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ABSTRACT

In this work we consider the following magnetic nonlinear Choquard equations

—(V +iA(z)*u+ V(r)u = (| 1‘ * |u]23) Ju|? 2w + Af(u) in RY(N > 3)
x (6
and '
(=Aju+V(z)u= <W * \u|20) |u|?s2u 4+ Ag(u) in RY(N = 3),
x (634

where s € (0,1), 2} = 2}1\[\/__—204 and 27 , = 36__—2“5 are critical exponents in the sense of the Hardy-
Littlewood-Sobolev inequality. Moreover, in both problems 0 < o < N, A > 0, A : RY — RV is
an O, ZN-periodic vector potential and V is a continuous scalar potential given as a perturbation

of a periodic potential. Considering different types of nonlinearities f and g, namely, f(z,u) =
(ﬁ * |u|p> lulP~?u for (2N — a)/N < p < 2%, then f(u) = JulP™'u for 1 < p < 2* — 1 and

Flu) = |uf? ~2u (where 2¢ = 2N/(N —2)), g(z,u) = (ﬁ * |u|p> [ulP~2u for (6—0a)/3 < p < 25,
then g(u) = |u[P~tu for 1 < p < 27 — 1 and g(u) = |u|*2u (where 2! = 6/(3 — 2s)), we prove
the existence of at least one ground state solution for these equations by variational methods if
p belongs to some intervals depending on /N, A and also on s in the second problem.

Key Words: Variational methods, magnetic Choquard equation, fractional magnetic Choquard
equation, Hardy-Littlewood-Sobolev critical exponent.



RESUMO

Neste trabalho nés consideramos as seguintes equagoes de Choquard magnéticas nao lineares

1

R

—(V +iA(@)u+V(z)u = ( * |u 23) lul* 2y + Af(u) em RY(N >3)

]. * *
(—A)5u+ V(z)u = <— < \u|2w> |u|?s 20 + Ag(u) em RY(N =3),

]

emques € (0,1), 2 = 2}]\[\/__—2(1 e = ??__;‘s sao os expoentes criticos no sentido da desigualdade de

Hardy-Littlewood-Sobolev. Além disso, em ambos os problemas 0 < aw < N, A > 0, A : RV — RY
¢ um potencial vetorial de classe C*, Z"-periédico e V é potencial escalar continuo dado como
uma perturbacao de um potencial periédico. Considerando diferentes tipos de nao linearidades

f e g, asaber, f(z,u) = (L * |u|p> |u[P~?u para (2N — «)/N < p < 2%, depois f(u) = |u|P~'u

||

para 1 < p <2 —1le f(u) = |ul* 2u (em que 2* = 2N/(N — 2)), g(x,u) = ( L« |u|p> luP~2u

||

para (6 — @) /3 < p < 2} ,, depois g(u) = |u["~tu para 1 < p < 2 —1 e g(u) = [ul*?u (em que
2* = 6/(3 — 2s)), nés provamos a existéncia de ao menos uma solugao de estado fundamental
para estas equagoes por métodos variacionais se p pertence a alguns intervalos dependendo de

N, X e também de s no segundo problema.

Palavras-chave: Métodos variacionais, equacao de Choquard magnética, equacao de Choquard
magnética fracionaria, expoente critico de Hardy-Littlewood-Sobolev.
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Introduction

In this thesis we consider the problems

2072y + Af(u) in RY(N > 3) (1)

(V4 iA(@)2u + V(@) = (|x1| ] |uy22) u

and

1 * *
(=A)hu + V(z)u = (W x \uy%,s) u%+"2u 4 Ag(u) in RN(N = 3), (2)
xT «
where V +iA(x) is the covariant derivative with respect to the C*, Z¥-periodic vector potential
A: RNV = RV ie,
Alx +y) = Az), Ve e RN Vy e Z",

and, for u € C*°(RY) and z € RY, (=A)%u is the fractional magnetic operator defined by

u(w) — e A u(y)
|z —y| N

(—A)u(zr) = cns lim dy,

e—07t RN\ B, (z)
where cy ; is a normalizing constant.

The second equation of this thesis was suggested by Prof. G. M. Figueiredo after his reading
of our article [I6] - which handles (1)) - and advising us to obtain similar results in the framework
of the nonlocal fractional magnetic operator, bringing into our notice references [11], [12].

In both problems we consider 0 < o« < N and the exponents 2}, = 2]]\\,7__20‘ and 27 = %,
s € (0,1), which are critical in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover

A >0,V :RY - Ris a continuous scalar potential and f and g stand for different types

of nonlinearities. Namely, in the first chapter we consider f(z,u) = (L ]u|p) |u|P~2u for

||
(2N —a)/N < p < 2%, then f(u) = |u[P~'u for 1 < p < 2* — 1 (where 2* is the critical exponent
of the immersion H} ,(RY,C) < L* (RY,C)), and finally we examine f(u) = |u[* ~2u.

In the second chapter, we initially consider g(x,u) = (# * ]u|p) |u|P~2u for (6 —a)/3 <p<

2%, then g(u) = |u/P~'u for 1 < p < 2f — 1 (where 2% is the critical exponent of the immersion
Hj y(R3,C) — L*(R? C)), and finally we examine g(u) = |u|*2u.

Inspired by the seminal work of Coti Zelati and Rabinowitz [19], but also by Alves, Carriao
and Miyagaki [2] and by Alves and Figueiredo [3], we assume that there is a continuous, Z"-
periodic potential Vp : RN — R, constants Vo, Wy > 0 and W € Lz (RY,R) with W (z) > 0 such
that

(V1) Vp(z) >Vy, VaeRY;

10



(V2) V(2) = Vp(x) = W(z) = Wy, VaeRY,

where the last inequality is strict on a subset of positive measure in RY.

For technical reasons, in the problem we consider only the case N = 3. However, since
both problems and are considered in the whole space RY and have a critical nonlinearity
in the Hardy-Littlewood-Sobolev sense, the verification of any compactness condition is not easy.

The first equation of this work is motivated by Gao and Yang in [29], where a classical
Choquard equation is considered in a bounded domain, i.e., the case A = 0 and V = 0 is studied
in a bounded domain 2. There is a huge literature about the Choquard equation and we cite
only Moroz and Van Schaftingen [41] for a good review of results on this important subject. In
[29], Gao and Yang proved the existence of a ground state solution (i.e, a least energy nontrivial
solution) under restriction on N and A. Other recent advances in the study of the Choquard
equation can be found, e.g., in [8, 25] 26], B1], B9, 40] for critical exponents, in [6] for multi-bump
solutions, and in [4 [7, 40] for the concentration behavior of solutions.

In Mukherjee and Sreenadh [43], the magnetic problem

1 * *
—(V +iA(x))*u + pg(x)u = Iu+ (— * |u|2a) |u|>* "2y in RY

]

was examined. In this equation p > 0 is also a parameter that interacts with the linear term in
the right-hand side of the equation. Existence of a ground state solution was proved supposing
that ¢ satisfies the assumptions

(g1) g € C(RY.R), g >0 and €2 := interior of g7 1(0) is a nonempty bounded set with smooth
boundary and g~*(0) = ;

(g2) There exists M > 0 such that the set {z € RY : g(x) < M} has finite Lebesgue measure in
RV,

The concentration of solutions as yu — oo was also studied.
Changing the right-hand side of to

( L, Iu\p) P, (3)

]

the problem was studied by Cingolani, Clapp and Secchi in [I8]. In that paper the authors
proved existence and multiplicity of solutions. In [15], the right-hand side was generalized
and a ground state solution was obtained, but the multiplicity result depend on more restrictive
hypotheses than in [I§].

Recent years have witnessed a growth of interest in the study of magnetic equations. By
using variational methods, penalization techniques and Ljusternik—Schnirelmann theory, Alves,
Figueiredo and Yang [5] proved existence of multiple solutions to the magnetic equation

(59 - 40) ut Vi = (s FuP)) fllufyu 2 € B, (®)

where ¢ > 0 is a parameter, N > 2, 0 < pu < 2 and F(s) = [} f(t)dt.

11



The same type of techniques were used by d’Avenia and Ji [22] to obtain multiplicity and
concentration of solutions of with the right-hand side of that equation changed to f(|u|*)u,
with f having critical exponential growth.

On its turn, the class of magnetic fractional equations is an object of increasing interest since
the pioneering works of Fiscella, Pinamonti and Vecchi [28] and d’Avenia and Squassina [21].

In [28], for s € (0,1) and a parameter A, the problem

(=AYu=Af(Ju)u nQ u=0 in RV\Q

was studied in a bounded domain ). Considering different types of nonlinearities f, variational
techniques were used to prove the existence of at least two solutions.
In [2I] d’Avenia and Squassina considered the minimization problems

A () )
o 2
my = 11Lr€1£ (/R3 |ul“dz + — /R3 /]RS paERT dzdy (5)

o e~ ATy () — u(y)|?
T ulél[f:c /]R3 /R3 |l’ - |3+2S dxdy, (6)

Where A :R?® — R? is a continuous magnetic potential whith locally bounded gradient, 2 < p <
o L:={u€ H{(R? C) : [os u(z)Pdz =1} and L := {u € D§(R?,C) : [o5 [u(z)|2)dz},
where H%(R3, C) and D% (R3, C) are suitable Hilbert spaces defined in that article.

By applying concentration-compactness arguments, the existence of a solution to for a
class of potentials A yields a solution to the problem

(=A¥u+u=|uf?u in R

and

as a consequence of Lagrange multipliers. On its turn, if there exists a solution u to @, then a
representation formula for u is obtained.

In [37], Mingqi, Pucci, Squassina and Zhang proved existence and multiplicity of nontrivial
solutions for the problem

M([u]2 ) (=A)3u + V(2)u = f(z, |u[)u n RY,
where s € (0,1), N > 2s,

_ el r— y) A(I+y)u(y)|2
= dad
s <// oy )

M : RE — R{ is a Kirchhoff function, V : RY — R* is a scalar potential, 4 : RY — RY is a
magnetic potential, (—A)% is the associated fractional magnetic operator, and f : RY x Rt — R
is a sublinear or superlinear nonlinearity. In the sublinear case a solution is obtained by the direct
methods, whereas the mountain pass theorem and Nehari manifold are applied in the superlinear
case. Multiplicity of solutions is handled by the symmetric mountain pass theorem.

Also by applying variational methods and Ljusternick—Schnirelmann theory, Ambrosio and
d’Avenia [9] proved existence and multiplicity of solutions for the equation

e (A cu+ V(z)u = f(Ju*)u in RY,

12



where ¢ > 0 is a parameter and N > 3. As usual, V € C(RY R) and A € C%%(RN RY) (for

€ (0,1]) are the electric and magnetic potentials respectively, and f : RY — R is a subcritical
nonlinearity. The same equation with the term e~ (||~ x |u|?)u added to the left-hand side
of the equation was considered by Ambrosio [12], where t € (0,1) is a parameter and N = 3.
Existence, multiplicity and concentration of solutions was obtained for ¢ > 0 small enough also
by applying Ljusternick—Schnirelmann theory.

In [I0] Ambrosio investigated existence and concentration of nontrivial solutions to the frac-
tional Choquard equation

828(—A)?4/5u + V(z)u = (@ * F(|u|2)) f(u®u in RY,

where € > 0 is a parameter, s € (0,1), 0 < < 2s and N > 3. It is supposed that the potential
V' is positive and has a local minimum and f is a continuous nonlinearity with subcritical growth.

By applying concentration-compactness, a fractional Kato type inequality, Ljusternik—Schni-
relmann and minimax methods, Ambrosio [11] proved existence, multiplicity and concentration of
nontrivial solutions for the following fractional magnetic Kirchhoff equation with critical growth

(a2 + b7 [ull 1) (= A3y + V(@)u = f(|uf?)

In this equation, V € C(R3 R) and A € C%*(R3,R?), (o € (0, 1]) are the electric and magnetic
potentials respectively; € > 0 is a small parameter, a and b are positive constants, s € (3 1),
2F = fs is the fractional critical exponent and f : R — R is a C! subcritical nonlinearity.

The main results of this thesis are the following theorems.

*7 .
%24 in R3.

Theorem 1 For === 2N & < p < 28, under the hypotheses already stated on A, V' and «, problem

[e%

-4v+nmm%+vmm:(§F*m%>m

has at least one ground state solution if either
(i) 2=e < p <2t N =34 and A > 0;
(i)
(i) %<p<2;;, N >5 and A > 0;
(iv)

Theorem 2 For 1 < p < 2* — 1, under the hypotheses already stated on A, V and o, problem

« 1
272 4+ A (W * |u|p> lulP~?u in RN (7)
€T [0

2N ==t <p< N+2 5+, N = 3,4 and X sufficiently large;

2N—« 2N—-2—«a .
T <p< 55 N =5 and A sufficiently large.

2o 2y 4 MulP "ty in RY.

(V4 iA@) u+ V() = Qéa*M%)W

has at least one ground state solution if either
(1) 3<p<5, N=3and X\ > 0;
(1) p>1, N >4 and XA > 0;

13



(7i1) 1 <p <3, N =3 and X sufficiently large.
Theorem 3 Under the hypotheses already stated on A, V' and «, the problem

1 .
—(V+iA@) u+V(z)u= A (W * |u|p> lulP~?u + |ul* "2u in RY,
T (03
has at least one ground state solution in the intervals already described in Theorem [l

Theorem 4 For 2 — ¢ <p <2 ., under the hypotheses already stated on A, V and o, problem

,s)?

1 . « 1
(—A)u+ V(z)u = (W * |u|2a73) )%™ + A (— * |u|p) lulP~2u in R? (8)

[
has at least one ground state solution if either

(i) se(3,1), 552 <p< 27, and X > 0;

(i1) s € (0,1), 552 < p < 52=2 and X sufficiently large.

Theorem 5 For s € (i’, 1) and 1 < p < 2% — 1, under the hypotheses already stated on A, V and
a, problem

1 * *
(—Aju+V(z)u= <— * |U|2“’s) u)?>s ™20 + NMu|Ptu in R

=]
has at least one ground state solution if either

(i) &2 <p<2;—1 and X > 0;

(i1) 1 < p < 952 and X sufficiently large.

Theorem 6 Under the hypotheses already stated on A, V and «, the problem

*_ .
%72y in RS,

1
(—Au+V(z)u= A (| | * |u|p) lu|P~2u + |u
€T (0%
has at least one ground state solution in the intervals already described in Theorem [4).

Problems and will be considered in Chapter [1| and , respectively. In both chapters,
we start proving the existence of a ground state solution for problems and , respectively,
considering the potential V' = Vp, that is, we consider the problems

2 2+ A\f(u) in RY (9)

—(V +iA(x)*u+ Vp(z)u = (|x1|0‘ * |u|23> lu

and .
(~8p3u+ Voo = o < fufee ) a2t dgla) i R (10
T (&7
and f and g as in Theorems (1] 2| 3| [4} [f] and [} maintaining the notation introduced before and
supposing that (V) is valid.

14



As in Gao and Yang in [29], the key step to proof the existence of a ground state solution of
problems @D and is the use of cut-off techniques on the extreme function that attains the
best constants Sy 1, and S defined in the sequence. This allows us to estimate the mountain
pass values ¢, and c,, associated to the respective “energy” functionals attached to @[) and .
We prove that the (PS)-condition holds for these levels. In a demanding proof, this lead us to
establish intervals for p (depending on N and X in the first case and N, A and s in the second one)
where the (PS)-condition is satisfied, as in the seminal work of Brézis and Nirenberg [14]. After
that, the proof is completed by showing the mountain pass geometry, introducing the Nehari
manifold associated with @ and and applying concentration-compactness arguments. In
the sequel, we consider and for the different nonlinearities f and g and prove that each
problem has at least one ground state solution.

We observe that the conclusion of Theorem [2| is similar to that of Theorem 1.1 in Alves,
Carriao and Miyagaki [2] and Theorem 1.1 in Miyagaki [38]. Precisely, in [2] the authors have
discussed the existence of a positive solution to the semilinear elliptic problem involving critical

exponents
—Au+V(z)u = u? +uP in RY,

where A > 0 is a parameter, 1 < g < p =2*—1and V : RY — R is a positive continuous function.
On its turn, Miyagaki [38] has studied the existence of nontrivial solution for the following class
of semilinear elliptic equation in RY (N > 3) involving critical Sobolev exponents

—Au+a(@)u = Mu|*™" + Jufru in RY,
where 1 < g <p<2*—-1= % and A > 0 are constants and a : RN — R is a continuous
function such that a(x) > ag for all z € RY, where ag > 0 is a constant.

