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Resumo

Avanços na computação e no desenvolvimento de software permitiram cálculos mais

complexos e menos custosos no que diz respeito a pesquisas médicas (análise de sobrevi-

vência), a estudos de engenharia (confiabilidade) e a observação de eventos sociais (aná-

lise de eventos históricos). Assim sendo, muitos esforços de modelagem semi-paramétrica

para dados de tempo até o evento surgiram nos últimos anos. Neste contexto, este

trabalho apresenta uma estrutura flexível baseada no polinômio de Bernstein para mo-

delagem de dados de sobrevivência. Essa abordagem inovadora é aplicada na estimação

de funções de base desconhecidas inerentes de famílias de modelos existentes na lite-

ratura, como modelos de riscos proporcionais, chances proporcionais e tempo de falha

acelerado. Além da contribuição literária, este trabalho também contribui com rotinas

automatizadas inéditas para a comunidade de usuários da linguagem R, com o suporte de

algoritmos implementados no software Stan. Ao final do estudo, a implementação das

rotinas propostas foi discutida e avaliada através de estudos de simulação. A criação de

um pacote R surge como alternativa para agrupar todas essas importantes contribuições.

Além disso, os modelos baseados no polinômio de Bernstein de riscos proporcionais, de

chances proporcionais e de tempo de falha acelerado foram ajustados a dados reais de

pacientes portadores de câncer, usando tanto o método de estimação por máxima veros-

similhança quanto algoritmos Bayesianos.



Abstract

Software development innovations and advances in computing have enabled more

complex and less costly computations in medical research (survival analysis), engineering

studies (reliability analysis), and social sciences event analysis (historical analysis). As a

result, many semi-parametric modeling efforts emerged when it comes to time-to-event

data analysis. In this context, this work presents a flexible Bernstein polynomial (BP)

based framework for survival data modeling. This innovative approach is applied to exis-

ting families of models such as proportional hazards (PH), proportional odds (PO), and

accelerated failure time (AFT) models to estimate unknown baseline functions. Along

with this contribution, this work also presents new automated routines in R, taking ad-

vantage of algorithms available in Stan. The proposed computation routines are tested

and explored through simulation studies based on artificial datasets. The tools imple-

mented to fit the proposed statistical models are combined and organized in an R package.

Also, the BP based proportional hazards (BPPH), proportional odds (BPPO), and acce-

lerated failure time (BPAFT) models are illustrated in real applications related to cancer

trial data using maximum likelihood (ML) estimation and Markov chain Monte Carlo

(MCMC) methods.

Keywords: Proportional hazards; proportional odds; accelerated failure time; Bernstein

polynomial
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Chapter 1

Introduction

Lifetime research is one of the earliest fields in statistics. According to Hacking (2006),

one of its first applications dates back to the 1700s when John Graunt published the first

set of analyses upon the London Bills of Mortality. After that, as from Graunt’s book

review, tabulations also began in France and other western European countries later

on. At the beginning of the eighteen century, increasing annuity incomes also demanded

expertise in life expectancy calculations. So, De Moivre, Daniel Bernoulli, and other

pioneers contributed to the discussion of available techniques to accurately evaluate life

tables at that time, giving rise to the field of study called survival analysis (Rickert,

2017).

Nowadays, software development innovations and recent advances in computing have

enabled tools to handle more sophisticated statistical techniques to time-to-event data.

Indeed, R software libraries (R Core Team, 2019) containing specific routines such as

survival (Terry M. Therneau and Patricia M. Grambsch, 2000), survminer (Kassam-

bara and Kosinski, 2018), timereg (Scheike and Zhang, 2011) and flexsurv (Jack-

son, 2016) have become essential tools for practitioners, professionals and researchers.

Likewise, the spsurv package was designed to contribute with a flexible set of semi-

parametric survival regression modelings, including proportional hazards (PH), propor-

tional odds (PO), and accelerated failure time (AFT) models for right-censored data.

The proposed package provides extensions based on a fully likelihood-based approach for

either Bayesian or maximum likelihood (ML) estimation procedures, along with smooth
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estimates for unknown baseline functions based on the Bernstein polynomial (BP).

Over the past years, the BP has been widely related to regression modeling (Tenbusch,

1997; Chang et al., 2007) and probability density function estimation (Vitale, 1975; Pe-

trone, 1999; Babu et al., 2002; Choudhuri et al., 2004). In contrast, few contributions

relating the BP with survival analysis regression can be found in the literature. Some

applications in this sense have emerged as alternatives to the partial likelihood estima-

tion proposed by Cox (1972). Chang et al. (2005), for example, estimated the failure

rate considering a Beta Process a priori to homogeneous populations. The polynomial

degree was treated as a random quantity in this reference. Especially, Osman and Ghosh

(2012) addressed the baseline hazard function using BP and provided, among other re-

sults, proof on the likelihood log-concavity property for the proposed modeling. This

characteristic leads to less costly computational procedures to find Bayesian estimators

and is also necessary to guarantee the uniqueness of the ML estimator. The authors also

focused on the failure rate but allowed crossing survival curves. In this case, the deve-

loped model includes covariates (non-homogeneous population) and a fixed polynomial

degree.

More recently, McLain and Ghosh (2013) proposed time transformation models as-

suming linearity between the survival times and the covariates. Chen et al. (2014) used

a transformed BP, centered at standard parametric families, in the accelerated hazards

model framework. This application assumes a random degree polynomial by applying a

Dirichlet process. Zhou et al. (2017) used BP to approximate the cumulative baseline

hazard function. Besides, Zhou and Hanson (2018) proposed modeling the baseline ha-

zard function through a prior distribution called transformed Bernstein polynomial. In

this proposal, the authors assume a parametric distribution as central (e.g., Weibull) and

use the Bernstein polynomial structure (linked to the baseline survival function) to allow

variations around the central choice. This methodology allows greater flexibility in the

format of the baseline hazard function. Wu et al. (2018) introduced a flexible Bayesian

non-parametric procedure to estimate the odds under the case of interval censoring.

The spsurv interfaces with Stan for more flexibility in terms of user-defined mo-

deling. Stan is an open-source platform that has a specific language and many built-in
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log-probability functions that can be used to define custom likelihood functions and prior

specifications (Carpenter et al., 2017). The program has extensive supporting literature

available online such as reference manuals, forums, articles, and books for users and de-

velopers. The Stan currently defaults to No-U-Turn (NUTS) sampling algorithm, which

consists of a Hamiltonian Monte Carlo (Duane et al., 1987) extension that explores the

posterior distribution more efficiently (Hoffman and Gelman, 2014). In addition, access

to Stan can be established through several modules integration: such as rstan (Stan

Development Team, 2018), PyStan (integrated with Python), MatlabStan (integrated to

MATLAB), Stan.jl (integrated with Julia) and StataStan (integrated to Stata).

The general goal of this work is to present the spsurv package along with technical

details and practical aspects of its usage. The specific contributions of the present work

are:

• Explore the BP approach to semi-parametric modeling in survival analysis. Here,

we consider three contexts: PH, PO, and AFT models.

• Present a comprehensive simulation study to show that each model performs well

under the Bayesian or Frequentist inference approach.

• Build a R package called spsurv that shall be used to fit the semi-parametric models

discussed in this dissertation.

This study is organized as follows: Chapter 2 presents the necessary background on

survival analysis, which is essential to comprehend the theoretical basis of this work.

Afterward, Chapter 3 consists of a summary of how to address BP in the context of

approximation or estimation (survival analysis). The next chapter (Chapter 4) explores

implementation issues and statistical inference concerns. Achievements from simulation

studies were discussed in Chapter 5. Chapter 6 discusses two real data applications

and the main results reached, along with comments on the interpretation of the distinct

approaches and frameworks. Chapter 7 summarizes the whole content of this dissertation,

highlights the first results, and shows the most significant proposals of future work.

Finally, the main spsurv package routines are introduced in Appendix. Here we indicate,
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how to fit a model, discuss summary elements, and present specific graphs for the survival

data analysis in R.
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Chapter 2

Survival analysis fundamentals

Survival analysis is a field of study in statistical science dedicated to solving problems

in which the time to an event of interest is of a reasonable importance (Cox, 1972).

Generally, a random variable T describes the continuously distributed time to a particular

event of interest, namely occurrence or failure time. The time-to-event observations are

considered incomplete in a manner that each observed response Yi is subject to censoring,

where i ∈ {1, . . . , n} represents an individual (e.g.: patient or equipment).

An observation is classified as right-censored or left-censored when the event of inte-

rest could not be observed within the survey period. Conversely, a censoring (alternative)

time is recorded instead. Particularly, an observation is said to be right-censored if the

failure time Ti (time-to-event) is greater than the censoring time Ci, but it is unknown

by how much. The right censoring assumption adopted for this work is properly denoted

as:

Yi =

Ti, if Ti ≤ Ci;

Ci, otherwise.
(2.1)

In contrast, if the failure time is lower than the censoring (observed) time, but it is un-

certain by how much, the data is said to be left-censored. Not least, the data is classified

as interval-censored when both right and left censoring are likely to happen. In this

situation, the event occurs between two censoring times within the period of the survey.
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In other words, that is to say, that the failure time is lower than an upper censoring time

and greater than a lower censoring time. Moreover, the failure binary indicator identi-

fies censoring and failure times, assuming δi = 1 when the ith observed time point is a

failure time. The Figure 2.1 shows a real dataset, that is further explored in Application

I (Chapter 5), in oder to illustrate right censoring mechanism example.

months
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0 1 2 3 4 5 6 7 8 9 10 11

censored

event

Figure 2.1: Data set about reports on male larynx-cancer patients diagnosed during the

1970s (Kardaun, 1983). The continuously observed time is represented by horizontal

lines in which rounded points give failure times, and squared points indicate censored

observations. The lifetime is measured in months for 90 patients in the study.
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Some ordinary situations might have caused the right-censored records in monthly lifeti-

mes reports of laryngeal cancer patients (see Figure 2.1). For instance, a right-censored

time might have measured the time that a patient dropped the study, or it might have

described the lifetime of a certain patient due to uncontrolled external causes of death.

Remarkably, the total research time was reported for patient number 33 in this study

because the patient has not experienced the event of interest (death) before the end of

the survey.

Henceforth, consider the cumulative distribution function (c.d.f.) i.e. F (t) = P (T ≤

t) so that S(t) = 1 − F (t) is the survival function. The survival function is of great

interest in medical research since it describes the probability of a patient experiencing

the event of interest beyond a specified time. Besides, other important functions, such as

the hazard function, h(t), the cumulative hazard function, H(t), and the odds function,

R(t), play a key role in modeling lifetime data. These functions are related to the survival

function and they can be obtained from it. Similar survival functions may have comple-

tely different failure rate functions (Colosimo and Giolo, 2006). This occurs because the

failure (or hazard) rate function is defined as:

h(t) = lim
∆t→0

P (t < T ≤ t+ ∆t | T > t)

∆t
=
f(t)

S(t)
.

For instance, some very useful established relationships are: H(t) = − logS(t), H(t) =∫ t
0
h(u)du, f(t) = d[1−S(t)]

dt
and S(t) = [1 +R(t)]−1.

Klein and Moeschberger (1997) carefully detail the construction of the likelihood

function for survival experiments. In short, consider a survey where
n∑
i=1

δi failures and

n −
n∑
i=1

δi right censoring times (2.1) have been reported. Also, consider β to repre-

sent the effects of each patient’s individual characteristics that might influence on their

respective remaining lifetime (failure time), such as age, gender, or disease status, so that:
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L(β) = f(y | β) =
n∏
i=1

P (Yi = t, δi = 1 | β) P (Yi = t, δi = 0 | β)

=
n∏
i=1

P (Yi = t, Ti ≤ Ci, Yi = Ti | β) P (Yi = t, Ti > Ci, Yi = Ci | β)

=
n∏
i=1

P (Ti = t, Ci ≥ t | β) P (Ci = t, Ti > t | β).

(2.2)

where y = (y1, y2, . . . , yn)> is the vector of observed times and β is the vector of constant

coefficients. The present work relies on the assumption of a non-informative censoring

mechanism, therefore the failure and censoring times are considered mutually indepen-

dent in (2.2). As importantly, the probability distribution of the censoring times does

not bring any information about the failure times distribution (Klein and Moeschberger,

1997). As a consequence, the likelihood function for non-informative right-censored data

is:

L(β) =
n∏
i=1

P (Ti = t | β)P (Ci ≥ t) P (Ci = t)P (Ti > t | β)

∝
n∏
i=1

P (Ti = t | β) P (Ti > t | β).

(2.3)

The likelihood representation in (2.3) is general in the sense that PH, PO and AFT

survival models for non-informative right-censored data can be derived from it.

Mostly, the goal of survival analysis regression is to draw inferences about the effect

of the explanatory variables to the time-to-event response y as health studies are focused

on finding disease prognosis. Therefore, it is required to include regression coefficients

to investigate the impact of the explanatory variables on the time response. In line with

this idea, the PH, PO and AFT classes of survival regression will be presented in this

chapter for right-censored data; more details on basic aspects of survival analysis can be

found in Klein and Moeschberger (1997), Ibrahim et al. (2001), Collett (2015), Colosimo

and Giolo (2006), and Kalbfleisch and Prentice (2011).
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2.1 Proportional hazards model

The PH model (Cox, 1972) incorporates regression-like arguments into the statistical

framework by multiplying a non-negative function of the covariates to the hazard rates

(Kalbfleisch and Prentice, 2011). In short, the cross product, between the column vector

of features xi and the column vector of constant coefficients β, exponentially increments

(or decrements) the reference group hazard function. The baseline hazard function that

describes the reference group is h0(t) = h(t | β,xi = 0) and the PH model formulation

is then given by:

h(t | ηi) = h0(t) exp{ηi}. (2.4)

where ηi = β>xi (ith patient). The referred group (or population) is determined upon

common characteristics among patients. For example, the group of patients whose ob-

served covariates are all equal to zero is referred to as the baseline (or reference) group.

The multiplicative form in (2.4) is the most popular in the literature, in which there

is no intercept due to the presence of h0. The intercept can be included using part of

the functional structure adopted for the baseline hazard function. For example, we can

parameterize a regression that includes an intercept using the Weibull hazard function

form. Otherwise, if the regression does not include an intercept, the baseline hazard, and

its related functions, incorporate this constant term (Colosimo and Giolo, 2006).

In the proportional hazards context, the ratio between hazard rate functions of indi-

viduals belonging to distinct groups is constant over time. The ith and jth patients are

compared through hazards ratio (HR):

HR =
h0(t) exp(β>xi)

h0(t) exp(β>xj)
= exp{β>(xi − xj)} (2.5)

where the vector β of regression effects is being replaced by some estimate β̂ in order to

obtain the estimated HR. As the short form (2.5) contains only the constant regression

effects, the ratio between the two patients is proportional over time, leading to the
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proportional hazards classification. Furthermore, the survival function described before

is now written in the presence of regression elements as follows:

S(t | ηi) = S0(t)exp{ηi}, (2.6)

where S0(t) is the survival function for the reference group, i.e. S(t | 0) = S0(t). The wi-

dely used Cox’s PH (CoxPH) model (Cox, 1972) disregard any formulation for the survival

times distribution. Consequently, CoxPH is a semi-parametric model as the unspecified

baseline time-dependent term h0(t) do not rely on any functional form. Indeed, it does

not assume a parameter based (or any) formulation. For this reason, partial ML methods

became very popular on the purpose of drawing inferences from the CoxPH model. Af-

terward, Breslow (1972) proposed a fully non-parametric step function to estimate the

survival baseline functions which preserved its inherent properties and relationships with

associated elements.

The likelihood function for inferences related to the PH model can be derived from

(2.3). As mentioned, the general likelihood function for right-censored data is adapted

to the specific models. The likelihood function whose inferences obtained refer to the PH

class models is:

L(β) ∝
n∏
i=1

P (Ti = t | β) P (Ti > t | β)

=
n∏
i=1

[f(yi | ηi)]δi [S(yi | ηi)]1−δi

=
n∏
i=1

[h(yi | ηi)]δi exp{−H(yi | ηi)}

=
n∏
i=1

[h0(yi) exp{ηi}] δi exp{−H0(yi) exp{ηi}}.

(2.7)

The PH model have been widely applied due to the fact that the HR (2.5) is straight-

forward to interpret (Colosimo and Giolo, 2006). Although PH models are very popular

in the literature, other classes of frameworks such as the PO and AFT can be considered.

As reported by De Iorio et al. (2009), the PH model is limited to situations in which the

proportional HR assumption is not violated over time. For instance, the PO model is
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often of great interest for researchers, as it relies on the proportional odds ratio rather

than the proportional hazards ratio assumption. Above all, the AFT does not rely on

any assumption of proportionality. In this case, the median time ratio is a consequence

from its logarithm relation to the predictors.

The next section describes the PO case, built to represent the chance on the occurrence

of an event of interest at a given time. The afterward section represents the AFT case;

this is one of the most comprehensive classes of survival models (Collett, 2015). At the

end of this chapter, we discuss the relation between the studied frameworks.

2.2 Proportional odds model

The PO model (Bennett, 1983) is intended to situations in which survival curves tend

to get closer to each other (but they do not cross) along time, for different groups of

subject in the study. The PO model is built on the assumption of constant odds ratio

(OR) between groups which consists of the odds of an event occurring in some group

divided by the odds on event occurring in another group. The OR on the occurrence of

an event of interest regarding the baseline group (OR0) is given by:

OR0 =
1− S(t | ηi)
S(t | ηi)

S0(t)

1− S0(t)
= exp{ηi}.

As the survival function describes the probability of an individual experiencing the event

beyond a specific time, the OR of 1 indicates that the event is equally likely to occur in

both groups at the specified time. An OR lower than 1 indicates that the event is less

likely to occur in the reference group. Conversely, if the OR is higher than 1, the event

is more likely to occur in the reference group. Alternatively, we write:

R(t | ηi) = R0(t) exp{ηi} =
F (t | ηi)

1− F (t | ηi)
. (2.8)

Note that, the covariates, together with their effects, assemble the regression argument

ηi, that was previously included through the survival function in (2.6). Correspondingly,
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the regression is also included in (2.8) as F (t | ηi) = 1−S(t | ηi). The odds on occurring

an event for the reference group is R0(t) = R(t | ηi = 0).

Similar to the hazard function in the PH model (2.4), the odds on the occurrence

at a time has a similar multiplicative configuration as the one for the baseline hazard.

Therefore, two patients can be compared in the absence (decrease) or presence (increase)

of certain characteristic through the odds ratio (OR). We write:

OR =
R0(t) exp{β>xi}
R0(t) exp{β>xj}

= exp{β>(xi − xj)}. (2.9)

It should be noted that, the short form (2.9) contains only the fixed estimated effects

over time, which means that the OR is proportional over time, leading to the so called

proportional odds classification.

Few changes are made to the general likelihood expression (2.3) in order to obtain

the likelihood form related to the PO model. The fully likelihood function that allows

inference for the PO model is:

L(β) ∝
n∏
i=1

P (Ti = t | β) P (Ti > t | β)

=
n∏
i=1

[h(yi | ηi)]δi S(yi | ηi)

=
n∏
i=1

[
r0(yi) exp{ηi}

1 +R0(yi) exp{ηi}

]δi ( 1

1 +R0(yi) exp{ηi}

)
,

(2.10)

with r0(t) = ∂R0(t)
∂t

. It is noteworthy that, the PO model can be formulated under the

parametric or semi-parametric frameworks. As an example, we can obtain a PO model

with the parametric Log-logistic functional form in the baseline functions. The PO model

can also be parameterized to have an intercept in the regression. According to Bennett

(1983), the partial likelihood approach does not have a simple closed form in this case.

As a solution to this issue, the author applies a full likelihood Newton-Raphson method

involving the transformation of the failure times to the Log-logistic distribution. Later,

Pettitt (1984) developed an alternative rank based distribution-free inference method to
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compute the estimates for the PO models.

The previous two sections were dedicated to present some critical notations and ele-

ments related to the PH and PO models. As stated before, the AFT model does not

rely on any assumption over hazards or odds proportionality. Instead, the AFT model is

interpreted in terms of the median times ratio, commonly referred to as the acceleration

factor. The next section shows the main aspects of the AFT modeling. These three

settings (PH, PO, and AFT) are the main statistical approaches to be investigated in

this dissertation.

2.3 Accelerated failure time model

In the AFT model, the explanatory variables act multiplicatively on the time scale

and thus affect the rate at which the survival curve decays along the time (Collett, 2015).

The AFT modeling can be represented by the following log-linear relationship with the

observed times:

log Ti = α + ηi + σεi. (2.11)

where Ti is the random variable that describes the time-to-event for the ith patient, α and

σ are, respectively, the location and scale parameters of the distribution for the random

variable log Ti. According to Hosmer Jr et al. (2008), the AFT models are predominantly

applied under a parametric perspective. In this case, a distribution function is assumed

either for the random variable Ti or εi = [log Ti−(α+ηi)]/σ. Indeed, the survival function

might be obtained directly from Ti or indirectly from εi. One can write:

S(t | ηi) = P (Ti > t)

= P (exp{α + ηi + σεi} > t)

= P

(
εi >

log t− (α + ηi)

σ

)
.

