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Abstract

Electromagnetic problems at high-frequency are attractive and challenging compu-
tational problems to solve. Significant efforts and improvements have been achieved
over the last two decades but severe problems remain unsolved. Various numerical
approaches have been developed until now such as the Generalized Finite Element
Method (GFEM) that is based on the Partition of Unity Method (PUM). GFEM
has been proved suitable to solve the two-dimensional Helmholtz equation, where
the classical FEM may require a prohibitive mesh refinement. However, when the
number of unknowns increases, some difficulties arise, such as bad condition number.
Generally, the plane waves configurations in GFEM are chosen to be uniformly dis-
tributed. However not all of the wave directions contribute effectively in the solution.
Therefore, developing a pre-processing methodology to identify an appropriate number
of degrees of freedom for each problem could be useful. The information about the
suitable configuration of plane waves for a problem can be obtained using an inaccurate
FEM solution generated on a poor resolution mesh (the GFEM mesh). One possibility
is to apply the Discrete Fourier Transform (DFT) to extract an acceptable range
for the number of wave directions q and effective directions. The simulation results
using this methodology is presented in this research and shows that it is capable to
choose carefully the wave direction and eliminate some wave directions which has
less influence in the solution. Although the mentioned method defines the acceptable
range of q for the accurate and converged GFEM solution, it lacks definition of the
optimum number of wave directions inside this range. Alternatively, following of the
research proposes to use the curvelets transform to achieve local information about
wave directions in the domain and therefore identify how many wave directions are
necessary to represent the solution accurately. The identified number would be used as
the optimum number of wave directions for all nodes in GFEM solution. The results
indicate that the adopted strategy can guarantee accurate and converging responses for
GFEM in complex problems, along with remarkable reductions of the computational
cost as a consequence of reduction in the total number of degrees of freedom.
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Resumo

Problemas eletromagnéticos em alta freqüência são problemas computacionais
atraentes e desafiadores a serem resolvidos. Embora tenham sido realizado esforços
significativos e melhorias ao longo das duas últimas décadas, problemas ainda per-
manecem sem solução. Várias abordagens numéricas foram desenvolvidas até agora,
como o Método de Elementos Finitos Generalizados (GFEM), que é baseado no método
de partição de unidade (PUM). O GFEM é adequado para resolver a equação de
Helmholtz bidimensional, onde o FEM clássico pode exigir um refinamento de malha
proibitivo. No entanto, quando o número de incógnitas aumenta, algumas dificuldades
surgem, como o número de condição ruim. Geralmente, as configurações de ondas
planas no GFEM são escolhidas para serem uniformemente distribúıdas. No entanto,
nem todas as direções de onda contribuem eficientemente para a solução. Portanto,
o desenvolvimento de uma metodologia de pré-processamento para identificar um
número apropriado de graus de liberdade para cada problema poderia ser útil. As
informações sobre a configuração adequada das ondas planas para um problema podem
ser obtidas usando uma solução FEM imprecisa, gerada em uma malha de baixa
resolução (a malha GFEM). Uma possibilidade é aplicar a Transformada Discreta
de Fourier (DFT) para extrair um intervalo aceitável para o número de direções de
onda q e suas direções efetivas. Esta metodologia é apresentada nesta pesquisa e,
embora defina uma faixa aceitável de q para uma solução precisa e convergente, ela não
define o número ótimo de direções de onda dentro desta faixa. Alternativamente, esse
trabalho também propõe usar a transformada curvelets para obter informações locais
sobre as direções de onda no domı́nio e, portanto, identificar quantas direções de onda
são necessárias para representar com precisão a solução. O número identificado seria
usado como o número ótimo de direções de onda para todos os nós na solução GFEM.
Os resultados indicam que a estratégia adotada pode garantir respostas precisas e
convergentes do GFEM em problemas complexos. Outro ponto positivo é a redução do
custo computacional como conseqüência da redução número total de graus de liberdade.

Palavras chave_Número de condição, transformada curviĺınea discreta rápida,
método de elementos finitos generalizados, enriquecimento por ondas planas.
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Chapter 1

Introduction

1.1 Motivation and Background

Computational Electromagnetics (CEM) has become critical in the developments of
recent year’s technology as the technology shifts to complex microwave and terahertz
systems. Accurate and efficient simulations of such systems are very important,
especially in the near field, and this depends on the robustness and the accuracy of the
computational tools.

The Finite Element Method (FEM) has received much attention in solving electro-
magnetic problems in the past, because of its flexibility in modeling complex geometries
and also the ability to handle complex targets and media [1–3]. In addition, efficient
basic finite element solvers were available, which can be parallelized using domain
decomposition methods. However, pollution effects in the standard FEM limited
its ability for solving large-scale scattering problems and also, when the frequency
increases, some difficulties were met [4]. In order to overcome these problems, new
finite element methods have been explored such as the Galerkin least squares methods,
the element-free methods, the Partition of Unity Method (PUM), and the discontinuous
enrichment method [5].

The Generalized Finite Element Method (generalized FEM or GFEM) is also one
of the new methods which was originated from the work on the partition of unity
method of Babuska and Melenk [6, 7] and also Strouboulis, Zhang, and Babuska [4, 8]
for solving coercive elliptic problems (e.g. the Laplace equation, the equation of heat
conduction, etc) in problems with complex domains using enrichment by handbook
functions. The mathematical aspects of the Generalized Finite Element Methods,
including the method proposed here, were addressed in the work of Babuska, Banerjee,
and Osborn [9–11] where many more references can be found. It should be mentioned
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also, the work on the Extended Finite Element Method (XFEM) by Belytschko et al.
[12, 13] which has similar ingredients, and also the work by Duarte et al. [14].

The utilization of wave-related functions to enrich the approximation space for
solving the Helmholtz equation was introduced in the Ph.D. thesis of Melenk [6],
where the theoretical aspects of the Partition of Unity method for the Helmholtz
equation are addressed. Other important works that utilized the plane-wave functions
were contributed by Laghrouche, Bettess and co-workers [15], by Ortiz [16], and by
Astley and Gamallo [17]. The three-dimensional version of the method was addressed
by Perrey-Debain, Laghrouche, et. al. in [18]. There were also related works by
Farhat and co-workers [19, 20] on the Discontinuous Enrichment Method (DEM) which
also employs enrichment by plane-wave functions using a formulation based on the
Discontinuous Galerkin with Lagrange Multipliers, and also the work of Ladev‘eze,
Rouch, and Riou [21, 22] on the variational theory of complex rays (VTCR) which
also uses enrichment of the approximation by local solutions of the wave equation.

The plane wave enrichment reduces the mesh influence allowing solutions with
a smaller number of degrees-of-freedom compared with classical FEM. The results
presented in [23] point out to an exponential rate of convergence with respect to
the number of wave directions q. However, in many cases, increasing the number of
directions leads to ill-conditioned systems that makes the GFEM not very attractive
for high values of q. The ill-conditioning problem has been reported by many authors.
For instance, Laghrouche et al. analyzed the influence of the enrichment functions and
the wave number k in the conditioning of the linear system generated by the GFEM
[24]. It has been shown that the ill-conditioning increases with the frequency of the
problem and grows exponentially as q increases. In [25], a relationship between k and
q is proposed in order to keep the condition number within acceptable limits.

This means that for practical problems there is a limit to improve the quality of the
solution by increasing the number of plane waves. Moreover, not all the wave directions
in uniformly distributed GFEM configuration contribute to the solution of the problem.
Furthermore, the development of a pre-processing methodology that is able to avoid
the unnecessary wave directions can be very useful to have qualified results.

1.2 Proposed Method

In this work, the Generalized Finite Element Method enriched by Plane Waves is used
to solve two-dimensional Helmholtz equation. A systematic approach is proposed to
reduce the mesh influence and strongly decrease the number of degrees of freedom of the
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final linear system compared with the classical Finite Element Method. The goal is to
use the information available during the iterative solution of the linear system to choose
carefully the wave direction and eliminate some wave directions which has less influence
in the solution. The reduction of the number of wave directions and subsequently
reduction of the total number of degrees of freedom, leads to improvements in the
condition number of the linear matrix.

The information about the important wave directions in each problem can be
achieved using an inaccurate FEM solution generated on a poor resolution mesh (the
GFEM mesh). One possibility is to apply the Discrete Fourier Transform (DFT) to this
FEM solution and then extract an acceptable range of the number of wave directions q

and also the most significant wave directions, using some filtering procedure. Therefore
this information could be used to define more efficient configurations for GFEM in
comparison to traditional GFEM.

Not all wave directions in the selected configuration are efficient in all parts of the
domain. FFT is not capable to define where in the space the most important directions
exist. As a result, the same configuration must be used to all parts of the domain.
It means that identifying the best number of enrichment functions along with the
proper wave directions could improve the GFEM by making the enrichment functions
distribution more efficient in the entire domain and decreasing the total number of
degrees of freedom. The alternative methodology is to analyze FEM solution data using
curvelet transform to identify optimum GFEM configuration. This new configuration
with qopt leads to the accurate GFEM solution, besides the smaller number of degrees
of freedom, and requires less time and memory in comparison to traditional GFEM.
The main objectives of this research can be summarized as follows:

• To propose a systematic approach that is able to determine the suitable range
for the number of wave directions for a given problem.

• Identify the optimum number of wave directions in the acceptable range.

• To extract the most important wave directions and determine their respective
location in the domain of the problem .

• To suggest the proper enrichment functions distribution for each node in the
problem.

• To analyze the pollution and the q-convergence properties of the GFEM to
investigate the robustness of the method with respect to problem types.
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• Finally, to provide a highly accurate computational GFEM method for the
Helmholtz equation on the domain with complex geometries.