Problems @ and (1) - and and as well - are then related by showing that the
minimax value dy of (l) (or dy, of (2))) satisfies d\ < ¢, (respectively, dy, < ¢,,). Once more,
concentration-compactness arguments are applied to show the existence of a ground state solution
for each problem.

In a nutshell, by adopting the same techniques applied to study problem , we have proved
our results for problem .

This work is organized as follows.

In each chapter, initially, some preliminary results will be established (see Sections and

2.1). Then, Sections , and are then devoted to the proofs of Theorems , and ,

respectively, and Sections [1.3] and [2.4] proves Theorems [ [5| and [6] respectively.
The text in Chapter [1]is very similar to that of the submitted paper [16].

In the appendices [A] and [B] we gather some of the main results used in this work and we justify
some of the facts used in the proofs of our results, respectively.

15



Chapter 1

Magnetic Choquard equation with
Hardy-Littlewood-Sobolev critical
exponent

In this chapter we deal with problem

2072+ Af(u) in RY(N >3)

(V4 iA@) u+ V() = (|x1| } W;) u

and prove Theorems and 3]

1.1 Preliminary results
We denote
Vau = Vu+ iA(x)u.
We handle problem in the space

H,y(RY,C) = {u € L*(RY,C) : V,u € L*(RY,0), / V(z)|u(z)]? do < oo}
RN

endowed with the norm

[ullav = (/RN(WAW + V() |ul?) d:r) y

Observe that the norm generated by this scalar product is equivalent to the norm obtained
by considering V' = 1, see [35, Definition 7.20].
If u e Hj,(RY,C), then |u| € H'(RY) and the diamagnetic inequality is valid (see [18] or
[35, Theorem 7.21])
\Vu|(z)| < |Vu(z) +iA(z)u(z)|, ae zecRY.
As a consequence of the diamagnetic inequality, we have the continuous immersion

H}(RY,C) = L*(RY,C) (1.1)
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for any s € [2, 2], We denote 2* = 2% and | - ||; the norm in L*(RY, C).

It is well-known that C2°(RY,C) is dense in Hj 1, (R, C), see [35, Theorem 7.22].
Following Gao and Yang [30], we denote by Sp 1,

/ |Vul*dx

SH,L L= inf
u(y)l*

u € DL2(RN R)\{0} lu(z =
(L] ey
RN JRN |$ — y|a

/ |V qul*dz
= mf

N—2
uED RN(C {0} ; 2N —«
! (/ / [ufz u(y) dxdy)

RN JRN |5U - y’a

where D;*(RY,C) = {u € L¥(RY,C) : Vu € L*(RY,C)}. The equality between Sy and
S4 was proved in Mukherjee and Sreenadh [43]. We remark that S, is attained if and only if
rot A = 0 [43, Theorem 4.1]. See also [13, Theorem 1.1].

We state a result proved in [30].

Proposition 7 (Gao and Yang [30]) The constant Sp 1 defined in (L.2) is achieved if and
only if

= SAa

N—-2

b 2
u(x)_o(bQ—l—\x—aP) ’

where C' > 0 is a fived constant, a € RY and b € (0,00) are parameters. Furthermore,

S
S =———=5:
C(N a)QN o

where S is the best Sobolev constant of the immersion DV?(RY R) — L* (RY R) and C(N,«a)
depends on N and .

N-—2
If we consider the minimizer for 5 given by U(z) := % (see [48, Theorem 1.42]),
1+|z|2) "2
then N
U(z) = SSFEES (N, aymtstm NN 2>]N
(11 + |22 =

is the unique minimizer for Sg 1, that satisfies

|u| e %a 2 N
—Au = / dy | Ju|*~ in R
gy |7 — y|®
2 2N—a

/ V| dx—/ / UWI™ jpay — g5
RN RN JRN |$ —yl* ’
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Lemma 8 Let Q S RY be any open set. For 1 < t < oo, let (f,) be a bounded sequence in
LY(Q,C) such that f,(z) — f(x) a.e. Then f, — f in L'(Q,C).

The proof of Lemma |8 only adapts the arguments given for the real case, as in [33] Lemme
4.8, Chapitre 1].

1.2 The case f(z,u) = <sc|0‘ \u\p> lulP~u

1.2.1 The periodic problem

In this subsection we deal with the case V' = Vp and prove the existence of a ground state
solution for problem @D and f(x,u) as above, that is, we consider the problem

« 1
VD) (W * |u|p) lulP~2u, (1.3)
€T (e

(Y +iA(2)2u + Vp(2)u = (|x1|a . |u|2;)

where 2N L <Ip <2
To deal with this problem, we consider the space

Hjv,(RY,C) = {uec L*(RY,C) : Vue L*RY,C)}
endowed with scalar product
(U, V) avp = E)‘ie/ (Vau- Vv + Vp(z)ud) dz
RN
and, therefore
iy, = [ (Va4 Volul?) da

We observe that the energy functional Ju v, on H} . (RN, C) associated with (1.3) is given
by

Tan() = gy, = g Do) = 5 B(w).
where
B(u):/ < |u|p>|u|pdx—/ / 2)*lfuly) d dy
N RN JRN |$_y|a
and

2*

D(u):/ = s |ul® ) [ul? dx—/ / ————dzdy.
|55| RN JRN |55 3/|

Remark 1.2.1 Ift € [2N — a)/N, (2N — a)/(N —2)] and r = 2N/(2N — «), then 2 < tr < 2*,
So, for u € H} (RN, C), it follows from (L.1) that u € L(RY,C), that is, |u* € L"(RY,C).
Since % + & = 2, the Hardy-Littlewood-Sobolev inequality (see Appendix , Proposition

yields
d dy < C(N U Qf
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Therefore,

B(u) < Cy(N, a)l|ully (1.4)
and

D(u) < Co(N, ) [ull5> (1.5)
for constants Cy (N, ) and C5(N, ). Therefore, J v, is well-defined for u € H} v, (RY, C).

Here, as also in [4], QNN_ is called the lower critical exponent and 2} = the upper

critical exponent. This lead us to say that (1)) is a critical nonlocal elhptlc equatlon Moreover,
by Lemma 2.5 of [47], Jav, € C'(H} y, (]RN C);R).

2Noz

Observe that v uld
ul“dx
SA = mf —fRN ’ AN7‘2 .

ue DY*®RN.ON0}  D(u)2v-a

Definition 1.2.1 A function u € H) . (RY,C) is a weak solution of (L.3) if

1 * * - 1 —
(U, V) a v, — ‘ﬁe/ ( * |u]2a) |u|2&_2u1/) dz — A %e/ (— * |u|p> |u|p_2uw de =0
av \zlo Ry A\ |[®
for ally € H} . (RY,C).

(1.6)

Since the derivative of the energy functional J4 y;, is given by

1 N o - 1 P
Jg7vp(u) )= (u, ) avp — %e/R (W * |u|2a> |u|2& 2up de — X Re /RN (W * ]u|p> |u|? 2w de,

we see that critical points of Jy y, are weak solutions of (1.3)).
Note that, if ¢y = u we obtain

Ty (w) - uw:= [[uli v, — D(u) = AB(w). (1.7)
Lemma 9 The functional Ja v, satisfies the mountain pass geometry. Precisely,

(i) there exist p,d > 0 such that Jav,|, > 0 >0 for any u € S, where

|52
S= {’LL € HA,VP(RN7C> : HUHA,VP = p}§

(i) for any ug € Hjy (RN,C) \ {0} there exists 7 € (0,00) such that ||Tugllv, > p and
JA,VP(TUO) < 0.

Proof. Inequalities (1.4]) and . 1.5)) yields

Cg(Oz N) * )\Cl( )
Tan() 2 iy, — 55l - el

thus implying (7) if we take ||u||4,v, = p > 0 sufficiently small.
In order to prove (i1), fix ug € H} 1, (RY,C)\ {0} and consider the function gy, : (0,00) = R
given by

1 A
guo(t> = JA,Vp(tUIO) = §||tu0||124,\/7; — D(tU,Q) — 2—pB(tU0)

1
2. 2%
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We have

tu _tQP/ / ‘U/O ||u0 )’ dxdy — tzpB<U,0)
RN JRN

|z =yl
and
2 )
D(tug) =t*% / / o ()" fuo () dxdy = t*2« D(uy).
RN JRN |CU —yl®
Thus,
Guolt) = 32w Py, — gt Do) — 1 Blu)
o g ITONAVE 9 9x 2p 0
— 1252.2; HUOHi,VP o iD(u ) o é B(U'O)
2 tea-1) 2 TN (e —p)
Since 1 < 2N ¢ < p <2, we have
E+m Javp(tug) = —o0
completing the proof of (ii). O

The mountain pass theorem without the PS condition (see [48, Theorem 1.15]) yields a Palais-
Smale sequence (u,) C H} 1, (RY,C) such that

J;x,vp (un) =0 and Javp(Un) = ey, (1.8)
where

= inf J t
ey = érelmem[% Ave(7(1)),

and T = {5 € O (10,1}, Hy (RY,©))  7(0) = 0, Jawp(4(1)) < 0}
Lemma 10 Suppose that u, — ug in H} (RY,C). Then

1 1 . 2N
W * 1y | — P * [uolt in L« (RY), (1.9)

for allQNT_O‘ <t <2

Proof. In this proof we adapt some ideas of [7]. We can suppose that |u,(x)[* = |ug(z)|" a.e. in

RY and, as consequence of the immersion (1.1)), |u,|* is bounded in L= (RY). Thus, Lemma
allows us to conclude that

fun(@)|* = uo(@)]" in L5 (RY, C)
as n — oo.
By the Hardy-Littlewood—Sobolev inequality (see Appendix , Proposition , the map
T : Lov-s (RY,C) — L’ (RN, C) defined by T(w) = |z|=® % w is well-defined (sce Appendix

, Lemma , moreover it is linear and continuous. Hence, the result follows by applying
Proposition [56, Appendix [A] O
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Corollary 11 Suppose that u, — ug and consider

B0 =9 [ (s bl )l 2, ds
RN\ |2]®

and

22, da,

1 .
D) v = [ (bl
for v € C2(RYN,C). Then B'(u,) - — B'(ug) - and D'(uy,) - — D'(ug) - .

Proof. The immersion (1.1 guarantees that |u,|P~?u, is bounded in [ ~te=a (RN, C). Since we
can suppose that |u,(z)|P — |ug(z)|? a.e. in RN, by applying Lemma |8, we conclude that

(P2 — uo[P 2w in L¥2=a (RN, C) (1.10)

forallmT’agpSQZ,asn%—l—oo.

Combining ([1.9) with (1.10) yields
1 1
(W i |un|P) |u”|p_2un - (w * |U0|p) |U0|P_2u0 n L%(RN)

as n — o0, for all QNT’O‘ < p < 2. Consequently, for 1y € C*(RY,C), it follows that

1 - 1 _
9‘{2/ ( * |un|p> | [P uptp doz — 9‘{2/ (— * \uolp) |[uo|P~2ugy) d
RN |x‘a RN |'I|a

1 .
?ﬁe/ (— * |un|2a) |u,
ey \ |7

that is,

and

* - 1 * * -
L2y do — fﬁe/ (— * |ug 2‘1) luo|?2ugy) du,
gy O\ |T]?
B'(uy) - — B'(ug) -9 and D'(uy,) - — D'(ug) - .
O

Lemma 12 If (u,) C H} . (RY,C) is a (PS), sequence for Jay,, then (u,) is bounded. In
addition, if u, — u weakly in H}LVP (RY,C) as n — oo, then u is a weak solution to problem

©3).

Proof. Standard arguments prove that (u,) is bounded in H} y, (RY,C). Then, up to a subse-
quence, we have u, — u weakly in H) . (R, C) as n — oo.
From Corollary [11|it follows that, for all ¢ € H} . (RY,C), we have

1 _ 1 _
e [ (bl Yol ao = e [ (el Yol do s o,(1), as 0o
ey \z|® AN

where t =port=27.
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Thus, since for all ¢ € C°(RY,C) we have J) . (uy) - 1) = 0,(1), we obtain
JA//4,V73 <U/) ' Q/) = 07 v ,Qb E H114,V73 (RN? C)’
that is, u is a weak solution to ([1.3)). O

We now consider the Nehari manifold associated with the Jy v;,.

My = {u € Hyy, (RY,C)\ {0} : [luli v, = D(u) + AB(u)} .

Lemma 13 There exists a unique t, = t,(u) > 0 such that t,u € May, for allu € H)y, (RY,C)\
{0} and Jay,(t,u) = max Javp(tu). Moreover ¢y = ¢§ = ¢y*, where

kk o

. : :
cx= inf  Jyy,(u) and = inf max J4 v, (tu).
A e May T ) A u€ Hj y (RN,C\{0} £20 P

Proof. Let u € H} . (RY,C)\ {0} and g, defined on (0,+oc) given by

Gu(t) = Jav, (tu).

By the mountain pass geometry (Lemma E[), there exists ¢, > 0 such that

Gu(ty) = r?zaox gu(t) = r?zaox Javp (tyu).

Hence
0=4g,(t,) = Jz/4,Vp (tyu) - u = Jz/4,Vp (tyu) - tyu,

implying that t,u € May,, as consequence of (1.7). We now show that ¢, is unique. To this
end, we suppose that there exists s, > 0 such that s,u € My y,. Thus, we have both

lull? v, = 82227V D(w) + MZPTVB(u)  and ullfy, = 55TV D(w) + Ay B(u).

u

Hence
0= (P2 _ 22D) D(u) 4 A (120D — 207D B(u).

Since both terms in parentheses have the same sign if ¢, # s, and we also have B(u) > 0,
D(u) > 0 and X > 0, it follows that t, = s,.
Now, the rest of the proof follows arguments similar to that found in [2, 27, [44] [4§]. (See

Appendix , Lemma, ) O

Taking into account Lemma [13] we can now redefine a ground state solution.

Definition 1.2.2 We say thatu € Hivp (RN, C) is a ground state for problem ((1.3) if Ty v, (u) =
0 and Jayv,(u) = ¢y, that is, if u is a solution to the equation J)y. (u) = 0 which has minimal
enerqy in the set of all nontrivial solutions.

The following result controls the level cy of a Palais-Smale sequence of Jy4 vs,.
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Lemma 14 Let (u,) C H) . (R, C) be a (PS), sequence for Jay, such that

U, =0 weakly in Hy ., (RY,C), asn — oo,

with N 49 -
— a —
b < N—a+2
22N — )4

Then the sequence (u,) verifies either
(1) un — 0 strongly in H} . (RY,C), as n — oo,
or

(ii) There exists a sequence (y,) C RN and constants r,0 > 0 such that

n—oo

limsup/ |up|? do > 0
Br(yn)

where B,(y) denotes the ball in RN of center at y and radius r > 0.

Proof. Suppose that (ii) does not hold. Applying a result by Lions [48, Lemma 1.21], it follows

from inequality (|1.4) that
B(u,) — 0, as n— 0.

Since J) v, (Un )ty = 0,(1) as n — 00, we obtain
Hun”i,vp = D(up) +o,(1) as n — oo. (1.11)
Let us suppose that
Hun||i’vp —¢ ({>0) as n— oc.
Thus, as consequence of , we have
D(u,) — ¢, as n — oo.

Since 1 \ 1
Javp (Un) = EHUnH,%x,Vp - 2_pB(u") 9. 2%

l 1 N+2—-a«a
b==1—-—|=0————). 1.12
(1-5) = (3ev =) 1
On the other hand, it follows from (|1.6)) that

D(uy),

making n — oo yields

||un||124,vp > /RN |V,4un|2 dz > SA(D(un))%’ Yué€ D}L{Q(]RN7(C).

Thus,
2N—«
0> (Sq)~+2a (1.13)
2N—«a
and from (|1.12)) and (|1.13]) we conclude that b > 21272}2:3) S 377 which is a contradiction. There-
fore, (i) is valid and the proof is complete. O

We now state our result about the periodic problem ({1.3]).
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Theorem 15 Under the hypotheses already stated on A and o, suppose that (V1) is valid. Then
problem (L.3)) has at least one ground state solution if either

(i) 20 < p <2, N=3,4and A > 0;

(i1) =2 < p < M¥220 N =3 4 and X sufficiently large;

(i) %<p<22,]\725(md)\>0;

(iv) 2572 <p < 222 N > 5 and X sufficiently large.

