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Resumo

Sistemas de energias renováveis, como energia solar fotovoltaica e eólica, são fontes de
energia muito sensíveis a variações climáticas, o que pode afetar seus padrões de geração.
É muito importante usar mecanismos que possam ajudar a antecipar tais variações e
possibilitar uma tomada de decisão mais informada. Métodos de previsão podem contribuir
para essa tarefa e, portanto, sua aplicação nessa área tem sido amplamente estudada.
Os métodos de previsão geralmente utilizam dados históricos da série temporal gerada
pelo ponto de interesse. Para melhorar a precisão desses resultados, as informações
disponíveis no espaço também vem sendo aplicadas aos métodos de previsão. Essas
abordagens, chamadas de métodos espaço-temporais, utilizam todos os dados disponíveis
coletados em diferentes localidades. Em energias renováveis, variações observadas em
localidades vizinhas podem acontecer em algum ponto de interesse em um futuro próximo,
dado que muitos desses eventos são resultado de fenômenos climáticos. Isso reforça a
possibilidade de que a análise de dados espaço-temporais possa melhorar o desempenho
da previsão em sistemas de energias renováveis. Além disso, eventos climáticos tendem a
influenciar os padrões observados nas séries temporais relacionadas com a produção de
energia no sistema, de modo a apresentarem não-estacionariedade. Tal cenário demanda
o desenvolvimento de mecanismos que permitam ao modelo de previsão se adaptar às
mudanças nos padrões das series temporais. Nesta tese são apresentadas propostas para
o tratamento de tais problemas relacionados com a previsão de energias renováveis. A
partir da extensão de modelos de Fuzzy Time Series (FTS), são aplicadas propostas
para, primeiramente, lidar com o problema de não-estacionariedade de series temporais
de energias renováveis a partir de um mecanismo de adaptação do modelo. Em seguida,
um modelo que também propõe um mecanismo de adaptação, alinhado ao processamento
de dados multivariados, é apresentado e avaliado quanto à previsão de energias solar e
eólica. Os mecanismos de adaptação analisados se mostram capazes de prover um ganho de
desempenho para os modelos propostos, assim como o uso de dados multivariados dispostos
em um contexto de um problema espaço-temporal. O modelo e-MVFTS, que integra
uma técnica evolutiva de clusterização com um modelo FTS para desempenhar previsão
espaço-temporal, apresentou resultados comparáveis a modelos de maior complexidade
e abrangência. O modelo ainda apresenta como vantagens sua robustez de parâmetros
e capacidade de adaptação às mudanças dos dados sem necessidade de novas etapas de
treinamento. Seu mecanismo de adaptação provê uma maior flexibilidade a modelos FTS,
uma vez que não requer uma configuração prévia de seu particionamento e é capaz de
adaptar tal estrutura dinamicamente durante sua execução. Além disso, o algoritmo de
clusterização utilizado no modelo foi originalmente desenvolvido para problemas de fluxo de
dados, sendo portanto apto a lidar com grandes volumes de informação. Tais características
o posicionam como uma extensão dos modelos FTS aplicável ao problema de previsão de



energias renováveis. Adicionalmente, sua fundamentação baseada em FTS o tornam um
modelo cuja representação de regras é de maior facilidade de entendimento, sendo este
um incentivo adicional para que possa ser adotado no suporte a tomada de decisão em
sistemas de energias renováveis. O e-MVFTS ainda apresentou bons resultados em bases
não-estacionarias geradas artificialmente. Portanto, uma avaliação do modelo aplicado a
outros problemas de previsão pode ser uma direção para trabalhos futuros.

Palavras-chave: Energias Renováveis; Energia Solar; Energia Eólica; Séries Temporais
Nebulosas; Previsão Espaço-temporal; Modelos Evolutivos.



Abstract

Renewable energy systems such as solar photovoltaics and wind are sources of energy
very sensitive to climate variations, which can affect their generation patterns. It is very
important to use mechanisms that can help to anticipate such variations and enable more
informed decision-making. Forecasting methods can contribute to this task and therefore
their application in this area has been widely studied. Forecasting methods usually take as
input historical data from the time series generated by the point of interest. For a further
improvement in forecasting accuracy, the information available in space has been also
added to forecasting methods. These approaches, called spatio-temporal methods, make
use of all the available data collected from different locations. In renewables, variations
observed at neighbor locations may occur in the near future at some point of interest, since
many of these events are result of climatic phenomena. This reinforces the possibility that
spatio-temporal data analysis can improve forecasting performance in renewable energy
systems. In addition, climatic events tend to influence the patterns observed in the time
series related to energy production in the system, thus presenting non-stationarity. Such
scenario demands the development of mechanisms that allow the forecasting model to
adapt to changes in time series patterns. In this thesis, proposals for the treatment of
such problems related to renewable energy forecasting are presented. From the extension
of Fuzzy Time Series (FTS) models, proposals are applied to first deal with the non-
stationarity problem using a model adaptation mechanism. Then, another model that also
proposes an adaptation mechanism, aligned with the processing of multivariate data, is
presented and evaluated regarding the forecast of solar and wind energy. The analyzed
adaptation mechanisms were able to provide a performance gain for the proposed models,
as well as the use of multivariate data arranged in the context of a spatio-temporal problem.
The e-MVFTS model, which integrates an evolving clustering technique with an FTS
model to perform spatio-temporal forecasting, presented results comparable to models of
greater complexity and scope. The model also presents the advantages of its robustness of
parameters and the ability to adapt to changes in data without the need for new training
steps. Its adaptation mechanism provides greater flexibility to FTS models, since it does
not require a previous configuration of its partitioning scheme and is able to adapt this
structure dynamically during runtime. In addition, the clustering algorithm used in the
model was originally developed for data stream problems, and is therefore able to handle
large volumes of information. These characteristics position it as an extension of the FTS
models applicable to the renewable energy forecasting problem. In addition, its FTS-based
rationale makes it a model whose representation of rules is easier to understand, which is an
additional motivation for being adopted in support of decision making in renewable energy
systems. The e-MVFTS also showed good results on artificially generated non-stationary



data sets. Therefore, an assessment of the model applied to other forecasting problems
can be a direction for future work.

Keywords: Renewable Energy; Solar Energy; Wind Energy; Fuzzy Time Series; Spatio-
temporal forecasting; Evolving models.
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Chapter 1

Introduction

1.1 Renewable Energy Market

Renewable energy systems are consistently reaching greater space in the global
energy market. In 2019, estimates by the International Energy Agency (IEA) IEA [2019] for
the next 5 years indicated that the power capacity of this energy source was set to expand
by 50% between 2019 and 2024. This expansion was led by solar photovoltaics, which alone
accounts for almost 60% of the expected growth followed by onshore wind representing
25%. A global energy report by IEA in 2020 IEA [2020] reinforced the estimates. The
share of power generation attributed to renewables was 28% in the first quarter of 2020.
In comparison, this value was 26% in 2019 for the same period. Solar photovoltaics and
wind were accounting for 86% of global renewable capacity.

According to ANEEL [2018], renewable energy corresponds to 83% of the energy
matrix in Brazil. Hydropower is still a dominant source accounting for about 63% of
participation, followed by wind energy, with 9.3%. Solar energy has 1.4% of participation.
Given that the country is located in a region of high solar incidence (the sun belt countries),
the market of solar photovoltaic energy can be considered still little explored given its
potential.

At the time of the writing of this thesis, the world is affected by an unprecedented
shock in peacetime caused by the coronavirus pandemic. In order to reduce the spread
of the virus, governments across the world have imposed restrictions on most mobility,
social and economic activities. The impact of such restrictions on energy use is highly
asymmetrical and affect different energy sources according to the energy use which they
are more strongly related. For instance, energy use to power data centers and server
farms was not as affected as aviation jet fuel, which had a sharp drop. In a greater scope,
restrictions in mobility are an important impact on fossil energy sources, such as oil. Initial
IEA evaluations point that during 2020 the energy demand could decline by circa 6%. An
analysis of this scenario in different regions is presented in IEA [2020] and indicates that



26 Chapter 1. Introduction

the use of renewable energy sources is almost unaffected and even presented some growth.
Figures 1 and 2 show the evolution of the energy mix in China and the European Union,
respectively, during the first quarter of 2020. In both cases, renewables have presented an
important share of the overall energy use, suggesting their strong application as a source
for energy used in essential activities. A projected change in primary energy demand by
energy source in 2020 relative to 2019 is presented in Figure 3. The only demand expected
to increase is for renewables, especially because of low operating costs and preferential
access to many power systems. A future after the pandemic can potentially change the
priority of investments and government policies, mainly due to lower budgets and economy
reformulation. Given the mentioned aspects, the investments in competitive renewable
energy systems can be an interesting alternative, since their low costs may also provide
reduced CO2 emissions and foster technology innovation. This reinforces the importance
of designing robust and reliable renewable energy systems.

Figure 1 – Energy mix in China during Q1, 2020

Source: [IEA, 2020]

Figures 1 and 2 also suggest that this scenario constitutes a concept drift event in
the demand that has been causing changes in the energy sector. For the case of renewable
energies, it is possible that drifts also occur in the energy generation. For example, in
Peters et al. [2020], a study carried out in New Delhi, India, observed that the mobility
restriction caused a reduction in air pollution in the region, resulting in significant increases
in solar irradiance for the initial periods of the restrictive measures. That is, there is also
a drift that causes an increase in the generation of solar energy. Therefore, the models
applied to energy systems must be able to consider and adapt to such events, to better
understand their functioning and estimate future values with greater assertiveness.
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Figure 2 – Energy mix in European Union during Q1, 2020

Source: [IEA, 2020]

Figure 3 – Projected change in primary energy demand by fuel in 2020 relative to 2019

Source: [IEA, 2020]

1.2 Renewable Energy Forecasting

Renewable energy systems also bring an uncertainty component related to both its
supply and demand. The risk around this problem can be mitigated with the application
of forecasting methods. Broadly speaking, forecasting is a prediction of some future
events. According to Montgomery et al. [2015], forecasting is often classified as short-term,
medium-term, and long-term. Short-term problems involve predicting events only for
a few time periods into the future (days, weeks, months). At this point there is also
the concept of very short-term (or nowcasting), where minutes or hours are predicted.
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Medium-term forecasting extends from 1 to 2 year into the future and long-term problems
refer to many years ahead. Usually, short and medium-term forecasts are more suitable
for activities carried out more frequently, such as operations management, budgeting and
trading. Long-term forecasts are more concerned to strategic planning.

As discussed in Sweeney et al. [2020], renewable energy forecasts users can be
divided in two main groups: energy market participants and power system operators.
The former deals with buying and selling operations, while the latter focuses on the
maintenance of power supply. Energy markets work in different (and complementary)
timescales. Long-term trading represents agreements for weeks and years ahead, while
day-ahead markets guide the schedules in power plants, which can receive fine adjustments
according to the events during the intra-day markets. For all the cases, an accurate
forecasting is very important to assist the trading operations. Power system operators also
make decisions which can be supported by forecasting models. Among their tasks, a mix of
energy appropriate to the market demand must be provided. It can be more accurate if a
proper estimate of power generation from the different sources is available. The technology
used in the operation of energy systems has been evolving consistently, as well as the
information systems that support the energy markets. Operations occur more quickly,
consequently requiring forecasting models that can return values in smaller intervals. In
this context, very short-term forecasting models have gained more space in renewable
energy systems. A fast turnaround of results is an important feature to the model, where
the time for decision making is reduced and the amount of data to be processed is usually
higher. Hence, in addition to good accuracy, good performance is a desirable goal for a
very short term forecasting model. In this thesis, the models analyzed focuses on very
short-term forecasting.

The solutions presented herein aim to contribute mainly in three aspects for fore-
casting models in renewable energy systems: a) processing of spatio-temporal information,
b) ability to adapt to data and c) model interpretability. These concepts are introduced in
the next paragraphs.

The application of spatio-temporal models has been encouraged by the greater
availability of data. It is increasingly common to provide near real-time data through
different automated sources, such as Supervisory control and data acquisition (SCADA)
systems and remote sensing [Sweeney et al., 2020]. From this, spatio-temporal models
become more feasible, since consist of the analysis of time series observed from different
locations, geographically distributed over a region of study. Two aspects are the object
of interest: (i) spatial, where given the distance between the event and the point of
forecasting, the range of influence is observed and (ii) temporal, where the analysis consists
of determining time intervals from the event lags, that can still exert some influence on
a forecasting model. The main idea is that the identification of phenomena occurring
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in different locations can influence their neighborhood and, therefore, constitute useful
information for a more decisive forecasting. Figure 4 exemplifies such situation in a wind
farm, in which different climatic events observed in neighboring stations, can influence
the performance of the system at different time intervals. To improve the accuracy of this
method, a spatio-temporal approach might consider not only historical data collected from
a specific site but also analyze relevant data from neighbor stations.

2

1

3

4

5

Figure 4 – Wind energy system subject to different climate events

The uncertainty component in renewable energy systems is mainly influenced by
climatic conditions that directly affect their generation. This can be seen when related
time series are analyzed. Figure 5 shows a time series representing three days of solar
irradiance, which is a value directly related to the generation of solar photovoltaic energy.
The series present a daily seasonality related to the daily solar cycle. When several months
are analyzed, changes in their patterns influenced by the different climatic seasons can be
observed. Such patterns are also constantly changing due to other additional events, such
as global warming. In Figure 6, monthly solar irradiance boxplots are shown to illustrate
such changes throughout the years. Therefore, a model capable of accurately forecasting
the power generation today may not be suitable to operate in the coming months or
years. Therefore, it is important that a forecasting model for renewables can provide good
ability of generalization to deal with different climatic seasons, but still be able to adapt
to future changes. Given this motivation, this work also assesses and proposes adaptation
mechanisms to address better forecasts.

Adequate accuracy and fast turnaround are characteristics that enable a model
to solve forecasting problems. However, in a context where the model has the role of
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Figure 5 – Solar Irradiance Time Series

Source: [NREL, 2018]

Figure 6 – Monthly Solar Irradiance Boxplots

Source: [NREL, 2018]

assisting in decision making, it is also necessary for the user to trust the returned result.
In this sense, machine learning research has been making an effort in interpretability. The
concept, discussed in Miller [2019], can be described as the degree to which a human can
understand the cause of a decision provided by a machine learning model. The higher the
interpretability, the easier the understanding of the output is. In the context of renewable
energy, it is expected that, when choosing more interpretable models, the decision made
from the result can be of better quality. As will be discussed in the following sections,
many of the prediction models for renewables invest in greater complexity, representation
and computation, to achieve better performance. In this work, a balance between good
performance and interpretability is taken into account, in order to design more useful
forecasting models.
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1.3 Objectives

The main objective of this thesis is to propose forecasting models for renewable
energy generation, more specifically solar and wind. Therefore, the following objectives
are addressed in this work:

• Analyze the characteristics of time series related to the generation of solar and wind
energy;

• Discuss mechanisms that can adapt the models to changes inherent to the data of
the analyzed time series;

• Propose a model able to use the information associated with spatio-temporal data
to provide a more accurate forecasting;

• Propose scalable models to deal with higher volume multivariate data;

• Combine such characteristics in models based on less complex concepts, to provide
more easily interpretable models and, consequently, with better possibilities of
integration to real problems.

1.4 Major Contributions

Guided by the aforementioned objectives, this thesis presented some contributions,
the main ones being listed below:

• An analysis of the correlations between spatio-temporal data in solar and wind
energy time series, with a focus on the application of a decomposition technique that
helps in the identification of such correlations;

• An assessment of the impact of the use of adaptive mechanisms in FTS models
applied to renewable energy time series, whose patterns indicate non-stationarity;

• The proposal of evolving forecasting algorithm based on FTS and capable of pro-
cessing multivariate time series;

• The application of the proposed new model to the problem of renewable energy
forecasting, using spatio-temporal data.

1.5 Work Structure

To advance the objectives discussed above, the thesis is organized in the following
chapters:
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• Chapter 2 - Solar and Wind Energy Data: performs an analysis of time series related
to solar and wind energy, with the objective of highlighting their characteristics that
constitute problems to be worked on during the thesis, in order to obtain adequate
forecasting models.

• Chapter 3 - Literature Review: presents a review of different approaches present
in the literature to solve the renewable energy forecasting problems.

• Chapter 4 - Fuzzy Time Series: discusses the concept of the Fuzzy Time Series
(FTS), which underlies the solutions proposed in this work.

• Chapter 5 - Non-stationary Fuzzy Time Series: details the Non-stationary FTS
(NSFTS) method, a solution created with the proposal to adapt to the changes
present in non-stationary data. In this thesis, NSFTS is applied to renewable energy
forecasting problems.

• Chapter 6 - Evolving Clustering Algorithm: presents microTEDAclus, an evolving
clustering algorithm originally proposed to deal with data stream problems. In this
thesis, it supports the proposal of a spatio-temporal forecasting model.

• Chapter 7 - Evolving Multivariate Fuzzy Time Series: introduces the Evolving
Multivariate FTS (e-MVFTS), a novel evolving spatio-temporal forecasting model. In
this work, it is evaluated regarding its performance in forecasting renewable energy,
within a context in which multivariate time series are applied.

