag-
glomerations composed of two or more bad smell types compare to each other. This
analysis was made to verify if such agglomerations present a similar behavior in terms

4 Chapter 1. Introduction

of density and impact.

1.2 Contributions

In this dissertation, we can highlight the following contributions.

• We have built and validated a dataset composed of 20 open-source Java systems
with different sizes and domains. We also presented the list of the four bad smell
found in this dataset.

• We proposed a new methodology to automatically construct bad smell datasets.
This methodology combines the vote of three tools to assure that different detec-
tion strategies are being employed. It can also be easily extended to address new
systems and bad smells.

• We expanded the current knowledge of bad smell agglomerations by providing
evidences that bad smell agglomerations does impact the source code modularity
in a larger dataset, and contemplating bad smells that were not co-studied in
depth.

Partial results of this dissertation have been published or submitted to publication
as follows.

• Santana, A. and Figueiredo, E. On the Impact of Bad Smell Agglomerations
on Software Quality. On the Impact of Bad Smell Agglomerations on Software
Quality. In: Master and PhD Workshop on Software Engineering (WTDSoft),
co-allocated with CBSoft, 2019, Salvador. Proceedings of the Master and PhD
Workshop on Software Engineering (WTDSoft). Porto Alegre: SBC, 2019. v. 1.
p. 1-7.

• Santana, A., Cruz, D. and Figueiredo, E. 2020. An Exploratory Study on the
Identification and Evaluation of Bad Smell Agglomerations. Submitted to an
international conference.

• Silva, C., Santana, A., Figueiredo, E., and Bigonha, M.. Revisiting the Bad Smell
and Refactoring Relationship: A Systematic Literature Review. In: In proceed-
ings of the 23rd Iberoamerican Conference on Software Engineering (CIbSE),
2020, Curitiba. Experimental Software Engineering Track (ESELAW). Berlin:
Springer, 2020. v. 1. p. 1-14.

1.3. Dissertation Outline 5

• Cruz, D., Figueiredo, E., and Santana, A. Detecting Bad Smells with Machine
Learning Algorithms: an Empirical Study. In: International Conference on Tech-
nical Debt (TechDebt), 2020, Seoul. Proceedings of International Conference on
Technical Debt (TechDebt). New York: ACM, 2020. v. 1. p. 1-10.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows.

Chapter 2 presents the necessary background information that is used along
this dissertation, such as the concepts of the bad smells evaluated and the bad smell
agglomerations types. This section presents a classification for the agglomeration types,
beyond the ones proposed in the literature. Finally, we aim at discussing related works
and how this dissertation compares to them.

Chapter 3 presents in details the methodology employed in the creation of our
dataset. First we explained the selection of which systems to evaluate, and how we
detected the bad smells in order to obtain a list of bad smells for each system. We then
manually evaluated a statistical sample of our dataset and calculated the agreement
between the evaluation and the results obtained by our detection strategy. Finally, we
discuss some threats to our dataset construction.

Chapter 4 presents in details the methodology employed to answer our research
questions. We first present the research questions and their respective motivations. We
then explain how bad smell agglomerations were discovered in our dataset. With these
agglomerations in hand, we explain how the necessary information will be extracted in
order to evaluate the impact of agglomerations on modularity metrics. We also explain
how the agglomeration density was calculated and analyzed. Finally, we present some
threats related to our methodology.

Chapter 5 presents the observed results and their implication for practitioners.
We discuss the presence of bad smell agglomerations in the source code. We then
analyze their density in the source code. With these steps concluded, we discuss how
they are impacting the selected modularity metrics. Finally, we discuss our results and
their implications for practitioners.

Chapter 6 presents the observed results for the agglomerations composed of two
or more bad smell types. In this chapter, we aim at understanding if there is difference
in their density and on how they impact the source code modularity. This analysis also
contemplates agglomerations that did not appear in the association rules algorithm.

6 Chapter 1. Introduction

Chapter 7 presents our main findings and conclusions, along with possibilities
of future work.

Chapter 2

Background

The main objective of this dissertation is to identify bad smell agglomerations at the
class level and understand how they impact the source code modularity. Bad smells are
structures in the code that suggest the need of quality improving. This improvement
can be achieved using refactoring activities. However, when bad smells appear together
in the source code, forming an agglomeration, the process of enhancing the code quality
is severely affected by their existence. This is due to their interaction in the code.

In order to achieve our objective, we aim at explaining in this section the main
concepts used in this dissertation. Section 2.1 describes and exemplify the bad smells
under evaluation, and why they were chosen. Section 2.2 describes the possible types
of bad smell agglomerations that may occur in the source code, and further expand the
original classification by Oizumi et al. [39] to address the agglomerations found in this
work. Section 2.3 describes the algorithm used to identify the bad smell agglomerations.
Finally, Section 2.4 provides an overview of related works and how they differ from this
dissertation.

2.1 Bad Smells

Bad smells are symptoms, or evidences, in the source code that indicate the need of
refactoring, i.e., the opportunity of improving the internal quality of the system [21].
Bad smells are not necessarily harmful [20; 43; 54]. They can even represent a good
practice in some implementation domains, such as parsers and databases [19]. In their
work, Taibi et al. [54] found which bad smells proposed by Fowler [21] are considered
harmful in the opinion of experienced developers. Three of the four smells analyzed
in this dissertation are among the most harmful ones. They are: Long Class, Long
Method and Refused Bequest, with 100% of the developers agreeing that they are

7

8 Chapter 2. Background

harmful. From a scale of 1 to 5, the most harmful of the analysed smells was Long
Class, with an value of 4.5. This work provided us with information to help to select
which bad smell to co-study, and we opted to select those that were considered as
harmful.

Despite of being greatly researched, Sobrinho et al. [11] found that only a small
fraction of the 22 bad smells originally proposed by Fowler [21] have been extensively
co-studied. This work motivated us in selecting which bad smell to co-study, trying
to balance the choice between the most and the least studied bad smells. Beyond
these decisions, we also focused in selecting those that are detected by at least three
detection tools, as described later in Section 3.2. This assure us that our dataset is
built using different detection strategies. It is worth to notice that when calculating
the intersection between the results of the tools, the more tools we add to detect smell
S, the narrower the results will be. Consequently, we are having more certainty that
the smell S is a true positive. So we compromised, and decided that for the bad smell
selection, each smell must be detected by exactly three tools.

Table 2.1 briefly conceptualizes the selected bad smells according to their def-
initions by Fowler [21]. Large Class and Long Method are among the most studied
smells. We selected these smells to co-study them with Feature Envy and Refused
Bequest, because they affect known principles of good object oriented design. For in-
stance, Refused Bequest violates the Liskov Substitution Principle [32]. This principle
indicates that a subclass should substitute its parent class, for instance, in a method
call. This principle implies that the subclass correctly inherited its parent behavior.
This situation is the opposite of when a Refused Bequest occurs in the hierarchy.

Table 2.1: Studied bad smell

Bad Smell Definition
Large Class (LC) It occurs when a class tries to do too much, presenting to

many instance variables
Long Method (LM) It occurs when methods are too large, frequently necessitat-

ing long explanations of how it works.
Feature Envy (FE) It occurs when a method seems more interested in being in

other class.
Refused Bequest (RB) It occurs when a class does not want their parent behaviour.

In this dissertation, we consider that Large Class, Brain Class and God Class are
the same bad smell. Their original definition varies only in small details, for example,
the use of external variables. The same occurs with the Long Method and God Method
smells. Both have a similar concept, and we opted to consider both as the same smell.
This choice was due to the similarity on their definition. If tools uses different strategies

2.1. Bad Smells 9

to detect them, we benefit from it by allowing the dataset construction to range different
perspectives of the smell. This strategy indeed benefit us, since we could obtain in the
dataset a reasonable number of Large Class and Long Method smells.

This paragraph will exemplify the two bad smells that are at the class level, the
Large Class and Refused Bequest. One example of Large Class is the class JspCon-
fig1 from the Tomcat system. Beyond having 11 attributes, 7 methods and 462 lines
of code, the class has 2 public inner classes. Out of the 7 methods, 2 of them are
very large. However, the functionality of the class is consistent, aiming at creating
and manipulating a Jsp configuration. An example of Refused Bequest is the class
ActiveXObject2 in the HtmltUnit system. The class extends the behavior of the class
SimpleScriptable3, a base class for Rhino host objects. ActiveXObject is an active host
that allows people to instantiate java objects using JavaScript.

Even though the business of both classes seems consistent, ActiveXObject do not
use the behavior of SimpleScriptable. The following evidences suggest this affirmation.
(i) The class overrides only one method, the getClassName(), changing the returned
string. (ii) ActiveXObject mostly uses methods and attributes of the SimpleScriptable
as parameters for its methods, not using its inherited behavior. (iii) There is no
reference to the super class. (iv) ActiveXObject uses more the behavior of the Scriptable
than of its parent.

We now exemplify the smells at the method level, the Long Method and Fea-
ture Envy. As an example of the Long Method smell, the method XYDifferenceRen-
derer.drawItemPass04 from JFreeChart system, a method that draws on the screen a
single data item. Beyond receiving 10 parameters and their functionality being dis-
tributed in more than 400 lines of code, the method uses heavily temporary variables,
conditional statements and control sentences. Besides, most of the lines of code consist
of creating new variables or making simple computations. These evidences suggest that
the code could be refactored, using the Extract Method refactoring process. Finally,
an example of Feature Envy smell is the method CSVSaver.getCapabilities()5 from the
Weka system. The class consist of, as the name suggest, saving in batches a CSV file.
However, when observing this method, all it does is to enabling capabilities (Capabil-
ities class). It seems that this method is more interested in being in the Capabilities
class than in the CSVSaver.

1https://github.com/amandads/Dissertation/blob/master/JspConfig.java
2https://github.com/amandads/Dissertation/blob/master/ActiveXObject.java
3https://github.com/amandads/Dissertation/blob/master/SimpleScriptable.java
4https://github.com/amandads/Dissertation/blob/master/XYDifferenceRenderer.java
5https://github.com/amandads/Dissertation/blob/master/CSVSaver.java

https://github.com/amandads/Dissertation/blob/master/JspConfig.java
https://github.com/amandads/Dissertation/blob/master/ActiveXObject.java
https://github.com/amandads/Dissertation/blob/master/SimpleScriptable.java
https://github.com/amandads/Dissertation/blob/master/XYDifferenceRenderer.java
https://github.com/amandads/Dissertation/blob/master/CSVSaver.java

10 Chapter 2. Background

2.2 Classification of Bad Smell Agglomerations

This work aims at understanding the presence and impact of bad smell agglomerations
on the source code modularity. We study the agglomerations at the level of class: classes
that contain at least two bad smell instances. In their book, Lanza and Marinescu [29]
introduced the concept of collaboration disharmonies. The authors build a diagram
of relationship between the smells, and found relations such as "is", "uses", "has",
and "partially". In this work, we refer to collaboration disharmonies as bad smell
agglomerations.

In the literature, it was identified two kinds of general agglomerations: intra-
component agglomeration and inter-component agglomeration [39]. The first one con-
cerns an agglomeration that occurs in the same component. The latter one concerns
an agglomeration that occurs between two or more components. Here, we address the
intra-component agglomerations. We adopt as component the individual classes of the
systems, providing a more deeper analysis of the agglomerations behavior in different
class.

The main motivation for choosing to study intra-component agglomerations is
that a set of bad smells in the same piece of code provides an important evidence
that developers should pay attention to the class when she/he modifies it, since it
presents different problems, ranging different modularity aspects. For example, a class
with both Large Class and Feature Envy implies that the class is complex, is large in
terms of size and is not cohesive. Moreover, when analyzed together, the agglomeration
could help developers see the extent of the modularity problem, reasoning similar to
the work of Souza et al. [13]. For our analysis, it is important to further segregate the
classification proposed by Oizumi et al. [39] to cope with the types of bad smells that
we have found. We propose in this work two kinds of agglomerations: Heterogeneous
and Homogeneous. They are described as follows.

Heterogeneous Agglomeration: it occurs when a class contains two or more in-
stances of bad smells, but the class also contains at least two different bad smell types.
For example, in the system JMeter, the class ResponseAssertion6 is a Large Class, it
refuses its parent behavior (Refused Bequest) and presents one Large Method, the Re-
sponseAssertion.equalsComparisonText(final String received, final String comparison)
method.

Homogeneous Agglomeration: it occurs when a class contains two or more in-
stances of bad smells, but all these instances are of the same bad smell type. In this
work, we idenfitied two types of Homogeneous Agglomeration: Homogeneous Feature

6https://github.com/amandads/Dissertation/blob/master/ResponseAssertion.java

https://github.com/amandads/Dissertation/blob/master/ResponseAssertion.java

2.3. Association Rules 11

Envy and Homogeneous Long Method. For example, the class LUDecomposition7 in
the Weka system has only two Feature Envy smells, the methods solve(Matrix B)
that finds the matrix X that satisfies A*X = B; and LUDecomposition(Matrix A), a
constructor that makes several calculations and does not return anything.

Finally, we can describe the terminology employed in this dissertation to address
other possibilities of the bad smell presence. Isolated Bad Smell : it occurs when a
class contains only one instance of bad smell, i.e., it is not an agglomeration. It can be
further classified according to the smell: Isolated Feature Envy (Isolated FE), Isolated
Long Method (Isolated LM), Isolated Long Class (Isolated LC), and Isolated Refused
Bequest (Isolated RB). Clean Class : it defines a class with no instance of the considered
bad smells.

2.3 Association Rules

Identifying agglomeration is not a simple task, since all combinations of bad smells
must be considered, and not all of them are meaningful due to the context that are
being evaluated. For example, a rare combination may be considered as noise in some
contexts, such as costumer buying habits [24; 57]. In our context, rare combinations
are interesting to be analysed, since the agglomeration presence depends on several dif-
ferent system characteristics, such as domain, developer’s characteristics, and maturity
level. Such agglomerations will be addressed separately in its own chapter. We aim
at identifying relevant and frequent combinations of bad smells that occur together
in the same class. Therefore, we opted to use association rules [24]. Together with
meaningfulness metrics, association rules can identify significant group of items that
appear together in the dataset [24].

To identify association rules, we used the Apriori Algorithm [2]. We formulate
our problem as follows. Be t a transaction, i.e., an instance in our dataset. Let T
be our set of transactions. Be i j a type of bad smell. Each transaction t has four
binary variables i j representing the presence/absence of the bad smell. These i j are
organized in the following way: Large Class, Refused Bequest, Feature Envy, and Long
Method. For example, a transaction t = [1, 1, 0, 0] indicates that the class has Large
Class and Refused Bequest. Let Lm be a threshold for some metric m. We want to find
the significant association rules observing all transactions in T. This can be achieved
observing if the rules are above Lm. If the association rule is strong, it is considered in

7https://github.com/amandads/Dissertation/blob/master/LUDecomposition.java

https://github.com/amandads/Dissertation/blob/master/LUDecomposition.java

12 Chapter 2. Background

the next step of the algorithm. In the final step of the algorithm, we expect to obtain
a set of rules of the format Antecedent −→ Consequent.

The algorithm start calculating the metric Lm for all items. For example, it
calculates the metric for people that bought [bread], [milk], and others, separately. If
the item is not above the threshold, this means that the item is rare. Consequently,
combinations with the item are rare too. For example, if in a market most people buy
in the same transaction [milk and bread], but of all the considered transactions, only
one person bought [detergent] in the transaction [milk, bread, detergent], combinations
with [detergent] are rare. Consequently, rules that have [detergent] in the antecedent
or consequent are not strong, and they are not considered in the next step of the
algorithm.

This process is repeated until no new rules can be found, or the parameter that
limits the maximum number of items in the Antecedent is reached. For the market
example, possible rules could be milk −→ bread or bread −→ milk, depending on
the set of transactions and meaningfulness metrics used. The parameters used on the
application of the Apriori Algorithm in this work is given in Section 4.2.

2.4 Related Work

Several studies tried to understand the relationship between bad smells in a class
[29; 35; 39; 38; 49; 61; 67]. The first ones to identify that bad smells are related
were Lanza and Marinescu [29]. The authors presented in their book the concept of
Collaboration Disharmonies, in which design flaws interact and affect several entities
at once. They summarized in a diagram the identified relationships between the flaws,
using concepts of system modeling, such as "is", "has", and "uses". To identify such
relationships, the authors used metrics of coupling.

Oizumi et al. [38] studied the relationship between agglomerations and architec-
tural problems in seven systems, with five of them being industrial ones. The authors
found that most of the architectural problems are related to agglomerations, conclud-
ing that agglomerations are better than isolated smells in indicating the presence of
such problems. With a similar conclusion, Palomba et al. [46] found that when a class
has more than one smell, it is more prone to faults and changes.

Oizumi et al. [39] studied how code anomaly relationships help developers to iden-
tify design problems. For this purpose, they used tests of statistical significance to verify
the strength of the relationship. The authors considered as agglomerations, smells af-
fecting two or more elements. The authors found that inter-component agglomerations

2.4. Related Work 13

are more helpful for locating design problems than intra-component agglomerations.
The authors also found that inter-component agglomerations are more helpful for locat-
ing design problems than intra-component agglomerations. They conclude that most
of the systems analysed presented in their first version a high correlation between ag-
glomerations and design problems. Later, Vidal et al. [59] proposed criteria to rank
the agglomerations considering their type and their modifiability. These criteria were
evaluated considering how these agglomerations help developers to identify architec-
tural problems. In this dissertation, we focus on understanding if the intra-component
agglomerations have a different behavior in terms of modularity metrics.