(2.12)

where 1
σ
[log t−(α+ηi)] represents the tth percentile of the distribution assigned to εi. For
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instance, the random variable εi might follow a standard Normal, Log-gamma or Logistic

distribution. As a result, Ti will have Log-normal, Gamma or Log-logistic distribution,

respectively. In particular, consider that the AFT survival function can be rewritten in

terms of the reference group survival as:

S(t | ηi) = P (exp{α + ηi + σεi} > t)

= P (exp{α + ηi − ηi + σεi} > t exp{−ηi})

= P (exp{α + σεi} > t exp{−ηi})

= S(t exp{−ηi} | 0)

= S0(t exp{−ηi}).

(2.13)

For an AFT model, the hazard function can be obtained with (2.13) using the following

relation:
h(t | ηi) = −d logS(t | ηi)

dt

= −d logS0(t exp{−ηi})
dt

= − exp{−ηi}
−f0(t exp{−ηi})
S0(t exp{−ηi})

= exp{−ηi}h0(t exp{−ηi}).

(2.14)

Typically, the joint effect of covariates accelerates or decelerates the failure time, leading

to the AFT family. Additionally, the AFT likelihood function is obtained with (2.3) as

well:

L(β) ∝
n∏
i=1

P (Ti = t | β) P (Ti > t | β)

=
n∏
i=1

[h(yi | ηi)]δi exp{−H(yi | ηi)}

=
n∏
i=1

[exp{−ηi}h0(yi exp{−ηi})]δi exp{−H0(yi exp{−ηi})}.

(2.15)

The interpretation of the estimated AFT coefficients takes into account the logarithmic

scale of the response. According to Hosmer Jr et al. (2008), two patients can be compared
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in the absence (decrease) or presence (increase) of a certain characteristic through the

estimated time ratio (TR). This quantity is calculated with the median (or any percen-

tile) of the survival time for a given group of patients divided by the median survival

time for another group. In order to obtain the TR for the median time point t0.5 consider:

S(t0.5 | ηi) = S0(t0.5 = exp{−ηi}) = 0.5 (2.16)

Accordingly, the median time is terms of the baseline survival and linear predictor is:

t0.5(ηi, S0) = S−1
0 (0.5) exp{ηi}. (2.17)

Then, the TR is then given by:

TR =
t0.5(ηi, S0)

t0.5(ηj, S0)
=
S−1

0 (0.5) exp{ηi}
S−1

0 (0.5) exp{ηj}
= exp{β>(xi − xj)}. (2.18)

The estimated TR is often referred to as the acceleration factor (Hosmer Jr et al., 2008).

Klein and Moeschberger (1997) discuss about the Exponential, Weibull, Log Normal, Log-

logistic and Gamma, among other distributions, to describe time-to-event data using the

AFT framework. In fact, we can assume any positively defined distribution function for

Ti combined with any general class of survival model to assemble a parametric model.

Some associations of that nature lead to parametric forms of known distributions, we will

look at two cases: the Weibull PH and AFT; and the Log-logistic PO and AFT.

The next section describes the relationship between some parametric forms for the

three general families presented previously in this chapter. The models being discussed

will assume parametric forms for the baseline functions. The patterns found in the next

section will be explored in the simulation study and real applications. In particular,

the parametric AFT models described have supported the generation of simulated data

(Chapter 5).
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2.4 Relationship between the parametric AFT and other

families

Although parametric models are not the focus of this work; it is essential to review

some commonly used cases to study the advantages of the BP based models. In particular,

we will focus on two of the most used probability distributions since they provide the

three classes of models that are of interest to this dissertation. In this work, we will

stick to the Weibull and the Log-logistic parametric formulations due to their specific

relationship with the AFT class of models. The Weibull model is an option with both

PH and AFT classes, while the Log-logistic formulation is considered for both PO and

AFT. The artificial data sets investigated in Chapter 5 were obtained, assuming the

parametric AFT versions for these two distributions. The main idea behind this strategy

is to evaluate the BP based survival regression estimates obtained when fitting data sets

originated from distinct data-generating models.

2.4.1 Weibull AFT and Weibull PH

The Weibull density function is often used to describe the lifetime of industrial

products. Its popularity is since it can represent strictly increasing, strictly decreasing, or

constant behaviors for the hazard function (Klein and Moeschberger, 1997). The Weibull

distribution is parameterized in the present dissertation with the following configuration

of density function:

f(t | λ, κ) = λκ exp{−λtκ}, y ≥ 0.

where λ > 0 is the scale parameter and κ > 0 is the shape parameter. The survival and

hazard functions for a Weibull distributed time-to-event random variable Ti are respec-

tively:

S(t) = exp{−λtκ},

h(t) = λκtκ−1.
(2.19)
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According to Collett (2015), the Weibull distribution can be used to support a para-

metric AFT model, allowing λ to differ between groups. For this, we need to keep the

AFT structure in (2.14) and adopt the Weibull hazard function (2.19) for the reference

group. The Weibull AFT (WAFT) is defined as follows:

h(t | ηi) = exp{−ηi}λκ[t exp{−ηi}]κ−1 = λ∗κtκ−1. (2.20)

In (2.20), we can observe the Weibull hazard structure described in (2.19). As menti-

oned, the scale parameter differs between group and we can write Ti ∼ Weibull(λ∗ =

λ exp{−ηiκ};κ), with scale λ∗ and shape κ. On the other hand, if a Weibull distribu-

tion is assumed for Ti under the PH framework (WPH) in (2.4), it then follows that

Ti ∼Weibull(λ∗ = λ exp{ηi};κ). The hazard function in this case is rewritten as:

h(t | ηi) = λκtκ−1 exp{ηi} = λ∗κtκ−1.

Technically, it is possible to compare both models in terms of the resulting scale parameter

λ∗. One of the goals of the simulation studies is to compare the BPPH and the BPAFT

when fitted to the same data set originated from the WAFT model. Consider that ηWAFT
i

is the linear predictor for an individual under the WAFT framework and ηWPH
i is the linear

predictor for an individual under the WPH model. Explicitly, λ∗ = λ exp{−ηWAFT
i κ} =

λ exp{ηWPH
i }, that is, ηWPH

i = −κηWAFT
i . Thus, the regression element ηi of the WPH

model is compatible with the regression of the WAFT model multiplied by the negative

of the shape parameter.

In the case that a Weibull distribution is assumed in the PO model framework, or a

Log-logistic distribution is assumed for the PH model, it is not feasible to find a para-

metric hazard function structure. The Weibull distribution model is the only parametric

model that belongs to the AFT and the PH families at the same time. In the same way,

the Log-logistic distribution model is the only parametric option belonging to the PO

and AFT, simultaneously. The next topic describes how this relationship works within

the parametric framework.
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2.4.2 Log-logistic AFT and Log-logistic PO

The Log-logistic distribution can also provide a parametric model for analyzing right-

censored survival data. Unlike the Weibull distribution, which is more popular, its hazard

function is not always monotonic. In turn, the hazard function can be unimodal, mono-

tonically decreasing and, also, it can have an increasing configuration at the beginning

and a decreasing configuration for large time points. The Log-logistic distribution is

parameterized in this dissertation as follows:

f(t | ν, ζ) =
ζνtζ−1

[1 + νtζ ]2
, t ≥ 0,

where ν > 0 is the scale and ζ > 0 is the shape parameter. Survival, hazard and odds

functions are, respectively:

S(t | ν, ζ) = (1 + νtζ)−1,

h(t | ν, ζ) =
ζνtζ−1

1 + νtζ
,

R(t | ν, ζ) =
1− (1 + νtζ)−1

(1 + νtζ)−1
= νtζ .

(2.21)

The Log-logistic distribution can be used as the basis for an parametric AFT model,

allowing ν to differ between groups or, generally, introducing covariates that affect log(ζ)

as a linear function of the covariates (Collett, 2015).

Similar to the WAFT and WPH models, the Log-logistic AFT (LLAFT) and the

Log-logistic PO (LLPO) formulations are assembled with the general survival framework

(either AFT or PO) and the Log-logistic parametric form of the baseline functions (2.21).

Assuming that Ti are independent Log-logistic random variables in the AFT framework

(2.11), we have:

h(t | ηi) = exp{−ηi}
ζν(t exp{−ηi})ζ−1

1 + ν(t exp{−ηi})ζ
=

ζν∗tζ−1

1 + ν∗tζ
. (2.22)

As a result, we find the Log-logistic hazard structure described in (2.21). Thus, we write,
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Ti ∼ L-Logis(ν∗ = ν exp{−ζηi}; ζ) with scale parameter ν∗ and shape parameter ζ. At

the same time, the Log-logistic odds function (2.21) can be rewritten in terms of the PO

framework (2.8) as:

R(t | ηi) = R0(t) exp{ηi} = νtζ exp{ηi} = (ν exp{ηi})tζ = ν∗tζ .

In this case, one can show that, Ti follows a Log-logistic distribution with scale parameter

ν∗ and shape parameter ζ, i.e, Ti ∼ L-Logis(ν∗ = ν exp{ηi}, ζ). The previous statements

regarding the distributions of the Ti’s in the LLAFT and LLPO settings justify the

strategy for comparing these cases in terms of the scale parameter. We write the following

equality: ν∗ = ν exp{−ηLLAFT
i ζ} = ν exp{ηLLPO

i }, i.e. ηLLPO
i = −ζηLLAFT

i , where ηLLAFT
i

is the linear predictor for an individual under the LLAFT framework and ηLLPO
i linear

predictor for a subject under the LLPO model. Other distributions do not provide

similarities with respect to the relationship between the parametric Weibull and Log-

logistic survival models and their respective AFT cases.

Although parametric versions of the AFT model are often the first choice in many

applications in the literature, the study developed in this dissertation is focused on the

semi-parametric configuration of the survival classes in this chapter. That is to say that

we will not impose a probability distribution to describe the time response. In this sense,

the BP based approach proposed in Osman and Ghosh (2012) arises as a flexible and

appealing semi-parametric alternative, allowing different shapes for the baseline function

without need to pre-specify a distribution for the response variable. The approach explo-

red in this dissertation has a non-parametric appeal concerning the baseline functions. In

the sense that the parametric shape of the baseline functions is distribution-free. In other

words, the parameters that determine the shape of the baseline functions are not related

to the parameters of any probability distribution function. Despite the semi-parametric

appeal of the BP based survival models, they indeed make use of fully parametric tech-

niques.

The next chapter is dedicated to the BP presentation, along with facts, properties,

and typical nuances resulting from its mathematical formulation. Lorentz (1953) has
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exhaustively exposed theoretical results and important facts about the BP in the con-

text of mathematical analysis, such as proofs of theorems, generalizations, derivatives,

asymptotic formulations, and approximation examples. In addition, Farouki (2012) dis-

cussed relevant applications to the BP as a celebration for the centennial anniversary of

this topic. The discussion accounts for aspects related to symmetry, non-negativity, and

differentiation properties. At the end of the next chapter, the BP is presented in the

context of survival analysis.
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Chapter 3

Bernstein polynomial

The BP were introduced by Bernstein (1912) for the approximation of any continu-

ous function c(x) whose domain is restricted to the interval [0, 1]. According to Lorentz

(1953), the Bernstein Polynomial of degree m for the function c(x) is given by:

B(x;m; c) = Bc
m(x) =

m∑
k=0

c

(
k

m

)
bk,m(x); x ∈ [0, 1], (3.1)

where bk,m(x) =
(
m
k

)
xk(1−x)m−k, k ∈ {1, 2, · · · ,m} is called the BP basis polynomial (or

just basis). Farouki and Rajan (1987) discuss an alternative formulation to accommodate

functions restricted to [a, b]; such that a < b ∈ R. We write:

Bc
m(x) =

m∑
k=0

c

(
a+

k

m
(b− a)

)
bk,m((x− a)/b); x ∈ [a, b]. (3.2)

In the present work, we will refer to the highest order of the BP basis polynomials (indi-

vidual terms) as degree, and to the BP basis polynomial order simply as order. Lorentz

(1953) properly discusses on how to demonstrate the Weierstrass approximation theo-

rem. The theorem say that every restricted continuous function can be approximate by

a polynomial function, as close as desired, in the real domain. Using a finite BP, having

a sufficiently high degree, it can be shown that limm→∞B
c
m(x) = c(x) uniformly. Briefly,

consider a sequence of polynomials {Bc
m}m∈N and the existence of some polynomial of a
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high degree M . In such a way that, for every m > M ∈ N and ε > 0:

| Bc
m(x)− c(x) |< ε, for all x ∈ [0, 1].

The approximation ability of BP has been widely explored for the approximation of

real-valued functions regarding several contexts in literature. BP is a crucial topic in

the present dissertation, since the semi-parametric survival analysis via BP is the main

structure to support the routines implemented in the R package proposed here. In the

next section, we highlight some useful BP properties and facts. At the end of this chapter,

the BP is introduced in the context of survival regression.

3.1 BP basis properties

The focus of this section is on the BP basis polynomial that will serve as the main

structure for the approximation of the target function by the linear combination of lower

(or equal) order polynomials. Consider the probability of k successes in m trials of a bi-

nomially distributed random variable K with individual probability of success x in each

trial, that is K ∼ Binomial(m,x). According to some authors (Gzyl and Palacios, 1997;

Koralov and Sinai, 2007; Cichoń and Gołębiewski, 2012; Aldà and Rubinstein, 2017), the

BP formulation in (3.1) can be interpreted as the expected value of the random variable

c(K/m), where c(.) is the target function in (3.1):

E

[
c

(
K

m

)]
=

m∑
k=0

c

(
k

m

)(
m

k

)
xk(1− x)m−k.

The BP basis polynomials should sum up to one, as well as the binomial probability mass

function, therefore, we write:

m∑
k=0

bk,m(x) =
m∑
k=0

(
m

k

)
xk(1− x)m−k = [x− (1− x)]m = 1. (3.3)
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Some properties of the BP basis are important to build the semi-parametric model des-

cribed ahead in this dissertation. In particular, four key properties were described by

Farouki (2012) as follows:

• symmetry:

bk,m−k(x) = bk,m(1− x), (3.4)

• recursion:

bk,m+1(x) = x bk−1,m(x) + (1− x) bk,m(x), (3.5)

• non-negativity:

bk,m(x) ≥ 0, ∀ x ∈ [0, 1], if 0 ≤ k ≤ m, (3.6)

• derivatives:
d

dx
bk,m(x) = m[bk−1,m−1(x)− bk,m−1(x)]. (3.7)

The BP properties are also broadly discussed in many applications of computer aided

geometric design methodologies (computational mathematics methods to describe geo-

metric objects). More details on basic properties of the BP can be found in the references:

Davis (1963), Farouki and Rajan (1987), Farouki and Rajan (1988) and Farouki (2008).

Figure 3.1 illustrates the BP basis symmetry (3.4), recursion (3.5), and non-negativity

(3.6) properties, considering m = 4 and m = 10 polynomial degrees. Panel (a) shows

the Bernstein polynomial bases of order k ≤ m = 4, the left-hand side basis is b0,m(x)

and the right-hand side basis is bm,m(x), corresponding to the black (darkest color) and

the yellow (lightest color), respectively. All the basis polynomials, including these two,

follow the properties presented in (3.4), (3.5), (3.6) and (3.7). As for instance, due to the

symmetry property we have: b0,m−0(x) = b0,m(1 − x). Also, the non-negative property

can be observed at the image of the curves presented in the Panel (a). In turn, Panel (b)

illustrates the fact that the same properties are maintained for higher order polynomial

bases. As discussed previous in this chapter, higher degree polynomials are expected

to provide better approximations to the target function. It is also noteworthy that, for

23



m = 4, the yellow curve begins rising from 0.4 while, when m = 10, it starts rising from

0.7, that illustrates that the basis b4,4(x) order is lower than the basis b10,10(x) order. In

particular, if the curves are evaluated at any fixed point in x ∈ [0.1], the basis sum up

to one (3.3), especially, b0,m(0) = bm,m(1) = 1.

(a) m = 4 (b) m = 10
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Figure 3.1: Bernstein polynomial bases . Panel (a): polynomial bases of order m = 4;

Panel (b): polynomial bases of order m = 10.

The BP differentiation can be obtained from the derivative property (3.7) of the

basis. This property provides the necessary results for the introduction of the BP in the

survival analysis regression context, explored further in this dissertation. The last section

of this chapter discusses how the BP differentiation expression can be used to estimate

cumulative hazard, odds and related functions. The first partial derivative with respect

to x of the formulation in (3.1) provides:
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∂Bc
m(x)

∂x
=

m∑
k=0

c

(
k

m

)(
m

k

)
{kxk−1(1− x)m−k − (m− k)xk(1− x)m−k−1}

= m
m∑
k=0

c

(
k

m

)[(
m− 1

k − 1

)
xk−1(1− x)m−k −

(
m− 1

k

)
xk(1− x)m−k−1

]

= m

m∑
k=0

c

(
k

m

)
bk−1,m−1(x)−m

m∑
k=0

c

(
k

m

)
bk,m−1(x)

= m

m−1∑
i=−1

c

(
i+ 1

m

)
bi,m−1(x)−m

m∑
k=0

c

(
k

m

)
bk,m−1(x).

(3.8)

where i = k − 1. According to Farouki (2012), consider by definition b−1,m−1(x) =

bm,m−1(x) = 0, thus we have:

∂B(x;m; c)

∂x
= m

m−1∑
i=0

{
c

(
i+ 1

m

)
− c

(
i

m

)}
bi,m−1(x)

= m
m−1∑
i=0

∆c1
i bi,m−1(x).

(3.9)

where c
(
i+1
m

)
− c
(
i
m

)
is the difference of first order ∆c1

i of the function c(x) at x = i/m

(Lorentz, 1953). It is important to notice that the basis derivatives are lower order basis

written in terms of the kth difference ∆cki . The second difference, for example, is:

∆c2
i = ∆(∆c1

i ) =

{
c

(
i+ 2

m

)
− c

(
i+ 1

m

)}
−
{
c

(
i+ 1

m

)
− c

(
i

m

)}
= c

(
i+ 2

m

)
− 2 c

(
i+ 1

m

)
+ c

(
i

m

)
.

The BP derivative consists of a lower order basis (3.9) due to the recursion property (3.5).

This property provides a recursive relationship for a sequential differentiation (Lorentz,

1953), given by:

B(r)
m = n(n− 1) . . . (n− r + 1)

n−r∑
k=0

∆cki

(
n− r
k

)
xk(1− x)m−k−r,∀k = {1, 2, . . . ,m}.
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In this section, we have included some properties about the BP basis polynomials that

will be important in building the BP models for survival data. Primarily, the derivative

properties are used in the last section of this chapter about BP in survival analysis.

Besides, the BP was presented from the perspective of a Binomial distributed random

variable, this alternative perspective can facilitate the interpretation of the BP and make

the presentation of its properties more intuitive. The next section shows how to use BP

to approximate real-valued continuous functions. For example, the BP approximation

should capture any continuous function, including non-negative cases such as the hazard

rate functions.

3.2 Finite BP approximation

In the present section, we will illustrate how the BP is used to approximate known

real-valued functions, we have chosen a Weibull hazard function as an example of real-

valued target function. The Weibull distribution is a very popular choice when it comes

to parametric models, as mentioned in Chapter 2. Assuming that the target function has

a non-negative domain restricted to [a = 0, b = τ ] , the equation (3.2) becomes:

Bh
m(x | λ, κ) =

m∑
k=0

h

(
k

m
τ | λ, κ

)
bk,m(x); x ∈ [0, τ ]. (3.10)

In order to obtain (3.10), we have assumed an upper bound limit τ for the hazard func-

tion in (2.19). Suppose that m = 4 and τ = 5, such that x = t/5 ∈ [0, 1]. Then, we have:

Bh
4 (x | λ, κ) = h(0 | λ, κ) b0,4(x)

+ h

(
5

4
| λ, κ

)
b1,4(x) + h

(
10

4
| λ, κ

)
b2,4(x)

+ h

(
15

4
| λ, κ

)
b3,4(x) + h

(
20

4
| λ, κ

)
b4,4(x).

(3.11)
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Accordingly, the Bernstein basis polynomials in (3.10) are:

b0,4(x) = (1− x)4,

b1,4(x) = 4x(1− x)3, b2,4(x) = 6x2(1− x)2,

b3,4(x) = 4x3(1− x), b4,4(x) = x4.

(3.12)

The finite BP approximation Bh
4 (x | λ, κ) is obtained with the cross product between the

BP basis in (3.12) and the values of the target function h(t | λ, κ) (3.11) evaluated at the

equidistant points {0, 5
4
, 10

4
, 15

4
, 20

4
}.

Figures 3.2 and 3.3 illustrate the behavior of every single product (individual term)

of this finite BP (3.11), two configurations of the Weibull hazard function are explored.

Note that, in this case, there is no symmetry. In Figure 3.2, for example, the scaled

(multiplied) basis polynomials are more concentrated to the right-hand corner compared

to Figure 3.1. The resulting approximation consists of the sum of every (polynomial)

curve in solid-colored lines; the finite BP curve is represented in dash-dotted lines. As

expected, when m increases, from Panels (a) to (b) in Figures 3.2 and 3.3, the BP

approximation Bh
m(x | λ, κ) gets closer to the actual target h(y | λ, κ) curve. The higher

degree in BP, Panel (b), indeed provides a closer approximation to the target function.