Proof. Let ¢y be the mountain pass level and consider a sequence (u,) C H} 1, (RY,C) such
that
Javy(un) =0 and  Jay,(un) = ca
Claim. We affirm that ¢y < 27;;3_‘23 (S A)%, a result that will be shown after completing
our proof, since it is very technical.
Lemma [12| guarantees that (u,) is bounded. So, passing to a subsequence if necessary, there
is u € H} 1, (RY,C) such that

Uy — U in HA’VP(RN,(C), u, —u in L (RY,C) and u, = u ae v € RY. (1.14)

If u = 0, it follows from Lemma |14] the existence of > 0 and (y,,) C R™ such that

limsup/ |u, |* do > 6. (1.15)
A direct computation shows that we can assume that (yn) C ZN. Infact, if yn = (i, 2, ..., yY)
there exists z5, € Z, 1 < i < N, such that |y}, —z.| < 5. Considering z, = (zn, 22, ... zN), we have

that |z, — yn| < \/Zf\il |2t — yi|? < X Thus, B.(y,) C Byx, (z), since if x € B, (y,) then
2
1z — 2] < |20 = Yn| + |y — x| < G + 7. Therefore

limsup/ |u, |* dv > limsup/ up | do > 6 > 0.
B & (#n) Br(yn)

n—oo n—o0

Let
Up () = up(x + yn).

Since both Vp and A are Z"-periodic, we have
[onllave = unllaye  Jaye(vn) = Javp(ua) and  Jyy (v.) =0, as n— oo.

Therefore there exists v € H} ;. (RY, C) such that v, — v weakly in H} , (RY,C) and v, — v
in L2 (RY,C).

loc

We claim that v # 0. In fact, it follows from ((1.15))

0 <0 < |Jvallz2s.0)) < llvn — vllz2.0)) + lIVll22(8,0))-
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7 (RN, we have ||v, — v||r2(5,(0)) — 0 as n — oo, proving our claim.

But Corollaryguarantees that J -, (0n)0) — J) 1, (v)-9 and it follows that .J) v, (v)-1) = 0.
Consequently, v is a weak solution of ([1.3)).

Since v € My v, of course we have ¢ < Ja v, (v). But

Since v,, — v in L?

1
B 1/47‘/77(,0”) “Up + 0,(1)

Y (% - 2ip) Blu,) - %D(vn) +on(1).

A =cx=Jayy(v,) —

Fatou’s Lemma then guarantees that, as n — oo, we have

A > A (% - 2%)) B(v) — %D(v) = Jav,(v)

that is, Ja v, (v) = ¢y, and we are done. The same argument applies to the case u # 0 in (1.14)).
O
2N —«

We now prove the postponed Claim, that is, we show that ¢, < ](V;JFVZ 3)(5 4)N+2=a . Observe

that, once proved the existence of u. as in our next result, then

0 < ey = inf max Jav, (7(t)) < sup Javs (fue) < 5o
ex = Inf max Ty, (v(t)) < Sup A v (L) 22N — a)

Lemma 16 There exists u, such that

N+2_Q(SA)J31£1‘

Ty (tue) < =22
sup Jave (fe) < 5o8 )

provided that either
(i) 2=e < p <2t N =34 and A > 0;

(i1) 2 < p < M0 N =3 4 and X sufficiently large;

(i4) %<p<2*,]\f25(md)\>0;

(iv) 252 < p < 222 N > 5 and A sufficiently large.

The arguments of this proof were adapted from the articles |29, 38]. Observe that the condi-

tions stated in this result are exactly the same of Theorem [I] and Theorem [I5]
N—-2
Proof. We know that U(x) = % is a minimizer for S, the best Sobolev constant of
14|z

the immersion D?(RY R) — L* (RY|R) (see [48, Theorem 1.42] or [I3, Section 3]) and also a
minimizer for Sy 1, according to Proposition .

If B, denotes the ball in RY of center at origin and radius r, consider the balls B; and Bog
and take 1) € C§°(RY) such that, for a constant C' > 0,

1, if x € Bs,

() = { 0 ifze RN\ By, 0< o) <1, [Dy(x)] <C, VeRY.
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We define, for € > 0,

U.(z) := M2y (g) and  w.(x) == ¥(2)U.(2) (1.16)

In the proof we apply the estimates

2 N2 N A N—2
\Vue|"de = C(N,a)2v-a252 +0(" ) (1.17)
RN
and )2 g+
« 2N —« -

N D Gedy > 0V, ) 557" — 0N9), (1.18)

RN JRN |z —y|*

which were obtained by Gao and Yang [30].

Case 1. 2222 < p < 2% and N = 3,4 or 222% < p < 2% and N > 5.
Proof of Case 1. Consider the function f : [0, +00) — R defined by

£ t%%a At*P
F(t) = Jaw () = el vy, = 5 D) = 5 Blue).

The mountain pass geometry (Lemmal|9)) implies the existence of t. > 0 such that sup Ja v, (tu.) =
>0

Javp(teues). Since t. > 0, B(u:) > 0 and f'(t.) = 0, we obtain

1
el T
0<t. < (WA‘;D = SA(E),

thus implying
el v = D) (Sa(e))*® . (1.19)
Now define ¢ : [0, S4(¢)] — R by

t2 ) t2-2;
g(t) = 5““5”14,&/7, - mD(ue)

So,
t2 9(2% 1) tQ-QZ
o) = £ D) (400"~ D).

Since t > 0 and D(u.) > 0, it follows that ¢'(¢) > 0, and, consequently, g is increasing in this

interval. Thus,
N+2—-«

SoON _ 227,
0<g(te) < 2N a)D(u€)<SA(€)>
We conclude that )
2 N+277aa
D(u.)(S4(e))*% = (||Ug||A’VP)

D(u.)v+2-a
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and therefore

Nt2—a (i) ¥

22N —a)  p(u)¥res
Since Ja v, (tue) = g(t) — %thpB(uE), we have
2N—«

N+2—a lulfy, \77° A

2(2N — «) D(ug)zjzvv__ri 2p

But [Jucl% .y, = [en [Vuel?dz + [pu (JA(@)]* + Vp(2)|uc|*)dz implies

ue || 1 1
H HAJ’VE - N—2/ V| dx—l——/ (IA(@)* + Vp(2)[uc]*)da
D(uc)ev=e (D(uc))v=a Jay (D(ue))2~

Therefore, we conclude that

N+2—-a« 1
Javy (tous) < s / |Vu.|*dx
vp (tetie) 2(2N — ) ((D(UE))MQ RN
A

1 2 xu2xN+2a__2pu.
+W/RN(|A( z)|* + Vp(x))| €|d> 2pt5 B(u.)

Since, for all 3 > 1 and any a,b > 0 we have (a + b)° < a” + B(a + b)?~1b, considering

0<g(te) <

JAyp (tgug) < tng(ua).

2N —«

1 1
o= — / VuPdr, b= — / (A + Vp(0)]ueP)da
(D(ug))2v=a JrN (D(ug))2v=a JrN
and
5= 2N —
N+2—-a
it follows
N+2—a 1 Nize
Javp(teue) < 3 / |V, |*dz + (1.20)
) ey ) ((D(@)m R
2N — 1 / ) 1 / ) ) e
— Vu.|"de + ——— A(x)|* 4+ Vp(x)|u|?)dx
N+19_a (D(ug)z%a RNI | Dl RN(| ()] P(

1 2 2 2)da A Ue).
D LA @l ] 12 B)

Taking into account (1.17) and (1.18)), we conclude that

2N —

(%/ |Vue\2dx> o = e -S§L+()(5N;2
(D(ue))2v=a Jrx (C(N, Q)
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We also have

Niza N4
(C(N,a))2va2 (Sg)2 +O(eN2) N 1+ 0(eN-2)
N N—2 = (SH,L) Nt2-a
(C(N)¥ 8,1 —0(*5")) (1-0("5))
(1.21)
and
e

1+0(eN?
o) <1+C(N,a)- _— (1.22)
(1 -0 <€2NT_Q)) e (1 - O(gzNT_aD e
(See proof of ((1.21)) and (1.22)) in Appendix )
We observe that, for € > 0 sufficiently small, it holds

N —

(1— O(en—s))2v-a >

N | —

So,

2N—«
N+2—a

( 1 +<0<€N>2; | <1r2eWa) (05 40 (55°)) < 140 (mnva )
1—0 (7))

Therefore, we conclude that, for any € > 0 sufficiently small, we have

2N—«

1 N+2—«a a ) ON o
ua 2N -«

Combining ((1.20) with ([1.23)), for ¢ sufficiently small, we have
N+2 -«
2(2N — a)

Tavs (teus) < (Spp)¥957% 4 O (eminlv-2252)) (1.24)

N—-2

1 1 1 NFzma
1 ————Ws—/“|Vu4%u~+————y7i/ (A@)P + V(@) |u.]?)da
2 l)(lLE)W\’*‘1 RN D(u )2N7a RN

€

1 A
e [ (A@P + Vo)) Pde — 2B,
D(us)m\pa RN 2p
We claim that there is a positive constant C such that, for all € > 0
t2 > Cy. (1.25)

In fact, suppose that there is a sequence (g,) C R, &, — 0 as n — oo, such that ¢t., — 0 as
n — oo. Thus,

0 < cy <supJay(tue,) = Jay,(te, u.,).
t>0
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Since u., € Hil,vp (RY,C) is bounded and t., — 0, as n — oo, we have t., u., — 0 as n — 0o, in
H}{,Vp (RN7 (C)
The continuity of Jy v, implies that J4 v, (¢, ue,) = Jav,(0) = 0. Therefore,

0<cy < lim Jyv,(t,ue,) =0,
n—oo

a contradiction that proves the claim.
From ((1.19), (1.24) and ([1.25)) we conclude that, for some constant Cy > 0 and € > 0 suffi-
ciently small we have

N + 2 —« S min _9 2N-a
Javp (teue) < m(SA)N+2 = +O< {N—2,2% }>
1 1 , \ 7 1 2 2
o | e el s [ (A@)] + Vo(2))|uePde — CoB(u.)
D(ua)m\f*a (D(ua)zz\ua RN

N+2—«a 2N—a

= m (SA)NJera (1.26)

. AN S, ()2

+0 <gm1n{N*2, 2 ) + A; ) . /RN(‘A(Q;)‘Z + Vp(l’))lu€|2daj‘ — CyB(u.)
N+2—-« 2N—a

= —_— N+2—«o n 2 -
202N — a) (Sa)¥e=e +0(e") + /RN a(z)|ue*dz — CoB(u.),

where C = %5)2, a(z) = |[A(z)|* 4 V,(z) and n = min{N — 2, 2¥=2}
By direct computation we know that, for e < 1, since ¥)(x) = 0 for all z € RV \ Bys and ¢ = 1
in By, we have

p p
RN JRN y|a RN JRN |CU - y|a

P p p
// DI, |dd>//|U D,
Bas 325 |$_?/|a Bs J Bs |$_y|a

N2p (2

e=Mp
// _2)1>p e * MV = ZL dxdy
B; J B 1—I—||) |z —y|*(1+ [£[?)

[ ( _2)](N 2)p 2N—a—N 2)p / /
Bs J Bs 1+|$|

:C3€2N a—(N-2)p )

dxdy

(N—2)p 2)p

yl (1+y[?)

Since a(x) is bounded, (1.26|) and the last inequality imply that

N+2— 2N—qa
Ja vy (teue) < yrs-a (SA)N'IZQ—cx +0(e") + 02/ lu(z)|2da — Cae?N o= (V=2p (1.27)
’ 2(N —a) RN
We are going to see that
lime™" (Cg/ |ug () Pdz — CgszN_O‘_(N_Q)p) = —00. (1.28)
e—0 RN
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In order to do that, it suffices to show that

lime™" (Cg/ |ue(z)Pdw — 0362]\7—04—(]\[—2)17) = —0 (1.29)
e—0 Bs
and
Cy / ue(z)|2dz — Cae®M ~a=N=2p — (). (1.30)
Bas\Bs

Assuming ([1.29)) and (1.30)), let us proceed with our proof. Since

77
0(5’7)+Cg/ e (z)|2dz—Cae?N —a=(N=2p — o0 [M +e77 (C’Q/ |u(z)Pdw — 0382N°‘(N2)p)} :
RN

RN en

from ([1.28]) follows
O(e") + C’z/ lu(z)|2dz — Cye?N o= (V=2p < (1.31)

RN
for € > 0 sufficiently small.

Thus, (L27) and (L31) imply

J tu,) < ———
Sup Jave () < 55—y

for e > 0 sufficiently small and fixed. Once ([1.29)) and ([1.30]) are verified, the proof of Case 1 is
complete. O

We now prove ([1.29)).

Lemma 17 | %<p<2z and N = 3,4 or%<p<2; and N > 5 it follows that

lime™" <Cg lu(x))*dz — CE,EQNQ(NZ)}”) = —00
Bs

e—0

Proof. This limit is evaluated considering the cases N =3, N =4 and N > 5 as follows. We
initially observe that direct computation allows us to conclude that

s N-1
lu(z)Pdr = Nwy[N(N — 2)]262/ ﬂr—dr, (1.32)
0

Bs +r2>N72

where wy denotes the volume of the unit ball in RY.
Now, define

¢ N-1
loi=¢e™" <C2/ Jue(z)]*dz — 0362N_°“_(N—2)p> =e" 0452/ g dr — Cye?N e (VA )
Bs 0 (1 +r )

the second equality being a consequence of ([1.32)).
e The case N = 3. In this case we have 5 — o < p < 2! and therefore 5 —a —p < 0. We
also observe that 0 < a < N implies min{N — 2,289} = N —2 = 1.
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It is easy to show that

s 9 5
52/ 4 dr =¢ ((5—€arctan (—)) .
o 1472 £

)
I.=C4 (5 — g arctan (g>) — CyedaP,
Our claim follows.

e The case N = 4. In this case, 5 < p < 27, implies 6 —a—2p < 0 and min{N —2, 282} =
N —2=2 since 0 < o < 4.
We have

Thus,

So,

Our claim follows.
e The case N > 5. We have

N-1

3
Ie = 62—min{N—2,2NT_O‘} (C4 />E (1 _: 2)N72 dr — 0362N—a—(N—2)p—2) .
0 T

It is easy to show that, if N > 5, then the integral
y g N1
im —dr
=0 Jy (14 r2)N=2
converges.
There are two cases to be considered:

e0<a<4and N > 5;
e a>4and N > 5.

Let us suppose 0 < o < 4 and N > 5. Since 0 < a < 4 we have

2N —
2 5 =2—min{N -2, 2“}:—N+4<0
Also % <p< 2]@7:2& implies 2N — a — (N —2)p — 2 < 0. Therefore, I. — —oc0 as ¢ — 0.

Now we consider the case « > 4 and N > 5. We have N — 2 > MT_Q and therefore

2N —
2—n:2—mm{N—z 2“}:2—N+%<0
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Since

I, =¥ NFs

:opN IN—a—(N—2)p—2
O | Tl dr - CyetN e (V2
4/0 (14 r2)N2 3¢ ’

we conclude that I, — —oo. We are done. O
We now prove ({1.30)).

Lemma 18 It holds
Cy / e (z)|2dz — Cae® ~o=N=2p — ().
Bas\Bs

Proof. Fix ¢ > 0 sufficiently large so that U2(x) < '™ if |z| > §. Since

1 C
— |:Cg/ lue(x)|*dz — ngQN_O‘_(N_Q)p] < —2/ @Z)Q(x)Uf(x)dx < Coel|Y||2
en ng\Bg en 326\36
< Ciel|d]|avp,
our proof is complete. O

: 2N a N+2 oe 2N 2N—« 2N-2—«
N Sa;e 2. For A sufficiently large, <p< and N = 3,4 or =57% < p < =55 and

Proof of Case 2. Define g, : [0,+00) — R by
2

t A
(1) = Tago(tu) = 5 [ (190l + (AW + V(o) ] do o Bo) 5
RN 7% 2- 204

We already know that max ga(t) is attained at some t) > 0. Since ¢} (t)) = 0 we have

t*2«D(u,).

/ Ve + (JA@)P + Va()) luef?] dz = X377V Blu) + 6% D(w).
RN

Thus ty, — 0 as A — +oo and

tr? A 2
max Jav, (tue) = o /RN [IVue ()2 + (JA@)[2 + Vo (@) Jue(@)[] dz — %tﬁ”B(ue) — mﬁ 2 D(u.)
t 2
o L I+ (A + Vi(a) fs () ] o
Since ty — 0 as A = +o00 and N+2 a‘; (SA)% > 0, we conclude that
N 2 - —x
b [Vl + (A + Vo(e) fus(o)?] dr < G (5 ¥5%
for A > 0 sufficiently large.
Therefore,
N+2—a«a 2N—a
tu,) < — = ~
i Jaete) < 5N —ay BT
for A > 0 sufficiently large. O
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1.2.2 The proof of Theorem

Some arguments of this proof were adapted from the articles by C.O. Alves and G.M. Figueiredo
[3] and by O.H. Miyagaki [3§].