• Chapter 8 - Literature Review: concludes the thesis, summarizing all the discussions
presented. In addition, new directions for future work are proposed based on what
was conducted in this thesis.
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Solar and Wind Energy Data

As introduced in the previous chapter, one of the central challenges in the problem
of renewable energy forecasting is the uncertainty in time series patterns, resulting from
the nature of the components involved, subject to different climatic factors. In addition,
the analysis of the influence of previous observations or external events related to the
main problem is a common practice in the elaboration of adequate solutions for time series
forecasting. In this way, this chapter performs an analysis of time series related to the
generation of solar and wind energy in order to draw a profile of the type of data in study.
More specifically, the degree of uncertainty associated with these time series as well as the
degree of influence of past observations (lags), seasonality and spatio-temporal data. The
characteristics observed in this analysis illustrate problems that the solutions proposed in
this thesis aim to solve.

2.1 Solar Energy Data

The performance and capacity of a photovoltaic energy system can be assessed
from the amount of solar resources available in the study region. In this context, the
acquisition of solar irradiance data is of great importance, as it directly represents the solar
resource used by a PV system [Nobre, 2015]. Solar irradiance can be divided into three
principal components: global horizontal irradiation (GHI), diffuse horizontal irradiation
(DHI) and direct normal irradiation (DNI). Also known as solar beam irradiance, DNI
refers to the irradiance measured at a surface perpendicular to the Sun, excluding the
losses occurred in the atmosphere. DHI, in turn, represents the irradiance at the surface
gathered from light scattered in the atmosphere. GHI can be calculated from a sum of
DHI and DNI, where the latter is weighted by the cosine of the solar zenith angle z, as
depicted below:

GHI = DNI × cos(z) +DHI (2.1)
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In this thesis, solar irradiance time series used in analysis and experiments refer
to GHI.

Variability in Solar Irradiance

Time series related to solar energy often present inconstant patterns. One of the
most notable contributors to such variability in a short-term horizon is the cloud motion.
Figure 7 compares solar irradiance time series with resolution of 10 min in clear sky and
broken clouds days, from a PV station in Oahu, USA [NREL, 2018]. It highlights the
significant changes presented when the location is subjected to different climate conditions
and the challenges associated to short-term forecasting using such time series.

Figure 7 – Solar irradiance measurements in clear sky and cloudy days

The grouped monthly boxplots in Chapter 1, Figure 6, indicate that variations
in mean and variance of solar irradiance data also can occur in long term. Such changes
can lead to non-stationary patterns in solar irradiance time series, such as those detected
by Yang et al. 2013 in Singapore using the Augmented Dickey-Fuller test. As discussed
in [Pedro and Coimbra, 2012], it is due to the stochastic process that describes the sky
conditions.

Spatial Correlation

Similar patterns of irregularities observed at neighbor stations in close time lags
can indicate a cloud movement. Consequently, it can suggest that some impacts on energy
supply observed at some station are expected to happen at neighbor stations in a near
future. The identification and understanding of such behaviors are a key point for the
modeling of a spatio-temporal forecasting system in solar energy. In this section, spatial
correlation between PV stations is analyzed through their solar irradiance time series. The
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region studied is the solar energy network NREL Oahu, whose map is depicted in Figure 8.
The red arrow indicates the wind direction at the region.

Figure 8 – Map of 17 stations of a PV Network at Oahu. Source: NREL [2018].

There is, however, some challenges for the accurate identification of correlation
between stations. For instance, in Figure 7 it can be noticed that, despite the shape
differences caused by different cloudiness indexes registered in each of the days, there is
still a common trend in both time series, caused by the daily solar cycle. This can result
in a false perception of correlation between the time series. Figure 9 presents the cross
correlations between time series of solar irradiance measured at the Oahu Network stations.
The results suggest highly correlated time series, ranging from .97 to 1.0. However, under
a scenario where the stations are dispersed at different distances and subject to various
cloud movements, such correlation values would be unlikely. Therefore, it is necessary to
remove this trend, leaving only the component associated with the cloudiness, so that the
correlation between the stations can be identified in a more adequate way.

There are several approaches in the literature for trend removal in time series of
solar energy. The most commonly used is the application of a clear sky model [Inman et al.,
2013]. In spatio-temporal models, different clear sky approaches are used [Dambreville
et al., 2014], [Aryaputera et al., 2015], [Yang et al., 2014]. Basically they differ by the
number of parameters considered, which also influences their accuracy. This kind of model
normally uses information from astronomical formulae, combined to fitted parameters. This
dependency of such parameters can be a problem in some occasions. For example, when
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Figure 9 – Correlation Map between Oahu Network Stations. 1

not all the required parameters are available. Also, some models need to be readjusted
according to the geographic region where the system is located. To address such problems,
some data driven approaches are proposed. In Pedro and Coimbra [2012] an approximated
clear sky model was calculated by using a smooth surface over historical irradiance time
series of an entire year. Boland [2015] uses Fourier transform to identify cycles of seasonality
and decompose the original time series into a component represented by a Fourier time
series model and residual time series model. In this thesis, Singular Spectrum Analysis
(SSA) is applied to decompose the original data into a main and a residual part, so the
last one could capture most of the information present in cloud intervals. The method is
explained in Appendix A.

After the trend removal with SSA decomposition the residual data is used to
analyze spatio-temporal correlation in the data set. Figure 10 shows the correlation map
between Oahu stations using residual data. In comparison to Figure 9, it can be noticed
that the mean correlation has decreased, ranging from .5 to 1.0. Moreover, the correlations
have a more direct relationship with the geographic location of the stations. For example,
station DH1 is more correlated to its neighbor DH2 than to a more distant station, such
as AP7. Such information can be useful to determine which slice of data is more beneficial
to the forecasting model and moreover, reduces dimensionality.
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Figure 10 – Correlation Map between Oahu Network Stations using SSA residual data.

2.2 Wind Energy Data

Similarly to solar irradiance time series, series related to wind energy are also
subject to climate conditions. However, they present different patterns. A first characteristic
to be observed is that they are not directly correlated to the diurnal cycle of the sun,
which means that a detrending process as discussed in section 2.1 would not be required
to evidence spatial cross correlation. The data set analyzed in this section was previously
provided for the Global Energy Forecasting Competition 2012 (GEFCom2012). Aspects of
the problems presented in the competition such as details about the data, best forecasting
approaches and discussion about the results are presented in [Hong et al., 2014]. For the
wind energy forecasting problem, hourly wind power generation time series of seven wind
farms from the same region of the world are provided. Figure 11 depicts a three day span
of wind power values observed at one of the wind farms, denoted as Wind Farm 1 (WP1).

Variability in Wind Time Series

As discussed in Kariniotakis [2017], different time scales are more suitable for some
very short forecasting problems related to wind energy. For example, if the focus is the
control of wind turbines, time scales in seconds tend to be more relevant. From 10 minute
to 1 hour, the focus of the forecasting is more associated to the power system into which
the turbines are integrated, and is commonly used to assist economic dispatch. However,
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Figure 11 – Wind Power values observed at Wind Farm 1 from GEFCom2012 data set

Figure 12 – SSA decomposition applied to Wind Power time series at Wind Farm 1 from
GEFCom2012 data set

as pointed by Vincent et al. 2010, in wind energy it is difficult to define any time scale
on which the data could be considered stationary. Many physical events are responsible
for such variability in wind. Some of them are mentioned by Vincent et al. 2010, such as
inertial oscillations, low-level jets, and gravity waves. In this context, the application of
techniques to decompose the data, such as transform methods, can be very useful for the
analysis of wind energy time series, in order to detect fluctuations in data which eventually
are covered by other irregular components. In this thesis, such decomposition is performed
by SSA, in a similar way as it is applied in Moreno and dos Santos Coelho [2018], where
wind speed time series are decomposed into two components and applied to an ANFIS
based model for very short term forecasting. However, in this work this decomposition is
used only for data analysis, not integrated with the proposed new models. Figure 12 shows
an example of SSA decomposition applied to the time series in Wind Farm 1 presented in
Figure 11.
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Figure 13 – Wind Speed values observed at a turbine of a wind farm - clean SSA component.
2

Spatial Correlation

SSA decomposition can isolate the residuals, which helps in the detection of spatial
correlations. Figure 13 illustrates the correlation calculated from the clean SSA component
from 1 year of hourly data. For this data set, it is possible to identify relevant correlations
between wind farms. But in addition, it is also possible to establish a threshold to define
which wind farms can contribute to a model, if the focus of forecasting is a specific wind
farm.

2.3 Discussion

In this section, time series related to the generation of solar and wind energy were
analyzed. For this task, two widely studied data sets were chosen. Although the problems of
solar and wind forecasting have different particular characteristics, resulting especially from
the type of pattern commonly observed in their time series, there are some major aspects
in common. The first is the susceptibility of both to different climatic phenomena, which
results in variations in their patterns that lead to non-stationary time series. This suggests
the need to use forecasting models with a good ability to adapt to changes. Another
point illustrated in the examples is the organization of such systems in multiple integrated
stations, arranged in a region with some proximity to each other. When analyzing the
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time series of all stations together, it is possible to identify correlations between them,
which suggests that they contain information relevant to forecasting. Therefore, there is a
motivation to investigate models that can cover all of this information and use it with the
aim of improving the energy prediction in the system. In this work, the models studied
are guided by the search for solutions to these issues, so that the final result can have a
better performance.
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Literature Review

The diverse approaches in forecasting for renewable energy present in the literature
focus on three main groups: physical modeling, statistical and probabilistic models and
intelligent models. There are also hybrid models that make integrated use of some of the
techniques of different groups [Ahmed and Khalid, 2019]. The main characteristics of these
groups associated with their application to the problem under study are discussed below.

Physical models

Physical modeling is based on numeric weather prediction (NWP), which uses
mathematical models to represent the functioning of the atmosphere and the oceans
in order to find values that can predict the climate values and, consequently, assist in
renewables forecasting. These models have been showing consistent advances, mainly due
to improved numerical schemes to solve governing questions, as discussed in [Sweeney
et al., 2020]. Other improvement is the fine-grained parameterization schemes, which allow
to regionalize their models more appropriately. Such advances appear in line with greater
data availability and computational power. Bauer et al. [2015] describe this movement as
the quiet revolution of NWP. However, even though more machinery is available, many
NWP models are still computationally expensive when dealing with larger databases, to
the point of not being a good choice in a very short-term forecasting context [Sweeney
et al., 2020]. In this respect, statistical or machine learning models have an advantage as
they can only perform forecasting based on recent data, without the need to solve complex
mathematical equations at each step.

Statistical models

The basis of many spatio-temporal models are formed by correlations between
different variables observed in the problem under study, which makes the application
of statistical models a straightforward alternative. Such correlations support the work
of Gafurov et al. [2015], in which the spatial correlations between the distributed data
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sources helped in the forecasting of solar irradiance data on sites whose data were not
fully available. Correlations were combined using linear algebra to generate indicators to
be applied in regression models. Using this formulation, the model was able to solve the
drawback of using synthetic data to replace meteorological variables that were unavailable.
In this sense, the model proposed by Aryaputera et al. [2015] applied spatio-temporal
kriging to forecast solar irradiance in locations whose historical data was not observed. In
both models cited, it is possible to identify a gain in the incorporation of spatio-temporal
models in order to improve the quality of analysis of regions where data may be unavailable
or unreliable. Such improved robustness of the methods can also prospect opportunities for
expansion of the energy system. Another aspect derived from the use of statistical models
is the delimitation of regions whose values are correlated and, therefore, relevant to be
included as input in the models. For instance, in [Yang et al., 2014], models created from the
integration between kriging and autoregressive (AR) methods defined a threshold distance,
which specified the maximum separation between regions whose values could be correlated.
AR methods are also useful in spatio-temporal problems for the representation of the
endogenous and exogenous variables that compound the model. In [Agoua et al., 2017], an
AR method outputs photovoltaic power forecasts for a power plant using observations of
PV power and a cluster of meteorological variables, such as temperature and wind speed
from neighbor plants. To solve the dimensionality problem, the LASSO method is used.
There is also a statiotionarity procedure, where the original time series is transformed
using an equation similar to the clear sky index, widely used in solar energy time series
analysis. The experiments denoted significant improvements with all these techniques
combined. Fan et al. 2015 proposed a wind speed forecasting method which combines
Vector Autoregressive (VAR) with Kriging. But also in this case, the methods require
a data pre-processing step that can provide at least a weak stationarity. A de-trending
technique based on fourier series was then applied separately to each time series component
of the spatio-temporal model.

In general, statistical models are easier to implement and can solve the problem
of computational complexity that affects the physical models. However, there are disad-
vantages in the ability to represent more complex data distributions, often requiring a
preprocessing step so the data can be better understood. Stationarization procedures,
standardization, signal decomposition and independent component analysis are examples
of preprocessing activities commonly used in statistical models.

Intelligent models

An increase in the ability of dealing with more complex, nonlinear data used
in forecasting models for renewable energy was intensified through the application of
machine learning techniques. Some literature reviews in solar forecasting such as [Inman
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et al., 2013] and [Antonanzas et al., 2016] as well as wind forecasting reviews as the work
of Jung and Broadwater 2014, suggest a general trend in the application of intelligent
models, as discussed in [Ahmed and Khalid, 2019]. Intelligent models use machine learning
methods, with Artificial Neural Networks (ANN) being the most prevalent technique in the
literature. However, when applying ANN to spatio-temporal problems, it is necessary to
observe a balance between complexity and performance. The complexity in ANN is based
on its attributes, such as the number of layers and neurons, that define its generalization
capacity. More complex models tend to demand more computational effort in training and
hyperparameter tuning. To solve this problem, some works propose applying dimensionality
reduction methods. In [Lan et al., 2019] and [Licciardi et al., 2015], the dimensionality
reduction is performed with the application of principal component analysis (PCA). In
both papers, the reduction is applied to spatio-temporal data for solar energy forecasting.

Deep Learning Methods

The application of more complex models of ANN was again considered with the
advent of deep learning models [Goodfellow et al., 2016]. The ability to deal with a greater
volume of information organized in other formats, such as images and videos, opened new
perspectives for the problem. In [Zhang et al., 2018], historical photovoltaic power values
and sky images are taken as input to estimate photovoltaic power in a very short term
future, using a model based on Convolutional Neural Networks (CNN). Sadaei et al. 2019
proposed an image representation that is used as an input to a load forecasting model
which combines CNN and fuzzy time series. In [Yu et al., 2019] intervals of wind power time
series are extracted from a wind turbine map, and serve to create multi-channel images
training a CNN. Recurrent Neural Networks (RNN), widely used in speech recognition,
handwriting recognition and time series forecasting, have been also evaluated in renewable
energy forecasting. Ghaderi et al. 2017 proposed a spatio-temporal wind speed forecasting
algorithm using Long Short Term Memory (LSTM), a widely used RNN architecture,
obtaining forecasts from all the spatial locations simultaneously. In [Khodayar and Wang,
2018], wind speed forecasting is performed by extracting temporal information from each
wind site with a LSTM. The wind farm composed by the sites is then represented by a
graph convolutional deep learning architecture (GCDLA), responsible to model the spatial
information of the system. Although deep learning models have shown promising results,
there are still some challenges for their full adoption in renewable energy forecasting.
One is the computational complexity of such models, which often requires more powerful
equipment. This can be a major problem in time series such as solar irradiance or wind
speed, which can vary in their patterns over time. Consecutive adjustments, such as
retraining, to a complex model can make it difficult to run in a context of very short
term forecasting. Such adjustments can be made at a lower cost using adaptive models.
There are solutions proposing the use of evolutionary algorithms, as in [Sun et al., 2018] or
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neuroevolution, discussed in [Miikkulainen et al., 2019], but even in these scenarios there
is still a considerable computational effort. This opens space for the research of adaptive
models based on simpler machine learning techniques that can bring comparable results in
a shorter time.

Fuzzy based Methods

Fuzzy based models have been extensively used in renewable energy forecasting,
since they present some attributes that can be suitable to this problem. It presents a
many valued logic, capable of reasoning from uncertainties. Even in simpler models that
implement fuzzy logic fundamentals, such characteristics are present, thus providing a
powerful representation mechanism. This can be an advantage if compared to neural
networks, in the sense of resolving the trade-off between complexity and performance. As
discussed in [Suganthi et al., 2015], the use of fuzzy based methods integrated to statistical
or machine learning methods yielded higher accuracy to solar and wind forecasting problems.
The review also suggests that neuro fuzzy models, especially the Adaptive neuro fuzzy
inference system (ANFIS), are the most frequently used approach. An application of
ANFIS can be seen in the model proposed by Moreno and dos Santos Coelho 2018. A
pre-processing step using singular spectrum analysis is applied to decompose raw wind
speed data and the output is sent to the ANFIS model to perform forecasting. The results
suggest that such pre-processing step has a positive impact on the model performance.
This can be seen more clearly when compared to the results of the same method without
SSA pre-processing.