The target function must be known so that it can play the role of modifying each basis

form presented in Figure 3.1.

Although the approximation of target hazard rate functions is often successful, the

approach is not suitable for real data applications as the target function is unknown in

practice. The researcher cannot know in advance the true distribution of the time until

the occurrence of an event. Hence, the next section presents an alternative to estimate

unknown cumulative hazard and odds functions for right-censored data, which uses the

BP based survival regression modeling.
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Figure 3.2: Illustration of the BP approximation of degree m for the Weibull ha-

zard function (target). Panels (a), (b), (c) and (d): the dot-dashed line represents

the finite BP approximation Bm(y | λ, κ); Panels (a) and (c): the solid colored li-

nes (from dark blue to yellow) represent the Bernstein polynomial individual term

h
(
k
m
τ | λ, κ

)
bk,m(y/τ), ∀k = 1, 2, . . . ,m, for m = 4 in Panel (a) and m = 10 in Pa-

nel (c); Panels (b) and (d): the solid black line represents the target hazard function

with scale λ = 1 and shape κ = 3.
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Figure 3.3: Illustration of the BP approximation of order m for the Weibull ha-

zard function (target). Panels (a), (b), (c) and (d): the dot-dashed line represents

the finite BP approximation Bm(y | λ, κ); Panels (a) and (c): the solid colored li-

nes (from dark blue to yellow) represent the Bernstein polynomial individual term

h
(
k
m
τ | λ, κ

)
bk,m(y/τ), ∀k = 1, 2, . . . ,m, for m = 4 in Panel (a) and m = 10 in Pa-

nel (c); Panels (b) and (d): the solid black line represents the target hazard function

with scale λ = 30 and shape κ = 0.7.
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3.3 BP in survival analysis

The topic of this section is central to the proposal of the semi-parametric survival

modeling developed in this dissertation. The methodology behind the elements that

will be presented here was introduced in Osman and Ghosh (2012). The authors took

advantage of a finite BP in order to estimate positively bounded functions in survival

regression modeling, such as the hazard function h(t). For this, consider (3.2) to appro-

ximate H(t) assuming t ∈ [0, τ ]:

BH
m(t) =

m∑
k=0

H

(
k

m
τ

)
bk,m(t/τ); t ∈ [0, τ ]. (3.13)

The first BP differentiation (3.9) with respect to the time t is:

∂BH
m(t)

∂t
=
m

τ

m−1∑
i=0

{
H

(
i+ 1

m
τ

)
−H

(
i

m
τ

)}
bi,m−1(t/τ)

=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)
bk−1,m−1(t/τ)

=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)(
t

τ

)k−1(
1− t

τ

)(m−1)−(k+1)

=
1

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
Γ(m+ 1)

Γ(m− k + 1)Γ(k)

(
t

τ

)k−1(
1− t

τ

)m−k
=

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
fβ(t/τ ; k,m− k + 1)

τ
.

(3.14)

It is important to emphasize that the basis polynomials were rewritten as gk,m(t) =

fβ(t/τ | k,m−k+1) τ−1, in which fβ corresponds to the beta density function. Moreover,

note that the quantities γk =
{
H
(
k
m
τ
)
−H

(
k−1
m
τ
)}
, ∀k = 1, 2, . . . ,m do not depend on

the time. Thereby, these quantities should be estimated as we cannot know in advance

the true cumulative hazard function value. Hereafter, these elements will be called BP

parameters γ = (γ1, γ2, . . . , γm)>, γk ≥ 0. Some parametric models have been criticized

because of the hazard decay for large time values (Klein and Moeschberger, 1997). Using
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the BP it is possible to estimate either increasing, decreasing, convex, concave, and other

shapes of functions, such that the estimates for γ = (γ1, γ2, .., γm)> dictate the related

functions shape, similar to what happened in Figures 3.2 and 3.3. The hazard and

cumulative hazard functions in the BP formulation are:

h(t,γ) = γ>gm(t), 0 ≤ t <∞ and H(t,γ) =

∫ t

0

h(u,γ)du = γ>Gm(t), (3.15)

where gm(t) = (g1,m(t), g2,m(t), . . . , gm,m(t))>, Gm(t) = (G1,m(t), G2,m(t), . . . , Gm,m(t))>

and Gm,k(t) =
∫ t

0
fβ(u/τ ; k,m − k + 1)d(u/τ). Since this model does not impose any

functional form on the hazard function, it is said to have a non-parametric appeal. Some

properties of the key functions for survival analysis, mentioned in Section 2, are preserved

when the BP structure is assumed. For example, the cumulative hazard function is

monotonic non-decreasing as a consequence of the restriction γk ≥ 0.

As stated in Chapter 2, the inclusion of regression coefficients is required in order

to achieve the statistical purpose of investigating the impact of covariates over the time

response. Hence, the formulation (3.15) shall be included in the baseline hazard function

of the PH likelihood function (2.7), as follows:

L(Θ | y, δ,x) =
n∏
i=1

[h0(yi) exp{ηi}] δi exp{−H0(yi) exp{ηi}}

=
n∏
i=1

[
γ>gm(yi) exp{ηi}

]δi − exp{γ>Gm(yi) exp{ηi}},
(3.16)

where Θ = (β,γ). Osman and Ghosh (2012) discuss proofs on the strictly concavity,

the uniqueness of the maximum likelihood estimates and good differentiability properties

that ease likelihood, gradient and Hessian matrix calculations.

The BP is also suitable to estimate the baseline odds on the event occurrence (De-

marqui et al., 2019). This can be done due to the properties shared by the odds function

and the cumulative hazard function. Similar to the cumulative hazard function, the odds

function is a monotonic non decreasing function with R0(0) = 0 and limt→∞R0(t) =∞.

The formulation (3.15) shall be included in the baseline odds function of the PO like-

lihood function (2.10), i.e., R0(t) = ξ>Gm,k(t) and r0(t) = ξ>gm,k(t), in order to define
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the next likelihood function:

L(Θ | y, δ,x) =
n∏
i=1

[
ξ>gm(yi) exp{ηi}

1 + ξ>Gm(yi) exp{ηi}

]δi ( 1

1 + ξ>Gm(yi) exp{ηi}

)
, (3.17)

in this case Θ = (β, ξ). The BP parameters are denoted by ξ = (ξ1, ξ2, . . . , ξm)>, to in-

dicate the estimation of the odds instead of the cumulative hazard function. Finally, the

likelihood function of the AFT model adapts the BP structure thought the hazard and

cumulative hazard functions. The formulation (3.15) shall be included in the baseline

odds function of the AFT likelihood (2.15). This provides:

L(Θ | y, δ,x) =
n∏
i=1

[exp{−ηi}h0(yi exp{−ηi})]δi exp{−H0(yi exp{−ηi})}

=
n∏
i=1

[
exp{−ηi}γ>gm(yi exp{−ηi})

]δi
exp{−γ>Gm(yi exp{−ηi})},

(3.18)

where Θ = (β,γ). The likelihood in (3.16) refers to the Bernstein polynomial based

proportional hazards (BPPH) model, the likelihood (3.17) refers to the Benstein polyno-

mials based proportional odds (BPPO) model and the likelihood in (3.18) refers to the

Bernstein polynomial accelerated failure time (BPAFT) model under the right censoring

mechanism.

This chapter summarizes the usage of the BP in the finite approximation of positive

continuous functions such as the hazard rate function. We emphasize that the target

function must be known in advance to approximate it by the BP. Further, we also have

comments on how to use BP under the statistical perspective of estimation. Osman and

Ghosh (2012) proposed methods to estimate the hazard (target) function using the BP

when this function is unknown. In this context, the next chapter presents some imple-

mentation details that were crucial to fit the BP based regression models.
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Chapter 4

Inference procedures and technical

issues

Throughout the package implementation, some workarounds had to be done to gua-

rantee a stable version of the R package implemented to fit the BP models. This chapter

provides some perspective of what had to be done internally (without user interference)

to achieve satisfactory performance in the simulation study results (Chapter 5). Accor-

ding to Gjessing et al. (2010), the presence of an exponential structure combined with

other complex formulations might lead to an unstable model, with numerical problems.

Our primary purpose is to avoid the explosive behavior of the survival regression models,

also reported in Aalen et al. (2008) and Kalbfleisch and Prentice (2011).

Aware of the numerical stability problems, the survival package (Terry M. Therneau

and Patricia M. Grambsch, 2000), for example, includes routines that internally standar-

dize the covariates before evaluating the likelihood, in order to avoid an overflow in the

argument of the exponential function. According to the R help documentation, the func-

tions to fit models in the survival package, such as survival::coxph, internally scale

and center data; see the “details” section of ?coxph() in the R console. The adoption of

this kind of feature brings some counterparts to the likelihood as a whole. Particularly,

these counterparts are related to the regression coefficients and BP parameters scale.

Consider the standardization of p covariates as:
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zij =
xij − x̄j
sxj

; j = 1, 2, . . . , p;

where x̄j =
n∑
i=1

xij/n and sxj =

√
n∑
i=1

(xij − x̄j)2/(n − 1), such that x̄ = (x̄1, x̄2, . . . , x̄p)
>

and sx = (sx1 , sx2 , . . . , sxp)> are the column vector of sample means and the column

vector of sample standard deviations, respectively. For example, consider the inclusion

of standardized covariates (explanatory variables) zi = (z1, z2, . . . , zp)
> in the BPPH

hazard function (2.7), as follows:

h(t | Θ) = γ∗>gm(t) exp{β∗>zi}

= γ∗>gm(t) exp{β∗>[s−1
x ◦ (xi − x̄)]}

= γ∗> exp{−β∗>(s−1
x ◦ x̄)} gm(t) exp{β∗>(s−1

x ◦ xi)}

= [γ∗ exp{−β∗>(s−1
x ◦ x̄)}]> gm(t) exp{(β∗ ◦ s−1

x )>xi)}

= γ>gm(t) exp{β>xi}

= γ>gm(t) exp{ηi}.

where the symbol ◦ denotes the Hadamard (element-wise) product and the standard li-

near predictor is denoted by η∗i = β>zi = β>[s−1
x ◦ (xi − x̄)]. The parametric space of

interest is rewritten in terms of the new coefficients defined under the mentioned stan-

dardization Θ∗ = (β∗;γ∗), so that:

Θ = (β;γ) =
(
β∗ ◦ s−1

x ; γ∗ exp{−β∗>(s−1
x ◦ x̄)}

)
.

Fully likelihood methods for ML estimation and Bayesian estimation were applied con-

sidering the transformed space. Thereafter, the quantities of interest could be recovered

given the invariance property of the ML estimators or through the posterior mode (or

any summary) of transformed chains, following the relations:

β̂ = β̂∗ ◦ s−1
x =

(
β̂∗1
sx1

,
β̂∗2
sx2

, . . . ,
β̂∗p
sxp

)>
, (4.1)
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Θ̂ =


(β̂; γ̂) =

(
β̂; γ̂∗ exp{−β̂∗>(s−1

x ◦ x̄)}
)
, if the model is BPPH,

(β̂; ξ̂) =
(
β̂; ξ̂∗ exp{−β̂∗>(s−1

x ◦ x̄)}
)
, if the model is BPPO or

(β̂; γ̂) =
(
β̂; γ̂∗ exp{ β̂∗>(s−1

x ◦ x̄)}
)
, if the model is BPAFT.

(4.2)

In this form, the BP survival regression estimates would be driven by the sample stan-

dard deviations sx = (sx1 , sx2 , . . . , sxp)> towards close to zero values, and the BP estima-

tes would be inflated or deflated depending on the sample means x̄ = (x̄1, x̄2, . . . , x̄p)
>.

It is expected that this technique brings more stability and accuracy to the proposed

package. From the Bayesian perspective, the prior choice is made regarding the stan-

dardized coefficients. As mentioned, we shall expect little deviations from zero and a

great variability for the BP parameters as they shall depend on the arguments to the

exponential function.

From the Bayesian perspective, as a single effect can have a huge impact for the

final result, one might assume, for example, the generic weakly informative and the

weakly informative prior choices β∗j ∼ N(0;σ2
β∗j

= 16) and β∗j ∼ N(0;σ2
β∗j

= 100) for the

regression coefficients, respectively. Also, generic or weakly informative Log-normal priors

have been tested to express the lack of previous information about the BP parameters, the

reader is reminded that, in this case, a Normal prior specification to the BP parameters

in log-scale is equivalent to a Log-normal prior specification to the actual scale, that is:

log(γ∗k) ∼ N(µγ∗ , σ
2
γ∗) ≡ γ∗k ∼ LN(µγ∗ , σ

2
γ∗). Thus, the prior choice for the BP parameters

is analogue, that is, log(γ∗k) ∼ N(0;σ2 = 16) or log(γ∗k) ∼ N(0;σ2 = 100). According

to the default configuration of the spsurv, for each model fit, four chains of size 2000

are built for each quantity of interest, using the NUTS algorithm (Hoffman and Gelman,

2014) provided in Stan. The first 1000 iterations are discarded as a burn-in (warm-up)

period. After the sampling procedure, model comparison criteria are calculated using

the loo package (Vehtari et al., 2019).

Under the Frequentist perspective, the maximization algorithm is applied to the like-
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lihood function to determine the ML estimates. The likelihood ratio (LR) test and Wald

score tests are available for the BPPH, BPPO, or BPAFT models. The LR test statistic

is not affected by the standardization as this statistic consists of twice the difference

between two likelihood functions: 2{L(Θ̂ | y, δ, x) − L(Θ̂0 | y, δ, x)}. Conversely, the

Wald test statistic is affected by the standardization because the multivariate z-statistic

is based on the Fisher information: ZWald =

√
(Θ̂− Θ̂0)>Î(Θ̂)(Θ̂− Θ̂0), where the

observed Fisher information matrix is intended to be a sample-based version equiva-

lent to the negative of the estimated Hessian matrix (log-likelihood second derivative).

Nevertheless, the observed information matrix obtained refers to the information of stan-

dard configuration discussed at the beginning of this chapter. Hence, the Delta method

is required to recover the observed information of interest (Oehlert, 1992; Casella and

Berger, 2002; Cooch, 2008). According to this point, we write:

√
n[Θ̂

∗ −Θ∗]
D−→N

(
0, Î−1(Θ̂∗)

)
, (4.3)

√
n[g(Θ̂

∗
)− g(Θ∗)]

D−→N
(

0,∇g(Θ̂
∗
)>Î−1(Θ̂∗)∇g(Θ̂

∗
)
)
, (4.4)

where g represents the function described in (4.2) and ∇g(Θ̂
∗
) represents the gradient

column vector of partial derivatives such that Î−1(Θ̂) = ∇g(Θ̂
∗
)Î−1(Θ̂∗)∇g(Θ̂

∗
)>.

The Fisher information is also needed to build confidence intervals. In this case, it

is necessary to compute the estimated variance-covariance matrix, which is equivalent to

the inverse of the observed Fisher information matrix V̂ (Θ̂) = Î(Θ̂)−1. In practice, some

numerical problems may be experienced when dealing with the inversion of the observed

information. The matrix Î(Θ̂) can be singular due to numerical approximations. To

circumvent this issue, we consider a block-wise strategy for inversion that is defined for

the following partition:

I(Θ) = −

 ∂2`(Θ|y,δ,x)
∂2β

∂2`(Θ|y,δ,x)
∂β∂γ

∂2`(Θ|y,δ,x)
∂β∂γ

∂2`(Θ|y,δ,x)
∂2γ

 =

 A B

C D

 . (4.5)

Once the matrix is partitioned, it can be inverted block-wise as follows (Bernstein, 2009):
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A B

C D

−1

=

A−1 + A−1B
(
D−CA−1B

)−1
CA−1 −A−1B

(
D−CA−1B

)−1

−
(
D−CA−1B

)−1
CA−1

(
D−CA−1B

)−1

,
where A refers to the regression block, B and C for the symmetric covariance blocks and D for

the BP parameters block. Here we have that, A is p × p and D is a m ×m, so that both can

be inverted. Also, D−CA−1B must be invertible.

Significance tests and confidence intervals were not proposed for the BP parameters since

these parameters do not reflect any covariate effect or interpretative quantities. In turn, they

dictate the shape of survival curves analogously to the scale parameters in parametric models.

Beyond the necessary adjustments regarding the application of the model with transformed

coefficients discussed earlier in this chapter, Osman and Ghosh (2012) comment on the choice

of the polynomial degree and states that this is closely related to the true hazard function

shape. There is a bias-variance trade-off in which a small degree polynomial is likely to result

in biased estimates, while a large degree polynomial might introduce excessive variation. The

package structure will allow the users to choose the best polynomial degree for their applications.

However, this choice must take into account the purpose of user-defined modeling. If a high-

precise estimation of the baseline functions is not interesting to the study, the practitioner

should choose low-degree polynomials. Otherwise, high-degree polynomials are preferable. The

recommendation (Osman and Ghosh, 2012) is to the use of m =
√
n as the choice of polynomial

degree that is set as the default in the spsurv package.

The upper bound restriction, τ in (3.13), is not considered a parameter in the spsurv

package structure. According to Osman and Ghosh (2012), in the context of survival analy-

sis: τ < ∞ such that τ = inf{t : S(t | Θ,x) = 0} and τ̂ = max{t1, t2, . . . , tn} → τ =

inf{t : S(t | Θ,x) = 0} in probability. Thus, the main function of the package internally sets

τ̂ = max{t1, t2, . . . , tn}. Although this is applied to the implementation, one should know that

any estimator for τ would generate an improper survival function, that is, we would have:

S(τ̂ | Θ,x) = exp{−H(τ̂ | Θ,x)}

= exp{−γ>Gm(τ̂) exp{ηi}} ≥ 0,
(4.6)
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where we can not guarantee that S(τ̂ | Θ,x) = 0. In special,

S(τ̂ = max{t1, t2, . . . , tn} | Θ,x) = exp{−γ>Gm(max{t1, t2, . . . , tn}) exp{ηi}}

= exp{−γ>1 exp{ηi}} > 0.
(4.7)

As a solution to this inconsistency, a tail adjustment is necessary to satisfy limt→∞ S(τ | Θ,x) =

0; see Osman and Ghosh (2012). Although there are some choices of corrections that provides a

survival function that meets the requirement, these kind of corrections do not affect the estimates

of the BP based survival models. The correction applied to the survival function formulation

after the last observed time, will not change the estimates presented in this dissertation. Note

that, the time region beyond τ̂ = max{t1, t2, . . . , tn} does not contain any time response.

We close here the third chapter of this dissertation. The next chapter is dedicated to a

comprehensive simulation study that compares the overall performance of the BPPH, BPPO,

and BPAFT. The main aim of the next chapter is to assess whether the BP estimates behave

well in distinct scenarios. After the analysis involving artificial data sets, the dissertation will

be focused on applications of the BP models to real problems.
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Chapter 5

Monte Carlo simulation study

In this chapter, we present a Monte Carlo (MC) simulation study to evaluate the performance

of the BP based models in terms of estimation. The analysis is divided in two scenarios: sample

size n = 100 (Scenario I) and sample size n = 200 (Scenario II). For both cases, the same

covariates xi = (xi1, xi2) were used to generate 1000 replications (data sets), from LLAFT and

WAFT (parametric) models. Censoring times were produced based on the same distribution

used to generate the failure times. Figure A.12 (Appendix F) shows how the censoring rate was

distributed for each simulated data set generated.

Ideally, the simulated survival times can be generated from the relationship Ti = S−1(Ui),

where Ui is a uniformly distributed random variable and Ti is the failure time random variable.

In fact, it is feasible to generate a random variable observation from its own survival function S

(if the survival is invertible). One can introduce an observed value ui from Ui ∼ Uniform[0, 1]

and, therefore, obtain yi = S−1(ui), i ∈ {1, . . . , n}. We can show that:

P (Ti > ti) = P (S−1(Ui) > ti) = P (S(S−1(Ui)) > S(ti))

= P (S(Ti) > S(ti)) = P (Ti > ti).

According to Ross (2012), this method is often called the Inverse Transform Sampling (ITS). In

this case, S(.) denotes the survival function adopted for Ti either from WAFT (2.20) or LLAFT

(2.22). Table 5.1 shows the settings of each data generator model:
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Data set # Model Covariate x1 Covariate x2 Shape Censoring scale Average % censoring

1 LLAFT x1 ∼ N(0, 1) x2 ∼ Hyper(500; 250; 250; 1) ζ = 2 νc = 700 25.07

2 WAFT x1 ∼ N(0, 1) x2 ∼ Hyper(500; 250; 250; 1) γ = 2 λc = 1.4 25.68

Table 5.1: Settings of the generator model assuming a sample size n = 200. The scale

parameter νc (or λc) of the censoring time distributions was chosen to provide an approxi-

mately 25% of censored observations in each data set. The total of 1000 MC replications

were generated from each setting described in this table. N and Hyper refer to the

Normal and the Hypergeometric distributions, respectively.