Maintaining the notation introduced in subsection [I.2.1} consider the energy functional 14y
H) (RN, C) — R given by

L D) — 2 B).

2-2% 2p
We denote by Ny the Nehari manifold related to 14y, that is,

1
Iyv(u) = §||u||2A,V -

Nay = {u € By y®Y,©)\ {0}« lul}y = D(w) + AB(u)}

which is non-empty as a consequence of Theorem [I5} As before, the functional 14 satisfies the
mountain pass geometry. Thus, there exists a sequence (u,) C H}LV(RN ,C) such that

Iy v (un) =0 and Lyy(uy) = dy,
where d) is the minimax level, also characterized by

dy = inf max [ 4y (tu) = inf Iy (u) > 0.
YT weny  BY,0\0) 120 A (tu) s av(u)

We stress that, as a consequence of (V3), we have Iy (u) < Jav,(u) for all u € H) ,(RY, C).
The next lemma compares the levels dy and c,.

Lemma 19 The levels dy and cy verify the inequality

N+2_Oé 2N —«
2N —a) VT

dy < cy <

for all X > 0.

Proof. Let u be the ground state solution of problem ([1.3)) and consider #, > 0 such that
tyu € Ny y, that is

0 <dy <suplav(tu) = Lry(t,u).
>0

It follows from (V5) that

0<dy <Isv(tyu) < Jay,(tyu) < sgg Javy(tu) = Jav,(u) = cy.
t>

Therefore,
dy < cy.

The second inequality was already known. O

Proof of Theorem [1} Let (u,) be a (PS)4, sequence for I4y. As before, (u,) is bounded in
H} (RN, C). Thus, there exists u € H} ,(R",C) such that

u, = u in Hj,(RY,C).
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By the same arguments given in the proof of Theorem [I5] u is a ground state solution of

problem , if u # 0.
Following closely [3], we will show that u = 0 cannot occur. Indeed, Lemma |§] yields

lim Wlu,|? dz = 0 (1.33)

n—oo RN

since W € L= (RY,C) and u, — 0 in H} (RY,C) (see Appendix B.2). So,

[ Jave (un) = Lay (un)| = 0n(1)

showing that
JA,VP(Un> — d)\.

But, for ¢ € H) ,(R",C) such that [|¢|[ay < 1, we have

2

(T (1) — Ty () - 0] < ( W dx) —0.(1).

RN
Thus,
JA,VP (un) = 0n(1)
Let t, > 0 such that t,u, € May,. Mimicking the argument found in [2, 27, 144} 48], it

follows that
t, -1 as n — o0 (1.34)

(see Appendix [B.3]). Therefore,
ex < Javp (thun) = Jav, (Un) + on(1) = dy + 0,(1).

Letting n — +o00, we get
oy < dy

obtaining a contradiction with Lemma [I9] This completes the proof of Theorem [I} O

1.3 The case f(u) = |u[""lu

1.3.1 The periodic problem
In this subsection we deal with problem @ for f(u) as above, that is,

2072 + NulP~tu, (1.35)

1 *
—(V +iA(@)*u + Vp(z)u = <W * |u 20) lu
x (63
where 1 < p < 2* — 1.
We observe that in this case the energy functional J4 y;, is given by
1 A

D) — —— [ JuJr*d,
2.2

1
JA,VP(U’) = 5”“”124,‘/73 - p + 1 RN
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where, as before

pw=[ (5 |a L B e

By the Sobolev immersion and the Hardy-Littlewood-Sobolev inequality (see Appendix
., Proposition (49 , we have that J A, 1s well defined.

Definition 1.3.1 A function v € H) . (RN,C) is a weak solution of (1.35)) if

1 * * - —
(U, ) a vy — 9%/ (— * \u]%) |u|? " 2urp do — A 9%/ lulP~ugp dz = 0
Ry \|7[* RN
for ally € H}, (RY,C).
As before, we see that critical points of J, y, are weak solutions of (|1.35]) and

Tayp () - = [[ullf v, — D(w) = Al

We obtain that J, v, satisfies the geometry of the mountain pass (see the proof of Lemma E[)

As in Section [I.2] the mountain pass theorem without the PS condition yields a sequence
(un) C Hj . (RN, C) such that

JI/4,V7: (uy,) — 0 and Javp(Un) = c,
where

Cy = gel%“ tem[gol(] Javp (7(1))

and

I'={yeC ([0,1], H}, (RY,C)) : 7(0) = 0, Jay(7(1)) <0}
Considering the Nehari manifold Jy4 v,

My, = {u € Hyy, RY,C)\ {0}« [|ulhy, = D(u) + Aulljiy
by proceeding as in the proof of Lemma [13| we obtain

Lemma 20 There exists a unique t, = t,(u) > 0 such that t,u € May, forallu € H) . (RY,C)\
{0} and Ja v, (t,u) = max Javy(tu). Moreover cy = c§ = ¢y, where

* = inf J d = f Ja t
A uei\l}u,vp avp(w) and ¢y ueH}A Vn(lRN C)\{0} Hg A Ve ().

Lemma 21 Suppose that u, — ug and consider

B'(uy) - ¢ = Re /RN |lu[P~ urp da

and .
D) v =t [ (el Yo, da
AN
for v € C(RYN,C). Then B'(uy,) - — B'(up) - ¥ and D'(uy,) - — D'(ug) - ¢ as n — oo.
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Lemma 22 If (u,) C H)y, (RY,C) is a (PS), sequence for Jay,, then (uy) is bounded. In
addition, if u, — u weakly in Hil,vp (RY,C), as n — oo, then u is a weak solution of ((1.35]).

Lemma 23 If (u,) C H}y, (RY,C) is a sequence (PS)y for Jay, such that

u, = 0  weakly in H}LVP (RN, C) asn — oo,

with N9 -
J— a —«
b < N+2—a
22N —a) "4 7

then there exists a sequence (y,) € RY and constants R,0 > 0 such that

limsup/ |u, | da > 6,
Br(yn)

n—oo
where B,.(y) denotes the ball in RN of center at y and radius r > 0.

The proof of Lemmas [21] and [23] is similar to that of Corollary [1I} Lemmas [12] and [14]
respectively.

Lemma 24 Let 1 < p < 2*—1 and u. as defined in (1.16). Then, there exists € such that

J tue) < ————
wpJave ) < 55N )

provided that either
(1) 3<p<5, N=3and XA > 0;
(1) p>1, N >4 and XA > 0;
(1ii) 1 < p <3, N =3 and \ sufficiently large.
Proof. Consider, for the cases (i) and (ii) the function f : [0,4+00) — R defined by

t2 ) t2-2; )\tp-l—l prl
f@t) = Jayy(tus) = §||Ue||A,vp - mD(Us) - mHuEHp—H

and proceed as in the proof of Case 1, Lemma [16]
In the case of 1 < p < 3, N = 3 and X sufficiently large, consider g, : [0, +00) — R defined by

t2 1 o AP+ 1
1) = Tayiltw) = [ (V0 + (A@F + V(o) ] o2 D) =S 1)
and proceed as in the proof of Case 2, Lemma [16] O

Similar to the proof of Theorem we now state our result about the periodic problem (|1.35]).

Theorem 25 Under the hypotheses already stated on A and «, suppose that (V1) is valid. Then
problem (1.35)) has at least one ground state solution if either

(1) 3<p<5b, N=3and XA > 0;
(1) p>1, N >4 and XA > 0;
(1ii) 1 < p <3, N=3 and \ sufficiently large.
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1.3.2 Proof of Theorem [2|

Some arguments of this proof were adapted from the proof of Theorem [1| below , that in turn
were adapted from articles [3] [38].

Maintaining the notation already introduced, consider the functional /4y : H}LV(RN ,C) =R
defined by

1 1
Tay(u) = §|’uH2A,V 5o

«

A
D(w) — = lull3f

for all u € Hj (RN, C).
We denote by N4y the Nehari Manifold related to 14y, that is,

Ny = {ue Hyy ®Y, 0\ {0}« uldy = Dw) + Aulzt}

which is non-empty as a consequence of Theorem . As before, the functional 1, satisfies the
mountain pass geometry. Thus, there exists a (PS)q, sequence (u,) C H) (RY,C), that is, a
sequence satisfying

Iy (un) =0 and Lyy(uy) = dy,

where d is the minimax level, also characterized by

dy = inf max [ 4y (tu) = inf I,y (u) > 0.
A ueH} ,(RN,C)\{0} ¢=0 av(t) Nav A’V( )
As in the Section we have T4y (u) < Jay,(u) for all u € H) ,(RY,C) as a consequence
of (V3).
Similar to the proof of Lemma |19 we have the following conclusion that shows an important
inequality involving the levels d and c,, which completes the proof of Theorem [2|

Lemma 26 The levels dy and cy verify the inequality

N+2—a«a 2N—o
AN —a) T

dy <cy <
for all X > 0.

2% =2

1.4 The case f(u) = |ul]* “u

1.4.1 Proof of Theorem [3

As observed by Gao and Yang [29], the proof of Theorem [3|is analogous to the proof of Theorem
. The principal distinction is that the (PS)., condition holds true below the level &S It
follows from [48, Lemma 1.46] that

/ VuPde = S¥ + 0N
RN
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and
/ lu|? da = S7 + O(eM).
]RN

So, we have
t>0 RN

since

e—0

Observe that the last result is a consequence of

e—0

lim e~ ("2 <C2 Jue () [Pdz — 03€2N_a_(N_2)p> = —00

Bs

and
02/ lu(z)|2dz — Cae®N—o= (V=20 — O(eN-2),
Bas\Bs

The rest of the proof is omitted here.
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Chapter 2

Fractional Magnetic Choquard equation
with Hardy-Littlewood-Sobolev critical
exponent

In this chapter we deal with problem

(—A)Su+ V(z)u = (L * |uf?‘“) Jul% 2w+ Ag(uw) in RY(N = 3)

]

and prove Theorems and [6]

2.1 Preliminary results

In this section we first provide some basic functional setting and then we give some results that
will be used in the next sections. The critical exponent 27 is defined as 2] = 3 6

—2s°
Following [37], we introduce the space of Lebesgue functions L*(R3, V).

L3 (R* R) = {u ‘R* =R : /RS V(z)|ul*de < oo}

[ullo,v = (/R v(:c)yu|2olx>é .

The fractional Sobolev space Hi-(R? R) is then defined as

equipped with norm

Hy(R*,R) = {u € L}, (R*R) : [u], < oo}

where [-]s is the Gagliardo semi-norm given by

o= m%dm@/)é.
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The space H:(R3; R) is endowed with the norm

N[

lullsy = (lull3,y + [u]?)
We observe that if V' = 1 then we recover the space
H*(R® R) := {u € L*(R*R) : [u], < 0o}

The embedding H; (R*; R) — L(R3) is continuous for any ¢ € [2, 2], see [23, Theorem 6.7].
Namely, there exists a positive constant C' such that

|ullpaqrsy < Cllulls,y for all u € Hy (R*;R).

Considering a compact subset K C R?, we also define the localized norm on the space

3, (K5 R) by
1
ulx 2
ol = ([ VeoluPar+ [ [ D20 g0a,)" 21

Now we introduce the spaces of complex functions. Let L2, (R?, C) be the Lebesgue space of
functions u : R* — C such that [, V(2)|ul*dz < co endowed with the (real) scalar product

(u, V)2 g3 c) = 9%/ V(z)uv dz for all u,v € L (R?, C),
R3

where z denotes the complex conjugate of z € C.
Following [21], we also introduce the magnetic Gagliardo semi-norm given by

1
: x4y 3
ju(e) — DA ()2
s A= dzd
o ( L] e rdy

Hj v (R*,C) = {u € L*(R* C) 1 u € Li,(R*,C), [u]; 4 < oo}

and define the space

endowed with the inner product

dxdy

u(z
U, V) = (u,v) 2 +Re

Therefore

D=

lulloay = () fty = (luly + w2 )

We deal with problem ([2) in the space H 1, (R?, C) endowed with the norm || - [|s v
The next result is proved in [9, Lemma 2.2].

Lemma 27 The space HY ,(R?,C) is complete and C*(R?,C) is dense in HY \,(R*,C)
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A simple adaptation of |21, Lemma 3.1] proves the next result.

Lemma 28 (Diamagnetic inequality) For each u € H ;,(R*,C)
ul € H*(R*,R) and [[ullls1 < [lulls,av.
Remark 2.1.1 (Pointwise diamagnetic inequality) There holds

[lu@)] = [u(y)]] < [ue) - A uly) (22)
for a.e. x,y € R3. (see [21, Remark 3.2].)

Arguing as in [21, Lemma 3.5] and applying Lemma [28 we obtain

Lemma 29 The embedding
HZV(R?)a C) — Lq(Rga C) (23)

is continuous for q € [2,2%]. Furthermore, for any compact subset K C R® and all q € [1,2}) the
embeddings
Hjl,VORg; C) — Hg,V<K7 C) — Lq<K> (C)

are continuous and the latter is compact, where Hy (K, C) is endowed with (2.1)).
The proof of the next result can be found in [27, Lemma 2.2].
Lemma 30 Let q € [2,2:]. If (uy,) is a bounded sequence in H*(R3,R) and if

lim sup/ |t |?dx =0
Br(y)

n—oo y€R3

for some r > 0, then u, — 0 em L' (R3 R) for all t € (2,27).

The proof of the next result only adapts arguments given for the real case, as in [33] Lemme
4.8, Chapitre 1].

Lemma 31 Let U S R3 be any open set. For 1 < t < oo, let (f,) be a bounded sequence in
LY(U,C) such that f,(x) — f(x) a.e. Then f, — f in L'(U,C).

Now, we consider the minimization problem

s . [ ]zA o . 2
SA T 3—2s inf [u]s,A'
u(y)|?

ueHﬁva?’(C\{O} s b—a
(/ / dxdy)
R3 JR3 |x - y|a

2;,5
D%, (R?,C) = {ueHAV (R3,C / / u(y) dxdyzl}.
’ R3 JR3 |9C —yl*

By density, we have

where

S5 = inf ul?
A ueD;V(R37<C)ngo(R3,C)[ Js.a

Sy = inf [ul?,

u € D 1, (R3,C)N Cge (R3,C)
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where
2*

a,s

DSV(Rs,C):{UEHSV R3. C / / u()| dxdyzl}.
’ R3 JR3 |$_y|a

We claim that

Sy = inf [ul?,- (2.4)

u € D§ 1, (R3,R)N C° (R3R)

In fact, since the set D 1, (R?, C)N C°(R?, C) has less restrictions than D§ ,(R* R)N C°(R?, R),
we have

inf ul?, < inf u)?
ue Dy, (R3,C)N Cgo(R3,<C)[ Lo = u € D§ (RS R)N Cgo(]R3;]R)[ s
that is
S5 < inf [u]2,.

u € D§ 1, (R3R)N C (R3R)
On the other hand, since [|ul]so < [u]sp (see Appendix [B] Lemma we have

inf [uls0 < S5
u € D§ ,(R3,R)NC (R3;R) ’

and ([2.4) is proved.
The next result can be found in Gao and Yang [30, Lemma 1.2]. See also [17, 42, [45]. Lemma
1.2 in [30] deals with another Sobolev constant, which is also a multiple of S.

Lemma 32 S} is a multiple of S, the best constant of the Sobolev embedding H*(R3 R) —
L% (R3,R), more specifically

S;C(3,a)%s = 8,. (2.5)
Therefore, S§ is achieved if, and only if, u has the form

3—2s
2

t
Cl——— ,x € R,
12 4 |z — xo|?

for some 1o € R®, C > 0 and t > 0. Furthermore, u satisfies

OANS,, |uf 2 2~ 3
(—A)u = ~dy | |ul 2u in R®. (2.6)
R

s | —y|®

for a = 4s.

Remark 2.1.2 We emphasize that the constant C (3, «) above, which will also appear repeatedly
below, depends only on «, although we prefer to denote it thus to make explicity its dependence
on the dimension of Euclidean space R3.