Lozano et al. [35] focused on understanding the lifecycle of bad smell agglom-
erations, i.e., when these bad smells co-exists and co-disappears. They also raised
evidences that agglomerations degrade the system’s quality. Palomba et al. [49] inves-
tigated in a dataset composed of 30 systems the bad smell co-occurrence. The authors
used association rules to detect these agglomerations. Later, Palomba et al. [45] inves-
tigated several versions of Eclipse and Apache to understand how these agglomerations
behave in the source code. The authors found that most of the smelly classes contain
agglomerations, and that these agglomerations tend to disappear together when it is
removed from the code. In this dissertation, we also present an analysis of density,
however, we focus on understanding how these agglomerations behaves in terms of
modularity metrics. Our results complement the ones found by these three works.

Recently, Walter et al. [61] evaluated bad smell agglomerations on the Qualita
Corpus [56], raising evidences that the system domain affects the results. The authors
used nine tools to detect fourteen smells. They separated their dataset in order to
address the tools bias. However, their separation is not consistent for all the smells,
due to the quantity of tools that detect them. The authors found for each domain
the bad smell agglomerations that are more frequent in the source code. We extend
this work in Chapters 5, 6 by presenting an analysis of how the agglomerations impact
modularity metrics and their density in the code. We also use a voting system to
mitigate the tools bias, using strictly three tools to each smell analyzed. Furthermore,
we address a novel type of agglomeration, the homogeneous one.

Yamashita and Moonen [66] investigated, in a industrial setting, the impact of
bad smell agglomerations on the source code maintainability. For this purpose, they
used Principal Component Analysis (PCA) in order to identify which bad smells affects
maintainability aspects. The authors found that certain types of agglomerations do
impact the maintenance activity. They also found which bad smell is present in each
of the five factors found. The five factors were: hoarders, confounders, wide interfaces,
data containers and unknown. Even though we do not use PCA in our analysis (we

14 Chapter 2. Background

used association rules, a technique in which its results is more easily understood), we
complement this work by providing evidences that agglomerations do impact the mod-
ularity metrics on open-source systems. Consequently, they affect the maintainability,
due to our choice of metrics.

In this dissertation, we extend the previous work [29; 35; 39; 38; 49; 61; 67].
Differently from other authors, we focus not only on identifying the agglomerations,
but also on their modularity impact. In other words, we aim at understanding how
agglomerations are concentrated in the systems and how they can impact on different
aspects of modularity. We also further classified the agglomerations in order to consider
their different types, i.e., Heterogeneous and Homogeneous Agglomerations.

2.5 Concluding Remarks

This section explained the main concepts addressed in this dissertation, and discussed
several works that address bad smell agglomerations, comparing them to ours. We
conceptualize the selected bad smells and the classification used to differentiate the
categories related to the presence of bad smells. Finally, we present the main concepts
used in the association rule algorithm, used to identify strong heterogeneous agglomer-
ations, and provide a simple, but didactic example of how the selected algorithm, the
Apriori, works. The next chapter presents the decisions taken in order to construct
our dataset. It also present the voting method to automatically construct a bad smell
dataset. Finally, it present how the dataset was evaluated.

Chapter 3

A Dataset of Bad Smells

In the previous chapter we defined the concepts used along this dissertation. In this
chapter, we describe how we created a curated dataset of bad smell. Defining which
dataset to work with is an essential step in most works, since the conclusions are
drawn from the information that it contains. This is true to our dissertation as well,
in which we try to raise evidences of how bad smell agglomerations affect the source
code modularity. Consequently, the obtained results are directly associated with the
system, and our goal is to provide a more generalizable analysis. Therefore, carefully
selecting which systems to evaluate, and constructing a reliable dataset is an important
step in this work.

This chapter is organized as follows. Section 3.1 describes how the systems were
selected, aiming at covering a heterogeneous group of system characteristics, such as
size and domain. Section 3.2 presents how our bad smell dataset was constructed.
Section 3.3 presents the methodology used to evaluate our data, and the results of this
analysis. This step is necessary, since we opted to create a new dataset. We need to
assess how much the strategy employed reflect the perspective of developers. Finally,
we present in Section 3.4 the threats to the validity of our dataset construction.

3.1 Systems Under Evaluation

Several bad smell datasets are available in the literature [48; 49; 61]. Even though
they are available, we opted to create a new one due to several factors. First, we
want to assure that the detection strategy was homogeneous for every smell, and easily
extendable to address new systems and smells. Second, we want a reasonable number
of systems with different characteristics, such as size, domain, and different levels of

15

16 Chapter 3. A Dataset of Bad Smells

maturity. Creating a dataset with systems with different characteristics is essential to
achieve a more generalizable result.

In order to create our dataset, we selected a subset of 20 open source systems
written in Java from the Qualita Corpus dataset [56], a curated collection of systems
widely used in the literature [11; 61]. These systems are widely used in several other
industrial and open source projects, supporting different development stages. For ex-
ample, HtmlUnit and JMeter supports testing. Meanwhile, JHotDraw can be used to
model systems. We also selected systems that supports the domain of other systems,
such as Spring and Common-Logging. Finally, they vary in terms of size and domain,
allowing a more generalized analysis.

Table 3.1 presents the systems that we have selected. The first column presents
the name of the system, and the second one presents the system version. The third,
fourth, and fifth columns present the total number of lines of code, the number of classes
and the number of methods of each system. The sixth column shows the domain they
fit, according to the classification provided by the work of Tempero et al. [56]. Finally,
the last column presents the number of bad smells found in each system through our
detection strategy. As can be seen in Table 3.1, the systems vary from small, such as
Commons-Logging that has only 5.5KLOC distributed in 73 classes and 464 methods,
to large systems, such as Hibernate, with 431KLOC distributed in 6,018 classes and
41.5K methods. We have found that the number of bad smells found in each system
varies greatly, in a range of 3, for the Commons-Logging, and 2,984 for Weka.

3.2 Dataset Construction

This section describes how the dataset of bad smell was created. Building a large
dataset of bad smells manually is an expensive, tedious and subjective activity since all
classes and methods should be manually evaluated and documented. Besides, different
evaluators have different criteria to identify bad smells. Developers perspective about
what can be considered as containing the bad smell under consideration may be affected
by different aspects, such as system knowledge and developer experience [36]. For these
reasons, we relied on automatic detection tools that are mostly used in the literature
and are currently available for use [11; 15; 17; 40].

For instance, Fontana et al. [18] evaluated and compared three out of five tools
that we have selected. Fernandes et al. [15], in their literature review and case study,
raised detection tools that exist in the literature, and later evaluated if the tools agree
in their results. Paiva et al. [44] found in their work that the detection tools have a

3.2. Dataset Construction 17

Table 3.1: Selected Systems

Name Version TLOC #Class NOM Domain #BS
Found

CheckStyle 5.6 23,416 292 1,800 IDE 618
Commons-
Codec

- 8,346 71 456 tool 49

Commons-IO - 30,371 276 2,274 tool 11
Commons-Lang - 27,852 195 1,580 tool 13
Commons-
Logging

- 5,449 73 464 tool 3

Hadoop 1.1.2 184,251 1,315 12,099 middleware 188
Hibernate 4.2.0 431,475 6,018 41,529 database 207
HtmlUnit 2.8 100,759 853 8,014 testing 966
JasperReports 3.7.4 193,408 1,527 14,997 visualization 1,558
JFreeChart 1.0.13 143,062 934 10,442 tool 1,647
JHotDraw 7.5.1 79,668 671 5,892 graphic 1,063
JMeter 2.5.1 94,763 940 7,989 testing 1,254
Lucene 4.2.0 412,376 4,136 22,615 tool 729
Quartz 1.8.3 28,557 232 2,343 middleware 292
Spring 3.0.5 311,027 3,541 29,483 middleware 191
SquirrelSQL 3.1.2 6,944 56 532 database 5
Struts 2.2.1 143,196 1,958 13,244 middleware 1,668
Tapestry 5.1.0.5 97,206 1,553 7,809 middleware 715
Tomcat 7.0.2 178,133 1,287 14,260 middleware 1531
Weka 3.6.9 272,611 1,535 17,851 tool 2,984

higher agreement on the true negatives. These findings corroborate with the reasoning
that by combining different tools that have a lower agreement on true positives, we are
obtaining a more reliable ground truth. This is due to the combination of the results,
in which at least two tools indicate that the bad smell is present.

Furthermore, due to the definition of bad smells being informal, different tools
uses different detection strategies in order to detect them. For example, JDeodorant
[17] tool uses slicing techniques to identify and suggest which piece of code should be
refactored. In contrast, JSpIRIT [60] uses combinations of software metrics in order to
identify the smells. It is worth to mention that in order to use combinations of software
metrics, it is needed to select, for each metric, thresholds, i.e, values that separate the
data in "normal values" and "outliers". As an example, we may cite the Lines of Code
(LOC) metric. Tool T1 may consider classes with more than 300 LOC as an outlier,
when tool T2 considers classes with more than 500 LOC as an outlier. In the literature,
recent works propose machine learning techniques to identify bad smells. The main
advantages of their use is that it can receive feedback and incorporate them into the

18 Chapter 3. A Dataset of Bad Smells

model [14], and the developer do not need to specify metric thresholds. However, to
train the algorithms, a reliable ground truth of the smells is needed.

In order to obtain a homogeneous and extendable methodology for creating a
reliable dataset, we opted to use a voting method. With this voting system, we expect
to gain from the diversity of detection strategies, ranging different perspectives about
what can be considered as a bad smell. In the voting method, each instance (a class
or a method, depending on the bad smell granularity) received three votes from three
different detection tools. Each vote represents if the instance contains or not the bad
smell according to a tool, being summarized in a binary variable. If for a bad smell
S, the instance received two or more positive votes, then the instance is added to our
dataset of bad smells. If not, the instance is not considered as containing the bad smell
S. This process is repeated for every smell evaluated. We choose the voting method
due to empirical evidences that having more “thinking units" provide a more accurate
prediction [24].

Table 3.2 presents which detection tools were used to detect each bad smell. The
lines represent the tools, and the column the bad smell evaluated. A X at a cell in line
L and column C indicates that the tool in L was used to detect the smell in C. In total,
we selected five detection tools to create our dataset. For homogeneity of results, we
strictly used three tools per bad smell. However, some of the tools detects more bad
smells than those presented in the table, or detect smells that are not marked with a X
in the table. In these cases, we opted to use the tools that were mostly used to detect
such smell. For instance, although able to detect several bad smells, including the ones
evaluated in this dissertation, PMD1 was only used to detect Large Class.

Table 3.2: Detection tools used

Tool Large Class Refused Bequest Feature Envy Long Method
JDeodorant [16] X X X

PMD1 X
JsPIRIT [60] X X
DECOR [37] X X X
Organic [40] X X X

After applying the voting method, Table 3.3 presents in each line the quantity
of smells recorded in our ground truth. The first column shows the bad smell name.
The second column shows the absolute number of bad smells found by the voting
method described above. The third column presents the respective proportion of the
bad smell on our ground truth. The last column presents the proportion of classes or

1https://pmd.github.io/pmd-6.23.0/

3.3. Dataset Evaluation 19

methods affected by the smells in our dataset. The denominator in the proportion is
dependent on the granularity of the smell. For example, for the Large Class smell, the
denominator is the total number of classes in all systems, and for the Long Method
smell, the denominator is the total number of methods in all systems.

Table 3.3: Number of bad smell found

Bad Smell #Smell #Smell/#TotalSmell % of Smelly Elements
Large Class 1,743 11.11% 6.34%

Refused Bequest 3,088 19.68% 11.2%
Feature Envy 8,791 56.03% 4.1%
Long Method 2,068 13.18% 0.9%

Total 15,690 100% -

We can observe from Table 3.3 that about 56% of the bad smells found in the
systems are Feature Envy. We can verify that about 30% of the smells are at class
level and 70% are at method level. This proportion is expected, since a system has
more methods than classes (see Table 3.1). It is interesting to note that even though
classes that do not participate in an inheritance tree are more common in the system,
the quantity of Refused Bequest found indicates that when inheritance is used, they
often present a problem. Refused Bequest represents almost 20% of the total smells
found, and 11.2% of the classes in our dataset is affected by this smell. Besides, as
shown in the last column of Table 3.3, the total number of smelly instances is often
smaller than 10% for most smells, except for Refused Bequest. Table 3.3 provide us
motivation for an in depth study of the imbalance of our ground truth in the obtained
results.

3.3 Dataset Evaluation

Since we created a new dataset, we opted to manually evaluate a sample of bad smells
to verify that the results obtained by the voting method are aligned with the human
perception. Even though human validation is subjective [65], and the manual inspection
may apply criteria that are difficult to compute automatically, they influence greatly
on the decision of what can be considered a bad smell.

The dataset manual evaluation was conducted in the following way. First, it was
defined three questions that each of the six evaluators answered for each smell under
evaluation (a total of 12 questions). These evaluators are post-graduate students and
researchers of software engineering with experience in detecting bad smell. The defined
questions help to identify each bad smell and help to guide the evaluators in their task.

20 Chapter 3. A Dataset of Bad Smells

Furthermore, they make the validation process homogeneous [51], since each evaluator
answers the same set of questions. Besides, this methodology provides us with the
necessary flexibility to accommodate different perspectives of the evaluators, since each
one of them can interpret the question as desired. For example, some questions are
related to the size of the system. The interpretation of what is considered small or
large is subjective to the evaluator.

Table 3.4 presents in the first column the bad smell under evaluation, the second
columns presents the three questions that each evaluator should answer in order to
characterize the class/method as containing the bad smell. Finally, the third column
presents the answer that is expected to consider the instance as containing the bad
smell. These questions were based on two works proposed in the literature. For the
Large Class smell, the questions were based on the work of Schumacher [51]. For the
rest of the smells, the questions were based on the work of Lanza and Marinescu [29].
To consider the class/method as containing the smell S, at least two answers from the
evaluator have to match the expected output (last column from Table 3.4). Simply
put, for a smell S and instance I, the instance I is considered as containing S if:

((Evaluator Answer 1 = Expected Answer 1) AND (Evaluator Answer 2 = Expected
Answer 2)) OR ((Evaluator Answer 1 = Expected Answer 1) AND (Evaluator Answer
3 = Expected Answer 3)) OR ((Evaluator Answer 2 = Expected Answer 2) AND
(Evaluator Answer 3 = Expected Answer 3)) OR ((Evaluator Answer 1 = Expected
Answer 1) AND (Evaluator Answer 2 = Expected Answer 2) AND (Evaluator Answer
3 = Expected Answer 3))

For example, for the Long Method smell, if the evaluator answered two of the
three questions as "Yes", the instance is considered as containing the Long Method
smell. It is worth to notice that for Question 3 of the Refused Bequest smell, if the
evaluator answered "No", this is counted as positive evidence that the class presents
the smell.

It is worth to mention that each bad smell instance was checked by only one
evaluator. Our focus is on the agreement between our methodology and the evaluators
opinion, not in comparing the opinion of different evaluators. Since we have two smells
at class level and two at method level, each evaluator answered six questions for each
bad smell instance. This strategy aims at avoiding them to know beforehand which type
of bad smell instance they are dealing with. Besides, for each question, the evaluator
could have answered with three options: Yes, No and IDK (I don’t know). When the
evaluator could not respond the question, they were encouraged to answer as IDK,

3.3. Dataset Evaluation 21

since the No option affect directly the results of all questions. If an instance received
two or more IDK answers for smell S, the instance was removed from the evaluation,
since it did not provide us a positive or negative result. In total, we removed 9 instances
because of the IDK values: 4 for Large Class, 1 for Long Method, 2 for Refused Bequest
and 2 for Feature Envy.

Table 3.4: Bad Smell Evaluation Questions

Bad Smell Questions Expected
Answer

Large Class
Q1. Does the class have more than one responsibility? Yes
Q2. Does the class have functionality that would fit
better into other classes?

Yes

Q3. Would splitting up the class improve the overall
design?

Yes

Refused Bequest
Q1. Does the class use only a little of parent’s be-
haviour?

Yes

Q2. Does the parent class provide more than a few
protected members?

Yes

Q3. Does the class is too small/simple? No

Feature Envy
Q1. Does the method use directly more than a few
attributes of other classes?

Yes

Q2. Does the method use far more attributes from
other classes than its own?

Yes

Q3. Do the used "foreign" attributes belong to very
few other classes?

Yes

Long Method
Q1. Does the method have many conditional
branches?

Yes

Q2. Does the method is excessively large? Yes
Q3. Does the method use many variables? Yes

In order to evaluate our dataset with statistical significance, for each smell under
evaluation, we calculated a sample size that achieves a 90% confidence and maximum
error of 10%. The formula that calculates the sample size was based on the Central
Limit Theorem [25]. We used the four files that contains the list of instances affected
by each smell, randomly ordered them 10 times with 10 different seeds, and sampled it
according with the sample size calculated in the first step. With the samples in hands,
we sorted them by system and separated them into different files. Each system was
allocated to one evaluator, allowing them to focus on few systems at a time. Finally,
the agreement between the evaluators and tools was calculated using the Fleiss Kappa
[16]. Fleiss Kappa calculates the probability that the observed agreement between the
raters exceeds the expected agreement, if all the raters made their rating in a random
way. That is, it evaluates how reliable the ratings are. We opted for Fleiss because it is

22 Chapter 3. A Dataset of Bad Smells

a generalization of the Cohen Kappa [9]. This generalization is due to the consideration
that an evaluation could be made by more than two evaluators, assumption that does
not hold if we had used Cohen Kappa.