As stated earlier, the censoring mechanism is non-informative. Hence, both event and

censoring times were generated independently through the ITS method. The censoring

times, for each data set, were also generated from the Weibull (WAFT) and the Logistic

(LLAFT) survival functions. In order to achieve approximately 25% average censoring

(Table 5.1), the scale parameter for the censoring times, were set to be ν∗ = νc = 700

in (2.20) and λ∗ = λc = 1.4 in (2.22). It should be mentioned that, the distribution of

failure times is individual (not indentically distributed), that is, the value of the scale

parameter λ∗ = λ exp{−ηWAFT
i κ} (or ν∗ = ν exp{−ηLLAFT

i α}) in the survival function

differ between the artificial groups created (see Chapter 2). Summary statistics for these

parameters were presented in Table 5.2:

Model Scale Min. 1st Qu. Median Mean 3rd Qu. Max.

LLAFT ν∗ 3541.2876 16202.3240 28818.4750 79166.4723 57127.7961 4510736.9826

WAFT λ∗ 25.2166 40.4366 47.4655 50.9704 56.1337 189.7279

Table 5.2: The individual scale parameter value differs for different groups artificially

created in the generation of both data sets. Summary statistics for these quantities

(ν∗ or λ∗) are displayed in this table. The LLAFT and WAFT models were described

previously in Section 2.4.

Note that the Table 5.1 shows only the settings for the Scenario II. However, Scena-

rio I can be obtained by simply using the first 100 elements of the 200 sized data sets.
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We also emphasize that, the MC simulation study were based on two distinct likelihood

maximization methods and four distinct prior specifications for every replication in each

of the two scenarios. A sensitivity analysis for the prior specifications of the BP parame-

ters was applied to evaluate the impact of the initial uncertainty about these unknown

quantities. Table 5.3 shows the four hyperparameter choices tested. In this context,

independence between all parameters was assumed a priori.

Prior # Prior for βj E(βj) V (βj) Prior for γk E(γk) V (γk)

1 N(µ = 0;σ = 4) 0 16 LN(µ = 0;σ = 4) 2980.9580 7.8963× 1013

2 N(µ = 0;σ = 4) 0 16 LN(µ = 0;σ = 10) 5.1847× 1021 7.2260× 1086

3 N(µ = 0;σ = 10) 0 100 LN(µ = 0;σ = 4) 2980.9580 7.8963× 1013

4 N(µ = 0;σ = 10) 0 100 LN(µ = 0;σ = 10) 5.1847× 1021 7.2260× 1086

Table 5.3: Options of priors for the sensitivity analysis. N refers to the Normal distri-

bution, LN refers to the Log-Normal probability density function. E(.) and V (.) refers

to the expected value, respectively.

Under the Bayesian framework, Prior 1 and Prior 2 specifications provide more informa-

tion to the regression coefficients (Table 5.3) due to the belief in slight deviations from

zero. As mentioned in Chapter 4, the covariates were standardized before fitting the mo-

dels, which means that atypical values will have less impact in the regression estimates

once they have been internally standardized. In this context, Priors 3 and 4, provided

less information to the regression coefficients aiming to offer a contrasting choice.

The primary goal of this analysis is to investigate how the regression estimates are

affected by distinct levels of uncertainty attributed to the BP parameters. The next

section shows the results of this simulation study for Scenario I. Results for Scenario II

are explained later in this dissertation. All the simulation study results are presented in

Appendix B. The conclusions about the simulation studies are given in the last section

of this chapter.
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5.1 Scenario I: sample size n = 100

This section presents the results for the data sets with a sample size of 100. In

the investigations conducted in this dissertation, we choose to explore five statistics in

the evaluation of the estimation under the MC scheme: the average estimate (est.), the

average estimated standard error (se.), the standard error of the estimates (sde.), the

relative bias (rb.) and the coverage probability. For this, consider φ a generic parameter,

and assume that φ̂ is the ML (or the posterior) estimate. The analysis of the results from

the MC replications takes into account the next elements:

• the average estimate (est.):

φ̄ =
1

R

R∑
i=1

φ̂i, (5.1)

• the average estimated standard error (se.):

1

R

R∑
i=1

ŝe(φ̂i), (5.2)

• the standard error of the estimates (sde.):

1

R− 1

R∑
i=1

(φ̂i − φ̄)2. (5.3)

where ŝe denotes the estimated standard error (or posterior standard deviation) obtained

for φ̂ and φtrue denotes the true value. In order to account for the distance between the

reported estimate and the true estimate, the relative bias is considered with the following

formulation:

rb(φ) = 100(φ̂− φtrue)/ | φtrue | . (5.4)

The uncertainty related to the R = 1000 replications is expressed based on interval esti-

mates for the regression coefficients. Thus, another interesting element to be considered

in the analysis is the coverage probability of the model. The coverage probability is the
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percentage of the MC replications that provide a 95% interval that captures the true

value of the parameter. In the frequentist approach, we consider 95% confidence inter-

vals. In the Bayesian framework, the investigation is based on 95% Highest Probability

Density (HPD) credibility intervals.

The study presented here was developed with the following strategy. The BPPH and

BPAFT models were fitted to the data sets that originated from the WAFT model. Me-

anwhile, the BPPO and BPAFT models were fitted to the data sets that originated from

the LLAFT model. These settings are comparable based on the relationships discussed

in section 2.4. For comparative purposes, we have also fitted the generator models (pa-

rametric AFT) using the routine provided by survreg::survival.

ML WAFT LLAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 2 2.0090 0.2282 0.2724 0.4253 0.8967 2 2.0030 0.2223 0.2325 0.1438 0.9434

β2 -1 -1.0080 0.3046 0.3729 -0.7903 0.8947 -1 -1.0210 0.3065 0.3174 -2.1136 0.9434

Table 5.4: MC simulation study assuming the WAFT and LLAFT generator model fits

in the Scenario I (n = 100). The estimate of the regression coefficient (est.), average

standard error (se.), the standard deviation of the estimates (sde.), relative bias (rb in

%), and coverage probability (nominal level 95%). The routine used to supply data to

this table was survreg::survival, the estimates reported here are obtained under the

Maximum Likelihood (ML) estimation.

The results in Table 5.4 do not provide any indication that the procedure to generate

data (ITS) contains errors. As expected, the relative bias is very close to zero (less

than 3%), which suggests that the generator model recovers well the true value of the

coefficients. Furthermore, the coverage rates of the confidence intervals are close to the

nominal value of 95%, reflecting the good interval estimation provided by the model fit.

In conclusion, Table 5.4 indicates that the generator model (either WAFT or LLAFT) can

recover the true values of the coefficients. In this sense, we can consider that this table is

a useful reference for the evaluation of the BP based survival regression model routines

proposed here. The purpose of this section is to verify whether the BP based model’s
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statistics provided are similar to the statistics provided by the model that generated the

data (Table 5.4).

BFGS BPPH BPAFTa

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.4807 0.5814 0.7670 -12.0172 0.8250 2 2.0398 0.1271 0.3209 1.9885 0.6497

β2 2 2.2373 0.5170 1.0465 11.8664 0.9080 -1 -1.0169 540.4119 0.7781 -1.6880 0.6562

LBFGS BPPH BPAFTb

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.4774 0.6129 0.7478 -11.9343 0.8480 2 2.0368 0.1287 0.3209 1.8376 0.6596

β2 2 2.2617 0.5275 1.8072 13.0832 0.9130 -1 -1.0047 126.6637 0.5935 -0.4669 0.6539

Prior 1 BPPH BPAFTc

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.4030 0.4419 0.3167 14.9300 0.7450 2 2.0950 0.2026 0.2158 4.7580 0.9248

β2 2 1.7060 0.4556 0.4021 -14.6900 0.9200 -1 -1.0490 0.2569 0.3075 -4.9360 0.9468

Prior 2 BPPH BPAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.9730 0.5486 0.4770 0.6630 0.9740 2 1.9890 0.5050 0.4935 -0.5537 0.9660

β2 2 1.9540 0.5050 0.4854 -2.2920 0.9660 -1 -1.0250 0.2421 0.3042 -2.4770 0.9250

Prior 3 BPPH BPAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.4800 0.4519 0.3335 13.0000 0.8250 2 2.1060 0.2058 0.2211 5.3111 0.9190

β2 2 1.7440 0.4590 0.4124 -12.8100 0.9320 -1 -1.0620 0.2640 0.4569 6.2430 0.9420

Prior 4 BPPH BPAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1230 0.5730 0.5326 -3.0750 0.9670 2 2.0590 0.1957 0.2223 2.9660 0.9160

β2 2 2.0630 0.5144 0.5251 3.1550 0.9620 -1 -1.0360 0.2484 0.4540 -3.5970 0.9170

Table 5.5: MC simulation study in scenario I (n = 100), models fitted to the WAFT data

sets. Estimate of the regression coefficient (est.), average standard error (se.), standard

deviation of the estimates (sde.), relative bias (rb in %) and coverage probability (nominal

level 95%). Symbols: a indicates R = 925 (6 non-finite Hessian matrices and 69 non-

converging); b indicates R = 890 (1 non-finite hessian and 109 non-converging) and c

indicates R = 997.

The Table 5.5 displays the mentioned statistics for the estimates of the BP based

models applied to the WAFT data set replications in Scenario I. This table shows twelve

possible configurations for fitting the 1000 MC data sets using the spsurv package. The

first two refer to the Frequentist approaches either under the PH or AFT frameworks. The
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was first used to promote the li-

kelihood maximization. Secondly, another option of optimization algorithm was tested to

assess if there is any empirical evidence in preferring some of them; the Limited-memory

BFGS (LBFGS) algorithm was used with that purpose, both algorithms are built-in

Stan. Besides, the Bayesian model fit is also included assuming the prior specifications

described in Table 5.3.

It is noteworthy that we chose not to explore the Newton method, which was also

made available to the user in the spsurv package, to save computational time. In our

experience, this method tends to be slow to handle the BP models. We also highlight

that the mentioned optimization methods can often find a local maximum rather than

the global one. The likelihood function was evaluated concerning four ML estimates that

considered distinct random initial values for the optimizer to mitigate this kind of bias.

Thus, the largest likelihood estimate obtained with these four possible fits were selected.

Both BFGS and LBFGS are iterative methods for solving nonlinear optimization pro-

blems (Fletcher, 2000). The LBFGS is a BFGS extension with a limited-memory; the

BFGS algorithm accumulates all the gradient values, including the first ones. On the

other hand, the LBFGS drops old gradients in favor of the new ones. The LBFGS is

useful to avoid the bias of the initial gradient; even so, the estimated Hessian will still

be biased by initial values until enough gradients are accumulated close to the solution.

In short, according to Table 5.5, we can consider that the BP based models provided

good results when applied to Bayesian inference, especially looking for the Prior 2 and 4

relative biases. Under the Frequentist approach, the BP based models did not produce

results as good as the generator model fits (Table 5.4); in particular, the BPPH model

fits provided relatively biased estimates. In comparison, we might also suggest that the

Bayesian approach is less error-prone, i.e. we found here fewer problems regarding the

computation of the estimates. For example, an amount of 178 non-converging estimates

were found in the BPAFT case (for both BFGS and LBFGS). At the same time, only

the first prior specification provided fewer than expected replications (R = 997). As a

result, the number of valid MC replications decreased due to issues in computing the

estimates (see the caption of Table 5.5). In the Bayesian case, the reason for detecting
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those missing values is related to the non-mixing chains that can occur due to the initial

values that were randomly assigned by Stan internally.

Table A.3 (Appendix B) shows the MC simulation study for the estimates of the

BP models applied to LLAFT data set. We found similar conclusions about interval

estimates for the BPAFT model under the ML perspective applied to LLAFT data. Both

average standard error and the coverage probability reflect the underestimated standard

errors. Consequently, the BPAFT has presented narrower confidence intervals compared

to the interval ranges from the generator model. Also, the optimization problems once

more have caused a decrease in the number of valid MC replications. For the BPPO

and BPAFT models, a total of 98 non-converging estimates and 17 non-finite Hessian

matrices were found (see the caption of Table A.3). Regarding the Bayesian model fits

sensitivity analysis, the same conclusion can be maintained: the prior specification that

presented the best results was again Prior 2, which consists of attributing generic weakly

informative priors to the regression coefficients and vague prior information to the BP

parameters. Above all, we found that the Bayesian BP based survival regression models

can provide accurate inferences (Prior 2) in using the three classes: PO, PH, and AFT.

In general, it is possible to state that the estimates provided by the LBFGS method

are very similar when compared to the BFGS. Some model comparison criteria such

as the LR statistic, the Akaike information criterion (Akalke, 1974), and the Bayesian

information criterion (Schwarz et al., 1978), for example, could be applied in this case

to support the comparison between those algorithm estimates. However, we chose the

one that indicated the highest coverage rate to BP based models applied to Frequentist

inference. For this reason, the ML results of the LBFGS algorithm will be used in the

comparison between the estimates of the two inferential approaches. From the Bayesian

perspective, the deviance information criterion (DIC) (Spiegelhalter et al., 2002), the

Watanabe–Akaike information criterion (WAIC) (Watanabe, 2013) and the logarithm of

the pseudo-marginal likelihood (LPML) (Geisser and Eddy, 1979) was calculated to assist

the evaluation of the prior choice. The LPML and WAIC criteria were multiplied by -2,

so that the three criteria have a similar interpretation to facilitate the understanding,

that is, the lower is the value of the criterion, the better the model fits the data. It is
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expected that the prior choice that presented consistently little relative bias, and near

95% coverage rate will also outperform the other models concerning the above criteria.

Accordingly, Figure 5.1 shows the relative difference between some reported prior choice

criterion and the value of the same criterion regarding Prior 2, for the identical MC

replication.

The relative difference is somehow similar to relative bias (5.5). Instead, it accounts

for the distance from another criterion (or estimate) rather than the distance from the true

values. The relative difference accounts for the distance between the reported criterion

(or estimate) and the value of some reference criterion:

rd(φ) = 100(φ̂− φ̂r)/ | φ̂r |, (5.5)

where φ̂r is the Prior 2 (reference) criterion (or estimate) and φ̂ is the referred prior

criterion (Prior 1, Prior 3 or Prior 4). The relative difference is a ratio with the numerator

being the difference between estimates and the denominator being the magnitude of the

reference value. Negative and positive results indicate that the criterion is being evaluated

above or below the reference estimate, respectively. The fraction is multiplied by 100,

leading to a percentage representation of its magnitude. Some MC replica provided

non-finite values for the -2 WAIC and -2 LPML. Therefore the relative difference was

only included if the three criteria were valid for both priors in the same MC replication

comparison.
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Figure 5.1: Box-plots of the relative differences between the values of the DIC, -2 WAIC

and -2 LPML criteria from two models. The first model is the one identified by prior

numbers 1, 2 and 3. The reference (second) model is the one assuming Prior 2. Here, the

models were fitted to data sets generated under Scenario I (n = 100). Panel (a): Relative

difference regarding the BPAFT model (LLAFT case). Panel (b): Relative difference

regarding the BPPO model. Panel (c): Relative difference regarding the BPAFT model

(WAFT case). Panel (d): Relative difference regarding the BPPH model.
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Figure 5.1 suggests that the model comparison criteria -2 LPML and -2 WAIC do

not differ about the best model to be chosen. The results have indicated that Prior 2

fit is often preferable to other fits. Although Christensen et al. (2011) state that LPML

is preferable in many cases, we have found that the WAIC and LPML are suitable for

comparing BP based survival regression models in Scenario I since most of them indicated

the best fit concerning relative bias and coverage probability. We have also found that

the DIC criterion is more sensitive than the -2 LPML and -2 WAIC when it comes to

BP based models comparison. The relative difference presented by this one was higher

than expected. Also, we discovered that the DIC criterion in BPPO and BPPH do not

reflect the findings of this simulation study Scenario because it often indicates Prior 4 as

the preferable model. From our analysis: we conclude that Prior 2 is slightly better than

Prior 4, making sense to be chosen, as we have learned that the prior choice is essential

for the final result.

Table 5.6 shows the results of the Bayesian (Prior 2) and the Frequentist (LBFGS)

approaches. Remarkably, the BPAFT coverage probabilities under the ML approach do

not approximate to the nominal level of 95%. Note that, the average standard error

(se.) and the standard error of the estimates (sde.) under the ML perspective are not

close. It is noteworthy that these statistics are tight in the Bayesian case. Therefore, we

can suggest there exists a rough approximation error in the Delta Method applied. The

average estimated standard error of the BPAFT applied to the WAFT data set in (Table

5.6), is, on average, underestimated, and exceedingly overestimated for the second coef-

ficient. This conclusion is based on the comparison with the results from the generator

model (Table 5.4). In turn, this overly estimated average standard error is justified by

the presence of discrepant values in the standard error estimation. Indeed, it can be seen

that the below-expected coverage probability reflects the fact that most estimated confi-

dence intervals for BPAFT models were exceptionally narrow. Despite the unsuccessful

confidence interval estimation, the relative bias is very low for the BPAFT estimates (see

Table 5.4).

Apart from the performance of the ML interval estimation, the BP based models pro-
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LBFGS BPPH BPAFTa

(WAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.4774 0.6129 0.7478 -11.9343 0.8480 2 2.0368 0.1287 0.3209 1.8376 0.6596

β2 2 2.2617 0.5275 1.8072 13.0832 0.9130 -1 -1.0047 126.6637 0.5935 -0.4669 0.6539

Prior 2 BPPH BPAFT

(WAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.9730 0.5486 0.4770 0.6630 0.9740 2 1.9890 0.5050 0.4935 -0.5537 0.9660

β2 2 1.9540 0.5050 0.4854 -2.2920 0.9660 -1 -1.0250 0.2421 0.3042 -2.4770 0.9250

LBFGS BPPOb BPAFTc

(LLAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.3523 0.6417 0.7813 -8.8071 0.8548 2 2.0345 0.1586 0.3123 1.7269 0.6897

β2 2 2.2170 0.6935 0.7646 10.8513 0.9330 -1 -1.0222 0.2150 0.4025 -2.2193 0.6886

Prior 2 BPPO BPAFTd

(LLAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.0437 0.6195 0.5562 -1.0925 0.9600 2 2.0441 0.2321 0.2538 2.2041 0.9189

β2 2 2.0677 0.6770 0.6631 3.3839 0.9560 -1 -1.0426 0.3237 0.3453 -4.2609 0.9319

Table 5.6: MC simulation study in scenario I (n = 100), models fitted to the WAFT and

LLAFT data sets. Estimate of the regression coefficient (est.), average standard error

(se.), standard deviation of the estimates (sde.), relative bias (rb in %) and coverage

probability (nominal level 95%). Symbols: a indicates R = 890 (1 non-finite hessian and

109 non-converging). b indicates R = 985 (15 non-finite Hessian matrices); c indicates

R = 941 (59 non-converging), d indicates R = 999 and f indicates R = 999.

vided good estimates regarding the prior choices that attributed higher uncertainty to

the BP parameters, such as the Prior 2 and Prior 4 (Table 5.5). As mentioned in Chapter

4, this should be justified by the fact that the prior specification and the maximization

account for the transformed BP coefficients, for instance γ̂∗ = γ̂ exp{β̂∗>(s−1
x ◦ x̄)} in

the PH class. This implies that the estimates in the standardized case are inflated or

deflated according to the argument of the exponential function. For this reason, even

a generic weakly informative prior can undermine the ability of the model to find the

true value of the parameter. For instance, values near zero are considerably possible to

the BP parameters and should often occur as the argument of the exponential function

might be negative valued. In summary, when standardized covariates are passed to the

BP based models, vague priors should be considered to express the uncertainty about
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the variability of the BP parameters. Compared to Prior 4, a more precise information

about the regression coefficients in Prior 2 has lead, on average, to lower posterior stan-

dard deviations and lower relative bias.

Considering Tables 5.5 and A.3, the average relative bias that accounted for the

most considerable difference between estimated and actual values was reported in the

application of the BPPH model under the ML approach; the reported average absolute

bias was around 12%. Simultaneously, the shortest distances captured by the relative

bias were in the BPPH application under the Prior 2 approach, together with the BPAFT

application under the ML approach, with approximate 2% of average relative bias. Except

for the BPPH model under ML, all modeling options provided an average absolute bias

near or less than 10%.

Also, the Figures 5.2 and 5.3 show the relative bias comparison between the models

that provided, in most cases, the adequate results concerning the relative bias. From a

Frequentist perspective, we can say that there is no difference in using the BFGS or the

LBFGS. Therefore, we chose to stick with the second, as it consists of an extension of the

BFGS. On the other hand, the applications under the Prior 2 model presented a lower

bias. Thus, those results were chosen to represent Bayesian applications. The panels refer

to the illustration of the pairwise estimates that were previously summarized separately

(Tables 5.5 and A.3), an estimate was only displayed in these graphs if both estimation

approaches were valid for the same MC data set. The Panel (a) shows the dispersion of

the relative bias for the BP based Bayesian estimates in red, the BP based ML estimates

in green, and the parametric ML estimates obtained with the generator model in blue

(either WAFT or LLAFT). The relationship between the parametric models that are

under comparison in these figures was previously described in Section 2.4. It is possible

to compare the PH, or the PO, with the AFT, only by multiplying the negative value of

the scale parameter to the regression coefficients estimates provided by the AFT model.