Now, for fixed constants £ € R\ {0} and pu > 0, we consider
2 23528 * 1 x
) = + o), @) = e (),
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and the family of functions {U.} defined for x € R? as

U(z) = Ny <£) :
5
Then, according to [45], Claim 7], for each e > 0, U. satisfies

(—=A)*u = |u)**u in R?

and verifies the equality

/Rs B |U|(;,;)_ gig?j)' dz dy—/ U.(x

(3—a)(25—3)

175( ) 845 (3—a+2s) 0(3 CK) 2(3 a+25) U (.T)
gives a family of minimizers for §; which satisfies and

3
Lde =82,

Then

[ _ [ 2 7 22,5 7 2;8
/ / ’Us(x) g&gy)l dl‘dy _ / ‘Ug(x) 5<y)’ dl‘dy — (85)3 a+25 X
rs Jrs T — y[3T2e r3 JR3 |z —yl|*

The arguments in the proof of the next result were adapted from [2I, Lemma 4.6].

Lemma 33 It holds
Si=S5;

Proof.
Let € > 0 and v € C°(R?,R) be such that

2%.s 2%.s
/ [u(=)] u(y) dzdy =1, [u]z <S8 +e.
R3 JR3 ’33 - Z/’a

For ¢ > 0, considering the scaling
3—2s T
Us(T) =0 2 ul—],
@) (5)

we have
2*

a,s

2 | 2
/ [uo () Us (y) dxdy = / / u@)| daxdy =1
r3 JR3 |z — y|* r3 JR3 |$ — y|a

[ua]s,ﬂ = [u]s,o-

and

(see Appendix [B] Lemma [59)).
Changing variables, it follows

_ io(z—y)-A(cZEY) 2
[UU]2A — ‘U(f]:) € 2 U(y)‘ dl'dy
> R3 JR3 |z — y|3+2
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Then, we have

T+

2 s Ju(z) — 7@ ATy ()2 — Ju(z) — u(y)]?
[UU]S,A - [U]s,o = /R3 /R3 |z — y|3+2s dxdy

:/ / <I>a(x,y)dwdy=//<I>a(x7y)dwdy,
R3 JR3 KJK

where K is the compact support of v and

2e ((1 - e DA ) uauy))
|J; _ y|3+25

2 (1 —cos (o(z —y) - A(cF2))) u(z)u(y)
z — y[Fres

a.e. in R® x R? (see Appendix [B] Lemma [60]). (Observe that ®,(z,y) — 0 a.e (z,y) € R® x R3.)
Since A: R? — R? is a C*t, Z3-periodic vector potential, there exists C' > 0 such that

1 — cos (U(x—y)-A (ax;y)) < Clz —yP, (2.8)

for all x,y € K. In fact, since 1 — cosx < %|x|2 for all x € R ( see Apéndice , Lemma , we

have
T+y o2 z+y\|* _ o T+y
1—cos<a(x—y)-A(a 5 ))g;(x—y)-A(a 5 )‘ g;\x—y\2~‘A(a 5 >

< Ol —y|?

Oy (w,y) =

2

for some C' > 0 and for all z,y € K.
Therefore, since u is bounded, for z,y € K and an adequate constant C' we have

[Py (2,y)] < if jz—y|<1

‘LL’ _ y‘1+23’

and

c :
|y (z,y)| < m, if |z —y|>1.

(The first inequality is a consequence of the boundeness of u and (2.8)), whereas the second is a
(

consequence of the boundeness of u and the inequality 0 < 1 — cos (o(x — y) - A (O’m)) <2.)

2
Consider
i 1 1
w(z,y) := C'min |z — y| 12" |z — y|3res

for all z,y € K.
It follows straightforwardly that

Dy (2, y)| <w(r,y) and w e LYK x K).

Summarizing, we have
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a) O,(x,y) — 0 ae (z,y) € K x K as 0 — 0;
b) |®,(z,y)| < w(x,y) for all z,y € K
c) we LYK x K).
So, the Dominated Convergence Theorem yields
timfu 2 4 = [ul2,.
Of course we have
Si < [ua]g,A'

SO,
A = h—>0[u0]814 [u]s() < ‘SO &,
o ’ ’

proving that
S < So

by the arbitrariness of ¢.
The opposite inequality is trivial as a consequence of the Pointwise Diamagnetic inequality
(Remark [2.1.1). In fact, by (2.2 . we have

z:r zty
// |u(z)| — |uly) d ” <// _ia—y)A(Z )u(y)|dxdy
g3 Jrs |z —y[37% r3 JR3 |z — y[3=2 7

which immediately yields

So < S5

2.2 The case g(z,u) = ( o \u|p> u|P~2u

2.2.1 The periodic problem

In this subsection we deal with problem considering g(z,u) = (— * |u|p> |u[P~2u, that is,

|z

1 . 1
<—A>iu+vp<x>u=(W*WS) i u+A(‘ - |u|p) W, (29)

6—
where 5% <p < 27 |
We consider the space

HZ’VP(]R:s,(C) = {u c L*(R*,C) : [u]s.a < oo}

endowed with scalar product

'LL(I‘ — el(m_y)A(ITﬂl)u(y>) <fv<x> — ez(m_y)A(zTﬂl)rU<y))
s = s R dxd
(U, v)s avp = (u U>L2V7,+ ¢ /R3 /RB z — y[3+2s ray
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and, therefore corresponding norm

-

2
s = (llullfe +[24)"
P

We observe that the energy functional J5 ., on Hj ., (R? C) associated to (2.9) is given by

. 1 A
T () 1= Sl - 22%04)—%B<>
where
z)[Plu(y)
B(u) = x |ul? ) |u|Pde = d dy
|$|O‘ r3 JR3 |513 —yl®
and

2 2 )[Pos u(y) | *as
Dy(u) = /  |u|“s | |ul®esdr = / / dzdy.
] R3 JR3 |z =yl

We affirm that J3 1. is well-defined for u € HY ;. (R?,C). In fact ift € [(6 — «)/3, (6 — @) /(3 — 25)]
and 7 = 6/(6—a), then 2 < tr < 27. So, foru € Hj (R C), it follows from the immersion ([2.3)
that v € L' (R3, C), that is, [u|’ € L"(R? C). Since 2 + § = 2, the Hardy-Littlewood-Sobolev
inequality (see Appendix H Proposition E yields

/ / @4y < 06 a) ul?.
rs Jrs T —y|*

B(u) < C1(3,)ul2

Therefore,

and
Ds(u) S 02(37 Oé)

for constants C1(3, o) and Cy(3, a), and the affirmation follows. Moreover, by Lemma 2.5 of [47],
Jav, € Cl(ijP(RS,(C);R).
Here % is called the lower critical exponent and 2}
This lead us to say that ([2|) is a critical nonlocal elliptic equatlon
Observe that )
S = inf M—A
u € Hy 1, (R3,C)\{0} D, (u) 6—a

Definition 2.2.1 A function u € Hj . (R?,C) is a weak solution of (2.9) if

1 1 _
(U, V)5 avp — %e/ (|x| ‘u’% ) |u’2cx s“2urh dr — X Re /3 (W * ]u|p) ]u\p’Zuw dr =0
R
for ally € HY . (R?,C).
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Since the derivative of the energy functional J} 1., is given by

JSA vp( u) - p = (u, <P>S,A,vp

1 1
—9%/ <‘ E |u|2a5)|u|2a5 ug0d$—)\9‘{e/ (W* |u|p)>|u|p_2ug0dx,
R3

we see that critical points of J; 4 1., are weak solutions of (2.9 [2.9).
Note that, if ¢ = u we obtam

T v (W) = [lullZ 4, — Ds(u) = AB(w).

Similarly to Lemma [0, Corollary Lemma [12] and Lemma respectively, we have the
following results.

Lemma 34 The functional J} ., satisfies the mountain pass geometry. Precisely,

(i) there exist p,0 > 0 such that Jjy. |s > >0 for any u € S, where

|52

S={ueH}y,R°C) : ||ullasy = p};

(#1) for any uo € Hjy, (R? C)\ {0} there exists 7 € (0,00) such that |[Tullv, > p and
Ja v, (Tug) < 0.

The mountain pass theorem without the (PS)-condition (see [48, Theorem 1.15]) yields a
Palais-Smale sequence (u,) C HY v, (R? C) such that

S/A’Vp (un) — 0 and Jav, (Un) = e,

where
= inf Javy ((t
s gelrtgl[g):l(] v (1),

and I' = {y € C* ([0,1], H3 1, (R, C)) : 7(0) =0, J5,(v(1)) <0}.

Lemma 35 Suppose that u, — ug and consider

B'(uy) - = fﬁe/ (L * |un\p) |, [Pt dar
rs \ |7[*

Difun) b= | (| \un\%)runr%?un&dx,

[
for ¢ € C*(R3,C). Then B'(uy) - ¢ — B'(ug) - ¢ and D.(uy,) - — D.(ug) - 1.

and

Lemma 36 If (u,) C Hjy, (R* C) is a (PS), sequence for J3y,,, then (uy,) is bounded. In
addition, if u, — u weakly in H} (R3,C) as n — oo, then u is a weak solution to problem

29).
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We now consider the Nehari manifold associated with the Jy v;,.
M vy = {u € Hjy, (R®C)\ {0} : [lull? 41, = Ds(u) + AB(u)} .

Lemma 37 There exists a unique t, = t,(u) > 0 such that t,u € My v, for allu € Hj 1, (R?, C)\
{0} and J3 v, (tuu) = max Sy, (tu). Moreover ¢y, = ¢ = ), where
y t_ ) S S

* : s * % : s
oy = inf J u) and cy = inf max .J tu).
>\s = MS,A,VP A7VP( ) )\s = HZ Vp (RS,C)\{O} tZO A7VP( )

Taking into account Lemma [37], we can now redefine a ground state solution.

Definition 2.2.2 We say that u € Hj y, (R3,C) is a ground state solution for problem (2.9)) if
Iy v, () = 0 and J5 ., (u) = c,, that is, if u is a solution to the equation J%, . (u) = 0 which

has minimal energy in the set of all nontrivial solutions.

The following result controls the level ¢ of a Palais-Smale sequence of J3 y...
Lemma 38 Let (u,) C H ., (R*,C) a (PS), sequence for J® 4y, such that
u, — 0 weakly in H} ., (R* C), asn — oo,

with 549
S — 6—«a
h< T2 Y sy
< 2(6 — a) (SA) 32

Then the sequence (u,) verifies either
(1) up — 0 strongly in H3 1, (R?,C), as n — oo,
or

(ii) There exists a sequence (y,) C R® and constants r,0 > 0 such that

n—o0

limsup/ |up|? do > 0
Br’(yn)

where B,.(y) denotes the ball in R? of center at y and radius r > 0.

We now state our result about the periodic problem ({2.9)).

Theorem 39 Under the hypotheses already stated on A and o, suppose that (V1) is valid. Then
problem (2.9)) has at least one ground state solution if either

(i) se(3,1), 552 <p< 2, and A > 0;

3—2s ;s

(i1) s € (0,1), 552 < p < 52=2 and X sufficiently large.
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Proof. Let cy, be the mountain pass level and consider a sequence (u,) C Hj v, (R?, C) such
that
J v (un) =0 and T4y, (un) = ca,
Claim. We affirm that ¢, < 32J(rgf;)°‘ (Sz)3+672_scia, a result that will be shown after completing
our proof, since it is very technical.

Lemma [36| guarantees that (u,) is bounded. So, passing to a subsequence if necessary, there
is u € Hj 1, (R? C) such that

Uy, = u in HKVP(R?’,C), u, —u in L2 (R3 C) and U, = u a.e x €R3

loc

If u # 0 we are done. If u = 0, it follows from Lemma the existence of r,0 > 0 and
(yn) C R3 such that

lim sup/ u, |* da > 6. (2.10)
Br(yn)

n—oo
We already know from the proof of Theorem (15| that we can assume that (y,) C Z>.
Let
U () 1= up(x + yp).

Since both Vp and A are Z3-periodic, we have
vnlls,ave = llunlls.ave J:Z,V’p (vn) = fo,vp (un,) and JS;,A,VP(UTL) — 0, as n — oo

Therefore there exists v € Hj v, (R3,C) such that v, — v weakly in Hj (R3,C) and v,, — v in
LZQOC(R37 C)’

We claim that v # 0. In fact, it follows from ([2.10]) that

0 <0 < |Jvnllz2z.0)) < llvn = vllz2B.0)) + lIVll22(8,0))-

Since v, — v in L}, .(R?), we have [jv, — v||12(5,(0)) — 0 as n — oo, proving our claim.
But Lemmaguarantees that J*, v (vn) -9 = J% 1., (v) -1 and it follows that J*, . (v)-¢ =
0. Consequently, v is a weak solution of (2.9)).
Since v € M 4y, of course we have ¢} < J3 ., (v), being ¢} as in Lemma [37]. But, from
Lemma it follows that
* s/

< 1
C)\S = c/\s = JA,VP(UH) - 5 AVp (Un) * Un + On(l)

=\ G - 2%) B(v,) + %DS(W + on(1).

Fatou’s Lemma then guarantees that, as n — oo, we have

1 1 3+ 2s —
G =eu>Mz— =) Bw) otas—a
: 2 2p 2(6 — )

that is, J3 ., (v) = cy,, and we are done. The same argument applies to the case u # 0 in (1.14).

Ds(v) = Ji v, (v)
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We now prove the postponed Claim, that is, we show that c,, < 3J(r625aa (S A)3+2s a. Observe

that, once proved the existence of u. as in our next result, then

3—1—25—@(52)3&—5%'

<
0 <er = inf max Jay, (v(1)) Sup Ja v (tus) < 26— a)

Lemma 40 There exists u. such that

3+2s—« 6—

sup J% 4 v (Lue) (8%) 57

< e —
>0 ’ 2(6 — @)
provided that

() s € (3,1), G2= < p <2,

and A > 0;

(i1) s € (0,1), 552 < p < 522 and X sufficiently large.

Observe that the condition stated in this result is exactly the same of Theorem 4] and Theorem
B

Proof. Following [30, Lemma 14] we see that u(z) = 1/(1 + |2|>)®729/2 is a minimizer
for S5. From [20] Theorem 1.1] it is known that it is also a minimizer for S,, where S5 =
lnquHS R3,R \{0}[ ]

If B, denotes the ball 1n R3 of center at origin and radius 7, consider the balls By and Bas
and let ¢ € C°(R3,R) be such that 0 < <1 in R?® and

Yp=1 in Bs and ¥ =0 in R*®\ By. (2.11)

We consider .

U.(x) = e~ 3729/2yx (E) and us(x) = Y(x)U(2) (2.12)

“(733/(%))

||U||2§

for e > 0 and = € R3, where u*(z) =
In the proof we apply the estimate

* —
2(1 3—2s

(/W /R% el Ix—ZF(“ v 'dedyf_}; > (0BT —0 (<)) 2y

which can be proved following [30), Section 3] or [42], Sections 2 and 4].
Following closely Guo and Melgaard [32], Lemmas 4.2 and 4.3] and Servadei and Valdinoci [45),
Proposition 21| we have the following inequalities (See Apendix B, Lemma .

[ue]ia < (US4 + O(7)

and

[Uelsa < [w]50 + O().
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that imply that

w24 < (C3,0)758;) ™ + 0(72) + 0=

3
since [u*]? ) = (C’(3,oz) 3512538) * (see (2.5) and (2.7)).

Case 1. s€ (3,1), 552 <p<2;,and A> 0.

Proof of Case 1. Consider the function f : [0,400) — R defined by

. t2 ) t2-2:;7$ )\tQp
F(0) = Ty (00) = Sl vy — D) = 2 B,

The mountain pass geometry (Lemma @ implies the existence of t. > 0 such that
sup Jj v, (tue) = J4 v, (touc). Since t. > 0, B(u:) > 0 and f'(t.) = 0, we obtain
>0

1

Uu 2 2(23,3*1)

0<t. < (—H 5“;:;/7’) = Su(e),
S €

thus implying
el v, = Ds(ue) (Sae))*a=1,
Now define g : [0, Sa(e)] — R by

t2~2*

a,s

t2
g<t) = EHUEHiA,VP - 2'—2;475D8(u8).

So,

t2~2(’;’s
L 9%
2-2%

9(t) = %Ds(ua (Sale))?Paet) —

Dg(u.).