The results can be interpreted in the following manner. Poor: < 0.001. Slight:
0.00 - 0.20. Fair: 0.21 - 0.40. Moderate: 0.41 - 0.60. Substantial: 0.61 - 0.80. Almost
Perfect: 0.81 - 1.00 [28]. With a confidence level of 95%, we obtained the following
agreements: 0.467 for Large Class (Moderate), 0.651 for the Refused Bequest (Substan-
tial), 0.353 for the Feature Envy (Fair), and 0.406 for the Long Method (Moderate).
Even though there is room for improvement, the overall agreement was 0.467 (Mod-
erate). A satisfying agreement due to evidences that tools mostly agree on the true
negatives [18; 44], and we evaluate the candidates of true positives. Besides, tools are
built compromising between recall and precision.

3.4 Threats to the Dataset Construction

It is worth to notice that the results obtained in the dissertation depend directly on
how the dataset was constructed. To achieve a more generalized result, we opted to
create a new dataset that contains systems from different sizes and domains. Also,
we used automatic detection tools to detect the bad smells. However, the tools try to
achieve a balance between recall and precision. In this work, this threat was mitigated
in three ways. First, we selected tools widely used in the literature [11; 15] and their
detection strategy varies. Second, we used a voting method, in which the bias created
by the detection strategy employed by the tools is mitigated due to the vote system.
Finally, we manually evaluated a statistical sample of our dataset and found a good
agreement between the manual strategies and the automatic detection [44]. We think
these steps are sufficient to address most of the bias introduced on the construction
of the bad smell dataset. However, since we choose a sample of existent open-source
systems, the results may not hold for all systems.

To construct and evaluate our dataset, we heavily rely on scripts to process the
tools output and to calculate the agreement. For this purpose, we revised several times
these scripts, in order to assure that all processed data are correct. These scripts were
written in Python, and were revised by two people. For the agreement, we used the
package irr from the R language.

3.5. Concluding Remarks 23

3.5 Concluding Remarks

This chapter aimed at explaining how our dataset of bad smell was created. We pre-
sented the criteria to select the systems from the Qualita Corpus [56] in Section 3.1. In
total, we selected 20 Java systems with different sizes and domains. Later, we presented
the methodology used to build our dataset. Finally, we described and presented the
results of our dataset evaluation. We found that, in general, the agreement between
the voting system and the evaluators is moderate.

In the next chapter, we present the methodology used in this dissertation. It
defines the research questions that guides the selection of which technique to use in
order to answer them. The next chapter also presents how and what data to collect
from our data. Besides, we also explain how the dataset was processed in order to serve
as input for the association rule algorithm, the parameterization of the association
rule algorithm, the methodology used to compute the effect of agglomeration on the
modularity metrics, and how the agglomerations density was calculated. Finally, we
present the threats to the validity of this dissertation in terms of methodology.

Chapter 4

Study Design

In the previous chapter, we focused on discussing how our dataset of bad smells was
created. First, we described the systems to compose our dataset, and why they were
selected. We then explained how we obtained our bad smell dataset, through the use of
a voting system. Finally, the process of evaluating the bad smell dataset was described.
This chapter aims at explaining how the empirical evaluation of this dissertation was
conducted using this dataset. Figure 4.1 presents an overview of how the data was
obtained and analyzed. The single line rounded box represents the steps we followed.
Letters inside circles, next to the rounded boxes, represent the order that the steps
were executed. Arrows indicate that a step was served as input for the next one.

Twenty Java systems were selected from the Qualita Corpus [56]. They serve
as input for the calculation of the selected modularity metrics (Step D), described
later in Section 4.3. The systems also serve as input to the construction of the bad
smell dataset (Step A). In this step the voting system was applied, and the dataset is
obtained. The next step was to evaluate the bad smell dataset (Step B). Steps A and
B were presented in Chapter 3. With the evaluated data, we can begin to identify bad
smell agglomerations in our dataset (Step C). After obtaining the list of agglomerations
in Step C and their metrics in Step D, we can calculate how they affect aspects of the
system modularity, evaluating their difference in terms of mean and variation (Step E).
As output, we identified the bad smell agglomerations present in the systems; evaluated
their density on the source code; and how they affect the system modularity. We also
analyzed in depth the behavior in terms of density and impact of the Heterogeneous
Agglomerations on software modularity.

Before explaining this chapter organization, it is worth to remember some con-
cepts. Heterogeneous Agglomeration is a class that contains two or more bad smell
types, and two or more bad smell instances. A Homogeneous Agglomeration is a class

25

26 Chapter 4. Study Design

Figure 4.1: Methodology steps

that contain at least two smell instances, but all of them are of the same type. Isolated
classes only contains one bad smell instance. Finally, Clean classes does not present any
smell instance. This chapter is organized as follows. Section 4.1 presents the Research
Question (RQ) that drives this work, with a brief explanation of the steps conducted
to answer them. Section 4.2 explains how the Homogeneous and Heterogeneous Ag-
glomerations were identified. Section 4.3 describes the use of metrics as a proxy of the
source code modularity. Sections 4.4 explains how the density was calculated. Finally,
Section 4.5 presents the main threats to the validity of our dissertation.

4.1 Research Questions

Our goal is to understand how bad smell agglomerations impact the source code modu-
larity. For this purpose, we first have to identify such agglomerations, and then measure
them according with a set of metrics. Finally, we can apply techniques that allow us to
comprehend how the classes with the identified agglomerations compare with classes
that have only a single smell instance or that are Clean. This goal is achieved with
meaningfulness metrics for the association rules, frequency statistics to characterize
the systems, measurements of effect, and analysis of variability of the data. This scope
helped us to formulate the main research questions that guide the data collection and
their analysis. We now present the RQs and a brief explanation of their purpose.

4.1. Research Questions 27

RQ1 Are there Heterogeneous Agglomerations that are more meaningful in the
source code than other heterogeneous ones?

This question aims at understanding which bad smell agglomerations have a
significant presence in the source code. For this purpose, we use association rules
and metrics of meaningfulness to mine only the statistically significant agglomerations.
Even though the technique appears to be too sophisticated to answer this question,
it provides us a complete set of information about the dependencies between the bad
smells, the strength of the rule, and allow us to extend our analysis for more bad smells
and systems in the future. More details are present in Section 4.2.

RQ2 Are Homogeneous Agglomerations more frequent in the source code when
compared to Heterogeneous Agglomerations?

RQ2 complements RQ1, since in the association rule, a rule cannot contain the
same item in the consequent and antecedent parts, i. e., a Homogeneous Agglomer-
ation is not identified using the association rule algorithm. To answer this question,
Homogeneous Agglomerations are found through the calculation of frequency statis-
tics. Later, they are classified as Homogeneous Feature Envy or Homogeneous Long
Method, according to the type of smell present in the agglomeration. This allow us to
verify if they present a similar behavior in terms of appearance.

RQ3 Are bad smell agglomerations denser in the source code than isolated smells?
This question aims at understanding if the size of the system is influencing the

presence of agglomerations. Upon observing the density, we can observe that if the
agglomeration categories (described in Section 2.2) are mitigated when considering
different levels of granularity. To answer this RQ, we classified each class according to
their agglomeration category. We then group each class considering the system that the
class belongs. Later, frequency statistics were used to understand how the categories
density compares to each other at the level of system. We present three sets of boxplots
that consider: (i) the absolute number of instances for each category, (ii) the density
of affected classes by each category, and (iii) the density of each category per KLOC.

RQ4 How the bad smell agglomerations impact on aspects of the system modu-
larity?

This RQ aims at raising evidences of how bad smell agglomerations impact on
the source code modularity. We use source code metrics as a proxy of the system
modularity. Each metric represents aspects of modularity. If there is a significant
difference in the metric values, they may be used to provide evidence of the presence of
agglomerations. This information could help practitioners to know if the existence of
agglomeration on the code that they are working on can lead to technical debts. These
debts should be refactored in order to pay them, before they are too difficult and costly

28 Chapter 4. Study Design

to do so. To answer this question, we present a heat map that helps to visualize the
effect of these agglomerations on the aspects of modularity considered.

Finally, we present a complementary research question that aims at understanding
in depth if there is a difference between the different types of Heterogeneous Agglomer-
ations that appeared on the bad smell dataset. Beyond analyzing their differences, we
evaluate if the different types of Heterogeneous Agglomeration reflect the aggregated
heterogeneous type studied in RQ1, RQ3 and RQ4.

RQ5 Does the types of Heterogeneous Agglomerations have an uniform behavior
in terms of density and impact on aspects of system modularity?

This RQ aims at understanding if there is a difference in the behavior of Het-
erogeneous Agglomerations in their density along the systems and how they impact
on modularity. This comparison is made among only Heterogeneous Agglomerations,
allowing us to verify if their behavior is uniform. For this purpose, we employ a similar
strategy to the RQ2 and RQ4. However, we classified each Heterogeneous Agglomera-
tion according with the bad smells that it contains.

One aspect that may be highlighted is the fact that we are evaluating bad smell
agglomerations that may overlap with each other. For example, in RQ3 and RQ4,
we compare Homogeneous FE and Isolated FE, and Homogeneous LM and Isolated
LM. We opt to make this analysis to test our assumption that classes with more than
one smell instance have a more degraded modularity than classes with only one smell
instance. In allowing this comparison, we can verify if for these smells the assumption
holds. For the in depth analysis of Heterogeneous Agglomerations, the overlap of bad
smells in the agglomeration permits us to evaluate if the obtained results are being
influenced by the smells that are present in class C1 but not in C2. We are interested
in evaluating how the difference between sets of smells behaves in terms of density and
impact on the aspects of modularity.

4.2 Identification of Agglomerations

In order to identify the Heterogeneous Agglomerations, we used the Apriori Algorithm.
We first generated one file for each bad smell with all the classes that contained them. In
order to generate the input for the association rule algorithm, we wrote a Python script
that matches the instances that contains the different bad smells. Using dictionaries
and reading each file one time, we obtained, for each class that contains at least one
bad smell instance, a tuple composed of: 4 binary variables indicating the presence
of Large Class, Refused Bequest, Feature Envy and Long Method, respectively; one

4.2. Identification of Agglomerations 29

integer variable counting the number of Feature Envy in the class; and one integer
variable storing the number of Long Method present in the class. The four binary
variables are used in the Apriori Algorithm, and the two integers allow us to verify the
density of method smells in a class.

However, Apriori requires as parameter metrics to use to make the decision of
what rule to consider as strong. The most common metric to use in association rules
is Support. Support alone leads to poor results [24], since it calculates the probability
of co-occurrence of items in a dataset. To address this limitation, we consider as our
decision maker in each step the metrics Lift and Confidence. The association rule
algorithm also receives as parameter an integer that limit the number of items in
the Antecedent part of the rule. We opted to not limit the quantity of items in the
Antecedent, because this provide us additional information about the strength of the
rule.

To illustrate this gain, is more didactic to provide an example. Let’s suppose you
have items A, B, C and D. After applying the association rules without constraining
the Antecedent, you obtained the following rule: A,B → C. When observing how the
Apriori algorithm works, in the first iteration, the algorithm discovered that items A, B
and C have a significant presence. Meanwhile, item D is rare and can be unconsidered.
In the next step, the algorithm discovered that A → C and B → C are meaningful.
Finally, in the final step we would obtain the rule A,B → C. If we had limited the
algorithm to contain only one item in the Antecedent, we would have obtained the two
rules A → C and B → C . However, they do not provide us the information that
when A and B appears together with C, they are as strong as the two separated rules.
Consequently, in constraining the number of items in the Antecedent, we are ignoring
the interaction between the items A and B that in our example is really significant.

After presenting the reasons for the parametrization, Table 4.1 presents the three
meaningfulness metrics used, their respective formula and threshold. The Confidence
metric indicates the validity of the rule, ranging from [0,1]. This metric can be inter-
preted as the chance that a class presents the bad smell S, given that (a set of) bad
smell Y is present in the class. The Lift measures the dependence between the two
sides of the rules, ranging from [0,∞], with 1 indicating that the items are independent.
A Lift above 1 indicates that both sides of the rule are positively dependent.

It is worth noticing that the considered thresholds were adapted from previous
works [49; 61]. Since Walter [61] and Palomba’s [49] thresholds are not flexible enough,
being a fixed value, we have empirically tested new thresholds to verify if they could
lead to other association rules. However, we could not find new rules when trying
different combinations of confidences and lifts. To obtain the association rules and all

30 Chapter 4. Study Design

Table 4.1: Association Rules Measurements

Rule Concept Formula Threshold
Support % of samples that the rule

satisfies in the dataset [24]
P (A ∪B) above 0.05

Confidence Degree of certainty of the
detected rule [24]

P (A∪B)
P (A)

above 0.6

Lift The dependence between
items in the rule [24]

P (A∩B)
P (A)×P (B)

above 0.80

statistical metrics that we investigate in this dissertation, we have used the package
arules1 from the R language, a consolidated implementation that was used in different
works [49; 61; 67].

To complement the analysis of rule strength and items correlation, we also mea-
sured: (i) the Chi Square of the rule, which tests the independence between the An-
tecedent and Consequent, in which high values means that they are not independent.
(ii) Imbalance Ratio, that measures the degree of the imbalance between the two sides
of the rule, in which values close to 1 indicate that the conditional probabilities are
very different. (iii) Odds Ratio (OR), that is used to compare the probability of finding
A in transactions that contain B in comparison with transactions that contains A but
do not contain B. Values of OR above 1 means that the probability of A occurring is
higher when B occurs [55].

To identify Homogeneous Agglomerations, we have used frequency statistics.
Even though they are less powerful than the meaningful metrics, this choice was made
due to the fact that association rules have the restriction that items in the Antecedent
have to be different from those on the Consequent. The agglomerations found were
further classified as Homogeneous Feature Envy or Homogeneous Long Method.

4.3 Modularity Metrics

Attributes of quality are difficult to estimate directly from the source code, since they
depend on the context of the system, on who is evaluating, and mainly, they express
nonfunctional requirements. To address this complexity, we used source code metrics
that help to indicate the system modularity, since it conceptualizes in a numerical value
aspects of the system. For example, they can extract information about class/method
cohesion, size, coupling, complexity and inheritance. Several object oriented metrics

1https://cran.r-project.org/web/packages/arules/index.html

4.3. Modularity Metrics 31

that capture modularity have been proposed in the literature [8; 34]. Here, we focus
on the ones that had their capability of representing aspects of modularity.

In order to make this analysis, each class of the systems has to be measured
according to a set of metrics. Since it is known - through the bad smell dataset - which
classes have agglomerations, they can be compared in terms of difference in their means
and variations. These statistics allow us to understand if there is a difference in their
general behavior. We made our analysis inspired by previous work [20] that studied the
impact that refactorings have on source code metrics and found that some refactoring
operations do impact on the metrics values.

First, we calculated the metrics for all classes of the 20 systems. Later, we classi-
fied each class in the metrics files through the use of a Python script. These files were
merged in one, being grouped later in several files, according with its agglomeration
type. These files contain the class name, the metric values and its classification. This
grouping allows the identification of statistical differences between metric values for
each category, since we can obtain frequency statistics for each category. For this anal-
ysis, we used Cohen’s d [9], a measure of effect size. Cohen’s d in the t-test assumes
that the standard deviation of both samples under evaluation are similar. Since this
assumption does not hold in our dataset, we used a pooled standard deviation that
considers both samples means and sizes. Beyond this calculation, we also analyse the
direction in which the d value is tending.

To complement our results, we also present for each pair metric-category the
mean, standard deviation and the Coefficient of Variation (CV). The Coefficient of
Variation [52] is a normalization that considers the standard deviation and the mean.
It can be interpreted as how much the standard deviation deviates from the mean,
providing a more consistent comparison between means that have different scales and
that varies greatly in values. Through the ratio between two CVs, we can calculate the
difference between the normalized variations of two categories.

Finally, we also make a correlation analysis using Pearson Correlation [52]. This
analysis allow us to verify if the selected metrics are strongly correlated. Consequently,
it allows us to identify if the obtained results for the Cohen’s d and CVs are correlated.
This measurement can be interpreted in the following way. Values close to 0 indicates
that the two variables are not correlated, indicating that they are independent. Values
close to -1 means that there is a negative correlation between the two variables, i.e.,
when one of the variable increases in value, the other variable decreases its values.
Similarly, values close to +1 indicates that the variables are positive correlated. If one
variable had a increase in its value, the other one will have its value increased too.

Table 4.2 shows the selected metrics and what it calculates. We focused on

32 Chapter 4. Study Design

Table 4.2: Analysed Metrics and their Definition

Name Definition
Coupling Between Objects
(CBO)

It calculates how many classes are coupled to
a class C.

Depth of Inheritance Tree (DIT) It measures how deep the class is in the in-
heritance tree.

Response set of a class of objects
(RFC)

It measures how many methods can be called
given a call in an object of a class.

Weighted Method Class (WMC) It is calculated summing all the weights for
each method of a class. In our case, the
weight is the number of lines of code of each
method.

max nest blocks (maxNest) It calculates the highest number of blocks
nested together in a class C.

metrics that are associated with class, to avoid having to group the metric values to
raise them to the class level. This grouping could lead to incorrect results, since the
most common of them is to take means, not taking into account the class variation.
Table 4.3 presents the metrics and the aspect of modularity that they measure. The last
column shows the study that empirically evaluated their importance to the modularity
aspect. The metrics were selected due to the existence of studies that provide evidences
that they may quantify an attribute of modularity, such as complexity, coupling and
fault proneness [3; 4]. We use these aspects as symptoms of degradation of the system
modularity. Most of the metrics are from the CK metrics suite [8], a widely used set
of metrics that capture aspects of modularity. We used the CK tool2 to calculate the
selected metrics.