1.3 Outlines

Following this introduction, in chapter 2, the mathematical formulation of GFEM
enriched by plane wave functions using Cartesian meshes will be briefly described and
the main attributes of the Generalized FEM will be also discussed. In chapter 3, the
main features of Fast Fourier and Curvelet Transforms as image processing methods
will be presented and then the concept of analyzing the FEM solution as an image using
these techniques will be introduced. Following that, in chapter 4, the methodology
to find out the limits for the number of wave directions and selection of a proper
distribution of enrichment functions will be proposed. Simulation results and the cost
of the Generalized FEM applying the proposed methodology, will also be analyzed in
chapter 4. Finally, the research conclusions and recommendations for the future works
are presented in chapter 5.

It should be noted, that the result of this research is as followings:

1. One accepted paper in the 17th Biennial Conference on Electromagnetic Field
Computation (CEFC 2016). The paper title is "The Condition Number Im-
provement in a Generalized Finite Element Method Using Discrete Curvelet
Transform". This paper was Presented in oral section in CEFC2016 which was
held in Miami, USA, 13-16 November, 2016.

2. The extended version of the previous paper was accepted and published in IEEE
transactions on Magnetics, 26 January 2017. This paper is related to the proposed
methodology of identifying the optimum configuration of enrichment functions
for GFEM solution using curvelet transform.

3. Other paper was submitted in The international journal for computation and
mathematics in electrical and electronic engineering (COMPEL) in November,
2016. The paper title is "A Pre-Processing Methodology to Identify Wave
Directions in the Generalized Finite Element Method" and after the major
revision , its status is awaiting for the second review response. This paper is
related to the proposed methodology of identifying the acceptable range for
number of wave directions using FFT analysis.



Chapter 2

Generalized Finite Element Method
Enriched by Plane Waves

During the past two decades meshless computational methods have become increasingly
popular with the engineering and science communities. These methods can overcome
serious difficulties related to mesh generation for problems involving complicated
domains, or on domains whose geometry is solution dependent. They are also utilizable
when one wants to incorporate a priori knowledge about the solution of the problem
into the design of the computational method. The generalized finite element method
(GFEM) is a meshless method that was originated in the work of Babuska et al , and is
based on the partition of unity method (PUM) introduced in [4, 1, 7]. It was further
analyzed and developed by Strouboulis et al [23, 26].

The main attributes of the GFEM are the capability of using meshes that are
independent, or partially independent, of the geometry of the domain and the flexibility
in constructing the trial spaces. For high frequency problems, the GFEM can provide
accurate results even using less than one point per wavelength. The method is specially
interesting for large electromagnetic wave problems where the mesh refinement required
by the FEM can become prohibitively expensive [27].

Several mesh free methods proposed in recent years can be formulated as special
cases of the partition of unity method. The key feature of these methods is the use of
a set of functions whose values sum to the unity at each point in a domain. In these
methods, discretization spaces for a Galerkin method are defined using the concept of
a partition of unity and local spaces that are built based on a priori knowledge about
the solution of a problem.
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2.1 GFEM Formulation for Helmholtz Problems

A bounded domain Ω ⊂ R2, with boundary ∂Ω = Γ1 ∪Γ2,Γ1 ∩Γ2 = ∅ can be seen in
Figure 2.1. The field u should satisfy the Helmholtz equation in the following:

Fig. 2.1 Domain with interior boundary Γ1 and outer boundary Γ2

−∆u−k2u = f in Ω (2.1)

∂u

∂n1
= g1 on Γ1 (2.2)

∂u

∂n2
− iku = g2 on Γ2 (2.3)

Where k is the wave number, ∆ is the laplacian operator, Ω is the studied domain,
g1 and g2 are the corresponding boundary conditions, i is the imaginary complex
number(i2 = −1) and the n1 and n2 are the outward unit normal to the boundaries Γ1

and Γ2 respectively.

2.1.1 Weak Formulation of the Helmholtz Equation

Partial differential equations (PDEs) explained in (2.1), (2.2) and (2.3) are strong-forms
of system equations. Obtaining the exact solution for a strong-form of system equation
is ideal, but unfortunately it is very difficult for practical engineering problems that
are usually complex in nature. The weak-form, in contrast to the strong-form, provides
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a variety of ways to formulate methods for approximate solutions for complex systems.
Formulation based on weak-forms can usually produce a very stable set of discretized
system equations that produces much more accurate results. Applying the weighted
residual method, the field u ∈ H1(Ω) should be find such that:

β(u,v) = £(v) ∀v ∈ H1(Ω) (2.4)

where
β(u,v) =

∫
Ω

▽u▽v dΩ−k2
∫

Ω
u v dΩ+ ik

∮
Γ2

u v ds (2.5)

£(v) =
∫

Ω
f v dΩ+

2∑
i=1

∮
Γi

gi v ds, (2.6)

where H1(Ω) is the space of functions with square integrable derivatives over Ω and v

is the test function .

2.1.2 Space of GFEM: Partition of Unity

For solving the Helmholtz equation, GFEM can be obtained by employing the traditional
FEM method and by enriching the approximation by plane waves pasted into the finite
element basis at each mesh node using the partition of unity method [28, 26, 23]. This
means that, the space of Generalized Finite Element solutions can be constructed by
combining the following discrete spaces of functions on the mesh ∆h

1. The standard bi-p (tensor product) finite element space, Sp
∆h

(p is related to the
degree of the polynomial functions.)

2. The partition of unity space:

W k;q
∆h

=
v =

nnodes∑
i=1

ϕ∆h
i vi | vi ∈ W k;q

loc (ω∆h
i )

 (2.7)

where

W k;q
loc = span

{
wk = exp

(
ik

(
xcos 2πl

q
+y sin 2πl

q

))
, l = 0, ..., q −1

}
. (2.8)

is the local space of linear combinations of plane waves traveling in the directions
(cos 2πl

q ,sin 2πl
q )
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2.1.3 GFEM Shape Function

A shape function, φil, in the GFEM is computed from the product of a linear finite
element shape function, ϕi , and an enrichment function, Ψil.

φil(x) = ϕi(x) Ψil(x) (2.9)

where i is a node in the finite element mesh. As mentioned previously, the linear
finite element shape functions ϕi , i = 1, ....,n , in a finite element mesh with n nodes
constitute a partition of unity, as stated by the following equation for all x in a domain
Ω covered by the finite element mesh.

n∑
i=1

ϕi(x) = 1, ∀x ∈ Ω (2.10)

Fig. 2.2 Construction of a Generalized FEM shape function using a (a) polynomial (b)
and a non-polynomial enrichment Functions [29].

Figure 2.2, illustrates the construction of GFEM shape functions. Here, ϕi are the
functions at the top, the enrichment functions, Ψil , are the functions in the middle,
and the generalized FE shape functions, φil , are the resulting bottom functions. This
is a key property used in the partition of unity methods. Linear combinations of the
GFEM shape functions φil ,i = 1, ....,n , can represent exactly any enrichment function
Ψil [30, 31].
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2.1.4 GFEM Solution

The GFEM approximation for the solution is constructed using the FEM nodal shape
functions and a set of plane waves and can be expressed as :

u(x) =
n∑

i=1
Ni(x)βi +

n∑
i=1

q∑
l=1

ϕi(x)Ψil(x)αil = uF EM (x)+uenr(x) (2.11)

where βi and αil are the degrees-of-freedom and Ni, i = 1, ...,n is the i-th first order
Lagrange basis function. When the functions ϕi(x) have compact support, then the
discrete equations for the system will be sparse. In general ϕi(x) = Ni(x). In this case
the expression in (2.11) could be written in the matricial form as:

u(x) = ΦT .U (2.12)

where
UT = [β1 α11 ... α1q ... βn αn1 ... αnq] (2.13)

and

ΦT = [N1 N1Ψ11 ... N1Ψ1q ... Nn NnΨn1 ... NnΨnq] (2.14)

2.1.5 Plane Wave Enrichment Function

In (2.11), the Ψil, l = 1, ..., q, is the enrichment function given by

Ψil(r) = exp(jkξl ·r) (2.15)

where r is the position vector of a considered point, j =
√

−1 and k is the wave
number. Generally, the wave functions in the traditional GFEM are chosen to be
uniformly distributed. This is done because the information about the behavior of the
electromagnetic fields is rarely available a priori. Mathematically, the wave directions
can be described as:

ξl = cos(θl)x̂+ sin(θl)ŷ, (2.16)

where θl = 2πl
q , l = 0, ..., q −1.

Figure 2.3 depicts the employed wave directions for q = 1,...,6, in uniformly distributed
configuration. As shown in [24], not all of these wave directions contribute to the
solution.
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Fig. 2.3 Example of wave directions in equally spaced distribution to construct the
enrichment Functions

In a matricial form, the unknown function in GFEM solution in expressions (2.11),
would be written as :

u =
n∑

i=1

q∑
l=1

NiΨilαil = P . A (2.17)

where vector P contains the oscillatory shape functions which are products of poly-
nomials and planar waves and the A is the vector of the unknown amplitudes. A
Galerkin scheme is used so that the weighting functions are chosen to be the same as
the interpolating oscillatory functions. The set of Galerkin equations of expressions
(2.4), (2.5) and (2.6) may be written in a matricial form :

K.A = f (2.18)

where
K =

∫
Ω

(
▽P T▽P −k2P T P

)
dΩ+ jk

∫
Γ

P T P dΓ (2.19)

and

f =
2∑

i=1

∫
Γ

P T gidΓ (2.20)

For coarse meshes, the first term of the right-hand side of (2.11) introduces high
numerical dispersion with a poor capacity to deal with the oscillatory nature of the
function, and therefore, it is discarded by several authors [32]. As a result, the βi in
(2.11) is supposed to be zero for i = 1, ...,n in this research and then the dimension
of the resulting system of equations would be equal to nq × nq. The global system
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matrix K is the contribution of the local matrices of total elements in the domain and
boundaries. In this research the triangular elements are used to discretize inside the
domain and line elements are used for boundaries. Therefore Ke by the size 3q × 3q is
calculated for each element and then substituted to the respective location in K. In
addition, theKs in size 2q ×2q and also f in size 2q ×1 are calculated for line elements
on the boundaries. The position of each element in the global system is defined by
transferring local node numbers to global ones.