(2.14)

(2.15)

Considering ¢t € (0,S54(¢)), since t > 0 and Ds(u.) > 0, it follows that ¢'(¢) > 0, and, consequently,

g is increasing in the interval [0, S4(¢)]. Thus,

3+2s —«

By D)8

0<g(t:) <

We conclude that

6—a
) 3+2s—a

2.2% (HuSHz,A,Vp
Dy(ue)(Sale))™ s = 555
_Ds (U/E) 3+2s—a
and therefore
2 6—a
3+2s —a (llucll5ay,) 5>

2(6—04) Ds(us)?j;%

0<glt:) <
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Since J3 v, (tue) = g(t) — Ziptm’B(uE), we have
6—a

2 3+2s—a
3+2s —« ( e 15,40 ) _ itzpB(us)

JS tg S < 3—2s
A (fetie) 2(6 —a) \ D,(u.)5 s 2p ©

But [|ucllf v, = lluellzg + [uels 4 implies

Ue || 1
lecllnye _ [ Vel
R3

3—2

3—2s
D, (u.) o=e (Ds(ue)) o=
_ pilz—y)-A(EEY) (1)]?
e 2 Ju(y)|
dxdy

1 |ue ()
+ 3=2s 3+2s
(Dy(ug)) 5o Jrs Jrs |z =y

Therefore, we conclude that

34+ 2s —« 1
J5 o (teug) < — V; . 2d
A tee) < G ( o <u5>)%_%: [ Vi(a)us(a))
6—a
_ Li(z—y) A(“”y) 2 3t2s—a A\
c ue ()l da:dy) — 242 B(u,).

B L L
s(ue)) Ga R3 JR3 |z — y|3t2s 2p

Since, for all 3 > 1 and any a,b > 0 we have (a + b)° < a” + B(a + b)?~1b, considering

y)-A(EEY

2) 2

/ / ’u ’L
Rg RS |x |

= [ Velua(o)s

(D8<u6 6704
and = m, it follows
6—a
3495 — 1 . _i(m—y)-A(ZEY) i 2 3F2s—a
JZ Vp(teve) < Fes—a 3-2s / |u (x) c 3+22 “ <y)| d.Tdy
206 —a) |\ (D,(u))s e Jrs Jrs |z — y|32
zty
3+25s -« &3 JR3 |x—y|3+28
3—2s
1 34+2s—a
t—— Vp(fv)lue(x)l2dx> (2.16)

(Ds(ug)) o= Jrs
! /R 3 Vp(x)|u5(x)|2dx] - %tng(us).

3—2s

(Du(ug)) e
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Taking into account (2.13) and (2.14)), since s € (%, 1) we conclude that
_6b6=a e
[UE]g,A Shaema [us]z’o —|— 0(53*25) + 0(82) 3+2s—a
(Ds(ue)) == (Dy(1)) 5
_b=a
B [us]g’o 4 0(63_25)> 3+2s—a

IN

_ [ CEaEE s o |
(e (sp)s -0 (=) =
Similar to and we have
(CETTE (S#+OE™) o 1+0E2)

(cEmisy= —o ()" (1-0(=))

and

6—a
3+25—a

3—2s 3—2s foa
14+0(e )3_23 <1—|—C(3,Oz)-0(8 )+O(53_28)'

(o) (o)™

Moreover, since for € > 0 sufficiently small it holds

2s

(o[ =}

we get, for € > 0 sufficiently small

6—a
34+2s—a

14 O<€3—25)3725 14203, 0) (O (53_25) +0 (5%))

(o)

<140 <€min{3—25,6770‘}> —14+0 (63_28) ’

where the least equality follows from 0 < v < 3 and s € (%, 1).
Therefore, we conclude that, for any € > 0 sufficiently small, we have

el N\t
W < (808)3+257°‘ + 0, (6 S) . (217)
s uE 6—a
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Combining (2.16)) with (2.17)), for e sufficiently small, we have

s 3+2s —« 5\ o2 3—2s
JA7V7? (taug) < 2(6——60 (80)34*25704 +0 (5 )

(2.18)
32—23
1 1 ) 1 / )
+ - | ——— i+ ———- Vo(x)|u.(x)|“dx
2<Dmm%ﬁ A (D SO )
1 / 2 Ao
R — v Vp(z)|ues(z)|[*de — —t2P B(u.).
Do) = e P(2)]ue()| o (ue)
We claim that there is a positive constant C such that, for all € > 0
2 > (. (2.19)

So, from Lemma 33] (2.15), (2.18) and (2.19) we conclude that, for some constant Cy > 0 and

e > 0 sufficiently small we have

3+2s—a

Jj,V'p (tsus> < m (S?)m + O (83723)

1 1 Sigszja 1
+5 —_zsusi -—_Q‘S/Vquachx—C’Bu6
2<D¢@aa HAW> D EE Jp PPOle(0)Pde = Cuus
3+25 —« 6—a
SA 3+2s—a 220
2(6 — ) (57) (2.20)

+0 (7)) + % - /}R3 Vp(x)|ue(z)|*dz — CoB(u.).

3 25 — _6b6—a
= 2+6 S — (Sf) BH2s-a | 0(53—25) +Cl/ Vp(a:)]ug(a:)\de . C()B(ug),
( - Oé) R3

where C; = %‘5)2.

By direct computation we know that, for e < 1, since ¢(x) = 0 for all z € R3\ Bys and ¢ = 1
in Bs, we have
B(ug) > 0386—04—(3—25)])'
where C5 := C(3,s,p).
Since Vp(x) is bounded, (2.20) and the last inequality imply that
3425 — —a
% (S5)7% = + 0(32) + O / e (2)[2dz — CyeS—o=B=297 (2.21)
-«

]R3

Shup (teue) <
We are going to see that

liH(l) g3t (Cg/ |u. (7)]*dz — 0386“(325)p> = —00. (2.22)
E— R3

In order to do that, it suffices to show that

li_r)r& gm3t2s <C’2 |ug(z)Pdr — 0356_0‘_(3_25)”) = —00 (2.23)
€ Bs
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and
C’g/ lug(2))2dx — Caeb B2 — (372, (2.24)
Bas\Bs

Since

3—2s
0(83_28) + 02/ |ua(x)|2d:v _ 0366—(1—(3—28)10 — 32 |:O(€ )
R3

53725
+€—3+2s (02/ ”LLE(JZ)‘Qd.CE . 0356—04—(3—23)p):| ,
R3

0 #)+ Gy [ Juclo)fidn = Coct-0-20 < 2.29

R3

from ([2.22]) follows

for e > 0 Sufﬁciently small

Thus, and ([2.25) imply

3+25s -« boa
sup J tu,) < ———— (§A)Fze
t>g) AVP( ) 2(6—04) ( s )
for € > 0 sufficiently small and fixed. Once ([2.23]) and ([2.24]) are verified, the proof of Case 1 is
complete. O

We now prove ([2.23)).

Lemma 41 If s € (3,1), 5252 <p < 2, and X > 0, it follows that

S

lir% 873+2s (02/ ’ug(x)‘de _ 0356(1(325);0) — —00
Bs

E—

Proof. We initially observe that direct computation allows us to conclude that

2

I3
e () P = By S 55 22 / : ’
0

T (2.26)

Bs

where ws denotes the volume of the unit ball in R3.
Now, define

I =g 3%% (CQ lu(x)|*dz — 03560‘(323)7’)

Bs

£ 2
_ —3+23 C 2s r dr — C 6—a—(3—2s)p
( < /0 (14 72)3-2s " 3¢ '

the equality between integrals being a consequence of ([2.26]).
It is easy to show that

: r? : g2 )
523/ ———dr < 628/ dr =& [ § — carctan | - .
o (1+7r2)3=2 o 1+172 €
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Thus,

1)
I. < Qe 44 <(5 — carctan (—)) — Cyedt2s—a=3pt2sp,
€

= g Atds [04 <5 — e arctan (g)) — Oy 2sma=3pt2sp |

We have 7_33% <p <2, and then 7—2s —a — 3p+ 2sp < 0. Therefore, we conclude that

I, - —o0. We are done. O
The proof of (2.24)) follows in similar fashion to that of [16l Lemma 16].

: 6—a 7T—2s5s—a
Case 2. For ) sufficiently large, s € (0,1) and *3* < p < 5552,

Proof of Case 2. The proof follows in similar fashion to that of Lemma case 2. O

2.2.2 The proof of Theorem

Maintaining the notation introduced in subsection consider the energy functional I}, :
H3 (R?,C) — R given by

. 1 1 A
[A,V<U) = §HUHQS,A,V - WDS(U) - 2_pB(U)

We denote by N 4,y the Nehari Manifold related to I3, that is,

Noay = {u € H3y (R, C)\ {0} ull? = Ds() + AB(w) }

which is non-empty as a consequence of Theorem . As before, the functional I} satisfies the
mountain pass geometry. Thus, there exists a sequence (u,) C Hj y(R? C) such that

IS/Ay(un) —0 and IZ,V(Un) — dy,,
where d), is the minimax level, also characterized by

dy, = inf I5 y(tu) = inf I3 > 0.
M= s T ooy T Ty () = Il Ty (u)

The next lemma compares the levels dy, and c,,.

Lemma 42 The levels dy, and cy, verify the inequality

3+2s—« 6-—a
_— S 2s—«
2(6 — «) (Sa)%

d)\s < Cy, <

for all X > 0.
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Proof. Firstly, we stress that, as a consequence of (V3), we have I3 (u) < Jjy. (u) for all
u € Hj(R? C). In fact, we have

ullf v = llullZs + [ulfa =
\4

[ V@@ P+ = [ Vo) = W) Pds + [

that implies

[ W@w)lde = /R V() [u(z) 2dz — /R V() u(z)Pdz < oo.

Since / W (x)|u(x)|*dr > 0, we have
R3

/R3 v(x)\u(x)de—Ag%(x)yu(x)\de_/Rgvv(gj)\u@),zdx</ V,(2)|u(z)dz.

R?)

So,
ol = [ V@l P+l

< [ ValaluPds + (a2,
R3

= l[ull? 4v,

and the affirmative follows.
Let u be the ground state solution of problem and consider ¢, > 0 such that t,u € N; av,
that is
0 < dy, <suplyy(tu) = I}y (L)
>0

It follows from (V5) that

0 <dy, < Ihy(twu) < iy, (tu) < sgg) oy, (tu) = T4y (u) = ¢y
t>

Therefore,
d,\S < Chy,-
The second inequality was already known. O

Proof of Theorem . Let (u,) be a (PS)q4,, sequence for I3 ;. As before, (u,) is bounded in
H3 (R?,C). Thus, there exists u € Hj (R? C) such that

u, = u in Hj,(R?C).

By the same arguments given in the proof of Theorem [39] u is a ground state solution of

problem (8), if u # 0.
Following closely [3], we will show that u = 0 cannot occur. Indeed, Lemma [31] yields

lim Wlu,|? de =0,

n—oo R3
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since W € L2(R3,C) and u, — 0 in Hj ,(R?,C). So,

Ujl,vp (Un) — [Z,V(un” = on(1)

showing that
J:ELVP (un) — d)\s .

But, for ¢ € Hj ,(R?, C) such that ||¢]lay <1, we have

(Fpa 1) = )l < ([ Wl as) " =0,

Thus, /
JSA,VP (un) = 0n(1)
Let ¢, > 0 such that t,u, € M ay,. Mimicking the argument found in [2 27, 44l 48], it
follows that ¢,, — 1 as n — oo. Therefore,

cx, < v, (tatin) = Jh v, (Un) + 0,(1) = dy, + 0n(1).

Letting n — +o0, we get
ox, < dy,

obtaining a contradiction with Lemma [#2] This completes the proof of Theorem [4

2.3 The case g(u) = |u|’"lu

2.3.1 The periodic problem
In this subsection we deal with problem for g(u) as above, that is,

1 . .
(—A)5u+ Vp(z)u = (— * |u|2a’3) |l 720+ N|ulP~u, (2.27)

[

where 1 <p <27 — 1.
We observe that in this case the energy functional Jj ;. is given by

) 1 A
Ty, (u) = ”uHsAVp ﬁDs(U) o1 L ulPtde,

where, as before

2:\4,3
Dy(u) = / = 5 |u)|?es |u|2“dx—/ / — a)| dzdy.
R3 ‘33| R3 JR3 \x yl

By the Sobolev immersion ({2.3)) and the Hardy-Littlewood-Sobolev inequality (see Appendix
, Proposition , we have that Jj -, is well defined.
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Definition 2.3.1 A function u € H 1., (R? C) is a weak solution of (2.27) if
— L 2:; s 22 3_2 / —_ p—1, —
(U, ©)s a,v, — Re s |ules | Ju|*es"2uhde — A Re | |ulP" upde =0
AN R3
for ally € HY . (R, C).
As before, we see that critical points of J3 1., are weak solutions of (2.27) and

1
Ty v () - = [[ull? v, — Ds(u) = Allull 3.
We obtain that J% . satisfies the geometry of the mountain pass (see the proof of Lemma .
As in Section the mountain pass theorem without the (PS)-condition yields a sequence
(un) C Hj v, (R?, C) such that

8147‘,7) (un) — 0 and i v, (Un) = ¢,
where
= inf J t
ex = Inf max Ja vy (7(¢))
and

I'= {fy € Ol ([07 1]’HZ,VP(R37C)) : 7(0) - 07 JZ,VP(’Y(]')) < O} :
Considering the Nehari manifold associated with J3 .
Miavp = {u € Hyy, (R, C)\ {0}« [Julhy,, = Ds(w) + Mullpii}
by proceeding as in the proof of Lemma (13| we obtain

Lemma 43 There exists a unique t, = t,(u) > 0 such that t,u € Mg v, for all
u € Hj ., (R? C)\ {0} and J3 1., (t,u) = max S v, (tu). Moreover ¢y, = ¢ = ¢y, where
b K t_ b S S

E3 . S >k : S
s = inf J u) and = inf max J tu).
AT ue Mg avp Ave (1) A e H3 ) (B3,0)\{0} £20 A ()

Lemma 44 Suppose that v, — ug and consider
B'(u,) - =Re [ |ulf~ uyp da
R3
and .
D' (uy,) - = i)%e/ <— * \un|2a) |t |22 2,0 A
s\ |2[®
for v € C(R3,C). Then B'(uy) -1 — B'(ug) - and D'(uy,) - — D'(ug) -1 as n — oo.

Lemma 45 If (u,) C Hjy, (R* C) is a (PS), sequence for J3 ., then (uy,) is bounded. In
addition, if u, — u weakly in Hj (R3,C), as n — oo, then u is ground state solution for
problem ([2.27)).
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Lemma 46 If (u,) C Hj v, (R* C) is a sequence (PS), for J5 ., such that
U, =0 weakly in H . (R, C) asn — oo,

with 549 ]
S— o S
b < 83+257a
206 —a) 4

then there erists a sequence (y,) € R® and constants R,0 > 0 such that

limsup/ |u, | da > 6,
Br(yn)

n—oo
where B,(y) denotes the ball in R® of center at y and radius r > 0.

The proof of Lemmas [44] [45] and [46] is similar to that of Lemma [35], Lemmas [12] and [38] respec-
tively.

Lemma 47 Let 1 < p < 28 — 1 and u. as defined in (40). Then, for s € (%, 1), there exists €

such that 549
S — 6—a
T5 o (tv) < 202 T g yaERS

provided that either

(1) 52 <p < 2% and X > 0;

(i1) 1 < p < 852 and X sufficiently large.

Proof. Consider, for the cases (i) the function f : [0, +00) — R defined by

s 2 e 2 AL
f(t) = Jiv, (tu.) = EHUEHS,A,VP - ﬁDs(Ua) - m”ufl‘p-i-l

and proceed as in the proof of Case 1, Lemma [40]
In the case of s € (0,1), 1 < p < gs_;i and A sufficiently large, consider gy : [0,+00) — R
defined by

s e 2 AP e
gA(t) = T3y, (tue) = §||Ua||s,A,vp - ﬂDs(Ua) - m”ufup—&-l

and proceed as in the proof of Case 2, Lemma [40] O
Similar to the proof of Theorem [39) we now state our result about the periodic problem ([2.27)).

Theorem 48 Under the hypotheses already stated on A and «, suppose that (V1) is valid. Then,

for s € (%, 1), problem has at least one ground state solution if either
(i) &2 <p<2;—1 and X > 0;

(i) 1<p< % and \ sufficiently large.
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2.3.2 Proof of Theorem [5

Some arguments of this proof were adapted from the proof of Theorem [I}
Maintaining the notation already introduced, consider the functional I5 |, : Hj ,(R?, C) — R
defined by

1 A p1

s(w) = ——llullpis

s 1
]A,V(u) = §||u||25,A,V - 9. 9% P+ 1

for all uw € Hj (R? C).
We denote by N 4y the Nehari Manifold related to I Avs that is,

Noay = {u € Hyy (R, C)\{0} : ull? 4y = Do(w) + Mullf1}

which is non-empty as a consequence of Theorem . As before, the functional I}y, satisfies the
mountain pass geometry. Thus, there exists a (PS)q4,, sequence (u,) C H i}V(R?’,C), that is, a
sequence satisfying

Iy y(un) =0 and Iy (un) = da,,

where d) is the minimax level, also characterized by

dy, = inf max I3 ,(tu) = inf I3, (u) > 0.
= I Ly (1) = T (o)
As in the Section , we have Iy (u) < J5 ., (u) for all w € HY ,(R? C) as a consequence of
(V2).
Similar to the proof of Lemma (19 we have the following conclusion that shows an important
inequality involving the levels dy, and c,,, which completes the proof of Theorem [4]

2.4 The case g(u) = |u|*2

U

2.4.1 Proof of Theorem

The proof of Theorem [f is analogous to the proof of Theorem [l The principal distinction is that
3
the (PS).,. condition holds true below the level $S¢. It follows from [42] Proposition 4.1] that

]2 = S + O(=%)

[
R3

3 3
sup Jj v, (tue) < 2852 + 0 2) 4 Oy [ |ue()*da — Caeb B2 < 2852,
t>0 R3

and ,
Lde = 82 + 0(53).