The term “adaptive” in ANFIS refers to preliminary training procedures, responsi-
ble for modeling its architecture and parameters from patterns extracted from the training
data set. However, it does not include incremental adjustments in structure and parameters
demanded by changes over time in the distribution parameters of the data under analysis,
providing an evolving capacity to the model. This is a desired feature to deal more properly
with some time series of renewable energy systems. As an example of evolving fuzzy
based model, in [Soares et al., 2018] an evolving model that uses gaussian fuzzy sets is
proposed to forecast hurricane tracks. When compared to ensembles of classical evolving
fuzzy methods, such as evolving Takagi-Sugeno (eTS) method [Angelov and Zhou, 2006]
and TEDA [Angelov, 2014b], better results were presented. Other fuzzy-based evolving
algorithm is presented in [Samanta et al., 2019], where a Self-adaptive spatio-temporal
neuro-fuzzy inference system (SPATFIS) is presented. The model includes memory type
neurons in its structure, in order to better incorporate spatio-temporal information. It is
applied to different spatio-temporal forecasting problems, including wind speed forecasting.
In this case, the model was faster and presented better accuracy than other fuzzy inference
systems and eTS.
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Fuzzy Time Series

The application of fuzzy time series (FTS) models to forecasting problems in
renewables is still little explored, but with good prospects for solutions due to their
structural flexibility that allows different ways of integrating and organizing architectures,
generating hybrid solutions with good performance. Jiang et al. 2019 proposed an example
of a hybrid solution using FTS for wind speed forecasting. In it, an FTS method is
integrated with a multi-objective optimization algorithm, responsible for adjusting the
parameters that define its fuzzy sets and weights. Such integration opens the opportunity
to develop an FTS model whose parameters can be adjusted over time using algorithms
coupled to the model. The research of FTS models in this thesis was reinforced by promising
results previously obtained in [Severiano Junior et al., 2017] with the application of high
order FTS for solar irradiance forecasting. FTS models yielded comparable results to
statistical and intelligent models commonly used in forecasting problems, such as ARIMA
and ANN. Another aspect that encourages the use of FTS is the interpretability associated
with such models. Garibaldi [2019] points the need to invest in explainable AI models so
that they can be better adopted in different applications and how fuzzy-based models can
play a central role in this are due to their nature of abstracting uncertainty components of
the problem.

In comparison with other widely used fuzzy based models, such as ANFIS, FTS
has an advantage in interpretability because it provides a simpler and more intuitive
representation format, based on decision rules. According to Molnar [2019], methods for
machine learning interpretability can be classified under different criteria. Based on the
way the interpretability is obtained, it can be divided into intrinsic or post-hoc. The
first is obtained from the use of intrinsically interpretable models. FTS models could be
included in this group because of their models based on decision rules usually associated
with categorical values, the fuzzy sets. Post-hoc refers to the application of interpretation
methods after model training. For example, the use of surrogate models. It occurs when
an interpretable model (surrogate) is trained from the set of inputs and outputs generated
by a more complex model (black box) in order to clarify its decision process. For instance,
Ribeiro et al. 2016 proposed a surrogate technique named Local interpretable model-
agnostic explanations (LIME) to explain specific predictions of a black box model from
modifications in samples originally used for training and observation of the respective
outputs. This new modified data set is then applied to an interpretable model, so that
the features that influenced the decision can be highlighted. If, on the one hand, post-hoc
techniques can reconcile interpretability with good precision, since the chosen black box
model can have different levels of complexity, on the other hand, there is a higher cost
in explaining the model, which probably would need a process of greater computational
effort, as it needs to be redone with each new training procedure. There is, therefore,
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another factor considered when choosing an adaptive FTS model to assist in the problem
in question: its interpretability tends to be less costly because it is intrinsic to the model
and less impacted by new training steps. In the next chapters the concepts of FTS and
some extensions are discussed, as well as proposals to apply such models to spatio-temporal
forecasting using adaptability mechanisms.
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Chapter 4

Fuzzy Time Series

Fuzzy Time Series can be seen as a way to represent time series from the perspective
of fuzzy logic. It basically means that conventional time series values, usually represented by
real numbers (or crisp values), are translated to fuzzy logic using fuzzy sets as fundamental
components. In this chapter, fundamentals of fuzzy time series are presented as well as the
basic procedures for training a model and perform forecasting. Such fundamentals refer to
the concepts first proposed by Song and Chissom 1993 and improvements presented in
Chen et al. [1996]. Next, some extensions and improvements in FTS are presented.

4.1 Fuzzy Time Series Fundamentals

Given a univariate time series Y with elements y(t) ∈ R1, where t = 0, 1, . . . , T is
a time index. The Universe of Discourse U of Y is the range of values that the time
series can assume, or U = [min(Y ],max(Y ). In this context, the role of fuzzy sets is to
divide U into partitions so minor differences and uncertainties in crisp values of Y can be
more easily abstracted and explained. Such translation from crisp to fuzzy is intermediated
by membership functions, each one associated to one fuzzy set. A membership function
µ(x) indicates, within a range of [0, 1], how much a value x belongs to a fuzzy set. For
example, given two fuzzy sets, A and B, and their respective membership functions, µA(x)

and µB(x). If, for a crisp value x, µA(x) = 0.7 and µB(x) = 0.2, these results indicate
that x belongs to both A and B, although it has a higher membership grade in A. It
highlights an important tool in fuzzy logic, where the division of an universe of discourse
is done with components with flexible boundaries that can even overlap and thus provide
more embracing representations of crisp values. Given these concepts, basic training and
forecasting procedures in FTS are described as follows.
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Training Procedure

Given a training set Yt, defined from a subsequence of Y , the following steps are
taken to train an FTS model:

Step 1 - Universe of Discourse Partitioning

In this step the U is divided into sub intervals according to a partition scheme.
Consider k sub intervals of U , such as U = u1, u2, · · · , uk. In this case, the computational
cost for the task is O(k).

Step 2 - Fuzzy Sets Definition

Given the partitioning, corresponding fuzzy sets Ai, where i = 1, 2, · · · , k, are
then defined over each sub interval with membership functions µAi

: ui 7−→ [0, 1]. All the
defined fuzzy sets compose a linguistic variable Ã. The step also has a linear computational
cost of O(k).

Step 3 - Time Series Fuzzification

The time series Y is converted to an FTS F , or the crisp numbers y(t) are
translated to fuzzy values f(t), given their membership to the fuzzy sets. In Chen et al.
[1996], although a numeric value may have nonzero membership values for multiple fuzzy
sets, only the one with maximum membership is selected to represent the fuzzified value
of the crisp sample. It means that each value in f(t) corresponds to a fuzzy set Ai. The
fuzzification process is illustrated in Figure 14. For a set of samples y(t), with t = 1, . . . , T ,
the computational cost is O(T · k).

Step 4 - Temporal Patterns Extraction

Temporal patterns are extracted from F according to the number of past observa-
tions (lags) that are considered in the model to perform forecasting. The hyperparameter
order Ω defines the number of lags in a model. Thus, for a first order model in FTS
(Ω = 1), a temporal pattern has the format P → C, where the precedent P is represented
by the fuzzy value at f(t) and the consequent C contains the fuzzy value at time f(t+ 1).
Each pattern represent a fuzzy rule, named Fuzzy Logical Relationship (FLR). The
computational cost of this step is O(T · kΩ).

Step 5 - Rule Base Creation

From the information extracted, temporal patterns are grouped by their precedents.
Each group is a Fuzzy Logical Relationship Group (FLRG) and they compose the
rule base. The rule base is the final representation of an FTS model. The trained model
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M contains the information used to forecast values in FTS, given as input a precedent
value.

Figure 14 – Fuzzification process diagram

Forecasting Procedure

Given the first order FTS model M , forecasting can be performed by using as
input a value from Y at time t to estimate a future value at t + 1. The following steps
describe the forecasting procedure.

Step 1 - Input Value Fuzzification

The input value fuzzification is also related to the membership functions defined in
M . The membership value of y(t) is calculated for all the fuzzy sets in Ã. The input value
is then associated to the fuzzy set from which the maximum membership was obtained,
representing the fuzzy value f(t). The for an order Ω and k fuzzy sets, the computational
cost of this step is O(Ω · k).

Step 2 - Fuzzy Rule Matching

f(t) is used to search in the rule base for the corresponding FLRG. The FLRG
whose precedent is equal to the input value is selected and the candidate fuzzy sets in
its consequent are applied to estimate the forecast value. The computational cost of this
step depends on the order Ω and the number of rules in M (kΩ), then the complexity is
O(Ω · kΩ).
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Figure 16 – FTS Forecasting process diagram
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Step 3 - Defuzzification

Defuzzification is the conversion of the fuzzy representations to a crisp value. From
the selected FLRG, the consequent is used to perform this step. A basic defuzzification
procedure proposed by Chen et al. [1996] consists of obtaining the midpoints from all the
fuzzy sets in the consequent and then calculate the mean value. Midpoints correspond to
the center of the fuzzy sets or the value in the middle of the interval ui related to a fuzzy
set Ai.

Diagrams representing the training and forecasting procedures of FTS models are
described in Figures 15 and 16, respectively. From the basic model here described, several
expansions and improvements were proposed and some of greater interest for the problem
under study in this thesis are highlighted in the next sections. A more comprehensive study
on the different approaches in FTS as well as some directions of research are presented in
e Silva [2019].

4.2 High Order FTS

For many real problems, including the time series analyzed in this thesis, there is
relevant information for forecasting in multiple past observations, which indicates that
a first order model, which considers only the first lag, may not be the most suitable in
this context. One of the extension aspects of the FTS models is the High Order models,
whose hyperparameter Ω = p, where p ∈ Z and p > 1. Therefore, the FLRGs have a larger
number of entries in their precedent, as described below:

f(t), f(t− 1), f(t− 2), · · · , f(t− (p− 1))→ f(t+ 1) (4.1)

In this way, consequents whose precedent is the same sequence are grouped into
one FLRG. In addition to the hyperparameter of order Ω, high order models may have
the flexibility to use past observations that are not the most recent, but with periodic
delays that may be related to seasonality. For example, given a hourly time series, lags in
the precedent can be the values observed at t and t− 24, in order to use as information
the most recent lag and the observation at the same time in the previous day. Such data
modeling decisions are usually extracted from time series analysis techniques, such as the
Autocorrelation Function (ACF).

4.3 Multivariate FTS

Multivariate FTS consists of using multiple Fuzzy Time Series to solve a problem,
usually related to one of the time series analyzed. In Lee et al. [2006], a model with two
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FTS (primary and secondary) is presented. In Jilani et al. [2007] the concept is expanded
to multiple FTS. Given an d-variate time series Y = (Y1, Y2, · · · , Yd), where each time
series is represented by a corresponding FTS F1, F2, · · · , Fd, composing a model of order
p. The purpose of the model is to forecast values in Y1. The Fuzzy Logical Relationships
can be represented as:

(f1(t− p), f2(t− p), . . . , fd(t− p)), . . . ,

(f1(t− 1), f2(t− 1), . . . , fd(t− 1)),

(f1(t), f2(t), . . . , fd(t))→ f1(t+ 1)

(4.2)

Where each FTS has its own universe of discourse and a particular partitioning
scheme. The FLRs are grouped under the same criterion seen in section 4.2 and the
forecasting process takes a defuzzification activity for the consequent analogous to the
approaches seen in classical FTS methods, especially the High Order model.

However, the use of multivariate FTS tends to generate multiple combinations of
rules, resulting in very complex models and poor performance. First, due to the effort to
train a high volume of rules being considerably high. Moreover, there is a tradeoff between
the partitioning of the universe of discourse and the resulting rule combinations. As the
number of combination increases, the set of rule combinations become so specific that
the input data to a forecasting hardly match to any of these combinations. In order to
solve some scalability problems, hybrid models are proposed in [Egrioglu et al., 2009] and
[Egrioglu et al., 2013], where fuzzy c-means and ANNs are applied to reduce the amount
of fuzzy rules. Also in [Chen and Chen, 2011] a clustering technique is used to improve
the model. However, improvements in scalability may not prevent the high volume of rules
from affecting interpretability. Therefore, an alternative would be to propose solutions for
the representation of the information. The model presented in the next section proposes
an alternative in this regard.

4.4 Fuzzy Information Granular FTS

FIG-FTS model was proposed by e Silva et al. 2019 with the objective of
transforming a multivariate time series into an univariate FTS data by using Fuzzy
Information Granules (FIG). Zadeh [1979] defined FIG as an entity that represents a
subset of a wider domain. The representation of such entities may vary according to the
problem it is applied. For example, in multivariate time series they are usually represented
as multidimensional structures. In Singh and Dhiman [2018], a time series clustering
algorithm is applied so each FIG is represented by a multidimensional cluster. In FIG-
FTS, a granule can be seen as a multivariate fuzzy set, where each variable is related to a
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time series. For example, consider an d-variate time series Y = (Y1, Y2, · · · , Yd). For each
time series Yi, a corresponding linguistic variable Vi ∈ V is defined. Each variable, in turn,
is composed by fuzzy sets AVij , created from the partitioning of the universe of discourse of
Yi. The combination of fuzzy sets from all the variables represents a granule Gl, as follows:

Gl = AVij ∀Vi ∈ V (4.3)

The global linguistic variable FIG is the union of all granules Gl and defines
the univariate FIG-FTS model. It means that each granule Gl behaves as a fuzzy set in
FIG-FTS and its membership function is:

µGl = minµ
A
Vi
j

(4.4)

The equation describes that the membership corresponds to the minimum value
among the fuzzy sets, according to the minimum T-norm, widely applied in fuzzy systems.

From this modeling, FIG-FTS also starts to work in a similar way to a High
Order FTS model as mentioned in section 4.2, with the difference that its fuzzy sets
are granules which contain information from multiple time series. The defuzzification
process is also analogous to that of a conventional FTS, in which each fuzzy set of the
granule returns a value based on its midpoint. There is a difference when compared to the
models discussed in section 4.3, in which multivariate time series were used to forecast
values to a specific, and univariate, time series. In FIG-FTS, all the time series that
compound the model have their future values estimated. Another key point of the model
is in the fuzzification process, which is guided by an threshold hyperparameter, named
α-cut, whose range is of [0, 1]. This value defines a minimum membership threshold from
which fuzzy sets AVij can be considered in the composition of a granule. It is, therefore,
a hyperparameter that defines the granularity of the model, since lower values make the
model more comprehensive and, consequently, more complex by increasing the number of
rules. There is, therefore, a trade-off in this model related to granularity, but that can be
reduced from the search of an optimal value to α-cut.

4.5 Discussion

In this chapter, some extensions in FTS present in the literature were highlighted.
They reinforce the flexibility of the concept and tend to contribute to better results in
time series forecasting for renewable energy. Firstly, the ability presented in High Order
models to represent models that involve more than one past observations, in addition
to the flexibility to involve lags of different seasonality. From the correlation analysis of
time series related to renewable energy and used in this work, it is possible to notice the
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relevance of information in past observations to understand the model. Observations of
time series from neighboring locations also tend to contribute to the forecasting model,
being applied in a context of spatio-temporal prediction in this thesis. Such models can be
represented from the Multivariate FTS concept. Therefore, there is a conceptual basis for
the representation of spatio-temporal FTS models based on High Order and Multivariate
methods. However, the high volume of data involved in this type of problem requires
solutions that can balance aspects such as complexity of the model, accuracy of forecasts,
computational performance and understanding of rules and decision making. FIG-FTS
presents an alternative that aims to deal with such problems using the concept of fuzzy
information granules to simplify their representation, while maintaining a good ability to
provide forecasts, as will be shown in experiments in this thesis. The model still presents
trade-offs between complexity and results, but its central idea of translating a multivariate
problem to univariate is an important contribution for FTS models that deal with such
problem. A similar approach is proposed in a novel spatio-temporal model presented in
this thesis.



4.5. Discussion 55

Figure 15 – FTS Training process diagram
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Chapter 5

Non-stationary Fuzzy Time Series

The previous chapter highlighted some reasons why FTS models may be an
interesting alternative to a spatio-temporal forecasting problem. However, as discussed
in chapter 2, time series related to solar and wind energy tend to show non-stationary
patterns. This can become a challenge to an FTS-based application, since a previously
established model may not have the necessary scope to represent a problem over time. For
example, a Universe of Discourse delimited from a training data set may not understand
subsequent data that is outside its range. Furthermore, its fuzzy sets may no longer be
suitable for the problem. Thus, for an FTS model to be able to have a good performance
in non-stationary processes, it is desirable to incorporate adaptation mechanisms. More
specifically, adjustments in their membership functions, fuzzy sets or Universe of Discourse.