Table 4.3: Metrics and its Modularity Aspects

Metric Aspect of Modularity Source
CBO Coupling [3]
WMC Complexity/Fault proneness [3; 4]

MaxNest Complexity [3]
DIT Inherintance/Fault proneness [3; 4]
RFC Fault proneness [4]

These metrics approach different views of modularity. High coupling means that
the entities in the source code have a strong dependency between each other. This
makes the code more difficult to change, since developers need to pay caution to all
dependencies before changing the class. If not, the software system may break. High

2https://github.com/mauricioaniche/ck

4.4. Density Calculation 33

complexity makes the source code harder to understand and to maintain. The metrics
concerning the fault proneness means that the entity is more prone to presenting faults
than other entities. This proneness may imply different modularity problems, such as
high complexity, complex relationships between components, and others. Finally, the
inheritance aspect means that, as the name may suggest, it may have a problem in the
inheritance tree that the class belongs.

4.4 Density Calculation

In order to verify if size was impacting the existence of the intra-component agglom-
erations, we verified how such agglomerations are distributed along the systems. We
focused our analysis in three measurements at different granularity levels: absolute
number of agglomerations, the density of classes affected by the agglomerations, and
their density across the lines of code (LOC). First, we calculated for each system their
number of classes, their number of methods and their LOC. We then generated two dif-
ferent files: one that presents the agglomerations described in 2.2, allowing us to verify
if different size measurements are affecting directly the density of agglomerations. The
second file presents only the classes that are Heterogeneous Agglomerations, classified
according with the bad smells present in the class. For example, RbLm is a class that
contains only Refused Bequest and Long Method. This classification allows us to verify
if there are Heterogeneous Agglomerations that are more dense in the source code, and
if different measurements of size mitigate their presence in the code.

The next step was to calculate the ratio of agglomerations per class, per method,
and per KLOC. For this purpose, we calculated for each agglomeration type, the num-
ber of agglomeration in system Sy divided by: the number of classes of the system Sy ;
divided by the number of methods of system Sy ; and divided by the KLOC of system
Sy, respectively. In order to complement this analysis, we also present the Inter Quar-
tile Rate (IQR) measurement and the standard deviation, both calculated around the
system mean values. The IQR is a measure of dispersion that captures the difference
between the third and first quartiles. High values indicate a large variability in the
results, i.e., other system characteristics play a major role in the presence of bad smell
agglomerations. Conversely, a low value indicates that the overall results are stable.
This analysis was inspired on the Palomba et al. work [46].

34 Chapter 4. Study Design

4.5 Threats to Validity

Since we are dealing with a large volume of data from the dataset and statistical
analysis, we opted to use consolidated algorithms from the R and Python languages,
such as the arules from R and pandas from Python. To present the data, we also used
known algorithms from the d3 library from JavaScript. To avoid errors in transcription,
all generated data were obtained through the use of scripts. The scripts and their results
were revised several times to assure their correctness.

4.6 Concluding Remarks

In this chapter, we aimed at presenting this dissertation methodology. For this pur-
pose, we first presented a figure summarizing the activities that took place in order to
achieve our goals. Later we presented our five research questions, followed by a brief
explanation of their respective importance and the analysis technique used to answer
them. We then presented the parametrization of the Apriori Algorithm, and the mo-
tivation for choosing them. The next sub-chapter described the selected modularity
metrics and the methodology used to evaluate the impact that the categories have on
them. Finally, we presented how, and why, the agglomeration density was calculated.

In the next chapter, we will focus on answering the first four research questions
that aims at verifying how the agglomerations described in Section 2.2 behave in the
source code. For this purpose, we first identify which Heterogeneous and Homogeneous
Agglomeration is frequent in the source code. We then evaluate their density in the
source code considering different levels of granularity, and how they impact aspects of
the source code modularity.

Chapter 5

Results and Analysis of Bad Smell
Agglomerations

In the previous chapter, we focused in describing the methodology used along this
dissertation. We defined the research questions that drives this work, with a brief
explanation about how they were answered. We then explained the reasoning of the
selected parameters of the Apriori algorithm. Later, we presented how the impact of
bad smell agglomerations on software modularity was calculated. Finally, we presented
how the density was calculated for each system, aiming at investigating how the size
is influencing our results at three different levels of granularity.

This chapter aims at presenting our findings and answering the research questions
related to bad smell agglomerations. Each section aims at answering one question
as follows. Section 5.1 describes the results of the identification of Heterogeneous
Agglomerations. Section 5.2 presents the analysis of the presence of Homogeneous
Agglomerations in the source code. Section 5.3 evaluates the agglomeration density in
comparison to isolated smells. Section 5.4 analyses the impact of agglomerations on
aspects of software modularity. Finally, Section 5.5 concludes and discusses our key
findings and implications for practitioners and researchers.

5.1 Understanding Heterogeneous Agglomerations

This section aims at answering the first research question, exploring which Hetero-
geneous Agglomeration is frequent in the source code, and how the bad smells that
compose them are correlated. We answer: RQ1: Are there Heterogeneous Agglomer-
ations that are more meaningful in the source code than other heterogeneous ones?.
Table 5.1 presents the association rules found and their meaningfulness metric values.

35

36 Chapter 5. Results and Analysis of Bad Smell Agglomerations

The first column shows the detected rules, and the second to fourth columns present
the association rules metrics, the Support, Confidence and Lift, respectively. The fifth
column presents the result of the test of independence between the items in the rules,
the Chi-Square (χ2). The sixth column shows how imbalanced the sides of the rules
are, the Imb. column. The seventh column shows how many instances of the rule
were found, and their respective participation in all agglomerations found, including
the Homogeneous Ones. Finally, the eighth column present the Odds Ratio (OR) for
each rule found.

Rules can be interpreted in the following way: a rule is a Heterogeneous Agglom-
eration composed of at least two bad smell types. The smells in the Antecedent part
of the rule (left side) are evidences that the smell on the Consequent part (right side)
is also present in the agglomeration. That is, a class that contains the smell on the
Antecedent have a high probability of also presenting the smell on the Consequent.
Interestingly, every rule found by the Apriori has the FE smell on the Consequent.
This means that every agglomeration of at least two smell types has a high probability
of also presenting the FE smell. We may conclude that the presence of FE in an
agglomeration is highly dependent on the presence of other bad smells.

To further investigate the presence of only FE on the Consequent part of the rule,
we have changed the parameters and thresholds of the algorithm to verify if it yielded
different results. However, even after these changes, we did not find rules that have a
different bad smell on the Consequent. This result may be due to the large presence
of the FE smell in the dataset compared to other smells. Our dataset is unbalanced,
similar to the real world. This imbalance can be confirmed with the Imbalance Ratio
[62] shown in column Imb. in Table 5.1. For all detected rules, the value is close to 1,
indicating that the conditional probabilities of both sides of the rules are very different.
This imply that the significant presence of Feature Envy smell may be directly affecting
our results.

Table 5.1: Agglomerations Found by Association Rule
Rule Supp. Conf. Lift χ2 Imb. Count OR
LC, RB → FE 0.062 0.756 1.485 142.58 0.807 406(22.72%) 2.131
RB, LM → FE 0.047 0.614 1.205 23.97 0.802 310(17.35%) 1.587
LC, LM → FE 0.043 0.679 1.322 51.15 0.843 283(15.84%) 3.262
LC, LM, RB→ FE 0.024 0.734 1.441 44.58 0.920 157(8.79%) 2.736

To complement our analysis, we calculated the dependence between the sides of
the rules with the χ2 [33] with 1 degree of freedom and α = 0.05. From the column
χ2 in Table 5.1, we can observe that all Antecedent and Consequent parts are highly
dependent, with the rule LC,RB −→ FE presenting the highest dependence value

5.2. Understanding Homogeneous Agglomerations 37

(χ2 = 142.58). Finally, we can observe that, for all rules found, the OR is above 1,
indicating that the presence of the Antecedent is positively influenced by the presence
of the Consequent in the agglomeration. The highest OR value was obtained for the
rule LC,LM −→ FE.

We can also analyze if this result is directly associated with the bad smell defini-
tions. Beyond having a large size in terms of LOC, many attributes and many methods,
a Large Class has more than one responsibility [21]. By consequence, some of its meth-
ods may be interested in being in another class. The same occurs with Long Method
and Refused Bequest. In Long Method, some of its functionality may be interested
in another method from another class. In Refused Bequest, since it tends to not use
their parent behavior, to improve the inheritance tree, all unrelated behavior of the
class should be moved to another class. Consequently, Refused Bequest classes may
present methods that envy other classes. As can be seen, the bad smell definitions are
closely related, some of them even suggesting the presence of each other. Therefore,
the association rules found match their definitions.

We also limited to 1 the number of items in the Antecedent, to force the appear-
ance of different rules that did not involve the Feature Envy smell. Even doing this,
we could not find other rules that had other smell on the Consequent. The rules found
in this dissertation complement the ones found in the work of Walter et al. [61]. The
authors also presented in a table, a comparison between the new agglomerations found
by them, and those that were already found in the literature. Our results compare to
theirs when analysing the dataset composed of the agreement between two and three
tools, the quantity of tools that detected the smells in our dataset. All rules found in
this dissertation are different from those found in their work and on their comparison
table with the literature.

RQ1: We have found four meaningful Heterogeneous Agglomerations, with the Fea-
ture Envy smell always on the Consequent part of all rules. This result may imply that
combination of two or more smells increases the probability of the Feature Envy smell
occurring in the agglomeration. We can also observe that the bad smells evaluated
are highly and positively correlated (Lift and χ2). The most common Heterogeneous
Agglomeration is the LC,RB → FE, with a confidence of 0.756.

5.2 Understanding Homogeneous Agglomerations

This section aims at answering our second research question, understanding if the
presence of Homogeneous Agglomerations is significant in the source code. We an-

38 Chapter 5. Results and Analysis of Bad Smell Agglomerations

swer RQ2: Are Homogeneous Agglomerations more frequent in the source code when
compared to Heterogeneous Agglomerations?. Since the association rules do not allow
the detection of agglomerations composed only of the same type of smells, an addi-
tional analysis was conducted to verify their presence in the code. Similar to the last
column from Table 5.1, Table 5.2 presents the number of classes that contain each
type of Homogeneous Agglomerations. The first column from Table 5.2 presents the
agglomeration type. The second one shows the absolute number of Homogeneous Ag-
glomeration found in our dataset. The third column presents the participation of each
Homogeneous Agglomeration in all agglomerations found, including the Heterogeneous
ones. For instance, in Tables 5.1 and 5.2, we identified 1,787 different agglomerations
in total, 1,156 Heterogeneous Agglomerations (Table 5.1) and 631 Homogeneous ones
(Table 5.2).

Comparing the presence of the agglomeration in our dataset, the Homogeneous
Feature Envy Agglomeration has a expressive presence in our dataset, with approxi-
mately 10% more instances than the second most common agglomeration, the LC, RB
→ FE. This finding implies that if we had used only association rules, we would have
ignored a significant agglomeration. Consequently, when analysing bad smell agglom-
erations, it is necessary to evaluate if the Homogeneous Agglomeration are also present
in the source code.

Table 5.2: Number of Homogeneous Agglomerations Found

Agglomeration Count Participation in All Agg.
Homogeneous Feature Envy 578 32.34%
Homogeneous Long Method 53 2.97%

RQ2: Homogeneous Feature Envy is the most frequent type of agglomeration in the
source code, representing almost 32.5% of all agglomerations found, including the het-
erogeneous ones. The presence of Homogeneous Long Method is rare, being the rarest
agglomeration type in the source code. This result implies that when evaluating ag-
glomerations, it is necessary to consider the existence of Homogeneous Agglomeration.

5.3 On the Agglomeration Density

After identifying the bad smell agglomerations, we can now answer the third research
question: RQ3: Are bad smell agglomerations denser in the source code than isolated
smells?. This analysis provides us information about the impact that size and quan-
tity of bad smell agglomerations found have on our results. Figure 5.1 presents seven

5.3. On the Agglomeration Density 39

box-plots that show the absolute numbers of classes in each system. These box-plots
were organized according with the seven categories of bad smells. Figure 5.1.(a) rep-
resents the Heterogeneous Agglomerations. Figures 5.1.(b) and 5.1.(c) represent the
Homogeneous Feature Envy (Homogeneous FE) and Homogeneous Long Method (Ho-
mogeneous LM), respectively. Finally, Figures 5.1.(d) to 5.1.(g) show the Isolated bad
smell categories. They are, respectively, Isolated Feature Envy (Isolated FE), Isolated
Long Method (Isolated LM), Isolated Large Class (Isolated LC), and Isolated Refused
Bequest (Isolated RB). Figures 5.2 and 5.3 are organized in the same way as Figure
5.1. However, they depict the density considering the number of classes in each system,
and the density considering the system KLOC, respectively.

Figure 5.1: Absolute numbers of classes with bad smells. (a) Heterogeneous Agglomer-
ations, (b) Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e) Isolated LM,
(f) Isolated LC, and (g) Isolated RB.

Figure 5.2: Percentile of classes presenting agglomerations. (a) Heterogeneous Agglom-
erations, (b) Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e) Isolated LM,
(f) Isolated LC, and (g) Isolated RB.

To complement the box-plot analysis, we also calculated the Interquartile Range
(IQR) and the standard deviation (σ), shown below each box plot. We can observe
in Figures 5.1 to 5.3 that Heterogeneous Agglomerations are indeed more dense in the
source code than other categories in terms of absolute numbers, percentage of classes
affected by them and per KLOC, with means approximately 100, 0.1 and 1, respectively.

40 Chapter 5. Results and Analysis of Bad Smell Agglomerations

Figure 5.3: Density of bad smells per KLOC (a) Heterogeneous Agglomerations, (b)
Homogeneous FE, (c) Homogeneous LM, (d) Isolated FE, (e) Isolated LM, (f) Isolated
LC, and (g) Isolated RB.

In contrast, the Homogeneous Long Method is the least dense in the source code, with
low means for all plots. We have found in Section 5.2 that Homogeneous FE is the
most common agglomeration type in our dataset. However, when we observe Figures
5.1 to 5.3, we can point out that Isolated RB is more present in the systems than
the Homogeneous FE, with means of 73.7 and 28.9 for the absolute numbers, and
means of 0.89125 and 0.2626, respectively. This finding implies that Homogeneous FE
is mitigated when considering system size than the Isolated RB, since there are more
methods in a system than classes.

Analysing each category individually, we can observe from Figure 5.1 that Hetero-
geneous Agglomeration varies the most, with an standard deviation of 125.9, followed
by Isolated RB (93.6) and Isolated LM (74). Both IQR and standard deviation show
that the three categories suffer greatly with outliers. For example, Weka presents 470
Heterogeneous Agglomerations, and 268 Isolated RB. Meanwhile, Commons-Logging
does not present Heterogeneous Agglomerations, but present 3 Isolated RB. This im-
plies that certain domains of systems present more of these agglomeration categories
than others. From Figure 5.2, we may observe that Isolated RB (g) are mitigated when
considering the size of the system, i. e., the number of classes. However, its variability
is still high, with a standard deviation of 0.16, the highest one for this figure. Finally,
from Figure 5.3, we can observe that the median for Heterogeneous Agglomeration is
the highest, with a value of approximately 1 per KLOC. The median for Isolated RB
follows the Heterogeneous Agglomerations, with the value of 0.4125.

It can be observed from the box-plots that size does affect our results. For
example, Heterogeneous Agglomeration had the highest median for all plots. The
absolute box-plot is a reflection of the quantity of bad smells found in each system.
Observing in general values, some of them are really small. For example, for Isolated
LM (e) and Homogeneous LM (c) the median is approximately 10 and 2, respectively.

5.4. Impact of Agglomerations on Modularity 41

This means that most systems had approximately only 10 and 2 classes affected by
these agglomerations in all systems. The box-plots that consider the number of classes
helped us to verify if the absolute number was mitigated when considering the number
of classes of each system. Finally, the analysis of KLOC allowed us to understand if
there is a high concentration of agglomerations in each KLOC. We concluded that for
some categories, the behavior for all box-plots are similar, except for the Heterogeneous
Agglomerations. Finally, we observed that for the Heterogeneous Agglomeration each
KLOC, in median, has one instance of the bad smell.

RQ3: From the conducted analysis, we have found that Heterogeneous Agglomerations
are denser in the source code, and the least dense is Homogeneous LM. We have also
found that the Isolated Refused Bequest varies greatly on the absolute numbers, but
it is less sensitive when considering the lines of code. Finally, we can not observe a
category that have a high density of smells when considering the number of classes
and the KLOC of each system.

5.4 Impact of Agglomerations on Modularity

This section aims at investigating the impact of the bad smell agglomerations on the
modularity metrics, answering the fourth research question, RQ4: How the bad smell
agglomerations impact on aspects of the system modularity?. For this purpose, we
calculated the Cohen’s d for each pair of agglomerations, as explained in Section 4.3. To
explain cohesively all pairs, we have taken the absolute value of each d calculated, and
further classified each value according to the Cohen’s d effect size. They are classified
as follows. Small: when the value is below 0.5. Medium: values above 0.51 and below
0.8. Large: values above 0.81 [9]. To better complement our findings, the complete
table of d values is present in Appendix A. We opted to compare each category of bad
smell agglomeration in order to analyze in depth how the agglomerations compare to
isolated and clean classes. This allow us to verify how the presence of more than one
smell instance in a class may impact the modularity when compared to classes that
have only one bad smell instance.