So, we have

since

e—0

lim &~ 727 (02 |uc(z)|*da — 0356_a_(3_25)p) = —00.

R3

61



Observe that the last result is a consequence of

lim e~ (329 (02/ |ug () [*dz — Cg€6_a_(3_28)p) = —00
Bs

e—0

and
02/ lue(z)2de — O30~ B2 = (3%,
Bas\Bs

The rest of the proof is omitted here.
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Appendix A

Main results used in the work

In this appendix we gather some of the main results used in this work.

Proposition 49 (Hardy-Littlewood-Sobolev inequality) Suppose that f € L'(RY) and h €
L™ (RYN) fort,r > 1 and 0 < a < N satisfying % + % —|—% = 2. Then, there exists a sharp constant
C(t, N,«), independent of f and h, such that

/RN RN |x—y| )d dy <C( )Hf”tHhHr (A.l)

Ift=r= N , then

C(t,N,a) = C(N,a) =2 ?gz?v — 2 {;Efv; } .

2

In this case there is equality in (A.1)) if and only if h = cf for a constant ¢ and
fl@) = AR + o — af?) "BV
for some A€ C,0#~v€R and a € RY.
Proof. See [35], Proposition 4.3]. O
We emphasize that inequality (A.1) is sometimes referred to as the weak Young inequality.
Note that (A.1]) looks almost like Young’s inequality (see [35, Theorem 4.2]) with g(z) replaced
by |z|™® in that inequality. This function is, however, not in any L'-space but nevertheless we

have an inequality analogous to Young’s inequality.
Folowing [35], we introduce the weak L7 - space L (RY R).

Definition A.0.1 For ¢ > 1, we define the weak LY - space L1 (RN R) as the space of all
mensurable functions u such that

sup A\[{{z € RY ; u(x) > )\}|% < 00,
A>0

where | - | denotes the Lebesque measure on RY.
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We consider on L4 (RY R) the norm

—1
full =50 A [ Juo)] do.
A A

where 5 + & =1 and A denotes an arbitrary measurable set of measure |A| < oo.

The following results hold.
Lemma 50 LY(RY) C L4 (RV).
Proof. For all u € LY(RY) and A > 0 we have

||u||g > /{| . lu(x)|? de > /{| . Mo dr =M|{z € RY ; |u(z)] > N}
u|> u|>

=(\{r €RY; Ju(a)] > AH»)”

which implies
1
Mz € RY 5 Ju(z)] > Mo < lull,.
Consequently,

1
sup A[{{z € RY 5 [u(x)] > AH7 < [lull,-
A>0

Lemma 51 Ifu(x) = 2|7, 0 < a < N, then u € LL(RY) with q = % and

N ISV
lolly o = = () (A2

where |SN7Y, which is equal to 2nN/? JT(N/2)), is the area of the unit sphere SN~ C RV,

Proof. Since the Lebesgue measure | - | of a ball B,(0) is

L one
B,(0)] = |5V

(see [35], Section 1.2, eq.(8)]), we have

Mz e RY ; u(x) > )\}|% =A|{z eRY; |2 >)\}|%

N

:)\HxERN; || <)\*é}

=
|
S/~
=]~
@)
i
~__
=

o 1 _ _N
= AIB,_1(0)[¥ :/\(N]SN ap) )

which implies that

1 ~
sup AM{z € RY ; u(z) > )\}]% = (—\SNIO < 0.
A>0 N
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This together with the measurability of v implies that « € L2 (RY), with proves the first part of
lemma.
By defintion, we have

|w]|gw = sup |A|7% / |z| ™" dx = sup |A|1%_1/ |x| ™ dx.
A A A A

Considering A = B;(0) it hold

S
A = A-
4= (A3)
and
1 N-1
/ |z|~ dx = ]SNl\/ Vel gy = 1577 |
A 0 N —
So,
- SYUNTTSN Y N 18V F
A|NT “dr = = :
"N,Am’m ( N ) N—a N—a( N )
Now, we are going to show that for arbitrary measurable set of measure |A| < oo it holds
. N [|SNI\ ¥
Alvt “dr < : A4
N R e e (A
Let A be a measurable set of measure |A| < oo and R > 0 such that |A| = |Bg(0)|, that is,
NIA]\ ¥
R = : A5
(5+) A
Since
|Br(0)] = [AN Br(0)] + |A° N Br(0)|
and
| Al = [AN Br(0)| + AN Br(0)]
it follows that
|A° 0 Br(0)| = |AN Br(0)°]. (A.6)

So, from ({A.6)), (A.5) and (A.3)) we have

/ |x|_adx:/ |x|_o‘d:p+/ |z| " dx < / |x|_°‘d:p+/ R “dzx
A ANBR(0) ANBR(0)¢ ANBR(0) ANBR(0)¢
:/ |x|_adx—i—/ R‘“da:g/ \x|_o‘dx+/ |z| ™" dx
ANBR(0) AcNBR(0) ANBRr(0) A°NBRr(0)

R ’SN_1|
:/ |$|_adl': |SN_1|/ tN—a—ldt:—RN—a
Br(0) 0 N—-a

SN NIALYTE N s (1S
N —a \ SV N -« N
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which clearly proves (|A.4)). Therefore, lemma is proved. O

Similar to Young’s Inequality (see [35, Theorem 4.2]) we have the following Weak Young
Inequality, whose proof can be found in [36].
Proposition 52 For f € LY(RY), g € LI (RN), h € L"(RN) with 1 < t,q,r < oo with %+é+% =
2 it holds

/RN - f(@)g(z —y)h(y)dedy) < Kigrn |l fllellgllguwllhllr (A7)

for some number K4, n.

It’s possible to show that the sharp constant is given by
Kigrn = (1/¢)(N/|SYH)YIC(N, N/g, t) (A.8)

(see [35, Pag. 107]). Moreover, using Holder’s Inequality, it can be shown that the best choice
for h (up to a constant) when f and g are given in Proposition [52| is

h(z) = e "D (g f)(=)"", (A.9)
where 0(z) is defined by g * f = €|g * f|.
The following result tell us we can also view the HLS inequality as the statement that convo-

lution is a bounded map from L}(RY) x L4 (RY) to L"(RY).
Proposition 53 Let f € L'(RY) and g € LL(RY) be. Then

1/ N \s N
<=\ o(nZ s “ A.10
lo 1< o (rgne ) € (35t ol A (A10)
wz’th%%—é:l—l—%.
Proof. Replacing function h given in (A.9) into (A.7) ans using (A.8) we have
/]RN g% fI" < (1) (N/ISVTHYICN, N/ g, O flillgllganllg * FI1

which implies that
g * fllr < (1/d )N/ ISYIDYIC(N, N/ g, )| Fllellg g,

Making " = s we have

lg * flls < (1/)N/IS¥H)YACN, N/ g, )| Fllell g

whit % + é =1+ % and lemma is proved. O

Lemma 54 For all w € L#v-a (RV)

——xwe L (RY),
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Proof.

Considering t = 522~ ¢ =% g(z) = |z|™ and f =w € L%(RN) into (A.10)), and taking
into account that
1+1 1+1<:>2N—04+204 2N 1<:>oz 1<:> 2N
- - = - _— = — _— - r = —
t q r 2N 2N 2N r 2N r a’
n _1(:)04_{_1_]\7 1_N—a(:),_ N
q q/_ N qI_N q/ N q_N—Oé’
and
N
C(N,—,t) =C(N,a,2N/(2N — «)) = C(N, «)
q
we have
1 N—af N \¥ .
T ERR NEE i W M P

N—a/ N \¥ N [\ ¥
- 22 () e () e,

where , in the last equality, we used (A.2)).

Therefore, we have

—*wH < C(N,a)||w] 2~
2N

‘l‘|a 2N—«

which proves the lemma. O

Lemma 55 For all x € R it holds .
1—cosx < §|x|2

Proof. If x =0 it is immediate.
If x > 0 we know that sinz < 2 and |z| = x. In this case, since obviously § > 0 we have

2 1 1
1 — cos x = 2sin? <£> <2<£> :—ZE2=—|ZL‘|2
2 2 2 2

and the inequality holds.
If x < 0 we have obviously |z| = —z and —x > 0, consequently, =* > 0. So, by using previous
case and the cosine function parity, we have

2
_ — 1 1
1 —cosx=1-—cos(—x)=2sin? <Tx> <2 <7I> = 5(—33)2 = 5‘33’2

Therefore, the lemma is proved. ] O

Proposition 56 Le X, Y be normed linear spaces and let A be a linear operator from X into Y.
Then
T, — = Ax, — Azx.

Proof. See [24, Proposition 2.1.27]. 0
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Appendix B

Statements used in proofs of the main
results of work

In this appendix we justify some of the facts used in this work.

B.1 Proof of the statements ((1.21) and (1.22))

We have that

N-2 N
2

(C(N,@))?v=a"% (Spp) % +O(EN?)

N—-2
2N —«a 2N —«

(CV. )% (5) 25 — 0(=25))
(C(N,))25=5"% (Sg1)% + (C(N,a))3=a" (Sy )2 O(V2)

N—-2

— (OWV,0) ¥ (Sa) 5 O(™5))

2N—«a

SH,L) 2

Q
=
2
2

|

Q
ol
[9)
=
&
oz
=
_|_
.
o

=
=

SH,L)QNT_cx (1 _ O(g%)))%

N

(C(N, oz))%‘ e (SHVL)WQ“'QJJV(,QQ [1 0 <E2N2—a>} =

that is,,
e NS
2]1\]\7:204 % 2 N-2 2N —a N=2
(C<N a>> 2N (SHL> - O(g N72) = (SH’L)N”%Y . ( o O(g ) N—2 )
—a 2N —« 2N —« 2N—a 2N—a
(C(N 35,7 —O0(E"s )) (1—0(5 : ))
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On the other hand,

2N—«a

> )

1+ 0(M?) (1-0(E"") + 0 (M) + O(e

(0@ )T (o)

2 O(EN?2)+0(e

2N—«a

)

= (1-0(E"T) T 4+
(1- O ) =
2N—o 2—a N-2 QNT_Q
—(1- o) A OE F )
(1 - 0(75%)) =
which implies that
a
1+ 0(eN2)
<1 _ O <€2N2—a>> 2N—«
2N—a . N+2—a O(eN-2 + 0 €2N2_a Vzoa
- [(1 - oy e Qe )1 O N)]
(1- 055
S 1 . O(€2N2—a)
NIX;EQ
2N — 2N—a . N+2—a N—-2 2N27a N-2 2N27a
b2 1oty QTR ) o) +0k 7))
- 2N —« 2N —« 2N —« 2N —«
(1—0(5 2 )) (1—0(5 2 ))

N—2 2N27a
11 C(N.a)- O™ %)+ 0O(e N—2>

(1-0@E"5))™

where in the penultimate inequality we use the Mean Value Theorem considering

N+2-a OEN2)+0 (52N2_a> 2N —«

a=(1-0("7)) " b= <1_O(€MQQ)>2M and S = T

Therefore, (1.21]) and (1.22)) are proved.

B.2 Proof of the statement ((1.33)
If u = 0, then u, — 0 on H} ,,(R",C) and u,, — 0 a.e z € R, which implies that

[up|> =0 ae x € RY.
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Thanks to continuous immersion H} ,(RY,C) < L* (R",C) we have (u,) € L* (RY,C), what
implies that |u,|? € L3-2 (RY, C). Moreover, we also have that |u,|? is bounded on L¥=2 (RY, C).
So, Lemma [§] it follows that
|tn|?un — 0 in L¥—2(RY,C),
what implies that
lim ®|u,|* dv =0

n—oo RN

for all ® € (%) (RY,C) = L= (RN, C). In particular, since W € L= (RY,C), we obtain

lim Wlu,|* dv = 0.

n—oo RN
O
B.3 Proof of the statement ([1.34)
Consider ¢, > 0 such that ¢,u,, € M4 y. So
tollunll% v = M2 B(up) + 2% D(uy,)
equivalently,
HunH?AV = )\ti(p’l)B(un) + ti(zzfl)D(un), VneN. (B.1)
we also have
on(1) = JA,V(“H) “Up = Hun||124,v — AB(u,) — D(uy),
that is,
un %y = AB(ug) + D(uy) + 0,(1), Vn €N. (B.2)

Firstly, we are going to show that
a) t, 4 0asn— oo.
b) limsupt, < 1.

n—oo

In fact, suppose that t,, — 0 as n — oo. Since the sequences (B(u,,)) and (D(u,)) are bounded,
it follows from (B.1)) that ||u,||a — 0 as n — oo. Since Jo v (uy) < 3lunll% v, we deduce that
0<cy <0,

which is a contradiction. Therefore,

t, 70 as n — oo,

which proves a).
Now, suppose that there exists a subsequence of (¢, ), still denoted by (¢,,), such that ¢, > 1+,
for all n € N and for some 6 > 0. From (B.1) and (B.2) we have

0= (2" = 1)B(ua) + (6% = 1)D(un) + 04(1),
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that is,
on(1) = M2P~Y — D) B(u,) + (2%~ — 1)D(u,). (B.3)

Consider f : [0,4+00] — R defined by
ft)=t"u>0

Since f is increasing , then
th>140>1= f(t,) > f(1).

Taking 1 = 2(p — 1), we have
ti(Pfl) > (1+ 5)2(10*1) > 1,

that is,
2= 1> (146)*P Y —1>0.

Similarly,
22D 1> (146)*% Y —1>0.

From (B.3) and t, > 1+ 4, we obtain
on(1) > A[(1+0)*P"Y —1]B(u,) + [(1 + 6)**~" — 1] D(u,), (B.4)
for all n € N e u, € Hj ,(RY,C)\ {0}. From (B.4) we see that
0 < A[(1+6)2P"Y —1)B(u,) < 0,(1)

and
0 < A[(1+46)%%=Y —1]D(u,) < 0,(1),
So, B(u,) — 0 e D(u,) — 0 as n — 0.
By using this last statement and (B.2)), we see that ||u,|| 4 — 0; this implies that
Cx S 07

what does not hold. Therefore, b) turns out. From a) and b), we conclude that (¢,) is bounded
and, going on a subsequence if necessary, t,, — to, with ¢y € (0, 1].

Now we will prove that 0 < ¢3 < 1 cannot occur. In fact, suppose 0 < tg < 1. Since (u,) is
bounded, from and we have that (B(u,)) and (D(u,)) are bounded on R. So, going
to a subsequence if necessary, B(u,) — {1 and D(u,) — ly, with l; > 0 and I, > 0. Notice that
l1 e ly are not both null, otherwise we would have ||u,||4y — 0 and, consequently, ¢, < 0, what
is a contradiction. Taking the limit on , as n — 00, we obtain

0= A2V — 1)y + <t§<23” - 1)12 <0,

which is a contradiction. Therefore, ty = 1, that is,

t, — 1.
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Lemma 57 We have
cr=0\=cy\

where
o) = Hellfﬂ mmax Jave(7(1)),
I'={yeC ([0,1],H}, (RY,C)) : v(0) =0, y(1) <0},
Y= inf
Cx we lf\r/llA,vp JA»VP (U),
and
o= inf max Jy4 v, (tu).

u € HY (RN O)\{0} t0
Proof. From the first part of the lemma [13| we have
max Javp(tu) = Ja v, (tyu).

In this way, it follows that

Kk ok
Cx =Gy
since t,u € May.
Consider u € M 4y and

g(t) == Jav, (tu).