2.1.6 Numerical Integration

The integration for Ke should be performed over the whole element. However, there is
not always feasible analytical expressions for P or equally for Ψ. The solution is to use
the numerical integration to approximate the integration over the element; The Gauss
quadrature method that is a weighted sum of function values at specified points within
the domain of integration is usually used in FEM problems for approximation.

Ke =
∫

Ωe

(
▽P T▽P −k2P T P

)
dΩe =

∫ ∫
xy

F (x,y) dxdy (2.21)

To evaluate the Integral in (2.21) by Gaussian quadrature rule, first the triangular
element Ωe should be transformed to the standard triangular element Tst as shown in
Fig.2.4.

Fig. 2.4 Linear mapping between triangular element and standard triangle

The nodal shape functions in the standard triangle are expressed as follows:

N1(ξ,η) = ξ

N2(ξ,η) = η (2.22)

N3(ξ,η) = 1− ξ −η
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The mapping can be achieved conveniently by using the nodal shape functions as
follows:

x = P (ξ,η) =
3∑

i=1
xiNi(ξ,η) = x1N1(ξ,η)+x2N2(ξ,η)+x3N3(ξ,η) (2.23)

y = Q(ξ,η) =
3∑

i=1
yiNi(ξ,η) = y1N1(ξ,η)+y2N2(ξ,η)+y3N3(ξ,η) (2.24)

Then ∫ ∫
K

F (x,y)dxdy =
∫ ∫

Tst

F (P (ξ,η),Q(ξ,η))|J(ξ,η)|dξdη (2.25)

where J(ξ,η) is the Jacobian of the transformation, namely,

J(ξ,η) =
∣∣∣∣∣∂(x,y)
∂(ξ,η)

∣∣∣∣∣=
∣∣∣∣∣∣
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂x
∂η

∣∣∣∣∣∣= 2AK (2.26)

Here AK represents the area of the triangle Ωe, which can be evaluated by:

AK = |x1(y2 −y3)+x2(y3 −y1)+x3(y1 −y2)|
2 (2.27)

The inverse of the transformation shown in Fig.2.4 can be found as:

ξ = 1
2AK

[(y3 −y1)(x−x1)− (x3 −x1)(y −y1)] (2.28)

η = 1
2AK

[−(y2 −y1)(x−x1)+(x2 −x1)(y −y1)] (2.29)

Finally, by applying the Gaussian quadrature of degree Ng (number of Gauss points)
for the standard triangular element, (2.25) yields:

∫ ∫
K

F (x,y)dxdy ≈ Ak

Ng∑
i=1

wi F (P (ξi,ηi),Q(ξi,ηi)) (2.30)

Here Ng is the number of Gauss points and wi is the weight for each Gauss point.
Position of sampling points and value of weights were both optimized. Now it is possible
to calculate (2.21) using (2.30).

For calculating the integral in (2.21), the vector P should be defined in triangle
which is expressed previously in (2.17). where vector P contains the oscillatory shape
functions which are products of polynomials and planar waves and the A is the vector
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of the unknowns amplitudes as follows:

Pe =
3∑

i=1

q∑
l=1

Pil =
3∑

i=1

q∑
l=1

NiΨil (2.31)

AT
e = [α11 ... α1q ... α31 ... α3q] (2.32)

and
Pe = [N1Ψ11 ... N1Ψ1q ... N3Ψ31 ... N3Ψ3q] (2.33)

Considering the expression of P , the ▽Pil would be equal to :

▽Pil =
∂Pil

∂x
∂Pil
∂y

=

∂Ni

∂x
∂Ni
∂y

+ jkNi

cosθl

sinθl

Ψil (2.34)

The derivative of shape functions N would be substituted by B matrix :

B =
∂N1

∂x
∂N2
∂x

∂N3
∂x

∂N1
∂y

∂N2
∂y

∂N3
∂y

 (2.35)

According to (2.22) and (2.28), the derivatives could be calculated by:

∂Ni

∂x
= ∂Ni

∂ξ
.
∂ξ

∂x
(2.36)

∂Ni

∂y
= ∂Ni

∂η
.
∂η

∂y
(2.37)

In which
∂N

∂ξ
=
[
1 0 −1

]
(2.38)

∂N

∂η
=
[
0 1 −1

]
(2.39)

2.2 Influence of Wave Directions on GFEM Solution

As shown in [24], not all of the wave directions in (2.16) contribute to the solution.
The free space problem is used as an example to illustrate the influence of the wave
directions in GFEM solution with equally distributed configuration. This problem
consists of a square domain Ω = {(x,y), |−3 ≤ x ≤ 3|, |−1.5 ≤ y ≤ 1.5|}, with the wave
number set as k = 2π. Fig.2.5 shows the discretized domain with mesh size h = 1.1λ.
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Fig. 2.5 a)free space geometry, b) Domain discretization, mesh size h = 1.1λ

The problem is solved considering an incident plane wave with an angle of incidence
θi = 15o propagating in the free space domain. As the analytical solution of this
problem has only one wave direction, it is expected that the wave directions which are
aligned with the analytical one contribute more significantly to represent the solution.
Fig. 2.6 illustrates the solution of the problem with a mesh size h = 1.1λ and q = 18.
It shows the plane wave magnitude values αil obtained in two nodes of the mesh. As it
can be seen, the directions closest to the incident one, l = 0 and l = 1 (corresponding
to θ = 0o and θ = 20o), contribute more significantly to the solution.
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Fig. 2.6 Wave amplitudes at two different nodes of the mesh.
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2.3 q-convergence of GFEM

To analyze the convergence of the GFEM, the accuracy of the model is measured by
the relative L2(Ω) error defined in the whole computational domain as following:

ϵ =

∥∥∥uref −unum

∥∥∥
L2(Ω)∥∥∥uref

∥∥∥
L2(Ω)

(2.40)

where reference result is a vector containing the analytical field value at the nodes of
the mesh and numerical result is generated from GFEM solution. The error due to
evaluation of K and F by numerical integration is negligible.

The GFEM solution for the free space problem with 34 nodes and θi = 15o is
calculated by employing the 7 × 7 Gauss-Legendre integration rule in the triangle
elements inside the domain, while 7 Gauss= points was applied for the line elements on
the boundaries. The error value versus the number of wave directions is shown in Fig.
2.7. As can be seen the error decreases by increasing the number of wave directions
until q = 16. It means that the GFEM solution has converged exponentially to the
analytical solution and meet the best convergence at q = 16. However, increment in
the error can be seen when q > 16 as side effect of increment in the condition number.
Basically, when the number of wave directions increases the difference between the
directions decreases and then the global matrix would be ill-conditioned.

As mentioned in q-convergence property of the GFEM solution, it is important to
choose a suitable q for the calculations which leads to converged solution. On the other
hand, as mentioned in previous section not all of the wave directions in uniformity
distributed plane wave directions have influence in the accurate solution. Therefore
applying a systematic approach to choose carefully the number and also the important
wave directions for each problem, could result in convergence and accurate solutions
with smaller computational cost. The next chapter is dedicated to explanation of
extracting the appropriate plane wave configuration using image processing techniques.
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Fig. 2.7 q-convergence of GFEM in free space problem with k = 2π and h = 1.1λ.



Chapter 3

Identifying Important Plane Waves
Directions

In GFEM formulation, the field value at each finite element node is expanded in discrete
series of plane waves, each propagating at a specified angle. Generally, these angles
are uniformly distributed and are the same for all nodes of the mesh. Such systems of
plane waves form complete sets of functions for the Helmholtz equation. However, as
described in section 2.2, the distribution of the amplitudes with respect to the directions
of the basis functions showed that only a few directions are active. This means that
the directions should be chosen carefully and may vary from one node to another in
the studied mesh.

On the other hand, the conditioning of the plane wave approximation of finite
element model for the Helmholtz equation was analyzed (by Laghrouche et al) when
the number of the planar waves are increased [15]. It appears that conditioning for
problems grows exponentially when the number of the approximating plane waves
increases [24]. Therefore, it is valuable to take reasonable numbers of basic functions and
even reduce this number at nodes of the problem where the directions of propagation
are approximately known to avoid ill-conditioning solutions.

As a consequence, developing a pre processing methodology to choose the Number
of the approximating plane waves and also the active directions could be advantageous
to have smaller number of degrees of freedom. The fact behind the proposed idea
in this research is that the FEM solution of the problem can be seen as an image.
Therefore, the image processing tools has been used to analyze the FEM solution image
of each problem. Feature extraction capabilities of two image processing methods, Fast
Fourier Transform (FFT) and Fast Discrete Curvelet Transform(FDCT) are discussed
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in this chapter. These transforms has been used in the proposed methodologies in this
research to extract the appropriate plane waves distribution for GFEM solution.

3.1 Feature Extraction Using Discrete Fourier Transform (DFT)

The Fourier Transform is an important image processing tool which is used to decompose
an image into its sine and cosine components. The output of the transformation
represents the image in the Fourier or frequency domain, while the input image (in
this research, the solution of the wave equation) is the spatial domain equivalent. In
the Fourier domain image, each point represents a particular frequency contained in
the spatial domain image. The DFT is the sampled Fourier Transform and therefore
does not contain all frequencies forming an image, but only a set of samples which is
large enough to fully describe the spatial domain image. The number of frequencies
corresponds to the number of pixels in the spatial domain image, i.e. the image in the
spatial and Fourier domain are of the same size.