The first efforts to provide adaptability to FTS were the use of time variant models.
The approach was initially proposed by Song and Chissom 1993 and consists of performing
retraining along sliding windows, so that the model is constantly rebuilt from scratch. A
model with such mechanisms, when appropriately configured for the problem, is able to
adapt to changes. Its implementation, however, has some disadvantages, such as the high
computational cost and memory loss of the data processed in previous windows. In [Alves
et al., 2018], an alternative was proposed to avoid the high cost of retraining. The model
starts from another premise, in which its adaptation mechanisms do not demand a total
reconstruction of the model, but incremental changes with less computational complexity.
It is based fundamentally on the concepts of Non-stationary Fuzzy Sets (NSFS), presented
by Garibaldi et al. [2008], which are applied in the context of FTS. The model is capable
of forecasting in non-stationary series, but in very specific contexts, in which the variance
of the data distribution changes in a predictable way. This limits its performance to more
complex changes, such as concept drift events.

The Non-Stationary FTS (NSFTS) described in this chapter is a proposal for
improving the adaptability of FTS models. It was originally presented in [e Silva et al.,
2020], where its design and performance issues are further explored. In the following
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sections, its operation and the main concepts are described. Then, the model is evaluated
in terms of its performance for time series of wind and solar energy, where non-stationary
patterns are frequently present.

5.1 Non-stationary FTS Method

The NSFTS method is based on the concept of non-stationary fuzzy sets, which
describes fuzzy sets that are adjustable over time. The mechanism responsible for the
adjustments is the perturbation function, which change the parameters that define the
membership function. Two parameters are central to this adjustment: displacement and
scale. The first refers to the displacement of the FS along the Universe of Discourse. When
applied alone, it only performs the displacement, without changing the shape of the fuzzy
set. Scale, on the other hand, is responsible for changing the FS coverage area, either by
stretching or contracting its shape.

In the version examined in this thesis, a fuzzy set use the triangular membership
function, which contains three parameters that demarcate its lower and upper bounds, in
addition to the central point of the fuzzy set, where the maximum membership value is
returned. The parameters, respectively denoted as l, u and c compose the membership
function for a given value x, as shown below:

µ(x, l, c, u) =


0 if (x < l) or (x > u)
x−l
c−l if l ≤ x ≤ c
u−x
u−c if c ≤ x ≤ u

(5.1)

According to the NSFS concept and given a perturbation function π, with dis-
placement δ and scale ρ, the membership function for an NSFTS fuzzy set is defined
by:

µ(x, π(l, c, u, δ, ρ)) (5.2)

Where the perturbation function π is:

π(l, c, u, δ, ρ) =
{ρ

2
− (l + δ) , c+ δ ,

ρ

2
+ (u+ δ)

}
(5.3)

Examples of the effects of the perturbation function on the membership function
are illustrated in Figure 17.

Similar to the FTS models discussed in the chapter 4, the NSFTS has a training
procedure, in which its fuzzy sets are initially defined and its FLRG created. Based on the
rule base, the model can perform a forecasting procedure similar to other conventional FTS
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Figure 17 – Triangular Membership Function with l = 14, c = 18 and u = 22 and
perturbation functions with different parameters.

Source: e Silva et al. [2020]

models. The model also has a parameter adaptation procedure, where displacement and
scale parameters are updated according to the forecasting error observed for the model, so
that the membership functions of each fuzzy set are adjusted. The procedures are detailed
below.

5.1.1 Training Procedure

Given a training set Yt, extracted from a univariate time series Y with elements
y(t) ∈ R1, the training procedure takes the following steps:

Step 1 - Universe of Discourse Partitioning

Given a Universe of Discourse U = [lb, ub] where the lower bound lb = min(Yt)−
min(Yt)×0.2 and the upper bound ub = max(Yt)+max(Yt)×0.2. The factors 0.2 are default
values applied to prevent an underestimation of the bounds from data available in training
set. In this step, U is divided into k parts, each one corresponding to a fuzzy set. The
partitioning is oriented by the midpoints of each fuzzy set, denoted as ci, i = 0, 1, . . . , k− 1

calculated as follows:

ci = lb+ i× (ub− lb)
(k − 1)

(5.4)
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Step 2 - Fuzzy Sets Definition

As previously mentioned, this method adopts triangular membership functions.
For each fuzzy set Ai, a MF µAi

is defined as in equation 5.5:

µAi
(x) =


0 if x < l or x > u
x−li
ci−li if li ≤ x ≤ ci
ui−x
ui−ci if ci ≤ x ≤ ui

(5.5)

where li = ci−1 and ui = ci+1.

Additionally, a perturbation function πi, as described in equation 5.3, is assigned
to Ai, so the fuzzy set can be considered an NSFS. The parameters displacement and scale
are initialized as δi = 0 and ρi = 0, respectively.

Step 3 - Time Series Fuzzification

The time series Yt = {y(0), y(1), . . . , y(T )} is then transformed into an FTS
Ft = {f(0), f(1), . . . , f(T )}, where each element f(t) is represented by its membership
functions:

f(t) = {µA0(y(t)),µA1(y(t)), ...,µAk−1
(y(t))} (5.6)

Step 4 - Temporal Patterns Extraction

Given temporal patterns with the format Ap → Ac, where Ap is the precedent
and Ac the consequent, both are related to the fuzzy set with maximum membership, as
described in the following equations:

Ap = arg max
Ai

(µAi
(y(t− 1)))

Ac = arg max
Ai

(µAi
(y(t)))

(5.7)

Step 5 - Rule Base Creation

In this step, the rule groups (FLRG) that compound the rule base are created by
grouping the temporal patterns with the same precedent, creating rules with the format
Ap → Aa, Ab, . . ..

Step 6 - Residuals Computation

The residuals are the difference between estimated values from the forecasting
method and the observed values for the same timestamp. NSFTS method uses the residuals
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to update the perturbation function parameters. In the training procedure, the residuals
are calculated by applying the forecasting procedure, to be described in section 5.1.3, to
the training set Yt. The last w items are forecasted to calculate the set of residuals E
defined as:

E = {ε(t− w), ε(t− (w − 1)), ..., ε(t)} (5.8)

where ε(t) = y(t)− ŷ(t) and ŷ(t) is the estimated value.

5.1.2 Parameter Adaptation Procedure

Given a set of residuals E , as calculated in equation 5.8, the forecast value ŷ(t+ 1)

and its corresponding observed value y(t+ 1), the following steps are taken to update the
parameters.

Step 1 - Out of Range Detection

The displacement parameter is updated from changes in its midpoint, which in
turn are detected when y(t) is outside the range of the UoD. Thus, if y(t) is below the
lower bound lb then dl = lb− y(t), else dl = 0. If y(t) is above the upper bound ub then
du = y(t)− ub, else du = 0. The displacement range r and the displacement midpoint dmp
are then calculated as in equations 5.9 and 5.10.

r = du − dl (5.9)

dmp = r/2 (5.10)

Step 2 - Mean and Variance of Residuals

In this step, mean E and variance σE of the set E are calculated. The values will
be used to adjust position and length of the fuzzy sets.

Step 3 - Displacement Calculation

For each fuzzy set Ai a corresponding displacement δi is calculated:

δi = E +

(
i

r

k − 1
− dmp

)
+

(
i

2σE
k − 1

− σE
)

(5.11)
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Step 4 - Scale Calculation

After the calculation of all the displacements δi for each fuzzy set Ai, corresponding
scaling factors ρi are calculated as follows:

ρi = |δi−1 − δi+1| (5.12)

The updated parameters δi and ρi are then used by the perturbation function πi,
described in equation 5.3, in order to adapt the parameters of the membership function
according to the observed error.

Step 5 - Residuals Set Update

The final step in this procedure is to update the residuals set E . It is done by
calculating the error term for the forecast value ε(t+ 1) = y(t+ 1)− ŷ(t+ 1). This value
is inserted in E , while the oldest value is removed.

E = E \ ε(t− w) ∪ ε(t+ 1) (5.13)

5.1.3 Forecasting Procedure

Given a first order model and an input value y(t). The following steps are taken
to forecast ŷ(t+ 1).

Step 1 - Input Value Fuzzification

The membership grade µAi
is calculated for each fuzzy set Ai using the membership

function described in equation 5.1, with the parameters updated by the perturbation
function. The fuzzy sets whose membership grade is greater than zero are selected.

Step 2 - Fuzzy Rule Matching

The selected fuzzy sets Aj are used as input in the rule base to match rules
according to their precedent. A rule set S is then defined as follows:

S = {Aj → Cj|µAj
(y(t)) > 0} (5.14)

where Aj is the fuzzy sets that represents the precedent of the rule and Cj is the
consequent, composed by the fuzzy sets grouped by this precedent.
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Step 3 - Defuzzification

The forecast value ŷ(t + 1) is then computed as the weighted sum of the rule
midpoints mp by their membership grades µj, as follows:

ŷ(t+ 1) =
∑

Aj→Cj∈S

µAj
(y(t)) ·mp(Cj) (5.15)

where

mp(C) =

∑
Ai∈C cAi

|C|
(5.16)

5.1.4 Computational cost

In section 4.1, the computational complexity of a basic FTS model is analyzed.
Since NSFTS presents similar training and forecasting steps their cost can be considered
analogous, with the difference of its adaptation procedure, described in section 5.1.2. Such
procedure, for an input of size T , memory window length W , refreshing interval R and k
fuzzy sets, have a cost of O(T/R ·W · log k). For the same input a retraining procedure
would have a cost of O(T/R ·W · (log k)Ω). Such comparison demonstrates the reduction
of computational cost with the use of the adaptation mechanism.

5.2 Experiments

In this section, NSFTS is assessed and compared to other forecasting models when
applied to solar and wind energy time series. The details of the experiments carried out
and the results obtained are described below.

5.2.1 Data sets

For the experiments in this work, the data sets discussed in chapter 2 were used.
The solar energy data set is detailed in Table 1 and the wind energy data set is described
in Table 2.

The data sets presented some corrupted or missing values at some timestamps,
probably due to measurement failures. All data in such conditions was removed.

5.2.2 Experiments Design

In Machine Learning experiments, a given data set can be divided into training
and test sets, where the first is used to construct the learning models and the last one
to evaluate it. When the problem is related to time series data, the data set cannot be
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Table 1 – Solar Energy Dataset

NREL Oahu Solar Measurement Grid

Variable Global Horizontal Irradiance (GHI)
Frequency 10 minutes
Start Date 2010-06-01
End Date 2011-07-31
Number of sites 1
Samples 38766

Table 2 – Wind Energy Dataset

Wind Power Time Series - GEFCOM2012

Variable Wind Power
Frequency Hourly
Start Date 2009-07-01
End Date 2010-08-30
Number of sites 1
Samples 8761

split randomly, since the temporality of the data needs to be taken into account. There
are different approaches to design tests for forecasting methods and the proper choice of
an approach is an important task, as discussed in Tashman [2000]. In these experiments,
the rolling window method is chosen, and the following steps are performed:

1. Define a rolling window size where a rolling window is a sequence of observations
from the data set which will be split into training and test subsets.

2. Define the size of training and test subsets

3. Define the number of increments between successive rolling windows

4. For each rolling window:

• Train the model using the training set

• Apply the model to the test set

• Compute forecasting errors

The method is also described in Figure 18. The rolling window size for both data
sets was 4 weeks, where the first 3 weeks were assigned for training and the last one was
used for testing. It means that about 75% of data was separated for training and 25% for
testing. The number of increments between successive windows is the equivalent to 1 week
of observations so that the test subset of window i is part of the training subset of the
next window i+ 1 . Both data sets comprise one year and one month of observations, or
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Figure 18 – Rolling Window Validation2

13 months. For the rolling window experiment, only the 12 last months are used. The first
month is used in hyperparameter tuning, where it is split only once into training and test
subsets (with sizes of 3 and 1 weeks, respectively), and the best configuration for each
forecasting model is searched. The search for the best hyperparameter is performed using
the Tree of Parzen Estimators (TPE) algorithm implemented in Hyperopt library1.

It is worth noting that NSFTS has as one of their differentials being an adaptive
model, which has the ability to adjust to the data during the forecasting process, without
the need for new training steps. Thus, unlike the other models used in the comparison,
NSFTS performed training only in the first iteration of the experiments, while the other
models followed the procedure described for the rolling window validation.

For the comparison with the NSFTS, were chosen: the persistence (or naive)
method, which basically indicates as forecast the present value; a conventional FTS model
and a high order version (HOFTS), as described in chapter 4; and a Multi Layer Perceptron
(MLP).

5.2.3 Metrics

The output of the forecasting models are the estimated Ŷ time series for each
point of interest. During the parameter tuning step, the choice of the best model was
guided by the calculation of the Root Mean Square Error (RMSE). The final model
for each rolling window was evaluated under its RMSE value, the Normalized Root
Mean Square Error (nRMSE) and the Symmetric Mean Absolute Percentage

1 http://hyperopt.github.io/hyperopt/

http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/
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Error (SMAPE). The formulas are described below:

RMSE =

√∑n
t=1(Yt − Ŷt)2

n
(5.17)

SMAPE =
1

n

n∑
t=1

|Yt − Ŷt|
|Ŷt|+ |Yt|

(5.18)

where Yi are the measured observations at the point of interest at time t, Ŷt
denotes the predicted values and n is the length of dataset.

5.2.4 Forecasting Results

The performance of the models was evaluated from the average error value
measured in all windows used for forecasting in the experiments. Figure 19 and Table 3
describe the values of RMSE and SMAPE for the experiments on the solar energy data
set.

Forecasting Errors

RMSE SMAPE

Persistence 477.04± 71.67 99.78± 0.06
MLP 101.81± 20.79 26.29± 5.37
FTS 194.32± 32.33 40.32± 4.09
HOFTS 110.44± 21.04 31.48± 4.76
NSFTS 120.79± 16.55 34.28± 5.29

Table 3 – Solar Energy Dataset - NSFTS Experiments

The experiments with the wind energy data set are described in Figure 20 and
Table 4.

Forecasting Errors

RMSE SMAPE

Persistence 0.07± 0.02 22.24± 12.97
MLP 0.07± 0.02 29.13± 14.38
FTS 0.24± 0.06 48.11± 14.16
HOFTS 0.07± 0.02 29.91± 14.81
NSFTS 0.08± 0.02 30.81± 14.64

Table 4 – Wind Energy Dataset - NSFTS Experiments

The results indicate a significant improvement in the performance of the models
when applying the SSA decomposition. In all experiments, MLP obtained the best results,
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(a) RMSE

(b) SMAPE

Figure 19 – Solar Energy Dataset - NSFTS Experiments
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(a) RMSE

(b) SMAPE

Figure 20 – Wind Energy Dataset - NSFTS Experiments
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followed by the HOFTS model. NSFTS presented results close to HOFTS, with the
advantage of not requiring training at each iteration of the experiments. The conventional
FTS model had difficulties in both data sets, being sometimes overcome by the persistence
model, which is often used as a minimum benchmark for choosing models that are eligible
for forecasting in the context of renewable energy time series.

5.3 Discussion

In this chapter a new adaptive FTS model is described and evaluated as a
forecasting model applied to renewable energy. This study was motivated by the good
results obtained with the HOFTS model and the expectation that adaptation mechanisms
can open new perspectives for improvements for FTS models. In the experiments, the
NSFTS showed performance close to the HOFTS, which, in turn, had a performance
comparable to MLP. The difference in accuracy between HOFTS and MLP has the
counterpoint of HOFTS providing a model of less complexity and easier to understand.
When the comparison is made between NSFTS and HOFTS, the first presents a model that
requires less information in the past, given that the evaluated version is a first order model,
and less computational complexity, since only in the first iteration of each experiment a
training procedure is performed. When comparing the performance of NSFTS with the
conventional FTS, the improvement resulting from the inclusion of an adaptive mechanism
is even more evident.

The analysis of NSFTS, therefore, indicates as a way to improve FTS-based
models applied to non-stationary data the inclusion of mechanisms that can adapt to
the changes observed in the data. An NSFTS expansion would demand an increase in
the scope of the model, so that it could generate rules from patterns with more relevant
information about the data. More specifically, a greater number of lags (a high order
model) and multivariate time series (a spatio-temporal model). Also, the NSFTS adaptive
mechanism also has an improvement point, which is the creation of new rules during
runtime. The model defines its rule base in the initial training and only adjusts their
parameters during the forecasting process, which means that new patterns that require
additional rules may not be represented adequately by the model. The following chapters
describe a proposal for a high order multivariate FTS model which presents an adaptive
mechanism that allows, in addition to adjusting the rules, the inclusion of new ones to
the rule base without the need for a new training step. At the kernel of the mechanism is
an evolving algorithm originally applied to clustering problems, to be described in detail
in chapter 6. The evolving multivariate FTS model is developed from the integration of
this clustering algorithm with a high order FTS model, and its details are discussed in the
chapter 7. Its performance is also evaluated when applied to spatio-temporal forecasting
problems in renewables, as well as other non-stationary data sets.
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Chapter 6

Evolving Clustering Algorithm

The development of the clustering model presented in this chapter was motivated
by the growing presence of streaming data in the most diverse applications. As this kind of
data is often non-stationary and with high frequency, there is a need to propose solutions
that can fit and adapt to this data in a online setting. Nowadays, online clustering is an
important tool for many applications such as knowledge discovery [Gama, 2010], process
fault detection [Lemos et al., 2011, Costa et al., 2015], recommendation systems and
anomaly detection [Angelov, 2014b]. As analyzed in chapter 2, renewable energy systems
also produces non-stationary time series related to their energy generation, often arranged
in increasingly shorter intervals, such as minutes or seconds. Such time series may then
present similar patterns to streaming data, also requiring online settings. Therefore, there
is a convergence of objectives that, as shown in the next chapter, will result in applying
this evolving clustering algorithm to the problems addressed in this thesis.