We have
(1) = Ll — 2 B(tu) Ditu)
= — —_— u) — u
I = g tllave =9 2.2
t2 ) )\tQp t2~22

So, since u € My v, we have
g'(1) = thullh v, = M B(w) — 2% D(w)
= t[AB(u) + D(u)] — M*7'B(u) — t** 7' D(u)
= tAB(u) +tD(u) — M* ' B(u) — t*%7 D(u)
= (tA = Xt*7") B(u) + (t — t*% ") D(u).

Moreover, since u € M4y, it follows that v # 0 and, consequently, B(u) # 0 and D(u) # 0.
We also have

*g(1)=0
e ¢(t)>0ift € (0,1) and ¢'(t) < 0 if t > 1.
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So, the function g has a single maximum point that is reached in ¢ = 1. Then
max Javp(tu) = Ja v, (u). (B.5)

Choose tp € R and u = tyu such that J4 1, (@) < 0. (Observe that Lemma (9) guarantees that
Jay(tu) < 0 for t sufficiently large). So, ¥(t) = tu € I', what implies, from (B.5]), that

— inf < Y
or = inf max Jav, (v(®) < e Javy (7(t))

= J tu
23y e

= J tt
23 Tt

<
max Ja,vy (tu)

= JA,Vp (u)

consequently,
cx < c.

In the following we are going to show the reverse inequality.

Let (u,) a sequence a (PS),, satisfying (L.8). Since (u,) is bounded (see Lemma we
conclude that J) - (u,)u, — 0, as n — oo, moreover, from , for each n € N there exists a
single t,, € R* such that Tav, (tntn)tpu, = 0,V n, that is, t,u, € My4y. Consequently, we have

unl%r, = APV B(u,) + 22D D(uy,), ¥ n. (B.6)

We claim that ¢,, does not converge to 0; otherwise, from boundedness of B(u,) and D(u,), by
using (B.6), we would have |[up||4v, — 0, asn — oo, which is impossible since ¢, > 0.

Also, t,, doens’t converge to infinity due to boundedness of (u,). So, the sequence (t,) is
bounded and, going to a subsequence if necessary, there exists ¢y € (0, 00)such that ¢, — to, as
n — o0.

Since J) ., (Un)un — 0, as n — oo, we obtain

Jun %y, = AB(uy) + D(uy) +o(1), as n — co. (B.7)
subtracting from (B.7)) we have
o(1) = M2P™Y — 1) B(u,) + (£*?«~Y — 1)D(u,), as n — oo. (B.8)

Passing to the limit into (B.8|) we obtain
APV =D+ B3V — 1Dl =0

where

lim B(u,) =1 >0 and lim D(u,) =1l > 0.

n—o0 n—oo

Therefore, ty = 1, that is,
t, — 1, asn — oc. (B.9)
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Notice that by and recalling that t,u, € M4y we have

C; S JA,Vp (tnun)

t?% 2 )‘ 2p 1 2.9%
= EHUYLHA,VP - 2_ptn B(uy,) — mtn *D(uy)
1 A .
=2l — o) - 5 D)

A
— 2 — (1—-#r-Y)B

«

-5 D)

= t2Ja vy (uy) + o(1)
= (tn = DJayp (un) + Javp (ua) + o(1).
Passing to the limit we obtain ¢} < c,.

This concludes the verification of lemma.

Lemma 58
[lullso < [u]so
for all u € Hgy (R?,C).
Proof. We have

[lu(@)] = lu@)|* = u(@)* = 2fu(z)uly)] + [uly)]?,

and

which implies that
u(z) = u(y)]® = |lu(@)] = |uly)].
So,

5 [u(@)] — [u@)I? / Ju(z) — u(y)? 2
lullso /]R3 rs |T —y[3t2s = rs Jrs [T —y[PtE wdy = lulso

that is,
[lullso < [uls0-

Lemma 59 It holds

/ |u6(x>|22’5 U,g(y) 2:;’5 dedy — 1
R3 JR3 |z — y|*
and
[uE]S,O = [U]S,O
fore > 0.
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Ju(z)

Proof. Since /

r3 JR3 |z —y|® B8
obtain
* T\ |2* 2%
/ / ’UE Zas ua( ) %0 dZL‘dy _ 6—(6—a)/ |U (g> | “o|U (g) | e d[Edy
R3 JR3 |35 -yl R3 JR3 |z —y|*
2%, 25,5
:8—(6—(1) '56_a/ |U/(I')| ’ U’(y) ’ d(Edy
r3 JR3 |z — y|*
2%.s 2%,s
[ [ e,
R3 JR3 ’9‘7 - y’a
=1
and

3—2s

|ue( (y)” / / )—e 2 u())
dxdy = = dxd
UE s() /RS /RS |x_ |3+23 Yy w5 Jrs ’.ZIZ'— ’3+23 ray

zy __ ¥\ |2
— 83+2$/ |u( ) u( ) | dwdy
R3 JR3

|z —y[**

— 3+2S‘5_3 25/ ‘U( ) <y)’2dxdy
RS

|£L' _ |3+25

u(x ()
— — 77 dad
/]1@3 /RS ]:c— ’3—1—25 ray

and, so, the lemma is proved.

Lemma 60 It holds

2me ((1 - oA ) uwyuy))

(I)a<x7y) = ]x—y]3+25
21 cos (el — 9) - A (+52))) u@)u(y)
|z =y

Proof. We have
[u(z) — == AEEE ()2 = [EACT Iy () — ()
= Ju(y) | — 29 (=P (y)uz)) + fu()?

and

u(e) = u(y) = u(y) - u(@)? = uly)* - 2% (u(y)ule)) + u(@)?
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So, since u(z) € R, it follows that

[u(z) = == ()~ Ju(w) — u(y)? =2 |Re (u(y)ule)
_g)qe< e(z—y) A(e™3Y),, (_)}
= 2%e (u(y)u(e) — <Ay (y)u())

Moreover, since

1 — e -AESY) — 1 _ cog (a(x —y)- A <€x ; y)) — isin (s(w —y)-A (é‘x ;r y)) )

follows that

(1 G “”*”) w(@)uly) = {1 — cos (e(x —y)-A (J i y))} u(z)u(y)

2
— i {sin <€(x —y)-A (ex ;— y)
which implies that

ulo) — AP ~ fule) = ) =2 |1 cos (o = )4 (252) )| utohutr

and prove the lemma.

Lemma 61 [ holds
[ue]2 4 < [UC)Z 4+ O(E*) (B.10)

and

[Ulia < [w']io + O(7). (B.11)
Proof. Initially, we are going to prove . For this, condider the assertions below.
Claim 1. Let o > 0 be. If x € By, then
[uc(2)| < |Ue(a)| < CeB720/2

for any € > 0 and for some positive constant C' = C(p, $).
In fact, if z € B we get

o\ —(3—2s)/2
U.(z)| < Ce™ 372972 (1 + < 85(23)> ) < CeB=29/2,
eSs
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Since 0 < ¢ (z) <1 for all x € R? so Claim 1 follows.

Claim 2. Let ¢ > 0 be. If x € By then
|V (z)| < CeB-29/2

for any € > 0 and for some positive constant C' = C(p, s).
In fact, first of all we observe that, for any |z| > o, we have that

2\ ~(3-29)/2 12| 2\ L(3-29)/2 2\ ~(3-29)/2
) )
€ € € €
1122 L2\ L(3-29)/2
)
ole €
1 L 2\ ~(3-25)/2
< (1+—> (1+H )
0 £
1 o2\ (22
< (1+—> (1‘1”— >
0 £
3—2s
<(1+,)(5)
0 Y

From (2.12) and considering Ss /29) iy (B.12), we have that, for any = € By,

2) —(3—2s)/2
1 T

T —1—(3-2s)/2
i 14 ‘—
8851/(25) 6331/(25) ( 58;/(25) )

< 057(3725)/2 i 83725 _ 08(3725)/2

|Vu.(z)] <Ce™3-29/2 (1 +

X
IED

Y

which proves Claim 2.

(B.12)

Claim 3. Let § be as in (2.11]). Then for any ¢ > 0 and for some constant C' = C'(9, s) it follow

a) For any z € R® and y € B§ with |z —y| <
3-2s
|ue(x) — ue(y)] < Ce > |z —yl.

b) For any x,y € B§
lue(2) — uc(y)] < Ce 2 min{l, |z -y},

and ‘ ) i
Jue(z) — €Ay (y)] < Ce™2 min{l, |z — y}.

7

(B.13)

(B.14)

(B.15)



Proof of assertion a): Let x € R and y € B§ with |z — y| < g, and let z be any point on the
segment joining x and y, that is, z = (1 — t)x + ty for some ¢ € [0, 1]. Then

2l =ly+tlx =yl =yl —tle —y[ =0 -1(5/2) = 6/2.

This and Claim 2 (considering ¢ = §/2) imply that |Vu.(z)] < Ce®=29/2; 50, by mean value
inequality, see e.g [34], Theorem 5.1],

ue(2) — u(y)| < Ce™>"

Y,

which proves (B.13]).
Proof of assertion b): Let z,y € Bs. If |v —y| < /2, then b) follows from a).

Suppose |x — y| > d/2. Then, by Claim 1 (considering ¢ = §) we have
|’LLE($) - Ua(y)! < ’Ug(l’” + |Ua(y)| < 05(3_28)/2’

which proves (B.14)).
Now, we show ([B.15)).
Since A is bounded, there exists C' > 0 such that

eila—v)ACEY) _ 1] < Cmin{l, \;c - y\}. (B.16)
Then, by claim 1, claim 3 (here, in particular, we use ) and (B.16)), we obtain
us(z) — ez(x—y)-A(T)uE@)‘ < |eilay)-ACSY) _ 1‘ ‘ue )| + |ue(z) — u(y)|

< Ce’ 7 min{l, |z — y|},

which proves (B.15]). So, Claim 3 is proved.
Set

J
L:{(x,y)ER3XR3:$€Bg,yEB§and|x—y|§§},

and }
G:{($>y)€R3XR3:xEBg,yEBgand]x—y]>5},

where § is as in (2.11)).
By (2.12)) we have that

z+
/ / o) = )
uESA dzdy
r3 JR3 y’3+23

_ z(as AT ()2
Bs J Bs |z — y|3T2s

- @ty
Juc(z) — T AT )y (y) |2
+/B§ /135 PR dxdy (B.17)
lug(z) — ATy (y) 2
—|—2/ PRpWEIEE dxdy
Juc(z) — @Ay (y)]?
+2/G PET> dxdy
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By (2.11)) (n|pg, = 0 ) and Claim 3 (here, in particular, we use (B.15) we have

z z—y)- A(I+y) 2 in{1 )2
/ / |u€ 5(y)| dxdy < C€3 2s / mln{ ) |1] y| }dl’dy
c c Bss J Bas

T o — g

< O3 =yl e (B.18)
= | |z| <26 ‘ZU _ y‘3+28 y .

z—y|<1

1
<2 —d:rdy) = O(e37%).
= =

For (z,y) € L, by claim 1, claim 3 (Here, in particular, we use ) and (B.16)), we have

i(x—y)-A(ZLY
ue(w) = @A ()] < fucle) - uely)| +

< Iuela) —ely)] + Ol =yl (B.19)
yl-
Then, by (B.19), we obtain that
_ eile—y)ACTTY) 2 P
/|U5(CU) (& - Us(y)l dlﬂdy§0832s/|z|<(s |x—z|+2d$dy (B20)
L |'I - y| ° |a:fy\§% |LU o y| *
— O( 3— 25)
as € — 0.
Now, in (B.17)) it remains to estimate the integral on G, that is,
lue () — @Ay ()2
/ |x— s dxdy. (B.21)
For this, recalling that u.(z) = U.(z) for any « € Bs thanks to (2.12), we note that, for any
(z,y) € G,
[ue(2) = €A N ()P = U () — AT )
i(z—y) - A(ZEY
= [(Ue(w) = T AEIU(y) + (Uely) = uely))?
i(z—y) A(ZtY
< |Ue(z) — @ DU ()P + Uo(y) — ue(y))
i(z—y)-A(ZEY)
+2|U.(x) — e AU ()| |Ue (y) — ue(y))],
so that
ue(z) — ezm VAT )y, (y)]? U.(z) — el AT (y))?
/ — oy ddy < ’ — e dady
|U-(y) — u(y))*
/ |ac— |3+2 dxdy (B.22)
U.(z) — =AU (y)||Ue(y) — ue
PYCE WIIU5) = ),
|£B _ y|3+23
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Hence, in order to estimate (B.21)), we bound the last two terms in the right-hand side of
B22).
By claim 1 (here used with ¢ = §), we obtain

U-(y) — ()P (-] + b))
| et s | ot

|z —yl >

UZ(y)
<4 | —= _gpd B.23
- /a!x—y!?’”s o (B.23)

= 0(g%7).

as e — 0.
Now, we are going to estimate the last term in the right-hand side of (B.22)).
Recalling (2.12)) and claim 1 it follows

U () — e AT ()] Ue (y) — ue(y))] U(2)U.(y) + U2(y)
i A W T e
By (2.12) (which is valid for any = € R3) and Claim 1, we have
. o\ —(3—2s)/2
U@ < C (1 t ) (024

for any (x,y) € G. So, by using the shorthand notation
0c =0/ (e8)*)

and the change of variable z := x/(sSsl/Qs) and w := x — y, observing that since By C Bj_ as
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¢ — 0 and recalling that s € (%, 1), up to remaning C, by (B.24)), it follows that

U (@)][U- ()] e P\
s—sydxdy < C/ (1 + ’ ) |x _ y|*(3+23)d:r;dy
G

’.13 _ y’3+23 5851/(25)
_ 083 ess, (1 + |Z|2)—(3—2s)/2|w|—(3+23)dzdw

G

= 053/ (1+ |z|2)_(3_28)/2dz
ZEB(;E

= | [P [ @) O
2€B1 z€Bs_\B1

<ce? / |z|_(3_25)dz—|—/ |22 dz
€B; ZEBgE\Bl

8/(eSs)t/ (25)
= Ce® [1/(2s) +/ r= G292,
1

— 083 . (6—28) — 0(83_25),

ase — 0.
On other hand, by claim 1, we have

s 1
/ ‘x — y‘3+28d$dy < Cled32 %535 y635 wdwdy

lz—y|>3

= 0(7%).

as e — 0.
So, by (B.25)) and (B.26|) we have

LR I AELWI) = WD) g < o2

|ZI] _ |3+23

Finally by (B.17)), (B.18]), (B.20)), (B.22)), (B.23]) and (B.27)) we have

) — @ AT (y) 2
dxd
ks, / o=y o
U (z) — /@0 ACTY ()2 32
+2/ ]x—yP”s dxdy + O(e” )
|U. () — @0 AT ()2
< dxdy + O(e>~*°
<[ L y+OE)

as € — 0, which proves (B.10))
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Now, we are going to prove (B.11]).
We have

: z+y
(32 Jur (£) — el AT )y (1))2
Uia=¢ (3-2 )/ 3 dxdy
’ R3 JR3 |z — y[3+2s

B |u*<x) N eia(z—y)A(a""gy)u*(y)P
= dzdy
R |.’L‘ _ y|3+28

[,
_ /RS /RS 2u* (x)u*(y) cos (e(z — y) - A(S”“”-?’))dxdy'

|$ _ y|3+25

Let (u,) C C°(R3 R) such that
u, — u* as n — oo.

(The sequence (u,) exists since C°(R3, R) is dense in H*(RY R) - See [I, Theorem 7.38]).
Since

2 Un(l’)2 + un<y>2 - 2un(x)un(y)
[0 = /R ) pE= dady

we have

[Us]g,A - [“n]g,o

|1- _ y|3+2s

:—/ / <I>g(fv,y)dfvdy—/ . (,y) dady,
R3 JR3 Knx K,

where K, is the compact support of u,,. For € small and x,y € K,,, it follows from the boundedness

of A that
1 — cos (5(:6 —y)-A (8x;y)> < &lz -yl

Moreover, noticing that |z — y| is bounded for z,y € K,,, we have

1 — cos (8(x—y)'z4 (gw—;y)) < Ce*

Therefore, since (u,,) is bounded, there exists C' > 0 such that

(B.28)

Ce? ,
eyl < Y
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So,

/ / en(z,y) dedy —/ O, (z,y) dxdy+/ O, (2, y) dxdy
nJ Ky (KnxKn)N{|lz—y|<1} (KnxKn)N{|lz—y|>1}

<Cs/ dw/ dz+Cs/ dw/
. {l21<1} |Z|1+25 . (i1 |2 — Y32 |3+2S

(B.29)
= 0(&?).
Hence, by and we have
U2 a < [un]io + O(?)
for all n, and taking the limit as n — oo we have (B.11)). Therefore the lemma is proved. O
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