The proposed idea in this research is to apply the Discrete Fourier Transform
(DFT) to perform the Spatial Fourier Transform (SFT) on the coarse-mesh finite
element solution to extract useful information a priori about wave directions in GFEM
configuration. It should be noted that the appropriate size for the FEM mesh (also
used as the GFEM mesh) is selected considering the Nyquist sampling theory (3.1).

Sampling frequency limit : fs > 2.fmax (3.1)

In which fs is the sample rate per unit of space and fmax is the highest frequency
component of interest in the measured signal [33]. The maximum spatial frequency and
the minimum wavelength of the propagating wave are related subsequently by (3.2).
Therefore the acceptable coarse mesh size is defined. It should be smaller than the half
of the minimum existent wavelength.

k = 2π/λ (3.2)

Since the input form of DFT should be equally-spaced samples, the FEM solution is
evaluated over a grid with M equally spaced points along the x axis and N equally
spaced points along the y axis. Once the M ×N Matrix is constructed, it is possible
to visualize the wave components of the FEM solutions as a two-dimensional image
by employing the DFT. The image can be created using the information of the entire
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domain or some region of interest. The Discrete Fourier Transform formulation gives
the wave number spectrum along both axis as follows [33]:

F (U,V ) =
M∑

m=1

N∑
n=1

f(m,n)exp[−j2π(Um/M +V n/N)] (3.3)

where 2πU is the wave number component along the x direction, 2πV is the wave
number component along the y direction and f(m,n) is the finite element solution on
the point with (m,n) coordinates.

3.1.1 A Proposal to Find the Most Important Wave Directions Applying
DFT

The free space problem is used as an example to illustrate the capability of DFT on
identifying the extant wave directions on image of FEM solution. This problem consists
of a square domain Ω = {(x,y), |−3 ≤ x ≤ 3|, |−1.5 ≤ y ≤ 1.5|}, with the wave number
set as k = 2π (λ = 1m). Different discretizations are used to solve the problem. Fig.
3.1 shows the discretized domains obtained using two meshes: the first one composed
of 109 nodes (2.5 nodal points per wavelength) and the second one composed of 633
nodes (5.0 nodal points per wavelength).

Fig. 3.1 Domain discretization a) mesh size h = 0.4λ and b) mesh size h = 0.2λ

The problem was solved considering a sum of two incident plane waves with angles
of incidence θ1 = 15o and θ2 = 80o. The image of FEM solution with h=0.2λ can be
seen in Fig. 3.2. Applying the DFT, the wave number spectrum of a finite element
solution can be represented as an image, as shown in Fig. 3.3. It is easy to see that
more noise is introduced into the solution as the mesh size approaches the Nyquist rate.
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Fig. 3.2 Image of FEM solution with two incident angles

Fig. 3.3 2-D DFT of the finite element solution a) h = 0.2λ , b) h = 0.4λ

With this spectrum, the significant plane waves directions can be easily obtained
by calculating the angles where the peaks occur. To simplify the problem and to offer
better results, a radial spatial mask is used to select only the values within a radius
from the center of the spectrum. Since a time harmonic solution is expected, the radius
is set to match the wave number of the problem.

The filtering procedure reduces the problem to a 1-D peak detection problem, as
presented in Fig. 3.4. In both meshes, the two main peaks occur when θ is approximately
15◦ and 80◦, matching the incidence angles assigned in the testing problem. Other
remaining peaks exist, especially when h = 0.4λ. However, the amplitude of those peaks
are considerable smaller than the main ones. They can be eliminated using a cut-off
value based on the amplitude of the highest peak.



3.1 Feature Extraction Using Discrete Fourier Transform (DFT) 21

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

angle (degrees)

M
a
g
n
it
u
d
e

 

 

fine mesh

coarse mesh

Fig. 3.4 1-D problem obtained after the filtering process. Meshes h = 0.2λ , h = 0.4λ

3.1.2 Find Multiple Incident Wave Directions in Free Space Problem

Using the filtering procedure, the method is capable of identifying the multiple important
wave directions which composes the solution with good precision. Table 3.1 shows the
wave directions identified for seven different configurations of incident waves. In this
table, θi represents the directions of the incident waves imposed to the problem and
θf represents waves identified by the DFT. The cut-off value was chosen as 0.5 of the
amplitude of the main direction.

Table 3.1 Wave directions identified using the 0.2λ mesh

Configuration θi (degrees) θf (degrees)

1 [15 140] [18 140]
2 [50 130] [48 132]
3 [70 230] [70 132 228 290 ]
4 [42 150 244] [42 120 146 240]
5 [15 75 160] [8 78 162]
6 [30 120 230 320] [34 228 314]
7 [40 70 155 245] [40 70 118 160 ]

The wave directions identified by the DFT show a good agreement with the incident
ones. Except by one direction in configuration 6, all incident waves were identified
properly. The standard deviation between θi and θf is about 2.12o. Nevertheless,
some wave directions that do not correspond to an incident one were introduced in
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the θf vector. This phenomena can be observed in configurations 3 and 4 and it is a
consequence of the choice of the cut-off parameter.

Table 3.2 shows the results obtained using the 0.4λ mesh. In this case, the noise
introduced by the low quality mesh made the identification much more sensitive to the
cutoff parameter and more undesired directions were selected. Even though, only two
wave directions were not found (see row 5 of the table) and the standard deviation
between θi and θf is about 5.89o. Fortunately, as will be shown in the next sections,
the number of identified angles is used only to estimate the lower limit for the range of
suitable choices of q. As a consequence, the overall method is quite insensitive to the
cut-off parameter.

Table 3.2 Wave directions identified using the 0.4λ mesh

Configuration θi (degrees) θf (degrees)

1 [15 140] [22 48 132 148 218]
2 [50 130] [48 132]
3 [70 230] [70 132 228 290 310]
4 [42 150 244] [48 120 152 240]
5 [15 75 160] [80]
6 [30 120 230 320] [26 48 130 240 312]
7 [40 70 155 245] [48 70 120 152 280]

3.2 Feature Extraction Using the Discrete Curvelet Trans-
form (DCT)

The most important directions in the wave propagation problems can be defined by
applying FFT analysis on the Coarse mesh FEM solution of the problem. However,
the FFT is not able to define where in the space the most important directions exist.
It means that, using the Fourier Transform the FEM data is being transformed into
waves with specific frequencies and directions that are supposed to exist in the whole
space domain. To overcome this resolution problem a multiresolution transform is used
to transform the FEM data which is known as the Curvelet Transform. Curvelets are
useful because they are limited in space and frequency. Details of the theory of curvelet
transform and its ability to identify the most important directions in different parts of
the problem are described in the following sections.
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3.2.1 The Curvelet Transform

Motivated by the need of image analysis, Candes and Donoho developed the curvelet
transform in 2000 [34]. The curvelet transform is a highly redundant dictionary which
can provide sparse representations of signals that have edges along regular curves. The
initial construction of curvelet was redesigned later [35] and was re-introduced as a
Fast Discrete Curvelet Transform (FDCT) [36]. This second generation of curvelet
transform is meant to be simpler to understand and use. It is also faster and less
redundant compared to its first generation version. Curvelet transform is defined in
both continuous and digital domain and for higher dimensions.

A single curvelet is function that obey the paramount parabolic scaling principle:
width = length2, in space and frequency domain as can be seen in Fig. 3.5. By
translating the curvelet function, the whole 2D space would be covered. In addition,
different frequencies and orientations are covered by expanding and rotating the curvelet.
By doing all simultaneously, the curvelet transform covers the whole frequency spectrum
so that there is no loss of information. This means that Curvelets represent a family
of functions formed from translations, rotations, and parabolic scaling of a "mother"
wave.

Fig. 3.5 A single curvelet in a) space domain and b) frequency domain

In order to implement the curvelet transform, first the 2D Fast Fourier Transform
(FFT) of the image and a curvelet function is taken. Then the convolution of the
curvelet with the image in spatial domain becomes the product in Fourier domain.
Finally, the curvelet coefficients are obtained by applying the inverse Fourier transform
on the spectral product. As shown in Fig. 3.6 (a), the 2D Fourier frequency plane is
divided into wedges. The parabolic shape of wedges is the result of partitioning the
Fourier plane into radial (concentric circles) and angular divisions. The concentric
circles are responsible for the decomposition of an image into multiple scales (used for
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band passing the image at different scale) and the angular divisions partition the band
passed image into different angles or orientations. Each of the wedges corresponds to a
particular curvelet (shown as ellipses) at a given scale j and angle l. This indicates
that if the inverse FFT of a particular wedge is taken, it will determine the curvelet
wave for that scale and angle. This is the main idea behind the implementation of
curvelet transform. Fig. 3.6 (b) represents the support of curvelet in spatial Cartesian
grid associated with a given scale and angle.

Fig. 3.6 Curvelet tiling of space and frequency. a) The induced tiling of the frequency
plane and b) The spatial Cartesian grid associated with a given scale and orientation

Curvelets are local in both space and spatial frequency. Fig. 3.7 represents six
different curvelets in frequency and spatial domain at different scales and directions.
As can be seen, the main axes in the frequency domain and the space domain are
orthogonal to each other in the curvelet transform. As opposed to complex curvelets,
real curvelets live in two angular wedges symmetric about the origin. As such, curvelets
form a frame with moderate redundancy.