Many approaches have been proposed for clustering data streams as discussed in
a survey by Silva et al. 2013. The algorithm here presented follows a widely used approach
of first divide the streaming data into micro-clusters and then find the final clusters based
on micro-clusters that share common properties. One of the first algorithms to use this
approach is Clustream [Aggarwal et al., 2003] which uses samples within a time window to
create and update micro-clusters incrementally. However, Clustream has problems when
dealing with non-spherical clusters. A solution for this problem is proposed in density
based algorithms like DBstream [Hahsler and Bolaños, 2016], Denstream [Cao et al., 2006]
which can create clusters of arbitrary shapes. A disadvantage in both methods is that the
large number of free parameters makes the search for the best model very difficult in some
applications. For example, in non-stationary data such fixed structures and predefined
parameters that should be known in advance might not be able to handle future changes
in data distribution. In this sense, evolving clustering algorithms have gained increasing
importance. These algorithms have the ability to evolve their structure and parameters
over time as new data arrives. An example is CEDAS algorithm, proposed by Hyde et al.
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2017. It can cluster data from arbitrary shapes that arrive in random order by creating
micro and macro-clusters and also can adapt to non stationary data. However, its output
is only cluster assignment and it is not possible to discover the densities of the regions in
the data space.

This chapter describes MicroTEDAclus, an evolving clustering algorithm that
aims to address the gaps previously discussed. It uses micro-clusters based on the concept
of Typicality and Eccentricity Data Analysis (TEDA), which defines the criteria for their
creation or update as the data arrives. There is also a second offline stage, in which the
micro-clusters are grouped into macro-clusters, representing the final clustering scheme of
the algorithm. In the next sections, TEDA concept is introduced as well as the clustering
algorithm is detailed in its creation processes of micro and macro clusters and evolution
mechanism. Experiments with non-stationary data sets are presented in addition to a
discussion about the algorithm and the results obtained.

6.1 TEDA

TEDA was designed to incrementally model a non-parametric data distribution
based on information obtained from the proximity between data samples. One of its key
concepts is the cumulative proximity. Given a d-dimensional input vector xt ∈ Rd, in
the timestamp t, the cumulative proximity φ(.) of xt with respect to all existing data
samples, is calculated as:

φt(x) =
t∑
i=1

dist(xt,xi) , (6.1)

where dist(a, b) is the distance between data points a and b, t is the timestamp when the
data point x is sampled.

From φt(x) the eccentricity ξt(x) is calculated , which is a measure of the dis-
similarity between the data point xt with respect to all the data samples received until
timestamp t.

ξt(x) =
2φt(x)∑t
i=1 φt(xi)

,
t∑
i=1

φt(xi) > 0 , t > 2. (6.2)

For the case of euclidean distance, eccentricity can be calculated recursively as
described in Equation 6.3, whose formulation is discussed in [Angelov, 2014b].

ξ(xt) =
1

t
+

(µt − xt)ᵀ(µt − xt)
tσ2
t

, (6.3)
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where µt and σ2
t are the mean and variance respectively, that can also be recursively

updated:

µt =
t− 1

t
µt−1 +

xt
t
, t ≥ 1 , µ1 = x1. (6.4)

σ2
t =

t− 1

t
σ2
t−1 +

1

t− 1
‖xt − µt‖2 , σ2

1 = 0 (6.5)

The typicality τ(xt) is the dual of the eccentricity and represents how typical an
arbitrary data point xt is with respect to all the data points received until the timestamp
t.

τ(xt) = 1− ξ(xt) , t ≥ 2 (6.6)

Typicality and Eccentricity concepts are illustrated in Figure 21. The data point
”A” is more distant from the rest of the data set than the data point ”B”, therefore ”A”
has higher eccentricity and lower typicality than ”B”.

B

A

Figure 21 – Illustration of Typicality and Eccentricity concepts in TEDA

From the concepts described, the normalized versions of eccentricity ζ(xt) and
typicality γ(xt) can be obtained as follows:

ζ(xt) =
ξ(xt)

2
(6.7)

γ(xt) =
τ(xt)

t− 2
(6.8)

The normalized eccentricity ζ(xt) is used to define a threshold that determines
whether a data sample can be considered an outlier. However, so that the algorithm
can adapt to changes in data distribution, this threshold is adjusted in the algorithm
according to the processed data. In the next section, the application of these concepts in
the development of MicroTEDAclus are described in detail.
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6.2 MicroTEDAclus

MicroTEDAclus performs clustering in two steps. The first refers to micro-clusters
management. As the data samples are processed, new micro-clusters are created or existing
ones are updated. In the second step, micro-clusters are connected according to their
proximity and grouped into macro-clusters, which are the final clustering representation
of the algorithm. From this representation, data samples are assigned to a macro-cluster
according to their membership degrees. These steps are described as follows.

6.2.1 Micro-clusters Step

Given a model with a set of micro-clusters mi , i = 1 . . .M , each micro-cluster mi

is defined by the following parameters:

• Sit : number of data samples;

• µit: center;

• (σit)
2: variance;

• ξi(xt) , ζ i(xt): eccentricity and normalized eccentricity;

• τ i(xt) , γi(xt): typicality and normalized typicality;

• Di
t = 1

ζi(xt)
: density;

• mi
t(S

i
t): outlier threshold parameter;

When the first data sample x1 is processed by the model, the first micro-cluster
m1 is created with the following parameters:

M = 1 , S1
1 = 1 , µ1

1 = x1 , (σ1
1)2 = 0 (6.9)

where n is the number of micro-clusters. Note that just a few parameters are calculated
when Sit = 1 because typicality and eccentricity can be only calculated with 2 or more
data samples.

For the next data samples xt, the algorithm calculates the typicality and eccen-
tricity of xt to all the existing micro-clusters using Equations (6.6) and (6.3), respectively
and check if xt is an outlier or not :

ζ i(xt) >
mi
t(S

i
t)

2 + 1

2Sit
(6.10)
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mi
t(S

i
t) =

3

1 + e−0.007(Si
t−100)

(6.11)

It is worth noting that the mi
t function, which establishes the outlier threshold

value, is a sigmoid that tends to saturate due to an increase in Sit . The objective is for a
micro-cluster to be more restrictive in its initial stage, in order to prevent any data sample
from being part of the first micro-clusters, generating very comprehensive partitions. A
discussion on the formulation of the outlier mechanism is detailed in [Maia et al., 2020].

The outlier condition rule also includes a special case where Sit = 2. In order to
prevent a cluster to grow indefinitely, a parameter r0 is added to limit the variance of each
micro-cluster. Thus, for Sit = 2:

[
ζ i2(x2) >

(mi(2))2 + 1

4

]
AND

[
(σi2)2 < r0

]
(6.12)

In the experiments performed in this thesis, r0 was set to 0.001. Next, one of two
conditions can take place:

Condition 1: xt is not an outlier for at least one micro-cluster then update all
the micro-clusters for which this condition holds.

Sit =Sit−1 + 1

µit =
Sit − 1

Sit
µSi

t−1 +
xt
Sit

(σit)
2 =

Sit − 1

Sit
(σit−1)2 +

1

Sit − 1

(
2‖xt − µit‖

d

)2

ξi(xt) =
1

Sit
+

2(µit − xt)ᵀ(µit − xt)
Sit(σ

i
t)

2d

(6.13)

where d is the dimensionality of the data set.

Condition 2: xt is an outlier for all existing micro-clusters then create a new
micro-cluster.

M = M + 1; SMt = 1; µMt = xt; (σMt )2 = 0 (6.14)

The micro-cluster update procedure is detailed in Algorithm 1

As an example of how the micro-clusters are represented, Figure 22b shows the
micro-clusters defined for the data set in Figure 22a.
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Algorithm 1: Micro-cluster update
Input: xt, r0

Output: mi, i = 1, 2, . . . ,M
begin

while new samples available do
if t == 1 then

Set m1 parameters as defined in Eq. 6.9;
else

flag ← true;
for i = 1 : M do

m← mi;
if Sit == 2 then

outlier ← condition of Eq. 6.12;
else

outlier ← condition of Eq. 6.10;
end
if outlier == false then

Update mi according to Eq. 6.13;
flag ← false;

end
end
if flag == true then

Create a new micro-cluster with the parameters of Eq. 6.14;
end

end
end

end

(a) (b)
Figure 22 – (a) Data set. (b) Micro-clusters.

6.2.2 Macro-clusters Step

In this step, the micro-clusters are grouped into macro-clusters, according to their
proximity. microTEDAclus represents this organization as an intersection graph, whose
adjacency matrix have dimensions equal to the number of micro-cluters. Each element in
the matrix is set as 1 if two micro-clusters intersects and 0 otherwise. The condition to
check if two micro-clusters intersect considers their mean and variance values. It is shown
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by Equation (6.15).

dist(µit,µ
j
t) < 2(σit + σjt ) , ∀i 6= j (6.15)

To avoid that an overlapping data set result in an unique big macro-cluster, the
algorithm also includes a micro-cluster activation mechanism, which activates or not the
micro-clusters based on their density. Let Mj = {mj

1,m
j
2, . . . ,m

j
l }, j = 1, 2, . . . , N be the

jth macro-cluster composed by a set of connected micro-clusters mj. The set of active
micro-clusters of the macro-cluster Mj are the ones for which the density Dl

t is greater or
equal to the average density calculated over all the micro-clusters that belong to Mj:

active(mj
l ) = Dl

t ≥ mean(Dl
t), l = 1, . . . , |Mj| (6.16)

The activation mechanism deactivates micro-clusters at low density regions while
the ones at high density regions will be active. In other words, the deactivated micro-
clusters tend to create borders between the macro-clusters, avoiding the unwanted effect
of joining them.

The density estimate of each macro-cluster is calculated as a sum of the normalized
typicalities of its active micro-clusters, weighted by their normalized density such as a
density mixture model, as discussed in [Angelov, 2014a]:

Tj(xt) =
∑
l∈Mj

wltt
l
t(xt) (6.17)

wlt =
Dl
t∑

l∈Mj

Dl
t

(6.18)

A new data point xt is assigned to the macro-cluster for which it has the highest
mixture of typicalities score Tj(xt). The detailed procedure to calculate macro-clusters is
presented in Algorithm 2.

An example of how the macro-cluster step works is illustrated in Figure 23. Figure
23a shows the micro-clusters arranged in two different macro-clusters (blue and red). In
Fig.23b, the density regions are highlighted according to the mixture of typicalities.Figure
23c shows the final cluster structures identified by the algorithm in the data set.

6.2.3 Clustering new data

After completing the steps described in Sections 6.2.1 and 6.2.2, MicroTEDAclus
is able to cluster new data. Thus, for a new data sample xt, the algorithm updates
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Algorithm 2: Macro-clusters update
Input: xt, m
Output: membership degree of xt for each macro-cluster
begin

while new samples available do
M← Group the micro-clusters that intersect each other according the
condition expressed in Eq. 6.15;
Find the set of active micro-clusters of each macro-cluster
Mj, j = 1, 2, . . . , N according Eq. 6.16;
Calculate Tj(xt) for j = 1, 2, . . . N according Eq. 6.17;
Assign xt to the cluster j it has highest Tj(xt);

end
end

(a) (b) (c)
Figure 23 – (a) Macro-Clusters. (b) The mixture of typicalities. (c) Cluster assignment.

micro-clusters, recalculates the macro-clusters and returns the macro-cluster for which xt
is more compatible with respect to the mixture of typicalities Tj(xt).

6.3 Experiments

This section presents experiments applied to MicroTEDAclus to assess its ability
to adapt to changes in the distribution of data streams. Another aspect observed is its
scalability, which in the experiments is evaluated based on its clustering performance in
face of an increase in dimensionality. The evaluation of such aspects is relevant within the
work conducted in this thesis to assist in the decision of using this algorithm in a solution
for a spatio-temporal forecasting problem, whose data have variations in distribution and
eventually greater dimensionality. A more in-depth evaluation of the algorithm, involving
other aspects of the clustering problem, is carried out in Maia et al. 2020 where the model
is introduced.

6.3.1 Data sets

The data sets used to observe the adaptability of the algorithm were artificially
generated by the R tool stream, developed by Hahsler et al. 2017. For each data set
created, different concept drift events were inserted, as described below:
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Concept Drift Data sets

Data set Clusters Dimension Description

STR-B1 2 2 One clusters moves from top left to bottom right
while the other one moves from bottom left to
top right. Both clusters overlap when they meet
exactly in the center of the data space.

STR-B2 3 2 2 static clusters and a third one moving from the
first to the second

RBF 1-9 a 2 Starts with a fixed number of centroids repre-
senting each cluster, which has a random po-
sition, a single standard deviation, class label
and weight. During the sampling, the cluster at-
tributes are changed, and events such as cluster
splitting/merging and deletion/creation are set.

Table 5 – Concept Drift Data sets
a RBF experiments start with 3 clusters and according to the events of concept evolution,
can change the number of clusters. The range is from 1 to 9 clusters.

Examples of the initial and final states of STR-B1 and STR-B2 data sets are
shown in Figures 24 and 25, respectively. Figure 26 depicts an output of RBF. Figure 26a
shows the initial state with 3 clusters. In Figure 26b an event of cluster creation occurs.
In Figure 26c a cluster is split. Figure 26d indicates an event of cluster deletion.

(a) (b)

Figure 24 – Stream Benchmark 1. (a) Before Concept Drift. (b) After Concept Drift.

6.3.2 Experiments Design

The clustering algorithms were evaluated using the prequential method. In this
method, also known as first-test-then-train method, the instances are used to test and then
for training one by one, at the same iteration. If compared to a regular cross-validation
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(a) (b)

Figure 25 – Stream Benchmark 2. (a) Before Concept Drift. (b) After Concept Drift.

(a) (b)

(c) (d)

Figure 26 – Random RBF Generator. (a) Initial State. (b) After First Event (cluster creation). (c) After
Second Event (cluster split). (d) After Third Event (cluster deletion).

method, prequential has the advantages of requiring a smaller number of runs and also
maintaining the temporal order of the data stream. The experiments define, for each
evaluated clustering algorithm, an initial training set and subsequent prequential windows
(where test-then-train procedure occurs). Figure 27 illustrates how the iterations work.
The initial training set has the same size of a prequential window. The prequential error
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Figure 27 – Prequential Validation

for each window w is calculated as follows:

Pw(t) =
1

w

t∑
i=t−w+1

L(ŷi, yi) (6.19)

The settings for the experiments using each data set are described in Table 6. For
each combination of method and data set, the experiment was performed 30 times.

Table 6 – Experiment settings for the data sets

Data set STR-B1 STR-B2 RBF

Samples 4000 4000 10000 a

Window Size 100 100 100
Windows 40 40 100
a After the generation of 1000 samples, one con-
cept drift event occurs, which results in 10
events during each RBF experiment.

MicroTEDAclus was compared with the following data stream clustering al-
gorithms: Denstream Cao et al. [2006], CluStream Aggarwal et al. [2003] and
StreamKM++ Ackermann et al. [2012]. The benchmark algorithms used in the
experiments are available in the R package streamMOA Hahsler and Forrest [2019].
The hyperparameters tuning of the algorithms was performed by using grid search. For
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each data set, the samples used in the initial training were applied to the tuning. Table 7
lists the range of parameters where the grid search occurred for all the methods.

Table 7 – Range of parameters for grid search

Method Parameter Description Range
DenStream ε Micro-cluster radius {0.001, . . . , 0.01}

µ Weight limit {1, . . . , 20}
β Outlier threshold {0.2, 0.4}

CluStream m Micro-clusters {10, . . . , 1000}
h Time window {100, . . . , 1000}
t Boundary factor {1, . . . , 10}

StreamKM++ s Size of Coreset {10, . . . , 1000}
k Number of clusters {1, . . . , 10}

6.3.3 Metrics

The loss function chosen for the experiments was the Adjusted Rand Index. It
calculates the similarity between two data clusterings. The similarity measured by the
function is based on the structures of the clusters, which helps in the evaluation of clustering
algorithms that use different labeling mechanisms for the clusters found.

Given a set S of n samples S = {o1, . . . , on} and two data clusterings of S to
compare, X = {X1, . . . , Xr}, a partition of S into r clusters, and Y = {Y1, . . . , Ys}, a
partition of S into s clusters, and the contingency table:

Table 8 – Contingency Table

Y1 Y2 . . . Ys Sums
X1 n11 n12 . . . n1s a1

X2 n21 n22 . . . n2s a2

...
...

...
...

...
...