Table 5.3 complements this analysis by providing the data used to calculate the
Cohen’s d and the Coefficient of Variation (CV). The first column presents the metric
and the second column presents in each line the agglomeration types under study.
Finally, the third, fourth and fifth columns present in each line the mean, the standard
deviation (σ), and the CV [52] for the pair Metric-Agglomeration Type. It is worth
to mention that the mean and standard deviation are based on the entire system. We

42 Chapter 5. Results and Analysis of Bad Smell Agglomerations

opted to present these data in order to clarify what the results of the Cohen’s d means,
since readers can evaluate visually the difference between the values of each category
and metric. We present this analysis per metric evaluated.

Table 5.3: Overall Variation of General Agglomerations

Metric Agg. Type Mean Std. Dev. CV

MaxNest

Heterogeneous 41.187 159.723 3.878
Homogeneous FE 31.079 135.930 4.374
Homogeneous LM 13.577 77.278 5.692
Isolated FE 20.034 119.544 5.967
Isolated LC 12.712 54.332 4.274
Isolated LM 4.108 13.986 3.405
Isolated RB 6.256 28.285 4.521
Clean 21.393 85.470 3.995

RFC

Heterogeneous 50.887 43.961 0.864
Homogeneous FE 24.697 23.858 0.966
Homogeneous LM 27.558 15.983 0.580
Isolated FE 16.115 13.794 0.856
Isolated LC 71.132 70.179 0.987
Isolated LM 24.483 13.810 0.564
Isolated RB 11.552 13.320 1.153
Clean 9.098 16.906 1.858

DIT

Heterogeneous 3.096 2.920 0.943
Homogeneous FE 2.332 2.968 1.273
Homogeneous LM 2.846 1.903 0.669
Isolated FE 2.290 1.917 0.837
Isolated LC 2.434 2.699 1.109
Isolated LM 3.090 1.903 0.616
Isolated RB 2.973 1.749 0.588
Clean 2.134 2.036 0.954

WMC

Heterogeneous 61.055 65.424 1.072
Homogeneous FE 26.007 42.938 1.651
Homogeneous LM 34.865 32.660 0.937
Isolated FE 14.837 15.490 1.044
Isolated LC 100.862 106.481 1.056
Isolated LM 19.485 22.342 1.147
Isolated RB 13.025 13.818 1.061
Clean 10.581 21.225 2.006

CBO

Heterogeneous 16.062 16.145 1.005
Homogeneous FE 8.821 12.476 1.414
Homogeneous LM 14.673 13.887 0.946
Isolated FE 6.744 5.830 0.8964
Isolated LC 22.125 21.261 0.961
Isolated LM 12.397 7.840 0.632
Isolated RB 7.151 5.135 0.718
Clean 5.779 6.687 1.157

5.4. Impact of Agglomerations on Modularity 43

Figure 5.4 presents for each metric a heat map that shows the Cohen’s d values
between each possible pair of agglomeration types. The rows and columns represent the
agglomerations. The color of the square represents the effect size. A black color shows
that the effect size is Large. A dark gray shows that the effect size is Medium. A light
gray shows that the effect size is Small. A white box represents that the difference
is null due to the comparison of the same type of agglomeration. For example, for
the CBO metric (e), the d value of Heterogeneous Agglomeration and Clean classes
is Large, with a black box. However, for the same metric, the difference between
Homogeneous LM and Isolated LM is Small (light gray box).

Figure 5.4: Pairwise Cohen’s d per metric. (a) maxNest. (b) RFC. (c) DIT. (d) WMC.
(e) CBO.

MaxNest: a higher maxNest indicates that the code is more complex [3], due to
the nesting of blocks. In Figure 5.4.(a), we can observe that all effects are Small. The
CVs values indicates that for most agglomerations categories, the standard deviation is
approximately 4 times the mean, and they range from 3.405 to 5.967. Observing only
the heat map, we can not take any conclusion. Observing the original values present
in Appendix A, the highest d value was for the pair Heterogeneous-Isolated LM, with

44 Chapter 5. Results and Analysis of Bad Smell Agglomerations

a value of 0.3270. We can also observe that for most lines, the highest value for the
pairs are with Heterogeneous Agglomeration. Even though we do not observe a large
difference between the means, the mean of Heterogeneous Agglomeration is slightly
higher than the other categories. Consequently, they are a bit more complex than
other categories.

RFC: the largest the RFC value is, the highest is the probability of faults de-
tection [4]. These faults may be introduced due to system complexity and poor un-
derstandability. We can observe in Figure 5.4.(b) that most of the Large effects are
the pairs with the Isolated LC category. We also observe that Heterogeneous and
Isolated LM have a high effect too. From Table 5.3, we can see that for most of the
categories, the CV is less than one, indicating that these categories do not suffer from
high variability. This result is interesting because the RFC measure is associated with
the definitions of the LC and LM smells. We highlight the fact that for Heterogeneous
Agglomeration, all rules found present Large Class, Long Method, or both. Observing
the original values, the highest d value is for the pair Heterogeneous-Clean (1.2547).
The signals for the Heterogeneous and Isolated LC are mostly positive, indicating that
their means are indeed higher than other categories. It is interesting to notice that
the d value for Heterogeneous-IsolatedLC is -0.3457, indicating that Isolated LC have
a large mean value than the Heterogeneous ones. We can conclude that classes that
have Heterogeneous Agglomerations or only presents Large Class are more fault prone.

DIT: this metric indicates that the module has long chains of inheritance and
may increase the fault proneness [3]. From Figure 5.4.(c), we can not observe any
trends in our data, similar to the MaxNest metric. This result is also reflected on
the fourth column from Table 5.3, with most CVs bellow 1. This indicates that the
standard deviation of each category is stable and similar to the mean. We expected to
find that classes and rules that contained Refused Bequest presented a higher effect,
but this expectation could not be confirmed. When observing the original values in
Appendix A, the highest d values were in the pairs that considered the Clean classes.
We can also observe that pairs with Heterogeneous Agglomerations and Isolated RB are
slightly and positive higher than other categories. In conclusion, we can only observe
a slight effect for those two categories and, consequently, they tend to be more fault
prone than other categories.

WMC: this metric indicates classes that are more complex and fault prone [4; 3].
It can be observed from Figure 5.4.(d) that the highest effects are pairs with Isolated
LC. This may be due to the definition of Large Class, that is directly associated with
complexity. Another interesting observation that can be made is for the Homogeneous
LM category, that had 3 Large effects and 3 Medium effects. This is interesting because

5.5. Discussion 45

of the definition of this category, in which the class has at least two long methods, and
the definition of the metric, that considers the line of code of each method. Excluding
Heterogeneous and Isolated LC, all effects are positive. This finding is in line with
the definition of both Homogeneous LM and the metric. That is, Long Methods have
more lines of code, and consequently, a higher WMC. From Table 5.3, we can observe
that most CVs are approximately 1, with the exception of Homogeneous FE and Clean
classes. Finally, we can conclude that Heterogeneous, Isolated LC and Homogeneous
LM classes are more complex and more fault prone than other classes.

CBO: a higher value for this metric means that the class is highly coupled to
other classes. In Figure 5.4.(e), we can observe that most of the Large effects are of the
pairs with Clean classes. However, when observing their original value in Appendix
A, all of them are negative, implying that Clean classes have a CBO value lower than
the other categories. This is expected, since in Clean classes we expect that they have
a low coupling. Otherwise, having high coupling may indicate that a Feature Envy
is occurring due to the smell definition. We can observe from Table 5.3 that most
categories have a CV bellow 1, indicating that the categories variation is low. Beyond
these findings, we can observe that the highest effects are associated with pairs that
contains Isolated LC. This result may be a reflection of the nature of the Large Class
smell, that is large in size and implements different functionality. Consequently, their
coupling to other classes are higher. We can conclude that the coupling of Clean classes
are lower than the other categories. Isolated LC also tends to be more coupled to other
classes, since it implements much more functionality that it should. Consequently,
they are more difficult to understand, due to their high level of interactions with other
classes.

RQ4: From our analysis, we observed that Heterogeneous Agglomerations do impact
on complexity, fault proneness, and inheritance. Their impact was not confirmed
only for the CBO metric. We also found that Homogeneous LM is more complex and
fault proneness when considering the WMC metric, and that Isolated LC does impact
the source code modularity. In conclusion, agglomerations do impact more aspects of
source code modularity than other categories.

5.5 Discussion

In this section, we discuss our findings, and their implication for practitioners. It is
interesting to notice that the presence of Homogeneous Agglomeration is not expected
due to the definition of the smells that composes it. We discuss the presence of Homo-

46 Chapter 5. Results and Analysis of Bad Smell Agglomerations

geneous Feature Envy, since our findings indicate that they have a significant presence
in the source code. It is worth to remember the definition of a Large Class and a Feature
Envy. The former is when a class tries to do too much. The latter is when a method is
more interested in being in another class, i.e., this method should be moved to the class
that it belongs. The presence of Homogeneous FE may be explained since the smell
existence implies that the class is doing too much. Beyond the detection strategies
that were used in the detection tools, we discuss the number of smells present in these
agglomerations.

Figure 5.5 presents two box plots: (a) it indicates the number of FE smells in each
FE Agglomeration; (b) it shows how the FE Agglomerations are distributed in each
system. Complementing Figure 5.5, Table 5.4 shows the mean and standard deviation
for each box plot. We can observe that the median and mean of the numbers of FE in
the Homogeneous FE Agglomeration is low, with values of 2 and 3.349, respectively.
This provides us evidence that the class is overall cohesive. We can observe in Figure
5.5.(b) that some systems do not contain this agglomeration. However, both Figure
5.5 and Table 5.4 present high variance in number of FE. This is expected, since some
systems have more FE than others. The largest agglomeration contain 32 FE smells.
However, 75% of the observed Homogeneous FE Agglomerations present 5 or less FE s.
To understand the effect of the outliers, we calculated the quantile value at 90%. The
result was 6, being in the range of the mean plus one standard deviation. Moreover, the
results in Figure 5.5 are consistent with Table 5.4. We can conclude that the quantity
does affect the presence of such agglomerations.

Figure 5.5: FE Agglomerations. (a) Presents the absolute number of the FE smell
present in each Homogeneous FE found. (b) Presents the number of Homogeneous FE
in each system.

These findings imply that identifying Homogeneous Agglomeration is a more
subtle task, due to the number of smells that compose it being small. This task may

5.5. Discussion 47

Table 5.4: Overall statistics for FE Agglomerations

Type Mean σ
Num. FE Per Class 3.349 2.509
FE Agg. Per System 28.9 32.831

be supported with the use of tools that detect such agglomerations. We can also observe
from our analysis that Homogeneous Agglomerations have a significant presence on the
source code (Section 5.2) and they indeed impact on the system modularity (Section
5.4).

The existence of Homogeneous Long Method Agglomeration is a paradox due
to their definition. That is, a class should have only one dominating method. A
possible explanation for this result is the detection strategy employed by detection
tools. Even though we used a total of 5 tools to detect the smells, 4 of them use metrics
to automatically classify each instance. This provides us insights that current metric-
based strategies do not consider that a class can only have one dominating method,
and this is not a direct problem with our construction of the dataset. Consequently,
this restriction should be addressed by tool’s developers.

Now we discuss how the selected metrics are affecting our results. The selection
of which modularity metrics to evaluate were greatly influenced by their use in the lit-
erature [8; 11] and if their impact were evidenced by other studies [3; 4]. After selecting
them, they were calculated using a tool that was used in other studies in the area [11].
We may also point out that some of the metrics analyzed are used in the detection
strategy of the tools. However, when analyzing the Coefficient of Variation, we could
not observe for these metrics a high difference between the categories. Consequently,
we believe they do not bias our analysis.

We have also calculated the Pearson Correlation [52] to understand if the metrics
are highly correlated, with degree of freedom of 21585 and with 95% of confidence.
Table 5.5 presents in the first column the pairs of metrics. The second column presents
the index of correlation r for the pair (metricA,metricB). The third column presents
the t value used to estimate the Confidence Intervals (CI) in column four. The fourth
column presents the Confidence Interval for the correlation between the two items.
Finally, we present in the last column the obtained p-value.

We can observe from the Confidence Interval that all correlations are significant,
because they do not include 0 in their interval, and all p-values calculated are smaller
than 0.001. We can observe that the highest correlations are for the pairs CBO-RFC
and WMC-RFC, with r of 0.74 and 0.78, respectively. All the correlations found are
positive. The CIs can be interpreted as the interval that contains the real correlation

48 Chapter 5. Results and Analysis of Bad Smell Agglomerations

between the two variables with 95% of confidence. We can observe that all intervals
are small in range. We can conclude that most pairs have a small correlation. As
consequence, our findings are not being affected severely by the multicolinearity of the
metrics.

Table 5.5: Correlation between pairs of metrics

Pair (x,y) Correlation r t value Confidence Interval p-value <
CBO and WMC 0.5265409 90.994 (0.5168311, 0.5361152) 2.2e-16
CBO and DIT 0.1882055 28.154 (0.1753056, 0.2010408) 2.2e-16
CBO and RFC 0.7420599 162.64 (0.7360015, 0.7479915) 2.2e-16

CBO and MaxNest 0.2143688 32.444 (0.2016053, 0.2270595) 2.2e-16
WMC and DIT 0.04234253 6.2265 (0.02901890, 0.05565111) 4.58e-10
WMC and RFC 0.7844838 185.85 (0.7792992, 0.7895610) 2.2e-16

WMC and MaxNest 0.278678 42.632 (0.2663281, 0.2909364) 2.2e-16
DIT and RFC 0.1278837 18.944 (0.1147394, 0.1409832) 2.2e-16

DIT and MaxNest 0.1046213 15.456 (0.09140884, 0.11779689) 2.2e-16
RFC and MaxNest 0.2676165 40.806 (0.2551875, 0.2799570) 2.2e-16

5.6 Concluding Remarks

In this chapter, we discussed the main findings of our research and answered RQ1
to RQ4, questions related to understand how agglomerations impact on the source
code modularity. We have found that, beyond having a significant presence in the
source code, Heterogeneous Agglomeration does impact more aspects of modularity
than classes with only one bad smell. We also found that Homogeneous Agglomerations
have a significant presence in the source code. This finding is novel in the study of
agglomerations. Finally, we analyzed the presence of such agglomerations and found
that when considering number of classes and KLOC, the densities are higher.

In the next chapter, we aim to study in depth the association rules found in Sec-
tion 5.1. We want to evaluate which rule impacts the most the source code modularity.
For this purpose, we calculate their density and the Cohen’s d. We also compare them
to other possible agglomerations that appeared in our dataset, but were not considered
as meaningful by the association rule algorithm.

Chapter 6

Understanding Heterogeneous
Agglomerations

In the previous chapter, we have found that Heterogeneous Agglomerations are more
frequent in the source code than other classes that contain bad smells. In total, we
derived four association rules from our dataset, using the association rules technique.
We also found that such agglomerations are indeed more dense in the source code,
and they do impact on the software modularity. These evidences raise the need of
understanding if all Heterogeneous Agglomerations are similar in terms of density and
impact on the modularity metrics.

This chapter aims at answering our last research question: Does the types of
Heterogeneous Agglomerations have an uniform behavior in terms of density and impact
on aspects of system modularity? The answer to this question is shown in the following
two sections. Section 6.1 provides an analysis of how the different Heterogeneous
Agglomerations are distributed in our systems. This analysis allows us to verify if some
of these agglomerations are affected by the system size. Finally, Section 6.2 provides
an analysis of how they affect our modularity metrics. This help us to understand if
there is a kind of Heterogeneous Agglomeration that impacts the most the metrics in
comparison to other types. Section 6.3 concludes this chapter.

6.1 Heterogeneous Types Density

This section aims at answering the first part of our last research question, i.e., how the
different types of Heterogeneous Agglomeration density behaves in our dataset. With
this question, we aim at verifying (i) if the association rules found are mitigated when
the system size is considered, and (ii) if the category of Heterogeneous Agglomeration

49

50 Chapter 6. Understanding Heterogeneous Agglomerations

in the previous chapter considered only the association rules found. We aim at under-
standing if other types of agglomerations that did not appear in the association rules
algorithm are more dense in the source code than those that were found by it.

In order to understand how different types of Heterogeneous Agglomeration be-
haves along the systems, since the smells that compose them may play an important
role in terms of numbers, we analyze the density for all possible Heterogeneous Ag-
glomerations present in our dataset. For this purpose, Table 6.1 presents in the first
column the abbreviation of the types of agglomerations found. The second column
presents the smells that compose the agglomeration. Finally, the last column presents
the method by which they were found. The first four agglomerations were found by
the association rules algorithm. For example, LcRbFe is one of the four Heterogeneous
Agglomeration found by the association rule algorithm, and is composed of the Large
Class, Refused Bequest and Feature Envy smell. In contrast, the combination RbFe
was found in our dataset, but is not strong enough to be outputted in the Association
Rule, and is composed of two smells: Refused Bequest and Feature Envy.