3.2.2 Curvelet Comparison to Wavelet

Curvelets were developed to overcome inherent limitations of traditional multistage
representations such as wavelet and Gabor transforms [35]. Although, wavelets are
widely used in image processing, but it failed to handle randomly oriented edges of the
object and the singularities of the object. Gabor filters overcome the limitation of the
wavelet transform and deal with the oriented edges, it loses the spectral information of
the image. Curvelet transform is used to overcome these problems of the wavelet and
Gabor filters.
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Fig. 3.7 Viewpoints of six real curvelets at different scales and angles in a) Spatial and
b) Frequency domain

The main idea is that the edge discontinuity is better approximated by curvelets
rather than wavelets. Curvelets can provide solutions for the limitations ( curved
singularity representation, limited orientation and absence of an-isotropic element) that
the wavelet transform suffer from, as shown in Fig. 3.8. More wavelets are required for
an edge representation using the square shape of wavelets at each scale, compared to
the number of required curvelets. Actually, the needle-shape elements of this transform
have very high directional sensitivity and anisotropy. It can be considered as a higher
dimensional generalization of wavelets which have the unique mathematical property
to represent curved singularities effectively in a non-adaptive manner.

Fig. 3.8 Representation of curved singularities using a) Wavelet and b) Curvelet [37]
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What makes the curvelet appropriate for processing wave propagation data is its
capability to obtain the complete spectral information of the image while dealing with
the different local orientations of the image edges.

3.2.3 Applications of Curvelet Transform

Curvelet transform is gaining popularity in different research areas, like signal processing,
image analysis and seismic imaging. It has been successfully used as an effective tool
in image denoising [38], image decomposition [39], image deconvolution, astronomical
imaging, contrast enhancement [40] and etc.

Recently, curvelets have also been employed to address several pattern recognition
problems, such as face recognition [41], optical character recognition [42] and finger-vein
pattern recognition [43]. One example of image denoising using curvelet and wavelet
is presented in Fig. 3.9. It is suggested to go through the referred works for further
information on various applications of the curvelet transform.

3.2.4 Fast Discrete Curvelet Transform

There are two different digital implementations of FDCT:

1. Curvelets via USFFT (Unequally Spaced Fast Fourier Transform)

2. Curvelets via Wrapping

Both variants are linear and take a Cartesian array as input to provide an output
of discrete coefficients indexed by scale, orientation and location parameters. The
two implementations only differ in choosing the spatial grid that is used to translate
the curvelets at each scale and angle. In this research the Wrapping based curvelet
transform is used as it is faster in computation time and more robust than the USFFT
based [36].

FDCT takes as input a 2D function of size MN and furnishes a set of coefficients
CD(j, l,k) defined by:

CD(j, l,k) =
∑
m,n

f(m,n)φD(j, l,k) (3.4)

Where f(m,n) is the signal under analysis, 0 ⩽ m ⩽ M −1, 0 ⩽ n ⩽ N −1 define the
coordinates on the Cartesian grid. φD(j, l,k) is the curvelet basis function, j is the
scale, l is the orientation and k is the spatial location . By varying k the curvelet
function is translated, and the whole 2D space is covered. In addition, by varying
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Fig. 3.9 Image denoising a) The Original image (zoom). b) Noisy image with Gaussian
white noise. c) Denoised image using curvelets. d) Denoised image using wavelets [36]

j and l the function is tuned to different scales and orientations. By doing all this
simultaneously, the curvelet transform covers the whole frequency spectrum so that
there is no loss of information. The total number of scales depends on the size of the
image and is given by

J = ⌈log2(min(M,N))−3⌉ (3.5)
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where ⌈∗⌉ is the ceiling function, and M and N are the number of vertical and horizontal
image pixels respectively. Each scale is divided into L orientations (wedges):

L = nb×2⌈(j−2)/2)⌉ (3.6)

where j=2. . . J and nb is the number of angles in the second coarse scale, which mostly
is chosen to be a power of 2. Note that the coarsest level (j=1) is not directional. Its
effect is similar to a low pass filter. One example of curvelet tiling and covering of
spectrum of a [256×256] image with 4 directional scales on dyadic concentric square
coronae and nb = 8 can be seen in Fig. 3.10. The shaded trapezoid (i.e.wedge-area)
shows the frequency response at orientation 4 and scale 4.

Fig. 3.10 Discrete curvelet tiling in the frequency domain [44]

3.2.5 FDCT Algorithm via Wedge Wrapping

The architecture of the FDCT via wrapping is expressed as Algorithm 1:
The complete transform process using a single curvelet is illustrated in Fig.3.11

[36].
There is a problem in applying inverse FFT on the obtained frequency spectrum.

The frequency response of a curvelet is a non-rectangular wedge, then the wedge needs
to be wrapped into a rectangle to perform the inverse Fourier transform. The wrapping
is done by periodic tiling of the spectrum using the wedge, and then collecting the
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Algorithm 1 FDCT via Wedge Wrapping

1: Take the FFT of the image and obtain Fourier samples f̃ .
2: Divide the frequency spectrum into a collection of Digital Corona Tiles (Fig. 3.10)
3: For each scale j and angle l:

a. Form the product Ũj,l.f̃ where Ũ is the curvelet window.

b. Wrap this product (the parallelogram shaped support of the tile) around a
rectangle centered at the origin to obtain f̃j,l (Fig. 3.11(b))

c. Take the inverse FFT of the wrapped support f̃j,l hence collecting discrete
coefficients.

Fig. 3.11 a) Feature extraction process using a single curvelet b) Wrapping transforma-
tion [45].

rectangular coefficient area in the center. Through this periodic tiling, the rectangular
region collects the wedge’s corresponding portions from the surrounding periodic wedges.
For this wedge wrapping process, the mentioned approach of curvelet transform is
known as the ‘wrapping based curvelet transform’. The wrapping is illustrated in
Figure Fig. 3.11(b). As shown, in order to apply IFFT on the FT wedge, the wedge
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has to be arranged as a rectangle. The idea is to replicate the wedge on a 2-D grid, so
a rectangle in the center captures all the components a, b, and c of the wedge. Wedge
wrapping is done for all the wedges at each scale in the frequency domain, so we obtain
a set of sub bands or wedges at each curvelet decomposition level. These sub bands are
the collection of the discrete curvelet coefficients [45].

3.2.6 Using FDCT Coefficients to Identify Important Directions

The values of curvelet coefficients are determined by how they are aligned in the real
image. The more accurately a curvelet is aligned with a given curve in an image, the
higher is its coefficient value. A very clear explanation is provided in Fig. 3.12. The
curvelet named ‘c’ in the figure is almost perfectly aligned with the curved edge and
therefore, has a high coefficient value. Curvelets ‘a’ and ‘b’ will have coefficients close
to zero as they are quite far from alignment. It is well-known that a signal localized in
frequency domain is spread out in the spatial domain or vice-versa. A notable point
regarding curvelets is that they are better localized in both frequency and spatial
domain compared to other transforms. This is because the wedge boundary is smoothly
tapered to avoid abrupt discontinuity.

The obtained coefficients from the curvelet transform of an image are collected in a
cell structure which is called C cell. These coefficients are used to extract the important
directions in different locations of the image.

For example, the curvelet transform was applied on the image of FEM solution of
the mentioned free space problem (section 3.1.1) with h=0.2λ and θi = 15◦ and 80◦.
The size of the image is [256 × 256] as shown in Fig. 3.2 and according to 3.5 the
curvelet coefficients were obtained in 5 scales.

The cell structure of the image can be seen in Table 3.3. The coefficients of the 5
scales are presented in 5 different cells. Additionally, the cell of each scale is separated
to different number of matrices which are related to different number of orientations in
each scale. As shown, the total number of orientations in the coarsest scale was defined
to be 132 to gain better orientation resolution. According to (3.6), this number is used
for orientation division in other scales.

The coefficients of the second scale are selected for analysis regarding the spatial
frequency content of the problem. As can be seen in Table 3.4, the cell of this scale
includes 132 matrices that represent one matrix for each specific orientation.

To identify the important wave directions in the image, the energy of the 132
orientations in the second scale has been analyzed as shown in Fig. 3.13. The number
of the 6 most energetic directions are [80,14,15,81,56,122], with the directions equal to
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Fig. 3.12 Alignment of curvelets along curved edges [37]

Table 3.3 Curvelet coefficients distribution of the FEM solution of the free space problem

5 level decomposition
C [1×5] cell

scale 1 scale 2 scale 3 scale 4 scale 5
[1×1] cell [1×132] cell [1×264] cell [1×264] cell [1×528] cell

Table 3.4 Curvelet coefficients distribution at second scale C{1,2}

scale 2 [1×132] cell

number of directions 1 to 33 34 to 66 67 to 99 100 to 132
angle of directions (deg) ⟨45 to −45⟩ ⟨315 to 225⟩ ⟨225 to 135⟩ ⟨135 to 45⟩

[260.45◦,80.45◦,83.18◦,263.18◦,195◦,15◦] respectively. In comparison to the identified
directions using FFT analysis which are equal to [16◦,82◦], the direction resolution of
the curvelet transom is better than the FFT.
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Fig. 3.13 Energy distribution of curvelet coefficient of the image in second scale

The next step is the extraction of the location information of the important wave
directions in the original image. This information could be found by analyzing the
matrix of the identified directions. For example, the 122th matrix in the second scale
was analyzed to find out where in the original image the waves with direction 15◦ exist.
The matrix size for this orientation is C{1,2} {1,122} = [3 × 16]. It means that the
whole image is divided to 3×16 = 48 different parts and then the mentioned curvelet
(with specific orientation and scale) is applied to each part to achieve the coefficients in
different locations of the image. This curvelet in different parts of the image is shown
in Fig. 3.14. As can be seen, each curvelet cover the whole image in space domain and
therefore, there is no loss of information in space domain.