Xr nr1 nr2 . . . nrs ar
Sums b1 b2 . . . bs

The Adjusted Rand Index ARI is:

ARI =

∑
ij

(
nij

2

)
−
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2

) (6.20)

The function returns a value close to 0.0 for random labeling and exactly 1.0 when
the partitions X and Y are identical.
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6.3.4 Clustering Results

6.3.4.1 Prequential Evaluation

Figures 28 and 29 show the results of prequential validation for the data sets
STR-B1 and STR-B2, respectively. In both cases, concept drifts that mainly change
the distribution means occurs at most prequential windows During the evaluation, such
events affect the clustering methods in a similar way. The performance is unstable, having
an improvement when some clusters merge. The prequential validation for data set RBF,
illustrated in Figure 30, also presents situations where concept drifts occur at all time
steps, including events such as cluster creation, deletion, merge or split which are set to
happen after each 1000 samples. The performance of all the clustering algorithms decrease
during the sequence of concept drift events. However, while the benchmark algorithms
present a tendency to drop in performance, MicroTEDAclus adapt to such events over
time.

Figure 28 – Prequential Evaluation - STR-B1

Figure 29 – Prequential Evaluation - STR-B2

Table 9 lists the results of ARI values for each clustering method and data set. In
terms of accuracy, Clustream, StreamKM++ and MicroTEDAclus presented comparable
results, with small differences between them depending on the experiment and the data
set.
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Figure 30 – Prequential Evaluation - RBF

Table 9 – Adjusted Rand Index for Clustering Methods

Data set DenStream CluStream StreamKM MicroTEDAclus
STR-B1 0.61± 0.31 0.57± 0.33 0.66± 0.27 0.68± 0.21
STR-B2 0.65± 0.13 0.65± 0.13 0.55± 0.04 0.69± 0.12
RBF 0.42± 0.10 0.61± 0.06 0.46± 0.03 0.50± 0.07

6.3.4.2 Memory Consumption Evaluation

The data set STR-B1 was used in this experiment to monitor the memory consump-
tion of the algorithms. In this experiment, only the Clustream and DenStream algorithms
were chosen as a benchmark, as they implement approaches similar to MicroTEDAclus,
using micro-clusters structures. For this experiment, Python versions of the algorithms
were used, in order to prevent differences between programming languages from influencing
the results. Figure 31a shows the evolution of memory consumption, in megabytes, for each
model during data set processing. The plots represent the difference between the amount
of memory allocated before the start of the algorithms execution and during the processing
of each window. Figure 31b represents the Adjusted Rand Index values observed during
the experiments.

In the experiments, MicroTEDAclus presented a proportionally higher memory
consumption if compared with DenStream and CluStream. This is due to its internal data
structures for representing macro-clusters and micro-clusters. However, this consumption
after an increase to fit the concept drift remains stable at the end of the experiment.
In addition, MicroTEDAclus presented a more effective ability to adapt to the drift, as
shown in Figure 31b. While MicroTEDAclus was able to recover from the events, the other
algorithms had their performance reduced when trying to recover from data variations.

6.3.4.3 Processing Speed Evaluation

In this last experiment, the algorithms were assessed when confronted data sets
of larger dimensionality. Each data set was composed of three clusters generated from
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(a)

(b)

Figure 31 – Memory Consumption Experiments. (a) Memory in megabytes. (b) Adjusted Rand Index.

Gaussian distributions and their dimensions ranged from 2 to 50. 4,000 data samples were
sampled for each experiment with dimension d, which was run ten times and the mean
values were reported. The experiments used the prequential evaluation described in Section
6.3.2 with window size of 100. Figure 32a compares the average processing time per data
sample in milliseconds of CluStream, Denstream and MicroTEDAClus. Figure 32b shows
the accuracy of each algorithm throughout the experiments.

The results indicated that, on average, CluStream and DenStream are faster than
MicroTEDAclus to deal with the problems proposed in the experiment. This difference is
even more evident in smaller dimensional problems. However, MicroTEDAclus is able to
maintain its accuracy, even in larger data sets. It is also worth mentioning that, unlike the
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(a)

(b)

Figure 32 – Scalability Experiments. (a) Average processing time per sample in milliseconds. (b) Adjusted
Rand Index.

benchmark algorithms, which required adjustments to the hyperparameters at each data
set, MicroTEDAclus kept its only adjustable hyperparameter fixed at 0.001. This reinforces
the robustness of the algorithm when faced with different dimensionality problems.

6.4 Discussion

In this chapter the evolving algorithm MicroTEDAclus for clustering data streams
was introduced. It was evaluated for its ability to handle data streams with different
concept drift events. In the experiments, it was compared in terms of clustering accuracy
with algorithms developed for the same purpose, some of them using similar concepts such
as online clustering using micro-clusters. From the results, it was possible to observe that
MicroTEDAclus had a competitive performance. However, it has the advantage of being
very robust in terms of hyperparameters. The only one to be adjusted, r0, remained the
same for all the experiments. By avoiding the expensive and sometimes time-consuming
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hyperparameter tuning tasks, the algorithm presents a valuable differential when applied
to data stream problems that usually require quick responses.

Another aspect observed in the experiments is the good ability of the algorithm
to deal with data of higher dimensionality. MicroTEDAclus showed good accuracy in
clustering larger dimension data sets. There is a drawback in memory consumption, which,
despite being constant in the experiments, was still higher than the other benchmark
algorithms. The memory consumption of MicroTEDAclus is directly linked to the number
of micro-clusters created. Some of these micro-clusters may be underused by the algorithm
over time, due to changes in data distribution parameters or situations with overlapping
micro-clusters. Therefore, an improvement point for the algorithm could be the development
of mechanisms that optimize the number of micro-clusters used, in order to reduce the
memory consumption.

The observed results present MicroTEDAclus as a clustering algorithm capable
of adapting to various changes in the distribution of data, in addition to having a good
ability to deal with high dimensionality. It also presented the advantage of requiring few
adjustments to its hyperparameters to work. Such characteristics enable it to be applied
to the problems studied in this thesis, which involve a large volume of non-stationary data,
possibly of higher dimensionality. In the next chapter, an application of MicroTEDAclus
to a forecasting problem is introduced, from the integration of it to a method intended for
this purpose.
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Chapter 7

Evolving Multivariate Fuzzy Time
Series

This chapter introduces a novel forecasting model named evolving multivariate
FTS (e-MVFTS) It was conceived from the integration of the Fuzzy Time Series, in
its High Order version, with MicroTEDAclus clustering algorithm, described in chapter
6. The model deals with spatio-temporal data in the format discussed in this thesis, in
addition to presenting a dynamic adaptation mechanism.

A central point to be considered in models applied to the renewable energy
forecasting problems studied in this thesis is their capacity to deal with a high volume of
non-stationary spatio-temporal data, arranged as multivariate time series. In this regard,
e-MVFTS proposes some contributions:

• Adaptation The ability to adapt to data online as it is received. In this case,
these are adjustments that involve not only its parameters, but also other internal
structures, such as sets and rules.

• Scalability. The application of a clustering technique to provide a new representation
of the data, so that each multivariate sample is internally represented by a cluster,
which in turn is used as univariate information in an FTS model. Such translation
can contribute to the scalability of the model.

• Robustness. Also regarding clustering, the use of an evolving technique, which,
as noted in the experiments presented in chapter 6, presents good robustness of
hyperparameters, which require few adjustments when applied to different data sets.
Within a context in which there is a need to process large volumes of data, avoiding
generally computationally expensive tasks such as hyperparameter tuning, may bring
a considerable performance gain.
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The concepts that underlie the proposed model were detailed throughout this
thesis. The next sections of this chapter details the proposed model, its training, adaptation
and forecasting procedures. Next, experiments performed on the model are demonstrated,
whose performance was observed in time series forecasting problems with concept drift
events, as well as to the solar and wind energy data sets studied in this thesis.

7.1 e-MVFTS method

From the integration between MicroTEDAclus and High Order FTS, e-MVFTS
presents an extension of the FTS models, in which an adaptive clustering mechanism
provides a more scalable solution to treat multivariate data and allows incremental
adjustments in its universe of discourse, fuzzy sets and rules. Innitially, data points from
multivariate time series are organized based on the temporal index, which is called in this
work the embedding procedure. Figure 33 depicts this process. For a given time step t,
the values observed in each time series are grouped, to generate a multidimensional sample.
These samples compose the data set used by e-MVFTS. Figure 34 illustrates the process
of transforming the data that are then used by the FTS model. It is possible to note that,
for each micro-cluster created by MicroTEDAclus, a corresponding fuzzy set is defined
based on its parameters. In this way, the data samples are fuzzified so that Fuzzy Logical
Relationship Groups can be generated, following the procedures described in Section 4.2.
This set of rules is then used for forecasting, similarly to an High Order FTS model.

Figure 33 – Illustration of e-MVFTS embedding procedure



7.1. e-MVFTS method 91

C1

C6

C2

C7

C3 C4

C9C8

F1 F2 F3 F4

F5 F6 F7 F8

Data clusters

Input data
Time Series

Data 

clustering

microTEDAclus

De�ne 

Fuzzy sets

from clusters

Fuzzy Logical

Rule creation

Fuzzy sets

F1 F2 F3

FLRG

F1 F2 F4

Figure 34 – Illustration of e-MVFTS main flow

In the next sections, the training, updating and forecasting procedures are de-
scribed in detail.

7.1.1 Training Procedure

Given a d-dimensional time series Y , where each sample is a value y(t) ∈ Rd:

Step 1 - Data Clustering

MicroTEDAclus is applied to data clustering. For each data sample, micro-clusters
are created or updated, according to the procedure described in section 6.2.1. Macro-cluster
update step defined in section 6.2.2 is not performed, since only micro-clusters are used in
e-MVFTS. After the data is processed, a set C of micro-clusters ci, where i = 1 . . .M , is
created.

It is important to note that this step replaces the Universe of Discourse partitioning
process, present in conventional FTS models. Therefore, the model does not require an
initial representation of the Universe of Discourse, with lower and upper bounds, nor a
partitioning scheme. This process occurs incrementally as the data is processed by the
algorithm.
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Step 2 - Fuzzy Sets Definition

Each micro-cluster ci is used to define a multi-dimensional fuzzy set fi ∈ F, in a
one-to-one relationship. Its membership function µfi() is represented by the normalized
typicality function γ(), described in section 6.1, equation 6.8, from its corresponding micro-
cluster ci. Thus, given a sample y(t), its membership to a fuzzy set fi can be calculated as
follows:

µfi(y(t)) = γ(y(t)) (7.1)

Step 3 - Time Series Fuzzification

Since the membership function based on typicality can return nonzero values to
all the fuzzy sets, a cumulative membership threshold is applied to limit the number
of candidates. Given a model with fuzzy sets fi ∈ F, a set FCyt ⊂ F of candidates for
a crisp sample y(t) is FCyt = fj|

∑
j µfj ≥ α and |FCyt| is minimal. α is the cumulative

membership threshold and its default value is set to 0.6.

Step 4 - Temporal Patterns Extraction

In this step, a High Order FTS is formulated from fuzzy temporal patterns. The
fuzzy temporal patterns have the format Ap → Ac, where:

The precedent (or Left Hand Side - LHS), denoted by Ap, contains fuzzy values of lags.
For instance, given a FTS of order Ω = 2, each temporal pattern Ap has two elements,
corresponding to fuzzy values of y(t) and y(t− 1).

Analogously to precedent, the consequent Ac (or Right Hand Side - RHS) represents the
corresponding fuzzy values of y(t+ 1).

Each temporal pattern consists of a combination of fuzzy values between the fuzzy
candidates of each element.

Step 5 - Rule base generation

In this step, temporal patterns with the same precedent are grouped creating
FLRGs with the format Ap → Aa, Ab, . . .. The rules can be understood as the set of
possibilities which may happen at future time t (the consequent) when a pattern Ap is
identified.

7.1.2 Model Update Procedure

The update procedure occurs after a data window is processed. Thus, given a
window of size w the following steps occur:
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Step 1 - Micro-clusters update

Each data sample in the window is processed by MicroTEDAclus as occurs in the
training procedure. During this step, each micro-cluster created or updated is added to a
set of changed micro-clusters Ch.

Step 2 - Fuzzy sets update

The fuzzy sets defined in F are updated according to the changed micro-clusters cj
in Ch. If cj is a new micro-cluster, a new corresponding fuzzy set is created and added to
F. If cj is an updated micro-cluster, its new parameters are used to adjust the membership
function and the midpoint of the corresponding fuzzy set fj.

Step 3 - Rule base update

Temporal patterns are formed using the data window. Patterns whose precedent
already exists into the rule base update their corresponding consequent and new temporal
patterns are grouped according their precedents creating a new FLRG.

7.1.3 Forecasting Procedure

For a model with order Ω = p the following steps are taken to forecasting:

Step 1 - Input Value Fuzzification

Each element in a sequence of crisp data points y(t), y(t− 1), . . . , y(t− (p− 1)) is
assigned to fuzzy sets according to their membership grades and the cumulative membership
threshold, as discussed in the training procedure, section 7.1.1, step 2.

Step 2 - Fuzzy Rule matching

The selected fuzzy sets are then combined to create a set P of Ap (precedent)
patterns. The precedents Apj ∈ P are searched in the rule base, composing a rule set S
with rules Apj → Acj.

Step 3 - Defuzzification

The forecast value ŷt+1 is calculated according to Equation (7.2) as the weighted
sum of the rule midpoints, mp, by their membership grades µj for each selected rule j:

ŷt+1 =
∑

Apj→Acj∈S

µApj
(yt) ·mp(Acj) (7.2)
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where

µApj
(yt) = min({µfi |fi ∈ Apj}) (7.3)

and

mp(Acj) =

∑
fi∈Acj

mp(fi)

|Acj|
(7.4)

7.1.4 Computational Cost

The computational cost of the training procedure is concentrated in the data
clustering and rule base creation steps. Data clustering is dimensionally dependent during
the calculation of variance and eccentricity. For samples with dimension d, both calculations
have complexity of O(d). Therefore, given that n is the number of samples and k is the
number of micro- clusters, time complexity for this step is O(ndk). Each micro-cluster
represents one fuzzy sets, then for k sets and order Ω, the fuzzification step has a cost of
O(nk). Using a binary search tree structure to organize the k fuzzy sets, time complexity
can be optimized. A search among them decreases from O(k) to O(logk), which impacts
on the rule base generation, whose process costs O(n(logk)Ω).

Model update has a computational cost analogous to some steps in training
procedure, but proportionally reduced. For an update window with size w, the data
clustering step has time complexity of O(wdk). After the clustering, considering c the
number of updated micro-clusters, rule base update has a cost of O(w(logc)Ω).

In the forecasting procedure a fuzzification step is taken, followed by rule matching.
For a single input sample fuzzification is O(k) and the rule matching costs O(Ω(logk)Ω).

The time complexity presented by the algorithm during training and forecasting
is comparable to that of a classic High Order FTS model, with the addition of the
data clustering step, which deals with the dimensionality of the problem. The overall
performance improvement is focused in the process of model update, and depends on the
number of changed micro-clusters during the task. The number of new clusters created
at each update remains at lower levels, but without reaching the opposite extreme case,
in which large micro-clusters are created, resulting in few fuzzy sets and a model with
low capacity to represent the data. Such trade-off is centered in the hyperparameter r0,
discussed in chapter 6, section 6.2.

7.1.5 Method Discussion

The details of the e-MVFTS procedures, done in the previous sections of this
chapter, highlight the differentials of the use of an evolving clustering algorithm for the
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representation of the data used in a forecasting model. In addition to the already discussed
conversion of multivariate data to univariate FTS rules, MicroTEDAclus’s recursive
formulations also help in the good ability of e-MVFTS to deal with large volumes of data.
Such formulations, responsible for updating information that characterize micro-clusters,
such as typicality and eccentricity, besides presenting a reduced computational cost, allow
the algorithm to be able to deal with big data without increasing its processing load
proportionally.

Another point is the inclusion of an adaptation mechanism as a strategy to
deal with data variations. As already discussed in the chapter 5, adapting the model
during its execution tends to be a more interesting alternative from the point of view of
computational cost than applying new training steps. Such adaptation in e-mVFTS has
the ability to adjust an FTS model both in the scope of its fuzzy sets and in the partition
of its UoD, which is done incrementally and even allowing the inclusion of new partitions,
from the creation of new fuzzy sets during runtime. This mechanism, therefore, presents
an alternative for the extension and flexibility of FTS models.

7.2 Experiments

The experiments aim to evaluate the performance of e-MVFTS when applied to
time series with concept drift events and problems of solar and wind energy forecasting.
For the first aspect, artificially generated data sets were used to observe the behavior of
the algorithm in the face of different data distribution changes. Additionally, the data
sets analyzed in the chapter 2, used in the experiments of the NSFTS model, in chapter
5, were chosen for this experiments. However, the evaluation of e-MVFTS was for a
spatio-temporal problem and therefore multivariate time series from the data sets were
analyzed. The details of the experiments and their results are described below.