Table 6.1: Heterogeneous Agglomeration Types and the Smells that Composes it

Type of Heterogeneous
Agglomeration

Bad Smells Where the combination
was found

LcLmFe Large Class, Long Method, Feature
Envy

Association Rule Algo-
rithm

RbLmFe Refused Bequest, Long Method,
Feature Envy

Association Rule Algo-
rithm

LcRbFe Large Class, Refused Bequest, Fea-
ture Envy

Association Rule Algo-
rithm

LcRbLmFe Large Class, Refused Bequest, Long
Method, Feature Envy

Association Rule Algo-
rithm

LcRbLm Large Class, Refused Bequest, Long
Method

Dataset

LcFe Long Class, Feature Envy Dataset
LcRb Large Class, Refused Bequest Dataset
LcLm Large Class, Long Method Dataset
RbFe Refused Bequest, Feature Envy Dataset
RbLm Refused Bequest, Long Method Dataset
FeLm Feature Envy, Long Method Dataset

Figures 6.1, 6.2 and 6.3 present eleven box-plots representing the absolute value
of Heterogeneous Agglomerations in all analyzed systems, their density in terms of
classes and KLOC, respectively. To complement the analysis of the figures, Table 6.2
shows the InterQuartile Range (IQR) and standard deviation (s.d.) for each category
of Heterogeneous Agglomerations. Columns two and three presents the variation of the

6.1. Heterogeneous Types Density 51

box-plots in terms of absolute values. Columns four and five presents the variation of
the presence of the agglomerations considering the number of classes in each system.
Finally, columns six and seven presents the variation for the box-plots that considers
the number of agglomerations per KLOC.

When observing Figure 6.1, all medians of the association rule agglomerations
are small. Only the medians of LcFe and RbFe are expressive compared to the other
categories, with approximately 10 and 20 agglomerations per system, respectively. For
all other agglomerations, most medians are in the range of 0 to 2, per system. When
other size measurements are considered, from Figures 6.2 and 6.3, we can observe that
these agglomerations are highly dense when considering the number of classes and
on the KLOC, being reflected in the low values for most categories. Only RbFe is
maintained as the most dense, with a density of 0.02 classes being affected by them,
and each 4 KLOC presenting one of this agglomeration.

In terms of absolute value, as can be seen in Figure 6.1, the systems in our
dataset presents more RbFe and LcFe, with mean of 34.85 and 14.05, respectively.
Both agglomerations presents the highest variation in the second and third column
from Table 6.2. However, when mitigated by the number of classes and per lines of
code, LcFe is more stable and presents a similar behavior of the other categories, i.e.,
small values and low variation. However, when observing the RbFe and Figure 6.3,
the category is not mitigated by KLOC. Even more, the third quartile is at 0.5245,
meaning that, in general, each 2 KLOC present one RbFe agglomeration.

Figure 6.1: Density of Heterogeneous Types in All Systems.

52 Chapter 6. Understanding Heterogeneous Agglomerations

Figure 6.2: Density of Classes Affected by Heterogeneous Agglomerations Segregated
by Type.

From Figures 6.1 to 6.3, we can observe that when isolated, the different types
of agglomerations do not present a different behavior in term of density. This obser-
vation is also reflected in Table 6.2, with low IQRs and standard deviations for most
categories. This finding may be due to the large quantity of different Heterogeneous
Agglomerations, eleven in total. We can conclude that they are more concentrated
when observed together. We cannot conclude that there is a dominant category of
Heterogeneous Agglomerations that is much more concentrated than others. We may
also conclude that the categories’ density is homogeneous, and their collective contribu-
tion is that affect the results obtained in the aggregated Heterogeneous Agglomeration
analysis. From the three figures, we can also observe the presence of several systems
that are outliers. For example, Weka presents 108 LcRbFe agglomerations and 67 LcFe
agglomerations. Meanwhile, Hibernate, even though the system is larger than Weka in
lines of code and number of classes, has 0 LcRbFe and 10 LcFe agglomerations.

RQ5: From our analysis, we can conclude that the density behavior for all categories
of Heterogeneous Agglomeration is similar. The highest concentrated agglomeration
was RbFe. However, when the number of classes are considered, the RbFe is mitigated.

6.2 Impact of Heterogeneous Agglomerations

Since we found that Heterogeneous Agglomerations do impact the modularity metrics
more than other types of classes, we can further investigate how the different types

6.2. Impact of Heterogeneous Agglomerations 53

Figure 6.3: Density of Heterogeneous Agglomeration Types per KLOC.

Table 6.2: Variation Measurements for Heterogeneous Agglomerations

Agg. Type IQR Ab-
solute

s.d. Abso-
lute

IQR per
Class

s.d. per
Class

IQR per
KLOC

s.d. per
KLOC

LcLmFe 9.75 9.24 0.01 0.007 0.08 0.06
RbLmFe 10.5 11.31 0.01 0.011 0.09 0.09
LcRbFe 11.0 25.33 0.02 0.018 0.14 0.138
LcRbLmFe 11.25 14.93 0.01 0.01 0.09 0.07
LcRbLm 3.0 6.098 0.0 0.006 0.03 0.04
LcRb 5.25 5.048 0.01 0.004 0.05 0.039
LcFe 16.25 18.83 0.02 0.018 0.16 0.13
LcLm 4.0 8.42 0.0 0.003 0.03 0.026
RbFe 56.25 43.22 0.06 0.069 0.52 0.812
RbLm 6.0 12.405 0.01 0.01 0.12 0.095
FeLm 17.25 10.418 0.01 0.010 0.13 0.096

of Heterogeneous Agglomeration found in our dataset behaves. With this purpose,
we answer the last part of our fifth research question, that aims at investigating if
there is a Heterogeneous Agglomeration that contributes the most to the degradation
of modularity. Mainly, from previous findings, we highlight that the presence of Large
Class in such agglomerations may impact the results found. We further analyze the
impact of Heterogeneous Agglomerations on the modularity metrics through the use
of Cohen’s d and the Coefficient of Variation (CV). We expect to raise exploratory
evidences if the existence of certain bad smells on the agglomeration influences the
most the metric values.

Figure 6.4 presents five heat maps with the Cohen’s d values for each category

54 Chapter 6. Understanding Heterogeneous Agglomerations

of Heterogeneous Agglomeration found in our data. Each heat map concerns one of
the evaluated metric. For legibility purposes, the agglomerations are categorized in
a similar way as of in the density section. For example, LcFe is an agglomeration
composed of only Large Class and Feature Envy. To complement the heat map, the
complete table with the original Cohen’s d value can be found in Appendix B. We
also present in Table 6.3 the mean, standard deviation and CV for each pair Metric -
Heterogeneous Agglomeration Type. The first column presents the metric. The second
column present the Heterogeneous Agglomeration type. The third column presents the
mean for the pair Metric-Heterogeneous Agglomeration Type. Similarly, the fourth
and the last column presents the standard deviation (Std. Dev.) and Coefficient of
Variation (CV) for each pair, respectively.

maxNest : From the heat map in Figure 6.4.(a), we can observe that most pairs
have a Small Effect, except for three pairs: LcFe-RbFe, LcFe-RbLm, and LcFe-FeLm.
It is interesting to notice that there is an intersection between two of these pairs, both
agglomerations containing the Feature Envy smell, except for LcFe-RbLm. When the
original d value is observed in Table B.5 (Appendix B), the highest value is for LcFe-
RbLm (0.5742), followed by LcFe-FeLm (0.56) and LcFe-RbFe (0.5023). It seems that
when there is a Long Method in the second pair, the difference is higher for these pairs.
From Table 6.3, we can observe that there exist a high variability in this metric, with
high standard deviation for all categories. The CV also reflects this variability, with
FeLm being the most variable in terms of its mean, with a CV of 7.120. All categories
have a CV above 2. This means that the standard deviation for all categories is at least
two times their mean, indicating the presence of several outliers. We can conclude that,
for this metric, most effects are Small. However, it seems that when a agglomeration
that do not have the Long Method smell is compared to one that present it, the class
that does not contain it tends to present a higher maxNest. This means that they are
slightly more complex than classes that do not contain the LM smell.

RFC : From heat map in Figure 6.4.(b), we can observe a predominance of Small
Effects for most categories. However, some pairs present a significant presence of
Large Effects, mainly those paired with the LcLmFe, RbLmFe, LcRbFe, LcRbLmFe,
RbFe, LcLm, RbLm and FeLm. Most of the Large Effects are due to combinations
composed of these agglomerations. This is interesting, since the four association rules
achieved some Large Effects, and they are mostly positive (first four lines in Table B.4
in Appendix B). When observing the original d values, pairs with RbFe presents the
highest values, and the signal of the value raises evidences that classes that contains
them tend to have a smaller RFC value than other agglomerations. The highest d value
found was for the pair LcRbLmFe-RbFe (1.6648). From Table 6.3, we can observe that

6.2. Impact of Heterogeneous Agglomerations 55

Table 6.3: Variation of Heterogeneous Agglomerations

Metric Agg. Type Mean Std. Dev. CV

MaxNest

LcLmFe 59.705 177.414 2.972
RbLmFe 17.461 82.178 4.706
LcRbFe 99.079 287.885 2.885
LcRbLmFe 24.181 103.750 4.291
LcRbLm 35.246 107.568 3.052
LcFe 111.511 261.664 2.347
LcRb 40.639 134.372 3.306
LcLm 36.757 92.485 2.516
FeLm 6.363 45.304 7.120
RbFe 15.411 68.816 4.465
RbLm 4.955 20.424 4.122

RFC

LcLmFe 80.156 50.602 0.721
RbLmFe 41.039 25.567 0.623
LcRbFe 76.736 55.810 0.727
LcRbLmFe 87.051 47.615 0.547
LcRbLm 75.579 44.723 0.592
LcFe 71.164 55.047 0.776
LcRb 58.639 43.526 0.742
LcLm 53.716 26.885 0.501
FeLm 31.935 23.329 0.731
RbFe 27.097 18.070 0.667
RbLm 31.854 16.102 0.505

DIT

LcLmFe 2.090 2.450 1.172
RbLmFe 3.868 2.355 0.609
LcRbFe 3.215 2.732 0.850
LcRbLmFe 3.058 1.383 0.452
LcRbLm 3.333 1.200 0.360
LcFe 2.248 2.559 1.138
LcRb 3.458 1.491 0.431
LcLm 2.662 3.620 1.360
FeLm 3.023 7.113 2.353
RbFe 3.307 1.702 0.515
RbLm 3.627 1.545 0.426

WMC

LcLmFe 115.467 91.316 0.791
RbLmFe 31.033 25.692 0.828
LcRbFe 103.624 73.569 0.710
LcRbLmFe 109.284 70.263 0.643
LcRbLm 97.070 89.556 0.923
LcFe 106.374 72.430 0.681
LcRb 81.833 39.128 0.478
LcLm 71.784 28.852 0.402
FeLm 25.988 33.570 1.481
RbFe 22.586 18.975 0.840
RbLm 25.246 22.952 0.909

CBO

LcLmFe 19.762 16.316 0.826
RbLmFe 13.770 6.834 0.496
LcRbFe 21.996 18.742 0.852
LcRbLmFe 25.277 17.632 0.698
LcRbLm 21.211 13.297 0.627
LcFe 19.107 30.304 1.586
LcRb 18.709 13.953 0.746
LcLm 18.800 14.527 0.773
FeLm 12.222 9.384 0.768
RbFe 10.696 6.133 0.574
RbLm 14.052 6.265 0.456

56 Chapter 6. Understanding Heterogeneous Agglomerations

both standard deviation and CV are small, with all CVs bellow 1. This means that
this metric does not have a high variability when considering their mean value. From
these analysis, we can conclude that the association rules found does impact the most
on the RFC metric, due to the positive signals of the d values. Consequently, classes
that contain one of these agglomerations (LcLmFe, RbLmFe, LcRbFe, and LcRbLmFe)
are more fault prone than other Heterogeneous Agglomerations.

Figure 6.4: Pairwise Cohen’s d per metric for Heterogeneous Agglomerations.

DIT : Figure 6.4.(c) shows the heat map for the heterogeneous categories. We
can observe that some pairs have a Medium Effect, but the predominance of Small
ones are higher. The pairs that achieved Medium Effects are mainly with LcLmFe and
LcFe. Observing the original values in Table B.3 (Appendix B), the highest effects
are from LcLmFe, all of them positive in their signal. Similar to the RFC metric, the
DIT variation is small, with most CVs bellow 1. However, FeLm presented the highest
variation, with a CV of 2.353. We can conclude that classes that contains LcLmFe
impacts the most on the DIT metric, however, this effect is Medium. Consequently,
this agglomeration is more fault prone when considering this metric.

WMC : Heat map in Figure 6.4.(d) shows the d values for all the Heterogeneous
Agglomerations types. We can observe a dominance of Large Effects for the pairs with

6.3. Concluding Remarks 57

RbLmFe, RbFe, RbLm, and FeLm. All other Large Effects can be observed when
comparing to these four pairs. Observing the original values in Table B.2 (Appendix
B), the effect of RbLmFe is mostly positive, indicating that classes that contain this
agglomeration have a much higher WMC value. Moreover, classes that contains RbFe,
RbLm, and FeLm have a much lower WMC, explained by the high d value and negative
signal. This result is interesting, because all classes have a non-null intersection when
considering the smells that compose them. Only when three of these smells appears
together that the effect is Large. We can also observe in Table 6.3 that the categories
are stable, with low standard deviation and CV, except for the FeLm smell. All CVs
are below 1. We can conclude that RbLmFe impacts the most the WMC metric,
presenting much larger values than the other agglomerations. Consequently, they are
more complex and fault-prone than other categories.

CBO : Figure 6.4.(e) presents the heat map for the Cohen’s d value of all Hetero-
geneous Agglomeration types. We can observe that most effects are Small, but pairs
with LcRbLmFe, RbFe, and FeLm present several Large and Medium effects. When
observing the original d value in Table B.1 (Appendix B), the Large Effects are posi-
tive, and for RbFe and FeLm, the Large Effects are negative. We can also observe from
Table 6.3 that most categories, except LcFe, have a low variation, with most of them
having a CV below 1. However, when observing the heat map, all combinations of
pairs that contain LcFe have a Small Effect. We may conclude that the high variation
is not affecting our results. We can also conclude that LcRbLmFe impacts the most
on this metric. Consequently, this agglomeration is more coupled to other classes than
other agglomerations.

RQ5: From our analysis, we can conclude that each metric has a set of agglomerations
that affects the most them. However, it is interesting to notice that for all metrics,
at least one agglomeration found by the association rule algorithm is among the ones
that have a positive impact on the metric. This indicates that when a class present
these agglomerations, their metric values are generally larger than those from other
agglomerations categories. Consequently, they are more complex, fault prone and
present a higher coupling than other Heterogeneous Agglomeration types.

6.3 Concluding Remarks

In this chapter, we aimed at (i) investigating if the different types of Heterogeneous
Agglomerations have different densities than the others, and (ii) how they can impact
the source code modularity. We have found that these agglomerations are highly dense
in the source code, with most of them presenting a similar behavior, except the RbFe,

58 Chapter 6. Understanding Heterogeneous Agglomerations

that was only mitigated when considering the number of classes. We could also verify
that the agglomerations found by the association rules algorithms do impact the most
on all the analyzed metrics. In the next chapter, we discuss our main conclusions and
possibilities for future works.

Chapter 7

Conclusions

In this dissertation, we aimed at exploring the existence and impact of bad smell
agglomerations. Previous works [1; 29; 67; 39] identified that when bad smells occur
together in the source code, they make the code harder to understand, to modify and
to evolve. This is due to the intrinsic characteristics of the smells that hurts good
modularity practices. They may affect several aspects at a time, such as coupling,
complexity, inheritance and the single responsibility principle. This raised our topic
of investigation: How different bad smell agglomerations may impact aspects of source
code modularity?. To answer this question, we have found in the literature two studies
that evaluated the software metrics that represent aspects of modularity [3; 4]. These
metrics help us to raise initial evidences that bad smell agglomerations may impact
the software modularity. This impact can be measured through the differences between
the metric values for different bad smell classes and agglomerations. Consequently, we
used five software metrics as proxies of software modularity. The metrics are: Coupling
Between Objects (CBO), Weighted Method Class (WMC), Depth of Inheritance Tree
(DIT), Response set of a class of objects (RFC), and max nest blocks (maxNest).

Before exploring their impact, we have to identify bad smell agglomerations. We
have built a dataset composed of 20 Java systems from the Qualita Corpus [56]. We
chose them carefully considering their different sizes, domains and maturity. This
allowed us a more generalizable result. With systems in hands, we used a voting
strategy in order to obtain our ground truth. We investigated four smells: Large Class,
Long Method, Refused Bequest, and Feature Envy. We chose them because (i) they
represent different symptoms of modularity degradation. Besides, (ii) Large Class and
Long Method are among the most studied smells [11]. In contrast, Refused Bequest
and Feature Envy needed more investigation. We then chose to co-study them in order
to expand the current knowledge by investigating their interaction. (iii) Finally, the

59

60 Chapter 7. Conclusions

selected smells were detected by at least three detection tools. This restriction assures
us that, for every smell, at least two detection strategies have agreed that the instance
is positive/negative.

After building the dataset, the classes in the systems were classified according
with the quantity and types of smells that it presents. We classified them as Het-
erogeneous Agglomerations, Homogeneous Feature Envy, Homogeneous Long Method,
Isolated Large Class, Isolated Long Method, Isolated Feature Envy, Isolated Refused
Bequest, and Clean. This classification allowed us to compare different kinds of classes.
Finally, we calculated the selected metrics for each class in our dataset.