In this case, the shape parameter chosen for the two generator models was 2 (see Table

5.1). The Panel (b) illustrates the dispersion of the ratio between the absolute relative

bias of the ML estimates over the Bayesian estimates for the same MC replication.
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It is noteworthy that, under both approaches, the relative biases for the effect of the

categorical variable β̂2 have presented more considerable deviations from the median value

when compared to the deviation from the median for the continuous covariate estimated

effect β̂1; see the covariates settings in Table 5.1. This fact was reported previously in

the mentioned tables through summary statistics such as the standard deviation of the

estimates. Also, it should be noted that, accordingly, the approach that presented the

most considerable relative difference from the real values of 12%, was the BPPH under

the ML approach in Figure 5.2 (a). Moreover, the estimates obtained with the Bayesian

approach are quite good in comparison to the ML case. Not least, the absolute relative

bias ratio is useful to compare the estimates obtained from the distinct approaches for the

MC data set. In this case, we found in Figures 5.2 (b) and 5.3 (b) that the BP Bayesian

estimates are, in general, closer to the real value of the parameter than the corresponding

ML outcome. However, yet, on average, they exceed the standard deviations observed in

the generator model in Figures 5.2 (a) and 5.3 (a).
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Figure 5.2: Box-plots of the relative bias and absolute relative bias ratio in Scenario I

(n = 100). Panel (a): Relative bias of the BP based Bayesian estimates in red, the BP

based ML estimates in green and the parametric ML estimates obtained with the WAFT

model in blue. Panel (b): Ratio between the BP based ML absolute relative bias over

the Bayesian relative bias (Prior 2) for the same MC replication; BPAFT in red and

BPPH in cyan.
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Figure 5.3: Box-plots of the relative bias and absolute relative bias ratio in Scenario I

(n = 100). Panel (a): Relative bias of the BP based Bayesian estimates in red, the

BP based ML estimates in green and the parametric ML estimates obtained with the

LLAFT model in blue. Panel (b): Ratio between the BP based ML absolute relative

bias over the Bayesian relative bias (Prior 2) for the same MC replication; BPAFT in

red and BPPO in cyan.
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In this section, we have found problems regarding BPAFT model confidence interval

estimation for both WAFT and LLAFT data sets. Nevertheless, this problem can be

solved by implementing specific routines that rely on optimization algorithms that are

not provided in the rstan integration, which is part of the proposed spsurv package.

Such methods may be considered for future work. However, they are not part of the scope

of the present work. Conversely, the optimization of other BP based survival regression

models, such as the BPPH and BPPO, proved to be more efficient in terms of interval

estimation (coverage probability).

In summary, considering all the tables, figures, and analyses that have been included

in this section, we can conclude that for Scenario I, the Bayesian model with Prior 2

specification provided the closest results to the outcomes of the generator model and,

consequently, the best results concerning the estimation of the actual values of the pa-

rameters. Still, it is expected that, in addition to other eventual prior choices that were

not tested in this dissertation, the estimates of this model might be even closer to those

from the generator model when large sample sizes are considered. Also, we firmly believe

that the prior choice we are proposing in this section (Prior 2) is reasonable weakly infor-

mative rather than uninformative because the model covariates have been standardized.

The next part of this simulation study presents the results in Scenario II. The average

estimate (5.1), the average standard error of the estimates (or posterior deviation) (5.2),

the average standard deviation of the estimates (5.3), the relative bias (5.5), and the co-

verage probability, described at the beginning of this section, were also used to evaluate

the next section scenario (Scenario II).
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5.2 Scenario II: sample size n = 200

This section presents the results for the Scenario with sample size 200 in the MC

scheme. The main aim is to investigate how the survival regression estimates of the BP

based models are affected by larger sample size. It is expected that, with twice as many

samples, we will find a relevant improvement concerning the BP estimates obtained in

the previous Scenario. The increase from n = 100 to n = 200 has resulted in a higher

computation cost to fit the Bayesian BPAFT model. For this reason, a smaller part of

the MC replications was explored here. A total of 100 artificial data sets were evaluated

in this case. Even though these models had already demonstrated an outstanding ability

to recover the true values of the parameters in Scenario I (with Prior 2), we expect an

improved performance even with fewer replications and longer computing time.

As a first step of the analysis, an investigation was done to find the causes of the

higher computational cost for fitting the BPAFT. Table 5.7 presents summary statistics

about timing on ten posterior samplings of four chains with distinct prior specifications,

in Scenario I. The evaluation accounted for the computational time, given in seconds, for

each of the twelve Bayesian configurations analyzed earlier. The results were obtained

through the function spsurv::spbp in R and using the same computer (Intel Core i7-

4700HQ CPU @ 2.40GHz, 12 Gb of memory RAM and 8 CPU threads). The simulations

were not performed in parallel with other activities on the computer.

According to the reported outcomes, we can conclude that the prior specification di-

rectly impacts on the computational time that the NUTS algorithm requires to complete

the routine. It should be noted that the prior choices that attributed greater variability

to the BP parameters, i.e., Prior 2, and Prior 4, have presented approximately 1.3 to 2

times longer computational times compared to others. Especially, the minimum reported

time to run a BPAFT model fit is approximately more than 20 times greater than the

BPPH and the BPPO average times; the BPAFT model fit takes about 5 minutes to be

completed. The difference between the computation time from the AFT model to the

other cases is because the AFT survival regression must compute the new BP basis at

each MCMC iteration. In this case, the observed survival time points need to be rescaled
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Model Prior # Min. 1st Qu. Mean Median 3rd Qu. Max.

1 BPPH Prior 1 7.15 8.30 8.58 8.52 8.87 10.16

2 BPPH Prior 2 11.59 12.15 12.56 12.35 12.88 13.78

3 BPPH Prior 3 6.83 8.28 9.00 8.56 9.19 11.92

4 BPPH Prior 4 9.32 11.75 12.40 11.98 14.14 14.84

5 BPPO Prior 1 8.08 8.18 8.50 8.37 8.54 9.45

6 BPPO Prior 2 10.96 11.21 12.16 11.87 12.75 13.82

7 BPPO Prior 3 7.06 8.37 8.83 9.01 9.30 9.92

8 BPPO Prior 4 11.22 11.47 12.54 12.34 13.25 14.84

9 BPAFT Prior 1 168.73 173.19 175.69 174.47 179.40 185.29

10 BPAFT Prior 2 324.64 326.68 333.98 329.29 344.48 349.55

11 BPAFT Prior 3 151.89 172.20 174.80 177.81 179.25 184.21

12 BPAFT Prior 4 317.88 328.29 331.57 330.83 334.93 349.20

Table 5.7: Summary statistics for the computational time under distinct prior specifica-

tions and survival regression classes in Scenario I. The response summarized here is the

computational time (in seconds) to fit ten models in each configuration.

in terms of the regression coefficients. In other words, the quantities, gk,m(yi exp{−ηi})

and Gk,m(yi exp{−ηi}), where ηi = β>xi; see the likelihood 2.15. Table 5.8 presents

summary statistics for the computational time under the Prior 2 specification for the

distinct configurations of models and sample sizes.

Model Sample size Min. 1st Qu. Mean Median 3rd Qu. Max.

Prior 2

1 BPPH n = 100 10.84 11.47 12.23 11.66 13.35 14.53

2 BPPH n = 200 25.10 25.28 26.30 25.97 27.09 28.50

3 BPPO n = 100 9.58 11.16 11.48 11.42 11.68 14.09

4 BPPO n = 200 21.49 23.66 24.06 24.14 24.61 26.57

5 BPAFT n = 100 312.13 325.88 328.41 327.80 330.13 346.49

6 BPAFT n = 200 1258.25 1271.54 1318.17 1290.30 1381.70 1396.06

Table 5.8: Summary statistics for the computational times obtained under distinct model

classes and both sample size scenarios (Prior 2). The results are reported in seconds, and

they correspond to fitting ten models for each configuration.

In Table 5.8, note that the computational time to fit the BPAFT with n = 200 is

four times bigger when compared to the n = 100 case. The inclusion of more data has
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also doubled the fitting time of the BPPH and BPPO. In Scenario II, the BPPH and

BPPO take about 30 seconds to run the routine while a BPAFT spends approximately

23 minutes in the same task. Therefore, an amount of 2000 BPAFT fits, under the MC

scheme, would take approximately 46000 minutes, which is equivalent to approximately

32 days to handle the calculations related to the Prior 2 case. In short, we have epirical

evidence to conclude that the BPAFT computational cost is directly affected by the

sample size.

In Table 5.8, MC simulation study comparison purposes, we have fitted the WAFT

and the LLAFT models in Scenario II. As expected, the generator models have provided

a good estimation. Furthermore, our findings indicate that they recover the values of

the actual regression parameters accurately. Therefore, we can conclude that the ITS

was applied correctly in generating the survival times and that the results reported here

should be considered as a useful reference to evaluate the BP based survival regression

models in Scenario II.

ML WAFT LLAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 2 2.0376 0.1285 0.1375 1.8816 0.9400 2 2.0251 0.1399 0.1454 1.2575 0.9600

β2 -1 -1.0097 0.1560 0.1532 -0.9711 0.9800 -1 -0.9948 0.1514 0.1576 0.5194 0.9379

Table 5.9: MC simulation study assuming the WAFT and LLAFT generator models in

Scenario II (n = 200). Estimate of the regression coefficient (est.), average standard

error (se.), standard deviation of the estimates (sde.), relative bias (rb in %) and co-

verage probability (nominal level 95%). The routine used to supply data to this table

was survreg::survival, the estimates reported here are obtained under the Maximum

Likelihood (ML) estimation.

In Table 5.10, emphasis should be given to the accuracy of the point estimates of the

BPAFT model. The average of the BPPH estimates under the ML approach have redu-

ced the distance in 0.3% towards the true value of the coefficients compared to Table 5.5.

This improvement on the estimation is also reflected in terms of reduction on the average

relative bias, of approximately 6% less bias when compared to Table 5.5. In general, the
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HPD interval probability coverage improves. On the other hand, the BPAFT standard

errors of the estimates were still underestimated, providing unsatisfactory coverage pro-

babilities below the nominal level (95%), in Scenario II. From the Bayesian fits, highlight

should be given to the Prior 2 and Prior 4 estimates.

BFGS BPPOa BPAFTb

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1910 0.4547 0.5305 -4.7745 0.9053 2 2.0299 0.1140 0.2251 1.4932 0.7193

β2 2 2.1112 0.4780 0.5180 5.5586 0.9287 -1 -1.0119 0.1529 0.2798 -1.1884 0.6821

LBFGS BPPOc BPAFTd

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1970 0.4653 0.5236 -4.9257 0.9116 2 2.0190 0.1081 0.2416 0.9466 0.6978

β2 2 2.1175 0.4810 0.5145 5.8726 0.9311 -1 -1.0175 0.1611 0.2848 -1.7524 0.6986

Prior 1 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.7550 0.4047 0.3514 6.136 0.9190 2 2.0834 0.1404 0.1462 4.1680 0.8900

β2 2 1.9040 0.4524 0.4346 -4.7910 0.9510 -1 -1.0450 0.1722 0.1676 -4.5027 0.9400

Prior 2 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.0230 0.4522 0.4726 -0.5808 0.9420 2 2.0438 0.1315 0.1322 2.1915 0.9254

β2 2 2.0380 0.4745 0.4869 1.9125 0.9420 -1 -1.0218 0.1566 0.1629 -2.1792 0.9254

Prior 3 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.8260 0.4149 0.3674 4.3410 0.9450 2 2.0810 0.1392 0.1354 4.0481 0.8955

β2 2 1.9410 0.4571 0.4409 -2.9430 0.9530 -1 -1.0410 0.1688 0.1598 -4.1005 0.9552

Prior 4 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1270 0.4676 0.5123 -3.1690 0.9350 2 2.0486 0.1327 0.1334 2.4297 0.8955

β2 2 2.0840 0.4811 0.5054 4.1880 0.9350 -1 -1.0240 0.1577 0.1634 -2.3975 0.9254

Table 5.10: MC simulation study in Scenario II (n = 200), models fitted to the WAFT

data set. Estimate of the regression coefficient (est.), average standard error (se.), stan-

dard deviation of the estimates (sde.), relative bias (rb in %) and coverage probability

(nominal level 95%). Symbols: a indicates R = 996 (4 non-finite Hessian matrices);

b indicates R = 933 (60 non-converging and 7 non-finite Hessian matrices); c indicates

R = 999 (1 non-finite Hessian matrix); d indicates R = 973 (2 non-finite Hessian matrices

and 124 non-converging); † indicates R = 100.
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In addition to the results reported in Table 5.10, the Table A.4 provided results re-

lated to the BPAFT and BPPO to fit the artificial LLAFT data in Scenario II. Under

the ML perspective, the average estimate of the BPPO model fits have reduced in 0.2%

the distance to the true value of the coefficients, this improvement can also be noted

through a decrease of approximatily more than 4% in the absolute relative bias. In few

cases, such as the BBPO, we can find that the BFGS performs slightly better than the

LBFGS in relation to the relative bias and coverage probability. A total of 166 non-

finite Hessian matrices and 286 non-converging estimates were found in the procedure

to reach the results in Tables 5.10 and A.4. In general, the analysis here confirm that

some improvement with respect to the relative bias of the BP based survival regression,

is obtained when compared to the case n = 100 (Scenario I). In the Scenario II, both

models presented posterior standard deviations close to the generator model estimated

standard error. Table 5.11 displays MC simulation study descriptive statistics under the

Frequentist and the Bayesian perspectives for both datasets generated.

Considering Tables 5.10 and A.4, the average relative bias associated with the most

considerable difference to the actual values of the parameters was reported for the BPPH

model under the ML approach. The reported average absolute bias was approximately

6%. Simultaneously, the shortest distance concerning the actual values was obtained in

the BPPH under the Prior 2 approach, with less than 2% of average relative bias. All

the modeling options provided an average absolute bias around or less than 6%. As

mentioned in the previous section, the quality of the interval estimates might have been

influenced by optimization biases (BFGS or LBFGS algorithms) or due to the rough

approximation provided by the Delta method. We have found problems in the interval

estimation of the BPAFT model applied to both WAFT and LLAFT data sets. Again,

possible solutions to this problem are not part of the scope of this work. The estimates

of other BP based survival regression models, such as the BPPH and BPPO, indicated

good results in terms of coverage probability. These BP cases proved to be more reliable

in terms of interval estimation for both scenarios.
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LBFGS BPPH a BPAFT b

(WAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 4 -4.2426 0.4233 0.4682 -6.0661 0.9159 2 1.9795 0.0845 0.3934 -1.0237 0.6510

β2 2 2.1033 0.3585 0.3830 5.1656 0.9249 -1 -0.9736 0.1037 0.2950 2.6371 0.6178

Prior 2 BPPH BPAFT†

(WAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.9692 0.3884 0.3648 0.7699 0.9520 2 2.044 0.1566 0.1322 2.1920 0.9254

β2 2 1.9788 0.3459 0.3385 -1.0576 0.9480 -1 -1.022 0.1566 0.1629 -2.1790 0.9254

LBFGS BPPOc BPAFTd

(LLAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1970 0.4653 0.5236 -4.9257 0.9116 2 2.0190 0.1081 0.2416 0.9466 0.6978

β2 2 2.1175 0.4810 0.5145 5.8726 0.9311 -1 -1.0175 0.1611 0.2848 -1.7524 0.6986

Prior 2 BPPO BPAFT†

(LLAFT) true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.0230 0.4522 0.4726 -0.5808 0.9420 2 2.0438 0.1315 0.1322 2.1915 0.9254

β2 2 2.0380 0.4745 0.4869 1.9125 0.9420 -1 -1.0218 0.1566 0.1629 -2.1792 0.9254

Table 5.11: MC simulation study in Scenario II (n = 200), models fitted to the WAFT

data sets. Estimate of the regression coefficient (est.), average standard error (se.),

standard deviation of the estimates (sde.), relative bias (rb in %) and coverage probability

(nominal level 95%). Symbols: a indicates R = 996 (4 non-finite Hessian matrices); b

indicates R = 933 (7 non-finite Hessian matrices and 60 non-converging); a indicates

R = 999 (1 non-finite hessian); b indicates R = 973 (2 non-finite Hessian matrices and

124 non-converging); c indicates R = 973 (27 non-converging); d indicates R = 969 (51

non-converging); † indicates R = 100.

Model comparison criteria (DIC, WAIC, and LPML) were also calculated to assist

in the evaluation of the prior choice in Scenario II. It is also expected that the Prior 2

outperforms the other models to the above criteria because it was the model that pre-

sented the smallest relative bias. In this context, the Figures 5.4 illustrates the relative

difference between a reported prior choice criterion and the value of the same criterion

regarding Prior 2, for the same MC replication. The analysis here confirms the conclusi-

ons based on the same model comparison criteria developed for the Scenario I. We have

also found that the DIC often points to the Prior 4 case as the most appropriate model

in BPPH, Figure 5.4 (d), which is not true.
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Figure 5.4: Box-plots of the relative differences between the values of the DIC, -2 WAIC

and -2 LPML criteria from two models. The first model is the one identified by prior

number 1, 2 or 3. The reference (second) model is the one assuming Prior 2. Here, the

models were fitted to data sets generated through Scenario II (n = 200). Panel (a):

Relative difference regarding the BPAFT model (LLAFT case). Panel (b): Relative

difference regarding the BPPO model. Panel (c): Relative difference regarding the

BPAFT model (WAFT case). Panel (d): Relative difference regarding the BPPH model.
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Figures 5.5 and 5.6 show the relative bias comparison between the estimates obtained

with BP based survival regression models under the ML and Bayesian approaches, i.e.

LBFGS and Prior 2, respectively. The panels refer to the illustration of the pairwise esti-

mates. The Panel (a) shows the dispersion of the relative bias to the: BP based Bayesian

estimates in red, the BP based ML estimates in green, and the parametric ML estimates

obtained with the generator model in blue. The Panel (b) illustrates the dispersion of

the ratio between the absolute relative bias of the ML estimates over the Bayesian esti-

mates for the same MC replication. Under both approaches, the corresponding bias for

all estimates (Figures 5.5 and 5.6) have presented, in general, smaller deviations from the

median relative difference compared to Scenario I relative biases. This fact was reported

in Tables 5.10 and A.4.

Also, it should be noted that, accordingly, the approach having the largest (6%)

average relative bias from the real values in Tables 5.10 and A.4, is the BPPH under the

ML perspective (green boxplot) represented in Figure 5.2 (a). Moreover, the estimates

obtained with the Bayesian approach are quite good in comparison to the ML case.

We can also observe that the standard deviations of the estimates are quite similar to

the standard deviation observed in the generator model. Besides, even though the gap

between the Bayesian and ML estimates have narrowed, we have also found that the

BP Bayesian estimates are often closer to the real value of the parameter than the ML

outcomes in Figures 5.5 (b) and 5.6 (b).

We finally reach the end of Chapter 5, which has investigated several statistics sum-

marizing the results of more than 40000 BP based regression model fits, using exclusively

the unpublished routines proposed as part of the contribution of this dissertation. The

main conclusions from this simulation study can be listed as follows:

• the BPAFT presented confidence interval estimation issues, as a consequence, we

have observed coverage probabilities below the nominal level,

• there was no empirical evidence to prefer the LBFGS or BFGS. According to the

results related to relative bias and coverage probability, both algorithms provided

very similar outcomes,
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• the best prior choice in the sensitivity analysis promoted within the simulation

study was the Prior 2 (Table 5.3). This choice indicated the best estimates in all

explored scenarios. Also, the model comparison criterion that worse reflected the

lowest relative bias was the DIC.

• the BPAFT model under the Bayesian approach presented the longest computatio-

nal time of approximately five minutes for the Scenario I and around 23 minutes for

Scenario II. These cases have a costly computational time. The other frameworks

take less than 30 seconds to build 4 chains with 1000 samples each.

In conclusion, the BP based regression models tend to provide low bias estimates and

reliable confidence (except BPAFT) and HPD intervals. The newly R package spsurv

serves as an alternative tool to fit survival regression models being freely available for

the R the community users. The main objective of the next chapter is to illustrate the

use of BP based models to fit well known real data sets in the literature.
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Figure 5.5: Box-plots of the relative bias and absolute relative bias ratio in Scenario II

(n = 200). Panel (a): Relative bias of the BP based Bayesian estimates in red, the BP

based ML estimates in green and the parametric ML estimates obtained with the WAFT

model in blue. Panel (b): Ratio between the BP based ML absolute relative bias over

the Bayesian relative bias (Prior 2) for the same MC replication; BPAFT in red and

BPPH in cyan.
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Figure 5.6: Box-plots of the relative bias and absolute relative bias ratio in Scenario II

(n = 200). Panel (a): Relative bias of the BP based Bayesian estimates in red, the

BP based ML estimates in green and the parametric ML estimates obtained with the

LLAFT model in blue. Panel (b): Ratio between the BP based ML absolute relative

bias over the Bayesian relative bias (Prior 2) for the same MC replication; BPAFT in

red and BPPH in cyan.
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Chapter 6

Real applications

In this Chapter, we present the analysis of two real case studies. For the first appli-

cation, consider the reports on male larynx-cancer patients diagnosed during the 1970s

(Kardaun, 1983). In the second illustration, consider the 137 randomized observations

of two treatments for lung cancer (Prentice, 1973). The first application consists of a

comparison between estimates obtained from the WAFT, CoxPH, BPPH, and BPPAFT

models; the last two are available from the spsurv package. In the second illustration,

the assumption of proportional hazards is violated (Appendix F). Thus, the AFT and

PO models are alternatives in this case. Following the evidence found in the application

performed in Bennett (1983), we are also considering that the LLAFT may be adequate

here. The relative difference defined in (5.5) account for the distance between the repor-

ted spsurv package estimate and the estimate of some reference routine in this Chapter.