7.2.1 Data sets

7.2.1.1 Concept Drift Data sets

The model was first evaluated on its ability to handle different types of concept
drift events. Such events, discussed in Gama et al. [2014], were simulated in 8 univariate
time series containing 2000 samples each. In some data sets, more than one event were
combined. The time series and their respective concept drift events are illustrated in Figure
35.
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Figure 35 – Time Series artificially generated with concept drift events. The x-axis denotes
the time step when each data point was sampled and the y-axis represents
their corresponding values.

7.2.1.2 Renewable Energy Data sets

The solar energy data set is detailed in Table 10. The wind energy data set is
described in Table 11. The time intervals of both data sets are the same used in the NSFTS
method experiments, in chapter 5. The difference is the number of time series used in each
database, which correspond to the sites of the observed energy system. The solar energy
database originally had 17 sites, but was reduced to 10. The criterion for reducing the
sites was the SSA residual correlation value with the DH3 site. Sites with values above
85 % were maintained. DH3 was chosen as a reference because it is a more central site
in the map, as described in the Figure 8, chapter 2. The SSA residual correlation is also
discussed in chapter 2, with correlation map presented in Figure 10. In the wind energy
data set, all available sites were used.

7.2.2 Experiments Design

For the concept drift experiments, e-MVFTS was compared to NSFTS, discussed
in chapter 5 and Fuzzy-set-Based evolving Modeling (FBeM) an evolving fuzzy model
proposed by Leite et al. 2012. Both benchmark methods were chosen because also provides
adaptive mechanisms and are based on fuzzy concepts. The objective is to compare
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Table 10 – Solar Energy Data set

NREL Oahu Solar Measurement Grid

Variable Global Horizontal Irradiance (GHI)
Frequency 15 minutes
Start Date 2010-06-01
End Date 2011-07-31
Number of sites 10
Samples per site 38766

Table 11 – Wind Energy Data set

GEFCom 2012 Data set

Variable Wind Power
Frequency Hourly
Start Date 2009-07-01
End Date 2010-08-30
Number of sites 7
Samples per site 8761

e-MVFTS to other fuzzy-based models in terms of adaptability to drift events.

All the concept drift data sets in this experiments contain 2000 samples, in which
the drift events were triggered from the thousandth sample. The experiments were run
under the prequential (First-Test-Then-Train) scenario, illustrated in Figure 36. The first
1000 samples were used for eventual adaptations of the models used in the experiment,
the forecast error not being measured. From the triggering of the event, the error of each
method is calculated. The objective is to observe how each model adapts to the event
inserted during the processing of the dataset. It is worth noting that the adaptation step
is not necessary for e-MVFTS, since the model can evolve from scratch.

The validation method chosen for the experiments using renewable energy data
sets was the rolling window, the same used in the experiments in the chapter 5. The window
set up was 4 weeks for training and one week for testing each iteration. In addition, the
first month of each data set was used for parameter tuning before, and is also supported
by the Hyperopt tool.

From the second iteration, e-MVFTS used only its model update mechanism,
described in section 7.1.2. For each iteration, the data previously used for testing were
used for this procedure. The other benchmark algorithms followed the routine proposed
by the rolling window validation, of performing training and testing sequentially at each
iteration.

The models chosen for comparison with e-MVFTS are all multivariate, in order to
be able to process the same data sets. The statistical model Vector Autoregressive (VAR)
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Figure 36 – Prequential Validation

Table 12 – List of hyper-parameters for the methods used in the solar and wind forecasting.

Method Parameter Values
All Lags 1-4

MLP

Layers 2-3
Neurons per layer 8, 16, 64, 128, 256, 512
Dropout Regularization 0-1
Batch size 28, 64, 128, 256, 512

FIG-FTS
KNN 1-5
α-cut 0-0.3
Fuzzy sets 100-250

was used. The Multi Layer Perceptron (MLP) was also applied to the problem, but it
was modeled in order to receive as input the multivariate lags (high order) and return
as forecast the values of all the variables analyzed. The last model chosen as benchmark
is a multivariate version of FTS, the FIG-FTS, described in chapter 4, section 4.4. The
ranges of values used during the hyperparameter tuning step are described in Table 12.

The hyperparameters of e-MVFTS, namely variance limit r0 and cumulative
distance α, were set to their default values, 0.001 and 0.6, respectively, during all the
experiments.
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7.2.3 Metrics

For these experiments, the metrics RMSE, nRMSE and SMAPE were also applied,
according to the equations below.

RMSE =

√∑n
t=1(Yt − Ŷt)2

n
(7.5)

nRMSE =
RMSE∑i+z

t=i Yt
z

(7.6)

SMAPE =
1

n

n∑
t=1

|Yt − Ŷt|
|Ŷt|+ |Yt|

(7.7)

where Yi are the measured observations at the point of interest at time t, Ŷt
denotes the predicted values and n is the length of dataset. Even though the Yi values are
multivariate in this experiment, the final calculated value is univariate. In both metrics,
conversion occurs at the time the data is averaged. As there are no variables that represent
different quantities or units of measure, the values are calculated among all the variables
used.

After calculating the forecasting errors, the Diebold-Mariano test was used to
assess the difference in the accuracy between e-MVFTS and each benchmark model. The
null hypothesis for this test is that there is no difference. If the p-value returned in the test
is less than a significance level, it indicates that there is a significant difference between
the results, therefore rejecting the null hypothesis. For the experiments, a significance level
of 0.01 was used.

7.2.4 Forecasting Results

The average RMSE and SMAPE for the concept drift datasets are shown in Table
13. The errors are calculated for a one step ahead forecasting (t+ 1), which takes as input
the observations in t and t − 1 (lag order 2). The process was run 10 times for each
dataset.
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Table 13 – Forecasting - Concept drift datasets

Data set NSFTS FBeM e-MVFTS
RMSE SMAPE RMSE SMAPE RMSE SMAPE

Stationary signal 0.1539± 0.0103 13.7053± 1.4931 0.1542± 0.0101 13.7120± 1.4426 0.1410± 0.0088 12.8664± 1.5018
Stationary signal with blip 0.0554± 0.0303 17.3365± 4.3588 0.0610± 0.0487 14.0222± 2.6778 0.0454± 0.0297 12.9779± 2.0690
Incremental Mean 0.0032± 0.0001 0.7025± 0.0667 0.0032± 0.0000 0.8882± 0.0342 0.0028± 0.0003 1.4462± 0.3211
Incremental Mean and Variance 0.0967± 0.0067 9.8406± 0.4281 0.0934± 0.0060 9.7133± 0.3889 0.0782± 0.0057 11.7267± 1.9077
Incremental Variance 0.1485± 0.0176 10.2827± 1.7948 0.1321± 0.0147 9.5040± 1.6785 0.1658± 0.0190 12.1366± 2.2337
Sudden Mean 0.3813± 0.0060 56.7437± 2.2169 0.0468± 0.0023 13.0528± 0.9806 0.0431± 0.0040 12.0293± 1.0649
Sudden Mean and Variance 0.3531± 0.0127 43.4510± 3.3795 0.0759± 0.0047 14.6874± 2.3680 0.1005± 0.0705 14.8817± 3.8664
Sudden Variance 0.1650± 0.0098 14.2679± 1.1008 0.1653± 0.0109 14.5184± 1.1335 0.1457± 0.0079 13.1385± 1.1568



7.2. Experiments 101

The experiments involving concept drift data sets presented comparable results for
all the forecasting methods. Table 14 shows the results of the Diebold-Mariano test for the
errors calculated using RMSE. The p-values lower than 0.01 indicates significant differences
between e-MVFTS and the compared models. E-MVFTS presented better results mostly
when dealing with incremental variations. It suggests that the model update procedure,
which incrementally updates the mean and variance of the micro-clusters, presents a
dynamic capable of adapting to such changes appropriately. In addition, good results of
the method were observed at blip events. This can be explained by the applicability of
TEDA framework in outlier detection problems, as discussed by Angelov 2014b.

Table 14 – Forecasting - Concept drift datasets - p-values for Diebold-Mariano Test

Data set e-MVFTS vs NSFTS e-MVFTS vs FBeM
Stationary signal 0.00∗ 0.00∗
Stationary signal with blip 0.15 0.00∗
Incremental Mean 0.11 0.10
Incremental Mean and Variance 0.00∗ 0.00∗
Incremental Variance 0.00∗ 0.00∗
Sudden Mean 0.00∗ 0.23
Sudden Mean and Variance 0.00∗ 0.04
Sudden Variance 0.01 0.01

*Indicates significant difference

The error for the renewable energy data sets were reported as the average of
the rolling window evaluations. For each window used for testing, the error metrics are
calculated. Figures 41 and 42 illustrate the nRMSE observed at each validation window.
From these illustrations of the temporal evolution of the models, it is possible to notice how
each method adapts to the changes occurred in the data. e-MVFTS managed to maintain
a consistent adaptation in the face of concept drift events that affected the performance
of all models, managing in some cases to maintain a better performance than the other
models after adaptation.

The summarized RMSE and SMAPE results for the experiments using the solar
energy data set are presented in Figures 37 and 38, while wind energy experiments are
depicted in 39 and 40. Table 15 summarizes the results.

For the solar energy experiment, e-MVFTS presented the best results when
SMAPE metric was applied, while VAR was the best algorithm for RMSE. The difference
in the results observed for the two metrics can be understood by some of their characteristics.
The RMSE tends to be more impacted by residues of greater magnitude, as it is based on
their standard deviation. On the other hand, because it is based on the absolute average
of the errors, SMAPE gives similar importance to all calculated residues. Therefore, the
results of this experiment suggest that, in general, residues of greater magnitude were
less observed in the VAR algorithm, which may explain its slightly better performance
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for RMSE. However, their low occurrence throughout the experiment contributed to the
lowest SMAPE in the results for e-MVFTS. For the wind energy data set, VAR presented
the best forecasting results, while the other algorithms had comparable results. For these
results, it is worth highlighting the greater error ranges for both metrics. This indicates
that even the best performing methods had difficulties in forecasting, given the unstable
patterns presented by the wind power time series. Table 16 shows the results for the
Diebold-Mariano test applied to both renewable energy data sets. The p-values indicate
significant accuracy differences between e-MVFTS and the benchmark forecasting models
for all experiments.

After processing the 4 weeks of data used for initial training, e-MVFTS achieved
a number of fuzzy sets and rules that remained stable throughout the experiments. For the
solar energy data set, 160 fuzzy sets and 448 FLRGs were generated, and for the wind
energy data set, the model consisted of 230 fuzzy sets and 261 FLRGs. It is worth noting
that FIG-FTS was configured, through hyperparameter tuning, with similar values. 150
and 200 fuzzy sets were defined for the solar and wind energy experiments, respectively.
One of the central problems in the FTS models is the definition and partitioning of its
Universe of Discourse. And these values suggest that e-MVFTS is capable of achieving an
adequate configuration without the cost of a tuning process.

The models were also evaluated for multi-step ahead forecasting. For all models,
the multi-step forecasting mechanism was recursive, in which the output of a 1-step ahead
forecast is used as input to the model in order to generate the forecast for the next horizon.
For both data sets, the horizons of 1, 4, and 8 steps ahead were observed. Figures 43
and 44 show the values measured using nRMSE. In Figures 45, 46, 47, 48, 49, 50, the
residues presented in the experiments are shown. Residual analysis indicates that, for
shorter forecast horizons, the residues present zero average and are normally distributed,
suggesting that they are white noise. From larger horizons, such behavior starts to change
for some models, suggesting that all models have difficulty forecasting such time series.
The observation of these results suggests a great variability in the time series analyzed
in this work, which makes it difficult to carry out a consistent multi-step forecast. It is,
therefore, another aspect that reinforces the need to develop models with mechanisms that
allow an adaptation to the changes that occur in these time series.

7.3 Discussion

The forecasting model presented in this chapter proposes some extensions to FTS-
based models. First, its ability to dynamically adapt to data provides a relevant alternative
of flexibility for the original model structure and its rules at a reduced computational
cost, since it does not require an entire model reconstruction process. In addition, the
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Table 15 – Forecasting - Renewable Energy data sets

Data set Model RMSE SMAPE
Solar Energy e-MVFTS 0.0854± 0.0192 21.2244± 3.9193

VAR 0.0796± 0.0173 25.1752± 3.2458
MLP 0.1099± 0.0489 27.1560± 5.1009

FIG-FTS 0.0862± 0.0208 26.6996± 4.0626
Wind Energy e-MVFTS 0.1061± 0.0201 33.7018± 11.7134

VAR 0.0799± 0.0169 28.4566± 8.9350
MLP 0.1401± 0.0335 35.4485± 8.5438

FIG-FTS 0.1179± 0.0257 32.2817± 6.4839

Figure 37 – Solar Energy data set - RMSE

Table 16 – Forecasting - Renewable Energy datasets - p-values for Diebold-Mariano Test

Data set e-MVFTS vs VAR e-MVFTS vs MLP e-MVFTS vs FIG-FTS
Solar Energy 0.00∗ 0.00∗ 0.00∗

Wind Energy 0.00∗ 0.00∗ 0.00∗

*Indicates significant difference

data representation format, which uses an integrated clustering algorithm, allows greater
scalability when representing data of greater dimensionality.

The model was applied to different concept drift events to assess its robustness to
changes in data. In the observed experiments, e-MVFTS showed good results, especially
in incremental changes in mean and variance. These characteristics enable it to be applied
and analyzed within the context of renewable energy forecasting. Therefore, the model
was applied to the solar and wind energy data sets used in this thesis, being compared
with different approaches that deal with multivariate time series. e-MVFTS presented
a good performance in both data sets, being the best overall result for the solar energy
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Figure 38 – Solar Energy data set - SMAPE

Figure 39 – Wind Energy data set - RMSE

data set. The results suggest that it is a good alternative to the problem studied in this
thesis. As it is a new algorithm, the application of e-MVFTS to other problems involving
non-stationary multivariate data can be an interesting activity to have a more complete
assessment of its performance and eventually point out improvements in its formulation.

E-MVFTS integrates MicroTEDAclus with essential elements of an FTS model,
such as fuzzy sets and membership functions. An advantage is that eventual integrations
with more advanced FTS models tend to be straightforward. Investigating e-MVFTS
expansions in this direction may be a direction for future work. Another point that can be
observed is its behavior in the face of data that changes over time its data distribution
in a more permanent way. In this case, there would be no need to maintain in your
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Figure 40 – Wind Energy data set - SMAPE

Figure 41 – Solar Energy data set - Temporal evolution of nRMSE

Figure 42 – Wind Energy data set - Temporal evolution of nRMSE

model representations and rules referring to older standards that are no longer accessed.
Alternatives to deal with such situations tend to improve mainly the computational
performance of the model, since its set of rules may be smaller. Techniques to deal with
such situations, such as pruning mechanisms, can provide an important improvement to
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Figure 43 – Solar Energy data set - Grouped Boxplots for Multistep Forecating - nRMSE

Figure 44 – Wind Energy data set - Grouped Boxplots for Multistep Forecating - nRMSE

the model.
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 45 – Solar Energy Dataset - Residual Analysis - 1 step ahead Forecasting
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 46 – Solar Energy Dataset - Residual Analysis - 4 steps ahead Forecasting
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 47 – Solar Energy Dataset - Residual Analysis - 8 step ahead Forecasting
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 48 – Wind Energy Dataset - Residual Analysis - 1 step ahead Forecasting
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 49 – Wind Energy Dataset - Residual Analysis - 4 steps ahead Forecasting
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(a) VAR (b) e-MVFTS

(c) MLP (d) FIG-FTS

Figure 50 – Wind Energy Dataset - Residual Analysis - 8 step ahead Forecasting
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Chapter 8

Conclusion

In this thesis, the problem of renewable energy forecasting was addressed, with
a focus on solar and wind energy. Despite their specifics, both energy sources have in
common the strong influence of climatic conditions, which result in non-stationary patterns
in the time series related to energy production. If, on the one hand, such patterns make it
difficult to develop a model that can adequately predict future values, on the other, we
have a worldwide growth in demand for renewables, which encourages the modernization
of energy systems. Systems with modern technologies may offer a greater capacity for
monitoring the plants, based on increasingly detailed and accurate records of the sites. It
is from this greater availability of data that is proposed in this thesis the development of
a solution that could take into account the correlation between the values recorded on
the sites of a system distributed geographically. Such information was modeled within
the context of a spatio-temporal problem. In addition, the previously discussed issue of
non-stationarity was also addressed, with the development of adaptive mechanisms for the
forecasting method.

Among the different approaches present in the literature to deal with the problem,
FTS models were chosen in the thesis, due to their flexibility that allows reformulations that
can cover both the processing of multivariate series and the implementation of adaptation
mechanisms of the model during execution. In addition, their representation of the rules
is made in a more interpretable way than other techniques of greater complexity, such
as neural networks. Such characteristic is important to facilitate its understanding and
improve its reliability, which can assist in the adoption of the technique to support decision
making.