We then extracted the necessary information to answer our research questions.
In order to identify the Heterogeneous Agglomerations, we used the association rules
technique. This mining technique allows the identification of only strong rules, i. e.,
agglomerations that have a strong relationship between the smells that compose it.
Moreover, this technique has the restriction that the same smell cannot appear in the
two sides of the rules at the same time. That is, the algorithm does not discover
agglomerations formed by the same type of smell. To address this limitation, we used
frequency and variation statistics to characterize these agglomerations, even though
they are less powerful. In our data, we have found the Homogeneous Feature Envy and
the Homogeneous Long Method agglomerations.

We have identified four association rules: LC,RB −→ FE; RB,LM −→ FE;
LC,LM −→ FE; and LC,LM,RB −→ FE. All of them have a significant presence in
the source code. We have found that all the smells belonging to these agglomerations
are highly correlated and dependent, as could be observed in the χ2 test. With the
frequency statistics, we have found that the Homogeneous Feature Envy is the most
frequent agglomeration type, even when comparing with the association rules found.
We also analyzed how many FE smells, in median, an agglomeration has. The median
is approximately 2.5, and the 90th-quartile was 6. If we used association rules alone,
we would have ignored such a significant agglomeration type. Moreover, this technique
does not provide us with all information that association rule does.

After identifying which smell agglomerations were frequent in the source code,
we analyzed their density in the code. We observed, for each system in the dataset,
their absolute number, percentage of classes being affected by them, and how many
agglomerations each KLOC has in average. This information is summarized in three
box-plots for each agglomeration category, and their respective IQR and standard
deviation were presented. We have found that in all systems and levels of granularity,
the Heterogeneous Agglomeration is the most dense in the code. Their variation is
also high for all plots and for the two measures. The category also suffers greatly from

61

outliers. This told us that the presence of this category is affected by other software
characteristics beyond their size.

We then analyzed the impact of such agglomerations on five modularity metrics,
evaluating the Cohen’s d values and the Coefficient of Variation (CV). For the maxNest
metric, all effects were Small. However, when observing the values, the Heterogeneous
Agglomeration is slightly higher than the other categories. For the RFC metric, the
Heterogeneous Agglomeration and Isolated Large Class had the highest effect for this
metric. For the DIT metric, all effects were Small. However, the d values and CVs were
higher for the Heterogeneous and Isolated Refused Bequest categories. Heterogeneous,
Isolated Large Class and Homogeneous Long Method obtained the Large effects for the
WMC metric. Finally, for the CBO metric, the category that obtained the highest d
values was the Isolated Large Class. In contrast, Clean classes presents the lowest values
for this metric. In conclusion, we could observe that Heterogeneous Agglomerations
and Isolated Large Class affects the most the system modularity.

Since we have found that Heterogeneous Agglomerations does impact the source
code modularity metrics, we identified the need of deep exploring such agglomerations.
For this purpose, we used a similar methodology to verify if size influenced our results
and if there is a type of Heterogeneous Agglomeration that is significant different from
the others in terms of metric values. From the analysis of density, we could conclude
that all categories had a similar behavior in terms of median and variation. The most
concentrated category was Refused Bequest - Feature Envy, that was mitigated when
considering other size measurements. In terms of impact on the source code modularity,
we have found that each metric had a different set of Heterogeneous Agglomerations
that mostly affects them. However, at least one of the Heterogeneous Agglomeration
found by the association rules algorithm appeared as the most impacting category for
all evaluated metrics.

We can conclude from our analysis that (i) it is important to consider the pres-
ence of bad smell agglomerations composed of the same smell type, the Homogeneous
Agglomerations, since they can be frequent in the source code and may impact the
modularity. (ii) The choice of using association rules algorithm was good, since all
agglomerations found impacted the most the system modularity when analyzed sepa-
rately, justifying its use. (iii) We provided exploratory evidences that, beyond being
more concentrated in the source code, the further investigation of the occurrences of
such agglomerations are indeed beneficial to practitioners.

We conclude this chapter by presenting some topics of investigation that appeared
along this dissertation, but we could not fully address them. In answering them, they
will contribute to reduce the gap that exists in terms of bad smell agglomerations.

62 Chapter 7. Conclusions

• Expand the dataset through to addition of: (i) new open-source and industrial
systems. (ii) evaluate other sets of bad smells, since in our analyzes we focus
on only four of them. (iii) Evaluate how the agglomerations behave when other
modularity metrics are considered.

• Mine the versions of each system in order to identify if classes containing bad
smells agglomerations are more fault and change prone.

• Investigate the presence of agglomerations in different levels of granularity. In
this work, we evaluated them in terms of classes. A similar analysis could be
done to address smells at method level, for instance.

• Investigate the existence and impact of inter-component agglomerations, i.e.,
agglomerations that are coupled to each other.

• Evaluate the spreadness of the agglomerations considering the package that they
are located. This would allow to understand if there is a concentration of ag-
glomerations on the source code.

• Evaluate how the system domain contributes to the existence of bad smell ag-
glomerations. This suggestion is motivated by other studies [61] that verified
that some domains contain more agglomerations than others.

• Investigate how automatic detection tools could support developers in identifying
the most harmful agglomerations.

• Evaluate how machine learning approaches can help developers to automatically
detect bad smell agglomerations.

• Study how the bad smell agglomerations behave in different system versions by
analyzing: when they are created, if they are removed, or if their persist along
the development cycle.

Appendix A

Original Values of Cohen’s d
Comparison

Table A.1: Cohen’s d values for CBO

Agg. Type Het. Hom. FE Hom. LM Isol. LC Isol. RB Isol. FE Isol. LM Clean
Het. - 0.5019 0.0922 -0.3212 0.7438 0.7677 0.2888 0.8322

Hom. FE -0.5019 - -0.4433 -0.7633 0.1750 0.2133 -0.3432 0.3040
Hom. LM -0.0922 0.4433 - -0.4150 0.7185 0.7445 0.2019 0.8161
Isol. LC 0.3212 0.7633 0.4150 - 0.9682 0.9867 0.6071 1.0373
Isol. RB -0.7438 -0.1750 -0.7185 -0.9682 - 0.0741 -0.7915 0.2302
Isol. FE -0.7677 -0.2133 -0.7445 -0.9867 -0.0741 - -0.8182 0.1539
Isol. LM -0.2888 0.3432 -0.2019 -0.6071 0.7915 0.8182 - 0.9083
Clean -0.8322 -0.3040 -0.8161 -1.0373 -0.2302 -0.1539 -0.9083 -

Table A.2: Cohen’s d values for WMC

Agg. Type Het. Hom. FE Hom. LM Isol. LC Isol. RB Isol. FE Isol. LM Clean
Het. - 0.6334 0.5065 -0.4505 1.0158 0.9722 0.8504 1.0378

Hom. FE -0.6334 - -0.2322 -0.9220 0.4070 0.3460 0.1905 0.4554
Hom. LM -0.5065 0.2322 - -0.8380 0.8710 0.7836 0.5497 0.8817
Isol. LC 0.4505 0.9220 0.8380 - 1.1569 1.1306 1.0578 1.1759
Isol. RB -1.0158 -0.4070 -0.8710 -1.1569 - -0.1235 -0.3478 0.1365
Isol. FE -0.9722 -0.3460 -0.7836 -1.1306 0.1235 - -0.2418 0.2291
Isol. LM -0.8504 -0.1905 -0.5497 -1.0578 0.3478 0.2418 - 0.4086
Clean -1.0378 -0.4554 -0.8817 -1.1759 -0.1365 -0.2291 -0.4086 -

63

64 Appendix A. Original Values of Cohen’s d Comparison

Table A.3: Cohen’s d values for DIT

Agg. Type Het. Hom. FE Hom. LM Isol. LC Isol. RB Isol. FE Isol. LM Clean
Het. - 0.2601 0.1015 0.2355 0.0514 0.3264 0.0026 0.3822

Hom. FE -0.2601 - -0.2068 -0.0361 -0.2637 0.0168 -0.3048 0.0778
Hom. LM -0.1015 0.2068 - 0.1764 -0.0692 0.2911 -0.1280 0.3612
Isol. LC -0.2355 0.0361 -0.1764 - -0.2368 0.0616 -0.2808 0.1254
Isol. RB -0.0514 0.2637 0.0692 0.2368 - 0.3720 -0.0641 0.4417
Isol. FE -0.3264 -0.0168 -0.2911 -0.0616 -0.3720 - -0.4187 0.0787
Isol. LM -0.0026 0.3048 0.1280 0.2808 0.0641 0.4187 - 0.4849
Clean -0.3822 -0.0778 -0.3612 -0.1254 -0.4417 -0.0787 -0.4849 -

Table A.4: Cohen’s d values for RFC

Agg. Type Het. Hom. FE Hom. LM Isol. LC Isol. RB Isol. FE Isol. LM Clean
Het. - 0.7404 0.7053 -0.3457 1.2110 1.0673 0.8103 1.2547

Hom. FE -0.7404 - -0.1408 -0.8859 0.6804 0.4405 0.0110 0.7545
Hom. LM -0.7053 0.1408 - -0.8562 1.0879 0.7664 0.2058 1.1221
Isol. LC 0.3457 0.8859 0.8562 - 1.1796 1.0878 0.9223 1.2153
Isol. RB -1.2110 -0.6804 -1.0879 -1.1796 - -0.3366 -0.9531 0.1613
Isol. FE -1.0673 -0.4405 -0.7664 -1.0878 0.3366 - -0.6063 0.4548
Isol. LM -0.8103 -0.0110 -0.2058 -0.9223 0.9531 0.6063 - 0.9967
Clean -1.2547 -0.7545 -1.1221 -1.2153 -0.1613 -0.4548 -0.9967 -

Table A.5: Cohen’s d values for maxNest

Agg. Type Het. Hom. FE Hom. LM Isol. LC Isol. RB Isol. FE Isol. LM Clean
Het. - 0.0682 0.2201 0.2387 0.3045 0.1499 0.3270 0.1545

Hom. FE -0.0682 - 0.1583 0.1775 0.2528 0.0863 0.2791 0.0853
Hom. LM -0.2201 -0.1583 - 0.0130 0.1258 -0.0642 0.1705 -0.0959
Isol. LC 0.2387 -0.1775 -0.0130 - 0.1490 -0.0789 0.2168 -0.1212
Isol. RB -0.3045 -0.2528 -0.1258 -0.1490 - -0.1586 0.0962 -0.2378
Isol. FE -0.1499 -0.0863 0.0642 0.0789 0.1586 - 0.1871 -0.0131
Isol. LM -0.3270 -0.2791 -0.1705 -0.2168 -0.0962 -0.1871 - -0.2822
Clean -0.1545 -0.0853 0.0959 0.1212 0.2378 0.0131 0.2822 -

Appendix B

Heterogeneous Cohen’s d Values

65

66 Appendix B. Heterogeneous Cohen’s d Values

Table
B
.1:

C
ohen’s

d
values

for
C
B
O

T
ype

LcLm
Fe

R
bLm

Fe
LcR

bFe
LcR

bLm
Fe

LcR
bLm

FeLm
LcFe

LcLm
LcR

b
R
bFe

R
bLm

LcLm
Fe

-
0.4791

0.1271
0.3247

0.0973
0.5665

0.0269
0.0625

0.0694
0.7356

0.4620
R
bLm

Fe
-0.4791

-
0.5832

0.8606
0.7038

0.1885
0.2430

0.4429
0.4495

0.4734
0.0431

LcR
bFe

-0.1271
-0.5832

-
0.1803

0.0483
0.6595

0.1147
0.1908

0.1990
0.8104

0.5685
LcR

bLm
Fe

-0.3247
-0.8606

-0.1803
-

0.2604
0.9243

0.2489
0.4011

0.4132
1.1046

0.8484
LcR

bLm
-0.0973

-0.7038
-0.0483

-0.2604
-

0.7810
0.0899

0.1733
0.1836

1.0155
0.6887

FeLm
-0.5665

-0.1885
-0.6595

-0.9243
-
0.7810

-
-0.3096

-0.5377
-0.5455

-0.1926
-0.2294

LcFe
-0.0269

-0.2430
-0.1147

-0.2489
-0.0899

0.3069
-

0.0130
0.0169

0.3847
0.2310

LcLm
-0.0625

-0.4429
-0.1908

-0.4011
-0.1733

0.5377
-0.0130

-
-0.062

0.7266
0.4242

LcR
b

-0.0694
-0.4495

-0.1990
-0.4132

-0.1836
0.5455

-0.0169
0.0062

-
0.7435

0.4305
R
bFe

-0.7356
-0.4734

-0.8104
-1.1046

-1.0155
0.1926

-0.3847
-0.7266

-0.7435
-

0.5414
R
bLm

-0.4620
-0.0431

-0.5685
-0.8484

-0.6887
0.2294

-0.2310
-0.4242

-0.4305
-0.5414

-

67

Ta
bl
e
B
.2
:
C
oh

en
’s

d
va
lu
es

fo
r
W

M
C

T
yp

e
Lc

Lm
Fe

R
bL

m
Fe

Lc
R
bF

e
Lc

R
bL

m
Fe

Lc
R
bL

m
Fe

Lm
Lc

Fe
Lc

Lm
Lc

R
b

R
bF

e
R
bL

m
Lc

Lm
Fe

-
1.
25

10
0.
14

22
0.
07

56
0.
20

27
1.
29

30
0.
10

99
0.
64

12
0.
47

61
1.
39

93
1.
34

66
R
bL

m
Fe

-1
.2
51

0
-

1.
31

74
1.
47

92
1.
00

24
0.
16

88
1.
38

64
1.
49

17
1.
53

48
0.
37

40
0.
23

75
Lc

R
bF

e
-0
.1
42

2
-1
.3
17

4
-

0.
07

87
0.
08

00
1.
35

77
0.
03

77
0.
56

98
0.
36

98
1.
50

84
1.
43

83
Lc

R
bL

m
Fe

-0
.0
75

6
-1
.4
79

2
-0
.0
78

7
-

0.
15

17
1.
51

27
0.
04

08
0.
69

82
0.
48

27
1.
68

47
1.
60

79
Lc

R
bL

m
-0
.2
02

7
-1
.0
02

4
-0
.8
00

-0
.1
51

7
-

1.
05

11
0.
11

42
0.
38

01
0.
22

05
1.
15

07
1.
09

87
Fe

Lm
-1
.2
93

0
-0
.1
68

8
-1
.3
57

7
-1
.5
12

7
-1
.0
51

1
-

-1
.4
24

0
-1
.4
63

1
-1
.5
31

9
-0
.1
24

8
-0
.0
25

8
Lc

Fe
-0
.1
09

9
-1
.3
86

4
-0
.0
37

7
-0
.0
40

8
-0
.1
14

2
1.
42

40
-

0.
62

74
0.
42

16
1.
58

26
1.
51

00
Lc

Lm
-0
.6
41

2
-1
.4
91

7
-0
.5
69

8
-0
.6
98

2
-0
.3
80

1
1.
46

31
-0
.6
27

4
-

-0
.2
92

3
2.
01

48
1.
78

52
Lc

R
b

-0
.4
76

1
-1
.5
34

8
-0
.3
69

8
-0
.4
82

7
-0
.2
20

5
1.
53

19
-0
.4
21

6
0.
29

23
-

1.
92

68
1.
76

41
R
bF

e
-1
.3
99

3
-0
.3
74

0
-1
.5
08

4
-1
.6
84

7
-1
.1
50

7
0.
12

48
-1
.5
82

6
-2
.0
14

8
-1
.9
26

8
-

0.
12

63
R
bL

m
-1
.3
46

6
-0
.2
37

5
-1
.4
38

3
-1
.6
07

9
-1
.0
98

7
0.
02

58
-1
.5
10

0
-1
.7
85

2
-1
.7
64

1
0.
12

63
-

68 Appendix B. Heterogeneous Cohen’s d Values

Table
B
.3:

C
ohen’s

d
values

for
D
IT

T
ype

LcLm
Fe

R
bLm

Fe
LcR

bFe
LcR

bLm
Fe

LcR
bLm

FeLm
LcFe

LcLm
LcR

b
R
bFe

R
bLm

LcLm
Fe

-
0.7401

0.4335
0.4866

0.6445
0.1754

0.0631
0.1851

0.6747
0.5771

0.7505
R
bLm

Fe
-0.7401

-
0.2562

0.4197
0.2863

0.1595
0.6590

0.3950
0.2081

0.2730
0.1213

LcR
bFe

-0.4335
-0.2562

-
0.0724

0.0561
0.0355

0.3653
0.1724

0.1106
0.0407

0.1856
LcR

bLm
Fe

-0.4866
-0.4197

-0.0724
-

0.2126
0.0068

0.3938
0.1445

0.2783
0.1608

0.3880
LcR

bLm
-0.6445

-0.2863
-0.0561

-0.2126
-

0.0608
0.5430

0.2489
0.0924

0.0176
0.2122

FeLm
-0.1754

-0.1595
-0.0355

-0.0068
-0.0608

-
-0.1451

-0.0640
-0.0846

-0.0549
-0.1173

LcFe
-0.0631

-0.6590
-0.3653

-0.3938
-0.5430

0.1451
-

0.1321
0.5779

0.4874
0.6524

LcLm
-0.1851

-0.3950
-0.1724

-0.1445
-0.2489

0.0640
-0.1321

-
-0.2876

0.2281
0.3466

LcR
b

-0.6747
-0.2081

-0.1106
-0.2783

-0.0924
0.0846

-0.5779
0.2876

-
0.0943

0.1110
R
bFe

-0.5771
-0.2730

-0.0407
-0.1608

-0.0176
0.0549

-0.4874
-0.2281

-0.0943
-

0.1965
R
bLm

-0.7505
-0.1213

-0.1856
-0.3880

-0.2122
0.1173

-0.6524
-0.3466

-0.1110
-0.1965

-

69

Ta
bl
e
B
.4
:
C
oh

en
’s

d
va
lu
es

fo
r
R
FC

T
yp

e
Lc

Lm
Fe

R
bL

m
Fe

Lc
R
bF

e
Lc

R
bL

m
Fe

Lc
R
bL

m
Fe

Lm
Lc

Fe
Lc

Lm
Lc

R
b

R
bF

e
R
bL

m
Lc

Lm
Fe

-
0.
97

57
0.
06

42
0.
14

04
0.
09

58
1.
22

38
0.
17

01
0.
65

25
0.
45

59
1.
39

65
1.
28

68
R
bL

m
Fe

-0
.9
75

7
-

0.
82

23
1.
20

40
0.
94

82
0.
37

20
0.
70

19
0.
48

32
0.
49

31
0.
62

98
0.
43

08
Lc

R
bF

e
-0
.0
64

2
-0
.8
22

3
-

0.
19

89
0.
02

29
1.
04

74
0.
10

05
0.
52

55
0.
36

16
1.
19

67
1.
09

32
Lc

R
bL

m
Fe

-0
.1
40

4
-1
.2
04

0
-0
.1
98

9
-

0.
24

84
1.
47

00
0.
30

87
0.
86

22
0.
62

29
1.
66

48
1.
55

35
Lc

R
bL

m
-0
.0
95

8
-0
.9
48

2
-0
.0
22

9
-0
.2
48

4
-

1.
22

36
0.
08

80
0.
59

25
0.
38

39
1.
42

14
1.
30

14
Fe

Lm
-1
.2
23

8
-0
.3
72

0
-1
.0
47

4
-1
.4
70

0
-1
.2
23

6
-

-0
.9
27

9
-0
.8
65

3
-0
.7
64

7
-0
.2
31

9
-0
.0
05

0
Lc

Fe
-0
.1
70

1
-0
.7
01

9
-0
.1
00

5
-0
.3
08

7
-0
.0
88

0
0.
92

79
-

0.
40

28
0.
25

24
1.
07

56
0.
96

98
Lc

Lm
-0
.6
52

5
-0
.4
83

2
-0
.5
25

5
-0
.8
62

2
-0
.5
92

5
0.
86

53
-0
.4
02

8
-

-0
.1
36

1
1.
16

21
0.
98

74
Lc

R
b

-0
.4
55

9
-0
.4
93

1
-0
.3
61

6
-0
.6
22

9
-0
.3
83

9
0.
76

47
-0
.2
52

4
0.
13

61
-

0.
94

65
0.
81

68
R
bF

e
-1
.3
96

5
-0
.6
29

8
-1
.1
96

7
-1
.6
64

8
-1
.4
21

4
0.
23

19
-1
.0
75

6
-1
.1
62

1
-0
.9
46

5
-

0.
27

69
R
bL

m
-1
.2
86

8
-0
.4
30

8
-1
.0
93

2
-1
.5
53

5
-1
.3
01

4
0.
00

50
-0
.9
69

8
-0
.9
87

4
-0
.8
16

8
-0
.2
76

9
-

70 Appendix B. Heterogeneous Cohen’s d Values

Table
B
.5:

C
ohen’s

d
values

for
m
axN

est

T
ype

LcLm
Fe

R
bLm

Fe
LcR

bFe
LcR

bLm
Fe

LcR
bLm

FeLm
LcFe

LcLm
LcR

b
R
bFe

R
bLm

LcLm
Fe

-
0.3056

0.1647
0.2444

0.1667
0.4120

0.2318
0.1622

0.1212
0.3292

0.4336
R
bLm

Fe
-0.3056

-
0.3855

0.0718
0.1858

0.1673
0.4850

0.2206
0.2081

0.0270
0.2089

LcR
bFe

-0.1647
-0.3855

-
0.3461

0.2937
0.4499

0.0452
0.2915

0.2601
0.3997

0.4612
LcR

bLm
Fe

-0.2444
-0.0718

-0.3461
-

0.1047
0.2226

0.4388
0.1280

0.1371
0.0996

0.2571
LcR

bLm
-0.1667

-0.1858
-0.2937

-0.1047
-

0.3500
0.3812

0.0151
0.0443

0.2197
0.3912

FeLm
-0.4120

-0.1673
-0.4499

-0.2226
-0.3500

-
-0.5600

-0.4174
-0.3418

-0.1553
-0.0401

LcFe
-0.2318

-0.4850
-0.0452

-0.4388
-0.3812

0.5600
-

0.3809
0.3407

0.5023
0.5742

LcLm
-0.1622

-0.2206
-0.2915

-0.1280
-0.0151

0.4174
-0.3809

-
-0.0337

0.2619
0.4748

LcR
b

-0.1212
-0.2081

-0.2601
-0.1371

-0.0443
0.3418

-0.3407
0.0337

-
0.2363

0.3713
R
bFe

-0.3292
-0.0270

-0.3997
-0.0996

-0.2197
0.1553

-0.5023
-0.2619

-0.2363
-

0.2060
R
bLm

-0.4336
-0.2089

-0.4612
-0.2571

-0.3912
0.0401

-0.5742
-0.4748

-0.3713
-0.2060

-

Bibliography

[1] M. Abbes, F. Khomh, Y. Guéhéneuc, and G. Antoniol. An empirical study of the
impact of two antipatterns, blob and spaghetti code, on program comprehension.
In 15th European Conference on Software Maintenance and Reengineering, pages
181–190, 2011.

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets
of items in large databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 207–216, 1993.

[3] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini. Do design metrics
capture developers perception of quality? an empirical study on self-affirmed
refactoring activities. arXiv preprint arXiv:1907.04797, 2019.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[5] T. Besker, A. Martini, and J. Bosch. The pricey bill of technical debt: When
and by whom will it be paid? In IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 13–23, 2017.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, et al. Managing technical debt in software-reliant
systems. In Proceedings of the FSE/SDP Workshop on Future of Software Engi-
neering Research, pages 47–52, 2010.

[7] A. Chatzigeorgiou and A. Manakos. Investigating the evolution of bad smells
in object-oriented code. In Seventh International Conference on the Quality of
Information and Communications Technology, pages 106–115, 2010.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

71

72 BIBLIOGRAPHY

[9] J. Cohen. Statistical power analysis for the behavioral sciences. Academic Press,
2013.

[10] W. Cunningham. The wycash portfolio management system. SIGPLAN OOPS
Mess., 4(2):29–30, 1992.

[11] E. V. d. P. Sobrinho, A. De Lucia, and M. d. A. Maia. A systematic literature
review on bad smells — 5 w’s: which, when, what, who, where. IEEE Transaction
on Software Engineering, 2018.

[12] L. da S. Carvalho, R. Novais, and M. Mendonça. Investigating the relationship
between code smell agglomerations and architectural concerns: Similarities and
dissimilarities from distributed, service-oriented, and mobile systems. In Proceed-
ings of the VII Brazilian Symposium on Software Components, Architectures, and
Reuse, page 3–12, New York, NY, USA, 2018. Ass. for Computing Machinery.

[13] L. da S. Sousa. Spotting design problems with smell agglomerations. In
IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), pages 863–866, 2016.

[14] D. Di Nucci, F. Palomba, D. Tamburri, A. Serebrenik, and A. De Lucia. Detect-
ing code smells using machine learning techniques: are we there yet? In IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 612–621. IEEE, 2018.

[15] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. A review-based
comparative study of bad smell detection tools. In Proceedings of the 20th Inter-
national Conference on Evaluation and Assessment in Software Engineering, New
York, NY, USA, 2016. Ass. for Computing Machinery.

[16] J. L. Fleiss. Measuring nominal scale agreement among many raters. Psychological
bulletin, 76(5):378, 1971.

[17] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou. Jdeodorant: identi-
fication and application of extract class refactorings. In 33rd International Con-
ference on Software Engineering (ICSE), pages 1037–1039. IEEE, 2011.

[18] F. Fontana, P. Braione, and M. Zanoni. Automatic detection of bad smells in code:
An experimental assessment. Journal of Object Technology, 11:5: 1–38, 2012.

[19] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni. Antipattern
and code smell false positives: Preliminary conceptualization and classification. In

BIBLIOGRAPHY 73

IEEE 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), volume 1, pages 609–613, 2016.

[20] F. A. Fontana, V. Ferme, and S. Spinelli. Investigating the impact of code smells
debt on quality code evaluation. In Third International Workshop on Managing
Technical Debt (MTD), pages 15–22, 2012.

[21] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA, 1999.

[22] J. Garcia, D. Popescu, Ge. Edwards, and N. Medvidovic. Toward a catalogue of
architectural bad smells. In Proceedings of the 5th International Conference on the
Quality of Software Architectures: Architectures for Adaptive Software Systems,
page 146–162, Berlin, Heidelberg, 2009. Springer-Verlag.

[23] T. Hall, M. Zhang, D. Bowes, and Y. Sun. Some code smells have a significant
but small effect on faults. ACM Transactions Software Engineering Methodology,
23(4), 2014.

[24] J. Han and M. Kamber. Data mining: Concepts and techniques. Morgan Kauf-
mann Publishers, 2, 2001.

[25] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley, 1990.

[26] J. Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.

[27] F. Khomh, M. Di Penta, YG. Guéhéneuc, and G. Antoniol. An exploratory study
of the impact of antipatterns on class change- and fault-proneness. Empirical
Software Engineering, 17(3):243–275, 2012.

[28] J. Landis and G. Koch. The measurement of observer agreement for categorical
data. biometrics, pages 159–174, 1977.

[29] M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in Practice.
Springer-Verlag, Berlin, Heidelberg, 2005.

[30] M. M. Lehman and L. A. Belady. Software Evolution - Processes of Software
Change. Academic Press London, 1985.

[31] Z. Li, P. Avgeriou, and P. Liang. A systematic mapping study on technical debt
and its management. Journal of Systems and Software, 101:193–220, 2015.

74 BIBLIOGRAPHY

[32] B. Liskov and J. M. Wing. Family values: A behavioral notion of subtyping.
Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF
COMPUTER SCIENCE, 1993.

[33] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered associations.
In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, page 125–134, New York, NY, USA, 1999. Association
for Computing Machinery.

[34] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall, Inc., USA, 1994.

[35] A. Lozano, K. Mens, and J. Portugal. Analyzing code evolution to uncover rela-
tions between bad smells. IEEE 2nd International Workshop on Patterns Promo-
tion and Anti-Patterns Prevention, 03 2015.

[36] M. V. Mantyla, J. Vanhanen, and C. Lassenius. Bad smells - humans as code
critics. In 20th IEEE International Conference on Software Maintenance, pages
399–408, 2004.

[37] N. Moha and Y.G. Guéhéneuc. Decor: a tool for the detection of design defects.
In Proceedings IEEE/ACM International Conference on Automated Software En-
gineering, pages 527–528, 2007.

[38] W. Oizumi, A. Garcia, T. Colanzi, M. Ferreira, and A. Staa. On the relationship
of code-anomaly agglomerations and architectural problems. Journal of Software
Engineering Research and Development, 3(1):11, 2015.

[39] W. Oizumi, A. Garcia, L. d. S. Sousa, B. Cafeo, and Y. Zhao. Code anomalies flock
together: Exploring code anomaly agglomerations for locating design problems.
In IEEE/ACM 38th International Conference on Software Engigeering (ICSE),
pages 440–451, 2016.

[40] W. Oizumi, L. Sousa, A. Oliveira, A. Garcia, A. Agbachi, R. Oliveira, and C. Lu-
cena. On the identification of design problems in stinky code: experiences and
tool support. Journal of the Brazilian Computer Society, 24(1):13, 2018.

[41] W. Oizumi, L. Sousa, A. Oliveira, A. Garcia, A. B. Agbachi, R. Oliveira, and
C. Lucena. On the identification of design problems in stinky code: experiences
and tool support. Journal of the Brazilian Computer Society, 24(1):13, 2018.

BIBLIOGRAPHY 75

[42] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. v. Staa. When
code-anomaly agglomerations represent architectural problems? an exploratory
study. In Brazilian Symposium on Software Engineering, pages 91–100, 2014.

[43] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg. Are all code smells harmful? a
study of god classes and brain classes in the evolution of three open source systems.
In IEEE International Conference on Software Maintenance, pages 1–10, 2010.

[44] T. Paiva, A. Damasceno, J. Padilha, E. Figueiredo, and C. Sant’Anna. Experimen-
tal evaluation of code smell detection tools. Workshop on Software Visualization,
Evolution, and Maintenance (VEM), 2015.

[45] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia. A
large-scale empirical study on the lifecycle of code smell co-occurrences. Informa-
tion and Software Technology, 99:1–10, 2018.

[46] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De Lucia.
On the diffuseness and the impact on maintainability of code smells: A large scale
empirical investigation. In IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 482–482, 2018.

[47] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia. Do they
really smell bad? a study on developers’ perception of bad code smells. In IEEE
International Conference on Software Maintenance and Evolution, pages 101–110,
2014.

[48] F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. Landfill: An open dataset of code smells with public evaluation.
In IEEE/ACM 12th Working Conference on Mining Software Repositories, pages
482–485, 2015.

[49] F. Palomba, R. Oliveto, and A. De Lucia. Investigating code smell co-occurrences
using association rule learning: A replicated study. In IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation (MaLTeSQuE), pages 8–13,
2017.

[50] B. Pietrzak and B. Walter. Leveraging code smell detection with inter-smell rela-
tions. In International Conference on Extreme Programming and Agile Processes
in Software Engineering, pages 75–84. Springer, 2006.

76 BIBLIOGRAPHY

[51] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw. Building empiri-
cal support for automated code smell detection. In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, 2010.

[52] David J Sheskin. Handbook of parametric and nonparametric statistical procedures.
crc Press, 2020.

[53] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå. Quan-
tifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, 2013.

[54] D. Taibi, A. Janes, and V. Lenarduzzi. How developers perceive smells in source
code: A replicated study. Information and Software Technology, 92:223–235, 2017.

[55] P.N. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for
association analysis. Information Systems, 29(4):293–313, 2004.

[56] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and
J. Noble. Qualitas corpus: A curated collection of java code for empirical studies.
In Asia Pacific Software Engineering Conference (APSEC2010), pages 336–345,
2010.

[57] S. Tufféry. Data mining and statistics for decision making. John Wiley & Sons,
2011.

[58] J. Van Gurp and J. Bosch. Design erosion: problems and causes. Journal of
systems and software, 61(2):105–119, 2002.

[59] S. Vidal, W. Oizumi, A. Garcia, A. Pace, and C. Marcos. Ranking architecturally
critical agglomerations of code smells. Science of Computer Programming, 182:64–
85, 2019.

[60] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and W. Oizumi.
Jspirit: a flexible tool for the analysis of code smells. In 34th International Con-
ference of the Chilean Computer Science Society (SCCC), pages 1–6, 2015.

[61] B. Walter, F. A. Fontana, and V. Ferme. Code smells and their collocations: A
large-scale experiment on open-source systems. Journal of Systems and Software,
144:1–21, 2018.

[62] T. Wu, Y. Chen, and J. Han. Re-examination of interestingness measures in
pattern mining: a unified framework. Data Mining and Knowledge Discovery,
21(3):371–397, 2010.

BIBLIOGRAPHY 77

[63] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program
comprehension: A large-scale field study with professionals. IEEE Transactions
on Software Engineering, 44(10):951–976, 2018.

[64] A. Yamashita and S. Counsell. Code smells as system-level indicators of maintain-
ability: An empirical study. Journal of Systems and Software, 86(10):2639–2653,
2013.

[65] A. Yamashita and L. Moonen. Do developers care about code smells? an ex-
ploratory survey. In 20th Working Conference on Reverse Engineering (WCRE),
pages 242–251, 2013.

[66] A. Yamashita and L. Moonen. Exploring the impact of inter-smell relations on
software maintainability: An empirical study. In 35th International Conference
on Software Engineering (ICSE), pages 682–691, 2013.

[67] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter. Inter-smell relations in
industrial and open source systems: A replication and comparative analysis. In
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 121–130, Sep. 2015.

	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Methodology
	1.2 Contributions
	1.3 Dissertation Outline

	2 Background
	2.1 Bad Smells
	2.2 Classification of Bad Smell Agglomerations
	2.3 Association Rules
	2.4 Related Work
	2.5 Concluding Remarks

	3 A Dataset of Bad Smells
	3.1 Systems Under Evaluation
	3.2 Dataset Construction
	3.3 Dataset Evaluation
	3.4 Threats to the Dataset Construction
	3.5 Concluding Remarks

	4 Study Design
	4.1 Research Questions
	4.2 Identification of Agglomerations
	4.3 Modularity Metrics
	4.4 Density Calculation
	4.5 Threats to Validity
	4.6 Concluding Remarks

	5 Results and Analysis of Bad Smell Agglomerations
	5.1 Understanding Heterogeneous Agglomerations
	5.2 Understanding Homogeneous Agglomerations
	5.3 On the Agglomeration Density
	5.4 Impact of Agglomerations on Modularity
	5.5 Discussion
	5.6 Concluding Remarks

	6 Understanding Heterogeneous Agglomerations
	6.1 Heterogeneous Types Density
	6.2 Impact of Heterogeneous Agglomerations
	6.3 Concluding Remarks

	7 Conclusions
	A Original Values of Cohen's d Comparison
	B Heterogeneous Cohen's d Values
	Bibliography