Consequently, the amount of the 48 coefficients in the mentioned matrix are
compared to determine the greater ones. Finally, the pixels of the original image
related to the identified curvelet positions are determined. The identified locations in
the original image can be seen in Fig. 3.15. The identified directions and the location
information of them are used to determine specific enrichment functions configuration
for each node in the GFEM solution. The Details of the pre-processing methodology is
described in chapter 4.
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Fig. 3.14 A single curvelet in different locations of the image, identified wave direction
= 15◦, second scale

Fig. 3.15 Identified locations of the important wave directions a) wave direction = 15◦,
b) wave direction = 195◦



Chapter 4

Proposed Methodology and Results

4.1 Defining the Extents for the Number of Wave Directions
for GFEM Using FFT

As mentioned previously, the number of wave directions and the set of distributed angles
are important in the GFEM enrichment. A low number of enrichment functions will
lead to low quality solutions. On the other hand, a high number of wave directions will
lead to ill-conditioned systems and also to low quality solutions. A suitable distribution
could be selected considering the DFT analysis.

To illustrate the influence of the enrichment function orientation in the GFEM, the
free space problem was solved for different incident waves, θi from 0o to 90o. For each θi,
the most important wave direction was obtained from the FEM solution applying the
FFT approach and it was used to rotate the enrichment wave distribution. Thereafter,
the problem was solved using GFEM with q = 2,4 and 8. Results for the h = 0.2λ mesh
are presented in Fig. 4.1 in which the error function is measured using the relative
L2(Ω)-norm error as described in (2.40).

As can be seen in Fig. 4.1, at θi = 0o, standard GFEM with q = 2 produces errors
smaller than FEM by several orders of magnitude. This error increases as the incidence
angle of the wave differs from those used in the enrichment functions which are equal
to θl1 = 0o and θl2 = 180o as described in section 2.1.5 and Fig. 2.3. Even using a poor
mesh, FEM performs better than GFEM at θi = 90o because in this configuration the
incident wave is perpendicular to both waves used as enrichment functions.

In contrast, solving the problem by GFEM yields smaller errors when the standard
enrichment function distribution is rotated. The error is kept to a small value, deter-
mined mainly by the accuracy of the angle found through the FEM solution. The deep
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Fig. 4.1 Error comparison between GFEM with traditional and rotated directions as a
function of θi for q = 2, q = 4 and q = 8

valleys in Fig. 4.1 represent instances of the problem where the rotation angle matched
perfectly the incidence angle.

A comparison between GFEM standard errors by different number of wave directions
indicates that q = 4 is more accurate than q = 2 and the best results is obtained when
q = 8. Using q = 4 improves the error at θi = 90o, remaining below the FEM result. The
rotated GFEM with q = 4 has a better accuracy than the traditional one, besides the
additional rotated wave directions contribute to an improvement in the error quality
of the results. The minimum error is obtained by GFEM with eight rotated wave
directions.

In addition, when the identified angle from DFT procedure matches the incident
angle, the quality of the solution reaches the numerical precision and the rotated GFEM
is independent of the number of wave directions. Otherwise, additional waves can be
useful to compensate the inaccuracy of the DFT procedure. However, there is a limit
for the error reduction since the increasing of q could lead to ill-conditioned solutions.

4.1.1 Procedures to Extract the Extents for the Number of Enrichment
Functions

Theoretically, any integer can be used as the number of enrichment function. However
using Fourier analysis, it is possible to define an appropriate range for the number of
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wave directions (4.1) in which the quality of the GFEM solution is guaranteed.

qmin ≤ q ≤ qmax (4.1)

4.1.1.1 The Upper Limit for the Number of Wave Directions

As can be seen in Fig.4.1 the smaller errors are related to the greater number of wave
directions. However using too many directions does not ensure to more accurate results.
This means that there is a limit for the maximum number of wave directions in each
problem. After that amount, by increasing q, the error would be increased likewise.
This limit can be determined by considering the Nyquist sampling criterion in (3.1)
and the maximum resolution of the DFT analysis (3.3).

According to (3.3) the maximum number of frequency components which is achiev-
able by DFT is MN , where M and N are the number of sample points in each
direction in a 2-D image. If M and N respect the Nyquist criterion, the image can be
reconstructed without loss of information.

However, since the image in this research is periodic functions of the Helmholtz
equation, most of the MN spectral components in (3.3) vanish. Only the components
lying inside the spatial mask contribute to the correct reconstruction of the solution.
As a result the total achievable resolution, or equivalently, the maximum acceptable
number of wave directions can be calculated by (using the formulation of the ellipse
circumference):

qmax = 2 ·π/4(

√√√√(Dx
λ/2

)2
+
(

Dy

λ/2

)2

2 ) = 1.11
√

(2(Dx/λ))2+(2(Dy/λ))2 (4.2)

In which Dx and Dy are the domain sizes in x and y directions respectively and qmax

is the maximum number of wave directions which is related to the minimum error.

4.1.1.2 The Lower Limit for the Number of Wave Directions

As discussed in the previous section, the information about the most important wave
directions could be obtained a priori by solving the problem using the FEM with the
same coarse mesh that will be used in the GFEM. In this case, the number of peaks
identified in the 1-D DFT calculations could be used as an approximation for the
minimum required number of wave directions (qmin). It is noteworthy that the DFT is
a complex valued function of spatial frequency. However the information about the
effective directions was extracted from the absolute value of the 2-D DFT results, as
can be seen in Fig. 3.3. Therefore, to cover the information about the argument part
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of the DFT results, for each identified direction, there should exist another one in
the opposite direction. This means that, for a small number of wave directions, if an
odd number is identified through the DFT analysis, the next even number should be
selected as qmin. Whereas for qmax, as a result of the existence of angles near to the
opposite directions for each angles, there is no need to verify the parity.

4.1.2 Setting the Enrichment Functions Distribution

Using the wave directions obtained from the DFT could lead to inaccurate results due
to the noise generated by the low quality mesh. In this context, uniformly distributed
directions clustered around the identified angles are used to have more accurate results.
This procedure is based on the fact that the ill-conditioning is directly related to the
angle between the wave directions [15]. Generally, the condition number increases when
the difference between the directions decreases and also when the number of the small
angle differences increases. This content results from the simulations which have been
done for different problems. The pollution error is better when the equally distributed
wave directions is used for GFEM solution in comparison to the other types of the
plane waves distributions.

There are several ways to generate uniform distributed directions based on the
information obtained with the DFT. In this work, the minimal angle between the peaks
dθ is used to estimate the number of enrichment functions q = ⌊2π/dθ⌋. This number
should meet the extents in (4.1). If the resulted q is greater than the upper limit
then the second minimal angle is used to calculate the q. This procedure is continued
until a feasible q is found. Furthermore, if q is smaller than the qmin, the mean of the
lower and upper limit is used. Finally the highest peak angle is applied to rotate the
distribution

4.2 Results Using FFT

The free space problem, a perfect conductor scattering problem and the multiple
circular scatter problem were used to verify the ability of the proposed methodology
in identifying the acceptable region for the number of wave directions in GFEM
configuration. In these three problems, solutions are given in terms of the Transverse
Electric (TEz) field. The excitation is imposed using the first order absorbing boundary
condition (ABC) at the artificial boundaries, assuming different incident waves. The
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numerical integration in the FEM and GFEM equations are performed using 100 Gauss
points in triangle elements and 10 Gauss points in the line elements.

The mentioned problems can be seen as a part of more complex problem composed
by some far field regions (with a main direction of propagation) and some near scattering
regions (with many interfering waves).

4.2.1 Free Space Problem

The problem is analyzed with θi = 15o and h = 0.2λ . After applying DFT on FEM
solution, only one peak occurrence was detected at θ = 18o as shown in Fig. 4.2.
Therefore the minimum number of wave directions that could be used in the GFEM
configuration in this problem is qmin = 2. On the other hand, the upper limit according
to (4.2), assuming Dx = 6, Dy = 3 and λ = 1, is qmax = 15. As a result, the number of
wave directions should be selected between 2 and 15 and also the main directions has
to be θ = 18o.

Fig. 4.2 1-D problem obtained after the filtering process, Mesh size h = 0.2λ, θi = 15◦.

Fig.4.3 illustrates the GFEM convergence as a function of q. It shows that the
error decreases when q increases from 2 to 15 and the minimum error occurred at
q = 15. After this limit, the error increased despite the increment in the number of
wave directions.
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Fig. 4.3 GFEM convergence for the free space problem, mesh size h = 0.2λ and θi = 15◦.

4.2.2 Perfect Conductor Scattering Problem

To simulate a more complex field behavior, a L-shape reflector is used. The wave
number is defined as k = 2π for the two discretized domains presented in Fig. 4.5. The
first mesh is composed of 250 nodes (h = 0.5λ) while the second one is composed of
426 nodes (h = 0.4λ).

Fig. 4.4 Domain discretization a) Mesh size h = 0.5λ, b) Mesh size h = 0.4λ

Using the h = 0.4λ mesh and an incident wave with θi = 30o, the DFT procedure
identifies five main components in the FEM solution θfem = [26 36 206 216 326],
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resulting in qmin = 6 as can be seen in ??. The upper limit, qmax = 22, is defined
according to (4.2) considering Dx = Dy = 7 and λ = 1.

Fig. 4.5 Identified wave directions using DFT, θi = 30o, h = 0.4λ

The relative L2(Ω)-norm error for FEM, GFEM and GFEM with rotated directions
are presented in Fig. 4.6 as a function of the number of degrees of freedom NDOF. It
should be mentioned that because there is no analytic solution for the reflector problem,
a very fine mesh FEM solution (131,566 nodes) is regarded as a reference to calculate
the error for this problem.