The reference estimate φ̂r is obtained with the freely available R packages survival

(Terry M. Therneau and Patricia M. Grambsch, 2000) and timereg (Scheike and Zhang,

2011), and φ̂ is the ML or posterior estimate from spsurv. Negative and positive re-

sults indicate that the spsurv is estimating, in percentage, above or below the reference

estimate, respectively.
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6.1 Application I: laryngeal cancer data

This study involves 90 patients with laryngeal cancer. The idea here is to compare the

survival times of cancer patients hospitalized during the 1970s, in the Netherlands, see

Kardaun (1983). Following the settings assumed by Klein and Moeschberger (1997), the

two covariates in this study are the patient age (in years) and the cancer stage (I, II, III,

or IV). The study aims to investigate whether the patient’s lifetime is affected by aging

or disease development in more critical stages, such as III and IV. Hypothetically, zero

aged patients in phase I refer to the baseline group such that h(t | 0) = h0(t). Tables

6.1 and 6.3 show the results according to the ML and Bayesian inferential approaches,

respectively, for the PH class.

coef exp(coef) se(coef) CIcoef pcoef rdcoef rdexp(coef)

coxph

X1 :age 0.0190 1.0192 0.0143 [-0.0089, 0.0470] 0.1820 - -

X2 :stage II 0.1400 1.1503 0.4625 [-0.7664, 1.0465] 0.7620 - -

X3 :stage III 0.6424 1.9010 0.3561 [-0.0556, 1.3404] 0.0712 - -

X3 :stage IV 1.7060 5.5068 0.4219 [0.8790, 2.5330] 0.0001 - -

spbp
(model="ph")

X1 :age 0.0193 1.0195 0.0144 [-0.0089,0.0474] 0.18008 1.2525 0.0294

X2 :stage II 0.1720 1.1876 0.4626 [-0.7347, 1.0786] 0.7100 22.7894 3.1407

X3 :stage III 0.6585 1.9318 0.3556 [-0,0386, 1.3555] 0.0640 2.5018 1.5944

X4 :stage IV 1.7991 6.0442 0.4288 [0.9586, 2.6396] <0.0001 5.4582 8.8912

Table 6.1: ML outcome for the CoxPH and the BPPH models applied to the Laryngeal

cancer data set (Application I). Consider ≡ coef: ML point estimate; exp(coef): the

estimated HR; se(coef): estimated standard errors of the ML point estimate; CIcoef :

estimated 95% confidence intervals; pcoef p-value of the Wald test; rd: percentage relative

difference for the survival::coxph estimates.

Table 6.1 provides the ML point estimates for the regression effects, estimated HRs,

estimated standard errors, the 95% confidence intervals and the univariate Wald test

p-value for the CoxPH and BPPH fits. As expected, based on Table 6.1, the risk of

laryngeal cancer death for stage IV patients is significantly greater in comparison to

the Stage I patients in the same age. The estimated HR for the stage IV patients is

around 6 (spsurv::spbp function), which means that the risk of death is about six
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times higher for patients in stage IV when compared to the same age patients in stage I.

Similar conclusions (inferences) about the risk of laryngeal cancer death in other groups

of patients (heterogeneous population) regarding the patients treated in the period 1970-

1978 at a peripheral hospital in Netherlands (Kardaun, 1983), can be obtained with the

spsurv estimates. For example, the estimated HR (2.5) between a 86 years old patient

diagnosed with Stage II cancer and a 41 years old patient diagnosed with Stage IV cancer

is ĤR = exp{(0.0193)(77−41)+(0.1720)(1−0)+(1.7060)(0−1)} = 35.1675, which means

that the risk of death is 35 times higher for the 86 years old patient. The 95% interval

for logHR = 36×β1 +β2−β4 can be calculated to confirm that this result is statistically

significant as CIlog HR = [logHR ± 1.96 ×
√
V (36× β1 + β2 − β4)] = [2.0186; 5.1016].

Despite the remarkable difference of 22% between the Stage II estimated effect provided

by spsurv::spbp relative to the survival::coxph estimate, both confidence intervals

contains zero, meaning that there is not a significant difference in the risk of death for

patients in Stages I and II, according to the outcomes of both packages.

Table 6.2 provides the point and interval estimates (similar to Table 6.1) regarding

the estimates of the WAFT and BPAFT models under the ML approach. It should be

noted that the relative difference in Table 6.2 reflects the big distance between the two

models estimate. The AFT and PH families are different, and the fits, except for the

particular case of the Weibull parametric survival model (see Section 2.4), allow different

interpretations. In this sense, we found that the BPPH and BPAFT models applied to

the Application II allowed different interpretations, favoring the suspicion that the pa-

rametric Weibull model is not suitable. According to the simulation study (Chapter 5)

findings, the BPAFT models provided very low biased estimates either under Frequentist

or Bayesian perspective in Scenario I (n = 100). Therefore, the BPAFT might also offer

a very low biased estimate for Application I data set (n = 90). Indeed, the discrepancy

between the estimates indicates that the Weibull parametric model is not well fitted to

the laryngeal cancer data.

Before proceeding with the WAFT model estimates interpretation, it is desirable

to confirm the suitability of the Weibull distribution to this data set. As discussed
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coef exp(coef) se(coef) CIcoef pcoef rdcoef rdexp(coef)

survreg
("weibull")

Intercept 3.5288 34.0817 0.9041 [1.7567, 5.3008] <0.0001 - -

Log(scale) -0.1223 0.8849 0.1225 [0.6447,1.1249] 0.3180 - -

Z1 :age -0.0175 0.98267 0.0128 [-0.0425, 0.0076] 0.1820 - -

Z2 :stage II -0.1477 0.8627 0.4076 [-0.9465, 0.6511] 0.7170 - -

Z3 :stage III -0.5866 0.5563 0.3199 [-1.2136, 0.0405] 0.0670 - -

Z3 :stage IV -1.5441 0.2135 0.3633 [-2.2561, -0.8320] 0.0001 - -

spbp
(model="aft")

Z1 :age -0.0073 0.9927 0.0050 [-0.0172,0.0025] 0.1445 58.0596 1.0191

Z2 :stage II -0.0905 0.9134 0.3954 [-0.8655, 0.6844] 0.8189 38.7039 5.8833

Z3 :stage III -1.1058 0.3310 0.3047 [-1.7030,-0.5085] 0.0003 -88.5155 -40.5001

Z4 :stage IV -2.1106 0.1212 0.2738 [-2.6472, -1.5740] <0.0001 -36.6898 -43.2502

Table 6.2: ML outcome for the WAFT and the BPAFT models applied to the Laryngeal

cancer data set (Application I). Consider coef: ML Point Estimate; exp(coef): the esti-

mated TR (or acceleration factor); se(coef): estimated standard errors of the ML point

estimate; CIcoef = Estimate 95% confidence intervals; pcoef: p-value of the Wald test; rd:

percentage relative difference to survival::survreg estimates.

in Colosimo and Giolo (2006), graphical methods are widely used for this purpose. A

parametric model is well fitted to the data if the distribution of the Cox-Snell residuals

follow the a Exponential distribution with mean 1. As a result, the Cox-Snell residuals

against the cumulative hazard of Cox-Snell residuals is presented should present a straight

line with; see the logarithmic relation in (2.11). Considering the censoring times, we use

the nonparametric Nelson-Aalen estimator to compare the estimated cumulative hazard

of the residuals (Colosimo and Giolo, 2006; Lawless, 2011; Qi, 2009).

Figure A.3 shows the scatter-plot of the Cox-Snell residuals against the cumulative

hazard of Cox-Snell residual in Panel (a) and the respective Kaplan-Meier curve com-

pared to the Exponential curve in Panel (b). We can observe that the WAFT model

is not well fitted in this case as the Kaplan-Meier estimates do not approximate to the

Exponential (reference) survival curve. Despite that, the adequacy of the PH model class

was confirmed by the analysis of the Schoenfeld residuals, included in Appendix C. It is

important to note that the PH class is adequate. However, the functional form imposed

by the Weibull form is not suitable. In turn, distribution-free models are more flexible in

this regard. It is expected that, once the assumption is verified, both CoxPH and BPPH
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are suitable for several baseline formats, especially non-monotonic ones.

(a) Residuals scatter-plot (b) Survival curves
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Figure 6.1: Cox-Snell residuals analysis for the WAFT model in Application I. Panel

(a) Scatter-plot of the Cox-Snell residuals against the cumulative hazard (Nelson Aalen)

of Cox-Snell residuals; Panel (b) survival curves of the Exponential survival and the

Kaplan-Meier estimated step curve for the residuals. In Panel (a), the (black) solid line

refers to the straight identity and the blue points to the paired survival values. In Panel

(b), the dashed (black) line refers to the Exponential (mean 1) survival curve, and the

step (blue) curve to the Kaplan-Meier curve of the residuals.
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The spsurv::spbp package also interfaces to Stan built-in MCMC algorithms to allow

the Bayesian analysis. The prior choice here corresponds to the Prior 2 setting (Table 5.3)

used in the simulation study. The MCMC setup is configured with 4 chains containing

1000 observations (warm-up = 1000 iterations). The summary statistics were calculated

based on the 4000 posterior samples for each quantity of interest. The posterior density

plots, presented in Appendix E, are dedicated to the diagnostic of convergence of the

Bayesian models applied to Application I and II real data sets. In most of the situations

described, the posterior densities are unimodal, and the trace plots show chains with

good mixing, which suggests a good behavior of the MCMC algorithm.

The prior information for the regression coefficients is chosen based on the idea of

small deviations (from zero) given that the covariates are standardized, as explained in

Chapters 4 and 5. Table 6.3 shows the results of the Bayesian BPPH, and the Bayesian

BPAFT model fits. Compared to Table 6.1, the posterior mean for the regression coeffici-

ents of the BPPH are relatively close to the Frequentist estimates from the CoxPH model.

mean(coef) exp(mean) sd(coef) HPD rdmean rdexp(coef)

spsurv::spbp
(model = "ph")

X1 :age 0.0197 1.0199 0.0141 [-0.0102, 0.0457] 3.6618 0.0697

X2 :stage II 0.1330 1.1422 0.4627 [-0.7877, 1.0059] -5.0108 -0.6993

X3 :stage III 0.6501 1.9157 0.3587 [-0.0566, 1.3561] 1.1954 0.7709

X4 :stage IV 1.7742 5.8956 0.4358 [0.9832, 2.6519] 4.0018 7.0654

spsurv::spbp
(model = "aft")

X1 :age -0.0142 0.9860 0.0146 [-0.0445, 0.0126] 18.6883 0.3269

X2 :stage II -0.1341 0.9660 0.4420 [-0.9908, 0.7450] 9.2104 1.3697

X3 :stage III -0.8919 0.4500 0.4269 [-1.6594, -0.0907] -52.0565 -26.3128

X4 :stage IV -1.7361 0.1980 0.4679 [-2.5804, -0.7174] -12.4362 -17.4713

Table 6.3: Bayesian outcome for the BPPH and the BPAFT models applied to the Laryn-

geal cancer data set (Application I). Consider ≡mean(coef): posterior mean ; exp(mean):

the estimated HR or the estimated TR (respectively); se(coef): posterior standard errors;

HPD: Highest posterior density interval with 95% probability; rd: percentage of relative

difference with respect to survival::coxph estimates or survival::survreg estimates.

The relative differences between the BPPH estimates compared to the CoxPH model

are lower than 10% for every coefficient. Conversely, the Bayesian BPAFT did not
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provide estimates close to the WAFT model. Here, we also find empirical evidence to

state that the difference in the results obtained may be due to an inadequate specification

of the WAFT model confirmed by the graphical analysis of the residuals in Figure A.3.

According to Chapter 5 simulation studies, we have found that the relative bias are very

low when the Bayesian model is applied to artificial data sets of sample size n = 100; for

a data set of size n = 90, it might also provide reasonable estimates.

Table 6.3 might be used for the same type of analysis developed based on Table 6.1,

however the results here are from the Bayesian approach. Based on the Bayesian AFT

model, the median (or any percentile) lifetime for stage IV patients is significantly lower

in comparison to Stage I subjects in the same age (HPD does not contain zero). The

estimated TR for the Stage IV patients is approximately 0.20, which means that the

lifetime is 80% lower for patients in Stage IV when compared to same-aged patients (in

Stage I). The same occurs with the Stage III patients that have lifetimes 55% lower than

Stage I patients (equally aged). In addition, there is no statistical evidence to reject that

the lifetime is not affected by the age of the patient. Figure 6.2 shows survival curves for a

77 years old patient provided by the Breslow estimator and the BPPH model. Figure 6.2

(a) compares survival curves obtained from the Bayesian approach and Breslow estimator.

Note that, the result is similar to the one achieved in Figure Panel (b). At the end of the

MCMC algorithm, the mean of the 4000 survival values at each failure time is taken and

then used to build Panel (a), the plot shows how close the posterior mean of the survival

curve is to the Breslow step curve estimate, indicating that the BPPH model is also

performing as expected under the Bayesian framework. The survival estimates presented

in Figure 6.2 are calculated in terms of the BP based cumulative hazard function given

in (3.15). It is worth noting that each estimated survival curve is close to the non-

parametric Breslow estimator step function, indicating that the BPPH model works as

expected with no implementation issues.

In this section, the BPPH model applicability was confirmed. However, the conclu-

sions obtained with the BPPH and BPAFT models applied in Application I are not the

same. The main explanation is that the WAFT is not the appropriate parametric model

for this real data set. Since the BP based models are distribution-free methods, this sug-
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gests that other survival parametric models such as Log-logistic, Log-Normal, and others,

might provide more accurate fits to this concrete case. The similarity of the conclusions

only occurs in cases where the actual baseline functions come from the Weibull distribu-

tion. In this situation, the PH and AFT relationship described in Section 2.4 is valid.

One of the advantages of estimating survival models based on BP is that distributions

to handle the baseline functions are not required. As a result, the model is expected to

deal with several shapes, according to the properties discussed in Chapter 3.

In the next section, another popular real data set that is suitable for survival modeling

will be analyzed to evaluate the applicability of the BPPO model. The study is related to

the status of lung cancer patients. In this example, there are 137 randomized observations

of two treatments for lung cancer. In this case, only 97 patients who did not have previous

therapy were analyzed.
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Figure 6.2: Survival curves for a 77 years old patient. Consider: (a) Posterior survival

mean; (b) ML estimated survival. Breslow non-parametric estimate is given in solid lines.

The rounded black points represent the posterior mean at the observed time points while

the squared refer to the ML estimates of the survival function at the observed time points.

The lightest (green) to the darkest (purple) colored lines refer to the patient cancer stage

from Stage I at the top of the graph to Stage IV at the bottom.
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6.2 Application II: veterans administration data

This study was conducted by the US Department of Veterans Affairs (Prentice,

1973), patients with inoperable lung cancer were given either standard therapy or test

chemotherapy. The goal of this application is to investigate the prognosis regarding the

97 patients that did not have previous therapy. In medicine, the Karnofsky’s performance

status (Karnofsky, 1949) is a measure that quantifies the general welfare of a patient.

The performance score (PS) can be used to support professionals’ decisions regarding

the possibility of receiving chemotherapy, the need to adjust medications, among other

purposes. Although PS lower than 50 is considered low by specialists, we chose not

to categorize this covariate, following one of the applications in Bennett (1983). The

continuous covariate PS measures a status ranging from 0 (bad) to 100 (good). Besides,

there are four kinds of cells in the study: squamous, small cell, adeno, and large. Patients

whose PS is zero and the cell type is “large” refer to the baseline group such that R(t |

0) = R0(t).

The CoxPH model is flexible regarding the distribution-free characteristic shared with

the BP based models. Yet, those are sometimes not suitable for real cases. In particular,

the PH class models are not well fitted to the data if the assumption of PH is viola-

ted. To assess the validity of this adequacy, we have analyzed the Schoenfeld residuals

of the CoxPH model applied to Application II data; the residuals were calculated using

the routines available in the survival package. Figure 6.3 shows the scatter-plot of the

Schoenfeld scaled residuals versus time. In principle, the Shoenfeld residuals are indepen-

dent of time. Thus, non-random patterns against time suggest that the PH assumption

is violated. However, decision-based on the splines showed in Figure 6.3 are subjective.

For this reason, the Shoenfeld test p-values are then very useful to support the model

diagnosis. Appendix Figure A.1 shows the adequacy of the PH model to the Application

I, it can be compared to the scatter-plots obtained for the Application II.
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Figure 6.3: Schoenfeld residuals analysis in Application I. The panels shows the p-value

of the Schoenfeld test for each explanatory variable whose null hypothesis is that the

residuals are independent of the time. The (blue) line represents the spline interpolation

of the residuals, and the dashed (red) lines illustrate its respective confidence intervals

to assist the graphical analysis.

As the PH assumption is violated, the LLPO, partial ML PO, BPPO, and BPAFT be-

come alternatives to be considered to fit the Application II data. In this sense, Table 6.4

provides estimates for the Karnofsky’s PS and the cell type effects, regarding the BPPO
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model. For comparison purposes, these estimates are showed together with the outcomes

of the PO model under the partial ML, proposed in the timereg package (Scheike and

Zhang, 2011) that is based on transformation models (Martinussen and Scheike, 2007).

Similar to what happens with the BPPH model (Table 6.1), the BPPO model also pre-

sented results close to the results provided by the partial ML distribution-free method

available in the literature. The outcomes suggest that the implemented routines (spsurv)

to fit the BPPO showed similar estimates to the timereg outcomes when it comes to the

percentage of relative difference using the partial ML as a reference, all of them are below

5%. For example, one can use the estimates provided by the spsurv package to state

that, the odds on occurring death is almost four times greater for a patient with small

cell type compared to the large cell type patients case (assuming the same PS status).

coef exp(coef) se(coef) CIcoef pcoef rdcoef rdexp(coef)

timereg

X1 :PS -0.0597 0.9420 0.0079 [-0.0751, -0.0443] <0.0001 - -

X2 :adeno 1.3200 3.7514 0.4170 [0.5030, 2.1400] 0.0002 - -

X3 :small 1.1400 3.1327 0.4090 [0.3380, 1.9400] 0.0027 - -

X3 :squamous -0.1130 0.8935 0.4820 [-1.0600, 0.8320] 0.8190 - -

spbp
(model="po")

X1 :PS -0.0613 0.9406 0.0088 [-0.0784,-0.0441] <0.0001 -2.5948 -0.1548

X2 :adeno 1.3302 3.7818 0.4633 [0.4222, 2.2382] 0.0041 0.6108 0.8108

X3 :small 1.1807 3.2567 0.4301 [0.3377, 2.0237] 0.0060 3.4000 3.9587

X4 :squamous -0.1077 0.8979 0.4666 [-1.0221, 0.8068] 0.8174 4.3608 0.4923

Table 6.4: ML outcome for the partial PO and BPPO models applied to the Veteran

administration data set (Application II). Consider coef: ML point estimate; exp(coef):

the estimated OR; se(coef): standard errors of the ML point estimate; CIcoef = estimated

95% confidence intervals; pcoef: p-value of the Wald test; rd: percentage of relative

difference for the timereg::prop.odds estimates.