First, the problem of non-stationary data was approached, from the application of
NSFTS, a novel FTS technique that provides a mechanism of adaptation of the model to
deal with the changes in the parameters of data distribution, common to non-stationary
time series. When evaluated for renewable energy forecasting, the model was less accurate
than other models of greater complexity. However, when compared to a classic FTS model,
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the NSFTS presents a substantial performance gain, which suggests that a mechanism for
adapting the model has great potential to assist in the renewable energy forecasting.

Along with the problem of non-stationarity, the initial premise also involves the
understanding of spatio-temporal data, in order to provide a more robust model. The
proposed solution to meet all these aspects was the e-MVFTS, an evolving FTS model that
represents the data using multivariate clusters, translating them into univariate components,
to be used by a High Order FTS model. The model presented performance comparable to
other more complex multivariate forecasting models, with the additional advantage of being
able to adapt to the data received, without the need for new training steps. Its adaptation
mechanism also presents features that provide a more flexible FTS-based representation.
For example, the model does not require a prior setup of the number of fuzzy sets, which
are created on demand, and have their parameters adjusted during runtime. In addition,
the model requires the definition of a few hyper-parameters, thus simplifying eventual
hyper-parameter tuning processes, which are usually computationally expensive. The
experiments also indicated a robustness of such hyper-parameters, when applied to large
volumes of data. Therefore, from the elaboration of this model, a new extension of the
FTS models is presented, which reinforces an initial impression of this research, that the
treatment of non-stationarity and the correlations present in spatio-temporal data are
points of improvement for renewable energy forecasting problems.

Future work

In view of the promising results of the e-MVFTS, we envision some initiatives that
may be addressed in order to improve its performance. One of them is the development of
mechanisms that can optimize the model, especially regarding the number of micro-clusters.
In addition, the evaluation of different distance metrics for the clustering algorithm and,
subsequently, their fuzzy sets is a point to be analyzed. The model was initially conceived
in the context of renewable energy time series. The evaluation of its performance when
applied to other problems can be a line of study with the potential to highlight other
positive and negative aspects. For example, forecasting problems involving multivariate
data streams, given that the TEDA framework, which underlies the model’s clustering
mechanism, was originally conceived within this context.

One of the motivations cited in this thesis for the adoption of FTS models is the
interpretability of their models. For the e-MVFTS model, the challenge is presenting a
better visual representation of multivariate clusters. For that, the application of techniques
capable of multidimensional data visualization, such as t-SNE [Maaten and Hinton, 2008],
can be an alternative for the representation of fuzzy sets. From these projected components,
the rule base that describes the model could be more easily represented, indicating in a
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more simplified way the decisions that support the returned prediction values.

In addition to interpretable rules, another improvement of the model that can
assist in the decision-making process is the output of probabilistic forecasting. Therefore,
another future work is the integration of e-MVFTS with FTS-based probabilistic forecasting
models, as described in [de Lima Silva et al., 2020]. This extension can assist both in the
decision-making process for the generation of energy from an established system and in
the prospecting of new installations based on data from neighboring sites. Therefore, it
may open new applications for the e-MVFTS model.
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J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept
drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

J. M. Garibaldi. The need for fuzzy ai. IEEE/CAA Journal of Automatica Sinica, 6(3):
610–622, 2019.

J. M. Garibaldi, M. Jaroszewski, and S. Musikasuwan. Nonstationary fuzzy sets. IEEE
Transactions on Fuzzy Systems, 16(4):1072–1086, 2008.

A. Ghaderi, B. M. Sanandaji, and F. Ghaderi. Deep forecast: deep learning-based spatio-
temporal forecasting. arXiv preprint arXiv:1707.08110, 2017.

N. Golyandina, V. Nekrutkin, and A. A. Zhigljavsky. Analysis of time series structure:
Ssa and related techniques. 2001.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

M. Hahsler and M. Bolaños. Clustering data streams based on shared density between
micro-clusters. IEEE Transactions on Knowledge and Data Engineering, 28(6):1449–
1461, June 2016. ISSN 1041-4347. doi: 10.1109/TKDE.2016.2522412.

http://dx.doi.org/10.1016/j.eswa.2009.02.057


120 References

M. Hahsler and J. Forrest. streamMOA: Interface for MOA Stream Clustering Algorithms,
2019. URL https://CRAN.R-project.org/package=streamMOA. R package version
1.2-1.

M. Hahsler, M. Bolanos, J. Forrest, et al. Introduction to stream: An extensible framework
for data stream clustering research with r. Journal of Statistical Software, 76(14):1–50,
2017.

T. Hong, P. Pinson, and S. Fan. Global energy forecasting competition 2012, 2014.

R. Hyde, P. Angelov, and A. MacKenzie. Fully online clustering of evolving data streams
into arbitrarily shaped clusters. Information Sciences, 382:96–114, 2017.

IEA. Renewables 2019 - market analysis and forecast from 2019 to 2024. Technical report,
International Energy Agency, 2019. URL iea.org/reports/renewables-2019.

IEA. Global energy review 2020. Technical report, International Energy Agency, 2020.
URL https://www.iea.org/reports/global-energy-review-2020.

R. H. Inman, H. T. Pedro, and C. F. Coimbra. Solar forecasting methods for renewable
energy integration. Progress in Energy and Combustion Science, 39(6):535 – 576, 2013.
ISSN 0360-1285. doi: http://dx.doi.org/10.1016/j.pecs.2013.06.002.

P. Jiang, H. Yang, and J. Heng. A hybrid forecasting system based on fuzzy time series and
multi-objective optimization for wind speed forecasting. Applied energy, 235:786–801,
2019.

T. A. Jilani, S. M. A. Burney, and C. Ardil. Multivariate High Order Fuzzy Time Series
Forecasting for Car Road Accidents. World Academy of Science, Engineering and
Technology, 2(1):288–293, 2007. ISSN 00014575. doi: 10.1017/CBO9781107415324.004.

J. Jung and R. P. Broadwater. Current status and future advances for wind speed and
power forecasting. Renewable and Sustainable Energy Reviews, 31:762–777, 2014.

G. Kariniotakis. Renewable Energy Forecasting: From Models to Applications. Woodhead
Publishing, 2017.

M. Khodayar and J. Wang. Spatio-temporal graph deep neural network for short-term
wind speed forecasting. IEEE Transactions on Sustainable Energy, 10(2):670–681, 2018.

H. Lan, C. Zhang, Y.-Y. Hong, Y. He, and S. Wen. Day-ahead spatiotemporal solar
irradiation forecasting using frequency-based hybrid principal component analysis and
neural network. Applied energy, 247:389–402, 2019.

https://CRAN.R-project.org/package=streamMOA
iea.org/reports/renewables-2019
https://www.iea.org/reports/global-energy-review-2020


References 121

L. W. Lee, L. H. Wang, S. M. Chen, and Y. H. Leu. Handling forecasting problems based
on two-factors high-order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14
(3):468–477, 2006. ISSN 10636706. doi: 10.1109/TFUZZ.2006.876367.

D. Leite, R. Ballini, P. Costa, and F. Gomide. Evolving fuzzy granular modeling from
nonstationary fuzzy data streams. Evolving Systems, 3(2):65–79, 2012.

A. Lemos, F. Gomide, and W. Caminhas. Multivariable gaussian evolving fuzzy modeling
system. Fuzzy Systems, IEEE Transactions on, 19(1):91–104, 2011.

G. A. Licciardi, R. Dambreville, J. Chanussot, and S. Dubost. Spatiotemporal pat-
tern recognition and nonlinear pca for global horizontal irradiance forecasting. IEEE
Geoscience and Remote Sensing Letters, 12(2):284–288, 2015.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

J. Maia, C. A. Severiano Junior, F. G. Guimarães, C. L. de Castro, A. P. Lemos, J. C. F.
Galindo, and M. W. Cohen. Evolving clustering algorithm based on mixture of typicalities
for stream data mining. Future Generation Computer Systems, 106:672–684, 2020.

R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, et al. Evolving deep neural networks. In Artifi-
cial Intelligence in the Age of Neural Networks and Brain Computing, pages 293–312.
Elsevier, 2019.

T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

C. Molnar. Interpretable Machine Learning. 2019. https://christophm.github.io/

interpretable-ml-book/.

D. C. Montgomery, C. L. Jennings, and M. Kulahci. Introduction to time series analysis
and forecasting. John Wiley & Sons, 2015.

S. R. Moreno and L. dos Santos Coelho. Wind speed forecasting approach based on
singular spectrum analysis and adaptive neuro fuzzy inference system. Renewable energy,
126:736–754, 2018.

A. M. Nobre. Short-term solar irradiance forecasting and photovoltaic systems performance
in a tropical climate in Singapore. PhD thesis, Universidade Federal de Santa Catarina,
2015.

NREL. Oahu solar measurement grid. https://midcdmz.nrel.gov/oahu_archive/,
2018. Accessed: 2020-08-01.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://midcdmz.nrel.gov/oahu_archive/


122 References

H. T. C. Pedro and C. F. M. Coimbra. Assessment of forecasting techniques for solar
power production with no exogenous inputs. Solar Energy, 86(7):2017–2028, 2012.

I. M. Peters, C. Brabec, T. Buonassisi, J. Hauch, and A. M. Nobre. The impact of
covid-19-related measures on the solar resource in areas with high levels of air pollution.
Joule, 4(8):1681–1687, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

H. J. Sadaei, P. C. d. L. e Silva, F. G. Guimarães, and M. H. Lee. Short-term load
forecasting by using a combined method of convolutional neural networks and fuzzy
time series. Energy, 175:365–377, 2019.

S. Samanta, M. Pratama, and S. Sundaram. A novel spatio-temporal fuzzy inference
system (spatfis) and its stability analysis. Information Sciences, 505:84–99, 2019.

C. A. Severiano Junior, F. G. Guimarães, and M. W. Cohen. Very short-term solar
forecasting using multi-agent system based on extreme learning machines and data
clustering. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1–8. IEEE, 2016.

C. A. Severiano Junior, P. C. Silva, H. J. Sadaei, and F. G. Guimarães. Very short-term
solar forecasting using fuzzy time series. In 2017 IEEE international conference on fuzzy
systems (FUZZ-IEEE), pages 1–6. IEEE, 2017.

C. A. Severiano Junior, P. C. d. L. e Silva, M. W. Cohen, and F. G. Guimarães. Evolving
fuzzy time series for spatio-temporal forecasting in renewable energy systems. Renewable
Energy, 171:764–783, 2021.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d. Carvalho, and
J. a. Gama. Data stream clustering: A survey. ACM Comput. Surv., 46(1):13:1–13:31,
July 2013. ISSN 0360-0300. doi: 10.1145/2522968.2522981.

P. Silva, M. A. Alves, C. Severiano Jr, G. Vieira, F. Guimarães, and H. Sadaei. Probabilistic
forecasting with seasonal ensemble fuzzy time-series. In XIII Brazilian Congress on
Computational Intelligence, Rio de Janeiro, 2017.

P. Singh and G. Dhiman. A hybrid fuzzy time series forecasting model based on granular
computing and bio-inspired optimization approaches. Journal of computational science,
27:370–385, 2018.



References 123

E. A. Soares, H. A. Camargo, S. J. Camargo, and D. F. Leite. Incremental gaussian granular
fuzzy modeling applied to hurricane track forecasting. In 2018 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE, 2018.

Q. Song and B. S. Chissom. Fuzzy time series and its models. Fuzzy sets and systems, 54
(3):269–277, 1993.

L. Suganthi, S. Iniyan, and A. A. Samuel. Applications of fuzzy logic in renewable energy
systems–a review. Renewable and sustainable energy reviews, 48:585–607, 2015.

Y. Sun, G. G. Yen, and Z. Yi. Evolving unsupervised deep neural networks for learning
meaningful representations. IEEE Transactions on Evolutionary Computation, 23(1):
89–103, 2018.

C. Sweeney, R. J. Bessa, J. Browell, and P. Pinson. The future of forecasting for renewable
energy. Wiley Interdisciplinary Reviews: Energy and Environment, 9(2):e365, 2020.

L. J. Tashman. Out-of-sample tests of forecasting accuracy: an analysis and review.
International Journal of Forecasting, 16(4):437 – 450, 2000. ISSN 0169-2070. doi:
https://doi.org/10.1016/S0169-2070(00)00065-0. URL http://www.sciencedirect.

com/science/article/pii/S0169207000000650. The M3- Competition.

C. Vincent, G. Giebel, P. Pinson, and H. Madsen. Resolving nonstationary spectral
information in wind speed time series using the hilbert–huang transform. Journal of
Applied Meteorology and Climatology, 49(2):253–267, 2010.

D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen, and W. M. Walsh. Solar irradi-
ance forecasting using spatial-temporal covariance structures and time-forward kriging.
Renewable Energy, 60:235–245, 2013.

D. Yang, Z. Dong, T. Reindl, P. Jirutitijaroen, and W. M. Walsh. Solar irradiance
forecasting using spatio-temporal empirical kriging and vector autoregressive models
with parameter shrinkage. Solar Energy, 103:550–562, 2014. ISSN 0038092X. doi:
10.1016/j.solener.2014.01.024.

R. Yu, Z. Liu, X. Li, W. Lu, D. Ma, M. Yu, J. Wang, and B. Li. Scene learning: Deep
convolutional networks for wind power prediction by embedding turbines into grid space.
Applied energy, 238:249–257, 2019.

L. A. Zadeh. Fuzzy sets and information granularity. Advances in fuzzy set theory and
applications, 11:3–18, 1979.

J. Zhang, R. Verschae, S. Nobuhara, and J.-F. Lalonde. Deep photovoltaic nowcasting.
Solar Energy, 176:267–276, 2018.

http://www.sciencedirect.com/science/article/pii/S0169207000000650
http://www.sciencedirect.com/science/article/pii/S0169207000000650




125

Appendix A

Singular Spectrum Analysis

A.1 Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) is a technique of time series analysis which
basically makes a decomposition of the original series into the sum of a small number
of independent and interpretable components such as a slowly varying trend, oscillatory
components and a structureless noise [Golyandina et al., 2001]. Among the capabilities of
SSA for time series analysis, it can find trends at different resolutions, perform smoothing,
detect seasonality components and cycles with small or large periods. And for all these
tasks, no parametric model of the time series is required. Because of its decomposition
properties, the method was applied to separate the original data into trend and residual
components, as discussed in Chapter 2.

A.1.1 Methodology

SSA consists of two complementary stages: decomposition and reconstruction.
Both stages include two separate steps. A brief discussion on the methodology of the
technique presented below.

A.1.1.1 Decomposition

Step 1: Embedding

Embedding is a mapping that transfers a one-dimensional time series Yt =

(y1, y2, . . . , yt) to a multi-dimensional series X1, . . . , Xk where Xi = (yi, . . . , yi+L−1) ∈
RL.with k = t− L+ 1. Xi is a L-lagged vector.

The embedding process takes one parameter L, called window length, where
2 < L < T . After this step a trajectory matrix X = [X1, . . . , XK ] is returned. X is a
Hankel matrix.

Step 2: Singular value decomposition (SVD)
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In this step, a Singular value decomposition of the trajectory matrix is performed.
λ1, . . . , λL are the eigenvalues of XX’ in decreasing order of magnitude and U1, . . . , UL

are the orthonormal system of the eigenvectors of the matrix XX’ corresponding to
these eigenvalues. Given d the rank of X, where d = max(i, suchthatλi > 0). Denote
Vi = X’Ui/

√
λi and the SVD of the trajectory matrix X can be written as:

X = X1 + . . .+Xd (A.1)

where Xi = Ui
√
λiV

′
i . An SVD decomposition can be useful for measuring the contribution

of each component Xi in the reconstruction of the original time series. Given that among
all the matrices X(r) of rank r, with r < d, the best approximation of matrix X is provided
by
∑r

i=1 Xi. It means that the ratio of contribution of a matrix Xi of rank r can be
calculated by A.2:

%ofcontribution =
λi∑d
i=1 λi

(A.2)

A.1.1.2 Reconstruction

Step 1: Grouping

The grouping step consists of organizing the matrices Xi into disjoint sets. For
each set, the belonging matrices are summed. Let I = {i1, . . . , ip} be a set of indexes
i1, . . . , ip. The matrix XI corresponds to a sum of matrices of a set I, XI = Xi1 + . . .+Xip.
Thus, the grouping of the indexes J = {1, . . . , d} into disjoint subsets I1, . . . , Im refers to
the representation:

X = XI1 + . . .+XIm (A.3)

Step 2: Diagonal Averaging

Diagonal averaging converts each matrix XI to a time series, which is an additive
component of the initial series Yt. Let zij be an element of a matrix Z. The k-th term of
the reconstructed series is obtained by averaging zij over all i and j where i+ j = k + 2.
This procedure is called diagonal averaging or Hankelization of the matrix Z. It means
that by applying the Hankelization procedure to each matrix component of A.3, produces
series X̃(m) = (x̃

(m)
1 ), . . . , x̃

(m)
t ). This is equivalent to decomposing the original time series

Yt = (y1, y2, . . . , yt) to a sum of m series reconstructed by diagonal averaging:

Yt =
m∑
i=1

x̃
(m)
i ) (A.4)
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