As can be seen, the error for GFEM solutions are smaller than the FEM solution
for the same NDOF. Additionally, both GFEM solutions present quite similar behavior.
In both cases the error decreases when q increases from 2 to 6, then for q = 6 to q = 22
(shaded area) the error is approximately constant and minimum despite the increment
of q and finally at the third part of the figure the error increases when the q increases.

The shaded area matches with the extends defined in (4.1). As expected, for
q > qmax the increase in the number of enrichment functions has not positive influence
on the quality of the solution, in addition, it has a strong influence in the condition
of the matrix. The condition number of the matrix as a function of q is presented in
Fig. 4.7. Since the standard and the rotated enrichment procedure uses equally spaced
directions, both results are quite similar.

Moreover, different from the free space problem (Fig. 4.1), the influence of the
rotation of the enrichment functions is very small since the number of wave components
existing in the problem is considerably high.
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Fig. 4.6 Error comparison between FEM, GFEM with equally spaced and GFEM with
selected directions, θi = 30o, h = 0.4λ

Fig. 4.7 Condition number in different number of wave directions for GFEM with
equally spaced and GFEM with selected directions,θi = 30o, h = 0.4λ

According to the procedure (described in section 4.1.2) for creating equally spaced
directions, q = 14 is selected as the number of wave directions and θ = 26o is applied to
rotate the distribution.
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The comparison between the quality parameters of GFEM solution with proposed
configuration using FFT analysis and also the configurations with minimum and
maximum number of wave directions can be seen in table 4.1.

Table 4.1 Comparison of GFEM solution using FFT analysis with different numbers of
the wave directions, θi = 30o, h = 0.4λ

Number qproposed = 14 qmin = 6 qmax = 22
NDOF 5964 2556 9472
Error 0.0407 0.0507 0.0523

Condition number 8.53∗1011 3.17∗104 1.42∗1027

Running time(sec) 2341.59 854.02 5622.76

It is shown that, if the qmax is used, the GFEM solution would result in the
maximum condition number in the identified region. On the other hand, the error
of the GFEM solution with qmin is considerably greater than the error of the GFEM
with proposed q. Whereas, the minimum error in the acceptable area is related to
the proposed configuration along with the average number of the degrees of freedom
and the moderate condition number. It means that by using the proposed GFEM
configuration it is possible to reach the near optimal solution in the mentioned area
with smaller computational cost in comparison to the traditional GFEM solution.

The problem was also solved using the mesh with size h = 0.5λ and a incident angle
of θi = 60o. Since the upper limit of q is independent of the mesh size, it remains
unchanged. However, the lower limit changes to qmin = 8 due to the differences in the
incident wave and the quality of the initial FEM solution. The relative L2(Ω)-norm
error and the region with the limits of q are presented in Fig. 4.8. It shows that the
minimum error occurs inside the region defined by (4.1).

Setting the enrichment distribution according to the procedure described in section
4.1.2, the third minimal distance between the identified angles is used to determine the
number of wave directions used as enrichment function (q =16). Then, the set of plane
waves is rotated to match the wave component with the highest energy θ = 52o.

4.2.3 Multiple Circular Scatter Problem

To verify the proposed method with a complex problem, an array of circular scatters is
analyzed with θi = 30o, h = 0.1λ and k = 2π. The mesh is composed of 11094 triangular
elements, resulting in 626 edges and 5852 nodes. The method of fundamental solutions
(MFS) with Neumann boundary condition is used as a reference for this problem
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Fig. 4.8 Error of GFEM with reshaped distribution,θi = 60o,h = 0.5λ

[46].The MPSpack [47] solution of the problem, which solves 2D scattering problems to
machine precision, can be seen in Fig. 4.9.

Fig. 4.9 disc array scattering, Left: incident wave. Center: scattered wave. Right: total
solution field,θi = 30o, h = 0.1λ

After applying DFT on FEM solution, only one peak occurrence was detected at
θ = 30o as shown in Fig.4.10. Therefore the minimum number of wave directions that
could be used in the GFEM configuration in this problem is qmin = 2. On the other
hand, the upper limit according to (4.2), assuming Dx = 12, Dy = 12 and λ = 1, is
qmax = 38.

The problem is solved using the q = 4 which is in the identified range and rotated
configuration with one direction aligned to θ = 30o. The real and imaginary part of the
electric field along Cx = {(x,y) |y = 0,−3 ⩽ x ⩽ 9} for GFEM rotated and MFS solution
can be seen in the Fig.4.11 and Fig.4.12. In addition, the solution with fine mesh
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Fig. 4.10 a) Image of FEM solution , b) Obtained direction using 1-D FFT for θi = 30o,
h = 0.1λ

h = 0.02λ using FEM and GFEM standard with q = 4 can be seen in the mentioned
figure.

Fig. 4.11 Real part of electric field along Cx,θi = 30o, using FEM, GFEM rotated,
GFEM standard and MFS

The comparison between the quality parameters of GFEM solution with proposed
configuration using FFT analysis and also the GFEM and FEM with fine mesh can be
seen in table 4.2.

It is observed that smaller error is achieved by the GFEM rotated solution on coarse
mesh in comparison to standard GFEM and FEM solution on fine mesh. It means
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Fig. 4.12 Imaginary part of electric field along Cx,θi = 30o, using FEM, GFEM rotated,
GFEM standard and MFS

Table 4.2 Comparison of GFEM rotated, GFEM standard and FEM solution for disc
array scatter problem, θi = 30o,

Method GFEM Rotated GFEM FEM
Mesh size h = 0.1λ h = 0.02λ h = 0.02λ

Number of directions q = 4 q = 4 -
NDOF 23408 540840 135210
Error 0.0684 0.0720 0.0876

Condition number 1.15∗105 6.35∗10563 1.15∗105

Running time(sec) 1006.36 5 days 2950.72

that, by using the identified angle as the main direction of the configuration and with
small number of wave directions, a good approximation to the reference solution can
be achieved. Additionally, the proposed method leads to smaller condition number and
time saving compare to the GFEM and FEM with fine mesh.

4.3 Identifying the Optimum Configuration for GFEM Solu-
tion Using the Curvelet Transform

The analysis of the Discrete Fourier Transform of the FEM solution of a problem is
useful to find the directions of the present waves. The extracted information would



4.3 Identifying the Optimum Configuration for GFEM Solution Using the Curvelet
Transform 47

be used to determine suitable configuration for GFEM solution of the problem. As
indicated in the previous section, the results showed that even on very poor meshes
(h → 0.5) it can result on accurate and converging GFEM solutions.

Although the previous approach define the range of q for the accurate GFEM
solution, it lacks definition of the optimum number of wave directions in this range. In
addition, it is not possible to define where the identified directions has existed in the
space domain of the problem.

In this section it is proposed alternatively, to use the curvelet transform to achieve
local information of important wave directions in the domain space and therefore
identify how many wave directions are necessary to cover all the domain. The identified
number would be used as the optimum number of wave directions qopt for all nodes
in GFEM solution in the first version of this approach. Additionally, the presented
approach leads to improvements in the condition number and computational cost of
each problem as a result of reduction in the total number of degrees of freedom.

4.3.1 Extract Optimum Configuration Applying FDCT

The proposed idea in this research is to apply the curvelet Transform on the coarse-mesh
finite element solution to extract useful information a priori about wave directions in
GFEM configuration. It should be noted that the appropriate size for the FEM mesh
(also used as the GFEM mesh) is selected considering the Nyquist sampling theory.
The acceptable coarse mesh size should be smaller than half of the minimum existent
wavelength. The proposed algorithm can be summarized as follows:

Algorithm 2 : Extract optimum GFEM configuration using FDCT via wrapping
technique
1: Choose the coarse mesh size considering the Nyquist sampling limit
2: Take FEM solution of the coarse mesh to obtain grid data
3: Select the appropriate scale and angle decomposition as input parameters and then

apply FDCT on the image of FEM data
4: Analyze the energy spectrum of curvelet coefficients in all the directions of the

selected scale
5: Identify the most energetic directions in different parts of the image θmax

6: Define the qopt as the most energetic wave directions which is required to cover the
whole image

7: Set the optimum configuration for each node in the mesh according to the qopt and
respective local identified directions

8: Solve the GFEM for coarse mesh considering the obtained configuration for each
node
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It should be noted that in step 3 the maximum number of scales of an image is given
by (3.5). However, only the scales that matches spatial frequencies of the problem are
necessary to define qopt. Additionally, nb in (3.6) is defined such that L for the selected
scales would be greater than 2 times of the maximum resolution of the problem (qmax

in (4.2)). Finally, as described in step 7, the qopt is used in (2.11) for all the nodes and
the θl distribution in (2.16) is changed to θl = θmax + 2πl

qopt
, l = 0, ..., qopt − 1. θmax is

different for each node of the mesh and is defined by the most energetic orientation l in
the corresponding p node.

The flowchart of this algorithm can be seen in Fig. 4.13.

Fig. 4.13 The Proposed Algorithm for GFEM Solution of Coarse Mesh Using Curvelet
Coefficients

4.4 Results Using Curvelet

4.4.1 Free Space Problem

An analytical solution of wave propagation in the free space domain Ω = {(x,y), |−3.5 ≤
x ≤ 3.5|, |−3.5 ≤ y ≤ 3.5|} with 4 different parts was used as an example to investigate
the capability of curvelet in identifying the directions and locations. The wave number
is set as k = 2π and the incident angles are θi = 0o,90o,60o and 30o for lower left, upper
left, upper right and lower right corners, respectively. The TEz solution is shown in
Fig. 4.14.