Also, according to the results, there is statistical evidence to state that the only

estimate that presented a big discrepancy with respect to the reference model is not

significant in both packages outcomes. That means, there is no statistical evidence to

confirm that the odds on occurring death is affected by the cell type when small cell pati-

ents of the same status are compared to patients with large cell (equal PS). Remarkably,
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when compared to the semi-parametric PO model (distribution-free) and the LLAFT

in the Application II, the BP based models, BPPO and BPAFT, has provided similar

conclusions about the Application II, respectively. As a consequence, the Log-logistic

parametric form might describe well the data in Application II as the Log-logistic is the

only parametric model that comprises both PO and AFT classes. Figure 7 confirm this

empirical evidence, as we found that the Kaplan-Meier estimate of the residuals appro-

ximate to the Log-logistic curve.

coef exp(coef) se(coef) CIcoef pcoef rdcoef rdexp(coef)

survreg
("loglogistic")

Intercept 2.4512 11.6022 0.3435 [1.7779, 3.1245] <0.0001

Log(scale) -0.5430 1.7878 0.0742 [ 0.4356,0.7264] <0.0001 - -

X1 :PS 0.0361 1.0367 0.0044 [0.0274, 0.0447] <0.0001 - -

X2 :adeno -0.7494 0.4727 0.2614 [-1.2618, -0.2370] 0.0042 - -

X3 :small -0.6608 0.5164 0.2403 [-1.1317, -0.1899] 0.0060 - -

X3 :squamous 0.0290 1.0294 0.2635 [-0.4876, 0.5455] 0.9125 - -

spbp
(model="aft")

X1 :PS 0.0342 1.0348 0.0038 [0.0268,0.0415] <0.0001 -5.2163 -0.1879

X2 :adeno -0.7443 0.4751 0.2596 [-1.2532, -0.2355] 0.0041 0.6738 0.5062

X3 :small -0.5678 0.5668 0.2574 [-1.0724,-0.0633] 0.0274 14.0704 9.7438

X4 :squamous 0.1248 1.1330 0.2635 [-0.3916, 0.6413] 0.6356 330.8831 10.0614

Table 6.5: ML outcome for the LLAFT and BPAFT models applied to the Veteran

administration data set (Application II). Consider ≡ coef: ML point estimate; exp(coef):

the estimated TR (or acceleration factor); se(coef): standard errors of the ML point

estimate; CIcoef = estimated 95% confidence intervals; pcoef: p-value of the Wald test; rd:

percentage of relative difference for the survival::survreg estimates.

Likewise, the spsurv package also allows Bayesian analysis for the BPPO and the

BPAFT models. The prior information given to the parameters is the same used in the

Application I, which corresponds to the Prior 2 (Table 5.3). In Table 6.6, the Bayesian

outcome for the veteran lung cancer trials are displayed. As expected, similar conclusions

are obtained with BPAFT and LLAFT models. For example, we have found that the

median lifetime for small-cell patients is significantly lower in comparison to large type

cell patients of the same PS status. The estimated TR for the small cell patients were

around 0.55 (spbp), which means the median lifetime is 1.8 times greater for the large
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cell type patients when compared to the adeno cell type subjects of the same status.

Besides, there is no statistical evidence to reject that the median lifetime is not affected

adeno cell type when compared to the large cell type.

In addition, conclusions (inferences) about the lifetime of heterogeneous groups (po-

pulation) of the US veterans diagnosed with laryngeal cancer can be obtained with

the Bayesian BPAFT model fit outcomes provided by the proposed spsurv package,

showed in Table 6.6. For example, the TR (2.18) posterior mean can express the effect

of the covariates in the time (in days) to lung cancer death. For example, the time

to lung cancer death for a squamous cell type patient with PS score 70 is approxima-

tely 6 times greater when compared to the lifetime of a adeno cell type patient with

PS score 40. From the Bayesian outcomes, the posterior mean of the TR denoted as

exp{β1(70− 40) + β2(0− 1) + β3(0− 0) + β4(1− 0)} is 5.9166. Also, the HPD interval of

the logarithm of the TR posterior: logTR = 30× β1 − β2 + β4, confirms that this result

is statistically significant as HPDlog TR = [1.2601; 2.3029].

mean(coef) exp(mean) sd(coef) HPD rdmean rdexp(coef)

spsurv::spbp
(model = "po")

X1 :PS -0.0626 0.9394 0.0090 [-0.0794, -0.0443] -4.3505 -0.2594

X2 :adeno 1.3260 4.1939 0.4640 [0.4359, 2.2189] 0.7282 0.9674

X3 :small 1.1616 3.5157 0.4345 [0.3451, 2.0196] 3.4147 3.9762

X4 :squamous -0.1261 0.9851 0.4700 [-1.0685, 0.7338] -2.6131 -0.2938

spsurv::spbp
(model = "aft")

X1 :PS 0.0335 1.0341 0.0042 [0.0254, 0.0419] -7.1250 -0.2557

X2 :adeno -0.7564 0.4844 0.2514 [-1.2562, -0.2788] -0.9437 2.4924

X3 :small -0.6188 0.5554 0.2476 [-1.0813, -0.1185] 6.3631 7.5513

X4 :squamous 0.1478 1.2052 0.2805 [-0.4005, 0.6940] 410.0063 17.0815

Table 6.6: Bayesian outcome for the BPPO and the BPAFT models applied to the Ve-

teran administration data set (Application II). Consider: mean(coef): posterior mean;

exp(mean): the estimated HR or the estimated TR (respectively); se(coef): posterior

standard errors; HPD: Highest posterior density intervals; rd: percentage relative diffe-

rence to survival::coxph estimates or survival::survreg estimates (respectively).

In summary, this Chapter outlined how to interpret the results from the BP based

regression models in the context of survival analysis. In both real applications, it was
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clear that the BPPH and BPPO can be applied for the same purposes considered for

the distribution-free models in the literature (CoxPH and partial PO). However, in the

application of BAFT, it is possible to see the importance of distribution-free methods with

respect to the choice of an appropriate model family (AFT, PH, or PO). This difference

was apparent between the first and the second applications. In short, in the Application

I, the results differed from the WAFT parametric model, and, in the Application II,

the results between BPAFT and LLAFT were closer. Suggesting that BP modeling is

flexible in the sense that it does not impose functional forms to base distributions and,

thus, comprises several cases. Note that, the conclusions obtained with the BPPO and

BPAFT are similar because both models are applicable when the Log-Logistic parametric

model is well fitted. The main advantage of the BPAFT model is that it does not

require any probability distribution to handle baseline functions. As a consequence, this

a distribution-free method that encompasses a wide variety of situations, such as those

situations illustrated in this Chapter.

The guidelines on how to fit these data using the spsurv package in R are provided in

Appendix G along with details on how to use the main fitter function spsurv::spbp to

meet all the modeling options presented. The next chapter presents the main remarks,

conclusions, and future work-related.
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Chapter 7

Conclusions

This dissertation aimed to introduce a set of new routines that initially compose

in the proposed package spsurv. This package was implemented using the R language

and is intended to allow fully likelihood-based procedures for survival regression mo-

dels. Based on a semi-parametric appealing structure, the spsurv refers to the acronym

“semi-parametric survival analysis”. Throughout this dissertation, we have explored fun-

damental concepts of survival analysis, along with the approximation structure inherent

from the Bernstein polynomial. This methodology was referred to as Bernstein poly-

nomial based survival regression models. This innovative proposal for semi-parametric

survival modeling was previously introduced by Osman and Ghosh (2012). The methods

provided in the package do not rely on probability distributions to handle baseline terms;

however, they depend on the parameter based structure of the polynomials. Unlike the

Cox model, under a Bernstein polynomial based survival regression model, baseline func-

tions are specified with polynomial structures, which we refer to as the Bernstein basis

polynomials.

As part of the theoretical framework, we have presented the three classes of survival

models provided by the spsurv package: the proportional hazards model, the proporti-

onal odds model, and the accelerated failure time model. Also, this work discusses some

of the relationships between parametric survival model families. To develop simulation

studies to explore the performance of the leading models, we have considered parametric

versions based on the Weibull and Log-Logistic distribution to generate artificial data
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sets. Since we can make simulated data, the actual values of all unknown parameters

are available for the study focused on investigating how well the model can handle the

data information (compared to the generator model). Although in the context of survival

analysis, the approximation of the baseline functions is not feasible, instructions on how

to apply Bernstein polynomial in approximating continuous functions in the real domain

were also explored. Afterward, we have described both Frequentist and Bayesian full

likelihood inferential procedures for the Bernstein based survival regression models to

provide the necessary estimation to the baseline functions.

The simulation study developed here was based on two scenarios differing in terms of

sample size. In these cases, we have considered twelve variations of the proposed routines

under a Monte Carlo simulation scheme. In general, the results indicate good approxi-

mations of the estimates to the actual values. For example, the average relative bias in

the second scenario was below 6 %, regarding the estimates of all the tested models. We

have also discussed the coverage probability of confidence intervals and credible inter-

vals ranges. The resulting achievements, real data applications, and differences between

approaches were also considered in this study. We found that BP based models can be

widely applied to studies in the literature that earlier made use of models that correspond

to the model classes used here. The results of the Bayesian model (Prior 2) showed low

bias and coverage rate, very close to the nominal level of 95%, in the simulation Scenarios

I and II, analyzed in Chapter 5. On the other hand, BP based models should be applied

with caution under the ML approach, we found estimates with very low relative bias,

but, the confidence intervals tend to be narrow as a consequence of the underestimation

of the standard errors. In the simulation study, we have observed that the Delta method

combined with the Hessian estimates provided by the LBFGS (or BFGS) algorithm did

not provide good interval estimation. At the end of this dissertation, we have presented

a summary of some new routine.

The current version of the package can be improved or extended in many directi-

ons. First, the routines provided here explore just right-censored data modeling options.

Therefore, one possible extension is to include models for other censoring configurations.

Also, the methodologies do not consider non-crossing survival curves or clustered data,
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as seen in other models in the literature (Lipsitz et al., 1994; Glidden and Vittinghoff,

2004; Logan et al., 2008; Li et al., 2015). Another interesting aspect to be considered, as

an extension, is the inclusion of frailty and cure fraction models (Lambert, 2007; Guti-

errez, 2002; McGilchrist and Aisbett, 1991). Indeed, many improvements in the general

aspects of the spsurv package should still be considered, new routines, more S3 methods

extensions, specific graphical presentations, and the implementation of new models are

critical to the next upcoming works. Along with that, some alternatives might reduce the

computational time of posterior samplings, such as the relationship between the power

and Bernstein polynomials described in Farouki and Rajan (1987). Although several to-

pics have to be considered, we highlight the main positive aspects: integration with the

Stan, the ability to estimate well (point estimates) either in Bayesian or Frequentist infe-

rential approaches, the availability of three survival regression classes and the possibility

to choose among six distinct prior specifications in a Bayesian analysis. We believe that

the spsurv has a great potential to become a comprehensive package including different

tools and models to deal with a wide range of applications in survival analysis.
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Appendix A: Real applications cancer data sets

In Appendix A, Tables A.1 and A.2 show the real data sets used in Applications

I and II (Chapter 6). The first data set refers to the study that allowed records of

patients with inoperable laryngeal cancer, carried out between the years 1970-1978 in

a dutch hospital (Kardaun, 1983). Table A.1 shows the patient number, cancer stage

classification, the lifetime (in months), and the failure indicator (delta). In turn, the

veteran’s administration data set is part of the public health data found in the National

Center for Veterans Analysis and Statistics by the US Department of Veteran Affairs

(Prentice, 1973). Table A.2 shows the patient number, lifetime (in days) of each patient,

the Karnofsky performance score (see Chapter 6), and the kind of cell. In both tables,

the header is repeated to accommodate all observations side by side. The censoring times

are indicated with the + symbol.

In Table A.1, we have 90 larynx cancer patients. The patient number 1, for example,

has experienced the death approximately 18 days (0.6 months) after this patient was

included in the study. The referred patient was 77 years old and was diagnosed with

Stage I laryngeal cancer. In Table A.2, we have 97 patients without prior chemotherapy

treatment. The patient number 1, for example, has experienced the death after 72 days

counted from the day that this patient was included in the study. The cell type of this

patient was squamous, and the performance score of 60 was considered good (above 50).
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patient stage time age delta patient stage time age delta patient stage time age delta

1 1 0.60 77 1 40 2 6.20 74 1 79 4 4.30+ 48 0

2 1 1.30 53 1 41 2 7.00 62 1 80 4 3.80 84 1

3 1 2.40 45 1 42 2 7.50+ 50 0 81 4 3.60 71 1

4 1 2.50+ 57 0 43 2 7.60+ 53 0 82 4 2.90+ 74 0

5 1 3.20 58 1 44 2 9.30+ 61 0 83 4 2.30 62 1

6 1 3.20+ 51 0 45 3 0.30 49 1 84 4 2.00 69 1

7 1 3.30 76 1 46 3 0.30 71 1 85 2 4.00 81 1

8 1 3.30+ 63 0 47 3 0.50 57 1 86 2 4.30+ 47 0

9 1 3.50 43 1 48 3 0.70 79 1 87 2 4.30+ 64 0

10 1 3.50 60 1 49 3 0.80 82 1 88 2 5.00+ 66 0

11 1 4.00 52 1 50 3 1.00 49 1 89 2 3.60 70 1

12 1 4.00 63 1 51 3 1.30 60 1 90 2 3.60+ 72 0

13 1 4.30 86 1 52 3 1.60 64 1

14 1 4.50+ 48 0 53 3 1.80 74 1

15 1 4.50+ 68 0 54 3 1.90 72 1

16 1 5.30 81 1 55 3 1.90 53 1

17 1 5.50+ 70 0 56 3 3.20 54 1

18 1 5.90+ 58 0 57 3 3.50 81 1

19 1 5.90+ 47 0 58 3 3.70+ 52 0

20 1 6.00 75 1 59 3 4.50+ 66 0

21 1 6.10+ 77 0 60 3 4.80+ 54 0

22 1 6.20+ 64 0 61 3 4.80+ 63 0

23 1 6.40 77 1 62 3 5.00 59 1

24 1 6.50 67 1 63 3 5.00+ 49 0

25 1 6.50+ 79 0 64 3 5.10+ 69 0

26 1 6.70+ 61 0 65 3 6.30 70 1

27 1 7.00+ 66 0 66 3 6.40 65 1

28 1 7.40 68 1 67 3 6.50+ 65 0

29 1 7.40+ 73 0 68 3 7.80 68 1

30 1 8.10+ 56 0 69 3 8.00+ 78 0

31 1 8.10+ 73 0 70 3 9.30+ 69 0

32 1 9.60+ 58 0 71 3 10.10+ 51 0

33 1 10.70+ 68 0 72 4 0.10 65 1

34 2 0.20 86 1 73 4 0.30 71 1

35 2 1.80 64 1 74 4 0.40 76 1

36 2 2.00 63 1 75 4 0.80 65 1

37 2 2.20+ 71 0 76 4 0.80 78 1

38 2 2.60+ 67 0 77 4 1.00 41 1

39 2 3.30+ 51 0 78 4 1.50 68 1

Table A.1: Laryngeal cancer stage study; source: Kardaun (1983). Consider ≡ patient:

unique identifier; stage: stage of disease 1 (stage 1), 2 (stage 2), 3 (stage 3), 4 (stage

4); time: time to death in months; age: age at diagnosis of larynx cancer; symbol +:

censoring indicator assuming 0 (alive) and 1 (dead).
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patient time karno celltype patient time karno celltype patient time karno celltype

1 72 60 1 34 117 80 3 67 24 60 2

2 228 60 1 35 132 80 3 68 99 70 2

3 10 20 1 36 162 80 3 69 8 80 2

4 110 80 1 37 3 30 3 70 99 85 2

5 314 50 1 38 95 80 3 71 61 70 2

6 100+ 70 1 39 162 80 4 72 25 70 2

7 42 60 1 40 216 50 4 73 95 70 2

8 144 30 1 41 553 70 4 74 80 50 2

9 30 60 2 42 278 60 4 75 29 40 2

10 384 60 2 43 260 80 4 76 24 40 3

11 4 40 2 44 156 70 4 77 83+ 99 3

12 13 60 2 45 182+ 90 4 78 31 80 3

13 123+ 40 2 46 143 90 4 79 51 60 3

14 97+ 60 2 47 105 80 4 80 52 60 3

15 59 30 2 48 103 80 4 81 73 60 3

16 117 80 2 49 112 80 1 82 8 50 3

17 151 50 2 50 87+ 80 1 83 36 70 3

18 22 60 2 51 242 50 1 84 48 10 3

19 18 20 2 52 111 70 1 85 7 40 3

20 139 80 2 53 587 60 1 86 140 70 3

21 20 30 2 54 389 90 1 87 186 90 3

22 31 75 2 55 33 30 1 88 19 50 3

23 52 70 2 56 25 20 1 89 45 40 3

24 18 30 2 57 357 70 1 90 80 40 3

25 51 60 2 58 467 90 1 91 52 60 4

26 122 80 2 59 1 50 1 92 53 60 4

27 27 60 2 60 30 70 1 93 15 30 4

28 54 70 2 61 283 90 1 94 133 75 4

29 7 50 2 62 25 30 2 95 111 60 4

30 63 50 2 63 21 20 2 96 378 80 4

31 392 40 2 64 13 30 2 97 49 30 4

32 92 70 3 65 87 60 2

33 35 40 3 66 7 20 2

Table A.2: Veteran administration lung cancer study; source: Prentice (1973). Consider

≡ patient: unique identifier; time: survival time; karno: Karnofsky performance score;

celltype: kind of cell 1 (squamous), 2 (small), 3 (adeno) and 4 (large); symbol +: censoring

indicator assuming 0 (alive) and 1 (dead).
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Appendix B: Monte Carlo simulation study outcomes

In Appendix B, Tables 5.5, A.3, 5.10 and A.4 show the Monte Carlo Simulation

study results. In Chapter 5, the five statistics used to evaluate the MC replications

fits were described. Consider the average estimate of the regression coefficient (est.),

average standard error (se.) standard derivation of the estimation, relative bias (rb.), and

coverage probability(cov.). The MC simulation results were distributed in four tables,

Tables A.3 and A.4 refer to the fits of the survival models applied to the Scenario I WAFT

and LLAFT data sets. Table A.4 and A.5 to the Scenario II WAFT and LLAFT data

sets, respectively. The tables that contain the MC simulation results are divided into

twelve sub-tables that describe the two values of the parameter and the five statistics

mentioned. The BPPH and BPAFT are applied to the WAFT data sets, and the BPPO

is applied to the LLAFT data sets. Note that the BPAFT model is applied in all tables.

The model is well fitted if relative bias to the true value of the parameters is close

to zero; this indicates that low biased estimates are obtained with the model. Also,

the coverage probability must be close to the nominal value of 95%; this indicates that

good interval estimation is provided. Along with that, the standard error values must be

close to the standard deviation of the estimates; this indicates that the standard error

(or posterior deviation) is close to the standard deviation of the 1000 MC replica. In

general, low or high average standard error (compared to sde.) might indicate that those

values are being underestimated or overestimated, respectively.
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BFGS BPPOa BPAFTb

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.3582 0.6328 0.7973 -8.9558 0.8534 2 2.0463 0.1543 0.3150 2.3157 0.6603

β2 2 2.2116 0.6919 0.7695 10.5789 0.9314 -1 -1.0251 0.2123 0.4086 -2.5076 0.6713

LBFGS BPPOc BPAFTd

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.3523 0.6417 0.7813 -8.8071 0.8548 2 2.0345 0.1586 0.3123 1.7269 0.6897

β2 2 2.2170 0.6935 0.7646 10.8513 0.9330 -1 -1.0222 0.2150 0.4025 -2.2193 0.6886

Prior 1 BPPO BPAFTe

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.6318 0.5333 0.4218 9.2040 0.9080 2 2.0824 0.2432 0.2513 4.1185 0.9439

β2 2 1.8568 0.6337 0.5762 -7.1611 0.9570 -1 -1.0680 0.3384 0.3506 -6.8042 0.9429

Prior 2 BPPO BPAFTf

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.0437 0.6195 0.5562 -1.0925 0.9600 2 2.0441 0.2321 0.2538 2.2041 0.9189

β2 2 2.0677 0.6770 0.6631 3.3839 0.9560 -1 -1.0426 0.3237 0.3453 -4.2609 0.9319

Prior 3 BPPO BPAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.7566 0.5533 0.4531 6.0854 0.9400 2 2.0974 0.2469 0.2581 4.8714 0.9419

β2 2 1.9204 0.6454 0.6005 -3.9798 0.9600 -1 -1.0752 0.3413 0.3550 -7.5207 0.9449

Prior 4 BPPO BPAFT

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.2490 0.6599 0.6346 -6.2248 0.9509 2 2.0576 0.2361 0.2583 2.8822 0.9200

β2 2 2.1733 0.6980 0.7103 8.6649 0.9469 -1 -1.0503 0.3268 0.3498 -5.0311 0.9300

Table A.3: MC simulation study in Scenario I (n = 100), models fitted to the LLAFT data

sets. Estimate of the regression coefficient (est.), average standard error (se.), standard

deviation of the estimates (sde.), relative bias (rb in %) and coverage probability (nominal

level 95%). Symbols: a indicates R = 962 (38 non-converging), b indicates R = 998 (2

non-finite Hessian matrices); c indicates R = 985 (15 non-finite Hessian matrices); d

indicates R = 941 (59 non-converging), e indicates R = 999 and f indicates R = 999.