The total number of scales is 5, considering the image size (256×256). However,
only the 3rd scale was selected for analysis as the spatial frequency component of the
problem is located in the frequency range of this scale. The number of orientations
for this scale should be greater than 2 times of 22 (due to the size of the domain and
wave number of the problem). As a result, a FDCT grid with nb=32 was applied to



4.4 Results Using Curvelet 49

Fig. 4.14 Image of analytical solution with 4 different angles.

the image and the most important directions were identified by comparing the energy
amount of the coefficients in the 64 directions (starts at θ = 45o) of scale 3 (Fig. 4.15).

Fig. 4.15 Energy of each direction according to coefficient matrix of curvelet transform
of the image

Finally, the pixels which are in the most correlation with each identified direction
were identified and removed from the original image. This procedure was iterated until
whitening the image.

As can be seen in Fig. 4.16, whitening the whole image was done using the first 10
most energetic directions. The angles of the identified directions are [61.9, 241.9, 22.5,
202.5, 67.5, 247.5, 264.4, 270, 0, 174.4], which were defined considering the orthogonality
of the curvelet major axes in the frequency and space domains. For instance, the angles
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of the two most energetic directions, numbers 4 and 36 in Fig. 4.15, are equal to
61.9o and 241.9o, which are close to one of the incident wave directions θi = 60o and
its opposite direction 240o. Moreover, the removed parts of the image, according to
two first identified directions, which can be seen in the first two images of Fig.4.16,
correspond well with the location of θi = 60 at the right upper corner of the original
image. It is evident that all the 10 locally extracted directions are in good agreement
with the incident angles and their respective location in the analytical solution.

Fig. 4.16 Removed part of the image considering the most energetic directions

4.4.2 Perfect Conductor Scattering Problem

To assess the efficiency of the proposed methodology, the scattering problem of the
L-shape reflector was used. The reflector was illuminated by an incident plane wave with
an angle of incidence θi = 30o and wave number k = 2π. As indicated in Fig. 4.17(a),
the mesh is composed of 426 nodes (h = 0.4λ) and the image of FEM solution using
this mesh is shown in Fig. 4.17(b). The solution is given in terms of the Transverse
Electric (TEz) field.

According to (3.5) and the size of the image (M = N = 100), the 2-D frequency
domain is divided into 4 scales. Regarding the frequency component of the problem,
the most concentration of energy is in the second scale and qmax = 22. Therefore, the
curvelet transform with nb = 64 was applied on the coarse mesh FEM solution and the
energy in each direction in the second level were achieved as shown in Fig. 4.18.

In the next step, the most energetic directions were identified and the respective
positions of these directions in the image were determined. Lastly, the pixels related
to the most energetic coefficients were removed and the procedure was iterated until
achieving the extant directions in the whole image. As it can be seen in Fig. 4.17(b), the
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Fig. 4.17 a) Domain discretization, mesh size h = 0.4λ, b) Image of FEM solution

Fig. 4.18 Energy of directions

left lower corner of the image is more related to the incident wave θi = 30o. This part of
the image showed the most correlation with curvelets number 30 and 62 (the two most
energetic directions) whose angles are 208.1o and 28.1o, respectively, Fig. 4.19. Also it
has been detected that curvelets number 4 and 12, with angles 0o and 270o, occurred
more than other directions in the right upper corner. This is in conformity with the
combination of incident and reflected waves at this corner. Finally, it was determined
that the image whitening process could be completed by using only the 8 most energetic
directions. As a result, 8 directions were sufficient to reach the information about FEM
solution in the whole domain.

The identified directions were applied to the enrichment functions configuration
of respective nodes in the coarse mesh and the problem was solved by GFEM with
different numbers of wave directions. The relative L2(Ω)-norm error and condition
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Fig. 4.19 Location of the most energetic directions

number for GFEM with traditional configuration and with identified directions using
DFT and FDCT are presented in Fig. 4.20 and Fig. 4.21. It should be mentioned that
because there is no analytic solution for the reflector problem, a very fine mesh FEM
solution (131,566 nodes) is needed to calculate the error for this problem.

Fig. 4.20 Error vs number of wave directions in traditional GFEM, GFEM enriched by
using DFT and FDCT

The shaded area in Fig. 4.20 is the acceptable area for the number of wave directions
and is resulted from the FFT procedure section 4.2. That pre-processing method defines
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Fig. 4.21 Condition number vs number of wave directions in traditional GFEM, GFEM
enriched by using DFT and FDCT

the maximum and minimum number of wave directions required to have qualified GFEM
results. The minimum error in this range is related to q=16. However, the proposed
methodology in this section defines q = 8 as the optimum number of wave directions
that meets the limits and also leads to smaller condition number as shown in Fig. 4.21.
The comparison between the quality parameters of GFEM solution for the two methods
and also the GFEM solution with minimum error in this problem can be seen in table
4.3.

Table 4.3 Comparison of GFEM solution applying the FFT and FDCT and also GFEM
with minimum error for the reflector problem with θi = 30o, h = 0.4λ

GFEM with FDCT FFT Minimum er-
ror

Identified angles [0 22 28 90 180
202 208 270]

[26 36 206 216
326]

—

Identified q qopt = 8 6 ≤ q ≤ 22 —
Proposed q = 8 q = 14 q = 16

configuration θmax=different
for each node

θmax=26 θmax=standard
distribution

NDOF 3408 5964 6816
Error 0.0436 0.0407 0.0406

Condition number 6.72∗105 8.52∗1011 1.39∗1014

Running time(sec) 1132.70 2341.59 2649.450
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As shown, the two mentioned methods achieved approximately the same error which
is near to the minimum error of the GFEM solution of this problem. However, the
condition number improved intensively by using 8 wave directions in the method using
FDCT. Additionally, the GFEM with FDCT was 2.06 times faster than the GFEM with
FFT and also 2.34 times faster than the GFEM with minimum error. Consequently,
the pre-processing methodology using the FDCT is more efficient than the FFT and
also the traditional GFEM.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work, it has been tried to develop some methodologies to improve the quality
parameters of GFEM solution in problems with Helmholtz equations. In one view,
the Discrete Fourier Transform was applied on the coarse mesh FEM solution of a
problem in order to identify an effective distribution of the plane wave enrichment
function of the GFEM. The main advantage of the proposed method is that it is able to
identify suitable values for q using a pre processing systematic approach. It shows that,
if q is selected between some limits and the directions are clustered considering the
identified angles, good quality results can be achieved even using a small number of wave
directions. Some case studies were presented as a proof of concept. The Generalized
Finite Element simulations in free space and the L-shape reflector were carried out
and it was demonstrated that the obtained results were in a good agreement with the
idea proposed in this work. Results using the free space problem show that, for far
field regions, only a pair of plane waves aligned with the direction of the propagation
are necessary to lead to accurate solutions. For near the scattering regions, keeping
equally spaced wave distributions can reduce the influence of the noise introduced by
the low quality FEM solution in the identification of the most important waves. A
simple approach was used to translate the DFT information into enrichment function
directions that is quite invariant with the choice of the cutoff parameters. Results
also demonstrated a good agreement with the extents for the number of enrichment
functions proposed in this work. In addition, the multiple circular scatter problem is
added to the research to express the capability of the proposed method to deal with
more complex and various type of problems. Although the mentioned approach define
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the range of q for the accurate GFEM solution, it lacks definition of the optimum
number of wave directions in this range.

After that and in another approach, the new method for defining appropriate GFEM
configuration has been represented. This approach, addressed the methodology to
identify the best number of enrichment functions for GFEM solution. The procedure
recognizes the directions which contribute most in each part of the problem by analyzing
the curvelet coefficients of the image of coarse mesh FEM solution. Therefore the
appropriate total number of wave directions, qopt, is extracted and used in GFEM
solution with the same mesh size. The results indicate that the GFEM system of
equations using qopt is faster than the traditional GFEM with qmax. Additionally, the
comparison of the error and condition number amounts shows that for approximately
the same error, GFEM with FDCT needs a smaller number of degrees of freedom,
which consequently leads to a better condition number. Consequently, it has an efficient
performance for solving many problems in both quality and cost criteria.

5.2 Future Works

This study could be expanded in many aspects since there are open problems that
GFEM can be used to solve them such as treating different domains. This research is a
first step that opens the new area of research in GFEM field solutions. The suggestions
for the future works are as follows:

1. As it was mentioned before, the optimum number of wave directions was identified
using image whitening which is some kind of visual inspection and made this
part of the algorithm a bit heuristic. Therefore finding automatic procedure
to identify the qopt according analysis on the curvelet coefficients is required to
improve the procedure and make it completely automatic. It needs more study
about the feature extraction using curvelet or other transforms such as wavelet
or contourlet transform.

2. Although the MATLAB code was developed to apply different enrichment func-
tions distribution for each node in the mesh, this capability in software code have
not been used by mentioned testing problem. Therefore, more complex problems
with more different wave directions should be employed to investigate the effec-
tiveness of different local configurations in the mesh and finally, development of a
local approach to choose best q for each node.
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3. It was shown that FDCT analysis is efficient in homogeneous domains. Neverthe-
less, for domains with discontinuities, the capability of FDCT in improving the
GFEM quality needs to be investigated. As a consequence, the domain with two
or more mediums which have different frequencies could be used in order to fully
exploit the multiscale nature of the curvelet transform. It should be noted that,
this activity needs more study about border detection and treatment methods
which have been used in curvelet coefficients analysis.

4. As it was mentioned before, the numerical integration in the GFEM equations
was done using Gauss points approximations on domains meshed by triangular
elements. Other types of elements or approximation methods can be used and their
effects on improvement of quality of GFEM results, remain to be investigated.

5. The suggested approach in this report could be used with the methods of mod-
ication in the traditional plane wave enrichment function which was explained
in the work of Ricardo Adriano [32] . This combination would be resulted in
reduction of the numerical dispersion and improvement of the overall quality of
the solution.
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