90



BFGS BPPOa BPAFTb

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1910 0.4547 0.5305 -4.7745 0.9053 2 2.0299 0.1140 0.2251 1.4932 0.7193

β2 2 2.1112 0.4780 0.5180 5.5586 0.9287 -1 -1.0119 0.1529 0.2798 -1.1884 0.6821

LBFGS BPPOc BPAFTd

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1970 0.4653 0.5236 -4.9257 0.9116 2 2.0190 0.1081 0.2416 0.9466 0.6978

β2 2 2.1175 0.4810 0.5145 5.8726 0.9311 -1 -1.0175 0.1611 0.2848 -1.7524 0.6986

Prior 1 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.7550 0.4047 0.3514 6.136 0.9190 2 2.0834 0.1404 0.1462 4.1680 0.8900

β2 2 1.9040 0.4524 0.4346 -4.7910 0.9510 -1 -1.0450 0.1722 0.1676 -4.5027 0.9400

Prior 2 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.0230 0.4522 0.4726 -0.5808 0.9420 2 2.0438 0.1315 0.1322 2.1915 0.9254

β2 2 2.0380 0.4745 0.4869 1.9125 0.9420 -1 -1.0218 0.1566 0.1629 -2.1792 0.9254

Prior 3 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -3.8260 0.4149 0.3674 4.3410 0.9450 2 2.0810 0.1392 0.1354 4.0481 0.8955

β2 2 1.9410 0.4571 0.4409 -2.9430 0.9530 -1 -1.0410 0.1688 0.1598 -4.1005 0.9552

Prior 4 BPPO BPAFT†

true est. se. sde. rb. cov. true est. se. sde. rb. cov.

β1 -4 -4.1270 0.4676 0.5123 -3.1690 0.9350 2 2.0486 0.1327 0.1334 2.4297 0.8955

β2 2 2.0840 0.4811 0.5054 4.1880 0.9350 -1 -1.0240 0.1577 0.1634 -2.3975 0.9254

Table A.4: MC simulation study in Scenario II (n = 200), models fitted to the LLAFT

data set. Estimate of the regression coefficient (est.), average standard error (se.), stan-

dard deviation of the estimates (sde.), relative bias (rb in %) and coverage probability

(nominal level 95%). Symbols: a indicates R = 855 (145 non-finite Hessian matrices

matrices); b indicates R = 983 (24 non-converging and 7 non-finite Hessian matrices ma-

trices); c indicatesR = 973 (27 non-converging); d indicatesR = 969 (51 non-converging);

† indicates R = 100.
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Appendix C: Shoenfeld residuals analysis

The assumption of proportional hazards (PH) is verified using the statistical tests

and graphical diagnostics based on the Schoenfeld residuals. Ideally, if the model is well

fitted, the Schoenfeld residuals should be random over time. For each covariate, the

scatter-plot of the Schoenfeld residuals versus time can be used to evaluate the violation

of the PH assumption. To test the independence between residuals and time, the scaled

Schoenfeld statistic provided by the survival::cox.zph routine is defined in Therneau

and Grambsch (2000). Besides, an individual version of the test, for each covariate, can

be also be derived from the multivariate version (Hosmer Jr et al., 2008; Colosimo and

Giolo, 2006; Collett, 2015).

The p-value showed in Figures A.1, and A.2 refer to the individual Shoenfeld test,

whose null hypothesis is that the residuals and time are independent. Thus, if the p-value

is lower than the significance value of 0.5, adopted in this dissertation, this hypothesis is

rejected, and the PH assumption is violated. The solid line (in blue) refers to the spline

interpolation of the observed residuals, and the dashed (red) lines represent its respective

confidence interval to assist the graphical analysis, that is, to identify an increasing (or

decreasing) trending splines can be used to as the graphical evidence in favour of the PH

assumption violation.
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Shoenfeld p−value: 0.2872
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Figure A.1: Schoenfeld residuals analysis in Application I. The panels show the p-value

of the Schoenfeld test for each explanatory variable whose null hypothesis is that the

residuals are independent of the time. The (blue) line represents the spline interpolation

of the residuals and the dashed (red) lines illustrate its respective confidence intervals to

assist the graphical analysis.
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Shoenfeld p−value: 1e−04
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Figure A.2: Schoenfeld residuals analysis in Application II. The panels show the p-value

of the Schoenfeld test for each explanatory variable whose null hypothesis is that the

residuals are independent of the time. The (blue) line represents the spline interpolation

of the residuals and the dashed (red) lines illustrate its respective confidence intervals to

assist the graphical analysis.

94



Appendix D: Standard residuals analysis

In Appendix D, the graphical model diagnosis is based on the residual analysis for

the parametric AFT models applied in Chapter 6. Here we can identify if a model is

well fitted to the data using graphical diagnosis methods. The parametric AFT model

assumption is that the exponential to the standard residual follow the same standard

distribution chosen to describe the time-to-event data. As a result, if the Kaplan- Meier

estimate of the residual does not approximate to the standard distribution survival curve,

thus, the model is not well fitted to data. In figure A.3, we can see the residual analysis

for the application I. Figure A.4 shows analogous plots to the application II parametric

AFT fit. According to the Panels (a) and (b) plots showed it is possible to conclude that

the parametric WAFT model is not well fitted to Application I data set. Conversely,

according to Panels (c) and (d) we can concluded that the LLAFT model is well fitted

to the data in application II.
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(a) WAFT residuals scatter-plot (b) WAFT survival curves
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(c) LLAFT residuals scatter-plot (d) LLAFT survival curves
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Figure A.3: Cox-Snell residuals analysis for the WAFT model in Application I and for

the LLAFT model in Application II. Panel (a) Scatter-plot of the Cox-Snell residuals

against the cumulative hazard (Nelson Aalen) of Cox-Snell residuals; Panel (b) survival

curves of the Exponential survival and the Kaplan-Meier estimated step curve for the

residuals. In Panel (a), the (black) solid line refers to the straight identity and the blue

points to the paired survival values. In Panel (b), the dashed (black) line refers to the

Exponential (mean 1) survival curve, and the step (blue) curve to the Kaplan-Meier curve

of the residuals.
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Appendix E: Posterior plots
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Figure A.4: Posterior density plots for the posterior samples obtained through the MCMC

applied to the BPPH model (Application I). The name of the parameter is identified at

the top of the graphs. Recall that β1 is related to age. In addition, β2, β3 and β4 are

connected with Stage II, III, and IV, respectively. The remaining chains are associated

with the BP coefficients.
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Figure A.5: Posterior trace plots for the posterior samples obtained through the MCMC

applied to the BPPH model (Application I). The name of the parameter is identified at

the top of the graphs. Recall that β1 is related to age. In addition, β2, β3 and β4 are

connected with Stage II, III, and IV, respectively. The remaining chains are associated

with the BP coefficients.
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Figure A.6: Posterior density plots for the posterior samples obtained through the MCMC

applied to the BPAFT model (Application I). The name of the parameter is identified

at the top of the graphs. Recall that β1 is related to age. In addition, β2, β3 and β4 are

connected with Stage II, III, and IV, respectively. The remaining chains are associated

with the BP coefficients.
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Figure A.7: Posterior trace plots for the posterior samples obtained through the MCMC

applied to the BPAFT model (Application I). The name of the parameter is identified

at the top of the graphs. Recall that β1 is related to age. In addition, β2, β3 and β4 are

connected with Stage II, III, and IV, respectively. The remaining chains are associated

with the BP coefficients.
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Figure A.8: Posterior density plots for the posterior samples obtained through the MCMC

applied to the BPPO model (Application II). The name of the parameter is identified

at the top of the graphs. Recall that β1 is related to PS score. In addition, β2, β3 and

β4 are connected with adeno cell, small cell, and squamous cell types, respectively. The

remaining chains are associated with the BP coefficients.
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Figure A.9: Posterior trace plots for the posterior samples obtained through the MCMC

applied to the BPPO model (Application II). The name of the parameter is identified

at the top of the graphs. Recall that β1 is related to PS score. In addition, β2, β3 and

β4 are connected with adeno cell, small cell, and squamous cell types, respectively. The

remaining chains are associated with the BP coefficients.
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Figure A.10: Posterior density plots for the posterior samples obtained through the

MCMC applied to the BPAFT model (Application II). The name of the parameter is

identified at the top of the graphs. Recall that β1 is related to PS score. In addition, β2, β3

and β4 are connected with adeno cell, small cell, and squamous cell types, respectively.

The remaining chains are associated with the BP coefficients.
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Figure A.11: Posterior trace plots for the posterior samples obtained through the MCMC

applied to the BPAFT model (Application II). The name of the parameter is identified

at the top of the graphs. Recall that β1 is related to PS score. In addition, β2, β3 and

β4 are connected with adeno cell, small cell, and squamous cell types, respectively. The

remaining chains are associated with the BP coefficients.
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Appendix F: Box-plots of the percentage censoring
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Figure A.12: Percentage of censored observations in the simulated data. LLAFT refers

to the Log Logistic accelerated failure time data generator model. WAFT refers to the

Weibull accelerated failure time data generator model.
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Appendix G: Semi-parametric survival analysis with the
spsurv package

This Chapter gives the instructions on how to fit the BP based survival regression

models using the new routines implemented in the spsurv package. The spsurv::spbp

function is the main routine of this package, as it allows to fit all BP related survi-

val regression approaches presented in the previous chapters. The acronym spbp refers

to “semi-parametric Bernstein polynomial based regression”. The formula argument in

spsurv::spbp makes use of the same structure available at the survival package in or-

der to provide a familiar environment to the public. Indeed, the spsurv package imports

specific routines that provide the necessary support for internal calculations. During the

installation, other dependencies are required, such as the libraries survival, loo (Veh-

tari et al., 2019), coda (Plummer et al., 2006), rstan and MASS (Venables and Ripley,

2002).

The target data set is passed to the spsurv::spbp function through a mandatory

data.frame object class. Also, it is possible to switch between “bayesian” and “mle”

approaches through the “approach” argument and between the “ph”, “po” and “aft” fra-

meworks using the model argument. Naturally, prior choices are ignored if the approach

argument is set to “mle” (ML estimation); a warning is displayed in this case. In ad-

dition, consider extra arguments that may be passed directly to Stan software to apply

rstan::optimizing (if ML method), or rstan::sampling (if MCMC method), function

control options. As mentioned in Chapter 4, the polynomial degree (highest basis order)

can be chosen arbitrarily. In particular, the polynomial degree must be greater than zero,

the default value of the polynomial degree
√
n is rounded to the greatest integer. Note

that, the domain restriction for the BP, referred to as τ in this dissertation, is defined

internally, see the discussion in Chapter 5. The reason for not allowing a user-defined τ

is to avoid an improper definition that would cause computing problems.

Considering the variety of settings that Stan can provide and the modeling options

above, we believe that the package is flexible regarding user-defined applications of the

BP based models. Beyond that, a class, namely “spbp” was created to extend some S3
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methods to meet the R community need for printing, summarizing, and plotting functions.

Accordingly, we had developed S3 methods extensions to accomplish these tasks such as

the spsurv::print.spbp, spsurv::summary.spbp, spsurv::model.matrix.spbp and

other summary printing extensions such as print.summary.bpph.bayes. Further, there

are some coding instructions on how to fit the semi-parametric models: BPPH, BPPO,

and BPPAFT, under the Bayesian or Frequentist approach. In the Bayesian perspective,

Normal prior distributions are attributed to the regression coefficients while Log-Normal,

Gamma, or Inverse Gamma can be attributed to the BP parameters. The default argu-

ments for the spbp functions were set as follows:

spbp.default <-

spbp(formula , degree , data ,

approach = c("mle", "bayes"),

model = c("ph", "po", "aft"),

priors = list(beta = c("normal (0,4)"),

gamma = "lognormal (0,10)"),

scale = TRUE ,

...)

Consider formula an object of class formula, with the Surv object (survival package)

for right censored time-to-event data on the left side of “∼” and the explanatory terms on

the right; degree for the integer value of the BP degree, non-integer values are rounded

to the greatest valid degree; data for a mandatory data.frame object with variables

named in the formula; approach for either Bayes or ML estimation methods, default is

“bayes”; model PH, PO or AFT for the modeling classes discussed in Chapter 2, default

is “ph”; priors list of prior settings, which is ignored when “mle”, and "scale" for a

logical value that indicates whether to apply the standardization discussed in Chapter

5. Recall that extra arguments can be passed to rstan::sampling (e.g. iter, chains,

init), more details in https://mc-stan.org/users/documentation/.

Following, Klein and Moeschberger (1997), most statistical packages about survival

107



regression returns an ANOVA table. In this sense, the object of class spbp follows the

design provided in the survival package. The output corresponding to the ANOVA

table can be obtained with:

library("KMsurv")

data("larynx")

library(spsurv)

str(larynx)

fit <- spsurv ::spbp(Surv(time , delta)~age+factor(stage),

approach = "mle", data = larynx)

summary(fit)

One can reproduce this example by copying and pasting the indicated code in the R

console. The output is as follows:

> library("KMsurv")

> data("larynx")

>

> library(spsurv)

> fit <- spsurv ::spbp(Surv(time , delta)~age+factor(stage),

+ approach = "mle", data = larynx)

Priors are ignored due to mle approach.

> summary(fit)

Bernstein Polynomial based Proportional Hazards model

Call:
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spbp.default(formula = Surv(time, delta) ~ age + factor(stage),

data = larynx, approach = "mle", model = "ph")

n= 90, number of events= 50

coef exp(coef) se(coef) z Pr(>|z|)

age 0.0193 1.0195 0.0144 1.34 0.180

factor(stage)2 0.1720 1.1876 0.4626 0.37 0.710

factor(stage)3 0.6585 1.9318 0.3556 1.85 0.064 .

factor(stage)4 1.7991 6.0442 0.4288 4.20 2.7e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Likelihood ratio test= 19.6 on 4 df, p=6e-04

Wald test = 22.6 on 4 df, p=2e-04

Consider that coef refers to the ML point estimates; exp(coef) is the point estimate

for the hazard ratio; se(coef) represents the standard errors; z is the test statistic for

the Wald test and p is the p-value of the Wald test. The estimated BP parameters, the

value of the evaluated log-likelihood of the null (reference) model and the stan object

can be obtained having access to the spbp class object elements. Moreover, apart from

the fit object, it is also possible to obtain the matrix of covariates, the covariance matrix

and the likelihood value. This can be done using the following code:

> fit$coefficients

age factor(stage)2 factor(stage)3 factor(stage)4 gamma1

1.926946e-02 1.719545e-01 6.584531e-01 1.799095e+00 1.687151e-02

gamma2 gamma3 gamma4 gamma5 gamma6
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4.164110e-02 8.170170e-50 1.401060e-02 4.677284e-02 9.401934e-34

gamma7 gamma8 gamma9 gamma10

1.331014e-01 1.189283e-62 4.517613e-112 3.128413e-131

> head(model.matrix(fit))

age factor(stage)2 factor(stage)3 factor(stage)4

1 77 0 0 0

2 53 0 0 0

3 45 0 0 0

4 57 0 0 0

5 58 0 0 0

6 51 0 0 0

> diag(fit$var)

[1] 2.064355e-04 2.139849e-01 1.264739e-01 1.838831e-01 3.846090e+56

[6] 3.622219e+56 8.390800e+29 3.976866e+58 6.059285e+57 3.873257e-06

[11] 2.271415e+56 3.337039e-64 2.987286e-163 7.737132e-203

> fit$loglik

[1] -149.8360 -140.0512

From the Bayesian point of view, the spbp class contains posterior summary statistics

such as the mode, median, mean and standard deviation, along with 95% HPD interval

based on the posterior density. Note that the arguments passed after data are considered

Stan specific control parameters. For instance, the argument chain allows to choose the

number of chains in the MCMC . Other settings such as iter and warmup are also flexible

and might be set at convenience. The user can simply type in the R console the code

“??rstan::sampling” for help. The following R console outcome refers to the Bayesian
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estimation for the larynx data set:

> fit <- spsurv ::spbp(Surv(time , delta)~age+factor(stage),

+ approach = "bayes", data = larynx ,

+ iter = 2000, chains = 1, warmup = 1000)

SAMPLING FOR MODEL ’spbp’ NOW (CHAIN 1).

Chain 1:

Chain 1: Gradient evaluation took 9.2e-05 seconds

Chain 1: 1000 transitions using ten leapfrog steps per transition would take 0.92

seconds.

Chain 1: Adjust your expectations accordingly!

Chain 1:

Chain 1:

Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)

Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)

Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)

Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)

Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)

Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)

Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)

Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)

Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)

Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)

Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)

Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)

Chain 1:

Chain 1: Elapsed Time: 3.63369 seconds (Warm-up)

Chain 1: 2.53932 seconds (Sampling)

Chain 1: 6.17301 seconds (Total)
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Chain 1:

Warning messages:

1: Relative effective sample sizes (’r_eff’ argument) not specified.

For models fit with MCMC, the reported PSIS effective sample sizes and

MCSE estimates will be over-optimistic.

2: Some Pareto k diagnostic values are slightly high.

See help(’pareto-k-diagnostic’) for details.

3: 2 (2.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.

As with the ML estimation, the summary method is extended to the spsurv::spbp

class when applying to a Bayesian fit. Along with the regression estimates, this output

also contains descriptive statistics for the posterior hazard ratio denoted by _exp (in the

console output) and the diagnosis statistics from the loo package. The effective sample

size n_eff gives an estimate of the independent draws from the posterior distribution,

and Rhat referred to as the potential scale reduction statistic, is one of the useful ways

to monitor whether a chain has converged to the equilibrium distribution. This statistic

measures the ratio between the average variation of the samples within each chain and

the variation of the combined samples in the chains; if the chains have not converged to

a common distribution, this statistic will be greater than one (Stan Development Team,

2016). It is worth noting that all, the information provided by the Stan output, including

warnings, is passed to the final user. One can have access to the stanfit object with

the fit$stanfit command. In particular, one can have access to built-in plot functions

and even to a shiny app (details in https://shiny.rstudio.com/) developed by Stan

developer’s team. The summary outcome is as follows:

> summary(fit)

Bayesian Bernstein Polynomial based Proportional Hazards model
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Call:

spbp.default(formula = Surv(time, delta) ~ age + factor(stage),

data = larynx, approach = "bayes", iter = 2000, chains = 1,

warmup = 1000, model = "ph")

n= 0, number of events= 0

mode mean se_mean sd 50% n_eff Rhat lowerHPD upperHPD

age 0.0172 0.019 0.000415 0.0148 0.0189 1276 1.000 -0.00821 0.0488

factor(stage)2 0.2135 0.126 0.015843 0.4634 0.1527 856 0.999 -0.81920 0.9446

factor(stage)3 0.6030 0.627 0.012488 0.3331 0.6197 712 0.999 -0.09428 1.2192

factor(stage)4 1.8345 1.765 0.013916 0.3984 1.7758 819 1.000 1.01502 2.5609

---

mean_exp median_exp sd_exp lowerHPD_exp upperHPD_exp

age 1.02 1.02 0.0151 0.992 1.05

factor(stage)2 1.26 1.16 0.5825 0.326 2.31

factor(stage)3 1.98 1.86 0.6900 0.910 3.38

factor(stage)4 6.33 5.91 2.6719 2.118 11.49

---

Computed from 1000 by 90 log-likelihood matrix

Estimate SE

elpd_waic -149.2 9.3

p_waic 8.6 0.8

waic 298.4 18.7

Computed from 1000 by 90 log-likelihood matrix

Estimate SE

elpd_loo -149.3 9.3
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p_loo 8.7 0.9

looic 298.7 18.7

------

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

Count Pct. Min. n_eff

(-Inf, 0.5] (good) 88 97.8% 507

(0.5, 0.7] (ok) 2 2.2% 370

(0.7, 1] (bad) 0 0.0% <NA>

(1, Inf) (very bad) 0 0.0% <NA>

All Pareto k estimates are ok (k < 0.7).

See help(’pareto-k-diagnostic’) for details.

Warning message:

2 (2.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.

The next code chunk shows the code for trace and density plotting and to give access

to the shiny app from the shinystan package (Gabry, 2018). Figures A.10 and A.11

illustrate the trace plot and the density plot of the BPPH for the larynx data set. The

graphs show unimodal posterior densities and well behaved chains with good mixing, this

is a good behavior indication.

rstan:: traceplot(fit$stanfit , pars = c("beta", "gamma"))

rstan::stan_dens(fit$stanfit , pars = c("beta", "gamma"))

shinystan :: launch_shinystan(fit$stanfit)

Not least, a S3 method had to be created rather than extended. The survivor

method was created to accomplish the calculation of the survival function evaluated

in each time point. The goal is similar to the survival::survfit S3 method, that
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could be extended instead. The difference is that spbp classes allows both Bayesian and

Frequentist approaches. The following code was used to generate Figure 6.2:

## CoxPH model

fitcoxph <- survival ::coxph(Surv(time , delta)~age+factor(stage),

data = larynx)

## Determine the groups of patients

newdata <- data.frame(age =c(77,77,77,77), stage = c(1,2,3,4))

## survfit Breslow estimator

breslowsurv <- survival :: survfit(fitcoxph , newdata = newdata)

## spbp point -wise estimate

spbpsurv <- spbp:: survivor(fit , newdata = newdata)

plot(breslowsurv)

points(spbpsurv)

The content of this dissertation is now complete. Here, the analysis was dedicated to

illustrating, in practice, the commands implemented in the proposed package spsurv. We

still have work to do to improve and update this tool, however, the present version is ready

for the main statistical study in the field of survival analysis. The routines presented

in this dissertation are unprecedented. Therefore, they have not yet been published

in The Comprehensive R Archive Network (CRAN). Many efforts with regard to the

instruction manuals and routines documentation were carried out concurrently with the

spsurv package implementation. The package is already in public use and is available at

the github development platform, the link is: https://github.com/rvpanaro/spsurv.

The submission to CRAN was be made after the comments and suggestions concerning

this dissertation.
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